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Preface 

Intelligent wireless communication plays an important role in the field of commu-
nication and other related fields. With the continuous progress and innovation of 
technology, intelligent wireless communication has become an indispensable part of 
modern society. It has not only changed the way people live, but also promoted the 
development of various industries. As an important research direction in intelligent 
wireless communication, deep learning provides new ideas and methods for system 
performance optimization, resource management, and user experience. By utilizing 
deep learning algorithms, intelligent wireless communication systems can automat-
ically learn and adapt to different environments and user needs, thereby providing 
more personalized and efficient services. 

The leap from 5G to 6G means that smart wireless communication has gone 
through another decade of development. In this new phase, we can expect great 
changes and innovations in smart wireless communications. For example, higher data 
rates, lower latency, more connections, and wider coverage will become standard in 
the 6G era. At the same time, intelligent wireless communication will also be deeply 
integrated with artificial intelligence, IoT, big data, and other technologies to further 
promote the digitization and intelligent process of society. 

In order to systematically illustrate the development of this field in the past decade 
and possible future directions, we decided to write a book. This book will cover 
all aspects of intelligent wireless communication, including technical principles, 
system design, application scenarios, and future development trends. We will detail 
the key technologies and standards of 6G, and explore their application prospects 
in various fields. In addition, we will present application cases of deep learning in 
intelligent wireless communication and look at new algorithms and technologies that 
may emerge in the future. 

Through this book, we hope to provide readers with a comprehensive and in-
depth understanding of intelligent wireless communication opportunities. Whether 
it is a researcher in a related field, an engineer, or a general reader interested in intel-
ligent wireless communication, you can gain valuable knowledge and inspiration. 
We believe that this book will become an important reference book in the field of
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intelligent wireless communication and provide useful guidance for future research 
and development. 

As a scientific research team in the field of intelligent wireless communication, 
we are committed to the call of The Times, breaking through technical problems and 
solving existing problems. This book was made possible thanks to the support and 
contributions of the co-workers. 

Beijing, China Haijun Zhang
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Chapter 1 
Introduction to Intelligence Wireless 
Communication 

1.1 Background on the Evolution of Intelligence Wireless 
Communication 

Intelligent wireless communication is the benchmark of modern communication, but 
its development is not achieved overnight. The development background of intelligent 
wireless communication mainly has the following four points. 

With the rapid expansion of modern population, the rapid progress of science and 
technology, mobile Internet, Internet of things (IoT), machine learning and other 
technologies are booming. This makes smart devices popular, application scenarios 
richer, and therefore spawned the need for high-speed, reliable, effective wireless 
communication technology. As the global population continues to grow, more and 
more people and devices need to be connected. The rise of mobile Internet enables 
people to access the Internet anytime, anywhere through smartphones, tablets and 
other mobile devices to enjoy rich information and services. The IoT connects var-
ious smart devices and sensors with the Internet to realize intelligent interaction 
and information sharing between devices. The development of technologies such as 
machine learning and artificial intelligence (AI) enables devices to learn and adapt to 
the needs of users to provide more intelligent services. With the continuous progress 
and popularization of these technologies, people’s demand for wireless communi-
cation technology is getting higher and higher. They want to be able to enjoy high-
speed, reliable and efficient wireless connectivity, whether through mobile devices 
or through various IoT devices. Whether it is watching high-definition videos, online 
games, telecommuting, or transferring data between IoT devices, wireless commu-
nication technology needs to be able to provide stable and fast connections to meet 
users’ requirements for data transmission rates and latency. In addition, with the 
rapid development of smart cities, smart transportation, smart home and other fields, 
wireless communication technology is also playing an increasingly important role. 
People want to achieve a more convenient lifestyle through smart devices, and wire-
less communication technology needs to provide reliable connections to support 
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2 1 Introduction to Intelligence Wireless Communication

the interconnection between smart devices. For example, controlling home devices 
through smartphones, real-time monitoring of urban traffic conditions, telemedicine, 
etc., all require wireless communication technology to provide fast, reliable connec-
tions and stable data transmission. Therefore, with the rapid expansion of people 
around the world and the progress of science and technology, the vigorous develop-
ment of mobile Internet, IoT, machine learning and other related technologies has 
spawned a huge demand for high-speed, reliable and efficient wireless communica-
tion technology. Whether it is to meet users’ requirements for data transmission rates 
and latency, or to support connectivity between smart devices, the development of 
wireless communication technology will continue to innovate, driven by changing 
social needs and technological advances. 

The bottleneck of the original wireless communication technology, such as the 
shortage of spectrum resources. With traditional methods, limited spectrum resources 
cannot meet the growing demand. In response to this problem, intelligent wireless 
communication has emerged as a solution to enable more efficient and flexible use 
of spectrum resources by leveraging cognitive spectrum intelligence and other tech-
nologies. Spectrum resource is the key resource of wireless communication, which 
is the electromagnetic frequency range required for transmitting data and signals. 
However, due to the limited spectrum resources, the traditional wireless communi-
cation technology is faced with serious challenges. In the past, people mainly relied 
on fixed spectrum resources allocated to various communication services to meet 
communication needs. However, with the continuous growth of wireless communi-
cation demand, the traditional spectrum allocation mode becomes more and more 
unsuitable for the actual demand, resulting in a relatively low utilization rate of spec-
trum resources and low efficiency. In order to solve this problem, intelligent wireless 
communication technology comes into being. Intelligent wireless communication is 
committed to improving the efficiency and flexibility of spectrum resources to meet 
the growing demand for wireless communication. Among them, cognitive spectrum 
intelligence technology is a key technology, which enables wireless devices to sense 
and understand the spectrum environment in which they are located. By utilizing cog-
nitive spectrum intelligence technology, wireless devices can quickly detect, evaluate 
and utilize available spectrum resources to adapt to real-time communication needs. 

The third point is the emergence of programmable wireless devices and machine 
learning technology in modern times, that is, intelligent technology. Programmable 
wireless devices refer to wireless devices with programmable functions, which can 
be flexibly configured and optimized according to different needs and scenarios. 
Through software-defined methods, programmable wireless devices can dynami-
cally adjust communication frequency, signal selection, power control and other 
parameters according to the actual situation to meet different wireless communi-
cation requirements. This flexible programming feature enables wireless devices 
to better adapt to changing communication environments and provide higher and 
more reliable wireless connections. Machine learning technology plays a key role 
in intelligent wireless communication. By utilizing a learning algorithm, wireless 
devices can learn from large amounts of data and automatically optimize communi-
cation performance. In the past, online networks needed to be manually configured
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and optimized, but the introduction of machine learning technology allows wireless 
networks to automatically learn and make decisions for more efficient and stable 
communication services. Machine learning technology can analyze historical data 
and real data by intelligent learning algorithms, continuously optimize the perfor-
mance of line network, improve spectrum utilization, reduce transmission delay and 
provide better user experience. The combination of programmable wireless devices 
and machine learning technology provides good conditions for the development of 
intelligent wireless communication. The scalable wireless device provides the abil-
ity of flexible configuration and optimization so that the wireless communication 
network can be dynamically adjusted according to the actual demand, and improve 
the communication efficiency. The machine learning technology can make the com-
munication network adapt and improve continuously through autonomous learning 
and optimization to provide better communication performance. 

Finally, there is the push of 5G technology. 5G technology has the characteris-
tics of greater bandwidth, lower latency and more connected devices, so as a new 
era of intelligent wireless communication technology, 5G technology will promote 
the development of related fields. At the same time, the large bandwidth character-
istics of 5G technology will greatly improve the transmission capacity of wireless 
communication, the low latency characteristics of 5G technology will achieve faster 
data transmission response speed, and the more connected device characteristics of 
5G technology will promote the wide application of the IoT and smart devices. In 
addition, it is able to connect more devices at the same time, through higher spec-
tral efficiency and multi-user multiple-input multiple-output technology, to achieve 
a large number of devices at the same time seamless communication. This makes 
it more convenient for IoT devices to realize interconnection and promote the rapid 
development of smart home, smart city, intelligent transportation and other fields. 
With the continuous evolution and popularization of 5G technology, intelligent wire-
less communication will usher in broader and promising development opportunities. 
In summary, the development of intelligent wireless technology in the new era, the 
bottleneck caused by the shortage of spectrum resources, the research and devel-
opment of 5G technology and the increasing demand for wireless communication 
have jointly promoted the development of intelligent wireless communication, and 
provided more possibilities and opportunities for intelligent wireless communication 
in the future. 

1.2 Why Intelligence Wireless Communication 
Is Important 

The importance of intelligent wireless communication is mainly reflected in its wide 
application, and it has an important position in many related fields. From the Indus-
trial IoT, autonomous driving, robotics, virtual reality (VR) and augmented reality
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(AR), healthcare, to the haptic Internet, the application and importance of intelligent 
wireless communication is everywhere. 

First of all, the IoT can realize the connection and communication between devices 
through intelligent wireless communication, achieve automated production and man-
agement, improve production efficiency, reduce costs, and improve product quality. 
IoT is a network that connects physical devices, sensors and computers to each other 
through wireless communication technology, featuring large-scale connectivity and 
mobility support. 

The popularity of smart sensors and IoT gateways has enabled large-scale connec-
tivity between industrial devices. The sensors are able to collect the status information 
of the device and transmit it in real-time to the IoT gateway, which is responsible 
for processing and forwarding this data. In this way, industrial equipment can be 
interconnected and data can be shared and analyzed instantly, thereby improving 
production efficiency and product quality. Smart technology supports the mobility 
of industrial equipment. Through the introduction of intelligent robots and auto-
matic navigation technology, industrial equipment is able to move and position itself 
autonomously. The intelligent robot is equipped with various sensors and navigation 
systems, which can accurately perceive the surrounding environment and plan the 
optimal path, improving the flexibility and adaptability of the device. At the same 
time, intelligent technology can also achieve collaborative operation between devices 
to improve the efficiency and automation level of industrial production. Intelligent 
technology also supports the connectivity and data interaction between industrial 
equipment and cloud platforms. By uploading equipment data to the cloud platform, 
industrial enterprises can achieve remote monitoring and management of equipment 
status and production processes. Intelligent analysis algorithms on the cloud plat-
form can conduct in-depth processing and mining of data to help enterprises find 
problems and optimize production processes. 

In the field of autonomous driving, intelligent wireless communication is the key to 
realising information interaction and collaboration between vehicles. Autonomous 
vehicles can share real-time road conditions, vehicle status and other information 
through wireless communication to make real-time collaborative decisions, opti-
mize traffic flow and improve road safety. Intelligent sensors and cognitive systems 
ensure the high reliability of autonomous driving. Autonomous vehicles are equipped 
with a variety of sensors, such as lidar, cameras, and ultrasonic sensors, which can 
obtain environmental information such as road conditions and obstacles in real-
time. Through the processing and analysis of sensor data, the cognitive system can 
accurately perceive and understand the surrounding environment, and make corre-
sponding decisions. With these intelligent technologies, autonomous vehicles can 
achieve accurate location awareness, obstacle avoidance and traffic accident avoid-
ance, ensuring driving safety and high reliability. And smart technology provides 
mobility support for autonomous driving. By introducing positioning systems, map 
data, and navigation algorithms, autonomous vehicles are able to achieve accurate 
positioning and path planning. The positioning system can accurately locate the 
location of the vehicle, the map data provides information such as road conditions 
and road speed limits, and the navigation algorithm can optimize the driving path,
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taking into account the traffic flow, vehicle speed and other factors to achieve fast 
and efficient travel. At the same time, intelligent technology can also realize auto-
matic parking, remote scheduling and other functions, providing convenient mobility 
support. 

For robots, the development of intelligent technology provides technical support 
for robots to achieve high energy efficiency and mobility support, making robots make 
major breakthroughs in data interaction and communication. As an autonomous sys-
tem capable of performing tasks independently, robots usually need to interact with 
the environment, perceive external information, and make decisions based on the 
information obtained. Intellisense and learning technology can improve the energy 
efficiency of robots. The robot is equipped with various sensors, such as cameras, 
infrared sensors, etc., and through real-time perception and recognition of the envi-
ronment, it can optimize the use of resources according to actual needs. For example, 
robots can intelligently adjust brightness according to light conditions, adapt speed 
according to object size, reduce energy consumption and improve energy efficiency. 
Intelligent path planning and navigation technologies provide support for the effi-
cient movement of robots. Equipped with a navigation system, combined with map 
data and planning algorithms, the robot can automatically plan the optimal path and 
avoid obstacles. In addition, intelligent path planning technology can dynamically 
adjust the path based on real-time traffic information, ensuring that the robot travels 
efficiently and safely during the movement. In addition, the intelligent charging and 
energy management system enables the robot to have highly energy efficient charging 
characteristics. Through the intelligent charging system, the robot can autonomously 
adjust the charging speed and timing according to the battery capacity and usage, 
minimizing energy waste. 

In the field of VR and AR, intelligent technology has played an important role 
in promoting high broadband and high-speed transmission. For example, 5G is the 
fifth-generation mobile communication technology, which has the characteristics of 
high bandwidth and low latency, and provides high-speed transmission support for 
VR and AR applications. The deployment and popularization of 5G networks allow 
users to download and upload large amounts of data faster, resulting in smoother 
VR and AR experiences. At the same time, intelligent technology can monitor and 
optimize the network in real-time to provide more stable and high-speed transmission 
services. Through intelligent network management and optimization mechanisms, 
network bandwidth can be adjusted according to real-time data traffic, providing the 
best transmission quality and user experience. In addition, data compression and 
optimization algorithms are able to compress this data to a smaller size to reduce 
bandwidth requirements and maintain low latency during transmission, providing a 
high-quality transmission experience. 

In the healthcare sector, smart wireless communication is widely used in 
telemedicine, health monitoring and smart medical devices. It ensures that only 
legitimate medical personnel have access to sensitive medical data by using secure 
encryption protocols, authentication, and access control mechanisms, preventing data 
from being accessed or tampered with by unauthorized personnel. At the same time, 
intelligent technology in the medical field can achieve high-bandwidth transmission
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Fig. 1.1 Application scenarios and advantages of intelligent technology in wireless 
communication 

to meet the needs of large-capacity and high-speed transmission in the medical field. 
Using cloud computing and distributed systems, intelligent technologies can provide 
high-bandwidth information transmission in large-scale, complex medical data pro-
cessing and analysis. The elastic and resource-sharing nature of cloud computing 
can effectively support the demand for large-scale data processing and transmission 
in healthcare. This is conducive to promoting the real-time transmission of medical 
data, promoting the development of telemedicine, and improving the quality and 
efficiency of medical services. 

Haptic Internet is an emerging concept that enables the transmission and sharing 
of haptic and force feedback through intelligent technology. The perceptual data 
in the tactile Internet usually contains a lot of information, such as tactile images, 
videos, etc., which needs to be transmitted through high-bandwidth communication. 
In the haptic Internet, high-speed sensors and devices are needed to sense, collect 
and transmit haptic information. Intelligent technology can continuously improve and 
develop high-rate sensor technology to improve the efficiency of data acquisition and 
transmission. 

In general, intelligent wireless communication has important applications and 
influence in the fields of industry, transportation, healthcare and interactive enter-
tainment. It not only connects people and devices, devices and devices, but also 
enables more efficient information transmission and collaborative decision-making, 
thus promoting the progress and development of society (Fig. 1.1).
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1.3 Review the Deep Learning Wireless Communication 

Wireless communication plays a vital role in our modern society, enabling seamless 
connectivity and communication between individuals, devices, and systems. 

The utilization of deep learning in wireless communication has emerged as a 
prominent research hotspot and trend due to several key factors. Deep learning, as a 
subfield of AI, has showcased remarkable capabilities in various domains, including 
computer vision, natural language processing, and speech recognition. Its potential 
to revolutionize wireless communication has sparked intense research interest for 
the following reasons: wireless communication systems are becoming increasingly 
complex, with a growing number of devices, diverse communication protocols, and 
rapidly evolving network architectures. Deep learning techniques, such as neural 
networks (NNs), can effectively handle this complexity by automatically learning 
hierarchical representations from vast amounts of data. This enables the extraction 
of hidden patterns, optimization of system parameters, and improved performance 
in complex wireless environments. Deep learning offers the potential for intelligent 
resource management in wireless networks. By leveraging large-scale data analysis 
and advanced machine learning techniques, deep learning algorithms can optimize 
resource allocation, power control, and network scheduling. This facilitates efficient 
utilization of network resources, reduced latency, improved energy efficiency, and 
overall network performance. Cognitive radio (CR) networks, which aim to dynam-
ically access and utilize available spectrum, can greatly benefit from deep learning. 
Deep learning models can analyze radio environment parameters, detect spectrum 
holes, and enable efficient spectrum sharing and allocation. This allows for improved 
spectrum utilization, increased network capacity, and enhanced coexistence between 
different wireless systems. Deep learning is expected to play a significant role in 
next-generation wireless technologies, such as 5G, beyond 5G, and IoT networks. 
These technologies require intelligent, adaptive, and self-optimizing systems that can 
handle massive data flows and diverse communication scenarios. Deep learning can 
provide the necessary tools and techniques to effectively address the complexities and 
challenges posed by these emerging wireless technologies. This book aims to explore 
the relationship between deep learning and wireless communication, focusing on the 
key technologies involved and addressing the challenges and future directions of 
integrating deep learning into wireless communication systems. 

Deep learning plays a crucial role in wireless communication systems by enabling 
intelligent data processing, decision-making, and resource allocation. Its applications 
include:

• Signal processing. Channel processing means that deep learning algorithms can 
learn to extract relevant features from the received signal, acting on noise, interfer-
ence, and channel fading effects. This helps improve signal quality and enhances 
detection, demodulation, and decoding performance.

• Channel estimation and prediction. Deep learning models can accurately estimate 
and predict wireless channel characteristics based on historical data. This helps
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to design adaptive communication strategies and optimize system performance 
under dynamic channel conditions.

• Interference management. Deep learning techniques effectively simulate and mit-
igate interference in wireless communication systems. By intelligently receiv-
ing signals and recognizing interference patterns, deep learning algorithms can 
improve the reliability and throughput of communications.

• CR networks. Deep learning can realize intelligent spectrum sensing, dynamic 
spectrum access (DSA) and efficient spectrum allocation in CR networks. By 
learning from historical data and environmental information, deep learning models 
can make informed decisions to achieve optimal spectrum utilization and avoid 
interference. 

In summary, deep learning plays a crucial role in wireless communication sys-
tems, offering applications such as signal processing, channel estimation, interfer-
ence management, and CR networks. Compared to traditional methods, deep learning 
provides advantages through end-to-end processing, adaptability, handling complex-
ity, and robustness. By leveraging deep learning techniques, wireless communication 
systems can benefit from improved performance, enhanced reliability, and optimized 
resource allocation. 

Deep learning techniques have been widely adopted in wireless communication 
systems, leveraging various key technologies to enhance performance and enable 
intelligent decision-making. The following are commonly used key technologies in 
deep learning for wireless communication, including NNs, CNN, and RNN: 

1. Neural Networks: NNs are the foundation of deep learning and play a vital role 
in wireless communication applications. They consist of multiple interconnected 
layers of artificial neurons that can learn and extract patterns from input data. NNs 
can be trained using backpropagation algorithms to optimize their weights and biases, 
enabling accurate data processing and decision-making. 

2. Convolutional Neural Networks (CNNs): CNN are primarily used for image 
and signal processing tasks in wireless communication systems. They excel at cap-
turing spatial dependencies and extracting relevant features from input data. Their 
key components include convolutional layers, pooling layers, and fully connected 
layers. CNNs are trained to automatically learn hierarchical representations, enabling 
efficient feature extraction and classification of signals in wireless communication. 

3. Recurrent Neural Networks (RNNs): RNNs are designed to process sequen-
tial data, making them well-suited for wireless communication tasks involving 
time-varying or sequential signals. RNNs utilize a feedback mechanism, allowing 
them to capture temporal dependencies in input data. This makes them effective in 
tasks such as channel estimation, speech recognition, and DSA. Popular variants of 
RNNs include Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 
networks. 

4. Reinforcement Learning (RL): RL is a subfield of deep learning that focuses 
on learning optimal actions through interaction with an environment. In wireless 
communication systems, RL can be utilized for CR networks, adaptive resource
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allocation, and dynamic spectrum management. By learning from rewards and penal-
ties, RL algorithms can optimize system performance and make intelligent decisions 
based on changing network conditions. 

5. Transfer Learning: Transfer learning allows knowledge learned from one 
domain or task to be transferred and applied to another related domain or task with 
limited labeled data. In wireless communication, where labeled data can be scarce, 
transfer learning techniques can be used to leverage pre-trained models or knowl-
edge learned from related tasks, improving the efficiency and accuracy (ACC) of 
deep learning algorithms. 

6. Federated Learning: Federated learning realizes localized data processing and 
decentralized model training by delegating the model training to the terminal equip-
ment. Through multi-level neural network models and large-scale training data, 
deep learning can extract complex features from data to achieve efficient wireless 
communication system optimization. 

These key technologies play crucial roles in enabling deep learning capabilities 
in wireless communication systems. By leveraging NNs, CNNs, RNNs, RL, and 
transfer learning, deep learning algorithms can efficiently process wireless signals, 
extract meaningful features, optimize resource allocation, and improve overall system 
performance. 

Deep learning in wireless communication faces several challenges, including com-
putational complexity, insufficient training data, and the need for addressing real-
time constraints. However, these challenges also present opportunities for future 
research and development. The following analysis highlights the challenges and 
provides insights into the potential future directions of deep learning in wireless 
communication challenges: 

Computational Complexity: Deep learning models often involve complex com-
putations and require significant computational resources. High computational com-
plexity can limit the real-time processing capability of deep learning algorithms in 
resource-constrained wireless communication devices. Developing efficient algo-
rithms and optimizing hardware to reduce computational complexity is an ongoing 
challenge. 

Insufficient Training Data: Training deep learning models typically requires large 
amounts of labeled data, which may be scarce or expensive to acquire in wireless 
communication scenarios. Obtaining sufficient and diverse training data for spe-
cific wireless communication tasks is a challenge. Techniques like transfer learning 
and data can help overcome this challenge by leveraging pre-trained models and 
generating synthetic training data. 

Real-time Constraints: Wireless communication systems operate in real-time 
environments with stringent delay requirements. The latency introduced by the train-
ing and inference processes of deep learning algorithms may exceed these real-time 
constraints. Developing real-time deep learning algorithms and designing efficient 
hardware architectures to accelerate model training and inference is an ongoing 
challenge. Future Directions: Edge computing and federated learning. Moving com-
putation and decision-making closer to the edge of the network can alleviate the
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computational complexity and latency challenges in deep learning for wireless com-
munication. Edge computing and federated learning enable distributed training and 
inference on edge devices, reducing reliance on centralized servers and improving 
privacy and energy efficiency. 

Transfer Learning and Semi-Supervised Learning: To address the challenge of 
limited labeled training data, transfer learning and semi-supervised learning tech-
niques can be further explored in wireless communication. Pre-training models on 
large-scale data from related tasks or domains and utilizing unsupervised learning 
methods to leverage unlabeled data can enhance the performance and generalization 
capability of deep learning models. 

Explainable and Interpretable Deep Learning: The lack of interpretability in deep 
learning models can pose challenges in wireless communication systems, where 
transparency and interpretability are essential. Research on developing explain-
able deep learning models, interpretability metrics, and visualization techniques 
can enable better understanding and trust in the decision-making processes of deep 
learning algorithms in wireless communication. 

RL and Autonomous Networks: Further exploration of RL techniques can enable 
the development of autonomous wireless communication networks. RL algorithms 
can dynamically adapt to changing network conditions, optimize resource alloca-
tion, and improve network efficiency. Autonomous networks empowered by deep 
reinforcement learning (DRL) can lead to self-organizing, self-optimizing, and 
self-healing wireless communication systems. 

Hybrid Approaches: Hybrid approaches that combine deep learning with tra-
ditional signal processing methods can leverage the strengths of both approaches 
for enhanced performance in wireless communication systems. Combining deep 
learning techniques with domain knowledge, physical models, and optimization 
algorithms can provide a comprehensive and effective solution for addressing the 
challenges in wireless communication. 

In conclusion, while deep learning in wireless communication faces challenges 
such as computational complexity and limited training data, there are promising 
future directions to explore. Edge computing, transfer learning, explainable deep 
learning, RL, and hybrid approaches are among the potential research areas that can 
further advance the application of deep learning in wireless communication, enabling 
more intelligent, efficient, and reliable wireless communication systems in the future. 

1.4 Summary of Book Content and Chapters 

The main contents of this book are as follows: PART II mainly deals with the content 
related to cognitive spectrum intelligence, such as deep spectrum sensing, Collabora-
tive Spectrum Sensing (CSS), DSA, etc. PART III mainly discusses the optimization 
of learning resource allocation, including the use of supervised learning and unsu-
pervised learning for power allocation and resource allocation, and the use of RL 
for user association, channel allocation and energy transfer resource management.
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PART IV discusses topics related to transmission intelligence, such as learning chan-
nel coding, decoding and forwarding, deep clustering networks, etc. It also covers 
computational offloading using RL in mobile edge computing and beamforming 
using DRL. PART V discusses learning traffic and mobility forecasting, including 
network architecture based on graph NNs, slicing reconfiguration based on demand 
forecasting, learning cellular traffic forecasting, and traffic and mobility for drones 
and IoT vehicles. PART VI deals with security issues in wireless communication, 
including secure communication using methods such as supervised learning and fed-
erated learning. PART VII focuses on 6G driven applications based on deep learning, 
including application scenarios, industry verticals, and new paradigm shifts such as 
air-ground-sea integrated communication networks and sub-6 GHz, millimeter wave, 
and terahertz technologies. PART VIII summarizes the content of the book and gives 
the research agenda and the direction of future work. Through the arrangement of 
these subheadings, the logical structure of the whole chapter is relatively clear, and 
the importance, technical application and research direction of intelligent wireless 
communication are shown in turn. 

All in all, the book covers several key topics in intelligent wireless communi-
cations, from cognitive spectrum intelligence to resource allocation, transmission 
intelligence, traffic and mobility prediction, and security and 6G applications. This 
comprehensive perspective allows readers to systematically understand all aspects 
of intelligent wireless communication and their relationships. Each chapter provides 
specific content and domain segmentation, from perception, access, and distribution 
to transmission, prediction, and security. This depth and breadth allow the reader to 
delve into the details of each topic and gain a comprehensive understanding. At the 
same time, the book covers many practical application scenarios and solutions, such 
as mobile edge computing, IoT vehicles, and drone communications. These cases 
and examples can provide practical reference for readers and help them understand 
the application and significance of intelligent wireless communication in practice. 
Finally, at the end of the book, the authors provide a future research agenda and 
open questions. These outlooks provide a guide to explore deeper questions and 
develop new research, encouraging readers to make innovations and contributions 
in the field of intelligent wireless communications. In summary, this book not only 
has comprehensive content coverage, but also provides information on cutting-edge 
technologies, practical applications and future development directions, which can 
help readers deeply understand the field of intelligent wireless communication, and 
provide valuable guidance and reference for further research and practice.



Chapter 2 
Cognitive Spectrum Intelligence 

2.1 Deep Spectrum Learning 

As 6G technology research gradually matures and the IoT rapidly gains momentum, 
the demand for wireless spectrum has significantly increased. Spectrum sensing plays 
a crucial role in this context. In this section, we will focus on introducing the tech-
nology of deep spectrum sensing. Deep spectrum sensing refers to the application of 
deep learning techniques, and it is a critical function in CR and DSA systems, where 
devices need to detect and utilize available radio frequency (RF) spectrum bands 
opportunistically and efficiently. Traditional spectrum sensing methods often rely on 
signal processing techniques and statistical analysis to detect the presence of primary 
users or other wireless devices in a specific frequency band. Deep spectrum sensing 
leverages DNNs to improve the ACC and robustness of this detection process. The 
implementation of deep spectrum sensing requires the assistance of relevant algo-
rithms, and different algorithms have different characteristics. Below, we introduce 
some different deep learning methods: 

In CR, most spectrum sensing algorithms are model-based, the model-based spec-
trum sensing algorithm is a method that utilizes mathematical models and signal 
processing techniques to understand and perceive the wireless radio spectrum. This 
algorithm typically employs machine learning or statistical methods to infer the 
characteristics and properties of different signals in the radio spectrum by building 
models. However, its detection performance heavily relies on the ACC of the assumed 
statistical models. If the established models are not accurate enough or cannot adapt 
well to the changing real-world wireless environment, the algorithm’s performance 
may be impacted. For instance, in the case of model-based spectrum sensing algo-
rithms, assumptions about the model may involve some statistical descriptions of 
signal characteristics, noise distribution, or spectrum occupancy patterns. If the data 
in the actual environment does not align with these assumptions, the algorithm’s 
performance may be affected. Based on this observation, researchers have proposed 
additional algorithms. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Zhang and N. Yang, Deep Learning in Wireless Communications, 
https://doi.org/10.1007/978-981-97-6314-6_2 

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-6314-6_2&domain=pdf
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2
https://doi.org/10.1007/978-981-97-6314-6_2


14 2 Cognitive Spectrum Intelligence

In the realm of deep spectrum sensing, we can employ deep learning algorithms 
based on CNNs. In comparison to model-based spectrum sensing algorithms, their 
proposed deep learning methods are data-driven, accomplishing sensing without the 
need for probability models or knowledge of Primary User (PU) activity patterns. 
They can be trained on a substantial amount of annotated data to learn features and 
patterns, enabling effective classification or regression on unlabeled data thereafter. 
This data-driven approach showcases the excellence of CNN in fields such as image 
processing and language, as they automatically learn intricate feature representa-
tions from data without the necessity of manually designing feature extractors. In 
the context of spectrum sensing, CNN exhibit advantages in low Signal-to-Noise 
Ratio (SNR) environments. They autonomously learn features that adapt to low 
SNR conditions, capturing subtle differences between signals and noise effectively. 
Through convolutional layers, CNN efficiently conduct local perception, aiding in 
extracting local structures and patterns within signals to counteract the impact of 
noise. While CNN are data-driven, for more complex spectrum sensing tasks, such 
as those in wireless communication, specialized algorithms and models like RNN 
are often employed. RNNs are designed to better capture the temporal variations and 
spectral characteristics of signals. 

The term methods based on RNN refers to a category of neural network approaches 
that utilize the RNN structure for modeling and processing. RNN is a neural network 
architecture specifically designed for handling sequential data, possessing the ability 
to capture temporal dependencies within sequences. In methods based on RNNs, the 
core idea of RNN involves introducing a recursive structure, allowing the network 
to consider previous information when processing each time step. Its fundamental 
components include recursive connections, hidden states, weight parameters, and 
time steps. RNNs can be applied to predict future values in time series data, such as 
received signals. This is applicable in various domains, including speech recognition, 
stock price prediction, weather forecasting, etc. By learning patterns and dependen-
cies in time series data, RNNs can predict future values given past input sequences. 
Subsequently, covariance matrices can be used for spectrum sensing. A covariance 
matrix describes the relationship between two or more random variables. In signal 
processing and communication, covariance matrices are commonly used to analyze 
the statistical properties of signals. In spectrum sensing, covariance matrices can be 
applied for signal separation, spectrum estimation, spatial spectrum sensing, etc. Par-
ticularly in multi-antenna systems, analyzing the covariance matrix can optimize the 
performance of communication systems. In multi-antenna communication systems, 
analyzing the covariance matrix of received signals allows for signal separation, 
improving the ACC of modeling multipath channels. This helps the system better 
understand the effects of multipath propagation and optimize the decoding process 
of received signals. In multi-antenna systems, by analyzing the covariance matrix of 
received signals, signal separation can be performed, enhancing the reliability and 
performance of communication systems in situation involving multipath and channel 
fading. This contributes to increased spatial diversity and improved system reliability 
and performance in situations involving multipath and channel fading.
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In the field of spectrum sensing, autoencoders can be employed to learn effec-
tive spectrum representations. By leveraging the structure of autoencoders to extract 
behavioral features from raw signals, training enables the acquisition of compact data 
representations for better capturing spectral characteristics. In this approach, recur-
sive autoencoders or RNNs can be utilized to model dynamic spectrum changes, 
thereby adapting to the time-varying nature of the channel. The process of extracting 
raw signals typically involves signal processing and feature engineering, encom-
passing time-domain features, frequency-domain features, time-frequency-domain 
features, advanced features, and nonlinear features. Short-time Fourier transform 
(STFT) is a technique applicable to frequency-domain and time-frequency-domain 
features. 

STFT is a method for time-frequency analysis of signals, providing high reso-
lution in both time and frequency domains. It applies a time window function to 
the signal and calculates the magnitude spectrum within each window. Specifically, 
STFT calculates the signal’s spectrum by shifting the window along the time axis 
and applying a Fourier transform to each segment of the signal within these time 
windows. These short-time signal segments significantly enhance the ACC of fre-
quency domain analysis, enabling the extraction of time-frequency features of the 
signal over short durations, allowing for a better analysis of signal characteristics like 
frequency, phase, and magnitude. In the frequency domain, each window’s Fourier 
transform produces a spectrum. In the time domain, by sliding the window function, 
spectrum information for the signal at different time intervals can be obtained. 

.X (t, ω) =
{ ∞

−∞
x(τ ) · w(τ − t) · e− jωτ dτ (2.1) 

.X (t, ω) represents the STFT result at time. t and frequency. ω. .x(τ ) denotes the input 
signal, a function of time. τ in this formula..w(τ − t) represents the window function 
sliding along the time axis, selecting a local portion of the signal for the Fourier 
transform. . ω is the angular frequency, representing a unit of frequency. .e− jωτ is the 
complex exponential function used in the Fourier transform. 

Therefore, STFT provides a precise analysis tool in both time and frequency 
domains. It finds extensive applications in fields such as signal processing and speech 
recognition. In the context of spectrum sensing, STFT can be used to extract features 
of signals in both time and frequency, improving signal identification. Compared to 
other traditional spectrum sensing methods, using STFT for spectrum analysis offers 
better performance and higher ACC. 

In general, the application of DRL in the spectrum sensing domain can enhance 
the efficiency, capacity, and reliability of wireless communication systems, enabling 
them to better adapt to complex and dynamic spectrum environments.



16 2 Cognitive Spectrum Intelligence

2.2 Collaborative Spectrum Sensing 

CSS in wireless communication aims to efficiently manage spectrum resources by 
enabling different devices to work together, enhancing efficiency, and reducing inter-
ference. Through methods like spectrum sensing, sharing, and dynamic allocation, 
collaborative sensing increases opportunities for spectrum acquisition. Nodes dis-
tributed in various locations during collaborative sensing provide spatial diversity, 
while collecting data at different times enhances the capture of dynamic spectrum 
changes. Sharing resources and information among nodes optimizes resource uti-
lization and improves spectrum acquisition efficiency. In the contexts of 5G, IoT, 
and wireless communication, CSS is crucial for addressing the challenges of lim-
ited spectrum resources, optimizing network performance, and meeting diverse 
communication demands. 

The utilization of machine learning methods can enhance CSS. Employing CNNs 
for spatial feature extraction enables the capture of local patterns in the spectrum, 
such as signal edges and textures. RNN are effective in handling the time-series 
nature of spectrum data, capturing changes in signals over time. Transfer learning 
facilitates knowledge sharing across diverse environments. Online learning algo-
rithms dynamically adapt to changing spectrum conditions. Robustness is improved 
through the integration of information from multiple sources, and self-supervised 
learning enhances generalization. Consideration of RL optimizes decision-making 
strategies within the system. Tailoring these methods to specific task requirements 
and application scenarios can provide more accurate and efficient solutions for CSS. 

Spatial and temporal collaboration is also one of the research directions in CSS. 
Spatial collaboration focuses on effectively organizing and coordinating resources, 
nodes, or activities in space to achieve better efficiency and coverage. In fields such 
as sensing networks, IoT, and communication systems, spatial collaboration may 
involve the deployment of sensing nodes, the layout of device locations, and the 
planning of wireless communication networks. Through rational spatial collabora-
tion, resources can be maximized, ensuring comprehensive sensing or communica-
tion coverage within the designated area. Temporal collaboration, on the other hand, 
concentrates on coordinating and scheduling resources, information, or activities 
at different time points to adapt to dynamic environmental changes. In scenarios 
like spectrum management and dynamic resource allocation, temporal collaboration 
can optimize resource utilization at different time points. This includes collecting 
data at specific moments, adjusting spectrum allocation, dynamically tuning system 
parameters, and meeting the demands and environmental conditions of different time 
periods. Deep learning can optimize the deployment of sensing nodes. Using deep 
learning models, environmental features of the sensing area, including terrain, build-
ing distribution, and obstacle positions, can be learned and extracted. Deep learning 
models can learn advanced environmental representations from sensor data, aiding 
in a better understanding of the structure of the sensing area. In terms of tempo-
ral collaboration, deep learning can be applied to analyze the dynamic changes in
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spectrum data. Deep learning algorithms, such as CNN and RNN, can be used to ana-
lyze spectrum data. These algorithms can learn complex spectrum patterns, trends, 
and changes, enabling the system to better comprehend the state of the spectrum 
at different time points. The system can adjust spectrum resource allocation, chan-
nel selection, and other parameters based on the output of deep learning models to 
optimize communication performance. 

The Collaborative Spectrum Sensing Model (CRSN) is a form of implementation 
or technological framework of CSS. The CRSN model aims to achieve efficient CSS 
and rapid detection of malicious network nodes while ensuring security and energy 
efficiency. Network CSS technology based on topological clustering and channel 
state information model is typically a method that combines network topology and 
channel state information to effectively utilize multiple nodes in the network for 
spectrum environment sensing. By employing topological clustering, the system can 
form a distributed sensing structure, assigning sensing tasks to different nodes or clus-
ters, making the system more flexible and adaptable to various network topologies 
and environments. Through topological clustering and the channel state information 
model, the system can establish a trust model for nodes. This helps in identifying 
and verifying legitimate nodes, assessing their reliability in sensing tasks. Through 
trust modeling, the system can increase confidence levels in node identities, reduc-
ing the risk of malicious attacks. Furthermore, introducing elements of deep learning 
can further enhance the system’s performance, particularly in the following aspects: 
By integrating deep learning models, the system can intelligently leverage multiple 
nodes in the network for the extraction and analysis of complex features, thereby 
enhancing the ACC of spectrum sensing. Deep learning techniques can be applied to 
the process of topological clustering to automatically learn network topology struc-
tures, better adapting to different network environments and topologies. Introducing 
elements of deep learning into the channel state information model can strengthen 
the modeling of relationships between nodes, improve the assessment of node trust-
worthiness, and reduce the risk of misjudgments caused by network uncertainties. 
Through deep learning-based trust modeling, the system can more effectively identify 
potential malicious nodes, mitigating the impact of malicious attacks on the system. 
Therefore, incorporating elements of deep learning into CSS not only improves the 
efficiency of spectrum sensing but also enhances the system’s security and reliability. 

CSS is a promising solution for spectrum identification. It relies on the cooperation 
of multiple secondary users (SU) in a CRN to detect the presence of PUs within 
licensed spectra. SU, through the sharing of their local sensing data and combining 
their observational data, can enhance the ACC and reliability of spectrum sensing. 
However, the collaboration in CSS is susceptible to threats, such as Byzantine attacks, 
where malicious nodes might provide false data to the Fusion Center (FC) or alter 
data during transmission, ultimately leading the system to make incorrect decisions. 
To address this issue, various technologies have been proposed to protect CSS from 
such attacks while maintaining its advantages. The following is an introduction to 
various techniques aimed at securing CSS: 

In response to Byzantine attacks, we can adopt powerful decision fusion algo-
rithms, such as entropy-based decision fusion, trust-based decision fusion, and
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cluster-based decision fusion. Deep learning provides robust tools in this field, further 
enhancing the system’s performance and security. In entropy-based decision fusion, 
the application of deep learning extends to the feature extraction stage. Through deep 
learning models like CNNs, the system can extract more representative features from 
perception nodes, thereby improving the ACC of fused decisions. Deep learning can 
also be employed in the decision fusion process using the concept of entropy. By 
utilizing deep learning models to calculate the uncertainty of information, the system 
can intelligently allocate weights, enabling adaptive adjustments to trust levels for 
different decision-makers. In trust-based decision fusion, introducing deep learning, 
especially RNN, aids in establishing more sophisticated trust models. Through deep 
learning models, considerations of historical data, behavioral characteristics, and 
other relevant information allow for a comprehensive assessment of the credibility 
of decision-makers. Deep learning can also assist the system in identifying potential 
attackers within the trust model, thereby enhancing the system’s resilience against 
malicious nodes such as those involved in Byzantine attacks. In cluster-based deci-
sion fusion, the concept of collaborative learning in deep learning can be integrated 
with cluster-based decision fusion. By utilizing deep learning and collaborative learn-
ing, nodes can engage in mutual communication and shared learning, elevating the 
overall system performance. This approach also helps alleviate performance degra-
dation caused by misjudgments of individual nodes. In the decision fusion stage, 
deep learning models can be applied to better understand perception data, thereby 
enhancing collaborative decision-making. Taking into consideration the technology 
of deep learning, CSS systems can adapt more flexibly to different environments 
and improve the overall performance and security of the system in terms of decision 
fusion and trust modeling. 

Additionally, let’s introduce another method. Attack-aware Collaborative Spec-
trum Sensing (ACSS) estimates attack intensity by monitoring and analyzing users 
in the system. Attack intensity can be defined as the ratio of malicious users to the 
total number of users, i.e., the probability that a specific user is a malicious user. 
This can be estimated by analyzing user behavior, the abnormality of sensing data, 
communication patterns, and other factors. The K-out-N rule is a commonly used 
detection rule in sensing systems, where each sensing node in the system selects 
.K nodes out of .N neighboring nodes for collaborative sensing. Such a rule can be 
employed to enhance the system’s detection performance against adversarial attacks. 
In the case of a given attack intensity, finding the optimal .K value that minimizes 
Bayesian risk using Bayesian decision theory is crucial. This may involve calculating 
expected losses under different .K values and selecting the .K value that minimizes 
the expected loss. By comparing expected losses under different . K values, the opti-
mal . K value that minimizes expected loss can be found. Deep learning can enhance 
the adaptive selection of the optimal .K value, help establish a more accurate prior 
probability distribution for modeling the credibility of sensing data, and contribute 
to determining the most suitable collaborative sensing scale for the system given the 
attack intensity. Considering that attack intensity may change over time, the system 
should have the capability for real-time updates. Periodically or triggered by events, 
re-estimating attack intensity and updating. K values ensures the system’s adaptability
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and performance. Deep learning models, utilizing techniques such as online learning 
and transfer learning, can dynamically update the model during system runtime. 

PU emulation attack is a potential security threat that may impact CSS. It primarily 
refers to attackers simulating or impersonating PUs to influence other nodes in the 
system to perform spectrum sensing, thereby affecting the effective utilization of 
spectrum resources. To counteract PU emulation attacks, it is necessary to implement 
CSS methods to enhance the security and resilience of the system. 

In response to adversarial attacks, where malicious users may attempt to influence 
the entire system through deceptive spectrum sensing results, an adversarial-aware 
CSS method can be employed. This method involves analyzing the local decisions 
made by each CR user to identify potential adversarial behavior. Complex feature 
extraction and analysis can be performed using deep learning models to recognize 
anomalous spectrum sensing data, simulate PUs, forge channel state information, 
and other measures. Incorporating elements of deep learning into the design of the 
collaborative objective cost function allows for the flexible adaptation to different 
network conditions and adversarial attack patterns. By learning weights and associ-
ations, the system intelligently synthesizes information from multiple users, thereby 
enhancing the system’s detection performance against adversarial attacks. 

The application of deep learning in CSS is very important. With deep learning tech-
nology, we can more fully and accurately utilize perceptual data to improve system 
performance and understanding of the wireless spectrum environment. The feature 
extraction capability of deep learning helps the system to automatically learn key 
information and realize the accurate identification of spectrum features and system 
states. Integrated multi-source information, deep learning model improves the over-
all system performance and spectrum environment awareness. Deep learning makes 
the system more intelligent and flexible to adapt to the complex communication 
environment, and promotes the development of CSS technology. 

2.3 Dynamic and Distributed Spectrum Access 

Wireless communication has become an indispensable part of our daily lives, facil-
itating everything from personal mobile phone use to critical data transmission in 
various industries. However, with the exponential growth in demand for wireless 
services, wireless communication faces a significant challenge: spectrum scarcity. 
As mentioned in previous chapters, the spectrum refers to the range of electromag-
netic frequencies used for transmitting voice, data, and video through radio waves. 
Spectrum is a finite resource, and its effective utilization is crucial to meet the rapidly 
increasing demand for wireless communication services. The scarcity of spectrum 
resources arises because most of the available frequencies have already been allo-
cated, typically to broadcasting services, military applications, and mobile network 
operators. Traditionally, this allocation has been static, with specific bands dedi-
cated to specific uses, often leading to inefficient utilization of these bands. With 
the development of wireless technology and increasing demand for bandwidth, this
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static allocation model has proven to be inefficient, resulting in underutilization of 
spectrum in some areas while causing bottlenecks in others. 

To address this challenge, DSA has emerged as a promising solution. Dynamic 
SA is a set of techniques and technologies that allow for more flexible access to the 
spectrum. Instead of fixed allocations, DSA enables wireless devices to dynamically 
access spectrum bands on an as-needed basis. This means that unused frequencies 
can be utilized by other devices, significantly improving the efficiency of spectrum 
use. DSA relies on sophisticated algorithms and sensing technologies to detect which 
frequencies are not being used at a particular time and location and then temporarily 
allocates those frequencies to users or devices that need them. Distributed spectrum 
access is an extension of the DSA concept, focusing on decentralizing the decision-
making process regarding spectrum access. In a distributed spectrum access system, 
individual devices or networks make decisions about spectrum use based on local 
observations and negotiations with neighboring devices, rather than relying on a 
central authority. This approach can further enhance spectrum efficiency by adapting 
to local conditions in real-time and reducing the overhead and latency associated with 
centralized control. 

The importance of DSA and distributed spectrum access cannot be overstated. 
They offer a viable solution to the spectrum scarcity problem by maximizing the 
utilization of available frequencies. This enhanced efficiency can lead to increased 
capacity, better quality of service (QoS), and support for a greater number of users 
and devices. Furthermore, these approaches can foster innovation in wireless ser-
vices and applications, stimulate economic growth, and help meet the ever-growing 
demand for wireless communication. However, the implementation of these strate-
gies is not without its challenges. Adapting to dynamic environments is a cornerstone 
of both DSA and distributed spectrum access, necessitating devices and networks to 
continuously monitor the spectrum landscape to identify unused frequencies. This 
requirement introduces the challenge of ensuring spectrum sensing ACC, where the 
goal is to detect available channels accurately without causing interference to incum-
bent users. The task is made more complex by the need to respond swiftly to rapid 
changes in spectrum availability, demanding advanced technologies that can keep 
pace with such fluctuations. Interference management among users is another sig-
nificant hurdle. As these strategies aim to enable more users to access the spectrum, 
it becomes imperative to develop mechanisms that allow for the harmonious coexis-
tence of multiple users. This involves not only technical solutions to prevent harmful 
interference but also policy frameworks that clearly define the rights and priorities of 
primary (licensed) and secondary (unlicensed) users. Striking a balance between pro-
tecting the interests of incumbent users and maximizing spectrum efficiency presents 
a nuanced challenge. Moreover, decision-making delays pose a critical concern in 
the real-time allocation of spectrum resources. The process of collecting and pro-
cessing data on spectrum usage, coupled with the need for decentralized coordination 
among multiple devices, can introduce delays that compromise the effectiveness of 
spectrum allocation decisions. Additionally, ensuring compliance with regulatory 
requirements further complicates the decision-making process, potentially slowing 
down the dynamic allocation of spectrum resources.
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In conclusion, while DSA and distributed spectrum access present innovative 
solutions to the pressing issue of spectrum scarcity in wireless communication, they 
also introduce a set of complex challenges. These include the need for rapid adap-
tation to dynamic environments, effective interference management among users, 
and the minimization of decision-making delays. Addressing these challenges is 
crucial for unlocking the full potential of these spectrum access strategies. In this 
context, DRL emerges as a powerful tool with significant potential to overcome these 
obstacles. DRL, a subset of AI, is adept at making decisions in complex, dynamic 
environments by learning optimal actions through trial and error. Its ability to adapt 
and learn from the environment makes it particularly well-suited for applications in 
DSA and distributed spectrum access, where conditions constantly change and swift, 
autonomous decision-making is essential. The application of DRL can lead to more 
efficient spectrum sensing techniques, enhance the capability of systems to manage 
interference among a multitude of users, and significantly reduce decision-making 
delays by enabling real-time, intelligent decision-making processes. As such, DRL 
holds the promise of not only addressing the challenges inherent in DSA and dis-
tributed spectrum access but also of propelling these strategies towards their full 
efficacy and potential. Thus, the integration of DRL into DSA and distributed spec-
trum access represents a promising frontier in the quest for more efficient and flexible 
wireless communication systems. By harnessing the power of DRL, we can navigate 
the complexities of DSA, paving the way for a future where spectrum scarcity is 
effectively mitigated through intelligent, adaptive technologies. 

In DSA, DRL offers targeted solutions in terms of spectrum sensing. This process 
is crucial for enabling wireless devices to effectively discover and utilize unused 
frequencies without interfering with existing users. 

The working principle of DRL involves an agent learning to make decisions 
through its interactions with the environment. In DSA, the “agent” could be a CR 
or a network device equipped with DRL capabilities, and the “environment” refers 
to the spectrum landscape, which is continuously changing due to varying usage 
patterns. The primary goal of a DRL agent is to identify parts of the spectrum that 
are temporarily unoccupied and can be used for data transmission. The process begins 
with the DRL agent observing the state of the spectrum, including collecting data on 
various frequencies to determine their current usage status. Based on this observation, 
the agent takes an action, such as selecting a specific band for transmission. This 
action is then evaluated through feedback (usually in the form of rewards or penalties). 
For instance, if the selected band is indeed free and the transmission is successful 
without causing interference, the agent receives a positive reward. Conversely, if 
the transmission interferes with existing users, it is penalized. Over time, through a 
process of trial and error, the DRL agent learns to predict which actions (i.e., selecting 
specific bands) will maximize its rewards - essentially learning to identify available 
spectrum with high precision. This learning process is facilitated by sophisticated 
algorithms that enable the agent to adjust its strategy based on past experiences and 
emerging patterns in spectrum usage. 

One of the key advantages of using DRL for spectrum sensing in DSA is its ability 
to adapt to complex and dynamic environments. Unlike traditional methods that may
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rely on predefined rules or static databases, DRL continuously evolves its strategy, 
improving its ability to detect available spectrum as the environment changes. This 
capability is particularly crucial in densely populated areas or during peak usage times 
when the availability of spectrum can fluctuate rapidly. Furthermore, DRL can help 
in efficiently managing the trade-offs between exploring new frequency bands and 
exploiting known unoccupied bands. This balance is critical for optimizing spectrum 
utilization while minimizing the risk of interference with incumbent users. 

In summary, DRL presents a robust and adaptive approach for enhancing spectrum 
sensing in DSA. By leveraging DRL, wireless devices can more effectively identify 
and utilize available spectrum, thereby addressing a critical challenge in maximizing 
the efficiency of spectrum usage. Through its ability to learn and adapt in real-time, 
DRL holds significant promise for advancing the capabilities of DSA systems, paving 
the way for more flexible and efficient wireless communication networks. 

DSA has emerged as a pivotal strategy in addressing the challenge of spectrum 
congestion by allowing wireless devices to dynamically utilize underutilized spec-
trum bands. This approach promises to enhance spectrum efficiency significantly; 
however, it introduces the complex task of making real-time, adaptive decisions 
regarding frequency band selection and power level adjustments. In this context, 
DRL offers a powerful solution by enabling systems to learn optimal policies through 
continuous interaction with their environment. 

The essence of DRL lies in its ability to integrate perception, decision-making, 
and action into a cohesive framework. Here, an agent learns to make informed deci-
sions by engaging with an environment, aiming to maximize a cumulative reward 
over time. Applied to DSA, the environment in question is the wireless spectrum, 
with actions encompassing the choices around which frequency bands to access and 
the determination of appropriate power levels for transmission. The state in a DRL-
based DSA system encapsulates information about current spectrum usage, channel 
quality, and historical occupancy data, alongside the agent’s current power level 
and past actions. Such a comprehensive state representation is crucial for making 
informed decisions. The action space in DRL for DSA includes potential decisions 
the agent can make, such as selecting frequency bands for access and determin-
ing suitable power levels for transmission. These actions are critical for optimizing 
spectrum usage and ensuring efficient communication. Furthermore, the reward func-
tion in DRL is meticulously designed to steer the agent towards optimal behavior, 
incorporating factors like successful transmission rate, interference minimization, 
and energy efficiency. Through this, the agent is encouraged to select less congested 
frequency bands and adjust power levels to balance interference and throughput opti-
mally. DRL empowers wireless devices with several strategies for effective spectrum 
allocation. It enables agents to sense the spectrum environment accurately and select 
the best available frequency bands based on real-time dynamics. This adaptability 
is a significant leap over traditional methods, which may not effectively predict or 
adapt to changing spectrum usage. Additionally, DRL agents can dynamically adjust 
their transmission power levels to maintain communication quality while minimiz-
ing interference, offering a level of control that rule-based approaches struggle to 
achieve. Moreover, in scenarios involving multiple DRL agents, such as different
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network operators, these agents can learn to coordinate their actions, optimizing 
overall spectrum utilization without the need for centralized control mechanisms. 

Compared to traditional spectrum allocation methods, DRL offers substantial 
advantages. Its ability to adapt to dynamic and uncertain environments aligns well 
with the variable nature of wireless spectrum usage, surpassing static rule-based or 
model-dependent traditional methods. DRL also excels in optimizing complex objec-
tives, balancing throughput, interference, and energy efficiency in a way that tradi-
tional methods, often focused on single objectives, cannot. Furthermore, DRL’s sup-
port for decentralized decision-making enhances scalability and flexibility in man-
aging spectrum resources across various users and devices, presenting a significant 
improvement over centralized control systems. 

DRL provides a sophisticated and adaptable approach to DSA, enabling more effi-
cient and intelligent spectrum allocation decisions. In the intricate landscape of DSA, 
managing and sharing spectrum resources in multi-user scenarios poses a formidable 
challenge. This complexity is rooted in the necessity to cater to diverse demands, 
mitigate interference, and ensure equitable access for a multitude of users. Emerg-
ing as a potent solution to navigate these complexities, Multi-Agent Reinforcement 
Learning (MARL) has demonstrated its capability to enable effective spectrum shar-
ing and foster collaboration among users. By deploying multiple learning agents 
that interact within the shared environment of the RF spectrum, MARL transcends 
traditional approaches by learning optimal policies for spectrum access through the 
lens of both individual needs and collective system efficiency. 

At the heart of MARL’s approach to DSA is the principle of decentralized decision-
making. Unlike centralized control schemes, where a singular entity dictates the 
allocation of spectrum resources, MARL empowers each agent to make informed 
decisions based on local observations and, crucially, on global communication cues. 
This decentralization not only enhances scalability, allowing the system to accom-
modate an increasing number of users seamlessly but also ensures that decisions 
are made with a comprehensive understanding of the current spectrum environment. 
Agents, through their interactions, learn to select frequency bands, adjust transmis-
sion powers, or vacate bands to minimize interference, all while maximizing the 
utility of the spectrum. Furthermore, MARL facilitates collaboration among agents 
by developing cooperative strategies that take into account the actions and intentions 
of others. This aspect is vital in DSA, where the goal extends beyond individual 
optimization to encompass the efficient use of spectrum without causing detrimen-
tal interference to others. Through feedback mechanisms and repeated interactions, 
agents learn to predict the behavior of their counterparts and adapt their strategies 
accordingly. Such collaborative efforts can lead to dynamic alternation in access-
ing specific frequency bands, ensuring fair transmission opportunities for all users 
involved. 

The advantages of MARL over traditional spectrum management methods are 
manifold. Firstly, the adaptability inherent in MARL systems allows for real-time 
responses to changes in the spectrum environment, user behaviors, or regulatory 
policies, a feat unachievable by static allocation methods. Secondly, MARL’s focus 
on optimizing the actions of individual agents for the collective benefit significantly
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improves spectrum utilization, ensuring that available bands are used efficiently. 
Thirdly, the scalability offered by the decentralized nature of MARL means that 
the system can easily integrate new users without significant disruption. Lastly, 
MARL algorithms can be designed with fairness in mind, distributing resources 
equitably among users and overcoming the limitations of first-come, first-served or 
fixed allocation schemes. 

In essence, MARL heralds a new era in the management of DSA, particularly in 
environments populated by multiple users. Its capacity for enabling effective spec-
trum sharing and fostering collaboration, coupled with its advantages in adaptabil-
ity, efficiency, scalability, and fairness, positions MARL as a superior alternative to 
conventional spectrum management techniques. As the demand for wireless com-
munication services continues to soar, the integration of MARL into DSA frame-
works promises to unlock unprecedented levels of spectrum efficiency, navigating the 
complexities of the modern wireless landscape with sophistication and dynamism. 

DRL is revolutionizing the way we approach DSA in distributed spectrum access 
systems, presenting a paradigm shift from traditional methods towards a more adap-
tive, efficient, and scalable framework. At the heart of this transformation is the con-
cept of strategy learning, where DRL agents interact with the wireless environment, 
making informed decisions on spectrum access that aim to maximize a cumulative 
reward. These agents embark on a journey of exploration and exploitation, navigating 
through various actions to unearth strategies that yield the most favorable outcomes. 
As they progress, the agents develop a nuanced understanding of which actions to 
take in specific environmental states, crafting an optimal policy for accessing the 
spectrum. 

The process is underpinned by sophisticated environmental modeling, a crucial 
step that encapsulates the dynamics of the spectrum environment. This modeling 
allows DRL agents to predict the impact of their actions and to anticipate future 
environmental states, facilitating more informed decision-making. Techniques such 
as NNs play a pivotal role here, offering a means to approximate the intricate rela-
tionships between actions, states, and rewards. Moreover, this modeling extends to 
account for the interactions between multiple users within the spectrum, a critical 
consideration in distributed systems where users operate independently. By accu-
rately capturing how one user’s actions affect the spectrum availability for others, 
DRL agents can learn to adopt cooperative strategies that optimize spectrum usage 
while minimizing conflicts. What sets DRL apart from traditional spectrum man-
agement methods are its inherent advantages in adaptability, efficiency, scalability, 
and fairness. Unlike static allocation schemes that struggle to keep pace with the 
dynamic nature of the spectrum environment, DRL agents continuously refine their 
strategies based on ongoing interactions with the environment. This dynamic adap-
tation ensures that spectrum resources are utilized efficiently, even as conditions 
change. Furthermore, the decentralized approach of DRL aligns perfectly with the 
ethos of distributed spectrum access systems, allowing for seamless scalability as new 
users join the system without necessitating centralized coordination. Additionally, 
DRL algorithms can be tailored to incorporate fairness, ensuring that all users have
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equitable access to spectrum resources, thereby balancing individual and collective 
objectives. 

DRL presents a powerful approach for achieving DSA in distributed spectrum 
access systems. Through sophisticated strategy learning and environmental mod-
eling, DRL enables more adaptable, efficient, and scalable spectrum management, 
offering substantial improvements over traditional methods. 

In the realm of distributed spectrum access, orchestrating the allocation of the 
limited RF spectrum among myriad users necessitates a sophisticated approach to 
ensure optimal sharing and minimize interference. The advent of MARL has ushered 
in a promising strategy to tackle this intricate challenge. MARL enables multiple 
agents, each representing different users or devices, to learn and adapt their strategies 
for accessing the spectrum in a dynamic and decentralized environment. This learning 
paradigm hinges on the principle of agents interacting with their surroundings and 
each other, striving to maximize their cumulative rewards through their decision-
making processes. 

The application of MARL in distributed spectrum access is characterized by 
decentralized decision-making, where each agent operates independently based on 
local observations. This autonomy not only fosters scalability but also imbues the 
system with flexibility. Furthermore, the framework facilitates coordination among 
agents through mechanisms such as policy sharing and joint action learning. Agents 
can share insights or learned policies with their peers, paving the way for coopera-
tive strategies that enhance spectrum access and reduce interference. Additionally, 
by predicting the actions of other agents, individuals can synchronize their strategies, 
thereby curtailing collisions and optimizing resource utilization. A pivotal advantage 
of MARL lies in its ability to dynamically adapt to changing network conditions and 
user demands, outshining traditional fixed allocation schemes. Agents learn to iden-
tify underutilized spectrum bands and adjust their access patterns accordingly, thus 
improving overall spectrum utilization. Moreover, by understanding the patterns of 
interference among agents, MARL empowers them to alter their strategies to mini-
mize harmful interference, ensuring a higher QoS. The design of reward structures 
plays a crucial role in guiding agents to strike a balance between maximizing spec-
trum access and minimizing interference, encapsulating the essence of optimized 
shared resource management. 

Compared to conventional methods, MARL offers significant benefits, including 
dynamic adaptation to fluctuating environments, scalability to accommodate a large 
number of users without centralized control, and enhanced robustness against failures 
and environmental changes. Its suitability for complex scenarios, where interactions 
among users and between users and the environment are unpredictable, underscores 
its efficiency and potential to revolutionize distributed spectrum access. 

MARL presents a compelling approach for coordinating distributed spectrum 
access, offering significant advantages in terms of adaptability, scalability, and effi-
ciency. By enabling dynamic, decentralized decision-making and optimizing the 
shared use of spectrum while managing interference, MARL can significantly out-
perform traditional methods in managing the complex challenges of distributed spec-
trum access. As the technology and methodologies around MARL continue to evolve,
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its application in spectrum access is poised to facilitate more efficient and flexible 
wireless communication systems. 

The integration of DRL into DSA signifies a forward leap in optimizing the uti-
lization of spectrum resources. DSA’s adaptive mechanism, which allows wireless 
devices to modify their transmission parameters to minimize interference, pairs well 
with DRL’s ability to learn and make decisions from complex, dynamic environ-
ments. However, this promising amalgamation is not devoid of challenges, particu-
larly concerning the stability of learning algorithms and the efficiency of the training 
process. 

Ensuring algorithm stability in DRL applications within DSA is a critical hurdle. 
The unpredictable nature of the spectrum environment, characterized by fluctuat-
ing availability, user demand, and interference patterns, introduces high variance in 
learning rewards. This variance complicates the convergence of DRL agents to a 
stable policy, further complicated by the non-stationary environment where other 
users’ adaptive strategies create a continuously evolving target for the DRL agent. 
Techniques such as experience replay, target networks, and reward shaping have 
been developed to mitigate these issues, aiming to stabilize the learning process. 
Despite these advancements, balancing exploration with exploitation remains a sig-
nificant challenge in the volatile DSA landscape. Training efficiency poses another 
significant challenge. DRL models, especially those based on DNNs, demand exten-
sive computational resources and vast amounts of interaction data to derive effective 
policies. Given the complexity and dynamism of the DSA environment, the volume 
of data required for effective training is substantial, raising concerns for real-world 
applicability where computational resources are finite, and swift decision-making 
is essential. The high-dimensional state and action spaces of DSA exacerbate the 
training difficulty, leading to prolonged training durations and delayed model con-
vergence. Researchers have explored various strategies to enhance training efficiency, 
including transfer learning, curriculum learning, and parallel computing techniques. 
These efforts aim to streamline the training process in the demanding DSA context, 
yet efficiently training DRL models remains an arduous task. 

At the same time, DRL offers a novel approach to tackling the intricate issue 
of distributed spectrum access in wireless communication networks, promising to 
optimize network performance and minimize interference among users. However, 
the deployment of DRL in this domain is fraught with challenges, notably concerning 
algorithm stability, convergence speed, and sample efficiency, each of which plays a 
pivotal role in the successful application of this technology. 

The stability of DRL algorithms is paramount, yet difficult to ensure in the volatile 
environment of distributed spectrum access. The rapid changes in spectrum state, 
driven by user mobility, varying traffic loads, and fluctuating signal strengths, create 
a non-stationary environment that can destabilize the learning process. This insta-
bility is further compounded by the exploration-exploitation dilemma inherent in 
RL, where aggressive exploration strategies can introduce high variance in observed 
rewards, complicating the convergence to a stable policy. Convergence speed rep-
resents another significant hurdle. The vast state and action spaces characteristic of 
wireless networks slow the learning process, demanding extensive computation and
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time. This challenge is exacerbated by the necessity for coordination among mul-
tiple agents, whose policies not only impact the overall network performance but 
also influence each other’s learning outcomes. Such interdependencies can induce 
oscillations in policy updates, impeding swift convergence. Moreover, achieving high 
sample efficiency in distributed spectrum access is an arduous task due to the environ-
ment’s complexity and the delayed, sparse rewards. Agents must navigate through a 
sequence of interactions before the consequences of their spectrum access decisions 
become apparent, making it challenging to attribute outcomes to specific actions. 
This requirement for a large number of samples to accurately estimate action values 
is intensified by the dynamic actions of other agents, which add to the non-stationarity 
of the environment and demand even more extensive sampling for effective policy 
adaptation. 

In summary, the application of DRL in DSA holds immense potential to rev-
olutionize wireless communication networks by enabling intelligent and dynamic 
spectrum management. Despite the significant challenges related to algorithm sta-
bility, convergence speed, and sample efficiency, ongoing research and technological 
advancements promise to address these hurdles effectively. As we move forward, we 
can anticipate the development of more sophisticated DRL algorithms that are not 
only robust and adaptive but also capable of facilitating efficient coordination among 
multiple agents in highly dynamic environments. These advancements are expected 
to enhance the overall performance of wireless networks, ensuring optimal spectrum 
utilization and significantly reducing interference among users. The future of DRL in 
DSA and distributed spectrum access appears promising, with the potential to usher 
in a new era of intelligent wireless communication systems that are more resilient, 
efficient, and capable of meeting the ever-growing demands for connectivity in our 
digital world. 

2.4 Supervised Learning-Based Spectrum Sharing 

Wireless communication systems rely on the efficient utilization of limited frequency 
spectrum resources to provide reliable and high-speed data transmission. Frequency 
spectrum sharing is a key concept in wireless communication, which refers to the 
practice of allowing multiple users or services to share the same frequency bands 
without causing interference. Frequency spectrum, in simple terms, can be thought 
of as a range of radio frequencies over which wireless signals can be transmitted. 
However, the available frequency spectrum is finite, and different wireless services 
require specific frequency bands to operate effectively. This is where frequency 
spectrum sharing becomes crucial. 

To enable efficient spectrum sharing, regulatory authorities allocate different fre-
quency bands for various wireless services such as cellular networks, Wi-Fi, blue-
tooth, satellite communications, and television broadcasting. These allocations are 
based on international agreements and national regulations to ensure organized and
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interference-free communication. One of the most widely used techniques for fre-
quency spectrum sharing is known as “licensed spectrum sharing”. In this approach, 
certain frequency bands are exclusively assigned to specific users or services through 
licensing. For example, cellular network operators obtain licenses to use particular 
frequency bands for their network infrastructure. This ensures that they have dedi-
cated spectrum resources and can provide reliable services without interference from 
other users. Another technique for spectrum sharing is called ‘unlicensed spectrum 
sharing,’ where certain frequency bands are made available for public use without 
requiring a license. This approach fosters accessibility but necessitates adherence 
to specific rules and regulations for fair and efficient sharing. In this case, certain 
frequency bands are made available for public use without requiring a license. The 
best-known example is the unlicensed spectrum used by Wi-Fi networks. These fre-
quency bands are open for anyone to access, but users must adhere to specific rules 
and regulations to ensure fair and efficient sharing. 

However traditional spectrum sharing methods, such as exclusive licensing and 
static allocation, face a range of challenges in meeting the growing demand for wire-
less communication services. One of the primary issues is the increasing need for 
spectrum resources driven by the proliferation of mobile devices, IoT applications, 
and emerging wireless technologies like 5G and beyond. This surge in demand has 
led to spectrum scarcity, making it difficult to allocate sufficient bandwidth to sup-
port the expanding array of services. Secondly, the inefficient utilization of available 
spectrum bands poses a significant challenge. The licensed spectrum remains under-
utilized or unused for extended periods due to static and rigid allocation policies, 
limiting opportunities for dynamic sharing among multiple users and services. This 
means that some frequency bands remain unused while others may suffer from con-
gestion. As a result, there is a lack of efficient spectrum utilization. At the same time, 
traditional methods rely on centralized control and coordination, which can lead to 
inefficiencies and delays in spectrum access. This central authority must carefully 
manage and allocate frequencies, which may result in long wait times for users and 
limited flexibility in adapting to dynamic changes in demand. This inefficiency is 
exacerbated by the lack of flexibility in spectrum allocation policies, which often do 
not adapt well to changing usage patterns and service requirements. Furthermore, 
interference among different users and services is a significant challenge in traditional 
spectrum sharing. When multiple users attempt to access the same frequency band 
simultaneously, interference can occur, degrading the QoS for all users involved. 
Lastly, traditional spectrum sharing methods often lack adaptability and scalability. 
They are designed for specific frequency bands and technologies, making it difficult 
to accommodate new and emerging technologies. The static and exclusive nature 
of traditional spectrum allocation models hinders effective spectrum sharing. Fixed 
spectrum assignments to specific license holders restrict the ability to dynamically 
reallocate resources based on varying demand levels or to accommodate new entrants 
or temporary users. This rigidity can result in underutilization of spectrum in some 
areas while leading to congestion and interference in others. This restricts innovation 
and hampers the development of wireless communication systems.
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In contrast, DRL presents promising potential for spectrum sharing. By leveraging 
artificial intelligence techniques, DRL enables dynamic and autonomous decision-
making in spectrum access, leading to more efficient and flexible spectrum utiliza-
tion. Furthermore, it facilitates decentralized decision-making, reducing the need for 
centralized control and coordination, thereby enhancing scalability and responsive-
ness in spectrum sharing. The utilization of DRL in conjunction with supervised 
learning-based spectrum sharing offers several distinct advantages over traditional 
spectrum sharing methods. Traditional spectrum sharing approaches often rely on 
static allocation policies that may not effectively adapt to dynamic and complex 
wireless environments. In contrast, the integration of DRL and supervised learning 
enables a more adaptive and intelligent spectrum sharing strategy. DRL empow-
ers systems to learn optimal spectrum access policies through interaction with the 
environment and feedback mechanisms. This dynamic learning process allows for 
real-time adjustments and improvements in spectrum allocation decisions, enhanc-
ing system efficiency and adaptability. Supervised learning plays a critical role in 
providing accurate and reliable spectrum sensing and classification capabilities. By 
leveraging labeled training data, supervised learning algorithms can effectively detect 
PUs and identify available spectrum opportunities, thereby minimizing interference 
and maximizing spectrum utilization. By combining the strengths of DRL and super-
vised learning, the spectrum sharing system can make informed decisions based on 
contextual information and real-time feedback. This approach leads to enhanced 
spectral efficiency, reduced interference, and improved coexistence among multiple 
users sharing the same frequency bands. Overall, the application of DRL in super-
vised learning-based spectrum sharing represents a significant advancement over 
traditional methods. It enables more intelligent, adaptive, and efficient spectrum 
management, ultimately leading to better utilization of available spectrum resources 
and improved performance in dynam. 

Supervised learning is a machine learning technique that has found applications in 
various fields, including spectrum sensing and spectrum allocation. In these domains, 
supervised learning plays a crucial role in guiding spectrum sharing decisions based 
on historical data and labeled samples. In spectrum sensing, the goal is to detect 
the presence or absence of signals in a given frequency band. Supervised learning 
can be employed to train models that can accurately classify different types of sig-
nals, such as licensed and unlicensed users, primary and SU, or different modulation 
schemes. This involves collecting a dataset of historical spectrum measurements 
along with their corresponding labels, indicating the presence or absence of specific 
signals. By using this dataset, a supervised learning algorithm can learn patterns and 
characteristics of different signals, enabling accurate detection and classification of 
signals in real-time scenarios. Furthermore, supervised learning can also be applied 
to spectrum allocation, which involves determining how to assign available spectrum 
resources to different users or systems. By utilizing historical data on spectrum usage 
and performance metrics, supervised learning algorithms can learn the relationship 
between spectrum allocation decisions and their impact on system performance, such 
as throughput, interference, or energy efficiency. This enables the algorithm to make
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informed decisions regarding optimal spectrum allocation strategies, thus maximiz-
ing the utilization of spectrum resources. In traditional spectrum sharing methods, 
where spectrum is allocated based on predetermined rules or fixed policies, super-
vised learning introduces a data-driven approach. By leveraging historical data and 
labeled samples, supervised learning allows for more adaptive and dynamic spectrum 
sharing decisions. Instead of relying solely on predefined rules, the algorithm can 
learn from past experiences and adjust its decisions based on changing environmen-
tal conditions or user requirements. This flexibility leads to improved efficiency and 
fairness in spectrum allocation. It is worth noting that supervised learning in spec-
trum sensing and allocation heavily relies on the availability of high-quality labeled 
data. The process of labeling the data often requires domain expertise and careful 
annotation, ensuring the ACC and reliability of the training process. Additionally, 
continuous updates and retraining of the models are necessary to adapt to evolving 
spectrum dynamics and user behaviors. 

Combining DRL with supervised learning offers a powerful approach that lever-
ages the strengths of both techniques. In the context of spectrum sharing, this fusion 
can lead to more effective and efficient decision-making processes. DRL excels in 
learning optimal decision-making policies through interaction with the environment 
and receiving rewards based on its actions. By combining DRL with supervised 
learning, we can enhance the learning process by incorporating labeled data and 
historical information to guide the decision-making of the agent. In the realm of 
spectrum sharing, the synergy between DRL and supervised learning is particularly 
beneficial. DRL can learn complex strategies for spectrum allocation and access 
by interacting with the dynamic spectrum environment. On the other hand, super-
vised learning can provide valuable insights based on past data and labeled samples, 
helping the agent make more informed decisions. For example, in spectrum sharing 
scenarios, DRL can continuously explore different spectrum allocation strategies and 
adapt based on feedback from the environment. Meanwhile, supervised learning can 
contribute by offering guidance based on historical performance data, user behavior 
patterns, and regulatory constraints. This combined approach enables the agent to 
learn efficiently from both its interactions with the environment and the knowledge 
distilled from past experiences. 

Moreover, the integration of DRL and supervised learning in spectrum sharing 
can lead to improved spectrum utilization, reduced interference, and enhanced over-
all system performance. The agent can leverage the strengths of each technique to 
make intelligent decisions that balance the trade-offs between different users’ needs 
and maximize the efficiency of spectrum usage. For instance, in the realm of wire-
less communication, the fusion of supervised learning-based spectrum sensing with 
DRL-based spectrum allocation presents a powerful approach for optimizing spec-
trum utilization. Firstly, in supervised learning-based spectrum sensing, algorithms 
are trained to accurately detect and classify the presence of PUs in specific fre-
quency bands. By leveraging labeled training data, these algorithms can effectively 
identify available spectrum opportunities for SU without causing harmful interfer-
ence. On the other hand, DRL-based spectrum allocation focuses on making dynamic 
decisions regarding how to allocate available spectrum resources among competing
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users. Through continuous interaction with the environment, an agent learns opti-
mal strategies to maximize overall network performance while adhering to specific 
constraints and objectives. When these two methodologies are combined, the system 
gains significant advantages over using either approach individually. The supervised 
learning component enhances spectrum sensing ACC, providing reliable input to the 
RL agent for more informed decision-making. Meanwhile, the RL aspect enables 
adaptive and efficient spectrum allocation strategies based on real-time feedback, 
leading to improved overall system efficiency and user satisfaction. By integrating 
supervised learning-based spectrum sensing with DRL-based spectrum allocation, 
this fusion method offers a comprehensive and sophisticated solution for enhancing 
spectrum management in dynamic and complex wireless environments. 

The future prospects of applying DRL to supervised learning-based spectrum shar-
ing are highly promising. As wireless communication systems continue to evolve 
towards more dynamic, heterogeneous, and densely populated environments, the 
need for intelligent and adaptive spectrum sharing mechanisms becomes increasingly 
critical. DRL offers the potential to revolutionize spectrum sharing by enabling sys-
tems to learn and adapt their spectrum access strategies based on real-time feedback 
and environmental changes. This adaptability is particularly well-suited for address-
ing the challenges associated with dynamic and unpredictable wireless environments, 
where traditional static allocation schemes may prove insufficient. Furthermore, the 
combination of DRL with supervised learning-based spectrum sharing can lead to 
more accurate and efficient spectrum sensing and classification, allowing for better 
utilization of available spectrum resources. This, in turn, can reduce interference and 
enhance overall spectrum efficiency. Looking ahead, the application of in supervised 
learning-based spectrum sharing holds the promise of enabling more intelligent, 
context-aware, and adaptive spectrum access, which is essential for supporting the 
growing demands of diverse wireless services and applications.



Chapter 3 
Learning Resource Allocation 
Optimization 

3.1 Resource Allocation with Unsupervised Learning 

Transmission rates and the popularity of wireless communication devices, espe-
cially with the introduction of 5G technology, are experiencing exponential growth. 
This creates problems with limited spectrum resources and growing communica-
tion needs. In this context, unsupervised learning is applied to resource allocation to 
better meet the actual needs and to uncover the hidden resource utilization patterns 
and rules. Especially in optimizing continuous power control, unsupervised learning 
methods are more efficient. 

In traditional resource allocation problems, iterative algorithms are often used. 
However, the solutions obtained by these iterative algorithms are usually suboptimal. 
When the number of users or the number of resource allocation variables is large, 
iterative methods may take a long time to converge, limiting their application in real-
time operations. In addition, resource allocation solutions based on optimization 
are specific solutions to specific problems, and if the form of the problem changes, 
completely new solutions must be developed, further limiting the flexibility of the 
application. Deep learning approaches can overcome these limitations. 

At present, the application of resource allocation schemes based on deep learning 
in channel estimation and data detection of orthogonal frequency division multiplex-
ing (OFDM) and filter bank multi-carrier modulation has been studied. In addition, 
the channel state information feedback, encoder and decoder design of millimeter 
wave multiple-input multiple-output (MIMO) system based on deep learning are 
studied, and the autoencoder based on deep neural network (DNN) is applied for 
optical wireless communication. These studies verify the practical relevance and 
feasibility of deep learning-based wireless communication system design in solving 
resource allocation problems. 

In a deep learning-based resource allocation scheme, first, it is able to achieve 
the best performance without solving complex optimization problems. DNN can 
simulate the optimal solution of resource allocation problem, so as to improve the 
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efficiency of resource allocation. In addition, by training the model, it is possible 
to find strategies to solve resource allocation problems more quickly. Second, deep 
learning-based resource allocation schemes are more flexible and can achieve dif-
ferent design goals by changing the loss function and training the DNN structure. 
Third, because the trained DNNS only perform simple matrix operations, the com-
putation time required to obtain resource allocation strategies is much less than that 
of traditional schemes. 

To sum up, deep learning has an important application prospect in the resource 
allocation of wireless communication systems. Resource allocation schemes based 
on unsupervised learning do not require labeled data, and DNN can autonomously 
determine the best resource allocation strategy. Compared with the scheme based 
on supervised learning, the scheme based on unsupervised learning is simpler and 
easier to implement. For challenging scenarios where the environmental model is 
known or at least the mathematical model is known but the environmental state 
distribution is unknown, we can employ an unsupervised algorithm to learn the 
optimal solution to the environmental state. In addition, unsupervised learning can 
provide better performance when the global channel state information is limited and 
the local channel state information sharing strategy is not optimized. 

To utilize unsupervised learning for solving resource allocation problems in 
cellular networks, we can employ a DNN approach. Here’s a step-by-step process: 

1. Define The Problem: Clearly outline the resource allocation problem, taking 
into account factors like channel bandwidth . W , the number of channels . M , the  
transmit power of the PU.pmo , the transmit power of SU, noise spectral density .No, 
and the channel gain .hmi, j between transmitters and receivers of SUs. 

2. Normalize Inputs: Normalize the inputs to improve the learning process. For 
example, use a normalization formula 

. ˆhmi, j = log10 h
m
i, j − μ

δ
,μ = E [

log10 h
m
i, j

]
, δ = √E[

log10 h
m
i, j − μ

]2
(3.1) 

to normalize the channel gain which is .hmi, j and transmit power which is .pmo of the 
PU. 

3. Design the DNN Architecture: Construct a DNN with an input layer, several 
hidden layers, and an output layer. Each hidden layer should incorporate the ReLU 
activation function, with .P series of fully connected hidden layers, each containing 
.Q neurons. The output layer should employ a softmax function. 

4. Prepare Training Data: Gather training data that includes input feature vec-
tors (normalized channel gain and transmit power) and corresponding output labels 
(desired resource allocation decisions). In this case, the output labels would represent 
the realizable rate of each SU pair 
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5. Train the DNN: Utilize an unsupervised learning algorithm like backpropaga-
tion to train the DNN on the collected training data. The DNN learns the underlying 
patterns and features that optimize the sum rate of the cognitive radio network (CRN). 

6. Obtain Solution: Once the DNN is trained, the output of the network repre-
sents the resource allocation decisions. Multiply the network output by a constant 
.
∑

m∈M pmo to acquire the solution . p to the optimization problem, as outlined in the 
problem statement. In order to meet the constraints in the problem, we can constantly 
update the parameters of DNN to maximize.

∑
i∈N Ri (p) by training the loss function 

.

L = − λ1

∑
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Ri (p) + λ2
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tanh
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i∈N hmi,o p
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. λ1,.λ2 and.λ3 has a great impact on the training results. When a certain weight is too 
large, the QoS of PU and SU may not be guaranteed. On the contrary, the training 
results should ensure the QoS of PU and SU as much as possible. The simulation 
results show that the scheme can significantly improve the total sum rate of SUs, and 
the calculation time is short. 

7. Evaluate and Refine: Assess the performance of the DNN’s resource allocation 
decisions using validation or test data. If necessary, refine the DNN architecture, 
training process, or input features to enhance its performance. 

By following these steps, unsupervised learning with a DNN can be employed 
to learn optimal resource allocation decisions based on the input features, thereby 
improving the sum rate of the cellular network. 

3.2 DRL for Resource Allocation 

Resource allocation plays a crucial role in various domains, such as computer net-
works, cloud computing, and the IoT. Efficient resource allocation ensures optimal 
utilization of available resources and contributes to the overall performance and 
effectiveness of these systems. 

In computer networks, resource allocation involves distributing network band-
width, processing power, and storage capacity among different applications, devices, 
or users. Effective resource allocation is essential for ensuring smooth and uninter-
rupted communication, minimizing latency, and maximizing network throughput. By 
allocating resources based on demand and priority, computer networks can handle 
varying workloads and prioritize critical tasks, providing a seamless and responsive 
user experience. In cloud computing, resource allocation is vital for delivering scal-
able and on-demand services to customers. Cloud service providers must efficiently
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allocate computing resources, such as virtual machines, storage, and network band-
width, to meet customer demands while optimizing resource utilization and minimiz-
ing costs. Effective resource allocation enables dynamic scaling, allowing customers 
to scale their resources up or down based on their needs, ensuring efficient use of 
cloud infrastructure and enhancing the overall performance and cost-effectiveness 
of cloud-based applications and services. The IoT connects a vast number of devices 
and sensors, generating massive amounts of data. Resource allocation in IoT involves 
managing limited resources, such as battery power and network bandwidth, among 
numerous interconnected devices. Efficient resource allocation is crucial for prolong-
ing device battery life, optimizing data transmission, and ensuring reliable and timely 
communication between devices. By allocating resources intelligently, IoT systems 
can enhance energy efficiency, reduce communication overhead, and improve overall 
system reliability and responsiveness. 

In addition to these specific domains, resource allocation is also important in 
many other areas, such as transportation logistics, energy management, and manu-
facturing. In transportation logistics, resource allocation involves optimizing routes, 
scheduling vehicles, and assigning tasks to minimize costs and maximize efficiency. 
In energy management, resource allocation focuses on balancing energy supply and 
demand, optimizing energy generation and distribution, and promoting renewable 
energy utilization. In manufacturing, resource allocation aims to optimize produc-
tion processes, assign tasks to machines or workers, and minimize production costs 
while ensuring timely delivery and high-quality products. 

Resource allocation is of utmost importance in various domains. It ensures effi-
cient utilization of available resources, enhances system performance, and con-
tributes to cost-effectiveness and user satisfaction. Whether it is in computer net-
works, cloud computing, IoT, or other areas, effective resource allocation plays a 
pivotal role in optimizing system operations and achieving desired outcomes. 

Traditional resource allocation methods often face limitations in addressing the 
complexity and dynamics of modern distributed systems. These methods, which may 
rely on static rules, predefined heuristics, or centralized control, encounter challenges 
in adapting to changing environments, optimizing resource utilization, and achiev-
ing scalable and efficient allocations. One major limitation of traditional resource 
allocation methods is their difficulty in handling dynamic and uncertain environ-
ments. Systems with fluctuating workloads, varying resource demands, and evolv-
ing conditions present a challenge for static allocation approaches, which struggle to 
adapt and reconfigure resources in real time. Additionally, traditional methods may 
lack the ability to consider the global system state and make coordinated decisions 
across distributed nodes, leading to suboptimal resource allocations and potential 
inefficiencies. Moreover, traditional resource allocation approaches often rely on 
centralized control or decision-making, which can introduce single points of failure, 
scalability issues, and communication overhead. Centralized systems may struggle 
to scale effectively as the number of resources and participants grows, leading to 
bottlenecks and reduced responsiveness. Furthermore, centralized control may not 
fully leverage the local knowledge and decision-making capabilities of individual
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agents or nodes, limiting the system’s ability to optimize resource allocation based 
on localized information. 

In contrast, DRL offers the potential to overcome these limitations and revo-
lutionize resource allocation in distributed systems. By leveraging DRL, multiple 
autonomous agents can learn and adapt collaboratively to make decentralized deci-
sions while considering the global system objectives. DRL enables agents to learn 
from interactions with the environment, continuously update their policies based 
on feedback, and coordinate their actions to achieve efficient resource allocations. 
The inherent adaptability of DRL makes it well-suited for dynamic environments, 
allowing agents to adjust resource allocations in response to changing conditions 
and evolving demands. DRL can also support scalability in large-scale systems by 
enabling decentralized decision-making and coordination, thus avoiding the scalabil-
ity limitations associated with centralized control. Furthermore, DRL has the poten-
tial to optimize resource allocation based on diverse and complex objectives, taking 
into account factors such as fairness, user preferences, and system-wide performance. 

Traditional resource allocation methods are often constrained by their inabil-
ity to adapt to dynamic environments, centralized decision-making, and scalability 
challenges. offers a promising alternative, with its ability to enable decentralized, 
adaptive, and scalable resource allocation in modern distributed systems. By lever-
aging the power of multiple autonomous agents learning and collaborating, DRL 
has the potential to address the limitations of traditional methods and unlock new 
possibilities for efficient and intelligent resource allocation. 

DRL has emerged as a powerful technique for resource allocation, offering sev-
eral advantages in decision-making and adaptability. DRL combines DNN with RL 
algorithms to optimize resource allocation processes and enhance overall efficiency. 

First and foremost, DRL excels in making efficient decisions by learning directly 
from raw data. Unlike traditional approaches that rely on manual rules or heuristics, 
DRL models adapt and make decisions based on dynamic conditions. The use of DNN 
enables the processing of vast amounts of information quickly, allowing for the iden-
tification of patterns and informed choices. Secondly, Resource allocation problems 
often occur in uncertain and rapidly changing environments. DRL’s real-time learning 
and adaptation capabilities make it well-suited for such scenarios. Through trial and 
error, DRL models continually update their strategies, ensuring effective responses 
to changing conditions and maintaining optimal resource allocation. Thirdly, DRL 
offers scalability and generalization in addressing complex resource allocation prob-
lems. DNN can handle high-dimensional input data, accurately modeling resource 
allocation scenarios. Additionally, DRL models can generalize their learned policies 
to unseen situations, allowing for reliable decision-making in unfamiliar contexts. 
Furthermore, one significant advantage of DRL is its ability to learn from expe-
rience. By employing RL techniques, DRL models interact with the environment, 
receive feedback, and update their policies accordingly. This iterative learning pro-
cess leads to continuous improvement and optimized resource allocation strategies 
over time. Lastly, DRL reduces the need for extensive human intervention in resource 
allocation tasks. Unlike traditional approaches that require manual intervention and 
domain expertise, DRL autonomously learns optimal resource allocation policies.
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This automation saves time and minimizes potential biases and errors associated with 
human decision-making. 

DRL offers several advantages for resource allocation, including efficient 
decision-making, adaptability to dynamic environments, scalability, learning from 
experience, and reduced human intervention. By leveraging the power of DNN and 
RL algorithms, DRL has the potential to revolutionize resource allocation processes 
across various domains. 

In the quest to enhance communication networks’ efficiency and user experience, 
the dynamic allocation of resources like bandwidth, power, and channels emerges as a 
pivotal challenge. Traditional methods, often static and unable to adapt to fluctuating 
network conditions, fall short in optimizing network performance. Herein lies the 
potential of RL, a branch of AI that empowers an agent to learn optimal behaviors 
through trial and error, guided by feedback from its environment. This section delves 
into transforming resource allocation challenges into a RL framework, detailing the 
design of state representations, action spaces, and reward functions to foster effective 
decision-making. 

State Representation: The Foundation 

The essence of applying RL in communication networks begins with a precise defi-
nition of the state, which reflects the network’s current conditions. An effective state 
representation might encompass: 

Network Load: Quantified by metrics like the number of active connections or 
volume of data traffic, offering a glimpse into the current demand on the network. 

Resource Status: Detailed insights into available resources, including bandwidth 
availability, power levels, and the number of free channels, are crucial. 

Performance Indicators: Key QoS metrics such as latency, packet loss rate, and 
throughput serve as indicators of the network’s health and performance. 

This multi-dimensional snapshot allows the RL agent to assess the network’s 
immediate needs and resource status, forming the basis for informed decision-
making. 

Reward Function: Guiding Learning 

At the heart of the RL paradigm is the reward function, which steers the agent 
towards desirable outcomes through positive reinforcement. In the context of network 
resource allocation, the reward function could be designed to: 

Encourage Throughput Maximization: Assigning higher rewards for actions that 
lead to increased data transmission rates. 

Promote Low Latency: Favoring actions that result in reduced transmission delays, 
thereby improving the user experience. 

Foster Fairness: Introducing rewards that motivate the equitable distribution of 
resources among users, ensuring no user is disproportionately disadvantaged.
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Incorporating penalties for negative outcomes, such as dropped connections or 
QoS violations, further refines the agent’s learning process, aligning it with the 
network’s operational goals. 

Adopting a RL approach for resource allocation in communication networks offers 
a dynamic and adaptive solution to optimize network performance. By meticulously 
defining the states, actions, and rewards, we lay the groundwork for an RL agent capa-
ble of navigating the complexities of modern networks, ensuring efficient resource 
utilization, and enhancing user satisfaction. As this technology matures, it holds the 
promise of revolutionizing how networks manage their most critical assets in the 
face of ever-increasing demands. 

DRL stands at the forefront of revolutionizing resource allocation in commu-
nication networks. Its ability to adapt to changing environments and learn from 
complex, high-dimensional data makes it an invaluable tool for optimizing network 
performance and meeting the evolving demands of telecommunications. As research 
progresses and technology matures, DRL is expected to become a central compo-
nent of intelligent network management systems, driving innovations in efficiency, 
reliability, and user experience in communication networks. 

3.2.1 DRL-Based User Association 

In the field of communication systems, user association refers to the process of 
determining which users are connected to which base stations (BS) or access points 
(AP) in a wireless network. This assignment is crucial as it directly impacts the overall 
performance and efficiency of the communication system. User association plays a 
vital role in resource allocation, QoS, load balancing, and interference management. 

The importance of user association lies in several key aspects. Firstly, user asso-
ciation enables efficient utilization of network resources such as bandwidth, power, 
and time slots. By assigning users to appropriate BS, the available resources can be 
optimally distributed, maximizing system capacity and improving network perfor-
mance. Secondly, user association ensures that users are connected to the BS that can 
provide the desired QoS. Factors such as throughput, latency, packet loss, and sig-
nal strength are taken into consideration when assigning users to BS. Effective user 
association leads to improved QoS for individual users, resulting in enhanced user 
experience. Then, user association helps in load balancing by distributing the traffic 
load across different BS. This prevents congestion and network bottlenecks, ensur-
ing fair resource sharing among users. Load balancing improves overall network 
stability and reliability. Lastly, user association plays a crucial role in interference 
management. By appropriately assigning users to BS, interference between users can 
be minimized. This results in enhanced signal quality and higher data rates. 

Traditional user association algorithms are crucial components in wireless com-
munication systems, particularly in cellular networks, where they determine the allo-
cation of users to BS for optimal resource utilization and user experience. These algo-
rithms aim to match users with BSs based on various criteria such as signal strength,
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load balancing, and QoS requirements. One commonly used traditional user associa-
tion algorithm is the nearest neighbor (NN) algorithm. In NN, each user is associated 
with the BS that provides the strongest received signal strength (RSS) at the user’s 
location. This approach is simple and easy to implement but may lead to overloaded 
BSs and uneven resource utilization, especially in dense networks or areas with non-
uniform user distributions. Another traditional algorithm is the proportional fair (PF) 
algorithm, which seeks to balance fairness and efficiency by considering both the 
instantaneous channel conditions and the historical data rates of users. PF aims to 
allocate users to BSs in a way that maximizes the overall system throughput while 
ensuring a fair distribution of resources among users. However, PF requires more 
computational complexity compared to NN. Additionally, there are other traditional 
user association algorithms such as maximum received signal-to-interference-plus-
noise ratio (SINR), minimum mean square error (MMSE), and load-aware associa-
tion. These algorithms consider factors such as interference, channel conditions, and 
BS load to make more informed decisions regarding user association. 

However, traditional user association algorithms in wireless communication sys-
tems have certain limitations that can hinder their performance and efficiency. These 
limitations arise from the complexity and dynamic nature of the wireless environ-
ment, as well as the assumptions made in the algorithm design. This sets the stage 
for the potential of DRL to address these limitations and improve user association 
strategies. One limitation of traditional user association algorithms is their reliance 
on predefined metrics or heuristics for decision-making. These metrics may not ade-
quately capture the real-time conditions of the network, leading to suboptimal user 
assignments. Additionally, traditional algorithms often assume static channel con-
ditions and user demands, which may not reflect the dynamic nature of wireless 
networks. Another limitation is the difficulty in considering the heterogeneity of BS 
and their varying capabilities. Traditional algorithms may struggle to effectively allo-
cate users to different types of BS, such as macrocells, microcells, and femtocells, 
resulting in inefficient resource allocation and suboptimal QoS. Furthermore, tra-
ditional user association algorithms typically focus on individual user performance 
without considering the overall network objectives. This may lead to imbalanced 
load distribution, causing congestion in some areas and underutilization in others. 
The lack of coordination among BS can result in increased interference and reduced 
network capacity. 

DRL offers a promising solution to these limitations. By leveraging DNNs and 
RL principles, DRL algorithms can learn directly from interactions with the wireless 
environment. This allows them to adapt to changing network conditions and make 
intelligent decisions based on real-time information. DRL models can capture the 
complex relationships between user associations, resource allocation, and system-
level performance. They can learn to optimize user assignments based on dynamic 
channel conditions, user demands, and network objectives, leading to improved over-
all network efficiency, fairness, and QoS. Additionally, DRL has the potential to 
handle the heterogeneity of BS more effectively. By learning from data, DRL algo-
rithms can adapt to different types of BS and make informed decisions regarding
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user association, considering the varying capabilities and characteristics of each 
base station. 

One advantage of using DRL for user association is its ability to handle complex 
and dynamic network conditions. The DNN can capture high-dimensional and non-
linear relationships between the state and the optimal action, making it suitable for 
handling large-scale and heterogeneous wireless networks. Moreover, the network 
can adapt to changing network conditions without requiring manual adjustments. 

DRL holds significant potential for addressing wireless user association problems, 
revolutionizing how wireless networks allocate users to BS. By leveraging its ability 
to learn from interactions and optimize decision-making, DRL can offer several 
advantages in this domain. Applying DRL in wireless user association holds great 
promise. 

Intelligent User Association 

DRL can enable intelligent user association decisions by learning from historical 
network states and user behaviors. Traditional user association approaches often rely 
on predetermined rules or heuristics, which may not adapt well to dynamic network 
conditions. DRL, on the other hand, can capture complex patterns and optimize user 
association in real-time based on current network conditions. 

Adaptability to Heterogeneous Environments 

Wireless networks are becoming increasingly heterogeneous, with various types of 
BS and user devices. DRL algorithms have the potential to adapt to these hetero-
geneous environments and make optimal user association decisions that consider 
factors like signal quality, traffic load, and mobility patterns. This adaptability can 
result in improved network performance and better user experiences. 

Learning-Based Optimization 

DRL can optimize user association decisions through continuous learning and adap-
tation. As network conditions change over time, DRL models can update their poli-
cies based on new observations and interactions. This learning-based optimization 
can lead to efficient resource allocation, reduced interference, and enhanced overall 
network capacity. 

Handling Complex Interactions 

The interactions between users, BS, and the wireless environment are highly dynamic 
and complex. DRL algorithms can effectively handle these complex interactions by
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considering the sequential nature of user association decisions. By taking into account 
the temporal dependencies and long-term rewards, DRL models can optimize user 
association strategies and mitigate interference issues. 

Performance Improvement 

Applying DRL in wireless user association has the potential to significantly improve 
network performance metrics such as throughput, latency, and fairness. By leverag-
ing deep learning techniques, DRL models can capture intricate patterns and make 
accurate predictions about user demands and network conditions, leading to more 
efficient user association decisions. 

Self-Optimization 

DRL has the capability to enable self-optimization of wireless networks. By allowing 
BS to learn and adapt their user association policies autonomously, DRL can reduce 
the reliance on centralized management and enable more flexible and efficient net-
work operations. This self-optimization can lead to improved scalability, robustness, 
and energy efficiency. 

In conclusion, traditional user association algorithms have limitations in captur-
ing real-time network conditions, handling heterogeneity, and optimizing overall 
network performance. DRL offers a promising approach to overcome these limi-
tations by enabling adaptive decision-making based on real-time information and 
learning from interactions with the wireless environment. The potential of DRL lies 
in its ability to improve user association strategies, enhance resource allocation, and 
optimize system-level performance in wireless communication systems. 

The basic idea behind using DRL for user association is to frame it as a Markov 
Decision Process (MDP). In this MDP, the state represents the current network con-
dition and user demand, the action corresponds to the user association decision, and 
the reward reflects the system performance, such as user satisfaction or resource uti-
lization. To apply DRL, we first need to design a DNN that takes the state as input and 
outputs the Q-value of each action. The Q-value represents the expected cumulative 
reward of taking the action under the current state. The network can be trained using 
Q-learning or policy gradient methods to learn the optimal user association policy. 
During training, the system interacts with the environment by selecting actions based 
on the current state and updates the Q-values using the obtained reward. With suffi-
cient training, the network can learn a good user association policy that maximizes 
the long-term reward. The trained network can then be used to make real-time user 
association decisions in the communication system. 

The state in a communication system embodies the informational context regard-
ing its surroundings. It encompasses critical factors influencing decisions related to 
user associations, such as channel conditions, SNR, user locations, resource avail-
ability, traffic load, and historical data. A comprehensive state allows the system
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to make informed choices about user associations. For instance, a state representa-
tion might comprise a matrix detailing SNR values between users and available BS, 
offering valuable insights into connection quality crucial for user association deci-
sions. Actions denote the choices available to the communication system concerning 
user associations. These decisions dictate how users are linked to BS or allocated 
resources. Actions could involve associating a user with a specific base station, select-
ing transmission modes, assigning frequency bands, or adjusting power levels. For 
example, decisions may revolve around identifying the base station providing opti-
mal connectivity for a user based on SNR values or selecting a combination of BS and 
resources maximizing network capacity while fulfilling individual user requirements. 
The reward function serves as a guide for the learning process, aiding the optimization 
of user association decisions. It mirrors the system’s objectives and may encompass 
both system-level and user-centric metrics. At the system level, the function might 
aim to maximize capacity, minimize interference, or optimize resource utilization. 
Positive rewards could be allocated for actions leading to higher data rates, reduced 
latency, or diminished interference. On the other hand, user-centric metrics such as 
signal quality, fairness, or user experience are also considered. Actions resulting in 
enhanced signal quality, equitable resource distribution, or improved user experience 
garner positive rewards. Striking a balance between system-level objectives and user-
centric metrics is paramount in designing the reward function. For instance, it could 
combine system efficiency and user satisfaction metrics, rewarding high data rates, 
low latency, and fair resource allocation while penalizing actions causing interference 
or degraded signal quality. By delineating a meticulously crafted state representation, 
designing suitable actions, and formulating a reward function aligned with system 
goals and user satisfaction, the user association conundrum can be reframed as a RL 
challenge. Leveraging RL algorithms enables the communication system to learn 
optimal user association policies, adapt to evolving conditions, and enhance network 
performance and user experience iteratively (Fig. 3.1). 

In conclusion, the integration of RL into wireless user association presents a 
compelling opportunity to revolutionize the efficiency and performance of commu-
nication networks. With its ability to adapt to changing conditions, optimize resource 
allocation, and personalize user experiences, RL stands poised to unlock new levels 
of network intelligence and sophistication. As we continue to advance in this field, 
we can anticipate a future where wireless communication systems are not only more 
efficient and reliable but also more responsive to the diverse needs and preferences 
of users. With ongoing research and development, the full potential of RL in wireless 
user association is yet to be realized, promising exciting prospects for the evolution 
of communication technologies in the years to come. 

3.2.2 DRL-Based Channel Assignment and Power Allocation 

Channel assignment and power allocation are two important techniques used in wire-
less communication systems to optimize the allocation of radio resources, such as
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Fig. 3.1 The application of DRL in resource allocation 

frequency channels and transmit power, among users to improve system performance. 
Channel assignment refers to the process of assigning different frequency channels 
to users in a wireless communication system. In simple terms, it is like dividing a 
highway into multiple lanes and assigning each lane to a specific user. The main 
goal of channel assignment is to minimize interference between users and maximize 
the overall capacity of the system. By allocating different frequency channels to dif-
ferent users, we can ensure that they can communicate without causing significant 
interference to each other. This helps improve the quality and reliability of wireless 
connections. Power allocation involves assigning an appropriate amount of transmit 
power to each user in a wireless communication system. It is like adjusting the vol-
ume of your voice when talking to someone—you need to speak louder if the person 
is far away and softer if they are close. The SNR is a crucial performance metric 
in wireless communication systems. The SNR can be calculated using the follow-
ing formula: SNR.= (Signal Power) / (Noise Power). Adjusting power allocation to
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maximize this SNR is a common goal in power allocation strategies to balance the 
transmission power among users to achieve efficient and reliable communication. In 
wireless radio propagation models, a path loss model can be used to estimate the 
distance and channel attenuation between users. Power control based on path loss 
can be achieved using a formula like: 

.P = P0 × d(−α) (3.4) 

where .P is the transmission power, .P0 is the reference power at a certain distance, 
. d is the distance between users, and . α is the path loss exponent. 

By allocating more power to users with weaker signals or farther distances, we can 
enhance their signal strength and improve their connectivity. At the same time, users 
closer to the base station or with stronger signals may require less power, reducing 
interference and conserving energy. 

In the field of communication systems, efficient management of spectrum 
resources poses several challenges. Spectrum, or the range of frequencies used for 
wireless communication, is a limited and valuable resource. Here, we will discuss 
some of the key challenges in spectrum resource management, including spectrum 
scarcity, increasing user demands, and mutual interference. 

Spectrum Scarcity 

The availability of usable spectrum is limited, leading to spectrum scarcity. This 
scarcity arises due to the finite nature of the RF spectrum and the increasing demand 
for wireless communication services. As more applications and devices require 
access to the spectrum, the challenge lies in allocating and utilizing the available 
spectrum efficiently. 

Increasing User Demands 

With the proliferation of wireless devices, there has been a significant increase in the 
number of users requiring access to the limited spectrum. Mobile phones, tablets, lap-
tops, IoT devices, and other wireless technologies all compete for spectrum resources. 
The challenge is to meet the growing demands of users while ensuring fair and 
equitable access. 

Interference Management 

In a shared spectrum environment, interference between different users and systems 
can degrade the quality of communication. Interference occurs when signals from 
one user or system interfere with the signals of others. As more devices operate 
in close proximity, the potential for interference increases. Effective interference
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management techniques, such as frequency planning, power control, and advanced 
signal processing, are crucial to mitigate this challenge. 

Spectrum Fragmentation 

Spectrum allocation is typically done in blocks or bands to ensure efficient utilization. 
However, these allocated bands are not always contiguous, leading to spectrum frag-
mentation. Fragmentation occurs when spectrum resources are divided into smaller 
non-contiguous portions, making it difficult for large bandwidth-intensive applica-
tions. Managing fragmented spectrum requires intelligent allocation strategies and 
innovative technologies. 

Spectrum Sharing 

Traditionally, spectrum has been allocated exclusively to specific services or license 
holders. However, with the growing demand for spectrum, there is a need for more 
efficient spectrum sharing mechanisms. DSA and CR technologies are being explored 
to enable opportunistic spectrum access, allowing multiple users to share the same 
frequency bands while minimizing interference. 

To address these challenges, various strategies are being employed in spectrum 
resource management. These include spectrum auctions to allocate frequencies, spec-
trum sharing policies, dynamic spectrum allocation techniques, and the development 
of advanced technologies like software-defined radio (SDR) and CR. 

While various spectrum resource management methods have been developed to 
tackle the challenges of spectrum scarcity, increasing user demands, and mutual 
interference, they are not without limitations. Traditional methods like frequency 
planning, power control, and dynamic spectrum allocation can only optimize spec-
trum utilization to a certain extent, but may not be able to fully address the complex 
and dynamic nature of the wireless communication environment. For instance, fre-
quency planning is based on static allocation of spectrum resources that may not 
adapt well to dynamically changing traffic patterns and network conditions. Power 
control techniques can mitigate interference but may be limited by the need for 
coordination among users. Dynamic spectrum allocation can improve spectrum uti-
lization, but may face challenges in implementation due to regulatory and technical 
complexities. 

Therefore, there is growing interest in exploring the application of machine learn-
ing techniques, such as DRL, in spectrum resource management. DRL enables 
autonomous decision-making in a dynamic and uncertain environment, making it 
a promising approach for addressing the limitations of traditional spectrum manage-
ment methods. In DRL, an agent learns from experience through trial and error while 
interacting with its environment. The agent takes actions based on the current state 
of the environment and receives rewards or penalties based on its decisions. Over 
time, the agent improves its decision-making ability by maximizing the cumulative
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reward. In the context of spectrum resource management, DRL can be used to opti-
mize spectrum allocation and access strategies based on real-time feedback from the 
wireless communication environment. It can also enable autonomous coordination 
between different users and systems, leading to more efficient spectrum utilization 
and reduced interference. Several studies have demonstrated the potential of DRL 
in spectrum resource management. For example, a recent study showed that a DRL-
based approach can improve spectrum utilization in a dynamic and heterogeneous 
wireless network compared to traditional approaches. 

While traditional spectrum resource management methods have their limitations 
in addressing the challenges of spectrum scarcity, increasing user demands, and 
mutual interference, DRL holds promise in optimizing spectrum utilization and 
enabling autonomous decision-making in a dynamic wireless communication envi-
ronment. The future of optimizing spectrum resource management and power allo-
cation in communication systems using DRL holds great promise. By leveraging the 
power of DRL, we can achieve more efficient allocation of spectrum resources and 
enhance the overall performance of communication systems. One area of focus is 
enhanced resource allocation. With DRL techniques, we can dynamically adapt and 
optimize resource allocation strategies in real-time. This means considering factors 
such as frequency bands, channel conditions, interference levels, and user demands to 
make intelligent decisions on how to allocate resources effectively. Intelligent power 
control is another crucial aspect. By developing DRL algorithms, we can optimize 
power allocation based on individual user requirements, channel conditions, and 
network congestion. This leads to improved signal quality, reduced interference, 
and enhanced energy efficiency in communication systems. Future research can also 
focus on adaptive learning and decision-making. DRL algorithms can continuously 
learn and update their policies based on changing network conditions and user behav-
iors. This allows communication systems to dynamically adjust resource allocation 
and power control strategies to optimize performance and meet user demands. More-
over, DRL can handle multi-objective optimization problems. By considering trade-
offs between different performance metrics like throughput, latency, fairness, and 
energy efficiency, communication systems can achieve a balance between compet-
ing objectives. This enables tailoring resource management and power allocation 
strategies to specific application requirements. 

As communication systems become more complex and heterogeneous, scala-
bility and complexity management are critical. Future research can explore scal-
able DRL algorithms that efficiently handle large-scale deployments. Techniques 
such as distributed DRL and hierarchical RL can address the challenges associ-
ated with managing complex communication systems. The application of DRL in 
optimizing spectrum resource management and power allocation in communica-
tion systems offers significant potential for enhanced performance and efficiency. 
Through enhanced resource allocation, intelligent power control, adaptive learning 
and decision-making, multi-objective optimization, and scalability and complex-
ity management, DRL can revolutionize how we manage and allocate resources in 
communication systems.



48 3 Learning Resource Allocation Optimization

Optimizing spectrum resource management and power allocation in communica-
tion systems is crucial to achieving efficient and effective use of available resources. 
DRL has emerged as a promising approach for addressing this challenge, offering 
the potential to learn intelligent decision-making policies that can adapt to chang-
ing conditions and optimize system performance. In the following paragraphs, we 
will explore the key concepts and techniques of using DRL for spectrum resource 
management and power allocation. Firstly, we need to define the problem and for-
mulate it as a RL problem. The primary objective of spectrum resource management 
is to maximize system throughput while minimizing interference and ensuring fair-
ness among users. The relevant variables that affect spectrum resource management 
include channel conditions, traffic load, interference levels, and power allocation. We 
can cast this problem as a MDP, where the state of the system represents the current 
configuration, actions are the possible decisions to make, and rewards evaluate the 
quality of the chosen actions. Next, we need to design a suitable DRL architecture 
for the problem. This typically involves constructing a deep Q-network (DQN) that 
consists of a state representation, an action space, and a Q-value estimation network. 
The state representation should incorporate relevant information about the system, 
such as historical channel information, traffic statistics, and interference levels. The 
action space should specify the available actions for spectrum allocation and power 
control, such as selecting frequency bands, adjusting transmit power levels, or allo-
cating resources to different users. The Q-network should estimate the expected 
cumulative rewards for taking specific actions in a given state. The training process 
involves collecting experiences, estimating Q-values, and updating the DQN model. 
During experience collection, we interact with the environment by selecting actions 
based on an exploration-exploitation strategy and observe the resulting rewards and 
new states, storing these experiences in a replay buffer. Q-value estimation involves 
sampling batches of experiences from the replay buffer and computing the Q-value 
targets using the target network. The network update is performed by minimizing the 
mean squared error between the predicted Q-values and the target Q-values, using an 
optimization algorithm like stochastic gradient descent. The target network is updated 
periodically by copying the weights from the Q-network to improve stability dur-
ing training. Finally, we can apply the trained DQN model for policy application in 
real-time scenarios. We observe the current system state and feed it into the trained 
Q-network to obtain the Q-values for each possible action. We select the action with 
the highest Q-value (exploitation) or choose a random action with a low probability 
(exploration) based on the chosen exploration-exploitation strategy. We then apply 
the selected action to the communication system, adjusting spectrum allocation and 
power levels accordingly. The policy should continuously monitor the system’s state, 
repeat the decision-making process, and adapt as the environment evolves. 

In conclusion, leveraging DRL for spectrum resource management and power 
allocation offers a promising future for communication systems. By further advanc-
ing research in these directions, we can unlock the full potential of DRL to optimize 
resource utilization, enhance system performance, and provide seamless connectivity 
for a wide range of applications.
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3.2.3 DRL-Based Energy Transfer and Harvesting 

In a communication system, the transfer and collection of signal energy play a cru-
cial role in ensuring reliable and efficient data transmission. Signal energy transfer 
refers to the process of transmitting information-carrying signals from a source to 
a destination, while signal energy harvesting involves collecting and utilizing ambi-
ent or transmitted energy to power wireless devices. Both aspects are essential for 
maintaining continuous and sustainable communication in various applications. 

Energy Transfer 

• Reliable Data Transmission. Signal energy transfer is vital for ensuring that 
information-carrying signals can reach their intended destination with sufficient 
strength and quality. Proper energy transfer mechanisms help mitigate signal 
degradation and ensure reliable data transmission across different distances. 

• Wireless Communication. In wireless communication systems, such as cellular 
networks, Wi-Fi, and bluetooth, efficient signal energy transfer enables seamless 
connectivity and data exchange between devices without the need for physical 
connections. This is essential for modern mobile and IoT applications. 

• Remote Sensing and Monitoring. Signal energy transfer is critical for remote 
sensing and monitoring systems, such as environmental monitoring, smart grids, 
and industrial automation. It allows for the transmission of sensor data over long 
distances, enabling real-time monitoring and control of distributed systems. 

Energy Harvesting 

• Energy Sustainability. Signal energy harvesting provides an alternative means of 
powering wireless devices by capturing ambient energy from the environment, 
such as light, vibration, or RF signals. This approach promotes energy sustain-
ability and reduces reliance on traditional power sources, particularly in remote or 
off-grid locations. 

• Autonomous and IoT Devices. Signal energy harvesting enables the deployment 
of autonomous and IoT devices that can operate without the need for frequent 
battery replacements or external power sources. This is particularly beneficial for 
applications such as wireless sensor networks, wearable electronics, and remote 
monitoring systems. 

• Environmental Adaptability. By harnessing ambient energy, signal energy har-
vesting allows devices to adapt to diverse environmental conditions and operate in 
locations where traditional power sources may be limited or unavailable. This flex-
ibility enhances the deployment and usability of wireless communication devices 
in various scenarios.
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Signal energy transfer and energy harvesting are indispensable for maintaining 
reliable communication, promoting energy sustainability, and enabling the deploy-
ment of wireless devices in diverse applications, ranging from smart cities to wear-
able electronics. These technologies are fundamental to the advancement of wireless 
communication systems and the broader ecosystem of connected devices. 

Traditional methods of signal energy transfer and energy harvesting have played a 
crucial role in communication systems and power supply. However, they are not with-
out limitations that can impact their effectiveness in various scenarios. One significant 
limitation is signal attenuation. As signals travel through the air or other mediums, 
their strength diminishes, leading to reduced signal quality and reliability over long 
distances. This attenuation can limit the effective range of communication systems 
and hinder reliable data transmission. Another limitation lies in the environmental 
dependency of many energy harvesting methods. Solar panels, for example, require 
adequate sunlight, while RF energy harvesting relies on the availability of RF signals. 
These dependencies restrict the applicability of these methods in environments with 
limited or fluctuating energy sources. Furthermore, energy losses occur throughout 
the process of signal transmission and energy conversion. Factors such as resistance, 
noise, and inefficiencies in power conversion contribute to these losses, reducing 
the overall effectiveness of traditional energy transfer and harvesting methods. As a 
result, devices reliant on harvested energy may have limited longevity. 

To address these limitations, DRL shows promise. This branch of artificial intel-
ligence leverages advanced algorithms and training models to optimize signal trans-
mission parameters and adapt to environmental changes. DRL can intelligently adjust 
signal transmission parameters, such as power levels and modulation schemes, to 
minimize energy loss and attenuation over distance. By learning from environmental 
data, it can make real-time decisions on when and how to harvest energy, effectively 
addressing the issue of environmental dependency. By overcoming the limitations 
of traditional methods, DRL has the potential to improve the efficiency and per-
formance of communication systems and energy-harvesting devices. Its intelligent 
decision-making and adaptive optimization can enhance signal quality, extend the 
range of communication systems, and maximize energy efficiency. 

Traditional signal energy transfer and energy harvesting methods have limita-
tions such as signal attenuation, environmental dependency, and energy loss. How-
ever, DRL offers a promising solution by enabling intelligent decision-making and 
adaptive optimization. By addressing these limitations, DRL can enhance the effi-
ciency and performance of communication systems and energy-harvesting devices 
in various scenarios. 

Firstly, DRL can effectively mitigate signal attenuation in energy transfer. Tra-
ditional methods often suffer from signal loss over long distances, impacting the 
reliability and range of communication systems. By optimizing transmission param-
eters such as power levels and modulation schemes, DRL can minimize energy loss 
over distance, extending the effective range of communication systems and enhanc-
ing data transmission reliability. Secondly, DRL exhibits adaptability to environ-
mental changes in energy harvesting. Many traditional energy harvesting methods 
are dependent on specific environmental conditions, such as sunlight or RF signals.
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DRL can learn from environmental data and make real-time decisions on energy har-
vesting, effectively addressing these environmental dependencies. This adaptability 
optimizes energy harvesting processes, maximizing energy efficiency and reducing 
reliance on external power sources. Furthermore, DRL can address energy losses 
throughout the energy transfer and conversion processes. By optimizing power con-
version processes, DRL can reduce energy losses stemming from resistance, noise, 
and inefficiencies. These improvements enhance the overall efficiency and func-
tionality of devices reliant on harvested energy, leading to longer device lifetimes 
and reduced energy waste. Lastly, DRL’s intelligent decision-making and adaptive 
optimization capabilities contribute to enhancing the efficiency and performance 
of communication systems and energy-harvesting devices. Its ability to learn and 
adapt from environmental data allows for dynamic adjustments to energy transfer 
and harvesting processes, leading to improved reliability and energy utilization. 

DRL has emerged as a powerful tool for optimizing signal energy transfer through 
wireless networks. By leveraging advanced algorithms and DNN, this approach 
enables efficient decision-making by the agents involved in transmitting and receiving 
signals. 

To begin, let’s consider a scenario where we have multiple transmitters and 
receivers in a wireless network. The objective is to maximize the amount of signal 
energy transferred from the transmitters to the receivers while considering various 
factors like channel conditions, interference, and power constraints. In this context, 
each transmitter acts as an agent, and the environment comprises the wireless channel 
and other agents. The agents learn how to make decisions that optimize the energy 
transfer through a process called DRL. 

The first step is to define the state representation. The state provides information 
about the current environment to the agent, including the channel conditions, inter-
ference levels, and the energy levels at the transmitter and receiver. This information 
helps the agent make informed decisions. The state representation is designed based 
on the available information and the specific requirements of the energy transfer 
task. Next, we define the action space. The action represents the decision made by 
the agent regarding how to transmit the signal. It could include adjusting the transmit 
power, choosing the frequency or time slots for transmission, or other actions that 
affect signal transmission. The action space should be carefully designed to cover a 
range of possible actions while remaining computationally feasible. Once the state 
and action spaces are defined, we establish the reward function. The reward serves as 
feedback to the agent and guides its learning process. In the context of signal energy 
transfer, the reward function should encourage the agent to maximize the energy 
transferred while accounting for factors like interference and power efficiency. For 
example, the agent can receive a positive reward for successfully transferring energy 
and a negative reward proportional to interference caused or the power consumed. 
By designing an appropriate reward function, we can train the agent to make deci-
sions that align with our objectives. With the RL task defined, we can train the agent 
using DNN. The agent interacts with the environment, observing the state, taking
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actions, and receiving rewards. DNN approximate the value or policy function, map-
ping states to actions or action probabilities. Through techniques like Q-learning or 
policy gradients (PG), the agent learns to make better decisions over time. 

During training, the agent explores different actions and learns from the feedback 
received through rewards. By iteratively adjusting the neural network parameters, 
the agent gradually improves its decision-making capabilities and converges to an 
optimal policy for signal energy transfer. Once trained, the agent can be deployed in 
real-world scenarios to facilitate efficient signal energy transfer in wireless networks. 
The agent intelligently adjusts its transmission strategy based on the observed state 
to maximize energy transfer while minimizing interference and optimizing power 
usage. 

DRL offers a powerful algorithmic framework for optimizing signal energy trans-
fer in wireless networks. By defining the problem as a RL task and leveraging DNN, 
we can train agents to make informed decisions that maximize energy transfer effi-
ciency. This approach has the potential to significantly improve the performance of 
wireless networks and enable efficient and reliable signal energy transfer. DRL has 
the potential to revolutionize the field of signal energy transmission and collection, 
offering numerous exciting applications and advancements. With its ability to opti-
mize decision-making processes in complex and dynamic environments, DRL can 
greatly enhance the efficiency and effectiveness of signal energy management. 

One significant application lies in optimizing wireless power transfer systems. 
Wireless power transfer enables devices to receive energy without physical con-
nections, offering convenience and flexibility. However, efficiently managing and 
optimizing the transfer process is crucial. DRL algorithms can train agents to make 
intelligent decisions on power transfer parameters, such as distance, direction, and 
frequency, to maximize energy transfer efficiency while minimizing losses and inter-
ference. Another exciting area of application is in wireless sensor networks. These 
networks often consist of numerous battery-powered sensors that collect and trans-
mit data. Energy consumption is a significant concern in such networks, as batteries 
may need frequent replacement or recharging. DRL can be used to optimize the 
energy consumption of sensors by dynamically adjusting their transmission power, 
scheduling data transmissions, and optimizing routing decisions. This can lead to pro-
longed battery life, reduced maintenance costs, and improved network performance. 
Furthermore, DRL can contribute to the development of energy-efficient communi-
cation protocols. Wireless communication protocols, such as Wi-Fi or bluetooth, play 
a crucial role in transmitting and receiving signals. Optimizing these protocols for 
energy efficiency is essential to conserve power and extend device battery life. DRL 
agents can learn to adapt transmission parameters, such as modulation schemes and 
transmission power, based on the current channel conditions and energy constraints. 
This can result in significant energy savings without compromising communication 
performance. Additionally, DRL can aid in optimizing energy harvesting systems. 
Energy harvesting technologies, like solar panels or kinetic energy harvesters, allow 
devices to generate power from their surroundings. However, the availability of har-
vested energy varies, making efficient energy management challenging. By training 
agents using DRL, devices can intelligently decide when to harvest energy, how much
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to store, and when to utilize the stored energy. This can maximize the utilization of 
available energy sources and ensure continuous operation. Moreover, DRL can play 
a crucial role in managing interference in signal energy transmission. Interference is 
a common challenge in wireless communication, affecting signal quality and energy 
efficiency. DRL agents can learn to mitigate interference by dynamically adjusting 
transmission parameters, optimizing frequency allocations, or employing interfer-
ence cancellation techniques. This can lead to improved signal quality, enhanced 
energy transfer efficiency, and better overall network performance. 

In conclusion, the application prospects of DRL in the field of signal energy 
transmission and collection are vast and promising. From optimizing wireless power 
transfer systems and energy consumption in sensor networks to enhancing commu-
nication protocols and managing interference, DRL offers exciting opportunities for 
more efficient and sustainable utilization of signal energy. As research and develop-
ment progress in this field, we can expect to witness significant advancements that 
will revolutionize how we transmit, collect, and manage signal energy in various 
applications and industries. 

3.2.4 MADRL-Based Resource Management 

Resource management plays a crucial role in distributed systems and networks, 
encompassing a wide range of activities aimed at optimizing the allocation and 
utilization of resources to ensure efficient and reliable system operation. The impor-
tance of effective resource management in these environments cannot be overstated, 
as it directly impacts system performance, scalability, and user experience. One key 
aspect of resource management in distributed systems and networks is the allocation 
of computing resources, such as CPU, memory, and storage. Efficiently allocating 
these resources is essential for ensuring that tasks and applications can run smoothly 
without contention or performance degradation. Proper resource allocation directly 
contributes to system responsiveness, throughput, and overall user satisfaction. Fur-
thermore, in the context of network resource management, efficient allocation of 
bandwidth and network capacity is critical for ensuring optimal data transmission 
and communication. By managing network resources effectively, it is possible to 
minimize congestion, reduce latency, and ensure equitable access to resources for all 
users. This is particularly important in today’s interconnected world, where seamless 
and reliable network connectivity is essential for various applications and services. 
Another crucial aspect of resource management in distributed systems is the man-
agement of distributed data. This includes tasks such as data storage, replication, 
and consistency management. Effective management of data resources ensures data 
availability, reliability, and integrity, which are fundamental requirements for many 
distributed applications and services. 

In addition to resource allocation and data management, proper load balancing 
is also an important component of resource management in distributed systems. 
Load balancing aims to evenly distribute processing and communication tasks across
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available resources to prevent bottlenecks and overloads. Effective load balancing 
strategies contribute to improved system performance, fault tolerance, and scalability. 
Moreover, security and access control mechanisms are integral parts of resource man-
agement in distributed systems and networks. Properly managing access to resources 
and implementing security measures are essential for protecting sensitive data, pre-
venting unauthorized access, and ensuring the integrity and confidentiality of system 
resources. 

Overall, effective resource management in distributed systems and networks is 
essential for optimizing system performance, ensuring reliable operation, and pro-
viding a satisfactory user experience. Through efficient resource allocation, net-
work capacity management, data management, load balancing, and security mea-
sures, organizations and service providers can maximize the utilization of resources, 
improve system responsiveness, and maintain the integrity and security of distributed 
systems and networks. 

Traditional resource management methods have been the backbone of system 
administration for many years, but they have some limitations. These methods 
are typically rule-based and rely on predefined policies and procedures to allocate 
resources. While these methods can be effective in simple systems with predictable 
workloads, they struggle to adapt to complex and dynamic environments. One of 
the key limitations of traditional resource management is that it struggles to handle 
non-deterministic workloads. Workloads that are unpredictable or change frequently 
can cause contention or underutilization of resources. This can lead to poor sys-
tem performance, increased latency, and even system failure. Moreover, traditional 
resource management methods do not take into account individual user requirements 
or preferences. Resource allocation decisions are based on pre-defined policies and 
procedures rather than specific user needs. This can lead to suboptimal resource 
utilization and reduced user satisfaction. 

To address these limitations, recent research has focused on using DRL techniques 
to optimize resource management. DRL is a type of machine learning that uses trial-
and-error to learn optimal resource allocation strategies from experience. Using DRL, 
it is possible to dynamically adapt resource allocation strategies based on real-time 
workload conditions and user demands. DRL algorithms can take into account var-
ious factors such as system performance metrics, user preferences, and workload 
patterns to make informed decisions on resource allocation. Moreover, DRL can 
handle non-deterministic workloads more effectively than traditional methods. By 
continuously learning and adapting to changing conditions, DRL algorithms can 
optimize resource allocation strategies to ensure efficient utilization of resources. In 
addition, DRL can handle multi-objective optimization problems, allowing organi-
zations to balance competing goals such as performance, energy efficiency, and user 
satisfaction. By considering trade-offs between different objectives, DRL can help 
organizations achieve a balance between resource utilization and user experience. 

DRL holds great promise for optimizing resource management in complex and 
dynamic environments. By leveraging the power of machine learning techniques, 
organizations can achieve more efficient resource utilization, improved system 
performance, and enhanced user satisfaction.
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One key advantage of multi-agent DRL is its ability to capture the complex inter-
actions and dependencies among agents. In distributed systems, different agents often 
share resources and influence each other’s performance. By using DRL, agents can 
learn to make decisions that consider the impact on other agents and the overall 
system. This collaborative decision-making enables agents to better coordinate their 
actions, leading to improved resource utilization and system performance. Another 
advantage of multi-agent DRL is its ability to handle dynamic and non-stationary 
environments. In distributed systems, resource availability and workload conditions 
can change rapidly. Traditional approaches struggle to adapt to these changes effec-
tively. However, with DRL, agents can continuously learn and update their poli-
cies based on real-time feedback, enabling them to adapt to evolving conditions. 
This adaptive capability allows agents to optimize resource allocation even in highly 
dynamic environments. Furthermore, multi-agent DRL promotes scalability and flex-
ibility in distributed resource management. As the number of agents increases, tra-
ditional methods often suffer from communication overhead and coordination chal-
lenges. In contrast, multi-agent DRL allows agents to learn and act locally, reducing 
the need for extensive communication and central coordination. This decentralized 
approach enables more scalable and flexible resource management, particularly in 
large-scale distributed systems. Additionally, multi-agent DRL facilitates the explo-
ration of diverse resource allocation strategies. Traditional methods often rely on 
predefined rules and policies, limiting the exploration of alternative approaches. In 
contrast, DRL enables agents to explore different actions and learn optimal strategies 
through trial-and-error. By encouraging exploration, multi-agent DRL can uncover 
novel and more efficient resource allocation policies that may have been overlooked 
by traditional methods. 

Multi-agent DRL offers significant advantages in handling distributed resource 
management problems. By enabling collaborative decision-making, adapting to 
dynamic environments, promoting scalability and flexibility, and facilitating explo-
ration, multi-agent DRL can improve resource utilization, system performance, and 
overall efficiency in distributed systems. 

To transform resource management problems into MADRL tasks, we model the 
problem as a MDP. A MDP is a mathematical framework that represents a decision-
making problem as a set of states, actions, and rewards. At each time step, the agents 
observe the current state of the system (i.e., resource availability, workload demand, 
etc.), take actions based on their policy (i.e., an algorithm that maps states to actions), 
and receive a reward that reflects the quality of their action. The goal of the agents 
is to learn a policy that maximizes their expected cumulative reward over time. The 
state space in resource management can be designed to include relevant information 
that agents need to make decisions. For example, the state space could include the 
current resource allocation, the workload demand, user preferences, system perfor-
mance metrics, and so on. The action space represents the set of actions that each 
agent can take at each time step. In resource management, actions could include allo-
cating resources to different users or applications, adjusting system parameters, or 
requesting additional resources. The reward function specifies the goal of the agents 
and provides feedback on their actions. In resource management, the reward function
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could be designed to maximize resource utilization, minimize latency, balance the 
workload across the system, or optimize energy efficiency. Once the state, action, and 
reward functions are defined, we can use DRL to optimize resource management. 
DRL is a combination of RL and deep learning that involves training a neural net-
work to approximate the optimal policy that maximizes expected cumulative reward. 
The neural network takes as input the current state and outputs a probability distri-
bution over the set of possible actions. The policy is learned by iteratively updating 
the weights of the neural network based on the observed rewards and resulting state 
transitions. 

One advantage of using DRL is its ability to handle high-dimensional state and 
action spaces. This allows agents to observe and influence complex system states, 
leading to more effective resource management. Additionally, DNNs can learn rep-
resentations that capture the underlying structure of the state space, enabling more 
efficient decision-making. However, there are also challenges in applying DRL to 
resource management, such as dealing with non-stationary environments, handling 
communication overhead in large-scale systems, and ensuring fairness in resource 
allocation. Transforming resource management problems into MADRL tasks and 
using DRL to optimize decision-making can lead to more efficient and fair resource 
allocation. By modeling the problem as an MDP and designing the state, action, 
and reward functions appropriately, agents can learn to make effective decisions in 
dynamic and complex environments. 

Multi-agent deep reinforcement learning MADRL has emerged as a promising 
approach for addressing the challenges of distributed resource management. By 
enabling multiple agents to learn and adapt collaboratively, MADRL has the potential 
to revolutionize how resources are allocated in complex systems. 

Efficient Resource Allocation 

One of the key advantages of MADRL in resource management is its ability to opti-
mize resource allocation efficiently. Traditional approaches often suffer from subopti-
mal decision-making due to limited coordination and information exchange between 
agents. With MADRL, agents can learn to make decisions based on a global perspec-
tive, taking into account the system-wide resource availability, workload demands, 
and user preferences. By leveraging DNN, MADRL can handle high-dimensional 
state and action spaces, enabling more effective and accurate resource allocation. 

Scalability in Large-Scale Systems 

As systems become increasingly large-scale and distributed, resource management 
becomes more challenging. MADRL offers a scalable solution by allowing agents 
to operate autonomously and make localized decisions while still considering the 
global system objectives. Through decentralized decision-making and coordination, 
MADRL can effectively manage resources across multiple nodes, devices, or even
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edge computing environments. This scalability makes MADRL particularly well-
suited for modern distributed systems with diverse resource requirements. 

Adaptability to Dynamic Environments 

Distributed resource management often faces dynamic and changing environments. 
Workload demands fluctuate, resource availability varies, and system conditions 
evolve over time. MADRL excels in such environments due to its ability to learn 
and adapt. Agents can continuously update their policies and adjust resource alloca-
tions based on real-time observations and rewards. This adaptability allows MADRL 
to handle unexpected changes, optimize resource utilization, and maintain system 
performance even in the face of varying conditions. 

Fairness and Resource Balancing 

Ensuring fairness in resource allocation is a critical aspect of distributed systems. 
MADRL provides a framework to achieve fairness by considering the preferences 
and requirements of different users or applications. Agents can learn to balance the 
workload across the system, prioritize certain tasks based on user-defined criteria, 
or dynamically allocate resources based on changing priorities. By incorporating 
fairness considerations into the reward function, MADRL can optimize resource 
allocation while ensuring equitable access to resources for all participants. 

Collaborative Decision-Making 

Another exciting aspect of MADRL in resource management is its potential to enable 
collaborative decision-making. Agents can learn to communicate, negotiate, and 
cooperate to achieve better resource allocation outcomes. This collaboration allows 
agents to share information, coordinate actions, and collectively optimize the system 
performance. By leveraging the power of multiple agents working together, MADRL 
can unlock new possibilities for efficient and intelligent resource management. 

The future of MADRL in distributed resource management holds great promise. 
Through efficient resource allocation, scalability in large-scale systems, adaptabil-
ity to dynamic environments, fairness considerations, and collaborative decision-
making, MADRL can revolutionize how resources are managed in complex dis-
tributed systems. As researchers continue to advance MADRL algorithms and tech-
niques, we can expect significant advancements in optimizing resource allocation 
and improving system performance in diverse domains such as cloud computing, 
IoT, and edge computing. With its ability to leverage the collective intelligence of 
multiple agents, MADRL has the potential to transform the way we manage and 
utilize resources in the digital age.
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3.2.5 DRL-Based Task Offloading 

Edge computing refers to a distributed computing architecture that brings compu-
tation and data storage closer to the edge of the network, rather than relying on 
centralized cloud servers. It aims to process and analyze data locally, at or near the 
source of data generation, instead of sending all the data to a remote data center. Task 
offloading, also known as task migration or task offloading, is a technique used in 
edge computing where specific tasks or workloads are shifted from a local device or 
edge node to a remote server or cloud infrastructure. This is done to optimize resource 
utilization, improve performance, reduce latency, and enhance energy efficiency. 

The concept of edge computing has gained significant importance due to several 
reasons. Firstly, the exponential growth of IoT devices and their increasing reliance 
on real-time data processing demands faster response times. By moving computa-
tion closer to the edge devices, edge computing minimizes the latency caused by 
sending data back and forth to the cloud, enabling real-time and near real-time appli-
cations. Secondly, edge computing addresses the challenge of limited bandwidth 
and network congestion. With the rapid increase in data volume, transmitting all the 
data to a centralized cloud can overload the network infrastructure. By performing 
data processing and analysis at the edge, only relevant and summarized data needs 
to be transmitted, reducing network congestion and optimizing bandwidth usage. 
Furthermore, edge computing enhances data privacy and security. By keeping sen-
sitive data local, it reduces the risk of data breaches and ensures compliance with 
data privacy regulations. Additionally, edge computing enables offline operation and 
resilience, allowing devices to continue functioning even when the connection to the 
cloud is disrupted. Lastly, edge computing offers scalability and cost-effectiveness 
by distributing computational resources closer to the point of need. Instead of relying 
solely on powerful and expensive centralized servers, edge devices can contribute to 
the overall computing capacity, resulting in improved efficiency and reduced costs. 

The concept of edge computing, as outlined in the previous paragraph, addresses 
various challenges related to real-time data processing, bandwidth optimization, data 
privacy, and scalability. However, despite its advantages, implementing edge com-
puting solutions also introduces its own set of challenges. One such challenge lies 
in the effective uninstallation process of applications or tasks deployed at the edge. 
This process encounters various obstacles, including latency, bandwidth limitations, 
resource management issues, dependency resolution complexities, and error han-
dling difficulties. These challenges are inherent to the dynamic nature of edge com-
puting environments and must be carefully addressed to ensure the smooth removal 
of tasks. The uninstallation process encounters various challenges that can hinder 
its effectiveness and efficiency. These challenges include latency, bandwidth limita-
tions, resource management issues, dependency resolution complexities, and error 
handling difficulties. Addressing these challenges is crucial to ensure a smooth and 
successful task removal process. First of all, latency presents a significant hurdle 
during uninstallation, referring to delays in data processing or transfer. High latency 
can lead to inefficiencies and delays in completing the uninstallation, impacting
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overall task management. Minimizing latency involves optimizing network infras-
tructure, utilizing efficient communication protocols, and appropriately prioritizing 
tasks. Then bandwidth limitations also pose a challenge, restricting data transfer rates 
during the uninstallation process. Limited bandwidth can slow down uninstallation, 
especially for tasks with large files or complex configurations, potentially disrupting 
other network activities. Effective bandwidth management strategies such as traffic 
shaping and QoS mechanisms are essential to address this challenge. Thirdly, proper 
resource management is critical for allocating memory, processing power, and disk 
space efficiently during uninstallation. Inadequate resource allocation can result in 
performance issues, system instability, or incomplete task removal. Implementing 
resource monitoring, dynamic allocation, and load balancing techniques can optimize 
resource utilization and improve the uninstallation process. Moreover, dependency 
resolution is another challenge, as uninstalling a task may involve resolving depen-
dencies with other software components or libraries. Mishandling dependencies can 
lead to system instability or incomplete uninstallation. Employing tools for depen-
dency analysis, version compatibility checks, and rollback mechanisms is essential 
for identifying and resolving dependencies effectively. Lastly, error handling is cru-
cial for managing unexpected issues during the uninstallation process, such as file 
conflicts, permission problems, or system errors. Robust error handling mechanisms, 
including detailed logging, defined rollback procedures, and user notifications, are 
necessary to address errors promptly and minimize disruptions. 

Traditional methods often face significant limitations when addressing challenges 
such as latency, bandwidth limitations, resource management issues, dependency 
resolution complexities, and error handling difficulties in task offloading scenarios. 
Latency, referring to the delay in data processing and transfer, can impede the effi-
ciency of traditional methods, particularly in time-sensitive applications where real-
time responsiveness is crucial. Bandwidth limitations further compound this issue 
by restricting the volume of data that can be transmitted within a specific timeframe, 
leading to potential congestion and performance bottlenecks. Resource manage-
ment poses another obstacle for traditional task offloading approaches. Allocating 
and coordinating resources across distributed systems manually can be complex and 
prone to inefficiencies, resulting in suboptimal resource utilization and overall system 
performance. Dependency resolution complexities also challenge traditional meth-
ods, as managing the interdependencies between different tasks and ensuring their 
proper execution order can be intricate and error-prone. This can lead to operational 
disruptions and hinder overall system reliability and performance. Moreover, tradi-
tional methods may struggle with error handling, relying on predefined rules and 
algorithms that may not adapt well to unexpected situations or evolving conditions. 
This lack of flexibility can result in subpar error recovery mechanisms and potentially 
impact system stability and reliability. 

In contrast, DRL offers promising potential in addressing these challenges in task 
offloading. By utilizing DNNs and RL algorithms, DRL can autonomously learn 
and optimize strategies for task offloading in dynamic environments. It can adapt to 
varying latency and bandwidth conditions, dynamically adjust resource allocation, 
learn to resolve dependencies efficiently, and enhance error handling mechanisms
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through continuous learning and improvement. The adaptive nature of DRL enables 
systems to evolve and improve their decision-making processes over time, offering a 
robust solution to the limitations of traditional task offloading methods. By learning 
from interactions and optimizing performance iteratively, DRL has the capacity to 
revolutionize task offloading and overcome the complexities inherent in modern 
distributed computing environments. 

One key advantage of DRL in task offloading is its adaptability. DRL algorithms 
excel at adapting to dynamic and uncertain environments, allowing for real-time 
optimization of task offloading strategies. This adaptability enables the system to 
adjust to changing network conditions and workload variations efficiently, ensuring 
optimal performance under varying circumstances. Moreover, DRL enables complex 
decision-making processes in task offloading scenarios. By considering multiple fac-
tors such as computational load, network latency, and energy consumption, DRL can 
intelligently allocate tasks to achieve optimal outcomes. The ability to make sophis-
ticated decisions based on learned policies enhances the efficiency and effectiveness 
of task offloading systems. Optimal resource allocation is another significant ben-
efit of applying DRL to task offloading. DRL models can continuously learn from 
experience and feedback, refining the offloading strategy over time. This iterative 
learning process leads to more efficient resource utilization, reduced latency, and 
overall improved system performance in task offloading operations. Furthermore, 
the scalability and generalization capabilities of DRL make it well-suited for diverse 
task offloading applications. DRL models can scale to handle various tasks and envi-
ronments, while also generalizing learned policies to new, unseen situations. This 
flexibility enhances the adaptability of task offloading systems, enabling them to 
perform effectively across a wide range of scenarios. Finally, the real-time learning 
aspect of DRL is crucial for dynamic task offloading scenarios. DRL allows for con-
tinuous learning and decision-making, enabling systems to quickly adapt to changing 
conditions without manual intervention. This real-time adaptability ensures respon-
siveness and efficiency in task offloading operations, particularly in environments 
where conditions may change rapidly. 

In conclusion, by leveraging the adaptability, complex decision-making capabil-
ities, optimal resource allocation, scalability, generalization, and real-time learn-
ing provided by DRL, task offloading systems can achieve enhanced perfor-
mance, efficiency, and responsiveness across diverse applications and environments 
(Fig. 3.2). 

DRL has emerged as a powerful technique to optimize various complex tasks. 
Central to the task offloading problem in edge computing is the need to make real-time 
decisions regarding task allocation, destination edge nodes, and resource utilization. 
This necessitates a comprehensive formulation of the problem within the framework 
of RL, entailing the definition of the state space, action space, and reward function 
to guide the learning process. Effective representation of the environment state is 
paramount for enabling the RL agent to make informed decisions. This involves 
capturing pertinent information such as workload status at edge nodes, network 
congestion levels, task requirements, and user QoS preferences. Through judicious 
employment of feature engineering techniques, raw data is distilled into a compact
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Fig. 3.2 The application of deep reinforcement learning in task offloading 

and informative state representation. The action space, encompassing the permissible 
decisions the RL agent can undertake at each time step, must be meticulously crafted 
to ensure feasibility and scalability while accommodating the dynamic nature of 
edge environments. Likewise, the design of an appropriate reward function is crucial 
in steering the RL agent towards desired optimization goals, whether minimizing 
latency, maximizing throughput, or optimizing energy consumption. The reward 
function plays a crucial role in shaping the behavior of the agent. It quantifies the 
desirability of different actions taken by the agent and guides it towards making 
optimal decisions. In the context of task offloading, a suitable reward function could 
consider multiple objectives, such as minimizing response time, maximizing energy 
efficiency, and maintaining acceptable QoS. The reward function can be designed 
as a weighted sum of these objectives, with the weights reflecting their relative 
importance. For example, the reward function can be defined as: 

Reward .= .α .× Response Time .− .β .× Energy Consumption .+ .γ .× QoS
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Here, . α, . β, and .γ are the weights assigned to each objective. Adjusting these 
weights allows us to prioritize different goals based on the specific requirements of 
the task offloading scenario. 

Selecting an apt RL algorithm is pivotal in effectively solving the task offloading 
problem. Common choices include Q-learning, DQN, and Policy Gradient meth-
ods like Proximal Policy Optimization (PPO) or Trust Region Policy Optimization 
(TRPO). The chosen algorithm should adeptly navigate the high-dimensional state 
and action spaces inherent in edge computing environments while effectively bal-
ancing exploration and exploitation. During the training phase, the RL agent inter-
acts with the environment, assimilating states, executing actions, receiving rewards, 
and updating its policy iteratively based on the accrued feedback. Training data 
may be sourced from simulations or historical data gleaned from real-world edge 
deployments. Over time, the agent hones its ability to optimize task offloading deci-
sions, maximizing cumulative rewards. Upon completion of training, the RL agent 
is deployed in a real-world edge computing environment or a realistic simulation to 
evaluate its efficacy. Monitoring mechanisms are established to scrutinize the agent’s 
decision-making process, track system performance, and detect any deviations from 
expected behavior. Continuous evaluation and refinement are indispensable to ensure 
the agent’s adaptability in dynamic edge environments. Integration with existing 
edge infrastructure is imperative for the practical deployment of the RL-based task 
offloading framework. This may entail developing APIs or interfaces to facilitate 
seamless interaction between the RL agent and edge nodes, ensuring compatibil-
ity with prevailing protocols and systems. Regular monitoring and maintenance are 
indispensable to uphold the effectiveness of the RL-based task offloading system. 
This encompasses updating the agent’s policy to align with evolving requirements 
and conditions, addressing edge node failures or resource constraints, and adapting 
to shifts in workload patterns or network dynamics. 

In conclusion, the potential applications of DRL for task offloading are vast and 
diverse, with implications for mobile edge computing, industrial automation, smart 
cities, and beyond. As research and development in this field continue to advance, 
we can expect to see innovative solutions that optimize resource utilization, enhance 
system performance, and enable intelligent decision-making in dynamic and complex 
environments. The future is bright for the integration of DRL into task offloading, 
promising significant advancements across various industries and domains. 

3.2.6 DRL-Based Load Balancing 

In the context of computer networking, load balancing refers to the distribution 
of incoming network traffic or workload across multiple servers or resources. The 
primary purpose of load balancing is to ensure that no single server or resource 
becomes overwhelmed with traffic, thereby optimizing resource utilization, maxi-
mizing throughput, and minimizing response time. When a client initiates a request, 
such as accessing a website or an application, the load balancer intercepts the request
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and forwards it to one of several backend servers based on a predetermined set of 
algorithms and criteria. These algorithms may take into account factors such as server 
availability, current workload, and overall system performance. By distributing the 
incoming requests across multiple servers, load balancing helps to prevent any one 
server from becoming a bottleneck, thus improving the overall reliability and scal-
ability of the system. Furthermore, load balancing can also enhance fault tolerance 
and resilience. If one server fails or becomes unresponsive, the load balancer can 
redirect traffic to other healthy servers, ensuring continuous availability of services. 
Additionally, load balancing facilitates horizontal scalability, allowing additional 
servers to be easily added to the system to handle increased traffic without requiring 
significant changes to the overall architecture. 

Traditional load balancing methods are fundamental techniques employed in com-
puter networking to effectively distribute incoming network traffic among multiple 
servers. These methods play a critical role in optimizing resource utilization and 
ensuring high availability of services. Several common traditional load balancing 
methods include round robin, Least Connections, Weighted Round Robin, IP hash, 
and URL hash. The round robin method involves sequentially assigning incoming 
requests to each server in a rotating fashion. This approach ensures an even distribu-
tion of the workload across all servers, providing a fair allocation of incoming traffic. 
Meanwhile, the Least Connections algorithm directs incoming requests to the server 
with the fewest active connections at any given time. By doing so, it helps balance 
the load by sending new requests to servers that are less busy. In the Weighted Round 
Robin method, servers are assigned weights based on their capacity or performance. 
This means that servers with higher weights receive a proportionally greater share 
of incoming requests, taking into account their individual capabilities. Additionally, 
the IP hash method utilizes the source IP address of incoming requests to determine 
which server will handle the request. Requests from the same IP address are con-
sistently directed to the same server for improved continuity. Similarly, the URL 
Hash method leverages the requested URL to decide which server should process 
the request. Requests for specific URLs are routed to designated servers based on 
the hash value of the URL. Despite their widespread use, traditional load balancing 
methods have inherent limitations. For example, they may not dynamically consider 
the real-time loads on servers, potentially leading to uneven distribution of work-
load and suboptimal resource utilization. Furthermore, these methods may struggle 
to adapt to sudden traffic spikes or failover scenarios, which can impact the overall 
performance and reliability of the system. 

However, traditional load balancing methods, such as round-robin, least con-
nections, and IP hash algorithms, have been widely used to distribute incoming 
network traffic among servers in a balanced manner. These methods operate based 
on predetermined rules or criteria to determine how requests should be directed 
to different servers. While effective in many scenarios, traditional load balancing 
approaches have inherent limitations that can impact their performance and adapt-
ability in dynamic network environments. One significant limitation of rule-based 
load balancing algorithms is their static nature, meaning they do not easily adjust 
to changes in network conditions or server workloads. In dynamic environments
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where traffic patterns fluctuate frequently or servers experience varying levels of 
demand, rule-based algorithms may struggle to dynamically optimize the distribu-
tion of incoming requests. This lack of adaptability can lead to inefficient resource 
utilization, uneven workload distribution, and potential performance bottlenecks on 
specific servers. Moreover, traditional load balancing methods may overlook fac-
tors such as server capacity, processing power, or current load levels when making 
routing decisions. In scenarios where servers have different capabilities or capaci-
ties, rule-based algorithms may not effectively consider these disparities, resulting 
in imbalanced resource allocation and potential overloading of certain servers while 
others remain underutilized. Another limitation is the lack of real-time feedback and 
monitoring capabilities in traditional load balancing approaches. Without mecha-
nisms to collect and analyze real-time data on server performance, network latency, 
or other critical metrics, rule-based algorithms may struggle to make informed rout-
ing decisions in response to changing conditions. This can lead to suboptimal load 
distribution and reduced overall system efficiency. 

DRL holds great potential in the field of load balancing due to its ability to adapt 
and optimize resource allocation dynamically. In the context of load balancing, DRL 
leverages a trial-and-error approach to continuously learn and improve decision-
making processes based on feedback from the environment. One key advantage of 
using DRL for load balancing is its capability to handle complex and dynamic envi-
ronments effectively. Traditional load balancing algorithms may struggle to cope 
with rapidly changing workloads and network conditions, leading to suboptimal per-
formance. DRL, on the other hand, can adapt quickly to fluctuations in traffic demand 
and resource availability by learning patterns and making decisions in real-time. Fur-
thermore, DRL offers the advantage of scalability and flexibility in load balancing 
systems. As the size and complexity of modern networks continue to grow, traditional 
static approaches may become inefficient or impractical. DRL models can scale to 
large and diverse environments, making them well-suited for handling the complex-
ities of modern data centers and cloud infrastructures. Another significant benefit 
of DRL in load balancing is its ability to optimize resource utilization and improve 
overall system efficiency. By continuously learning from interactions with the envi-
ronment, DRL agents can intelligently allocate resources based on current demand, 
thus reducing response times, minimizing latency, and maximizing throughput. 

In summary, the use of DRL in load balancing brings about adaptive, scalable, 
and efficient solutions to the challenges posed by modern networking environments. 
By leveraging its ability to learn from experience and make data-driven decisions, 
DRL has the potential to revolutionize the way we manage and optimize resource 
allocation in complex systems. 

In today’s distributed computing environment, the application of DRL in the field 
of load balancing has become crucial for optimizing resource allocation and system 
performance. By leveraging DRL technology, load balancers can dynamically adapt 
to changing workloads and efficiently distribute tasks across multiple servers, thereby 
enhancing system performance and resource utilization. To successfully implement 
DRL in load balancing, several key aspects need to be carefully considered and 
designed. Firstly, the design of the state space is essential. In a DRL-based load
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balancing system, the state space includes the current configuration of the environ-
ment, encompassing key metrics such as server loads, task arrival rates, network 
traffic, queue lengths, and task completion times. Additionally, the state space may 
also incorporate historical data and patterns that provide valuable insights into sys-
tem behavior and dynamic workload characteristics. By capturing these important 
features, the state space enables the DRL agent to make informed decisions based 
on system states and workload characteristics. Secondly, the design of the action 
space is critical. Designing the action space involves defining a range of actions 
that the load balancer can take in a specific state. In the context of load balanc-
ing, actions may include selecting servers to process new requests, migrating tasks 
between servers, or adjusting server capacities. The action space should be care-
fully designed to empower the DRL agent to effectively manage system dynamics 
and respond to evolving workloads. When defining the action space, considerations 
such as server capacities, communication overhead, and task migration costs may 
need to be taken into account. Next, the design of the reward function is crucial. 
The reward function is at the core of the DRL agent’s learning process, shaping its 
decision-making behavior and guiding it towards achieving load balancing objec-
tives. A well-designed reward function should align with the overall goals of the 
load balancing system, such as minimizing response times, maximizing resource 
utilization efficiency, and preventing server overloads. In formulating an effective 
reward function, balancing short-term gains with long-term objectives is paramount. 
Factors such as task completion times, server loads, system performance metrics, 
and energy consumption may need to be considered to guide the agent towards opti-
mal load balancing outcomes. Selecting an appropriate DRL algorithm is also vital. 
Common DRL algorithms such as DQN, PG, or Actor-Critic (AC) methods can all 
be applied in the context of load balancing. The choice of algorithm should consider 
factors such as the complexity of the load balancing problem, sample efficiency, and 
learning stability. For instance, if the load balancing problem involves discrete action 
spaces and can benefit from experience replay, DQN might be a suitable choice. On 
the other hand, if the problem requires continuous action spaces and policy opti-
mization, PPO or AC methods may be more suitable. The training and evaluation 
phases involve allowing the DRL agent to learn the optimal load balancing strat-
egy through interaction with a simulated environment or historical data. During the 
training process, the agent iteratively refines its decision-making strategy to improve 
load balancing performance. Evaluating the agent’s performance using well-defined 
metrics such as average response times, server loads, system throughput, and other 
relevant performance indicators is crucial for assessing performance, evaluating the 
effectiveness of the learned strategy, and identifying areas for improvement. 

DRL has shown great potential in optimizing complex systems and decision-
making processes. When it comes to load balancing, applying DRL techniques can 
revolutionize how we manage and distribute workloads across servers efficiently. 
By leveraging DRL algorithms, systems can learn how to dynamically allocate 
resources based on real-time demands and feedback. This adaptive approach can 
lead to improved performance, reduced latency, and better resource utilization in 
load balancing scenarios. In the future, we can expect DRL to play a significant
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role in enhancing load balancing algorithms. This technology can adapt to changing 
network conditions, predict traffic patterns, and optimize resource allocation in ways 
that traditional methods may struggle to achieve. Overall, the application of DRL in 
load balancing holds promise for creating more intelligent, efficient, and responsive 
systems that can handle the increasing demands of modern computing environments.



Chapter 4 
Transmission Intelligence 

4.1 Learning Channel Encoding 

4.1.1 The Conventional Identification Methods and Its 
Limitation 

Blind Recognition of Channel Codes refers to the technique of identifying the type 
and parameters of the encoding employed from intercepted signals in the absence of 
prior information. The technology of channel encoding recognition holds potential 
applications in two main areas: Firstly, for link adaptation in the field of intelli-
gent communication, and secondly, for information warfare under non-cooperative 
communication conditions. 

In the context of link adaptation, the transmitting party needs to select modulation 
and coding schemes that are suitable for the current electromagnetic environment 
and channel noise based on the state of the link. The receiving party, in turn, needs to 
identify the modulation and coding parameters used by the transmitting party based 
on the received signal, and subsequently perform demodulation and decoding. 

In the context of information warfare under non-cooperative communication con-
ditions, the non-cooperative receiving party typically lacks prior knowledge of the 
channel coding scheme employed by the communicating system on the other end. 
Therefore, it is necessary to initially recognize and analyze the channel coding 
before proceeding with the correct reception, decoding, and interpretation of the 
information. 

Traditional methods refer to a category of techniques that concentrate on the 
structure of indicators or features extracted from the demodulated signal. They aim 
to identify the coding methods or estimate the coding parameters based on these 
designed indicators or characteristics. This method has been used since the discovery 
of blind decoding issues and continues to evolve in response to new requirements. 
The primary techniques within this category include matrix transformation, rank 
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characteristics, and rank loss analysis, which are fundamental in illustrating differ-
ences based on matrix theory principles. Another method is the run feature, which 
helps differentiate between linear block codes and convolutional codes. Addition-
ally, tools such as original/generating polynomial, generative matrix, and key equa-
tions are valuable in turbo codes and convolutional codes, enabling both recognition 
of coding methods and estimation of parameters. Furthermore, novel matrices like 
the sparse check matrix for LDPC codes and the information matrix for enhancing 
anti-noise capabilities are introduced to address specific scenarios. 

Traditional methods often have some obstacles in low signal-noise ratio environ-
ment, but they help to know more features about different code. That is the reason 
why people still work on traditional methods. But traditional methods also have 
limitations as follow: 

• When it comes to code identification, most existing recognition approaches are 
tailored to specific coding methods. Traditional methods fail to provide a universal 
recognition algorithm due to the fundamentally different mathematical models of 
linear block codes and convolutional codes. Additionally, for the identification 
of coding parameters, most traditional methods are designed for specific types of 
channel coding (e.g., identifying the code length and generator polynomial of BCH 
codes). There is a lack of a universal recognition algorithm for coding parameters 
such as code length and code rate, that are applicable to all channel codes. 

• In terms of recognition conditions, whether for code type or coding parameters, 
most traditional recognition algorithms require some prior knowledge and cannot 
achieve fully blind recognition. Moreover, the performance of some traditional 
recognition algorithms is limited by the code length and the length of the received 
signal. As the code length increases and the number of received symbols decreases, 
the recognition performance of these algorithms deteriorates significantly. 

4.1.2 Deep-Learning-Based Blind Recognition of Channel 
Code 

First, we will introduce Primary Techniques in blind recognition of channel. In recent 
years the research of AI is popular, which encourages scholars to apply AI every-
where including the blind channel decoding.The most commonly used methods in AI 
include Multi-Modality Features Fusion Network (MMFFN) for space-time block 
code recognition, CNN for spatial characteristic extraction from sequential data, 
CNN+RNN for combining CNNs with RNNs to extract deep-seated temporal char-
acteristics, and Deep Residual Shrinkage Network (DRSN) for improving the ACC 
of recognizing coding methods and parameters, especially in low SNR scenarios. 

With the application and update of tools in AI, more and more problems in blind 
channel decoding will be solved to some extent, so that scholars can extract the 
characteristics from serial sequences better.
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Generally, neural network and deep learning show their ability in blind channel 
decoding field especially on newly proposed coding method and they are waiting for 
more use in later research. Then we will introduce the specific application of DRL 
in blind recognition of channel codes. 

Secondly, we will introduce Closed-set identification of channel encoding. In the 
field of channel coding, closed-set recognition tasks are typically conducted under 
the common closed-set assumption. This assumes a defined set of candidates for 
recognition, with training and testing data both originating from the label space of 
this candidate set. The goal of this problem is to improve recognition performance 
and reduce misclassification rates. Such recognition tasks hold significant importance 
in the context of Adaptive Modulation and Coding (AMC) technology. 

To solve this problem, a closed-set recognition algorithm called CCR-Net is pro-
posed. This algorithm utilizes specially designed convolutional shrinkage blocks to 
construct a feature embedding model, extracting encoding features through nonlin-
ear transformation layers and attention mechanisms. Additionally, the introduction 
of center loss technique helps to minimize the distance between features of the same 
class and enlarge the distance between features of different classes, thereby improving 
recognition performance. Experimental results demonstrate that CCR-Net performs 
well in low SNR conditions. 

Finally, we will introduce open-set identification of channel encoding. Open-
set recognition refers to the task of identifying unknown encoding categories and 
rejecting their recognition based on the analysis of intercepted signals. The goal of 
this problem is to improve the detection ACC of unknown encoding categories and 
reduce misclassification rates. In contrast to closed set recognition, the recognition 
task is more challenging. 

To solve this problem, an open-set recognition algorithm called CCR2CNN is 
proposed. This algorithm utilizes a multi-task learning framework to simultane-
ously perform closed-set encoding classification and signal reconstruction tasks. 
By comparing the difference between the reconstructed signal and the original sig-
nal, the detection of unknown encoding categories is achieved. Additionally, the 
extreme value theory model is introduced to simulate the distribution of reconstruc-
tion errors, further improving the open-set recognition performance. Experimen-
tal results demonstrate that CCR2CNN can accurately reject unknown encoding 
test samples while recognizing known encoding categories, showing good open-set 
recognition performance. 

In conclusion, there are two main kinds of method in blind channel decoding. The 
first is to distinguish tradition informatics characteristics of code-word sequence, 
which usually performs well in the appropriate coding, but most of these are poor 
in versatility. The Second and also the new one is to recognize the method and 
parameters of channel coding by neural network and deep learning. As a common 
disadvantage, this kind of methods need a lot of calculation to train the model and 
people cannot explain the logic of operation, but they also perform well and own 
good transferability for similar channel coding methods. That is important for the 
blind decoding of newly proposed encoding methods.
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In future, the research of tradition methods is necessary but the best way is to use 
neural network and deep learning along with the original scheme, that will improve 
the explain ability, versatility and performance in the same time. 

4.2 Channel Estimation and Equalization Methods 
for Large-Scale MIMO-OFDM Systems 

4.2.1 Channel Estimation Methods 

Large-scale MIMO systems, due to the significantly larger number of antennas 
deployed at the base Station compared to traditional MIMO systems, can greatly 
increase system capacity and possess high spectral and energy efficiency. There-
fore, they are considered as one of the key technologies in 5G wireless communi-
cation systems. Orthogonal OFDM technology divides the channel bandwidth into 
numerous orthogonal subcarriers, allowing each subcarrier to occupy a small band-
width for low-speed data transmission. The combination of large-scale MIMO and 
OFDM techniques in large-scale MIMO-OFDM systems leverages the advantages of 
both technologies to effectively combat frequency-selective fading, increase channel 
capacity, and enhance spectral efficiency. 

Channel estimation is extremely important for the performance of wireless com-
munication systems. The transmitted signal often experiences distortion due to the 
multipath channel characteristics, so it is essential to accurately estimate the chan-
nel impulse response at the receiver to recover the transmitted signal. In channel 
estimation theory, there are three commonly used algorithm types: blind channel 
estimation, semi-blind channel estimation, and non-blind channel estimation. 

Blind channel estimation refers to the estimation of channel state information 
without the need for transmitting training sequences or pilot symbols. It relies on 
extracting the structure and inherent properties of the received signal to estimate 
the channel. This approach reduces the waste of additional spectral resources as 
it doesn’t require transmitting known information. However, blind channel estima-
tion algorithms require a large number of OFDM symbols to obtain reliable cyclic 
correlation estimation for channel estimation. These algorithms have high estima-
tion complexity, longer processing times, often do not achieve good bit error rate 
performance, and their most significant drawback is the inability to operate when 
digital modulation techniques and coding schemes are unknown. Non-blind channel 
estimation methods involve tracking and adjusting the parameters to be estimated 
gradually, based on the estimation criteria and with the help of training sequences or 
pilot symbols. The objective is to determine the estimated values of each parameter. 
On the other hand, semi-blind channel estimation combines the advantages of high 
spectral efficiency in blind channel estimation and relatively better performance, 
lower computational complexity in non-blind channel estimation. It is a compromise 
channel estimation method that achieves good recovery performance by transmitting
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only a small amount of known data from the transmitter, to some extent mitigating 
the pilot contamination problem. 

In large-scale MIMO-OFDM systems, the ACC of channel estimation directly 
affects the bit error rate and mean-square error performance of the system. While 
obtaining a well-performing channel estimation algorithm is desirable, it inevitably 
leads to increased algorithm complexity. The level of complexity required to imple-
ment the method is also a critical factor in determining whether an estimation algo-
rithm is suitable for practical systems. In the fundamental theory of wireless commu-
nication, classical channel estimation algorithms include the least squares (LS) algo-
rithm, MMSE algorithm, Linear Minimum Mean Square Error (LMMSE) algorithm, 
etc. 

The LS Algorithm: The LS algorithm minimizes the sum of squared channel esti-
mation errors as its criterion. The ideal LS algorithm performance is often used as a 
reference to evaluate the effectiveness of proposed channel estimation methods. Due 
to its simplicity and the fact that it doesn’t require any channel statistical informa-
tion, the LS algorithm is widely applied in channel estimation methods. However, it 
disregards noise interference, resulting in poor performance in complex large-scale 
MIMO-OFDM system communication environments. 

The MMSE Algorithm: To overcome the drawback of LS algorithm being sen-
sitive to noise, the MMSE algorithm can be used for channel estimation when the 
statistical characteristics of the channel and interference information are known. 
The MMSE algorithm relies on the LS algorithm but has much higher complexity 
since it requires prior knowledge of the statistical properties of the channel, includ-
ing channel auto-correlation matrix and noise variance. Obtaining such information 
in practical wireless communication systems is challenging. Therefore, while the 
MMSE algorithm considers performance to the extreme, it is difficult to apply in 
practical scenarios. 

The LMMSE Algorithm: The LMMSE algorithm is an improvement over the 
MMSE algorithm. It reduces the complexity of the estimator by averaging the trans-
mitted data when stationary random signals are transmitted over wireless channels. 
The LMMSE algorithm has higher computational efficiency and better performance 
compared to the LS algorithm, making it more suitable for practical systems. How-
ever, in large-scale MIMO-OFDM systems, there are still challenges in dealing 
with the enormous amount of data and solving the related problems of solving 
auto-correlation matrices and matrix inversions. 

At the same time, DNN algorithms offer superior adaptive capability, nonlinear 
modeling ability, and large-scale data processing capability in channel estimation for 
large-scale MIMO-OFDM systems. They provide a balance between model complex-
ity and ACC and can directly learn the mapping relationship for channel estimation 
from raw data through end-to-end learning. This makes DNNs a promising and 
powerful tool for channel estimation in large-scale MIMO-OFDM systems. 

Neural network-based channel estimation algorithms for large-scale MIMO-
OFDM systems can generally be classified into four types. Firstly, channel parameters 
are initially estimated using the LS criterion, followed by the utilization of a neural 
network for principal component analysis under blind criteria constraints to enhance
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the estimation performance. Secondly, NNs are employed to obtain initial channel 
values, particularly in fast-fading channels, with subsequent filtering algorithms uti-
lized to track variations in the channel information. Thirdly, in pilot-based channel 
estimation methods, neural network-based approaches replace interpolation filters 
to acquire channel information at non-pilot positions. Finally, NNs are considered 
as nonlinear models to represent the mathematical relationship between the channel 
impulse response and subcarrier position indices. 

Next, we will provide a detailed introduction to the DNN-based channel estimation 
method for large-scale MIMO-OFDM systems. The objective of this algorithm is to 
minimize the difference between the network’s output and the desired target, aiming 
for the network’s output to be as close as possible to the expected result. Therefore, 
it requires minimizing the cost function, which is formulated as follows: 
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where, .WL represents the connection weight values from layer (.L − 1) to layer . L , 
.a(L−1) denotes the output matrix of layer (.L − 1), .bL represents the bias matrix of 
layer . L , and . o represents the target output set of the network. 

The iterative algorithm initializes by utilizing the LS estimator with the FFT 
method for OFDM signal reconstruction at the signal receiver to obtain the chan-
nel frequency response estimation. Subsequently, training data containing subcarrier 
position indices and channel estimation values obtained through the LS method for 
known pilot positions are inputted into the DNN network. The DNN model’s output 
layer computes the output.aL , partial cost function value, and derivatives with respect 
to network parameters. A determination is made based on whether the cost function 
converges: if so, parameters are saved; otherwise, parameters are updated, and out-
puts are recalculated. This process continues until reaching a predefined number 
of iterations or when the error between consecutive iterations becomes negligible. 
Finally, the optimal weights and biases of the trained DNN model are returned. If 
data subcarrier position indices are inputted, the DNN network outputs the desired 
channel frequency response for the data subcarrier positions (Fig. 4.1). 

4.2.2 Channel Equalization Methods 

The channel equalization problem in large-scale MIMO-OFDM systems is also a 
topic worthy of in-depth exploration. Channel equalization refers to the process 
of using equalization techniques at the receiver end of the system, after the FFT 
is performed, to restore the transmitted signals from the transmitter and reduce or 
eliminate interference and distortion caused by the channel.
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Fig. 4.1 The iterative process of channel estimation algorithm for large-scale MIMO systems based 
on DNN network 

There are two main categories of channel equalization methods for large-scale 
MIMO-OFDM systems: linear equalization and nonlinear equalization. Linear equal-
ization methods include zero forcing (ZF) and MMSE equalization. Linear equaliza-
tion methods have the advantage of lower computational complexity, but they often 
have poor detection performance, leading to the abandonment of these methods in 
many wireless communication systems that prioritize communication quality. How-
ever, in certain specific scenarios, such as the SC-FDMA technology used in the LTE 
uplink, these linear equalization methods still have research significance. Nonlinear 
equalization methods compensate for the limitations of linear equalization methods 
in wireless multipath channels and include maximum likelihood (ML) equalization, 
QRM-MLD, LR algorithm, etc. 

Traditional equalizers perform well in quasi-static or slow fading channel con-
ditions but perform poorly in time-varying channels. In practical communication 
systems, such as mobile communication, which belong to time-varying fast fading 
channels, researchers have attempted to use dynamic NNs as equalizer structures 
instead of conventional static equalizers. 

Also, in large-scale MIMO-OFDM systems, traditional non-neural network-based 
channel equalization algorithms require accurate channel state information at the 
receiver, which is the channel estimation technique. The performance of equaliza-
tion detection in large-scale MIMO-OFDM systems largely depends on the ACC of
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channel estimation. Due to the mutual interference of antenna arrays at the base sta-
tion, energy loss in multipath propagation, and artificial interference from multiple 
small cells and users, the estimated channel state information in large-scale MIMO-
OFDM systems is not accurate. The use of neural network-based channel equalization 
methods breaks the inherent transmission model structure of the system, eliminat-
ing the need to estimate channel state information after signal demodulation at the 
receiver. This shortens the signal processing flow and eliminates the cumbersome 
steps of obtaining relevant parameters, allowing for the direct recovery of the original 
transmitted data from the received data. The specific description of the DNN channel 
equalization algorithm is as follows: 

The channel equalization problem is treated as a classification problem, where 
the input signals are mapped to different positions in a constellation diagram using 
digital modulation. The different positions represent different categories. The DNN 
equalizer restores the received signals to their corresponding categories, thereby 
recovering the original transmitted signals. 

The entire process of the equalization algorithm is as follows: For a large-scale 
MIMO-OFDM system with.Nt × Nr antennas, the DNN equalizer uses known pilot 
data as the network input. The received pilot data, after removing the cyclic prefix 
and performing fast Fourier transform, is used as the network output. The DNN 
equalizer is trained by minimizing the error between the input and output data. After 
training, the input weights and hidden layer biases are reset using the gradient descent 
algorithm. If the error does not meet the requirements, the training continues. 

The network output data from the DNN equalizer is classified into the correct 
categories using the maximum pooling decision rule, and the output neurons in 
the output layer are mapped to the corresponding digital modulation symbols. The 
DNN equalizer receives different categories of original transmitted signals at its 
receiving end and calculates the bit error rate between the received and transmitted 
data. Since accurate channel state information is not required, the bit error rate is the 
only performance metric. 

In conclusion, with the rapid development of deep learning and neural network 
technologies, their fundamental ideas have been introduced into various levels of 
communication systems. By using artificial intelligence techniques to solve com-
plex communication problems, the performance of communication algorithms can 
be significantly improved while reducing the algorithm’s execution time. Commu-
nication systems based on neural network methods adjust network parameters by 
minimizing the error between known pilot data and network outputs, optimizing 
all processing modules in the communication system, and breaking the modular 
structure to achieve the overall optimal performance. 

In terms of future research directions, it is worth considering more complex chan-
nels and the applicability of this method in specific communication environments. 
The next focus of work will still be on reducing the computational complexity of the 
algorithm, improving the real-time performance of the network, and further enhanc-
ing the estimation ACC of the network. Also, for fast-varying channels in practical 
communication systems, exploring more flexible and adaptive channel estimation 
and equalization methods.
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4.3 Deep Clustering Models 

In the era of big data, with the increasing availability of data and the growing com-
plexity of data structures, traditional clustering algorithms are becoming inadequate 
to meet the demands of applications such as data analysis and computer vision. DL, 
on the other hand, has the ability to handle complex data structures, redundant infor-
mation, and large-scale data, making it a natural choice to address the challenges 
posed by the big data era. By incorporating deep learning into unsupervised cluster-
ing, we can leverage its power to handle complex data structures and overcome the 
difficulties associated with big data. 

The essence of deep clustering is to learn a clustering-guided feature representa-
tion using NNs and fit the inherent clustering patterns in the data. Therefore, deep 
clustering models have three commonly used evaluation metrics: Unsupervised Clus-
tering ACC, Normalized Mutual Information (NMI), and Homogeneity. ACC is used 
to assess clustering ACC and typically requires the number of clusters to be equal to 
the number of true classes. It aims to find the mapping that maximizes ACC among 
all possible mappings. NMI measures the difference between the predicted label dis-
tribution and the true label distribution. Homogeneity evaluates the homogeneity of 
clustering clusters, which refers to the likelihood that samples assigned to the same 
cluster belong to the same category. 

The two key factors of deep clustering models are the neural network and the clus-
tering patterns. By examining the loss functions of existing deep clustering models 
based on these key factors, the overall loss function can be unified as follows: 

.L = αLc + βLn. (4.2) 

According to this formula that could see the complete loss function consists of two 
parts: the network loss.Ln , which is used to learn a feature representation conducive 
to clustering, and the clustering loss .Lc, which is used to fit the specified clustering 
patterns. From the perspective of NNs, deep clustering models can be categorized 
into those based on feed-forward NNs, those based on autoencoders, hose based on 
generative models, and those based on graph CNNs. 

4.3.1 Clustering Models Based on Feedforward NNs 

First, we will introduce clustering models based on feedforward NNs. The most 
famous model in feedforward NNs is the convolutional neural network. Feedforward 
NNs generally require sample labels as supervised signals, which limits their appli-
cation in unsupervised clustering. Overcoming this limitation is one of the challenges 
for deep clustering models based on feedforward NNs. The Recurrent Framework 
Agglomerative Deep Clustering (RFADC) model is a deep clustering model built 
on CNNs. Feedforward NNs typically require sample labels as supervised signals.
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The RFADC model constructs a recurrent framework based on agglomerative clus-
tering. In each iteration, clusters from the previous iteration are merged based on 
their similarity, and the cluster labels from the previous iteration are used to update 
the feedforward convolutional neural network for feature extraction. The underly-
ing idea behind the RFADC recurrent framework is that good clustering results can 
extract feature representations conducive to clustering, and clustering-guided feature 
representations can enhance clustering performance, forming a mutually reinforcing 
loop structure. 

4.3.2 Deep Clustering Models Based on Autoencoders 

Next, we will introduce deep clustering models based on autoencoders. Autoencoders 
are the most famous algorithms in the field of unsupervised feature learning, con-
sisting of an encoder and a decoder. The encoder maps the input sample. x to a latent 
feature . h. The decoder reconstructs the original sample . x from the latent feature 
. h, aiming to make the reconstructed sample . r approximate the original sample . h. 
Autoencoders can generate features that represent the essence of the samples when 
reconstructing the original samples. Since one of the key factors in deep clustering is 
learning a feature representation that is conducive to clustering, autoencoders can be 
a preferred choice for deep clustering. The reconstruction loss of autoencoders can 
generally be regarded as the network loss .Ln of the deep clustering model, and the 
clustering rules designed from different perspectives can be regarded as the clustering 
loss .Lc of the deep clustering model. 

Typical Deep Clustering Models 

Below, we will introduce some typical deep clustering models based on autoencoders. 
First, we will introduce the Deep Clustering Network (DCN). DCN model is the most 
classic model in autoencoder-based clustering algorithms, combining autoencoders 
with k-means algorithm. The objective function is as follows: 
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where . f () represents the encoder, .g() represents the decoder, .l() represents the 
reconstruction error function,.M is the center matrix composed of the center vectors 
of each cluster, and .Si is the one-hot vector indicating the cluster membership of 
sample . i . The objective function of this model includes the center matrix and the 
allocation vectors, and the optimization of the entire objective function requires the 
use of a custom alternating optimization algorithm.
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Deep Embedding Network (DEN) 

Secondly, we will introduce the DEN. DEN is another autoencoder-based clustering 
model that adds two constraint terms on top of the autoencoder to learn a feature rep-
resentation that is conducive to clustering. Finally, the k-means algorithm is applied 
on this clustering-friendly feature to provide clustering results. 

Deep Embedded Clustering (DEC) 

Third, we will introduce DEC. DEC is one of the most representative methods in 
the field of deep clustering. Its introduction has attracted widespread attention in the 
deep learning community. The DEC model pretrains an autoencoder, selecting the 
encoder part for feature extraction. It uses a soft distribution to predict cluster labels 
for the samples based on the extracted features, and a hard distribution to select the 
cluster labels with high confidence. Minimizing the KL divergence between the soft 
distribution and the hard distribution gradually guides the clustering results towards 
high-confidence distributions. The soft distribution converts the similarity between 
samples and cluster centers into a probability distribution. The hard distribution 
strengthens the soft distribution, enhancing the cluster assignments with high con-
fidence and weakening those with low confidence. This strengthening operation is 
achieved by squaring and normalizing the soft distribution. 

Deep Subspace Clustering Networks (DSC-Nets) 

Finally, we will introduce DSC-Nets. DSC-Nets are a type of clustering method 
based on deep learning, aiming to cluster data samples into different subspaces. DSC-
Nets typically consist of two main components: an encoder and a clustering layer. 
The encoder maps the input data to a low-dimensional latent space representation, 
performing feature extraction and abstraction through multiple hidden layers. The 
clustering layer then performs clustering operations based on the feature vectors 
output by the encoder, assigning samples to different clusters. 

The training process of DSC-Nets is typically an end-to-end process, optimizing 
network parameters by minimizing a clustering loss function. The clustering loss 
function usually consists of two parts: a reconstruction loss and a clustering loss. 
The reconstruction loss measures the difference between the original data and the 
reconstructed data, encouraging the network to learn better feature representations. 
The clustering loss measures the consistency between the clustering results and the 
true labels, driving the network to correctly cluster samples into the corresponding 
subspaces. 

In conclusion, it is effective in handling high-dimensional data and complex data 
structures, improving clustering ACC and stability. However, the DSC-Nets model 
has high space and time consumption, making it unsuitable for large-scale datasets.
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4.3.3 Deep Clustering Models Based on Generative Models 

Then, we will introduce deep clustering models based on generative models. The 
purpose of introducing generative models into the clustering domain is to lever-
age their ability to capture data distributions and capture the posterior probability 
distributions of data samples belonging to different clusters. The most well-known 
generative models are Variational Autoencoders (VAE) and Generative Adversarial 
Networks (GAN). By incorporating these generative models, we can develop deep 
clustering models based on VAE and GAN. 

4.3.3.1 Deep Clustering Models Based on VAE 

First, we will introduce deep clustering models based on VAE. VAE is a variant of 
the autoencoder in the context of generative models. When introducing VAE into 
the clustering domain, the assumption of following a standard Gaussian distribution 
is changed to following a Gaussian mixture distribution composed of multivariate 
Gaussian distributions. The existing deep clustering models, such as Gaussian Mix-
ture VAE (GMVAE) and Variational Deep Embedding (VaDE), are based on this new 
assumption. These models can not only output the probabilities of samples belonging 
to different clusters but also generate samples of specified categories. However, the 
computational complexity of these models is high. 

4.3.3.2 Deep Clustering Models Based on GAN 

Secondly, we will introduce deep clustering models based on GAN deep clustering 
models based on GAN aim to capture the data distribution by maximizing and mini-
mizing the adversarial training between the discriminator.D and the generator. G. The  
generator. G generates a sample from the latent features. z, which come from the prior 
distribution.p(z). The discriminator.D is trained to distinguish between real samples 
and fake samples generated by. G. These deep clustering models based on GAN have 
the ability to capture the posterior probability distribution of data samples belonging 
to different clusters. Some models are specifically developed for clustering tasks, 
while others treat clustering as an application of the model. Examples of such mod-
els include Deep Adversarial Clustering (DAC), Categorial Generative Adversarial 
Network (CatGAN), and Information Maximizing Generative Adversarial Network 
(InfoGAN). 

4.3.4 Deep Clustering Model Based on Graph Neural 
Networks (GNNs) 

At last, we will introduce the deep clustering model based on graph neural networks. 
Graph convolution operations can handle non-aligned data, such as graph-structured
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data, and the extracted feature information contains the structural information of 
data nodes. Therefore, the advantage of introducing graph CNNs into unsupervised 
clustering is that it can extract feature representations that are conducive to clustering. 
Graph convolution operations require the dataset to have graph structure information, 
while the datasets that need clustering generally do not have graph structure. 

To address this issue, the Adversarial Graph Auto-Encoders (AGAE) model inte-
grates clustering to construct a consistency graph to introduce graph convolution 
operations into the clustering domain. The AGAE model is a deep clustering model 
based on graph neural networks. It introduces graph convolution operations into 
the clustering domain by constructing a consensus graph through the integration of 
clustering. The specific construction method of the model involves using multiple 
traditional clustering methods to cluster the dataset and obtain multiple clustering 
assignments. These assignments are then used to construct a joint matrix as the graph 
structure of the dataset. The AGAE model utilizes graph convolution operations to 
extract the structural information of the data nodes and optimizes the clustering 
results through adversarial training. This model can extract feature representations 
that are conducive to clustering and is suitable for handling non-aligned data, such 
as graph-structured data. 

Based on the analysis of the aforementioned deep clustering models and research 
on the structure of deep clustering, the future focus of deep clustering can be sum-
marized as follows: Clustering theory research is essential to explore the theoretical 
basis of deep clustering, providing theoretical guidance for further research. Deep 
clustering models leverage different NNs to enhance clustering performance, but the 
suitability of NNs varies depending on the scenario. For instance, while CNNs are 
suitable for image datasets, RNNs are more appropriate for sequence datasets. Most 
existing deep clustering models are developed for image datasets, so exploring the 
application of RNNs in unsupervised clustering for text sequence datasets is a future 
task. Another key focus is balancing the clustering constraints, as the clustering per-
formance of deep clustering models results from the combined effects of multiple 
constraints, each with varying levels of importance. Therefore, it’s crucial to balance 
these constraints effectively. 

4.4 Adaptive Content Caching 

4.4.1 The Motivation of DRL for Adaptive Content Caching 

Given the substantial surge in data traffic across both wired and wireless commu-
nication channels, the evolution of next-generation networks becomes crucial. This 
evolution encompasses future Internet architectures, content delivery infrastructure, 
and cellular networks, all of which necessitate cutting-edge technologies to address 
the ever-growing demand for data. Identified as an attractive solution is caching,
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which involves the storage of reusable content in geographically distributed storage-
enabled network entities, enabling faster retrieval during subsequent requests. The 
underlying principle is that the adverse impacts of peak traffic periods can be mit-
igated by proactively storing “anticipated” highly popular content in these storage 
devices, especially during off-peak periods. Caching popular content is envisioned 
to yield substantial savings in terms of energy consumption, bandwidth utilization, 
and overall costs, while simultaneously enhancing user satisfaction. 

The reasons for using DRL in adaptive content caching are as follows: 
First, DRL has excellent dynamic adaptability. Adaptive content caching requires 

dynamically selecting cached content based on user demands and network condi-
tions. Traditional caching strategies are often static and cannot adapt to changing 
environments. DRL, on the other hand, can learn the optimal strategy through inter-
action with the environment, allowing for dynamic adjustment of caching policies 
based on real-time user behavior and network status. This enables the cache to better 
adapt to changing demands and environments. 

Second, DRL has an advantage in handling complex data. Adaptive content 
caching involves processing large amounts of complex data, including user requests, 
network status, and content features. Traditional caching strategies often struggle to 
handle such complex data and fail to fully utilize the information to make optimal 
caching decisions. DRL, with its ability to utilize DNN, can effectively process com-
plex data, extract useful features, and learn to understand user demands and content 
features, leading to more accurate caching decisions. 

Third, DRL has the advantage of RL, which allows for optimizing strategies 
through learning. DRL is a form of RL that learns the optimal policy through inter-
action with the environment. In adaptive content caching, DRL can learn the optimal 
caching policy by interacting with user requests and network conditions, continu-
ously optimizing caching decision performance. Compared to traditional caching 
strategies, DRL can better adapt to different scenarios and demands, providing more 
efficient caching services. 

In summary, the reasons for using DRL in adaptive content caching lie in its 
dynamic adaptability, ability to handle complex data, and the advantages of RL. 
These characteristics make DRL an effective method for optimizing the performance 
of adaptive content caching. 

To implement Adaptive Content Caching, sophisticated algorithms, and machine 
learning techniques are often employed to analyze and process the vast amount of data 
involved. These algorithms continuously monitor network conditions, track content 
popularity, and adapt the caching strategy in real-time to optimize content delivery. 
Adaptive Content Caching aims to improve network efficiency, reduce latency, and 
enhance the user experience by dynamically adapting the caching strategy based on 
various contextual factors.
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4.4.2 The Model and Problem Statement of Adaptive Content 
Caching with DRL 

In this chapter we will introduce a problem model on adaptive caching in hierarchical 
content delivery networks. The objective is to efficiently utilize the limited storage 
capacity of network entities by caching popular content during off-peak periods. 
This can enhance the performance of the network infrastructure and improve the 
user experience during peak periods. 

The model considers a network consisting of a parent node and.N leaf nodes. The 
parent node is connected to the cloud through a back haul link. Each node stores files 
to respond to file requests. The leaf nodes serve the end users connected to them, 
providing the requested content locally if available, otherwise obtaining it from the 
parent node. The parent node observes the aggregate requests from the large number 
of users served by the .N leaf nodes. 

The problem statement is how to effectively manage the caching nodes in this 
network to minimize the overall cost. Specifically, the problem is to find an optimal 
strategy that maximizes the satisfaction of user file requests within given resource 
constraints and minimizes the cost of fetching files. This is an optimization problem 
with the objective of finding an optimal strategy that minimizes the overall cost on 
a long-term cumulative time scale. 

Also, the problem model assumes that the popularity of file requests varies over 
time and that there is spatial and temporal evolution of file requests among different 
leaf nodes. This means that file requests between different leaf nodes may have 
different levels of popularity and rates of evolution. 

The challenge in the problem model is how to effectively manage caching nodes 
under dynamic evolution of file requests and network topology conditions. Tradi-
tional caching policies such as Least Recently Used (LRU) and Least Frequently 
Used (LFU) are unable to cope with the dynamic changes in file popularity and 
network topology. Therefore, there is a need to develop a caching policy that can 
adapt to the local policies of leaf nodes and the spatial and temporal evolution of file 
requests. 

To solve this problem, a two-timescale approach is adopted. On the fast timescale, 
the file requests received by the leaf nodes exhibit rapid temporal evolution, requiring 
quick decision-making. On the slow timescale, the parent node observes aggregate 
requests that change slowly. Based on this observation, an adaptive RL approach is 
proposed to learn a policy function through interaction with the environment, aiming 
to minimize the long-term cumulative cost. 

4.4.3 DRL for Adaptive Content Caching 

In this part, we will introduce the basic process of DRL based adaptive caching 
algorithm. The goal of this algorithm is to adapt to dynamic file requests and leaf
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node caching policies through interaction with the environment and minimize the 
overall cost over a long-term cumulative time scale. 

To address the complexity of caching decisions, an RL framework is proposed. 
RL allows the parent node to learn and make optimal caching decisions through 
interaction with the leaf nodes. This approach utilizes a DQN, which is a DNN that 
approximates the Q-values of different caching actions. 

In this problem model, a major challenge is the large continuous state space. To 
overcome this issue, a scalable deep RL approach is adopted. This method learns 
from data using DNN and provides compact representations of high-dimensional 
states. 

The algorithm follows a sequence of steps: First, it initializes network parameters 
and the cache state, setting up the DNN with the appropriate number of nodes in 
each layer and initializing the cache capacity and content. Next, it interacts with the 
environment, selecting actions (caching a file, replacing a file, or taking no action) 
based on the current cache state and file requests to update the cache policy. The 
cache policy is then updated accordingly: files are added to the cache, replaced, or 
left unchanged. Subsequently, the reward is calculated based on the updated cache 
policy and file request satisfaction. The DNN parameters are updated using the reward 
value to enhance the cache policy’s performance, employing optimization algorithms 
like gradient descent. This process iterates until a predetermined number of training 
iterations or a stopping condition is met. 

By continuously interacting with the environment and updating the parameters, 
the DRL for adaptive caching algorithm can gradually learn the optimal cache policy 
to maximize user satisfaction and minimize the overall cost. In summary, DRL for 
adaptive caching is a DRL-based adaptive caching algorithm. Through interaction 
with the environment and parameter updates, the algorithm can gradually learn the 
optimal cache policy to maximize user satisfaction and minimize the overall cost. 

4.5 DRL for Computing Offloading in Mobile Edge 
Computing 

4.5.1 The Motivation of DRL for Computing Offloading in 
Mobile Edge Computing 

Mobile-edge computing (MEC) has emerged as a promising computing paradigm 
in the 5G architecture, which can move computation, caching, and network func-
tions toward the network edges. It could also empower user equipments (UEs) with 
computation and energy resources offered by migrating workloads from UEs to the 
nearby MEC servers. 

Mobile Computing Offloading (MCO) constitutes a pivotal process within MEC. 
MCO represents a promising approach whereby resource-intensive tasks, or at least
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a portion thereof, are offloaded to the resource-rich servers in proximity to the MEC, 
thereby alleviating constraints on client devices. 

Although the issues of computation offloading and resource allocation in MEC 
have been studied with different optimization objectives, they mainly focus on facili-
tating the performance in the quasistatic system, and seldomly consider time-varying 
system conditions in the time domain. The emergence of deep learning as a robust 
tool for processing massive datasets has captured the attention of researchers, as it 
enables the extraction of real-world data in complex and noisy environments. 

Edge computing encounters diverse resource allocation challenges across dif-
ferent layers, including CPU cycle frequency, access coverage, RF, and bandwidth. 
Consequently, it necessitates a repertoire of robust optimization tools to enhance sys-
tem efficiency. And in the absence of any a priority knowledge, DRL can intelligently 
enhance edge networks to adeptly capture the latent dynamics of the environment, 
thereby learning policies to achieve optimal long-term objectives through iterative 
interactions within specific contexts. This characteristic endows DRL with a dis-
tinctive potential when designing computational offloading and resource allocation 
schemes in dynamic systems. 

4.5.2 The Model of Computation Offloading 

Due to the constraints imposed by battery power, the energy consumption of ter-
minal devices is of paramount importance. Simultaneously, the processing time 
delay directly impacts user experience. Presently, the majority of research employs 
a weighting factor to balance these two objectives, normalizing multiple goals into 
a single optimization target. However, the normalization of objectives leads to the 
loss of some distinguishing features, and the determination of the correct weighting 
factor is challenging. Therefore, researchers are now considering the optimization 
objectives as the time delay and energy consumption. This approach models the 
computational offloading problem in mobile edge networks as a multi-objective opti-
mization problem, with the parameters requiring optimization including offloading 
decisions, device CPU operating frequency, and transmission power. 

For the purpose of analytical convenience, in line with the approach adopted 
in numerous literature on computation offloading, the entire problem scenario is 
typically regarded as a quasi-static field, wherein, over a period, the number of 
mobile devices, the data for each computational task, and the channel state of the 
wireless link remain fixed. 

According to the overview of computation offloading, it is evident that the pro-
cessing of a computational task can be accomplished through local execution or 
offloading to an edge server. For the sake of convenience, the model assumes that 
the tasks are indivisible, meaning that the computational task of each device is either 
entirely locally executed or entirely offloaded for remote processing by the server. 
Let .Si represent the offloading decision for the i-th device; if the device offloads the
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task to the MEC server for execution,.Si = 1, otherwise, the device undertakes local 
processing, in which case .Si = 0. 

Thus, the computational cost of the i-th terminal device’s computing task can be 
expressed as: 

. minGi = [GT
i ,GP

i ] (4.4) 
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In the above equation, .GT
i and.Gp

i respectively denote the computational latency 
and energy consumption of task. τi . And the symbol .tCi in the formula represents the 
time consumed when offloading the task to the MEC server, where C denotes the 
execution of the task offloading to the edge server, .t Li denotes the time consumption 
for processing the task locally, .eCi represents the transmission energy consumption 
of the mobile terminal device, and .eLi signifies the dynamic power consumption. 

In conclusion, the computation offloading problem in MEC networks is modeled 
as a multi-objective optimization problem. Specifically, the set of all mobile devices 
is denoted as.N = .{1, 2, . . . , N } , and the set.s = .{s1, s2, . . . , sN } represents the task 
offloading decisions. The CPU operating frequencies of all devices when performing 
local computation are denoted as. f =.{ f1, f2, . . . , fN }, and the transmission powers 
of all devices are denoted as .p = .{p1, p2, . . . , pN }. The parameters . s, . f , and . p are 
to be optimized, and the entire optimization problem can be formulated as follows: 
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L
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i i ∈ N (4.8) 

.C2 : f Lmin ≤ f li ≤ f Lmaxi ∈ N (4.9) 

.C3 : 0 ≤ pi ≤ pmaxi ∈ N (4.10) 

.C4 : si ∈ {0, 1}i ∈ N . (4.11) 

The constraint condition .C1 signifies that the total time consumption of each 
task must not exceed the maximum tolerable delay .t Max

i . .C2 indicates that the CPU 
frequency of the mobile device can only be dynamically adjusted within the permitted 
range. .C3 represents that the maximum transmission power of the device is .pMax

i . 
.C4 specifies that the offloading of tasks is a binary process, wherein the task’s 
processing method is limited to local execution or offloading, with no possibility of 
task fragmentation.
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4.5.3 The Algorithmic Procedure of DRL 

The optimization problem described above presents significant complexity due to 
its non-convex nature, making traditional solution methods impractical. As a result, 
researchers have increasingly turned to modeling the computation offloading problem 
within MEC systems as a MDP. This approach enables the learning of effective strate-
gies, even in intricate environments. Moreover, DRL has been utilized to tackle the 
challenges related to computation offloading and resource allocation in this context. 

MDP encompasses three pivotal elements: states, actions, and rewards. In con-
junction with the preceding optimization problem, the following definitions are 
established: 

• State Space: the state S.∈ S encapsulates the state information of the MEC system 
and the task information offloaded to the server. Thus, the state at time slot . t can 
be represented as: 

.S(t) = {QMD(t), s(t)} ∈ S (4.12) 

Here, .QMD(t) denotes the state information of the mobile device, encompassing 
CPU operating frequency and transmission power. 

• Action space: .ai ∈ S represents the actions that the device can execute, including 
unloading decisions, local execution with CPU operating frequency, and emission 
power during unloading processing. Thus, the action at time slot t can be expressed 
as: 

.a(t) = {s(t), f (t), p(t)} ∈ A (4.13) 

• Reward function: the setting of rewards should be linked to the optimization objec-
tives and should also take into account the system’s constraints. Therefore, the 
reward at time slot t can be expressed as: 

.r(t) =
{

−G(t), ∀i ∈ 1, 2, . . . , n, Ci is satisfied

−10, ∃i ∈ 1, 2, . . . , n, ¬Ci is satisfied
(4.14) 

In pursuit of minimizing the overall cost of the system, the reward is set as the 
negative of the objective function when the constraints are met. In cases where the 
constraints are not satisfied, a substantial penalty is assigned to constrain the behavior 
of the intelligent agent. 

In addressing the aforementioned model, RL is broadly categorized into three 
approaches: value-based methods, policy-based methods, and AC methods. The 
value-based approach emphasizes the attainment of maximal value, essentially select-
ing actions that yield the highest value to ultimately derive the optimal strategy. Value-
based methods are suitable for scenarios with discrete action spaces. Representa-
tive algorithms include Q-Learning and State-Action-Reward-State-Action(SARSA) 
algorithms.
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The policy-based approach serves as a complement to the value-based methods, 
emphasizing action policies and aiming to learn the policy function that directly 
maps the current state of the agent to the corresponding action. The objective of this 
approach is to find an optimal policy that enables the agent to attain the maximum 
cumulative reward in a specific task. Policy-based methods are suitable for scenarios 
with continuous action spaces. Representative algorithms include the PG algorithm. 

On the other hand, AC methods integrate both value and action considerations. 
Currently, the most prevalent algorithms adopt this approach, with representative 
examples being the AC algorithm and the Asynchronous Advantage Actor-Critic 
algorithm. 

4.6 Beamforming with DRL in MIMO 

4.6.1 The Motivation of DRL for Beamforming in MIMO 

Future 5G/6G wireless networks will be increasingly using millimeter waves (mm 
Waves), where fast and efficient beamforming is vital for providing continuous ser-
vice to highly mobile devices in the presence of interference and signal attenuation, 
manifested by blockage. A crucial facilitator for establishing connectivity between 
swiftly moving UE and at least one AP at any given moment involves the timely and 
efficient implementation of interference mitigation and beam steering (collectively 
referred to as beamforming). 

Fully digital beamforming is associated with significant costs, power consump-
tion, and the necessity for complex hardware. Conversely, hybrid beamforming has 
the potential to deliver comparable performance while requiring reduced costs and 
complexity. In hybrid beamforming, digital signal processing is utilized in the base-
band to eliminate or mitigate interference, while discrete phase shifters are employed 
in the RF domain to steer beams. 

In general, the problem is to minimize the distance between hybrid and fully digital 
beamforming for each beam, which is known to be NP-hard. To reduce computations 
in optimization problems, various methods exist. Various deep learning paradigms, 
such as the generative adversarial estimation of channel covariance, LSTM in single 
user scenarios and deep CNNs in the downlink of multi-user settings have been 
proposed. 

And deep supervised learning for beamforming represents a promising, scalable, 
and statistically robust approach for high mobility scenarios. In these frameworks, the 
RF signature of the environment and the locations of users/APs are acquired through 
pilot signals. Additionally, contextual side-information, including user trajectory, 
past beamforming, situational awareness, and traffic flow, are incorporated during 
the training phase. Various deep learning paradigms have been put forth, such as 
the generative adversarial estimation of channel covariance, LSTM in single-user 
scenarios, and deep CNNs in the downlink of multi-user settings.
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Generally, the performance of supervised deep learning algorithms holds promise, 
yet necessitates extensive labeled datasets for training and is susceptible to unpre-
dictable fluctuations in mm Wave channels, notably caused by prevalent blockage. 
In addressing this concern, DRL is utilized for hybrid beamforming in point-to-
point communications. DRL has its costs as well: its convergence is slow and needs 
excessive computations, usually provided via cloud computing with high latency 
and excessive signaling. Besides, stringent time constraints in fast-moving UEs can 
be met by utilizing edge computing (with significantly less signaling and reduced 
mobility interruption time) instead of cloud computing, but the challenge is scarce-
ness of computing power at the edge. Therefore, introducing innovative DRL-based 
strategies with reduced convergence time is crucial for addressing slow convergence. 

4.6.2 The Problem Statement of Beamforming with DRL 
in MIMO 

The problem model is based on a Partially Observable Markov Decision Process 
(POMDP) for beamforming. The problem model aims to address the challenges 
of beamforming in high-mobility millimeter-wave communication, including signal 
attenuation and interference. 

Specifically, the goal is to maximize .EEUL which means the QoS-aware energy 
efficiency (EE) in the uplink (UL) through beamforming in the presence of inter-
ference and signal attenuation. This means achieving high-quality user experience 
while maximizing energy efficiency. 

The problem considers beam steering latency and power consumption. Firstly, we 
make the system aware of QoS by requiring the data rate of each UE’s bandwidth 
to be higher than its required minimum value. Secondly, we constrain the transmit 
power per subcarrier, incorporating it into the RF beamforming matrices. Also, we set 
the Frobenius norm of precoding and beamforming matrices to limit the consumed 
power. 

The problem model aims to maximize the expected reward by adopting an optimal 
non-stationary policy.π∗ : Ω → Δ (A). .Ω represents the state space, which denotes 
the set of all possible states the system can be in. .A represents the action space, 
indicating the set of all possible actions the system can take..Δ (A) represents the set 
of probability distributions, which signifies the assortment of probability distributions 
for potential actions within the specified action space . A. The policy .π∗ specifies a 
probability distribution over actions to be taken in each possible state. It describes 
an optimal strategy, where the probability distribution of selecting the best action 
is determined for each state, aiming to achieve a specific objective or optimization 
criterion. This is achieved by training a DRL network to learn weight values that 
set the beam to the desired direction for each instance and location. This enables 
efficient beamforming in high-mobility millimeter-wave communication, improving 
user experience and energy efficiency.
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4.6.3 POMDP-Based DRL Algorithm Process 
for Beamforming 

A MDP is a mathematical framework used to model decision-making in situations 
where outcomes are uncertain and involve a sequence of events. MDPs are primarily 
employed in the field of RL, where an agent learns to make a series of decisions 
through interaction with an environment to achieve optimal goals. 

In such dynamic and fast-changing environments, given that obtaining the total 
achievable rate for all AP for a given UE is not practical. So, we consider using 
the partially observed POMDP which is a mathematical framework that models 
interactions of an agent with an unknown time-varying environment when the agent 
has limited observations. 

We set a virtual central baseband unit as learning agent. Our algorithm uses two 
clipped Q-functions to train learning agent, one for selecting actions and one for 
evaluating actions to ensure stability and convergence during training. 

The POMDP-based DRL algorithm for beamforming in high-mobility mmWave 
communications follows a sequential process. It begins with the utilization of a neural 
network model to learn and infer optimal actions, trained using off-policy DRL. This 
model considers limited observations to select actions, focusing on precoding and 
beamforming matrices. The selected action is then executed, applied to the commu-
nication system. Subsequently, the agent receives a reward based on system perfor-
mance, particularly emphasizing QoS-aware .EEUL . This reward guides the update 
of the neural network model’s weights and biases through optimization algorithms 
like gradient descent, aiming to refine the policy for better future decision-making. 
The iterative nature of this process continues until a stopping condition is met, such 
as reaching a maximum number of iterations or convergence. 

By using the POMDP-based DRL algorithm, the agent can effectively learn and 
adapt to the dynamic and unpredictable nature of high-mobility mmWave communi-
cations. This approach enables the agent to make intelligent decisions for beamform-
ing, maximizing QoS-aware .EEUL and improving the overall system performance. 
And we apply our schemes in two important use cases, named vehicle to infrastruc-
ture (V2I) and high speed train (HST) communications, and confirm the feasibility 
of our algorithm. 

In summary, the application of deep learning in beamforming has great potential, 
and future trends will focus on advanced deep learning models, the application of 
edge computing, and improvements in DRL algorithms to further enhance system 
efficiency and performance.



Chapter 5 
Learning Traffic and Mobility Prediction 

5.1 Graph Neural Networks-Based Network Architecture 

In this article, we delve into the complexities and innovative applications of GNNs 
within network architectures. We offer a comprehensive analysis of GNNs, dis-
cussing their characteristics, preferred uses, merits, and drawbacks, imparting a rich 
understanding of this transformative technology. 

Initially, we explore the intricacies of communication networks, systems that link 
geographically diverse user and terminal equipment, enabling seamless transmission 
and exchange of information. These systems are established through a range of 
networking models, including mesh-like, star-shaped, compound, ring, bus, and tree 
configurations. 

Our discussion ventures further as we refine these concepts, assessing the 
strengths, limitations, and practical illustrations of each network model. By adopting 
an intuitive and engaging discourse, we strive to make this complex subject matter 
not only accessible but also interesting for our readers. 

Innovatively, we extend the application of GNNs to fortify these network mod-
els, underlining our unique contribution in this domain. The crux of our approach 
hinges on the manipulation of GNN’s inherent functionalities–including Graph Con-
volutional Networks (GCNs), Graph Autoencoders (GAEs), Graph Generative Net-
works (GGNs), Graph Recurrent Networks (GRNs), and Graph Attention Networks 
(GATs)–to optimize system performance and enable customized configurations. At 
its core, our work seeks to define new paradigms in network architecture design, pro-
pelled by GNN-based models. We believe that the transformative power of GNNs, 
combined with a deep understanding of communication networks, can inspire and 
guide future innovations, redefining network architectures. 
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5.1.1 Network Structure 

Computer network is composed of computer system, communication link and net-
work node. It is the field of computer technology and communication technology 
closely combined, and undertakes two kinds of work: data communication and data 
processing. From the perspective of logical function, the network can be divided 
into resource subnet and communication subnet. The resource subnet provides the 
ability to access the network and process data, and it consists of the main computer 
system, the terminal controller, and the terminal. The communication subnet pro-
vides the network communication function, which is composed of network nodes, 
communication links and signal transformation equipment. However, the structure of 
the communication subnet in the network directly affects the network structure. The 
communication subnetwork can be divided into point-to-point communication chan-
nel and broadcast communication channel according to its technology of transmitting 
data. 

Graph convolutional network, referred to as GCN, the simplest GCN has three lay-
ers, namely the convolutional layer, the linear layer and the nonlinear activation layer. 
We mainly have two methods for convolution operation: one is spectral decomposi-
tion, that is, spectral decomposition graph convolution (specific); the other is node 
space transformation, that is, spatial convolution, which takes the spatial character-
istics of graph structure data as the starting point to further discuss and explore the 
representation of neighbor nodes, so that the representation of neighbor nodes of 
each node is unified and regular. The goal is to make the subsequent convolution 
calculations easier. When using spatial convolution, we face three key problems: 1. 
Choosing the right center point. 2. The selection of neighbor nodes is called the size 
of the sensory domain. 3. How to deal with the characteristics of neighbor nodes, that 
is, to build an aggregation function that conforms to the characteristics of neighbor 
nodes. 

Graph Generative Network (GNN for short) is a kind of graph generative nervous 
system used to generate graph data. Its characteristic is that it reorganizes nodes and 
edges according to certain rules to generate target graphs with specific requirements 
or properties. 

Graph Autoencoder (GAE) is an autoencoder-based GNN that allows semi-
supervised or unsupervised learning of graph node information. In the field of deep 
learning, Auto-encoder (AE) is a class of artificial neural networks that use input 
information for representation learning. 

Graph Recurrent Network (GRN) is one of the earliest GNN models. Compared 
with other GNN algorithms, GRN usually converts graph data into sequences, which 
evolve and change recursively during the training process. GRN models generally 
use Bidirectional RNN (Bi-RNN) and LSTM as network architectures. 

The attention mechanism allows a neural network to focus only on the information 
needed for the task to learn, and it is able to select specific inputs. The introduction 
of attention mechanism in GNN can make the neural network focus on nodes and
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edges that are more relevant to the task, improve the effectiveness of training and the 
ACC of testing, and thus form a Graph Attention Network (GAT). 

Combining Graph Neural Networks (GNNs) with DRL can lead to more complex 
and efficient network architectures, especially for tasks involving relational data such 
as recommendation systems, social network analysis, image segmentation, and more. 

1. Graph-based RL: Graph-based RL combines the capabilities of GNNs with RL 
techniques to address tasks that involve graphstructured data. 

In this paradigm, the environment or problem domain is represented as a graph, 
where nodes correspond to entities or states, and edges signify relationships or tran-
sitions between them. The objective is to train an agent to navigate this graph and 
make sequential decisions to optimize long-term rewards. 

The problem is modeled as a graph, with nodes representing states, objects, or 
entities, and edges denoting relationships or connections between them. A GNN 
is employed to comprehend the graph structure and node/edge features. By aggre-
gating information from neighboring nodes and edges, the GNN iteratively updates 
node representations. A policy network is trained using RL algorithms like Deep 
Q-Learning or Policy Gradient methods. This network utilizes node representations 
from the GNN to output actions for the agent. The agent garners rewards based on its 
actions in the graph environment. The agent’s aim is to learn a policy that maximizes 
cumulative rewards over time. The agent incessantly engages with the graph envi-
ronment, adjusting its policy network based on received rewards. Simultaneously, 
the GNN refines its representations as the agent explores the graph. 

Graph-based RL is especially beneficial for tasks where entity relationships sig-
nificantly impact decision-making, such as recommendation systems, social net-
work analysis, and route planning in transportation networks. Through the syner-
gistic fusion of GNNs’ graph modeling abilities and RL’s decision-making prowess, 
graph-based RL has demonstrated promise across a range of real-world applications. 

2. Graph neural network policies: GNN policies refer to using GNNs as the basis 
for defining policies in RL tasks. In this setup, GNNs are employed to encode the 
graph structure and node features, enabling agents to make decisions based on the 
learned graph representations. 

Here is how Graph Neural Network policies work: 
Graph Representation: The environment is represented as a graph, where nodes 

represent entities or states, and edges represent relationships between them. Each 
node contains features that describe its attributes. 

Node Embeddings: The GNN is used to learn node embeddings by aggregat-
ing information from neighboring nodes, capturing both node-specific features and 
relational information in the graph. 

Policy Network: The output of the GNN serves as input to a policy network that 
maps the node embeddings to actions. The policy network can be a neural network 
that outputs action probabilities or value estimates based on the node representations. 

Reward Signals: The agent interacts with the environment based on the actions 
prescribed by the policy network. Rewards are provided based on the agent’s actions, 
and the goal is to maximize the cumulative reward over time.
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Training: The policy network is trained using RL algorithms such as Policy Gra-
dient methods or PG. The GNN is also updated during training to improve the quality 
of node embeddings. 

By utilizing GNN policies in RL, agents can effectively leverage the graph struc-
ture and relational information present in the environment. This approach is particu-
larly beneficial in tasks where decisions are influenced by the relationships between 
entities, such as social network analysis, recommendation systems, and path planning 
in transportation networks. 

Graph Neural Network policies offer a powerful framework for incorporating 
graph-structured data into RL tasks, enabling agents to make intelligent decisions 
based on learned graph representations. 

3. Graph attention mechanisms: Graph Attention Mechanisms are a crucial com-
ponent of GNNs that enhance the ability of models to focus on important nodes and 
edges in a graph structure. Attention mechanisms allow GNNs to assign different 
weights to the neighbors of each node, enabling the model to selectively aggregate 
information based on the significance of each neighbor. In a graph, each node has 
its own feature representation, which captures the attributes or characteristics of the 
node. Graph Attention Mechanisms use attention weights to determine the impor-
tance of each neighbor node when aggregating information for a target node. These 
attention weights are learned during the training. Attention scores are by measur-
ing the compatibility the features of the node and its neighbors. These scores are 
then normalized obtain attention coefficients that the importance of each neighbor. 
The normalized attention are used to aggregate the from the neighbor nodes. Nodes 
with higher attention weights contribute more to the updated representation of the 
target node. After aggreg information from neighbors, a learnable update function 
is applied to compute the new representation of the target node. This updated repre-
sentation captures both the node’s own features and the important information from 
its neighbors. 

Graph Attention Mechanisms have shown significant improvements in various 
tasks especially in scenarios where relationships between nodes play a crucial role 
in the decision-making process. By allowin GNNs to focus on relevant information 
and effectively aggregate features from neighboring nodes, attention mechanisms 
enhance the model’s ability to capture complex dependencies in graph-structured 
data. 

Graph Attention Mechanisms a powerful tool in NNs, enabling models adaptively 
attend to nodes and edges in graph and improving the performance GNNs in such as 
node classification link prediction, and graph classification. 

4. Combining GNNs with Deep Q-Learning: Combining GNNs with Deep Q-
Learning is a powerful approach to address RL tasks in graph-structured data envi-
ronments. This integration leverages the representational power of GNNs to learn and 
encode the complex relationships within the graph, while utilizing Deep Q-Learning 
to make sequential decisions and optimize action selection (Fig. 5.1). 

The environment is represented as a graph, where nodes represent states or entities, 
and edges represent relationships between them. Each node contains features that 
capture the attributes of the state. A GNN is used to learn node embeddings by
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Fig. 5.1 Q-learning in combination with GNNs 

propagating information through the graph structure and aggregating features from 
neighboring nodes. This allows the GNN to capture both node-specific characteristics 
and relational information in the graph. The output of the GNN serves as input to a 
Q-network, which is a DNN that estimates the Q-values for each action in a given 
state. The Q-network takes the node embeddings as input and outputs Q-values for 
all possible actions. The Q-network is used to select actions based on the estimated 
Q-values. In Deep Q-Learning, the agent follows an .ε-greedy policy to explore the 
environment and gradually shifts towards a more exploitative strategy as training 
progresses. To stabilize training and improve sample efficiency, experience replay is 
often employed. This technique involves storing experiences (state, action, reward, 
next state) in a replay buffer and sampling mini-batches to train the Q-network. To 
improve the stability of training, a target Q-network is used to estimate target Q-values 
during updates. The target network is periodically updated with the weights of the 
main Q-network. The Q-network is trained using the Bellman equation to minimize 
the Temporal Difference (TD) error between the predicted Q-values and the target Q-
values. The GNN and Q-network parameters are updated through backpropagation 
to improve the action-selection policy. 

By combining GNNs with Deep Q-Learning, agents can effectively learn to nav-
igate graph-structured environments, leveraging the power of graph representation 
learning and RL. This approach is particularly beneficial in tasks where decisions are 
influenced by the relationships and dependencies between entities in the graph, such 
as graph-based pathfinding, recommendation systems, and social network analysis.
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The integration of GNNs with DRL enables us to harness the unique of GNNs in 
modeling graph structures alongside the decision-making capabilities of DRL. This 
fusion approach facilitates the development of more intelligent and efficient methods 
for solving tasks across diverse domains. 

By leveraging GNNs in conjunction with DRL, we can effectively tackle problems 
that involve graph-structured data, where entities interact with each other within a net-
work. GNNs excel at capturing complex relationships and dependencies within these 
graph structures, enabling better understanding and representation of the underlying 
data. 

On the other hand, DRL provides a robust framework for training agents to make 
sequential decisions that maximize long-term rewards. By combining these two pow-
erful techniques, we can create agents that not only navigate and interpret graph 
structures effectively but also make informed decisions to achieve optimal outcomes 
within these structures. 

This combined approach has broad applications across various fields, including 
but not limited to recommendation systems, social network analysis, biological net-
work analysis, and route planning in transportation networks. The synergy between 
GNNs and DRL holds promising prospects for advancing the state-of-the-art in 
intelligent task-solving methods and addressing complex real-world challenges. 

5.1.2 GNNs for Communication Networks 

GNN-based network modeling offers practical advantages that address limitations 
of previous machine learning-based solutions. These advantages include: 

Accurate prediction of network performance: The black-box representation of a 
generic network model, powered by GNNs, can accurately predict relevant perfor-
mance metrics at different levels of granularity, such as flow, link, and port statistics. 
This enables network models to forecast network behavior under various scenar-
ios, including topology changes, upgrades, failures, and new configurations like 
routing or VNF placement. These predictions are crucial for network control and 
management tasks, such as what-if analysis and automatic network optimization. 

Generalization over graph-structured data: Networks have graph-structured infor-
mation at multiple levels, making GNNs the most suitable machine learning tech-
nique for processing such data. Unlike traditional fully-connected NNs, GNNs are 
designed to directly capture meaningful patterns from graphs. GNN models leverage 
a distributed message passing architecture, allowing them to gather local context 
from graph nodes. This feature enables GNNs to generalize effectively by learning 
from the experiences of all routers in the network during training. Consequently, the 
model can apply this learned knowledge to other routers in different networks with 
varying sizes and structures. 

Equivariance to node and edge permutations: GNNs exhibit equivariance to node 
and edge permutations, meaning theycan identify symmetries or equivalent patterns
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between network scenarios seen during training and new scenarios encountered dur-
ing inference. By representing network scenarios as graphs, GNN models can identify 
clusters within the different types of networks, such as wireless, data centers, and 
loT, as long as they are represented as graphs. Network topology that are equivalent 
or similar to those seen during training. This generalization property extends to dif-
ferent types of networks, such as wireless, data centers, and IoT, as long as they are 
represented as graphs. 

The practical advantages of GNNs address fundamental limitations of previous 
ML-based solutions for network modeling. GNNs enable offline training, allowing 
models to generalize to new networks. They also facilitate comprehensive testing and 
certification processes, ensuring the deployability of network models. By leveraging 
GNNs, data-driven network models can overcome previous limitations and provide 
accurate predictions for improved network control and management. Offline training 
is an essential aspect of developing practical data-driven network models. By training 
the models in a controlled testbed or simulation environment, it becomes possible to 
expose them to a wide range of scenarios, including extreme cases that are challenging 
to replicate in real production networks. This allows the models to learn from diverse 
data and abstract deep insights during the training phase. 

The ability of GNNs to generalize to new networks unseen during training is 
crucial for offline training. GNN models can capture meaningful patterns from graph-
structured data, such as network topologies, configurations, and traffic patterns. They 
can identify symmetries or equivalent patterns between different scenarios, enabling 
them to make accurate predictions even in unseen networks. This generalization 
property of GNNs allows the trained models to be readily deployed in customer 
networks without the need for re-training on the target network. 

By leveraging offline training and the generalization capabilities of GNNs, 
data-driven network models can be developed and deployed more efficiently. This 
approach saves time and resources by eliminating the need for continuous re-training 
on specific network instances. Instead, the models can be trained offline on repre-
sentative datasets, ensuring they are equipped to handle a wide range of network 
scenarios once deployed. 

The deployability of ML-based solutions in critical networking infrastructures 
requires rigorous testing and certification processes. GNNs offer advantages in this 
regard by allowing offline training and extensive testing under various operational 
network scenarios. 

During offline training, GNN models can be trained on representative datasets 
that capture a wide range of network topologies, configurations, and traffic patterns. 
This enables the models to learn from diverse data and generalize well to unseen 
networks. After training, the models can be thoroughly tested in controlled testbeds 
or simulation environments, where their behavior can be evaluated under different 
operational conditions. 

By testing the models offline, it becomes possible to assess their performance, 
robustness, and limitations across various network sizes and traffic aggregates. This 
testing process helps generate certifications that define the operational ranges where 
the model can provide guarantees and reliable performance. These certifications
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are crucial for ensuring the safe and reliable deployment of ML-based networking 
products in real-world networks. 

Overall, GNNs facilitate the integration of ML-based solutions into the standard 
commercialization process of networking products. They enable offline training, 
extensive testing, and the generation of certifications, ensuring that the models are 
thoroughly evaluated and can be deployed with confidence in critical networking 
infrastructures. 

5.2 Slice Reconfiguration Based on Demand Prediction 

Network slicing is a powerful functionality that allows multiple independent net-
works to coexist on a shared physical network infrastructure. By using different 
slices of the same spectrum band, organizations can tailor each network slice to meet 
specific application requirements for security, reliability, and performance. Network 
slicing relies on technologies such as Software-Defined Networking (SDN), Network 
Function Virtualization (NFV), and automation to efficiently segment the network 
and allocate resources. This enables organizations to support different applications, 
devices, domains, and groups with dedicated network slices. By leveraging net-
work slicing, enterprises can effectively meet Service Level Agreements (SLAs) by 
ensuring that each application receives the necessary resources and QoS. It offers 
a cost-effective solution for accommodating diverse application needs on a shared 
network infrastructure 

Network slicing plays a crucial role in the cellular domain by enabling fine-
grained control over traffic resources. Each slice has specific resource requirements, 
QoS parameters, security configurations, and latency requirements. This allows for 
optimized support for different applications and services. For example, a network 
slice dedicated to high-definition video streaming would have different characteris-
tics and resource allocations compared to a slice used for monitoring an IoT lighting 
system. By tailoring network slices to specific use cases, resources are efficiently 
allocated based on the actual requirements of each application or device. Network 
slicing helps conserve resources by ensuring that devices receive only the necessary 
amount of resources they require, preventing overprovisioning where devices have 
access to more resources than they actually need. By understanding the context and 
use case of each application, network slicing can allocate resources appropriately, 
leading to resource optimization. With advancements in core network technologies, 
such as NFV, network slicing becomes easier to implement, especially in 5G net-
works. This benefits enterprises, mobile network operators, and managed service 
providers as they can leverage network slicing to deliver tailored services, improve 
efficiency, and meet the diverse requirements of different applications and devices. 

Network slicing utilizes virtualization technology to create multiple independent 
networks or slices on a shared network infrastructure. Each slice has distinct charac-
teristics, including latency, throughput, security, and bandwidth. SDN plays a crucial 
role in enabling network slicing by separating the network control plane from the data
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plane responsible for handling packets. The control plane defines rules for packet 
handling on the data plane, allowing the creation of virtual networks or slices with 
specific characteristics. In the context of 5G networks, network slicing can be seen 
as an advanced version of Virtual Local Area Networks (VLANs) and extends to 
both core networks and Radio Access Networks (RANs). Software-Defined RANs 
(SD-RANs) leverage virtualization to separate and manage traffic on different radio 
networks, allocate shared resources, and even combine resources from multiple net-
works when necessary. By implementing network slicing across SD-RANs, network 
operators can achieve physical separation of traffic, efficient resource allocation, 
and improved spectrum efficiency. This leads to enhanced resource utilization and 
enables service providers and private enterprises to deliver more tailored and efficient 
services compared to previous cellular generations. 

Slice reconstruction is a technique used in cloud computing to recover lost or 
corrupted data. It is an important aspect of data management and ensures the integrity 
and availability of data stored in the cloud. In cloud computing, data is typically 
divided into smaller units called slices and distributed across multiple servers or nodes 
for redundancy and performance reasons. When a slice of data becomes unavailable 
due to server failure or data corruption, slice reconstruction techniques are used to 
restore the lost data and ensure its completeness. The process of slice reconstruction 
involves retrieving the missing or corrupted slices from other nodes or servers in 
the cloud. This can be done through various algorithms and techniques, such as 
erasure coding, replication, or recombination. These techniques utilize redundancy 
and parity information to reconstruct the missing data slices. 

Erasure coding is a popular technique used in slice reconstruction, where addi-
tional redundant slices are created using mathematical algorithms. These redundant 
slices contain parity information that can be used to recover lost or corrupted data 
slices. By distributing these encoded slices across multiple servers or nodes, data 
reliability and availability are significantly improved. 

Replication is another approach used in slice reconstruction, where each data slice 
is duplicated and stored on multiple nodes. If a slice becomes unavailable, the repli-
cated copies can be used to restore the data. This approach provides high availability 
but requires more storage space compared to erasure coding. Recombination is a 
technique that reconstructs missing slices by combining available slices and using 
coding or algorithmic methods. It involves analyzing the relationships between the 
existing slices to recover the missing ones. Slice reconstruction plays a crucial role 
in ensuring the reliability and availability of data in cloud computing. It enables data 
recovery in case of node failures, data corruption, or other unforeseen events, thus 
enhancing the overall data management capabilities of cloud systems. 

Network slicing is also a technique used in the context of the IoT to enable effi-
cient and customized network services for different IoT applications or use cases. 
It involves dividing a physical network infrastructure into multiple virtual network 
slices, each tailored to meet the specific requirements of a particular IoT application. 
In the IoT, diverse applications with different characteristics coexist, such as smart 
cities, industrial automation, healthcare, and agriculture. These applications have
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varying requirements in terms of bandwidth, latency, reliability, security, and scala-
bility. Network slicing allows the network infrastructure to be partitioned to provide 
dedicated resources and services to each application, ensuring efficient utilization of 
network resources and optimal performance. 

Each network slice is configured with its own set of network functions, including 
routing, security, and traffic management. It operates as an independent virtual net-
work, providing customized connectivity, SLAs, and QoS to the IoT application it 
serves. Network slicing enables the isolation and separation of traffic from different 
applications, ensuring that one application’s traffic does not impact the performance 
or security of another. Network slicing also offers flexibility and scalability by allow-
ing dynamic allocation and reconfiguration of resources based on changing IoT appli-
cation requirements. It enables organizations to optimize their network resources by 
allocating them on-demand, reducing costs and improving efficiency. Furthermore, 
network slicing facilitates the deployment of new IoT services and applications. By 
providing dedicated network resources, it enables experimentation, innovation, and 
rapid deployment of new services without affecting existing applications. This helps 
accelerate the adoption and growth of the IoT ecosystem. network slicing in the 
IoT enables efficient resource allocation, customization of network services, isola-
tion of traffic, and scalability. It plays a crucial role in supporting the diverse and 
evolving requirements of IoT applications and optimizing the performance of the 
IoT infrastructure. 

In the context of intelligent cities, network slicing can play a crucial role in 
providing reliable, efficient, and secure connectivity to support various smart city 
applications and services. Here are a few examples of how network slicing can 
benefit intelligent cities: 

Enhanced public safety: Network slicing can prioritize critical services such as 
emergency communications, video surveillance, and real-time analytics for public 
safety agencies. This ensures that these services receive dedicated network resources, 
guaranteeing their reliability and low latency. 

Efficient traffic management: Intelligent transportation systems rely heavily on 
connectivity to improve traffic efficiency and safety. Network slicing can allo-
cate specific network resources to traffic management applications, allowing real-
time data collection, analysis, and coordination between traffic lights, vehicles, and 
pedestrians. 

Smart grid management: Network slicing can facilitate the integration of renew-
able energy sources and enable real-time monitoring and control of the power grid. 
This ensures efficient use of resources and supports smart energy management, 
demand response, and grid stability. 

Enhanced healthcare services: Network slicing can ensure the availability of high-
quality, low-latency communication for telemedicine services, remote patient moni-
toring, and healthcare applications. This enables faster access to healthcare resources 
and improves patient care in intelligent cities.
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Innovative IoT Applications: Intelligent cities rely heavily on interconnected 
devices and applications. Network slicing can allocate dedicated resources for spe-
cific IoT use cases, such as smart buildings, environmental monitoring, waste man-
agement, and parking systems, ensuring reliable connectivity and efficient data trans-
mission. By leveraging network slicing, intelligent cities can optimize their net-
work infrastructure to cater to diverse applications and services, ensuring efficient 
resource utilization, low latency, and enhanced user experience. However, it’s cru-
cial to ensure proper security measures and coordination between different network 
slices to prevent interference and maintain overall network performance. 

Deep learning can play a significant role in enhancing network slicing Network 
slicing is a technique used in 5G networks to divide a physical network infrastruc-
ture into multiple virtual networks, each tailored to requirements. Deep learning 
algorithms be utilized in network slicing to optimize resource allocation, enhance 
efficiency, and improve overall network performance. Deep learning models learn 
from vast amounts of data, enabling them to understand complex patterns and make 
accurate predictions. By analyzing network traffic, user behavior, and other relevant 
data, deep learning algorithms can identify traffic patterns, predict future demand, 
and allocate network resources accordingly. This dynamic resource allocation allows 
network operators to maximize network capacity, reduce latency, and ensure a seam-
less experience. It can be applied to network within network slicing. By analyzing 
network traffic and user behavior deep learning algorithms can detect and prevent 
cybersecurity threats in real-time. This in enhancing the security and integrity of the 
network slices, protecting sensitive data and ensuring uninterrupted service delivery. 
Specific aspects are as follows: 

1. Traffic prediction: Deep learning algorithms can be utilized to analyze historical 
data and predict traffic patterns in IoT networks. By understanding the expected traffic 
load for different IoT applications, network slicing can be optimized to allocate 
appropriate resources to each slice accordingly. 

2. QoS optimization: Deep learning models can be trained to analyze real-time 
data from IoT devices and predict the QoS requirements of various applications. This 
information can then be used to dynamically allocate network resources to ensure 
that each slice meets its specific QoS objectives. 

3. Anomaly detection: Deep learning algorithms can be used to identify abnormal 
behavior or unexpected events in IoT networks. By monitoring network traffic device 
data, deep learning models can detect anomalies that may impact network slicing per-
formance. This allows for timely and optimizations to maintain the desired network 
performance. 

4. Security and privacy: Deep learning techniques can be applied to develop 
intrusion detection systems (IDS) IoT networks. These models can learn patterns of 
malicious activities and help protect different slices from threats. Deep learning can 
also be leveraged to enhance privacy by developing models that detect and prevent 
unauthorized access or breaches within network slices. 

5. Resource optimization: Deep learning can assist in optimizing the allocation 
and utilization of network resources in IoT network slicing. Through analysis of 
historical data and real-time monitoring, deep learning models can learn to allocate
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resources efficiently based on the specific needs of different slices, allowing for better 
resource management and improved overall performance. 

Overall, deep learning empowers network slicing with intelligent and adaptive 
capabilities, enabling network operators to optimize resource allocation, enhance 
network efficiency, and improve network security. 

5.3 Learning Cellular Traffic Prediction 

The cellular network, a vital communication network, offers call, message, and data 
services to end users within the coverage of BS. Throughout its history, the cellu-
lar network has seen remarkable evolution and progress, continuously enhancing 
mobile communication services and data transmission rates. In the late 1970s, the 
first-generation cellular network (1G) emerged, providing analog-based voice com-
munication at a considerable cost. However, it suffered from limitations in network 
coverage and mobile phone battery power, resulting in subpar service quality, includ-
ing frequent call drops. Subsequently, the analog transmission system underwent an 
upgrade to a digital transmission system, known as 2G, in the 1990s. This upgrade 
significantly improved both the reliability and security of the service. Additionally, 
the global system for mobile communication of 2G introduced the convenient short 
message service (SMS). The 2G system implemented both time division multiple 
access and code division multiple access (CDMA) technologies. During the transi-
tion from 2G to 3G, a 2.5G network utilizing general packet radio service (GPRS) 
facilitated internet communication. The 3G network, powered by technologies like 
the universal mobile telecommunication system and CDMA2020, offered enhanced 
mobile internet connectivity, enabling various types of services such as web browsing, 
email, image, and video transmission. Compared to its predecessor, the 3G network, 
the 4G networks, such as worldwide interoperability for microwave access and long-
term evolution (LTE), showcased significant speed improvements. The 4G network 
also enabled mobile broadband transmission services, including high-quality audio 
and video streaming. 

As the nascent generation of cellular networks, currently in its early stages of 
commercial deployment, the 5G network encompasses three distinct application 
scenarios: enhanced mobile broadband (eMBB), massive machine type communi-
cations (mMTC), ultra-reliable and low latency communications (URLCC). While 
data transmission rate remains a crucial factor, it is not the sole criterion. The specific 
goals of each scenario, such as low battery consumption and improved connectivity, 
are equally significant. To accomplish these objectives, a combination of diverse 
communication technologies and AI technologies is employed. AI plays a pivotal 
role in optimizing the 5G network, allocating resources optimally, unifying acceler-
ation of the 5G physical layer, and facilitating end-to-end joint optimization of the 
physical layer. 

Within the domain of cellular prediction, a classification scheme has been intro-
duced to delineate different workflows and models. This classification highlights four
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distinct workflows: direct-prediction, classification-then-prediction, decomposition-
then-prediction, and clustering-then-prediction. Each of these workflows utilizes 
specific data preprocessing techniques to achieve accurate predictions. In terms of 
models, they can be broadly categorized into three types: statistical models, machine 
learning models, and deep learning models. It is worth noting that deep learning 
models, which epitomize the forefront of AI, have emerged as the leading solutions 
in this field, showcasing their prominence and efficacy. 

We begin by classifying cellular traffic problems into two main types: tempo-
ral prediction problem and spatiotemporal prediction problem, arising from distinct 
scenarios illustrates the temporal prediction problem, where a single base station 
is considered, and only the traffic generated by users or devices connected to this 
specific base station is taken into account. In this straightforward scenario, the pre-
diction relies solely on the temporal dependencies within the historical traffic data. 
On the other hand, the spatiotemporal prediction problem, which involves users mov-
ing and transitioning between different BS through handover processes. This more 
complex problem considers the traffic across multiple BS or regions, incorporat-
ing both spatial and temporal dependencies. In certain specialized instances of the 
spatiotemporal prediction problem, the objective may be to predict the entire traffic 
distribution within a given area, or solely focus on hotspot areas. 

Both the temporal prediction problem and spatiotemporal prediction problem can 
be framed as supervised learning problems through the utilization of moving windows 
to generate different input and output pairs. The traffic data collected is represented 
as a univariate time series, and the prediction of future time step values is based on 
historical data from past time steps, with a fixed length. The moving windows, serve 
the purpose of generating both the input historical data and the prediction targets. 

In real-world cellular networks, various metrics can be employed to measure traf-
fic intensity. These metrics include, but are not limited to, SMS, call service, internet 
usage service, physical resource block (PRB) utilization data, and the number of 
connected users. When only one metric or the aggregated traffic value is collected 
and utilized, it simplifies into a univariate prediction problem. However, by incor-
porating multiple metrics and simultaneously predicting them, it becomes a more 
complex multivariate prediction problem. In such cases, it is essential to consider 
the dependencies between different services, applications, or users when measuring 
the traffic volume for distinct services or applications. This consideration of service-
wise or application-wise dependencies adds an additional layer of complexity to the 
prediction problem. 

In all cases, the timeline is divided into periodic time slots with varying levels 
of time granularity. Most studies utilize a time period ranging from five minutes to 
one hour, especially when utilizing open datasets. While rare, some studies employ 
extreme values, such as millisecond resolution for predicting PRB utilization data. 
The focus here is on the single-step prediction problem, aiming to predict traffic for 
the next time slot. However, the formulations presented can be easily extended to the 
multi-step prediction case, where the prediction target includes the traffic volume for 
multiple future time slots.
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In practice, various data preprocessing steps are needed before the core prediction 
task. Now, let’s look at a few common methods of data preprocessing. Four types of 
general prediction workflows are considered–direct prediction, post-classification 
prediction, post-decomposition prediction, and post-clustering prediction–which 
require the use of different data preprocessing techniques. 

(1) Direct prediction 
In the context of direct prediction, historical data and forecast targets are typically 

formatted as time series or input vectors. To prepare the data for analysis, some 
general data preprocessing techniques are often applied, such as data scaling through 
standardization or min-maxl normalization. These techniques help to ensure that the 
data is on a similar scale and can be effectively compared. However, in real-world 
scenarios, data collection processes may not always be perfect, leading to missing 
data. In such cases, data filling techniques are necessary to address the missing 
observations. There are several options available for data filling, depending on the 
complexityl of the problem. For simple cases, forward fill or moving average methods 
can be used to fill in missing values. Forward fill involves carrying forward the lastl 
observed value, while moving average replaces missing values with the average of 
neighboring values. In more complex scenarios, techniques like Bayesian Gaussian 
tensor decomposition can be considered. This method uses a probabilisticl approach 
to estimate missing observations based on the observed data and their relationships. 
Normalization, on the other hand, is a technique used to transform data to a common 
scale. It does not change the underlying pattern of the data but adjusts the range 
of values. This is often done to ensure that different variables or time series can be 
compared. 

(2) Post-classification prediction 
In the post-classification prediction workflow, the traffic data for different appli-

cations or services is collected from the same data source, such as raw data packets 
from a base station or user device. Deep packet inspection technology is utilized to 
extract the specific details of the transmitted data, which serves as the foundation for 
traffic classification. Machine learning and deep learning models are then employed 
to classify the data packets into specific applications or services, such as email, SMS, 
video streaming, audio chat, or video calls. Once the traffic data is classified, it is 
aggregated separately for each application or service. Multiple predictive models are 
then constructed to forecast future traffic for individual applications. This means that 
distinct models are created for each application or service, taking into account their 
unique traffic patterns and characteristics. There are two main benefits of classifying 
traffic before forecasting. Firstly, the internal pattern of traffic for a single application 
tends to be more consistent and evident during subsequent forecasting compared to 
the combined and aggregated total traffic. This makes it easier for the predictive 
model to achieve better performance by focusing on the specific patterns of each 
application. Secondly, by extracting detailed observations of data usage from dif-
ferent applications, measurements can be designed accordingly. For instance, when 
additional transmission bandwidth is required for more important applications, the 
quality of video streams can be reduced. Overall, the post-classification prediction
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workflow enhances forecasting ACC by considering the specific patterns and char-
acteristics of individual applications or services. It allows for more targeted and 
accurate predictions, taking into account the unique requirements and behavior of 
each application. 

(3) Post-decomposition prediction 
In the post-decomposition prediction workflow, a single input traffic time series 

is decomposed into multiple components. Each component represents a different 
aspect or pattern within the overall traffic data. These components are then used as 
inputs for separate predictive models, where each model is responsible for predicting 
a specific component. Finally, the predictions from all the individual models are com-
bined to obtain the final prediction. Unlike traffic classifications, where components 
correspond to specific applications or services, the components in the decomposition 
workflow do not have a physical meaning. They are extracted to capture different pat-
terns or characteristics present in the traffic data. By decomposing the time series into 
these components, it becomes easier to model and predict each component individ-
ually, potentially leading to better prediction ACC. The decomposition process can 
be performed using various techniques, such as time series decomposition methods 
like seasonal decomposition of time series (STL) or empirical mode decomposition 

(4) Post-clustering prediction 
In the post-clustering prediction workflow, the input traffic time series data is col-

lected from different sources, such as different BS or cells. The purpose of clustering 
is to group these sequences based on their similarity. By doing so, a small number 
of predictive models can be built instead of creating a separate model for each base 
station, which can be computationally expensive, especially in large spatial regions 
with a high number of BS. Clustering helps in improving prediction performance by 
grouping similar time series data together. The more similar time series are in the 
same cluster, the more data the corresponding prediction model will have as input. 
This increased amount of data can enhance the prediction performance and prevent 
overfitting issues. Clustering ensures that the training data within the same cluster 
is consistent, which can lead to better predictions. Overall, the post-clustering pre-
diction workflow is beneficial for managing the computational burden of building 
individual models for each base station and improving prediction ACC by leveraging 
the similarities within clusters. 

5.4 Traffic and Mobility on the Internet of Vehicle 

The IoV encompasses the integration of vehicles with the internet and other vehicles 
to enable communication and data sharing among vehicles. The IoV is revolutioniz-
ing the transportation industry by enabling vehicles to communicate with each other 
and with the surrounding infrastructure. Its significance lies in improving road safety 
through real-time information exchange, enhancing traffic efficiency with intelligent 
routing and adaptive control, reducing carbon emissions by optimizing travel pat-
terns, and offering a more connected experience with advanced assistance systems
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and personalized services. Io also plays a key role in smart city integration promot-
ing seamless mobility and resource utilization while driving economic benefits cost 
savings and improved efficiency. Ultimately, IoV shaping the future of transportation 
towards safer, more efficient, and sustainable mobility solutions. 

A crucial aspect of IoV is traffic and mobility management, which utilizes deep 
learning techniques to analyze and exchange real-time information between vehi-
cles and infrastructure. Deep learning algorithms have the capability to process and 
analyze large volumes of data collected from sensors, cameras, and GPS devices 
to understand traffic conditions, forecast congestion, and optimize routes. By dis-
seminating this information to other vehicles and infrastructure, drivers can make 
informed decisions that enhance traffic flow, alleviate congestion, and improve safety. 

By leveraging deep learning techniques and the capabilities of connected vehicles, 
traffic and mobility on IoV can be greatly enhanced. Deep learning algorithms can 
analyze real-time and historical data from vehicles, infrastructure, and other sources 
to optimize traffic flow and improve transportation efficiency. 

Traffic prediction in the context of IoV can greatly benefit from deep learning 
techniques. Deep learning algorithms are good at analyzing large amounts of data 
to identify complex patterns and make accurate predictions. By leveraging the con-
nectivity and real-time data exchange capabilities of IoV, deep learning models can 
provide valuable insights and predictions about traffic conditions. To predict traffic 
conditions using deep learning 

Fusing two deep learning application scenarios, traffic flow prediction and intelli-
gent Iot anomaly detection and prediction, can build a more intelligent and integrated 
system. Here’s a possible fusion: 

Data acquisition and preprocessing: Collect real-time and historical data from 
various data sources such as vehicles, traffic sensors, IoT devices, weather stations, 
social media platforms, etc. This data will include factors such as traffic flow, vehi-
cle movement, road conditions, weather information, sensor data, etc. This data is 
cleaned, denoised, handled for missing values, and normalised and feature engineered 
in preparation for model training and prediction. 

Model selection and training: Select a suitable deep learning model such as RNN 
or CNN for traffic flow prediction and anomaly detection and prediction. RNN can 
be used to capture the temporal dependence of time series data and CNN can be used 
to process image data. The model will learn traffic patterns and abnormal behavior 
patterns at the same time to improve the intelligence and flexibility of the system. 

Model evaluation and optimization: The test dataset is used to evaluate the trained 
deep learning model and measure its performance in traffic flow prediction and 
anomaly detection and prediction. According to the evaluation results, the model is 
optimized and adjusted to improve its ACC and stability. 

Prediction generation and response: Once the model is trained, it can be lever-
aged to generate multiple predictions including traffic flow predictions and anomaly 
predictions. The system can make real-time traffic management and safety response 
according to these prediction results, and improve the efficiency and safety of urban 
traffic system.
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By integrating traffic flow prediction and intelligent Iot anomaly detection and 
prediction, urban traffic systems can be monitored and managed more comprehen-
sively, potential problems can be prevented in advance and emergencies can be 
quickly responded to, which brings more possibilities for urban traffic management 
and intelligent iot applications. The ACC reliability of traffic prediction using deep 
learning depends on the quality and quantity of the collected data, the complexity of 
the modalities, and the training process of the selected deep learning model. Con-
tinuous and periodic retraining of the model ensures that its performance remains 
optimal as traffic conditions evolve. By accurately predicting traffic patterns, deep 
learning models can help inform traffic management strategies, optimize the routes 
of individual vehicles or fleets, and assist transportation authorities and drivers alike 
in making decisions. 

In IoV, anomaly detection and prediction play a vital role in ensuring the safety 
and efficiency of traffic and mobility. Deep learning technology can also be used 
to effectively identify and predict anomalies in the IoV ecosystem. Continuous 
evaluation and retraining of deep learning models with the latest data ensures that 
their performance remains reliable when new anomalies appear or traffic conditions 
change. Moreover, integrating real-time data from connected vehicles and infrastruc-
ture in IoV enables more accurate and proactive anomaly detection and prediction 
systems. By utilizing deep learning for anomaly detection and prediction in IoV, 
traffic management systems can quickly identify abnormal situations, such as acci-
dents, congestion, or faults. This enables fast incident response, traffic diversion, and 
enhanced safety measures, ultimately helping to improve and make the traffic and 
travel experience more efficient. 

In the IoV ecosystem, intelligent routing and navigation systems play a crucial role 
in optimizing traffic and mobility. Deep learning techniques can be applied to develop 
complex models to improve the ACC and efficiency of routing and navigation. Here’s 
how deep learning can be used for intelligent routing and navigation systems in IoV. 
Data is generated by collecting comprehensive data from various sources, including 
historical traffic patterns, real-time sensor data, road conditions, weather information, 
as well as GPS traces. These data form the basis for training deep learning models. 
The collected data were cleaned and preprocessed to remove noise, handle missing 
values, and normalize the data. In addition, feature engineering techniques can be 
applied to relevant information such as road network topology, traffic signal timing, 
or historical traffic congestion levels. The appropriate deep learning model is then 
selected for intelligent routing and navigation. CNN can be used to process spatial 
data, such as maps of road networks or images from traffic cameras. RNN can capture 
temporal dependencies, which are important for analyzing sequential data such as 
GPS trajectories or historical traffic patterns. The preprocessed data is then used 
to train the selected deep learning model. This involves input data such as GPS 
coordinates, start and end points, and historical traffic information, and training a 
model to predict the best route and estimated travel time. Reinforcement techniques 
can also be employed to optimize the decision-making process of the model based on 
rewards and feedback from simulated or real-world environments. Finally, the trained 
deep learning model is validated using evaluation metrics such as route ACC, travel
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time prediction ACC, or comparison with ground truth data. Cross-validation or 
deploying a simulation environment can help evaluate the performance of a model 
and identify areas for improvement. 

Once the model is trained and validated, it can be used in real-time routing and 
navigation systems. The deep learning model takes into account the current traffic 
conditions, road constraints, and user preferences to provide optimal route sugges-
tions, dynamic re-routing in response to traffic congestion, and accurate travel time 
estimation. The model can also incorporate real-time data from connected vehicles 
and infrastructure to further enhance its recommendations. 

As traffic patterns and road conditions change over time, it is important to con-
tinuously update and retrain deep learning models. This will ensure that the smart 
route and navigation system remains up-to-date and provides accurate guidance. 
By leveraging deep learning for intelligent routes and navigation in IoV, drivers 
can experience higher travel efficiency, reduced congestion, and safer navigation. 
In addition, transportation authorities can use these systems to optimize traffic flow, 
reduce environmental impact, and enhance the overall travel experience in the IoV 
ecosystem. 

In the IoV environment, data privacy and network security are important consid-
erations to ensure the protection of sensitive information and prevent unauthorized 
access. Deep learning technologies can contribute to enhancing data privacy and 
network security in the following ways: 

Secure data transfer: Deep learning models can be trained to encrypt and securely 
transfer data between vehicles and infrastructure. Techniques such as Secure Socket 
Layer (SSL) encryption, secure multiparty computation, or homomorphic encryp-
tion can be applied to protect data in transmission against unauthorized access or 
interception. 

Anomaly detection: Deep learning models can analyze patterns in network traffic 
and identify anomalies that may indicate malicious activity or cyber threats. By 
training on known normal behavior patterns, these models can detect suspicious 
or abnormal network behavior and issue alerts to help identify potential network 
security threats. 

Intrusion detection and prevention: Deep learning models can be deployed to 
monitor and analyze network traffic in the IoV ecosystem. By continuously monitor-
ing incoming and outgoing packets, these models can detect patterns associated with 
known network attacks or suspicious activity, enabling rapid response and preventing 
unauthorized access or data disclosure. 

Security authentication and access control: Deep learning models facilitate secu-
rity authentication and access control mechanisms in IoV. By leveraging techniques 
such as biometrics or behavior analysis, these models can authenticate and authorize 
legitimate users or vehicles, preventing unauthorized access and identity theft. 

Privacy-preserving data analytics: Deep learning techniques such as federated 
learning or differential privacy can be used to train models while preserving the pri-
vacy of sensitive data. These approaches allow data analytics to be performed locally 
on a single vehicle or infrastructure node without transferring raw data, preserving 
user privacy while still enabling valuable insights and collaborative learning.
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Threat intelligence and response: Deep learning models can be trained on a 
large corpus of cybersecurity threat intelligence data. These models can identify 
the patterns, characteristics, and metrics of known cyber threats, so as to more 
quickly identify and respond to cyber attacks or vulnerabilities emerging in the IoV 
ecosystem. 

Continuous model monitoring and updating: Deep learning models for cyberse-
curity can be continuously monitored and updated to adapt to changing threats and 
vulnerabilities. Regular updates ensure that the model remains effective in detecting 
the latest cyber attacks and can effectively mitigate emerging risks. 

It is important to note that while deep learning can facilitate data privacy and 
cybersecurity in IoV, a holistic approach is necessary. This includes strong encryp-
tion practices, secure network infrastructure, regular security audits, user awareness 
training, and a regulatory framework to protect user privacy and ensure responsible 
data handling in the IoV ecosystem. 

In summary, combining deep learning techniques with IoV can revolutionize 
transportation and mobility. By anticipating traffic patterns, detecting anomalies, 
optimizing routes, and facilitating intermodal transportation, deep learning can 
contribute to safer, more efficient, and sustainable transportation systems.



Chapter 6 
Software Defined Networking 

6.1 A Balance Between Flexibility and Manageability 

Software Defined Networking (SDN) is a new network architecture and network 
management method. In a traditional network, network devices (such as switches and 
routers) are responsible for data transmission and control plane processing. Network 
administrators need to configure these devices one by one, which makes the control 
and management of the entire network complicated and rigid. SDN separates the 
control plane and data plane of the network so that the network control logic can be 
abstracted from the physical device and centralized in a centralized software called 
controller for management and configuration. 

SDN essentially solves the problem of balancing the flexibility and manageabil-
ity of the network. In traditional networks, there is a trade-off between flexibility 
and manageability, which is either sufficiently flexible but less manageable, or man-
ageable but less flexible. The traditional network architecture is usually fixed and 
decentralized without a centralized network controller, so although the management 
of the network is relatively simple, it is not flexible when the network structure needs 
to be adjusted or new requirements need to be introduced. To ensure flexibility, you 
have to increase the complexity of management. 

SDN achieves a balance between flexibility and manageability by separating the 
network control plane and the data plane into a centralized network controller. 

The algorithms to achieve this balance include the shortest path algorithm, the 
minimum bandwidth path algorithm and the minimum traffic scheduling algorithm. 
The goal of the shortest path algorithm is to find the shortest path between two 
nodes so that the cost required to pass through the path is minimal, so as to optimize 
resource allocation in the communication network, minimize latency or maximize 
bandwidth. The principle of the minimum bandwidth path algorithm is similar to that 
of the minimum traffic scheduling algorithm. Formulas and pseudo-code examples 
are presented below to illustrate. (Take shortest path algorithm as an example.) 
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Dijkstra’s algorithm is a greedy algorithm for finding the shortest path from the 
source node to all other nodes in a graph. The main idea of the algorithm is to start 
from the source node and gradually expand to the nodes where the shortest path has 
not been determined until the shortest path of all nodes is determined. 

The formula .dist[v] = min(dist[v], dist[u] + weight (u, v)) describes the key 
steps in Dijkstra’s algorithm, where: .dist[v] represents the current shortest distance 
from the source node to node v. .dist[u] + weight (u, v) represents the path length 
from the source node through node . u to node . v, that is, the distance from node . u to 
node. v plus the current shortest distance from the source node to node. u. The. min()
function is used to compare the smaller values between the two to update the shortest 
distance of the node . v. 

The mechanism of the shortest path algorithm is to initialize the shortest distance 
of the source node to 0, and the shortest distance of other nodes to infinity. Then, the 
node with the shortest distance is selected from the nodes whose shortest path has 
not yet been determined as the current node. Then, all adjacent nodes of the current 
node are relaxed. If the shortest distance is shorter than the currently known shortest 
distance, update the shortest distance and repeat the steps until the shortest distance 
is determined for all nodes. 

In software-defined networks, the shortest path algorithm will calculate the short-
est distance between the source node and the target node, and these paths can be 
based on different indicators, such as the shortest distance, minimum delay or max-
imum bandwidth, so as to achieve the separation of the data plane and the control 
plane required by the software defined network. 

A software-defined network can schedule traffic based on different indicators. 
For example, the controller calculates the shortest path and sends it to the data plane 
device through the southbound interface between the control plane and the data plane. 
Once the path information is sent to the data plane device, the data packet is routed 
according to the path information. The upstream entries on the device on the data 
plane are configured to match and forward traffic based on the characteristics of 
the received traffic object. At the same time, in order to ensure the flexibility of the 
network, when the traffic mode changes, the controller can re-run the shortest path 
algorithm to update the path information, thus realizing the global view and control 
of the network, while the data plane device is only responsible for the actual data 
forwarding. This separation ensures the flexibility, programmability and management 
efficiency of the network. Therefore, the flexibility and manageability of the network 
are balanced. 

In traditional networks, traffic routing is usually handled by routing protocols on 
routers and switches, which can be distance vector protocols (such as RIP) or link 
state protocols (such as Open Shortest Path First(OSPF)). These protocols select 
routing paths based on network topology and predefined policies. 

RIP uses distance-based routing, where distance is a metric, usually the number 
of hops. Each router maintains a routing table that contains information about the 
distance to the destination network. Routers update these routing tables by period-
ically exchanging routing update messages. OSPF uses the link state protocol, and 
each router maintains a topology database that contains the topology information of
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the entire network. Link state update messages are periodically exchanged between 
routers to build a topological database of the entire network and calculate the shortest 
path using Dijkstra’s algorithm. 

In fact, both traditional networks and software-defined networks use the shortest 
distance algorithm for calculation, but the centralized control of software-defined 
networks determines that it will have more advantages. In traditional network routing 
protocols, each router only knows the status of its immediate neighbors without a 
global view of the entire network. At the same time, their route calculation is usually 
based on distributed algorithms, different from software-defined networks, such as 
distance vector protocol and link state protocol, which need to be carried out on each 
router rather than centralized control, and for large networks, the complexity of route 
calculation may be high, resulting in a long time and slow update. 

In contrast, software-defined networks have a centralized controller that can obtain 
a global view of the entire network, and use the shortest path algorithm for routing cal-
culation at this time, which can adapt to network changes more quickly, achieve rapid 
network convergence and traffic adjustment. These centralized management and 
control make software-defined networks stand out in terms of the balance between 
manageability and flexibility. 

SDN solves two key technical bottlenecks in traditional networks, that is, it makes 
the network programmable and ensures the balance between centralized control and 
distributed data plane. Traditional network devices are often statically configured, 
which is difficult to flexibly adjust and manage according to requirements. One of the 
keys of SDN technology is network programmability, that is, by separating the net-
work control plane from the data plane, network administrators can use standardized 
programming languages (such as OpenFlow etc.) to dynamically control network 
traffic. This enables more flexible and intelligent network management to meet the 
requirements of different applications and services. In this case, the architecture of 
the separation of control plane and data plane in SDN makes network management 
more flexible, but also brings the centralization of control plane and the distribu-
tion of data plane. This architecture can improve the manageability and flexibility 
of the network in some ways, but it can also introduce single points of failure and 
performance bottlenecks. Therefore, it is necessary to find a balance point between 
centralized control and distributed data planes to ensure network stability, reliability 
and performance. In this process, intelligent technology has played a key role, and 
the specific effects of intelligent technology represented by machine learning will be 
introduced in detail next.
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6.2 The Role of Intelligent Technology Represented 
by Machine Learning 

SDN uses intelligent technology to solve the problem of network programmability, 
mainly through the following five ways: First, intelligent controller. Second, intelli-
gent routing and traffic engineering. Third, intelligent policy management. Fourth, 
intelligent network monitoring and optimization. Fifth, intelligent applications and 
services. 

The controller in SDN architecture is the intelligent core of the whole network. 
The controller can use intelligent algorithms to analyze network traffic, device sta-
tus, application requirements and other information, so as to realize intelligent pro-
gramming of network behavior. For example, the controller can dynamically adjust 
network traffic routing and optimize load balancing based on real-time traffic. On a 
traditional network, the communication logic between network devices is hard-coded 
inside the devices. Therefore, modifying the configuration requires device-by-device 
operations, which is difficult and time-consuming. Through the characteristics of 
centralized control and intelligent flexibility, it can adapt to network changes and 
requirements more quickly, reducing the cost of manual configuration and manage-
ment. The classic OpenDaylight Controller and Open Network Operating System 
(ONOS) integrate algorithms and applications through intelligent technology to take 
advantage of this principle. In short, OpenDaylight is an open source SDN controller 
platform, it provides a rich API and plug-in mechanism, can support a variety of 
intelligent algorithms and application integration, so as to achieve intelligent pro-
gramming and management of the network. ONOS is another open source SDN 
controller platform, which adopts distributed architecture, supports the collaborative 
work of multiple controllers, and provides a wealth of intelligent algorithms and 
applications, which can realize intelligent control and optimization of the network. 

The centralized controller in SDN can realize intelligent routing by monitoring 
the topology and traffic of the whole network and using intelligent algorithms. The 
controller can dynamically adjust the routing policy according to the current net-
work status and traffic load, and select the optimal path to transmit data packets. This 
prevents network congestion and improves network performance and reliability. In 
addition, a centralized controller in SDN can engineer the traffic in the network 
according to the policies and goals of the network administrator. For example, the 
controller can dynamically adjust the traffic path and priority according to the traffic 
load and QoS requirements to optimize the utilization efficiency and QoS of network 
resources. In this way, the intelligent control and management of network traffic can 
be realized, and the performance and efficiency of the network can be improved. 
Dijkstra algorithm plays an important role in SDN and is one of the bases of intelli-
gent routing. Dijkstra algorithm is a classical algorithm used to calculate the single 
source shortest path in weighted graphs. In SDN, when it is necessary to calculate the 
optimal packet transmission path according to the topology and traffic situation of 
the network, Dijkstra’s algorithm can help achieve this goal. In SDN, Dijkstra algo-
rithm is used to calculate the single source shortest path in the network topology, so



6.2 The Role of Intelligent Technology Represented by Machine Learning 113

as to achieve the optimal packet transmission path. The SDN controller obtains net-
work topology information and constructs network topology diagram. Then, Dijkstra 
algorithm is used to calculate the shortest path and consider the weight index on the 
path. Finally, the routing table is updated and the optimal path information is sent to 
the device to realize intelligent routing. This process enables SDN to dynamically 
calculate the optimal path, meet the requirements of network performance and traffic 
load, and improve network performance and efficiency. 

SDN use access control lists (ACLs) to implement intelligent technical manage-
ment to improve network security and management efficiency. The SDN controller 
dynamically generates ACL rules based on real-time network status and traffic and 
delivers them to network devices. For example, if a host generates an abnormally 
large amount of traffic, the controller automatically delivers ACL rules to restrict 
the host’s network access to avoid adverse impact on the network. This flexible 
ACL delivery mechanism enables the network to quickly respond to various security 
threats, enhancing network security and management efficiency. In addition, the SDN 
controller can manage ACL rules according to the policies and service requirements 
set by the administrator. The administrator can define ACL rules through the user 
interface or API provided by the controller, and set parameters such as the priority 
and application scope of the rules. The controller automatically generates ACL rules 
based on these policies and sends them to network devices. This policy-based ACL 
management method helps administrators control network access flexibly, improv-
ing network security and management efficiency. In addition, the SDN controller 
can use ACL rules to classify and prioritize traffic. Administrators can set ACL rules 
to identify specific traffic (such as video and voice traffic) and specify priorities for 
these traffic. The controller classifies and marks traffic based on ACL rules and deliv-
ers the traffic to network devices for intelligent management and control. This traffic 
classification and priority control can help the network realize intelligent schedul-
ing when dealing with various traffic types and improve network performance and 
service quality. 

Real-time flow control through SDN and intelligent technology is also an impor-
tant means to improve network performance and service quality. One of the most 
classic mechanisms is to use SDN controllers to collect network traffic information 
and then use intelligent technologies such as deep learning or rule-based classifica-
tion algorithms to identify and classify traffic and distinguish real-time traffic from 
other types of traffic. Then, the identified real-time traffic is marked preferentially, 
usually using a QoS marking mechanism, such as Differentiated Services (DiffServ) 
or 802.1p, so that network devices can process traffic based on the priority. Secondly, 
based on traffic identification and priority marking, the SDN controller can dynam-
ically allocate bandwidth to ensure that real-time traffic gets enough bandwidth to 
meet its delay requirements, so as to achieve dynamic bandwidth allocation. For 
example, TCP congestion control algorithms (such as TCP Tahoe, TCP Reno, TCP 
NewReno, TCP Vegas, etc.) are technologies that realize adaptive traffic control by 
monitoring network congestion and adjusting the sending rate. And another very 
classic example is fault recovery, SDN controller can use intelligent technology to 
monitor the fault in the network, and take corresponding measures to restore real-time
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traffic transmission. It is worth noting that SDN itself can realize the programmabil-
ity of the network and its branch function through a special architecture, in which 
intelligent technology plays an auxiliary role. 

In the combination of SDN and intelligent technology, one of the most important 
aspects of network optimization and security strategy is intelligent security analysis. 
Through intelligent security analytics, SDN controllers can monitor network traffic 
and security events in real-time, analyze network behavior patterns using intelligent 
algorithms and machine learning techniques, and detect abnormal traffic and potential 
threats. This kind of intelligent security analysis can effectively identify and block the 
malicious behavior in the network, including intrusion attacks, malicious software 
spread and other security threats. Intelligent security analysis can not only detect 
security incidents in time, but also provide more intelligent security response and 
defense mechanisms. Based on the intelligent security analysis results, the SDN 
controller dynamically adjusts network security policies and takes targeted defense 
measures to prevent malicious traffic from entering the network and protect critical 
services and sensitive data. 

In SDN, another difference from the traditional network architecture is that it 
adopts a centralized control mode. In traditional networks, network devices (such 
as routers and switches) are responsible for data forwarding and processing, and the 
decision-making process is decentralized among each network device. In SDN, the 
control logic of the network is centralized into a centralized controller, which man-
ages the behavior of the entire network by communicating with network devices. 
This enables faster deployment and centralized management of SDN. However, 
centralized control also faces some challenges, including single points of failure, 
performance bottlenecks, and security issues. Therefore, in actual deployment, it 
is necessary to consider how to address these challenges to ensure the reliability 
and security of centralized control. Next, it will explain how SDN realizes central-
ized control through intelligent technology from four aspects: distributed control 
plane, intelligent routing and load balancing, distributed data plane collaboration 
and intelligent network monitoring and management. 

Centralized control uses a single controller to manage the entire network, which 
has the advantages of centralized management, flexibility and programmability, but 
it also has the problem of single point of failure and performance bottleneck. The 
distributed control plane adopts a distributed management network with multiple 
controller nodes, realizes state consistency and decision coordination through RAFT 
protocol and Paxos algorithm, overcomes the shortcomings of centralized control, 
and improves the reliability and performance of the network. RAFT protocol and 
Paxos algorithm are two common consistency protocols used to achieve state con-
sistency in distributed systems. They play an important role in the distributed control 
plane, ensuring state synchronization and decision consistency among multiple con-
troller nodes, so as to achieve unified management and control of the network. In 
SDN, consistency protocols such as RAFT protocol and Paxos algorithm are widely 
used in the design and implementation of distributed control plane to achieve state 
synchronization and decision coordination among multiple controller nodes. These 
protocols ensure state consistency between controller nodes, so as to achieve unified
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management and control of the entire network. With the support of consistency proto-
cols such as RAFT protocol and Paxos algorithm, SDN can better realize distributed 
control plane and improve network reliability and performance. 

In SDN, based on the global network topology and traffic information, the cen-
tralized controller can use intelligent routing algorithms to calculate the optimal 
path, the shortest path or the best path from the source node to the destination node. 
The centralized controller also implements load balancing of network traffic, that 
is, traffic is distributed over multiple equal paths to achieve balanced utilization of 
network resources and performance optimization. Intelligent routing and load bal-
ancing are usually implemented by ECMP (Equivalent multipath) and shortest path 
algorithm. ECMP is a hash function based load balancing algorithm that distributes 
traffic over multiple equivalent paths to achieve load balancing. Specifically, ECMP 
achieves load balancing by taking information such as the packet’s source IP address, 
destination IP address, and port number as input, using a hash function to calculate 
a value, and then sending the packet to the path corresponding to that value. The 
shortest path algorithm is an algorithm used to calculate the shortest path between 
two nodes in a network, including Dijkstra’s algorithm and Bellman-Ford’s algo-
rithm. Based on the greedy strategy, Dijkstra’s algorithm starts from the initial node, 
gradually expands to other nodes in the network, and continuously selects nodes on 
the shortest path to join the set of shortest paths until the target node is reached. 
Bellman-Ford algorithm, on the other hand, is a dynamic programming algorithm 
that repeatedly updates the estimated shortest path between nodes until it converges, 
and finally obtains the shortest path. These shortest path algorithms are often used 
in the calculation of intelligent routes in SDN to achieve efficient transmission and 
load balancing. 

In addition, in SDN, the controller communicates with network devices through 
the OpenFlow protocol to dynamically configure the flow table, so as to achieve flex-
ible management and optimization of network traffic. Compared with the traditional 
routing decision based on BGP (Border Gateway protocol), the centralized control 
of SDN can adjust the routing policy more flexibly and realize the fine control of 
network traffic. Telemetry data plays a key role in SDN and is closely related to 
the realization of intelligent network monitoring. By collecting real-time data from 
network devices, such as traffic, latency, packet loss rate and other metrics, telemetry 
can provide a comprehensive insight into the state of the network. SDN controllers 
can leverage this data to enable intelligent network monitoring, which allows real-
time monitoring of network performance, health, and traffic patterns. Specifically, 
telemetry data helps SDN controllers identify changes in network topology, link sta-
tus, and traffic distribution in real-time. By analyzing this data, the SDN controller 
can intelligently adjust network policies, such as dynamic route optimization, traf-
fic adjustment, and fault recovery, to meet different QoS requirements and improve 
network performance and reliability.
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6.3 Opportunities and Challenges Faced by SDN Under 
the Integration of Machine Learning 

With the integration of machine learning, SDN will face new opportunities and 
new challenges. As mentioned in the previous chapter, intelligent technologies led 
by machine learning have made considerable contributions to intelligent network 
management and optimization of SDN networks and intelligent security protection. 
In contrast, the opportunities and challenges faced by SDN will be closely related 
to these two points. These opportunities include intelligent network management 
and optimization and intelligent security protection, as well as dynamic network 
optimization and intelligent application services. Seizing the opportunity will further 
enhance the performance of SDN and play a huge role in technology upgrading 
and employment in related fields. Relatively new technologies will also bring new 
challenges, such as the difficulty of technology convergence, data privacy security, 
and network model performance efficiency. The integration of machine learning and 
SDN needs to overcome the compatibility and interoperability between different 
technical systems and architectures, so the technology integration is not small. Data 
privacy security and network scale issues are two of the most common and common 
challenges in network systems: Machine learning is based on user data analysis and 
upgrade, where how to protect user data privacy is crucial. With the upgrading and 
expansion of SDN, network traffic continues to increase, and it will be increasingly 
difficult to ensure the performance and efficiency of machine learning. 

In the future, intelligent technology in software-defined networks will develop in 
the following three aspects: First, intelligent network configuration and scheduling. 
Second, intelligent network operation and fault handling. Third, intelligent security 
protection mechanism. With the addition of machine learning and artificial intel-
ligence technology, through the analysis and learning of massive data, the SDN 
network will tend to be adaptive and intelligent, and the network behavior and ser-
vice quality will be adjusted according to the needs in different scenarios, so as to 
provide users with personalized intelligent application services. 

An example of SDN intelligent network configuration is machine learning-based 
Traffic Engineering. In SDN networks, traffic engineering is an important network 
optimization technology. Traffic paths can be dynamically adjusted according to 
network traffic conditions and user requirements to improve network performance 
and resource utilization. The SDN controller collects data to train machine learn-
ing models, such as NNs and decision trees, to predict network traffic trends and 
identify network bottlenecks. According to the prediction results of the machine 
learning model, the SDN controller can intelligently adjust the path of traffic in the 
network to avoid congested nodes, reduce latency, improve bandwidth utilization, 
and so on. In addition, machine learning models can also analyze network traffic 
and device behavior, identify abnormal patterns and potential security threats, and 
achieve intelligent security protection purposes. For example, you can detect DDoS 
attacks, malware spread, unauthorized access, and more.
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With the rise of 5G technology, the IoT, edge computing and other emerging fields 
in the same era, in order to successfully grasp the opportunity, intelligent technology 
and SDN network should be integrated with the development of emerging fields. 
The following will describe the relationship and integration of these three areas with 
SDN networking and machine learning. 

Network slicing is an important feature in 5G networks that allows network oper-
ators to create multiple logically independent virtual network instances on the same 
physical network infrastructure based on different service requirements and service 
types. The network slicing technology in 5G network can divide network resources 
into multiple independent virtual networks, so that different services can enjoy cus-
tomized network services. The combination of intelligent technology and SDN can 
realize intelligent management and optimization of network slices, dynamically 
adjust resource allocation according to service requirements, and improve network 
performance and user experience. Under the edge computing architecture of 5G 
network, the combination of intelligent technology and SDN can also realize intel-
ligent edge computing resource scheduling and management, so as to support edge 
computing. The famous RL algorithm is the best example here. 

Similarly, IoT involves a large number of device connections, and intelligent tech-
nology and SDN can realize the intelligent management and security protection of 
IoT devices. Monitor device behavior in real-time with machine learning models to 
identify anomalies and take automated action. For example, SVM, Decision Tree 
(Decision Tree) and Neural Network algorithms are used to build intelligent man-
agement and security protection systems to monitor the behavior of IoT devices in 
real-time and take automated actions. Ensure network security and stability. 

It is worth noting that SDN algorithm plays a role in optimization and auxil-
iary control. In SDN network, centralized controllers can be used to manage and 
adjust policies in a unified manner. The machine learning algorithm can optimize 
the network strategy according to the different behavior patterns of devices in the 
SDN network, and improve the efficiency and security of device connection. SDN 
supports flexible traffic control and isolation based on flow tables, and can automat-
ically isolate and restrict access to infected devices based on the detection results of 
machine learning algorithms to prevent security threats from spreading to the entire 
network. 

In addition, in the edge computing environment, intelligent technology and SDN 
can realize resource scheduling and load balancing for edge nodes, reasonably allo-
cate computing resources according to real-time data traffic and computing load, 
and improve computing efficiency. However, in the absence of SDN technology, it is 
difficult to dynamically adjust and optimize the utilization of edge node resources, 
which may lead to resource overload of some nodes and idle resources of other nodes, 
resulting in low resource utilization. The lack of SDN technology will also negatively 
affect the intelligent management and security protection control of network traffic, 
making the edge computing environment vulnerable to network attacks and security 
threats, affecting the stability and security of the system. 

Next, we will further analyze and speculate the possible development trend of 
SDN from the aspect of future planning. As an important development direction
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of network technology, the analysis of its future planning can guide the direction 
of related technology research and development, help industry researchers better 
understand the development trend and focus of SDN technology, promote industrial 
application, help industry understand its development potential and application sce-
narios in different fields, and foresee possible challenges and risks. Develop coping 
strategies and measures in advance. Even in the best case, the development of SDN 
technology will be supported and guided by government policies, and the analysis of 
its future planning can provide decision-making reference for relevant government 
departments. This is why we will analyze the future planning of SDN. 

SDN technology itself solves the two problems of network programmability and 
centralized control, and future planning will be based on them. We speculate that 
SDN will have more powerful network programming capabilities and cross-domain 
network programs and service offerings in the future. 

SDN, as a network architecture, has shown a trend of combining with AI, and in 
the future it will be further combined with deep learning, RL, genetic algorithms, 
evolutionary algorithms and graph theory, etc., to support more diverse and complex 
network functions and services, including network virtual, network security and so 
on. At the same time, it will support open and standardized programming interfaces, 
making it easier for third-party developers to develop and integrate their own web 
applications. 

As for cross-domain network programming and service provision, SDN has real-
ized cross-domain network programming to a certain extent, but there are still some 
challenges. The SDN architecture allows multiple controllers to be deployed in dif-
ferent domains, and can also create, configure and manage cross-domain service 
links by defining service links. However, cross-domain network programming needs 
to solve cross-domain security policy coordination and performance optimization 
and other problems, but also unified development of programming interfaces and 
standards, so although the implementation of cross-domain network programming 
has made some progress, it still needs further research, which will become a direction 
of development and technology advancement in the future. 

In traditional networks, traffic routing is usually handled by routing protocols 
on routers and switches, which can be distance vector protocols (such as RIP) or 
link state protocols (such as OSPF). These protocols select routing paths based on 
network topology and predefined policies. 

RIP uses distance-based routing, where distance is a metric, usually the number of 
hops. Each router maintains a routing table that contains information about the dis-
tance to the destination network. Routers update these routing tables by periodically 
exchanging routing update messages. 

To sum up, software-defined network will have both flexibility and manageability, 
which will make it have a broad application field in the future. For example, the 
flexibility of software-defined network will enable it to adapt to the dynamic change 
of cloud computing environment. In cloud computing and data center network, it can 
realize dynamic network resource allocation and optimization. At the same time, its 
manageability and flexibility will also enable it to support the needs of 5G networks.
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In 5G networks, software-defined networks can realize the management and dynamic 
scheduling of network slices, and in edge computing environments, software-defined 
networks can realize the intelligent management and resource allocation of edge 
networks to reduce latency. SDN will also be widely used in the IoT and network 
security, providing efficient and flexible network support for different fields.



Chapter 7 
Security in Wireless Communication 

7.1 Secure Communications with Supervised Learning 

Secure communication refers to the protection of communication content and the 
privacy and security of communication participants through various security mech-
anisms and technologies. In the field of communications, secure communication is 
crucial, especially in the age of the Internet. Traditional secure communication tech-
nologies typically rely on encryption algorithms and key exchange protocols to pro-
tect communication content from unauthorized access. However, with the increasing 
computational power of computers and advancements in cryptographic attack tech-
niques, traditional encryption technologies may be vulnerable, thus necessitating 
more advanced security mechanisms to address these challenges. 

Among the myriad of approaches being explored, the integration of supervised 
learning into security protocols represents a promising frontier in the quest for secure 
communications. Supervised learning, a cornerstone of machine learning, involves 
training an algorithm on a labeled dataset to enable it to make predictions or deci-
sions without being explicitly programmed to perform the task. In the realm of 
wireless communication security, Supervised learning algorithms learn from data 
that encapsulate the characteristics of both secure and compromised communication 
channels. By analyzing patterns and anomalies in this data, the algorithms can dis-
tinguish between legitimate and malicious activities, thereby enhancing the security 
of wireless networks. 

The practical applications of supervised learning in the field of Wireless Security 
are diverse. First, we will commence by exploring IDS. These systems capitalize on 
the capabilities of supervised learning algorithms, which undergo training on datasets 
inclusive of both ordinary network traffic and a variety of cyber-attack instances. 
Upon implementation, IDS can swiftly identify potential threats in real-time, pro-
viding network administrators with the tools to proactively address unauthorized 
access and counteract malicious activities. This proactive approach enhances the 
overall security posture of wireless networks. 
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Moreover, supervised learning is instrumental in Anomaly Detection within wire-
less networks. By grasping the typical operational parameters of a network, super-
vised learning models excel at pinpointing deviations from these norms, signaling a 
potential security breach or intrusion attempt. 

Additionally, supervised learning plays a pivotal role in phishing attack preven-
tion. With the rise of phishing attacks in wireless communication, supervised learning 
algorithms can be trained to detect telltale signs of phishing attempts, such as suspi-
cious URLs and email content, effectively thwarting these attacks before they reach 
their targets. 

Furthermore, supervised learning contributes to bolstering secure authentication 
protocols in wireless networks. By scrutinizing login patterns and user behavior, 
supervised learning models can discern between legitimate users and potential intrud-
ers, promptly blocking unauthorized access attempts and safeguarding both user data 
and network integrity. 

Key techniques and algorithms of supervised learning are as follows: Several 
supervised learning algorithms are pivotal in enhancing wireless security, including:

• Decision trees: Used to model decisions and their possible consequences, making 
them suitable for classifying types of network attacks.

• Support Vector Machines (SVMs): Effective for high-dimensional data, SVMs are 
adept at distinguishing between benign and malicious traffic.

• Neural networks: With their ability to learn complex patterns, NNs are increasingly 
employed in detecting sophisticated cyber threats. 

And supervised learning can be applied to user authentication through the 
following stages:

• Stage 1: Data Collection and preprocessing 
(1) Data collection 
Gathering Data: Collect data representing both normal and malicious network 
traffic. This data could include packet logs, network flow statistics, and user 
behavior metrics. 
Labeling: Each data point must be labeled as “normal” or “malicious” based on 
known outcomes. This step is crucial for supervised learning, as it provides the 
ground truth for training the model. 
(2) Preprocessing 
Feature extraction: Extract relevant features from the data that could indicate 
malicious activity. These features might include source / destination IP addresses, 
packet sizes, timestamps, protocol types, and payload contents. 
Normalization: Scale the features to a similar range to ensure no single feature 
dominates the model’s learning process due to its scale. 
Data splitting: Divide the dataset into training, validation, and test sets. A common 
split ratio is seventy percent training, fifteen percent validation, and fifteen percent 
test.
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• Stage 2: Model selection and training 
(1) Model selection 
Choose suitable supervised learning algorithms based on the nature of the data 
and the specific security task. Common choices include decision trees, SVM, and 
NNs. 
(2) Training 
Model training: Train the selected model on the training dataset by adjusting the 
model’s parameters to minimize the difference between the predicted and actual 
labels. 
Validation: Use the validation set to tune hyperparameters and prevent overfitting. 
Techniques like cross-validation can be particularly useful here.

• Stage 3: Model evaluation testing: Evaluate the model’s performance on the unseen 
test dataset to estimate how well it will generalize to new data. 
Performance metrics: Use metrics such as ACC, precision, recall, F1 score, and 
ROC-AUC to assess the model’s effectiveness in detecting malicious activities.

• Stage 4: Deployment and real-time prediction deployment: Integrate the trained 
model into the network’s security infrastructure, where it can analyze incoming 
traffic in real-time. 
Real-time prediction: As network traffic flows in, the model classifies it as nor-
mal or malicious, flagging potential threats for further investigation or automatic 
mitigation.

• Stage 5: Feedback loop and model updating Continuous Learning: The cyber 
threat landscape is constantly evolving. Regularly update the model with new data 
to ensure it remains effective against emerging threats. 
Feedback loop: Implement a feedback mechanism where the model’s predictions 
are reviewed, and any misclassifications are corrected. Use this feedback to retrain 
the model, further enhancing its ACC and reliability. 

Additionally, there exist advanced techniques and considerations that can enhance 
the effectiveness of this algorithmic flow (Fig. 7.1):

• Ensemble methods: These methods involve combining predictions from multiple 
models to enhance overall ACC and robustness, offering a more comprehensive 
approach to user authentication.

• Adversarial training: By integrating examples of adversarial attacks during the 
training process, the model can better recognize and defend against such threats, 
thereby increasing its resilience and security.

• Privacy-preserving techniques: Implementing techniques like federated learning 
allows models to be trained on decentralized data sources while preserving user 
privacy. This approach ensures that sensitive user information remains protected 
throughout the authentication process. 

Challenges in implementing supervised learning for wireless security While the 
potential of supervised learning in enhancing wireless security is immense, several 
challenges must be addressed:
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Fig. 7.1 The process of supervised learning be applied to user authentication

• Data quality and availability: The effectiveness of SL models is heavily dependent 
on the quality and diversity of the training data. Collecting comprehensive datasets 
that accurately represent the spectrum of potential cyber threats is challenging.

• Model complexity and overfitting: There is a delicate balance between model com-
plexity and its generalizability. Overly complex models may overfit the training 
data, leading to poor performance on unseen data.

• Adversarial attacks: Cyber attackers continually evolve their strategies, potentially 
misleading SL models through crafted inputs designed to exploit weaknesses in 
the learning algorithm. 

Future research in these areas is likely to focus on developing more resilient 
algorithms that can learn from smaller datasets, as well as enhancing the efficiency 
of these models to make them more suitable for real-time applications. 

The future of secure communications with supervised learning is promising yet 
demands continuous innovation. Key areas for future research include:

• Federated learning: This approach enables models to learn from decentralized data 
sources without compromising user privacy, enhancing both security and privacy.

• Transfer learning: Leveraging pre-trained models on new, related tasks can reduce 
the need for extensive training data, addressing the challenge of data scarcity.

• Quantum machine learning: Quantum computing offers the potential to process 
complex algorithms more efficiently, paving the way for more advanced supervised 
learning models in wireless security.
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And as wireless communication continues to permeate every aspect of modern 
life, the role of supervised learning in ensuring the security of these networks will 
only grow in importance. 

In conclusion, the integration of supervised learning into wireless communication 
security represents a significant leap forward in the fight against cyber threats. By 
leveraging the predictive power of supervised learning, it is possible to develop 
more adaptive, efficient, and robust security measures. Despite the challenges, the 
ongoing advancements in machine learning technologies and methodologies hold 
great promise for creating a safer digital environment. As we continue to explore 
the vast potential of supervised learning, it is clear that its role in securing wireless 
communications will only become more pivotal in the years to come. 

7.2 Federated Learning-Based Secure Communications 

Federated learning, also known as federated machine learning, is a method proposed 
to address privacy concerns during joint model training. In this approach, each enter-
prise trains its own model. Upon completion of training, each enterprise uploads its 
model parameters to a central server, which can also be peer-to-peer. The central 
server combines these parameters, either by uploading gradients or updating its own 
parameters, and formulates new parameters using techniques like weighted averag-
ing. These new parameters are then sent back to each enterprise, which deploys them 
to continue training. This iterative process continues until the model converges or 
other predefined conditions are met. 

Unlike traditional methods that centralize training data, leading to potential single 
points of failure, sensitive data leakage, and significant overhead in collecting and 
storing training data, federated learning allows distributed mobile devices to co-train 
a global model using raw data while keeping this data on the mobile device. 

In the communications technology industry, the Third Generation Partnership 
Programme (3GPP), a prominent standards development organization, has recog-
nized and explored the use of machine learning and vast amounts of data as viable 
solutions to its challenges. The industry must investigate learning solutions capable 
of efficiently handling distributed datasets. Federated machine learning, an emerg-
ing decentralized approach, leverages on-device processing power and private data 
to train models in a decentralized manner, ensuring data stays where it is generated. 
While research in federated learning is still in its early stages, several challenges 
remain, especially in communication security. 

Federated learning has a significant impact on communications security due to 
its distributed nature and the privacy-preserving techniques it employs. Here’s how 
it relates to communications security: 

1. Reduced data transmission: Federated learning minimizes the need to transmit 
raw data across networks. Instead of sending large volumes of sensitive data from 
individual devices to a central server, only model updates (which are typically much 
smaller) are communicated. This reduction in data transmission mitigates the risk
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of interception or unauthorized access during communication, enhancing overall 
security. 

2. Privacy preservation: By keeping data localized and performing computations 
on the device or at the edge, federated learning maintains data privacy. The emphasis 
on local training and transmitting model updates rather than raw data helps pre-
vent sensitive information exposure during communication. This privacy-centric 
approach aligns with communication security principles by reducing the chances 
of data breaches or leaks during transmission. 

3. Secure aggregation: Federated learning involves aggregating model updates 
from multiple devices at a central server or aggregator. Techniques used for secure 
aggregation, such as encryption or cryptographic protocols, ensure that these aggre-
gated updates remain protected during transmission. This secure aggregation con-
tributes to the overall communications security by safeguarding the integrity and 
confidentiality of the model updates. 

4. Encrypted computation: Some federated learning approaches incorporate cryp-
tographic techniques like homomorphic encryption or secure multiparty computa-
tion. These methods allow computations to be performed on encrypted data, ensur-
ing that even during communication or collaborative learning, the data remains 
encrypted, thereby enhancing security. 

Overall, federated learning intersects with communications security by empha-
sizing data privacy, minimizing data transmission, employing secure aggregation 
methods, and leveraging encryption techniques to safeguard information during 
communication and collaborative learning processes. 

Federalism learning, or federated learning, is a machine learning approach that 
allows for training models across decentralized devices or servers while keeping 
data localized and private. In the context of wireless security, federated learning can 
address several issues: 

1. Privacy concerns: Wireless networks often handle sensitive data. Federated 
learning enables model training without transferring raw data to a central server. 
Instead, models are trained locally on devices, preserving user privacy. 

2. Data security: Transmitting data wirelessly can be vulnerable to interception 
or hacking. Federated learning reduces the risk by keeping data decentralized and 
localized, limiting exposure to potential breaches during transmission. 

3. Resource efficiency: Wireless devices often have limited resources like bat-
tery power or bandwidth. Federated learning allows these devices to participate in 
model training without continuously transmitting large volumes of data, conserving 
resources. 

4. Adaptability and localization: Wireless networks operate in diverse environ-
ments. Federated learning allows models to adapt to local conditions without relying 
on a centralized approach, leading to more contextually relevant security measures. 

5. Collaborative threat detection: Federated learning enables multiple devices 
or network nodes to collaboratively train models to detect security threats. This 
distributed approach allows for a more comprehensive understanding of threats across 
the network without compromising individual data.
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6. Continuous learning and adaptation: Wireless security threats evolve rapidly. 
Federated learning allows for continuous model updates across distributed devices, 
ensuring that security measures can adapt in real-time to emerging threats. 

7. Regulatory compliance: Federated learning helps address regulatory concerns 
regarding data privacy and localization regulations. By keeping data local and mini-
mizing data transfer, it can assist in compliance with various regional data protection 
laws. 

However, implementing federated learning in wireless security also comes with 
its own set of challenges, such as synchronization of models across distributed 
devices, ensuring model integrity, and managing communication overhead. Addi-
tionally, maintaining the security of the federated learning framework itself is crucial 
to prevent attacks on the learning process. 

Overall, while federated learning offers promising solutions for addressing sev-
eral wireless security issues, its implementation requires careful consideration of 
technical, privacy, and security aspects to ensure its effectiveness. 

Next, we will explain the role of federated learning in wireless network security 
from the first three aspects. 

To address privacy security in wireless network communication, federated transfer 
learning (FTL) technique can be used. FTL is suitable for training machine learning 
models when the data set has different id Spaces and feature Spaces, and here’s how 
it works: 

1. Decentralized learning: Instead of pooling data into a central location, federated 
learning allows models to be trained across multiple decentralized devices or servers. 
Each device holds its own data locally. 

2. Model distribution: A base model is initially created and distributed to individual 
devices. These devices then train the model further using their local data while 
keeping the model parameters on their premises. 

3. Parameter updates: After training on local data, only the model updates (rather 
than raw data) are sent back to a central server or aggregator. This update contains 
the modifications made to the initial model during the local training process. 

4. Aggregation: The central server aggregates the updates received from various 
devices to improve the global model. This aggregated update is then sent back to the 
devices, and the process iterates. 

In a regression problem, the mean square error loss function is used to measure 
the distance from a sample point to a regression curve by minimizing the squared loss 
so that the sample point can better fit the regression curve. The smaller the value of 
the MSE function, the better ACC the predictive model has in describing the sample 
data. Due to the advantages of being parameter-free, computationally inexpensive, 
and having a clear physical meaning, MSE has become an excellent distance metric. 
Despite its weak performance in image and speech processing, MSE is still a criterion 
for evaluating signal quality, and it is often used as a model’s empirical loss or an 
algorithm’s performance metric in regression problems. 

This process ensures that sensitive raw data never leaves the local devices, enhanc-
ing privacy. The central server typically only receives model updates or gradients, 
which are aggregated without exposing individual data points.
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However, while federated learning helps with privacy, it’s not foolproof. There 
are still potential vulnerabilities at different stages, such as inference attacks, model 
inversion attacks, or when adversaries gain access to multiple models’ updates to 
reconstruct sensitive information. Techniques like differential privacy and encryption 
methods are often used in conjunction with federated learning to further enhance 
privacy protections. 

Federated learning to deal with data security has the following key points: 
1. Decentralization: Federalist or federated systems distribute data across various 

nodes or entities rather than centralizing it. This distribution minimizes the risk of a 
single point of failure and unauthorized access. 

2. Access controls: These systems often employ robust access controls, ensuring 
that only authorized individuals or entities can access specific data or resources. This 
might involve authentication measures like multi-factor authentication, role-based 
access, and encryption. 

3. Encryption: Data in transit and at rest is typically encrypted in federalist sys-
tems. This ensures that even if data is intercepted or accessed without authorization, 
it remains unreadable without the decryption keys. 

4. Interoperability and standards: Federalist systems often adhere to standardized 
protocols and interoperability frameworks. This ensures that different components 
or entities within the system can communicate securely without compromising data 
integrity or security. 

5. Monitoring and auditing: Continuous monitoring and auditing of the system 
help identify potential vulnerabilities or breaches. Logging and tracking activi-
ties within the system provide insights into any unauthorized access attempts or 
anomalies. 

6. Regulatory compliance: Compliance with relevant data protection laws and reg-
ulations is a crucial aspect of federalist systems. This includes adherence to standards 
like GDPR, HIPAA, or other industry-specific regulations. 

Homomorphic encryption technology plays an important role in the process 
of data security and the homomorphic encryption algorithm is divided into addi-
tion homomorphic algorithm, multiplication homomorphic algorithm and total 
homomorphic algorithm. 

The additive homomorphic encryption algorithm is a subtype of homomorphic 
encryption that allows addition operations to be performed on encrypted data without 
the need to decrypt it first. This means that addition operations can be executed 
on encrypted data, and upon decryption, the result obtained matches the result of 
performing the addition operation on plaintext. 

In additive homomorphic encryption, two encrypted messages (or an encrypted 
message and plaintext) can be added together to create a new encrypted message 
whose decryption result matches the sum of the corresponding plaintexts. This prop-
erty is highly valuable in various applications, especially those requiring computation 
while maintaining data encryption, such as privacy-preserving cloud computing or 
secure data aggregation. 

It’s important to note that additive homomorphic encryption only supports addi-
tion operations and does not directly support other, more complex operations (such as
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multiplication). However, by employing various techniques and combinations, mul-
tiple addition operations can be combined to achieve a broader range of computations 
and functionalities. 

Remember, while a federalist or federated system offers advantages in terms of 
scalability and distributed control, its effectiveness in ensuring data security relies 
heavily on the implementation of robust security measures across all participating 
nodes or entities. 

Federated learning enhances resource efficiency in multiple ways: 
1. Reduced data movement: Instead of transferring raw data to a central server, fed-

erated learning only shares model updates or aggregated information. This minimizes 
the amount of data transmitted, conserving bandwidth and reducing latency. 

2. Localized computations: Devices or nodes perform model training locally with 
their data, eliminating the need to send data to a central location. This preserves data 
privacy and reduces the load on centralized servers, utilizing local resources more 
efficiently. 

3. Decentralized training: By distributing the learning process across devices, 
federated learning decentralizes computation. This spreads the workload across the 
network, enhancing scalability and preventing bottlenecks on specific servers. 

4. Edge computing utilization: Federated learning often leverages edge devices 
like smartphones or IoT devices for local training. This utilizes the computational 
power available at the network edge, optimizing resource utilization and minimizing 
reliance on central servers. 

5. Incremental updates: Rather than retraining models from scratch with all avail-
able data, federated learning allows models to be updated incrementally. This reduces 
computational requirements for updates and enables continuous learning without 
extensive resources. 

6. Scalability: Federated learning scales effectively with the addition of more 
devices. It accommodates a larger number of contributors without overloading central 
servers, making it suitable for large-scale applications. 

Overall, federated learning’s distributed approach to machine learning optimizes 
resource utilization, reduces data movement, enhances scalability, and safeguards 
privacy, making it an efficient framework for collaborative model training. 

Next, we will discuss how federated learning can improve bandwidth efficiency. 
Federated Learning enhances bandwidth efficiency primarily through its decentral-
ized learning approach, where model training happens locally on devices or at the 
edge rather than centralizing data on a server. Here’s how it improves bandwidth 
efficiency: 

Reduced Data Transmission: 
1. Local model training: Instead of sending raw data to a central server, federated 

learning sends only model updates or gradients after training on local data. These 
updates are much smaller in size compared to the entire dataset. 

2. Lower communication overhead: Communication occurs between the local 
devices/edge nodes and the central server selectively, reducing the need for 
continuous data transmission.
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Bandwidth Optimization: 
1. Dynamic model updates: Federated Learning allows for more flexible schedul-

ing of updates, which can be based on connectivity status, available bandwidth, or 
device activity. This optimizes bandwidth usage. 

2. Local computation: By leveraging local computation, only model updates are 
transmitted, reducing the need for constant high-bandwidth connections. 

Edge Computing Advantages: 
1. Edge servers as learning centers: Utilizing edge devices or servers for learning 

reduces the need for continuous data transfers to a centralized cloud, conserving 
bandwidth. 

2. Real-Time learning: Federated Learning enables devices to learn and adapt in 
real-time at the edge, reducing the necessity for frequent model synchronization, 
which in turn saves bandwidth. 

A variety of algorithms and techniques can help with bandwidth optimization, 
and arithmetic coding is one of them. 

Arithmetic coding is a commonly used lossless data compression technique that 
uses a probability distribution to encode data. The core idea of arithmetic coding is to 
map the entire data sequence to a sub-interval on an interval [0, 1), thus representing 
the entire data sequence as a floating point number. The length of the encoding is 
variable and depends on the probability distribution of each symbol (character or 
data element) over the entire sequence. 

This process keeps repeating, updating the interval and shrinking it for each sym-
bol of the input. Ultimately, the encoding is any value of the interval. The decoding 
process then reduces the original data based on the relationship between intervals 
and probabilities. 

Note that in order to accurately represent floating point numbers, it may be nec-
essary to use high-precision arithmetic operations. Arithmetic coding can theoret-
ically achieve very high compression rates, but in practice it may be affected by 
computational ACC, decoding complexity, and other factors. 

Federated learning optimizes bandwidth by minimizing the amount of data trans-
mitted, focusing on model updates rather than raw data, preserving privacy by keeping 
data local, and leveraging edge computing for distributed learning. This approach 
reduces network congestion and bandwidth consumption, making it more efficient 
for training machine learning models across distributed devices or servers. 

The connection between federated learning and communication security lies in 
federated learning’s capacity to address critical security challenges in wireless net-
works. Its decentralized, privacy-preserving, and adaptive nature not only safeguards 
sensitive data but also fortifies communication systems against adversarial threats, 
ensuring efficient resource utilization and facilitating continual learning without 
compromising security or privacy. This symbiotic relationship presents a promising 
avenue for the evolution of secure wireless communication infrastructures. 

In the realm of wireless communication, the symbiosis between federated learn-
ing and communication security heralds a transformative era. Federated learning’s 
decentralized, privacy-centric approach not only safeguards sensitive data but also 
fortifies communication systems against adversarial threats. Its ability to optimize
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resource utilization, ensure continual learning, and bolster network resilience marks 
a paradigm shift towards secure wireless communication infrastructures. 

As wireless networks navigate evolving threats and stringent privacy concerns, 
federated learning emerges as a beacon of innovation. Its capacity to harmonize 
robust security measures with efficient data processing without compromising pri-
vacy presents a promising avenue for the future. By harnessing the power of dis-
tributed learning, wireless networks can evolve into resilient, adaptable, and secure 
ecosystems, ensuring the integrity of data transmission while enabling continual 
improvement in an increasingly interconnected world. 

In this landscape of evolving communication technologies, federated learning 
stands not just as a solution but as a catalyst for a decentralized, secure future where 
communication security and data privacy coexist harmoniously, shaping the next 
generation of wireless networks.



Chapter 8 
6G Driving Applications with Deep 
Learning 

8.1 Application Scenarios and Challenges 

In the rapid development of information technology, the development cycle of the 
fifth generation of new radio program has reached preliminary maturity, has a higher 
transmission speed, lower delay and larger capacity, but there is still a lot of room 
for progress. 5G’s inability to deliver a fully automated and intelligent network that 
delivers everything as a service and provides a fully immersive experience will not 
meet the demand for emerging and automated systems over the next decade. And 
it largely ignores the integration of communication, intelligence, sensing, control, 
and computing functions, failing to meet people’s expectations of supporting IoT 
applications. 5G will reach its limits in the next decade, which is a huge departure 
from people’s expectations that the sixth generation of mobile communications will 
be born. 

Compared with 5G technology, 6G combines all the features of the past, such 
as network densification, high throughput, high reliability, low energy consumption 
and large-scale connectivity, which brings the hardware foundation for the imple-
mentation of the IoT and makes more applications possible. At the same time, there 
are greater breakthroughs in transmission speed, delay, capacity and other aspects, 
and it will also have higher density connection capabilities and more secure security 
mechanisms, which will bring users a more comfortable experience. With the gradual 
maturity of 6G technology and the gradual development of commercial applications, 
we will usher in a new chapter of the digital era, and an unprecedented intelligent 
world is coming. 

This chapter aims to explore the future of 6G applications and stand at the forefront 
of innovation, focusing on the application of 6G in intelligent transportation, robotics, 
medical fields, and other aspects, as well as the challenges that 6G applications will 
face. By understanding the application of 6G in different fields, explore its potential 
value in improving people’s quality of life and promoting the development of various 
industries. 
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1. Intelligent transportation 
6G technology can bring higher data processing speed and capacity to intelligent 

transportation systems, so as to better cope with the processing needs of large amounts 
of data. By connecting traffic equipment, sensors and vehicles to the 6G network, 
and combining with AI, it can collect and transmit a large amount of traffic data in 
real-time, such as vehicle location, speed, driving route and other information, AI 
technology can carry out real-time identification of vehicles and personnel, behavior 
analysis and anomaly detection, and quickly discover and alarm traffic accidents, 
violations and other situations. This will help the intelligent transportation system to 
more accurately monitor the driving state of the vehicle, predict and solve the traffic 
result congestion, accidents and other problems in advance. In addition, 6G technol-
ogy will also improve the delay problem of intelligent transportation systems and 
provide more efficient communication connections. In the 6G network environment, 
the communication between intelligent transportation devices will achieve almost 
no delay transmission, which will provide more timely and accurate instructions and 
information for intelligent vehicles and traffic equipment. Smart vehicles can use 
6G technology to achieve faster decision-making and reaction, thereby reducing the 
incidence of traffic accidents. At the same time, the intelligent transportation system 
can also use the 6G network to achieve collaborative communication between vehi-
cles, optimize the control of intelligent traffic lights, and improve traffic efficiency. 
Combined with AI, it can also realize intelligent signal control and intersection opti-
mization, automatically adjust the timing of signal lights according to real-time traf-
fic conditions, reduce traffic congestion and driving fuel consumption, and improve 
traffic efficiency and environmental friendliness. 

2. IoT 
6G technology will enable high-speed connection and super-capacity data trans-

mission of IoT devices, providing a solid foundation for the development of IoT 
applications. The combination of 6G networks and AI will be able to support the 
simultaneous connection of more devices and provide high-speed and stable data 
transmission channels. This will enable IoT devices to collect, transmit and process 
a large amount of data more quickly, and by deploying AI algorithms and data pro-
cessing capabilities on edge devices, IoT devices can quickly collect and analyze a 
large amount of real-time data, and make intelligent decisions based on this data, 
bringing a richer intelligent experience to our lives. At the same time, it can also 
make the IoT system have lower latency and higher reliability, and achieve more 
accurate interconnection. The latency of 6G networks is almost negligible, making 
communication between IoT devices timely and real-time. This will enhance the 
collaboration and interaction between IoT devices and improve the reliability and 
stability of the system. With the advancement and popularization of 6G technology, 
the IoT will provide more possibilities for our lives, allowing us to achieve deeper 
connectivity and interaction with smart devices and objects. 

3. Robots 
6G technology will provide more high-speed data transmission and processing 

capabilities for robot applications, and achieve more advanced human-computer



8.1 Application Scenarios and Challenges 135

interaction, decision-making and autonomous action capabilities through AI algo-
rithm analysis and decision-making. Robots need to process a large amount of data 
in the process of perception, decision making and execution, and 6G technology has 
extremely high data transmission speed and processing capability, which can realize 
real-time data interaction and intelligent decision-making. This will enable robots 
to acquire and process large amounts of information more quickly and accurately, 
improving their intelligence and autonomy. At the same time, the combination of 
6G technology and AI will provide lower latency and more stable connections for 
robot applications, achieving more accurate remote control and collaboration. The 
6G network builds a communication environment with extremely low delay, and the 
robot can realize almost real-time interaction with the human operator through the 
6G network, further improving the ACC and flexibility of the robot’s remote control. 
In addition, 6G technology will also support collaborative work and communication 
between robots, so that robots can better collaborate with each other to complete 
complex tasks. 6G will achieve a breakthrough in data processing and transmission 
of robots, making them more intelligent and autonomous. The stable connection and 
remote collaboration technology will promote the remote control and collaboration 
ability of robots, and bring a broader development space for our production, service 
and life. 

4. Virtual and AR 
6G technology will provide higher-speed data transmission and lower latency for 

VR and AR, allowing users to experience virtual and AR content more smoothly 
and realistically. With the support of the 6G network, users can quickly download 
high-resolution VR and AR content and enjoy an immersive experience without wait-
ing. At the same time, ultra-low latency will make user interaction in virtual and AR 
environments more natural and real-time, further enhancing the user experience. The 
combination of AI can also generate personalized AR and VR content in real-time 
based on an individual’s preferences, needs and environment through the analysis of 
user behavior and environment. This means that users can enjoy a more customized 
and personalized experience, increasing user engagement and satisfaction. The large 
capacity of 6G technology will provide more possibilities for content creation and 
interaction in VR and AR. In the 6G era, VR and AR can support richer and more 
complex virtual and AR content, making the application scenarios of virtual and 
AR more extensive. Through the support of 6G network, users can obtain and trans-
mit virtual and AR content more quickly and accurately, expanding the application 
boundaries of VR and AR. For example, in the commercial field, through 6G technol-
ogy, users can experience virtual shopping in real time, feel the shopping experience 
similar to that of physical stores, and improve the convenience and satisfaction of 
shopping. 

5. Medical treatment 
The ultra-high speed and ultra-low latency of 6G will make the transmission of 

medical data faster and more reliable. Healthcare organizations can transfer patients’ 
medical data to the cloud in real-time through 6G networks, and doctors and special-
ists can access and analyze this data remotely to provide more accurate and timely 
diagnosis and treatment options. At the same time, ultra-low latency will also make
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remote surgery and remote consultation possible, and doctors can communicate and 
operate with patients in real-time through 6G technology, providing patients with 
accurate medical services. The application of 6G technology will greatly shorten the 
waiting time of patients and improve the utilization efficiency of medical resources. 
The large capacity of 6G will provide more support for big data analysis and artificial 
intelligence applications in the medical field. The collection and analysis of medical 
data is the key to improving the quality and efficiency of medical care. Through 
6G technology, medical institutions can connect to massive medical databases and 
intelligent systems to achieve in-depth analysis and mining of medical data, while 
the application of AI technology can help doctors make disease prediction, diagno-
sis and treatment plans. This will provide more data support and decision-making 
basis for doctors and researchers, and promote innovation and progress in medical 
research and clinical practice. 6G technology will also open up greater space for 
the application of AI in the medical field, through machine learning and automation 
technology, to help doctors achieve more accurate and rapid diagnosis, and provide 
personalized treatment plans for patients. 

6. The tactile Internet 
The ultra-low latency and high-speed transmission capabilities of 6G technology 

enable tactile Internet to achieve almost real-time touch transmission. With 6G net-
works, we can touch, manipulate and sense remote objects or objects in real-time 
through haptic devices. This will make remote operations and VR experiences more 
real and immersive. In the field of VR, users can perceive the tactile feedback in 
the virtual environment in real-time through the 6G network to further enhance the 
immersion of the virtual experience. The large capacity of 6G technology will enable 
the tactile Internet to handle more touch data and higher precision touch informa-
tion. Haptic Internet is not only a simple haptic transmission, but also the collection, 
analysis and feedback of haptic data. With the support of 6G network, the tactile 
device can collect more tactile data and realize fine perception of tactile details such 
as user gestures, pressure and temperature. 

With the continuous progress and innovation of science and technology, the com-
bination of AI and 6G communication has begun to show great potential. This combi-
nation has created unprecedented opportunities and challenges for various industries, 
including security and privacy issues, the difficulty of technology integration, and 
social acceptance. 

1. Bandwidth and connectivity: a key goal of 6G technology is to provide higher 
transmission speeds and lower latency. However, transferring large amounts of data to 
AI systems, as well as returning results from AI systems, requires higher bandwidth 
and more stable connections. Ensuring the coverage and stability of 6G networks 
will be a challenge. 

2. Privacy and security: AI systems rely on large amounts of data and generate a lot 
of personal information. Combined with 6G networks, the transmission and storage 
of this data will involve more nodes and cloud services. Ensuring the protection of 
privacy and security to prevent data breaches and malicious attacks is an important 
challenge.
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3. Computing power and energy consumption: AI systems require powerful com-
puting power to perform highly complex calculations. At the same time, in order 
to ensure the efficient energy consumption of 6G networks, a balance needs to be 
struck between AI algorithms and 6G technology. How to achieve high performance 
computing while keeping energy consumption low is a challenge. 

4. Data management and standardization: In the combined environment of 6G 
and AI, a large amount of data will be collected, transmitted and analyzed. How to 
effectively manage and process this data, as well as establish uniform data standards 
and exchange formats, will be an important challenge. 

5. Legal and ethical issues: The application of AI in 6G networks will raise a series 
of legal and ethical issues. For example, issues related to privacy, data security, and 
algorithmic bias. Developing regulations and ethical guidelines to balance innovation 
with protecting user rights is a challenge. 

Although the combination of 6G and AI faces many challenges, it is believed that 
these challenges will be gradually overcome with the development of technology 
and the promotion of innovation. We look forward to the arrival of 6G, which will 
bring new opportunities and possibilities for the smart industry, smart cities and 
personal life. At the same time, we also look forward to the deeper application of 
AI technology in 6G networks to provide strong support for intelligent and efficient 
communication. 

8.2 Enabling Deep Learning Technologies 

Deep learning is a subfield of machine learning that builds and trains artificial neural 
network models by mimicking the way neurons in the human brain are connected. The 
goal of deep learning is to utilize large amounts of data and computational resources, 
automatically learn feature representations, and extract high-level abstract features 
from the data through hierarchical structures. 

The background of deep learning can be traced back to artificial neural network 
research in the 1950s and 1960s, but the development of deep learning was limited 
by the limitations of computing power and the lack of large-scale data sets at the 
time. Only in recent years, with the rapid development of computing hardware and 
the explosive growth of Internet data, has deep learning technology been able to rise 
rapidly. In the past few years, deep learning has made major breakthroughs in many 
fields, including computer vision, natural language processing, speech recognition, 
and more. The advantage of deep learning is that it can automatically learn feature 
representations without manually extracting features, and it has strong generalization 
ability and can handle complex non-linear relationships. This makes deep learning 
an important technical foundation in the field of AI and has achieved remarkable 
results in many practical applications.
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Deep learning operates on several core concepts and ideas: 
1. Feedforward neural network: it is the most basic artificial neural network struc-

ture, composed of input layer, hidden layer and output layer, information from the 
input layer through a series of layers, and finally output the prediction result. 

2. Backpropagation: it is the main algorithm for training NNs, adjusting the net-
work parameters by calculating the output error to minimize the gap between the 
predicted results and the actual values. 

3. Gradient descent: it is the basis of backpropagation algorithms and continuously 
optimizes the model by updating the parameters by calculating the gradient of the 
error function for each parameter. 

Deep learning also involves some other important concepts and techniques, such 
as activation function, model regularization, batch normalization, etc. The use of 
these techniques and strategies can improve the effectiveness and robustness of the 
model. 

The core idea of deep learning is to learn the feature representation of data layer 
by layer through a multi-level neural network structure to obtain higher-level abstract 
features. This hierarchical structure can be trained and optimized by backpropagation 
algorithm and gradient descent optimization algorithm to achieve accurate prediction 
and efficient processing of complex tasks. 

Compared with traditional machine learning algorithms, deep learning has the 
following significant differences: 

1. Feature extraction: Traditional machine learning algorithms usually need to 
manually extract and select features, while deep learning can automatically learn 
feature representations through hierarchical structures without manually extracting 
features, thus reducing the burden of feature engineering. 

2. Model complexity: DL builds DNN models to represent complex nonlinear 
relationships with greater expressiveness. Traditional machine learning algorithms, 
such as SVMS and decision trees, are often used for shallow models that struggle to 
handle large-scale data and complex tasks. 

3. Data requirements: DL has a high demand for large-scale data sets, and trains 
models through large amounts of data to improve the ACC and generalization ability 
of models. Traditional machine learning algorithms require relatively small amounts 
of data. 

DL has a wide range of applications in various fields. Here are some examples of 
deep learning in different fields: 

1. Computer vision: DL has been a huge success in computer vision. Among them, 
deep CNN performs well on tasks such as image classification, object detection and 
image generation. For example, through deep learning, applications such as face 
recognition, image semantic segmentation, and object recognition can be realized. 

2. Natural language processing: DL also has important applications in the field of 
natural language processing. For example, using models such as RNN and LSTM, 
tasks such as language modeling, machine translation, text generation and sentiment 
analysis can be implemented. 

3. Speech recognition: DL has made a breakthrough in the field of speech recog-
nition. Through the combination of DNN and acoustic model, high ACC of speech
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recognition can be achieved, and it is widely used in voice assistants, smart phone 
systems, etc. 

4. Health care: DL is widely used in the field of health care, such as medical image 
analysis, disease diagnosis and prediction, genomics research, etc. DL can learn large 
amounts of medical data to extract and identify information such as medical images, 
image markers, and pathological analyses. 

5. Financial sector: DL is widely used in the financial sector, such as stock fore-
casting, fraud detection and risk assessment. DL can provide accurate predictions 
and decision support by learning patterns and trends in financial data. 

6. Autonomous driving: DL plays an important role in the field of autonomous 
driving. Through deep learning algorithms, functions such as vehicle perception, 
target detection and behavior prediction can be realized, providing critical decision-
making capabilities for autonomous driving systems. 

As a powerful machine learning method, DL has achieved remarkable results 
in several fields, but there are still some challenges and directions for future 
development. Here are some common challenges and the way forward: 

1. Data requirements and labeling difficulties: DL usually requires a large amount 
of labeled data for training, and obtaining and labeling large-scale data sets is a 
time-consuming and laborious task. Therefore, how to effectively train when data is 
scarce or no labeled data remains a challenge. 

2. Model interpretation and interpretability: DL models are often black-box mod-
els, and their complexity makes it difficult to explain how the model makes its 
predictions. In some application scenarios, such as healthcare and finance, the inter-
pretability and explainability of the model are critical. Therefore, how to improve 
the interpretability of deep learning models is a future research direction. 

3. Model generalization and avoiding overfitting: DL models are prone to over-
fitting on training sets, resulting in weak generalization ability on new data. How 
to design better regularization techniques and effective model selection methods to 
improve the generalization ability of models is an important problem in deep learning 
research. 

4. Long-term memory and reasoning ability: Current deep learning models still 
have limitations in long-term memory and reasoning ability, especially for complex 
serial data and time series tasks. How to design deep learning models that can capture 
long-term dependencies and have stronger reasoning ability is an important direction 
for future development. 

5. Hardware and computational resource constraints: The training and reasoning 
of deep learning models often require a large amount of computational resources, 
including computational power and storage capacity. How to design more efficient 
algorithms, develop more advanced hardware technologies, and utilize distributed 
computing methods to meet the demand for large-scale DL models is the future 
direction. 

6. Incorporate other learning methods: although deep learning has had a lot of 
success, it is not suitable for every problem and task. Combining other machine 
learning methods, such as traditional machine learning algorithms and RL, to develop
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a more comprehensive and integrated learning framework is the future development 
direction of deep learning. 

Overall, while deep learning continues to grow, it still faces many challenges. 
By continuously addressing these challenges, improving deep learning models and 
algorithms, and incorporating other learning methods, deep learning is expected to 
achieve wider applications and more groundbreaking progress in the future. 

8.3 New Paradigm Shifts 

The construction of sea, land and air integrated communication network needs to rely 
on the support of intelligent technology, and then combined with wireless commu-
nication technology, in order to achieve efficient communication on a global scale. 
Intelligent technology makes communication network more intelligent and auto-
mated, and wireless communication technology provides flexible and convenient 
means of communication. 

Although the combination of 6G and AI faces many challenges, it is believed that 
these challenges will be gradually overcome with the development of technology 
and the promotion of innovation. We look forward to the arrival of 6G, which will 
bring new opportunities and possibilities for the smart industry, smart cities and 
personal life. At the same time, we also look forward to the deeper application of 
AI technology in 6G networks to provide strong support for intelligent and efficient 
communication. 

In the future, the sea, land and air integrated communication network will con-
tinue to improve the communication speed and reliability, meet the growing com-
munication needs, and further realize the integration of different networks, including 
cellular networks, satellite networks, ground networks, etc., to achieve global cov-
erage and seamless switching, providing integrated communication services across 
the sea, land and air. At the same time, it will also support the interconnection of 
different types of devices, so that it can be combined with the IoT technology to 
support the interconnection of different types of devices. This means that all kinds 
of devices, such as smartphones, smart home devices, intelligent vehicles, etc., can 
be connected and communicated through the integrated communication network of 
sea, land and air. For example, people can realize real-time video calls, telemedicine, 
smart home control and other applications on a global scale through the integrated 
communication network of sea, land and air. For enterprises and institutions, through 
the integrated communication network of sea, land and air, logistics companies can 
grasp the location, transportation status and traffic conditions of goods in real-time, 
so as to improve transportation efficiency and ACC. The integrated communication 
network of sea, land and air can also support rapid rescue and command in emergency 
situations, improving rescue efficiency and response speed. 

As a branch of AI, machine learning will have an important impact on the pro-
cess of 6G technology to realize the interconnection of integrated communication 
between sea, land and air. For example, machine learning can be applied to network
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optimization and resource scheduling in integrated sea, land and air communica-
tion networks. By analyzing large-scale communication data and network status 
information through machine learning algorithms, network resource configuration 
and scheduling policies can be optimized to improve network performance and user 
experience. Second, machine learning can be used for wireless resource manage-
ment and intelligent connection management in 6G technology. 6G technology will 
introduce the use of more spectrum resources and more complex network topology 
to achieve integrated communication connections between sea, land and air, and 
machine learning can help realize intelligent management and optimization of wire-
less channels to improve spectrum utilization efficiency and network capacity. In 
addition to this, machine learning can also be used for intelligent edge computing 
and cybersecurity in 6G technology. 6G technology will support large-scale edge 
computing and the connection of IoT devices in sea, land and air integrated commu-
nication networks, and machine learning can be used for real-time data analysis and 
processing to achieve intelligent decision-making and optimization of edge comput-
ing. In logistics and emergency relief–as mentioned earlier: for logistics, machine 
learning can optimize the route planning of logistics transportation by analyzing his-
torical transportation data, traffic conditions, weather conditions and other factors to 
predict the best route. Through machine learning algorithms, historical sales data, 
market trends and other relevant data can be analyzed to predict changes in logistics 
demand. For emergency rescue, machine learning can be used to analyze large-scale 
data, such as real-time sensor data, traffic information, etc., to help quickly respond 
to emergency rescue events, and quickly determine the best rescue plan and action 
plan based on the analysis. 

Sub-6 GHz, millimeter wave, and terahertz bands complement each other in 6G 
technology to meet future demands for high-speed, high-capacity, low-latency wire-
less communications. The Sub-6 GHz band is the key band for the current mainstream 
mobile communication technologies (such as 2G, 3G, 4G and 5G), and it will con-
tinue to be used for 6G technology’s wide coverage network, supporting wide-area 
transmission and long-distance communication, suitable for densely populated areas 
and vast geographical areas. The application of millimeter wave and terahertz band is 
still in the research and development stage, and the millimeter wave band will play an 
important role in the future 6G technology, providing high-speed, high-capacity data 
transmission. Despite the short transmission distance of millimeter wave, its large 
amount of idle spectrum can be used efficiently. The terahertz band may become a 
new communication band in 6G technology to support higher data transmission rates 
and a wider range of application scenarios, such as VR, AR, intelligent transportation 
and remote surgery. 

This process is often affected by many factors such as climate and obstacles, 
which may lead to performance degradation or unstable signal transmission. How-
ever, machine learning can make predictions and optimizations by learning from 
this data, thereby improving channel quality and input stability, reducing data trans-
mission errors and latency. On the one hand, machine learning can learn and predict 
signal transmission conditions under the influence of different climatic conditions and 
obstacles by analyzing a large amount of meteorological data, barrier distribution and
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Fig. 8.1 Machine learning boosts new paradigm shifts in 6G 

transmission performance data in actual scenarios. In this way, the communication 
system can automatically adopt corresponding adjustment strategies according to the 
prediction results of machine learning, such as dynamically adjusting the transmis-
sion power, changing the transmission Angle or choosing a more suitable communi-
cation frequency band, so as to improve the signal transmission quality and stability. 
On the other hand, since wireless spectrum resources are limited, machine learn-
ing can be applied to spectrum allocation and management to achieve more efficient 
spectrum utilization. By analyzing and learning from large amounts of data, machine 
learning can automatically optimize the allocation of spectrum resources, identify 
potential idle spectrum segments, and make adjustments to dynamic frequency and 
power allocation based on real-time demand. This can avoid unnecessary spectrum 
conflicts, improve the efficiency of spectrum utilization, and provide more band-
width resources for the communication system to support larger data transmission 
and higher rate communication (Fig. 8.1).
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