Ryen W. White
Chirag Shah Editors

N [nformation
Access in
the Era of
Generative Al

@ Springer



The Information Retrieval Series

Volume 51

Series Editors
ChengXiang Zhai, University of Illinois, Urbana, IL, USA

Maarten de Rijke, University of Amsterdam, The Netherlands and Ahold Delhaize,
Zaandam, The Netherlands

Editorial Board

Nicholas J. Belkin, Rutgers University, New Brunswick, NJ, USA
Charles Clarke, University of Waterloo, Waterloo, ON, Canada

Diane Kelly, University of Tennessee at Knoxville, Knoxville, TN, USA

Fabrizio Sebastiani (%), Consiglio Nazionale delle Ricerche, Pisa, Italy


https://orcid.org/0000-0003-4221-6427

Information Retrieval (IR) deals with access to and search in mostly unstructured
information, in text, audio, and/or video, either from one large file or spread over
separate and diverse sources, in static storage devices as well as on streaming data.
It is part of both computer and information science, and uses techniques from e.g.
mathematics, statistics, machine learning, database management, or computational
linguistics. Information Retrieval is often at the core of networked applications,
web-based data management, or large-scale data analysis.

The Information Retrieval Series presents monographs, edited collections, and
advanced text books on topics of interest for researchers in academia and industry
alike. Its focus is on the timely publication of state-of-the-art results at the
forefront of research and on theoretical foundations necessary to develop a deeper
understanding of methods and approaches.

This series is abstracted/indexed in EI Compendex and Scopus.



Ryen W. White ¢ Chirag Shah
Editors

Information

Access 1n
the Era of
Generative Al

@ Springer



Editors

Ryen W. White Chirag Shah

Microsoft Research University of Washington
Redmond, WA, USA Seattle, WA, USA

ISSN 1871-7500 ISSN 2730-6836 (electronic)

The Information Retrieval Series

ISBN 978-3-031-73146-4 ISBN 978-3-031-73147-1 (eBook)

https://doi.org/10.1007/978-3-031-73147-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.


https://orcid.org/0000-0002-0265-4249
https://orcid.org/0000-0002-3797-4293
https://doi.org/10.1007/978-3-031-73147-1

Preface

In recent years, Generative Artificial Intelligence (GenAl) has emerged as a
groundbreaking technology that promises to revolutionize many industries and
people’s personal and professional lives. This book discusses GenAl and its role
in information access, or more broadly, information interaction, both now and for
decades to come. It is well known that information is the lifeblood of decision-
making and action, and being able to help people find, understand, and use
information is a central tenet of helping them attain their goals. The intersection
of GenAl and information access is often referred to as Generative Information
Retrieval (GenlR). We use “GenAI” and “GenlR”, and variants thereof, where
appropriate throughout the book, depending on the context.

The book is targeted to graduate students as well as advanced undergraduates and
researchers interested in issues of information retrieval, access, and interactions, as
well as applications of GenAl in various informational contexts. While some of the
parts assume prior background in IR or Al, most others do not, making this book
suitable for adoption in various classes as a primary source or as a supplementary
material for a wide variety of curricula and training programs.

The role of GenAl in information access is complex and dynamic, with many
dimensions. To address this, following our brief introduction to GenAl and GenIR
(Chap. 1), we divide the remainder of the book into eight chapters, each targeting a
different dimension or sub-topic. The chapters are described in more detail below.
Each chapter is written by subject matter experts in the field and dives deep into the
dimension at hand, presenting a general overview, a summary of the latest advances
in that area, and a path forward.

Chapter 2: Foundations of Generative Information Retrieval —This chapter,
authored by Qingyao Ai, Jingtao Zhan, and Yiqun Liu, delves into the core
principles of GenlR, exploring the synthesis of results, validation and attribution
processes, the phenomenon of hallucination in Large Language Models (LLMs),
and the expansion beyond text to include multimedia and multimodal interactions
with LLMs, Retrieval-Augmented Generation (RAG), and corpus understanding.


http://doi.org/10.1007/978-3-031-73147-1_1
http://doi.org/10.1007/978-3-031-73147-1_2

vi Preface

Chapter 3: Interactions with Generative Information Retrieval Systems—
Authored by Mohammad Aliannejadim Jacek Gwizdka and Hamed Zamani, this
chapter investigates the dynamics of user engagement with GenlR systems. It covers
intent understanding, the art of querying, crafting new experiences, the intricacies
of conversational systems, the role of agency and automation, the craft of prompt
engineering, and the importance of explanations.

Chapter 4: Adapting Generative Information Retrieval Systems to Users,
Tasks, and Scenarios—Johanne Trippas, Damiano Spina, and Falk Scholer dis-
cuss research on tailoring GenlR systems to fit individual users, specific tasks,
and diverse scenarios. The chapter covers personalization, specialization, hybrid
inference, and task understanding, reflecting the adaptability of GenIR systems.

Chapter 5: Improving Generative Information Retrieval Systems Based on
User Feedback—Qingyao Ai, Zhicheng Dou, and Min Zhang take the helm in
this chapter, focusing on the iterative improvement of GenlR systems through user
feedback. It examines alignment, the integration of humans in the loop, continual
learning, Reinforcement Learning from Human Feedback (RLHF), and the nuances
of implicit and explicit feedback.

Chapter 6: Generative Information Retrieval Evaluation—Marwah Alaofi,
Negar Arabzadeh, Charles Clarke, and Mark Sanderson provide a comprehensive
overview of the evaluation metrics, methodologies, and the importance of repro-
ducibility in GenlIR systems. They also explore the connection to foundational IR
evaluation frameworks such as Cranfield and TREC.

Chapter 7: Sociotechnical Implications of Generative Artificial Intelligence
for Information Access—Bhaskar Mitra, Henriette Cramer, and Olya Gurevich
discuss the societal implications of GenIR. They present an overview of systemic
risks from the usage of GenAl in IR (e.g., negative information ecosystem impact,
safety, and power dynamics), impact of evaluation methods, and ecosystem incen-
tives around misuse.

Chapter 8: Recommendation in the Era of Generative Artificial Intelli-
gence—Wenjie Wang, Yongfeng Zhang, and Tat-Seng Chua explore the realm of
recommendations within GenIR. They delve into recommender systems, personal-
ized recommendations, explainable recommendations, and the integration of LLMs
with recommendation systems.

Chapter 9: Designing for the Future of Information Access with Generative
Information Retrieval—Vanessa Murdock, Chia-Jung Lee, and William Hersh
envision the future of information access through the lens of GenIR. They discuss
new experiences such as proactive information access, emerging business models,
applications beyond traditional information retrieval, the ubiquity of GenIR, and its
application in specialized domains such as healthcare.

These chapter brief summaries provide a glimpse into the comprehensive cover-
age of GenlR topics that the book will offer. Each chapter promises to contribute
valuable insights into the rapidly evolving field of GenAl, and GenlIR in particular.
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Preface vii

We hope that for you, the reader, this book creates clarity about the current state of
the art in the fast-moving field of GenlR, piques your interest, is useful in your work
or studies, and perhaps even inspires you to pursue your own scientific research in
this important new area.

Redmond, WA, USA Ryen W. White
Seattle, WA, USA Chirag Shah
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Chapter 1 ®
Introduction Check or

Ryen W. White (@ and Chirag Shah

Abstract Information access systems, especially search engines and recommender
systems, play a vital role in the access to information that is crucial for decision-
making and action in the world. The emergence of Generative Artificial Intelligence
(GenAl) has led to more advanced user experiences in these systems with natural
user-system interactions and auto-generated answers and suggestions, potentially
saving people time and cognitive effort, while improving task outcomes. This
chapter explores the synergies between GenAl and information access and provides
a framing for the rest of the book. GenAl technologies, such as transformers and
large language models, have revolutionized various fields, including creative writ-
ing, software development, and multimodal content generation. We briefly discuss
ongoing GenAl-related research in search and recommendation that is exploring
areas such as generative document retrieval, grounded answer generation, generative
recommendation, and generative knowledge graphs, enhancing the capabilities of
information systems. We also cover other topics such as combining information
interaction modalities (e.g., data types, interaction paradigms) in different ways
to create unified, so-called “panmodal” GenAl-powered information experiences
that leverage the strengths of different interaction modes and highlight the growing
interest and collaboration in GenAl and its applications in information access. We
conclude by discussing the ethical considerations and challenges that come from the
rise of this new technology, emphasizing the need for responsible development and
deployment to harness its potential while mitigating risks.

R. W. White (><)
Microsoft Research, Redmond, WA, USA
e-mail: ryenw @microsoft.com

C. Shah
University of Washington, Seattle, WA, USA
e-mail: chirags @uw.edu
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2 R. W. White and C. Shah
1.1 The Importance of Information Access

Information 1is critical for decision-making and action in the world. Information
systems play an important role in facilitating access to that information or infor-
mation interaction more broadly [1]. Search engines are the most commonly used
means of information access, serving results for billions of queries on a daily basis.
These systems have grown dramatically in scale and complexity given the advent
of the Web, but many still resemble the original Information Retrieval (IR) systems,
with an index of documents, a user-defined text query, and an algorithmic matching
process [2]. The interaction model with search engines is well documented and
studied: user queries submitted to the search engine, the retrieval of lists of results,
result clicks, visits to landing pages, and subsequent query refinements, pagination
through result pages, etc. Interactions with search systems have been used as a
means of improving search systems over time via user feedback, at an individual,
group, and population level. There are also other interaction models such as faceted
search [3], which allows users to filter results based on different facets or attributes,
e.g., in an e-commerce setting.

These interactions put the user in control of much of the search process, which
also relies on their searching skills (e.g., search engine responses are highly
dependent on how queries are formulated) and are also affected by cognitive and
content biases of various types. Systems do not need to wait for user requests;
they can also recommend content dynamically based on the available context (e.g.,
geolocation, Web browsing histories, application usage) or the behavior of other
users in collaborative filtering scenarios.

Advances in neural IR in recent years have meant that queries and documents can
now be represented semantically rather than syntactically, improving the quality of
search engine responses. Advances in conversational IR have also made interactions
with search systems more natural over time, more like a human conversation than
direct engagement with a system. We are now seeing the emergence of a new
wave of search advances powered by GenAl, where information systems can index
content more efficiently (e.g., with differentiable search indices), respond directly
to searches with comprehensive Al-generated answers, and can make real-time
inferences from multimodal contexts such as video streams, among other data types
(e.g., images, audio, sensor data). The intersection of GenAl and information access
has been referred to as Generative Information Retrieval (GenlIR) [4]. This type of
Al-powered assistance can be especially useful for complex tasks, where people
are often faced with multiple steps and multi-faceted intents, a need to engage with
many different resources, and may struggle to be successful [5].

The era of GenAl is creating incredible new opportunities for information access.
Before outlining some of these and future directions, we provide a brief overview of
GenAl technologies and how this technology is reshaping the information landscape
across many industries.
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1.2 Emergence of Generative Al

GenAl has seen rapid advancements and holds massive potential for various
applications. The technology is powered by a transformer architecture [6], a type
of neural network architecture that has revolutionized natural language processing
and a growing number of different aspects of information access. Transformers
are designed to handle sequential data, like text, and are particularly effective for
tasks that involve understanding the context and relationships between words in a
sentence, within a paragraph, or even across documents.

Transformers use a mechanism called self-attention, which allows them to weigh
the importance of different parts of the input data differently. This is crucial for
tasks such as language translation, where the meaning of a word can depend heavily
on the words around it. The architecture of transformers is highly parallelizable,
making it efficient for training on large datasets.

Next token prediction is a task where a model is trained to predict the probability
of the next word in a sequence, given the words that precede it. This is a fundamental
task for language models such as GPT (Generative Pretrained Transformer) [7, 8],
which learn to generate text by predicting one word at a time. This approach has led
to the creation of models that can write essays, summarize text, translate languages,
and even generate code.

The progress in this area has been swift, with models becoming increasingly
large and complex. For instance, Large Language Models (LLMs) such as GPT-4
from OpenAl have been trained on vast amounts of text data and can perform a
wide range of tasks without task-specific training. This demonstrates the flexibility
and potential of GenAl to impact various fields, from creative writing to software
development. ChatGPT from OpenAl provides a conversational interface to these
LLMs, and SearchGPT, also from OpenAl, provides a combination of search engine
features and GenAl capabilities to provide users with fast, timely answers from clear
and relevant sources. Small Language Models (SLMs) such as Phi-3 from Microsoft
[9] and Gemini Nano from Google [10] are also emerging that are more scalable
than LLMs (they can be run client side and shipped on device) while preserving
much of the accuracy of the larger models.

Beyond text, diffusion models such as DALL-E! are another exciting area of
GenAl. These models simulate the process of spreading substances from areas of
higher concentration to lower concentration, which can be applied to various fields
beyond physics, such as finance and marketing. In Al, diffusion models have been
used for tasks like image generation and enhancing the realism and compositionality
of generated content. There is also the recent development of multimodal models
such as GPT-40? and Gemini® that integrate text, vision, and audio capabilities.

Uhttps://openai.com/index/dall-e-3
2 Hello GPT-40 | OpenAl
3 Gemini - Google DeepMind
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These models represent a significant leap forward in AI’s ability to understand and
generate content across different modalities. Multimodal models such as these can
be used to understand the context around which information is requested by users
(e.g., “what am I looking at [through my smart glasses] right now”) or proffered by
systems.

Generative Adversarial Networks (GANs) [11] are a class of artificial intelli-
gence algorithms used in unsupervised machine learning. They consist of two neural
networks, the generator and the discriminator, which are trained simultaneously
through adversarial processes. The generator creates data that is indistinguishable
from real data, while the discriminator evaluates the authenticity of the data,
effectively learning to distinguish between real and generated data. This dynamic
training process allows GANs to generate high-quality, realistic data, which has
applications in various fields such as image and video enhancement, gaming, and
even the creation of artificial human faces.

However, with great power comes great responsibility. The potential misuse of
GenAl, such as in creating deep fakes or spreading misinformation, raises ethical
concerns. There are also significant reliability concerns given GenAl’s tendency
to hallucinate. It is crucial to continue research and development with a focus on
factuality, safety, transparency, and fairness to ensure that the benefits of GenAl
are realized while minimizing its risks. There are other pertinent issues such as
human control/agency, which are reduced with GenAl over some aspects of the
search process, namely result inspection and answer synthesis, while users have
more/different control over the specifications of their intent via longer text prompts
and multi-turn dialog, and provenance, where creator attribution and direct access
to the source must be provided to improve user trust and ensure the continued
willingness of content creators and publishers to provide their material for GenAl
training. This will help us to avoid the “paradox of reuse” [12], where fewer visits to
online content results in less content being created and progressively worse models
over time.

In summary, GenAl is a rapidly evolving field with the potential to significantly
impact technology and society, and information access will certainly be part of
this. GenAl’s ability to understand and generate human-like text opens up new
possibilities for information access, task automation, and creativity, but it also
necessitates careful consideration of its implications. In the next section, we focus
on synergies between GenAl and information access, and the growth in popularity
of the intersections between these fields in the IR research community in particular.

1.3 Generative AI and Information Access Synergies

We strongly believe that Al should be used to augment, amplify, and empower
people, not replace them. The domain of information access is no different. By
being used in the right way, GenAl can supercharge information access and help
more people get answers and complete complex tasks more effectively.
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With great responsibility comes great power. If we deploy these GenAl sys-
tems in a responsible way, i.e., provide fairness, transparency, and accountability,
we could make these systems much more powerful to help users with varying
backgrounds, skills, and literacy. Responsible integration of GenAl technologies
in information access systems also means a user-first approach — focusing on user
needs and contexts and building solutions around them.

1.3.1 Ongoing Research

The community has been exploring a few ways that GenAl can affect information
access, namely generative document retrieval, grounded answer generation, genera-
tive recommendation, and generative knowledge graphs. We will introduce each of
these in turn.

Generative Document Retrieval (GDR) is an emerging paradigm in IR that has
gained significant attention in recent years. It involves learning to build connections
between documents and identifiers within a single model. This approach enables
retrieval by directly generating relevant document identifiers without explicit index-
ing, offering more flexibility, efficiency, and creativity (boosting recall). So-called
differentiable search indices [13] integrate the different stages of search indexing
into a single, end-to-end trainable neural model. This allows for the entire retrieval
process to be parameterized and optimized as part of the model’s learning, making
it a differentiable component that can be fine-tuned using gradient descent methods.
GDR can be particularly useful in scenarios such as search engines, question
answering, and recommendation systems, where traditional retrieval methods based
on similarity matching may fall short.

Grounded Answer Generation (GAG) is a sophisticated approach within
conversational Al that aims to provide accurate and contextually relevant answers
by grounding responses in verified information sources. Systems such as ChatGPT,
Gemini, and Copilot (the assistive Al agent from Microsoft) engage users in
multi-turn dialog to help them complete their tasks. In conversational IR, the
context of the dialog and the interdependencies between questions and answers
play a significant role in understanding and generating responses. The Retrieval-
Augmented Generation (RAG) [14] framework is a prominent example of GAG,
where an LLM is augmented with external knowledge retrieved from databases
and/or search engines to generate responses that are not only relevant but also
grounded in source material. These sources can be shown to users as hyperlinked
references for provenance purposes and to help build user trust in system responses.
Retrieval-Augmented Fine Tuning (RAFT) [15, 16] combines the strengths of RAG
and fine-tuning by integrating retrieval-based methods with generation to access
external knowledge during response generation, and then further training the model
on task-specific data to optimize its performance on the target task. In the enterprise
context, grounded answer generation is being explored to enhance the capabilities
of conversational agents and copilots. Google provides “Al Overviews,” GenAl-
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powered answers shown inline on the search engine result page as part of Google’s
so-called search generative experience.* Bing also now offers a generative search
experience.”

Generative Recommendation represents a cutting-edge approach in the field
of recommender systems, leveraging the power of GenAl to create personalized
content that caters to the unique preferences and needs of users [17]. Methods
such as GenRec [18] also emphasize the trustworthiness of the generated items
through various fidelity checks. Unlike traditional methods, which retrieve existing
relevant items from a corpus, this paradigm shift to generative techniques where
new content is created for recommendation allows for a more dynamic and tailored
user experience.

Generative Knowledge Graphs (KGs) are an innovative approach to enhancing
Al models with structured world knowledge. They enable Al systems to generate
new knowledge entities and relationships, enriching the existing data and potentially
uncovering new insights. There are a range of different methods to do this,
including MoKGE [19], which diversifies generative reasoning using a mixture of
experts (MoE) strategy on commonsense knowledge graphs, and COMET [20],
which generates rich and diverse commonsense descriptions in natural language.
Generative KGs are being recognized for their potential to transform how we
interact with and utilize large datasets.

All of this research is pivotal in designing intelligent information systems that
can understand intent, personalize interactions, and provide generative responses
that are both accurate and trustworthy.

1.3.2 Combining Modalities

To be useful to users, the technologies described above need to be used in
interactive experiences. Information interaction modalities describe the different
modes of interaction with information systems. These modes can be defined in many
ways, including the interaction paradigm (e.g., query-response, multi-turn dialog,
proactive suggestions), but also different input mechanisms (e.g., text, speech,
touch) and different device types.

GenAl methods used in isolation to enhance existing experiences, for example,
GDR can enhance search and GAG can enhance chatbots. We refer to staying
within a single interaction modality (either because it is the only one available,
the only one selected by the user, or it is the only one feasible in the current
context) as monomodal information interaction. However, modalities can also be
combined to create “better together,” unified experiences that combine the strengths
of the different modalities depending on the task and/or task stage. We refer to

4 Google 1/0 2024: New generative Al experiences in Search (blog.google)
3 Introducing Bing generative search | Bing Search Blog
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Fig. 1.1 Different aspects of panmodal support and its relation to monomodal support

these as panmodal information interactions [21], spanning at least three types:
multimodal (make several modalities available), crossmodal (support transitions
between modalities), and transmodal (use several modalities seamlessly to complete
a task). Figure 1.1 illustrates different aspects of panmodality.

We are already seeing the genesis of multimodal experiences that combine
modalities with search and chat coexisting within the same experience and GenAl-
based answers (e.g., Google’s Al Overviews, Bing’s generative search) generated
dynamically and embedded within search engine results pages. Retrieval systems
have supported some aspects of panmodality since the 1980s (e.g., the I’R system
[22]), and recent research has examined the challenge of directing users to the
search engine or computing device best placed to tackle their task. Recent work
has also explored combining different devices simultaneously to take advantage
of the capabilities of each device type, e.g., multi-device experiences comprising
smart speakers (far-field audio capabilities) plus tablets (high-resolution displays),
all mediated by services running in the cloud [23].

There are additional information interaction modalities beyond search and
chat, e.g., bespoke interfaces generated natively by GenAl for the task at hand,
interactive visualizations generated by GenAl akin to dynamic queries, proactive
recommendations from GenAl based on audio and vision sensing, and moving
from information access to information use in GenAl-based operation or suggestion
of tools to support task completion. This will also expand beyond interaction
paradigms into new modes of interaction (e.g., tactition, gesture, eye gaze, or eye
contact with devices or application windows) and new device types (e.g., smart
rings, smart glasses), where GenAl could help interpret signals and add intelligence.
Identifying the most fitting type of panmodality support can act as helpful prompts
for users, even if their direct use is not integrated within the application or if
there’s no seamless transition to other applications. For instance, in a scenario
where transmodal support is ideal, GenAl could outline possible modalities and
suggest a sequence of operations according to a generated plan. This approach could
also serve as a means to increase user awareness of the various modalities at their
disposal, thereby gradually shaping their usage patterns to more effectively leverage
that support independently over time.
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1.3.3 Community Engagement

GenAl has been the subject of many recent keynotes at premier conferences on
search, recommendation, and knowledge management [24-26], highlighting the
broad appeal and general interest in work in this area. Recent workshops and special
sessions are indicative of the burgeoning interest in GenAl and its applications in
information access. The first “GenIR” workshop at the ACM SIGIR Conference
on Research and Development on Information Retrieval in July 2023 [27] and its
subsequent second edition at the same conference in July 2024 highlight the IR
community’s ongoing engagement with GenAl. This workshop invited discussions
on models, training, evaluation, and applications of retrieval-oriented applications
of GenAl, reflecting the field’s dynamic nature and its potential for innovation.
A workshop at Microsoft Research in September 2023 [28] discussed the latest
developments in GenAl with a focus on the challenges and opportunities in task-
oriented applications. A special session on LLMs at the ACM CHIIR Conference on
Human Information Interaction and Retrieval in March 2024 provided a platform for
exploring the impact of large language models on human-computer interaction and
IR, underscoring the importance of user-centered approaches in the development
of Al technologies. The “LLM Day” at the ACM SIGIR Conference on Research
and Development on Information Retrieval in July 2024 was a dedicated event to
delve into the advancements and challenges associated with large language models,
fostering a deeper understanding of their capabilities and limitations in search
and retrieval contexts. These events serve not only as a testament to the rapid
progress in GenAl but also as a catalyst for further research, collaboration, and
knowledge sharing within the field. We expect that the number of such events will
continue in the coming years, with GenAl becoming a mainstay of conferences
where information access is discussed.

1.4 Emerging Trends

GenAl will democratize access to information and enable more people to tackle
a broader range of tasks. There are some emerging trends in this area that we
should not ignore. These span technological advances (covered in this section) and
challenges (covered in the next section).

Al agents powered by GenAl will help users tackle their tasks and attain their
goals. We also expect to see Al agents working together—in multi-agent systems
such as CAMEL [29] and AutoGen [30]—and with humans (e.g., via conversation)
to facilitate task completion, with users having full visibility into and control over
the process. These agents will also take action on behalf of users, with user consent,
and optionally, oversight and control/feedback, e.g., operating digital applications
such as reservations systems. This move toward task automation also signifies
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progress along the task lifecycle from systems supporting information access to
systems now supporting both information access and information use.

We will also see more use of the contextual understanding and environment
recognition facilitated by multimodal models such as GPT-40 and Gemini to better
ground user requests. Applications such as Google Astra® are examples of future
information access systems that possess sophisticated reasoning, planning, and
memory skills, and leverage GenAl to help users complete tasks. Astra can process
video and auto input in real time and use that to answer questions about the
environment (“what is that type of plant”), a user’s lost items (“where did I leave my
keys”), and much more. This type of situational awareness fits well with emerging
personal devices trends such as augmented reality and smart glasses.

Systems will be imbued with near-infinite memory, which will allow them to
develop personalized intelligence (where deep knowledge of a user will become a
significant differentiator for one assistant over another and engender user loyalty to a
specific assistant), more accurately tailoring the answers they provide to the interests
and intentions of the current user, and further personalize user experiences by
learning from user interactions and preferences over time, leading to more intuitive
and anticipatory support systems.

A more complete personal and contextual understanding will also allow future
information access systems to offer proactive experiences and recommendations,
e.g., during Web browsing, given an event trigger such as an incoming phone
call/email or change in location, or as situated interactions while moving around
the physical world.

These advances must consider the broader landscape of the need for energy-
efficient computational methods, growing consumer and enterprise concerns about
privacy and security, and the wide availability of specialized hardware for Al
acceleration (such as graphics processing units (GPUs), neural processing units
(NPUs), and tensor processing units (TPUs)) in mainstream devices, e.g., NPUs
in Microsoft Copilot+ PCs and TPUs in Google Pixel smartphones. This may mean
that most of these advancements will be implemented on-device, powered by SLMs
not LLMs, or leverage a hybrid architecture where SLMs are used for simple tasks
and LLMs in the cloud are used for more complex task workloads. LLM routing,
directing user (or agent) requests to the most appropriate language model, whether
small or large, given constraints, will emerge as an important direction in general.

1.5 Challenges

There are a range of sociotechnical implications that must be considered as the
technology advances. To address these challenges, it is essential to develop ethical
guidelines and governance frameworks that can guide the responsible use of GenAl.

6 Project Astra - Google DeepMind
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One of the primary concerns is the reliability of these systems, particularly the
occurrence of hallucinations or the generation of unfaithful content, which has been
seen in tools such as Google Al Overviews (e.g., recent press coverage about how
these overviews suggest to users that they eat one rock per day to stay healthy”).
These issues highlight the need for robust mechanisms to ensure the accuracy and
trustworthiness of GenAl outputs.

Another significant challenge is the potential loss of human control and agency
[31]. The human factors and information science communities have discussed the
boundaries between humans and systems for many decades [32]. We must retain a
continued focus on human-Al cooperation, where searchers stay in control while
the degree of system support increases as needed [33]. As Al systems become
more autonomous, there is a risk that users may become overly reliant on these
technologies, leading to a decrease in human oversight and the ability to intervene
when necessary. This is compounded by missed opportunities for serendipitous
information encounters (since the system is synthesizing answers), which can lead
to a homogenization of information and a reduction in the diversity of content
encountered and generated by users. User education in fostering an understanding
of Al capabilities and limitations is also essential for building trust and ensuring
effective collaboration between humans and Al agents.

Finally, a potential side effect of relying on Al-generated answers for information
needs is depriving the user of the opportunity to learn and discover [34]. As many
scholars (e.g., [35-37]) have pointed out, searching is often more than simply
finding information; it is also an opportunity to learn. “Searching as learning”
subfield in IR has evolved over the years to explicitly acknowledge and support
such possibilities. The learning here happens through the user actively engaging
with formulating or reformulating queries, assessing results, and re-examining their
needs. When we cut short that process, we may be taking away not only the user’s
ability to learn but also their opportunities for discovery, serendipity, as well as
other key activities such as critical thinking. These may be desirable characteristics
in many situations. The increasing push toward automating complex tasks via Al
agents that can interact with applications and Web sites on behalf of humans (e.g.,
the UFO system [15, 16]) raises similar concerns about risks to human cognition
(and control, etc.). Agents can provide cognitive scaffolding to gradually help
people reflect and learn how to perform complex tasks independently over time,
e.g., by offering hints and structured cues.

Evaluating the performance of GenAl systems is also a challenging task. Tradi-
tional metrics may not fully capture the nuances of generative content, necessitating
the development of new evaluation frameworks that can account for the unique
characteristics of Al-generated information and output/experiences that may also
be non-deterministic. GenAl can also play a vital role in evaluating information
systems, working together with human judges to assess the retrieval performance of
these systems.

7 Google AT Overviews Search Errors Cause Furor Online - The New York Times (nytimes.com)
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Bias and toxicity in Al-generated content are additional concerns, as GenAl
systems often reflect the biases present in their training data. This can lead to
the perpetuation of stereotypes and discriminatory content, which is harmful and
undermines the credibility of the Al system. Provenance, or the ability to trace the
origin of Al-generated content, is another area that requires attention. Ensuring that
users can identify the source of information and understand the process by which it
was generated is crucial for transparency and trust (and, as mentioned earlier, as a
way to drive traffic and revenue to content creators and publishers).

As Al agents become more autonomous and capable of taking actions on behalf
of users, it is crucial to ensure that these systems operate within ethical boundaries
and have mechanisms in place to prevent misuse. Furthermore, the integration of
GenAl in digital applications such as reservation systems points to the need for
interoperability standards to ensure seamless interaction between different systems
and platforms. There are challenges of data privacy and security in the context of Al
systems with near-infinite memory, emphasizing the need for secure data handling
practices and user consent mechanisms.

The rapid integration of GenAl in search and recommendation systems also
prompts a reassessment of IR’s core research focus and the adoption of a design
approach that aligns with user and societal needs for information access [38]. The
advancement of GenAl will benefit from the collaboration of disciplines, including
computer science, social sciences, and humanities. This interdisciplinary approach
can provide a more holistic understanding of the impact of GenAl on society and
contribute to the development of more effective human-centric systems, including
information access systems.
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Chapter 2 ®
Foundations of Generative Information Creck o
Retrieval

Qingyao Ai (®», Jingtao Zhan (), and Yiqun Liu

Abstract The chapter discusses the foundational impact of modern generative
Artificial Intelligence (AI) models on Information Access (IA) systems. In contrast
to traditional Al, the large-scale training and superior data modeling of generative
Al models enable them to produce high-quality, human-like responses, which bring
brand new opportunities for the development of IA paradigms. In this chapter,
we identify and introduce two of them in detail, i.e., information generation and
information synthesis. Information generation allows Al to create tailored content
addressing user needs directly, enhancing user experience with immediate, relevant
outputs. Information synthesis leverages the ability of generative Al to integrate
and reorganize existing information, providing grounded responses and mitigating
issues like model hallucination, which is particularly valuable in scenarios requiring
precision and external knowledge. This chapter delves into the foundational aspects
of generative models, including architecture, scaling, and training, and discusses
their applications in multi-modal scenarios. Additionally, it examines the retrieval-
augmented generation paradigm and other methods for corpus modeling and
understanding, demonstrating how generative Al can enhance information access
systems. It also summarizes potential challenges and fruitful directions for future
studies.

The primary distinction between modern generative models and traditional Al
techniques lies in their capability to generate complicated and high-quality output
based on human instructions. As shown by many studies [1-3], modern generative
Al models possess remarkable abilities to generate responses that closely mimic
human interaction. Generally speaking, such impressive performance comes from
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their large-scale training collections and their advanced data modeling algorithms.
Their superior data understanding ability can benefit almost every components of
existing information access systems, from document encoding and index construc-
tion to query processing and relevance analysis, etc. However, when talking about
new opportunities or paradigms that are uniquely brought by the generative Al to
information access, they can be broadly categorized in two directions. The first
one is to create content that directly addresses the user’s information needs. By
understanding and taking user queries as input instructions, generative Al models
are able to generate specific answers or products tailored to the individual’s request.
This direct approach to information generation can significantly enhance user
experience by providing immediate and relevant responses. The second direction is
to leverage the advanced instruction-following capabilities of generative AI models
to synthesize and recombine existing information in innovative ways. Generative
Al such as Large Language Models (LLMs) can take existing data and transform
it into new, coherent pieces of information that may not have been explicitly
outlined before. This ability to reinterpret and organize information opens up new
possibilities for retrieval system design and applications. Therefore, in this chapter,
we discuss how generative Al models could help information access from two
perspectives, namely, information generation and information synthesis.

2.1 Information Generation

Information needs are diverse and typically long-tail. Traditional information
retrieval systems, such as search engines and recommendation platforms, are
designed to present information that already exists. However, these systems often
fall short when it comes to fulfilling the less common information needs. This
is particularly evident in scenarios requiring creative creation, where users seek
not just information but inspiration and novel ideas. The limitations of traditional
information systems in addressing these unique demands have paved the way for
the emergence of generative models, which hold the promise of creating new
information that aligns closely with long-tail information needs.

In recent years, generative models have made significant developments. For
instance, ChatGPT can respond to user questions, Bing enhances its responses
with retrieval-augmented generation, Midjourney generates images based on user
prompts, and recommendation systems generate personal contents for different
users. The development is mainly driven by the capable model architectures, com-
putational resources, and large-scale Internet data. These elements have facilitated
the performance of generative models to new heights. With the continuous efforts on
scaling up these elements, the model performance is still rapidly improving. Nowa-
days, generative models have gradually been integrated into various workflows and
everyday life activities.

In this section, we present the foundation of generative models. This section is
organized as follows: Sect.2.1.1 shows the efforts on designing the model archi-
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tectures for LLMs. Section 2.1.2 discusses how scaling facilitates the development
of generative models and its potential future. Section 2.1.3 presents the different
training stages of LLMs. Finally, Sect. 2.1.4 introduces how LLMs are used in multi-
modal scenarios.

2.1.1 Model Architecture

In different generation scenarios like ChatGPT or SoRA, the transformer [4] has
emerged as the predominant model structure. It starts with an embedding layer,
followed by multiple neural layers. Within each layer, an attention mechanism
models the interactions between words, creating contextualized embeddings. The
final decision on word generation probabilities is derived by comparing the output
embedding with the vocabulary embeddings. We illustrate the model architecture
in Fig.2.1. Unlike traditional recurrent neural networks [5], Transformers are
capable of modeling long-distance interactions between words directly, which
provides a more powerful representational capability. Numerous enhancements to
the transformer architecture have been proposed. In the following, we will explore
various modifications to each component of the Transformer, highlighting the
advancements that have further improved its efficacy and efficiency.

2.1.1.1 Word Embedding
Word embedding module is at the bottom of the Transformer architecture. Initially,
a tokenizer breaks down a sentence into tokens, which the Word embedding module

then maps into embeddings. These are combined with position embeddings and fed
into subsequent neural layers. Recent research on large-scale language models has

Transformer Layer
Output Q

Transformer

Tokens
Hidden
Positions States

Fig. 2.1 Transformer architecture: overview on the left and the illustration of one layer on the
right [4]

Feed
Forward
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identified word embeddings as one of the main sources to training instability [6].
Particularly in the early stages of training, the gradients of word embeddings
are often orders of magnitude larger than those of other parameters. To address
this issue, [7] introduced a Layer Normalization (LN) immediately after the word
embedding layer, stabilizing the distribution effectively. Besides, [6] opted to scale
down the gradients of the word embeddings by an order of magnitude to prevent
substantial updates. Both approaches have been proven effective in stabilizing the
training of language models at the 100 billion parameter scale. Yet, whether they
are still effective for larger models remains to be investigated.

2.1.1.2 Position Embedding

Position embedding is essential for Transformers. Unlike RNNs, which inherently
process sequences in order, the vanilla attention mechanism disregards the positional
distances between words, and the Transformer has to rely on position embeddings
for position modeling. Initially, the Transformer [4] utilized sinusoidal embeddings,
a non-trainable form of position embedding that is added directly to word embed-
dings. Later, [8] introduced trainable position embeddings, which is initialized
randomly and are updated through gradient descent during training. Subsequently,
[9] and [10] proposed relative positioning, where the attention mechanism incor-
porates biases based on the relative positions of words to better model varying
distances. Recently, [11] introduced the concept of rope position embedding, based
on the principle that the dot product of vectors correlates with their magnitudes
and the angles between them. By rotating vectors in space proportionally to their
positions, this method naturally integrates positional information into attention
scores. [12] has found that this approach outperforms trainable position embeddings.
Yet, these approaches may not work well when extrapolated to long sequences, and
more effective methods need to be explored.

2.1.1.3 Attention

The attention mechanism models interactions between words and is a significant
component of the Transformer architecture. Enhancements to the attention module
have predominantly focused on two aspects: modeling long texts and optimizing the
Key-Value (KV) cache. (1) Modeling Long Texts: The vanilla attention mechanism
has a complexity of O(n?), which significantly increases computational costs for
long texts. To address this, the Sparse Transformer [13] employs sparse attention,
utilizing pre-designed attention patterns to avoid the computation of attention
over long sequences. Another approach, Reformer [14], uses Locality-Sensitive
Hashing (LSH) to reduce computational complexity. Additionally, [15] compressed
context information to shorten sequences, thereby reducing overhead. Others have
explored retrieval-based methods [16, 17]. This area of research continues to hold
considerable potential for future advancements. (2) Optimizing KV Cache: classic
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Transformers use multi-head attention (MHA), which requires storing extensive
key-value caches during inference, slowing down model generation. To mitigate
this, [18] proposed Multi-Query Attention (MQA), which employs multiple key
heads but only a single value head, substantially reducing the key-value cache
and enhancing computational speed. However, [19] found that this could degrade
model performance, leading to the development of grouped query attention. This
method allows multiple key heads to share a single value head, effectively serving
as a hybrid between MQA and MHA, balancing computational complexity and
performance more effectively. Recently, [20] introduced multi-head latent attention,
which compresses keys and values into a single latent space, thereby reducing the
key-value cache while maintaining robust representational capacity.

2.1.1.4 Layer Normalization

Layer normalization (LayerNorm) is important for stabilizing the distribution of
hidden states, a key to train large language models. In the classical Transformer
architecture, LayerNorm is positioned between residual blocks, hence termed Post-
LN. Researchers [21] observed that this configuration could lead to high gradients
near the output layers and very small gradients near the input layers, resulting in
unstable gradients and challenging training dynamics. To address this issue, the Pre-
LN configuration was proposed [21], placing LayerNorm on the residual pathways
before attention or Feed-Forward Network (FFN) module. Experiments have shown
that this adjustment leads to more uniform gradient distribution. Building upon
Pre-LN, other researchers introduced Sandwich-LN [22], which adds an additional
LayerNorm at the output of the residual pathways, further enhancing the training
stability. Beyond merely adjusting the position of LayerNorm, researchers have
developed DeepNorm [23], which combines a tailored parameter initialization strat-
egy with modified residual connections to stabilize training. This approach enables
the training of Transformers with depths reaching up to 1000 layers. Nevertheless,
there still lacks a theoretical understanding about how layer normalization affects
the training stability, and more work needs to be done for scaling the model even
further.

2.1.2 Scaling

Across different information generation scenarios, scaling has been a significant
factor to the performance improvement. It is largely attributed to the discovery of
scaling laws [24]. Scaling laws describe how loss decreases in a log-linear manner
as model size or training data volume increases. It can be formulated as follows:

L(x)=Looct+k-x77, 2.1)
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where L is the loss, x is model size or data size, and k& and « are coefficients.
This scaling formula has become a crucial theoretical guide in the era of large
models, suggesting that performance can be enhanced at a log-linear rate simply by
scaling up the model size or training data. Based on these scaling laws, researchers
also derived optimal model sizes given fixed computational resources [25]. Their
findings indicate that as computational capacity expands, it is beneficial not only to
increase the training step but also the model size. This insight has further facilitated
the pursuit of large models. The correctness of scaling laws was first proposed in
language modeling field and then validated in many other areas, including data
mixture scaling laws [26], multimodal scaling laws [27], and scaling laws specific
to Information Retrieval (IR) [28].

Despite wide recognition of scaling laws, there remains disagreement among
researchers about whether scaling is the correct path to the future. This stems from
two main concerns: the uncertain relationship between loss and practical metrics
and the inference costs associated with large models.

* Loss vs. metric improvement: The first arguing point is whether a linear
reduction in loss can translate into super-linear improvements in actual metrics.
If metrics could improve super-linearly with linear increases in computational
effort, scaling up models would be highly advantageous. However, if the
decrease in loss only results in linear or sublinear metric improvements, the
diminishing improvements make scaling an inefficient option. The relation-
ship between loss and metric performance remains an open question. Some
researchers [29] believe that metrics can improve super-linearly, which is
termed emergent abilities. This is further supported by Du et al. [30], who
observed a jump in metrics when loss reaches a certain threshold. Additionally,
[31] introduced the concept of “grokking” to explain emergence, showing that
models might suddenly exhibit strong generalization capabilities when provided
with sufficient computational resources. Nevertheless, some researchers [25]
argued that such phenomena do not exist, showing that a well-trained smaller
model can outperform a larger, undertrained one. Schaeffer et al. [32] demon-
strated that emergent abilities are artifacts of discrete metric functions and found
that continuous metric functions do not exhibit such behaviors. McKenzie et al.
[33] even found that scaling results in worse metric scores. The existence of
specific emergent abilities remains unresolved and needs to be investigated in
future work.

 Inference cost considerations: Early studies on scaling laws did not account
for the higher inference costs associated with larger models. Thus, the argu-
ments that larger models are better [25] do not apply when the inference
costs are considered. Instead, small models demonstrate potential to lower the
inference costs. As shown by Fang et al. [28], the optimal model sizes become
significantly smaller when accounting for inference costs. Besides, [34] show
that smaller models can utilize more sampling steps during inference and thus
perform better. Consequently, many recent studies focus on extensively training
small models. For example, Llama [3] and MiniCPM [35] are trained with data
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and steps that far exceed the guidance suggested by scaling laws. In the future,
the models may be used on a phone to build up intelligent interaction with users.
Thus, it is important to develop high-performing small models.

2.1.3 Training

Generative models in different scenarios are similar in training. For example,
they usually use autoregressive training objectives, pretraining to Supervised Fine-
Tuning (SFT) to Reinforcement Learning from Human Feedback (RLHF) training
stages, and prompt tuning procedure. In this section, we focus on the text generation
scenario. We first discuss the training objectives and then show the three training
stages. Finally, we discuss how to design the prompts after the model is trained.

2.1.3.1 Training Objectives

For generative language models, the training objective is usually next token
prediction. However, this was not widely used when Transformers first appeared.
Initially, masked language modeling was the prevalent training objective during the
bidirectional encoder representations from transformers (BERT) era [8]. It masks
15% of the words in a text randomly, and the model is tasked with predicting
these masked words. This approach allows the model to utilize bidirectional
attention, enhancing its representational capabilities. Even today, BERT models
perform better than autoregressive models on tasks requiring bidirectional attention.
However, a significant drawback of this method is the gap between its training setup
and downstream tasks, necessitating a fine-tuning phase for adaptation to various
applications. Thus, its zero-shot generalization capabilities are very limited.

Next token prediction was developed to address the inability of masked language
modeling to generalize zero-shot to downstream tasks. The authors of GPT-2 [36]
proposed that all Natural Language Processing (NLP) tasks could be reformulated
as next token prediction tasks. By training models on this task, models could be
directly applied to any downstream task without the need for specific fine-tuning. In
fact, research nowadays demonstrates the effectiveness of this idea. Mathematically,
next token prediction can be represented with the following formula:

P (xeqr [ X1, .o, x0), 2.2)

which is to predict the probability of the next token x,;; given the sequence of
previous tokens.
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2.1.3.2 Training Stages

The training process of language models typically unfolds in three stages: pre-
training, SFT, and RLHF. Each phase presents unique challenges and methodolo-
gies.

Pre-training is the most resource-intensive stage. It is training a randomly
initialized model on a large dataset to develop a robust linguistic capability. Several
challenges arise during this stage: (1) Large models are especially difficult to
train from random initialization. During training, there are often spikes in training
loss or difficulty in converging [6, 23, 37]. We discussed various architectural
improvements in Sect.2.1.1 to address these instabilities, yet a definitive solution
remains an open issue. (2) The computational demand is substantial. Pre-training
requires stable and efficient use of computational resources [1]. It often involves
parallel processing across multiple machines, which can lead to low utilization rates
of computing resources [38]. Zeng et al. [6] reported numerous hardware failures
during pre-training. (3) The quality of pre-training data is crucial [39]. Given the
vast amount of data needed, efficiently filtering out low-quality data is essential. The
filtering methods usually employ neural scoring models and based on the credibility
of the site [40, 41].

SFT is to train the model on instruction-response pairs [42]. The model can
thus learn to follow instructions or engage in dialogue [3]. To enhance dataset
diversity, researchers often leverage different types of NLP tasks. The quality of
the dataset is significant and requires a skilled annotation team. Besides, it is also
important to label safety-related data, which helps instruct the models to learn to
reject inappropriate requests [3].

RLHF focuses on aligning the model with human preferences based on human
feedback [43, 44]. The process starts by sampling real human prompts to which
the model generates multiple responses. These responses are then compared by
users or third-party annotators. A reward model is trained based on these human
preferences. Subsequently, reinforcement learning techniques utilize the reward
model to guide the model updates. This approach significantly enhances the quality
of model outputs, especially in creative writing tasks. However, a major challenge
is the generalizability of the reward model; as the model evolves, the reward model
may no longer accurately assess the quality of outputs. Continuous iterations of this
process are necessary to mitigate this issue [3]. Recently, there are also some offline
reinforcement learning algorithms that do not necessitate training a reward model,
such as direct preference optimization (DPO) [45]. Yet studies [46] show that such
offline learning methods still underperform the online learning methods.

2.1.3.3 Prompt Optimization

Generative models are highly sensitive to input prompts; an effective prompt can
significantly enhance the quality of the model’s output [47]. Therefore, optimizing
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prompts for a generative model is a crucial area of research. Here are three main
directions:

* Designing prompt templates: Researchers often design prompts that mimic
human thought processes to guide the model effectively. This includes using
structured thought patterns like chain of thought [48], tree of thought [49], and
self-consistency [50], which help the model organize and process information
in a logical manner.

* Iterative optimization of prompt templates: As with reinforcement learning,
this method continuously iterates and refines the prompt templates based
on the generation feedback. Given that prompt templates are typically dis-
crete, researchers usually employ large language models to conduct prompt
updates [51, 52].

e Training prompt rewriting models using user interaction logs: This
approach harnesses the rich feedback contained within user interaction logs
to tap into user insights. By analyzing how users interact with the model,
researchers can train an automated model to rewrite prompts more effectively.
This method leverages real-world data to better align the prompts with user
intentions and improve the model’s responses [53, 54].

2.1.4 Multi-Modal Applications

The rapid advancement of language models has significantly helped progress in the
multimodal domain. Language models facilitate the understanding of multimodal
data and developments in multimodal generation. We will discuss these two aspects
separately.

2.1.4.1 Multi-Modal Understanding

Multimodal understanding involves models processing inputs from multiple modal-
ities to produce relevant textual responses. For example, GPT-40 can process
textual, visual, and auditory input. Challenges in this area include designing model
structures that can handle multimodal inputs and crafting appropriate training
objectives. Here, we focus on how visual signals are integrated into large language
models:

In terms of aligning multimodal inputs, there are mainly three approaches:

* Object detection-based input: This method involves detecting objects within
an image, extracting their features and associated spatial information, and then
feeding this data into the language model [55, 56]. While this approach is
effective, it tends to be slow due to the processing time required for object
detection.

* Visual encoding: Another method encodes images directly using a visual
encoder, which converts images into a latent vector representation before
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integration with the model [57-61]. This method can sometimes result in the
loss of detail.

* Patch-based input: The most efficient approach involves dividing images
into several patches, transforming them with a simple linear layer, and
directly inputting them into the model without the need for a complex visual
encoder [62].

In terms of training methods, there are mainly four types of training objectives:

* Contrastive learning or image-text matching: These tasks require the model
to correctly categorize images and their corresponding textual descriptions,
aligning the representations of text and images [61, 63, 64].

» Image captioning: The model generates captions based on images, which helps
it learn to understand the visual content [58—61].

* Fine-grained image understanding: The model is tasked to describe specific
areas of an image or locate particular objects within an image. This helps
enhance the model’s detailed comprehension of visual elements [58, 65].

* Image generation: This task is reconstructing the original pixels of an image
that has been blurred or corrupted [58, 66].

These methodologies and training objectives are crucial for advancing models’
capabilities to process and interpret complex multimodal information effectively.
This facilitates a more natural interaction with users.

2.1.4.2 Multi-Modal Generation

Multi-modal generation models, such as text-to-image generation, have substan-
tially revolutionized the field of art creation. Traditionally, Generative Adversarial
Networks (GAN) [67] and autoregressive methods [68] are mainstream methods.
However, they are computationally expensive and cannot produce high-quality
results. Recently, diffusion [69, 70] emerges as a new state-of-the-art method in
multimodal generation. It perturbs the data with noise and learns to reconstruct the
original data.

Language models are increasingly applied in the multimodal generation domain,
such as in image [71, 72] and video generation [73, 74]. Language models are
primarily utilized for processing training data and reformulating prompts.

In terms of training data, the titles associated with real-world images or videos
often contain significant noise. If generative models are trained directly on these
noisy titles, it could lead to inaccurate semantic understanding. To address this,
language models can be used to filter and regenerate text descriptions within the
training data [75, 76]. For instance, a multimodal understanding model could first be
trained and then used to relabel videos or images to obtain more precise and detailed
text descriptions. Experimental results have shown that this method significantly
improves the fidelity of model generations to prompts.

During inference, multimodal generation models are highly sensitive to the input
prompts. Many users do not know how to craft effective prompts and thus get



2 Foundations of Generative Information Retrieval 25

unsatisfying responses [77]. As a result, it is common to train a language model to
rewrite user-provided prompts to enhance the quality of the generated images [75].
One of the challenges here is the difficulty in annotating such rewriting training data,
as even system developers may not always know the optimal prompts, let alone
crowdsourced workers [78]. To overcome this, some researchers collect a large
number of user-shared effective prompts as training data [79]. Others build prompt-
rewriting models based on user log data, capturing preferences, and feedback for
training [53].

2.2 Information Synthesis

Other than generating information directly, another important research and appli-
cation direction is to use the power of generative Al models, particularly LLMs,
to integrate existing information and generate grounded responses accordingly. For
simplicity, we refer to this paradigm as information synthesis. The key difference
between information generation and information synthesis is the source of infor-
mation. Information generation relies on the internal knowledge and information
gathered through the training of generative AI models to create the model outputs,
while information synthesis requires external sources to provide information to the
models, and the models serve more as a integrator than a creator. There are multiple
reasons why information synthesis is considered more reliable than generation in
several IA scenarios. Here we discuss two of the most significant ones, i.e., model
hallucination and external knowledge.

Hallucinating, which refers to the behavior of generative Al models that create
responses and outputs that are not grounded by facts or existing supporting
materials, is rooted in the foundation of most existing generative Al systems. For
instance, LLMs create responses based on the next token prediction task, which
formulates the generation of language as a probabilistic process and generates the
next token in the output based on a probabilistic distribution (over the vocabulary)
predicted by neural networks [1, 3]. The probabilistic model of LLMs allows
them to capture knowledge in large-scale data efficiently and effectively, but it
also introduces inevitable variance in their generation process. In other words, it
is well acknowledged that it is theoretically impossible to prevent LLMs from
generating data that are not seen in their training process [80]. While the ability
of hallucinating is the source of creativity for LLMs (and for humans as well), it
is not always desirable in practice, particularly for tasks with high requirements
on result precision, reliability, and explainability. Therefore, asking the generative
Al models to integrate human-created or factually grounded materials instead of
generating information on their own is often considered more effective and robust
to hallucination-sensitive applications.

The need for external knowledge is another key reason why we may prefer
information synthesis over information generation. Despite the fact that modern
generative Al models are trained with an incredibly large amount of data gathered
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from the Web, there are many cases where we still need to retrieve and find support
from external knowledge collections to finish certain tasks. Examples include the
use of private datasets, vertical domain applications that require special knowledge,
tasks that involve time-sensitive data, etc. It is usually inefficient or prohibitive to
update large-scale generative Al models such as LLMs with task-oriented external
data through model pre-training or SFT [81-83]. Even if possible, such paradigm
is not preferred because the internal knowledge structures of most generative Al
models are still a mystery (at least of today), and there is no guarantee that the
models could behave and use the external information as we expect. In contrast,
using generative Al models as information synthesizer gives us not only more
flexibility but also more transparency and control over system outputs.

In this section, we discuss how generative Al models, particularly LLMs, can
serve as effective information synthesizers for IA. We start with introducing one
of the most popular information synthesis paradigm, i.e., Retrieval-Augmented
Generation (RAG), and then discuss several other directions that utilize LLMs for
corpus modeling and understanding.

2.2.1 Retrieval-Augmented Generation

RAG refers to the process of augmenting LLMs with data retrieved from external
collections or synthesizing multiple retrieval results with LLMs for downstream
applications [84, 85]. While the popularity of RAG rose after the release of large-
scale pre-trained language models such as GPT [1] and BART [86], relevant topics
and techniques have already been studied for at least more than two decades in both
the IR and NLP communities, e.g., extractive and abstractive summarization that
generates summary based on retrieved sentences [87, 88] or answer extraction from
top retrieved document [89]. A major reason why RAG-like techniques were not as
attractive as they are today is the limited performance of generative models before
the era of LLMs. After ChatGPT [1] demonstrated superior ability text generation
at the end of 2022, there have been many studies and surveys on RAG and its
applications in LLMs [84, 90, 91]. As the intent of this chapter is not to provide
yet another survey on existing RAG papers, we focus the following discussions on
several present and future directions for RAG and their relations underneath.

2.2.1.1 Naive RAG

Naive RAG refers to the paradigm that directly feeds documents or other types
of information retrieved by a retrieval system to the input (e.g., prompts) of a
generative Al model and hope that the model can generate better output with or
without a specific target task [92]. It is also referred to as the “Retrieve-then-Read”
framework that has been used in reading comprehension and text summarization
before LLMs hit the world [93]. Given an input (could be a query or a specific
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task instruction), we first retrieve relevant information (usually entities, passages,
or documents) from an external corpus or previous inputs (e.g., the memory of
an agent [94, 95]) with a retrieval system. Then, we craft a input prompt with the
retrieval results and feed it to the LLM. The LLM will generate the final response
based on the input request and the retrieved information. This paradigm has already
been proven to be effective in multiple IA tasks such as question answering [85].

Since LLMs are purely used as black-box tools to process the retrieved doc-
uments and input request in naive RAG, existing studies in this direction mainly
focus on the development of better retrieval systems and prompt design for RAG.
The studies on retrieval systems, unsurprisingly, are highly similar to those in
IR, which involve indexing, query processing, first-stage retrieval, re-ranking,
etc. These topics and system components have already been studied in the IR
community for more than five decades. Perhaps the most notable difference is
that recent studies on naive RAG often prefer the use of neural retrieval models
(e.g., dense retrieval models [96]) over traditional term-matching models (e.g.,
BM25 [97]). An important reason behind this is that neural retrieval models share
similar theoretical background and model structures with LLMs. This makes joint
optimization possible in modern RAG systems, which we discuss in Sect. 2.2.1.3.

The design of input prompts with retrieval results, on the other hand, is relatively
more under-explored before the rise of LLMs. It has been well recognized that
prompt formats, even when the contents are same, could significantly affect the
performance of LLMs. How to feed retrieval results effectively into the prompts
of LLMs for RAG has thus attracted a lot of attention recently [93, 98, 99].
Studies have found that LLMs exhibit significant position bias over the input
result sequences [100, 101] and has different perspectives on relevance with human
experts [102]. Since prompts are the main interaction interface between retrieval
and generation, their design principles and downstream effects on naive RAG
are of great value both in research and real-world applications. Particularly, how
to craft effective RAG prompts automatically could be a fruitful direction to
explore. Existing studies have shown that high-quality prompt writers can be
automatically learned based on downstream task performance and user logs in image
generation [53], and it is widely believed that similar techniques have also been used
in popular LLM chatbots [103]. Yet how to do this for RAG remains to be a question
to be answered.

2.2.1.2 Modular RAG

In contrast to naive RAG methods, modular RAG treats retrieval systems as
functional modules to support LLMs [104]. While some works view this retrieval
module as one type of many tools that can be learned and used by LLMs [105], it
is widely acknowledged that retrieval systems possess an irreplaceable position in
modern LLM applications due to its diverse nature and significant importance [84].
Broadly speaking, existing studies on using retrieval systems as functional modules



28 Q. Aietal.

for LLM generation mainly focus on the three “W” questions, namely, when to
retrieve, what to retrieve, and where to retrieve.

The question of when to retrieve refers to the timing of functional call for retrieval
systems. In contrast to LLMs that directly create responses based on their internal
parameter space without explicit evidence grounding, retrieval systems produce
reliable and explainable information directly by searching external corpus. From
this perspective, the best timing to call the retrieval system is when LLMs start
to hallucinate or produce wrong results. Yet identifying such timing is difficult
because we neither know the correct answers in advance or understand the internal
mechanisms of LLMs (at least as of today) [106]. One naive yet effective method
is to retrieve supporting evidence for LLM inference with a fixed time interval,
such as every fixed number of generated tokens [107, 108] or every sentence [109].
More advanced paradigms involve the analysis of knowledge boundary [110]
and the estimation of prediction uncertainty in LLMs [106, 111]. Theoretically
speaking, since the study of when fo retrieve shares similar motivations and
foundations with the study of hallucination detection, existing studies on LLM
hallucination [112, 113] could provide important inspiration for research on this
topic. Promising directions include better fact-checking systems for LLMs [114]
and more investigations on how to characterize the confidence and uncertainty of
LLM predictions based on both external behavior and internal state analysis [111].

The question of what to retrieve focuses on analyzing the intents and information
needs of LLMs in inference. LLMs often need the help of different tools and systems
to finish different tasks [105]. However, in contrast to other tools widely studied
in tool learning, retrieval itself is a complicated systems with dynamic and free-
form inputs, data collections, and outputs. Therefore, understanding what exactly
is needed by LLMs and how to formulate it in the language of retrieval systems
is an important problem. Most existing studies on RAG naively use the whole or
local context of LLM inference as the queries to retrieval systems and assume that
these context contain enough information to guide retrieval [90]. A slightly better
solution is to use the terms that LLMs have low confidence to formulate queries
since uncertain tokens represent cases where LLMs have limited knowledge to
generate responses and thus need more information [106]. As long studied in the
IR community, the formulation of an effective query requires deep understanding
of the user’s intent, and many of the important context information behind a user
intent is not explicitly expressed in the words they wrote [115]. Therefore, a more
theoretically principled method to answer what to retrieve in RAG is to analyze the
internal state of LLMs and infer their information needs directly. For example, Su
et al. [111] directly formulate queries based on the internal attention distribution of
LLMs (Fig.2.2) and improve the performance of RAG for nearly 20% on several
benchmark datasets without changing the retrieval system. This demonstrates the
potential of future studies in this direction.

Where to retrieve refers to the question of how to identify the correct infor-
mation sources for RAG. Studies in this direction are particularly related to the
research on multi-source retrieval [116] and tool learning [105]. To answer different
requests related to the use of information collected from different databases or data
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Fig. 2.2 Su et al. [111] generate queries for RAG based on the internal attention distribution of
LLMs
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collections, LLMs need to learn how to interact with each information sources
effectively and efficiently. Studies of tool learning focus on teaching LLMs to use
tools according to the context, and retrieval systems are usually considered as one
type of tools to use. However, retrieval itself could be a complicated problem when
we possess multiple data collections with different characteristics. In search engines,
information sources are broadly categorized based on their modality, and we usually
build separate systems for each of them (e.g., the “Images,” “News,” “Videos” tabs
on Google). While commercial search engines may aggregate results from different
sources into a single page, the ultimate Search Engine Result Page (SERP) shown
to users are just a list of results, and it is up to the users to decide which they want
to see and how to use these results for downstream applications. In contrast, when
using LLMs, users often request LLMs to directly answer their question instead
of listing a couple of candidates [117, 118], so it is the job of LLMs to decide
where to retrieve the information given the current context. While studies of how
to navigate user queries to search indexes built from different information sources
have been widely studied in the IR community [119-122], how to do it for RAG with
modern generative Al models is, to the best of our knowledge, still underexplored.
Existing literature on RAG mostly works on a single retrieval collection (usually
a text corpus), but it is obvious that no single collection can satisfy the needs
of LLMs in different tasks. For instance, when writing a legal case document,
the judge needs to collect and organize information from evidences, complaints,
counterclaims, court records, as well as legal articles and previous cases. How to
navigate the generation model to retrieve and integrate information from different
sources jointly for downstream applications is a practical and potentially fruitful
research question for RAG.

2.2.1.3 Optimization of Retrieval and Generation

As discussed in several RAG surveys [84, 90], the optimization of RAG systems
usually involves the optimization of three components, i.e., the retriever, the
generator, and the augmentation method. If we further step back and look at the
high-level goals of RAG optimization, we could also categorize it based on how we
evaluate the RAG system, namely, the evaluation from the perspectives of retrievers,
generators, or the joint systems. The evaluation from the retriever perspectives is not
particularly different from existing studies on ranking evaluation. The underlining
assumption of this is that once the LLMs are fed with the passages or documents
that contain the correct information, they should be able to produce the correct
answers directly. Therefore, the evaluation and optimization of a RAG system could
downgrade to the evaluation and optimization of a classic retrieval/ranking systems,
to where most existing works on dense retrieval and Learning to Rank (LTR) could
be applied [123, 124]. Yet there are still differences between RAG and traditional
retrieval tasks as the queries are no longer issued by users. How to formulate queries
efficiently and effectively from LLMs for the retriever is a worthy research question,
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and studies in this direction have already shown potential in improving the overall
quality of RAG systems [111].

From the perspective of generators, RAG evaluation and optimization focus more
on improving the robustness and effectiveness of LLM generation based on a fixed
set of retrieval results [108]. This often means extra training or fine-tuning on
LLMs to improve their fundamental ability in information processing. For example,
retrieved documents could be lengthy, and LLMs are usually not good at processing
long input context [101]. Therefore, how to design efficient LLMs that can take long
context inputs efficiently and effectively has been a popular research problem that
have been widely studied by researchers from both academia and industry [100].
We have seen many companies show off their models based on how many input
tokens they can process in one request. In addition, since retrieval results are fed
as a part of the LLM inputs, whether the LLMs can generate the response based
on the retrieved documents instead of their internal knowledge could be seen as a
special type of instruction-following ability. Studies have been conducted to teach
LLMs to utilize retrieval results faithfully and constantly in RAG systems [125] On
the other hand, factors such as irrelevant results and ranking perturbations are well
acknowledged to be harmful for the performance of generators in RAG, so there
are also studies that try to improve the robustness of LLMs from the perspective of
RAG. For example, [126] proposes to fine-tune LLMs with the presence of retrieval
results (i.e., retrieval-augmented fine tuning) so that LLMs can learn the domain-
specific knowledge introduced by the retriever and improve their robustness against
potential distracting information from retrieval.

From the perspective of augmentation methods, existing research mostly focuses
on the joint optimization of the RAG system as a whole. In other words, the loss
functions of RAG optimization should be built from the performance metrics of
downstream tasks directly. While this paradigm is appealing, it often has strict
requirements on the design of RAG systems. Particularly, it is difficult to apply such
joint optimization algorithms on a RAG system in which retrievers and generators
are loosely connected through prompts constructed from discrete retrieval results.
While reinforcement learning could solve the problem in theory, its empirical
performance when being used as the solo optimization algorithms for ranking
systems is still not satisfying at this point [127]. If you already have a good retriever
and only conduct fine-tuning with a fixed LLM, then it may work [128], but this
still does not look like a perfect solution because reinforcement learning is usually
subject to large variance in practice. To the best of our knowledge, how to directly
connect the training of retrievers with the auto-regressive loss of the generators in
RAG is still an open question. Answering this question requires us to go deep into
the structure of generative Al models and retrieval models and develop new model
structures that can take advantages from studies on both sides.
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2.2.1.4 Retrieval Planning and Composite Information Needs

As discussed above, the initial motivation behind the studies of RAG mostly
focuses on using the power of retrieval systems to improve the quality of responses
generated by LLMs in terms of reliability and informativeness. While it is widely
acknowledged that problems such as hallucination and high computation cost in
supervised fine-tuning will continue to be significant for generative Al models in
a short period of time, there are also concerns, especially from the IR community,
that retrieval could become less important with the rapid evolution of LLMs [129].
In fact, ChatGPT has already shown similar accuracy and better user satisfaction
on factoid question answering than traditional Web search engines [1]. However,
the rise of generative Al models also brings brand new opportunities for IR. One
of them is the possibility of moving from SERPs that simply list result candidates
to a real information agent that solve complicated tasks with composite information
needs.

Today, most people treat IR systems as unit information solvers. Despite their
actual task characteristics, users first decompose their goals into a couple of unit
information needs (usually expressed with separate queries) and then issue them
one by one to search engines or recommendation systems to find the corresponding
answers. An important reason behind the popularity of this paradigm is that, at least
of today, IR systems are not capable of doing complicated information tasks with
composite needs and multi-step planning. For example, we can use a search engine
to find a survey on RAG by searching “survey of RAG,” but cannot write such
a survey directly by retrieving and analyzing papers from publication collections.
The job of information need decomposition and retrieval planning has always been
human’s.

Fortunately, with the help of generative Al models such as LL.Ms, it is now possi-
ble to push the boundary of IR systems and tackle such advanced information tasks
for users. Composite retrieval is not a new concept in IR [130], but previous studies
refer to the phrase as retrieval paradigms that cluster results from multiple sources
and show them in groups for specific user queries [131]. While this represents one
type of composite needs, it is relatively simple as the target user queries usually
are mostly topic specific and keyword based. Complicated information tasks such
as survey generation and professional document writing often involve multi-step
planning and multi-round interactions between the retrieval results and response
generation. To build powerful IR systems or agents that can solve such composite
information tasks, we need to construct collaborative systems that deeply connect
the retrieval, planning, and generation. For instance, we need to conduct generation-
oriented retrieval optimization to build retrieval framework and model interfaces for
downstream task planner and response generators; we also need to design retrieval-
oriented generation models that can decompose information needs, navigate the
retrieval process, and gather information from multiple sources to generate the final
results. Research on these directions could be fruitful and significantly extend the
scope of IR in the era of generative Al
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2.2.2 Corpus Modeling and Understanding

In contrast to using RAG, another line of studies try to use generative Al models
to replace traditional retrieval systems. Directly answering a user’s information
need instead of showing ten blue links has long been an important goal for the
development of intelligent IR systems [132]. With the rise of LLMs, such vision
is now achievable in a significant extent. For example, LLM-based chatbots such
as ChatGPT can answer multiple types of user queries with direct answers [118].
Metzler et al. [133] has discussed several paradigms in which pre-trained language
models can help IR systems answer a user’s information needs directly without
listing references. The intuition is to use neural network-based language models
to store the corpus knowledge in parameter space and pull relevant answers or
information directly from it based on user’s queries. Depending on how the problem
is formulated, several research directions have emerged. Specifically, in this section,
we discuss two of them, namely, Generative Retrieval (GR) and domain-specific
modeling.

2.2.2.1 Generative Retrieval

The idea of generative retrieval comes from the idea of differentiable index
proposed by Metzler et al. [133]. The original name used in the paper was model-
based IR, but after the rise of generative Al models, some researchers start to refer to
studies in this direction as generative retrieval (GR). The core idea of GR is twofold,
i.e., the differentiable index and the generation of doc IDs.

Inspired by the superior performance of pre-trained language models, particu-
larly BERT [8] and GPT [1], generative retrieval wants to explore the possibility of
replacing traditional term-based index (e.g., inverted index) in retrieval systems with
large-scale neural networks. In contrast to dense retrieval models that build neural
encoders to project documents to latent semantic spaces and build explicit indexes
based on document vectors, GR tries to build implicit indexes in the parameter
space of neural networks. For instance, Differentiable Search Indexing (DSI) and
its variations [134—137] have tried to train pretrained language models on the target
corpus directly and then treat the model’s parameter as an “index” of the corpus.
Studies in this direction argue that by training the neural models to encode the whole
corpus, documents and information would be implicitly stored in the parameters
of the models, and these parameter-based indexes have better storage efficiency
than traditional term-based or vector-based indexes [134]. They also argue that
such paradigm can unify the multi-stage retrieval pipeline so that indexes can be
trained directly for the final retrieval objectives. However, storing raw document
content directly in limited parameter spaces often lead to significant information loss
(which is reflected in the suboptimal retrieval performance of GR models [138]), and
using model parameters as indexes makes the whole system uncontrollable by both
system developers and users. While the former could be alleviated by using large-
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scale models, the latter is still an unresolved problem for GR. For example, it is
difficult, if not impossible, to remove or update a document indexed in the parameter
space when we do not know what exactly each parameter do in the neural models.
Considering that dense retrieval models built with product quantization and inverted
file systems can achieve state-of-the-art retrieval performance with similar latency
and less storage than term-based models with inverted indexes [139], whether the
idea of differentiable indexes in GR is worth its price is still a controversial question.

Another important characteristic of GR models is to retrieve documents by gen-
erating sequences of doc IDs through autoregression. Since documents are stored
implicitly in model parameters, to actually retrieve a real document, GR models
use user’s queries as prompts to generate document IDs, which usually consist
of a couple of special tokens that exclusively identify each relevant document.
Since the birth of GR, a variety of document IDs have been proposed, which can
be broadly categorized as IDs with explicit tokens [134, 135, 137] and IDs with
implicit tokens [136, 140, 141]. GR models with explicit ID tokens try to label each
document with sequences of real terms that have semantic or numerical meanings.
Examples include keyword-based doc IDs and tree-based doc IDs [134]. Compared
to vectors in dense retrieval, these methods have less flexibility and capability in
document modeling as they discretize document semantic meanings with a limited
number of tokens, and their retrieval performance is usually poor [140]. However,
they have better explainability than other neural retrieval models because their doc
ID tokens are constructed from real words or document clusters. To avoid the
theoretical limitation of explicit token IDs and grant GR models with the same
modeling capacity of dense retrieval models, several studies have proposed to build
implicit token IDs with latent vectors [136, 140, 141]. The idea is to represent
each document with a sequence of latent vectors so that fine-grained semantic
information would not be lost. These types of GR models are highly similar to
existing dense retrieval models since both of them represent each document with
latent vectors. The major difference is that the former uses a sequence of vectors
from a learned codebook constructed in training, while the latter builds separate
vectors for each document directly from their raw content. [142] have proved
that GR models with implicit tokens are equal to a multi-vector dense retrieval
models in theory. Also, the use of a learned codebook for implicit token vectors is
theoretically the same with a dense retrieval system that uses cluster-based product
quantization [139, 143]. Therefore, the performance upper bound of GR (with
implicit tokens) and dense retrieval is the same in theory. While some believe that
GR models could have lower latency as they don’t need to search among millions
of documents on the fly, this is a questionable argument because the inference of
a large-scale neural model is usually much slower than a vector-based search on
distributed systems. Also, the maintenance of data in a neural model is much more
complex than it is in a vector-based database. Perhaps the future potential of GR
does not lay in retrieval effectiveness or efficiency but some other perspectives such
as explainability.
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2.2.2.2 Domain-Specific Modeling

LLMs, particularly those with instruction tuning, can respond to user’s queries
directly. This exactly matches the initiative of a long-standing vision of IR systems
to directly answer user’s need without listing a couple of documents [133].
Therefore, ever since the rise of ChatGPT, there has been a serious discussion
on whether LLMs are future search engines in practice [129]. Yet apart from the
hallucination problem discussed in previous sections, there are other challenges that
prevent generative Al models like LLMs to serve as a major information accessing
tool for modern users. One of them is how to teach LLMs to understand and use
knowledge from external corpus not included in their initial training process. If
we treat each external corpus as a domain-specific dataset, then the studies in this
direction are essentially the same with the construction of domain-specific LLMs.
While RAG can help LLMs adapt to new domains quickly, their performance
is limited when the understanding of input documents from the external corpus
requires domain knowledge that the LLMs do not possess in advance [83].

To solve the above problem and build usable IA systems with LLMs on domain-
specific data, one of the most popular method is to conduct continued pre-training
or supervised fine-tuning of LLMs on the target domain corpus. The idea is to apply
similar training strategies used in model pre-training on the new corpus so that
LLMs can better capture knowledge in the new domain. Example studies in this
direction include techniques on data selection [82] and tokenizers adaptation [144]
that directly use the target corpus to train LLMs. Many domain-specific LLMs
have been developed, including legal LLMs, financial LLMs, etc. [145-147] The
continued pre-training of LLMs on external corpus has been shown to be effective
on many domain-specific tasks such as domain QA and text generation. However,
modeling external corpus through this method may not be preferred in practice when
we do not have enough computation resources to train LLMs or cannot access the
parameters of them. Also, till the end of the today, the internal knowledge structure
and learning mechanism of LLMs are still unknown, and applying naive continued
pre-training algorithms on external corpus could hurt the performance of LLMs in
unexpected way. Therefore, researchers have designed several knowledge editing
techniques on LLMs to explore the possibility of injecting knowledge with no or
low cost on the general effectiveness of LLMs [148, 149]. Studies in this direction
are still in an early stage as most existing methods only work on fixed and limited
updating rules and knowledge entity triples [150], but it could be fruitful in the
future since domain adaptation and external corpus modeling is a wide need of LLM
applications in practice.

Besides continued pre-training, another paradigm to model external corpus
and domain knowledge is to build separate language models for each corpus
and combine them with the large general LLMs to form a collaborative system.
The intuition behind this is relevant to the idea of LLM agents where each
LLM could serve different roles in the system to accomplish tasks together. It
is widely acknowledged that the emergence of abilities only present in large-
scale models [29], but training models with such large scale (e.g., GPT-4 [1]) is
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usually prohibitive, even with parameter efficient algorithms [151]. Inspired by
the superior instruction following ability of LLMs, researchers have explored the
possibility of building small models for external corpus modeling and use them
to communicate domain-specific knowledge to large general LMs [83]. In other
words, the small models can serve as domain knowledge “consultants,” while large
general models can serve as the decision-makers that finish domain-specific tasks
based on the guidance of the small models. Experiments have shown that such a
paradigm can improve black-box LLMs’ performance on domain-specific tasks with
low cost and high flexibility. While the overall idea of prompt general LLMs with
domain-specific prompts is similar to the framework of RAG, building an actual
LM for corpus modeling enables us to capture implicit domain knowledge (e.g., the
fine-grained differences between law articles [152]) and potentially save tokens in
prompts. There are concerns on whether this paradigm is still worthy when we have
more powerful LLMs that include more domain-specific data in training. However,
since many users prefer to keep their data private to themselves due to multiple
safety and privacy concerns, this paradigm and RAG could continue to be appealing
in practice.

2.3 Summary and Future Directions

In this chapter, we introduce the foundations and applications of generative Al
models in information accessing. Instead of analyzing how generative Al models
like LLMs could improve the existing modules of search engines and recommen-
dation systems, we focus on how they could revolutionize information access with
new methodologies and system design. Particularly, we discuss two new paradigms
brought by generative Al models, namely, information generation and information
synthesis.

Information generation refers to scenarios where users can use generative
Al models to create information that directly satisfies their information needs.
Here, we delved into the core components of generative models, including model
architectures (with a focus on Transformers and their improvements), scaling laws,
and training methodologies. We examined the debates surrounding continual model
scaling, the importance of prompt optimization, and the extension of these models
to multi-modal applications for information access.

Information synthesis refers to the paradigm that utilizes the superior instruction-
following and logic-reasoning ability of LLMs to aggregate and synthesize existing
information. We extensively discuss one of the most representative techniques, i.e.,
RAG, on this direction, and introduce various approaches from naive implemen-
tations to more sophisticated modular systems. We describe the challenges and
opportunities in optimizing RAG systems, highlighting the need for joint retrieval-
generation optimization and the potential of several relevant research directions such
as composite retrieval with planning. Besides RAG, we also discuss some alternative
paradigms that use generative Al models to model corpus knowledge directly,
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such as generative retrieval, which aims to replace traditional indexing methods
with neural network-based approaches, and domain-specific model training, which
conducts continued pre-training or fine-tuning on LLMs with the target corpus.
We discussed the potential and limitations of these approaches, including issues
of system controllability and cost efficiency.

Overall, research on how generative Al models could reshape modern informa-
tion access systems is still at an early stage today. As discussed above, existing
studies on information generation and information synthesis either focus on simple
information tasks (such as writing a poem, answering a factoid question, etc.) or
reply on simple system design (e.g., feeding all documents to LLMs as prompts)
that obviously cannot fully exploit the power of modern retrieval and generation
models. Therefore, we believe that there are two major directions worth exploring
in the next couple of years (at least). The first one is to move from simple and unit
information retrieval tasks (e.g., factoid question answering) to more complicated
information tasks that used to be “impossible” for modern IR systems. Examples
include retrieval with composite needs (e.g., “help me plan a wedding in Amherst,
MA”) or tasks that require planning and multiple rounds of retrieval and generations
(e.g., “write a survey on RAG”). These tasks are used to require human experts
to decompose the needs and conduct retrieval, analysis, and result aggregations.
With the help of generative Al, accomplishing them automatically with machines is
now possible. The second direction is to explore better techniques to communicate,
collaborate, or even unify retrieval and generation systems for information access.
While studies of RAG have attracted considerable attention, existing works mostly
use retrieval systems as plug-in tools for LLMs without digging into their internal
connections and differences. Examples such as how to understand the information
needs of LLMs, how to communicate the retrieved results to LLMs, and how to
optimize generators for retrieval and retriever for generation are all important yet
underexplored research topics. There are many questions related to each of these
topics that are worthy of detailed investigation, including the design of new training
paradigms, the development of agent-like system frameworks, potential problems
and bias introduced by off-policy and on-policy training for the joint system, etc.

When ChatGPT first arrived, people from the IR community were worried that
such generative Al models could overthrow all existing IR systems and crush
everything in the field [129], as it has almost happened in NLP. Interestingly, in
simulated social experiments on human-Al competitions, [153] found that if human
producers do not extend their capacities with the help of generative Al, they will
eventually be “replaced” by AIl. From this perspective, the future of IR research
in the era of generative Al lies in how to extend the scope of IR with generative
Al models to finish more complicated information tasks and develop more general
system architectures that do not just retrieve a list of documents but also perform
more sophisticated information processing and planning.
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Chapter 3 )
Interactions with Generative Information <=
Retrieval Systems

Mohammad Aliannejadi (), Jacek Gwizdka (5, and Hamed Zamani

Abstract Recent advancements in generative artificial intelligence have provided
unique opportunities for seamless information access and discovery, particularly
through natural language interactions. These technologies enable users to easily
describe their needs and provide interactive feedback. This chapter provides an
overview of the opportunities and challenges in interacting with information access
systems powered by generative artificial intelligence technologies. We focus on user
interfaces in these systems and various interactions for describing and clarifying
users’ needs, refining the result list produced by the system, providing proactive
feedback to the system, the system proactively initiating conversations, explaining
the result list, and enabling multi-modal interactions for information access.

3.1 Introduction

At its core, information access and seeking is an interactive process. In existing
search engines, interactions are limited to a few pre-defined actions, such as
“requery,” “click on a document,” “scrolling up/down,” “going to the next result
page,” “leaving the search engine,” etc. A major benefit of moving toward generative
Information Retrieval (IR) systems is enabling users with a richer expression of
information need and feedback and free-form interactions in natural language
and beyond. In other words, the actions users take are no longer limited by the
clickable links and buttons available on the search engine result page, and users
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can express themselves freely through natural language. This can go even beyond
natural language, through images, videos, gestures, and sensors using multi-modal
generative IR systems. This chapter briefly discusses the role of interaction in
generative IR systems. We will first discuss different ways users can express their
information needs by interacting with generative IR systems (Sect.3.2). We then
explain how users can provide explicit or implicit feedback to generative IR systems
and how they can consume such feedback (Sect.3.3). Next, we will cover how
users interactively can refine retrieval results (Sect.3.4). We will expand upon
mixed-initiative interactions and discuss clarification and preference elicitation in
more detail (Sect. 3.5). We then discuss proactive generative IR systems, including
context-aware recommendation, following up past conversations, contributing to
multi-party conversations, and feedback requests (Sect. 3.6). Providing explanations
is another interaction type that we briefly discuss in this chapter (Sect.3.7).
We will also briefly describe multi-modal interactions in generative information
retrieval (Sect. 3.8). Finally, we describe emerging frameworks and solutions for
user interfaces with generative Al systems (Sect. 3.9). We conclude with a question:
Will the myriad interaction possibilities afforded by generative Al systems be
embraced by a broad user base, or will they remain merely a research curiosity?

3.2 Expressing Information Needs

An information need is what prompts users to seek information through vari-
ous means, such as asking others, consulting printed resources, other media, or
searching online. It arises from the awareness of a gap in a user’s knowledge or
understanding, necessitating the acquisition of information to bridge that gap [12,
25]. Bridging the gap helps fulfill a specific purpose or goal, which is typically
driven by a work task [13].

Prompt-based interactions with Large Language Models (LLMs), and, more
broadly, multi-modal interactions with LLMs-based systems, provide an opportu-
nity to fundamentally rethink the processes of searching for, finding, and using
information and how to support these activities. This fresh perspective has the
potential to significantly transform the user experience by enhancing how users
express their information needs and achieve their goals.

We will frame our considerations using the information need model proposed
by Robert Taylor in the 1960s [69, 70]. Taylor identified four levels of information
need, each helping us understand how users formulate questions in their minds, how
they articulate them, and how they interact with information systems. The four levels
of information need are (1) visceral need, an inexpressible, unformulated need, felt
as a vague sense of dissatisfaction; (2) conscious need, where the user is aware of
the need but cannot fully articulate it; (3) formalized need, which can be clearly
expressed and defined; and (4) compromised need, which is the articulated need,
as presented to an information system, often simplified or altered to fit the system’s
capabilities.
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Traditional search systems typically support levels 3 and 4, but not 1 and 2. We
believe that LLMs-based information access systems have the potential to support
all four levels. Therefore, we use these four levels to structure our speculative list of
ways users could be assisted in their interactions with generative Al. We will draw,
in part, on well-known information-seeking models [40, 45].

Support for visceral need: (1) Exploratory interactions provide users with broad,
exploratory dialogue that might help users clarify their thoughts and suggest related
topics to help users better understand and articulate their needs. This is an example
of Clarification, which we describe in Sect. 3.5. (2) Prompt suggestions offer prompt
suggestions or follow-up questions to guide users toward more specific questions.
This is an example of Proactive Interactions, which we describe in Sect. 3.6.

Support for conscious need: (1) Partial expression of needs: accept partially
formed questions or statements of need. (2) Proactive support for refinement:
generate relevant information that helps users refine their understanding of what
they’re looking for. (3) Guided conversations: engage in a dialogue to help users
articulate their needs more precisely. We describe such approaches in more detail in
Result Refinement (Sect. 3.4) and Proactive Interactions (Sect. 3.6).

Support for formalized need: (1) Direct queries: respond directly to well-
formulated questions with relevant information. (2) Structured responses: provide
detailed, structured responses that address specific aspects of the user’s need. (3)
Advanced features: offer options (e.g., filters) for further exploration or clarification
based on the formalized need.

Finally, support for compromised need: (1) Flexibility of syntax: offer flexibility
to allow for iterative refinement of queries without strict syntax requirements. (2)
Flexibility of language: interpret and respond to a wide range of query formats,
reducing the need for users to adapt their language significantly. (3) Feedback loop:
offer feedback on questions and suggesting modifications or alternative phrasings
to better match the user’s needs and the system’s capabilities. We describe such
approaches in more detail in Proactive Feedback (Sect. 3.3).

Overall, the key advantages of LLMs in assisting users at all four levels of
information need are:

— Natural language processing: LLMs can understand and respond to queries
expressed in natural language, making them accessible even at the visceral and
conscious need levels.

— Contextual understanding: Advanced LLMs can maintain context over multi-
ple interactions, allowing for a more nuanced exploration of information needs.

— Broad knowledge base: LLMs draw upon a vast range of information,
potentially addressing needs across various domains and levels of specificity.

— Adaptive responses: LLMs can tailor their responses based on the perceived
level of the user’s information need, understanding and responding to both
simple and complex questions and providing more or less detail as appropriate.

— Iterative refinement: The conversational nature of LLMs interactions allows
users to refine their queries progressively, moving from visceral to formalized
needs through dialogue.



50 M. Aliannejadi et al.

— Enhanced expressiveness: Prompt-based interactions allow users to express
their needs in more nuanced and detailed ways. Users can specify the format,
tone, and depth of the information they seek, which can lead to more tailored
and useful outputs. For instance, users can request summaries, detailed expla-
nations, comparisons, or creative content, depending on their needs.

However, it is important to note that while LLMs offer powerful capabilities in
addressing information needs across Taylor’s levels, they also have limitations. They
may sometimes provide plausible-sounding but incorrect information, lack true
understanding of context beyond the immediate conversation, and cannot replace
the critical thinking and expertise of human information professionals in complex
scenarios.

While LLMs can offer enhanced capabilities for expressing information needs,
they also introduce new challenges. Such as capability gap: users may struggle to
formulate their intentions clearly and effectively, leading to a gap between what
they want and what the LLMs provides. Instruction gap: users need to learn how
to craft effective prompts, which can involve understanding the LLMs’s capabilities
and limitations. Evaluation of outputs: users must critically evaluate the LLMs’s
responses for accuracy and relevance, as LLMs can sometimes generate incorrect
or misleading information. A recent paper introduced these three gaps and termed
them collectively the Gulf of Envisioning [64].

In the following sections, we address selected aspects of user-LLMs-based-
system-interactions, Sects. 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8. In Sect. 3.9, User Inter-
faces, we discuss recent user interface frameworks and solutions.

3.3 Proactive Feedback

Recent developments in LLMs have paved the path toward complex interactions
between the user and the system. Generative IR models are able to satisfy users’
information needs in multiple interaction turns. Among many possibilities, this
enables users to provide feedback to the system. Feedback can be provided when it
is explicitly requested by the system, for example, in the form of clarifying questions
or preference elicitation [2, 49, 52, 82]. Section 3.5 discusses these aspects in more
detail. Feedback can be also requested for assessing the quality of the system at
the end or in the middle of a conversation. For instance, Amazon’s Alexa Prize
Challenge [51] has sought explicit rating feedback from users upon the completion
of the conversation. Zamani et al. [85] introduce the possibility of improving this
simple approach by asking context-aware questions for feedback and making natural
language interactions within the conversation.

Feedback can be provided proactively by the user, which is the focus of this
section. Perhaps the simplest type of feedback that users provide can be in the
form of repeating or reformulating the user’s need in the same search session. If
detected, this often means that the user’s need has not been addressed yet. Besides
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such simple scenarios, users may provide explicit positive or negative feedback.
Explicit positive feedback are often easier to identify and interpret. They are often
in the form of appreciation and hold a positive sentiment. Explicit negative feedback,
on the other hand, is more challenging, more diverse, and perhaps more important
for system designers as they help the system improve and identify its limitations.
Pointing out what parts of the system’s response is inaccurate and why it does not
satisfy the user’s needs and expressing frustration and disappointment are examples
of explicit negative feedback. Current state-of-the-art technologies often cannot
successfully take advantage of explicit negative feedback and often limit themselves
to acknowledging the system’s limitations and apologizing to users. There is huge
potential in successfully comprehending negative feedback from users.

In generative IR systems, grounding as relevance feedback is also relevant to the
concept of explicit feedback. Trippas et al. [71] define grounding as discourse for
the creation of mutual knowledge and beliefs. Examples include providing indirect
feedback by reciting their interpretation of the results. This process can potentially
enable Conversational Information Seeking (CIS) systems to better understand a
user’s awareness of the results, background knowledge, or information need.

We would like to highlight the potential in providing implicit feedback as well.
Progress in commercial (Web) search engines is in debt to large-scale implicit
feedback collected from user interactions, such as clicks, skipped results, dwell
time, and cursor (mouse) movement. Implicit feedback in generative IR systems
is more challenging, because it is more likely to deal with abandonment in each
session. This means that users may leave the system as they receive the answer
they want without providing any positive feedback. Alternatively, they may leave
the system as they lose hope in getting the right answer from the system. Besides
abandonment, changing topics and asking follow-up questions can be interpreted
as an implicit feedback signal in generative IR. Interpreting these user behaviors is
essential in improving generative IR systems.

Research in understanding and modeling implicit (negative) feedback is rela-
tively sparse, and future technologies can greatly benefit from further research in
this space.

3.4 Result Refinement

3.4.1 An Overview of Result Refinement

Result refinement is relatively understudied, compared to other modes of interaction
in generative IR. Search result refinement has a long history of research in IR,
especially in areas such as information filtering (e.g., recommender systems) where
users access semi-structured information [16]. Figure 3.1 shows an example search
result page from Amazon.com, where users are able to select certain attributes of
the items (e.g., size) in the catalog to narrow down the results being presented
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Fig. 3.1 Examples of search result refinement from Amazon.com. The refinement panes on the
left help users browse through the search results

to them. Search result refinement for semi-structured data is a relatively trivial
task, as the refinement pane usually concerns the most important attributes of
the items, given the query and the top item list. In the preference-based search
literature, example-critiquing approaches have been explored [73], where the model
suggests examples to the user, and with the user’s feedback, it then models the user’s
preference. In conversational recommender systems, a similar approach is taken as
part of the preference elicitation process [37]. In this process, the conversational
system starts the conversation by asking the user’s opinion about movies, aiming to
optimize the decision space. A similar approach is taken in conversational product
recommendation [95, 96]. In these works, the high-level idea is to extract important
attributes from user reviews of products and model a probabilistic decision space.
Then the conversational system takes a greedy approach in which, at every step,
it aims to ask about an item attribute that minimizes the uncertainty of the decision
space. Search result refinement is more challenging in Web search, where the system
deals with unstructured data. One of the earliest, simplest, and yet most effective
ways is using vertical in the search result page [8]. Search result verticals divide
the search results based on very high-level categories, such as images, videos, and
news. Even though very high level, it still can be considered as a naive approach to
refinement, as it approaches the user information from the result type. In most cases,
the same user query can be satisfied with different modalities, which turns out to be
one of the most important aspects of search, hence major commercial search engines
still employ this approach. Finally, some early approaches tried to diversify but also
refine search results based on automatically extracted information facets. Faceted
search [72] provides a means of navigation through topic facets for users, enabling
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them to narrow down their information needs, as well as the search space. These
early systems mainly relied on automatic facet extractors [36].

3.4.2 Technical Challenges

In the generative era, result refinement faces both algorithmic and interactive
challenges.

Algorithmic Challenges As the items or documents are being represented using
model parameters, refining the results based on a single attribute of the item is less
trivial. To address this challenge, several works study controllable recommendation
via disentanglement [17], where the goal is to represent items as separated attribute
vectors instead of a single latent vector. Some of these attributes would be mapped
to actual attributes in the catalog (e.g., color, style) or some latent attributes. LLMs
have shown to be capable of extracting query facets, relying solely on their intrinsic
knowledge [41]. However, as shown in the literature, LLMs are not yet capable of
effectively grounding [63], which leads to suboptimal planning of LLMs utilizing
their intrinsic knowledge to take the best next action. For example, in conversations
where most humans would ask for refinement, LLMs fail to take the same action.

Interactive Challenges As mentioned above, there has been research on various
modes of refinement, i.e., search verticals, item attributes, faceted search, and
example critique. While each of these modes has been utilized for a specific
interaction medium (e.g., Web search vs. conversational search), generative systems
could potentially mix them, for example, prompting the user about their preferred
search result modality, rather than making an assumption. Moreover, Chen et al. [14]
review the interactive challenges of LLMs in the light of personalization, highlight-
ing the importance of user—system interactions in result presentation, specifically
refinement. Among other challenges, they refer to laborious data collection for
training LLMs to be effective interactive systems, which can hinder the learning
process.

3.5 Clarification

In a generative retrieval setting where the system aims to provide a comprehensive
response to the user, whether in a conversational or Web search setting, it is of
utmost importance to ensure that the user’s intent is predicted with high confidence.
This is particularly critical, as in traditional Web search scenarios, the system would
diversify the list of results to ensure that various facets or interpretations of the query
are covered in the top results [57]. However, in a generative scenario, usually, a
single answer is provided to the user, limiting the information that can be exchanged
between the user and the system.
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3.5.1 An Overview of Search Clarification

Clarifying questions have been studied extensively [34] in the context of conver-
sational question-answering [52], information-seeking conversations [2], and Web
search [82].

Another line of research studies the role of mixed-initiative interactions for user
preference elicitation [37, 49]. The goal here is to understand the user preference
when multiple documents (items) can be deemed relevant to their information need.
Radlinski et al. [49] study this problem for movie recommendation, where the
user information need is typically generic (e.g., “romantic movies”) with multiple
potentially relevant items. The dialogue system’s goal in this setting is to engage in
a conversation to elicit user preference in a more fine-grained way.

There has been a body of research studying the effect of mixed-initiative
interventions such as clarifying questions on user experience [35, 84, 97, 98]. Kiesel
et al. [35] study the effect of voice query clarification on user experience and find,
even in cases where the system performance is not improved, users have better
experience. In Web search, Zamani et al. [84] study the effect of incorporating a
clarification pane on the search result page, implemented in Bing.com. Analyzing
the click logs, they find that the clarification pane improves user experience. More
specifically, among the seven templates they use to generate the clarifying questions,
they find clear preference towards certain question templates in terms of user
engagement. Zou et al. [97] study the effect of the clarification pane in the same
setting in a controlled experimental setup where they introduce three quality levels
and measure user satisfaction and performance. They find that asking a low-quality
question in a search session risks lower user engagement with questions of higher
quality in the same session. This finding was confirmed in follow-up work [98].

User engagement (i.e., click-through rate) can be considered as a user-oriented
quality measure of clarifying questions. Sekulic et al. [58, 60] extract various search
result pages (SERPs)- and document-based features to predict user engagement
while interacting with clarifying questions in a Web-based interface [83]. Rahmani
et al. [50] study the effect of various query- and question-based features to predict
user satisfaction in the MIMICS dataset [83] where they find, among others,
a positive sentiment in the clarifying question leads to higher user satisfaction.
Sekulic et al. [61] instead predict the usefulness of clarifying questions in the
retrieval pipeline. Following an early study on the effect of different types of
clarifying questions on retrieval performance [38], they train a classifier to predict
the usefulness of a clarifying question and its answer in the retrieval pipeline and
incorporate it in the retrieval pipeline if only it is predicted to be useful.
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3.5.2 Technical Challenges

Planning While the early works in this area focused mainly on ranking clarifying
questions from a pre-collected question bank [3, 5], more recent studies aim toward
leveraging the generation power of LLMs to generate clarifying questions [91].
However, generative systems based entirely on LLMs are not effective in proactive
interactions, especially in generating clarifying questions when necessary [24, 63].
Initial experiments reveal the power of LLMs in understanding the context of a
query or a search session [1] and generate potential questions based on the context
when prompted [21]; however, they fail at planning when to ask and which question
to ask [21, 63]. Shaikh et al. [63] conduct a study where they compare human—
human conversations with system—human conversations and find that LLMs fail
at effectively planning when to ask clarifying questions in a conversation, even
though they can generate high-quality questions if they are explicitly prompted to
do so. Deng et al. [22] propose a proactive chain-of-thought approach to enhance the
planning capability of LLMs such as ChatGPT and show that it has a considerable
effect on their interaction capabilities.

Evaluation Evaluating generative systems comes with various challenges. On top
of that, evaluating interactive generative systems involves even more challenges
as the user response to a system output is required. A line of research looks
at simulating and modeling the user—system interactions in a mixed-initiative
setting [4, 10, 11, 48, 55, 59, 88]. User simulation can be beneficial to generative IR
models in two ways: (i) they provide a means for evaluating generated content, and
(ii) they can be used for training. Zhang and Balog [88] propose a user simulator
for conversational recommendation to evaluate the system performance. This is
followed by the work done by Sekulic et al. [59] and Owoicho et al. [48] in
using GPT-based models to simulate users in a mixed-initiative information-seeking
conversational system where the main goal of the simulator is to provide an answer
to a generated clarifying question. They show that such simulators can lead to
reliable evaluation of conversational systems.

There are various considerations to take into account in simulating and evaluating
interactive generative systems:

— User effort: In interacting with the system, users bear different levels of
cognitive load, which can lead to user fatigue as the number of interactions
increases.

— User information gain: To model the true value of a clarifying question in a
conversation, we need to model both the gain and effort a clarifying question
brings to the conversation [4, 10].

— Information nuggets: Information gain can be modeled by breaking the user’s
information need into information nuggets and measuring how much asking a
certain clarifying question would help us provide further information nuggets
to the user.
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— User model: As proposed by Balog [11], an effective user simulator should have
various components, including a user mental model. Realistically, a single user
simulator does not cover the needs and behavior of the wide range of users
interacting with the system.

3.6 Proactive Interactions

Typically, users initiate the interaction with a generative retrieval system, for
example, by submitting a chitchat utterance, asking a question, or submitting an
action request. In mixed-initiative conversational systems, the agent is also able
to initiate the conversation. This is also called a proactive, system-initiative, or
agent-initiative conversation. Existing generative Al systems are relatively under-
developed when it comes to proactive interactions [43]. A major reason is that
initiating a conversation by the system is not only challenging but can also be
risky; frequent and non-relevant proactive interactions may annoy users and hurt
user satisfaction and trust [85]. Therefore, whether and when to initiate a proactive
interaction are the key decisions a proactive CIS system should make.

3.6.1 An Overview of Proactive Generative Retrieval Systems

Wadhwa and Zamani [74] explored proactive conversational information access
systems, discussing their challenges and opportunities. The authors introduced a
taxonomy of proactive interactions, delineating three dimensions: (1) initiation
moment (when to initiate a conversation), (2) initiation purpose (why to initiate a
conversation), and (3) initiation means (kow to initiate a conversation). They identi-
fied five purposes for initiating interactions: (1) filtering streaming information, (2)
context-aware recommendation, (3) following up a past user—system conversation,
(4) contributing to a multi-party human conversation, and (5) requesting feedback
from users. A generic pipeline for these systems is depicted in Fig.3.2. In this
pipeline, several algorithms constantly monitor the user’s context and information
streams to produce conversation initiation instances, which are stored in a database.
A conversation initiator component then selects an appropriate instance based on the
situation, initiating a fluent and accurate utterance. Figure 3.2 is sufficiently generic
for illustrating proactive interactions in generative retrieval models, and we use it to
describe research and open questions in proactive retrieval in more detail.

Initiating a conversation through recommendation stands as one of the most
common scenarios for proactive interaction. For instance, a conversational infor-
mation access system might suggest an item based on the user’s situational context,
such as their location, time, and preferences. It is worth noting the distinction from
traditional conversational recommendation setups, where users typically initiate the
conversation by requesting specific items [66, 89]. Recent efforts in joint modeling
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Fig. 3.2 A generic pipeline for conversation initiation in CIS systems by Wadhwa and Zamani [74]

of search and recommendation and developing unified information access systems
[80, 81, 87] represent a step toward developing proactive, and thus mixed-initiative,
systems in search and recommendation. However, proactive conversations extend
beyond mere recommendations.

For example, Avula and Arguello [9] devised a system for conducting wizard-of-
Oz experiments, investigating proactive interactions during conversational collab-
orative search. This system could seamlessly integrate into collaborative platforms
like Slack,! where during a collaborative search task, an external user (acting as a
wizard) provides information. Though advancements in this area are nascent, there
exists considerable potential for systems to initiate context-based conversations,
engaging users and eliciting feedback.

Consider a scenario where a user employs a mapping application to navigate
to a restaurant. Leveraging contextual cues, a proactive generative retrieval system
could subsequently initiate a conversation upon the user’s return journey, inquiring
about their dining experience. Such interactions not only enhance user engagement
but also facilitate feedback collection, aiding in profile refinement. Similarly, in
situations where a user encounters difficulty in task completion, a conversational
system could autonomously engage in conversation, offering assistance [85].

Uhttps://slack.com/
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3.6.2 User Responses to Proactive Interactions

In generative retrieval systems, users have the freedom to provide a natural language
response in any form, and they can be categorized as follows [74]:

— Null action: Users provide no response to the initiated conversation. It is
important to note that null action should not necessarily be construed as negative
feedback, as users may find the initiation useful but may not desire further
engagement.

— Interruption or negation: Users respond in a manner consistent with termi-
nating any further engagement by the generative retrieval system. It is perhaps
safe to interpret such responses as negative feedback.

— Relevant response: Users provide a pertinent response to the initiated inter-
action, typically occurring when the interaction involves a question or solicits
feedback.

— Postpone: Users respond to the initiated conversation and request the system to
remind them at a later time.

— Critique or clarification-seeking response: Users engage further with the
generative retrieval system, either seeking more information or critiquing
existing engagement.

— Follow-up: Users provide a follow-up response to obtain additional information
or perform actions related to the initiated conversation.

— Topic drift: Users respond but shift the topic of the initiated conversation.

3.6.3 Technical Challenges

Here, we outline key technical hurdles in implementing the pipeline shown in
Fig.3.2.

Producing System-Initiative Instances The initial step in the system-initiation
pipeline involves identifying reasons for initiating a conversation and generat-
ing a proactive instance. Proactive instances encapsulate all relevant information
about a conversation, including its purpose, content, and context. This process
entails addressing each initiation purpose component outlined in Fig.3.2. While
some purposes, such as filtering streaming information and recommendation, have
received attention in the literature, others like following up a past conversation
or contributing to a multi-party conversation remain relatively unexplored. Thus,
a major technical challenge lies in developing models capable of identifying
the reasons for conversation initiation across various goals, including filtering
information, recommendation, conversation follow-up, contributing to multi-party
conversations, or requesting feedback.

Developing an Initiator Model The subsequent step involves selecting a proactive
instance from the instance collection using an initiator component. The primary
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challenge in this component stems from our limited understanding of the optimal
moment to initiate a conversation. Consequently, future research should emphasize
conducting user studies to explore the ideal timing for conversation initiation. Weak
signals gleaned from user interactions with existing conversational systems, even
those lacking proactive capabilities, could provide valuable insights. For instance,
instances, where users initiate trivial conversations (e.g., out of boredom), could
serve as noisy but potentially useful signals for predicting optimal conversation
initiation moments. Machine learning models trained on situational context and user
profiles could leverage such signals. Furthermore, interactive systems that log user
interactions offer the opportunity to iteratively refine prediction accuracy based on
user feedback.

Generating System-Initiative Utterances The final step entails generating a (nat-
ural language) interaction based on a proactive instance and presenting it to the user.
Techniques from dialogue systems and text generation research can be leveraged for
this purpose. Since users typically do not anticipate proactive utterances, a notable
technical challenge lies in providing context within the generated utterance to ensure
user comprehension. This context could reference previous interactions with the
system, user experiences, or explanations regarding the rationale behind initiating
the conversation. Given that each instance is a structured data object, neural models
designed for unstructured text generation from structured data, such as tables, could
be potentially useful.

3.6.4 Evaluation of Proactive Systems

Assessing proactive generative IR systems poses significant challenges. While IR
research has traditionally focused on creating collections for specific information-
seeking tasks, these collections are typically based on predefined needs (e.g., Text
REtrieval Conference (TREC)? tracks) or observations (e.g., clickthrough data).
However, these evaluation methods do not readily apply to scenarios involving
proactive interactions. Although evaluating proactive generative IR systems remains
largely unexplored in the literature, we can envision two classes of evaluation
methodologies: (1) modular evaluation and (2) end-to-end evaluation.

In modular evaluation, the quality of each component in Fig. 3.2 is evaluated
in isolation. For example, how accurate is the initiator component in identifying
opportune moments for proactive interactions? This methodology simplifies evalu-
ation in proactive systems, but does not provide a complete picture of the overall
performance of the system from the user’s perspective and does not reflect real-
world complexities.

2 https://trec.nist.gov/
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In end-to-end evaluation, one can explore both offline and online evaluation
strategies. For offline evaluation, each instance would encompass all necessary
information for the system at a given timestamp, including past user—system
interactions, user profiles, situational contexts, and streams of new information.
The model’s performance would then be assessed based on the generated proactive
interactions, if applicable. Crafting a single evaluation metric capable of capturing
all facets of conversation initiation evaluation presents a challenge, necessitating
further investigation. Recently, Samarinas and Zamani [56] introduced a large-scale
benchmark for proactive interactions to ongoing multi-party human conversations
and proposed normalized proactive discounted cumulative gain (npDCG) for end-to-
end evaluation of such systems. In a separate investigation, Sen et al. [62] suggested
evaluating proactive recommendation within search sessions by aggregating a cor-
relation measure over the session. This measure assesses the relationship between
the expected outcome—comprising the list of documents retrieved with a true user
query—and the predicted outcome, representing the list of documents recommended
by a proactive search system.

In the realm of online evaluation, conventional A/B tests can serve as a valuable
tool for assessing the system’s efficacy. Additionally, interpreting user feedback—
both positive and negative—can provide valuable insights into system performance.

3.7 Explanation

Explanation can be seen as a critical tool in search result presentation in generative
systems, as users are interested in comprehensive justification and explanation of
the presented results [14, 27]. Also, it can lead to more user trust in the results,
potentially aiding the user to distinguish between a low-quality and a high-quality
response.

3.7.1 An Overview of Explanation in Information Retrieval

Zhao et al. [94] provide a survey on the explainability of LLMs where they provide a
taxonomy of explanations, together with methods for explaining Transformer-based
LLMs. Also, they discuss various methods for evaluating explanations for both local
and global explanations. Krishna et al. [39] show that not only are explanations
useful in user—system interactions, but they also improve the performance of LLMs.
They study automatic rationale generation in a Chain of Thought (CoT) manner.
Deng et al. [23] show that rephrasing the user input leads to a better understanding
of the user request, which in turn results in better performance of the LLM,
which is complementary to CoT reasoning. In their tutorial, Anand et al. [6, 7]
review Transformer-based explanation generation. Zhang et al. [90] address search
explainability via the lens of query understanding, where the system’s task is to
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predict the user intent considering their query as input. LIEGe [79] explains all the
documents in the ranking jointly using a listwise explanation generator.

Evaluating explanations is challenging. For free-text generations, human eval-
uation is employed. In other cases, because of a lack of explanation, proxy
explanations such as clicks, query descriptions, query aspect annotation, and topic
annotation can be used. For feature-based models, explanations are evaluated based
on the effectiveness of predicted features. As for counterfactual explanations,
model-based evaluation is employed.

3.7.2 Modes of Explanation in Generative Information
Retrieval

The main mode of explanation used in generative models is free-form text, where
the model would further elaborate why the provided answer is relevant to the
user’s input. The explanation often consists of two major parts: (i) a further
description of user information need and (ii) an explanation of the reasons why
the generated response is relevant to the user’s input. The system has a limited
information bandwidth and cannot present users with multiple intents of their
query. Therefore, describing what the system “thinks” the user wants helps the
user understand whether the system understands their intent or not [90]. This type
of explanation aims to ensure the user that their information need is properly
understood by the system and can lead to increased trust in the system. Also, in
case of misunderstanding the user’s information need, it provides the opportunity
for the user to realize what is missing in their input. This can be seen as similar to
scanning the Search Engine Result Page (SERP) by the user, through which the user
would have an idea if the system understands their information need correctly.
Another form of explanation is to provide citations. This has been studied more
extensively in the NLP community where the generated text is attributed via source
citation [29]. The URL citations are supposed to provide evidence of the source of
information from the Web. However, there are concerns regarding the quality of the
citations, as there is no clear way of controlling the large language models (LLM)
to ground its responses on the cited page [93]. Citing source documents while
being useful as a form of explanation still does not provide a comprehensive idea
of the relevance of the source. Comparing it to a typical SERP where the users
are exposed to the URLSs of the results, users already have a quality perception by
scanning through the page title, summary, and URL. Even though the LLM-based
search interfaces aim to mimic this experience, it is not yet clear which parts of the
generated response are extracted from the cited document. Moreover, it is not clear
how much the system depends on its intrinsic knowledge (i.e., model parameters)
vs. the retrieved document. Therefore, more research in this area is required to
understand how much different techniques and modes of explanation affect the
users’ perception of quality and trust. One potential alternative is to treat the system
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as an information-gathering tool [53], rather than an information system. In such
cases, the responses would look like “After searching the web, I found numerous
sources of information about your query. Two of more trustworthy sources mention
that ....” With such a response, not only does the user learn about the search space of
the given query, but also they learn about the most important information extracted
from the topic documents.

3.8 Multi-modal Interactions

Research has demonstrated the advantageous role of multimodal signals in both
keyword-based and recommendation-driven searches, spanning from contextual
item recommendations [33, 76] to visual and multimedia recommendations [46].
These signals also address challenges like cold-start issues [15, 18, 47] and aid
in explaining and visualizing recommendation outcomes [68]. A recent survey
by Deldjoo et al. [19] offers insights into the role of multimedia content in
recommendation systems, delineating how such content—comprising audio, visual,
and textual elements—enriches real-world recommendation challenges.

A significant challenge in multimedia information systems lies in fusing multiple
modalities to derive meaningful representations. Recent advancements in multi-
modal large language models employ joint representation techniques to establish
a latent space where multiple modality information can be compared. However,
aligning content data like text and images is relatively straightforward compared
to aligning content with user preferences such as ratings or social media data.

Deldjoo et al. [20] explored multi-modal conversational information seeking
tasks from multiple perspectives. They investigated (1) why multi-modal interac-
tions should be used, (2) which tasks to support in multi-modal conversational
systems, (3) when to integrate multiple modalities in conversations, and (4) how
to research multiple modalities and conversations to enable multi-modal conversa-
tional information seeking. Deldjoo et al. [20] highlight the importance of each of
these perspectives through a real-world example:

Imagine a person is cycling along the road on their way to work. She is planning her day,
including tasks from presenting a budget, hosting a new client, picking up their children
after school, and making dinner. The cyclist passes a flower on the sideroad, which caught
her eye and wanted to know what this plant is. Since she is cycling on a busy road, she
quickly stops, takes a photo, and keeps riding. Meanwhile, she asks her earbuds to tell her
which plant that was by a spoken query such as “what was that plant and is it edible?”

The authors argue that generative IR systems with multi-modal interactions and
multi-modal sensors can accomplish the user’s need in this and even more complex
scenarios. Dealing with multi-modal interactions is a multidisciplinary topic, span-
ning across research areas from IR, recommender systems, multi-media, human—
computer interactions, computer vision, and even psychological and cognitive
sciences. The intersection of the research areas that enable people to search for
information through multi-modal conversations has not received the attention it
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deserves, and it might partially be due to the complexity of the topic in terms of both
modeling and evaluation. Prior work are mostly limited to two modalities (image
and text), e.g., [67, 78], and further development in multi-modal foundation models
[26, 42] and multi-modal retrieval-augmented generation models [54] is expected to
speed up progress in this area.

3.9 User Interfaces

While in Sect.3.2 we focused on general interaction methods to assist users in
expressing their information needs when interacting with generative Al, in this
section, we review recent work on interaction techniques and user interfaces for
information access with LLMs. The design space is huge, and it is still under-
researched and poorly understood. For example, out of approximately 750 pre-prints
related to LLMs published on arXiv in the field of IR between 2020 and 2024, only
22 mentioned “user interface” in their abstracts.

New human-LLM interaction frameworks are only starting to emerge. For
example, recent work [28] reviewed 73 papers published in HCI conferences since
2021 to investigate the dynamics of human—-LLM interaction. Authors identified
four key phases in the interaction flow and developed a taxonomy of four primary
interaction modes. The four phases are planning, before an interaction; facilitating,
during an interaction; iferating, refining an interaction; and festing, testing an
interaction. The interaction modes include standard prompting, user interface,
context-based, and agent facilitator. The user interface mode is of most interest to
us as it enhances user interactions with LLMs beyond the conversational interface
by improving input, output, iteration, and reasoning processes. This mode contains
five approaches, which could be used separately or in combination. (1) Structured
prompt approaches assist users in creating multi-component prompts, which could
range from zero-shot to few-shot, and support specification of constraints. Tools
like PromptMaker [31] combine prefixes, settings, and examples in prompt cre-
ation. (2) Varying output approaches allow users to specify output formats. Early
examples like GenLine and GenForm [30] facilitate generation of user specified
mixed outputs, such as HTML, JavaScript, and CSS code. User’s control over
output format allows for high level of personalization and, potentially, enhances
consumption of information. (3) Iteration of interaction approaches include features
such as debugging, error labeling, regenerating, and self-repairing, enabling users to
refine their original prompts and workflows. BotDesigner [86], for instance, helps
users identify and label errors within conversations and offers a “retry” button
to regenerate outputs. (4) Testing of interaction facilitates the testing of various
prompt variations, useful for quick testing of complex solutions. Tools like VISAR
[92] use visual programming to enable rapid prototyping and testing of writing
organization. (5) Ul to support reasoning incorporates direct manipulation in the
chain-of-thought process, allowing users to actively participate in and reorganize
reasoning sequences. Other approaches in this area offer visual programming
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techniques, such as chain designs and mind maps, and enable a more interactive
and user-defined reasoning framework [32, 65, 92]. For example, Graphologue
[32] introduced (1) graphical diagrams, which convert text-based responses from
LLMs into diagrams; (2) graphical dialogues, which enable graphical, non-linear
dialogues between humans and LLMs; and (3) interactive diagrams, which allow
users to adjust graphical presentation and its complexity and submit context-specific
prompts.

MacNeil et al. [44] explore three methods for integrating LLMs into user inter-
faces through a framework called Prompt Middleware. The three methods are (1)
Static Prompts, which are predefined prompts generated by experts through prompt
engineering. They can be invoked by using Ul elements (e.g., buttons), allowing
users to send high-quality prompts with minimal effort. This method leverages
best practices but limits user control over prompt generation. (2) Template-Based
Prompts involve generating prompts by filling in a template with options selected
from the UL The template integrates expertise and best practices, giving users more
control through UI options. This method is exemplified by the FeedbackBuffet
prototype, a writing assistant that uses template-based prompts to generate feedback
on writing samples [44]. (3) Free-Form Prompts grants users full control over
the prompting process. Although challenging, it is beneficial in scenarios where
complete control is desired.

Wang et al. [75] present a proactive interface design that addresses challenges
users face in initializing and refining prompts, providing feedback to the system,
and managing cognitive load. They describe three interaction techniques (Perception
Articulation, Prompt Suggestions, Conversation Explanation) and how they can be
supported by user interface elements. Perception articulation is supported by a pre-
task questionnaire and main prompt template—the first supports information need at
the visceral level while the latter at the formalized level. Prompt suggestions are pro-
vided through supportive function tabs, which support conscious need. Conversation
explanations are also delivered through supportive function tabs, with a feedback
mechanism allowing users to rate the usefulness of these explanations. This
feature supports compromised needs. Evaluation with participants demonstrated
the effectiveness of these supportive functions in reducing cognitive load, guiding
prompt refinement, and increasing user engagement. In interviews, participants
appreciated the perception articulation functions for setting expectations and the
conversation explanations for balancing expectations and satisfaction.

On one hand, the design space of user interfaces for LLMs offers a myriad of
new interaction possibilities. On the other, taking advantage of the new possibilities
can lead to complexity, which can make interfaces harder to comprehend and can
overwhelm users. From the history of search interface evolution, we know that more
complex search interfaces have not been widely accepted. For example, faceted
search Uls led to a sharp learning curve and increased cognitive load [77]. History
likes to repeat itself. Will it be the case with user interfaces for LLMs? Will the more
complex interfaces for LLMs become only niche products?
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3.10 Conclusions

As mentioned multiple times throughout this chapter, handling complex interaction
types and modalities has been relatively under-explored, and the authors find it
a rich area of investment for the further development of generative IR systems.
This chapter pointed out prior work on various interaction types, from expressing
information need to result refinement and mixed-initiative interactions, including
clarification, feedback, and proactive interactions. Recent developments in (multi-
modal) foundation models, including LLLMs, have paved the path toward better
understanding complex user interactions, but we are still far from ideal generative
IR systems that can satisfy user needs efficiently, effectively, fairly, and robustly.
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Chapter 4 )
Adapting Generative Information Py
Retrieval Systems to Users, Tasks,

and Scenarios

Johanne R. Trippas ), Damiano Spina (), and Falk Scholer

Abstract Generative Information Retrieval (GenIR) signifies an advancement
in Information Retrieval (IR). GenIR encourages more sophisticated, conversa-
tional responses to search queries by integrating generative models and chat-like
interfaces. However, this approach retains core principles of traditional IR and
conversational information seeking, illustrating its capacity to augment current IR
frameworks.

In this chapter, we propose that introducing GenlIR enhances traditional infor-
mation retrieval tasks and expands their scope. This allows systems to manage
more complex queries, including generative, critiquing, and extractive tasks. These
advancements surpass traditional systems, handling queries with greater depth and
flexibility. This sometimes-speculative chapter suggests Generative Information
Access (GenlA), a term that more accurately encapsulates the widened scope and
enhanced functionalities of GenlR, particularly in how this relates to tasks. By
investigating the impact of GenlR, this discussion aims to reiterate that generative
research should not abandon traditional interactive information retrieval research
but rather incorporate it into future research and development efforts.

4.1 Introduction

In an era where the volume of digital information expands more rapidly than
ever, the ability of IR systems to sift through data to understand and anticipate
users’ information needs becomes even more essential. Additionally, in IR, the
emergence of GenlR systems represents a paradigm shift in how we search for—and
use found—information. The next-generation information access systems not only
retrieve documents that may be relevant to a user’s query but ideally can combine,
synthesize, or abstract information, making the information directly applicable.
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This chapter explores what GenIR systems may mean for users. We argue
that even though Generative Artificial Intelligence (GenAl) could help us toward
genuine interactive IR, building on existing research is crucial. We, therefore, con-
textualize the broader GenlA and stress the importance of keeping the user central.
We aim to bridge the gap between established IR principles and new generative
technologies, ensuring that user needs, tasks, and contexts drive innovation in IR.
We explore the dynamic interaction between advanced GenlR technologies and the
user’s information needs, tasks, and queries. We examine users’ tasks in IR systems,
from simple fact-finding to complex, exploratory searches and transfer these tasks
to generative information-seeking.

We consider how the context (e.g., academic research, learning and teaching,
or personalized personal information management) affects the requirements and
expectations of a GenIR system. We discuss the integration of context-aware
technologies that adapt the retrieval process to fit the user’s current environment,
device, or application, thereby enhancing the relevance and utility of retrieved
information.

Through theoretical insights and practical examples, this chapter aims to provide
an overview of current strategies and emerging trends in GenlIR. This chapter
emphasizes the need for an approach considering the dynamic interaction between
users, tasks, and scenarios. Such an approach helps researchers and practitioners
develop more efficient, user-friendly information access systems. The significance
of this chapter lies in demonstrating how GenlR systems can enhance the IR
process by providing more flexible, advanced, and user-centric approaches. The
integration of GenIR within the broader context of GenlA offers the potential for
dynamic personalization and improved task understanding. Additionally, the chapter
highlights the human’s role in ensuring the relevance and reliability of GenIR
outputs and the importance of ethical considerations and user privacy in evaluating
these systems.

4.1.1 Chapter Overview

In Sect. 4.2, we conceptualize that GenlR affects IR information needs, tasks, and
queries. We suggest that the generative systems’ flexibility enables more advanced
tasks than traditional IR. We argue that even though the flexibility of GenIR systems
introduces new capabilities to the search process, the core structure of traditional IR
and Interactive Information Retrieval (IIR) remains. We introduce the parallel to
conversational information seeking and suggest that we leverage prior research and
apply it to the context of GenIR.

In Sect. 4.3, we reemphasize the importance of the user’s centrality for GenAl.
We highlight the potential of GenIR with more sophisticated user adaptation
techniques, enabling dynamic personalization. We emphasize that even though
GenlR is driven by advanced algorithms, humans-in-the-loop is indispensable for
curating and refining the system’s output to ensure relevance and reliability.
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In Sect. 4.4, we extend the importance of tasks within IR. We then discuss how
tasks are expanding in Artificial Intelligence (AI) while pulling this through to
GenlR. Next, we distinguish between using GenlIR to enhance system tasks versus
user tasks. We then map commonly used information-seeking process stages from
IR to GenIR. We conceptualize task complexity for GenlR systems and provide
tasks that are suitable and less suitable for GenIR.

Next, Sect.4.5 discusses how different scenarios and applications can use
generative technology, including work, knowledge base access via customized
conversational agents, learning and teaching, research, and personal information
management.

Given the human-centered nature of this chapter, we discuss user evaluation
in relation to GenlR in Sect. 4.6. We briefly overview commonly used user-based
evaluations in IR, such as user studies, online evaluation, and implicit measures. We
then propose challenges and considerations for evaluating GenlR systems, including
its ethical considerations and user privacy.

Lastly, we conclude with an overview of the chapter in Sect. 4.7 and discuss the
future proactivity of generative systems.

4.1.2 Chapter Approach and Definitions

Our approach is the following. We study past work on IR and IIR and suggest how
future information access systems can leverage prior research and what may be
different when GenlR is further developed.

GenlR and GenlIR represent emerging concepts within IR, which traditionally
focuses on retrieving relevant information from a large corpus of documents based
on a user’s query. The new approaches incorporate generative models, especially
those based on deep learning, to enhance the search process. We begin by defining
the key concepts used in this chapter.

Generative Information Retrieval (GenIR). GenlR is a subset of IR technolo-

gies that leverage GenAl to enhance the search process. Unlike traditional IR
systems, which focus primarily on matching keywords and returning pre-existing
documents, GenlR systems can synthesize, critique, or create new content for
user queries. GenIR systems aim to move beyond the limitations of keyword-
based searches and static document retrieval, offering users more nuanced,
conversational, and interactive search experiences. This approach opens new
possibilities for automated content creation, question-answering systems, and
personalized information delivery.
While traditional IR systems focus on efficiently finding and presenting existing
information, GenIR systems extend this by, for example, creating or synthesizing
new information in response to user queries. This fundamental difference
in output (i.e., retrieving existing documents versus generating new content)
represents a shift in how these systems address user information needs.
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Generative Interactive Information Retrieval (GenIIR). GenlIR extends the

GenlR concept by emphasizing the interactive nature of—and user centrality
in—the search process. Similar to IIR, GenlIR keeps the user central. Interactive
implies the involvement of humans, in contrast to GenlR, which is system
oriented. GenlIR is a system that incorporates the capabilities of GenIR within an
interactive framework that prioritizes user engagement and feedback throughout
the search process. Unlike GenIR, which primarily focuses on the system’s
ability to generate and retrieve information, GenlIR emphasizes a collaborative
search process where the user’s inputs, queries, and feedback directly influence
the generation and refinement of information. This approach leverages generative
models to synthesize, adapt, and present information in response to user—system
interactions (also seen as conversations).
The key to GenlIR is its dynamic, user-driven approach to IR, where the
system understands and generates content based on initial queries and evolves
its responses through continuous interaction. These interactions ensure the
generated information aligns with the user’s changing information needs and
contexts. GenlIR fundamentally transforms the nature of retrieval by dynam-
ically generating information tailored to the user’s evolving needs during the
interactions.

Generative Information Access (GenIA). GenlA represents a holistic approach
to how users discover, interact with, and utilize information across multiple
platforms and formats. The emphasis of GenlA is on the breadth of access and the
innovative generation of information, rather than on the depth of the user—system
interaction as is the case for GenlIIR. Interaction is one component of GenlA, but
not its defining feature. It leverages GenAl to retrieve existing information and
create, synthesize, or enhance the content in real time. This includes transforming
raw data into understandable narratives, generating visualizations from complex
datasets, or creating new textual content that fills the gaps in existing information.

The relationships between GenlA, GenlR, and GenlIR are illustrated in Fig. 4.1,
and for convenient reference, the definitions are summarized in Table 4.1.

4.1.3 Information Needs, Tasks, and Queries

Information needs, tasks, and queries are foundational to understanding how users
interact with IR systems. Thus, we define these concepts. IR and GenIR information
needs, tasks, and queries share fundamental similarities, as they all revolve around
the user’s need to find information. We will explore the differences between
traditional IR and GenlR systems in the subsequent section, reflecting the evolving
capabilities of GenAl technologies.
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Fig. 4.1 Relationships of
GenlA, GenlR, and GenlIR

Table 4.1 Relationship and short description of GenlA, GenIR, and GenIIR

Technology Description
Generative Information Access (GenlA) Broadest concept, encompassing generative Al
techniques for information access

Generative Information Retrieval (GenIR) | Focuses on retrieving and generating content,
enhancing search beyond keyword matching

Generative Interactive Information Adds human interactivity (i.e., conversational
Retrieval (GenlIR) elements) to GenlR, allowing dynamic user
engagement

7

— Information need: The genesis of the IR process. An information need arises
when users recognize a gap in their knowledge or require information on a
particular topic or question [13]. It is the intent or requirement for information
the user seeks to fulfill [74]. Information needs are often complex and may not

be fully formed or explicitly understood by the user initially [21].

— Tasks: The notion of task has been widely studied in both IR and Information
Science (IS) fields, with two broad perspectives. First, task may refer to a “goal,”
incorporating a specific scenario providing context for the need [68, 82]. This
context elucidates the breadth and depth of the user’s information requirements
and can influence the search approach. Tasks, such as planning a trip, making
a meal, or fixing a car, directly influence the search execution and the type
of information deemed necessary, be it detailed explanations, quick facts,
or comprehensive overviews [42]. The concept of search task focuses more
specifically on actions and activities carried out by a user to resolve their
information need, such as when interacting with an IR system. For example,

Broder’s taxonomy specifies search tasks as informational, navigational,

transactional [15].

or
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— Queries: Queries are explicit expressions of information needs, formulated by
users to interact with an IR system. A query translates the user’s information
need into a system-processable format, such as a set of keywords or a question.
This translation is influenced by the user’s understanding of their information
need and their perception of the system’s capability to meet that need. Crafting
an effective query requires users to distil their information needs and task
context into a concise and precise information request. !

The search for information, therefore, follows a logical flow, beginning with
an underlying information need—a gap in our knowledge we aim to fill in a
specific scenario. This need propels us to define a task—how we will acquire
that information. Finally, we translate this task into a query—employing specific
words or phrases to search for information in a system like a search engine. The
success of this search hinges on how accurately the query represents our initial
information requirement. For instance, the need to prepare an evening meal leads
to a requirement of information for a recipe; the task involves using an appropriate
Web search engine to seek a suitable recipe, and translating translates into the task of
finding a nutritious meal and may manifest through queries such as “healthy dinner
recipes” or “easy recipes with vegetables.”

4.2 Does Generative Information Retrieval (GenIR) Change
Information Retrieval (IR) Information Needs, Tasks,
and Queries?

Searching for information in GenlIR can be more dynamic and interactive than
traditional IR. The process still begins with an information need, but GenlR allows
for more interactions, such as conversational engagement, to better refine and
understand the user’s question (also referred to as prompt). Additionally, GenIR can
generate new, synthesized information relevant to the user’s scenario rather than
simply returning existing documents.

Tasks in GenIR extend beyond traditional search and retrieval, incorporating
direct question-answering, content summarization, and content creation based on
the user’s needs. This aspect of GenIR can adapt and respond to the nuances of
the user’s requirements in real time. Users might still need to craft keyword-based
queries carefully, but they can also express their needs naturally. This ability to
interpret and respond to conversational input improves the feedback loop between
user input and information output, making responses more immediate and relevant
to the user’s context.

!'In this text, we use the term “queries” broadly to encompass any system-oriented specification

of an information need. It therefore includes things such as “keyword queries,” “questions,”
“prompts,” and “Boolean queries.”
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Table 4.2 Comparison of components in traditional IR vs. GenIR

Component Traditional IR GenlR

Information needs | Defined by user’s desire to find Interpreted flexibly, generating
specific information within new content that fulfils the user’s
existing documents need

Tasks Involves searching, browsing, Extends to content creation,
filtering, and sorting through summarization, and question
existing information answering through content

generation

Queries Typically keyword-based queries, | Can be more natural or
relying on precise user conversational, with the system
articulation interpreting the query’s intent

For example, consider a user interested in starting an urban garden and seeking
information on sustainable practices. In a traditional IR scenario, the user might
input several keyword-based queries such as “urban gardening tips,” “sustainable
urban gardening,” or “how to start an urban garden,” with the system providing
relevant articles in response.

In contrast, with GenlR, the user could ask, “Can you guide me through
starting a sustainable urban garden?” The GenlR system could then generate a
step-by-step guide from multiple documents, including multimedia, Web pages,
or personal documents. This guide could include selecting the right location,
choosing plants based on the local climate, and implementing sustainable water
drainage, all synthesized into a coherent, personalized response. This example
highlights the transformative potential of GenlR in making the information retrieval
process more aligned with natural human inquiry (similar to what is known from
conversational information seeking) and potentially more efficient in addressing
complex, multifaceted information needs (Table 4.2).

4.2.1 Fulfilling Information Needs with GenIR

While the GenlR search process introduces more dynamic interactions and content
generation capabilities to broaden the search process, it retains the core structure of
the traditional IR and IIR processes [25]. In essence, both approaches navigate from
an information need, through a task, to formulating the information need (i.e., query
or prompt), aiming to fulfil the user’s search intent.

However, GenIR encapsulates a broader concept by integrating these foun-
dational steps into a more fluid and conversation-like model. Rather than fun-
damentally altering the process, this development adds new interaction layers,
understanding, and response generation to the established framework. GenIR’s
relationship with conversational information-seeking highlights this progression.

Conversational information seeking focuses on Natural Language Processing
(NLP) and understanding to facilitate a dialogue-based interaction between the



80 J. R. Trippas et al.

user and the system [31, 64, 70, 79, 93]. This approach, for example, enables
the system to ask clarifying questions [5], to refine search parameters based on
user responses [26, 61], and to present information in a more conversational and
accessible format [10, 78]. By building on the principles of conversational informa-
tion seeking, GenlR should leverage prior research in the field, applying it within
a generative context to produce synthesized information that directly addresses
the user’s needs. This connection to conversational information seeking enables
researchers to draw upon existing studies and methodologies, to further develop and
refine GenlIR systems. The accumulated knowledge in understanding user intent,
processing natural language queries, and generating relevant responses forms a solid
foundation for advancing GenlR. This continuity ensures that innovations in GenIR
are grounded in established IR and IIR research while at the same time expanding
the boundaries of what information retrieval systems can achieve.

While GenlR introduces novel capabilities and a broader conceptual scope, its
search process remains ingrained in the traditional IR framework, enriched by the
advancements in conversational information seeking. This relationship validates the
effectiveness of GenlIR in meeting contemporary information needs and encourages
a seamless integration of new technologies with existing IR research to enhance
information seeking.

Figure 4.2 depicts the progression of tasks within information retrieval settings,
highlighting the extension of capabilities by GenIR systems. The “Critique and
evaluate” layer represents an advanced function where the system generates content
and provides feedback, broadening the task’s scope from mere creation to critical
assessment. The diagram captures the concept of GenlR expanding the frontier of
tasks beyond what was traditionally possible with search alone.

4.3 User-Centric Generative Al

People are at the heart of IR, as information-seekers and as “system component” as
part of Human-in-the-Loop (HITL). Since information needs are inherently personal
and unique to each individual, therefore adapting systems to users has been an
important goal of much IR research. The adaptation of IR systems as the potential
to support users in many ways includes:

— Providing more relevant search results by tailoring the search to account for
individual preferences

— Reducing cognitive load by aligning information with the user’s abilities and
experience

— Providing context-sensitive adaptations based on a user’s location, time, and
device

— Continuously evolving to match the user’s changing preferences

In addition, in trying to keep the user central, we also acknowledge people
involved on the system side, through HITL approaches. This concept emphasizes
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Fig. 4.2 The diagram is an adapted visualization of possible tasks [86], demonstrating different
information retrieval and activity levels. The diagram highlights the progression from simple
information finding to more complex tasks like learning, investigating, critiquing, evaluating, and
creating. The new frontier with GenIR (marked by dashes) indicates that these systems can enable
advanced tasks such as critiguing and evaluating, expanding beyond the traditional search frontier.
This conceptualization shows how GenlR systems are pushing the boundaries of what can be
achieved with IR, making it possible to engage in higher-order cognitive tasks (e.g., create and
critique)

the necessity of integrating human insights within the system development and oper-
ation processes, HITL that the systems benefit from continuous human oversight
and expertise. This approach enhances the system’s adaptability, reliability, and
overall effectiveness. By incorporating HITL methodologies, the aim is to create
more robust systems integrating human judgment with advanced technological
capabilities.

4.3.1 User Adaptation

User adaptation is crucial because there is a difference in effectiveness between
a search engine designed for everyone and one personalized for an individual, as
highlighted by Teevan et al. as the potential for personalization [76]. With the
advent of GenlR, existing approaches for user adaptation are enhanced, and as
the technology continues to develop, increasingly nuanced approaches are likely
to become available. In addition, it is important to note that there is a wide variety
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of literature on adaptivity [3, 45, 46, 58]. Therefore, the examples provided should
be understood as illustrative rather than exhaustive.

4.3.1.1 User Characteristics and Individual Differences

User factors (personal characteristics and individual differences) can substantially
impact how people interact with IR systems. For instance, cognitive abilities, such as
working memory and processing speed, have been found to have a significant impact
on how effectively users search and make use of an IR system [3]. Research has
shown that users with more search experience tend to make better and more effective
use of IR systems. This is because they employ more efficient search strategies based
on their understanding of system features [45]. Additionally, users with greater
domain knowledge or expertise exhibit different search behaviors, including the
sites they visit, query length, and vocabulary breadth. These variations significantly
impact overall search success [87].

4.3.1.2 User Adaptation Techniques

The individual difference factors of searchers have direct implications for the design
of IR systems and the techniques that can be deployed to make them adaptable to
different preferences, needs, and experiences. Adaptability aims to enhance the user
experience by enabling the delivery of content that is more relevant, engaging, and
accessible, furthering the mission to help the user resolve their information need.

User profiling and personalization involves collecting and analyzing data about
individual users (such as their behavior, preferences, and interaction history) to tailor
search results specifically to them, typically by re-ranking or filtering. Research in
this area has explored various methods for creating dynamic user profiles, including
machine learning algorithms that adapt to changes in user behavior over time.
Depending on the data a system can collect, user profiles could be short or long
term. For example, past browsing behaviors have been used to create user profiles,
which are then applied to personalize search results by re-ranking items [58]. Other
research has demonstrated that the Big Five personality traits can predict visual
search performance [63]. Incorporating such individual differences into user profiles
can allow IR systems to provide personalized recommendations and content that
aligns with the characteristics of users.

Context-Aware Search considers the user’s current context, such as location,
device, time, and other situational factors, to provide more relevant search results
[37]. For example, a user searching for “restaurants” on a mobile device would
likely expect results tailored to their current location.

User Feedback Techniques aims to integrate information directly from the user
to improve search results. Widely explored approaches are the use of relevance
feedback, where a user may provide explicit information (e.g., by marking items
in an initial search results list as being relevant or not) [46], or the system makes
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use of implicit information (e.g., aggregated historical click behavior for the same
query) [41] or even simply assumes the top items that were initially retrieved to be
useful and uses this information to rewrite the query [20].

GenlR systems using techniques such as language models have the potential
to further personalize responses, tailor language style, and adjust information
complexity based on user profiles. These systems can leverage user profile data to
generate content that matches the user’s reading level, interests, and conversational
preferences. Recent advances in language models enable them to perform tasks
with little task-specific data [16], suggesting strong potential for personalization
even based on limited user input. Moreover, transfer learning and fine-tuning on
user-specific data will allow these models to adapt their output even further to suit
individual users better.

4.3.2 The Role of Humans in the Loop for GenIR

In addition to GenlIR users for accessing information, we acknowledge that people
are integral to developing these systems. While GenIR models will continue
to improve, humans still play a crucial role. They provide critical thinking to
ensure that the information is useful, accurate, and ethical. HITL Al refers to a
methodology where humans are actively involved in some or all stages of an Al
system’s training, testing, and deployment. This approach combines the efficiency
of algorithms with the nuanced understanding and decision-making capabilities
of humans. Mosqueira-Rey et al. [60] identifies three broad categories for HITL
machine-learning approaches. These categories are differentiated by the degree of
control machines have over the learning process. From highest to lowest, machine
control degrees are Active Learning, Interactive Machine Learning, and Machine
Teaching. In addition, HITL is now also used more broadly across various Al
applications.

For GenIR, human—AI collaboration is crucial for curating and validating
information. Generative models may be good at finding information but often
struggle with understanding its nuance and accuracy. Humans act as fact-checkers,
evaluating information for relevance, credibility, and potential bias. Generative
models might misinterpret the true intent behind a search query. Humans refine
searches by providing context or reformulating queries to meet users’ needs better.
Human domain expertise is invaluable for interpreting and evaluating information
in specific fields. Expert knowledge helps distinguish relevant and irrelevant results,
especially in complex or high-risk domains like healthcare or legal information
retrieval.

Human input will continue to be key to address ethical concerns. Gener-
ative models can potentially surface harmful or offensive content. Therefore,
humans need to be responsible for setting ethical guidelines and ensuring retrieved
information is appropriate and unbiased. This aligns with the growing focus on
Fairness, Accountability, Transparency, and Ethics (FATE) in Al systems, where
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human oversight is crucial for mitigating bias and ensuring ethical outcomes. In
addition, human feedback on the retrieved information is also crucial for improving
generative models. This feedback can be used to train models to better understand
user needs and return more accurate and relevant results in the future. This aspect
aligns with the core principles of HITL Machine Learning (ML), where human
feedback forms a continuous loop for improving the machine learning system [60].

4.4 Tasks and Information-Seeking Processes

4.4.1 Tasks in Information Retrieval

The concept of tasks (also referred to as work tasks, information-seeking tasks,
search tasks, or IR tasks [71]) is central to the design and effectiveness of IR
systems [11, 68, 88]. Tasks represent the goals or objectives that users aim to
achieve, ranging from simple queries to complex information-seeking behaviors.
Identifying and understanding these tasks are crucial for developing IR systems
that align with user intentions and contextual needs. These IR systems leverage
computational models to provide responses relevant to users’ tasks. By tailoring the
retrieval process to the characteristics of individual tasks, IR systems can provide
more relevant, accurate, and useful results, thereby enhancing user satisfaction and
improving the overall effectiveness of the search process. This task-centric approach
to IR highlights the need for systems to understand beyond the content they index
and the context and purpose behind user queries [54]. This enables a more nuanced
and effective retrieval experience that aligns with the specific demands of different
tasks.

Tasks are essential to users’ search strategies, the type of information they seek,
and how they engage with retrieval systems [55]. For instance, a well-defined
task, such as looking up a specific fact (i.e., factoid information need), typically
leads to direct and focused search behavior, with users employing precise queries
and expecting quick, accurate answers. Conversely, more complex tasks (i.e., non-
factoid information needs), such as conducting research for an academic paper,
involve iterative search processes, refinement of information needs, and extensive
interaction with the IR system to explore, contrast, and evaluate diverse information
sources.

The influence of tasks extends to the design and functionality of IR systems
themselves. Systems need to adapt to accommodate the varying requirements of
different tasks, offering functionalities like query suggestion, personalized filtering,
and context-aware retrieval to enhance user satisfaction and search efficiency [71,
91]. Understanding the task-driven nature of search behaviors and information needs
is already essential for current systems; as discussed in the following sections, it may
become even more crucial for developing generative IR systems that dynamically
adapt to user contexts, anticipate information needs, and provide tailored responses.
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4.4.2 Expanding IR Tasks into GenIR

Generative Al tasks include a range of “generative” tasks with varying levels of
human-Al interaction, from fully automated content creation to collaborative co-
creation where humans and Al work together to produce novel outcomes [24, 27].
These models are not only capable of generating text [53] but can be used for image
creation [92], music composition [73], data augmentation [14], simulation [4],
classification [69], or predictions [23]. As generative Al continues to evolve,
the interaction between humans and Al systems is becoming more nuanced and
sophisticated [7]. With Al evolving, applications and tasks are expanding too, from
enhancing artistic output to scientific research. It has been suggested that the key in
successful human—Al interaction lies in finding the right balance between leveraging
the AD’s capabilities and maintaining human oversight [24]. Ultimately, the goal is
to harness the strengths of both humans and Al for improved outcomes.

Generative Al is also impacting the field of IR. By leveraging natural language
processing and machine learning techniques, generative Al models can under-
stand and interpret complex queries, providing more accurate and relevant search
results [9]. In addition, these models can generate summaries, answer questions,
and create content tailored to users’ needs. These Al abilities enhance IR efficiency
and open new possibilities for personalized and interactive search experiences.

4.4.3 Using GenIR to Enhance System Tasks

Tasks can be categorized as system tasks, given their execution by the IR system
autonomously rather than by the end user. These tasks are integral to the system’s
enhanced capability to comprehend, process, and retrieve information relevant to
the user’s query. For example, a GenlR system can incorporate an automated
query expansion technique. The automated query expansion process within a GenIR
system can autonomously enhance a user’s query to improve the relevance of results.
This can be achieved with classic synonym additions or semantic enrichments but
now completed by the underlying generative system. The outcome is search results
that match the exact terms of the original query and include information linked to
synonymous terms and related concepts.

An example of a system task query expansion is seen in Fig. 4.3.

These tasks encapsulate many functionalities within Natural Language Pro-
cessing (NLP), Machine Learning (ML), and Al domains, aimed at improving
the system’s performance and effectiveness. By incorporating these advanced
computational techniques, the IR system can better deal with the complexities of
language and patterns within vast datasets. Consequently, these system-centric tasks
are key in refining the system’s responsiveness and reliability in delivering relevant
search results, thereby contributing to the advancement of IR technologies.
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Fig. 4.3 Example of a typical GenIR system enhancement task for query expansion

4.4.4 Using GenlR to Support User Tasks: Mapping GenlR to
Existing Information-Seeking Processes

We discuss possible GenIR actions and behaviors for three commonly used stages
of the information-seeking process: query formulation, search result exploration,
and query reformulation [67, 79], search stages equivalent to express, examine, and
reformulate [57]. The information-seeking process model provides broad stages for
possible actions and behaviors while providing a structure.

4.4.4.1 Information Need (Query/Prompt) Formulation

The initial stage of query formulation, or what can also be referred to as information
need (query/prompt) formulation, is critical in the information-seeking process. It
involves the user identifying and articulating their need for information into a query
or prompt that the GenIR system can understand. This stage is critical because
the entire search process’s effectiveness is based on the user’s ability to accurately
express their information needs and the system’s ability to interpret them correctly.

In traditional IR systems, query formulation often relies on the user’s ability to
distil their information need into a set of keywords or phrases. However, in GenlIR,
this process takes on a more dynamic and interactive character. GenlR systems,
with their conversational capabilities, allow users to formulate their queries more
naturally. This can include posing questions, making statements, or engaging in a
dialogue with the system to refine the query.

Ideally, GenlR systems enhance the query formulation stage through interactive
information needs refinement and prompt generation. The systems should engage
with users to clarify ambiguities, request more context, or suggest different ways
to phrase information needs, ensuring a deeper understanding of the user’s intent.
Additionally, for users unsure of how to express their information needs, GenIR
can generate guiding information needs or prompts, aiding them in refining their
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search objectives. This approach fosters a more intuitive and user-centric search
experience.

In a recent interaction log study, it was indicated that generative Al prompts are
often verbose and structured, encapsulating a broader range of information needs
and imperative (e.g., directive) tasks distinct from traditional search queries [81].
The study showed that LLMs can support users in tasks beyond the three main types
based on user intent: informational, navigational, and transactional [15]. Prompts
also included instances where entire documents are copied and pasted into the
“prompt box.” These “document” prompts were often used to extract or summarize a
user’s personal data, indicative of pseudo-navigational tasks or personal information
management. They identified unique tasks, such as text formatting and information
extraction, that extend beyond traditional search queries and uncover a range of user
intents, predominantly commands to the system.

An example session from this log analysis is shown in Table 4.3. The session
starts with a generic question from the user wanting the system to explain the stages
of a waterfall model in bullet points (Turn 1). Throughout the session, the user
changes the way they are formulating their information need. For example, in Turn
2, the user specifies their initial need in more details.

4.4.4.2 Examine Generated Information

In the context of GenIR-enhanced information-seeking processes, the search result
exploration phase expands to include the examination of traditional search results
and newly generated information. This phase involves evaluating the relevance
and usefulness of the initial search results and assessing the quality, novelty, and
relevance of information generated by the Al system.

In the search process’ “examine generated information” stage, personalization
is crucial in tailoring the generated information to the individual’s preferences and
needs. This stage involves the Al system leveraging user profiles, search history,
and contextual information to create personalized summaries, answers, or content
directly relevant to the user’s query. By doing so, the system must ensure that
the generated information is grounded in accurate information and aligned with
the user’s interests and requirements, thereby enhancing the overall effectiveness
of the information-seeking process. A recent paper investigated the readability of
generative information systems’ output and their accessibility barriers, especially
for people with literacy difficulties [66]. This paper showed that responses from
widespread large language models may not be accessible to people with cognitive
and literacy challenges. The authors stress that generative systems have potential
accessibility issues for users with low literacy or reading impairments. To address
this, it is imperative for GenlA systems to incorporate mechanisms that can adapt
the complexity of language and presentation of information according to users.
This further highlights the important role of personalization for generative systems.
Furthermore, the design of such systems should be informed by inclusive user
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Table 4.3 Interaction session with user input to Google Bard [81]. The user input is verbatim.
For example, turns 5, 8, 9, and 10 include bullet points directly copy-pasted by the user from one
user looking for information about project management

Turn no.
1

2
3
4
5

L RRe)Y

10

11
12

13
14
15
16
17
18-19
20
21
22

User input

Explain the stages of the waterfall method in bullet points

Ok again but explain the distinct stages in the waterfall methodology
Give me a reference for this

Ok can you give me a Web page reference

*Evaluate the advantages and disadvantages of using Waterfall for the project,
considering the specific project context

Ok project considerations for Agile and the PRINCE2
No like you did for Waterfall, project considerations for Agile and then PRINCE2

*Explain the significance of gathering user requirements in project management
*Describe how user requirements were gathered in each of the evaluated
methodologies: Agile, PRINCE2, and WAterfall

*Define the various job roles and responsibilities within project management
*Compare the job roles and responsibilities in the three methodologies
*Highlight any differences or similarities among them

*Describe the role of quality assurance, testing, and deployment in IT projects
*Explain how each methodology handled quality assurance, testing, and
deployment

*Evaluate the effectiveness of these processes within the context of each
methodology

Much more concise

Summarize the key findings of your investigation. Discuss the factors that could
influence the choice of project management methodology in the new software
development company

Give me a short conclusion:

No in paragraphs

Ok again, just a conclusion to this assignment

Rewrite in paragraphs

I need a conclusion for my assignment. Can you give me one?
[Complete copy-paste document inputs)

You missed out Agile

Please put Agile first

Ok rewrite that in paragraphs

studies, ensuring that language and information are accessible to everyone, thereby
mitigating the risk of exacerbating existing information access inequalities.

When we investigate the example interaction session again in Table 4.3, we see
that the user is trying to specify how the information is presented. In turn 11, the
user specifies that they want the information presented in a much more concisely.
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4.4.4.3 Information Need (Query/Prompt) Reformulation

As for all interactive search systems, the reformulation stage is critical in GenIR
systems. This reformulation acts as the dynamic interface where users refine their
queries in response to generated content and initial search outcomes. This iterative
process is integral to GenIR, enabling users to adjust their information requests
based on the presented information. By continuously refining their queries, users can
further investigate their topic, leveraging the generative capabilities of the system to
explore complex ideas and uncover connections. This feedback loop enhances the
precision of search results and enriches the user’s engagement with the information,
demonstrating the unique interactivity and adaptability of GenlIR systems.

Re-investigating the example interaction in Table 4.3, we can see many different
reformulations. The search interaction excerpts highlight the iterative nature of the
reformulation stage in the context of the user’s search process. Each step, from
initial, often imprecise requests (“Give me a short conclusion” in Turn 13) to more
specific demands (“No in paragraphs” in Turn 14), illustrates how user queries
evolve as they refine their need. This dynamic is crucial in both traditional and
GenlR systems, where the capacity to adapt responses based on user feedback can
enhance the relevance and utility of the information provided. For instance, requests
like ““You missed out Agile” and “Please put Agile first” (Turns 20-21) emphasize
the importance of adaptability and specificity in search queries, including the need
for systems that can flexibly accommodate changing user priorities and insights.
In GenlR, this is particularly important, as the system must not only search but
also generate content, demonstrating a sophisticated generative model for content
creation. These reformulation interactions are practical examples of continuous
feedback and essential for refining search outputs and accuracy. This capability to
iterate and evolve search queries and responses is foundational in delivering a more
personalized and effective search experience.

4.4.5 Conceptualizing Task Complexity for GenIR Systems

The field of IR has long recognized the diverse nature of information-seeking
tasks and acknowledges that tasks vary in their complexity [18, 43, 88, 91].
Understanding this variation is crucial for developing information systems that
effectively support users across a spectrum of needs. This section introduces a
conceptual framework for categorizing information-seeking tasks by two critical
dimensions: task complexity and generative involvement. For simplicity, we refer to
task complexity as the number of steps, the intricacy of these steps, and the level
of decision-making needed to complete a task. Figure 4.4 illustrates a continuum of
task complexity and the level of generative intervention from Al as discussed below:

— Basic information retrieval (low task complexity, minimal generative involve-
ment). It involves direct queries with precise answers, like looking up straight-
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4.4 Possible visualization of how generative systems interact depending on task complexity

forward facts. Interaction with GenlA systems is transactional, the user requests
specific information, and the Al retrieves it with little to no additional generative
contribution.

Guided topic expansion (medium task complexity, moderate generative
involvement). It entails broadening the scope of an inquiry to include related
topics or concepts, requiring users to navigate through and select relevant
information. The GenlA system aids this process by suggesting related areas
and generating ancillary information that users can incorporate into their search.
In-depth analysis and synthesis (high task complexity, substantial generative
involvement). It requires comprehensive research and the integration of multiple
information sources to construct detailed knowledge or insights. The GenlA
system plays a significant role by generating complex outputs like summaries
of extensive literature, which the user then critically evaluates and refines for
their purposes.

Intelligent research design (very high task complexity, interactive generative
involvement). It involves the generation of new research frameworks, theoreti-
cal models, or innovative problem-solving approaches. The GenlA system and
the user interact together, with the GenlA system proposing novel ideas and
designs that the user iteratively refines, leading to sophisticated outcomes that
may not have been achievable individually.

4.4.5.1 Tasks Less Suitable for GenIR

Based on the above conceptualization, we can see that not all search tasks are suited
for a GenlR approach. The effectiveness of GenlR systems largely depends on the
query’s nature, the user’s information need, and the context in which the information
will be used. There are several scenarios where traditional IR systems might be more
appropriate or where GenIR systems may need to be carefully designed to meet
specific requirements:

Factoid information need. Consider someone who wants to have an answer
to a very concrete information need, “first person on South Pole.” This query
seeks a factual answer about a historical event related to world exploration.
A traditional IR system would look for information from historical records,
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exploration archives, or authoritative history Web sites to provide the name of
the explorer who first reached the South Pole. It makes sense for a factoid task
to embed the information in current authoritative information. In contrast, even
though a generative system may contain the information, the user may not have
to conduct extra fact-checking.

— Legal or medical information. In domains where the accuracy of information
can have serious implications, such as legal and medical research, the conser-
vative approach of traditional IR systems may be preferred. The potential for
GenlR systems to synthesize information in ways that misinterpret complex
legal statutes or medical guidelines necessitates a cautious application [48].

— (Re)finding an original online document. Imagine someone is working on
a paper about tasks in information retrieval. They want to retrieve the topics
of a previous Text Retrieval Conference (TREC) Track. Even though the user
can ask for the topics in a GenlR system, users may prefer to access original
documents directly from the sources, rather than receiving synthesized or
generated content. In such cases, traditional IR systems that provide direct links
to original sources would be more appropriate. In addition, many documents
are not online and reside in physical archives or within proprietary databases.
The researcher may need to consult these offline materials for academic rigor,
necessitating a hybrid approach combining digital searches with traditional
library methods.

— Niche topics. GenlIR systems are typically trained on broad datasets, which
may not cover highly specialized or niche topics sufficiently. For niche queries,
traditional IR systems that index specialized databases or pay-walled articles
might provide more comprehensive and relevant results.

— Complex topics with critical and high-level reasoning. While advances in
Al and natural language processing have enabled GenlR systems to handle
complex queries, there are still limitations in their ability to perform multi-
step reasoning or to understand queries that require deep domain-specific
knowledge. Complemented by human expertise, traditional IR systems may be
better suited for these scenarios.

4.4.5.2 Tasks Suitable for GenIR

Next, we present example Information Access (IA) tasks that are suitable for GenIR:

— Content creation. GenlR systems are proficient at creating new, original
content tailored to specific needs. This includes writing articles, generating
reports, or producing creative pieces like short stories and poetry. The strength
of GenlR in content creation lies in its ability to analyze vast amounts of data,
understand context, and generate coherent, relevant text based on the user’s
input or prompts. GenIR can help streamline the content creation, offering
efficiency and creativity while reducing the time and resources traditionally
required for these tasks.
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— Content summarization. With the overwhelming amount of online informa-
tion, there is a growing need for concise summaries that capture the essence
of longer texts. GenlR systems can automatically generate accurate, coherent
summaries of articles, research papers, books, or reports, making information
more accessible and digestible for readers.

— Content extraction. GenIR systems can help with content extraction, where
specific information, data points, or insights need to be identified and extracted
from large volumes of text or complex datasets. GenlR systems can parse
through documents, identify relevant pieces of information based on the criteria
set by the user, and generate summaries or reports highlighting the extracted
content. This could save people time, and GenlIR systems may identify patterns
that the user may initially overlook.

— Personalization. Leveraging the strengths of GenlR, systems can craft person-
alized information. By analyzing a user’s past interactions, search behaviors, or
preferences, GenlR systems could curate content, increasing user satisfaction
and engagement. The strategic deployment of GenlR for personalized sugges-
tions enriches the user’s experience by ensuring relevancy and is crucial in
enhancing loyalty and improving conversion rates. GenIR may offer a more
personalized, engaging, and user-centric service.

4.5 Scenarios and Applications

4.5.1 Work

Information access systems’ role in working environments and work tasks has
been studied for decades [51, 52, 56, 80]. There are a variety of tasks on which
information access systems are used, including communication, documentation,
planning, problem-solving, and admin and management, among others. In 2019,
Trippas et al. [80] asked participants in an online survey about work tasks and how
digital assistants can support them.

The survey was conducted from May 17 to July 2, 2018, with 410 respondents.
One of the questions in the survey asked participants to describe the features or
capabilities they would want to have in a hypothetical new piece of technology. Fig-
ure 4.5 shows an aggregation of the relevant responses—46.9% of the participants
do not report a particular feature or report they do not need any. Features such as
automatic “reminders,” “scheduling,” or “ubiquitous use” are easily recognizable in
current applications such as e-mail clients or personal information managers. Yet
other features such as “automatic e-mail,” “profiling of other people,” “note taking,”
or keeping oneself “up to date” were less obvious to foresee before the uptake of
generative Al solutions such as ChatGPT.

A report by Microsoft [17] discusses the opportunities LLM-based technology
can create to assist in work tasks. The report suggests that we are witnessing an
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Fig. 4.5 Desirable features for an imaginary new piece of technology as reported by participants
from [80]

expansion in the range of tasks automated by human—AlI cooperation with assistants
or copilots. For instance, the task of finding similar snippets of code implementing a
particular functionality may shift to critically analyze a generated code that satisfies
a given functional requirement. Synthesis tasks (e.g., summarizing a set of relevant
documents or the discussion in a particular meeting) are also likely to be more
automated in working settings, particularly for retrospective and real-time feedback
in collaborative scenarios.

As generative IR enable automating more complex information-related tasks in
work settings, it is important to consider the ethical implications that automation has
in terms of the workforce. As every technological advancement reduces the need for
manual labor, it is crucial to have measures that enable everybody to benefit from
shared prosperity [44, 89].
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4.5.2 Knowledge Base Access via Customized Conversational
Agents

Recent developments in GenlIR, including Retrieval-Augmented Generation (RAG),
have sparked interest in both industry and academia in exploring the role of
customized LLM-based conversational agents as a viable solution to provide access
to information that is typically stored in private data and knowledge bases (e.g.,
information used by customer services, internal policies and procedures, project
management data).

Pathiyan Cherumanal et al. [62] described Walert, an LLM-powered conversa-
tional agent customized to answer frequently asked questions about enrolment in
computer science programs. Walert aims to demonstrate how common practices
in conversational information seeking and IR can be adopted by practitioners when
designing and evaluating customized LLM-based conversational agents and identify
aspects in the evaluation process that may help practitioners better understand the
suitability of GenlIR in the context of customized information seeking systems,
such as the importance of evaluating RAG at the retrieval phase—and the role of
truncated rankings [8]—the inclusion of out of knowledge base (i.e., unanswerable)
questions in the test collection, and the need of more informative evaluation mea-
sures to assess correctness of the generated responses at the end of the pipeline [62].

Another common problem in organizations and companies is that the vast amount
of information generated and collected by different teams within the organization is
not easily accessible. Information is typically stored in different data and knowledge
bases and organized in different formats. Enterprise search [49] is a structured
search system that enables stakeholders in an organization to find relevant infor-
mation in decision-making processes with organizational or personal goals [85].
Reliable access to relevant information is arguably one of the most essential needs of
an organization. And yet the nature of the problem—including data fragmentation,
lack of redundancy in information, vocabulary gap, and secure access for different
roles within the organization, among others—makes enterprise search one of the
most challenging problems in IR [49]. Considering the capability of LLMs in
characterizing language and semantic relationships, new GenlR techniques could
considerably reduce the vocabulary gap present in enterprise search. In the past,
enterprise search has attracted little attention in the academic community [25].
The increasing interest (both in industry and academia) of customized LLM-based
conversational agents and RAG may push the state of the art in enterprise search.

4.5.3 Learning and Teaching

The arrival of ChatGPT has provoked a series of debates around the implications
of generative Al in the education domain [1, 2, 22]. Recent studies bring empirical
results to the discussion on ways students have been using GenAl tools [1]. Code
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Fig. 4.6 Example of code generation for implementing Average Precision (AP) in Python by
RMIT Val using GPT-4

and text generation for completing assignments, essays, and academic projects
is one of the most common applications in learning and teaching environments.
Although these applications may enhance productivity, they also raise some ethical
concerns and implications to pedagogy and academic integrity [22].

Figure 4.6 shows the interaction with Royal Melbourne Institute of Technology
(RMIT)’s Val learning assistant,” using GPT-4 to generate a snippet of code in
Python to compute the Average Precision (AP) effectiveness measure.

Besides the code, the response includes an explanation of the code, as well as
a disclaimer to warn the user that the code does not cover edge cases (e.g., topics
without relevant documents in the grels would give a divided-by-zero runtime error).
An IR course student may prefer to interact with a conversational agent to learn
about fundamental concepts such as AP instead of running a search in a commercial
search engine—or reading the evaluation chapter of a classic IR book.

2 https://www.rmit.edu.au/students/support-services/study-support/val [Accessed: 12 Apr 2024].
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A promising direction is using GenAl for personalized and adaptive learning
experiences [22, 34], in particular novel ways for providing personalized feedback
or instruction tailored to individual student needs [22, 34].

The effective use of this type of technology in learning and teaching environ-
ments heavily relies on creating awareness of its limitations and critical engagement.
There is also a demand for more established guidelines and policies to ensure the
responsible use of GenAl in educational scenarios.

4.5.4 Research

Researchers perform a variety of tasks during the life cycle of a research project.
Some common tasks across different study fields are planning, literature review,
experimental design, data collection and analysis, writing and publishing, and
collaboration. While many of these tasks overlap with the work tasks described in
Sect.4.5.1 (e.g., planning or collaboration), it is important to consider how GenlR
can assist practitioners with research tasks.

The literature review phase is where most of the finding tasks occur. Although
RAG systems [50]—i.e., systems that generate an answer from a set of passages
retrieved from a knowledge base—specifically designed for scientific repositories
may provide a complementary way to find relevant work, GenlR can still present
unreliable information to researchers. Recent work explored the use of LLMs to
make systematic reviews more cost-effective. [83] investigated the effectiveness
of Boolean queries designed for systematic review literature search generated
by transformed-based systems such as ChatGPT, showing a promising ground
for research directions but also important caveats related to incorrect terms in
the queries and non-determinism of prompts. Another work in the context of
systematic reviews is reducing the number of retrieved documents that need to be
manually screened by experts/researchers performing systematic reviews. Recent
work in automatic document screening has explored the use of ChatGPT [6], fine-
tuning [65], and zero-shot open-sourced LLMs [84]. Results indicate that techniques
based on LLMs, particularly fine-tuned, can automatically be developed to screen
documents for systematic reviews.

GenAl tools are instead becoming commonly available to assist researchers in
refining their writing, e.g., by recommending alternative ways to formulate titles,
abstracts, or sentences. Researchers may also benefit from using tools for synthesis
or translation tasks [59].

Mittelstadt et al. [59] discuss how other tasks, such as data formatting and
conversion, are likely to get more automated with the assistance of GenAl
However, the use of GenAl in other research tasks could compromise research
integrity [28, 59], by increasing the risk of lack of reproducibility and transparency,
especially if used without robust quality assurance protocols in the data collection
and analysis phases.
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As in other research fields, IR has also started to include GenAl approaches in
research. In addition to automatic relevance assessment [33, 77] and simulation
of user’s interactions [12, 30] (see Chap. 6 for more details), recent work explore
the use of GenAl to characterize tasks and information needs. Zendel et al. [94]
explores the effectiveness of instruction-based LLMs to automatically classify the
cognitive complexity of information needs described as backstories [94]. Alaofi
et al. [4] explores the role of LLMs in generating new query variants for a given
information need. Pathiyan Cherumanal et al. [62] use open-source LLMs as a
data augmentation approach to generate training phrases to build the conversational
model of a customized intent-based conversational agent.

4.5.5 Personalized Personal Information Management

Personal Information Management (PIM) is a set of practices to manage personal
information ecosystems [19, 75]. This ecosystem includes various physical and
digital information formats like emails, documents, Web content, and social media
interactions. PIM enables users to control their information environment, enhancing
their productivity, decision-making, and learning [39].

Incorporating GenAl and GenlR into PIM could potentially enhance person-
alized information access. GenAl can extrapolate new insights, link diverse data
sources, and propose novel viewpoints, aiding knowledge integration from personal
information sources. In addition, GenIR can improve how information is retrieved
and presented to the user. GenlR can provide more relevant and digestible informa-
tion by understanding the user’s context and preferences. This can save time and
effort in IR and make using information more efficient and enjoyable.

In this context, PIM is not just about managing information but also about
effectively utilizing this information to achieve tasks and fulfill roles within indi-
vidual contexts. This could include professional roles where specific information
is needed to make decisions or personal roles where information could help plan
activities or learn new skills, thus enhancing current PIM techniques, making it
even more personalized. The combination of PIM, GenAl, and GenlR aims to
create a more personalized, efficient, and insightful way of managing and utilizing
information. This integrated approach can empower individuals to control their
information environment and use information more effectively to achieve their
goals. It represents a significant step forward in the evolution of PIM.
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4.6 User Evaluation of Generative Information Retrieval

New approaches enabled through GenlR offer extensive opportunities to support
users to resolve their information needs. To understand these new approaches and
to support ongoing development and improvements, the ability to measure and
evaluate system performance is a key requirement. The acir field has a strong
history of evaluation. This includes approaches based on offline evaluation using test
collections (often called the “Cranfield” methodology) [35] and instantiated through
shared evaluation campaigns such as TREC, National Institute of Informatics
Testbeds and Community for Information Access Research (NTCIR), Cross Lan-
guage Evaluation Forum (CLEF), and Forum for Information Retrieval Evaluation
(FIRE), online evaluation through techniques such as A/B testing [36], and user-
based evaluation [40].

While the established approaches for evaluating IR systems provide a good
foundation, they are not always directly usable in the context of new features that
GenlR systems support. For example, Gienapp et al. [32] have recently proposed
a framework for generative ad hoc retrieval—the task of ranking documents by
their expected relevance in response to a single search query—that defines urility,
reading, and accumulation components for an effectiveness metric. In line with
traditional ad hoc retrieval evaluation based on test collections, this framework
offers a promising direction to enable GenIR systems to be evaluated for ad hoc
search, offering a clearly defined, repeatable, and cost-effective way to quantify
effectiveness. However, similar to the use of test collections for traditional IR
systems, this comes at the cost of simplification by essentially abstracting out the
user and their interactions with the system.

As was highlighted in the previous sections of this chapter, GenlR in particular
offers substantial new opportunities at the level of users, tasks, and scenarios:
key opportunities arise in the interaction between users and systems, working to
resolve an information need that is situated in the scope of a particular task—
GenlIR. Evaluation here typically required user-focused approaches, rather than
the use of test collections that typically abstract out the variability that users and
interactions introduce. We therefore provide an overview of the key methodologies
and associated considerations that arise in the context of user-based evaluation of
these systems.

4.6.1 Current Information Retrieval Approaches to User
Evaluation

4.6.1.1 User Studies

Evaluating the effectiveness of interactive systems can require careful study of
the interactions between users and systems. It can be helpful to consider different
approaches based on the goals of the research: exploratory, descriptive, and
explanatory [40]. User studies can vary widely depending on the phenomenon
being studied. Generally, they fall into exploratory, descriptive, and explanatory
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categories, reflecting the level of researcher control. Exploratory studies involve
minimal intervention, while explanatory studies often require extensive intervention
for formal experimental inference.

— Exploratory studies. In situations where relatively little is known about the
phenomenon, exploratory studies are useful to enable better understanding [72].
The aim is often to learn more about the phenomenon, which means that the
research questions may be broad or open ended. As a result, exploratory studies
are typically less structured. Exploratory studies often inform subsequent
descriptive and explanatory studies.

— Descriptive studies. Descriptive studies aim to describe a phenomenon by care-
ful observation and documentation [29]. Such studies can provide benchmarks
of interactive systems and serve as taxonomies related to the phenomenon of
interest.

— Explanatory studies. When variables of interest have been identified, explana-
tory studies offer a framework to determine relationships between them. This
includes formal experiments to establish causality. Explanatory studies are
sometimes termed “laboratory experiments,” since they often take place in
controlled conditions, with the aim of isolating the key variables of interest
from possible confounding conditions [90].

4.6.1.2 Online Evaluation and Implicit Measures

Online evaluation aims to measure the effectiveness of IR systems by considering
implicit indicators of user behavior as they interact with a live system. Indicators
may be any measurable signals that reflect user activity and can range from low-
level events such as the number of clicks on a hyperlink and the dwell time on
particular Web page to higher-level events such as decisions to purchase items in an
online store [36].

To establish the relative effectiveness of two systems, online evaluation typically
makes use of A/B testing, a between-subjects experiment where users are randomly
exposed to either system A or system B (the independent variable) to establish the
presence or absence of an effect on the chosen implicit indicator (the dependent
variable) [47].

4.6.2 Challenges and Considerations for Evaluating
Generative Information Retrieval Systems

The evolution of IR to include conversational and generative aspects necessitates a
deeper understanding of user needs and behaviors, especially since these systems
may substantially change user expectations and interaction approaches. GenlR
systems require rigorous user evaluation methodologies to ensure their effective-
ness and relevance. User studies, incorporating both quantitative and qualitative
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methodologies, will be essential in identifying the effectiveness of such systems
in addressing complex user information needs.

A key open challenge for GenlR evaluation will be to establish realistic
approaches for evaluating system output with users when we cannot control the
system’s output. For generative systems, a key consideration regarding user studies
is the extent to which the system output needs to be controlled. Generative systems,
by their nature, create “new” responses, and it may be difficult to ensure that such a
system generates identical output even in response to the same input query.

The impact of this factor will vary depending on the type of study being
conducted. In the context of user studies, this is, e.g., unlikely to be problematic for
an open-ended exploratory study aiming to learn about interactions between users
and chatbots but may present new complications into the design of an exploratory
study in which the system output needs to be a controlled variable.

Since the indicators used in online evaluation rely on signals of user behavior,
rather than the specific output of a GenlIR system, this evaluation approach can
be used directly to evaluate systems that include new generative components. It
is however important to bear in mind the usual limitations of online evaluation,
namely, that the implicit indicators are very likely to only be a proxy for variables
that are actually of interest, such as whether the system actually conveyed useful
information to the user or whether the user was ultimately satisfied.

Other challenges in evaluating GenIR systems include accounting for the
Natural Language Understanding (NLU) and Natural Language Generation (NLG)
components, managing context and state across conversational turns, and ensuring
the relevance and coherence of system responses. User evaluation methods will
therefore need to be tailored to address these challenges, e.g., by incorporating
scenario-based testing, user satisfaction surveys, and task completion rates as part
of the evaluation criteria.

Beyond individual studies that focus on particular aspects of evaluation, the
development and ongoing evaluation of GenIR systems will benefit from the
use of user-centered design principles, involving users early and throughout the
design process of such systems. This includes understanding user preferences
for conversational interactions, personalization, and response generation. Design
decisions should be informed by user feedback, ensuring that the system aligns with
user expectations and information seeking behaviors.

4.6.2.1 Ethical Considerations and User Privacy

The ethical landscape of user evaluation in GenlIR systems is complex, underscored
by the importance of the ethical use of data and privacy considerations. In this
context, the methodologies employed to gather, analyze, and store user data should
be carefully designed to uphold the highest standards of privacy and ethics. In most
countries, regulatory requirements around GenlR are developing; but perhaps even
more importantly, ethical considerations and practices are a fundamental aspect
of building trust and ensuring the integrity of the interaction between users and
systems.
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Transparency in the collection, usage, and storage of user data forms the
cornerstone of ethical user evaluation. Users should be fully informed about what
data is being collected, how it is being used, and where it is stored. This transparency
is crucial not just for compliance with privacy laws and regulations, such as the
General Data Protection Regulation (GDPR) in the European Union, but also for
fostering a relationship of trust with users. When users understand how their data
contributes to the improvement and effectiveness of GenlR systems, they are more
likely to participate willingly in the evaluation process.

Informed consent is another critical element, ensuring that users are not just
aware of how their data is used but have explicitly agreed to it. This consent should
be obtained through clear, understandable language that avoids technical jargon,
so that it is accessible to all users regardless of their background in technology.
Moreover, informed consent should not be treated as a one-time process. Users
should have the ability to withdraw their consent at any time, necessitating systems
that can accommodate such requests without compromising the integrity of the data
or the user experience.

A key technique in preserving user privacy is the de-identification or anonymiza-
tion of user data. By removing or obfuscating identifiers that can link data back
to an individual, researchers and developers can analyze patterns, behaviors, and
feedback while minimizing risks around compromising user anonymity in situations
such as data breaches or unauthorized access. Privacy-preserving methodologies
extend beyond anonymization principles to include techniques such as differential
privacy, which adds noise to the data to prevent the identification of individuals
while still allowing for the aggregate data to be useful for analysis and system
improvement. These methodologies ensure that the evaluation of GenlIR systems can
proceed without exposing sensitive user information or compromising the privacy
of individual users.

4.7 Conclusion and the Future of Generative Systems

This chapter demonstrates that research on highly interactive information retrieval is
not new. However, with new developments around generative technology, interac-
tivity has become central again in information retrieval research. This generative
interactive information retrieval resurgence may have the potential to make IA
systems true assistants. However, questions such as how much generation is really
needed for particular tasks and what kind of interactivity best enhances user
experience remain open. The challenge lies in finding the right balance between
generative capabilities and user control, ensuring that the systems are powerful but
also intuitive and user-friendly. As we progress, we must continue exploring these
questions and testing and refining generative interactive approaches to realize their
potential in transforming IR into a more dynamic and collaborative process.
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4.7.1 Proactivity in Generative Information Retrieval

Generative systems, despite their advancements, largely are still not proactive. The
concept of “search engines that listen” aimed to introduce a more interactive dimen-
sion to IR systems [38, 79]. This vision sought to transform search engines from
“responders” to active participants in the search process, capable of understanding
and adapting to the user’s context in real time.

With GenlR, we have progressed in expanding the task types these systems can
handle, moving beyond traditional search queries to include content generation,
summarization, critiquing, and even dialogue-like user interactions. However, this
leap has yet to realize the proactive potential of GenIR systems fully. The envisioned
“search engines that listen” imply initiative and anticipation, actively engaging with
users, seeking clarification, and offering suggestions even before a query is fully
articulated, perhaps even imply that a system is part of an agent that performs tasks
on behalf of users.

To achieve genuinely proactive systems, enhancements in GenIR should focus
on better interpreting user interactions, effectively using context, and applying pre-
dictive analytics to anticipate user needs. This shift toward proactive participation,
making the system a co-navigator rather than just a responder, may improve the
user experience, making IR more intuitive and aligning more with natural human
information-seeking behaviors.
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Chapter 5 )
Improving Generative Information Py
Retrieval Systems Based on User

Feedback

Qingyao Ai (», Zhicheng Dou ), and Min Zhang

Abstract In this chapter, we discuss how to improve Generative Information
Retrieval (GenlR) systems based on user feedback. Before describing the
approaches, it is necessary to be aware that the concept of “user” has been extended
in the interactions with the GenlR systems. Different types of feedback information
and strategies are also provided. Then the alignment techniques are highlighted in
terms of objectives and methods. Following this, various ways of learning from user
feedback in GenlR are presented, including continual learning, learning and ranking
in the conversational context, and prompt learning. Through this comprehensive
exploration, it becomes evident that innovative techniques are being proposed
beyond traditional methods of utilizing user feedback and contribute significantly to
the evolution of GenlIR in the new era. We also summarize some challenging topics
and future directions that require further investigation.

5.1 Introduction

For an information access (IA) system that is built to provide useful information
to users, interactions with users are definitely crucial and important. There are two
types of user feedback, explicit feedback and implicit feedback, based on whether
the user’s opinions or preferences regarding the provided information are expressed
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directly through clear statements or indirectly with some signals. (Section 5.1.2 will
delve into more details about explicit and implicit feedback.)

Similar to traditional information retrieval (IR), GenlR also leverages users’
feedback in various ways to improve the system’s capability and performance.
However, upon closer examination, it becomes evident that there are distinct
factors that specifically contribute to GenlR systems, in terms of types of feedback
information and utilization strategies. We also raise the attention to the definition of
“user” in the new era.

In this chapter, we first discuss the feedback factors and the differences in the
new era in the first section. Subsequently, we provide detailed descriptions and
discussions on the alignment with user factors in GenlR in Sect. 5.2. “Alignment”
in generative models usually refers to the process of fine-tuning the model to ensure
its generated text aligns with specific goals, values, or user intentions, often through
human feedback or instruction fine-tuning. Subsequent to this, Sect. 5.3 explores the
user feedback learning in GenlR, which involves training and improving the GenIR
system through understanding users’ intents, interests, or preferences based on their
historical feedback. A summary is given in the final section, Sect. 5.4, along with
discussions on the challenges and future directions.

5.1.1 Concept of User in the Generative Information Retrieval
Era

Over the past years, discussions about the user in information access systems,
including search engines, recommender systems, question-answering platforms,
etc., have primarily centered around human beings interacting with these systems.
However, in the emerging GenIR era, where the new IR system is designed to
connect with human beings, tools, or even other GenlIR systems, the concept of
the user has been enlarged to a much broader sense.

A user of the GenlR system can now include:

¢ A human being who uses the GenlIR system, similar to the user in traditional IR
system

* A Large Language Model (LLM) agent that can send or receive information to
or from the GenIR system or engage in bidirectional information exchange, also
refers to the agent in publications

* Another system, tool, or application that interacts with the GenlR system,
sometimes termed as the client in technical context

Interactions from the traditional users, agents, and clients should all be taken into
consideration as user feedback, whether from real or virtual users within the GenIR
system.
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5.1.2 User Feedback

The GenlR system still maintains two fundamental types of user feedback, implicit
feedback and explicit feedback as usual. However, the scope of feedback information
has been significantly broadened.

Consistently, one of the major feedback is the user interaction history. Interac-
tions with the GenlIR system encompass queries, questions, clicks, views, purchases,
comments, and more. Such information is usually taken as implicit feedback
information. In contrast, users’ explicit annotations such as favorites, likes, ratings,
or direct feedback on satisfaction constitute explicit feedback information. In
GenlR systems, a notable difference lies in the increased availability of explicit
feedback provided by users through system inputs or prompts. Nowadays, users
are accustomed to communicating their specific requests, intentions, and interests
to the GenlR system. In many instances, multi-round conversations have become
commonplace.

In GenlIR systems, feedback information manifests in two distinct forms:

(1) Numerical information, primarily consisting of identifier-level data that identi-
fies the items with which the user has interacted. Sometimes, this information is
presented in sequential order. Such information offers a glimpse into the user’s
behavioral patterns.

(2) Detailed information encompassing multiple modalities. Textual data is the
most commonly utilized, including query text, item titles, content, user com-
ments, and questions. As LLM technology rapidly advances, longer natural
language expressions are increasingly being leveraged. Multimedia inputs, such
as images, music, or videos, sometimes integrated with visual LLM (e.g. [1]),
have also garnered significant attention. This multifaceted feedback allows for
a richer, more nuanced understanding of the user’s preferences and interactions
within the GenlR system.

How to leverage such rich user feedback information smoothly in the GenIR
system to improve performance is a crucial part of the new LLM era. The next
section briefly summarizes the strategies for using user feedback information in
GenlR systems.

5.1.3 Strategies for Generative Information Retrieval System
Improvement with User Feedback

Introducing user feedback information into GenlR systems can be facilitated
through prompt engineering or instruction construction, which is perhaps the most
straightforward approach [1-4]. Historical user interactions can be encoded using
various types of index, such as title-based indexing, random indexing, independent
indexing, sequential indexing, semantic indexing, or collaborative indexing [5].
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These indexing inputs can then serve as prompts for the system, as illustrated in
the following Fig.5.1. The prompt strategy is commonly employed in zero-shot or
in-context learning scenarios, where LLMs are directly utilized as the information
system. By leveraging this approach, GenlR systems can efficiently integrate user
feedback to enhance their performance.

The second strategy involves leveraging historical interaction information for
fine-tuning the parameters of the LLM. This approach aligns the user or item
representations within the pre-trained language model. Typically, this information
is utilized as either an identifier index or a text index with item content, reviews,
etc. [6-8]. In certain instances, the user-item collaborative information is initially
encoded by a traditional IR system to generate embeddings for users or items [9—
11]. These embeddings implicitly contain collaborative interaction feedback, which
is subsequently utilized in the fine-tuning and alignment process.

The third strategy focuses on capturing the user’s implicit or explicit preferences
and indicating both vague and specific intents. By integrating these preferences
and intents, the GenlR system is able to identify the user’s specific task [12]. For
instance, an implicit preference associated with a specific search intent for a mobile
phone would be linked to a product-search task, while an implicit preference with a
more vague intent might lead to a recommendation task.

The fourth strategy is to take user behavior as the action, reward, or even the
evaluator within an agent-based GenlIR system [13—17]. This approach effectively
guides the system in learning the appropriate actions and responses. In such GenlR
systems, user feedback information plays a crucial role in the system’s learning
and refinement process across multiple rounds of interaction. By continuously
incorporating user feedback, the system can adapt and improve its performance.

It is anticipated that even more strategies will emerge as research continues. In
the subsequent sections, we discuss deeper into these various approaches, exploring
the alignment with user preferences and the learning mechanism.

5.2 Alignment with User Factor in GenIR

Alignment techniques have been widely recognized as one of the key components
for the construction of effective LLMs. In the first technical report of ChatGPT [18],
alignment techniques such as Reinforcement Learning with Human Feedback
(RLHF) [19, 20] have already been extensively used in the training and construction
of the chat system. Right after the success of ChatGPT, LLM alignment has become
one of the most important research directions in the community of Natural Language
Processing (NLP) and, as discussed in the later part of this chapter, also has
significant potential for building information access systems in the era of generative
AL

Despite the recent surge in interest in alignment technology following the success
of ChatGPT, it is important to note that research in this area has been ongoing for
many years. In fact, it is difficult to pinpoint the exact moment when alignment
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techniques were first introduced to the studies of large language models. In the
early days of neural language models, researchers focused mainly on designing
more powerful model structures [21-23] and training techniques [24, 25] to enable
LLMs to process information and learn patterns from massive amounts of data.
The performance of language models in those days was not strong enough to
understand user’s instructions and generalize to multiple types of tasks. However,
as the capabilities of LLMs grows, concerns related to aspects other than task
performance, such as ethic, robustness, and have gradually become obstacles that
prevent LLMs from applications in real-world scenarios. For example, in 2016,
users had successfully tricked a Twitter bot constructed by Microsoft (i.e., Tay) to
produce statements that were misogynistic [26]; in 2022, Meta’s BlenderBot 3 had
been “taught” to be racist right after it was released to the public [27]. Therefore,
a greater emphasis, especially on model safety and ethical issues, was placed on
aligning LLM outputs with human values and preferences since 2017. It was around
this period when a group of alignment methods, including the famous RLHF, have
been used in the training of LLMs. As of today, almost all LLMs must go through
an alignment process before being launched and released to the public.

In this section, we focus on the introduction and discussion of LLM alignment
from the perspectives of information access. Besides the safety and ethical problems
of LLMs, there are also unique challenges and needs of LLMs when applied to
information access tasks. Those unique challenges also lead to unique methods
and research directions that have great potential for information accessing in the
era of generative Al In the following, we first provide a brief introduction of the
common objectives for alignments in LLMs and information accessing and then
introduce a couple of representative alignment methods in the field. Last but not
least, we discuss the connections and differences between alignments and other
LLM techniques such as Supervised Fine-Tuning (SFT) from the perspective of
information retrieval and access.

5.2.1 Alignment Objective

LLM alignment is a cornerstone in the development of generative Al systems,
particularly in the context of ensuring that these models act in ways that are
beneficial, safe, and aligned with human values and intentions. On the one hand,
as LLMs become more powerful every day, their potential impact on human society
increases, making the alignment of these models with ethical standards and user
intentions an essential objective [18, 20, 28]. On the other hand, LLM alignment
techniques can supplement SFT or other training techniques in equipping LLMs
with abilities or characteristics desired for diverse tasks and applications in specific
domains [29]. From the perspectives of information access, the objective of LLM
alignment techniques is multifaceted, with some parts of it aligning closely with
other LLM applications and some parts of it diverging significantly from those
widely considered in the development of general LLMs.
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5.2.1.1 Objectives Shared by General LLM Applications

Similar to other LLM applications, the usage of LLMs in information accessing
needs to prevent the possibility of outputs that are harmful from ethical perspectives
or undesirable by user intents. Specifically, such objectives include but are not
limited to the following.

Preventing Harmful Outputs One primary objective of LLM alignment tech-
niques, shared by both information accessing and other applications, is to prevent
models from generating harmful, biased, or inappropriate content [20] that vio-
lates the universal values of human beings. This includes outputs that could be
misleading, factually incorrect, or that perpetuate harmful stereotypes. Before
the era of generative Al, major information accessing systems usually focus on
retrieving existing Web pages or documents created by humans to satisfy the user’s
information need. Therefore, the prevention of harmful outputs can be done directly
through pre-processing such as spam detection and keyword filtering [30, 31].
With LLMs, however, controlling the outputs of information systems becomes
significantly more difficult due to their stochastic nature [32]. Alignment techniques
that prevent such harmful outputs through the post-training of LLMs have then
become the most popular methods used in generative systems.

Aligning with User Intents Another critical aspect of LLM alignment is ensuring
that models accurately understand and align with user intentions [29]. This means
that LLMs must be adept at interpreting the context and nuances of user queries and
generating responses that accurately reflect the user’s desired outcome. User intent
understanding is at the core of information accessing, and numerous methods have
been proposed to solve this problem in the context of traditional matching-based
IA systems [33—-35] Unfortunately, as the internal knowledge structure of LLMs is
still obscure, it is difficult (at least of today) to adopt our knowledge and experience
obtained from previous studies directly to generative IA systems. LLM alignment
is one of the most direct and practical methods to improve the system’s ability in
understanding user intents.

Adhering to Ethical Guidelines LLM alignment also involves adhering to ethical
guidelines and principles. This encompasses a range of considerations, from ensur-
ing privacy and data security to promoting fairness and avoiding discrimination.
In information accessing, these are also of great importance in practice. Popular
search engines before the era of generative Al have already been widely criticized
for imposing biased exposure to information such as political statements and
news [36, 37]. With more powerful yet nontransparent LLMs used in modern IA
systems, such issues are becoming more intricate and vital. Developing generative
IA systems that can balance fairness with relevance, respect user privacy, and
treat sensitive topics with the appropriate level of care requires a deliberate and
thoughtful approach. More importantly, as cultures, individuals, and groups may
have vastly different views on what is considered appropriate, ethical, or aligned
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with their intentions, we need methods that are both effective and efficient in terms
of model adaption.

5.2.1.2 Objectives Unique to Information Access

Besides those common alignment objectives shared by general LLMs, information
access also has unique challenges that must be solved in order to construct effective
generative IA systems. As the ultimate goal of IR and access is to satisfy users’
information needs, to the best of our knowledge, the special characteristics needed
by generative IA systems can be broadly categorized into two types in existing
literature: the need for personalization and the capability of fine-grained information
discrimination. !

Personalization At its core, personalization is about tailoring the interactions and
information delivery of a system to the unique preferences, interests, and needs
of an individual user [38]. The key idea is to transfer the user experience from
a one-size-fits-all approach to a more intimate and relevant exchange [39, 40]. In
general applications of LLMs, this usually means speaking with the languages,
styles, and values preferred by each user. In the context of information access,
this also means understanding and utilizing the connection between the user’s
information need with time, locations, application scenarios, and all kinds of
user information that potentially affect user’s perceptions of information utility.
Traditional personalization in information access focuses on the construction of user
profiles and the design of algorithms and models that effectively incorporate user
information into the analysis of information relevance. In the era of generative Al,
while the structures of the models and systems have significantly changed, the needs
of those two still exist. LLMs have strong in-context learning ability, which can
implicitly create a user model simply by feeding the descriptions of user profile as
prompts in the input user queries. Yet existing LLMs can only take inputs with text,
images, or other standard multimedia formats, but user profiles go beyond these.
How to construct and incorporate hyper-information like user-user, user-item, and
item-item interactions effectively under the current model frameworks of LLMs
and generative Al is still an open question. Alignment techniques, as flexible and
relatively lightweight methods to optimize large generative models, are thus of great
potential for personalization in generative information accessing.

Fine-Grained Discrimination With the exponential increase in the availability of
digital content, the challenge of information access is no longer just finding relevant
information but finding the most appropriate content among a set of potentially
relevant items. Most existing studies on retrieval and ranking models are essentially
developing better methods to analyze and discriminate input documents based on

1 Please note that the categorization here is by no means inclusive as this is still an ongoing research
topic.
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Fig. 5.2 Illustrations of LLMs application in document summarization for similar documents
provided by Dong et al. [41]. The distinctive parts of each document are highlighted in different
colors

their fine-grained differences and utility given users’ queries. In the era of LLMs,
while the final outputs of an IA system may no longer be a simple listing of result
candidates, the ability of discriminating information in fine grains is still of great
importance. It allows the system to navigate in complex data collections, identifying
the subtleties that differentiate pieces of information in ways that are significant to
the user. Yet the acquisition of such ability is usually not covered in the alignment
process of off-the-shelf LLMs. An illustration example is provided by Dong et
al. [41] in Fig.5.2. When the request is the same (i.e., “create a summary of the
document” in Fig. 5.2) and the input documents are similar, the off-the-shelf LLM
(i.e., Flan-T5 in the figure) tends to produce identical responses to all documents.
Such problems could be insignificant in many NLP applications where the quality of
outputs is evaluated independently with each other. In information access, however,
we often care about the discrimination of input documents more than we care about
their absolute relevance or utility. For instance, if we generate identical snippets
for similar documents retrieved by search engines, it would remarkably increase the
difficulty for users in pinpointing the exact result that answer her needs. Because the
ability to produce such discriminative outputs in fine grains can hardly be learned
from the standard next token prediction tasks, one may need extra alignment process
to enhance the model from this perspective [42].
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5.2.2 Alignment Method

Alignment methods are strategies developed to steer the behavior of generative Al
models toward desired outcomes. These methods often rely on a framework that
involves computing rewards based on model outputs and using these rewards to
optimize the model’s performance. Specifically, this usually involves two steps:
(1) the collection and computation of rewards, and (2) the optimization of model
parameters based on the rewards. Most existing alignment methods are designed
for general alignment objectives in NLP tasks, but given the great potential and
importance of LLMs in future information access, several researchers have also
started to investigate how to design alignment methods tailored for the needs of TA
tasks. In this section, we first introduce a couple of well-developed reward collection
methods in LLM alignments and then briefly describe several standard optimization
methods that have been widely used in existing studies.

5.2.2.1 Collection of Rewards

The collection of rewards is a pivotal step in aligning LLMs. It evaluates the
model’s outputs/responses against certain criteria to determine how well they align
with desired outcomes. Very much similar to the design of loss functions in
Learning to Rank (LTR) [43], the nature of reward computations in LLM alignment
can be broadly grouped into several categories based on the inputs and training
paradigms of the reward functions. Specifically, if we borrow the terminology used
in LTR literature [44], the reward collection methods can be categorized from two
perspectives. From the perspective of reward function input, we have

* Pointwise input: Rewards are computed for LLM outputs based on each
individual input data points independently.

* Groupwise (pairwise) input: Rewards are computed for LLM outputs based on
a group (or pair) of different input data points together.

From the perspective of reward computation or reward function training, we have:

 Pointwise training: Rewards are computed on or reward functions are trained
with each LLM output independently.

» Groupwise (pairwise) training: Rewards are computed on or reward functions
are trained with a group (or pair) of LLM outputs together.

An illustration of the differences between those methods is depicted in Fig.5.3.
With this taxonomy, we introduce a couple of popular alignment methods in the
following and summarize their types in Table 5.1. Careful readers may notice that
all the reward methods here have a prefix “RL,” which stands for reinforcement
learning. While these reward collection methods are independent to the use of
learning algorithms (which is discussed in Sect.5.2.2.2), they are often referred
to or analyzed together with reinforcement learning. For simplicity, we use the
terminology widely used in the LLM literature to refer to them, but please note that
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Fig. 5.3 Anillustration of example reward collection and optimization methods in LLM alignment

Table 5.1 Example alignment methods and their categorization based on input and computa-
tion/training paradigms

Input Computation/training

Pointwise Pairwise/groupwise Pointwise Pairwise/groupwise
RLHF [19, 20, 45] [20] [19, 20, 45]
RLAIF [46, 47] [47] [46, 47]
RLCF [41] [41]

this does not indicate that alignment methods using these rewards must be developed
under reinforcement learning frameworks.

Reinforcement Learning from Human Feedback (RLHF) To the best of our
knowledge, RLHF is the most well-known and popular alignment method today.
It has been recognized as one of the most important parts of ChatGPT [18].
RLHF collects feedback from human users on different LLM outputs to optimize
model parameters accordingly [48, 49]. Since the feedback is directly collected
from humans, RLHF is capable of aligning generative Al models with almost all
related objectives such as output safety and ethical values. Typical RLHF process
involves the generation of multiple output candidates from one or multiple LLMs
given a single input. It can be treated as a pointwise input method because RLHF
always collect rewards on output candidates generated for a single input (e.g.,
prompt). Then, with the output candidates generated by LLMs, RLHF further asks
human annotators to judge the quality of each output and train reward functions
accordingly. The annotation process could be pointwise (through not common in
recent LLM literature), i.e., asking the annotator to give a rating to each output
separately, or pairwise/groupwise, i.e., asking the annotator to provide a preference
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or ranking of multiple outputs together. Accordingly, the final reward function
learned from such annotation data is constructed with either pointwise, pairwise,
or groupwise training data and thus can be categorized as pointwise, pairwise, or
groupwise output methods.

Reinforcement Learning from AI Feedback (RLAIF) Despite the flexibility and
effectiveness of RLHF, its needs for human-in-the-loop significantly raise the cost
of model alignment and unpredictable variance, particularly when the feedback data
are not large or reliable enough, in the optimization process. Therefore, researchers
have also investigated extensively on how to conduct model alignment without
supervised data. Given the rapid development of LLMs in the last two years, one
of the trending alignment methods in both academic and industrial communities
is RLAIF [46]. The motivation of RLAIF is to replace humans in the process of
RLHF with a powerful LLM that can mimic human behaviors (which we refer to as
the Al feedback model) to generate feedback for each model output. Based on this
idea, it basically reuses the existing framework of RLHF with minor modifications
and align LLMs for different objectives by prompting the Al feedback models
with objective-related task descriptions or annotation guidelines (e.g., RLCD [47]).
RLAIF is a pointwise input method and, theoretically, could be either pointwise,
pairwise, or groupwise from the output perspective. However, as far as we know,
none of the existing studies have used RLAIF with the groupwise output paradigm,
probably because directly ranking multiple candidates is still a difficult task for
modern LLMs [50].

Reinforcement Learning from Contrastive Feedback (RLCF) RLHF and
RLAIF are powerful methods that have already been shown to be effective in many
NLP tasks, but their applications to optimize alignment objectives specifically
important in information access have, unfortunately, been unsuccessful so far. As
discussed in Sect. 5.2.1, the ability to discriminate information in fine grains is the
key to generate informative and useful outputs in IA scenarios, but studies have
found that naively adopting those alignment techniques do not improve the model’s
performance in IA tasks as we expected [41, 42]. One of the key reasons lies in
the input paradigms of RLHF and RLAIF. To generate outputs that are informative
and discriminative, LLMs need to understand and capture what makes an input
piece of information unique in the corpus or data collections. However, RLHF and
RLAIF are developed with the pointwise input paradigm, and it is difficult, if not
impossible, to teach LLMs to generate outputs unique to an input without seeing and
comparing with other candidate inputs. Therefore, RLCF is proposed to conduct
alignment with groupwise input and output paradigms for IR [41]. The idea is to
let LLMs generate outputs for different inputs simultaneously and construct reward
functions based on the comparison of each output for each input. For example, one
can compare query generation or expansion candidates for a single document with
those generated for other similar documents to improve LLMs’ ability to capture
the uniqueness of each document. The original RLCF method computes rewards
with retrieval models to enhance the final LLM’s effectiveness in IR tasks, but
such groupwise input and output paradigms could have potentials in the alignment
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of other objectives as well because, as widely acknowledged in LTR literature,
groupwise methods have more capacity in complex objective modeling and less
variance in parameter optimization.

5.2.2.2 Parameter Optimization

With the rewards collected for particular alignment objectives, the next step is to
optimize the parameters of LLMs. Similar to the methods we used for feedback
collection, the optimization algorithms for LLM alignments can also be broadly
categorized based on their inputs. In this section, we only describe several repre-
sentative optimization algorithms for LLM alignments, namely, Proximal Policy
Optimization (PPO) [51], Direct Preference Optimization (DPO) [52], and ranking-
based optimization [53, 54]. Please note that this is still an ongoing research
direction, and the methods discussed here are far from covering all potential
solutions in the area.

Proximal Policy Optimization (PPO) While PPO is not the first optimization
algorithm used for reinforcement learning in LLMs, it is considered one of the
most popular methods in LLM literature today, partially thanks to its applications in
OpenAl products” and ChatGPT [18]. The primary goal of PPO, so as reinforcement
learning techniques in general, is to train models to make sequences of decisions
by rewarding desired behaviors and penalizing undesired ones. In the context of
LLM alignment, PPO can be used with different types of rewards discussed in
Sect. 5.2.2.1, and it stands out from other RL algorithms due to its better balance of
simplicity, efficiency, and effectiveness, compared to its predecessor such as Trust
Region Policy Optimization (TRPO) [55]. The core idea of PPO is to take small
steps in policy space to improve the model while ensuring that the new policy is not
too different from the old one. This is achieved through a clip mechanism, which
limits the size of the policy update at each iteration. The clipped objective function
helps the model conduct gradient descent while preventing overly large updates
that could lead to performance collapse, a common issue in earlier RL methods
that could lead to unstable training processes. To compute such objective functions,
PPO needs a reward model that can directly estimate the gain or loss of a particular
action (e.g., the output of LLMs). Therefore, it is usually used with pointwise output
reward collection methods such as those shown in Table 5.1. RLHF with PPO is
widely used as the backbone alignment method of many famous LLMs such as
GPTs, Llamas, etc.

Direct Preference Optimization (DPO) A typical alignment method using PPO
needs to create a reward model from the collected feedback data to score each
LLM output for parameter optimization. While the construction of such reward
model is possible for most types of rewards, it does not necessarily fit the nature

2 https://openai.com/research/openai-baselines-ppo
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characteristics of each reward type. It is essentially a pointwise output method that
creates independent labels for each output candidate, and converting pairwise or
groupwise data (e.g., human preferences over different LLM outputs) to pointwise
format usually leads to significant information loss and more variance in model
optimization [56]. To this end, DPO [52] is proposed to optimize model parameters
directly with preference data. Careful readers may notice that all reward collection
methods discussed in Sect. 5.2.2.1 has a prefix “RL.” This is partially because most
popular alignment methods use reinforcement learning for parameter optimization.
In contrast, DPO directly computes model gradients without using reinforcement
learning by minimizing the Kullback-Leibler divergence between the ground-
truth preference and LLM output distributions. This method is highly similar to
standard pairwise or listwise methods used in learning-to-rank literature [57-59].
As pointed out by Rafailov et al. [52], it outperforms popular reinforcement learning
methods based on PPO in both effectiveness and robustness. Considering that
most alignment objectives (e.g., harmfulness, ethic, etc.) involve significant human
subjectivity, preference-based optimization methods could be more promising in
theory. Besides, from the research perspective of information access, this also
indicates that techniques from classic retrieval and ranking studies may provide
important guidelines for the design of future LLM alignment methods.

Ranking-Based Optimization Following similar motivations with DPO, several
methods have been proposed to further extend the utilization of pairwise preference
reward to listwise reward for LLM alignments. Notable representatives include
rank responses to align language models with human feedback (RRHF) [53]
and retrieval-augmented fine tuning (RAFT) [54]. Despite data processing and
implementation details, RRHF could be treated as a listwise version of DPO. Its
core idea is to score multiple responses via a crafted probability function and learns
to align the corresponding probability distribution with human preferences through
a ranking loss constructed based on the variation of hinge functions [60]. RAFT
approaches the problem from a different angle. It ranks multiple LLM response
candidates based on preference data (or a reward model learned from preference
data) and selects the samples with highest rewards to fine-tune the LLM. It is well
acknowledged in IR literature that listwise ranking methods have better potentials
in fitting preference data, both in theory and in practice [43]. Therefore, methods
like RRHF and RAFT have both theoretical and empirical advantages over standard
PPO and DPO methods in model alignments. While such advantages are not fully
explored in the general tasks such as dialog generation and machine translation, they
could be important for the application of generative models in information access
since many IA tasks exhibit natural needs of response discrimination and ranking.

5.3 Learning from User Feedback in GenIR

As introduced in the previous section, in the training procedure of LLMs, user
feedback is very important to align the values of LLMs with humans. RLHF is
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widely adopted as the final training stage of LLMs. Besides LLMs, user feedback
is vital in IR systems. It is commonly used as the final optimization target. For
example, the CTR task [61-63] aims to predict the click-through rate, and the
ranking models are usually tuned toward the user click signals [64]. Besides, some
user-centric tasks such as recommendation and personalized search collect and
utilize user history feedback to provide tailored results for users’ current information
needs [65-67]. For example, personalized search models apply the query attention
technique to aggregate user search and click histories to build user preferences under
their current queries [68].

In the era of LLMs, many personalized search and recommendation [69]
approaches devise LLMs to understand user histories and construct user interests.
For example, inspired by the memorization mechanism in cognitive science, Zhou
et al. [70] designed several memory modules including sensory memory, short-
term memory, and long-term memory to facilitate LLMs to retrieve relevant user
histories to current intents. In the recommendation area, LLMs are usually adopted
to enrich user histories since they store extensive world knowledge [69]. Recently,
LLM-based agents [71] have attracted much attention from academia and industry.
These agents have abilities to memorize past behaviors, make plans to achieve final
tasks, and take action under current situations. It is worth exploring to involve user
feedback in search agents to solve IR tasks.

5.3.1 Continual Learning

IR systems are designed to retrieve relevant information based on user queries.
As users interact with these systems, they generate valuable data, such as search
queries, clicked results, dwell time on pages, and explicit feedback like ratings or
comments, that can be used to improve the system’s understanding of user intent
and preference. By leveraging the collected data, IR systems can progressively
refine their retrieval algorithms, leading to more accurate and personalized search
results. This process forms the basic paradigm of continual learning [72] in an IR
system. Many methods have been proposed to incorporate user feedback data into
optimizing a traditional IR system [73, 74].

Continual learning is also vital for generative systems like LLMs to be regularly
updated to include the latest human knowledge and feedback [75, 76]. As introduced
by Wu et al. [75], continual learning could be applied with different training
stages, including pre-training, fine-tuning, and alignment. Traditional IR ranking
models are relatively small and can be easily updated in a batch manner. The
separated document index could be updated dynamically when new documents
are available, and hence, it is relatively easier for the entire system to update
continually. Contrarily, generative IR models are usually large, and all information
about the documents and the ranking are embedded in the same generative model.
It is much more challenging to update such systems. For example, LLMs have the
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“catastrophic forgetting” problem [76]: the performance of the old task based on
previous knowledge domains will degrade when new user data are fed.

5.3.2 Learning and Ranking in Conversation Context

In the interaction with conversational search systems, users may generate various
types of feedback, such as asking follow-up questions based on the system’s
responses, expressing dissatisfaction with the system’s responses, and providing
clarification to the system’s inquiries. These natural language-based explicit user
feedbacks are crucial for helping the conversational search system continuously
meet user needs and optimize its performance. LLMs possess powerful capabilities
for understanding and generating dialogue, offering significant opportunities for
better comprehension of user feedback in conversational search.

In conversational search, user questions are usually ambiguous and can only be
correctly understood based on the conversation context. Traditional methods are
struggled in dealing with the long and complex conversation context, resulting in
unsatisfactory retrieval performance. In contrast, LLMs show outstanding capability
in conversation understanding and therefore can largely improve the accuracy of
conversational search intent understanding. Mao et al. [77] proposed a prompting
framework to leverage LLMs to perform conversational query rewriting. They
developed three aggregation methods to aggregate the generated rewrites and
hypothetical responses from LLMs to form a better search intent representation
for conversational search. Similarly, Ye et al. [78] also proposed to utilize LLMs
to generate informative query rewrites through well-designed instructions. Their
results showed that the search performance can be largely improved after utilizing
the generated contents from LLMs. Furthermore, LLMs can also be used to
mimic users’ search behaviors and generate more high-quality search session
data. Conversational search systems need massive session-level relevance data for
improvements, and LLMs can significantly facilitate the data curation process. One
of such related works is ConvAug [79], which is a cognition-based framework
that leverages LLMs to generate more conversational search sessions. These
pseudo sessions can help conversational retrievers capture the diverse nature of
conversational contexts to be more effective and robust.

Besides, in the interaction process of conversational search, the user’s responses
to the system responses (e.g., clarification questions and inaccurate responses) are
also crucial for capturing users’ real information needs and unique preferences.
Recently, the Text Retrieval Conference (TREC) organized an interactive knowledge
assistance track (iIKAT) [80] for studying collaborative conversational information-
seeking systems that can customize and personalize their response based on what
they learn about and from the user. Existing works [81] have demonstrated the strong
performance of LLMs in aggregating and inferencing users’ references. Therefore,
LLMs have a large potential to improve the utilization of this type of valuable
user initiative feedback to model the user profiles and provide a more accurate and
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personalized search experience. LLMs can also be employed to identify the type
of users’ responses, such as distinguishing whether the response is a new question,
a reply to a clarification request, or a hint for correcting a previous answer. We
do not need to train a separate model for this intent identification. Instead, we can
stream the modeling of all interaction processes in conversational search through
prompting with LLMs. The massive knowledge about conversation patterns and the
world of LLMs also makes it a promising end-to-end foundation to be an end-to-end
foundation model for personalized conversational search systems.

5.3.3 Prompt Learning

LLMs have demonstrated excellent performance in language understanding, making
them also promising for learning user feedback, particularly in the area of query
refinement. In search engines and similar platforms, understanding the context and
intent behind user queries is crucial for delivering accurate and relevant results. We
consider two possible ways of applying LLMs to query refinement.

Directly Prompting LLMs for Query Refinement Given the substantial compu-
tational resources required for fine-tuning LLMs, a more straightforward approach
is prompt learning. This method entails describing the task in text and prompting
the models to solve it. Upon gathering user feedback, LLMs can analyze the
feedback, comprehend the underlying meaning, and suggest refinements for the
user input query, thereby enhancing retrieval performance. Previous studies [82—84]
have applied LLMs to query rewriting. The results indicate that LLMs can generate
effective user queries, particularly when provided with few-shot demonstrations.
Furthermore, LLMs have shown superior performance in conversational query
rewriting [77], attributable to the availability of more comprehensive contextual
information. These findings indicate the significant potential of applying LLMs to
query refinement.

Distilling Knowledge from LLMs to Smaller Models In practice, it is still costly
to use LLMs in real applications. Under this circumstance, training a small model
specifically for query refinement emerges as a more favorable approach. This
can be achieved by employing LLMs to refine queries based on user feedback,
subsequently utilizing these refined queries as labels to train a specialized model.
This strategy not only reduces computational overhead but also maintains the
efficacy of the learning process, thereby offering a pragmatic solution for real-world
applications.
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5.4 Summary

In this chapter, we delve into how user feedback can enhance the GenlR system.
Firstly, we clarify the concept of “user” and subsequently explore the diverse types
and forms of user feedback information. Furthermore, we outline four established
strategies that leverage user feedback effectively. Secondly, we provide a detailed
account of the crucial technique of alignment in the GenIR context, discussing
both the alignment objective and various methods employed. Finally, we highlight
the significance of user feedback learning in GenlIR, encompassing human-in-the-
loop approaches, continuous learning, learning and ranking within conversational
contexts, as well as prompt learning. Through this comprehensive exploration, it
becomes evident that innovative techniques are being proposed beyond traditional
methods of utilizing user feedback and contribute significantly to the evolution of
GenlR in the new era.

There are some challenging topics and future directions that we believe need
further exploration, such as:

» User intention understanding within the GenlIR system. For example, how
do we precisely determine the user’s true intent? How do we manage shifts in
user intentions during multi-turn interactions or conversations with the GenIR
system? When we broaden the concept of user to also include agents/clients that
interact with the GenIR system, could this lead to self-feedback loops within the
GenlR system and a bias toward artificial intentions?

e User behavior analysis and understanding with ‘less but rich feedback.”
As the end user interacts with generated responses, we may receive less
feedback than traditional IR systems (e.g., clicks on search engine results
pages). On the other hand, the feedback is richer (e.g., an explicit feedback
in the conversation like “Thank you, that’s really helpful” or a detailed follow-
up indicating continued engagement when the information need is not met).
Studying the utilization of limited yet in-depth user interaction behaviors in
the GenlR system is valuable. There are additional research questions, such as:
How do we align personalized models using limited user data? How can we
efficiently fine-tune and store personalized generative models?

e User-centric evaluation of the GenIR system. For instance, how do we
measure user satisfaction when engaging with complex tasks during interactions
with the GenIR system? Is personalized evaluation feasible and essential?

* Privacy protection within the GenIR system. Particularly, we need to con-
sider how to ensure privacy is maintained when utilizing user feedback in
personalized generative models.
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Chapter 6 ®
Generative Information Retrieval Check or
Evaluation

Marwah Alaofi (», Negar Arabzadeh (%), Charles L. A. Clarke (),
and Mark Sanderson

Abstract In this chapter, we consider generative information retrieval (IR) evalua-
tion from two distinct but interrelated perspectives. First, Large Language Models
(LLMs) themselves are rapidly becoming tools for evaluation, with current research
indicating that LLMs may be superior to crowdsource workers and other paid
assessors on basic relevance judgment tasks. We review past and ongoing related
research, including speculation on the future of shared task initiatives, such as the
Text Retrieval Conference (TREC), and a discussion on the continuing need for
human assessments. Second, we consider the evaluation of emerging LLM-based
Generative Information Retrieval (GenIR) systems, including Retrieval-Augmented
Generation (RAG) systems. We consider approaches that focus both on the end-to-
end evaluation of GenlIR systems and on the evaluation of a retrieval component
as an element in a RAG system. Going forward, we expect the evaluation of
GenlR systems to be at least partially based on LLM-based assessment, creating an
apparent circularity, with a system seemingly evaluating its own output. We resolve
this apparent circularity in two ways: (1) by viewing LLM-based assessment as a
form of “slow search,” where a slower IR system is used for evaluation and training
of a faster production IR system, and (2) by recognizing the continuing need to
ground evaluation in human assessment, even if the characteristics of that human
assessment must change.

6.1 Introduction

Both the structure of GenlR systems and the capabilities of LLMs are evolving
rapidly. It would appear from an evaluation perspective that GenIR presents both
challenges and opportunities both concrete and speculative.
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* Challenges stem from evaluating the prosodic form of GenlIR output: a written
synthesis of answers and, sometimes, hallucinated text replacing the classic
search response, a ranking of documents.

* Opportunities arise from the prospect of automating components of the
methodology to evaluate current document retrieval systems. With the apparent
ability of generative methods to simulate human actions, we speculate on a
range of potential rapid assessments of the worth of a technology prior to actual
user trials.

As with any document written at the start of a revolution, it is too early to
say what will come. The functionalities and limitations of GenlR are not yet well
understood. In many cases, we can only provide a sketch of ongoing research
and emerging opportunities. In general, we err on the side of describing future
potential rather than surveying the current state of the art, since the latter has
changed significantly even between the time we first wrote these words and this, our
final proofreading pass. We examine past work to try to contextualize challenges,
opportunities, and speculations in more detail.

We interpret GenlR evaluation in two ways: (1) the use of generative methods to
aid evaluation practices in IR, such as generating document relevance labels, and (2)
evaluating the output of a GenlR system, which is likely employing some form of
RAG architecture. Figure 6.1 provides a brief description of this chapter’s sections
and outlines their subsections. We start the chapter by reflecting on past assumptions
and challenges within evaluation practices and explore how LLMs can challenge
these assumptions and contribute to the development of better practices (Sect. 6.2).
We then address the challenges associated with evaluating the output of GenIR
systems (Sect. 6.3). Across both sections, we speculate on possible challenges.

Section 2 Section 3

Generative Methods for IR Evaluation GenlR from an Evaluation Perspective

A reflection on traditional test collections and envisioning and A definition of GenlR, along with a discussion and
speculating future directions in IR evaluation in light of recent speculations on GenlR evaluation challenges, and a revisit to
advances in LLMs. retrieval principles.

—[ 2.1 A Brief Test Collection Primer —( 3.1 GenlR Systems

—[ 2.2 Relevance Judgments —[ 3.2 Evaluating GenlIR Systems

—[ 2.3 Test Collection Topics and Queries —( 3.3 Evaluating Retrieval in RAG Systems

—[ 2.4 Search Sessions —{ 3.4 Hallucinations

—{ 3.5 Defining New Retrieval Principles

—[ 2.6 User Testing and Online Evaluation

-[ 2.7 Grounding Simulations: Gold is Still Precious

—[ 2.5 Speculation: The End of Shared Task Initiatives? l

—[ 2.8 Slow Search for Evaluation

Fig. 6.1 An overview of the main two sections and their subsections
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6.2 Generative Methods for IR Evaluation

The arrival of GenlIR systems prompts the question of whether the traditional
ranking of search results, known as the ten blue links,! will be replaced. Ranking,
however, remains a common means of search result presentation, which is likely
to persist in some form either as an internal component of a RAG system or in
applications where the purpose of a search is to identify items as part of seeking
information, e.g., mapping applications returning locations in rank order, music
applications matching songs, job search engines sorting employment opportunities
in order, etc. In this section, we detail the impact of LLMs on the common offline
document ranking evaluation methodology, a test collection [65]. We first provide
a brief primer to test collections before detailing the impact of LLMs on a number
of test collection components and approaches to testing. We then outline the impact
of LLMs on the capturing of relevance judgments, on the creation of topics and
queries for test collections, and on search sessions, before speculating on the role
of shared tasks initiatives in the future. The impact of LLMs on wider user testing
is described, before the section concludes with a discussion of the continued role of
human labeling in IR evaluation.

6.2.1 A Brief Test Collection Primer

A typical test collection includes a set of search topics (expressed through queries),
a corpus of documents, and relevance judgments that record the documents that are
relevant to the topics, often referred to as grels. To test an IR system, queries from
the collection are run through the system, and its ability to locate relevant documents
is measured. Evaluation using a test collection is fully automated, allowing systems
to be optimized at a low cost to the experimenter. However, there is a substantial
cost involved in creating test collections.

According to Voorhees, offline evaluation practices have mainly operated with
the following simplifying assumptions:

* “Relevance can be approximated by topical similarity, which implies all
relevant documents are equally desirable; relevance of one document is inde-
pendent of the relevance of any other document; and the user information need
is static.

* a single set of judgments for a topic is representative of the user population.

* (essentially) all relevant documents for a topic are known”, Voorhees [80, p.
47]. To this list, we might add that

* there is one representation of an information need.

! This phrase seems to emerge around 2007 from the makers of Ask Jeeves—one of the earliest
question-answering systems—seeking to contrast their system’s written output with what they saw
as a traditional search response [38].
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Under these assumptions, costs associated with constructing test collections are
manageable but still substantial enough to make it nearly impossible for individual
academics or research groups to generate such large comprehensive collections by
themselves. Consequently, several initiatives were started to share the costs and
labor involved in their creation, such as TREC [79], Cross Language Evaluation
Forum (CLEF) [59], and National Institute of Informatics Testbeds and Community
for Information Access Research (NTCIR) [54]. The challenge of constructing test
collections meant that researchers predominantly relied on those produced by these
initiatives. The subsequent sections discuss the challenges in more detail and present
opportunities for using LLMs to address these challenges.

Early test collections consisted of a few hundred to a few thousand documents.”
Creating relevance judgments for all documents in such a collection was practically
possible. For instance, when creating Cranfield II, Cleverdon employed a team of
individuals to manually scan the entire collection to identify all relevant documents
for each topic. When building the Library and Information Abstracts (LISA) test
collection during the 1980s, one person was employed to search the physical issues
of a journal to find relevant documents, which was supplemented with some online
search.® The scale of test collections was limited by the cost of creating relevance
judgments. There was a need among IR researchers to find a way to produce
larger test collections while at the same time locate as many relevant documents
as possible [65, p. 271].

Multiple strategies were explored, though not practically implemented, for
creating larger collections, most notably Spirck Jones and Van Rijsbergen [69]
introduced document pooling. This technique, which involves sampling documents
for relevance assessment through multiple participating searches (now runs), sub-
sequently became the conventional method for building IR test collections and is
the standard within TREC. Although this approach has its limitations, primarily due
to missing some relevant documents [88], which in turn raises concerns about the
reusability of collections [17, 81], it has facilitated the expansion of test collections,
giving us access to test collections with massive corpora, such as the ClueWeb
series, with millions of documents.

6.2.2 Relevance Judgments

Recent studies have demonstrated that LLMs can be used to produce relevance
judgments (or labels, distinguishing them from those generated by humans). In May

2 Readers can refer to the Web site hosted by the University of Glasgow, which archives some of
the early test collections, to gain a sense of their modest scale: https://ir.dcs.gla.ac.uk/resources/
test_collections/.

3 See the readme file for further information: https://ir.dcs.gla.ac.uk/resources/test_collections/
lisa/.
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2023, researchers at Microsoft Bing announced their use of GPT-4 in generating
relevance labels, which was later shared in a paper [72]. The LLM generated labels
were found to be as accurate as labels created by crowdsourced workers and were
being used to train the production system of Bing. Around the same time, Faggioli
et al. [35] reported promising results from using LLMs for generating relevance
labels. Although these findings have not been extensively tested and may have
limitations, they prompt a reevaluation of the need for document pooling, originally
adopted to manage costs associated with human labor. That is, it might be now
feasible to create complete relevance judgments on a large scale or, at least, create
deeper pools as the cost of generating relevance labels has substantially decreased.

The use of LLMs to reduce the cost of relevance judgments echoes a significant
historical shift in the value of a material we now take for granted: aluminum.
In middle school, American children learn that on the top of the Washington
Monument is a relatively small pyramid of solid aluminum. At the time it was placed
there, in 1884, aluminum was as rare, and as precious, as silver. The pyramid was
the largest piece of solid aluminum in the world. Two years later, Paul Héroult
and Charles Hall independently invented a process that would eventually make
aluminum cheap enough that when buying an aluminum can of drink, most of the
price pays for the contents, not the container. IR is having its Hall-Héroult moment:
human judgment was once a rare and precious resource. Now, it appears we can
simply ask the large language models (LLM) anything we might ask a human
searcher or assessor, but at a much lower cost. This opens many new opportunities
for evaluation.

One opportunity is to tailor the definition of relevance to be more specific,
including additional dimensions of information utility to different users. Voorhees
et al. [81] highlight the score saturation problem in the TREC Deep Learning
Track (2021), where many systems are already capable of retrieving ten relevant
documents for a wide range of queries from large corpora, calling for “different
metrics or a more focused definition of relevance” [81]. Relevance can vary across
users and contexts, and it is often assessed based on topicality without considering
other dimensions, such as understandability. This underscores the need to consider
other dimensions of relevance to create test collections that can distinguish among
systems. For example, a document might be topically relevant to a query but
could exhibit different levels of utility to users based on their domain expertise or
operating contexts. It now seems feasible to explore the utility of LLMs to make
relevance labels more specific, enabling a detailed and most importantly realistic
system evaluation.

Another potential benefit of using LLMs to produce relevance labels is their
consistency in the generated labels for documents. Unlike humans, LLMs do not get
tired as they generate more labels, nor are they influenced by judgments previously
made. There is evidence that there is a great level of inconsistency in human rele-
vance assessment [66, 67], whether due to forgetting earlier decisions, re-calibrating
assessments based on the documents already seen, or simply making errors, leading
to varying assessments even for almost identical documents [13, 67]. Using a
recognized model of LLM with controlled parameters to ensure a deterministic
behavior would enable consistency and reproducibility of relevance labels.
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While it might be conceivable that the need for collecting these relevance
labels and distributing them in test collections could diminish, given that system
effectiveness can now be evaluated dynamically and at substantially lower than
those incurred using human labor (see [72, Figure 5] for cost-accuracy relative
comparison), this approach would undermine the core principle of having test
collections serving as static, shared, and reusable resources for system evaluation.
See further discussion in Sect. 6.2.5.

6.2.3 Test Collection Topics and Queries

In test collections, the convention is that each information need (search topic) is
represented using a single query. The queries are generated either by (1) consulting
a group of people to generate queries given information need statements or by (2)
obtaining a sample from a query log. Going beyond one query to represent a broader
spectrum of users employing different query variants was expensive and thought to
be unnecessary. However, research suggests that when seeking a common informa-
tion need, users tend to use a large number of query formulations (often referred to
as query variants). In studies of user populations, over 50 variants were found per
information need [11, 47]. Previous research has demonstrated that factors—such
as the used device [26, 42], domain expertise [52, 83], age [14, 75], and language
proficiency [25]—influence query formulation. These consequentially impact the
quality of search results and overall user satisfaction. Culpepper et al. [32] showed
that the impact of query variants on system effectiveness is substantially greater than
that due to topic or ranking models. Yet the effect of query variation on IR system
effectiveness is often overlooked. Evaluations typically rely on test collections with
single queries, leaving the performance of systems for a broader range of users
largely unexamined. Given recent studies demonstrating an important role of query
variants in system evaluation, how such variants might be generated in a cost-
effective manner is a challenge that LLMs may be able to help with.

Unlike with relevance judgments where LLMs have been shown to be a valid
substitute for human labels, the work on query variants is more in its infancy.
Using artificially created and manually verified query variants, Penha et al. [56]
showed a significant drop in the effectiveness of both neural and transformer-based
retrieval models. Likewise, Alaofi et al. [3] undertook an empirical investigation
into the effects of query variants on a commercial search engine and some inverted
indexes. Their research revealed inconsistency in search results across different
query variants and shed light on the impact of variants on document retrievability.
Similarly, inconsistencies in search results were also demonstrated in the context of
searches conducted by children [58].

Crowdsourcing and click graphs have been used to gather query variants.
However, both methods have their limitations: crowdsourcing is expensive to scale,
and click graphs are noisy and lack information about users. User simulation has
been a prevalent instrument in IR, but its application for generating query variants
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has not been as extensively explored. For example, Penha et al. [56] proposed
a taxonomy for query variants and use multiple techniques to artificially create
query variants. More recently, research has shown that LLMs can, to a limited
extent, reproduce human query variants, yielding a similar pool of documents of that
obtained by using human generated query variants [4]. Engelmann et al. [34] also
used LLMs to simulate query variants in an interactive manner, taking into account
user sessions and the results seen as feedback for the query generation process.
This approach yields more effective search sessions, but does not necessarily reflect
how humans engage with search sessions. Another line of research explores using
LLMs to generate queries but not for simulations but as a way of generating more
query variants to train better rankers (e.g., [15]), generate query expansions (e.g.,
[48]), and improve document retrievability (e.g., [57]). Giving the ability of LLMs
to align its generation to certain properties, an important question arises regarding
how effectively they can align with how humans engage with information seeking
tasks, reflecting the diverse user properties identified in the literature as influencing
query formulation.

6.2.4 Search Sessions

There has long been a recognition that there is more to evaluation than the initial
query that establishes a search. Many attempts [8] to extend offline evaluation to
include sessions have been tried [20], but as with most efforts to “shift the dial” of
offline evaluation, those efforts have not been successful in starting a new standard.

Many of the reasons underpinning the lack of movement in the design of offline
evaluation has been a question of cost. The current approach to evaluation while
expensive to set up is cheap to use when built. Most approaches to extending the
evaluation of search have been more expensive to create or require higher ongoing
costs to use. The arrival of generative methods and the ability of generative systems
to apparently simulate human behavior to a convincing degree suggests a shifting
of the dial. This has already been demonstrated with relevance assessments, but
it may also be possible to have viable simulations of interactive sessions with
a search engine including effective simulations of document selection and query
reformulation, as well as simulations that determine when a search would stop
seeking more documents.

6.2.5 Speculation: The End of Shared Task Initiatives?

The arrival of generative systems has the potential to completely redefine how
evaluation is conducted in the field of information access. Much of this chapter has
focused on existing innovations and future speculations on what might be possible
using generative methods. It is worth asking if generative systems may also alter
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the way researchers behave. For decades, the field of IR has been characterized
by the creation and sharing of large resources that can be used for evaluation.
Key among these resources is the test collection. Initially something that was just
created by one group and shared with others, this evolved into large-scale shared
evaluation tasks starting with TREC in the early 1990s. The tasks were formed
in order to share the work required to build large evaluation resources. However,
if it is possible to construct evaluation resources individually through the use of
generative methods, one might question if these large-scale collaborative evaluation
exercises will continue. The costs to researchers of building bespoke datasets
with human generated labels has come down substantially, thanks to the rise of
crowdsourcing services. Consequently, participation rates at exercises around the
world have dropped substantially in recent years. The rise of generative methods
simulating the behavior of users and data labelling may be the final nail in the coffin
of these long-standing mainstays of our research ecosystem.

6.2.6 User Testing and Online Evaluation

Traditional IR systems returned just a ranked list of documents (see, e.g., Harman’s
review of pre-Web systems [41]). Over time, the sophistication of ranked output
grew. The way ranked documents were displayed depended on the text of the query,
thanks to snippets [73], a summary composed of query-focused content extracted
from the body of the document [27]. Commercial search engines further augmented
the output with direct answers [84], quick links [21, 39], entity cards [16, 53],
query suggestions [19], and other components [55]. The sophistication of the
output prompted work on so-called whole-page relevance [10], but in the academic
community, this approach was not widely adopted, most likely due to the costs of
using it.

In the speculations detailed so far in this chapter, the main focus has been on the
way that offline evaluation is being redefined through the use of generative methods
to label documents as relevant and to generate queries arising from an information
need. However, there may be the potential for such replacements to expand into
other aspects of evaluation. Himildinen et al. [40] detailed how LLMs could be
used to simulate many qualitative human responses to the use of and the reactions to
systems employed in usability experiments finding that LLMs can “yield believable
accounts of HCI experiences.” It may be possible to revisit whole-page relevance
evaluation using generative methods.

6.2.7 Grounding Simulations: Gold Is Still Precious

Evaluation outcomes of systems using test collections reflect “anticipated” real-
world performance. Although these test collections appear concrete, featuring
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human queries and relevance judgments, they are fundamentally abstract and
considerably simplified simulations of real-world search scenarios. Use of so-called
offline evaluation imagines a simplified process of a searcher browsing the sorted
list, top to bottom, identifying relevant pages, and at some point stopping [5, 50, 51,
68, 82]. The extent to which evaluation outcomes reflect actual user satisfaction is
crucial; yet it has not received much attention within the community. It was not until
2006 that Turpin and Scholer [76] demonstrated that test collections may poorly
reflect reality. This was further investigated by Al-Maskari and Sanderson [2].

The use of LLMs to simulate users in creating test collections raises questions
about the validity of this simulation and necessitates further exploration of how
well LLMs are aligned with real users. Before going further in simulation and
drawing conclusions about how well systems perform, we need to first substantiate
the validity of our user simulations. This requires datasets, tools, metrics, and
procedures.

User relevance judgments and queries are abundantly available through numer-
ous iterations of shared tasks. Consequently, the approximation of queries and
relevance labels to human-generated ones can be examined. However, if person-
alized relevance labels are to be simulated, for example, taking into account other
dimensions of information utility, then we have almost no way to validate their
performance since such ground truth data is not widely available. For instance, in
a context where we would like to evaluate how well a system performs in response
to an expert user as opposed to a non-expert, such data is not readily available.
Similarly, when simulating query variants issued by multiple users, very few sources
of data are available for validation, and demographic data is often missing. Real
human data that fits the definition of gold [9], where both the query and relevance
assessments are produced by a diverse set of humans operating in different contexts
and demographic data is collected, are highly needed in order to facilitate the
research of simulation validation.

In terms of measuring the accuracy of simulations, that is how closely the LLM
aligns with human searchers, one can consider if the simulated data exhibits similar
properties to human-generated data or leads to comparable conclusions [12], as
exact matches may not be feasible in tasks involving language, where queries can
be formulated in various ways. Statistical properties of queries, such as length
and complexity, can serve as indicators. Other metrics may assess the impact
of simulated data compared to human-generated data. For instance, do generated
queries demonstrate similar effectiveness to human queries and/or produce similar
pools of documents? Do relevance labels result in the same system rankings as if
those produced by humans are used?

6.2.8 Slow Search for Evaluation

In 2023, researchers proposed replacing human relevance assessments with LLM
assessments [35, 72]. A common objection to these proposals recognizes their
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circularity. Using automated methods to assess other automated methods is not
without its dangers, if, as is common in this chapter, one looks at historical
precedence for current events. One could look at the way in which automated
relevance assessments were attempted earlier in the history of IR. A classic example
is pseudo relevance feedback [31]. This is a technique that assumes a query from a
user will be sufficiently accurate that one can make the assumption that top ranked
documents returned by that initial query are themselves likely to be relevant. The
text of those documents can then be used in an internal reformulation of the query to
produce better results. While rarely seen in commercial systems, pseudo relevance
feedback is a well-known technique.

If LLM assessment is sufficient to replace a human assessment, then why not treat
the LLM as a ranker, ranking items according to their LLM assessed relevance? If
an LLM-based evaluation is generating the labels for evaluation, ranking by those
labels always produces an ideal result.

One way to avoid this circularity is to consider the difference in time and
resources needed by a production GenlR system vs. the time and resources required
for LLM-based evaluation. For evaluation purposes, we can take all the time we
need to find the best response and then use that response to evaluate the efficiency
vs. effectiveness trade-off between, for example, a production system that responds
in 100 ms and one that responds in 500 ms. From the standpoint of an efficiency
vs. effectiveness trade-off, for the purposes of evaluation, we can essentially ignore
efficiency.

The trade-off between retrieval efficiency and effectiveness has long been
a subject of academic research [6, 7, 18, 28, 87] and a key consideration for
commercial search engines, which aim for an average query latency in hundreds
of milliseconds [7, 49]. However, in the past, we have had relatively few methods
for tuning the trade-off between efficiency and effectiveness beyond a narrow
range. Efficiency vs. effectiveness trade-offs might be measured in terms of tiny
percentages of effectiveness improvements at the cost of milliseconds of query
latency, but we could never improve effectiveness enough to justify a latency of
seconds or longer

Teevan et al. [71] in advocating for “Slow Search” write, “With even just a little
extra time to invest, search engines can relax existing restrictions to improve search
result quality. For example, complex query processing can be done to identify key
concepts in the query, and multiple queries derived from the initial query can be
issued to broaden the set of candidate documents to cover different aspects of the
query.”

Unfortunately, it was never fully demonstrated that investing more time would
ever achieve these goals. We had no way to operationalize the proposal of Teevan
et al. [71]. If a search engine is fast, the searcher can quickly see if the results are
not relevant and immediately reformulate their query [62]. If a query is missing a
key concept, the searcher can add it. Low latency is an important feature of search
engines, since it facilitates rapid interaction. We can only justify higher latency if
rapid interaction is not required.
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We have now entered an era where deriving multiple queries and other complex
query processing might genuinely improve the results in more than a trivial way.
With more time, our GenIR system might prompt an LLM to make relevant judg-
ments, determine what aspects of a document make it relevant, and automatically
refine queries in light of these determinations. A GenlR system might compare one
item against another, until it identifies the best overall result. In some cases, it might
be worth the time of the searcher to wait for this result, but if not, it can still be used
to evaluate the faster result actually returned to the searcher.

In some sense, evaluation has always been slow search with a human-in-the-loop.
In a traditional TREC ad hoc task, we build a pool, and humans assess items in the
pool, creating an ideal response. Now we can use an LLM to replace these humans.
However, unless we determine that taking all the time we need always produces the
best possible response, we still need a way to evaluate the results of slow search. If
the quality of LLM assessment can reach the level of traditional human assessment,
do we consider this as our peak achievement? Or do we recognize that there is still
room for improvement by involving humans to perhaps monitor LLMs or revisit our
ideal definition of relevance?

6.3 Generative Information Retrieval from an Evaluation
Perspective

In the previous section, we considered the use of generative methods to aid evalua-
tion practices in current IR systems, in particular for generating document relevance
labels. In this section, we consider the evaluation of emerging IR systems that may
not adhere to conventional assumptions about ranking and result presentation.

6.3.1 Generative Information Retrieval Systems

Current and potential capabilities of GenIR systems were engendered by the
increasing capabilities of LLMs, especially their ability to conduct zero-shot natural
language tasks, including summarization, query understanding, and query expan-
sion. Most GenlR systems replace the query and ranked list with a conversation
and a written synthesis of information, similar to that shown in Fig.6.2. At the
time of writing, these systems include Perplexity* and newer versions of Bing.
The TREC 2024 RAG Track, which supersedes the Deep Learning Track, also
assumes this interface format.® The searcher poses a question in a potentially longer,

4 perplexity.ai.
5 bing.com.
6 trec-rag.github.io.
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Fig. 6.2 A GenlR user interface from March 2024 (from perplexity.ai)

more natural, and conversational form. The system responds with a single coherent
answer, which may be supported by links to sources. Gienapp et al. [37] view a
GenlR system as a “synthetical” search engine that searches for sources, “compiles
them, synthesizes missing information, presents it coherently, and grounds its claims
in the retrieved sources.” The system provides searchers with a single unified answer
“that covers a complex topic with in-depth analysis from varied perspectives”
(Fig. 6.3). Such interactions and outputs will require us to seek a new evaluation
model.

For evaluation purposes, we need not make any assumptions about the internal
architecture of a GenlIR system, which may simply be a single large neural model.
In this case, our evaluation must focus on the end-to-end interaction. A query or
question is entered by the searcher, and the system responds with an answer, which
may reflect a larger conversational context, including personalization. Under this
view, our core search metric becomes the following: How good is this overall
response? In traditional IR evaluation, the focus was often on the output of a
ranker. While whole-page relevance was a factor in evaluation, especially in industry
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Fig. 6.3 A GenlR system as a synthetical search engine
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Fig. 6.4 RAG Architecture overview

contexts [10], it was one of many factors. If we view a GenIR system as a black box,
whole-page relevance becomes a central factor.

While we can view a GenlR system as a black box for evaluation purposes,
a RAG architecture [36] often underlies a GenlIR system. In Fig. 6.4, we have
simplified the architecture of a RAG system to its key components. At the front
end, a searcher interacts with a generative component, which in turn interacts with
both an LLM and a retrieval component. The retrieval component is used to search
a corpus, which is assumed as a source of ground truth—although, like any IR
system, the corpus itself may contain spam and documents of varying quality.
Information provided by the RAG system to the searcher requires support from the
corpus. The generative component interacts with the LLM for purposes of query
understanding, query expansion, summarization, and similar tasks, while it interacts
with the retrieval component through keyword or other queries to find sources for its
response. The system may interact with both the LLM and the retrieval component
multiple times before responding to a user’s query, where the overall approach may
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be retrieve-then-generate, generate-then-retrieve [1], or a combination of multiple
generation and retrieval steps.

A competing definition of “Generative Information Retrieval” systems describes
a GenlR system as one that does not generate the answer to the searchers query;
instead, it replaces a traditional search engine by using a neural model to directly
generate the identifiers of documents that answer the query [23, 24, 60, 70, 85].
While these systems are “generative” in the sense that a neural model is directly
generating document identifiers, from an evaluation perspective, they are no differ-
ent from any other retrieval component that returns document identifiers, except in
one respect. Since the document identifiers are generated, it is conceivable for such
systems to “hallucinate” document identifiers that do not exist. Nonetheless, for the
purpose of our discussion, we view them as a type of retrieval component.

6.3.2 Evaluating Generative Information Retrieval Systems

As shown in Fig. 6.4, a RAG system may be evaluated at three points: (1) at the front
end, where we are evaluating the end-to-end performance of the system; (2) at the
top of the retrieval component, where we are evaluating the retrieval component
in the context of the overall GenIR system; and (3) at the point of interaction
with the LLM. In the context of the overall system, the retrieval component (#2)
is essentially a subordinate system returning a ranked list of items for the generative
component. While a human searcher may eventually be given links to items in the
corpus, these will be selected by the generative component. Evaluating interactions
with the LLM (#3) falls slightly outside our scope into the broader topic of NLP
evaluation, including the evaluation of summarization and information extraction.

Evaluation of an end-to-end GenlR system (#1) introduces challenges beyond
those of traditional IR evaluation. Gienapp et al. [37] argue that the key difference
between a traditional search engine and a GenlR system is that the GenlIR system
is essentially searching an infinite corpus of all possible responses that could be
synthesized by the system [33]. Traditional IR test collections, such as those created
by the TREC, try to be reusable, with a nearly complete set of relevance judgments.
With a finite corpus, this approach is conceptually possible; with an infinite corpus,
it is not.

One approach to evaluating the retrieval component (#2) would be to evaluate it
as a traditional search engine. Its role is to execute a query over a corpus of items
and return a ranked list of those items. To evaluate the retrieval component of a
RAG system, we may be able to adapt existing offline evaluation methods. Even
if the interface seen by the searcher is no longer “ten blue links,” internally, we
can imagine a similar interface between the generative component and the retrieval
component, although the browsing models assumed by offline evaluation metrics
no longer apply. These browsing models often assume that the searcher has limited
patience [51] or that the searcher will stop scanning the ranked list after a relevant
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item is found [22]. A generative component might be assumed to dig deeper into the
ranked list and seek information from more sources.

6.3.3 Evaluating Retrieval in RAG Systems

RAG systems include a retrieval component (Fig. 6.4), which supports retrieval over
a corpus that provides ground truth for our GenlIR system. For evaluation purposes,
we might treat the retrieval component as an old-fashioned search engine, even if it
itself includes generative components. A query goes into the retrieval component,
and a ranked list comes out. However, since this response is entirely internal to the
GenlR system, it need not only be a ranked list. It could be richer and more complex.
The output of the retrieval component must be tailored to the needs of the overall
system, and not to the needs of a human searcher.

If we view the retrieval component as an old-fashioned search engine, returning
a ranked list, we might employ traditional evaluation methods. If we think about the
GenlR system as internally browsing down the output of the retrieval component,
we could use NDCG@ 10 as our metric. However, the GenIR has more “patience”
than a human searcher, so the Normalized Discounted Cumulative Gain (NDCG)
discount function might not be the right one to use.

The purpose of the retrieval component is to return the items that the overall
GenlR system needs to craft its response. Traditional ranking stacks often use a
BM25-based first stage that returns a large collection of items, maybe 1000, for
re-ranking by a second-stage ranker [87]. The output of this second stage is then
filtered, re-ranked, and processed by more stages until a final stage produces a
ranked list that can be shown to the searcher. A typical metric for the first stage
is recall@1000. Perhaps recall might be a better metric for evaluating the retrieval
component, since the overall GenIR system essentially acts as the upper stages.

6.3.4 Hallucinations

Even when supported by a retrieval component, GenIR systems might generate
factually inaccurate or misleading responses. In traditional IR evaluation, we assume
that the corpus is curated and can be trusted. If we cannot trust it, then we filter it
for spam and other misinformation. While in traditional Web search some pages are
higher quality than others, the output of the search engine is a list of pages, which
the searcher can ultimately inspect for themselves. They are not depending on the
search engine to summarize the information for them.
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Since GenlR systems can hallucinate [74], it is not sufficient to filter the corpus
for spam and misinformation. We must also evaluate the accuracy of the end-to-end
response. The final generated response can be false or contain falsehoods, even if
the retrieved material is true. Fact-checking must become a standard component of
GenlR evaluation.

The situation has already happened’ “in the wild.” A chatbot on the Air Canada
Web site incorrectly advised a customer, Jake Moffatt, that he could receive a
reduced bereavement rate by submitting a claim within 90 days of ticket issue. The
response from the chatbot included a link to a static page on the company’s Web site
that provided the correct information, indicating that the claim had to be submitted
in advance of ticket issue. Air Canada refused the Moffatt’s claim. Moffatt took the
matter to the Civil Resolution Tribunal of the province of British Columbia who
allowed the claim, writing:

Air Canada argues it cannot be held liable for information provided by one of its agents,
servants, or representatives—including a chatbot. It does not explain why it believes that
is the case. In effect, Air Canada suggests the chatbot is a separate legal entity that is
responsible for its own actions. This is a remarkable submission. While a chatbot has an
interactive component, it is still just a part of Air Canada’s website. It should be obvious to
Air Canada that it is responsible for all the information on its website. It makes no difference
whether the information comes from a static page or a chatbot.

I find Air Canada did not take reasonable care to ensure its chatbot was accurate. While
Air Canada argues Mr. Moffatt could find the correct information on another part of its
website, it does not explain why the webpage titled “Bereavement travel” was inherently
more trustworthy than its chatbot. It also does not explain why customers should have to
double-check information found in one part of its website on another part of its website.

‘While technical details of the chatbot are not available, we can view it as a RAG
system since it returned both a generated answer and a link intended to support the
answer. While this is a minor matter from a legal standpoint, it demonstrates that
a RAG system can generate materially false information, even when supported by
retrieved information that is correct. Extracted Web page summaries have long been
a feature of Web search results [27]. While extracted summaries may not always
provide the information the searcher requires, they generally provide an accurate
quote from the page or its metadata.

The accuracy of a traditional search engine depends on the accuracy of the
information in its corpus. The search engine may not be able to find relevant
information, but when it does, it does not alter or interfere with it. If the corpus
contains misinformation, we attempt to filter it. For evaluation purposes, we measure
the quality of the filter. Since a GenlIR system can hallucinate misinformation,
we must now evaluate the accuracy of its output, along with relevance and other
traditional considerations.

7 https://www.canlii.org/en/be/beert/doc/2024/2024bcert149/2024bccrt149.html.,
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6.3.5 Defining New Retrieval Principles

Such is the ubiquity of documents in retrieval system design and evaluation, many
of the fields key principles are grounded in documents. We briefly detail three of
the best-known retrieval: Robertson’s Probability Ranking Principle (PRP) [63],
Jardine and van Rijsbergen [44]’s Cluster Hypothesis [44], and Craswell et al. [30]’s
Cascade Model [30].

Robertson’s PRP is widely viewed as a fundamental goal of ranking in IR. It is
most commonly expressed as: “If an IR system’s response to each query is a ranking
of the documents in the collection in order of decreasing probability of relevance,
then the overall effectiveness of the system to its users will be maximized.” The
notion of an ideal ranking, which is built into traditional evaluation metrics such as
NDCG [45], depends on the PRP that the best result is to order items according to
their probability of relevance.

The cluster hypothesis was defined twice, first as ‘It is intuitively plausible
that the associations between documents convey information about the relevance
of documents to requests..” Later, van Rijsbergen [77, Chapter 3] simplified the
hypothesis as “closely associated documents tend to be relevant to the same
requests.” The hypothesis inspired many later approaches to the clustering of
documents [43, 78] as well as result diversification [46].

Seeking a simplified model of user behavior, Craswell et al. [30] examined
large user interaction logs in an attempt to capture a broad form of behavior of
user interaction. They produced the cascade model: “where users view results from
top to bottom and leave as soon as they see a worthwhile document.” This model
has underpinned a great many modern evaluation measures and also inspired many
subsequent studies developing extensions to this model.

All three ideas assume the fundamental unit in retrieval is the document. In the
case of GenlR, the entirety of the system’s end-to-end response should be relevant,
and nothing should be redundant; the boundaries between documents hold far less
importance. Everything in the response should be there for a reason, and in many
cases, the response should include more than just the bare answer. The response
might link to background articles that support the response. It might provide
opposing perspectives. It might suggest cheaper or higher-quality alternatives to a
product. It might synthesize similar responses from multiple sources into a single
sentence. It might ask for clarification or disambiguation.

We might ask what replaces these principles in a GenIR system. One idea
is provided by the work of Rajput et al. [61]. They propose nuggets as a basis
for evaluation, where we might think of nuggets as an atomic unit of relevance,
e.g., some fact, relationship, or concept that a perfectly relevant document would
contain [29, 64]. Rajput et al. [61] propose to build a reusable test collection in a
two-phase process. In the first phase, human assessors would identify and extract
nuggets from relevant documents. In the second phase, these nuggets would be
automatically matched against unjudged documents to measure relevance, providing
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areusable test collection that does not depend on a fixed corpus with relevance labels
for individual items.

While they provide experimental support demonstrating both the feasibility and
benefits of this approach, it was not widely adopted for either academic or industry
assessment. Possible reasons include the need for reliable and trained assessors to
identify nuggets, as well as the need to automatically match the nuggets against
documents. In 2012, they could only suggest a surface-level, lexical approach to
matching, and of course, humans are expensive. Crowdsourcing might reduce the
cost but might increase noise and decrease reliability.

In 2024, an LLM might be expected to reliably and cheaply extract nuggets and
match them against documents. All it takes is a few calls to an API, costing fractions
of a cent per call. It is now almost trivial to realize the vision of Rajput et al. [61], and
this proposal is just one of many such proposals in the literature. All the proposals
for IR evaluation in terms of diversity, novelty, fairness, completeness, conciseness,
effort, or whatever are now both cheap and straightforward to implement.

We can already see nugget-based evaluation emerging as a basis for GenlIR
evaluation. For example, the new TREC 2024 RAG track® takes a nugget-based
approach. To formulate a general principle, we turn to Zhai et al. [86]. They propose
subtopic evaluation, which is closely related to nugget-based evaluation. Evaluation
with subtopics is “based on dependent relevance, instead of independent relevance,
as has been assumed in most traditional retrieval methods. The subtopic retrieval
problem has to do with finding documents that cover as many different subtopics
as possible.” To extend this idea to GenlR, we might articulate a principle that the
system’s response should cover as many nuggets or subtopics as possible.

6.4 Conclusions

Evaluation lies at the core of so much of IR research. If there is any aspect that
separates this field from others, it is focus on high-quality evaluation of systems.
In this chapter, we examined the impact of LLMs on the evaluation of IR both
from the perspective of exploiting the models to speed up traditional evaluation
methodologies and to consider the more challenging prospect of evaluating a fully
generated response following a conversational interaction. There are some clear
early wins such as the revelation that LLMs can be used to generate relevance labels;
however, as with any technology when it is first introduced, the boundaries of what
the technology can achieve—and more importantly what it cannot—are still being
drawn. We have attempted to describe what currently sits within those boundaries,
what is yet to be known, and what might change in our field.

8 trec-rag.github.io.
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Chapter 7 )
Sociotechnical Implications of Generative
Artificial Intelligence for Information

Access

Bhaskar Mitra (), Henriette Cramer (%), and Olya Gurevich

Abstract Robust access to trustworthy information is a critical need for society
with implications for knowledge production, public health education, and promoting
informed citizenry in democratic societies. Generative Al technologies may enable
new ways to access information and improve effectiveness of existing information
retrieval systems, but we are only starting to understand and grapple with their
long-term social implications. In this chapter, we present an overview of some of
the systemic consequences and risks of employing generative Al in the context of
information access. We also provide recommendations for evaluation and mitigation
and discuss challenges for future research.

7.1 Introduction

Robust access to trustworthy information is a critical need for society including
implications for knowledge production, public health education, and promoting
informed citizenry in democratic societies. Generative Al technologies such as
Large Language Models (LLMs) may enable new ways to access information and
improve effectiveness of existing Information Retrieval (IR) systems. More efficient
basic task execution with the help of LLMs can also enable people to focus on
the more challenging aspects of information retrieval-related tasks and research.
However, the long-term social implications of deploying these technologies in the
context of information access are not yet well understood. Existing research has
focused on how these models may generate biased and harmful content [1, 16, 64,
74, 118, 153, 235] as well as the environmental costs [16, 25, 56, 161, 162, 241]
of developing and deploying these models at scale. In the context of information

B. Mitra (I<))
Microsoft Research, Montréal, QC, Canada
e-mail: bmitra@microsoft.com

H. Cramer - O. Gurevich
PaperMoon Al, San Francisco, CA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 161
R. W. White, C. Shah (eds.), Information Access in the Era of Generative Al,
The Information Retrieval Series 51, https://doi.org/10.1007/978-3-031-73147-1_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-73147-1_7&domain=pdf
http://orcid.org/0000-0002-5270-5550
http://orcid.org/0000-0002-0786-0324
mailto:bmitra@microsoft.com
https://doi.org/10.1007/978-3-031-73147-1_7

162 B. Mitra et al.

access, Shah and Bender [184] have argued that certain framings of LLMs as
“search engines” lack the necessary theoretical underpinnings and may constitute
as a category error.

In this current work, we present a broader perspective on the sociotechnical
implications of generative Al for information access. Our perspective is informed
by existing literature and aims to provide a summary of known challenges viewed
through a systemic lens that we hope will serve as a useful resource for future critical
research in this area. We present a summary of these implications next, followed by
recommendations for evaluation and mitigation later in this chapter.

7.2 Implications of Generative Al for Information Access

We present a reflection on the potential sociotechnical implications of generative
Al, with an emphasis on LLMs, for information access. Generative Al is still an
emerging technology, and our understanding of its sociotechnical impact today, and
how it may evolve over time, is fairly limited. Our treatment of this topic is therefore
necessarily both incomplete and speculative. We are informed by several recent
works [16, 197, 233, 234] that attempt to map the landscape of risks and harms
from LLMs. What distinguishes our treatment of this topic relative to this previous
literature is the specific focus on information access. There has also been work on
the considerations for specific applications of LLMs in IR, such as for generating
direct responses to users’ expressed information needs [184], which is relevant
to our current discussion. However, a thorough exploration of every potential
application of LLMs in IR systems is beyond the scope of our current work. Instead,
we explore the implications for information access through a broader lens that
encompasses considerations for content creation, content retrieval, sociopolitical
power dynamics, geopolitical inequities, crowd work, ecology, and future of IR
research. We reference relevant previous taxonomies and studies throughout this
section to both support our claims and to establish meaningful connections in an
attempt to present a more complete and consistent view on this topic to the reader.
We adopt the Consequences-Mechanisms-Risks (CMR) framework proposed
by Gausen et al. [70] to structure our presentation. Gausen et al. introduce the
CMR framework to support designers and developers of Al (and in general any
computational) systems to identify and understand: (i) The systemic consequences
of developing and deploying the technology under study in the real world (ii) The
mechanisms introduced by the said technology responsible for these consequences
(iii) The corresponding risks to relevant stakeholders The framework intentionally
explicates the higher-level consequences to motivate viewing the challenges through
a more systemic lens. The mechanisms, in turn, focus on more low-level system
behaviors and aspects of the technology development process that contribute to the
consequences and risks and therefore represent sites for more actionable mitigation.
These consequences and mechanisms are mapped to relevant potential risks.
Through literature survey, in this work, we identify the consequences, mechanisms,
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Table 7.1 Overview of potential negative consequences for information access from generative
Al, the related mechanisms introduced by these Al technologies, and corresponding risks

Consequences Mechanisms Risks

Information Content pollution (Sect. 7.2.1.1) Risks to society:
ecosystem The “Game of telephone” effect democracy, health and
disruption (Sect. 7.2.1.1) well-being, and global

(Sect.7.2.1.1) inequity (Sect. 7.2.2.1)

Search engine manipulation (Sect. 7.2.1.1)
Degrading retrieval quality (Sect.7.2.1.1)
Direct model access (Sect. 7.2.1.1)

The paradox of reuse (Sect. 7.2.1.1)

Concentration of Compute and data moat (Sect. 7.2.1.2)
power Al persuasion (Sect.7.2.1.2)
(Sect.7.2.1.2) Al alignment (Sect. 7.2.1.2)
Marginalization Appropriation of data labor (Sect. 7.2.1.3)

(Sect.7.2.1.3)
Bias amplification (Sect. 7.2.1.3)
Al exploitation and doxing (Sect. 7.2.1.3)

Innovation decay Industry capture (Sect.7.2.1.4) Risks to IR research

(Sect. 7.2.1.4) Pollution of research artefacts (Sect.7.2.2.2)
(Sect.7.2.1.4)

Ecological impact Resource demand and waste (Sect.7.2.1.5) | Risks to environment

(Sect.7.2.1.5) (Sect.7.2.2.3)

Persuasive advertising (Sect. 7.2.1.5)

and risks of generative Al in the context of information access and organize them
according to the CMR framework as shown in Table 7.1. While we acknowledge that
this list of consequences-mechanisms-risks is incomplete, we hope that it provides a
summary of the sociotechnical concerns already identified in existing literature and
provokes new questions for critical future research.

7.2.1 Consequences and Mechanisms

In the context of information access, we identify five potential categories of negative
consequences of generative Al and corresponding mechanisms, which we discuss
next.

7.2.1.1 Consequence: Information Ecosystem Disruption
To reflect on the implications of generative Al on information access, we must

consider the information ecosystem as a whole, and not constrain our discussion
only to the application of these emerging technologies directly in IR systems. This
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ecosystem includes different actors and stakeholders such as information seekers,
content producers, IR systems developers, advertisers, and other sociopolitical
actors. While the information ecosystem is constantly evolving, generative Al holds
the potential to significantly disrupt how each of these actors operate on their own
and how they relate to other actors and stakeholders. This potential for disruption
spans across how content is produced, consumed, monetized, and used toward
specific ends. By no means do we want to imply that these plausible changes
are inherently bad, but the scale of potential disruptions across the ecosystem
should motivate careful and thoughtful considerations before these technologies are
deployed at scale. We discuss next some the underlying mechanisms introduced by
generative Al that may contribute to these disruptions. We encourage the reader
to view these mechanisms not just in isolation but to also consider how they may
interact with each other and how that may impact the ecosystem over time.

Mechanism: Content Pollution Generative Al enables low-cost generation of
derivative low-quality content at an unprecedented scale. As a consequence, Syn-
thetic Al-generated content is rapidly and very widely appearing on the Web [98].
On Amazon,' Al-generated content includes scammy derivatives of existing publi-
cations [115, 129, 155] and fake travel guides [119]. On YouTube,? Al-generated
video creators have targeted children [4, 97, 116]. We are also witnessing a
proliferation of news Web sites almost entirely generated by AI [179], which
are being surfaced in search results [46] and funded by online ads [27]. Even
reputable publishers have reportedly published Al-generated articles under fake
Al-generated author profiles [57]. Beyond news, other synthetic content such as Al-
generated images is starting to pollute search results [5, 58]. According to another
recent study [212], a “shocking” amount of content on the Web today is machine-
translated text. The promise of machine translation is that it could make more
content accessible to wider audiences. However, it also amplifies the influence
of (sometimes questionable-quality) language technology choices. For example,
Thompson et al. [212] found that more low-quality content—rather than high-
quality content—was machine translated into lower-resource languages, likely with
the goal of generating ad revenue. Concerns have also been raised about LLMs
potentially serving as “Misinformation Superspreaders” [26, 157] as they make
it trivially easy to inundate the Web with “firchoses of falsehoods.”> Hoel [97]
points out that Al pollution of our information ecosystems is a “tragedy of the
commons” [92].

Pollution of our information ecosystem at such scale has critical implications for
people and society. When authoring a document requires significant time and effort,
then quality, style, and comprehensiveness are factors that readers may consider
in deciding whether and how much to trust its content. However, when the cost

Uhttps://www.amazon.com/
2 https://www.youtube.com/
3 https://en.wikipedia.org/wiki/Firehose_of_falsehood
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of writing an extensive article approaches zero, it becomes significantly harder for
the reader to make that decision. They may not be able to distinguish between an
article created based on extensive research, fact-checking, and thoughtful writing
practices and one generated instantly based on a short user prompt. Furthermore,
the increasing adoption of these same Al authoring tools by reputable publishers
and content producers may homogenize the language and style of content on the
Web, making it even more difficult for readers to distinguish them from low-quality
Al-generated content whose sole intent is to attract ad revenue or to mislead. Such
Web pollution is also a concern for future AI models that require large Web-scale
datasets to train on. Including Al-generated content in the training data for new Al
models may have significant negative impact on model performance, what has been
referred to as “Model collapse” [137, 189], “Model Autophagy Disorder” [6], and
“Habsburg AI.”*

Mechanism: The ‘“Game of Telephone” Effect LLMs have recently been
employed in conversational search interfaces. In systems such as Bing Copilot, the
LLM has access to relevant Web search results from which it can draw information
to produce appropriate responses for the information needs expressed by a user. In
this scenario, the LLM performs a complex summarization task extracting relevant
information from the retrieved documents to answer the search query. In doing
so, the LLM now inserts itself between the user and the retrieved Web results.
This shifts the responsibility of inspecting the information in the documents and
assessing their relevance, trustworthiness, and surrounding context from the user to
the LLM. Further, factual errors and inconsistencies may arise between what the
LLM produces and what is in the retrieved documents. Seeing the model through
an anthropomorphic lens, these errors are sometimes referred to as “hallucinations.”
A more technical view may see this as a noisy translation akin to the children’s
game of telephone.’ Such errors, often subtle and hard to spot, may contribute to
misinformation and reduce robustness of the information access system. While the
LLM-generated responses may cite relevant documents, it is unlikely that users
diligently click the provided links and verify the information in the response is
indeed supported by said sources. Even if the LLM reproduces exact pieces of
text from the source documents without error, taking these out of the context of
the document may lead to unexpected negative consequences. Such examples have
previously been reported [215] in context of extracted answers that search engines
display on the Search Engine Result Pages (SERPs) as response to the user query.
These issues may become more prevalent if conversational search interfaces become
a popular way to access online information.

In a more radical proposal, Metzler et al. [141] have suggested that LLMs
could directly replace retrieval systems and respond directly to the user based on
information in their training data. LLMs are trained to produce statistically plausible

4 https://twitter.com/jathansadowski/status/1625245803211272194
3 https://en.wikipedia.org/wiki/Game_of_telephone
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text sequences, and any semblance to an information retrieval system is likely an
important mis-categorization of these models that we should be wary of [184]. The
game of telephone effect is likely to be more intense when LLMs are expected to
produce information from their training data and not just the in-context information
in its input.

The interjection of the LLM between the user and the search results may have
other long-term effects. These interfaces may disincentivize users from the practice
of verifying information sources and make them less skilled over time at discerning
online misinformation. If users get accustomed to information being presented
neatly summarized and disconnected from original sources, the critical cognitive
skills necessary to distinguish between trustworthy and untrustworthy information
may atrophy.

Mechanism: Search Engine Manipulation New applications of LLMs to the IR
stack have exposed new attack vectors. Prompt injection attacks [83, 131, 132] that
try to blur the line between instructions and data have garnered specific interest. In
these types of attacks, Web site owners may inject what looks like instructions to the
LLM. When such documents are retrieved and included in the input of the LLM as
augmentation, the LLM may mistake the injected prompt in the document content
and be vulnerable to manipulation.

Recently, LLMs have also found application in relevance labeling for
search [211]. It is not well understood yet whether this may make the search
engine vulnerable to improper ranking manipulation by Web site owners and search
engine optimization experts. For example, one may employ the same, or similar,
LLMs to reproduce the labeling scheme externally and then adapt their Web site
content and design to achieve undue high predicted relevance against queries to
rank higher on SERPs.

Other attack vectors may include using LLMs to create effective content farms at
low cost to manipulate the ranking of Web results or even use LLMs to artificially
simulate users interacting with the search system to fake clicks and other user
behavior signals, such as reformulations, which search engines depend on.

Mechanism: Degrading Retrieval Quality LLM usage can negatively impact
search result quality in a number of (indirect) ways. LLMs can contribute to new
attack vectors, but more worryingly, in some cases, the negative effect may be a
result of the LLM behaving exactly as it is supposed to. For example, one potential
consequence of using conversational search interfaces, is that the quality of feedback
from user behavior signals on SERPs may significantly degrade. Historically,
users of commercial Web search engines have given search systems noisy implicit
feedback through clicks and other actions on SERPs. These actions are part of the
key secret sauce of any modern search systems.

However, conversational interfaces may discourage direct user clicks on Web
results and at best provide much weaker satisfaction signal that may be gleaned from
the users’ next utterance in the conversation. This over time may negatively impact
the underlying retrieval quality. This makes it important to invest in methods that can
infer user satisfaction with high certainty from the natural-language conversations.
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However, methods for such signal interpretation are not yet at the level necessary to
mitigate these impacts.

In conversational search interfaces and other applications, such as Microsoft
Copilot for M365 [140, 231], the LLM may conduct the search on the user’s behalf.
In this process, the LLM generates search queries. If these queries differ from those
that are likely to be submitted by users, then the underlying search system needs
to optimize itself for both real user queries and LLM-generated queries. This may
have consequences that are not yet well understood. Optimizing the search system
directly to improve the LLMs natural language responses may also have unforeseen
outcomes, especially in light of the fact that what makes for a good result set for
retrieval-augmentation is not yet fully understood [51].

Mechanism: Direct Model Access Another important consideration is the impli-
cations of open foundation models [109]. While centralized systems have their
own negative implications, as discussed in Sect. 7.2.1.2, open-access generative Al
models without any access moderation also pose certain challenges. For example,
there are many classes of harmful intents that systems should refuse to respond
to. This may include search queries seeking information on methods to self-harm
or cause harms to others or requests to generate harmful (and sometimes illegal)
content such as Child Sex Abuse Material (CSAM) or Non-Consensual Intimate
Information (NCII). Publicly accessible LLMs trained on large Web corpora may
produce such irresponsible content in the absence of moderation. Even if a model
is trained to not respond to certain classes of queries, it is likely that there will
be leakage, and the safety alignment may also be compromised if the model is
further finetuned [171]. Such leakage may also happen in the context of traditional
search systems. However, in the latter case, all queries are typically logged, allowing
for post hoc analysis and identification of critical gaps in the moderation system.
Unfortunately, no such mitigation is possible once these generative Al models are
released into the wild.

Mechanism: The Paradox of Reuse Content producers and information access
technologies are critically inter-dependent [ 139, 225]. Web sites such as Wikipedia,®
Stack Exchange,’, and Reddit® produce critical content that is surfaced by informa-
tion access platforms (e.g., Web search engines) and contribute to making these
platforms significantly more useful to their users. In return, these platforms have
historically sent traffic back to the Web sites that contribute to their increased
readership, subscriptions, and monetization. However, when search platforms stop
directing traffic back to Web sites—e.g., by instead surfacing relevant content
directly on the search result pages (SERPs)—the relationship becomes less sym-
biotic toward the content producers, a phenomenon Taraborelli [206] termed the
“paradox of reuse.”

6 https://www.wikipedia.org/
7 https://stackexchange.com/
8 https://www.reddit.com/
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The application of LLMs as conversational information access interfaces is likely
to significantly intensify this problem. For example, LLMs such as ChatGPT® and
Google Gemini'® may gobble up large quantities of content from Web sites as
part of their training data and later regurgitate the same information without any
attribution back to the sources. Even when models summarize information from
multiple online sources with attribution, e.g., Bing Copilot,!! they typically de-
emphasize the references and reduce the likelihood of the searcher clicking through
to the source Web sites as compared to the classic ten-blue-links interface. There is
evidence [52] to suggest that this phenomenon is already happening at scale and is
jeopardizing the “grand bargain at the heart of the web” [93].

7.2.1.2 Consequence: Concentration of Power

We may have democracy, or we may have wealth concentrated in the hands of a few, but we
can’t have both. — Louis Brandeis
As quoted by Lonergan [133]

Technology shapes and is shaped by the sociopolitical power structures within
which it exists. The 2024 edition of the World Economic Forum’s Global Risks
Report [240] lists “technological power concentration” as one of the top global
risks for the coming decade and as the biggest upward mover in their annual
ranking of global risks compared to the previous year. Deliberation on the social
consequences of any technology must therefore include critical consideration of
how the technology, and general narratives about the said technology, shifts power
and re-architects and codifies structures of hierarchy and control. In this context, the
politics and values of those in power to oversee what and how technology is built or
regulated, especially when they reinforce hierarchy and authoritarianism (e.g. [72]),
(e.g. [59, 72, 120]), become important to consider.

A report [106] from the research institute AI Now!? similarly asserts “the
concentration of economic and political power in the hands of the tech industry—
Big Tech in particular” as the core challenge posed by Al They further note that
not just the technologies but the narratives (both the hype and the fear-mongering)
around them questionably bolster claims of “foundational” advancements and their
unassailable equivalence with scientific progress. These concerns are complemented
by discourses within the Al community, such as observations by Birhane et al.
[21] that the prominent values expressed and operationalized in top-cited Al papers
generally have implications in support of centralization of power. Even if platform
owners act accountably to civil society, the concentration of power and control in

9 https://chat.openai.com/

10 https://gemini.google.com/app
' https://www.bing.com/chat

12 https://ainowinstitute.org/
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their hands makes them vulnerable to other actors, such as autocratic governments,
and allows that power to be potentially abused for oppressive and harmful intents.

The popularization of generative Al can concentrate that power within large
companies, since they emerge as some of the only institutions with the resources
to develop and deploy these technologies [111]. The application of these technolo-
gies for information access may contribute to further concentration and growing
inequities of wealth and power; we discuss three mechanisms in the context of
generative Al that may contribute to concentration of power and control.

Mechanism: Compute and Data Moat The development of generative Al is
heavily reliant on the availability of large swaths of training data and large-scale
computing power for training and deployment. Only a handful of institutions,
largely in the private sector, own and control these necessary resources while
simultaneously evangelizing Al as crucial geopolitical leverage and critical social
infrastructure [106]. Increased access to these models has sometimes been touted
as potential paths to mitigation [194, 200], where access may range from being
heavily restricted over Application Programming Interfaces (APIs) to “open weight”
models [128]. The ability to download models with their learned parameters allows
others to further adapt for their own applications and opens the door to more
meaningful analysis and audit of these models. However, such “open access” also
leads to severe limitations that we should recognize. The availability of the trained
models does little to challenge the predominant visions put forth by large technology
companies of what Al fundamentally should look like.

One potential direction would be to dismantle the data and compute moat by
turning them over from private ownership into public infrastructure for independent
researchers and developers and those affiliated with smaller institutions. This also
illustrates the importance of existing institutions such as archives, libraries, and
universities that have reliable, historical data. The availability of public computer
infrastructure would allow a broader set of developers to participate in the reimagi-
nation and development of diverse approaches to Al and not merely being forced to
be satisfied with critiquing and finetuning artefacts produced by other institutions.
However, there is no guarantee that without careful planning and incentives, a
proliferation of smaller projects will lead to transformative new or more sustainable
results.

Democratizing the control over computational resources provides a mechanism
of checks and balances on the future directions of Al systems and may allow
for challenges to popular narratives and expectations about generative Al such as
exponential growth in model size over time. Infrastructure is however also bound to
the particular governing system and local underlying goals and processes. Larger
investments in existing research institutes or new alternative companies or non-
profits might in certain cases lead to faster results.

Similarly, the research community would benefit from easier access to industry
models and APIs for critical studies and auditing. However, access to models
or APIs alone is significantly limiting unless that access is also extended to the
user-facing systems in which these technologies are deployed. The corresponding
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instrumentation data would provide context on how these systems are used by
people and potential consequences. This can lead to practical privacy and security
questions for platform teams. Practical support for decision-making and, for
example, the creation of standards to de-risk those concerns can help alleviate some
of those concerns.

Mechanism: AI Persuasion There is an emerging recognition of the dangers
of Al persuasion [30, 34, 62, 159], which Burtell and Woodside [30] define as
“a process by which Al systems alter the beliefs of their users.” Al systems
may persuade users by appealing to their reason and argument or by using their
cognitive biases and heuristics [62]. El-Sayed et al. [62] identify six mechanisms of
generative Al persuasion—namely: (i) Trust and rapport (ii) Anthropomorphism
(iii) Personalization (iv) Deception and lack of transparency (v) Manipulative
strategies (vi) Alteration of choice environment—and corresponding model features
that contribute to these mechanisms. In the context of information access and
advertising, these capabilities of generative Al can be powerful tools to hyper-target
users and steer their behaviors.

Modern online information access and communication platforms monetized
with targeted advertising have been said to usher in an age of surveillance
capitalism [247, 248]. Information access systems increasingly collect detailed user
behavior data that allow them to build accurate user profiles for audience targeting.
There is strong evidence that people are more likely to consume information that
opposes their own personal views and beliefs when it employs language similar
to their own political leanings [243]. So combining users’ private preferences
and behavioral data with the capabilities of generative Al to produce persuasive
language could create worrying tools for mass behavioral manipulation. The impact
of such pervasive algorithmic nudging [134] may be further pronounced over longer
time periods from continuous interactions between the user and the system. Putting
these capabilities in the hands of online platform owners, which typically tend to be
large multinational for-profit institutions with largely hierarchical non-democratic
internal governance structures, poses serious risks to functioning of democratic
societies. At the same time, platforms must make decisions about what is acceptable
on their platforms to avoid negative user experiences, spam, unwelcoming behavior,
and other negative occurrences beyond those outlined in legal compliance alone.
Platforms moderate content posted or accessible through the platform [77], and
in doing so, they unavoidably impose implementations of values on their users or
the values incentivized by, say, advertising needs or other business model-related
motivations. For ads, this may mean an incentive to use generative Al to produce
hyper-targeted highly personalized persuasive advertisements that convince users to
make certain buying decisions. For content, when platforms optimize for increased
user engagement, they may knowingly or unknowingly incentivize generative Al
models to be producing highly charged content, such as “rage-bait” [101], because
it tends to be more persuasive and engaging.

Mechanism: AI Alignment To prevent generative Al models from producing
harmful and offensive content, recent research has focused on how to align



7 Sociotechnical Implications of Generative Artificial Intelligence for. . . 171

model outputs with “human values” [66, 67, 110, 177, 203]. Approaches such
as Reinforcement Learning from Human Feedback (RLHF) [38, 246] have been
effective in limiting certain types of problematic content from being produced.
However, this approach presupposes some notions of desirable values and puts
the burden of determining and enforcing them on the shoulders of platform/model
developers. Any notions of universal values that might determine what type of
content these models should generate—or not generate [214]—are highly con-
tested [20, 105, 167, 170, 180]. Placing these decisions in the exclusive domain
of the platform developers, especially in the absence of democratic and civil society
oversight, further concentrates power and responsibility. This is not an argument
against content moderation itself but against the centralization of control over it
without civil oversight or broader societal participation. As a pragmatic example,
platforms may not necessarily have the necessary knowledge in-house, making it
imperative for them to make successful connections to outside expertise.

7.2.1.3 Consequence: Marginalization

Generative Al, both in its process of development and in its deployment in
the context of information access, can marginalize groups and individuals by
diminishing their value, power, and well-being. Next, we discuss some of the
mechanisms that may contribute to this.

Mechanism: Appropriation of Data Labor Li et al. [123] define data labor as
“activities that produce digital records useful for capital generation.” The term
encompasses both witting labor activities—as in the case of crowd work [7],
peer production [207, 208], and content moderation [77]—and unwitting activities
such as user behavior data and other data generated when users interact with and
participate on the platforms. Data labor also encompasses the creation of artefacts
by writers [40, 41], artists [220, 221], programmers [219], etc. outside of the Al
development process that are nonetheless extracted from the Web and fed in as
training data to generative Al models. Appropriation of data labor in this context
includes both: (i) The uncompensated appropriation of works by writers, authors,
programmers, and peer production communities like Wikipedia [10, 28, 29, 36,
37, 40, 41, 76, 136, 188, 218, 219, 221, 223, 224] (ii) Under-compensated crowd
work for data labeling that has been instrumental in the development of these
technologies [7, 90, 91, 165, 204, 239, 242]

It is particularly harmful when technology developed on appropriated labor
is then employed to displace and automate the jobs of those whose labor was
appropriated [8, 47, 223]. Introduction of such automation may involve vicious
cycles of perceived skill transfer from people to Al models whereby professional
jobs are replaced by corresponding lesser-paid gigified equivalent as auditing and
editing of model outputs only [82]. Proprietary Al model capabilities may then
continue to improve by learning from workers’ inputs, while workers progressively
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lose their economic value and power or are even relegated into the role of moral
crumple zones [63].

This is a critical challenge in the context of information access because: (i) The
devaluation of writers and artists have direct implications for the quality of content
on the Web (ii) These automated content generation tools are starting to get
incorporated directly in information access platforms [166] Similar concerns of
commodification and appropriation have also been raised in other information and
knowledge access contexts such as in the enterprise [70].

Al for Me, Data Labor for Thee Another pernicious aspect of Al data labor dynam-
ics discussed in the literature is how they can mirror and reify racial capitalism and
coloniality, employ global labor exploitation and extractive practices, and reinforce
the global north and south divide [19, 45, 88, 114, 149, 154, 202]. While worldwide
jobs might be created in certain cases, the workers are typically low paid and
deprived of any share of the profit made from technologies built with their labor.
These dynamics encompass accruing the benefits of generative Al to privileged
populations, while data labor is relegated to already marginalized populations,
for example, in the global south. Communities that significantly contribute to Al
data labor may even find their own linguistic styles being labeled Al-ese [95] and
being forced to repeatedly prove their own humanity [53, 138]. Attempts to bridge
the global north-south data gap also in turn may further intensify data extractive
practices in the global south [39].

Mechanism: Bias Amplification LLMs and other generative models reproduce
and amplify harmful biases and stereotypes from their training datasets [1, 16, 23,
24, 31, 79], which can lead to allocative and representational harms [49]. Harms
may also materialize from demographic blindness [70] when the model (or the
system it is embedded in) treats different individuals and groups as alike when,
in fact, it is unwarranted. Examples may include the handling of certain languages
as one homogeneous entity without regard for sociolects or dialects [22] or holding
different perspectives as equally valid without considerations for historical context
or structural dynamics of power. These biases are concerning in the context of
information access systems that are responsible for supporting informed citizenry
and functioning democracies, health literacy, and knowledge production among
other societal needs.

Mechanism: AI Exploitation and Doxing “Al doxing” can describe the act
of leaking people’s private information by an Al system. Weidinger et al. [233]
note that this may be caused by models leaking private information (e.g., address
and telephone number) present in their training data [33] or when these models
are employed to predict people’s sensitive attributes (e.g., political and sexual
identities) based on what is known about them publicly [117, 158, 172, 244]. Private
information in the training data is a challenge even if datasets have been sourced
from the public Web because models may continue to regurgitate that information
after it has been removed from the Web or bypass safety measures that would
prevent such information from surfacing through Web search—e.g., the information
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may be protected by robots.txt that blocks popular search crawlers but misses
crawler bots that specifically collect data for AI model training. In many contexts,
applications of these models to predict people’s private information may be based
on shaky scientific grounds [2, 217], to put it mildly. However, such applications
may still contribute to serious harms and discrimination regardless of their accuracy
as long as some people are convinced of their predictive power and employ them
to marginalize others. Al doxing may also take other forms such as reverse-image-
search [14], a functionality supported by some search engines that may be abused
for stalking and harassment. In turn, exploitative materials produced with GenAl
(such as deepfake revenge porn or CSAM) might be amplified.

7.2.1.4 Consequence: Innovation Decay

Generative Al may find innovative new applications in information access. How-
ever, the excitement around these technologies and the significant investments from
industry, government, and academia on corresponding research and development
have broader implications for IR research. Next, we discuss some of the mechanisms
associated with the research and development of generative Al that may potentially
throttle innovation in information access technologies.

Mechanism: Industry Capture The compute and data moat that concentrates
power in the hands of big tech, as discussed earlier in Sect.7.2.1.2, also creates
significant barriers to entry for academic research. These barriers limit academic Al
research to a handful of institutions that have the necessary means and connections
to industry who provide access to compute and data resources to incentivize research
in areas of their economic interests. Academics who want to contribute to research
on large-scale Al systems or critique their sociotechnical impacts are pressured
to play well with institutions holding monopolistic control over compute, data,
and systems [150]. Access to “open-access” models—without the compute and
data necessary to build them from scratch—allows academic researchers to invest
in finding more effective applications of these technologies that serve industry
interests, but not to reimagine/rearchitect them to in radically different ways.
Students and other academics who may someday want to work in industry are
shepherded into integrating themselves into this homogenized research agenda.
Such “industry capture” [237] allows for inordinate influence of the sociotech-
nical imaginaries'? of profit-driven corporations over, for example, academic
researchers [146]. This can thwart research that may not be immediately mone-
tizable or challenges the status quo of power concentration and complements the
“regulatory capture” by bigger tech companies [13, 130, 182]. As Mitra [146] asks:

13 Jasanoff and Kim [103] define sociotechnical imaginaries as “collectively held, institutionally
stabilized, and publicly performed visions of desirable futures, animated by shared understandings
of forms of social life and social order attainable through, and supportive of, advances in science
and technology.”
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“Whose sociotechnical imaginaries are granted normative status and what myriad
of radically alternative futures are we overlooking ?”” Narratives of the inevitability
of these technologies that are hyped up to be both transformative forces for society
and simultaneously posing existential risks for humanity (often purported by the
same actors) only bolster their imagined importance to accumulate increasing global
investments, including from governments. Researchers who care about sociotechni-
cal impact and ecological sustainability are busy with enumerating the harms of
rapidly emerging new Al technologies and chasing potential mitigations instead
of having the full means to imagine and develop systems for social good. While
industry practitioners can contribute to both identifying new research challenges
grounded in real-world systems and practical methods to mitigate some of the risks
of emerging technologies, it is imperative that we create avenues for increasing
independent research while preserving the benefits of various modes of industry-
academia collaborations.

Even as the grounded risks from these technologies (such as those discussed
here) gather consensus from academic communities and civil society, it can be
difficult to create space for alternative ways of development that are perceived
as “slowing down.” Critical research on sociotechnical harms of Al is also under
risk when attempts are made to shift attention from concerns about real harms to
marginalized people today to unsubstantiated imagined future concerns [71, 72].
Calls for regulations to address these imagined future harms [73] further detract
from real progress and contribute to reinforcement of monopolistic powers of those
who have already added these technologies to their arsenals. This has led some
sociotechnical researchers in Al to explicitly draw attention to how these systems
shift power (e.g., [23, 70, 107, 142]) and to prioritize research guided by alternative
visions for sociotechnical futures grounded in universal emancipation and social
justice [146]. It is thus important that access to investments to enable development
is also available to those trying to not only mitigate existing systems’ harms but also
develop new avenues, including work on social good and new business models.

As generative Al starts to accumulate the lion’s share of research investments, it
may starve out other areas of information access research. Generative Al has had
exciting but limited deployments in information access systems today. There are
significant open challenges to making these models broadly useful, including but
not limited to concerns of potential sociotechnical harms. There is a risk that if these
challenges are not mitigated in spite of the extensive resources already invested on
them at present, there may be calls for even larger investments in future prompted
by the sunk cost fallacy.'* It would be astute for the IR community to consciously
continue to invest in research on systems and applications that societies need beyond
what existing Al technologies make plausible [146, 184].

Mechanism: Pollution of Research Artefacts Risks to academic research from
generative Al may also emerge through the applications of generative Al models

14 https://en.wikipedia.org/wiki/Sunk_cost#Fallacy_effect
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in IR scholarship—e.g., for authoring scientific papers and peer reviewing. There
is evidence that researchers in computational sciences are already leveraging these
tools [127], sometimes with hilariously terrible outcomes [163]. While the use of
language models for light editing may (eventually) fall within the norms of socially
acceptable behavior in research, their application in scholarship does raise concerns
of plagiarism and scientific inaccuracies. This is an area that currently has more
questions than answers, and the IR community would benefit from proactively
considering potential implications of this trend on future IR research.

7.2.1.5 Consequence: Ecological Impact

Another important consequence of generative Al is its impact on the environment.
In this context, it is important for us to consider the direct environmental cost of
developing and deploying generative Al systems at scale as well as the potential
impact of these technologies on the climate change discourse online.

Mechanism: Resource Demand and Waste The ecological cost of deep learning
models has been a subject of much concern and debate in the Al community [16,
17, 25, 56, 108, 161, 162, 199, 241]. Similar concerns have also been raised within
the IR community with respect to the application of these models for information
access [181, 249]. By some estimates, the computing power being utilized for deep
learning research has been doubling every 3.4 months since 2012 [32]. In the USA,
data centers consumed more than 4% of the total national electricity in 2022, and
that number is projected to grow to 6% by 2026 [87]. Another study [15] estimates
that by 2040, the information and communications technology industry on the
whole will account for 14% of global emissions. Beyond emissions, data centers’
water consumption is also raising alarm bells [50, 81, 84, 86, 89, 124, 152, 173].
By 2027, global Al demand may be responsible for withdrawal of 1.1-1.7 trillion
gallons of fresh water annually [89, 124]. Serious concerns also revolve around the
rising levels of electronic waste [112]. Even as we make progress in reducing the
ecological cost of training and deploying the current Al models, we risk encouraging
the development of even larger models and their wider deployment worsening the
overall ecological impact (i.e., Jevons paradox).'?

Mechanism: Persuasive Advertising Generative Al may not only negatively
impact the environment through increasing demand for natural resources and
increasing generation of waste but may also supercharge climate change disin-
formation [43, 55, 68, 174, 175, 195]. For example, the fossil-fuel industry may
attempt to sway public opinion through advertising that leverages generative Al’s
persuasion capabilities discussed in Sect. 7.2.1.2. Persuasive advertising may also be
employed by other environment-unfriendly business models like fast fashion [42].

15 https://en.wikipedia.org/wiki/Jevons_paradox
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While the direct ecological cost of generative Al justifiably garners lots of attention,
its potential impact on related online discourse also deserves scrutiny.

7.2.2 Risks

We categorize the risks of generative Al broadly to our society, to IR research, and
to the environment. We map the first three consequences discussed earlier in this
section—i.e.: (i) Information ecosystem disruption (Sect. 7.2.1.1) (ii) Concentration
of power (Sect.7.2.1.2) (iii) Marginalization (Sect. 7.2.1.3)—and their correspond-
ing mechanisms as potentially contributing to the risks to society. We further map
the last two consequences—i.e.: (iv) Innovation decay (Sect. 7.2.1.4) (v) Ecological
impact (Sect. 7.2.1.5)—to the risks to IR research and the environment, respectively.

7.2.2.1 Risks to Society

Information access is a critical need of any democratic society and a necessary
ingredient for social transformation [44, 78, 80, 96, 168]. It is also a social
determinant of economic progress [151, 245] and health [147]. Disruptions to the
information ecosystem bear potentially grave risks to most aspects of our social
lives. A confluence of the pandemic [35, 183, 209], rising global conflicts [210, 213],
and escalating climate catastrophes [102, 160, 169] is pushing the world toward
precarious instability. Our information ecosystems are already struggling under the
weight of misinformation and disinformation that in this critical moment is eroding
public trust in online platforms, institutions, and each other. It is imperative that
researchers and developers of information access systems prioritize safeguarding
social interests and be vigilant in considering potential risks of disruption and
ecosystem collapse when integrating generative Al technologies in the IR stack.
This includes identifying the necessary conditions under which these technologies
can be safely deployed and developing practical safeguards and alternatives.

Risks to society are not just from potential disruptions of the information
ecosystem but also from how these technologies simultaneously concentrate power
away from those at the margins of society. As institutions that develop and operate
these technologies are themselves beneficiaries of this concentration, we need
democratic oversights. If technologies further exacerbate already worsening wealth
and power inequities, this additionally may pose severe threats to democratic
institutions and human rights. There is an opportunity cost of not re-imagining
information access in light of sociotechnical ambitions of human emancipation,
culture, and knowledge production, instead of being constrained solely by what
these emerging technologies make plausible and the homogenized visions put forth
by institutions who wield these technologies [146].
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7.2.2.2 Risks to IR Research

IR research can suffer from a confluence of different factors including the distancing
of academic researchers from the data and compute they need to do their work and
how narratives about the inevitability of Al technologies shapes what computational
research gets funded. The concentration of access to the networks around these
technologies in a subset of institutions shapes what is considered “foundational” or
even “Al.” Research on generative Al should not be performed only in the context
of corporate economic interests while academia is hollowed out and prevented
from exploring radical new methods that challenge the status quo. This risk of
homogenization of academic research agendas and the opportunity cost of not
exploring more diverse approaches to online information access can have material
consequences. Instead, the IR community must be empowered with both the space
and the resources necessary to explore a diversity of these visions and critique
dominant narratives. IR research should have a plurality of work, which includes
work with access to industry to change current practices. However, we especially
also need to ensure that not all IR research is simply an extension of industrial
system development and risk the demise of fundamental research on alternative
avenues.

7.2.2.3 Risks to the Environment

Information access provides one of the large-scale application settings for generative
Al. However, the impact of such wide-scale deployment of these technologies on
the impending climate crisis should be a critical consideration. Climate costs pose
substantial existential risks for ecosystems and people, in more direct ways than
some other “existential risks” that lack adequate scientific basis but have nonetheless
been popular discourse in some parts of the Al community. This means both
choosing what to deploy and investment in methods to mitigate negative impacts
that build on existing environmental work. As we discussed in Sect. 7.2.1.5, these
concerns include not just the ecological cost of developing and deploying generative
Al technologies but also their impact on online discourse on societal priorities.

7.3 Methods to Evaluate Risks and Impact

7.3.1 Evaluating the Impact of Generative IR Applications

Evaluating the impact of generative IR applications requires methods, as do data-
informed interventions to steer that impact. Creating an LLM-based demo has
become exceedingly easy. Understanding the impact of a system when it gets
used in real-life contexts, and getting to a high-quality experience for a wide
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variety of users, is much harder. Standards for impact assessment have not kept
up a similar pace as tech developments. Khlaaf points out the need to carefully
consider the differences in value alignment of the goals of a system and safety
considerations, harms, and risks [113]. A wide range of online, offline, and human-
assisted evaluations are possible—and necessary—to get a full sense of the impact
of a system.

There are a number of frameworks that can provide helpful starting points for
evaluating the impact of generative IR applications and potential quality or safety
improvements. Not surprisingly however, they can measure quite different aspects
of a system and its underlying models. Distinctions have to be made between
evaluating a model, a system, or a technology as a whole. For example, standards
for foundation model evaluations might not take into account the impact of a system
that uses such a model (or a combination of models) in a specific application context.

Measurement and interventions are possible at every stage of the development
life cycle of products and their underlying models and data. In this regard,
general insights around, for example, harm mitigation interventions being possible
throughout the machine learning life cycle [201] also apply to generative IR. To
improve quality and safety, we need to be able to operationalize and measure
the impact of potential interventions. This includes evaluations on aspects of
that might be both system performance issues but also of societal importance,
e.g., harmful/toxic output, hallucination, and differing model performance across
languages/demographics.

7.3.2 Threat Identification, Assessment, and Modeling

When the emergence of a new technology or application becomes apparent, the
assessment of whether this poses risks or opportunities within specific domains
poses a challenge. Before development of a system, threats and opportunities can
be identified. As Kapoor et al. [109] point out, it is crucial not to evaluate the
risks and impact of new systems in isolation but rather in comparison with existing
technologies. For example, the impact of usage of foundation models in search
should be compared to existing Web search. For this purpose, Kapoor et al. present
an evaluation framework that focuses on marginal risks, applied to Open Foundation
Models. Their framework is based on threat identification work from cybersecurity
and consists of six steps necessary to demonstrate such marginal risk. These steps
are (1) threat identification, (2) evaluating existing risk absent open foundation
models, (3) considering existing defenses absent open foundation models, (4)
evidence of marginal risk of open foundation models, (5) ease of defending against
new risks, and (6) outlining uncertainty and assumptions. Note that this framework
does not set exact assessment criteria but rather defines the steps to get to such
evaluations.

In practical settings, this might mean having to select standards for the devel-
opment process (e.g., emerging standards from organizations such as the National
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Institute of Standards and Technology (NIST) [3] or International Standards Orga-
nization (ISO) [12], company-specific standards such as Microsoft’s Responsible
Al Standard v2 General Requirements [143], or following new (local) legal require-
ments). However, mapping out potential consequences and identifying mechanisms
that introduce risks in the specific context of a system needs to go much further.
How to disrupt potential negative mechanisms in order to mitigate those risks
requires gauging a wide range of consumer-side impacts [61] but also wider
societal impacts. That includes frameworks focused on worker consequences [70]
or practical methods focused on reducing the (legal) risks of using certain types of
copyrighted or restricted training data vs. expected performance gains [144].

7.3.3 Evaluation During Model Development
7.3.3.1 Model Benchmarks vs. Actual System Context

LLM benchmarks are widely used to compare the quality and safety progress made
by new model releases, resulting in model leaderboards on different scenarios.
The Stanford HELM [198] leaderboard, for example, shows the performance of
different LLM models on benchmarks, and these benchmarks include societal
impact and bias-related measures. Their HELM (“holistic framework for evaluating
foundation models”) framework [126] uses scenarios and measures seven metrics.
Those are accuracy, calibration, robustness, efficiency, and also more social impact-
oriented fairness, bias, and toxicity. Each scenario focuses on one use case and
consists of a dataset of instances, such as the LegalBench set of legal reasoning
tasks [85] or medical board exam problem sets [104]. The larger BIG-bench
(“Beyond the Imitation Game benchmark”) [18] consists of 200+ tasks, contributed
by hundreds of authors at a variety of institutes. More specific benchmarks for
trustworthiness such as DecodingTrust, in turn, focus on subsets such as toxicity,
stereotyping, adversarial and out-of-distribution robustness, privacy, machine ethics,
and fairness [230], while, for example, the much more specific recurring TREC Fair
Ranking track competitively evaluates systems according to how fairly they rank
documents on a specific test task [60].

Paradoxically, while these benchmarks include aspects of societal impacts such
as bias and toxicity, they do not necessarily cover the aspects that matter most
in a specific application context in practice. Benchmarks are generally geared
toward structured comparisons between models, not toward evaluating end-user
applications in practice. This means that they may not be particularly suitable for
a specific application and the people involved in its usage. In addition, using such
large benchmarks can be quite resource-intensive, making “lite” versions necessary
that are less comprehensive. Both HELM and BIG-bench are also implemented as
Lite versions. However, the evaluation differences that arise from specific, lighter
implementations of benchmarks can significantly impact model comparison results
[196]. This makes it necessary to go beyond these benchmarks and ensure suitable
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evaluations for the application at hand to avoid deriving conclusions about safety or
responsibility devoid from actual application concerns.

7.3.3.2 Combining IR and Generative AI Evaluation Metrics

It is challenging that standards for measuring societal impact, including bias,
fairness, etc., are yet scarce in IR product settings. For example, Smith et al.
[193] provide an overview of different metrics available for evaluating bias and
fairness in recommendation systems and the challenges practitioners face when
choosing between them. In some cases, it may be more appropriate to, for
example, focus on “traditional” performance and accuracy metrics but study the
performance and subsequent quality of experiences for different groups of people
by segmenting/slicing results by group. This approach assumes the ability to define
relevant groups or relies on more advanced methods to find clusters that may—or
may not—have significant differences in performance or quality.

Specific methods might also be necessary to match new techniques. For example,
Retrieval-Augmented Generation (RAG) might be used to include more reliable
information in a specific domain and reduce hallucinations in an LLM setting.
However, RAG does not necessarily fully solve every hallucination-related issue.
Specific frameworks that fit an application context are still necessary to evaluate
these techniques and their actual impact on aspects such as factuality within that
context. One example is Saad-Falcon et al. [178], who present an evaluation frame-
work, ARES, for RAG-assisted question-and-answering settings. This framework
uses three evaluation scores: context relevance of the retrieved information, answer
faithfulness (the answer’s grounding in the retrieved context), and answer relevance
to the question asked. These are similar to IR evaluations but might need adjustment
to the setting at hand, and datasets used need to reflect actual needs in current
circumstances.

7.3.3.3 LLMs to Evaluate LLM

Beyond specific metrics, ongoing research is investigating the efficacy of LLMs to
evaluate LLMs (LLM-as-judge) [187, 232]. For example, [232] et al. use an LLM
to rate the factuality of a long-form response to prompts while also using Google
Search. While promising, such more complex evaluation constellations also lead to
additional complexity in understanding what is being evaluated and changes therein
as the evaluator LLM changes. This leads to having to validate the validation in itself
[187]. While a human-and-LLM agent collaboration can help in this validation (as
in, e.g., [187]’s EvalGen approach), the evaluation criteria cannot be fully separated
from observation of model outputs, resulting in a feedback loop from output to
adjusted evaluation criteria.
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7.3.4 Evaluation Pre-/Post-system Release

7.3.4.1 Online Evaluation Using Actual User Behavior vs. Offline
Evaluation

Whether evaluations are done online or offline can deeply impact results. Offline
evaluations—even when using thoughtful standards—might not reflect what actual
end users do in real-life settings or system performance over time. Online eval-
uations similarly are limited to which metrics have been instrumented and how
actual user interactions are captured. It involves field testing, getting an IR system
online and out to actual users, and analyzing their interactions with the system.
It can include methods such as controlled experiments or extended A/B testing
and analysis of interactions. Hoffmann provides an overview of the most common
techniques used in IR settings [100].

7.3.4.2 Stress Testing, Red Teaming, and Qualitative End-User
Evaluations

Beyond metrics and quantitative analysis—oriented methods, it is crucial to apply a
combination of safety/security-inspired methods, user design, and User Experience
(UX) research methods to understand the actual reactions of users.

The logistics around red teaming can provide a good glimpse into the importance
of appropriate combinations of methods. Red teaming is a common way to test
LLM applications for undesirable system responses [135, 145]. Red teaming can be
automated using, for example, sets of (generated) prompts or done in full by human
red teamers, including both the general public and invited experts. Using LLMs as
red teamers [164] by generating risky prompts at scale, or using large-scale human
red teaming efforts with thousands of participants who need access points, might
yield different results. Human red team approaches in which “a group of people
authorized and organized to emulate a potential adversary’s attack or exploitation
capabilities against an enterprise’s security posture” (if we follow the definition
from NIST) also lead to questions about tooling, recruiting, and operational process
design. Markov et al. [135], for example, provide a helpful discussion of practical
data challenges in content moderation use cases. In turn, model characteristics might
have consequences on red teaming results. Ganguli et al. [69], for instance, find that
RLHF models are increasingly difficult to red-team as they scale, while they do not
find similar challenges for other models. Interestingly, this means that techniques
such as RLHF that are explicitly meant to help align agents with human preferences
could also result in challenges in evaluating the systems that use them.

This means that like any evaluation method, red teaming has to be combined with
other types of stress testing, assessment of security issues, as well as evaluation of
experiences of actual users. Khlaaf points out the need for carefully considering
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what methods and terminology are appropriate for evaluations that probe for
vulnerabilities of a specific system toward the outside world [113].

7.3.5 Societal Impact of a System Beyond Its Direct
Implementation and Use

The impact of a system can reach much beyond its direct usage context. For
example, the increasing demand for data and compute power of LLMs has envi-
ronmental impact. However, such indirect impact can be hard to calculate without
deep expertise. It is crucial to spend the time to evaluate evaluations methods for
their suitability. Methods have been developed in both the IR and LLM communities
around reducing environmental harm [181], and sustainability industry teams exist
to ensure more energy-efficient data centers for both environmental and monetary
reasons. Others in turn try to assess whether LLMs could help in generating more
green code and develop metrics to assess the code’s “green capacity” based on
earlier sustainability metrics [216].

Similarly, a plethora of work points out the potential of amplifying and entrench-
ing power structures through the usage of generative Al methods or changing market
conditions through releasing new models for free [176], de facto changing standards
to the model that gets used most in practice. However, IR and Machine Learning
(ML) evaluation methods are not generally suitable for the analysis of such impact
that a particular technique or system might have. Methods from political analysis
and behavioral economics might be more suitable but are generally not shared in IR
or ML venues. Challenging in the evaluation of systems is a deeper understanding
of the long-term incentives that are created and the resulting “rational” use of LLMs
in undesirable ways. A compounding challenge is that new incentives are also
necessary to ensure that interventions from actual practice can be shared. Trust and
safety teams might be doing scenario planning or prepare for incidents and crises.

7.3.6 Sharing Evaluation Methods

From the above selection of methods, which is by no means comprehensive, it is
clear that practitioners have to carefully pick and choose which methods work for
them. However, different organizations come from different evaluation traditions.
Incentives to share methods and results might not align with practical product
team incentives and pressures. Metrics and standards for evaluations from actual
practice are often not shared in scientific literature. Security community-style
(external) red and (internal) blue teams, trust and safety incident monitoring
approaches, IR communities’ existing offline and online user feedback methods,
or UX product testing approaches might be more (or less) top of mind, depending
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Table 7.2 Different types of existing evaluation frameworks relevant for generative IR impact
and safety. Note that this is not an exhaustive overview but rather a quick peek at the variety of
methods evaluators can (and have to) choose from

Evaluation focus Examples

Marginal system impact, e.g., release Kapoor et al., risk framework based on
decisions in comparison with existing cybersecurity [109]

technology

Comparison benchmarks between LLM Benchmarks used in leaderboards, e.g.,
models that include fairness, bias, HELM [198], BIG-bench [18], or
toxicity-type aspects trustworthiness benchmarks [230]
Online or offline IR metrics, including Online IR-evaluation methods [99],
accuracy or quality across groups impact/fairness/bias metrics in

recommendation systems [192]

Evaluation metrics using automated evaluation | LLMs as agents evaluating factuality of
for specific LLM techniques or risks other LLMs’ statements [187, 232]

Qualitative evaluation including human Red teaming[69, 164] and UX evaluation
adversarial testing

on the organization and prior expertise. This means there is a gap in the generative
IR literature in terms of shared understanding of actual practices and efficacy of
methods [48]. If we as a community are to properly address the social risks as
outlined in Sect.7.2.2.1, it is imperative we find fast and effective ways to share
these methods and align them with practical needs, especially with the increasing
speed of the field, the variety of fields involved, and volume of new techniques
(Table 7.2).

7.4 Actors, Incentives, and Ways of Getting Organized

7.4.1 Incentives Toward Misuse of Al

Emerging Al capabilities and their consequences (good or bad) are a hot topic of
discussion. But it is just as important to talk about incentives or why individuals or
organizations might choose to use Al in certain ways.

Below are some examples of types of actors and their possible incentives that can
lead to harmful uses of Al, along with ways in which some of them can be shifted
in a more positive direction. Al can be transformative for human experience and
quality of life, but only if incentives (both short term and long term) for its use are
aligned with the benefits to humanity.
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Actor State actors and ideological groups.

Incentive Geopolitical influence in favor or against something. This includes
the use of extra-persuasive [238], micro-targeted content and deepfakes to sow
malicious narratives [191], undermine support and trust in democratic institutions
[148], weaken social cohesion, etc.

Modification The most effective way to modify this behavior is by making it
prohibitively expensive or inconvenient to use Al for these purposes, through
harsh legal consequences, content moderation, or counter-speech. The burden
of implementing countermeasures falls on governments, content platforms, and
community organizations.

Actor Criminal or unscrupulous organizations.

Incentive Financial gains from scams, ad-monetized Web site traffic, or product
sales. This includes more legit-looking phishing content [229] and “Nigerian
prince” letters or gaming search engines via Al-generated SEO-friendly content
[156].

Modification The incentives for financial gain are always going to exist and
be exploited; protection against them can take the form of better (Al-enhanced)
cybersecurity and anti-spam tools, implemented and deployed by most consumer-
facing Web surfaces.

Actor Commercial enterprises.

Incentive Economic competitive advantage and increased shareholder value.
Taken to its worst extreme, this incentive can lead to deceptive or discriminatory
business practices, hasty deployment of cheaply developed Al to customers [65],
premature restructuring of teams [121], etc. In the case of social media platforms,
the high engagement on polarizing or sensationalist content can lead the platforms
to tolerate, encourage, and algorithmically amplify it.

Modification The same drive for competitive advantage can also be a force for
good, particularly when it is aligned with public opinion or customer sentiment. The
best-case scenario is when trustworthy and safe Al makes products more usable,
attracting more customers (akin to Apple’s “It just works” aesthetic that has no
shortage of fans despite being more expensive than the competition). Government-
led compliance requirements can also create positive incentives, like for food or car
safety, and in some cases, a punitive legal strategy also works, like in the suing of
tobacco companies or opiate producers, creating incentives for surviving companies
to behave better.

Actor Individuals.

Incentives Faster completion of work tasks, improved social status, revenge
against perceived slights, or exploitation of the vulnerable. At worst, these can
lead to cheating, misrepresentation of one’s identity of accomplishments, slander,
deepfake pornography, or Al-enhanced grooming.
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Modifications While some of these behaviors are illegal or fundamentally antiso-
cial (and should be prosecuted as dictated by law), the urge to improve one’s work
performance or social status can be a good thing. If Al tools are designed to enhance
human productivity while rewarding our creative impulses, and feel fun, joyful, and
satisfying to use, people will be more likely to employ them to good ends.

7.4.2  Who Can Shift Incentives and How

In the broadest sense, it will take a whole-of-society approach to ensure that
technological advances will align with the best interests of humans impacted by
them (see Fig.7.1). Technology builders (company and individual), governments,
academia, and civil society all bear responsibility for ensuring that technological
advances in information access align with societal interests. The rest of this section
focuses on what can be done at the intersection of these groups or actors, since
inter-group coordination is most often where things go awry.

Tech Builders
Ensure Safer,
high-quality systems

Civil Society

Government Whole-of- Advocate on behalf of

Align corporate Society consumers,

incentives with

R Approach communities, and the
society's interests

marginalized

Academia
Conduct
interdisciplinary,
independent research

Fig. 7.1 Primary actors responsible for aligning technology with societal interests
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7.4.2.1 Organizational Factors

While most of the literature and education in computer science by definition focuses
on technical approaches, the impact of generative IR techniques can be influenced
in other ways as well.

Changing work processes within organizations can have a direct impact on the
expectations set on teams. This includes policies, explicit Go/No-Go procedures,
roles and responsibilities to monitor systems, algorithmic impact assessments and
model cards, or other types of documentation. In different organizations, the
responsibility for different measurement and mitigation might look very different.
In one organization, a machine learning team may be expected to look at the energy
consumption of their system design choices, whereas other organizations might
have a technical sustainability team. In another organization, a trust and safety
or integrity team might deliver evaluations of system output toxicity, whereas in
another organization, a separate data science team or product teams themselves
might have to do this work. In any case, if this responsibility is unclear, it is much
harder to get this work done.

External engagement can help address internal deficiencies. Especially for audi-
ences working on generative IR systems, some of these might not necessarily be
familiar routes. Examples include:

* External advice and safety boards. These are increasingly created by
companies to provide external advice for more complex safety or content
moderation questions. These include Facebook’s Oversight Board,'® which
provides independent rulings on content moderation questions, parent company
Meta’s Safety Advisory Council,!” or Spotify’s Safety Advisory Board.'® These
do not necessarily have decision-making power but provide a more formalized
way to advise external organizations and researchers.

* Regulatory advisory groups and expert consultations. Organizations such
as the UN, EU, various regions, and countries working on future Al policy
have all formed advisory boards (e.g., the UN AI advisory board,'” the Nordic
Al advisory board). Apart from such official avenues, individual lawmakers
and legal firms often consult experts. While regulatory capture is a very real
concern [236], this also allows for actually implementable regulation. This
means however that considering the potential overlap between advisory boards,
as well as perhaps a lack of overlap with more specific Al experts, not all
relevant expertise will be represented.

* Professional organizations. Organizations such as Association for Computing
Machinery (ACM), Institute for Electrical and Electronics Engineers (IEEE),

16 https://www.oversightboard.com

17 https://www.facebook.com/help/222332597793306/

18 https://newsroom.spotify.com/2022-06- 1 3/introducing- the- spotify- safety-advisory-council/
19 https://www.un.org/en/ai-advisory-body
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Association for the Advancement of Artificial Intelligence (AAAI), or the Trust
& Safety Professional Association allow for formal and informal exchange of
best practices. A major challenge is ensuring that best practices in fast-moving
areas are also gathered and exchanged between organizations and to the public
at large.

For the above arrangements, getting to collections of concrete examples of what
has worked in the past is increasingly important. Al developments are speeding
up, and increasingly diverse professional communities are both being impacted
and getting involved. This makes efficient and effective coordination even more
important. For policymakers, governmental agencies, and journalists, it may be
hard to get an overview of which professional communities can provide actionable
advice—especially with new Al developments being “louder” than, for example,
long-standing IR communities. Inside of companies, in order to benefit from
external advice or research, tech teams still have to navigate how to best work
with external organizations. Researchers and non-governmental organizations in
turn have to know where to invest their time and expertise most effectively and how
to offer actionable advice to appropriate individuals or teams in tech companies.
This includes big-picture scenario planning of where to best invest and how to create
incentives that truly will have a positive impact. Implicit hierarchies of the value of
different types of produced knowledge (e.g., “being the first” or “more technically
complex”), but also a simple lack of knowledge about how certain processes work,
can stand in the way of sharing of paved paths toward desired results and of sharing
these in accessible ways. It can also involve very pragmatic on-the-ground work,
such as knowing how to set up contractual arrangements that work for all parties
(not a skill commonly taught in IR or Al-related programs).

7.4.2.2 Data-Focused Methods

While a complete overview of all different mechanisms to positively affect Al
development is outside the scope of this chapter, one area does provide ample
inspiration. Extensive literature exists on data labor and the need to understand how
to effectively advocate for that labor’s value [11, 75, 123,218, 223]. Especially in the
realm of training data concerns, multiple practical routes already exist, including:

* Business and partnership model development, including developing new
types of licensing and new types of business partnerships [9, 190], along with
ways to get funding to data creators. There is also research on the efficacy of
suggested mechanisms, such as data dividends that are suggested as a means of
Al profit sharing [227].

¢ Collective action. When new business models do not work out, coordinated
action is imperative. These can be focused on data through data strikes [226],
as well as large-scale labor organizing and strikes focused on treatment of data
workers. More recently, the Hollywood strikes illustrated how those particularly
impacted by the ways their work and likeness can be used as data can effectively
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organize, lay out clear demands, and succeed through both technical and
organizational competence. This included understanding what incentives are
at play and what leverage data producers have [222]. Methods include data
strikes to withhold data [205, 226] and data poisoning [54] techniques such
as NightShade [94, 186], Glaze [185] and Mist [125]. Ways to empower
end users and the wider public in their relationship with tech companies are
important [228], as is understanding their potential leverage and means for
protest through adjusted usage [122].

For effective research-informed mitigations, however, it is crucial that generative
IR researchers have access to ways to learn how to effectively organize and navigate
organizational and political structures or how to communicate their results to others.
Implicit hierarchies in what knowledge is appreciated in generative IR circles can
become a hurdle in effectively identifying and addressing the risks outlined in earlier
sections, Sects.7.2.2.1, 7.2.2.2, and 7.2.2.3. A critical factor is knowing which
concrete situations matter, what to ask for in those situations, and how to assess
whether impacts and risks are successfully steered.

7.5 Conclusion

In this chapter, we have presented a discussion on the sociotechnical implications
of generative Al for information access. These deliberations are grounded in how
these emerging technologies are currently being applied in IR applications as well
as their future applications as being envisioned by practitioners and researchers.
It is important to recognize that sociotechnical visions of what information access
should look like in the future are not just shaped by what emerging technologies like
generative Al make plausible but that visions for the future of information access
in turn shape Al technologies themselves. Mitra [146] proposed the hierarchy of
IR stakeholder needs shown in Fig.7.2 and argued that IR research and system
development require a fundamental shift toward re-centering societal needs and that
we should reimagine information access as a vehicle for alternative futures. When
contemplating the implications of emerging technologies, we risk of falling in the
trap of limiting ourselves to how the technology (and its process of development)
is today, rather than how it can be or should be in the future. Neither generative
Al nor its application in the context of information access is predetermined. So
while it is important that we consider potential harms of contemporary applications
of generative Al in the context of information access, we close with some open
question for the reader: If not this status quo, then what—and especially how?
What is the future of information access that we want to imagine for our collective
well-being, and how can generative Al be another tool in the toolbox toward that
transformation?
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revenue, market share, brand
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Fig. 7.2 Mitra’s [146] hierarchy of IR stakeholder needs. More critical needs are at the bottom of
the pyramid. This figure has been reproduced from the original paper with permission
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Chapter 8 ®
Recommendation in the Era Ghock or
of Generative Artificial Intelligence

Wenjie Wang (), Yongfeng Zhang (), and Tat-Seng Chua

Abstract The landscape of recommendation systems has undergone significant
transformation, driven by advancements in generative Al. This section explores
how generative Al, particularly Large Language Models (LLMs), can revolutionize
traditional recommendation systems. By leveraging their powerful capabilities in
language comprehension, reasoning, planning, and generation, recommendation
systems can facilitate more intelligent user-system interactions, enhance personal-
ized content generation, improve data representation, achieve generative item recall
and ranking, and contribute to evaluation processes. These advancements promise to
enhance user experience and system performance but also present challenges such as
ensuring trustworthiness in Al-generated content and managing high computational
costs. We discuss these developments and identify open problems and future
research directions for integrating generative Al into recommendation systems.

8.1 Introduction

The landscape of recommendation systems has evolved dramatically over the
past few decades. Generally speaking, recommendation systems aim to infer user
preference from behaviors and provide personalized recommendations by various
algorithms such as collaborative filtering and content-based approaches [61, 62].
As digital data explodes and computational power surges, recommendation systems
advance significantly, incorporating powerful machine learning and deep learning
models [21, 22]. With the maturing of technology, recommendation systems have
grown into a critical infrastructure for information dissemination across various
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Internet platforms, ranging from social media and content streaming services to
e-commerce [38].

In recent years, generative Al has experienced explosive growth, affecting
information generation and exchange on the Internet. On the one hand, generative
Al showcases remarkable content generation capabilities across various modalities
including text, images, videos, and audio, fundamentally altering the landscape of
information generation [60, 63, 64, 82, 91, 101]. In contrast to generating content
by humans, generative Al can swiftly produce vast amounts of personalized content
and collaborate with humans for editing, significantly enhancing the personalization
and efficiency of content generation. On the other hand, LLMs as epitomized by
ChatGPT [8, 55] exhibit powerful capabilities in reasoning, planning, and language
comprehension and generation, thereby revolutionizing the way of information
exchange. LLMs facilitate more intelligent interactions with users, allowing users
to freely express information needs while enabling LLMs to better understand user
intents and preferences to deliver personalized content. As such, by revolutionizing
the ways of information generation and exchange, generative Al has the potential to
reshape the paradigm of information dissemination in traditional recommendation
systems.

We outline how generative Al can enhance traditional recommendation systems
from five different perspectives.

(1) Intelligent interactions. LLMs enable more intelligent interactions between
the recommendation systems and users, facilitating seamless information
exchange. On the user side, individuals can articulate their information
needs more actively and efficiently through natural language and proactively
correct any unsuitable recommendations, thus exerting better control over the
recommended items (controllability) [37]. On the recommendation system
side, the system gains a deeper understanding of user intent and preferences;
meanwhile, the system may provide superior explanations for recommendations
(explainability) [95]. More importantly, recommendation systems can optimize
long-term objectives based on LLMs’ reasoning and planning abilities,
shifting toward some long-term recommendation tasks such as proactive
recommendation [6].

(2) Personalized content generation. Generative Al can collaborate with content
producers and users to generate or edit more diverse and personalized con-
tent across various domains such as news [16, 34, 102], short videos [77],
movies [104], music [13], and clothing design [90]. In these domains, generative
Al can combine implicit user feedback (e.g., click and favorite), explicit
user instructions, and context information to model user preference and then
personalize existing content or generate entirely new content.

(3) Data augmentation and representation. Generative models are able to enrich
recommendation data for traditional recommendation models. First, its pow-
erful generative capabilities can be harnessed for data augmentation, thereby
enhancing data heterogeneity and model generalization for traditional rec-
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ommendation systems [48, 85]. Second, it can enhance feature encoding by
providing superior feature representation ability [35, 58].

(4) Generative recall and ranking. Generative item recall and ranking repre-
sent another crucial research direction. Classic generative models, such as
Variational Autoencoders (VAEs), have shown promising performance in item
ranking tasks [40, 78]. Nowadays, LLMs and diffusion models are also being
applied to item recall and ranking [26, 29, 79]. For example, given users’
features and interaction history in natural language, LLMs can generate the item
identifier (e.g., ID and title) as the recalled item [27]. Diffusion models can also
generate the next item to interact with or directly generate the ranking scores for
existing items based on user interaction history [39, 79].

(5) Evaluation. Generative Al also contributes to the evaluation of recommen-
dations from the perspective of content auditing and user simulation. For
instance, intelligent LLMs can inspect recommended content from the angles
of biases, authenticity, legality, and more. Additionally, LLM-based agents can
be optimized to simulate user behaviors, and then such agents can interact with
the recommendation systems to interactively evaluate the recommendations.

Based on these five dimensions, we anticipate several open problems and future
directions for leveraging generative Al to empower recommendation systems. First,
optimizing LLMs to efficiently achieve more natural and seamless interactions with
users for recommendations remains a significant challenge. As agent technology
matures, the interaction between agents and users for information recommenda-
tions will become a trend in the future. Second, generative Al aiding content
generation needs to integrate domain-specific knowledge, user instructions, and
feedback for personalized content generation. Additionally, ensuring trustworthi-
ness in Al-generated content (AIGC) for recommendation faces various challenges,
particularly due to issues about copyright, bias, privacy, hallucination/authenticity,
and safety. Third, integrating multimodal information into multimodal LLMs for
more accurate recommendations across multiple scenarios and domains for open-
world recommendation is a promising development direction. Nevertheless, the high
costs of using LLMs for recommendation in industry remain a significant challenge.
Finally, exploring content auditing and user simulation via LLMs presents numerous
research challenges.

8.2 Literature Review

In this section, we critically examine the evolution of recommendation systems,
tracing the progression from traditional machine learning techniques to deep
learning approaches in a generative manner. And then we envision the advancements
toward generative recommendation.
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8.2.1 Machine Learning-Based Recommendation

Recommendation systems typically rely on Collaborative Filtering (CF) for person-
alized recommendations [23], which assumes users with similar interactions (e.g.,
ratings or clicks) share similar preferences on items. To achieve CF, early effort
has been made to develop memory-based methods, which predict user interactions
by memorizing similar user’s or item’s ratings [7, 24, 44, 65]. In the same period,
Singular Value Decomposition (SVD) [65] has also been applied to reduce the
dimensionality of the user-item interaction data for more efficient CF modeling.
Later on, popularized by the Netflix Prize, Matrix Factorization (MF) [62] has
become one of the most representative CF approaches. It decomposes the user-
item interactions into user and item latent factors stored in two matrices and then
leverages the inner product of the user and item latent factors to predict the user-
item interaction. In addition to CF-based methods, an orthogonal line of research
focuses on content-based techniques, which attempt to encode user/item features
for interaction prediction. Factorization machine [61] stands as a notable content-
based method that represents user/item features as latent factors and models the
high-order features to predict user-item interactions.

8.2.2 Deep Learning-Based Recommendation

As deep neural networks have demonstrated exceptional learning capabilities across
various domains, there emerges a trend in leveraging deep learning methodologies
to tackle complex user-item interaction patterns in recommendation systems [10,
32]. Notably, Neural Collaborative Filtering (NCF) [23] has been developed to
effectively model noisy implicit feedback data with the use of multi-layer per-
ceptrons (MLP), thereby enhancing recommendation performance. Additionally,
Bert4Rec [70] leverages deep bidirectional self-attention mechanisms to analyze
user behavior sequences for sequential recommendation tasks. Caser [71] intro-
duces a convolutional sequence model that employs both horizontal and vertical
convolutional filters to identify sequential patterns. Subsequently, motivated by the
graphical nature of user-item interactions, researchers have explored the appli-
cation of graph neural networks for recommendation tasks. This research line
has facilitated the exploitation of high-order neighbor information to improve the
representation of users and items, as exemplified by Neural Graph Collaborative
Filtering (NGCF) [80] and LightGCN [22].
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8.2.3 Toward Generative Recommendation

Most recommendation systems utilize discriminative models to predict user-item
interactions. Nevertheless, many efforts have showcased the promising performance
of using generative models for recommendation.

Early studies employ Variational Autoencoder (VAE)-based methods to generate
user-item interactions in parallel [40]. Subsequently, inspired by the powerful gen-
erative capability of diffusion models, researchers have explored utilizing diffusion
models for interaction prediction in various recommendation tasks [39, 79, 100]. In
addition to interaction generation, the strong content generation ability of generative
Al allows for the repurposing of existing items or creation of new items based
on user preference [77]. For instance, a recent work DiFashion [90] harnesses
exceptional diffusion models to simultaneously generate multiple fashion images
for personalized outfit generation, showing promising results.

Moreover, we have also witnessed a rapidly growing interest in leveraging LLMs
for various recommendation tasks, e.g., conversational recommendations [15, 41],
sequential recommendation [18, 42], multimodal recommendation [19, 47], and
explainable recommendation [36, 49]. Consequently, the research on employing
generative models for recommendation emerges as a particularly promising avenue.

8.3 Generative Recommendation

As shown in Fig.8.1, we overview the benefits of using generative models for
recommendation systems and detail the five perspectives in the following sections.

User profile, implicit feedback, instruction, context

. Generative Al _
Controllability 1 ~ N collaboration
e -7 BRI 2 ~—— N
'
User Intelligent interactions RecSys «— Human producer
" < ’ S
B - ‘\_ Personalized AIGC
Explainability \ Data augmentation & representation
Generative recall & ranking

Recommended items
Evaluation

Content auditing, User simulator

Fig. 8.1 Overview of using generative models for recommendation systems from five perspectives
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8.3.1 Intelligent Interactions

Traditional recommendation systems usually infer user preference from implicit
user feedback such as clicks. Surpassing the traditional recommendation sys-
tems, the powerful LLMs provide intelligent interactions through natural language
between users and systems more transparently and efficiently [15]. These intelli-
gent interactions offer several benefits to recommendation systems, for example,
controllability, explainability, and long-term planning, demonstrating benefits from
both the user and system perspectives. Beyond these, it shows great potential to
envision more intelligent interactions between agents and users. For example, an
agent can leverage tools or collaborate with more agents to serve users’ information
needs [96].

* Controllability. From the user side, users can explicitly express their infor-
mation needs or feedback for the recommended items, guiding the system to
generate, adjust, or correct the recommendations according to the users’ per-
sonalized information needs [14]. The integration of such explicit instructions
can enhance the users’ controllability over the system, improving the user’s
experience and satisfaction.

« Explainability. From the system side, the recommendation system can better
capture users’ intent and preferences through both implicit feedback and user
instructions. Besides, the recommendation systems can also actively ask users
questions to clarify the users’ information needs [41]. Thereafter, the system
might provide explanations with the recommended items to facilitate users’
understanding and interactions [17].

¢ Long-term optimization. LLMs might help recommendation systems optimize
some long-term objectives through their planning and reasoning abilities, such
as user retention rate and proactive recommendation. For instance, proactive
recommendation aims to guide users’ preferences to escape from filter bubbles
through multiple rounds of recommendations in a period [67]. LLMs can help
estimate the effect of recommended items on users’ preferences and steer
users to interact with some items by planning a sequence of recommended
items [103].

8.3.2 Personalized Content Generation

In recent years, there have been remarkable advancements in generative Al,
showcasing unprecedented abilities to produce high-quality content across various
modalities, including image (e.g., Stable Diffusion [63], DALL-E [59]), video
(e.g., Make-A-Video [69]), text (ChatGPT [8, 55]), and audio (WaveNet [54]).
Leveraging the powerful generative Al in item production can significantly sup-



8 Recommendation in the Era of Generative Artificial Intelligence 207

. collaboration
Generative Al il Human producer
A =~ ~ T
y Create/Edit  ~ARexistingitem
. . A e R | » Item
User instructions corpus
& feedback P
I User instructions & feedback (A |
User RecSys
) Recommended items |

Fig. 8.2 Illustration of generative Al for content generation for recommendation

plement human-generated items in traditional recommendation systems and create
more personalized content [77].

To elaborate, AIGC enriches the traditional item corpus in two primary
ways [77]: (1) Content repurposing, which edits the existing items based on the user
preference inferred from implicit feedback or instructions. As shown in Fig. 8.2,
generative Al may take the user information and an existing item as input and then
perform conditional generation [77] to edit an existing item to meet user-specific
preference. (2) Content creation, which creates new items tailored to satisfy user-
specific intent and preferences. In this way, generative Al can directly generate
a new item without retrieving any existing item in the item corpus. In these two
ways, generative Al can either collaborate with item producers and regular users for
content generation or edit/create content by itself in some scenarios. By integrating
generative Al, we can significantly enhance the personalization and efficiency of
content generation in recommendation systems [77, 90].

8.3.3 Data Augmentation and Representation

* Data augmentation. Data sparsity is a long-standing problem in recommenda-
tion systems, where insufficient features and user-item interactions hinder the
modeling of collaborative information, thus hurting the accuracy, robustness,
and generalization of recommendation systems. Fortunately, generative models
can alleviate this issue by augmenting the training data, including user pro-
files [99], item features [46], and user-item interactions [84] based on rich prior
knowledge in generative models.

* Feature representation. In addition to data augmentation, leveraging gener-
ative models as the feature encoder is another prevailing approach to bolster
the representations of user preference and item characteristics. Traditional
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recommendation models typically encode the features through neural networks
trained from scratch [86] or some medium-sized pre-trained models [35]. In
contrast, LLMs, pre-trained over significantly larger datasets, possess rich world
knowledge and excel in capturing intricate patterns and nuances in user behav-
iors and item characteristics. Therefore, harnessing LLMs to encode the user
and item features offers significant benefits to downstream recommendation
models.

8.3.4 Generative Recall and Ranking

Variational Autoencoders and Diffusion Models Compared to traditional rec-
ommendation systems that predict user-item interactions via discriminative models,
VAE- and diffusion-based recommenders [40, 51, 79] predict the preference over
all items in a generative manner. In particular, VAE-based models can learn the
underlying probability distribution from the user’s historical interactions and then
predict the interactions over items simultaneously through neural models.

Another promising line is to utilize diffusion models to replace VAE-based
models for interaction modeling with enhanced generative and representation
abilities [33]. The diffusion-based recommendation models work by gradually
adding noises into the user interactions in diffusing steps and predicting future
interactions during the reverse denoising steps [79]. As shown in Fig. 8.3a, during
training, the user’s interactions are gradually diffused into random noise through
the forward process. And then the diffusion model is optimized to recover the

Forwa rd
- -> —-—=p .
E);\;/_ard Reverse
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- N Historical Predicted future

l Xo: One-hot vector of interactions interactions interactions
(a) Training process of diffusion (b) Inference process of diffusion
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—p| Item
Retrieve
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-
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(c) Training process of diffusion-based (d) Inference process of diffusion-based
next-item generation. next-item generation.

Fig. 8.3 Illustration of diffusion-based recommendation models. (a)—(b) Training/inference pro-
cess of interaction prediction. (¢)—(d) Training/inference process of next-item generation
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Fig. 8.4 Illustration of using LLMs for generative recall

interactions step by step through the reverse process, i.e., denoising [25]. As for
inference (Fig. 8.3b), given the user’s historical interactions, the diffusion model
will corrupt the historical interactions and predict the future interactions via reverse
steps.

Besides using diffusion models for interaction prediction, many efforts also shed
light on directly generating the next-interacted item as the recommendation, such as
generating item features or embeddings [39, 92]. As illustrated in Fig. 8.3c, diffusion
models are trained to reconstruct the target item representation from the corrupted
counterpart. Notably, to achieve personalized recommendations, the item represen-
tation is reconstructed guided by users’ historical interactions [92]. During inference
as shown in Fig. 8.3d, given a user’s historical interactions, it generates the next-
item representation conditioned on the representation of historical interactions [39].
Based on the generated item representation, we can obtain the recommended items
via rounding strategies such as KNN [92].

Large Language Models More recently, in the wake of LLMs, extensive efforts
have tried to explore leveraging LLMs to reformulate the sequential recommen-
dation task into a language modeling task and produce recommendations in a
generative manner [18, 53]. There are mainly three crucial steps as shown in Fig. 8.4:
(1) item indexing, which assigns each item an identifier, i.e., a token sequence,
transiting the items from the item space into the language space [37, 42]; (2) user
behavior formulation, which typically converts the user’s historical interactions
in natural language based on the item identifiers, as the input for LLMs; and
(3) next-item generation, which autoregressively generates the item identifier via
beam search [5] based on the user’s historical interactions in natural language. In
this way, LLM-based recommendation models generate recommendations without
calculating each candidate’s ranking score. They implicitly enumerate all candidates
for next-item generation in the language space, thereby drastically reducing the
computational costs for discriminative interaction prediction and memory usage
for storing all item embeddings in large-scale item recommendation scenarios.
Meanwhile, beyond next item generation, there is another research line that takes
the user’s and item’s features as LLMs’ input to generate whether the user will
interact with the item [3], utilizing richer features to pursue more fine-grained item
ranking.

Moreover, recent work also harnesses the strong generalization and reason-
ing ability of LLMs for cross-domain recommendation, cold-start recommenda-
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tion [28], as well as explainable recommendation [49]. Moreover, LLMs show
promising results on multimodal recommendation [19, 47], where items’ visual
features are mapped to the semantic space of LLMs for next-item generation.

8.3.5 Evaluation

Traditional recommendation evaluation typically relies on ground-truth items
through accuracy metrics, e.g., Recall and Normalized Discounted Cumulative Gain
(NDCG). However, they may fall short in assessing generative recommendations,
especially in evaluating user satisfaction with Al-generated items under the
paradigm of interactive recommendation. As such, we expect new and novel
evaluation approaches for recommendation in the era of generative Al to take a
step beyond traditional evaluation strategies.

» Evaluation protocol and metrics. To assess user satisfaction with intelligent
interactive recommendations, it is crucial to devise novel evaluation protocols
for flexible and dynamic user-system interactions. For example, [81] proposes
an evaluation framework, which utilizes user simulators to evaluate interactive
recommendations using both objective and subjective metrics. Specifically, the
user simulator will first interact with recommendation systems, comprising user
requests for content or the system’s proactive solicitation of user preferences.
Subsequently, the recommendation systems are evaluated based on two metrics:
an objective metric (i.e., Recall), and a persuasiveness score obtained through
LLM-based scorers [11], reflecting whether the user is persuaded to accept
recommendations.

* Agent for user simulation. Considering the high costs of online evaluation
with real users, the key to interactive evaluation under the interactive recom-
mendation paradigm lies in building high-quality user simulators. Recently,
LLM-based agents have shown good potential to simulate users, bridging
the gap between offline and online evaluation. The environment between
recommendation systems and users is quite complex due to various interfer-
ence factors [74]. Nevertheless, due to their rich world knowledge, powerful
memorization, and reasoning abilities, LLM-based agents possess the potential
to collect users’ information and simulate their various actions, such as
conversations with the recommendation systems and click behaviors on the
items [74]. In particular, as illustrated in Fig. 8.5, the agent for user simulation
is typically equipped with a profile module to store the user feature, a memory
module to record the user behaviors such as interacted items [98] or inferred
user preference [94], and an action module to interact with the environment
(e.g., items or other agents). By simulating user behaviors, LLM-based agents
can advance traditional evaluation paradigms to interactive evaluation, thereby
estimating the influence of the recommendation policies and recommended
content on users and the community.
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* LLMs for item auditing. As for the item side, a key aspect lies in the evaluation
of the Al-generated items, especially the trustworthiness checks, such as quality,
misinformation, and adherence to legal and ethical standards [77]. To facilitate
the automatic content auditing of Al-generated items, LLMs offer promising
solutions with their competent capabilities, e.g., strong multimodal reasoning
ability and deep understanding of the common knowledge [1]. For example,
LLMs can be utilized to detect errors and correct answers through self-
evaluation [89], and external knowledge can be retrieved by LLMs to detect
misinformation [57].

8.4 Open Problems and Future Directions

8.4.1 Intelligent Interactions

LLMs may facilitate intelligent interactions between users and recommendation
systems, thereby enhancing the user experience and ensuring long-term ecological
stability within these systems. Nevertheless, it is crucial to consider specific
challenges, particularly in terms of controllability, explainability, and long-term
optimization.

¢ Controllability. Controllability in intelligent interactions allows users to tailor
recommendation results based on their control instructions [76]. However, the
implementation of controllability faces several challenges: (1) The range of
controllability. Users can control various aspects of their recommendations,
such as diversity, topicality, and item attributes, to suit their preferences and
information needs. It is thus essential for LLMs to determine the proper control
scope in an appropriate context for users to take charge of their recommen-
dation outcomes. (2) The inspiration for controllability. Encouraging users
to actively utilize control mechanisms is vital. LLMs need to know when and
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how to give users instructions and hints to control the recommendation result.
(3) The execution of controllability. Adjusting recommendations on the fly in
response to user instructions is crucial. The challenge lies in ensuring how these
modifications can accurately reflect the user’s desires without being affected by
irrelevant factors, such as previously out-of-date interactions [76].

» Explainability. Explainability plays a pivotal role in intelligent interactions to
foster user trust. When users grasp the rationale behind specific recommen-
dations, they are more likely to trust the system’s suggestions [2]. However,
the implementation of explainability presents several challenges: (1) The
generation of explanation. Crafting personalized explanations that align with
user preferences and recommendation outcomes in a specific context remains a
complex issue. (2) The update of explanation mechanism. Regularly refining
the explanation mechanisms based on user feedback and directives is essential.
Determining effective methods for integrating such feedback and instructions
to update the strategy of explanation generation is a promising area for future
research.

* Long-term optimization. Traditional recommendation algorithms have pre-
dominantly focused on optimizing short-term accuracy, often overlooking the
critical need for long-term optimization, which significantly impacts user
retention rates and the overall ecological stability of the system [76]. It remains
an open question to leverage the advanced planning capabilities of LLMs
for strategic macro-control of recommendation results to enhance long-term
performance metrics. Moreover, the journey toward long-term optimization is
fraught with challenges, including shifts in user interests and the disruption
caused by external environmental factors. It deserves to consider how to adjust
the planning strategy in time to regulate the recommendation result in the long
term.

8.4.2 Personalized Content Generation

Given that items created by humans may not meet the diverse and dynamic
informational needs of users, generative Al offers the capability to generate
personalized content tailored to individual specifications [77, 90]. However, there
are three key challenges for content generation: (1) Align with user preferences. It
is crucial to ensure the generated content precisely captures and interprets users’
evolving preferences and information requirements. This requires the generative
models to be capable of dynamically learning from user interactions, feedback,
and consumption habits to tailor content personalization effectively. (2) Quality
and trustworthiness. The assurance of the quality and trustworthiness of generated
content emerges as a critical concern. This aspect requires the content to not only
adhere to superior quality standards but also integrate ethical considerations, such
as privacy and fairness from the trustworthy side. (3) Copyright. The legal and
ethical implications of copyright in the realm of Al-Generated Content (AIGC)
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present a complex landscape for exploration. Developing an approach that honors
intellectual property rights while leveraging the creative capabilities of generative
Al is essential. There is an urgent need to develop policies and technologies that
manage the generation, identification, distribution, consumption, and destruction
of AIGC, to ensure that users and creators navigate the generated content in
compliance with the copyright laws and ethical guidelines.

8.4.3 Trustworthiness in Generative Recommendation

In addition to the ranking accuracy of generative models for recommendation, it
is crucial to consider the trustworthiness of recommended content, which is highly
related to ethical, social, and legal implications. Ensuring the trustworthiness of
generative content is essential for maintaining user trust and satisfaction, supporting
unbiased and fair decision-making, ensuring privacy, legality, and security, etc.
However, numerous facets of trustworthiness still pose unresolved challenges.

* Fairness and bias. AIGC faces unique fairness challenges [97] that signifi-
cantly impact user satisfaction and the long-term diversity of the ecosystem.
The fairness issues can be categorized into two distinct types: (1) User-
side fairness. There is a tendency for generative models to offer differing
recommended content to users based on sensitive attributes, such as gender and
race [38]. Addressing how to provide equitable recommendations across diverse
user demographics when using generation for recommendations remains a
critical, yet unresolved issue. (2) Item-side fairness. Generative models for
recommendation may exhibit varying degrees of exposure for different item
groups, where groups can be divided by various aspects such as uploaders and
political bias [31, 97]. It remains a challenging task to ensure item-side fairness
when using generative models for recommendation.

* Hallucination/Authenticity. Generative models, such as GPTs, are prone to
generating text that may contain incorrect facts, fabricated details, or inconsis-
tent information, a phenomenon commonly referred to as “hallucination” [12].
This issue might stem from limitations in a lack of related knowledge in
generative models, potentially leading to diminished user trust and information
pollution. Ensuring the authenticity of generated content remains a significant
unresolved challenge. Some promising directions lie in self-evaluation [88]
and verifying the accuracy of facts, statistics, and claims in generated content
against external reliable sources [20]. Moreover, investigating data-centric
strategies, such as data cleaning and data augmentation, to mitigate halluci-
nations is also critical [87].

 Privacy. The training of generative recommendation models demands sub-
stantial user data, highlighting the critical need for protecting data privacy.
The effectiveness of representative methods of data privacy protection needs
exploration such as privacy-preserving data cleansing [66], encrypted data
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aggregation [73], and local differential privacy [75]. In addition, distributed
learning methods, such as federated learning, also offer a promising solution by
enabling model training and inference on client devices [50, 56]. Nonetheless,
within the context of some large generative recommendations such as LLMs,
the large model size incurs significant communication and computational costs
in a federated learning framework. The challenge of reducing these costs
while maintaining privacy in LLM-based recommendation systems remains an
unresolved challenge.

Safety. The content generated by Al must not pose any risks of harm to users,
including risks of physical and psychological harm [30, 83]. For instance, the
generated micro-video for teenagers should not contain any unhealthy content.
However, the safety side of generated content has not been well explored. It
is still an open problem to devise some pre-processing strategies like data
cleansing, in-processing strategies such as building robust models, and post-
processing methods such as rigorous output scrutiny in personalized content
generation for recommendation.

8.4.4 Multimodal Large Language Models for Open-World

Recommendation

With advancements in multimodal LLMs, exploring multimodal LLMs for open-
world recommendation across various domains presents a promising avenue [47].
This might contribute to intelligent recommendation models to understand user
behaviors across domains and yield recommendations in the open domain. However,
this line of research is challenging:

Encoding and decoding of multimodal content and user behaviors. A
critical aspect of leveraging multimodal LLMs for recommendation systems
involves the efficient encoding of user interaction behaviors and multimodal
user and item content into the semantic space of multimodal LLMs, followed
by an effective decoding process that maps back to the item space to generate
recommendations. This requires methodologies capable of translating users’
and items’ semantics and interaction behaviors between their native modalities
and the semantic space of LLMs, ensuring seamless understanding, reasoning,
and recommendation [72].

Multimodal alignment. The alignment of multimodal LLMs for recom-
mendation is another key issue, including (1) the alignment across different
modalities to pursue accurate content retrieval and generation [9] and (2)
the alignment of multimodal LLMs to reduce hallucination [45] and meet
social norms [68], leading to trustworthy recommendations. Despite promising
results on the alignment of LLMs in the general domain, aligning multimodal
LLMs specifically for recommendation remains challenging. Specifically, it is
crucial to consider personalization for recommendation, and thus the alignment
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involves understanding user preference accurately and aligning fine-grained
multimodal content such as object-level content alignment with user preference.
In addition, for the open-world recommendation, recommended content may
exhibit hallucinations and generate toxic arguments, potentially resulting in
serious consequences in high-stakes scenarios [93]. However, it is still non-
trivial to pursue the alignment of multimodal LLMs to adhere to social norms
for trustworthy recommendations.

* Noises in multimodal content. There are many noisy features in multimodal
user/item content rather than useful information for recommendation, leading
to a low signal-to-noise ratio in multimodal content and posing a significant
challenge for interaction prediction. Strategies must be devised to navigate
through multimodal content, extracting valuable features that closely align with
user behaviors, thus enhancing the recommendation quality.

 Utilization of cross-domain data. Another pivotal area of exploration is the
utilization of multimodal data across different tasks and domains to enhance
open-world recommendations. The core challenge is devising models that can
effectively learn invariant, robust, and effective user/item representations from
heterogeneous data, thereby enabling a synthetic enhancement of recommenda-
tion quality in various scenarios.

8.4.5 Efficiency

In LLM-based recommendation, fine-tuning LLMs with user behaviors is cru-
cial [43]. However, fine-tuning LLMs on large-scale recommendation data demands
substantial computational resources and time costs, thereby diminishing the practi-
cality of LLM-based recommendation systems in real-world applications. As such,
it is essential to enhance the fine-tuning efficiency of LLM-based recommendation
systems. Some valuable directions in enhancing efficiency include: (1) Data
selection. Identifying and extracting the most typical and representative samples
from the fine-tuning dataset is critical. Utilizing this selectively curated data for
fine-tuning can significantly enhance efficiency [43]. (2) Model architecture. It is
vital to explore strategies such as model pruning and distillation during the training
phase to reduce the model size, thereby enhancing efficiency [52].

8.4.6 Agent for User Simulation

Given the advanced contextual understanding and reasoning capabilities of LLMs,
it becomes feasible to develop user simulators via LLM-based agents that can
accurately mimic user preferences, instructions, behaviors, and responses [4]. Such
user simulators could play a pivotal role in assessing the effectiveness of specific
recommendation algorithms or augmenting datasets. However, this area encounters
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significant challenges: (1) Reality of user simulators. Achieving a high degree
of accuracy in simulating user behaviors to closely replicate real user actions
is quite challenging. This endeavor requires LLMs to accurately predict users’
decisions in diverse contexts. Attaining a high precision presents considerable
difficulties, as user decisions are subject to a wide array of influences, such as
personal preferences, situational contexts, and psychological states. (2) Adaptive
upgrade of user simulators. It is essential to update user simulators that align
with dynamic user preferences and behaviors, since user preferences are constantly
changing due to various internal and external factors. It remains an open question
to explore how to flexibly and adaptively upgrade user simulators based on their
latest interaction histories and external influences, such as social relationships. (3)
Simulation of user groups. Another important challenge is how to use a user
simulator to simulate user groups, including modeling the social influence within the
user group, accurately predicting users’ social behaviors, and capturing the dynamic
changes in group behaviors.

8.4.7 Evaluation and Benchmarks

Redefining evaluation protocol for recommendation in the era of generative Al is
also crucial [77]. Traditional ranking metrics such as Recall and NDCG do not fully
encompass the multifaceted nature of user satisfaction that generative models aim
to fulfill. Intuitively, persisting with metrics like ranking accuracy would constrain
our understanding of a generative model’s capability, particularly its generation
quality, and aptitude for delivering personalized content. It is promising to consider
designing new metrics that can evaluate the quality and relevance of generated items
to user preference. Furthermore, it is also imperative to develop new benchmark
datasets and evaluation paradigms for interactive evaluation.

8.5 Conclusion

Generative Al has experienced explosive prosperity recently, revolutionizing ways
of information generation and exchange in recommendation systems. In this chapter,
we outlined how generative Al can enhance traditional recommendation systems
from five aspects: (1) LLMs enable more intelligent interactions between the
recommendation systems and users, facilitating natural information exchange with
the advantages of controllability, explainability, and long-term optimization. (2)
Generative Al can supplement human-generated content with AIGC, revolution-
izing information generation paradigms. (3) Generative models may enrich the
recommendation data via superior data representation and data augmentation. (4)
Generative models such as diffusion models and LLMs have been widely applied
for item recall and ranking tasks, showing promising performance. (5) LLMs can
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promote recommendation evaluation from the perspectives of LLM-based auditing
and user simulation.

Generative Al holds immense potential for reshaping the landscape of recom-
mendation systems. Despite many research challenges that lie ahead, including
ensuring trustworthiness in Al-generated content, integrating multimodal informa-
tion, efficiency, and evaluation challenges, addressing these challenges will pave the
way for intelligent next-generation recommendation systems, significantly elevating
the capabilities of personalized information dissemination in the era of generative

AL
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Abstract Generative Artificial Intelligence (Al) offers powerful tools that funda-
mentally change the design of information access systems; however, it is unclear
how to use them to best serve the needs of people. At present, Large Language
Models (LLMs) process natural language (and multi-modal) input and present
credible-appearing but often completely untrue multi-modal output. This opens the
door to research into how to produce true, complete, relevant information, where
and how to design retrieval augmentation to personalize and ground the system, and
how to evaluate beyond relevance for truth, completeness, utility, and satisfaction.
The applications of generative Al for information-seeking tasks are broad. In this
chapter, we present recent developments in four domains that have been well studied
in the information retrieval community (education, biomedical, legal, and finance).
We follow with a discussion of new challenges (agentic systems) and research
areas that are common to most applications of generative Al to information seeking
tasks (credibility and veracity, new paradigms for evaluation, and synthetic data
generation). The field of Information Retrieval (IR) is at the leading edge of a
transformation in how people access information and accomplish tasks. We have
the rare opportunity to design and build the future we want to live in.
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The release of ChatGPT and the subsequent proliferation of LLMs—Ilarge and
small, open access, and proprietary—caused a collective panic in the research and
industrial communities.! 2 Projects centered on question answering, summarization,
translation, information extraction, and recommendation were so greatly simplified
it appeared everything could be built on a license to a high-quality LLM. Teams were
redirected to figuring out how to use LLMs for their tasks, as companies pivoted to
the new paradigm.’ People asked whether LLMs would replace software engineers
and applied scientists [88] and how science would be disrupted [14]. The concern
that LLMs would accelerate learning, empowering bad actors to quickly gain new
skills in nuclear, biological, or chemical weapons, putting the future of humanity at
risk, prompted specific mention in a 2023 White House Executive Order* followed
by studies by policy organizations [98].

Having a tool as powerful as an LLM makes easy what was previously hard
(such as open-domain question answering and summarization) and opens new
opportunities previously unreachable. Still, a nagging question remains: what do
people really need from an LLM? The initial application (more a demonstration
than a viable product) was a chatbot designed to interact in a natural language
conversation by text [106]. It is unclear whether or when people want to interact
with a system by giving a full-text prompt and then possibly clarifying with
another full-text input. People have deftly found ways to reduce the amount of
typing in both search (expressing even complex needs in 2—4 keywords) [66]
and text conversations (using emojis and abbreviations, dropping punctuation and
capitalization) [126]. It is not unreasonable to predict people will continue with
abbreviated expressions of their needs and expect the new technology to do a better
job of inferring what they want, possibly taking an action on their behalf without
being specifically prompted. Fully multi-modal systems may become the norm,
enabling people to interact as they wish with gesture, image, video, sound, speech,
or text. It is reasonable to expect the system to adapt to the user’s preferred mode of
interaction and respond naturally, in any modality.

The advancement in LLMs over the last 10 years has been dizzying, but it is
unclear how long this pace of innovation will continue, or what the technology
is capable of, and what its limitations are [73]. We now have models capable of
ingesting vast amounts of data, the outcome of an experiment set in motion by
Pasca et al. in the early days of “big data” [107, 108], demonstrating that vastly
more data improves the quality of open-domain factoid question answering. It is still

Uhttps://assets.researchsquare.com/files/rs-3945065/v1_covered_ce3bfe95-03d0-46¢9-8d0a-
411088d03f52.pdf?c=1707839911

2 https://www.nytimes.com/2022/12/05/technology/chatgpt-ai- twitter.html

3 https://www.technologyreview.com/2024/02/29/1089152/generative-ai-differentiating-
disruptors-from-the-disrupted/ visited April 2024.

4 Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial
Intelligence, October 20, 2023. https://www.whitehouse.gov/briefing-room/presidential-actions/
2023/10/30/executive-order-on-the-safe-secure-and- trustworthy-development-and-use-of-
artificial-intelligence/
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unclear how much more data can be ingested and how much more mileage there is
to be gained from the current families of LLMs. Today’s LLMs are exceptionally
good at producing convincing natural language, but they are not reliable sources
of truth [166]. Agent systems show promise, as the agentic components can be
designed to provide credible, attributable information. It may be that the next big
steps forward in generative Al use LLMs as smooth talkers who frequently make
up information (i.e., employing them for managing dialogs, rewriting prompts to
submit to agents, and producing user-friendly outputs) while employing collections
of agents to provide credible, attributable, reliable information.’

However, even if the state of the art in language modeling were not to advance,
the application of this incredibly powerful family of models to different domains
will be ripe for innovation and exploration for a long time. We have the opportunity
to design the future of information access, and we should think intentionally about
what we want the future to be. Considering all of the tasks an AI could do
(creative tasks, evaluations, interpersonal communications, exploration, formulaic
tasks, repetitive tasks), we can decide what to offload to an intelligent workhorse and
what to reserve for people. In this chapter, we discuss application domains that have
been a focus of information retrieval (IR) in the past and discuss the open questions
in the new information landscape. While multi-modal LLMs are an important part
of the future of information access, in this chapter, we focus on text LLMs. At the
end of the chapter, we discuss open problems shared by multiple domains.

9.1 Domains and Applications

9.1.1 Education

The use of generative Al in educational settings has been controversial [42, 157],
echoing a similar discourse 25 years prior about the use of computers and the
Internet [141]. The concerns center around the risk of exposing children to
inappropriate content, causing harm to people’s ability to learn to read, write, and
converse, and in general contributing to anti-social behavior. Wartella and Jennings
[141] noted that the same concerns were echoed in the 1940s with the introduction
of television, in the 1920s with the introduction of radios, and in the 1900s with the
introduction of film.

In the year following the release of ChatGPT,® a Pew Research Center study
found roughly 13% of teens in the USA used ChatGPT for homework.” A Walton

3 Note that a RAG system is a simple agent system where the RAG search system and knowledge
base are an agentic component.

6 https://openai.com/blog/chatgpt visited April 2024.

7 https://www.pewresearch.org/short-reads/2023/11/16/about- 1-in-5-us-teens-whove-heard-of-
chatgpt-have-used-it-for-schoolwork/ visited April 2024.
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Family Foundation study identified that 84% of teachers who used ChatGPT in
their classroom said it had a positive impact.® In spite of early decisions to ban
the technology from use by students,” many educators found ways to integrate it
into the curriculum,'® and the US Department of Education released guidance on
the use of artificial intelligence in the classroom [19].

Information access is a key concern in the field of education, and information
retrieval research from the mid-twentieth century onwards has focused on ways to
improve information literacy and learning outcomes and to provide learning support
such as designing search engines specifically for young people, adjusting search
results according to reading level, and designing methods to derive or generate
supplementary materials such as exam questions and adjunct questions to improve
vocabulary and reading comprehension.

Search is an important instructional tool, and research has focused on under-
standing the specific needs of children, creating child-friendly search engine
designs [13, 38, 49, 84]. A key part of providing search results for educational
purposes includes estimating the reading level of a document [28, 29, 57]. Anuyah
et al. [3] and Syed and Collins-Thompson [121] studied specific optimizations for
classroom use, and Usta et al. [134] explored learning to rank for educational search.
An informative overview of research in IR for children from 2000 to 2020 is in
Huibers et al. [64].

In terms of online learning, Moraes et al. [97] found that short instructional
videos are more effective than Search as an instructional technique (24% improve-
ment in learning gains compared to search), but video instruction paired with
Search is even better (yielding a 41% improvement over search alone). High-quality
generative multi-modal models create the opportunity to design rich multi-modal
learning experiences that combine video, Search, and other modalities to optimize
learning outcomes.

Li et al. [80] point out that intelligent education systems have two main
challenges. One is subject matter expertise, which entails giving complete and true
information, with credible attribution, where so far LLMs have fallen short. The
other is to tailor the content and presentation to the individual learner, requiring
personalization, and an adaptive approach to session context. Lallé and Conati [77]
propose an association rule mining approach to identify video-watching behaviors
that are less conducive to learning, and adaptively tailor video recommendations to
improve learning outcomes.

Retrieval practice (i.e., practice testing), in which the learner is asked to period-
ically recall information from memory that they have just read, is widely accepted

8 https://www.waltonfamilyfoundation.org/learning/teachers-parents-report-positive-impact-of-
chatgpt-on-teaching-and-learning visited April 2024.

9 https://www.nbcnews.com/tech/tech-news/new-york-city-public-schools-ban-chatgpt-devices-
networks-rcna64446 visited April 2024.

10 https://www.politico.com/news/2023/08/23/chatgpt-ai-chatbots-in-classrooms-00111662
visited April 2024.
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as improving reading comprehension. Francis Bacon [10] and John Locke [89] both
advocated for retrieval practice in the 1600s, and it remains a regular practice in
education today.

Prior to the development of LLMs, the research literature focused on statistical
question formulation given an input text [56]. Brown et al. [18] use vocabulary
assessment to determine a student’s reading level and present a system to generate
vocabulary questions based on question templates. An early example of automatic
question generation for reading comprehension used a pre-defined vocabulary and
pattern matching heuristics [144].

Generative Al has been employed to generate exam questions and adjunct
questions to check students’ progress as they read a text. Syed et al. [122] employ
gaze tracking and automatic question generation to improve learning outcomes. Du
et al. [39] employ a Recurrent Neural Network (RNN) encoder-decoder architecture
to generate questions for reading comprehension, evaluated for the naturalness of
the question and the difficulty to answer (but not on improvements to reading
comprehension).

Somewhat surprisingly, in a study of online learning, Davis et al. [34] found that
practice questions had no effect on information retention in online courses. Zhu
et al. [164] found that adjunct questions increase the time spent reading, and while
results are mixed whether fact questions improve reading comprehension, synthesis
questions improved students’ coverage of topics in essay questions. Synthesizing
multiple sources of information and distilling them into a short text is a task made
easier with generative Al. A natural follow-on to this line of research is to investigate
which types of adjunct information (which types of questions or which types of
rich multi-modal experiences) do improve information retention and synthesis and
learning outcomes more generally.

ChatGPT is notable for the fluency of its dialog. This suggests that it might
be ideal for learning a language. There is a lot of material online associated with
basic language courses for languages most commonly spoken as a second language.
The bias in generative Al toward English content will be a challenge for the use
of generative Al in other languages,'! as it may result in a bias toward second
languages popular among English speakers. Amin [2] explores the topic of using
ChatGPT for second-language learning. From an information retrieval perspective,
there is an opportunity to generate dialogues for language learning, which are
tailored not just to the learner’s level of advancement but also to their topical
interests, hobbies, or as a wholistic approach to learning a new topic while learning
a new language.

An important aspect of intelligent tutoring is tailoring the information to the
level of experience with a topic and reading level. Initial reports of style transfer
for generative Al showed astonishing demonstrations of text generated in the style

" https://www.wired.com/story/chatgpt-non-english-languages-ai-revolution/ visited April 2024.
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of Dr. Seuss,12 Ernest Hemingway,13 Shakespeare,14 and others. There has been
a lot of interest in the research community in style transfer for creative purposes,
for improving communication (such as writing in a more formal or business style),
and for mitigating social issues (such as improving the fluency of the text for
second-language learners) [62, 68]. There has been work focusing on personalized
style [12, 102] and writing in a simpler style (e.g., reducing technical jargon) [114].

Style transfer for reading level is an open problem, and generative information
retrieval techniques open up many possibilities in personalizing the depth of
information presented, the reading level of the student, the learning strategy, and
the curriculum. This has the potential to expand the types of information available
to students and language learners, where the system is dynamic in the content, style,
and tone of the writing, rather than relying solely on pre-written documents.

9.1.2 Biomedical

There are many information needs in the biomedical domain, simple and complex,
that require information retrieval solutions [59]. Prior to emergence of generative
Al, search in the biomedical domain was a relatively mature technology. In
addition to general commercial Web search engines, users (i.e., patients, clinicians,
and researchers) turned to domain-specific search systems, such as PubMed,
MedlinePlus, systems developed by the US National Library of Medicine, and
others. Information-seeking tasks in the biomedical domain (question answer-
ing, summarization, information extraction, search) will be greatly facilitated by
LLMs [125, 127]. LLMs are helpful in each step of the search process (querying,
reformulation, retrieval, ranking, and distillation of relevant information) [163].
Further, a general-purpose LLM may be fine-tuned to a specific topic, allowing for
highly specialized systems. For example, Liu et al. [86] describe fine-tuning LLMs
for radiology; Tan et al. [123] fine-tune LLMs for ophthalmology; Tan et al. [124]
fine-tune for traditional Chinese medicine.

Users of IR systems, particularly academics, have concerns for authoritativeness
(who authored a piece of information), timeliness (when it was authored), and
context (of the questions and supporting evidence). Use cases for biomedical
search include clinical (patient-care questions), research (methods and insights),
and teaching (synthesizing knowledge for pedagogy). One basic question about
generative Al and Search is how they compare in meeting information needs. In

12 https://medium.com/ @ alezafreeman/i-asked- chatgpt-to- write-poem-like- dr-seuss-
5e303ee4fdee visited April 2024.

13 https://medium.com/writers-blokke/chatgpt-vs-hemingway-editor- the-smackdown-
da6f220a246¢ visited April 2024.

14 https://www.zdnet.com/article/i-used-chatgpt-to-rewrite- my-text-in- the-style-of-shakespeare-
c3po-and-harry-potter/ visited April 2024.
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the biomedical domain, LLMs have been found to be highly effective in answering
clinical questions [48], taking medical board exams [105], and solving clinical
cases [132]. Several studies have assessed the value of information output by LLMs
compared to search engines. Hopkins et al. [61] found that ChatGPT was more
informative than Google snippets for four cancer questions. Van Bulck and Moons
[135] compared the output of ChatGPT to Google, evaluated by 20 experts in the
domains of congenital heart disease, atrial fibrillation, heart failure, and cholesterol.
Responses by ChatGPT were deemed trustworthy and valuable, with few experts
considering them dangerous. Comparing information from ChatGPT to information
from Google Search, 40% rated ChatGPT as more valuable, 45% as similarly
valuable, and 15% as less valuable, although few details were provided about the
comparisons.

One role for IR in generative Al is to add more recent content to LLMs. Training
LLMs is a very resource-intensive process and can only be done on an intermittent
basis. Retrieval-Augmented Generation (RAG) allows LLMs to incorporate more
recent information and attribute sources to their output [96, 145]. The small amount
of research on RAG in biomedicine shows mixed results. Koopman and Zuccon [75]
found that adding Web Search content to ChatGPT prompts reduced the accuracy of
correct answers using Text Retrieval Conference (TREC) Health Misinformation
Track data. However, Zakka et al. [159] developed an LLM framework called
Almanac that employed RAG and was found to improve question answering
over standard LLMs across axes of factuality, completeness, user preference, and
adversarial safety.

In terms of the reverse process (i.e., generation-augmented retrieval), or Search
systems improved by generative Al methods, there is likewise little research. Jin
et al. [69] developed MedCPT, which uses an encoder model to train on 225 million
query-click pairs in PubMed logs, leading to small improvements over BM25. Wang
et al. [139] used GPT-4 to generate Boolean queries for systematic review search,
obtaining improved precision but at a cost to recall. Jiang et al. [67] proposed
improving dynamic retrieval of electronic health record notes by predicting which
notes are most likely to be read.

Another long-standing biomedical IR use case is the matching of patients to
clinical studies based on the data in their Electronic Health Record (EHR). This
use case was developed in the Text REtrieval Conference (TREC) Medical Records
Track in in 2011-2012 [136, 137] and subsequent work [21, 147]. More recent work
incorporates LLMs via a variety of methods and datasets [37, 69, 76, 103, 133, 146].

One important task at the intersection of IR and generative Al assesses how well
generative Al systems provide attribution for what they say. Rashkin et al. [115]
developed approaches for measuring attribution in natural language generation
models. Recent research has looked at LLMs generating text with citations [44],
source attribution, conscious incompetence [81], and retrieving supporting evidence
for generative question answering [65].

We do know that LLMs fall short when it comes to citations. One analysis of
fabrication and errors in bibliographic citations asked ChatGPT to produce short
literature reviews on 42 multidisciplinary topics [138]. It was found that 55% of
GPT-3.5 citations and 18% of GPT-4 citations were fabricated and that 43% of
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real (non-fabricated) GPT-3.5 citations and 24% of real GPT-4 citations included
substantive errors. Another study prompting ChatGPT to cite articles about learning
health systems found that GPT-3.5 cited 98% incorrect; GPT-4 cited more with only
20.6% incorrect [24]. This led Gusenbauer [52] to advocate that Al tools should
be audited before their widespread use in scientific research, especially systematic
reviews. Heidt [55] noted that LLMs may be useful in drawing connections in the
scientific literature, but we must beware of biases in papers that may be perpetuated
by each component of the system. Jin et al. [69] pointed out that LLMs do not
consult any source of truth and proposed a retrieve-summarize-verify paradigm.

A recent study of resource attribution in the biomedical domain compared several
commercial LLMs, one with RAG, in their ability to cite relevant references for
their claims [150]. Clinical questions for prompting were generated from several
well-known Web health information sources. The output was assessed by clinician
experts for URL source validity, statement-level support of claims, and response-
level support. The best LLM was Microsoft Copilot,'> which includes RAG from the
associated Bing search engine. Copilot had near-perfect URL source validity, 70%
statement-level support, and 54% resource-level support. CoPilot had the lowest rate
of citing no references in response to prompts. Other issues included grounded vs.
correct claims and sources behind firewalls.

The research so far at the intersection of LLMs and IR in biomedicine shows
much potential for generative Al in this process. However, it will be key to maintain
authority, veracity, and timeliness of output from such systems.

9.1.3 Legal

IR has been pivotal in addressing legal domain challenges, serving as an essential
tool for legal professionals to efficiently carry out a multitude of tasks. Retrieval
algorithms, with the inclusion of a controlled vocabulary and a juridical thesaurus,
have been developed to retrieve relevant jurisprudential precedence to assist the
decision-making process [32]. In 2014, the Competition on Legal Information
Extraction/Entailment (COLIEE!®) was first introduced, inviting the development
of informatics technologies on the legal question-answering task. With BERT
published in late 2018, dense representations/encoders such as Doc2Vec, BERT,
or ELMO, in conjunction with traditional methods such as BM25 and TF-IDF, were
studied for retrieving legal cases that should be cited for a query case, as well
as retrieving civil code articles for answering bar exam questions [113]. Echoing
the debate on the effectiveness of early neural models in Search ranking [154], the
vanilla application of transformers to legal retrieval did not improve on traditional
methods [9].

13 https://copilot.microsoft.com/ visited July 2024.
16 https://webdocs.cs.ualberta.ca/~miyoung2/jurisin_task/index.html visited April 2024
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The convergence of GenAl and information access has transformed the landscape
of the legal domain, leading to substantial improvements on several legal tasks
[120]. Tested on three multilingual datasets, Trautmann et al. [129] showed that
foundation models paired with legal prompt engineering delivers promising results
on the task of legal judgment prediction. Other studies reiterated the importance
of prompting, where carefully designed few-shot [15] and chain-of-thought [158]
prompts advanced the effectiveness in legal reasoning tasks. While LLMs are
considered to encapsulate and compress world knowledge in a generic sense,
the success of legal applications relies on the faithfulness and accuracy of the
responses. Niklaus et al. [104] curated a large-scale legal instruction-tuning dataset,
covering 17 jurisdictions, 24 languages, and 12 million examples, to update LLMs
with domain knowledge. Their results suggest that domain-specific pre-training
and instruction tuning improve performance on the LegalBench benchmarking
task!” [51], compared to general-purpose models. However, the effect did not
generalize across the board, echoing the finding that accuracy and high-quality
writing remain a challenge despite the advancements [130].

GenAl and LLMs have also been employed to provide legal advice, such
as supporting law professors with service- and teaching-related tasks [111] and
offering quasi-expert legal advice services [91]. The work of Wu et al. [151] shows
the potential for LLMs and domain-specific models working in a collaborative mode
to assist users in predicting legal judgments. They designed a staged framework,
where domain-specific models were employed to provide labels and retrieve relevant
legal precedent cases, after which LLMs leveraged the cases as in-context examples
to make the final prediction.

From proof-of-concept studies to real-world practice, emerging start-ups have
brought streamlined GenAl capabilities to the consumer space. Paxton'® offers
assisted contract review, legal document drafting, interactive file analysis and legal
research, and automatic Boolean query generation for precision-focused retrieval.
AI Lawyer'® provides consumers with Al-assisted legal consultation while helping
law professionals automate legal research and paperwork. Spellbook”’ embeds
legal documents within Microsoft Word, facilitating the holistic integration of
contract reviewing, legal term analysis, and assisted writing. Noting that truthfulness
significantly influences the usability of Al-enhanced legal applications, Lexis+AI 2!
includes linked legal citations as supportive evidence in the interactions with users
in conversational search, drafting, summarization, and document analysis.

Existing legal applications continue to evolve as the legal landscape stands poised
for innovation. Today, legal document understanding and composition, including
contracts, wills, trusts, deeds, court orders, and court judgments, still require time-

17 https://huggingface.co/datasets/nguha/legalbench visited July 2024

18 https://www.paxton.ai/ visited April 2024.

19 https://ailawyer.pro/ visited April 2024.

20 pttps://www.spellbook.legal/ visited July 2024.

21 https://www.lexisnexis.com/en-us/products/lexis-plus-ai.page visited April 2024.
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consuming, back-and-forth processes to complete. The development of generative
Al and IR techniques facilitates a future for the general public where complex
legal jargon can be explained simply, relevant precedent can be retrieved for
decision making purposes, cross-domain knowledge can be joined, and contextual
customization can be baked in. For organizations, businesses, and law professionals,
opportunities lie in legal risk assessments and research for a variety of tasks. Due
to the complexity and dynamism of regulation, these advanced technologies may
be helpful for analyzing regulatory frameworks and industry standards to identify
potential risks and ensure compliance. This enables legal professionals to anticipate
implications, to advise clients on risk mitigation strategies.

The degree to which AI technologies can replace law professionals is the
subject of intense debate?? [99]. Concerns arise with the reliance on LLMs in
high-stakes circumstances, touching upon a wide array of aspects such as ethics,
policy, doctrine, and more. To study when and why such technologies should or
should not be used, Cheong et al. [26] convened workshops with 20 legal experts
and elicited guidance on appropriate Al assistance for sample use cases. Their
findings advocated for a focus on novel legal problems, for example, that users’
interactions with LLMs are not protected by attorney-client confidentiality or bound
to professional ethics that guard against conflicted counsel or poor-quality advice.
This work sheds light on the need for more thinking into the design of Al in
a professional context. For instance, instead of advising actions or decisions, Al
agents might offer to polish users’ questions and offer relevant facts. Muhlenbach
and Sayn [99] delivered an ethical matrix highlighting ethical aspects and values
in response to the introduction of Al-based models of court decisions. They
concluded that, ultimately, while predictive justice tools have potential, they also
have significant limitations, and legal professionals must be able to use Al tools as
aids.

9.1.4 Finance

Retrieving and accessing financial information is a common task among finance
professionals. Ariannezhad et al. [5] paint a rich picture of how users seek
information among financial statements and disclosures hosted on the Electronic
Data Gathering, Analysis, and Retrieval (EDGAR) system, the primary resource for
accessing company filings. They uncovered that the distributions of filing access
patterns are skewed, where individual users are interested in a limited number of
companies, shedding light on design options to better support user interactions
(e.g., via filing recommendation). Financial news articles serve as another important
source of information for investors. Lavrenko et al. [79] presented a pioneering work

22 https://www.forbes.com/sites/forbestechcouncil/2023/05/25/will-ai-replace-lawyers/?sh=
38f20bd83124 visited April 2024.
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on employing language models for financial news recommendation, by correlating
the content of news stories with trends in financial time series. They demonstrated
that financial news articles could be used to predict forthcoming patterns in stock
prices.

Traditional approaches to financial IR rely on pipelines of machine-learned or
engineered components to address fine-grained tasks in the entire system [20, 85,
112, 119]. As financial documents pose domain-specific challenges, including the
presence of a large amount of tables and (monetary) numbers, Plachouras et al. [112]
proposed a search system with a query understanding component that conducts
both entity tagging and intent ranking. They were also early adopters of natural
language generation techniques to aggregate and synthesize retrieved information
to answers, albeit following a simple template-based approach. Sumithra and
Sridhar [119] leveraged named entity recognition and entity relation linking to
process financial documents, leading to a triplet representation for matching natural
language queries through query conversation. Ceccarelli et al. [20] analyzed the
ranking of posts from the online social media platform X (formerly Twitter)> for the
financial community, suggesting that factors such as popularity in traditional media,
speculation, and capture of fleeting information are critical for a more relevant and
engaging experience with the social media posts.

Machine Learning (ML) and language techniques have been used by financial
services and applications for over a decade, from fraud detection [142], risk assess-
ment [131], market analysis [1, 40], and expense predictions [156] to product and
service recommendations. Agrawal et al. [1] proposed a technique for summarizing
financial reports toward buy-or-sell goals based on hierarchical neural models, while
Fan et al. [40] proposed an attentive graph convolutional network approach for
organizing financial documents into pre-defined categories to facilitate investment
advising services. Tsai and Wang [131] demonstrated that the use of text mining
and learning-to-rank techniques can be effective for assessing the risks of publicly
traded companies.

The financial industry is on the cusp of an unprecedented technological trans-
formation. With generative language capabilities, Choi et al. [27] introduced an
LLM-based conversational financial information retrieval model tailored for query
intent classification and knowledge base labeling. Trained with internal data,
BloombergGPT was introduced by Wu et al. [149], and Bloomberg has integrated
conversational capabilities within its terminal for answering financial questions.
Market sentiment tracking is crucial for decision-makers in the financial sector.
Chen et al. [25] investigated how ChatGPT might capture corporate sentiment
toward environmental policy based on their financial statements. Their findings
suggested that sentiment scores generated by ChatGPT are predictive of a firm’s
risk-management capabilities and stock return performance. In forecasting, Lopez-
Lira and Tang [90] explored the feasibility of predicting subsequent daily stock
returns using ChatGPT with promising results.

23 https://x.com/ visited July 2024.
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In late 2018, Morgan Stanley released an Al-powered tool Next Best Action®*
for financial advisors, assisting them to provide personalized financial advice to
clients based on life events. With recent advances in generative Al, the viability of
building 24/7 end-user-friendly financial advisors that are up-to-date and equipped
with an individual’s context is closer to reality. Magnifi> uses ChatGPT and other
technologies to provide personalized, data-driven investment advice, performing
like a brokerage where one can directly trade stocks and exchange-traded funds
(ETFs).?® Intuit Assist?’ connects existing Intuit product offerings, assisting users
or small businesses in filing taxes, selecting higher reward programs based on
personal spending, and catching up on selling insights with recommended next
steps. Extending the autonomous modality, it is not hard to imagine a future multi-
agent environment where financial decisions can be made with minimal human
intervention, in which actions are executed based on an individual’s goals and risk
tolerance.

Financial institutions deal with a wide array of data types, ranging from
structured or time-series data (e.g., trades, prices, transactions), textual content
(e.g., institutional guidance, news articles, reports), social media data, and graphical
and visual information (e.g., satellite images of economic activities or videos of
company press releases and media interviews). It remains an open research area how
future information systems should integrate diverse data sources, in a user-friendly
way with accurate, timely, and actionable financial analyses. On top of public
information sources, it is anticipated that the user experience will be enhanced with
personalization and understanding the user context.

These new opportunities come with elevated risk. Financial institutions operating
Al-driven systems must navigate a complex regulatory landscape governing data
privacy, consumer protection, and cybersecurity threats [152]. Although financial
services accumulate a large volume of data, they are often stored in silos within
organizations, and data sharing is strictly regulated. Synthetic data generation in the
financial domain presents an opportunity to mitigate this limitation. Synthetic data
that reflects real data distributions has the potential to advance the financial system’s
ability to comprehend and integrate cross-environment information, to better serve
individuals and organizations. Assefa et al. [7] highlighted the importance of
measuring the similarities between real and generated datasets while ensuring the
generative process satisfies any privacy constraints. Koenecke and Varian [74] also
discussed several ways to synthesize data for economic analyses, including using
generative adversarial networks and LLMs.

24 https://www.cnbc.com/2018/1 1/20/morgan-stanley-launches-new-advisory-technology-
platform.html

25 https://magnifi.com/

26 https://www.cnbe.com/2023/04/27/chatgpt-meets-robinhood-new- app-features-ai- powered-
portfolio-mentor-.html

27 https://www.intuit.com/intuitassist/ visited April 2024
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9.2 New Challenges

9.2.1 Agent Systems

Agent systems, interchangeably referred to as other terms such as LLM agents
or agentic workflows, are believed to drive massive Al progress for the years to
come.28-29 They are on the rise in domains such as health [47], education [16, 33],
legal [54], and finance [72, 82, 140]. With advanced language models sitting at
the core, these systems are typically characterized by the autonomous nature with
limited (or no) human intervention in completing tasks or goals. Generally speaking,
their capabilities can be summarized as the following? [93, 153]:

* Reflection and refinement [50, 92]. An agent can reason about past actions,
to learn from mistakes and refine themselves for future steps, with the goal of
improving the outcome of a target task.

* Planning [63]. Related to the abundant literature in productivity [143, 160],
an agent can break down large, high-complexity tasks into smaller, more
manageable sub-tasks for a more successful execution. The act of planning
outlines the steps needed, wherein alternative, parallel intermediate steps can
be contrasted or debated to enhance goal completion.

* Memory [162]. An agent can access external memory in addition to its internal
memory. In-context learning can be considered short-term memory for the
agent, while long-term memory via external vector stores can provide the agent
with the capability to retain and recall information over extended periods, as
with retrieval-augmented generation.

* Tool use [45, 110]. An agent is commonly equipped with a variety of tools and
can learn which to use to enhance the quality and accuracy of the outcome. Tools
can be ML or non-ML functions, application programming interface (APIs),
or services, such as calculators, code interpreters, holistic or vertical-specific
search systems, and ticket-booking systems.

* Multi-agent collaboration [60, 148]. A multi-agent approach involves deploy-
ing multiple agents assigned with different roles and capabilities to execute and
collectively complete a goal together. For instance, given the task of planning
a wedding, a multi-agent approach may break down the task and distribute
the load to a financial agent for budget control, a venue agent for time and
location coordination, or a secretary agent that sits on the top of every detail for
communications. A key distinction is whether agents communicate directly to
each other or with a central orchestrator.

28 https://www.deeplearning.ai/the-batch/how- agents-can-improve-1im-performance/ visited
April 2024.

29 https://www.technologyreview.com/2024/05/01/1091979/sam-altman-says- helpful-agents-are-
poised-to-become-ais-killer-function/ visited April 2024.

30 https://ilianweng. github.io/posts/2023-06-23-agent/ visited April 2024.


https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/
https://www.technologyreview.com/2024/05/01/1091979/sam-altman-says-helpful-agents-are-poised-to-become-ais-killer-function/
https://www.technologyreview.com/2024/05/01/1091979/sam-altman-says-helpful-agents-are-poised-to-become-ais-killer-function/
https://lilianweng.github.io/posts/2023-06-23-agent/

236 V. Murdock et al.

The precursor to agent systems in IR is aggregated search [78, 101], where a
search query is submitted to multiple (disparate, multi-modal) information sources
(or search verticals such as blogs, video, social media posts, audio, Web pages, etc.),
and the results from each source are assembled into a single response to the query.
The primary research questions as the field of aggregated search advanced were
how to select the sources given a query; how to weight the results from each source
(or how to compare their relevance to the query given that similarity scores from
each source are not comparable); how to present them to the user in a coherent way;
which items to interleave, merge, or summarize; and how to assess the quality of
the aggregated result. In the new generative Al paradigm, we consider the search
engine as the orchestrator and each source (and its vertical search system) an agent.

More recently, Pan et al. [109] introduced an agent system for information
seeking that employs an LLM as its cognitive core. Upon receiving a user query, the
agent LLM orchestrates the following steps: (1) Updates and retrieves memory (e.g.,
past conversations or completed tasks); (2) conducts planning (i.e., a comprehensive
prompt for generating sub-tasks and associated tools); (3) executes tools (i.e.,
invoking tools with arguments and updating memory); and (4) draws conclusions
(i.e., a final response to the user’s query). To fulfill user queries, an array of
information-oriented tools were made available to the agent, including Web and
Wikipedia search, Web content understanding (e.g., Web pages, aspects, videos), as
well as time-aware functional tools such as calendar, holiday, and weather details.
The experiments showed that agent systems typically yield better results (in terms
of truthfulness and quality) than directly querying the LLM. Fine-tuning open-
sourced models with generated templates designed for agent systems was shown
more effective than using them out of the box.

Zong et al. [165] introduced a framework that uses an LLM-based agent with
multiple roles for question-answering tasks based on knowledge bases. Specifically,
the agent is assigned three distinct roles: a generalist adept at small tasks by the
given examples, a decision-maker proficient at identifying options and selecting
candidates, and an advisor skilled at providing answers using accessible knowledge.
These roles collaborate to conduct question parsing, Uniform Resource Identifier
(URI) linking, query construction, and answer generation. Their follow-up analysis
suggested that the generalist benefits from quality data more than quantity; the
decision-maker could be hurt by considering too many URI candidates; and the
advisor should orchestrate to retry previous steps if the other two roles did not yield
sufficient information. The design of future information acquisition agent systems
includes investigations about how to store and retrieve memory, which roles should
be created to balance effectiveness and efficiency, and how to navigate complex,
multi-modal, open-domain, or domain-specific corpora to respond and execute. As
agent systems for information seeking evolve, so do the open research questions.

Evaluating an agent system is intrinsically challenging and nuanced, leading
to an increasing need for reliable benchmark paradigms. Arabzadeh et al. [4]
proposed a separate LLM agent workflow designed for evaluation, to assess the
alignment between the behavior of an agentic application and user goals. This
framework, AgentEval, comprises two agents: CriticAgent suggests criteria based



9 Designing for the Future of Information Access with Generative. . . 237

on task descriptions and proposed solutions, and QuantifierAgent verifies how well
the solutions align with the criteria.

Another line of work focuses on establishing realistic, challenging benchmark
datasets, which aim to test agents’ multi-step problem-solving abilities in multi-
modal environments [35, 46, 87, 95]. Deng et al. [35] introduced MIND2WEB,
consisting of instances that reflect the sequence of actions carried out by an agent
in order to complete a given task on a Web site. For example, given a task show me
the reviews for the auto repair business closest to 10002, the sequence of actions
are identified as search “auto repair”, click button on auto repair, type 10002 in
textbox, - - -, click read reviews, etc. MIND2WEB covered 2000 open-ended tasks
collected via human annotators on Amazon Mechanical Turk, from 137 Web sites
spanning 31 domains such as airline travel, housing information, and more.

With a similar goal, Liu et al. [87] presented AGENTBENCH, a benchmark
that consists of eight distinct environments to assess LLM-as-Agent’s reasoning
and decision-making abilities. Their results revealed a significant disparity in
performance between proprietary and smaller open-sourced models, where the poor
performance of the smaller models was due to poor long-term reasoning, decision-
making, and instruction-following abilities.

Opportunities associated with agent systems are accompanied by risks [11].
The transmission of private information (e.g., user-provided texts or images) to
both LLMs and tools poses privacy risks to users [161]. As systems are com-
posed of multiple components, they are vulnerable to security risks, such as a
malicious attacker injecting a backdoor into the LLM agents to adversely affect
user experiences through interactive reasoning traces [155]. Agent systems also
introduce safety concerns. Based on an emulated framework, Ruan et al. [117]
identified safety risks correlated with under-specified information and erroneous
tool executions. For example, an agent could use a fabricated recipient bank account
to transfer money or deliberately miscalculate the amount of money to transfer to
the intended recipient. Compared to LLMs, LLM-based agents are more prone to
harmful behaviors due to domino effects. On AdvBench, Tian et al. [128] showed
that Attack Success Rate (ASR) of harmful behaviors increases with the number
of agents. In addition, when a higher-level agent disseminates harmful information,
it significantly increases the likelihood of inducing similar harmful behaviors in
lower-level agents. More broadly, the impact of Al agents automating complex,
high-stakes tasks can disempower individuals in the space of decision-making or
can create delayed, hard-to-notice harms given agents’ optimization on long-horizon
goals [22, 23].

9.2.2 Common Threads

IR up to now has been the study of how people access information and how to design
systems to help them. The focus has been primarily on finding relevant documents,
passages, or sentences and (if needed) extracting key nuggets of information.
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Generative Al turns the problem on its head, as LLMs are capable of generating
synthesized information. The challenge for IR now is how to generate relevant
information to satisfy the user’s needs, rather than identifying existing information.
Due to the fluency of the language, the LLM sounds more credible than it is. As
Metzler et al. [94] put it, LLMs are dilettantes where people need experts.

Previously information credibility was handled primarily by finding authoritative
source documents [17, 71], and letting the user decide whether the information was
credible. Topics such as information provenance and attribution have a new urgency,
due to the LLMs propensity for inventing information from whole cloth [8].

Research on veracity was primarily centered on Question Answering. The verac-
ity of answers to factoid questions was handled by finding the same answers from
multiple sources [83] or from carefully constructed knowledge bases (augmented
with data from external sources) [118] or from repositories of human-answered
questions via community question answering sites such as Yahoo! Answers>! [70].
In the current research, veracity is often measured as faithfulness (the answer is in
agreement with a reference text), which has its precursors in passage retrieval for
question answering [30, 31, 100, 116].

Generative IR requires new evaluation paradigms, because the information
is generated rather than identified or extracted. Generative models are typically
aligned to a policy determined by the model designer. The policy reflects what an
appropriate response is. For example, model alignment may prevent the model from
dispensing medical or legal advice or from using profanity.

Red teaming (a suite of techniques to evaluate a system’s security based on
how easy it is to break the security) shows promise as a method for evaluating
a model’s alignment [43]. However, red teaming, which consists of interactive
sessions designed to elicit an inappropriate response from the model, itself is not
scientific. Red teaming will identify gaps that can be patched, but it is not possible
to measure whether the model as a whole is improving as a result of red teaming
or how to measure the effectiveness of the red teaming itself. Often red teaming
is measured in terms of success rate (how often did the red teamer convince the
model to respond inappropriately), but since each red teaming session is interactive
and based on the skill of the red teamer, it is not possible to determine whether
the success rate was due to the red teamer’s skill or due to the model’s inherent
weakness. It does not consider the relative risk of each gap to the business or
the end user. This becomes even more critical as the industry turns to automating
the red teaming process. Without a method to measure the effectiveness of a red
teaming effort, there is no way to know whether the automation of the process is
effective or to estimate its return on investment or to assess whether the automated
red teaming is increasingly challenging to the system as the system matures. Putting

31 Yahoo! Answers was a Web site where users could ask questions or answer the questions of
other people and upvote questions or answers to increase their visibility. The site was shut down in
2021.
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red teaming on a scientific footing, and exploring more effective ways to probe the
model alignment, is a new challenge.

For many downstream tasks, there is no existing data for fine-tuning or eval-
uation, so the data must be generated, often by other LLMs [41]. For example,
Hémaldinen et al. [53] explore the use of LLMs to generate synthetic user research
data. Synthetic data has been investigated in a large number of domains (e.g.,
for tabular healthcare data [58], for traffic sign recognition [36], for finance
applications [6], and more). Common approaches include prompting an LLM to
generate the data directly (using zero shot or few shot prompting) or using the LLM
to augment the data with similar examples.

Beyond these examples, we have seen in this chapter and previous chapters that
there are several topics of research that cover multiple domains, such as fine-grained
personalization, effective use of user session context, style transfer, subjective
descriptions (e.g., of items to be recommended). As generative IR systems produce
fluent dialog interactions, we have new paradigms for information access available
to us, such as multi-modal systems, mixed initiative systems (where the system
takes an action on behalf of the user), agent architectures for reasoning, planning
and decision-making, and true interactive information seeking sessions, where the
Generative IR system is more of a partner than a tool. All of these topics will present
research opportunities for a long time to come.
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