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Preface 

Statistics provides one of the few principled means to extract information 
from random data, and has perhaps more interdisciplinary connections than 
any other field of science. However, for a beginning student of statistics the 
abundance of mathematical concepts, statistical philosophies, and numerical 
techniques can seem overwhelming. The purpose of this book is to provide a 
comprehensive and accessible introduction to modern statistics, illuminating 
its many facets, both from a classical (frequentist) and Bayesian point of 
view. The book offers an integrated treatment of mathematical statistics and 
modern statistical computation. 

The book is aimed at beginning students of statistics and practitioners 
who would like to fully understand the theory and key numerical techniques 
of statistics. It is based on a progression of undergraduate statistics courses 
at the University of Queensland, the Australian National University, and 
Purdue University. Emphasis is laid on the mathematical and computational 
aspects of statistics. No prior knowledge of statistics is required, but we as-
sume that the reader has a basic knowledge of mathematics, which forms an 
essential basis for the development of the statistical theory. Starting from 
scratch, the book gradually builds up to an advanced undergraduate level, 
providing a solid basis for possible postgraduate research. Throughout the 
text we illustrate the theory by providing working code, rather than relying 
on black-box statistical packages. Because not all readers will have access to 
.MATLAB, we have switched in this Second Edition to the Julia programming 
language, which is freely available and is very close in syntax to .MATLAB. In
addition, being a compiled language, Julia is computationally significantly 
faster than R. We make frequent use of the symbol ☞ in the margin to facili-
tate cross-referencing between related pages. The book is accompanied by the 
website https://people.smp.uq.edu.au/DirkKroese/statbook/ from which the 
Julia code and data files can be downloaded. In addition, we provide . MATLAB
and R versions for each Julia program. 

The book is structured into three parts. In Part I we introduce the fun-
damentals of probability theory. We discuss models for random experiments, 
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viii Preface

conditional probability and independence, random variables, and probability 
distributions. Moreover, we explain how to carry out random experiments on 
a computer. 

In Part II we introduce the general framework for statistical modeling and 
inference, both from a frequentist and Bayesian perspective. We discuss a 
variety of common models for data, such as independent random samples, 
linear regression, and ANOVA models. In this Second Edition we expanded 
the modeling framework by adding a section on statistical learning. We dis-
cuss the difference between supervised and unsupervised learning, explain 
training and test loss, and examine prediction accuracy in terms of approxi-
mation and statistical error. 

Once a model for the data is determined one can carry out a mathematical 
analysis of the model on the basis of the available data. We discuss a wide 
range of concepts and techniques for statistical inference, including likelihood-
based estimation and hypothesis testing, sufficiency, confidence intervals, and 
kernel density estimation. We encompass both frequentist and Bayesian ap-
proaches, and also highlight popular Monte Carlo sampling techniques. 

In Part III we address the statistical analysis and computation of a vari-
ety of advanced models, such as generalized linear models, autoregressive and 
moving average models, Gaussian models, and state space models. This Sec-
ond Edition features two completely new chapters. The first is on shrinkage 
estimators and regularization techniques, which include ridge and lasso re-
gression, as well as multiple hypothesis testing. The second new chapter is on 
nonparametric models. This features nonparametric statistical tests, kernel 
functions, regression and smoothing splines, and Gaussian process regression. 
Particular attention is paid to fast numerical techniques for frequentist and 
Bayesian inference on these models. Throughout the book our leading prin-
ciple is that the mathematical formulation of a statistical model goes hand 
in hand with the specification of its simulation counterpart. 

The book contains a large number of illustrative examples and problem 
sets (with solutions). To keep the book fully self-contained, we include the 
more technical proofs and mathematical theory in an appendix. To facilitate 
the use of Julia we have added a concise introduction to the Julia computing 
language. 

Brisbane, QLD, Australia Dirk P. Kroese 
West Lafayette, IN, USA Joshua C. C. Chan 
June 11, 2024
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Abbreviations and Acronyms 

ANOVA analysis of variance 
AR autoregressive 
ARMA autoregressive moving average 
cdf cumulative distribution function 
EM expectation–maximization 
iid independent and identically distributed 
pdf probability density function (discrete or continuous) 
PGF probability generating function 
KDE kernel density estimate/estimator 
MA moving average 
MCMC Markov chain Monte Carlo 
MGF moment generating function 
ML(E) maximum likelihood (estimate/estimator) 
PRESS predicted residual sum of squares
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Mathematical Notation 

Throughout this book we use notation in which different fonts and letter 
cases signify different types of mathematical objects. For example, vectors 
.a, b, x, . . . are written in lowercase slanted boldface font, and matrices . A, . B, 
. X in uppercase upright boldface font. Euler script fonts . N and . U are used for 
the normal and uniform distributions, and sans serif fonts for other probabil-
ity distributions, such as . Exp, .Gamma and . Bin. Probability and expectation 
symbols are written in black board bold font: . P and . E, as well as the identity 
matrix . I. Julia code will always be written in typewriter font. 

Traditionally, frequentist and Bayesian statistics use a different notation 
system for random variables and their probability density functions. In fre-
quentist statistics and probability theory random variables usually are de-
noted by uppercase letters .X, Y, Z, . . ., and their outcomes by lower case 
letters .x, y, z, . . .. Similarly, for multivariate random variables (i.e., random 
vectors), we use the notation .X, Y , Z, . . ., with outcomes .x, y, z, . . .. Observe 
the notational distinction between a random vector . X and a matrix . X. 

Bayesian statisticians typically use lower case letters for both the random 
variable/vector and its outcome. More importantly, in the Bayesian notation 
system it is common to use the same letter f (or p) for different probability 
densities, as in .f(x, y) = f(x)f(y). Frequentist statisticians and probabilists 
would prefer a different symbol for each function, as in .f(x, y) = fX(x)fY (y). 
We will predominantly use the frequentist notation, especially in the first part 
of the book. However, when dealing with Bayesian models and inference, such 
as in Chaps. 8 and 13, it will be convenient to switch to the Bayesian notation 
system. Here is a list of frequently used symbols: 

.≈ is approximately 

.∝ is proportional to 

.∞ infinity 

.⊗ Kronecker product 

.
def= is defined as 
.∼ is distributed as

xix
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.
iid∼, . ∼iid are independent and identically distributed as 
.
approx.∼ is approximately distributed as 
.|→ maps to 
.A ∪ B union of sets A and B 
.A ∩ B intersection of sets A and B 
.Ac complement of set A 
.A ⊆ B A is a subset of or is equal to B 
.∅ empty set 
.‖x‖ Euclidean norm of vector . x
.∇f gradient of f 
.∇2f Hessian of f 
.AT, .xT transpose of matrix . A or vector . x
.diag(a) diagonal matrix with diagonal entries defined by . a
.tr(A) trace of matrix . A
.det(A) determinant of matrix . A
.|A| absolute value of the determinant of matrix . A. Also, . |A| is the 

number of elements in set A, and  . |a| the absolute value of real 
number a 

.argmax .argmax f(x) is a value . x∗ for which .f(x∗) ≥ f(x) for all x 

.d differential symbol 

.E expectation 

.e Euler’s constant . limn→∞(1 + 1/n)n = 2.71828 . . .

.i the square root of . −1

.1A, 1{A} indicator function: equal to 1 if the condition/event A holds, and 
0 otherwise. 

.I, In identity matrix 

.ln (natural) logarithm 

.N set of natural numbers . {0, 1, . . .}

.ϕ pdf of the standard normal distribution 

.Φ cdf of the standard normal distribution 

.P probability measure 

.O big-O order symbol: .f(x) = O(g(x)) if .|f(x)| ≤ αg(x) for some 
constant . α as . x → a

o little-o order symbol: .f(x) = o(g(x)) if .f(x)/g(x) → 0 as . x → a
.R the real line = one-dimensional Euclidean space 
.R+ positive real line: . [0, ∞)
.R

n n-dimensional Euclidean space 
.^θ estimate/estimator 
.x, y vectors 
.X, Y random vectors 
.Z set of integers . {. . . , −1, 0, 1, . . .}

Probability Distributions 

.Ber Bernoulli distribution 

.Beta beta distribution
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.Bin binomial distribution 

.Cauchy Cauchy distribution 

.χ2 chi-squared distribution 

.Dirichlet Dirichlet distribution 

.DU discrete uniform distribution 

.Exp exponential distribution 

.F F distribution 

.Gamma gamma distribution 

.Geom geometric distribution 

.InvGamma inverse-gamma distribution 

.Mnom multinomial distribution 

.N normal or Gaussian distribution 

.Poi Poisson distribution 

.t Student’s t distribution 

.TN truncated normal distribution 

.U uniform distribution 

.Weib Weibull distribution



Part I 
Fundamentals of Probability 

In Part I of the book, we consider the probability side of statistics. In particu-
lar, we will consider how random experiments can be modeled mathematically 
and how such modeling enables us to compute various properties of interest 
for those experiments.
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Chapter 1 
Probability Models 

1.1 Random Experiments 

The basic notion in probability is that of a random experiment: an ex-
periment whose outcome cannot be determined in advance, but which is 
nevertheless subject to analysis. Examples of random experiments are: 

1. Tossing a die and observing its face value
2. Measuring the amount of monthly rainfall in a certain location
3. Counting the number of calls arriving at a telephone exchange during a

fixed time period
4. Selecting at random 50 people and observing the number of left-handers
5. Choosing at random ten people and measuring their heights

The goal of probability is to understand the behavior of random experi-
ments by analyzing the corresponding mathematical models. Given a math-
ematical model for a random experiment one can calculate quantities of in-
terest such as probabilities and expectations. Moreover, such mathematical 
models can typically be implemented on a computer, so that it becomes pos-
sible to simulate the experiment. Conversely, any computer implementation 
of a random experiment implicitly defines a mathematical model. Mathemat-
ical models for random experiments are also the basis of statistics, where the 
objective is to infer which of several competing models best fits the observed 
data. This often involves the estimation of model parameters from the data. 

Example 1.1 (Coin Tossing). One of the most fundamental random ex-
periments is the one where a coin is tossed a number of times. Indeed, much 
of probability theory can be based on this simple experiment. To better un-
derstand how this coin toss experiment behaves, we can carry it out on a 
computer, using programs such as Julia. The following simple Julia program 

© The Author(s), under exclusive license to Springer Science+Business 
Media, LLC, part of Springer Nature 2025 
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simulates a sequence of 100 tosses with a fair coin (i.e., Heads and Tails are 
equally likely) and plots the results in a bar chart. 

x =  rand(100) .< 0.5 # generate a vector of coin tosses 
t = 1:100 # range of times 
using Plots # load the plotting library 
bar(t,x,legend=false,color=:darkblue) # plot as a bar chart 

The function rand draws uniform random numbers from the interval 
. [0, 1]—in this case a 100-element vector of such numbers. By testing whether 
the uniform numbers are less than . 0.5, we obtain a vector x of logicals (true 
or false), indicating, say, Heads and Tails. Typical outcomes for three such 
experiments are given in Fig. 1.1. 

001051 

Fig. 1.1 Three experiments where a fair coin is tossed 100 times. The dark bars indicate 
when “Heads” (=1) appears 

We can also plot the average number of Heads against the number of 
tosses. In the same Julia program, this is accomplished by adding two lines 
of code: 

y =  cumsum(x)./t # average number of Heads 
plot(t,y) # plot the result in a line graph 

The result of three such experiments is depicted in Fig. 1.2. Notice that 
the average number of Heads seems to converge to 0.5, but there is a lot of 
random fluctuation.
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0 10 20 30 40 50 60 70 80 90 100  
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0.4 

0.6 

0.8 

1 

Fig. 1.2 The average number of Heads in n tosses, where . n = 1, . . . , 100

Similar results can be obtained for the case where the coin is biased, with 
a probability of, say, Heads of p. Here are some typical probability questions. 
• What is the probability of x Heads in 100 tosses? 
• What is the expected number of Heads? 
• How long does one have to wait until the first Head is tossed? 
• How fast does the average number of Heads converge to p? 
A statistical analysis would start from observed data of the experiment—for 
example, all the outcomes of 100 tosses are known. Suppose the probability 
of Heads p is not known. Typical statistics questions are: 
• Is the coin fair? 
• How can p be best estimated from the data? 
• How accurate/reliable would such an estimate be? 

The mathematical models that are used to describe random experiments 
consist of three building blocks: a sample space, a set  of  events, and a proba-
bility. We will now describe each of these objects. 

1.2 Sample Space 

Although we cannot predict the outcome of a random experiment with cer-
tainty, we usually can specify a set of possible outcomes. This gives the first 
ingredient in our model for a random experiment. 

Definition 1.1. (Sample Space). The sample space . Ω of a random 
experiment is the set of all possible outcomes of the experiment.



6 1 Probability Models

Examples of random experiments with their sample spaces are: 

1. Cast two dice consecutively and observe their face values. 

. Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)} .

2. Measure the lifetime of a machine in days. 

. Ω = R+ = { positive real numbers } .

3. Count the number of arriving calls at an exchange during a specified time 
interval. 

. Ω = {0, 1, . . .} .

4. Measure the heights of ten people. 

. Ω = {(x1, . . . , x10) : xi ≥ 0, i = 1, . . . , 10} = R
10
+ .

Here .(x1, . . . , x10) represents the outcome that the height of the first 
selected person is . x1, the height of the second person is . x2, and so on. 

Notice that for modeling purposes it is often easier to take the sample 
space larger than is strictly necessary. For example, the actual lifetime of 
a machine would in reality not span the entire positive real axis, and the 
heights of the 10 selected people would not exceed 9 feet. 

1.3 Events 

Often we are not interested in a single outcome but in whether or not one of 
a group of outcomes occurs. 

Definition 1.2. (Event). An event is a subset of the sample space . Ω
to which a probability can be assigned. 

Events will be denoted by capital letters .A, B, C, . . . . We say that event 
A occurs if the outcome of the experiment is one of the elements in A. 

Examples of events are: 

1. The event that the sum of two dice is 10 or more: 

. A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} .

2. The event that a machine is functioning for less than 1000 days: 

.A = [0, 1000) .
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3. The event that out of a group of 50 people 5 are left-handed: 

. A = {5} .

Example 1.2 (Coin Tossing). Suppose that a coin is tossed three times, 
and that we record either Heads or Tails at every toss. The sample space can 
then be written as 

. Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} ,

where, for instance, HTH means that the first toss is Heads, the second Tails, 
and the third Heads. An alternative (but equivalent) sample space is the set 
.{0, 1}3 of binary vectors of length 3; for example, HTH corresponds to (1,0,1) 
and THH to (0,1,1). 

The event A that the third toss is Heads is 

. A = {HHH, HTH, THH, TTH} .

Since events are sets, we can apply the usual set operations to them, as 
illustrated in the Venn diagrams in Fig. 1.3. 

1. The set .A∩B (A intersection B) is the event that A and B both occur. 
2. The set .A ∪ B (A union B) is the event that A or B or both occur. 
3. The event . Ac (A complement) is the event that A does not occur. 
4. If .B ⊆ A (B is a subset of A) then event B is said to imply event A. 

Fig. 1.3 Venn diagrams of set operations. Each square represents the sample space . Ω

Two events A and B which have no outcomes in common, that is, . A∩B = ∅
(empty set), are called disjoint events. 

Example 1.3 (Casting Two Dice). Suppose we cast two dice consecu-
tively. The sample space is given by . Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . ,
(6, 6)}. Let  .A = {(6, 1), . . . , (6, 6)} be the event that the first die is 6, and 
let .B = {(1, 6), . . . , (6, 6)} be the event that the second die is 6. Then 
.A ∩ B = {(6, 1), . . . , (6, 6)} ∩ {(1, 6), . . . , .(6, 6)} = {(6, 6)} is the event that 
both dice are 6.
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Example 1.4 (System Reliability). In Fig. 1.4 three systems are depicted, 
each consisting of three unreliable components. The series system works if all 
components work; the parallel system works if at least one of the components 
works; and the 2-out-of-3 system works if at least two out of three components 
work. 

1 2 3 

Series 

1 

2 

3 

Parallel 

1 

1 

2 

2 

3 

3 

2-out-of-3 

Fig. 1.4 Three unreliable systems 

Let . Ai be the event that the i-th component is functioning, .i = 1, 2, 3; and  
let .Da, Db, Dc be the events that respectively the series, parallel, and 2-out-
of-3 system are functioning. Then, .Da = A1 ∩A2 ∩A3 and .Db = A1 ∪A2 ∪A3. 
Also, 

. Dc = (A1 ∩ A2 ∩ A3) ∪ (Ac
1 ∩ A2 ∩ A3) ∪ (A1 ∩ Ac

2 ∩ A3) ∪ (A1 ∩ A2 ∩ Ac
3)

= (A1 ∩ A2) ∪ (A1 ∩ A3) ∪ (A2 ∩ A3) .

Two useful results in the theory of sets are the following, due to De Morgan: 

Theorem 1.1. (De Morgan’s Laws). If .{Ai} is a collection of sets, 
then 

.

(I I
i

Ai

)c

=
U

i

Ac
i (1.1) 

and 

.

(U
i

Ai

)c

=
I I

i

Ac
i . (1.2) 

Proof. If we interpret . Ai as the event that component i works in Example 1.4, 
then the left-hand side of (1.1) is the event that the parallel system is not 
working. The right-hand side of (1.1) is the event that all components are not 
working. Clearly these two events are identical. The proof for (1.2) follows 
from a similar reasoning; see also Problem 1.2.  ☞ 18
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1.4 Probability 

The third ingredient in the model for a random experiment is the specification 
of the probability of the events. It tells us how likely it is that a particular 
event will occur. 

Definition 1.3. (Probability). A probability . P is a function which 
assigns a number between 0 and 1 to each event and which satisfies the 
following rules: 

1. .0 ≤ P(A) ≤ 1. 
2. .P(Ω) = 1. 
3. For any sequence .A1, A2, . . . of disjoint events we have 

.Sum Rule: P
( I I

i

Ai

)
=

7
i

P(Ai) . (1.3) 

The crucial property (1.3) is called the sum rule of probability. It simply 
states that if an event can happen in several distinct ways (expressed as a 
union of events, none of which are overlapping), then the probability that at 
least one of these events happens (i.e., the probability of the union) is simply 
the sum of the probabilities of the individual events. Figure 1.5 illustrates 
that the probability . P has the properties of a measure. However, instead 
of measuring lengths, areas, or volumes, .P(A) measures the likelihood or 
probability of an event A as a number between 0 and 1. 

Fig. 1.5 A probability 
rule . P has exactly the 
same properties as an area 
measure. For example, the 
total area of the union 
of the non-overlapping 
triangles is equal to the 
sum of the areas of the  
individual triangles 

The following theorem lists some important properties of a probability 
measure. These properties are direct consequences of the three rules defining 
a probability measure.
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Theorem 1.2. (Properties of a Probability). Let A and B be 
events and . P a probability. Then, 

1. .P(∅) = 0 . 
2. if .A ⊆ B, then .P(A) ≤ P(B) , 
3. .P(Ac) = 1 − P(A) . 
4. .P(A ∪ B) = P(A) + P(B) − P(A ∩ B) . 

Proof. 

1. Since .Ω = Ω ∪ ∅ and .Ω ∩ ∅ = ∅, it follows from the sum rule that 
.P(Ω) = P(Ω) + P(∅). Therefore, by Rule 2 of Definition 1.3, we have  
.1 = 1 + P(∅), from which it follows that .P(∅) = 0. 

2. If .A ⊆ B, then .B = A ∪ (B ∩ Ac), where A and .B ∩ Ac are disjoint. 
Hence, by the sum rule, .P(B) = P(A) + P(B ∩ Ac), which (by Rule 1) is 
greater than or equal to .P(A). 

3. .Ω = A ∪ Ac, where A and . Ac are disjoint. Hence, by the sum rule and 
Rule 2: .1 = P(Ω) = P(A) + P(Ac), and thus .P(Ac) = 1 − P(A). 

4. Write .A ∪ B as the disjoint union of A and .B ∩ Ac. Then, . P(A ∪ B) =
P(A) + P(B ∩ Ac). Also, .B = (A ∩ B) ∪ (B ∩ Ac), so that . P(B) = P(A ∩
B)+P(B ∩Ac). Combining these two equations gives . P(A∪B) = P(A)+
P(B) − P(A ∩ B).  

We have now completed our general model for a random experiment. Of 
course for any specific model we must carefully specify the sample space . Ω
and probability . P that best describe the random experiment. 

Example 1.5 (Casting a Die). Consider the experiment where a fair die 
is cast. How should we specify . Ω and . P? Obviously, .Ω = {1, 2, . . . , 6}; and  
common sense dictates that we should define . P by 

. P(A) = |A|
6 , A ⊆ Ω ,

where . |A| denotes the number of elements in set A. For example, the proba-
bility of getting an even number is .P({2, 4, 6}) = 3/6 = 1/2. 

In many applications the sample space is countable: . Ω = {a1, a2, . . . , an}
or .Ω = {a1, a2, . . .}. Such a sample space is said to be discrete. The easiest 
way to specify a probability . P on a discrete sample space is to first assign a 
probability . pi to each elementary event .{ai} and then to define 

.P(A) =
7

i:ai∈A

pi for all A ⊆ Ω .
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Fig. 1.6 A discrete sam-
ple space 

This idea is graphically represented in Fig. 1.6. Each element . ai in the 
sample space is assigned a probability weight . pi represented by a dot—the 
size of the dot represents the magnitude of . pi. To find the probability of an 
event A we have to sum up the weights of all the elements in the set A. 

Again, it is up to the modeler to properly specify these probabilities. For-
tunately, in many applications all elementary events are equally likely, and  
thus the probability of each elementary event is equal to 1 divided by the to-
tal number of elements in . Ω. In such case the probability of an event . A ⊆ Ω
is simply 

. P(A) = |A|
|Ω| = Number of elements in A

Number of elements in Ω
,

provided that the total number of elements in . Ω is finite. The calculation of 
such probabilities thus reduces to counting; see Problem 1.6. ☞ 19 

When the sample space is not countable, for example, .Ω = R+, it is said 
to be continuous. 

Example 1.6 (Drawing a Random Point in the Unit Interval). We 
draw at random a point in the interval .[0, 1] such that each point is equally 
likely to be drawn. How do we specify the model for this experiment? 

The sample space is obviously .Ω = [0, 1], which is a continuous sample 
space. We cannot define . P via the elementary events . {x}, .x ∈ [0, 1] because 
each of these events has probability 0. However, we can define . P as follows. 
For each .0 ≤ a ≤ b ≤ 1, let  

. P([a, b]) = b − a .

This completely defines . P. In particular, the probability that a point will fall 
into any (sufficiently nice) set A is equal to the length of that set. 

Describing a random experiment by specifying explicitly the sample space 
and the probability measure is not always straightforward or necessary. Some-
times it is useful to model only certain observations on the experiment. This is 
where random variables come into play, and we will discuss these in Chap. 2. ☞ 23
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1.5 Conditional Probability and Independence 

How do probabilities change when we know that some event .B ⊆ Ω has 
occurred? Thus, we know that the outcome lies in B. Then A will occur if 
and only if .A ∩ B occurs, and the relative chance of A occurring is therefore 
.P(A ∩ B)/P(B), which is called the conditional probability of A given B. The  
situation is illustrated in Fig. 1.7. 

Fig. 1.7 What is the 
probability that A occurs 
given that the outcome is 
known to lie in B? 

Definition 1.4. (Conditional Probability). The conditional 
probability of A given B (with .P(B) /= 0) is defined as: 

.P(A | B) = P(A ∩ B)
P(B) . (1.4) 

Example 1.7 (Casting Two Dice). We cast two fair dice consecutively. 
Given that the sum of the dice is 10, what is the probability that one 6 is 
cast? Let B be the event that the sum is 10: 

. B = {(4, 6), (5, 5), (6, 4)} .

Let A be the event that one 6 is cast: 

. A = {(1, 6), . . . , (5, 6), (6, 1), . . . , (6, 5)} .

Then, .A ∩ B = {(4, 6), (6, 4)}. And, since for this experiment all elementary 
events are equally likely, we have 

.P(A | B) = 2/36
3/36 = 2

3 .
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Example 1.8 (Monty Hall Problem). Consider a quiz in which the final 
contestant is to choose a prize which is hidden behind one of three curtains 
(A, B, or C). See Fig. 1.8 for an illustration. Suppose without loss of generality 
that the contestant chooses curtain A. Now the quiz master (Monty) always 
opens one of the other curtains: if the prize is behind B, Monty opens C; if 
the prize is behind C, Monty opens B; and if the prize is behind A, Monty 
opens B or C with equal probability, e.g., by tossing a coin (of course the 
contestant does not see Monty tossing the coin!). 

Fig. 1.8 Given that 
Monty opens curtain B, 
should the contestant stay 
with his/her original choice 
(A) or switch to the other 
unopened curtain (C)? A CB 

Suppose, again without loss of generality, that Monty opens curtain B. 
The contestant is now offered the opportunity to switch to curtain C. Should 
the contestant stay with his/her original choice (A) or switch to the other 
unopened curtain (C)? 

Notice that the sample space here consists of four possible outcomes: Ac, 
the prize is behind A, and Monty opens C; Ab, the prize is behind A, and 
Monty opens B; Bc, the prize is behind B, and Monty opens C; and Cb, the  
prize is behind C, and Monty opens B. Let A, B, C be the events that the 
prize is behind A, B, and C, respectively. Note that .A = {Ac, Ab}, .B = {Bc}, 
and .C = {Cb}; see Fig. 1.9. 

Fig. 1.9 The sample 
space for the Monty Hall 
problem 

Ab 

Cb Bc 

1/6 1/6 

1/3 1/3 

Ac 

Now, obviously .P(A) = P(B) = P(C), and since Ac and Ab are equally 
likely, we have .P({Ab}) = P({Ac}) = 1/6. Monty opening curtain B means
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that we have information that event .{Ab, Cb} has occurred. The probability 
that the prize is behind A given this event is therefore 

. P(A | B is opened) = P({Ac, Ab} ∩ {Ab, Cb})
P({Ab, Cb}) = P({Ab})

P({Ab, Cb}) =
1
6

1
6 + 1

3
= 1

3 .

This is what is to be expected: the fact that Monty opens a curtain does 
not give any extra information that the prize is behind A. Obviously, 
.P(B | B is opened) = 0. It follows then that .P(C | B is opened) must be 2/3, 
since the conditional probabilities must sum up to 1. Indeed, 

. P(C | B is opened) = P({Cb} ∩ {Ab, Cb})
P({Ab, Cb}) = P({Cb})

P({Ab, Cb}) =
1
3

1
6 + 1

3
= 2

3 .

Hence, given the information that B is opened, it is twice as likely that the 
prize is behind C than behind A. Thus, the contestant should switch! 

1.5.1 Product Rule 

By the definition of conditional probability (1.4) we have 

. P(A ∩ B) = P(A)P(B | A) .

It is not difficult to generalize this to n intersections .A1 ∩A2 ∩· · ·∩An, which  
we abbreviate as .A1A2 · · · An. This gives the product rule of probability. 
We leave the proof as an exercise; see Problem 1.11.☞ 20 

Theorem 1.3. (Product Rule). Let .A1, . . . , An be a sequence of 
events with .P(A1 · · · An−1) > 0. Then, 

.

P(A1 · · · An) =
P(A1)P(A2 | A1)P(A3 | A1A2) · · ·P(An | A1 · · · An−1) .

(1.5) 

Example 1.9 (Urn Problem). We draw consecutively three balls from an 
urn with five white and five black balls, without putting them back. What is 
the probability that all drawn balls will be black? 

Let . Ai be the event that the i-th ball is black. We wish to find the prob-
ability of .A1A2A3, which by the product rule (1.5) is 

.P(A1)P(A2 | A1)P(A3 | A1A2) = 5
10

4
9

3
8 ≈ 0.083 .
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Example 1.10 (Birthday Problem). What is the probability that in a 
group of n people all have different birthdays? We can use the product rule. 
Let . Ai be the event that the first i people have different birthdays, .i = 1, 2, . . .. 
Note that .· · · ⊆ A3 ⊆ A2 ⊆ A1. Therefore, .An = A1 ∩ A2 ∩ · · · ∩ An, and thus 
by the product rule 

. P(An) = P(A1)P(A2 | A1)P(A3 | A2) · · ·P(An | An−1) .

Now .P(Ak | Ak−1) = (365 − k + 1)/365, because given that the first . k − 1
people have different birthdays, there are no duplicate birthdays among the 
first k people if and only if the birthday of the k-th person is chosen from 
the .365 − (k − 1) remaining birthdays. Thus, we obtain 

.P(An) = 365
365 × 364

365 × 363
365 × · · · × 365 − n + 1

365 , n ≥ 1 . (1.6) 

A graph of  .P(An) against n is given in Fig. 1.10. Note that the probability 
.P(An) rapidly decreases to zero. For .n = 23 the probability of having no 
duplicate birthdays is already less than 1/2. 

Fig. 1.10 The probability 
of having no duplicate 
birthday in a group of n 
people against n 
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1.5.2 Law of Total Probability and Bayes’ Rule 

Suppose that .B1, B2, . . . , Bn is a partition of . Ω. That is, .B1, B2, . . . , Bn are 
disjoint and their union is . Ω; see Fig. 1.11. 

Fig. 1.11 A partition 
.B1, . . . , B6 of the sample 
space . Ω. Event  A is parti-
tioned into events . A ∩ B1,
. . . ,  .A ∩ B6
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A partitioning of the state space can sometimes make it easier to calculate 
probabilities via the following theorem. 

Theorem 1.4. (Law of Total Probability). Let A be an event and 
let .B1, B2, . . . , Bn be a partition of . Ω. Then, 

.P(A) =
n7

i=1
P(A | Bi)P(Bi) . (1.7) 

Proof. The sum rule gives .P(A) =
En

i=1 P(A ∩ Bi), and by the product rule 
we have .P(A ∩ Bi) = P(A | Bi)P(Bi).  

Combining the law of total probability with the definition of conditional 
probability gives Bayes’ Rule: 

Theorem 1.5. (Bayes Rule). Let A be an event with .P(A) > 0 and 
let .B1, B2, . . . , Bn be a partition of . Ω. Then, 

.P(Bj | A) = P(A | Bj)P(Bj)En
i=1 P(A | Bi)P(Bi)

. (1.8) 

Proof. By definition, .P(Bj | A) = P(A ∩ Bj)/P(A) = P(A | Bj)P(Bj)/P(A). 
Now apply the law of total probability to .P(A).  

Example 1.11 (Quality Control Problem). A company has three facto-
ries (1, 2, and 3) that produce the same chip, each producing 15%, 35%, and 
50% of the total production. The probability of a faulty chip at factories 1, 
2, and 3 is 0.01, 0.05, and 0.02, respectively. Suppose we select randomly a 
chip from the total production and this chip turns out to be faulty. What is 
the conditional probability that this chip has been produced in factory 1? 

Let . Bi denote the event that the chip has been produced in factory i. The  
.{Bi} form a partition of . Ω. Let  A denote the event that the chip is faulty. 
We are given the information that . P(B1) = 0.15,P(B2) = 0.35,P(B3) = 0.5
as well as .P(A | B1) = 0.01, .P(A | B2) = 0.05, .P(A | B3) = 0.02. 

We wish to find .P(B1 | A), which by Bayes’ rule is given by 

.P(B1 | A) = 0.15 × 0.01
0.15 × 0.01 + 0.35 × 0.05 + 0.5 × 0.02 = 0.052 .
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1.5.3 Independence 

Independence is a very important concept in probability and statistics. 
Loosely speaking it models the lack of information between events. We say 
events A and B are independent if the knowledge that B has occurred does 
not change our assessment of the probability of A. More precisely, A and B are 
said to be independent if .P(A | B) = P(A). Since .P(A | B) = P(A ∩ B)/P(B), 
an alternative definition of independence is: A and B are independent if 
.P(A ∩ B) = P(A)P(B). This definition covers the case where .B = ∅. 

We can extend the definition to arbitrarily many events (compare with 
the product rule (1.5)): 

Definition 1.5. (Independence). The events .A1, A2, . . . , are said to 
be independent if for any k and any choice of distinct indices .i1, . . . , ik, 

.P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik
) = P(Ai1)P(Ai2) · · ·P(Aik

) . (1.9) 

Remark 1.1. In most cases independence of events is a model assumption. 
That is, . P is chosen such that certain events are independent. 

Example 1.12 (Coin Tossing and the Binomial Law). We toss a coin 
n times. The sample space can be written as the set of binary n-tuples: 

. Ω = {(0, . . . , 0, ,, ,
n times

), . . . , (1, . . . , 1)} .

Here, 0 represents Tails and 1 represents Heads. For example, the outcome 
.(0, 1, 0, 1, . . .) means that the first time Tails is thrown, the second time Heads, 
the third times Tails, the fourth time Heads, etc. 

How should we define . P? Let  . Ai denote the event of Heads at the i-th 
throw, .i = 1, . . . , n. Then, . P should be such that the following holds. 
• The events .A1, . . . , An should be independent under . P. 
• .P(Ai) should be the same for all i. Call this known or unknown probability 

p (.0 ≤ p ≤ 1). 
These two rules completely specify . P. For example, the probability that 

the first k throws are Heads and the last .n − k are Tails is 

. P({(1, 1, . . . , 1, ,, ,
k times

, 0, 0, . . . , 0, ,, ,
n−k times

)}) = P(A1 ∩ · · · ∩ Ak ∩ Ac
k+1 ∩ · · · ∩ Ac

n)

= P(A1) · · ·P(Ak)P(Ac
k+1) · · ·P(Ac

n) = pk(1 − p)n−k.

Note that if . Ai and . Aj are independent, then so are . Ai and . Ac
j ; see Prob-

lem 1.12.
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Let . Bk be the event that k Heads are thrown in total. The probability of 
this event is the sum of the probabilities of elementary events . {(x1, . . . , xn)}
for which .x1 + · · ·+xn = k. Each of these events has probability .pk(1−p)n−k, 
and there are . 

(
n
k

)
of these. We thus obtain the binomial law: 

.P(Bk) =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n . (1.10) 

Example 1.13 (Geometric Law). There is another important law associ-
ated with the coin toss experiment. Let . Ck be the event that Heads appears 
for the first time at the k-th toss, .k = 1, 2, . . .. Then, using the same events 
.{Ai} as in the previous example, we can write 

. Ck = Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
k−1 ∩ Ak .

Using the independence of .Ac
1, . . . , Ac

k−1, Ak, we obtain the geometric law: 

. 

P(Ck) = P(Ac
1) · · ·P(Ac

k−1)P(Ak)
= (1 − p) · · · (1 − p), ,, ,

k−1 times

p = (1 − p)k−1 p .

1.6 Problems 

1.1. For each of the five random experiments at the beginning of Sect. 1.1, 
define a convenient sample space. 

1.2. Interpret De Morgan’s rule (1.2) in terms of an unreliable series system. 

1.3. Let .P(A) = 0.9 and .P(B) = 0.8. Show that .P(A ∩ B) ≥ 0.7. 

1.4. Throw two fair dice one after the other. 

a. What is the probability that the second die is 3, given that the sum of the 
dice is 6? 

b. What is the probability that the first die is 3 and the second is not 3? 

1.5. An “expert” wine taster has to try to match six glasses of wine to six 
wine labels. Each label can only be chosen once. 

a. Formulate a sample space . Ω for this experiment. 
b. Assuming the wine taster is a complete fraud, define an appropriate prob-

ability . P on the sample space. 
c. What is the probability that the wine taster guesses four labels correctly, 

assuming he/she guesses them randomly?
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1.6. Many counting problems can be cast into the framework of drawing k 
balls from an urn with n balls, numbered .1, . . . , n; see Fig. 1.12. 

Fig. 1.12 Draw k balls 
from an urn with . n = 10
numbered balls 

3 
1 2 

45 
6 

7 
8 

9 

10 

The drawing can be done in several ways. Firstly, the k balls could be 
drawn one by one or all at the same time. In the first case the order in which 
the balls are drawn can be noted. In the second case we can still assume that 
the balls are drawn one by one, but we do not note the order. Secondly, once 
a ball is drawn, it can either be put back into the urn or be left out. This is 
called drawing with and without replacement, respectively. There are thus 
four possible random experiments. Prove that for each of these experiments 
the total number of possible outcomes is the following: 

1. Ordered, with replacement: . nk. 
2. Ordered, without replacement: .nPk = n(n − 1) · · · (n − k + 1). 
3. Unordered, without replacement: .nCk =

(
n
k

)
=

nPk

k! = n!
(n−k)! k! . 

4. Unordered, with replacement: .
(

n+k−1
k

)
. 

Provide a sample space for each of these experiments. Hint: it is important to 
use a notation that clearly shows whether the arrangements of numbers are 
ordered or not. Denote ordered arrangements by vectors, e.g., .[1, 1, 2], and  
unordered arrangements by sets, e.g., .{1, 2, 3} or multisets, e.g., .{1, 1, 2}. 

1.7. Formulate the birthday problem in terms of an urn experiment, as in 
Problem 1.6, and derive the probability (1.6) by counting. 

1.8. Three cards are drawn from a full deck of cards, noting the order. The 
cards may be numbered from 1 to 52. 

a. Give the sample space. Is each elementary event equally likely? 
b. What is the probability that we draw three Aces? 
c. What is the probability that we draw one Ace, one King, and one Queen 

(not necessarily in that order)? 
d. What is the probability that we draw no pictures (no A, K, Q, or J)? 

1.9. In a group of 20 people there are 3 brothers. The group is separated at 
random into two groups of ten. What is the probability that the brothers are 
in the same group?
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1.10. Two fair dice are thrown. 

a. Find the probability that both dice show the same face. 
b. Find the same probability, using the extra information that the sum of the 

dice is not greater than 4. 

1.11. Prove the product rule (1.5). Hint: first show it for the case of three 
events: 

. P(A ∩ B ∩ C) = P(A)P(B | A)P(C | A ∩ B) .

1.12. If A and B are independent events, then A and . Bc are also independent. 
Prove this. 

1.13. Select at random three people from a large population. What is the 
probability that they all have the same birthday? 

1.14. In a large population 40% votes for A and 60% for B. Suppose we select 
at random ten people. What is the probability that in this group exactly four 
people will vote for A? 

1.15. A certain AIDS test has a 0.98 probability of giving a positive result 
when the blood is infected, and a 0.07 probability of giving a positive result 
when the blood is not infected (a so-called false positive). Suppose 1% of the 
population carries the HIV virus. 

a. Using the law of total probability, what is the probability that the test is 
positive for a randomly selected person? 

b. What is the probability that a person is indeed infected, given that the 
test yields a positive result? 

1.16. A box has three identical-looking coins. However the probability of 
success (Heads) is different for each coin: coin 1 is fair, coin 2 has a success 
probability of 0.4, and coin 3 has a success probability of 0.6. We pick one 
coin at random and throw it 100 times. Suppose 43 Heads come up. Using 
this information assess the probability that coin 1, 2, or 3 was chosen. 

1.17. In a binary communication channel, 0s and 1s are transmitted with 
equal probability. The probability that a 0 is correctly received (as a 0) is 
0.95. The probability that a 1 is correctly  received (as a 1) is 0.99. Suppose 
we receive a 0, what is the probability that, in fact, a 1 was sent? 

1.18. A fair coin is tossed 20 times. 

a. What is the probability of exactly ten Heads? 
b. What is the probability of 15 or more Heads? 

1.19. Two fair dice are cast (at the same time) until their sum is 12. 

a. What is the probability that we have to wait exactly ten tosses? 
b. What is the probability that we do not have to wait more than 100 tosses?
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1.20. Independently throw 10 balls into one of three boxes, numbered 1, 2, 
and 3, with probabilities 1/4, 1/2, and 1/4, respectively. 

a. What is the probability that box 1 has two balls, box 2 has five balls, and 
box 3 has three balls? 

b. What is the probability that box 1 remains empty? 

1.21. Implement a Julia program that performs 100 tosses with a fair die. 
Hint: use the rand and ceil functions, where ceil(x) returns the smallest 
integer larger than or equal to x. 

1.22. For each of the four urn experiments in Problem 1.6 implement a Julia 
program that simulates the experiment. Hint: in addition to the functions 
rand and ceil, you may wish to use the functions sortperm and sort. 

1.23. Verify your answers for Problem 1.20 with a computer simulation, 
where the experiment is repeated many times.



Chapter 2 
Random Variables and Probability 
Distributions 

Specifying a model for a random experiment via a complete description of 
the sample space . Ω and probability measure . P may not always be necessary 
or convenient. In practice we are only interested in certain numerical mea-
surements pertaining to the experiment. Such random measurements can be 
included into the model via the notion of a random variable. 

2.1 Random Variables 

Definition 2.1. (Random Variable). A random variable is a func-
tion from the sample space . Ω to . R. 

Example 2.1 (Sum of Two Dice). We throw two fair dice and note the 
sum of their face values. If we throw the dice consecutively and observe both 
throws, the sample space is .Ω = {(1, 1), . . . , (6, 6)}. The function X defined 
by .X(i, j) = i + j is a random variable which maps the outcome .(i, j) to the 
sum . i + j, as depicted in Fig. 2.1. 

Note that five outcomes in the sample space are mapped to 8. A natural 
notation for the corresponding set of outcomes is .{X = 8}. Since all outcomes 
in . Ω are equally likely, we have 

. P({X = 8}) = 5
36 .

This notation is very suggestive and convenient. From a non-mathematical 
viewpoint we can interpret X as a “random” variable. That is, a variable 
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Fig. 2.1 Random variable X represents the sum of two dice 

that can take several values with certain probabilities. In particular, it is not 
difficult to check that 

. P({X = x}) = 6 − |7 − x|
36 , x = 2, . . . , 12 .

Although random variables are, mathematically speaking, functions, it is  
often convenient to view them as observations of a random experiment that 
has not yet taken place. In other words, a random variable is considered as a 
measurement that becomes available tomorrow, while all the thinking about 
the measurement can be carried out today. For example, we can specify today 
exactly the probabilities pertaining to the random variables. 

We often denote random variables with capital letters from the last part 
of the alphabet, e.g., X, .X1, X2, . . . , Y, Z. Random variables allow us to use 
natural and intuitive notations for certain events, such as .{X = 10}, . {X >
1000}, .{max(X, Y ) ≤ Z}, etc.  

Example 2.2 (Coin Tossing). In Example 1.12 we constructed a proba-☞ 17 
bility model for the random experiment where a biased coin is tossed n times. 
Suppose we are not interested in a specific outcome but only in the total num-
ber of Heads, X, say. In particular, we would like to know the probability 
that X takes certain values between 0 and n. Example 1.12 suggests that 

.P(X = k) =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n , (2.1) 

providing all the information about X that we could possibly wish to know. 
To justify (2.1) mathematically, we can reason as in Example 2.1. First, define 
X as the function that assigns to each outcome .ω = (x1, . . . , xn) the number 
.x1 + · · · + xn. Thus,  X is a random variable in mathematical terms, that is, 
a function. Second, the event . Bk that there are exactly k Heads in n throws 
can be written as
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. Bk = {ω ∈ Ω : X(ω) = k} .

If we write this as .{X = k}, and further abbreviate .P({X = k}) to .P(X = k), 
then we obtain (2.1) directly from (1.10). 

We give some more examples of random variables without specifying the 
sample space. 

1. The number of defective transistors out of 100 inspected ones 
2. The number of bugs in a computer program 
3. The amount of rain in a certain location in June 
4. The amount of time needed for an operation 

The set of all possible values that a random variable X can take is called 
the range of X. We further distinguish between discrete and continuous 
random variables: 

• Discrete random variables can only take countably many values. 
• Continuous random variables can take a continuous range of values, for 

example, any value on the positive real line . R+. 

2.2 Probability Distribution 

Let X be a random variable. We would like to designate the probabilities of 
events such as .{X = x} and .{a ≤ X ≤ b}. If we can specify all probabilities 
involving X, we say that we have determined the probability distribution 
of X. One way to specify the probability distribution is to give the probabil-
ities of all events of the form .{X ≤ x}, .x ∈ R. This leads to the following 
definition. 

Definition 2.2. (Cumulative Distribution Function). The cu-
mulative distribution function (cdf) of a random variable X is the 
function .F : R → [0, 1] defined by 

. F (x) = P(X ≤ x), x ∈ R .

Note that we have used .P(X ≤ x) as a shorthand notation for .P({X ≤ x}). 
From now on we will use this type of abbreviation throughout the book. In 
Fig. 2.2 the graph of a general cdf is depicted.
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Fig. 2.2 A cumulative 
distribution function (cdf) 0 

11 

Theorem 2.1. (Properties of Cdf). Let F be the cdf of a random 
variable X. Then, 

1. F is bounded between 0 and 1: .0 ≤ F (x) ≤ 1. 
2. F is increasing: if .x ≤ y, then .F (x) ≤ F (y). 
3. F is right-continuous: .limh↓0 F (x + h) = F (x). 

Proof. 

1. Let .A = {X ≤ x}. By Rule 1 in Definition 1.3, .0 ≤ P(A) ≤ 1.☞ 9 
2. Suppose .x ≤ y. Define .A = {X ≤ x} and .B = {X ≤ y}. Then, .A ⊆ B, 

and, by Theorem 1.2, .P(A) ≤ P(B).☞ 10 
3. Take any sequence .x1, x2, . . . decreasing to x. We have to show that 

.limn→∞ P(X ≤ xn) = P(X ≤ x), or, equivalently, . limn→∞ P(An) =
P(A), where .An = {X > xn} and .A = {X > x}. Let  . Bn = {xn−1 ≥
X > xn}, .n = 1, 2, . . . , with . x0 defined as . ∞. Then, .An = ∪n

i=1Bi and 
.A = ∪∞

i=1Bi. Since the .{Bi} are disjoint, we have by the sum rule: 

. P(A) =
∞7

i=1
P(Bi)

def= lim
n→∞

n7
i=1

P(Bi) = lim
n→∞

P(An) ,

as had to be shown.  

Conversely, any function F with the above properties can be used to specify 
the distribution of a random variable X. 

If X has cdf F , then the probability that X takes a value in the interval 
.(a, b] (excluding a, including b) is given by 

. P(a < X ≤ b) = F (b) − F (a) .

To see this, note that .P(X ≤ b) = P({X ≤ a} ∪ {a < X ≤ b}), where 
the events .{X ≤ a} and .{a < X ≤ b} are disjoint. Thus, by the sum rule:
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.F (b) = F (a) + P(a < X ≤ b), which leads to the result above. Note however 
that 

. 

P(a ≤ X ≤ b) = F (b) − F (a) + P(X = a)
= F (b) − F (a) + F (a) − F (a−)
= F (b) − F (a−) ,

where .F (a−) denotes the limit from below: .limx↑a F (x). 

2.2.1 Discrete Distributions 

Definition 2.3. (Discrete Distribution). A random variable X is 
said to have a discrete distribution if .P(X = xi) > 0, .i = 1, 2, . . . for 
some finite or countable set of values .x1, x2, . . ., such that . 

E
i P(X =

xi) = 1. The  discrete probability density function (pdf) of X is 
the function f defined by .f(x) = P(X = x). 

We sometimes write . fX instead of f to stress that the discrete probability 
density function refers to the discrete random variable X. The easiest way 
to specify the distribution of a discrete random variable is to specify its pdf. 
Indeed, by the sum rule, if we know .f(x) for all x, then we can calculate all ☞ 9 
possible probabilities involving X. Namely, 

.P(X ∈ B) =
7
x∈B

f(x) (2.2) 

for any subset B in the range of X, as illustrated in Fig. 2.3. 

Fig. 2.3 Discrete proba-
bility density function
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Example 2.3 (Sum of Two Dice, Continued). Toss two fair dice and let 
X be the sum of their face values. The discrete pdf is given in Table 2.1, 
which follows directly from Example 2.1. 

Table 2.1 Discrete pdf of the sum of two fair dice 

x 2 3 4 5 6 7 8 9 10 11 12 

.f(x) . 1
36 . 2

36 . 3
36 . 4

36 . 5
36 . 6

36 . 5
36 . 4

36 . 3
36 . 2

36 . 1
36

2.2.2 Continuous Distributions 

Definition 2.4. (Continuous Distribution). A random variable X 
with cdf F is said to have a continuous distribution if there exists a 
positive function f with total integral 1 such that for all .a < b, 

.P(a < X ≤ b) = F (b) − F (a) =
I b

a

f(u) du . (2.3) 

Function f is called the probability density function (pdf) of X. 

Remark 2.1. Note that we use the same notation f for both the discrete 
and the continuous pdf, to stress the similarities between the discrete and 
continuous case. We will even drop the qualifier “discrete” or “continuous” 
when it is clear from the context with which case we are dealing. Henceforth 
we will use the notation .X ∼ f and .X ∼ F to indicate that X is distributed 
according to pdf f or cdf F . 

In analogy to the discrete case (2.2), once we know the pdf, we can calculate 
any probability of interest by means of integration: 

.P(X ∈ B) =
I

B

f(x) dx , (2.4) 

as illustrated in Fig. 2.4. 

Fig. 2.4 Probability den-
sity function (pdf)
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Suppose that f and F are the pdf and cdf of a continuous random vari-
able X, as in Definition 2.4. Then F is simply a primitive (also called anti-
derivative) of f : 

. F (x) = P(X ≤ x) =
I x

−∞
f(u) du .

Conversely, f is the derivative of the cdf F : 

. f(x) = d
dx

F (x) = F '(x) .

It is important to understand that in the continuous case f(x) is not equal 
to the probability P(X = x), because the latter is 0 for all x. Instead, we 
interpret f(x) as the  density of the probability distribution at x, in the sense 
that for any small h, 

.P(x ≤ X ≤ x + h) =
I x+h

x

f(u) du ≈ h f(x) . (2.5) 

Note that P(x ≤ X ≤ x + h) is equal to P(x < X  ≤ x + h) in this case. 

Example 2.4 (Random Point in an Interval). Draw a random number 
X from the interval of real numbers [0, 2], where each number is equally likely 
to be drawn. What are the pdf f and cdf F of X? Using the same reasoning 
as in Example 1.6, we see that ☞ 11 

. P(X ≤ x) = F (x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

x/2 if 0 ≤ x ≤ 2,

1 if x > 2.

By differentiating F we find 

f(x) =  

I
1/2 if  0  ≤ x ≤ 2, 
0 otherwise. 

Note that this density is constant on the interval .[0, 2] (and zero elsewhere), 
reflecting the fact that each point in .[0, 2] is equally likely to be drawn. 

2.3 Expectation 

Although all probability information about a random variable is contained in 
its cdf or pdf, it is often useful to consider various numerical characteristics of 
a random variable. One such number is the expectation of a random variable, 
which is a “weighted average” of the values that X can take. Here is a more 
precise definition.
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Definition 2.5. (Expectation of a Discrete Random Variable). 
Let X be a discrete random variable with pdf f . The  expectation (or 
expected value) of X, denoted as . EX, is defined as 

.EX =
7

x

xP(X = x) =
7

x

x f(x) . (2.6) 

The expectation of X is sometimes written as . μX . It is assumed that the  
sum in (2.6) is well-defined—possibly . ∞ or . −∞. One way to interpret the 
expectation is as a long-run average payout. Suppose in a game of dice the 
payout X (dollars) is the largest of the face values of two dice. To play the 
game a fee of d dollars must be paid. What would be a fair amount for d? 
The answer is 

. 

d = EX = 1 × P(X = 1) + 2 × P(X = 2) + · · · + 6 × P(X = 6)

= 1 × 1
36 + 2 × 3

36 + 3 × 5
36 + 4 × 7

36 + 5 × 9
36 + 6 × 11

36 = 161
36 ≈ 4.47 .

Namely, if the game is played many times, the long-run fraction of tosses 
where  the  maximum  face  value  is  1,  2,. . . ,  6,  is  . 1

36 , 3
36 , . . . , 11

36 , respectively. 
Hence, the long-run average payout of the game is the weighted sum of 
.1, 2, . . . , 6, where the weights are the long-run fractions (probabilities). The 
game is “fair” if the long-run average profit .EX − d is zero. 

The expectation can also be interpreted as a center of mass. Imagine that 
point masses with weights .p1, p2, . . . , pn are placed at positions . x1, x2, . . . , xn

on the real line; see Fig. 2.5. 

Fig. 2.5 The expectation as a center of mass 

The center of mass—the place where the weights are balanced—is 

. center of mass = x1 p1 + · · · + xn pn ,

which is exactly the expectation of the discrete variable X that takes val-
ues .x1, . . . , xn with probabilities .p1, . . . , pn. An obvious consequence of this 
interpretation is that for a symmetric pdf the expectation is equal to the 
symmetry point (provided that the expectation exists). In particular, sup-
pose that .f(c + y) = f(c − y) for all y. Then,
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. 

EX = c f(c) +
7
x>c

xf(x) +
7
x<c

xf(x)

= c f(c) +
7
y>0

(c + y)f(c + y) +
7
y>0

(c − y)f(c − y)

= c f(c) +
7
y>0

c f(c + y) + c
7
y>0

f(c − y) = c
7

x

f(x) = c .

For continuous random variables we can define the expectation in a similar 
way, replacing the sum with an integral. 

Definition 2.6. (Expectation of a Continuous Random Vari-
able). Let X be a continuous random variable with pdf f . The  expec-
tation (or expected value) of X, denoted as . EX, is defined as 

.EX =
I ∞

−∞
x f(x) dx . (2.7) 

If X is a random variable, then a function of X, such as . X2 or .sin(X), is  
also a random variable. The following theorem simply states that the expected 
value of a function of X is the weighted average of the values that this function 
can take. 

Theorem 2.2. (Expectation of a Function of a Random Vari-
able). If X is discrete with pdf f , then for any real-valued function 
g 

. E g(X) =
7

x

g(x) f(x) .

Similarly, if X is continuous with pdf f , then 

. E g(X) =
I ∞

−∞
g(x) f(x) dx .

Proof. The proof is given for the discrete case only, as the continuous case 
can be proven in a similar way. Let .Y = g(X), where X is a discrete random 
variable with pdf . fX and g is a function. Let . fY be the (discrete) pdf of the 
random variable Y . It can be expressed in terms of . fX in the following way: 

.fY (y) = P(Y = y) = P(g(X) = y) =
7

x:g(x)=y

P(X = x) =
7

x:g(x)=y

fX(x) .
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Thus, the expectation of Y is 

.

EY =
7

y

y fY (y) =
7

y

y
7

x:g(x)=y

fX(x) =
7

y

7
x:g(x)=y

yfX(x)

=
7

x

g(x) fX(x) .

 

Example 2.5 (Die Experiment and Expectation). Find .EX2 if X is 
the outcome of the toss of a fair die. We have 

. EX2 = 12 × 1
6 + 22 × 1

6 + 32 × 1
6 + · · · + 62 × 1

6 = 91
6 .

An important consequence of Theorem 2.2 is that the expectation is “lin-
ear.” 

Theorem 2.3. (Properties of the Expectation). For any real num-
bers a and b, and functions g and h, 

1. . E[a X + b] = aEX + b .
2. .E[g(X) + h(X)] = Eg(X) + Eh(X) . 

Proof. Suppose X has pdf f . The first statement follows (in the discrete case) 
from 

. E(aX + b) =
7

x

(ax + b)f(x) = a
7

x

x f(x) + b
7

x

f(x) = aEX + b .

Similarly, the second statement follows from 

. 

E(g(X) + h(X)) =
7

x

(g(x) + h(x))f(x) =
7

x

g(x)f(x) +
7

x

h(x)f(x)

= Eg(X) + Eh(X) .

The continuous case is proven analogously, simply by replacing sums with 
integrals.  

Another useful numerical characteristic of the distribution of X is the 
variance of X. This number, sometimes written as . σ2

X , measures the spread 
or dispersion of the distribution of X.
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Definition 2.7. (Variance and Standard Deviation). The vari-
ance of a random variable X, denoted as .Var(X), is defined as 

.Var(X) = E(X − EX)2 . (2.8) 

The square root of the variance is called the standard deviation. The  
number .EXr is called the r-th moment of X. 

Theorem 2.4. (Properties of the Variance). For any random vari-
able X the following properties hold for the variance. 

1. .Var(X) = EX2 − (EX)2 . 
2. .Var(a + bX) = b2 Var(X) . 

Proof. Write .EX = μ, so that  .Var(X) = E(X − μ)2 = E(X2 − 2μX + μ2). 
By the linearity of the expectation, the last expectation is equal to the sum 
.EX2 − 2 μEX + μ2 = EX2 − μ2, which proves the first statement. To prove 
the second statement, note that the expectation of .a + bX is equal to .a + bμ. 
Consequently, 

.Var(a + bX) = E(a + bX − (a + bμ))2 = E(b2(X − μ)2) = b2Var(X) .

 

Note that Property 1 in Theorem 2.4 implies that .EX2 ≥ (EX)2, because 
.Var(X) ≥ 0. This is a special case of a much more general result, regarding 
the expectation of convex functions. A real-valued function .h(x) is said to be 
convex if for each x there exists a constant v (depending on x) such that 

.h(y) ≥ h(x) + v(y − x) for all y . (2.9) 

Examples are the functions .x I→ |x|, .x I→ x2, .x I→ ex, and  .x I→ − ln x. 

Theorem 2.5. (Jensen’s Inequality). Let .h(x) be a convex function 
and X a random variable. Then, 

.Eh(X) ≥ h(EX) . (2.10) 

Proof. Replacing x with . EX and y with X in (2.9), it holds that . h(X) ≥
h(EX) + v(X − EX) for some v, because h is convex. Taking expectations 
yields .Eh(X) ≥ h(EX).  
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2.4 Transforms 

Many probability calculations—such as the evaluation of expectations and 
variances—are facilitated by the use of transforms. We discuss here a number 
of such transforms. 

Definition 2.8. (Probability Generating Function). Let X be a 
non-negative and integer-valued random variable with discrete pdf f . 
The probability generating function (PGF) of X is the function G 
defined by 

. G(z) = E zX =
∞7

x=0
zx f(x) , |z| < R ,

where .R ≥ 1 is the radius of convergence. 

Example 2.6 (Poisson Distribution). Let X have a discrete pdf f given 
by 

. f(x) = e−λ λx

x! , x = 0, 1, 2, . . . .

X is said to have a Poisson distribution. The PGF of X is given by 

. G(z) =
∞7

x=0
zx e−λ λx

x!

= e−λ
∞7

x=0

(zλ)x

x!

= e−λezλ = e−λ(1−z) .

As this is finite for every z, the radius of convergence is here .R = ∞. 

Theorem 2.6. (Derivatives of a PGF). The k-th derivative of a 
PGF .EzX can be obtained by differentiation under the expectation sign: 

. 

dk

dzk
EzX = E

dk

dzk
zX

= E
I
X(X − 1) · · · (X − k + 1)zX−k

I
for |z| < R ,

where .R ≥ 1 is the radius of convergence of the PGF. 

Proof. The proof is deferred to Appendix B.2.  ☞ 477
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Let .G(z) be the PGF of a random variable X. Thus, . G(z) = z0
P(X = 0)+

z1
P(X = 1) + z2

P(X = 2) + · · · . Substituting .z = 0 gives .G(0) = P(X = 0). 
By Theorem 2.6 the derivative of G is 

. G'(z) = P(X = 1) + 2z P(X = 2) + 3z2
P(X = 3) + · · · .

In particular, .G'(0) = P(X = 1). By differentiating .G'(z), we see that the 
second derivative of G at 0 is .G''(0) = 2P(X = 2). Repeating this procedure 
gives the following corollary to Theorem 2.6. 

Corollary 2.1. (Probabilities from PGFs). Let X be a non-
negative integer-valued random variable with PGF . G(z). Then, 

. P(X = k) = 1
k!

dk

dzk
G(0) .

The PGF thus uniquely determines the discrete pdf. Another consequence 
of Theorem 2.6 is that expectations, variances, and moments can be easily 
found from the PGF. 

Corollary 2.2. (Moments from PGFs). Let X be a non-negative 
integer-valued random variable with PGF .G(z) and k-th derivative 
.G(k)(z). Then, 

. lim
z→1
|z|<1

dk

dzk
G(z) = E [X(X − 1) · · · (X − k + 1)] . (2.11) 

In particular, if the expectation and variance of X are finite, then . EX =
G'(1) and .Var(X) = G''(1) + G'(1) − (G'(1))2. 

Proof. The proof is deferred to Appendix B.2.  ☞ 477 

Definition 2.9. (Moment Generating Function). The moment 
generating function (MGF) of a random variable X is the function 
.M : R → [0, ∞] given by 

.M(s) = E esX .



36 2 Random Variables and Probability Distributions

In particular, for a discrete random variable with pdf f , 

. M(s) =
7

x

esx f(x) ,

and for a continuous random variable with pdf f , 

. M(s) =
I ∞

−∞
esx f(x) dx .

Note that .M(s) can be infinite for certain values of s. We sometimes write 
. MX to stress the role of X. 

Similar to the PGF, the MGF has the uniqueness property: two MGFs 
are the same if and only if their corresponding cdfs are the same. In addition, 
the integer moments of X can be computed from the derivatives of M , as  
summarized in the next theorem. The proof is similar to that of Theorem 2.6 
and Corollary 2.2 and is given in Appendix B.3.☞ 478 

Theorem 2.7. (Moments from MGFs). If the MGF is finite in an 
open interval containing 0, then all moments . EXn, .n = 0, 1, . . . are 
finite and satisfy 

. EXn = M (n)(0) ,

where .M (n)(0) is the n-th derivative of M evaluated at 0. 

Note that under the conditions of Theorem 2.7, the variance of X can be 
obtained from the moment generating function as 

. Var(X) = M ''(0) − (M '(0))2 .

A transform with better analytical properties than the moment generating 
function is the characteristic function. 

Definition 2.10. (Characteristic Function). The characteristic 
generating function of a random variable X is the function . ψ : R → C

given by 

. ψ(r) = E ei rX = E cos(rX) + iE sin(rX), r ∈ R .

The characteristic function is well-defined and finite for any random vari-
able, whereas for certain probability distributions the moment generating 
function may not be finite for any value of other than 0.
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2.5 Common Discrete Distributions 

In this section we give a number of common discrete distributions and list 
some of their properties. Note that the discrete pdf of each of these distri-
butions, denoted f , depends on one or more parameters; so in fact we are 
dealing with families of distributions. 

2.5.1 Bernoulli Distribution 

Definition 2.11. (Bernoulli Distribution). A random variable X 
is said to have a Bernoulli distribution with success probability p if X 
can only assume the values 0 and 1, with probabilities 

. f(0) = P(X = 0) = 1 − p and f(1) = P(X = 1) = p .

We write .X ∼ Ber(p). 

The Bernoulli distribution is the most fundamental of all probability distri-
butions. It models a single coin toss experiment. Three important properties 
of the Bernoulli are summarized in the following theorem. 

Theorem 2.8. (Properties of the Bernoulli Distribution). Let 
.X ∼ Ber(p). Then, 

1. .EX = p . 
2. .Var(X) = p(1 − p) . 
3. The PGF is .G(z) = 1 − p + zp . 

Proof. The expectation and the variance of X can be obtained by direct 
computation: 

. EX = 0 × P(X = 0) + 1 × P(X = 1) = 0 × (1 − p) + 1 × p = p

and 

. Var(X) = EX2 − (EX)2 = EX − (EX)2 = p − p2 = p(1 − p) ,

where we have used the fact that in this case .X2 = X. Finally, the PGF is 
given by .G(z) = z0(1 − p) + z1p = 1 − p + zp.  
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2.5.2 Binomial Distribution 

Definition 2.12. (Binomial Distribution). A random variable X is 
said to have a binomial distribution with parameters n and p if X has 
pdf 

.f(x) = P(X = x) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n . (2.12) 

We write .X ∼ Bin(n, p). 

From Example 2.2 we see that X can be interpreted as the total number of☞ 17 
Heads in n successive coin flip experiments, with probability of Heads equal 
to p. An example of the graph of the pdf is given in Fig. 2.6. Theorem 2.9 
lists some important properties of the binomial distribution. 

Fig. 2.6 The pdf of the 
.Bin(10, 0.7)-distribution 
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Theorem 2.9. (Properties of the Binomial Distribution). Let 
.X ∼ Bin(n, p). Then, 

1. .EX = np . 
2. .Var(X) = np(1 − p) . 
3. The PGF is .G(z) = (1 − p + zp)n . 

Proof. Using Newton’s binomial formula: 

.(a + b)n =
n7

k=0

(
n

k

)
ak bn−k ,
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we see that 

. G(z) =
n7

k=0

zk

(
n

k

)
pk (1 − p)n−k =

n7
k=0

(
n

k

)
(z p)k(1 − p)n−k = (1 − p + zp)n .

From Corollary 2.2 we obtain the expectation and variance via .G'(1) = np ☞ 35 
and .G''(1) + G'(1) − (G'(1))2 = (n − 1)np2 + np − n2p2 = np(1 − p).  

2.5.3 Geometric Distribution 

Definition 2.13. (Geometric Distribution). A random variable X 
is said to have a geometric distribution with parameter p if X has pdf 

.f(x) = P(X = x) = (1 − p)x−1p, x = 1, 2, 3, . . . . (2.13) 

We write .X ∼ Geom(p). 

From Example 1.13 we see that X can be interpreted as the number of ☞ 18 
tosses needed until the first Heads occurs in a sequence of coin tosses, with 
the probability of Heads equal to p. An example of the graph of the pdf is 
given in Fig. 2.7. Theorem 2.10 summarizes some properties of the geometric 
distribution. 

Fig. 2.7 The pdf of the 
.Geom(0.3)-distribution 
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Theorem 2.10. (Properties of the Geometric Distribution). Let 
.X ∼ Geom(p). Then, 

1. .EX = 1/p . 
2. .Var(X) = (1 − p)/p2 . 
3. The PGF is 

.G(z) = z p

1 − z (1 − p) , |z| <
1

1 − p
. (2.14) 

Proof. The PGF of X follows from 

. G(z) =
∞7

x=1
zxp(1 − p)x−1 = z p

∞7
k=0

(z(1 − p))k = z p

1 − z (1 − p) ,

using the well-known result for geometric sums: .1 + a + a2 + · · · = (1 − a)−1, 
for .|a| < 1. By Corollary 2.2 the expectation is therefore☞ 35 

. EX = G'(1) = 1
p

.

By differentiating the PGF twice we find the variance: 

. Var(X) = G''(1) + G'(1) − (G''(1))2 = 2(1 − p)
p2 + 1

p
− 1

p2 = 1 − p

p2 .  

One property of the geometric distribution that deserves extra attention 
is the memoryless property. Consider again the coin toss experiment. 
Suppose we have tossed the coin k times without a success (Heads). What is 
the probability that we need more than x additional tosses before getting a 
success? The answer is, obviously, the same as the probability that we require 
more than x tosses if we start from scratch, that is, .P(X > x) = (1 − p)x, 
irrespective of k. The fact that we have already had k failures does not make 
the event of getting a success in the next trial(s) any more likely. In other 
words, the coin does not have a memory of what happened—hence the name 
memoryless property. 

Theorem 2.11. (Memoryless Property). Let .X ∼ Geom(p). Then 
for any .x, k = 1, 2, . . ., 

.P(X > k + x | X > k) = P(X > x) .
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Proof. By the definition of conditional probability, ☞ 12 

. P(X > k + x | X > k) = P({X > k + x} ∩ {X > k})
P(X > k) .

The event .{X > k + x} is a subset of .{X > k}; hence, their intersection is 
.{X > k + x}. Moreover, the probabilities of the events .{X > k + x} and 
.{X > k} are .(1 − p)k+x and .(1 − p)k, respectively. Therefore, 

. P(X > k + x | X > k) = (1 − p)k+x

(1 − p)k
= (1 − p)x = P(X > x) ,

as required.  

2.5.4 Poisson Distribution 

Definition 2.14. (Poisson Distribution). A random variable X is 
said to have a Poisson distribution with rate parameter .λ > 0 if X 
has pdf 

.f(x) = P(X = x) = λx

x! e−λ, x = 0, 1, 2, . . . . (2.15) 

We write .X ∼ Poi(λ). 

The Poisson distribution may be viewed as the limit of the .Bin(n, λ/n) dis-
tribution. Namely, if .Xn ∼ Bin(n, λ/n), then 

. 

P(Xn = x) =
(

n

x

) (
λ

n

)x (
1 − λ

n

)n−x

= λx

x!
n × (n − 1) × · · · × (n − x + 1)

n × n × · · · × n

(
1 − λ

n

)n (
1 − λ

n

)−x

.

As .n → ∞ the second and fourth factors converge to 1, and the third factor 
to . e−λ (this is one of the defining properties of the exponential function). 
Hence, we have 

. lim
n→∞

P(Xn = x) = λx

x! e−λ.

An example of the graph of the Poisson pdf is given in Fig. 2.8. Theorem 2.12 
summarizes some properties of the Poisson distribution.
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Fig. 2.8 The pdf of the 
.Poi(10)-distribution 
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Theorem 2.12. (Properties of the Poisson Distribution). Let 
.X ∼ Poi(λ). Then, 

1. .EX = λ . 
2. .Var(X) = λ . 
3. The PGF is .G(z) = e−λ(1−z) . 

Proof. The PGF was derived in Example 2.6. It follows from Corollary 2.2☞ 34 
that .EX = G'(1) = λ and 

. Var(X) = G''(1) + G'(1) − (G'(1))2 = λ2 + λ − λ2 = λ .

Thus, the rate parameter . λ can be interpreted as both the expectation and 
variance of X.  

2.6 Common Continuous Distributions 

In this section we give a number of common continuous distributions and 
list some of their properties. Note that the pdf of each of these distributions 
depends on one or more parameters; so, as in the previous section, we are 
dealing with families of distributions.
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2.6.1 Uniform Distribution 

Definition 2.15. (Uniform Distribution). A random variable X is 
said to have a uniform distribution on the interval .[a, b] if its pdf is 
given by 

. f(x) = 1
b − a

, a ≤ x ≤ b .

We write .X ∼ U[a, b] (and .X ∼ U(a, b) for a uniform random variable 
on an open interval .(a, b)). 

The random variable .X ∼ U[a, b] can model a randomly chosen point from 
the interval . [a, b], where each choice is equally likely. A graph of the pdf is 
given in Fig. 2.9. 

Fig. 2.9 The pdf of the 
uniform distribution on 
.[a, b] ba 
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Theorem 2.13. (Properties of the Uniform Distribution). Let 
.X ∼ U[a, b]. Then, 

1. .EX = (a + b)/2 . 
2. .Var(X) = (b − a)2/12 . 

Proof. We have 

. EX =
I b

a

x

b − a
dx = 1

b − a

I
b2 − a2

2

I
= a + b

2

and 

.Var(X) = EX2 − (EX)2 =
I b

a

x2

b − a
dx −

(
a + b

2

)2

= b3 − a3

3(b − a) −
(

a + b

2

)2

= (b − a)2

12 .
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2.6.2 Exponential Distribution 

Definition 2.16. (Exponential Distribution). A random variable 
X is said to have an exponential distribution with rate parameter . λ
if its pdf is given by 

.f(x) = λ e−λ x, x ≥ 0 . (2.16) 

We write .X ∼ Exp(λ). 

The exponential distribution can be viewed as a continuous version of the 
geometric distribution. Graphs of the pdf for various values of . λ are given 
in Fig. 2.10. Theorem 2.14 summarizes some properties of the exponential 
distribution. 

Fig. 2.10 The pdf of the 
.Exp(λ)-distribution for 
various . λ
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Theorem 2.14. (Properties of the Exponential Distribution). 
Let .X ∼ Exp(λ). Then, 

1. .EX = 1/λ . 
2. .Var(X) = 1/λ2 . 
3. The MGF of X is .M(s) = λ/(λ − s), s < λ, 
4. The cdf of X is .F (x) = 1 − e−λx, x ≥ 0. 
5. The memoryless property holds: for any .s, t > 0, 

.P(X > s + t | X > s) = P(X > t) . (2.17) 

Proof. 3. The moment generating function is given by 

.

M(s) =
I ∞

0
esxλe−λxdx = λ

I ∞

0
e−(λ−s)x dx = λ

I
−e−(λ−s)x

λ − s

I∞

0

= λ

λ − s
, s < λ (and M(s) = ∞ for s ≥ λ).
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1. From Theorem 2.7, we obtain ☞ 36 

. EX = M '(0) = λ

(λ − s)2

IIII
s=0

= 1
λ

.

2. Similarly, the second moment is .EX2 = M ''(0) = 2λ
(λ−s)3

II
s=0 = 2/λ2, so  

that the variance is 

. Var(X) = EX2 − (EX)2 = 2
λ2 − 1

λ2 = 1
λ2 .

4. The cdf of X is given by 

. F (x) = P(X ≤ x) =
I x

0
λe−λudu =

I
−e−λu

Ix

0 = 1 − e−λx, x ≥ 0 .

Note that the tail probability .P(X > x) is exponentially decaying: 

. P(X > x) = e−λx, x ≥ 0 .

5. Similar to the proof of the memoryless property for the geometric distri-
bution (Theorem 2.11), we have ☞ 40 

.P(X > s + t | X > s) = P(X > s + t, X > s)
P(X > s) = P(X > s + t)

P(X > s)

= e−λ(t+s)

e−λs
= e−λt = P(X > t) .

 

The memoryless property can be interpreted as a “non-aging” property. 
For example, when X denotes the lifetime of a machine then, given the fact 
that the machine is alive at time s, the remaining lifetime of the machine, 
.X −s, has the same exponential distribution as a completely new machine. In 
other words, the machine has no memory of its age and does not deteriorate 
(although it will break down eventually). 

2.6.3 Normal (Gaussian) Distribution 

In this section we introduce the most important distribution in the study 
of statistics: the normal (or Gaussian) distribution. Additional properties of 
this distribution will be given in Sect. 3.6. ☞ 83
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Definition 2.17. (Normal Distribution). A random variable X is 
said to have a normal or Gaussian distribution with parameters . μ
and . σ2 if its pdf is given by 

.f(x) = 1
σ

√
2π

e− 1
2 ( x−μ

σ )2

, x ∈ R . (2.18) 

We write .X ∼ N(μ, σ2). 

The parameters . μ and . σ2 turn out to be the expectation and variance of 
the distribution, respectively. If .μ = 0 and .σ = 1 then 

. f(x) = 1√
2π

e−x2/2,

and the distribution is known as the standard normal distribution. The cdf 
of the standard normal distribution is often denoted by . Φ and its pdf by . ϕ. In  
Fig. 2.11 the pdf of the .N(μ, σ2) distribution for various . μ and . σ is plotted. 

Fig. 2.11 The pdf of the 
.N(μ, σ2) distribution for 
various . μ and .σ

-4 -2 0 2 4 6 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

We next consider some important properties of the normal distribution. 

Theorem 2.15. (Standardization). Let .X ∼ N(μ, σ2) and define 
.Z = (X − μ)/σ. Then Z has a standard normal distribution. 

Proof. The cdf of Z is given by 

.

P(Z ≤ z) = P((X − μ)/σ ≤ z) = P(X ≤ μ + σz)

=
I μ+σz

−∞

1
σ

√
2π

e− 1
2 ( x−μ

σ )2

dx =
I z

−∞

1√
2π

e−y2/2dy = Φ(z) ,
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where we make a change of variable .y = (x − μ)/σ in the fourth equation. 
Hence, .Z ∼ N(0, 1).  

The rescaling procedure in Theorem 2.15 is called standardization. It  
follows from Theorem 2.15 that any .X ∼ N(μ, σ2) can be written as 

. X = μ + σZ, where Z ∼ N(0, 1) .

In other words, any normal random variable can be viewed as an affine 
transformation—that is, a linear transformation plus a constant—of a stan-
dard normal random variable. 

Next we prove the earlier claim that the parameters . μ and . σ2 are respec-
tively the expectation and variance of the distribution. 

Theorem 2.16. (Expectation and Variance for the Normal Dis-
tribution). If .X ∼ N(μ, σ2), then .EX = μ and .Var(X) = σ2. 

Proof. Since the pdf is symmetric around . μ and .EX < ∞, it follows that 
.EX = μ. To show that the variance of X is . σ2, we first write .X = μ + σZ, 
where .Z ∼ N(0, 1). Then, .Var(X) = Var(μ + σZ) = σ2Var(Z). Hence, it 
suffices to show that .Var(Z) = 1. Now, since the expectation of Z is 0, we 
have 

. Var(Z) = EZ2 =
I ∞

−∞
z2 1√

2π
e−z2/2 dz =

I ∞

−∞
z × z√

2π
e−z2/2 dz .

We apply integration by parts to the last integral to find 

. EZ2 =
I
− z√

2π
e−z2/2

I∞

−∞
+

I ∞

−∞

1√
2π

e−z2/2 dz = 1 ,

since the last integrand is the pdf of the standard normal distribution.  

Theorem 2.17. (MGF for the Normal Distribution). The MGF 
of .X ∼ N(μ, σ2) is 

.EesX = esμ+s2σ2/2, s ∈ R . (2.19) 

Proof. Write .X = μ + σZ, where .Z ∼ N(0, 1). We have  

.EesZ =
I ∞

−∞
esz 1√

2π
e−z2/2 dz = es2/2

I ∞

−∞

1√
2π

e−(z−s)2/2

, ,, ,
pdf of N(s,1)

dz = es2/2 ,
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so that .EesX = Ees(μ+σZ) = esμ
EesσZ = esμeσ2s2/2 = esμ+σ2s2/2.  

2.6.4 Gamma and . χ2 Distribution 

Definition 2.18. (Gamma Distribution). A random variable X is 
said to have a gamma distribution with shape parameter .α > 0 and 
rate parameter .λ > 0 if its pdf is given by 

.f(x) = λαxα−1e−λx

Γ (α) , x ≥ 0 , (2.20) 

where . Γ is the gamma function. We write .X ∼ Gamma(α, λ). 

The gamma function .Γ (α) is an important special function in mathematics, 
defined by 

.Γ (α) =
I ∞

0
uα−1 e−u du . (2.21) 

We mention a few properties of the . Γ function. 

1. .Γ (α + 1) = α Γ (α) for .α > 0. 
2. .Γ (n) = (n − 1)! for . n = 1, 2, . . . .
3. .Γ (1/2) =

√
π. 

Two special cases of the .Gamma(α, λ) distribution are worth mentioning. 
Firstly, the .Gamma(1, λ) distribution is simply the .Exp(λ) distribution. Sec-
ondly, the .Gamma(n/2, 1/2) distribution, where .n ∈ {1, 2, . . .}, is called the 
chi-squared distribution with n degrees of freedom. We write .X ∼ χ2

n. 
A graph of the pdf of the . χ2

n distribution for various n is given in Fig. 2.12. 

Fig. 2.12 The pdf of the 
. χ2

n distribution for various 
degrees of freedom n 
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The following theorem summarizes some properties of the gamma distri-
bution. 

Theorem 2.18. (Properties of the Gamma Distribution). Let 
.X ∼ Gamma(α, λ). Then, 

1. .EX = α/λ . 
2. .Var(X) = α/λ2 . 
3. The MGF is .M(s) = [λ/(λ − s)]α, s < λ (and . ∞ otherwise). 

Proof. 3. For .s < λ, the MGF of X at s is given by 

. M(s) = E esX =
I ∞

0

e−λx λα xα−1

Γ (α) esx dx

=
(

λ

λ − s

)α I ∞

0

e−(λ−s)x (λ − s)α xα−1

Γ (α), ,, ,
pdf of Gamma(α,λ−s)

dx =
(

λ

λ − s

)α

. (2.22) 

1. Consequently, by Theorem 2.7, ☞ 36 

. EX = M '(0) = α

λ

(
λ

λ − s

)α+1 IIII
s=0

= α

λ
.

2. Similarly, . Var(X) = M ''(0) − (M '(0))2 = (α + 1)α/λ2 − (α/λ)2 = α/λ2.

2.6.5 F Distribution 

Definition 2.19. (F Distribution). Let m and n be strictly positive 
integers. A random variable X is said to have an F distribution with 
degrees of freedom m and n if its pdf is given by 

.f(x) =
Γ ( m+n

2 ) (m/n)m/2x(m−2)/2

Γ ( m
2 ) Γ ( n

2 ) [1 + (m/n)x](m+n)/2 , x ≥ 0 , (2.23) 

where . Γ denotes the gamma function. We write .X ∼ F(m, n). 

The F distribution plays an important role in classical statistics, through 
Theorem 3.11. A graph of the pdf of the .F(m, n) distribution for various m ☞ 88 
and n is given in Fig. 2.13.
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Fig. 2.13 The pdf of the 
.F(m, n) distribution for 
various degrees of freedom 
m and n 
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2.6.6 Student’s t Distribution 

Definition 2.20. (Student’s t Distribution). A random variable X 
is said to have a Student’s t distribution with parameter .ν > 0 if its 
pdf is given by 

.f(x) =
Γ ( ν+1

2 )√
νπ Γ ( ν

2 )

(
1 + x2

ν

)−(ν+1)/2

, x ∈ R , (2.24) 

where . Γ denotes the gamma function. We write .X ∼ tν . For integer 
values the parameter . ν is referred to as the degrees of freedom of the 
distribution. 

A graph of the pdf of the . tν distribution for various . ν is given in Fig. 2.14. 
Note that the pdf is symmetric. Moreover, it can be shown that the pdf of 
the . tν distribution converges to the pdf of the .N(0, 1) distribution as .ν → ∞. 
The . t1 distribution is called the Cauchy distribution. 

Fig. 2.14 The pdfs of 
. t1 (Cauchy), . t2, . t10, and  
.t∞(N(0, 1)) distributions
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For completeness we mention that if .X ∼ tν , then 

. EX = 0 (ν > 1) and Var(X) = ν

ν − 2 , (ν > 2) .

The t and F distributions are related in the following way. 

Theorem 2.19. (Relationship Between the t and F Distribu-
tion). For integer .n ≥ 1, if  .X ∼ tn, then .X2 ∼ F(1, n). 

Proof. Let .Z = X2. We can express the cdf of Z in terms of the cdf of X. 
Namely, for every .z > 0 we have 

. FZ(z) = P(X2 ≤ z) = P(−
√

z ≤ X ≤
√

z) = FX(
√

z) − FX(−
√

z) .

Differentiating with respect to z gives the following relation between the two 
pdfs: 

. fZ(z) = fX(
√

z) 1
2
√

z
+ fX(−

√
z) 1

2
√

z
= fX(

√
z) 1√

z
,

using the symmetry of the t distribution. Substituting (2.24) into the last 
equation yields 

. fZ(z) = c(n) z−1/2

(1 + z/n)(n+1)/2 , z > 0

for some constant . c(n). The only pdf of this form is that of the .F(1, n) dis-
tribution.  

2.7 Generating Random Variables 

This section shows how to generate random variables on a computer. We 
first discuss a modern uniform random generator and then introduce two 
general methods for drawing from an arbitrary one-dimensional distribution: 
the inverse-transform method and the acceptance–rejection method. 

2.7.1 Generating Uniform Random Variables 

The rand function in Julia simulates the drawing of a uniform random num-
ber on the interval .(0, 1) by generating pseudo-random numbers, that is,
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numbers that, although not actually random (because the computer is a de-
terministic device), behave for all intended purposes as truly random. The 
following algorithm (L’Ecuyer (1999)) uses simple recurrences to produce 
high-quality pseudo-random numbers, in the sense that the numbers pass all 
currently known statistical tests for randomness and uniformity. 

Algorithm 2.1. (Combined Multiple-Recursive Generator). 

1. Suppose N random numbers are required. Define . m1 = 232 − 209
and .m2 = 232 − 22853. 

2. Initialize a vector .(X−2, X−1, X0) = (12345, 12345, 12345) and a 
vector .(Y−2, Y−1, Y0) = (12345, 12345, 12345). 

3. For .t = 1 to N let 

. Xt = (1403580 Xt−2 − 810728 Xt−3) mod m1 ,

Yt = (527612 Yt−1 − 1370589 Yt−3) mod m2 ,

and output the t-th random number as 

. Ut =

⎧⎪⎪⎨
⎪⎪⎩

Xt − Yt + m1

m1 + 1 if Xt ≤ Yt ,

Xt − Yt

m1 + 1 if Xt > Yt .

Here, .x mod m means the remainder of x when divided by m. The ini-
tialization in Step 2 determines the initial state—the so-called seed— of the 
random number stream. Restarting the stream from the same seed produces 
the same sequence. 

The current default random number generator in Julia is Xoshiro256++ 
(XOR/rotate/shift/rotate). A typical usage of Julia’s uniform random num-
ber generator is as follows. 

using Random # Loading the Random package 
Random.seed!(1234) # set the seed to 1234 
rand(1,5) # 1x5 matrix of random numbers 

Random.seed!(1234) # reset the seed to 1234 
rand(5) # vector of random numbers 

1x5 Matrix{Float64}: 
0.325977 0.549051 0.218587 0.894245 0.353112 

5-element Vector{Float64}:
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0.32597672886359486 
0.5490511363155669 
0.21858665481883066 
0.8942454282009883 
0.35311164439921205 

The package Random was loaded to set the random seed of the random 
number generator. This is useful for testing purposes, as always the same 
random sequence is generated. If the random seed is not required, one does 
not need to load the Random package to execute the rand function, as the 
latter is part of the base package of Julia. 

2.7.2 Inverse-Transform Method 

Once we have a method for drawing a uniform random number, we can, in 
principle, simulate a random variable X from any cdf F by using the following 
algorithm. 

Algorithm 2.2. (Inverse-Transform Method). 

1. Generate U from . U(0, 1).
2. Return .X = F −1(U), where .F −1 is the inverse function of F . 

Figure 2.15 illustrates the inverse-transform method. We see that the ran-
dom variable .X = F −1(U) has cdf F , since 

.P(X ≤ x) = P(F −1(U) ≤ x) = P(U ≤ F (x)) = F (x) . (2.25) 

Fig. 2.15 The inverse-
transform method xX 

U 

0 

1 
F (x) 

Example 2.7 (Generating Uniformly on a Unit Disk). Suppose we 
wish to draw a random point .(X, Y ) uniformly on the unit disk; see Fig. 2.16.



54 2 Random Variables and Probability Distributions

In polar coordinates we have .X = R cos Θ and .Y = R sin Θ, where . Θ has a 
.U(0, 2π) distribution. The cdf of R is given by 

. F (r) = P(R ≤ r) = πr2

π
= r2, 0 < r < 1 .

Its inverse is .F −1(u) =
√

u, 0 < u < 1. We can thus generate R via the 
inverse-transform method as .R =

√
U1, where .U1 ∼ U(0, 1). In addition, we 

can simulate . Θ as .Θ = 2πU2, where .U2 ∼ U(0, 1). Note that . U1 and . U2
should be independent draws from .U(0, 1). 

Fig. 2.16 Draw a point 
.(X, Y ) uniformly on the 
unit disk 

The inverse-transform method holds for general cdfs F . Note that F for 
discrete random variables is a step function, as illustrated in Fig. 2.17. The  
algorithm for generating a random variable X from a discrete distribution 
that takes values .x1, x2, . . . with probabilities .p1, p2, . . . is thus as follows. 

Algorithm 2.3. (Discrete Inverse-Transform Method). 

1. Generate .U ∼ U(0, 1). 
2. Find the smallest positive integer k such that .F (xk) ≥ U and return 

.X = xk. 

Fig. 2.17 The inverse-
transform method for a 
discrete random variable 
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Drawing one of the numbers .1, . . . , n according to a probability vector 
.[p1, . . . , pn] can be done in one line of Julia code: 

minimum(findall(cumsum(p) .> rand())) 

Here p is the vector of probabilities, such as .[0.3, 0.2, 0.5], cumsum gives the 
cumulative vector, e.g., .[0.3, 0.5, 1], findall finds all the indices i such that 
the cumulative probability is greater than some random number rand(), and  
minimum takes the smallest of these indices. 

2.7.3 Acceptance–Rejection Method 

The inverse-transform method may not always be easy to implement, in 
particular when the inverse cdf is difficult to compute. In that case the 
acceptance–rejection method may prove to be useful. The idea of this 
method is depicted in Fig. 2.18. Suppose we wish to sample from a pdf f . Let  g 
be another pdf such that for some constant .C ≥ 1 we have that . Cg(x) ≥ f(x)
for all x. It is assumed that it is easy to sample from g, for example, via the 
inverse-transform method. 

Fig. 2.18 Illustration of the acceptance–rejection method 

It is intuitively clear that if a random point .(X, Y ) is uniformly distributed 
under the graph of f—that is, on the set .{(x, y) : 0 ≤ y ≤ f(x)}—then X 
must have pdf f . To construct such a point,  let us first draw a random point  
.(Z, V ) by drawing Z from g and then drawing V uniformly on .[0, Cg(Z)]. The  
point .(Z, V ) is uniformly distributed under the graph of . Cg. If we keep draw-
ing such a point .(Z, V ) until it lies under the graph of f , then the resulting 
point .(X, Y ) must be uniformly distributed under the graph of f and hence 
the X coordinate must have pdf f . This leads to the following algorithm.
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Algorithm 2.4. (Acceptance–Rejection Method). 
1 repeat 
2 Generate .X ∼ g. 
3 Generate .Y ∼ U(0, C  g(X)). 
4 until .Y ≤ f(X) 
5 return X 

Example 2.8 (Generating from the Standard Normal Distribution). 
To sample from the standard normal pdf via the inverse-transform method 
requires knowledge of the inverse of the corresponding cdf, which involves 
numerical integration. Instead, we can use acceptance–rejection. First, ob-
serve that the standard normal pdf is symmetric around 0. Hence, if we can 
generate a random variable X from the positive normal pdf (see Fig. 2.19), 

.f(x) =
,

2
π

e−x2/2, x ≥ 0 , (2.26) 

then we can generate a standard normal random variable by multiplying X 
with 1 or . −1, each with probability . 1/2. We can bound .f(x) by .C g(x), where 
.g(x) = e−x is the pdf of the .Exp(1) distribution. The smallest constant C 
such that .f(x) ≤ Cg(x) is .

/
2e/π. 
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1.5 

Fig. 2.19 Bounding the positive normal density (solid curve) via an .Exp(1) pdf (times 
.C ≈ 1.3155) 

Drawing from the .Exp(1) distribution can be easily done via the inverse-
transform method, noting that the corresponding cdf is the function . 1 −
e−x, x ≥ 0, whose inverse is the function .− ln(1 − u), .u ∈ (0, 1). This gives 
the following specification of Algorithm 2.4, where f and C are defined above.
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Algorithm 2.5. (.N(0, 1) Generator). 
1 
2 Draw .U1 ∼ U(0, 1) and let .Z = − ln U1. 
3 Draw .U2 ∼ U(0, 1) and let .Y = U2 C e−Z . 
4 until .Y ≤ f(Z) 
5 Draw .U3 ∼ U(0, 1) and let .X = Z (2 1{U3<1/2} − 1) 
6 return X 

repeat 

In Step 2, we have used the fact that if .U ∼ U(0, 1) then also . 1 − U ∼
U(0, 1). In Step 5, .1{U3<1/2} denotes the indicator of the event .{U3 < 1/2}, 
which is 1 if .U3 < 1/2 and 0 otherwise. An alternative generation method 
is given in Algorithm 3.2. In Julia normal random variable generation is ☞ 82 
implemented via the randn function. 

2.8 Problems 

2.1. Two fair dice are thrown and the smallest of the face values, M say, is 
noted. 

a. Give the discrete pdf of M in table form, as in Table 2.1. ☞ 28 
b. What is the probability that M is at least 3? 
c. Calculate the expectation and variance of M . 

2.2. A continuous random variable X has cdf 

. F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0
x2/5, 0 ≤ x ≤ 1
1
5

(
−x2 + 6x − 4

)
, 1 < x ≤ 3

1, x > 3 .

a. Find the corresponding pdf and plot its graph. 
b. Calculate the following probabilities: 

i. . P(X ≤ 2)
ii. . P(1 < X ≤ 2)
iii. .P(1 ≤ X ≤ 2). 
iv. .P(X > 1/2). 

c. Show that .EX = 22/15.
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2.3. In this book most random variables are either discrete or continuous; 
that is, they have either a discrete or continuous pdf. It is also possible to 
define random variables that have a mix of discrete and continuous charac-
teristics. A simple example is a random variable X with cdf 

. F (x) =
I

0, x < 0
1 − c e−x, x ≥ 0

for some fixed .0 < c < 1. 

a. Sketch the cdf F . 
b. Find the following probabilities: 

i. .P(0 ≤ X ≤ x), .x ≥ 0. 
ii. .P(0 < X ≤ x), .x ≥ 0. 
iii. .P(X = x), .x ≥ 0. 

c. Describe how the inverse-transform method can be used to draw samples 
from this distribution. 

2.4. Let X be a positive random variable with cdf F . Prove that 

.EX =
I ∞

0
(1 − F (x)) dx . (2.27) 

2.5. Let X be a random variable that can possibly take values .−∞ and . ∞
with probabilities .P(X = −∞) = a and .P(X = ∞) = b, respectively. Show 
that the corresponding cdf F satisfies .limx→−∞ F (x) = a and . limx→∞ F (x) =
1 − b. 

2.6. Suppose that in a large population the fraction of left-handers is 12%. 
We select at random 100 people from this population. Let X be the number of 
left-handers among the selected people. What is the distribution of X? What 
is the probability that at most seven of the selected people are left-handed? 

2.7. Let .X ∼ Geom(p). Show that 

. P(X > k) = (1 − p)k.

2.8. Find the moment generating function (MGF) of .X ∼ U[a, b]. 

2.9. Let .X = a + (b − a)U , where .U ∼ U[0, 1]. Prove that .X ∼ U[a, b]. Use  
this to provide a more elegant proof of Theorem 2.13.☞ 43 

2.10. Show that the exponential distribution is the only continuous (positive) 
distribution that possesses the memoryless property. Hint: show that the 
memoryless property implies that the tail probability . g(x) = P(X > x)
satisfies .g(x + y) = g(x)g(y).
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2.11. Let .X ∼ Exp(2). Calculate the following quantities: 

a. .P(−1 ≤ X ≤ 1). 
b. .P(X > 4). 
c. .P(X > 4 | X > 2). 
d. . EX2. 

2.12. What is the expectation of a random variable X with the following 
discrete pdf on the set of integer numbers, excluding 0: 

. f(x) = 3
π2

1
x2 , x ∈ Z \ {0} ?

What is the pdf of the absolute value . |X| and what is its expectation? 

2.13. A random variable X is said to have a discrete uniform distribution 
on the set .{a, a + 1, . . . , b} if 

. P(X = x) = 1
b − a + 1 , x = a, a + 1, . . . , b .

a. What is the expectation of X? 
b. Show that .Var(X) = (b − a)(b − a + 2)/12. 
c. Find the probability generating function (PGF) of X. 
d. Describe a simple way to generate X using a uniform number generator. 

2.14. Let X and Y be random variables. Prove that if .X ≤ Y , then . EX ≤
EY . 

2.15. A continuous random variable is said to have a logistic distribution if 
its pdf is given by 

.f(x) = e−x

(1 + e−x)2 , x ∈ R . (2.28) 

a. Plot the graph of the pdf. 
b. Show that .P(X > x) = 1/(1 + ex) for all x. 
c. Write an algorithm based on the inverse-transform method to generate 

random variables from this distribution. 

2.16. An electrical component has a lifetime (in years) that is distributed 
according to an exponential distribution with expectation 3. What is the 
probability that the component is still functioning after 4.5 years, given that 
it still works after 4 years? Answer the same question for the case where the 
component’s lifetime is normally distributed with the same expected value 
and variance as before.
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2.17. Consider the pdf given by 

. f(x) =
(

4 e−4(x−1), x ≥ 1 ,
0, x < 1 .

a. If X is distributed according to this pdf f , what is its expectation? 
b. Specify how one can generate a random variable .X ∼ f using a uniform 

random number generator. 

2.18. Let .X ∼ N(4, 9). 

a. Plot the graph of the pdf. 
b. Express the following probabilities in terms of the cdf . Φ of the standard 

normal distribution: 

i. .P(X ≤ 3). 
ii. .P(X > 4). 
iii. .P(−1 ≤ X ≤ 5). 

c. Find .E[2X + 1]. 
d. Calculate . EX2. 

2.19. Let . Φ be the cdf of .X ∼ N(0, 1). The integral 

. Φ(x) =
I x

−∞

1√
2π

e− 1
2 u2

du

needs to be evaluated numerically. In Julia there are several ways to do this. 

1. If the package Distributions is loaded, the cdf can be evaluated via the 
function x -> cdf(Normal(0,1),x). The inverse cdf can be evaluated 
via p -> quantile(Normal(0,1),p). 

2. Or use the error function from the package SpecialFunctions, defined 
as 

. erf(x) = 2√
π

I x

0
e−u2

du , x ∈ R .

The inverse of erf is implemented in the same package as erfinv. 
3. A third alternative is to use numerical integration (quadrature) via the 

package QuadGK. For example, quadgk(f,0,x) integrates a function f on 
the interval . [0, x]. 

a. Show that .Φ(x) = (erf(x/
√

2) + 1)/2. 
b. Evaluate .Φ(x) for .x = 1, 2, and 3 via (a) the error function and (b) nu-

merical integration of the pdf, using the fact that .Φ(0) = 1/2. 
c. Show that the inverse of . Φ is given by 

.Φ−1(y) =
√

2 erf−1(2y − 1) , 0 < y < 1 .
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2.20. Based on Julia’s rand and randn functions only, implement algorithms 
that generate random variables from the following distributions: 

a. .U[2, 3]. 
b. .N(3, 9). 
c. .Exp(4). 
d. .Bin(10, 1/2). 
e. .Geom(1/6). 

2.21. The Weibull distribution .Weib(α, λ) has cdf 

.F (x) = 1 − e−(λx)α

, x ≥ 0 . (2.29) 

It can be viewed as a generalization of the exponential distribution. Write 
a Julia program that draws 1000 samples from the .Weib(2, 1) distribution 
using the inverse-transform method. Give a histogram of the sample. 

2.22. Consider the pdf 

. f(x) = c e−xx(1 − x), 0 ≤ x ≤ 1 .

a. Show that .c = e/(3 − e). 
b. Devise an acceptance–rejection algorithm to generate random variables 

that are distributed according to f . 
c. Implement the algorithm in Julia. 

2.23. Implement two different algorithms to draw 100 uniformly generated 
points on the unit disk: one based on Example 2.7 and the other using (two- ☞ 53 
dimensional) acceptance–rejection.



Chapter 3 
Joint Distributions 

Often a random experiment is described via more than one random variable. 
Here are some examples. 
1. We randomly select .n = 10 people and observe their heights. Let 

.X1, . . . , Xn be the individual heights. 
2. We toss a coin repeatedly. Let .Xi = 1 if the i-th toss is Heads and . Xi = 0

otherwise. The experiment is thus described by the sequence . X1, X2, . . .
of Bernoulli random variables. 

3. We randomly select a person from a large population and measure his/her 
weight X and height Y . 

How can we specify the behavior of the random variables above? We should 
not just specify the pdf of the individual random variables, but also say some-
thing about the interaction (or lack thereof) between the random variables. 
For example, in the third experiment above if the height Y is large, then 
most likely X is large as well. In contrast, in the first two experiments it is 
reasonable to assume that the random variables are “independent” in some 
way; that is, information about one of the random variables does not give 
extra information about the others. What we need to specify is the joint dis-
tribution of the random variables. The theory below for multiple random 
variables follows a similar path to that of a single random variable described 
in Sects. 2.1–2.3. ☞ 23 

Let .X1, . . . , Xn be random variables describing some random experiment. 
We can accumulate the .{Xi} into a random vector .X = [X1, . . . , Xn] (row 
vector) or .X = [X1, . . . , Xn]T (column vector). Recall that the distribu-
tion of a single random variable X is completely specified by its cumulative 
distribution function. For multiple random variables we have the following 
generalization. 
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Definition 3.1. (Joint Cdf). The joint cdf of .X1, . . . , Xn is the func-
tion .F : Rn → [0, 1] defined by 

. F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn) .

Notice that we have used the abbreviation . P({X1 ≤ x1} ∩ · · · ∩ {Xn ≤
xn}) = P(X1 ≤ x1, . . . , Xn ≤ xn) to denote the probability of the intersection 
of events. We will use this abbreviation throughout the book. 

As in the univariate (i.e., single-variable) case we distinguish between dis-
crete and continuous distributions. 

3.1 Discrete Joint Distributions 

Example 3.1 (Dice Experiment). In a box there are three dice. Die 1 
is an ordinary die; die 2 has no six faces, but instead two 5 faces; die 3 has 
no five faces, but instead two 6 faces. The experiment consists of selecting 
a die at random followed by a toss with that die. Let X be the die number 
that is selected and let Y be the face value of that die. The probabilities 
.P(X = x, Y = y) in Table 3.1 specify the joint distribution of X and Y . Note 
that it is more convenient to specify the joint probabilities . P(X = x, Y = y)
than the joint cumulative probabilities .P(X ≤ x, Y ≤ y). The latter can 
be found, however, from the former by applying the sum rule. For example, 
.P(X ≤ 2, Y ≤ 3) = P(X = 1, Y = 1) + · · · + P(X = 2, Y = 3) = 6/18 = 1/3. 
Moreover, by that same sum rule, the distribution of X is found by summing 
the .P(X = x, Y = y) over all values of y—giving the last column of Table 3.1. 
Similarly, the distribution of Y is given by the column totals in the last row 
of the table. 

Table 3.1 The joint distribution of X (die number) and Y (face value) 

x 

y 

1 2 3 4 5 6 . 
∑

1 . 1
18 . 1

18 . 1
18 . 1

18 . 1
18 . 1

18 . 13

2 . 1
18 . 1

18 . 1
18 . 1

18 . 19 .0 . 13

3 . 1
18 . 1

18 . 1
18 . 1

18 .0 . 19 . 13

.
∑

. 16 . 16 . 16 . 16 . 16 . 16 1 

In general, for discrete random variables .X1, . . . , Xn the joint distribution 
is easiest to specify via the joint pdf.
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Definition 3.2. (Discrete Joint Pdf). The joint pdf f of discrete 
random variables .X1, . . . , Xn is given by the function 

. f(x1, . . . , xn) =  P(X1 = x1, . . . , Xn = xn) . 

We sometimes write .fX1,...,Xn instead of f to show that this is the pdf of the 
random variables .X1, . . . , Xn. Or, if  .X = [X1, . . . , Xn] is the corresponding 
random vector, we can write . fX instead. 

If the joint pdf f is known, we can calculate the probability of any event 
.{X ∈ B}, B in . Rn, via the sum rule as 

. P(X ∈ B) =  
⎲ 

x∈B 

f(x) . 

Compare this with (2.2). In particular, as explained in Example 3.1, we can ☞ 27 
find the pdf of . Xi—often referred to as a marginal pdf, to distinguish it 
from the joint pdf—by summing the joint pdf over all possible values of the 
other variables: 

.P(Xi = x) =  
⎲ 

x1 

· · ·  
⎲ 

xi−1 

⎲ 

xi+1 

· · ·  
⎲ 

xn 

f(x1, . . . , xi−1, x, xi+1, xn) . (3.1) 

The converse is not true: from the marginal distributions one cannot in gen-
eral reconstruct the joint distribution. For example, in Example 3.1 we cannot 
reconstruct the inside of the two-dimensional table if only given the column 
and row totals. 

However, there is one important exception, namely, when the random vari-
ables are independent. We have so far only defined what independence is 
for events. We can define random variables .X1, . . . , Xn to be independent ☞ 17 
if events .{X1 ∈ B1}, . . . , {Xn ∈ Bn} are independent for any choice of sets 
. {Bi}. Intuitively, this means that any information about one of the random 
variables does not affect our knowledge about the others. 

Definition 3.3. (Independence). Random variables .X1, . . . , Xn are 
called independent if for all events .{Xi ∈ Bi} with .Bi ⊆ R, . i = 
1, . . . , n  

.P(X1 ∈ B1, . . . , Xn ∈ Bn) =  P(X1 ∈ B1) · · ·  P(Xn ∈ Bn) . (3.2) 
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A direct consequence of the above definition is the following important 
theorem. 

Theorem 3.1. (Independence and Product Rule). Random vari-
ables .X1, . . . , Xn with joint pdf f are independent if and only if 

.f(x1, . . . , xn) =  fX1(x1) · · · fXn
(xn) (3.3) 

for all .x1, . . . , xn, where .{fXi
} are the marginal pdfs. 

Proof. The theorem is true in both the discrete and continuous case. We 
only show the discrete case, where (3.3) is a special case of (3.2). It follows 
that (3.3) is a necessary condition for independence. To see that it is also a 
sufficient condition, let .X = (X1, . . . , Xn) and observe that 

. 

P(X1 ∈ B1, . . . , Xn ∈ Bn) =  P(X ∈ B1 × · · · ×  Bn ◟ ◝◜ ◞ 
A 

) =  
⎲ 

x∈A 

f(x) 

= 
⎲ 

x∈A 

fX1(x1) · · · fXn
(xn) =  

⎲ 

x1∈B1 

fX1(x1) · · ·  
⎲ 

xn∈Bn 

fXn
(xn) 

= P(X1 ∈ B1) · · ·  P(Xn ∈ Bn) . 

Here .A = B1 × · · · ×  Bn denotes the Cartesian product of .B1, . . . , Bn. □ 

Example 3.2 (Dice Experiment Continued). We repeat the experiment 
in Example 3.1 with three ordinary fair dice. Since the events .{X = x} and 
.{Y = y} are now independent, each entry in the pdf table is .

1 
3 × 1 

6 . Clearly in 
the first experiment not all events .{X = x} and .{Y = y} are independent. 

Remark 3.1. An infinite sequence .X1, X2, . . .  of random variables is said to 
be independent if for any finite choice of positive integers .i1, i2, . . . , in (none 
of them the same) the random variables .Xi1 , . . . , Xin are independent. Many 
statistical models involve random variables .X1, X2, . . .  that are indepen-
dent and identically distributed, abbreviated as iid. We will use this 
abbreviation throughout this book and write the corresponding model as 

. X1, X2, . . .  iid∼ Dist (or f or F ) , 

where . Dist is the common distribution with pdf f and cdf F . 

Example 3.3 (Bernoulli Process). Consider the experiment where we 
toss a biased coin n times, with probability p of Heads. We can model this 
experiment in the following way. For .i = 1, . . . , n  let . Xi be the result of the 
i-th toss: .{Xi = 1} means Heads (or success), and .{Xi = 0} means Tails (or 
failure). Also, let 
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. P(Xi = 1) =  p = 1 − P(Xi = 0), i  = 1, 2, . . . , n  .  

Finally, assume that .X1, . . . , Xn are independent. The sequence 

. X1, X2, . . .  iid∼ Ber(p) 

is called a Bernoulli process with success probability p. Let . X = X1 + · · ·+ 
Xn be the total number of successes in n trials (tosses of the coin). Denote 
by . Bk the set of all binary vectors .x = [x1, . . . , xn] such that . 

∑n 
i=1 xi = k. 

Note that . Bk has . 
(

n 
k 
) 

elements. We have for every .k = 0, . . . , n, 

. P(X = k) =  
⎲ 

x∈Bk 

P(X1 = x1, . . . , Xn = xn) 

= 
⎲ 

x∈Bk 

P(X1 = x1) · · ·  P(Xn = xn) =  
⎲ 

x∈Bk 

pk(1 − p)n−k 

= 
⎛ 

n 
k 

⎞ 
pk(1 − p)n−k . 

In other words, .X ∼ Bin(n, p). Compare this with Example 2.2. ☞ 24 

For the joint pdf of dependent discrete random variables we can write, as 
a consequence of the product rule (1.5), ☞ 14 

. 

f(x1, . . . , xn) =  P(X1 = x1, . . . , Xn = xn) 
= P(X1 = x1) P(X2 = x2 | X1 = x1) × · · ·  
· · · ×  P(Xn = xn | X1 = x1, . . . , Xn−1 = xn−1) , 

assuming that all probabilities . P(X = x1), . . . ,  P(X1 = x1, . . . , Xn−1 = xn−1) 
are non-zero. The function which maps, for a fixed . x1, each variable . x2 to 
the conditional probability 

.P(X2 = x2 | X1 = x1) =  P(X1 = x1, X2 = x2) 
P(X1 = x1) (3.4) 

is called the conditional pdf of . X2 given .X1 = x1. We write it as 
.fX2 | X1(x2 | x1). Similarly, the function . xn |→ P(Xn = xn | X1 = x1, . . . ,  
.Xn−1 = xn−1) is the conditional pdf of . Xn given .X1 = x1, . . . , Xn−1 = xn−1, 
which is written as .fXn | X1,...,Xn−1(xn | x1, . . . , xn−1). 

Example 3.4 (Generating Uniformly on a Triangle). We uniformly 
select a point .(X, Y ) from the triangle . T = {(x, y) :  x, y ∈ {1, . . . , 6}, y  ≤ x} 
in Fig. 3.1. 
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Fig. 3.1 Uniformly select 
a point from the triangle 1 2 3 4 5 6  

1 

2 

3 

4 

5 

6 

Because each of the 21 points is equally likely to be selected, the joint pdf 
is constant on T : 

. f(x, y) = 1
21 , (x, y) ∈ T .

The pdf of X is found by summing .f(x, y) over all y. Hence, 

. fX(x) = x

21 , x ∈ {1, . . . , 6} .

Similarly, 
. fY (y) = 7 − y

21 , y ∈ {1, . . . , 6} .

For a fixed .x ∈ {1, . . . , 6} the conditional pdf of Y given .X = x is 

. fY |X(y | x) = f(x, y)
fX(x) = 1/21

x/21 = 1
x

, y ∈ {1, . . . , x} ,

which simply means that, given .X = x, Y has a discrete uniform distribution 
on .{1, . . . , x}. 

3.1.1 Multinomial Distribution 

An important discrete joint distribution is the multinomial distribution. It 
can be viewed as a generalization of the binomial distribution. We give the 
definition and then an example of how this distribution arises in applications.



3.1 Discrete Joint Distributions 69 

Definition 3.4. (Multinomial Distribution). A random vector 
.[X1, X2, . . . , Xk] is said to have a multinomial distribution with pa-
rameters n and .p1, p2, .. . . , pk (positive and summing up to 1), if 

.P(X1 = x1, . . . , Xk = xk) = n! 
x1! x2! · · · xk! p

x1 
1 px2 

2 · · · pxk 
k , (3.5) 

for all .x1, . . . , xk ∈ {0, 1, . . . , n} such that .x1 + x2 + · · · + xk = n. We  
write .(X1, . . . , Xk) ∼ Mnom(n, p1, . . . , pk). 

Example 3.5 (Urn Problem). We independently throw n balls into k urns, 
such that each ball is thrown in urn i with probability . pi, .i = 1, . . . , k; see  
Fig. 3.2. 

Fig. 3.2 Throwing n 
balls into k urns with 
probabilities .p1, . . . , pk. 
The random configuration 
of balls has a multinomial 
distribution 

Let . Xi be the total number of balls in urn i, .i = 1, . . . , k. We show that 
.[X1, . . . , Xk] ∼ Mnom(n, p1, . . . , pk). Let .x1, . . . , xk be integers between 0 and 
n that sum up to n. The probability that the first . x1 balls fall in the first 
urn, the next . x2 balls fall in the second urn, etc., is 

. px1 
1 px2 

2 · · · pxk 
k . 

To find the probability that there are . x1 balls in the first urn, . x2 in the second, 
and so on, we have to multiply the probability above with the number of ways 
in which we can fill the urns with .x1, x2, . . . , xk balls, i.e., .n!/(x1! x2! · · · xk!). 
This gives (3.5). 

Remark 3.2. Note that for the binomial distribution there are only two 
possible urns. Also, note that for each .i = 1, . . . , k, .Xi ∼ Bin(n, pi). 
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3.2 Continuous Joint Distributions 

Joint distributions for continuous random variables are usually defined via 
their joint pdf. The theoretical development below follows very similar lines 
to both the univariate continuous case in Sect. 2.2.2 and the multivariate☞ 28 
discrete case in Sect. 3.1.☞ 64 

Definition 3.5. (Continuous Joint Pdf). Continuous random vari-
ables .X1, . . . , Xn are said to have a joint pdf f if 

. P(a1 < X1 ≤ b1, . . . , an < Xn ≤ bn) =
⎰ b1

a1

· · ·
⎰ bn

an

f(x1, . . . , xn) dx1 · · · dxn

for all .a1, . . . , bn. 

This implies, similar to the univariate case in (2.3), that the probability☞ 28 
of any event pertaining to .X = [X1, . . . , Xn]—say event .{X ∈ B}, where B 
is some subset of . Rn—can be found by integration: 

.P(X ∈ B) =
⎰

B

f(x1, . . . , xn) dx1 . . . dxn . (3.6) 

As in (2.5) we can interpret .f(x1, . . . , xn) as the density of the probability☞ 29 
distribution at .[x1, . . . , xn]. For example, in the two-dimensional case, for 
small .h > 0, 

. P(x1 ≤ X1 ≤ x1 + h, x2 ≤ X2 ≤ x2 + h)

=
⎰ x1+h

x1

⎰ x2+h

x2

f(u, v) du dv ≈ h2 f(x1, x2) .

Similar to the discrete multivariate case in (3.1), the marginal pdfs can be 
recovered from the joint pdf by integrating out the other variables: 

. fXi
(x)=

⎰ ∞

−∞
· · ·
⎰ ∞

−∞
f(x1, . . . , xi−1, x, xi+1, . . . , xn) dx1 . . . dxi−1 dxi+1 . . . dxn .

We illustrate this for the two-dimensional case. We have 

. FX1(x) = P(X1 ≤ x, X2 ≤ ∞) =
⎰ x

−∞

⎛⎰ ∞

−∞
f(x1, x2) dx2

⎞

dx1 .

By differentiating the last integral with respect to x, we obtain 

.fX1(x) =
⎰ ∞

−∞
f(x, x2) dx2 .
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It is not possible, in general, to reconstruct the joint pdf from the marginal 
pdfs. An exception is when the random variables are independent; see Defi-
nition 3.3. By modifying the arguments in the proof of Theorem 3.3 to the 
continuous case—basically replacing sums with integrals—it is not difficult to 
see that the theorem also holds in the continuous case. In particular, contin-
uous random variables .X1, . . . , Xn are independent if and only if their joint 
pdf, f say, is the product of the marginal pdfs: 

.f(x1, . . . , xn) =  fX1(x1) · · · fXn
(xn) (3.7) 

for all .x1, . . . , xn. Independence for an infinite sequence of random variables 
is discussed in Remark 3.1. ☞ 66 

Example 3.6 (Generating a General iid Sample). Consider the se-
quence of numbers produced by a uniform random number generator such 
as Julia’s rand function. A mathematical model for the output stream is: 
.U1, U2, . . . ,  are independent and .U(0, 1)-distributed; that is, 

. U1, U2, . . .  iid∼ U(0, 1) . 

Using the inverse-transform method it follows that for any cdf F , ☞ 53 

. F −1(U1), F −1(U2), . . .  iid∼ F .  

Example 3.7 (Quotient of Two Independent Random Variables). 
Let X and Y be independent continuous random variables, with .Y >  0. 

What is the pdf of the quotient .U = X/Y in terms of the pdfs of X and Y ? 
Consider first the cdf of U . We have  

. 

FU (u) =  P(U ≤ u) =  P(X/Y ≤ u) =  P(X ≤ Y u) 

= 
⎰ ∞ 

0 

⎰ yu 

−∞ 
fX(x)fY (y) dx dy = 

⎰ u 

−∞ 

⎰ ∞ 

0 
yfX(yz)fY (y) dy dz ,  

where we have used the change of variable .z = x/y and changed the order of 
integration in the last equation. It follows that the pdf is given by 

.fU (u) =  d 
du 

FU (u) =  
⎰ ∞ 

0 
yfX(yu) fY (y) dy . (3.8) 

As a particular example, suppose that X and V both have a standard normal 
distribution. Note that .X/V has the same distribution as .U = X/Y , where 
.Y = |V | > 0 has a positive normal distribution. It follows from (3.8) that ☞ 56 

. 

fU (u) =  
⎰ ∞ 

0 
y 1√

2π 
e− 1 

2 y2u2 2√
2π 

e− 1 
2 y2 

dy 

= 
⎰ ∞ 

0 
y

1 
π 

e− 1 
2 y2(1+u2) dy = 1 

π 
1 

1 +  u2 , u  ∈ R . 
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This is the pdf of the Cauchy distribution.☞ 50 

Definition 3.6. (Conditional Pdf). Let X and Y have joint pdf f 
and suppose .fX(x) > 0. The  conditional pdf of Y given .X = x is 
defined as 

.fY |X(y | x) =  f(x, y) 
fX(x) for all y . (3.9) 

For the discrete case, this is just a rewrite of (3.4). For the continuous 
case, the interpretation is that .fY |X(y | x) is the density corresponding to the 
cdf .FY |X(y | x) defined by the limit 

. FY |X(y | x) = lim
h↓0 

P(Y ≤ y | x ≤ X ≤ x+h) = lim
h↓0 

P(Y ≤ y, x ≤ X ≤ x + h) 
P(x ≤ X ≤ x + h) . 

In many statistical situations, the conditional and marginal pdfs are known 
and (3.9) is used to find the joint pdf via 

. f(x, y) =  fX(x) fY |X(y | x) , 

or, more generally for the n-dimensional case: 

. 
f(x1, . . . , xn) =  

fX1(x1) fX2|X1(x2 | x1) · · · fXn|X1,...,Xn−1(xn | x1, . . . , xn−1) , 
(3.10) 

which in the discrete case is just a rephrasing of the product rule in terms☞ 14 
of probability densities. For independent random variables (3.10) reduces 
to (3.7). Equation (3.10) also shows how one could sequentially generate 
a random vector .X = [X1, . . . , Xn] according to a pdf  f , provided that 
it is possible to generate random variables from the successive conditional 
distributions, as summarized in the following algorithm. 

Algorithm 3.1. (Dependent Random Variable Generation). 
1 Draw .X1 from pdf .fX1 . 
2 for .t = 2  to n do 
3 Given .X1 = x1, . . . , Xt = xt, generate .Xt+1 from the 

conditional pdf .fXt+1|X1,...,Xt
(xt+1 | .x1, . . . , xt). 

4 return .X = [X1, . . . , Xn] 

Example 3.8 (Non-uniform Distribution on Triangle). We select a 
point .(X, Y ) from the triangle .(0, 0)–.(1, 0)–.(1, 1) in such a way that X has a 
uniform distribution on .(0, 1) and the conditional distribution of Y given .X = 
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x is uniform on .(0, x). Figure 3.3 shows the result of 1000 independent draws 
from the joint pdf .f(x, y) = fX(x) fY |X(y | x), generated via Algorithm 3.1. 
It is clear that the points are not uniformly distributed over the triangle. 

using Plots 
N = 1000 
x =  rand(N) 
y =  rand(N).*x 
scatter(x,y) 
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Fig. 3.3 1000 realizations from the joint density .f(x, y), generated using the Julia 
program on the left, which implements Algorithm 3.1 

Random variable X has a uniform distribution on .(0, 1); hence, its pdf is 
.fX(x) = 1 on .x ∈ (0, 1). For any fixed .x ∈ (0, 1), the conditional distribution 
of Y given .X = x is uniform on the interval .(0, x), which means that 

. fY |X(y | x) = 1
x

, 0 < y < x .

It follows that the joint pdf is given by 

. f(x, y) = fX(x) fY |X(y | x) = 1
x

, 0 < x < 1, 0 < y < x .

From the joint pdf we can obtain the pdf of Y as 

. fY (y) =
⎰ ∞

−∞
f(x, y) dx =

⎰ 1

y

1
x

dx = − ln y, 0 < y < 1 .

Finally, for any fixed .y ∈ (0, 1) the conditional pdf of X given .Y = y is 

.fX|Y (x | y) = f(x, y)
fY (y) = −1

x ln y
, y < x < 1 .
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3.3 Mixed Joint Distributions 

So far we have only considered joint distributions in which the random vari-
ables are all discrete or all continuous. The theory can be extended to mixed 
cases in a straightforward way. For example, the joint pdf of a discrete vari-
able X and a continuous variable Y is defined as the function .f(x, y) such 
that for all events .{(X, Y ) ∈ A}, where .A ⊆ R

2, 

. P((X, Y ) ∈ A) =
⎲

x

⎰

1{(x,y)∈A} f(x, y) dy ,

where . 1 denotes the indicator. The pdf is often specified via (3.10). 

Example 3.9 (Beta Distribution). Let .Θ ∼ U(0, 1) and . (X | Θ = θ) ∼
Bin(n, θ). Using  (3.10), the joint pdf of X and . Θ is given by 

. f(x, θ) =
⎛

n

x

⎞

θx(1 − θ)n−x, θ ∈ (0, 1), x = 0, 1, . . . , n .

By integrating out . θ, we find the pdf of X: 

. fX(x) =
⎰ 1

0

⎛
n

x

⎞

θx(1 − θ)n−xdθ =
⎛

n

x

⎞

B(x + 1, n − x + 1) ,

where B is the beta function, defined as 

.B(α, β) =
⎰ 1

0
tα−1(1 − t)β−1dt = Γ (α)Γ (β)

Γ (α + β) , (3.11) 

and . Γ is the gamma function in (2.21). The conditional pdf of . Θ given .X = x,☞ 48 
where .x ∈ {0, . . . , n}, is  

. fΘ|X(θ | x) = f(θ, x)
fX(x) = θx(1 − θ)n−x

B(x + 1, n − x + 1) , θ ∈ (0, 1) .

The continuous distribution with pdf 

.f(x; α, β) = xα−1(1 − x)β−1

B(α, β) , x ∈ (0, 1) (3.12) 

is called the beta distribution with parameters . α and . β. Both parameters 
are assumed to be strictly positive. We write .Beta(α, β) for this distribution. 
For this example we have thus .(Θ | X = x) ∼ Beta(x + 1, n − x + 1).
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3.4 Expectations for Joint Distributions 

Similar to the univariate case in Theorem 2.2, the expected value of a real- ☞ 31 
valued function h of .(X1, . . . , Xn) ∼ f is a weighted average of all values that 
.h(X1, . . . , Xn) can take. Specifically, in the continuous case, 

.Eh(X1, . . . , Xn) =
⎰

· · ·
⎰

h(x1, . . . , xn) f(x1, . . . , xn) dx1 . . . dxn . (3.13) 

In the discrete case replace the integrals above with sums. 
Two important special cases are the expectation of the sum (or more gen-

erally affine transformations) of random variables and the product of random 
variables. 

Theorem 3.2. (Properties of the Expectation). Let . X1, . . . , Xn

be random variables with expectations .μ1, . . . , μn. Then, 

.E[a + b1X1 + b2X2 + · · · + bnXn] = a + b1μ1 + · · · + bnμn (3.14) 

for all constants a, .b1, . . . , bn. Also, for independent random variables, 

.E[X1X2 · · · Xn] = μ1 μ2 · · · μn . (3.15) 

Proof. We show it for the continuous case with two variables only. The general 
case follows by analogy and, for the discrete case, by replacing integrals with 
sums. Let . X1 and . X2 be continuous random variables with joint pdf f . Then, 
by (3.13), 

. 

E[a + b1X1 + b2X2] =
⎰⎰

(a + b1x1 + b2x2) f(x1, x2) dx1 dx2

= a + b1

⎰⎰

x1f(x1, x2) dx1 dx2 + b2

⎰⎰

x2f(x1, x2) dx1 dx2

= a + b1

⎰

x1

⎛⎰

f(x1, x2) dx2

⎞

dx1 + b2

⎰

x2

⎛⎰

f(x1, x2) dx1

⎞

dx2

= a + b1

⎰

x1fX1(x1) dx1 + b2

⎰

x2fX2(x2) dx2 = a + b1μ1 + b2μ2 .

Next, assume that . X1 and . X2 are independent, so that . f(x1, x2) = fX1(x1)×
.fX2(x2). Then, 

. 

E[X1 X2] =
⎰⎰

x1 x2 fX1(x1)fX2(x2) dx1 dx2

=
⎰

x1fX1(x1) dx1 ×
⎰

x2fX2(x2) dx2 = μ1 μ2 .

□
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Definition 3.7. (Covariance). The covariance of two random vari-
ables X and Y with expectations .EX = μX and .EY = μY is defined 
as 

. Cov(X, Y ) =  E[(X − μX)(Y − μY )] . 

The covariance is a measure of the amount of linear dependency between 
two random variables. A scaled version of the covariance is given by the 
correlation coefficient: 

.ϱ(X, Y ) =  Cov(X, Y ) 
σX σY 

, (3.16) 

where .σ2 
X = Var(X) and .σ2 

Y = Var(Y ). The correlation coefficient always lies 
between . −1 and 1; see Problem 3.16.☞ 95 

For easy reference Theorem 3.3 lists some important properties of the 
variance and covariance. 

Theorem 3.3. (Properties of the Variance and Covariance). For 
random variables X, Y , and  Z and constants a and b, we have  

1. .Var(X) =  EX2 − (EX)2. 
2. .Var(a + bX) =  b2Var(X). 
3. .Cov(X, Y ) =  EXY − EX EY . 
4. .Cov(X, Y ) = Cov(Y, X). 
5. .Cov(aX + bY, Z) =  a Cov(X, Z) +  b Cov(Y, Z). 
6. .Cov(X, X) = Var(X). 
7. .Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y ). 
8. If X and Y are independent, then .Cov(X, Y ) = 0. 

Proof. For simplicity of notation we write .EZ = μZ for a generic random 
variable Z. Properties 1 and 2 were already shown in Theorem 2.4.☞ 33 

3. . Cov(X, Y ) =  E[(X − μX)(Y − μY )] = E[X Y  − X μY − Y μX + μX μY ] =  
E[X Y ] − μX μY . 

4. .Cov(X, Y ) =  E[(X −μX)(Y −μY )] = E[(Y −μY )(X −μX)] = Cov(Y, X). 
5. . Cov(aX + bY, Z) =  E[(aX + bY )Z] − E[aX + bY ] EZ = a E[XZ] − 

a EXEZ + b E[Y Z] − b EY EZ = a Cov(X, Z) +  b Cov(Y, Z). 
6. .Cov(X, X) =  E[(X − μX)(X − μX)] = E[(X − μX)2] = Var(X). 
7. By Property 6, .Var(X+Y ) = Cov(X+Y, X+Y ). By Property 5, . Cov(X+ 

Y, X+Y ) = Cov(X, X)+Cov(Y, Y )+Cov(X, Y )+Cov(Y, X) = Var(X)+ 
Var(Y ) + 2 Cov(X, Y ), where in the last equation Properties 4 and 6 are 
used. 
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8. If X and Y are independent, then .E[X Y ] =  μX μY . Therefore, . Cov(X, Y ) 
. = 0  follows immediately from Property 3. 

As a consequence of Properties 2 and 7, we have the following general 
result for the variance of affine transformations of random variables. 

Corollary 3.1. (Variance of an Affine Transformation). Let 
.X1, . . . , Xn be random variables with variances .σ2 

1 , . . . , σ2 
n. Then, 

.Var 
⎛ 

a + 
n⎲ 

i=1 
biXi 

⎞ 

= 
n⎲ 

i=1 
b2 

i σ
2 
i + 2  

⎲ 

i<j 
bibjCov(Xi, Xj) (3.17) 

for any choice of constants a and .b1, . . . , bn. In particular, for indepen-
dent random variables .X1, . . . , Xn, 

.Var(a + b1X1 + · · · + bnXn) =  b2 
1σ2 

1 + · · · + b2 
nσ2 

n . (3.18) 

Let .X = [X1, . . . , Xn]T be a random column vector. Sometimes it is con-
venient to write the expectations and covariances in vector notation. 

Definition 3.8. (Expectation Vector and Covariance Matrix). 
For any random column vector . X we define the expectation vector 
as the vector of expectations 

. μ = [μ1, . . . , μn]T = [EX1, . . . ,EXn]T . 

The covariance matrix . Σ is defined as the matrix whose .(i, j)-th 
element is 

. Cov(Xi, Xj) =  E[(Xi − μi)(Xj − μj)] . 

If we define the expectation of a matrix to be the matrix of expectations, 
then we can write the covariance matrix succinctly as 

. Σ = E 
⎡ 
(X − μ)(X − μ)T⎤ . 

Note that any covariance matrix . Σ is symmetric and positive semidefi-
nite; that is, for any (column) vector . u, 

.uT Σ u ≥ 0 . (3.19) 
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To see this, let .Y = X − μ. Then, 

. uT Σ u = uT
E [Y Y T] u = E [uT Y Y T u]

= E [(Y Tu)T Y Tu] = E(Y Tu)2 ≥ 0.

Definition 3.9. (Conditional Expectation). The conditional ex-
pectation of Y given .X = x, denoted .E[Y | X = x], is the expectation 
corresponding to the conditional pdf .fY |X(y | x). That is, in the contin-
uous case, 

. E[Y | X = x] =
⎰

y fY |X(y | x) dy .

In the discrete case replace the integral with a sum. 

Note that .E[Y | X = x] is a function of x, say  . h(x). The corresponding 
random variable .h(X) is written as .E[Y | X]. The expectation of .E[Y | X] is, 
in the continuous case, 

.

EE[Y | X] =
⎰

E[Y | X = x]fX(x) dx =
⎰ ⎰

y
f(x, y)
fX(x) fX(x) dy dx

=
⎰

y fY (y) dy = EY .

(3.20) 

This “stacking” of (conditional) expectations is referred to as repeated con-
ditioning. 

Example 3.10 (Non-uniform Distribution on Triangle Continued). 
In Example 3.8 the conditional expectation of Y given .X = x, with .0 < x < 1, 
is 

. E[Y | X = x] = 1
2 x ,

because conditioned on .X = x, Y is uniformly distributed on the interval 
.(0, x). Using the repeated conditioning rule we find 

. EY = 1
2EX = 1

4 .

3.5 Functions of Random Variables 

Suppose .X1, . . . , Xn are measurements of a random experiment. What can be 
said about the distribution of a function of the data, say .Z = g(X1, . . . , Xn), 
when the joint distribution of .X1, . . . , Xn is known?
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Example 3.11 (Pdf of an Affine Transformation). Let X be a contin-
uous random variable with pdf . fX and let .Z = a+ bX, where .b /= 0. We wish 
to determine the pdf . fZ of Z. Suppose that .b >  0. We have for any z 

. FZ(z) =  P(Z ≤ z) =  P 
( 
X ≤ (z − a)/b 

) 
= FX 

( 
(z − a)/b 

) 
. 

Differentiating this with respect to z gives .fZ(z) =  fX 
( 
(z − a)/b 

) 
/b. For  

.b <  0 we similarly obtain .fZ(z) =  fX 
( 
(z − a)/b 

) 
/(−b) . Thus, in general, 

.fZ(z) =  1 
|b| fX 

⎛ 
z − a 

b 

⎞ 
. (3.21) 

Example 3.12 (Pdf of a Monotone Transformation). Generalizing the 
previous example, suppose that .Z = g(X) for some strictly increasing func-
tion g. To find the pdf of Z from that of X we first write 

. FZ(z) =  P(Z ≤ z) =  P 
( 
X ≤ g−1(z) 

) 
= FX 

( 
g−1(z) 

) 
, 

where . g−1 is the inverse of g. Differentiating with respect to z now gives 

.fZ(z) =  fX(g−1(z)) d 
dz 

g−1(z) =  fX(g−1(z)) 
g'(g−1(z)) . (3.22) 

For strictly decreasing functions, . g' needs to be replaced with its negative 
value. 

3.5.1 Linear Transformations 

Let .x = [x1, . . . , xn]T be a column vector in . Rn and . B an .m × n matrix. 
The mapping .x |→ z, with .z = Bx, is called a linear transformation. Now  
consider a random vector .X = [X1, . . . , Xn]T, and let 

. Z = BX . 

Then . Z is a random vector in . Rm. In principle, if we know the joint distri-
bution of . X, then we can derive the joint distribution of . Z. Let us first see 
how the expectation vector and covariance matrix are transformed. 
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Theorem 3.4. (Expectation and Covariance Under a Linear 
Transformation). If . X has expectation vector . μX and covariance ma-
trix . ΣX , then the expectation vector and covariance matrix of . Z = BX 
are given by 

.μZ = BμX (3.23) 

and 
.ΣZ = B ΣX BT . (3.24) 

Proof. We have .μZ = EZ = EBX = B EX = BμX and 

. ΣZ = E[(Z − μZ)(Z − μZ)T] =  E[B(X − μX)(B(X − μX))T] 
= B E[(X − μX)(X − μX)T]BT 

= B ΣX BT . 

□ 

Suppose that . B is an invertible .n × n matrix. If . X has a joint pdf . fX , 
what is the joint density . fZ of . Z? Let us consider the continuous case. For 
any fixed . x, let .z = Bx. Hence, .x = B−1z. Consider the n-dimensional cube 
.C = [z1, z1 + h] × · · · × [zn, zn + h]. Then, by definition of the joint density 
for . Z, we have

. P(Z ∈ C) ≈ hn fZ(z) . 

Let D be the image of C under . B−1—that is, the parallelepiped of all 
points . x such that .Bx ∈ C; see Fig. 3.4. 

Fig. 3.4 Linear transformation 

A basic result from linear algebra is that any matrix . B linearly trans-
forms an n-dimensional rectangle with volume V into an n-dimensional par-
allelepiped with volume .V |B|, where .|B| = | det(B)|. Thus, in addition to 
the above expression for .P(Z ∈ C) we also have 
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. P(Z ∈ C) =  P(X ∈ D) ≈ hn|B−1| fX(x) =  hn|B|−1 fX(x) . 

Equating these two expressions for .P(Z ∈ C) and letting h go to 0, we obtain 

.fZ(z) =  fX(B−1z) 
|B| , z ∈ Rn . (3.25) 

3.5.2 General Transformations 

We can apply similar reasoning as in the previous subsection to deal with 
general transformations .x |→ g(x), written out as 

. 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x1 
x2 
... 

xn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

|→ 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

g1(x) 
g2(x) 

... 
gn(x) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

. 

For a fixed . x, let  .z = g(x). Suppose . g is invertible; hence, .x = g−1(z). Any  
infinitesimal n-dimensional rectangle at . x with volume V is transformed into 
an n-dimensional parallelepiped at . z with volume .V |Jg(x)|, where .Jg(x) is 
the matrix of Jacobi at . x of the transformation . g; that is, ☞ 475 

. Jg(x) =  

⎡ 

⎢ 
⎣ 

∂g1 
∂x1 

· · ·  ∂g1 
∂xn 

... 
. . . 

... 
∂gn 
∂x1 

· · ·  ∂gn 
∂xn 

⎤ 

⎥ 
⎦ . 

Now consider a random column vector .Z = g(X). Let  C be a small cube 
around . z with volume . hn. Let  D be the image of C under . g−1. Then, as in 
the linear case, 

. hn fZ(z) ≈ P(Z ∈ C) ≈ hn|Jg−1(z)| fX(x) . 

Hence, we have the following result. 

Theorem 3.5. (Transformation Rule). Let . X be a continuous n-
dimensional random vector with pdf . fX and . g a function from . Rn to 
. Rn with inverse . g−1. Then, .Z = g(X) has pdf 

.fZ(z) =  fX(g−1(z)) |Jg−1(z)|, z ∈ Rn . (3.26) 

Remark 3.3. Note that .|Jg−1(z)| = 1/|Jg(x)|. 
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Example 3.13 (Box–Muller Method). The joint distribution of . X, Y
iid∼

N(0, 1) is 
. fX,Y (x, y) = 1

2π
e− 1

2 (x2+y2), (x, y) ∈ R
2 .

In polar coordinates we have 

.X = R cos Θ and Y = R sin Θ , (3.27) 

where .R ≥ 0 and .Θ ∈ (0, 2π). What is the joint pdf of R and . Θ? Consider 
the inverse-transformation . g−1, defined by 

. 

⎡
r
θ

⎤
g−1

|−→
⎡
r cos θ
r sin θ

⎤

=
⎡
x
y

⎤

.

The corresponding matrix of Jacobi is 

. Jg−1(r, θ) =
⎡
cos θ −r sin θ
sin θ r cos θ

⎤

,

which has determinant r. Since .x2 + y2 = r2(cos2 θ + sin2 θ) = r2, it follows 
that 

. fR,Θ(r, θ) = fX,Y (x, y) r = 1
2π

e− 1
2 r2

r, θ ∈ (0, 2π), r ≥ 0 .

By integrating out . θ and r, respectively, we find .fR(r) = r e−r2/2 and . fΘ(θ) =
1/(2π). Since .fR,Θ is the product of . fR and . fΘ, the random variables R and . Θ
are independent. This shows how X and Y could be generated: independently 
generate .R ∼ fR and .Θ ∼ U(0, 2π) and return X and Y via (3.27). Generation 
from . fR can be done via the inverse-transform method. In particular, R☞ 53 
has the same distribution as .

√
−2 ln U with .U ∼ U(0, 1). This leads to the 

following method for generating standard normal random variables. 

Algorithm 3.2. (Box–Muller Method). 

1. Generate .U1, U2
iid∼ U(0, 1). 

2. Return two independent standard normal variables, X and Y , via  

.

X =
√

−2 ln U1 cos(2πU2) ,

Y =
√

−2 ln U1 sin(2πU2) .
(3.28)
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3.6 Multivariate Normal Distribution 

It is helpful to view a normally distributed random variable as an affine 
transformation of a standard normal random variable. In particular, if Z has 
a standard normal distribution, then .X = μ+σZ has a .N(μ, σ2) distribution; 
see Theorem 2.15. ☞ 46 

We now generalize this to n dimensions. Let .Z1, . . . , Zn be independent 
and standard normal random variables. The joint pdf of . Z = [Z1, . . . , Zn]T
is given by 

.fZ(z) =
n∏

i=1

1√
2π

e− 1
2 z2

i = (2π)− n
2 e− 1

2 zTz, z ∈ R
n. (3.29) 

We write .Z ∼ N(0, In), where . In is the identity matrix. Consider the affine 
transformation (i.e., a linear transformation plus a constant vector) 

.X = μ + B Z (3.30) 

for some .m × n matrix . B and m-dimensional vector . μ. Note that, by Theo-
rem 3.4, . X has expectation vector . μ and covariance matrix . Σ = BBT.

Definition 3.10. (Multivariate Normal Distribution). A random 
vector . X of dimension m is said to have a multivariate normal or 
multivariate Gaussian distribution with mean vector . μ and covari-
ance matrix . Σ if it can be written as .X = μ+B Z, where . Z ∼ N(0, In)
and .BBT = Σ. We write .X ∼ N(μ, Σ). 

Suppose that . B is an invertible .n × n matrix. Then, by (3.25), the density 
of .Y = X − μ is given by 

. fY (y) = 1
|B|
√

(2π)n
e− 1

2 (B−1y)TB−1y = 1
|B|
√

(2π)n
e− 1

2 yT(B−1)TB−1y .

We have .|B| =
√

|Σ| and .(B−1)TB−1 = (BT)−1B−1 = (BBT)−1 = Σ−1, so  
that 

. fY (y) = 1
√

(2π)n |Σ|
e− 1

2 yTΣ−1y .

Because . X is obtained from . Y by simply adding a constant vector . μ, we  
have .fX(x) = fY (x − μ) and therefore 

.fX(x) = 1
√

(2π)n |Σ|
e− 1

2 (x−μ)TΣ−1(x−μ), x ∈ R
n . (3.31)
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Figure 3.5 shows the pdfs of two bivariate (i.e., two-dimensional) normal dis-
tributions. In both cases the mean vector is .μ = [0, 0]T and the variances (the 
diagonal elements of . Σ) are 1. The correlation coefficients (or, equivalently 
here, the covariances) are respectively .ϱ = 0 and .ϱ = 0.8. 

Fig. 3.5 Pdfs of bivariate normal distributions with means zero, variances 1, and cor-
relation coefficients 0 (left) and . 0.8 (right) 

Conversely, given a positive-definite1 covariance matrix .Σ = [σij ], there 
exists a unique lower triangular matrix . B such that .Σ = BBT. In Julia, 
the function cholesky from the LinearAlgebra package accomplishes this 
matrix factorization. Note that the function returns a Julia struct object,☞ 444 
from which the matrix needs to be extracted using the field name L; see the 
code in Example 3.3. Once the Cholesky factorization is determined, it is 
easy to sample from a multivariate normal distribution. 

Algorithm 3.3. (Normal Random Vector Generation). To gen-
erate N independent draws from a .N(μ, Σ) distribution of dimension n 
carry out the following steps: 

1. Determine the lower Cholesky factorization .Σ = BBT. 
2. Generate .Z = [Z1, . . . , Zn]T by drawing .Z1, . . . , Zn ∼iid N(0, 1). 
3. Output .X = μ + BZ. 
4. Repeat Steps 2 and 3 independently N times. 

Example 3.14 (Generating from a Bivariate Normal Distribution). 
The Julia code below draws 1000 samples from the two pdfs in Fig. 3.5. The  

resulting point clouds are given in Fig. 3.6. 

1 A positive-definite matrix satisfies (3.19) with strict inequality.
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using Plots, LinearAlgebra, Random 
N = 1000; rho = 0.8; 
Sigma = [1 rho; rho 1]; 
B =  cholesky(Sigma).L; # lower-triangular Cholesky matrix 
x = B*randn(2,N); 
scatter(x[1,:],x[2,:],ms=2,msw=0,legend=false)
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Fig. 3.6 1000 realizations of bivariate normal distributions with means zero, variances 
1, and correlation coefficients 0 (left) and . 0.8 (right) 

The following theorem states that any affine combination of independent 
multivariate normal random variables is again multivariate normal. 

Theorem 3.6. (Affine Transformation of Normal Random Vec-
tors). Let .X1, X2, . . . , Xr be independent .mi-dimensional normal ran-
dom vectors, with .Xi ∼ N(μi, Σi), .i = 1, . . . , r. Then, for any . n × 1 
vector . a and .n × mi matrices .B1, . . . , Br, 

.a + 
r⎲ 

i=1 
Bi Xi ∼ N 

⎛ 
a + 

r⎲ 

i=1 
Bi μi, 

r⎲ 

i=1 
Bi Σi BT 

i 

⎞ 
. (3.32) 

Proof. Denote the n-dimensional random vector in the left-hand side of (3.32) 
by . Y . By Definition 3.10, each  . Xi can be written as .μi + AiZi, where the 
.{Zi} are independent (because the .{Xi} are independent), so that 

.Y = a + 
r⎲ 

i=1 
Bi (μi + AiZi) =  a + 

r⎲ 

i=1 
Bi μi + 

r⎲ 

i=1 
BiAiZi , 
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which is an affine combination of independent standard normal random vec-
tors. Hence, . Y is multivariate normal. Its expectation vector and covariance 
matrix can be found easily from Theorem 3.4. □ 

The next theorem shows that the distribution of a subvector of a multi-
variate normal random vector is again normal. 

Theorem 3.7. (Marginal Distributions of Normal Random 
Vectors). Let .X ∼ N(μ, Σ) be an n-dimensional normal random vec-
tor. Decompose . X, . μ, and  . Σ as 

.X =
⎡
Xp

Xq

⎤

, μ =
⎡
μp

μq

⎤

, Σ =
⎡

Σp Σr

ΣT
r Σq

⎤

, (3.33) 

where . Σp is the upper left .p × p corner of . Σ and . Σq is the lower right 
.q × q corner of . Σ. Then, .Xp ∼ N(μp, Σp). 

Proof. Let .BBT be the lower Cholesky factorization of . Σ. We can write 

.

⎡
Xp

Xq

⎤

=
⎡
μp

μq

⎤

+
⎡
Bp O
Cr Cq

⎤

◟ ◝◜ ◞
B

⎡
Zp

Zq

⎤

, (3.34) 

where . Zp and . Zq are independent p- and  q-dimensional standard normal 
random vectors. In particular, .Xp = μp + BpZp, which means that . Xp ∼
N(μp, Σp), since .BpBT

p = Σp. □ 

By relabeling the elements of . X we see that Theorem 3.7 implies that 
any subvector of . X has a multivariate normal distribution. For example, 
.Xq ∼ N(μq, Σq). 

Not only the marginal distributions of a normal random vector are normal 
but also its conditional distributions. 

Theorem 3.8. (Conditional Distributions of Normal Random 
Vectors). Let .X ∼ N(μ, Σ) be an n-dimensional normal random vec-
tor with .det(Σ) > 0. If  . X is decomposed as in (3.33), then 

. (Xq | Xp = xp) ∼ N(μq +ΣT
r Σ−1

p (xp −μp), Σq −ΣT
r Σ−1

p Σr) . (3.35) 

As a consequence, . Xp and . Xq are independent if and only if they are 
uncorrelated, that is, if  .Σr = O (zero matrix).
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Proof. From (3.34) we see that 

. (Xq | Xp = xp) = μq + Cr B−1
p (xp − μp) + CqZq ,

where . Zq is a q-dimensional multivariate standard normal random vector. 
It follows that . Xq conditional on .Xp = xp has a . N(μq + Cr B−1

p (xp −
μp), .CqCT

q ) distribution. The proof of (3.35) is completed by observing that 
.ΣT

r Σ−1
p = CrBT

p (BT
p )−1B−1

p = Cr B−1
p , and  

. Σq − ΣT
r Σ−1

p Σr = CrCT
r + CqCT

q − CrB−1
p Σr◟◝◜◞

BpCT
r

= CqCT
q .

If . Xp and . Xq are independent, then they are obviously uncorrelated, as 
.Σr = E[(Xp −μp)(Xq −μq)T] = E(Xp −μp)E(Xq −μq)T = O. Conversely, 
if .Σr = O, then by (3.35) the conditional distribution of . Xq given . Xp is the 
same as the unconditional distribution of . Xq, that is,  .N(μq, Σq). In other 
words, . Xq is independent of . Xp. □ 

Theorem 3.9. (Relationship Between Normal and . χ2 Distri-
butions). If .X ∼ N(μ, Σ) is an n-dimensional normal random vector 
with .det(Σ) > 0, then 

.(X − μ)TΣ−1(X − μ) ∼ χ2
n . (3.36) 

Proof. Let .BBT be the Cholesky factorization of . Σ, where . B is invertible. 
Since . X can be written as .μ + BZ, where .Z = [Z1, . . . , Zn]T is a vector of 
independent standard normal random variables, we have 

. (X − μ)TΣ−1(X − μ) = (X − μ)T(BBT)−1(X − μ) = ZTZ =
n⎲

i=1
Z2

i .

The moment generating function of .Y =
∑n

i=1 Z2
i is given by 

. E etY = E et(Z2
1 +···+Z2

n) = E [etZ2
1 · · · etZ2

n ] =
⎛
E etZ2

⎞n

,

where .Z ∼ N(0, 1). The moment generating function of . Z2 is 

.E etZ2
=
⎰ ∞

−∞
etz2 1√

2π
e−z2/2dz = 1√

2π

⎰ ∞

−∞
e− 1

2 (1−2t)z2
dz = 1√

1 − 2t
,
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so that 

. EetY =
⎛ 1

2
1
2 − t

⎞n
2

, t <
1
2 ,

which is the moment generating function of the .Gamma(n/2, 1/2) distribu-
tion, that is, the . χ2

n distribution—see Theorem 2.18. □☞ 49 

A consequence of Theorem 3.9 is that if .X = [X1, . . . , Xn]T is n-
dimensional standard normal, then the squared length . ‖X‖2 = X2

1 + · · ·+X2
n

has a . χ2
n distribution. If instead .Xi ∼ N(μi, 1), .i = 1, . . ., then .‖X‖2 is said 

to have a noncentral . χ2
n distribution. This distribution depends on the 

.{μi} only through the norm . ‖μ‖; see Problem 3.22. We write .‖X‖2 ∼ χ2
n(θ), 

where .θ = ‖μ‖ is the noncentrality parameter. 
Such distributions frequently occur in statistics when considering projec-

tions of multivariate normal random variables. The proof of the following 
theorem can be found in Appendix B.4.☞ 479 

Theorem 3.10. (Relationship Between Normal and Noncen-
tral . χ2 Distributions). Let .X ∼ N(μ, In) be an n-dimensional nor-
mal random vector and let . Vk and . Vm be linear subspaces of dimensions 
k and m, respectively, with .k < m ≤ n. Let . Xk and . Xm be orthogonal 
projections of . X onto . Vk and . Vm, and let . μk and . μm be the corre-
sponding projections of . μ. Then, the following holds: 

1. The random vectors . Xk, .Xm −Xk, and .X −Xm are independent. 
2. .‖Xk‖2 ∼ χ2

k(‖μk‖), .‖Xm − Xk‖2 ∼ χ2
m−k(‖μm − μk‖), and . ‖X −

Xm‖2 ∼ χ2
n−m(‖μ − μm‖). 

Theorem 3.10 is frequently used in the statistical analysis of normal linear 
models; see Sect. 5.3.1. In typical situations . μ lies in the subspace . Vm or even☞ 147 
. Vk—in which case .‖Xm − Xk‖2 ∼ χ2

m−k and .‖X − Xm‖2 ∼ χ2
n−m, inde-

pendently. The (scaled) quotient then turns out to have an F distribution—a 
consequence of the following theorem. 

Theorem 3.11. (Relationship Between . χ2 and F Distribu-
tions). Let .U ∼ χ2

m and .V ∼ χ2
n be independent. Then, 

.
U/m

V/n
∼ F(m, n) .
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Proof. For notational simplicity, let .c = m/2 and .d = n/2. It follows from 
Example 3.7 that the pdf of .W = U/V is given by ☞ 71 

. fW (w) =
⎰ ∞

0
fU (wv) v fV (v) dv

=
⎰ ∞

0

(wv)c−1 e−wv/2

Γ (c) 2c
v

vd−1e−v/2

Γ (d) 2d
dv

= wc−1

Γ (c) Γ (d) 2c+d

⎰ ∞

0
vc+d−1 e−(1+w)v/2 dv

= Γ (c + d)
Γ (c) Γ (d)

wc−1

(1 + w)c+d
,

where the last equality follows from the fact that the integrand is equal to 
.Γ (α)λα times the density of the .Gamma(α, λ) distribution with . α = c + d
and .λ = (1 + w)/2. The proof is completed by observing that the density of 
.Z = n

m
U
V is given by 

. fZ(z) = fW (z m/n) m/n .

□ 

Corollary 3.2. (Relationship Between Normal, . χ2, and  t Dis-
tributions). Let .Z ∼ N(0, 1) and .V ∼ χ2

n be independent. Then, 

. 
Z

√
V/n

∼ tn .

Proof. Let .T = Z/
√

V/n. Because .Z2 ∼ χ2
1, we have by Theorem 3.11 that 

.T 2 ∼ F(1, n). The result follows now from Theorem 2.19 and the symmetry ☞ 51 
around 0 of the pdf of T . □ 

3.7 Limit Theorems 

Two main results in probability are the law of large numbers and the cen-
tral limit theorem. Both are limit theorems involving sums of independent 
random variables. In particular, consider a sequence .X1, X2, . . . of iid ran-
dom variables with finite expectation . μ and finite variance . σ2. For  each  n 
define .Sn = X1 + · · · + Xn. What can we say about the (random) sequence 
of sums .S1, S2, . . . or averages .S1, S2/2, S3/3, . . .? By  (3.14) and (3.18) we ☞ 75
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have .E[Sn/n] = μ and .Var(Sn/n) = σ2/n. Hence, as n increases the variance 
of the (random) average .Sn/n goes to 0. Informally, this means that . (Sn/n)
tends to the constant . μ, as  .n → ∞. This makes intuitive sense, but the im-
portant point is that the mathematical theory confirms our intuition in this 
respect. Here is a more precise statement. 

Theorem 3.12. (Weak Law of Large Numbers). If .X1, . . . , Xn are 
iid with finite expectation . μ and finite variance . σ2, then for all . ε > 0

. lim
n→∞

P (|Sn/n − μ| > ε) = 0 .

Proof. Let .Y = (Sn/n − μ)2 and .δ = ε2. We have  

. 
Var(Sn/n) = EY = E[Y 1{Y >δ}] + E[Y 1{Y ≤δ}] ≥ E[δ 1{Y >δ}] + 0

= δ P(Y > δ) = ε2
P(|Sn/n − μ| > ε) .

Rearranging gives 

. P(|Sn/n − μ| > ε) ≤ Var(Sn/n)
ε2 = σ2

n ε2 .

The proof is concluded by observing that .σ2/(nε2) goes to 0 as .n → ∞. □ 

Remark 3.4. In Theorem 3.12 the qualifier “weak” is used to distinguish 
the result from the strong law of large numbers, which states that 

. P( lim
n→∞

Sn/n = μ) = 1 .

In terms of a computer simulation this means that the probability of drawing 
a sequence for which the sequence of averages fails to converge to . μ is zero. 
The strong law implies the weak law, but is more difficult to prove in its full 
generality; see, for example, Feller (1970). 

The central limit theorem describes the approximate distribution of . Sn

(or .Sn/n), and it applies to both continuous and discrete random variables. 
Loosely, it states that 

the sum of a large number of iid random variables 
approximately has a normal distribution. 

Specifically, the random variable . Sn has a distribution that is approximately 
normal, with expectation . nμ and variance . nσ2. A more precise statement is 
given next.
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Theorem 3.13. (Central Limit Theorem). If .X1, . . . , Xn are iid 
with finite expectation . μ and finite variance . σ2, then for all .x ∈ R, 

. lim
n→∞ 

P 
⎛ 

Sn − nμ 
σ

√
n 

≤ x 
⎞ 

= Φ(x) , 

where . Φ is the cdf of the standard normal distribution. 

Proof. (Sketch) A full proof is out of the scope of this book. However, the 
main ideas are not difficult. Without loss of generality assume .μ = 0  and 
.σ = 1. This amounts to replacing . Xn by .(Xn − μ)/σ. We also assume, for 
simplicity, that the moment generating function of . Xi is finite in an open 
interval containing 0, so that we can use Theorem 2.7. We wish to show ☞ 36 
that the cdf of .Sn/

√
n converges to that of the standard normal distribution. 

It can be proved (and makes intuitive sense) that this is equivalent (up to 
some technical conditions) to demonstrating that the corresponding moment 
generating functions converge. That is, we wish to show that 

. lim
n→∞ 

E exp 
⎛ 

t Sn√
n 

⎞ 
= e 1 

2 t2 
, t  ∈ R , 

where the right-hand side is the moment generating function of the standard 
normal distribution. Because .EX1 = 0  and .EX2 

1 = Var(X1) = 1, we have by  
Theorem 2.7 that the moment generation function of . X1 has the following 
Taylor expansion: ☞ 477 

. M(t) def = E etX1 = 1 +  t EX1 + 1 
2 t2 

EX2 
1 + o(t2) = 1 +  1 

2 
t2 + o(t2) , 

where .o(t2) is a function for which .limt↓0 o(t2)/t2 = 0. Because the .{Xi} are 
iid, it follows that the moment generating function of .Sn/

√
n satisfies 

. E exp 
⎛ 

t Sn√
n 

⎞ 
= E exp 

⎛ 
t√
n

(X1 + · · · + Xn) 
⎞ 

= 
n∏ 

i=1 
E exp 

⎛ 
t√
n 

Xi 

⎞ 

= Mn 
⎛ 

t√
n 

⎞ 
= 
⎡ 
1 +  t

2 

2n 
+ o(t2/n) 

⎤n 

−→ e 1 
2 t2 

as .n → ∞. □ 

Figure 3.7 shows central limit theorem in action. The left part shows the 
pdfs of .S1, . . . , S4 for the case where the .{Xi} have a .U[0, 1] distribution. 
The right part shows the same for the .Exp(1) distribution. We clearly see 
convergence to a bell-shaped curve, characteristic of the normal distribution. 
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Fig. 3.7 Illustration of the central limit theorem for (left) the uniform distribution and 
(right) the exponential distribution 

Recall that a binomial random variable .X ∼ Bin(n, p) can be viewed as 
the sum of n iid .Ber(p) random variables: .X = X1 + · · · + Xn. As a direct☞ 66 
consequence of the central limit theorem it follows that for large n . P(X ≤
k) ≈ P(Y ≤ k), where .Y ∼ N(np, np(1 − p)). As a rule of thumb, this normal 
approximation to the binomial distribution is accurate if both np and . n(1−p)
are larger than 5. 

There is also a central limit theorem for random vectors. The multidimen-
sional version is as follows. 

Theorem 3.14. (Multivariate Central Limit Theorem). Let 
.X1, . . . , Xn be iid random vectors with expectation vector . μ and co-
variance matrix . Σ. For large n the random vector .X1 + · · · + Xn ap-
proximately has a .N(nμ, nΣ) distribution. 

A more precise formulation of the above theorem is that the average ran-
dom vector .Zn = (X1 + · · · + Xn)/n, when rescaled via .

√
n(Zn − μ), con-

verges in distribution to a random vector .K ∼ N(0, Σ) as .n → ∞. A useful 
consequence of this is given next. 

Theorem 3.15. (Delta Method). Let .Z1, Z2, . . . be a sequence of 
random vectors such that .

√
n(Zn − μ) → K ∼ N(0, Σ) as .n → ∞. 

Then, for any continuously differentiable function . g of . Zn, 

.
√

n(g(Zn) − g(μ)) → R ∼ N(0, JΣJT) , (3.37) 

where .J = J(μ) = (∂gi(μ)/∂xj) is the Jacobian matrix of . g evaluated 
at . μ.
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Proof. (Sketch) A formal proof requires some deeper knowledge of statistical 
convergence, but the idea of the proof is quite straightforward. The key step 
is to construct the first-order Taylor expansion (see Theorem B.1) of . g around ☞ 477 
. μ, which yields 

. g(Zn) = g(μ) + J(μ)(Zn − μ) + O(‖Zn − μ‖2) .

As .n → ∞, the remainder term goes to 0, because .Zn → μ. Hence, the left-
hand side of (3.37) is approximately .J

√
n(Zn −μ). For large n this converges 

to a random vector .R = J K, where .K ∼ N(0, Σ). Finally, by Theorem 3.4 ☞ 80 
we have .R ∼ N(0, JΣ JT). □ 

Example 3.15 (Ratio Estimator). Let .[X1, Y1]T, . . . , [Xn, Yn]T be iid 
copies of a random (column) vector .[X, Y ]T with mean vector .[μX , μY ]T and 
covariance matrix . Σ. Denoting the average of the .{Xi} and .{Yi} by . X and 
. Y , respectively, what can we say about the distribution of .X/Y for large n? 

Let .Zn = [X, Y ]T and .μ = [μX , μY ]T. By the multivariate central limit 
theorem, . Zn has approximately a .N(μ, Σ/n) distribution. More precisely, 
.
√

n(Zn − μ) converges to a .N(0, Σ)-distributed random vector. 
We apply the delta method using the function .g : R

2 → R defined by 
.g(x, y) = x/y, whose Jacobian matrix is 

. J(x, y) =
⎡

∂g(x, y)
∂x

,
∂g(x, y)

∂y

⎤

=
⎡

1
y

,
−x

y2

⎤

.

It follows from (3.37) that .g(X, Y ) = X/Y has approximately a normal 
distribution with expectation .g(μ) = μX/μY and variance .σ2/n, where 

. 

σ2 = J(μ) Σ JT(μ) =
⎡

1
μY

,
−μX

μ2
Y

⎤ ⎡
Var(X) Cov(X, Y )

Cov(X, Y ) Var(Y )

⎤ ⎡ 1
μY−μX

μ2
Y

⎤

=
⎛

μX

μY

⎞2⎛Var(X)
μ2

X

+ Var(Y )
μ2

Y

− 2Cov(X, Y )
μX μY

⎞

.

(3.38) 

3.8 Problems 

3.1. Let U and V be independent random variables with . P(U = 1) = P(V =
1) = 1/4 and .P(U = −1) = P(V = −1) = 3/4. Define .X = U/V and 
.Y = U + V . Give the joint discrete pdf of X and Y in table form, as in 
Table 3.1. Are  X and Y independent? ☞ 64 

3.2. Let .X1, . . . , X4 ∼iid Ber(p). 

a. Give the joint discrete pdf of .X1, . . . , X4. 
b. Give the joint discrete pdf of .X1, . . . , X4 given .X1 + · · · + X4 = 2.
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3.3. Three identical-looking urns each have four balls. Urn 1 has one red and 
three white balls, Urn 2 has two red and two white balls, and Urn 3 has three 
red and one white ball. We randomly select an urn with equal probability. 
Let X be the number of the urn. We then draw two balls from the selected 
urn. Let Y be the number of red balls drawn. Find the following discrete 
pdfs: 

a. The pdf of X. 
b. The conditional pdf of Y given .X = x for .x = 1, 2, 3. 
c. The joint pdf of X and Y . 
d. The pdf of Y . 
e. The conditional pdf of X given .Y = y for .y = 0, 1, 2. 

3.4. We randomly select a point .[X, Y ] from the triangle . {[x, y] : x, y ∈
{1, . . . , 6}, y ≤ x} (see Fig. 3.1) in the following non-uniform way. First, select☞ 68 
X discrete uniformly from .{1, . . . , 6}. Then, given .X = x, select Y discrete 
uniformly from .{1, . . . , x}. Find the conditional distribution of X given . Y = 1
and its corresponding conditional expectation. 

3.5. We randomly and uniformly select a continuous random point .(X, Y ) in 
the triangle .(0, 0)–.(1, 0)–.(1, 1)—the same triangle as in Example 3.8.☞ 72 

a. Give the joint pdf of X and Y . 
b. Calculate the pdf of Y and sketch its graph. 
c. Specify the conditional pdf of Y given .X = x for any fixed .x ∈ (0, 1). 
d. Determine .E[Y | X = 1/2]. 

3.6. Let .X ∼ U[0, 1] and .Y ∼ Exp(1) be independent. 

a. Determine the joint pdf of X and Y and sketch its graph. 
b. Calculate .P((X, Y ) ∈ [0, 1] × [0, 1]). 
c. Calculate .P(X + Y < 1). 

3.7. Let .X ∼ Exp(λ) and .Y ∼ Exp(μ) be independent. 

a. Show that .min(X, Y ) also has an exponential distribution, and determine 
its corresponding parameter. 

b. Show that 
. P(X < Y ) = λ

λ + μ
.

3.8. Let .X ∼ Exp(1) and .(Y | X = x) ∼ Exp(x). 

a. What is the joint pdf of X and Y ? 
b. What is the marginal pdf of Y ? 

3.9. Let .X ∼ U(−π/2, π/2). Show that .Y = tan(X) has a Cauchy distribu-☞ 72 
tion. 

3.10. Let .X ∼ Exp(3) and .Y = ln(X). What is the pdf of Y ?
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3.11. We draw n numbers independently and uniformly from the interval 
[0,1] and denote their sum . Sn. 

a. Determine the pdf of . S2 and sketch its graph. 
b. What is approximately the distribution of . S20? 
c. Approximate the probability that the average of the 20 numbers is greater 

than 0.6. 

3.12. A certain type of electrical component has an exponential lifetime dis-
tribution with an expected lifetime of . 1/2 year. When the component fails 
it is immediately replaced by a second (new) component; when the second 
component fails, it is replaced by a third, etc. Suppose there are ten such 
identical components. Let T be the time that the last of the components 
fails. 

a. What is the expectation and variance of T ? 
b. Approximate, using the central limit theorem, the probability that T ex-

ceeds 6 years. 
c. What is the exact distribution of T ? 

3.13. Let . A be an invertible .n×n matrix and let .X1, . . . , Xn ∼iid N(0, 1). De-
fine .X = [X1, . . . , Xn]T and let .[Z1, . . . , Zn]T = AX. Show that . Z1, . . . , Zn

are iid standard normal only if .AAT = In (identity matrix), in other words, 
only if . A is an orthogonal matrix. Can you find a geometric interpretation of 
this? 

3.14. Let .X1, . . . , Xn be independent and identically distributed random 
variables with mean . μ and variance . σ2. Let .X = (X1 + · · ·+Xn)/n. Calculate 
the correlation coefficient of . X1 and . X. 

3.15. Suppose that .X1, . . . , X6 are iid with pdf 

. f(x) =
⎧

3x2, 0 ≤ x ≤ 1,
0, elsewhere.

a. What is the probability that all .{Xi} are greater than . 1/2? 
b. Find the probability that at least one of the .{Xi} is less than 1/2. 

3.16. Let X and Y be random variables. 

a. Express .Var(−aX +Y ), where a is a constant, in terms of . Var(X), Var(Y ),
and .Cov(X, Y ). 

b. Take .a = Cov(X, Y )/Var(X). Using the fact that the variance in (a) is 
always non-negative, prove the following Cauchy–Schwartz inequality: 

. (Cov(X, Y ))2 ≤ Var(X) Var(Y ) .

c. Show that, as a consequence, the correlation coefficient of X and Y must 
lie between . −1 and 1.
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3.17. Suppose X and Y are independent uniform random variables on [0,1]. 
Let .U = X/Y and .V = XY , which means .X =

√
UV and .Y =

√
V/U . 

a. Sketch the two-dimensional region where the density of .[U, V ] is non-zero. 
b. Find the matrix of Jacobi for the transformation .[x, y]T |→ [u, v]T. 
c. Show that its determinant is .2x/y = 2u. 
d. What is the joint pdf of U and V ? 
e. Show that the marginal pdf of U is 

.fU (u) =
⎧

1
2 , 0 < u < 1

1
2u2 , u ≥ 1

. (3.39) 

3.18. Let .X1, . . . , Xn be iid with mean . μ and variance . σ2. Let . X = 1
n

∑n
i=1 Xi

and .Y = 1
n

∑n
i=1(Xi − X)2. 

a. Show that 

. Y = 1
n

n⎲

i=1
X2

i − X
2

.

b. Calculate . EY . 
c. Show that .EY → σ2 as .n → ∞. 

3.19. Let .X = [X1, . . . , Xn]T, with .{Xi} ∼iid N(μ, 1). Consider the orthog-
onal projection, denoted . X1, of  . X onto the subspace spanned by . 1 =
[1, . . . , 1]T. 

a. Show that .X1 = X1. 
b. Show that . X1 and .X − X1 are independent. 
c. Show that .‖X − X1‖2 =

∑n
i=1(Xi − X)2 has a .χ2

n−1 distribution. 

Hint: apply Theorem 3.10. 

3.20. Let .X1, . . . , X6 be the weights of six randomly chosen people. Assume 
each weight is .N(75, 100) distributed (in kg). Let .W = X1 + · · · + X6 be the 
total weight of the group. Explain why the distribution of W is equal or not 
equal to . 6X1. 

3.21. Let .X ∼ χ2
m and .Y ∼ χ2

n be independent. Show that .X + Y ∼ χ2
m+n. 

Hint: use moment generating functions. 

3.22. Let .X ∼ N(μ, 1). Show that the moment generation function of . X2 is 

. M(t) = eμ2t/(1−2t)
√

1 − 2t
t < 1/2 .

Next, consider independent random variables .Xi ∼ N(μi, 1), .i = 1, . . . , n. 
Use the result above to show that the distribution of .‖X‖2 only depends on 
n and . ‖μ‖. Can you find a symmetry argument why this must be so?
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3.23. A machine produces cylinders with a diameter which is normally dis-
tributed with mean 3.97 cm and standard deviation 0.03 cm. Another ma-
chine produces (independently of the first machine) shafts with a diameter 
which is normally distributed with mean 4.05 cm and standard deviation 
0.02 cm. What is the probability that a randomly chosen cylinder fits into a 
randomly chosen shaft? 

3.24. A sieve with diameter d is used to separate a large number of blue-
berries into two classes: small and large. Suppose that the diameters of the 
blueberries are normally distributed with an expectation .μ = 1 (cm) and a 
standard deviation .σ = 0.1 (cm). 

a. Find the diameter of the sieve such that the proportion of large blueberries 
is 30%. 

b. Suppose that the diameter is chosen such as in (a). What is the probability 
that out of 1000 blueberries, fewer than 280 end up in the “large” class? 

3.25. Suppose X, Y , and  Z are independent .N(1, 2)-distributed random vari-
ables. Let .U = X −2Y +3Z and .V = 2X −Y +Z. Give the joint distribution 
of U and V . 

3.26. For many of the above problems it is instructive to simulate the corre-
sponding model on a computer in order to better understand the theory. 

a. Generate . 105 points .(X, Y ) from the model in Problem 3.6. 
b. Compare the fraction of points falling in the unit square .[0, 1] × [0, 1] with 

the theoretical probability in Problem 3.6 (b). 
c. Do the same for the probability .P(X + Y < 1). 

3.27. Simulate . 105 draws from .U(−π/2, π/2) and transform these using the 
tangent function, as in Problem 3.9. Compare the histogram of the trans-
formed values with the theoretical (Cauchy) pdf. 

3.28. Simulate . 105 independent draws of .[U, V ] in Problem 3.17. Verify with 
a histogram of the U -values that the pdf of U is of the form (3.39). 

3.29. Consider the Julia experiments in Example 3.14. 

a. Carry out the experiments with .ϱ = 0.4, 0.7, 0.9, 0.99, and  . −0.8, and ☞ 84 
observe how the outcomes change. 

b. Plot the corresponding pdfs, as in Fig. 3.6. 
c. Give also the contour plots of the pdfs, for .ϱ = 0 and .ϱ = 0.8. Observe 

that the contours are ellipses. 
d. Show that these ellipses are of the form 

.x2
1 + 2ϱ x1 x2 + x2

2 = constant .



Part II 
Statistical Modeling and 

Frequentist and Bayesian Inference 

In Part II of the book, we consider the modeling and analysis of random data. 
We describe various common models for data and discuss the mathematical 
tools of statistical inference. Both the classical (frequentist) and Bayesian 
viewpoints of statistics are covered. Frequentist statistics’ main focus is the 
likelihood concept, whereas Bayesian statistics deals primarily with the pos-
terior distribution of the model parameters. Both frequentist and Bayesian 
methods often involve Monte Carlo sampling techniques. It is assumed that 
the reader is familiar with the probability topics discussed in Part I.
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Chapter 4 
Common Statistical Models 

The conceptual framework for statistical modeling and analysis is sketched 
in Fig. 4.1. The starting point is some real-life problem (reality) and a corre-
sponding set of data. On the basis of the data we wish to say something about 
the real-life problem. The second step consists of finding a probabilistic model 
for the data. This model contains what we know about the reality and how 
the data were obtained. Within the model we carry out our calculations and 
analysis. This leads to conclusions about the model. Finally, the conclusions 
about the model are translated into conclusions about the reality. 

Reality 

Data 

Model Conclusion Conclusionmathematical 

analysisData Model 

about about 

Reality 

for+ 

Fig. 4.1 Statistical modeling and analysis 

Mathematical statistics uses probability theory and other branches of 
mathematics to study data. In particular, the data are viewed as realiza-
tions of random variables whose joint distribution is specified in advance, ☞ 63 
possibly up to some unknown parameter(s). The mathematical analysis is 
then purely about the model and its parameters. 

4.1 Independent Sampling from a Fixed Distribution 

One of the simplest statistical models is the one where the data . X1, . . . , Xn

are assumed to be independent and identically distributed (iid). We write ☞ 66 
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. X1, . . . , Xn
iid∼ f̊ or X1, . . . , Xn

iid∼ Dist ,

to indicate that the random variables form an iid sample from a sampling 
pdf . ̊f or sampling distribution . Dist. Let  f denote the joint pdf of .X1, . . . , Xn. 
Then, by Theorem 3.1,☞ 66 

. f(x1, . . . , xn) = f̊(x1) · · · f̊(xn) .

Example 4.1 (Experiments with Iid Samples). Each of the following 
scenarios can be modeled via an iid sample. 

1. We roll a die 100 times, and record at each throw whether a 6 appears 
or not. Let .Xi = 1 if the i-th throw yields a 6 and .Xi = 0 otherwise, for 
.i = 1, . . . , 100. Then, 

. X1, . . . , X100
iid∼ Ber(p)

for some known or unknown p. For example, if the die is known to be 
fair, then .p = 1/6. 

2. From a large population we select 300 men between 40 and 50 years of 
age and measure their heights. Let . Xi be the height of the i-th selected 
person, .i = 1, . . . , 300. Then, 

. X1, . . . , X300
iid∼ N(μ, σ2)

for some unknown parameters . μ and . σ2. 
3. A large marine reserve is divided into 20 similar habitats. In each habitat 

the number of octopuses is recorded. Let . Xi be the number of octopuses 
in habitat i, .i = 1, . . . , 20. Then, 

. X1, . . . , X20
iid∼ Poi(μ)

for some unknown parameter .μ > 0. 
4. We run a simulation program for a production system for cars and record 

the total production in a day. We repeat this 10 times, each time starting 
the simulation with a different seed. Let . Xi be the production per day in 
the i-th simulation, .i = 1, . . . , 10. Then, 

. X1, . . . , X10
iid∼ Dist

for some unknown distribution . Dist. 
Remark 4.1 (About Statistical Modeling). At this point it is good to 
emphasize a few points about modeling. 
• Any model for data is likely to be wrong. For example, in Scenario 2 above 

the height would normally be recorded on a discrete scale, say 1000– 
2200 (mm). However, samples from a .N(μ, σ2) can take any real value,
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including negative values. Nevertheless, the normal distribution could be 
a reasonable approximation to the real sampling distribution. An impor-
tant advantage of using a normal distribution is that it has many nice 
mathematical properties, as described in Sect. 3.6. ☞ 83 

• Most statistical models depend on a number of unknown parameters. One 
of the main objectives of statistical inference—to be discussed in subse-
quent chapters—is to gain knowledge of the unknown parameters on the 
basis of the observed data. Even in Scenario 4 of Example 4.1 the model 
depends on underlying simulation parameters, although the distribution 
. Dist may not be explicitly known. 

• Any model for data needs to be checked for suitability. An important 
criterion is that data simulated from the model should resemble the ob-
served data—at least for a certain choice of model parameters. This is 
automatically satisfied for Scenario 4 but should be verified for Scenar-
ios 2 and 3. Model checking and selection is discussed in Sects. 5.3.1, 5.4, ☞ 147 
8.6, and  12.1.1. ☞ 257 

☞ 352 

4.2 Multiple Independent Samples 

The single iid sample in Sect. 4.1 is easily generalized to multiple iid samples. 
The most common models involve Bernoulli and normal random variables. 

Example 4.2 (Two-Sample Binomial Model). To assess whether there 
is a difference between boys and girls in their preference for two brands of 
cola, say Sweet and Ultra cola, we select at random 100 boys and 100 girls 
and ask whether they prefer Sweet or Ultra. We could model this via two 
independent Bernoulli samples. That is, for each .i = 1, . . . , 100 let .Xi = 1 if 
the i-th boy prefers Sweet and let .Xi = 0 otherwise. Similarly, let .Yi = 1 if 
the i-th girl prefers Sweet over Ultra. We thus have the model: 

. X1, . . . , X100
iid∼ Ber(p1) ,

Y1, . . . , Y100
iid∼ Ber(p2) ,

X1, . . . , X100, Y1, . . . , Y100 independent, with p1 and p2 unknown.

The objective is to assess the difference .p1 − p2 on the basis of the observed 
values for .X1, . . . , X100, Y1, . . . , Y100. Note that it suffices to only record the 
total number of boys or girls who prefer Sweet cola in each group; that is, 
.X =

∑100
i=1 Xi and .Y =

∑100
i=1 Yi. This gives the two-sample binomial 

model: 

.X ∼ Bin(100, p1) ,

Y ∼ Bin(100, p2) ,

X, Y independent, with p1 and p2 unknown.
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Example 4.3 (Two-Sample Normal Model). From a large population 
we select 200 men between 25 and 30 years of age and measure their heights. 
For each person we also record whether the mother smoked during pregnancy 
or not. Suppose that 60 mothers smoked during pregnancy. 

Let .X1, . . . , X60 be the heights of the men whose mothers smoked, and let 
.Y1, . . . , Y140 be the heights of the men whose mothers did not smoke. Then, 
a possible model is the two-sample normal model: 

. X1, . . . , X60
iid∼ N(μ1, σ2

1) ,

Y1, . . . , Y140
iid∼ N(μ2, σ2

2) ,

X1, . . . , X60, Y1, . . . , Y140 independent,

where the model parameters .μ1, μ2, σ2
1 , and  . σ2

2 are unknown. One would 
typically like to assess the difference .μ1 − μ2. That is, does smoking during 
pregnancy affect the (expected) height of the child? A typical simulation 
outcome of the model is given in Fig. 4.2, using parameters . μ1 = 170, μ2 =
175, σ2

1 = 36, and  .σ2
2 = 64. 

140 150 160 170 180 190 200 

non-smoker 

smoker 

Fig. 4.2 Simulated height data from a two-sample normal model 

Instead of dividing the data into two groups, one could further divide the 
“smoking mother” group into several subgroups according to the intensity of 
smoking, e.g., rarely, moderately, and heavily, so that in this case the data 
could be modeled via four independent samples from a normal distribution. 
This model would, in general, depend on eight unknown parameters—four 
expectations and four variances. 

4.3 Regression Models 

Francis Galton observed in an article in 1889 that the heights of adult off-
spring are, on the whole, more “average” than the heights of their parents. 
Galton interpreted this as a degenerative phenomenon, using the term re-
gression to indicate this “return to mediocrity.” Karl Pearson continued Gal-
ton’s original work and conducted comprehensive studies comparing various 
relationships between members of the same family. Figure 4.3 depicts the
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measurements of the heights of 1078 fathers and their adult sons (one son 
per father). 

55 60 65 70 75 80 
55 

60 

65 

70 

75 

80 

Fig. 4.3 A scatter plot of heights from Pearson’s data 

The average height of the fathers was 67 inches and of the sons 68 inches. 
Because sons are on average 1 inch taller than the fathers, we could try to 
“explain” the height of the son by taking the height of his father and adding 
1 inch. However, the line .y = x + 1 (dashed) does not seem to predict the 
height of the sons as accurately as the solid line in Fig. 4.3. This line has a 
slope less than 1 and demonstrates Galton’s “regression” effect. For example, 
if a father is 5% taller than average, then his son will be on the whole less 
than 5% taller than average. 

In general, regression analysis is about finding relationships between a 
number of variables. In particular, there is a response variable which we 
would like to “explain” via one or more explanatory variables. Explana-
tory variables are also called predictors, covariates, and  independent 
variables. In the latter case the response variable is called the dependent 
variable. Regression is usually seen as a functional relationship between con-
tinuous variables. 

4.3.1 Simple Linear Regression 

The most basic regression model involves a linear relationship between the 
response and a single explanatory variable. As in Pearson’s height data, we
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have measurements .(x1, y1), . . . , (xn, yn) that lie approximately on a straight 
line. It is assumed that these measurements are outcomes of pairs .(x1, Y1), . . ., 
.(xn, Yn), where, for each deterministic explanatory variable . xi, the response 
variable . Yi is a random variable with 

.EYi = β0 + β1 xi, i = 1, . . . , n (4.1) 

for certain unknown parameters . β0 and . β1. The (unknown) line 

.y = β0 + β1 x (4.2) 

is called the regression line. To completely specify the model, we need 
to designate the joint distribution of .Y1, . . . , Yn. The most common linear 
regression model is given next. The adjective “simple” refers to the fact that 
a single explanatory variable is used to explain the response. 

Definition 4.1. (Simple Linear Regression Model). In a simple 
linear regression model the response data .Y1, . . . , Yn depend on ex-
planatory variables .x1, . . . , xn via the linear relationship 

.Yi = β0 + β1 xi + εi , i = 1, . . . , n , (4.3) 

where .ε1, . . . , εn
iid∼ N(0, σ2). 

This formulation makes it even more obvious that we view the responses 
as random variables which would lie exactly on the regression line, were it 
not for some “disturbance” or “error” term (represented by the . {εi}). 

Note that the simple linear regression model (4.3) is a Gaussian model; 
that is, .Y = [Y1, . . . , Yn]T has a multivariate normal distribution. Namely,☞ 83 

.Y ∼ N(β01 + β1x, σ2 In) , (4.4) 

where .x = [x1, . . . , xn]T, . 1 is the n-dimensional column vector of 1s, and . In

is the n-dimensional identity matrix. 

4.3.2 Multiple Linear Regression 

A linear regression model that contains more than one explanatory variable 
is called a multiple linear regression model.
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Definition 4.2. (Multiple Linear Regression Model). In a 
(Gaussian) multiple linear regression model the response data 
.Y1, . . . , Yn depend on d-dimensional explanatory variables .x1, . . . , xn, 
with .xi = [xi1, . . . , xid]T, via the linear relationship 

.Yi = β0 + β1 xi1 + · · · + βd xid + εi , i = 1, . . . , n , (4.5) 

where .ε1, . . . , εn
iid∼ N(0, σ2). 

We can write (4.5) as .Yi = β0+xT
i β+εi, where .β = [β1, . . . , βd]T. In other 

words, the data .(xi, Yi)—where the .{Yi} are random—lie approximately on 
the plane .y = β0 +xTβ for some (typically unknown) constant . β0 and vector 
. β. Defining .Y = [Y1, . . . , Yn]T and . A as the matrix 

. A =

⎡

⎢
⎢
⎢
⎣

xT
1

xT
2
...

xT
n

⎤

⎥
⎥
⎥
⎦

,

we can reformulate (4.5) as the Gaussian model 

.Y ∼ N(β01 + Aβ, σ2 In) , (4.6) 

where . 1 is the n-dimensional column vector of 1s and . In is the n-dimensional 
identity matrix. 

Example 4.4 (Multiple Linear Regression Model). Figure 4.4 gives a 
realization of the multiple linear regression model 

. Yi = xi1 + xi2 + εi , i = 1, . . . , 100 ,

where .ε1, . . . , ε100 ∼iid N(0, 1/16). The fixed vectors . [xi1, xi2], i = 1, . . . , 100
of explanatory variables lie in the unit square. 

Fig. 4.4 Multiple linear regression
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The multiple linear regression model can be viewed as a first-order ap-
proximation of the general model 

.Yi = b(xi) + εi , i = 1, . . . , n , (4.7) 

where .ε1, . . . , εn
iid∼ N(0, σ2) and .b(x) is some known or unknown function of 

a d-dimensional vector . x of explanatory variables. To see this, replace . b(x)
with its first-order Taylor approximation around some point . x0:☞ 477 

.

b(x) ≈ b(x0) + (x − x0)T∇b(x0)
= b(x0) − xT

0 ∇b(x0)
◟ ◝◜ ◞

β0

+xT ∇b(x0)
◟ ◝◜ ◞

β

= β0 + xTβ . (4.8) 

4.3.3 Regression in General 

General regression models not only deal with multiple explanatory variables 
but also with nonlinear relationships between the response and explanatory 
variables. A broad class of regression models is (similar to (4.7)) of the  form  

.Yi = g(xi; β) + εi, i = 1, . . . , n , (4.9) 

where .ε1, . . . , εn ∼iid N(0, σ2) and .g(x; β) is a known function of the explana-
tory vector . x and the parameter vector . β. Both . σ2 and . β are assumed to be 
unknown. 

To specify regression models of this form, it suffices to report only the 
functional relationship between the expected response .y = EY and the ex-
planatory variable (x or . x). For the generic model in (4.9) this corresponds to 
reporting only .y = g(x; β). We will do this from now on in this section, keep-
ing in mind the general formulation where there are n independent response 
variables, each with its own explanatory variable and error term. 

When .g(x; β) is a linear function, i.e., of the form .x |→ xTβ, the model is 
said to be a linear regression model. The obvious examples are the simple 
linear regression and multiple linear regression models (note that we need to 
include the constant term as an explanatory variable). The following example 
gives another important class of linear regression models. 

Example 4.5 (Polynomial Regression Models). Suppose the expected 
response y depends on a single explanatory variable u via a polynomial rela-
tionship 

.y = β0 + β1 u + β2 u2 + · · · + βd ud . (4.10)
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This is an example of a polynomial regression model. If we define . x =
[1, u, u2, . . . , ud]T and .β = [β0, . . . , βd]T, then we can write 

. y = xTβ,

and so the model is linear with respect to the explanatory variable . x. In  
a similar way one can consider polynomial regression models with multiple 
explanatory variables, as in 

.y = β0 + β1 x1 + β2 x2 + β11 x2
1 + β22 x2

2 + β12 x1 x2 , (4.11) 

which defines a second-order polynomial regression model with two explana-
tory variables. Similar to (4.8), this model can be viewed as a second-order 
approximation to a general regression model of the form 

. y = b(x1, x2)

for some known or unknown function b. Polynomial regression models are 
also called response surface models. 

Common examples of nonlinear regression models are the following: 

• Exponential Model with parameters a and b: 

. y = a ebx .

• Power Law Model with parameters a and b: 

. y = a xb .

• Logistic Model with parameters a and b and fixed L: 

. y = L

1 + ea+bx
.

• Weibull Model with parameters a and b: 

. y = 1 − e− xb

a .

Example 4.6 (Exponential Model). Table 4.1 lists the free chlorine con-
centration (in mg per liter) in a swimming pool, recorded every 8 hours for 
4 days.
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Table 4.1 Chlorine concentration (in mg/L) as a function of time (hours) 

Hours Concentration 

0 1.0056 
8 0.8497 
16 0.6682 
24 0.6056 
32 0.4735 
40 0.4745 
48 0.3563 

Hours Concentration 

56 0.3293 
64 0.2617 
72 0.2460 
80 0.1839 
88 0.1867 
96 0.1688 

A simple chemistry-based model for the chlorine concentration y as a func-
tion of time t is 

. y = a e−b t ,

where a is the initial concentration and .b > 0 is the reaction rate. Figure 4.5 
shows that the data closely follow the curve .y = e−0.02t. A common method 
for fitting regression curves to data is the least-squares method, which will 
be discussed in Sect. 5.1.2.☞ 129 
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Fig. 4.5 The chlorine concentration seems to have an exponential decay 

Another way to deal with nonlinearities in the data is to transform the 
data in order to achieve a linear relationship. 

Example 4.7 (Log-Linear Model). Suppose that the expected chlorine 
concentration in Example 4.6 satisfies .y = a e−bt for some unknown a and 
.b > 0. Then, .ln y = ln a − b t. Hence, there is a linear relationship be-
tween t and . ln y. Thus, if for some given data .(t1, y1), . . . , (tn, yn) we plot
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.(t1, ln y1), . . . , (tn, ln yn), these points should approximately lie on a straight 
line, and hence the simple linear regression model applies. Figure 4.6 illus-
trates that the transformed data indeed lie approximately on a straight line. 
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Fig. 4.6 The log-transform of the chlorine concentration can be modeled via a simple 
linear regression 

4.4 Analysis of Variance (ANOVA) Models 

In this section we discuss models that describe functional relationships be-
tween continuous response variables and explanatory variables that take val-
ues in a discrete number of categories, such as yes/no, green/blue/brown, 
and male/female. Such variables are often called categorical. By assigning 
numerical values to the categories, such as 0/1 and 1/2/3, one can treat 
them as discrete variables. Models with continuous responses and categor-
ical explanatory variables often arise in factorial experiments. These are 
controlled statistical experiments in which the aim is to assess how a response 
variable is affected by one or more factors tested at several levels. A typical 
example is an agricultural experiment where one wishes to investigate how 
the yield of a food crop depends on two factors: (1) pesticide, at two lev-
els (yes and no), and (2) fertilizer, at three levels (low, medium, and high). 
In factorial experiments one usually wishes to collect one or more responses 
from each of the different combinations of levels. A fictitious data set for the 
above agricultural experiment with three responses (crop yield) per level pair 
is given in Table 4.2.
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Table 4.2 Crop yield 

Fertilizer 
Pesticide Low Medium High 
No 3.23, 3.20, 3.16 2.99, 2.85, 2.77 5.72, 5.77, 5.62 
Yes 6.78, 6.73, 6.79 9.07, 9.09, 8.86 8.12, 8.04, 8.31 

The main statistical tool to analyze such data is analysis of variance 
(ANOVA), which will be discussed in Sect. 5.3.1. We describe next two com-☞ 147 
mon models that are used in such situations. 

4.4.1 Single-Factor ANOVA 

Consider a response variable which depends on a single factor with d levels. 
Within each level i there are . ni independent measurements of the response 
variable. The data thus consist of d independent samples with sizes .n1, . . . , nd: 

. Y1, . . . , Yn1 ◟ ◝◜ ◞ 
level 1 

, Yn1+1, . . . , Yn1+n2 ◟ ◝◜ ◞ 
level 2 

, . . . , Yn−nd+1, . . . , Yn 
◟ ◝◜ ◞ 

level d 

, (4.12) 

where .n = n1 + · · ·  + nd. An obvious model for the data is that the . {Yi} 
are assumed to be independent and normally distributed with a mean and 
variance which depend only on the level. Such a model is simply a d-sample 
generalization of the two-sample normal model in Example 4.3. To be able☞ 104 
to analyze the model via ANOVA, one needs however the additional model 
assumption that the variances are all equal; that is, they are the same for 
each level. Writing . Yik as the response for the k-th replication at level i, we  
can define the model as follows. 

Definition 4.3. (Single-Factor ANOVA Model). In a single-
factor ANOVA model, let . Yik be the response for the k-th replication 
at level i. Then, 

.Yik = μi + εik , k  = 1, . . . , ni , i  = 1, . . . , d  , (4.13) 

where .{εik} iid∼ N(0, σ2). 

Instead of (4.13) one often sees the “factor effects” formulation 

.Yik = μ + αi + εik , k  = 1, . . . , ni , i  = 1, . . . , d  , (4.14) 
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where . μ is interpreted as the overall effect, common to all levels, and . αi = 
μi −μ is the incremental effect of level i. Although . μ can be defined in several 
ways, it is customary to define it as the expected average response: 

. μ = E 
⎾ 

Y1 + · · · + Yn 

n 

⎤ 
= 

∑d 
i=1 ni μi 

n 
, 

in which case the .{αi} must satisfy the relation 

. 

d⎲ 

i=1 

ni 

n 
αi = 0  . (4.15) 

In particular, for balanced designs— where the sample sizes in each group 
are equal—we have . 

∑d 
i=1 αi = 0. 

Returning to the sequence of response variables .Y1, . . . , Yn in (4.12), sup-
pose that for each . Yk we denote the corresponding level by . uk, .k = 1, . . . , n. 
We can then write the model in a form closely resembling a multiple linear 
regression model, namely, 

.Yk = μ1 1{uk=1} + · · · + μd 1{uk=d} + εk , k  = 1, . . . , n  , (4.16) 

where .{εk} ∼iid N(0, σ2) and .1{u=a} = 1  if .u = a and 0 otherwise. It follows 
that the vector .Y = [Y1, . . . , Yn]T has a multivariate normal distribution with 
a mean vector whose k-th component is .μ1 1{uk=1} + · · ·  + μd 1{uk=d}, and  
with covariance matrix .σ2 In, where . In is the n-dimensional identity matrix. 

4.4.2 Two-Factor ANOVA 

Many designed experiments deal with responses that depend on more than 
one factor. We consider for simplicity only the two-factor ANOVA model. 
Models with more than two factors can be formulated analogously. 

Suppose Factor 1 has . d1 levels and Factor 2 has . d2 levels. Within each pair 
of levels .(i, j) we assume that there are . nij replications. Let . Yijk be the k-th 
observation at level . (i, j). A direct generalization of (4.13) gives the following 
model. 

Definition 4.4. (Two-Factor ANOVA Model). In a two-factor 
ANOVA model let .Yijk be the response for the k-th replication at 
level . (i, j). Then, 

.Yijk = μij +εijk , k  = 1, . . . , nij , i  = 1, . . . , d1, j  = 1, . . . , d2 , (4.17) 

where .{εijk} ∼iid N(0, σ2). 
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Note that the variances of the responses are assumed to be equal . σ2. To  
obtain a “factor effects” representation, we can reparameterize model (4.17) 
as follows: 

. 
Yijk = μ + αi + βj + γij + εijk , 

k = 1, . . . , nij , i  = 1, . . . , d1 , j  = 1, . . . , d2 . 
(4.18) 

The parameter . μ can be interpreted as the overall mean response, . αi as the 
incremental effect due to Factor 1 at level i, and  . βj as the incremental effect 
of Factor 2 at level j. The  .{γij} represent the interaction effects of the two 
factors. As in the one-factor model, the parameters can be defined in several 
ways. For the most important balanced case (all the . nij are the same), the 
default choice for the parameters is as follows: 

.μ = EY •• = 
∑ 

i 
∑ 

j μij 

d1d2 
. (4.19) 

αi = E[Y i• − Y ••] =  
∑ 

j μij 

d2 
− μ . (4.20) 

βj = E[Y •j − Y ••] =  
∑ 

i μij 

d1 
− μ . (4.21) 

γij = E[Yij − Y i• − Y •j + Y ••] =  μij − μ − αi − βj . (4.22) 

Here, .Y •• indicates the average of all the .{Yijk}. Similarly, . Y i• is the 
average of all the .{Yijk} within level i of Factor 1, and . Y •j denotes the 
average of all the .{Yijk} within level j of Factor 2. For this case it is easy to 
see that . 

∑ 
i αi = 

∑ 
j βj = 0  and . 

∑ 
i γij = 

∑ 
j γij = 0  for all i and j. Note 

that under these restrictions model (4.18) has the same number of parameters 
as model (4.17); see Problem 4.5. 

One objective of ANOVA is to assess whether the data are best described 
by a “saturated” model such as (4.18) or if simpler models, with fewer pa-
rameters, suffice. For example, a model without interaction terms is 

. Yijk = μ + αi + βj + εijk . 

A model where Factor 2 is irrelevant is 

. Yijk = μ + αi + εijk . 

If neither Factor 1 or Factor 2 have an influence on the response, then the 
appropriate model would simply be 

. Yijk = μ + εijk , 

that is, .Yijk ∼iid N(μ, σ2). 
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Remark 4.2 (Blocking). Not all of the factors in an ANOVA model need 
to be of primary interest to the researcher. Some of the factors are included 
in the experiment to reduce the variability of the measurements. Such factors 
are called nuisance factors. An example of a nuisance factor in the crop data 
in Table 4.2 is the plant location of the crop. Suppose the data were gathered 
from three different locations. Different soil conditions in these locations could 
greatly influence the crop yield and hence the findings of the research. To 
reduce the effect of plant location, one could take one measurement for each 
(pesticide, fertilizer, location) triplet. The data in Table 4.2 could represent 
this situation, where the three measurements for each (pesticide, fertilizer) 
pair correspond to location 1, 2, and 3. The idea of grouping data into levels of 
a nuisance factor in order to reduce the experimental error is called blocking 
and is important in the design of controlled experiments. 

4.5 Normal Linear Model 

The regression model in Sect. 4.3 and the ANOVA models in Sects. 4.4.1 
and 4.4.2 are both examples of normal (or Gaussian) linear models. 

Definition 4.5. (Normal Linear Model). In a normal linear 
model the response Y depends on a p-dimensional explanatory variable 
.x = [x1, . . . , xp]T, via the linear relationship 

.Y = xTβ + ε, (4.23) 

where .ε ∼ N(0, σ2). 

Note that (4.23) is a model for a single pair .(x, Y  ). The model for multiple 
data .{(xi, Yi)} is simply that each . Yi satisfies (4.23) (with .x = xi) and 
that the .{Yi} are independent. Gathering all responses in the vector . Y = 
[Y1, . . . , Yn]T, we can write 

.Y = Xβ + ε , (4.24) 

where .ε = [ε1, . . . , εn]T is a vector of iid copies of . ε and . X is the so-called 
model matrix or design matrix with rows .xT 

1 , . . . , xT 
n . Consequently, . Y has a 

multivariate normal distribution with mean vector . Xβ and covariance matrix 
.σ2 In, where . In is the identity matrix of dimension n. From  (3.31) it follows ☞ 83 
that the joint density of . Y at . y is given by 

.fY (y) = (2πσ2)− n 
2 e− 1 

2σ2 (y−Xβ)T(y−Xβ) = (2πσ2)− n 
2 e− 1 

2σ2 ||y−Xβ||2 
. 
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The situation is graphically depicted in Fig. 4.7. Imagine drawing multiple re-
alizations of the random vector . Y. These would form a spherically symmetric 
cloud of points centered around . Xβ. 

Fig. 4.7 Normal linear model. . 〈X〉 is the subspace of . Rn spanned by the columns of . X

To see that the simple linear regression model (4.3) is of the form (4.23),☞ 106 
take 

. X =

⎡

⎢
⎢
⎢
⎣

1 x1
1 x2
...

...
1 xn

⎤

⎥
⎥
⎥
⎦

and β =
⎾
β0
β1

⎤

.

An equivalent formulation is given in (4.4). Similarly, for the multiple linear 
regression model (4.5) we  have, in view of  (4.6),☞ 107 

. Y =

⎡

⎢
⎢
⎢
⎣

1 xT
1

1 xT
2

...
...

1 xT
n

⎤

⎥
⎥
⎥
⎦

◟ ◝◜ ◞
X

⎾
β0
β

⎤

◟◝◜◞
~β

+ ε .

To see that the one-factor ANOVA model is also of the form (4.3), let us 
define . 1m as the m-dimensional column vector of 1s and . 0m as the vector 
of 0s. Using the “regression” form (4.16) we can now write the vector . Y as 
.Xβ + ε with 

. X =

⎡

⎢
⎢
⎢
⎣

1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2
...

...
. . .

...
0nd

0nd
· · · 1nd

⎤

⎥
⎥
⎥
⎦

and β =

⎡

⎢
⎣

μ1
...

μd

⎤

⎥
⎦ .

A similar formulation can be given for the multifactor ANOVA case, as illus-
trated in the following example.
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Example 4.8 (ANOVA as a Normal Linear Model). Regression and 
ANOVA data are often represented in the form of a spreadsheet, where each 
row corresponds to a single measurement, and the columns correspond to the 
response variable and the various factors. Table 4.3 gives such a spreadsheet 
for the crop yield data in Table 4.2. 

Table 4.3 Crop yield data as a spreadsheet 

Crop yield Pesticide Fertilizer 
3.23 No Low 
3.20 No Low 
3.16 No Low 
2.99 No Medium 
2.85 No Medium 
2.77 No Medium 
5.72 No High 
5.77 No High 
5.62 No High 
6.78 Yes Low 
6.73 Yes Low 
6.79 Yes Low 
9.07 Yes Medium 
9.09 Yes Medium 
8.86 Yes Medium 
8.12 Yes High 
8.04 Yes High 
8.31 Yes High 

The design matrix can be directly constructed from this table. For ex-
ample, consider the representation (4.17) and define . β = [μ11, μ12, μ13, μ21, 
.μ22, μ23]T. With the responses .{Yijk} ordered as .[Y1, . . . , Y18]T as in Table 4.3, 
the .18 × 6 design matrix is given by 

. X = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

1 0  · · ·  0 
0 1  · · ·  0 
... 

. . . . . . 
... 

0 0  · · ·  1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, 

where .1 = [1, 1, 1]T and .0 = [0, 0, 0]T. This may be written in compact 
notation as .X = I6 ⊗ 1, where .A ⊗ B indicates the Kronecker product 
of .A = (aij) and . B, that is, the block matrix with .(i, j)-th block . aijB. 
For the “factor effects” representation (4.18), define .β = [μ, α1, α2, β1, β2, 
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.β3, γ11, γ12, γ13, γ21, γ22, γ23]T. In this case the design matrix is an . 18 × 12 
matrix given by 

. X = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1 1 0 1 0 0 1 0 0 0 0 0  
1 1 0 0 1 0 0 1 0 0 0 0  
1 1 0 0 0 1 0 0 1 0 0 0  
1 0 1 1 0 0 0 0 0 1 0 0  
1 0 1 0 1 0 0 0 0 0 1 0  
1 0 1 0 0 1 0 0 0 0 0 1  

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

. 

Note that in this case the parameters are linearly dependent. For example, 
.α2 = −α1 and .γ13 = −(γ11 +γ12). To retain only 6 linearly independent vari-
ables (as in the case (4.17)), one could consider the six-dimensional parame-
ter vector .~β = [μ, α1, β1, β2, γ11, γ12]T, which is related to the 12-dimensional 
parameter vector . β via the transformation 

. 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1 0 0 0 0 0  
0 1 0 0 0 0  
0 −1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0  −1 −1 0 0  
0 0 0 0 1 0  
0 0 0 0 0 1  
0 0 0 0  −1 −1 
0 0 0 0 −1 0  
0 0 0 0 0 −1 
0 0 0 0 1 1  

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

◟ ◝◜ ◞ 
M 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

μ 
α1 
β1 
β2 
γ11 
γ12 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

◟ ◝◜ ◞ 
~β 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

μ 
α1 
α2 
β1 
β2 
β3 
γ11 
γ12 
γ13 
γ21 
γ22 
γ23 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

◟ ◝◜ ◞ 
β 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

μ 
α1 

−α1 
β1 
β2 

−β1 − β2 
γ11 
γ12 

−γ11 − γ12 
−γ11 
−γ12 

γ11 + γ12 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

. 

The design matrix corresponding to . ~β is simply . ~X = XM; see  also Prob-
lem 4.10. 

4.6 Statistical Learning 

It is useful to view the modeling of data in the wider framework of statis-
tical learning. Here the goal is to accurately predict some future quantity 
of interest, given some observed data, or to discover unusual or interesting 
patterns in the data. In the first case we speak of supervised learning and in 
the second case of unsupervised learning. In both supervised and unsuper-
vised learning the modeling of the data goes hand in hand with the selection 
of a suitable “learning” function. In particular, in supervised learning the 
goal is to find a prediction function g which takes as input a vector . x of 
explanatory variables (features) and outputs a guess .g(x) for the response 
variable y. This is the basic paradigm for regression. 
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We can measure the closeness of a prediction .ŷ = g(x) to a response y by 
using some loss function .Loss(y, ŷ). In a regression setting the usual choice 
is the squared-error loss .(y − ŷ)2. However, there are many other loss 
functions possible. Probability enters the scene by viewing each pair . (x, y)
as the outcome of a random pair .(X, Y ) with some (unknown) probability 
density .f(x, y). A good prediction function g is one that gives a small loss 
for any random pair .(X, Y ) drawn from f . More precisely, we seek a g that 
minimizes the risk, defined as the expected loss 

.r(g) = ELoss(Y, g(X)) , (4.25) 

where .(Y, X) ∼ f . 
For the squared-error loss .Loss(y, ŷ) = (y − ŷ)2, the optimal prediction 

function . g∗ is equal to the conditional expectation of Y given .X = x: 

. g∗(x) = E[Y | X = x] .

To see this, let .g∗(x) = E[Y | X = x] and define .U = Y − g∗(X) and 
.V = g∗(X) − g(X). Note that, 

. EUV = EE[UV | X] = E[V E[U | X]] = E[V (E[Y | X] − E[Y | X])] = 0 ,

using repeated conditioning (see (3.20)). Then, for any function g, we have  

. 

r(g) = E(Y − g(X))2 = E(Y − g∗(X) + g∗(X) − g(X))2

= EU2 + 2EUV + EV 2

≥ EU2 = E(Y − g∗(X))2 = r(g∗) ,

showing that . g∗ yields the smallest squared-error risk. 
In contrast, unsupervised learning makes no distinction between re-

sponse and explanatory variables, and the objective is simply to learn the 
unknown pdf f from data .x1, . . . , xn drawn from f . In this case the guess 
.g(x) is an approximation of .f(x) and the risk is of the form 

.r(g) = ELoss(f(X), g(X)) . (4.26) 

A convenient loss function is 

. Loss(f(x), g(x)) = ln f(x)
g(x) = ln f(x) − ln g(x) .

The expected value of this loss (i.e., the risk) is thus 

.r(g) = E ln f(X)
g(X) =

⎰

f(x) ln f(x)
g(x) dx . (4.27)
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The integral in (4.27) provides a fundamental way to measure the distance 
between two densities and is called the Kullback–Leibler (KL) diver-
gence between f and g. Note that the KL divergence is not symmetric in f 
and g. Moreover, it is always greater than or equal to 0 and equal to 0 when 
.f = g. 

4.6.1 Training and Test Loss 

Returning to the supervised case, it is typically not possible to compute 
the risk .r(g) in (4.25), let alone find the optimal prediction function . g∗, 
as we do not know the underlying pdf f . However, we can approximate 
.r(g) from a training set .T = {(X1, Y1), . . . , (Xn, Yn)} consisting of in-
dependent copies of .(X, Y ); we denote its (deterministic) outcome by . τ =
{(x1, y1), . . . , (xn, yn)}. This approximation of . r(g) is simply the average loss: 

.rτ (g) = 1
n

n⎲

i=1
Loss(yi, g(xi)) , (4.28) 

which is called the training loss. We then choose g in some class . G of 
functions that minimizes the training loss. A similar results hold for the 
unsupervised case. 

Example 4.9 (Linear Model). The simplest and most important model 
for supervised learning is where we choose . G to be the class of linear predic-
tion functions and assume that it is rich enough to contain the true . g∗. In  
particular, letting .X = [X1, . . . , Xp]T be the p-dimensional explanatory vari-
able and Y the response variable, the model assumption is that, conditional 
on .X = x, the response Y depends on . x via the linear relationship 

.Y = xTβ + ε , (4.29) 

where .E ε = 0 and .Var ε = σ2. Thus, a normal linear model (in the sense of 
Definition 4.5) is a linear model with normal error terms. Similar to (4.24) 
the model for multiple data .{(xi, Yi)} is 

.Y = Xβ + ε , (4.30) 

where . ε is a zero-mean vector with independent components, and . X is the 
model matrix with rows .xT

1 , . . . , xT
n . If we view .τ = {(xi, yi)} as the training 

data, then the squared-error training loss of a prediction function . g : x |→
xTβ is given by 

.rτ (g) = 1
n

n⎲

i=1
(yi − xT

i β)2 = 1
n

‖y − Xβ‖2 .
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The optimal prediction function, or learner, . gτ in this class . G of linear 
functions is the function .x |→ xTβ∗ for some . β∗ which minimizes .‖y − Xβ‖. 

Once a class . G of functions has been chosen and a training set . τ is available, 
an approximation of the optimal prediction function . g∗ (the minimizer of the 
risk . r(g)) is given by 

.gG
T = argmin

g∈G
rT (g) . (4.31) 

Note that minimizing the training loss over all possible functions g (rather 
than over all .g ∈ G) does not lead to a meaningful optimization problem, as 
any function g for which .g(xi) = yi for all i gives minimal training loss. In 
particular, for a squared-error loss, the training loss will be 0. Unfortunately, 
such functions have a poor ability to predict new (i.e., independent from . T ) 
pairs of data. This poor generalization performance is called overfitting. 

The prediction accuracy of new pairs of data is measured by the gener-
alization risk of the learner. For a fixed training set . τ it is defined as 

.r(gG
τ ) = ELoss(Y, gG

τ (X)) , (4.32) 

where .(X, Y ) is distributed according to .f(x, y). We can approximate the 
generalization risk via the test loss: 

.rT '(gG
τ ) = 1

n'

n'
⎲

i=1
Loss(Y '

i , gG
τ (X '

i)) , (4.33) 

where .T ' = {(X '
1, Y '

1), . . . , (X '
n' , Y '

n')} is a so-called test sample. The test 
sample is completely separate from the training set, but is drawn in the same 
way, that is, via independent draws from .f(x, y), for some sample size . n'. 

4.6.2 Trade-Offs in Statistical Learning 

Choosing a suitable class . G of prediction functions involves the balancing 
of various competing demands. For example, . G should be rich enough to 
adequately approximate, or even contain, the optimal predication function 
. g∗, but also be simple enough to allow fast computations to determine the 
learner. 

To better understand the relation between model complexity, computa-
tional simplicity, and estimation accuracy, it is useful to decompose the gen-
eralization risk into several parts, so that the trade-offs between these parts 
can be studied. For example, we can decompose the generalization risk (4.32) 
into the following three components: 

.r(gG
τ ) = r∗

◟◝◜◞
irreducible risk

+ r(gG) − r∗
◟ ◝◜ ◞

approximation error

+ r(gG
τ ) − r(gG)

◟ ◝◜ ◞
statistical error

, (4.34)
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where .r∗ = r(g∗) is the irreducible risk and .gG = argming∈G r(g) is the 
best learner within class . G. No learner can predict a new response with a 
smaller risk than . r∗. 

The second component is the approximation error; it measures the 
difference between the irreducible risk and the best possible risk that can 
be obtained by selecting the best prediction function in the selected class 
of functions . G. Determining a suitable class . G and minimizing . r(g) over this 
class is purely a problem of numerical and functional analysis, as the training 
data . τ are not present. For a fixed . G that does not contain the optimal . g∗, 
the approximation error cannot be made arbitrarily small and may be the 
dominant component in the generalization risk. The only way to reduce the 
approximation error is by expanding the class . G to include a larger set of 
possible functions. 

The third component is the statistical (estimation) error. It depends 
on the training set . τ and, in particular, on how well the learner . gG

τ estimates 
the best possible prediction function, . gG , within class . G. For any sensible 
estimator this error should decay to zero as the training size tends to infinity. 

We thus have two competing demands pitted against each other. The first 
is that the class . G has to be simple enough so that the statistical error 
is not too large. The second is that the class . G has to be rich enough to 
ensure a small approximation error. Thus, there is a trade-off between the 
approximation and estimation errors. 

4.7 Problems 

4.1. Formulate a statistical model for each of the situations below, in terms 
of one or more iid samples. If a model has more than one parameter, specify 
which parameter is of primary interest. 

a. A ship builder buys each week hundreds of tins of paint, labeled as contain-
ing 20 liters. The builder suspects that the tins contain, on average, less 
than 20 liters, and decides to determine the volume of paint in 9 randomly 
chosen tins. 

b. An electronics company wishes to examine if the rate of productivity dif-
fers significantly between male and female employees involved in assembly 
work. The time of completion of a certain component is observed for 12 
men and 12 women. 

c. The head of a mathematics department suspects that lecturers A and B 
differ significantly in the way they assess student work. To test this, 12 
exams are both assessed by lecturer A and B. 

d. We wish to investigate if a certain coin is fair. We toss the coin 500 times 
and examine the results. 

e. We investigate the effectiveness of a new teaching method, by dividing 20 
students into 2 groups of 10, where the first group is taught by the old
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method and the second group is taught by the new method. Each student 
is asked to complete an exam before and after the teaching period. 

f. We wish to assess which of two scales is the more sensitive. We measure, 
for each scale, 10 times a standard weight of 1kg. 

g. To investigate if the support for the Honest party is the same in two 
different cities, one hundred voters in each city are asked if they would 
vote for the Honest party or not. 

h. In a study on the effectiveness of an advertising campaign, a survey was 
conducted among 15 retail outlets. For each outlet the sales on a typical 
Saturday was recorded 1 month before and 1 month after the advertising 
campaign. 

i. To focus their marketing of remote-controlled cars, an electronics company 
wishes to investigate who in the end decides to buy: the child or the father. 
It records who decides in 400 transactions involving a father and a son. 

4.2. Formulate appropriate statistical models for the data occurring in the 
following quality control processes. 

a. Consider a packaging line for 500 gm packets of Yummy breakfast cereal. 
The process is monitored by recording each hour the average weight of five 
randomly selected packets. 

b. A mail-order company selects each day at random 50 invoices from the 
many invoices it receives on a day and has these examined for errors. The 
number of invoices with errors is recorded. 

4.3. An alternative approach to model the height data in Fig. 4.3 is to as-
sume that the observations are outcomes of iid random vectors . [X1, Y1], . . . ,  
.[Xn, Yn]. What would be a suitable two-dimensional distribution? 

4.4. Consider a Gaussian model .Y ∼ N(μ, Σ), where . Y is of dimension n. 
Show that the maximum number of model parameters is .n(n + 3)/2. 

4.5. Show that under the restrictions . 
∑ 

i αi = 
∑ 

j βj = 0  and . 
∑ 

i γij =∑ 
j γij = 0  the factor effects ANOVA model in (4.18) has .d1 d2 + 1  free ☞ 114 

parameters. 

4.6. Verify the relation (4.15). ☞ 113 

4.7. For each of the following situations, formulate a regression or ANOVA 
model. 

a. In a study of shipping costs, a company controller has randomly selected 9 
air freight invoices from current shippers in order to assess the relationship 
between shipping costs and distance, for a given volume of goods. 

b. We wish to test if three different brands of compact cars have the same 
average fuel consumption. The fuel consumption for a traveled distance of 
100 km is measured for 20 cars of each brand. 
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c. Heart rates were monitored for 20 laboratory rats during 3 different stages 
of sleep. 

d. For the last t10 years a peace organization has been keeping record of the 
yearly military expenditure and gross national product of a country, which 
appear to be related linearly. 

e. We investigate the effectiveness of a new fertilizer, by dividing a large patch 
of land into 20 test plots, each of which is divided into 3 small subplots. In 
each of the 3 subplots a different concentration of fertilizer is tested: weak, 
moderate, and  strong. The product yield for each subplot is recorded. 

f. One hundred adults are randomly selected from a large population. The 
height and weight of each person is recorded, along with their body mass 
index (i.e., the weight in kilogram divided by the square of the height in 
meters). 

4.8. Let .Y1, . . . , Yn be data from the polynomial regression model (4.10), 
with corresponding explanatory variables .x1, . . . , xn. Write the model as a 
Gaussian linear model of the form (4.23). 

4.9. Specify the design matrix for the multiple polynomial regression model 
(4.11), based on n explanatory variable pairs .(x11, x21), . . . , (x1n, x2n). 

4.10. Give the .18 × 6 design matrix corresponding to the parameter vector 
. ~β for the two-factor ANOVA model in Example 4.8. Verify that the first 
column, consisting of only 1s, is orthogonal (perpendicular) to all the other 
columns. 

4.11. Table 4.2 was produced using the ANOVA model (4.18), with the 
following parameters: .μ = 6, .σ = 0.1, .(α1, α2) = (−2, 2), . (β1, β2, β3) =  
(−1, 0, 1), and☞ 112 

. 

⎾ 
γ11 γ12 γ13 
γ21 γ22 γ23 

⎤ 
= 

⎾ 
0.2 −1 0.8 

−0.2 1  −0.8 

⎤ 
. 

Implement a Julia program to draw realizations from this model, producing 
data similar to that in Table 4.2. 

4.12. The data in Table 4.1 was computer generated from the nonlinear 
regression model☞ 110 

. Yi = e−0.02 ti + εi , 

where .ti = (i − 1)8, i  = 1, . . . , 13 and .{εi} ∼iid N(0, (0.03)2). Implement a 
Julia program that generates (new) data from the model. Plot the data and 
the regression curve as in Fig. 4.5. 



Chapter 5 
Statistical Inference 

Recall the conceptual framework for Statistics in Fig. 4.1. Statistical infer- ☞ 101 
ence deals with the middle part of this framework. That is, how to obtain 
conclusions about the model on the basis of the observed data. The two main 
approaches to statistical inference are: 
• Frequentist statistics 
• Bayesian statistics 
In frequentist statistics the data vector . x is viewed as the outcome of a 
random vector . X described by a probabilistic model—usually the model is 
specified up to a (multidimensional) parameter . θ; that is,  .X ∼ f(·; θ). The  
statistical inference is then purely concerned with the model and in particular 
with the parameter . θ. For example, on the basis of the data one may wish to 
1. Estimate the parameter 
2. Perform statistical tests on the parameter 

A main difference between the frequentist and the Bayesian approach is that 
in the latter case prior information on the parameter vector . θ is used, most 
often represented by a probability density for . θ. Thus, for the purpose of 
computations, we can view . θ as as a random vector. Inference about . θ is 
carried out by analyzing the conditional pdf .f(θ | x)—the so-called posterior 
pdf. Bayesian inference is discussed in Chap. 8. For the remainder of this ☞ 233 
chapter we will explain the main ingredients of the classical (frequentist) 
approach to statistical inference, starting with a simple motivating example. 
Example 5.1 (Biased Coin). We throw a coin 1000 times and observe 570 
Heads. Using this information, what can we say about the “fairness” of the 
coin? The data (or better, datum) here is the number .x = 570. Suppose we 

© The Author(s), under exclusive license to Springer Science+Business 
Media, LLC, part of Springer Nature 2025 
J. C. C. Chan, D. P. Kroese, Statistical Modeling and Computation, 
Springer Texts in Statistics, https://doi.org/10.1007/978-1-0716-4132-3_5 

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4132-3protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-1-0716-4132-3_5
https://doi.org/10.1007/978-1-0716-4132-3_5
https://doi.org/10.1007/978-1-0716-4132-3_5
https://doi.org/10.1007/978-1-0716-4132-3_5
https://doi.org/10.1007/978-1-0716-4132-3_5
https://doi.org/10.1007/978-1-0716-4132-3_5
https://doi.org/10.1007/978-1-0716-4132-3_5


126 5 Statistical Inference

view x as the outcome of a random variable X which describes the number 
of Heads in 1000 tosses. Our statistical model is then: 

. X ∼ Bin(1000, p) ,

where .p ∈ [0, 1] is unknown. Any statement about the fairness of the coin 
is expressed in terms of p and is assessed via this model. It is important to 
understand that p will never be known. The  best  we  can do is to provide  
an estimate of p. A common-sense estimate of p is simply the proportion of 
Heads .x/1000 = 0.570. But how accurate is this estimate? Is it possible that 
the unknown p could in fact be . 0.5? One can make sense of these questions 
through detailed analysis of the statistical model. 

5.1 Estimation 

Suppose the distribution of the data . X is completely specified up to an 
unknown parameter vector . θ. The aim is to estimate . θ on the basis of the 
observed data . x only. Mathematically, the goal is to find function . T = T (X)
of the data . X such that the random vector . T is close to . θ. The random 
variable . T is called an estimator of . θ. The corresponding outcome . t = T (x)
is the estimate of . θ. The  bias of an estimator . T is defined as .ET − θ. . T is 
said to be unbiased if .ET = θ. It is important to note that . T is a function of 
the data only and not of the parameter. Such a function is called a statistic. 

Example 5.2 (Iid Sample from a Normal Distribution). Consider the 
standard model for data (see Sect. 4.1):☞ 101 

. X1, . . . , Xn ∼ N(μ, σ2) ,

where . μ and . σ2 are unknown. The random measurements .{Xi} could repre-
sent the weights of randomly selected teenagers, the heights of the dorsal fin 
of sharks, the dioxin concentrations in hamburgers, and so on. Suppose, for 
example, that with .n = 10, the observed measurements .x1, . . . , xn are: 

77.01, 71.37, 77.15, 79.89, 76.46, 78.10, 77.18, 74.08, 75.88, 72.63. 

A common-sense estimate (a number) for . μ is the sample mean 

.X = x1 + · · · + xn

n
= 75.975 . (5.1) 

Note that the estimate . X is a function of the data .x = [x1, . . . , xn] only. 
The corresponding estimator (a random variable) is 

.X = X1 + · · · + Xn

n
.
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To justify why . X is a good estimate of . μ, imagine that we carry out the 
experiment and the estimation tomorrow, obtaining the (random) sample 
mean . X as our guess for . μ. From the affine transformation property of the 
normal distribution (see Theorem 3.6), we see that .X ∼ N(μ, σ2/n). Hence, ☞ 85 
. X is an unbiased estimator for . μ—it is in expectation equal to the unknown 
. μ. Moreover, for large n, the variance of . X tends to zero, implying that . X
gets closer to . μ as the sample size n is increased. To specify exactly how 
close . X is to . μ one needs to estimate also . σ2, which is discussed in the next 
section. 

Remark 5.1 (Notation). It is customary in statistics to denote the esti-
mate of a parameter . θ by . ^θ; for example, .μ̂ = X, in the example above. The 
same notation, . ^θ, is often also used for the corresponding (random) estimator. 
It should be clear from the context which meaning is used. 

Three systematic approaches to constructing good estimators are the max-
imum likelihood method, the  method of moments, and  least-squares minimiza-
tion. Maximum likelihood estimation is the most powerful of the three and 
is based on the concept of the likelihood function, which plays a central role 
in statistics. The whole of Chap. 6 is devoted to likelihood methods. In par-
ticular, Sect. 6.3 deals with maximum likelihood estimation. The other two ☞ 177 
estimation procedures are described next. 

5.1.1 Method of Moments 

Suppose .x1, . . . , xn are outcomes from an iid sample .X1, . . . , Xn ∼iid f(x; θ), 
where .θ = [θ1, . . . , θk] is unknown. The moments of the sampling distribution ☞ 32 
can be easily estimated. Namely, if .X ∼ f(x; θ), then the r-th moment of 
X, that is, .μr(θ) = EθXr (assuming it exists), can be estimated through the 
sample r-th moment 

. mr = 1
n

n
⎲

i=1
xr

i .

The method of moments involves choosing the estimate . ^θ of . θ such that 
each of the first k sample moments is matched with the true moments; that 
is, 

. mr = μr(^θ), r = 1, 2, . . . , k .

In general, this gives a set of nonlinear equations, and so its solution often 
has to be found numerically. In the following examples, however, the solution 
can be obtained analytically. 

Example 5.3 (Sample Mean and Sample Variance). Suppose that the 
data are given by .X = [X1, . . . , Xn]T, where the .{Xi} form an iid sample
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from a general distribution with mean . μ and variance .σ2 < ∞. Matching the 
first moment gives the equation 

.
1
n

n
⎲

i=1
xi = μ̂ , (5.2) 

which yields the sample mean .μ̂ = X (already introduced in Example 5.2) 
as the method of moments estimate for . μ. Matching the second moment, 
.EX2 = (EX)2 + Var(X), gives the equation 

.
1
n

n
⎲

i=1
x2

i = (μ̂)2 +^σ2 . (5.3) 

The method of moments estimate for . σ2 is therefore 

.^σ2 = 1
n

n
⎲

i=1
x2

i − (X)2 = 1
n

n
⎲

i=1
(xi − X)2 . (5.4) 

The corresponding estimator turns out to be biased: 

. 

E^σ2 = EX2 − E(X)2 = Var(X) + (EX)2 − (Var(X) + (EX)2)

= σ2 + μ2 − σ2/n − μ2 = n − 1
n

σ2 .

By multiplying . ^σ2 with .n/(n − 1) we obtain an unbiased estimator of . σ2, 
called the sample variance, often denoted by . S2: 

.S2 = ^σ2 n

n − 1 = 1
n − 1

n
⎲

i=1
(Xi − X)2 . (5.5) 

The square root of the sample variance .S =
√

S2 is called the sample 
standard deviation. 

The method of moments can also be used to estimate parameters of iid 
random vectors, as illustrated in the following example. 
Example 5.4 (Sample Correlation Coefficient). Let . (X1, Y1), . . . ,
.(Xn, Yn) be independent copies of a pair .(X, Y ) of random variables with 
unknown correlation coefficient .ϱ = ϱ(X, Y ). Think of iid samples from a bi-☞ 76 
variate normal distribution. We can estimate . ϱ by using the same “moment 
matching” ideas as in the one-dimensional case. In particular, write 

.ϱ = E[XY ] − μX μY

σX σY
, (5.6) 

where . μX and . μY are the expectations of X and Y , respectively, and . σX

and . σY are the standard deviations of X and Y , respectively. We can esti-
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mate these parameters via the corresponding moment estimators, as discussed 
above. Moreover, we can estimate .E[XY ] via the moment estimator 

. 
1
n

n
⎲

i=1
XiYi .

Hence, we can estimate the numerator of (5.6) as 

. 
1
n

n
⎲

i=1
XiYi − X Y = 1

n

n
⎲

i=1
(Xi − X)(Yi − Y ) .

This leads to the following estimator of . ϱ: 

.

∑n
i=1(Xi − X)(Yi − Y )

√

∑n
i=1(Xi − X)2

√

∑n
i=1(Yi − Y )2

, (5.7) 

which is called the sample correlation coefficient. 

5.1.2 Least-Squares Estimation 

Least-squares estimation is a simple estimation technique that is particularly 
useful in regression analysis. In particular, consider the normal linear model 
(4.23) ☞ 115 

. Y = Xβ + ε , ε ∼ N(0, σ2 In) ,

where the .n × m design matrix .X = [xij ] is known, but the parameters . β =
[β1, . . . , βm]T and . σ2 need to be estimated from an outcome . y = [y1, . . . , yn]T
of . Y . We assume that .n > m; that is, there are at least as many observations 
as model parameters. The main idea is illustrated in Fig. 5.1: choose estimate 
. ^β of . β such that the (Euclidean) distance between . X^β and the observed data 
. y is as small as possible. 

In other words, we seek to minimize .‖y − Xβ‖ with respect to . β. This is 
equivalent to minimizing the squared distance 

.‖y − Xβ‖2 =
n
⎲

i=1
(yi −

m
⎲

j=1
xijβj)2 . (5.8) 

Fig. 5.1 . X^β is the orthogonal projection of . y onto the linear space spanned by the 
columns of the design matrix .X
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To find the optimal .β1, . . . , βm we take the derivative of (5.8) with respect 
to each .βk, k = 1, . . . , m and set it equal to 0. This leads to the set of linear 
equations 

. 
∂
∑n

i=1(yi −
∑m

j=1 xijβj)2

∂βk
=−

n
⎲

i=1

⎧

2(yi −
m
⎲

j=1
xijβj)xik

⎫

= 0 , k = 1, . . . , m ,

which can be written in matrix notation as 

.XTXβ = XTy . (5.9) 

These are the so-called normal equations. The rank of . X is the number 
of linearly independent columns (recall that we assume that the number of 
columns is less than the number of rows). If . X is of full rank (i.e., none of 
the columns can be expressed as a linear combination of the other columns), 
then .XTX is invertible. In that case,  

.^β = (XTX)−1XTy . (5.10) 

Note that the matrix .P = X(XTX)−1XT is the projection matrix onto the 
subspace . 〈X〉 spanned by the columns of . X—and hence .X^β = Py. Namely, 
. P maps each vector in . 〈X〉 to itself, because .PX = X, and  . P maps any 
vector . v perpendicular to . 〈X〉 to . 0, because .XTv = 0. The  .m × n matrix 

.X+ = (XTX)−1XT (5.11) 

is called the (right) pseudo-inverse of . X, because .X+X = Im—the m-
dimensional identity matrix. We thus have 

.^β = X+y . (5.12) 

Let .εi = Yi − (Xβ)i be the i-th component of . ε. Note that the .{εi} form an 
iid sample from the .N(0, σ2) distribution. To obtain the method-of-moment 
estimate of . σ2, we match the second moment of .ε ∼ N(0, σ2) to its sample 
average 

. 
1
n

n
⎲

i=1
(Yi − (X^β)i)2 ,

where we have plugged in the least-squares estimate . ^β for . β. The estimated 
errors .ui = Yi − [X^β]i, i = 1, . . . , n are called the residuals. Simplifying the 
above expression using vector notation, we obtain the estimator 

.^σ2 = ‖Y − X^β‖2

n
= ‖u‖2

n
, (5.13) 

where .u = [u1, . . . , un]T is the vector of residuals.
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Example 5.5 (Simple Linear Regression). For the simple linear regres-
sion case we have a design matrix 

. X = [1 x] =

⎡

⎢

⎢

⎢

⎣

1 x1
1 x2
...

...
1 xn

⎤

⎥

⎥

⎥

⎦

,

and a parameter vector .β = [β0, β1]T. The least-squares estimator of . β is 
given by 

. ^β = (XTX)−1XTY =
⎡

n
∑n

i=1 xi
∑n

i=1 xi

∑n
i=1 x2

i

⎤−1 ⎡ ∑n
i=1 Yi

∑n
i=1 xi Yi

⎤

.

It is straightforward to write this out to obtain explicit expressions for . ^β0 and 
. ^β1 (see Problem 5.10), but in practice it is easier to simply solve the normal 
equations (5.10) numerically. The estimator for . σ2 is 

. ^σ2 = 1
n

‖Y − X^β‖2 = 1
n

n
⎲

i=1
(Yi −^β0 −^β1 xi)2 .

By taking the square root of the above expression, one obtains a natural 
estimator for . σ. 

The following Julia program draws .N = 100 samples from a simple lin-
ear regression model with parameters .β = [6, 13]T and .σ = 2, where the 
x-coordinates are evenly spaced on the interval . [0, 1]. The parameters are 
estimated in the last two lines of the program. An important thing to keep 
in mind when solving linear equations is that one should avoid computing 
costly inverses. In particular, an equation such as .Ax = b should never be 
solved numerically via .x = A−1b. Instead, use Julia’s syntax .x = A \ b, 
as in the second-last line of code below. Typical estimates for . β and . σ are 
.^β = [6.3, 12.2]T and .σ̂ = 1.86. 

linregest.jl 

using LinearAlgebra, Plots 
N = 100; x = collect(1:N)/N ; 
beta = [6; 13]; sigma = 2; # parameters 
X = [ones(N,1) x]; # design matrix 
y = X*beta + sigma*randn(N); # draw the y-data 
scatter(x,y) # plot the data 
betahat = X'*X(X'*y) # solve the normal equations 
sigmahat = norm(y - X*betahat)/sqrt(N) # estimate for sigma
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5.2 Confidence Intervals 

An essential part of any estimation procedure is to provide an assessment 
of the accuracy of the estimate. Indeed, without information on its accuracy 
the estimate itself would be meaningless. Confidence intervals (sometimes 
called interval estimates) provide a precise way of describing the uncer-
tainty in the estimate. In Sect. 6.3.1 we will discuss a systematic approach☞ 181 
for constructing (approximate) confidence intervals, based on the likelihood 
concept. The bootstrap method, see Sect. 7.3, provides another useful way☞ 209 
to construct confidence intervals. The analogue of a confidence interval in 
Bayesian statistics is the credible interval; see Example 8.1.☞ 234 

Definition 5.1. (Confidence Interval). Let .X1, . . . , Xn be random 
variables with a joint distribution depending on a parameter .θ ∈ Θ. 
Let .T1 < T2 be functions of the data but not of . θ. The random in-
terval .(T1, T2) is called a stochastic confidence interval for . θ with 
confidence .1 − α if 

.Pθ(T1 < θ < T2) ≥ 1 − α for all θ ∈ Θ . (5.14) 

If . t1 and . t2 are the observed values of . T1 and . T2, then the interval . (t1, t2)
is called the numerical confidence interval for . θ with confidence 
.1 − α. 

If (5.14) only holds approximately, the interval is called an approximate 
confidence interval. The probability .Pθ(T1 < θ < T2) is called the cover-
age probability. The subscript . θ in . Pθ indicates that the joint distribution 
of .X1, . . . , Xn depends on . θ. The coverage probability for an exact .1−α con-
fidence interval is, by definition, at least .1 − α for every . θ. For approximate 
.1 − α confidence intervals the actual coverage probability could well be less 
than .1 − α for certain choices of . θ. An example is given in Problem 5.22. 

Remark 5.2. Reducing . α widens the confidence interval. A very large con-
fidence interval is not very useful. Common choices for . α are .0.01, 0.05, and  
. 0.1. 

We next describe a simple approach to constructing exact or approximate 
confidence intervals that uses a so-called pivot variable .T = T (X, θ), which  
is a function of the data . X and of the parameter of interest . θ, and for 
which the distribution is known (sometimes only approximately) and does 
not depend on . θ. The construction depends on specific quantiles of the pivot 
distribution. For .γ ∈ (0, 1), the  .γ-quantile of a distribution with cdf F is 
a number . zγ for which .F (zγ) = γ or, equivalently, .zγ = F −1(γ). Numerical 
values for quantiles of various distributions can be obtained in Julia via the 
quantile function from the Distributions package; see Sect. A.9.☞ 467
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In general, constructing a confidence interval using a pivot variable involves 
the following steps. 

Steps in the Pivot Method 

1. Formulate a statistical model for the data . X. 
2. Choose an appropriate pivot variable .T (X, θ). 
3. Determine the (approximate) distribution of the pivot. 
4. Calculate quantiles . q1 and . q2 for the (approximate) pivot distribu-

tion such that .P(q1 < T (X, θ) < q2) = 1 − α. 
5. Rearrange the event .{q1 < T (X, θ) < q2} into . {T1 < θ < T2}

and return .(T1, T2) as an (approximate) stochastic .1 − α confidence 
interval for . θ. 

Remark 5.3. For a one-sided confidence interval, such as .(T, ∞) or .(c, T ), 
where c is fixed, only a single quantile needs to be calculated in Step 4. 
Example 5.6 (Confidence Interval for Iid Normal Data). Suppose 
.X1, . . . , Xn . ∼iid N(μ, 1). We have seen that we can estimate . μ with the sam-
ple mean . X. Here, .X ∼ N(μ, 1/n), so  .T = (X − μ)n1/2 ∼ N(0, 1). Since T 
depends only on . μ and the data and has a distribution which does not depend 
on . μ, we can use it as a pivot variable. To construct a . 95% confidence interval 
(hence .α = 0.05) we consider the .1−α/2 = 0.975- and .α/2 = 0.025-quantiles 
of the .N(0, 1) distribution, which are .1.96 and .−1.96, respectively. Hence, 
.P(−1.96 < T < 1.96) = 0.95. Rearranging .{−1.96 < (X−μ)n1/2 < 1.96} into 
.{X − 1.96 n−1/2 < μ < X + 1.96 n−1/2} gives the 0.95 stochastic confidence 
interval .(X−1.96 n−1/2, X+1.96 n−1/2), sometimes written as .X±1.96 n−1/2. 
Thus, if we would repeat the experiment many times, and get many outcomes 
of the interval .X±1.96 n−1/2, the true . μ would be contained in these intervals 
in 95% of the cases. 

The remainder of this section is about the construction of (approximate) 
confidence intervals for a number of standard situations, using appropriate 
pivots. 

5.2.1 Iid Data: Approximate Confidence Interval for . μ

Let .X1, . . . , Xn be an iid sample from a distribution with mean . μ and vari-
ance .σ2 < ∞ (both assumed to be unknown). By the central limit theo-
rem the sample mean . X has approximately a .N(μ, σ2/n) distribution, so ☞ 90 
.(X − μ)/(σ/

√
n) has approximately a standard normal distribution. How-

ever, this is not yet a pivot variable for . μ, because it still depends on the
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unknown standard deviation . σ. This can be remedied by substituting . σ with 
the sample standard deviation . SX , which, by the law of large numbers, will☞ 90 
be close to . σ for large n. This gives the pivot variable 

.T = X − μ

SX/
√

n

approx.∼ N(0, 1) . (5.15) 

For .γ ∈ (0, 1), let  . zγ denote the .γ-quantile of the standard normal distribu-
tion. Rearranging the approximate equality .P(|T | ≤ z1−α/2) ≈ 1 − α yields 

. P

⎛

X − z1−α/2
SX√

n
≤ μ ≤ X + z1−α/2

SX√
n

⎞

≈ 1 − α ,

so that 
.

⎛

X − z1−α/2
SX√

n
, X + z1−α/2

SX√
n

⎞

, (5.16) 

abbreviated as .X ± z1−α/2SX/
√

n, is an approximate stochastic .1 − α confi-
dence interval for . μ. 

Since (5.16) is only an asymptotic result, care should be taken when apply-
ing it to cases where the sample size is small or moderate and the sampling 
distribution is heavily skewed. 

Example 5.7 (Monte Carlo Integration). In Monte Carlo integra-
tion, random sampling is used to evaluate complicated integrals. Consider, 
for example, the integral 

. μ =
⎰ ∞

−∞

⎰ ∞

−∞

⎰ ∞

−∞

√

|z1 + z2 + z3| e−(z2
1+z2

2+z2
3)/2 dz1 dz2 dz3 .

Defining .X = |Z1 + Z2 + Z3|1/2(2π)3/2, with .Z1, Z2, Z3
iid∼ N(0, 1), we can  

write .μ = EX. In the following Julia program we generate an iid sample of 
.N = 106 copies of X and estimate . μ via the corresponding sample mean. A 
typical outcome is given in the output. 

mcint.jl 

using Statistics, Printf 
c = (2*pi)^(3/2); N = 10^8; 
H =  z -> c*sqrt.(abs.(sum(z,dims=2))) 
Z =  randn(N,3); X = H(Z);  
mX = mean(X); sX = std(X); 
R = 1.96*sX/sqrt(N); 
LCI = mX - R; UCI = mX + R; 
@printf("Estimate = %.3f, CI = (%.3f,%.3f)",mX,LCI,UCI) 

Estimate = 17.053, CI = (17.039,17.067)
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5.2.2 Normal Data: Confidence Intervals for . μ and . σ2

For the standard model .X1, . . . , Xn ∼iid N(μ, σ2) it is possible to construct 
exact confidence intervals for both . μ and . σ2, based on the following result. 

Theorem 5.1. (Student t and . χ2 Statistics for Normal Data). 
Let .Y1, . . . , Yn ∼iid N(0, 1) and let . Y and . S2

Y be the sample mean and 
sample variance. Then, .Y

√
n ∼ N(0, 1) and .(n − 1)S2

Y ∼ χ2
n−1, inde-

pendently. Moreover, 

.T = Y
√

n

SY
∼ tn−1 . (5.17) 

Proof. By the linearity property of the normal distribution (see Theorem 3.6), ☞ 85 
we have .Y

√
n ∼ N(0, 1). Let  .Y = [Y1, . . . , Yn]T, and let .Y 1 = Y 1 be the 

orthogonal projection of . Y onto .1 = [1, . . . , 1]T. By Theorem 3.10, . ‖Y 1‖2 = ☞ 88 
nY 2 is independent of .‖Y −Y 1‖2 = (n−1)S2

Y , and .‖Y −Y 1‖2 ∼ χ2
n−1. The  

result now follows from Corollary 3.2. □ ☞ 89 

To obtain a stochastic confidence for . μ we take the same pivot as in (5.15). 
Defining .Yi = (Xi − μ)/σ, .i = 1, . . . , n, we can write 

.T = X − μ

SX/
√

n
= Y

√
n

SY
, (5.18) 

where the .{Yi} form an iid sample from the standard normal distribution. 
By Theorem 5.1, T has a Student’s t distribution with .n − 1 degrees of free-
dom. We now rearrange, similar to what was done in Sect. 5.2.1, the equality 
.P(|T | ≤ tn−1;1−α/2) = 1 − α, where .tn−1;1−α/2 is the .1 − α/2 quantile of the 
.tn−1 distribution, to find an exact confidence interval for . μ: 

.X ± tn−1;1−α/2
SX√

n
. (5.19) 

To obtain an exact confidence interval for . σ2, we can use the pivot 

. 
(n − 1)S2

X

σ2 = (n − 1)S2
Y ,

which by Theorem 5.1 has a .χ2
n−1 distribution. Note that the corresponding ☞ 48 

pdf is not symmetric. Let .χ2
n;γ be .γ-quantile of the . χ2

n distribution. Then, 

.P

⎛

χ2
n−1;α/2 <

(n − 1)S2
X

σ2 < χ2
n−1;1−α/2

⎞

= 1 − α .
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Rearranging gives: 

. P

⎛

(n − 1)S2
X

χ2
n−1;1−α/2

< σ2 <
(n − 1)S2

X

χ2
n−1;α/2

⎞

= 1 − α .

Hence, a .(1 − α) stochastic confidence interval for . σ2 is 

.

⎛

(n − 1)S2
X

χ2
n−1;1−α/2

,
(n − 1)S2

X

χ2
n−1;α/2

⎞

. (5.20) 

Example 5.8 (Monte Carlo Experiment for Confidence Intervals). 
The following Julia program draws an iid sample of size .n = 10 from the 
.N(3, 0.25) distribution. It then determines 95% confidence intervals for . μ
and . σ2 and checks if the true values are contained in the intervals or not. 
This is repeated independently 100 times and the total number of times that 
. μ and . σ2 are contained in the confidence intervals is reported. The quantiles 
for the t and . χ2 distributions are determined by using the Distributions 
package. The values are .tq = 2.2622, .cq1 = 19.0228, and  .cq2 = 2.7004. A  
typical estimate of . μ is .μ̂ = 3.22, with a 95% confidence interval .(3.02, 3.41). 
For . σ2 a typical estimate is .^σ2 = 0.0761, with a 95% confidence interval 
.(0.0360, 0.2535). In this case only the second confidence interval contains the 
true parameter. However, out of the 100 confidence intervals typically only 
95 contain the true parameter. The output shows that in this particular case 
92 confidence intervals for . μ contained the true value, and the true . σ2 was 
contained in 97 cases. 

confintnorm.jl 

using Distributions, Random, Statistics 
mu = 3; sig = 0.5 
# true parameters 
alpha = 0.05; n = 10; mu_count = 0; sig_count = 0 
for k in 1:100 

x =  randn(n)*sig .+ mu # draw the iid sample 
mu_est = mean(x) # estimate mu 
sig_est = std(x) # estimate sigma 
tq = quantile(TDist(n-1),1-alpha/2) 
mu_lo = mu_est - tq*sig_est/sqrt(n) # low bound CI for mu 
mu_hi = mu_est + tq*sig_est/sqrt(n) # upper bound 
cq1 = quantile(Chisq(n-1),1-alpha/2) 
cq2 = quantile(Chisq(n-1),alpha/2) 
sig_lo = (n-1)*sig_est^2/cq1; # lower bound CI for sigma 
sig_hi = (n-1)*sig_est^2/cq2; # upper bound 
global mu_count = mu_count + (mu_lo < mu < mu_hi)
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global sig_count = sig_count + (sig_lo < sig^2 < sig_hi) 
end 
println(mu_count, " ", sig_count) 

92 97 

5.2.3 Two Normal Samples: Confidence Intervals for 
.μX − μY and . σ2

X/σ2
Y

Suppose we have two independent samples .X1, . . . , Xm and .Y1, . . . , Yn from 
respectively a .N(μX , σ2

X) and .N(μY , σ2
Y ) distribution. We wish to make con-

fidence intervals for .μX − μY and .σ2
X/σ2

Y . The difference .μX − μY tells us 
how the two means relate to each other, and .σ2

X/σ2
Y gives an indication how 

the variances relate to each other. 
Constructing a confidence interval for .μX − μY is very similar to the one-

sample case provided that we make the extra model assumption that the 
variances of the two samples are the same. That is, we assume that . σ2

X =
σ2

Y = σ2 for some unknown . σ2. The analysis now proceeds as follows. The 
natural estimator for .μX − μY is .X − Y . Next, observe that 

. 
(X − Y ) − (μX − μY )

σ
√

1/m + 1/n
∼ N(0, 1) .

If . σ2 is unknown, we must replace it with an appropriate estimator in order 
to obtain a pivot variable for . μ. For this we will use the pooled sample 
variance, . S2

p , which is defined as 

.S2
p = (m − 1)S2

X + (n − 1)S2
Y

m + n − 2 , (5.21) 

where . S2
X and . S2

Y are the sample variances for the .{Xi} and . {Yi}, respec-
tively. It is not difficult to show that . S2

p is an unbiased estimator of . σ2; 
see Problem 5.9. The following result is the analogue of Theorem 5.1 and is 
proved in Appendix B.5. ☞ 479 

Theorem 5.2. (t Statistic for Two Normal Samples). Let the 
random variables .X1, . . . , Xn, Y1, . . . , Ym be defined as above, then 

.T = (X − Y ) − (μX − μY )

Sp

√

1
m + 1

n

∼ tm+n−2 .
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Using the pivot T , we find (completely analogously to the one-sample case) 
the following .1 − α stochastic confidence interval for .μX − μY : 

.X − Y ± tm+n−2;1−α/2 Sp

/

1
m

+ 1
n

. (5.22) 

If the assumption .σ2
X = σ2

Y is dropped, the pivot method no longer pro-
vides the means to obtain an exact confidence interval for .μX −μY , although 
it is easy to construct approximate confidence intervals for large sample sizes; 
see Problem 5.15. 

Next, we turn our attention to a confidence interval for .σ2
X/σ2

Y . Here, we 
can employ the pivot 

. 
S2

X/σ2
X

S2
Y /σ2

Y

∼ F(m − 1, n − 1) .

To see that this pivot has the mentioned F distribution, first observe that, 
by Theorem 5.1, .(m − 1)S2

X/σ2
X ∼ χ2

m−1 and .(n − 1)S2
Y /σ2

Y ∼ χ2
n−1, and  

then apply Theorem 3.11.☞ 88 
Let .Fm,n;γ denote the . γ quantile of the .F(m, n) distribution. Then, 

. P

⎛

Fm−1,n−1;α/2 <
S2

X/σ2
X

S2
Y /σ2

Y

< Fm−1,n−1;1−α/2

⎞

= 1 − α .

Rearranging gives the following .(1 − α) stochastic confidence interval for 
.σ2

X/σ2
Y : 

.

⎛

1
Fm−1,n−1;1−α/2

S2
X

S2
Y

,
1

Fm−1,n−1;α/2

S2
X

S2
Y

⎞

. (5.23) 

Example 5.9 (Comparing Two Means). A study of iron deficiency 
among infants compared breast-fed with formula-fed babies. A sample of 25 
breast-fed infants gave a mean blood hemoglobin level of 13.3 and a standard 
deviation of 1.4, while a sample of 21 formula-fed infants gave a mean and 
standard deviation of 12.4 and 2.0, respectively. Assuming the hemoglobin 
levels are normally distributed, is there statistical evidence that the mean 
hemoglobin levels of the two groups are different? 

Let the hemoglobin levels for the breast-fed and formula-fed babies be 
.X1, . . . , X25 ∼iid N(μX , σ2

X) and .Y1, . . . , Y21 ∼iid N(μY , σ2
Y ), respectively. The 

samples are assumed to be independent of each other. A .95% numerical con-
fidence interval for .σ2

X/σ2
Y is 

.

⎛

1
2.40756

1.42

2.02 ,
1

0.42969
1.42

2.02

⎞

= (0.2035, 1.1404) .
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Because 1 is an element of this interval, there is no reason to believe that . σ2
X

is different from . σ2
Y . We thus assume that the two variances are equal, which 

allows us to apply (5.22). The pooled sample variance is . s2
p = (24(1.4)2 +

20(2.0)2)/44 = 2.8873, and the 0.975 quantile of the . t44 distribution is .2.0154, 
so that a .95% confidence interval for .μX − μY is 

. 13.3 − 12.4 ± 2.0154
√

2.8873
√

1/25 + 1/21 = (−0.11, 1.91) ,

which contains 0. Hence, on the basis of these data and the assumptions of 
normality, there is no ground to believe that the expected hemoglobin levels 
are different for the two groups. 

5.2.4 Binomial Data: Approximate Confidence 
Intervals for Proportions 

Suppose we have an outcome x of a random variable X with a . Bin(n, p)
distribution. We wish to construct a confidence interval for p. In fact, it 
is not so easy to find an exact confidence interval for p, so we settle for 
an approximate one. For large n, X has approximately a . N(np, np(1 − p))
distribution; see (3.7). The natural estimator for p, that is,  .p̂ = X/n, has ☞ 92 
therefore approximately a .N(p, p(1−p)/n) distribution. Thus, using the pivot 
.(p̂ − p)/

√

p(1 − p)/n, we have  

. P

⎛

−z1−α/2 <
p̂ − p

√

p(1 − p)/n
< z1−α/2

⎞

≈ 1 − α ,

where .z1−α/2 is the .1 − α/2 quantile of the standard normal distribution. 
Rearranging gives: 

. P

⎛

p̂ − z1−α/2

/

p(1 − p)
n

< p < p̂ + z1−α/2

/

p(1 − p)
n

⎞

≈ 1 − α .

This would suggest that we take .p̂ ± z1−α/2

√

p(1−p)
n as an approximate . 1 − α

confidence interval for p, were it not for the fact that the bounds still contain 
the unknown p. However, for large n the estimator . ̂p is close to the real p, so  
that we may replace p with . ̂p under the square roots in the expression above. 
Hence, an approximate .1 − α confidence interval for p is 

.p̂ ± z1−α/2

/

p̂(1 − p̂)
n

. (5.24)
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Example 5.10 (Approximate Confidence Interval for Proportion). 
In an opinion poll of 1000 registered voters, 227 voters say they will vote for 
the Honest party. We wish to find a 95% approximate confidence interval for 
the proportion p of Honest voters of the total population. We hereto view 
the datum, 227, as the outcome of a random variable X (the number of 
Honest voters out of 1000 registered voters) with a .Bin(1000, p) distribution. 
We have .p̂ = 227/1000 = 0.227, and  .z0.975 = 1.96, so that an approximate 
95% numerical confidence interval for p is 

. 0.227 ± 1.96 × 0.0132 = (0.20, 0.25) .

The same methodology can be used to construct approximate confidence 
intervals for the difference between two proportions. In particular, consider 
outcomes x and y of two independent random variables .X ∼ Bin(m, pX) and 
.Y ∼ Bin(n, pY ). We wish to construct an approximate confidence interval for 
.pX − pY . The corresponding estimator is .p̂X − p̂Y = X/m − Y/n. As in the  
one-sample case, for m and n sufficiently large, 

. P

⎛

⎝−z1−α/2 ≤ p̂X − p̂Y − (pX − pY )
√

pX (1−pX )
m + pY (1−pY )

n

≤ z1−α/2

⎞

⎠ ≈ 1 − α .

Rewriting this gives 

. P

⎛

p̂X − p̂Y − z1−α/2

/

pX(1 − pX)
m

+ pY (1 − pY )
n

≤ pX − pY

≤ p̂X − p̂Y + z1−α/2

/

pX(1 − pX)
m

+ pY (1 − pY )
n

⎞

≈ 1 − α .

By substituting . pX and . pY with their estimators, we obtain the following 
approximate .1 − α confidence interval for .pX − pY : 

.p̂X − p̂Y ± z1−α/2

/

p̂X(1 − p̂X)
m

+ p̂Y (1 − p̂Y )
n

. (5.25) 

Example 5.11 (Approximate Confidence Interval for the Difference 
of Two Proportions). Two groups of men and women are asked whether 
they would buy Happy or Fun cola, if they were forced to choose between the 
two. The results are given in Table 5.1.
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Table 5.1 Counts of men and women preferring Happy or Fun cola 

Men Women 

Happy 55 60 
Fun 105 132 

The observed proportions of Happy cola drinkers among the men and 
women are .55/160 = 34.4% and .60/192 = 31.3%, respectively. Is this differ-
ence statistically significant or due to chance? 

We view the data as outcomes of a two-sample binomial model. Specifically, 
let X be the number of Happy cola drinkers among 160 men, and Y the 
number of Happy cola drinkers among 192 women. We assume that . X ∼
Bin(160, pX) and .Y ∼ Bin(192, pY ) are independent. To assess the difference 
between the true proportions . pX and . pY , we simply evaluate the numerical 
confidence interval of the form (5.25). We have  .p̂X = 0.344, .p̂Y = 0.313, and  
.z0.975 = 1.96, so that a  .95% numerical confidence interval for .pX − pY is 

. 0.031 ± 0.099 = (−0.07, 0.13) .

This interval contains 0, so there is no evidence that men and women differ 
in their preference for the two brands of cola. 

5.2.5 Confidence Intervals for the Normal Linear 
Model 

Consider the normal linear model 

. Y = Xβ + ε, ε ∼ N(0, σ2 In) ,

where . X is an .n × m matrix (.m < n) of full rank  m—thus, the columns of 
. X are linearly independent, and, as a consequence, the matrix .XTX has an 
inverse. 

We saw in Sect. 5.1.2 that the parameter vector . β can be estimated via ☞ 129 
the estimator 

. ^β = X+Y = (XTX)−1XTY .

Since the random vector . ^β is a linear transformation of a normal random 
vector, it has a multivariate normal distribution. The mean vector and co-
variance matrix follow from Theorem 3.4: ☞ 80 

. E^β = (XTX)−1XT
EY = (XTX)−1XTXβ = β

and 
.Σ

β̂
= (XTX)−1XTσ2In ((XTX)−1XT)T = σ2(XTX)−1 .
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Let . a be any m-dimensional vector. A natural estimator for .θ = aTβ is 
.^θ = aT

^β. The following theorem gives an exact confidence interval for . θ. 

Theorem 5.3. (Confidence Interval for the Normal Linear 
Model). A .1 − α stochastic confidence interval for .θ = aTβ is 

.^θ ± tn−m;1−α/2
‖Y − X^β‖

√

aT(XTX)−1a√
n − m

, (5.26) 

where .tn−m;1−α/2 is the .1 − α/2 quantile of the .tn−m distribution. 

Proof. Being linear in the components of . β, the random variable . ^θ =
aT
^β has a normal distribution, with expectation .aTβ = θ and variance 

.σ2aT(XTX)−1a. Let  

. ^σ2 = ‖Y − Y m‖2

n
,

with .Y m = X^β, be the least-squares estimator of . σ2. The random variable 
.‖Y −Y m‖2/σ2 has, by Theorem 3.10, a .χ2

n−m distribution and is independent☞ 88 
of . Y m. Since .^β = X+X^β = X+Y m, we have that .‖Y −Y m‖2 is independent 
of . ^β. Using Corollary 3.2, we see that the pivot☞ 89 

. T = (^θ − θ)/
√

aT(XTX)−1a
√

‖Y − X^β‖2/(n − m)

has a .tn−m distribution. By rearranging the identity . P(|T | ≤ tn−m;1−α/2) =
1 − α in the usual way, we arrive at the confidence interval (5.26). □

Example 5.12 (Confidence Limits in Simple Linear Regression). 
We continue Example 5.5 by including confidence intervals, .(l(x), u(x)) say,☞ 131 
of the parameter .θ(x) = β0 + β1x, for various x. The points . u(x), x ∈ [0, 1]
form an upper confidence curve for the regression line .y = β0 + β1x; and . l(x)
gives the lower confidence curve. The following Julia code, to be appended 
to the code in Example 5.5, implements (5.26) and yields a plot of the true 
regression line and confidence curves similar to Fig. 5.2. 

linregestconf.jl 

tquant = quantile(TDist(N-2),0.975) # 0.975 quantile 
ucl = zeros(N); lcl = zeros(N); # upper/lower conf. limits 
rl = zeros(N) # (true) regression line 
u=0
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for i in 1:N 
global u = u + 1/N  
a = [1;u] 
rl[i] = a'*beta; 
ucl[i] = dot(a,betahat) .+ tquant*norm(y - X*betahat)*sqrt( 

a'*inv(X'*X)*a)/sqrt(N-2) 
lcl[i] = dot(a,betahat) .- tquant*norm(y - X*betahat)*sqrt( 

a'*inv(X'*X)*a)/sqrt(N-2) 
end 
plot!(x,rl,legend=false); plot!(x,ucl,legend=false); 
plot!(x,lcl,legend=false); scatter!(x,y,legend=false) 
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Fig. 5.2 The true regression line (solid) and the upper and lower .95% confidence curves 
(dashed) 

5.3 Hypothesis Testing 

Hypothesis testing involves making decisions about certain hypotheses on 
the basis of the observed data. In many cases we have to decide whether the 
observations are due to “chance” or due to an “effect.” Hypothesis testing has 
traditionally played a prominent role in statistics, and many introductory 
books still are predominantly about hypothesis testing. Modern statistical
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analyses however, especially those based on computer intensive methods, do 
not so heavily rely on hypothesis testing any more, preferring, for example, 
inference via confidence intervals to inference based on hypothesis tests. In 
Bayesian statistics hypothesis testing is done in a different way, via Bayes☞ 257 
factors. We will address the main ideas of frequentist hypothesis testing in 
this section. 

Suppose the model for the data . X is described by a family of probability 
distributions that depend on a parameter .θ ∈ Θ. The aim of hypothesis 
testing is to decide, on the basis of the observed data . x, which of two com-
peting hypotheses, .H0 : θ ∈ Θ0 (the null hypothesis) and  . H1 : θ ∈ Θ1
(the alternative hypothesis), holds true, where . Θ0 and . Θ1 are subsets of 
the parameter space . Θ. Traditionally, the null hypothesis and alternative hy-
pothesis do not play equivalent roles. . H0 contains the “status quo” statement 
and is only rejected if the observed data are very unlikely to have happened 
under . H0. 

The decision whether to reject . H0 or not is dependent on the outcome of a 
test statistic .T = T (X). For simplicity, we discuss only the one-dimensional 
case .T ≡ T . 

The p-value is the probability that under . H0 the (random) test statistic 
takes a value as extreme as or more extreme than the one observed. Let t 
be the observed outcome of the test statistic T . We consider three types of 
tests: 

• Left one-sided test. Here . H0 is rejected for small values of t, and the 
p-value is defined as .p = PH0(T ≤ t). 

• Right one-sided test: Here . H0 is rejected for large values of t, and the 
p-value is defined as .p = PH0(T ≥ t), 

• Two-sided test: In this test . H0 is rejected for small or large values of t, 
and the p-value is defined as .p = min{2PH0(T ≤ t), 2PH0(T ≥ t)}. 

The smaller the p-value, the greater the strength of the evidence against . H0
provided by the data. As a rule of thumb: 

.p < 0.10 suggestive evidence, 

.p < 0.05 reasonable evidence, 

.p < 0.01 strong evidence. 

The following decision rule is generally used to decide between . H0 and . H1: 
Decision rule : Reject . H0 if the p-value is smaller than some signifi-

cance level . α. 
In general, a statistical test involves the following steps.
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Steps for a Statistical Test 

1. Formulate a statistical model for the data. 
2. Give the null and alternative hypotheses (. H0 and . H1). 
3. Choose an appropriate test statistic. 
4. Determine the distribution of the test statistic under . H0. 
5. Evaluate the outcome of the test statistic. 
6. Calculate the p-value. 
7. Accept or reject . H0 based on the p-value. 

Choosing an appropriate test statistic is akin to selecting a good estima-
tor for the unknown parameter . θ. The test statistic should summarize the 
information about . θ and make it possible to distinguish between the alter-
native hypotheses. The likelihood ratio test provides a systematic approach 
to constructing powerful test statistics; see Sect. 6.4. ☞ 184 

Example 5.13 (Blood Pressure). Suppose the systolic blood pressure for 
white males aged 35–44 is known to be normally distributed with expectation 
127 and standard deviation 7. A paper in a public health journal considers 
a sample of 101 diabetic males and reports a sample mean of 130. Is this 
good evidence that diabetics have on average a higher blood pressure than 
the general population? 

To assess this, we could ask the question how likely it would be, if diabetics 
were similar to the general population, that a sample of 101 diabetics would 
have a mean blood pressure this far from 127. 

Let us perform the seven steps of a statistical test. A reasonable model for 
the data is .X1, . . . , X101 ∼iid N(μ, 49). Alternatively, the model could simply 
be .X ∼ N(μ, 49/101), since we only have an outcome of the sample mean of 
the blood pressures. The null hypothesis (the status quo) is .H0 : μ = 127; 
the alternative hypothesis is .H1 : μ > 127. We take . X as the test statistic. 
Note that we have a right one-sided test here, because we would reject . H0
for high values of . X. Under . H0 we have .X ∼ N(127, 49/101). The outcome 
of . X is 130, so that the p-value is given by 

. P(X ≥ 130) = P

⎛

X − 127
√

49/101
>

130 − 127
√

49/101

⎞

= P(Z > 4.31) = 8.16 · 10−6 ,

where .Z ∼ N(0, 1). So it is extremely unlikely that the event . {X ≥ 130}
occurs if the two groups are the same with regard to blood pressure. However, 
the event has occurred. Therefore, there is strong evidence that the blood 
pressure of diabetics differs from the general public. 

Example 5.14 (Binomial Test). We suspect a certain die to be loaded. 
Throwing 100 times we observe 25 sixes. Is there enough evidence to justify 
our suspicion?
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We ask ourselves the same type of question as in the previous example: 
Suppose that the die is fair. What is the probability that out of 100 tosses 25 
or more sixes would appear? To calculate this, let X be the number of sixes 
out of 100. Our model is .X ∼ Bin(100, p), with p unknown. We would like 
to show the hypothesis .H1 : p > 1/6; otherwise, we do not reject (accept) 
the null hypothesis .H0 : p = 1/6. Our test statistic is simply X. Under . H0, 
.X ∼ Bin(100, 1/6), so that the p-value for this right one-sided test is 

. P(X ≥ 25) =
100
⎲

k=25

⎛

100
k

⎞

(1/6)k (5/6)100−k ≈ 0.0217 .

This is quite small. Hence, we have reasonable evidence that the die is loaded. 
Such statistical tests involving count data are often called binomial tests. 

Example 5.15 (One-Sample t-Test). In a one-sample t-test the data 
are assumed to follow the standard model: .Z1, . . . , Zn ∼iid N(μ, σ2). One typ-
ically wishes to test the null hypothesis .H0 : μ = 0 against .H1 : μ /= 0 or 
some one-sided alternative. The test statistic in this case is 

. T = Z
√

n

SZ
,

where . Z and . SZ are the sample mean and sample standard deviation of the 
data. By Theorem 5.1 T has a .tn−1 distribution under . H0.☞ 135 

As a specific example, consider the before and after weights (actually, 
masses) of 10 participants in a “miracle” weight loss program, given in Ta-
ble 5.2. 

Table 5.2 Weight loss data in kilograms 
Before 280 140 90 128 135 98 111 97 89 156 
After 240 135 89 135 120 95 99 103 87 140 
Loss 40 5 1 .−7 15 3 12 .−6 2 16 

Although the data involve paired observations in which the before and 
after weights are highly correlated, it is reasonable to assume that the weight 
losses (weight before . − weight after), .Z1, . . . , Z10, follow the standard model 
above. The outcome of the test statistic is here .t = 27/

√
209 ≈ 1.87. For the 

alternative hypothesis .H1 : μ > 0 (the weight loss program works!), we obtain 
the p-value .P(T ≥ t) = 0.047, giving modest evidence that the program is 
effective. 

Example 5.16 (Two-Sample t-Test). We return to Example 5.9 and test 
whether breast-fed and formula-fed babies have the same hemoglobin levels. 
The null and alternative hypotheses are .H0 : μX = μY and .H1 : μX /= μY . 
For the test statistic we take
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. T = X − Y 

Sp

√

1 
m + 1 

n 

, 

which by Theorem 5.2 has a . t44 distribution under . H0. As we have here a  
two-sample normal model, the resulting test is called a two-sample t-test. 

The outcome of T is here 

. t = (X − y) 

sp

√

1 
m + 1 

n 

= 13.3 − 12.4 
√

2.8873
√

1 
25 + 1 

21 

= 1.7894 . 

The corresponding p-value for this two-sided test is . 0.08, providing insufficient 
evidence that the expected hemoglobin levels are different and corroborating 
the findings in Example 5.9. 

5.3.1 ANOVA for the Normal Linear Model 

Hypothesis testing for the normal linear model in Sect. 4.23 is often related ☞ 115 
to model selection. In particular, suppose we have the following model for the 
data .Y = [Y1, . . . , Yn]T: 

. Y = X1β1 + X2β2
◟ ◝◜ ◞

Xβ 

+ε, ε ∼ N(0, σ2 In) , (5.27) 

where . β1 and . β2 are unknown vectors of dimension k and .m−k, respectively; 
and . X1 and . X2 are full-rank design matrices of dimensions .n × k and . n × 
(m − k), respectively. Above we implicitly defined .X = [X1, X2] and . βT = 
[βT

1 , βT
2 ]. 

Suppose we wish to test the hypothesis .H0 : β2 = 0  against .H1 : β2 /= 0. 
We saw in Sect. 5.1.2 how to estimate the parameters via least squares. Let .^β ☞ 129 
be the estimate of . β under the full model, and let . ^β1 denote the estimate of . β1 
for the reduced model; that is, under . H0. To simplify notation, let . Y m = X^β 
be the projection of . Y onto the space . 〈X〉 spanned by the columns of . X; and  
let .Y k = X1^β1 be the projection of . Y onto the space .〈X1〉 spanned by the 
columns of . X1 only. 

A sensible strategy for deciding upon the reduced or full model is to com-
pare .‖Y − Y k‖ with .‖Y − Y m‖ via the quotient of the two. The larger this 
quotient, the more evidence for the full model. It is more convenient to use 
instead the equivalent statistic 

.T = n − m 
m − k 

× ‖Y − Y k‖2 − ‖Y − Y m‖2

‖Y − Y m‖2 = ‖Y m − Y k‖2/(m − k)
‖Y − Y m‖2/(n − m) , (5.28) 
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where we have used Pythagoras’ theorem in the second equation above, as 
illustrated in Fig. 5.3. 

Fig. 5.3 Pythagoras’ theorem 

Define .X = Y /σ with expectation .μ = Xβ/σ, and  .Xj = Y j/σ with 
expectation . μj , .j = k, m. Note that .μ = μm, and under . H0, .μm = μk. We  
can directly apply Theorem 3.10 to find that . ‖Y −Y m‖2/σ2 = ‖X−Xm‖2 ∼☞ 88 
χ2 

n−m , and, under . H0, .‖Y m − Y k‖2/σ2 ∼ χ2
m−k. Moreover, these random 

variables are independent of each other. It follows from Theorem 3.11 that, 
under . H0, 

. T ∼ F(m − k, n − m) .

We reject . H0 for large values of T . The above methodology is often referred 
to as analysis of variance (ANOVA). 

Example 5.17 (Hypothesis Testing for Randomized Block Design). 
In a randomized block design the data are collected in blocks, in order 

to reduce variability in the experiment. Consider, for example, the data in 
Table 5.3, representing the crop yield using four different crop treatments 
(e.g., strengths of fertilizer) on four different blocks (plots). 

Table 5.3 Crop yield 

Treatment 

Block 1 2 3 4 

1 9.2988 9.4978 9.7604 10.1025 
2 8.2111 8.3387 8.5018 8.1942 
3 9.0688 9.1284 9.3484 9.5086 
4 8.2552 7.8999 8.4859 8.9485 
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Let us consider the data first as coming from four different groups, depend-
ing only on the level of treatment. A possible model would be the single-factor 
ANOVA model ☞ 112 

. Yik = μ + αi + εik, i, k = 1, . . . , 4 ,

with .{εik} ∼iid N(0, σ2), and  .
∑4

i=1 αi = 0. Ordering the .{Yik} into a col-
umn vector .Y = [Y11, Y12, . . . Y14, Y21, . . . , Y44]T, we can write . Y in the form 
(5.27): 

. Y =

⎡

⎢

⎢

⎣

1
1
1
1

⎤

⎥

⎥

⎦

◟◝◜◞

X1

μ +

⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

−1 −1 −1

⎤

⎥

⎥

⎦

◟ ◝◜ ◞

X2

⎡

⎣

α1
α2
α3

⎤

⎦

◟ ◝◜ ◞

β2

+ ε ,

where . 1 and . 0 are vectors of 1s and 0s, respectively. We wish to test whether 
the treatments make a difference to the crop yield or not. The null hypothesis 
.H0 : α1 = α2 = α3 = 0 is that the treatments have no effect. As a test statistic 
we use (5.28). For the present model we have .n = 16, .m = 4, and .k = 1. The  
squared norm .‖Y − Y m‖2 = ‖Y − X^β‖2 is often written as .SSerror, that is,  
the sum of squares of the error terms. Note that .‖Y − X^β‖2/(n − m) is an 
unbiased estimator of the variance . σ2 of the model error. 

Similarly, .‖Y m −Y k‖2 represents the sum of squares due to the treatment 
effect and is written as .SStreatment. Our test statistic T in (5.28) can thus be 
written as 

. T = SStreatment/(m − k)
SSerror/(n − m)

def= MStreatment

MSerror
,

where “MS” stands for “mean square.” Under . H0 the test statistic T has an 
.F(m − k, n − m) = F(3, 12) distribution. 

solvehypotcrop1.jl 

using LinearAlgebra, Statistics, Distributions 
yy = [9.2988 9.4978 9.7604 10.1025; 
8.2111 8.3387 8.5018 8.1942; 
9.0688 9.1284 9.3484 9.5086; 
8.2552 7.8999 8.4859 8.9485] 

n =  length(yy); (nrow,ncol) = size(yy); y =  vec(yy) 
X_1 = ones(n,1) 
KM = kron(diagm(ones(ncol)),ones(nrow,1)); X_2 = KM[:,1:ncol

-1] 
X_2[n-nrow+1:n,:] = -ones(nrow,ncol-1) 
X = [X_1 X_2] 
m =  size(X,2); 
betahat = X'*X(X'*y)
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ym = X*betahat 
yk = X_1*mean(y); # omitting treatment effect 
k = 1  # number of parameters in reduced model 
T = (n-m)/(m-k)*(norm(ym - yk)^2)/norm(y-ym)^2 
pval = 1 - cdf(FDist(m-k,n-m),T) 

The outcome of T is found to be .0.4724, which gives a p-value of .0.7072. 
This suggests that the treatment does not have an effect on the crop yield. 
But what if the crop yield is not only determined by the treatment levels 
but also by the blocks? To investigate this, we could describe the data via a 
two-factor ANOVA model: 

. Yik = μ + αi + τk + εik, i, k = 1, . . . , 4 ,

with .{εik} ∼iid N(0, σ2) and .
∑4

i=1 αi = 0 and .
∑4

i=1 τi = 0. Ordering the data 
in the same way as for the one-factor case, we can write 

. Y = X1μ + X2β2 +

⎡

⎢

⎢

⎣

C
C
C
C

⎤

⎥

⎥

⎦

◟ ◝◜ ◞

X3

⎡

⎣

τ1
τ2
τ3

⎤

⎦

◟ ◝◜ ◞

β3

+ ε, with C =

⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

−1 −1 −1

⎤

⎥

⎥

⎦

,

and . X1 and . X2 are the same as in the one-factor case. We wish to test first if 
using such an extended model (as opposed to the previous one-factor model) 
is justified. In particular, we test if .τ1 = 0, . . . , τ4 = 0. We can use again a 
statistic of the form (5.28). Now the vector . Y m is the projection of . Y onto 
the (.m = 7)-dimensional space spanned by the columns of .X = [X1, X2, X3]; 
and . Y k is the projection of . Y onto the (.k = 4)-dimensional space spanned 
by the columns of .X12 = [X1, X2]. The test statistic (5.28), which we could 
write as 

. T12 = MSblocks

MSerror
,

has under . H0 an .F(3, 9) distribution. 
The Julia code below, which has to be appended to the first seven lines of 

code for the one-factor case, calculates the outcome of the test statistic . T12
and the corresponding p-value. We find .t12 = 34.9998, which gives a p-value 
.2.73 × 10−5. This shows that the block effects are extremely important for 
explaining the data. 

Using the extended model—thus with the block effects—we can again test 
whether the .{αi} are all 0 or not. This is done in the last six lines of the code 
below. The outcome of the test statistic is .4.4878, with a p-value of .0.0346. 
By including the block effects, we effectively reduce the uncertainty in the
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model and are able to more accurately assess the effects of the treatments, 
to conclude that the treatment does seem to have an effect on the crop yield. 
A closer look at the data shows that within each block (row) the crop yield 
roughly increases with the treatment level. 

solvehypotcrop2.jl 

C =  vcat(diagm(ones(nrow-1)), -ones(1,nrow-1)) 
X_3 = repeat(C,ncol,1) 
X = [X_1 X_2 X_3] 
m =  size(X,2); # number of parameters in full model 
betahat = X'*X(X'*y) # estimate under the full model 
ym = X*betahat 
X_12 = [X_1 X_2] # omitting the block effect 
k =  size(X_12,2) # number of parameters in reduced model 
betahat_12 = X_12'*X_12(X_12'*y) 
y_12 = X_12*betahat_12; 
T_12=(n-m)/(m-k)*(norm(y-y_12)^2 - norm(y-ym)^2)/norm(y-ym)^2 
pval_12 = 1 - cdf(FDist(m-k,n-m),T_12) 

X_13 = [X_1 X_3]; # omitting the treatment effect 
k =  size(X_13,2); # number of parameters in reduced model 
betahat_13 = X_13'*X_13(X_13'*y) 
y_13 = X_13*betahat_13 
T_13=(n-m)/(m-k)*(norm(y-y_13)^2 - norm(y-ym)^2)/norm(y-ym)^2 
pval_13 = 1 - cdf(FDist(m-k,n-m),T_13) 

5.4 Cross-Validation 

For experimental data it is often the case that several competing models seem 
equally appropriate. As a concrete example, suppose we observe n indepen-
dent points in the x-y plane, as depicted in Fig. 5.4. We wish to find a suitable 
polynomial that fits the data well. To that end, we consider the 5-th order 
polynomial regression model; see (4.10): ☞ 108 

. Yi = β0 + β1xi + · · · + β5x5 
i + εi , 

where .{εi} ∼iid N(0, σ2). The fitted line is also depicted in Fig. 5.4, which  
seems to fit the points reasonably well. 
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Fig. 5.4 Quadratic (dotted) and 5-th order (solid) polynomial regression lines 

Since the 5-th order polynomial is adequate, we might not need to consider 
higher-order polynomials. However, it is plausible that a simpler model (e.g., 
a cubic polynomial) would fit the data almost as well, and is therefore more 
appropriate. One common approach is to test a sequence of hypotheses to 
determine the exact degree needed. That is, first we estimate the 5-th order 
polynomial regression model and test the null hypothesis that .β5 = 0. If  
the null hypothesis is rejected, we stop and use the 5-th order polynomial. 
Otherwise, we estimate the 4-th order polynomial regression model, and test 
the null hypothesis that .β4 = 0. This process is continued until a certain null 
hypothesis is rejected. 

A more thoughtful approach is to select a model based on its predictive 
performance. After all, one main goal of statistical inference is to predict 
future observations. One way to assess the predictive ability of a model is to 
use it to predict a set of observations not used in the estimation. This can be 
done, for example, by partitioning the data into a “training set” and a “test 
set.” Then, use the “training set” to estimate the model, and its predictive 
accuracy is assessed by some error measure on the “test set.” This is an 
example of a cross-validation. 

1 
2 
3 
4 

test set 
training set 

Fig. 5.5 A graphical representation of a fourfold cross-validation 

More generally, a K-fold cross-validation is implemented as follows:
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1. Partition the data into K subsamples of equal (or nearly equal) size. 
Number the subsamples from 1 to K. 

2. For .k = 1, . . . , K, use all but the k-th subsample to estimate the model 
parameters. Compute the prediction errors for the omitted observations 
in the k-th subsample. 

3. Summarize the predictive performance by some error measure, such as 
the sum of squared errors. 

A graphical representation of a fourfold cross-validation is depicted in Fig. 5.5. 
For a sample with n observations, we can implement at most an n-fold cross-
validation. In fact, this is a popular choice, and it is often called the leave-
one-out cross-validation. 

More specifically, suppose there are n independent observations .y1, . . . , yn. 
Let . ̂y−k denote the prediction for the k-th observation using all the data 
except . yk. The prediction error .yk − ŷ−k is called a predicted residual—in 
contrast to an ordinary residual, .uk = yk − ŷk, which is the difference between 
an observation and its fitted value obtained using the whole sample. At the 
end of n iterations, we obtain the collection of predicted residuals .{yk − ŷ−k}. 
One way to summarize them is through the predicted residual sum of 
squares or PRESS: 

. PRESS =
n
⎲

k=1

(yk − ŷ−k)2 .

In general, computing the PRESS is computationally intensive as it in-
volves n separate estimations and predictions. For linear models, however, ☞ 115 
the predicted residuals can be calculated quickly using only the ordinary 
residuals and the projection matrix. 

Theorem 5.4. (PRESS for Linear Models). Consider the normal 
linear model (4.23) 

. Y = Xβ + ε , ε ∼ N(0, σ2 In) ,

where the .n × m design matrix .X = [xij ] is known and is of full rank. 
Given an outcome .y = [y1, . . . , yn]T of . Y , the fitted values can be ob-
tained as .ŷ = Py, where .P = X(XTX)−1XT is the projection matrix. 
Then, the predicted residual sum of squares can be written as 

. PRESS =
n
⎲

k=1

⎛

uk

1 − pk

⎞2

,

where .uk = yk − ŷk = yk − (X^β)k is the k-th residual and . pk is the k-th 
diagonal element of the projection matrix . P.
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Proof (Sketch). It suffices to show that the k-th predicted residual can be 
written as .yk − ŷ−k = uk/(1−pk). Let .X−k denote the design matrix . X with 
the k-th row removed, and define . y−k similarly. Then, the least-squares esti-
mate for . β using all but the k-th observation is .^β−k = (XT

−kX−k)−1XT
−ky−k. 

It can be shown (see Problem 5.18) that .^β−k is related to the full-sample☞ 162 
least-squares estimate . ^β via 

.^β−k = ^β − (XTX)−1xkuk

1 − pk
, (5.29) 

where . xT
k is the k-th row of the design matrix . X. It follows that the predicted 

value for the k-th observation is given by 

. ̂y−k = xT
k
^β−k = xT

k
^β − xT

k (XTX)−1xkuk

1 − pk
= ŷk − pkuk

1 − pk
,

where we used the fact that .pk = xT
k (XTX)−1xk. The desired result now 

follows from direct calculation. □

Example 5.18 (Leave-One-Out Cross-Validation for Polynomial Re-
gressions). In this example we revisit the polynomial regression example 
in the beginning of this section. Specifically, given the .n = 20 points in the 
x-y plane listed in Table 5.4 (see also Fig. 5.4), we wish to find the simplest 
polynomial that fits the points well. 

Table 5.4 Polynomial regression data 

x y 

4.7 6.57 
2.0 5.15 
2.7 7.15 
0.1 0.18 
4.7 6.48 

x y 

3.7 8.95 
2.0 5.24 
3.4 10.54 
1.3 1.24 
3.8 8.05 

x y 

4.8 3.56 
1.7 3.40 

−0.4 2.18 
4.5 7.16 
1.3 2.32 

x y 

0.4 −0.23 
2.6 7.68 
4.0 9.09 
2.9 9.13 
1.6 4.04 

For this purpose, we consider five different polynomial regression models: 

. Yi = β0 + β1xi + · · · + βkxk
i + εi

for .k = 1, . . . , 5, where .{εi} ∼iid N(0, σ2). Since they can all be written as 
normal linear models, we can use Theorem 5.4 to compute their predicted 
residual sums of squares. For each of these models, we compute the least-
squares estimate and the corresponding PRESS using the Julia script below.
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polyreg.jl 

using LinearAlgebra 
x = [4.7 2 2.7 0.1 4.7 3.7 2 3.4 1.3 3.8 4.8 1.7 -0.4 4.5 1.3 

0.4 2.6 4 2.9 1.6]' 
y = [6.57 5.15 7.15 0.18 6.48 8.95 5.24 10.54 1.24 8.05 3.56 

3.4 2.18 7.16 2.32 -0.23 7.68 9.09 9.13 4.04]' 
n =  length(x); 
press = zeros(5) 
X =  ones(n,1) 
for k=1:5 

global X = [X x.^k]  
# construct the design matrix 
P = X*((X'*X)\X')  
e = y - P*y  
press[k] = sum((e./(1 .-diag(P))).^2) 
println(press[k]) 

end 

The PRESS values for the linear, quadratic, cubic, 4-th, and 5-th order 
polynomial regression models are, respectively, 117.388, 130.781, 16.0532, 
16.3167, and 25.727. Hence, the cubic polynomial regression has the lowest 
PRESS, indicating that it has the best predictive performance. It illustrates 
that complex models do not necessarily have better predictive accuracy than 
simpler models. 

5.5 Sufficiency and Exponential Families 

A statistic—that is, a function of the data only—is said to be sufficient for 
a parameter (vector) . θ if it captures all the information about . θ contained in 
the data. Sufficient statistics can be used to summarize data, often giving a 
tremendous reduction in size. To formalize this concept, suppose that . T (X)
is a (possibly multidimensional) statistic for . θ such that any inference about 
. θ depends on the data .X = [X1, . . . , Xn]T only through the value .T (X). 
That is, if . x and . y are outcomes such that .T (x) = T (y), then the inference 
about . θ should be the same whether .X = x or .X = y is observed. This 
observation leads to the following definition. 

Definition 5.2. (Sufficient Statistic). A statistic .T (X) is a suffi-
cient statistic for . θ if the conditional distribution of . X given . T (X)
does not depend on . θ.
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The workhorse for establishing sufficiency is the following theorem. 

Theorem 5.5. (Factorization Theorem). Let .f(x; θ) denote the 
pdf of the data .X = [X1, . . . , Xn]T. A statistic .T (X) is sufficient for . θ
if and only if there exist functions .g(t, θ) and .h(x) such that, for all . x
and . θ, 

.f(x; θ) = g(T (x), θ) h(x) . (5.30) 

Proof. We give the proof only for the case where . X is a discrete random 
vector. For this case we can write .f(x; θ) as 

. 

f(x; θ) = Pθ(X = x)
= Pθ(X = x, T (X) = T (x))
= Pθ(T (X) = T (x))Pθ(X = x | T (X) = T (x)) .

If .T (X) is a sufficient statistic, then .Pθ(X = x | T (X) = T (x)) does not 
depend on . θ. Consequently, (5.30) holds with .g(t, θ) = Pθ(T (X) = t) and 
.h(x) = Pθ(X = x | T (X) = T (x)). 

Conversely, suppose that (5.30) holds. We need to show that the condi-
tional probability 

. Pθ(X = x | T (X) = t) = Pθ(X = x, T (X) = t)
Pθ(T (X) = t)

does not depend on . θ. If  . x is a data point such that .T (x) /= t, then clearly 
.Pθ(X = x | T (X) = t) = 0. If  .T (x) = t, then 

. 

Pθ(X = x | T (X) = t) = Pθ(X = x)
Pθ(T (X) = t) = f(x; θ)

∑

y:T (y)=t f(y; θ)

= g(T (x), θ) h(x)
∑

y:T (y)=t g(T (y), θ) h(y) = g(t, θ) h(x)
g(t, θ)

∑

y:T (y)=t h(y)

= h(x)
∑

y:T (y)=t h(y) ,

which does not depend on . θ. Hence .T (X) is a sufficient statistic. □

Example 5.19 (Sufficient Statistic for Iid Uniform Data). Let . X =
[X1, . . . , Xn]T be an iid sample from .U(0, θ). The pdf of . X is given by 

.f(x; θ) =
⎧
( 1

θ

)n for max{x1, . . . , xn} ≤ θ and xi ≥ 0, i = 1, . . . , n

0 otherwise .
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It follows that .T (X) = max(X1, . . . , Xn) is a sufficient statistic for . θ. 

Example 5.20 (Sufficient Statistic for Iid Normal Data). Let . X =
[X1, . . . , Xn]T be an iid sample from .N(μ, 1). We show that the sample mean 
.T (X) = X is a sufficient statistic for . μ. Namely, the pdf is 

. 

f(x; μ) =
⎛

1√
2π

⎞n

exp
⎛

−1
2

n
⎲

i=1
(xi − μ)2

⎞

= h(x) exp
(

μ n X − n μ2/2
)

◟ ◝◜ ◞

g(T (x),μ)

,

for some function h, so that the required factorization holds. 

The following general class of distributions plays an important role in 
statistics. 

Definition 5.3. (Exponential Family). Let .X = [X1, . . . , Xn]T be 
a random vector with pdf .f(x; θ), where .θ = [θ1, . . . , θd]T is a parameter 
vector. . X is said to belong to an m-dimensional exponential family 
if there exist real-valued functions .ti(x), .ηi(θ), .i = 1, . . . , m ≤ n and 

.h(x) > 0, and a (normalizing) function .c(θ) > 0, such that 

.f(x; θ) = c(θ) exp
⎛

m
⎲

i=1
ηi(θ)ti(x)

⎞

h(x) . (5.31) 

The representation of an exponential family is in general not unique. It is 
often convenient to reparameterize exponential families via the . {ηi}, that is,  
to take .η = [η1(θ), . . . , ηm(θ)]T as the parameter vector rather than . θ. The  
reparameterized pdf is then 

. ~f(x; η) = ~c(η) eηTt(x) h(x) , (5.32) 

where .~c(η) is the normalization constant and .t(x) = [t1(x), . . . , tm(x)]. Such 
an exponential family is said to be in canonical form or is said to be a 
natural exponential family. 

Example 5.21 (Normal Distribution as a Two-Dimensional Expo-
nential Family). The normal distributions .N(μ, σ2), .μ ∈ R, .σ2 > 0 form a 
two-dimensional exponential family with parameter .θ = (μ, σ2). To see this,  
write the logarithm of the pdf of the .N(μ, σ2) distribution as
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. 

ln f(x; θ) = ln(1/ 
√ 

2πσ2) − 1 
2 

(x − μ)2 

σ2 

= ln(1/ 
√ 

2πσ2) − μ2 

2σ2 + x μ 
σ2 − x2 1 

2σ2 , 

which shows that we can take .t1(x) =  x, .t2(x) =  x2, .η1(θ) =  μ/σ2, and  
.η2(θ) = −1/(2σ2), with .h(x) = 1  and .c(θ) = exp(−μ2/(2σ2))/ 

√ 
2πσ2. 

Many other families of distributions are of this type, such as the bino-
mial, gamma, beta, geometric, and Poisson distributions, as summarized in 
Table 5.5. 

Table 5.5 Various univariate exponential families 

Distr. .θ .t1(x), t2(x) .c(θ) .η1(θ), η2(θ) . h(x) 

.Beta(α, β) .(α, β) .ln x, ln(1 − x) .1/B(α, β) .α − 1, β  − 1 1 

.Bin(n, p) p .x, − .(1 − p)n .ln
⎛

p 
1 − p

⎞

, − . 

⎛

n 
x

⎞

.Gamma(α, λ) .(α, λ) .x, ln x . 
λα 

Γ (α) .−λ, α − 1 . 1 

.Geom(p) p .x − 1, − .p .ln(1 − p), − . 1 

.N(μ, σ2) .(μ, σ2) .x, x2 . e
−μ2/(2 σ2) 
√ 

2πσ2 . 
μ 
σ2 , − 1 

2σ2 . 1 

.Poi(λ) .λ .x, − .e−λ .ln λ, − . 
1 
x! 

Sufficiency (and therefore data summarization) is particularly easy to es-
tablish for exponential families of distributions. In particular, suppose that 
.X = [X1, . . . , Xn]T is an iid sample from the exponential family with pdf 

. ̊f(x; θ) =  c(θ) e
∑m 

i=1 
ηi(θ) ti(x) h̊(x) . 

For simplicity suppose that x is one-dimensional. By taking the product of 
the marginal pdfs we obtain the pdf of . X: 

. f(x; θ) =  c(θ)n e
∑m 

i=1 
ηi(θ)

∑n 
k=1 

ti(xk)
◟ ◝◜ ◞

g(T (x),θ) 

n
∏

k=1 

h̊(xk)

◟ ◝◜ ◞

h(x) 

. 

A direct consequence of the factorization theorem is that 

.T (X) =
⎡

n
⎲

k=1 

t1(Xk), . . . ,  
n
⎲

k=1 

tm(Xk)
⎤T

(5.33) 
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is a sufficient statistic for . θ. 

Example 5.22 (Sufficient Statistics for Iid Normal Data). As a par-
ticular instance of the previous setting, consider the case .X1, . . . , . Xn ∼iid N

.(μ, σ2). It follows from (5.33) and Example 5.21 that . T (X) = [T1(X),

.T2(X)]T, with .T1(X) =
∑n

k=1 Xk and .T2(X) =
∑n

k=1 X2
k , is a sufficient 

statistic for .θ = (μ, σ2). This means that for this standard data model, the 
data can be summarized via only . T1 and . T2. 

It is not difficult to see that any one-to-one function of a sufficient statistic 
yields again a sufficient statistic. To see this, suppose that .T (X) is a sufficient 
statistic and .~T (X) = r(T (X)) is another statistic, with . r being invertible 
with inverse . r−1. By the factorization theorem 

. f(x; θ) = g(T (x), θ) h(x) = g(r−1(~T (x)), θ) h(x) = ~g(~T (x), θ) h(x)

for some function . ~g. Thus, the factorization theorem also holds for . ~T , and  
therefore the latter is also a sufficient statistic for . θ. 

Example 5.23 (Sufficient Statistics for Iid Normal Data Contin-
ued). We have seen that .T1(X) =

∑n
k=1 Xk and .T2(X) =

∑n
k=1 X2

k are 
sufficient statistics for .θ = (μ, σ2) in the standard model for data. The sam-
ple mean . ~T1 = X and the sample variance 

. ~T2 = 1
n − 1

n
⎲

k=1

(Xk − X)2 = 1
n − 1

⎛

n
⎲

k=1

X2
k − nX

2
⎞

.

also form a pair of sufficient statistics, because the mapping 

. ~T1 = T1

n
, ~T2 = 1

n − 1
(

T2 − T 2
1 /n

)

is invertible. 

5.6 Problems 

5.1. Find the method of moments estimators for the parameters of the 
.Geom(p), .Poi(λ), and  .Gamma(α, λ) distributions. 

5.2. The mean square error (MSE) of a real-valued estimator T is defined 
as .MSE = Eθ(T − θ)2. It can be used to assess the quality of an estimator: 
the smaller the MSE, the more efficient the estimator. Show that the MSE 
can be written as the sum 

.MSE = (EθT − θ)2 + Varθ(T ) .
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In particular, for an unbiased estimator the MSE is simply equal to its vari-
ance. 

5.3. The normal equations (5.10) can be derived more directly by solving 
.∇β‖y − Xβ‖2 = 0, where . ∇β indicates the gradient with respect to . β. 
Show, using Sect. B.1, that☞ 475 

. ∇β‖y − Xβ‖2 = 2XT(y − Xβ) .

5.4. We wish to estimate the area .a = μ1μ2 of a rectangular plot of land, 
with length . μ1 and width . μ2. We thus measure the length and the width 
twice. There are two natural ways to estimate the unknown constant a. We  
can either multiply the average width and length, or we can take the average 
of the two estimated areas. Suppose the measurements are outcomes of inde-
pendent random variables .X1, X2 ∼ N(μ1, σ2) and .Y1, Y2 ∼ N(μ2, σ2). Here 
. σ describes the accuracy of our measuring instrument. Let 

. T1 = X1 + X2

2 × Y1 + Y2

2 and T2 = X1 × Y1 + X2 × Y2

2 .

a. Show that . T1 and . T2 are unbiased estimators of a. 
b. Show that .Var(X1Y1) = σ2(σ2 + μ2

1 + μ2
2). 

c. Derive the variance of . T1 and the variance of . T2 and infer from this which 
estimator is preferred. 

5.5. Let .X1, . . . , Xn ∼iid Exp(λ) for some unknown .λ > 0. 

a. Show that the method of moments estimator of . λ is . 1/X. 
b. Construct an approximate .1 − α stochastic confidence interval for . λ, by  

applying the central limit theorem to . X. 

5.6. Let .X1, . . . , Xn ∼iid N(1, σ2), for some unknown .σ2 > 0. 

a. Show that .T =
∑n

i=1(Xi − 1)2/σ2 ∼ χ2
n. 

b. Construct a .1 − α stochastic confidence interval for . σ2 using the pivot T . 

5.7. A buret is a glass tube with scales that can be used to add a specified 
volume of a fluid to a receiving vessel. Determine a 95% confidence interval 
for the expected volume of one drop of water that leaves the buret, if the 
initial volume in the buret is .25.35 (ml), the volume after 50 drops is .22.84, 
and the volume after 100 drops is .20.36. 

5.8. On the label of a certain packet of aspirin it is written that the standard 
deviation of the amount of aspirin per tablet is 1.0 mg, but we suspect this 
is not true. To investigate this we take a sample of 25 tablets and find that 
the sample standard deviation of the amount of aspirin is 1.3 mg. Determine 
a 95% numerical confidence interval for . σ. Is our suspicion justified?
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5.9. Show that . Sp in (5.21) is an unbiased estimator of . σ2. 

5.10. Show that for the simple linear regression model in Example 5.5 we ☞ 131 
have .^β0 = Y − ^β1 X and .^β1 = SxY /Sxx, where 

. Sxx = 
n
⎲

i=1 
(xi − X)2 and SxY = 

n
⎲

i=1 
(xi − X)(Yi − Y ) . 

5.11. Consider the model selection for the normal linear model in Sect. 5.3.1. ☞ 147 
We wish to assess how the extended model .Y = Xβ + ε, where . ε ∼ 

N(0, σ2 In), fits the data, compared to the default model .Y = μ1+ε (i.e., the 
.{Yi} are independent and .N(μ, σ2) distributed). To do this we can compare 
the variance of the original data, estimated via . 

∑

i(Yi − Y )2/n = ‖Y − 
Y 1‖2/n, with the variance of the fitted data, estimated via . 

∑

i(^Yi −Y )2/n =
‖ ^Y −Y 1‖2/n, where . ^Y = X^β. Note that, in the notation of Fig. 5.3, . ^Y = Y m 
and .Y 1 = Y k. The quantity 

.R2 = ‖ ^Y − Y 1‖2

‖Y − Y 1‖2
(5.34) 

is called the coefficient of determination of the linear model. Note that . R2 

lies between 0 and 1. An . R2 value close to 1 indicates that a large proportion 
of the variance in the data has been explained by the model. 

a. Show that 

. R2 = 1 − SSerror 

SStotal 

def = 1 −
∑

i(Yi − ^Yi)2
∑

i(Yi − Y )2 
. 

Hint: use Pythagoras’ theorem, as in Fig. 5.3. 
b. For the simple linear regression model in Problem 5.10 show that . R =√ 

R2 is equal to the sample correlation coefficient (5.7) —where each .Xi ☞ 129 
is replaced with . xi. Hint: write out .^Yi = ^β0 + ^β1xi, using the explicit 
expressions for . ^β0 and . ^β1 in Problem 5.10. 

5.12. A small lead ball is dropped onto a floor from different heights (mea-
sured in meters). The times (in seconds) when the ball hits the floor are given 
in the following table. 

height 1 2 3 4 
time 0.38 0.67 0.76 0.94 

From physics we expect that, ignoring air resistance and the diameter of 
the ball, the relationship between the time y and the height h is . y = a

√
h 

for some unknown parameter a. Formulate a plausible statistical model for 
the data and fit a curve of the form .y = a

√
h to the data using the method 

of least squares. 
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5.13. In the past a milk vendor found that 30% of his milk sales were of a 
low fat variety. Recently, of his 1500 milk sales, 400 were low fat. Is there any 
indication of a move toward low fat milk? Give the p-value associated with 
the test. 

5.14. Two lakes are being analyzed with respect to their PCB concentration 
in fish. The PCB concentration from 10 fish from lake A is given by 

11.5 10.8 11.6 9.4 12.4 11.4 12.2 11.0 10.6 10.8 
The concentration from 8 fish from lake B is given by 

11.8 12.6 12.2 12.5 11.7 12.1 10.4 12.6 

a. Assess whether the true variances are the same. 
b. Assuming equality of variances, infer whether there is any difference in 

PCB concentration between the fish from the two lakes. 

5.15. Let .X1, . . . , Xm ∼iid N(μX , σ2 
X) and .Y1, . . . , Yn ∼iid N(μY , σ2 

Y ) be two 
independent normal samples with .σ2 

X /= σ2 
Y . Find a pivot variable of the form 

. T = (X − Y ) − (μX − μY ) 
V (X1, . . . , Xm, Y1, . . . , Yn) 

that has approximately (for large m and n) a standard normal distribution 
and use this pivot to construct an approximate .1 − α confidence interval for 
.μX − μY . 

5.16. The Australian Bureau of Statistics reports that during 2003, 48,300 
babies were born in the state of Queensland. Of these, 24,800 were boys and 
23,500 were girls. Does this suggest that the probability of a male birth is 
more likely than that of a female birth? Conduct a suitable statistical analysis 
to find this out. 

5.17. Gerrit from Gouda is an exporter of cheese. Gerrit requires that his 
suppliers produce cheese with an expected percentage fat content (PFC) of 
40. From past experience it is known that the PFC has a normal distribution 
with standard deviation 4. Gerrit selects from each new batch of cheese n 
cheeses at random and measures their fat content. If the average PFC is less 
than 39 Gerrit rejects the entire batch. 

a. Suppose .n = 5. Give the distribution of the average PFC of the five cheeses. 
b. Calculate the probability that Gerrit will reject the batch if the expected 

PFC is in fact 38.5. 
c. Suppose the expected PFC is 38. How large should Gerrit choose n such 

that the test rejects the batch with a probability of at least 90%? 

5.18. In this problem we prove the identity (5.29).☞ 154 
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a. Suppose . A is an .m × m invertible matrix and . b is an .m × 1 vector. Show 
that 

.(A − bbT)−1 = A−1 + A−1bbTA−1

1 − bTA−1b
. (5.35) 

Hint: by direct computation, show that the right-hand side of (5.35) is 
indeed the inverse of .A − bbT. 

b. Using (5.35), show that 

.(XT
−kX−k)−1 = (XTX)−1 + (XTX)−1xkxT

k (XTX)−1

1 − pk
, (5.36) 

where .X−k is the design matrix . X with the k-th row removed, . xT
k is the 

k-th row of . X, and . pk is the k-th diagonal element of the projection matrix 
.P = X(XTX)−1XT. 

c. Use (5.36) to show (5.29). 

5.19. Let .X1, . . . , Xn be an iid sample from the pdf 

. f(x; θ) = θ

1 − θ
x(2θ−1)/(1−θ), x ∈ (0, 1), θ ∈ ( 1

2 , 1) .

Show that .{f(x; θ)} forms a one-dimensional exponential family. Show that 
the joint pdf of .X1, . . . , Xn forms again a one-dimensional exponential family. 
Show that .T =

∑n
i=1 ln Xi is a sufficient statistic for . θ. 

5.20. Implement a Julia program to estimate 

. 𝓁 =
⎰ 1

0

⎰ 1

0

sin(x) e−(x+y)

ln(1 + x) dx dy

via Monte Carlo integration and give a 95% confidence interval. 

5.21. Implement a Julia program to estimate 

. 𝓁 =
⎰ 2

−2
e−x2/2 dx =

⎰

H(x)f(x) dx

via Monte Carlo integration using two different approaches: (1) by taking 
.H(x) = 4 e−x2/2 and f the pdf of the .U[−2, 2] distribution and (2) by taking 
.H(x) =

√
2π 1{−2≤x≤2} and f the pdf of the .N(0, 1) distribution. 

a. For both cases estimate . 𝓁 via the estimator .^𝓁 = N−1∑N
i=1 H(Xi). Use  a  

sample size of .N = 1000. 
b. Give an approximate 95% confidence interval for . 𝓁 for both cases. 
c. Using (b.), assess how large N should be such that the width of the confi-

dence interval is less than . 0.01, and carry out the simulation with this N . 
Compare the result with the true (numerical) value of . 𝓁.
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5.22. Consider the approximate confidence interval (5.24) for binomial data. 
It is possible to calculate the exact coverage probability via total enumera-☞ 139 
tion. Specifically, define 

. T1(x) = x/n − z1−α/2
√

(x/n) × (1 − x/n)/n

and 
. T2(x) = x/n + z1−α/2

√

(x/n) × (1 − x/n)/n .

Then, the coverage probability as a function of p is 

. Pp(T1(X) < p < T2(X)) =
n
⎲

x=0
1{T1(x)<p<T2(x)}

⎛

n

x

⎞

px(1 − p)n−x .

For various n and .α = 0.05 (so that .z1−α/2 = 1.96) draw the graph of the 
coverage probability as a function of p and comment on the quality of the 
coverage (which is aimed to be . 95%). 

5.23. In order to investigate the effectiveness of “walking exercises” for babies, 
24 babies (of the same age and sex) were randomly divided into 4 groups. 
Each group followed a different training program. Table 5.6 shows the age (in 
months) when the infants first walked alone. Implement a one-factor ANOVA 
model and compute 95% confidence intervals for the expected walking age in 
each group. Test whether the training programs have any effect. 

Table 5.6 Walking age of babies (in months) 
Group 

A B C D 
9 11 11.5 13.25 
9.5 10 12 11.5 
9.75 10 9 12 
10 11.75 11.5 13.5 
13 10.5 13.25 11.5 
9.5 15 13 11.5 

5.24. Rattus Turpis is a manufacturer of rat poison. The company wants 
to investigate if adding artificial flavors to their usual mix of cornmeal with 
strychnine makes their bait more palatable to the rats. They try three artifi-
cial flavors, as well as their usual plain bait. Table 5.7 lists the percentages of 
bait that is eaten, for five different surveys. Does the data suggest that adding 
artificial flavor makes a difference? Use the two-factor ANOVA program in 
Example 5.17 to investigate this.
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Table 5.7 Percentage of bait eaten 

Flavor 

Survey Plain Butter Beef Bread 

1 13.8 11.7 14.0 12.6 
2 12.9 16.7 15.5 13.8 
3 25.9 29.8 27.8 25.0 
4 18.0 23.1 23.0 16.9 
5 15.2 20.2 19.9 13.7



Chapter 6 
Likelihood 

The concept of likelihood is central in Statistics. It describes in a precise 
manner the information about the parameters of the model given the observed 
data. 

Definition 6.1. (Likelihood Function). Let . X be a random vector 
with pdf .f(·; θ) (discrete or continuous) with parameter vector .θ ∈ Θ. 
For a given outcome . x of . X, the function 

. L(θ; x) = f(x; θ)

is called the likelihood function of . θ based on . x. 

Note that L is a function of . θ for fixed . x, whereas f is a function of . x for 
fixed . θ. 
Example 6.1 (Binomial Likelihood). Let .X ∼ Bin(n, p). For a given 
observation x, the likelihood of x under p is given by 

.L(p; x) = f(x; p) =
(

n

x

)
px (1 − p)n−x, 0 < p < 1 . (6.1) 

As a particular example, consider the experiment where we flip 100 times 
a biased coin with success probability p. We know that the total number of 
successes (say Heads) in 100 tosses, X, has a .Bin(100, p) distribution. Suppose 
that .x = 43 successes were observed. Thus, the likelihood of the observed data 
as a function of p is 
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. L(p; 43) =
(

100
43

)
p43 (1 − p)57, 0 < p < 1 ,

the graph of which is plotted in Fig. 6.1. 

Fig. 6.1 The likelihood 
function for the . Bin(100, p)
distribution, with 43 ob-
served successes 

0 0.2 0.4 0.6 0.8 1 
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0.02 

0.04 

0.06 

0.08 

We see that the likelihood is largest for values of p that lie between 0.25 
and 0.6. It is very implausible that the current datum was obtained from a 
p outside this interval. In this sense the likelihood is used to compare the 
plausibilities of various parameter values. 

Example 6.2 (Normal Likelihood). Suppose we are given data . x1, . . . , xn

from an iid sample .X = [X1, . . . , Xn]T of the .N(μ, σ2) distribution, with . μ
and . σ2 unknown—in this case .θ = [μ, σ2]T. The pdf of . X (i.e., the joint 
pdf of .X1, . . . , Xn) is given by the product of the marginal pdfs; see (3.7).☞ 71 
Consequently, the likelihood of the data as a function of the parameters is 

. L(μ, σ2; x) =
nΠ

i=1
fXi

(xi; μ, σ2) =
(

1√
2πσ2

)n

exp
(

−1
2

n⎲
i=1

(xi − μ)2

σ2

)

for .μ ∈ R, σ > 0. As a particular example, suppose .n = 10 and that the data 
(computer-generated from some .N(μ, σ2) distribution) are 

2.39876, .−0.149451, .−0.770132, 0.87627, .−0.0852696, 
1.58494, 1.32772 1.35611, .−0.206479, 0.83773 . 

Figure 6.2 gives the three-dimensional graph and the corresponding con-
tour plot of the likelihood function. Note that the values for . θ for which the 
likelihood of the data is largest are restricted to an ellipse-like region. The 
actual parameter values for the data were .μ = 1  and .σ2 = 1  in this case. 
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Fig. 6.2 The graph and contour plot of the likelihood function for the .N(μ, σ2) distri-
bution, for the given data 

In general, if .X1, . . . , Xn is an iid sample from .f̊(·; θ), then the likelihood 
of the data .x = [x1, . . . , xn] under . θ is the product: 

.L(θ; x) =
nΠ

i=1
f̊(xi; θ) . (6.2) 

Example 6.3 (Radioactive Source Detection). Suppose a low-intensity 
radioactive source is emitting particles (in pairs). A screen registers the im-
pact of one particle from each pair. Suppose the position of the source is 
.(a, b), and  X is the x-coordinate of the location where a random particle 
will hit the screen, and let .Y ∈ (−π/2, π/2) be the angle between the line 
segments .(a, b)-.(a, 0) and .(a, b)-.(X, 0); see Fig. 6.3. 

source 

screen 

Y 

Fig. 6.3 A radioactive source at position .(a, b) emits particles in a random direction 

Since all angles are equally likely, Y is uniformly distributed in .(−π/2, π/2). 
Moreover, X and Y are related via .tan(Y ) = X−a

b . It follows from the trans-
formation formula (3.22) that ☞ 79
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. fX(x) = b

π(b2 + (x − a)2) , x ∈ R .

In other words, .X = a + bZ, where Z has a Cauchy distribution; see Prob-
lem 6.8. 

Suppose that we know that the source is at a distance .b = 1 from the 
screen, but we do not know its position a relative to the origin. However, we 
know the impact positions of ten particles: 

1.3615, 3.5616, .−14.2411, .−4.4950, 2.3014, 
1.1066, .−9.3409, 0.3779, 0.9386, .−0.1838 . 

Based on these data, what can we say about a? A naive guess is to simply 
take the mean of the data to estimate the location, which turns out to be 
.−1.8613. This, however, is a fundamentally flawed approach, because the 
expectation of the distribution of X does not exist; namely, . 

( ∞
0 xfX(x) dx =

∞ and .
( 0

−∞ xfX(x) dx = −∞, and  .∞ − ∞ is not well-defined. Of course the 
mode of f (the point where f is maximal) is a, but here the mode is not 
equal to the expectation (which does not exist). A much better approach is 
to plot the likelihood function for a, which  is  

. L(a; x) =
(

1
π

)10 10Π
i=1

1
1 + (xi − a)2 .

The graph of the likelihood function is given in Fig. 6.4. 

Fig. 6.4 The graph of 
the likelihood function 
for the position a of the 
radioactive source
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We see that the most likely position is around 1 and that our initial guess 
of .−1.8613 is extremely unlikely. We also see that the most likely positions 
fall between roughly . −1 and 3. In fact, the actual position was .a = 1 in this 
case. So we see that with relatively sparse information, we can still make 
well-founded decisions about a, as long as we use the likelihood.
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6.1 Log-Likelihood and Score Functions 

Definition 6.2. (Log-Likelihood and Score Functions). Let . X
be a random vector with pdf .f(·; θ) (discrete or continuous) with pa-
rameter vector .θ ∈ Θ. For a given outcome . x of . X, the  log-likelihood 
function, denoted l, is the natural logarithm of the likelihood function: 

. l(θ; x) = ln L(θ; x) = ln f(x; θ) .

Its gradient, denoted . S (column vector), is called the score function: 

.S(θ; x) = ∇θl(θ; x) = ∇θf(x; θ)
f(x; θ) . (6.3) 

Example 6.4 (Binomial Log-Likelihood and Score Functions). For 
the .Bin(n, p) distribution with observed datum x, the log-likelihood is 

. l(p; x) = ln(
(

n

x

)
) + x ln(p) + (n − x) ln(1 − p) .

Differentiating .l(p; x) with respect to p gives the score function: 

.S(p; x) = x

p
− n − x

1 − p
. (6.4) 

Theorem 6.1. (Log-Likelihood and Score Functions for Iid 
Data). Let .X = [X1, . . . , Xn]T be an iid sample from .f̊(·; θ), and  
let . ̊l and . ̊S be respectively the log-likelihood and the score function 
corresponding to . ̊f . Then the log-likelihood and score functions of . θ
based on an outcome  . x of . X are 

. l(θ; x) =
n⎲

i=1
l̊(θ; xi) and S(θ; x) =

n⎲
i=1

S̊(θ; xi) .

Proof. The pdf of . X is .f(x; θ) =
I In

i=1 f̊(xi; θ). Taking the logarithm gives 
the log-likelihood as the sum of the logarithms of the pdfs. By differentiating 
this sum, we obtain the score function as the sum of the derivatives.  
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Example 6.5 (Log-Likelihood and Score Functions for Normal Iid 
Data). Consider the standard model for data: .X1, . . . , Xn ∼iid N(μ, σ2). 
The log-likelihood function of .(μ, σ2) for a single outcome x is given by the 
logarithm of the pdf of the .N(μ, σ2) distribution: 

. ̊l(μ, σ2; x) = −1
2 ln(2π) − 1

2 ln(σ2) − 1
2(x − μ)2/σ2 .

By differentiating . ̊l with respect . μ and . σ2 (note that . σ2 is viewed as a single 
parameter), we obtain the two components of the score function: 

. ̊S1(μ, σ2; x) = ∂l̊(μ, σ2; x)
∂μ

= x − μ

σ2 ,

and 

. ̊S2(μ, σ2; x) = ∂l̊(μ, σ2; x)
∂σ2 = − 1

2σ2 + 1
2

(x − μ)2

(σ2)2 .

It follows from Theorem 6.1 that the log-likelihood and score functions of 
.(μ, σ2) based on an outcome .x = [x1, . . . , xn]T are given by 

. l(μ, σ2; x) = −n

2 ln(2π) − n

2 ln(σ2) −
n⎲

i=1

1
2(xi − μ)2/σ2 ,

.S1(μ, σ2; x) =
n⎲

i=1

xi − μ

σ2 , (6.5) 

and 

.S2(μ, σ2; x) = − n

2σ2 + 1
2

n⎲
i=1

(xi − μ)2

(σ2)2 . (6.6) 

Theorem 6.2. (Score Function for an Exponential Family). The 
score function for a natural exponential family with pdf: . f(x; θ) =
c(θ) eθTt(x) h(x) is given by 

.S(θ; x) = ∇c(θ)
c(θ) + t(x) . (6.7) 

Proof. The log-likelihood function is .l(θ; x) = ln c(θ) + θTt(x) + ln h(x). 
Now take the gradient with respect to . θ.  
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Example 6.6 (Score Function for Gamma Data). The pdf of the 
.Gamma(α, λ) distribution, where .α, λ > 0, is  

. f(x; α, λ) = λαxα−1e−λx

Γ (α) , x > 0 .

Let us assume that . α is known. After the reparameterization .η = −λ, we  
obtain (see Table 5.5) the natural exponential family with pdf ☞ 158 

. ~f(x; η) = c(η) eηt(x) h(x) ,

where .c(η) = (−η)α and .t(x) = x. Here, .h(x) does not depend on . η (but does 
depend on the known constant . α). Since 

. 
c'(η)
c(η) = α

η
,

we find the score function .~S(η; x) = α
η +x. In the original parameter, we have 

(chain rule) . S(λ; x) = ~S(η(λ); x) × dη
dλ = −

(
α

−λ + x
)

= α
λ − x.

6.2 Fisher Information and Cramér–Rao Inequality 

Definition 6.3. (Efficient Score). Let .S(θ; x) be the score function 
corresponding to an outcome . x of .X ∼ f(·; θ). The  random vector 
.S(θ) = S(θ; X) is called the efficient score or simply score of . θ. 

The expected score under . θ is equal to the zero vector ; namely, 

.

EθS(θ) =
( ∇θf(x; θ)

f(x; θ) f(x; θ) dx

=
(

∇θf(x; θ) dx = ∇θ

(
f(x; θ) dx = ∇θ1 = 0 ,

(6.8) 

provided that the interchange of differentiation and integration is justified. 
This is true for large classes of distributions, including natural exponential 
families. From now on we simply assume that such an interchange is permit-
ted.
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Definition 6.4. (Fisher Information Matrix). For the model . X ∼
f(·; θ), let  .S(θ) = S(θ; X) be the score of . θ. The covariance matrix of 
the random vector . S(θ), denoted by . I(θ), is called the Fisher infor-
mation matrix. 

Since the expected score is . 0, we have:  

.I(θ) = Eθ[S(θ)S(θ)T] (6.9) 

and in the one-dimensional case, the information number is 

. I(θ) = Eθ

(
d ln f(X; θ)

dθ

)2

.

Example 6.7 (Information Number for Binomial Data). Let . X ∼
Bin(n, p). From  (6.4) we see that the score is 

.S(p; X) = X

p
− n − X

1 − p
. (6.10) 

The information number is therefore 

.Varp

(
X

p
− n − X

1 − p

)
= Varp

(
X

p(1 − p)

)
= n p (1 − p)

p2 (1 − p)2 = n

p(1 − p) . (6.11) 

For iid samples the score has approximately a multivariate normal dis-
tribution that is characterized by the Fisher information of the sampling 
distribution, as summarized in the following theorem. 

Theorem 6.3. (Asymptotic Distribution of the Score). Let . X =
[X1, . . . , Xn]T be an iid sample from .f̊(x; θ) and let . S(θ) = S(θ; X)
be the score of . θ. Then, 

1. . 1n S(θ) → 0 as .n → ∞, and  
2. .S(θ) approx.∼ N(0, n I̊(θ)) for large n, where .̊I(θ) is the Fisher infor-

mation matrix corresponding to . ̊f . 

Proof. By Theorem 6.1, we can write .S(θ) =
∑n

i=1 S̊(θ; Xi). Note that the 
random vectors .{S̊(θ; Xi)} are independent and identically distributed with 
mean . 0 and covariance matrix . ̊I(θ). The law of large numbers and the mul-
tivariate central limit theorem (see Theorem 3.14) now lead directly to the☞ 92 
two properties above.  
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It is sometimes easier to compute the information number in a different 
way to (6.9), based on the following equality (assuming a one-dimensional 
parameter . θ): 

. 
d2

dθ2 ln f(x; θ) =

d2

dθ2 f(x; θ)

f(x; θ) −

⎛
⎜⎝

d
dθ

f(x; θ)

f(x; θ)

⎞
⎟⎠

2

.

Multiplying both sides with .f(x; θ) and integrating with respect to . x gives: 

. Eθ
d2 ln f(X; θ)

dθ2 =
( d2

dθ2 f(x; θ) dx − I(θ) .

Now if we may change the order of differentiation and integration in the 
integral (allowed for exponential families), then 

. 

( d2

dθ2 f(x; θ) dx = d2

dθ2 1 = 0 ,

so that the Fisher information number is also given by 

.I(θ) = −Eθ
d2 ln f(X; θ)

dθ2 = −Eθ
dS(θ; X)

dθ
. (6.12) 

Example 6.8 (Information Number for Binomial Data Continued). 
Differentiating the score in (6.10) with respect to p gives: 

. 
dS(p; X)

dp
= − X

p2 − n − X

(1 − p)2 .

The expectation of this random variable (under .X ∼ Bin(n, p)) is  

. − np

p2 − n − np

(1 − p)2 = − n

p(1 − p) ,

which is exactly the negative of the information number found in (6.11).  

The multidimensional version of (6.12) is 

.I(θ) = −Eθ ∇2 ln f(X; θ) = −Eθ ∇S(θ) , (6.13) 

where .∇2 ln f(X; θ) is the Hessian of .ln f(X; θ); that is, the (random) matrix 

. 

I
∂2 ln f(X; θ)

∂θi∂θj

I
=

I
∂2l(θ; X)

∂θi∂θj

I
=

I
∂Si(θ; X)

∂θj

I
,

where . Si denotes the i-th component of the score. The following is a direct 
consequence of Theorem 6.1.
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Theorem 6.4. (Information Matrix for Iid Data). Let . X =
[X1, . . . , .Xn]T be an iid sample from .f̊(x; θ), and let .̊I(θ) be the in-
formation matrix corresponding to .X ∼ f̊(x; θ). Then, the information 
matrix for . X is given by 

. I(θ) = n I̊(θ) .

Example 6.9 (Information Matrix for Iid Normal Data). Let . X1, . . . ,
. Xn be an iid sample from the .N(μ, σ2) distribution. Using Examples 6.5 and 
(6.13), we see that the information matrix .̊I(μ, σ2) is the expectation of the 
following matrix of partial derivatives: 

. −

⎡
⎣∂S̊1(μ,σ2;X)

∂μ
∂S̊1(μ,σ2;X)

∂σ2

∂S̊2(μ,σ2;X)
∂μ

∂S̊2(μ,σ2;X)
∂σ2

⎤
⎦ = −

I
− 1

σ2 − (X−μ)
(σ2)2

− (X−μ)
(σ2)2

1
2σ4 − (X−μ)2

(σ2)3

I
, (6.14) 

where .X ∼ N(μ, σ2). Taking expectations gives: 

.̊I(μ, σ2) =
I
σ−2 0

0 σ−4

2

I
. (6.15) 

By Theorem 6.4 the information matrix corresponding to the whole iid sample 
is simply a factor n larger: .I(μ, σ2) = n̊I(μ, σ2). 

Example 6.10 (Information Matrix for Exponential Families). Con-
sider a natural exponential family with pdf : 

.f(x; θ) = eθTt(x)−ζ(θ)h(x) . (6.16) 

Then, similar to (6.7), 

.S(θ; x) = t(x) − ∇ζ(θ) . (6.17) 

Since the covariance matrix of a random vector . Z is the same as that of . Z +a
for any constant vector . a, we have that the covariance matrix of .S(θ; X), 
that is, the information matrix, is simply the covariance matrix of .t(X). 

Example 6.11 (Information Number for Location Families). For lo-
cation families .{f(x; μ)}; that is, when .f(x; μ) = ~f(x − μ) for some fixed 
pdf . ~f , the Fisher information does not depend on . μ and is therefore constant. 
Namely, in this case the log-likelihood satisfies .l(μ; x) = ln ~f(x − μ), and the 
score function is thus a function of .μ − x, say  .g(x − μ). The variance of the 
score, that is, the information number, satisfies:
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. 

I(μ) =
( ∞

−∞
S2(μ; x)f(x; μ) dx =

( ∞

−∞
g2(x − μ) ~f(x − μ) dx

=
( ∞

−∞
g2(y) ~f(y) dy ,

which does not depend on . μ. 

The importance of the Fisher information in statistics is corroborated by 
the famous Cramér–Rao inequality. 

Theorem 6.5. (Cramér–Rao Information Inequality). Let . X ∼
f(x; θ). The variance of any unbiased estimator .Z = Z(X) of .g(θ) is 
bounded from below via 

.Var(Z) ≥ (∇g(θ))T I−1(θ) ∇g(θ) . (6.18) 

Proof. We prove only the one-dimensional case. All expectations and vari-
ances below are taken with respect to .f(x; θ). Recall that . S = S(θ; X) =
∂

∂θ ln f(X; θ) denotes the score and that .Var(S) = I(θ). The key is to apply 
the Cauchy–Schwartz inequality: ☞ 95 

. Cov(Z, S) ≤
/

Var(Z)Var(S) ,

which immediately yields 

. Var(Z) ≥ (Cov(Z, S))2

I(θ) .

Thus, it remains to be shown that .Cov(Z, S) = g'(θ). This follows from 
.Cov(Z, S) = E[ZS] − EZ ES = EZS (because .ES = 0) and  

. E[ZS] = E

I
Z

∂
∂θ f(X; θ)
f(X; θ)

I
=

(
Z(x) ∂

∂θ
f(x; θ) dx = d

dθ
EZ = g'(θ) ,

assuming that we may change the order of integration and differentiation.  

6.3 Likelihood Methods for Estimation 

Suppose we are given data . x from a model .f(x; θ), yielding the likelihood 
function .L(θ; x) = f(x; θ). Although the entire shape of the likelihood func-
tion is valuable for our inference about the unknown parameter . θ, it is often
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desirable to summarize the information on the likelihood function into a few 
key numbers. One of these numbers is the mode of the likelihood function, 
that is, the parameter value . ~θ for which the function is maximal. This num-
ber (or vector of numbers, in the multiparameter case) is in a way our best 
estimate for . θ. It is called the maximum likelihood estimate (MLE). Note☞ 126 
that .~θ = ~θ(x) is a function of the data . x. The corresponding random variable, 
also denoted . ~θ, is the  maximum likelihood estimator (also abbreviated 
as MLE). 

Since the natural logarithm is an increasing function, maximization of 
.L(θ; x) is equivalent (in terms of finding the mode) to maximization of the 
log-likelihood .l(θ; x). This is often easier, especially when . X is an iid sample 
from some sampling distribution. 

Remark 6.1 (Existence and Uniqueness). Maximum likelihood estima-
tors may not always exist (e.g., when estimating a variance with only one 
data point), or could be nonunique (when the likelihood function attains its 
maximum at more than one point). 

If .l(θ; x) is a differentiable function with respect to . θ and the maximum is 
attained in the interior of . Θ, and there exists a unique maximum point, then 
we can find the MLE of . θ by differentiating .l(θ; x) with respect to . θ—more 
precisely, by solving 

. ∇θ l(θ; x) = 0 .

In other words, the MLE is obtained by solving the root of the score function, 
that is, by solving 

.S(θ; x) = 0 . (6.19) 

In general, solving the above equation only yields a local maximum. If the 
likelihood function is multimodal, there will be more than one point . θ that 
satisfies (6.19). The evaluation of l at all of these points may then identify 
the global maximum. 

Example 6.12 (MLE for Binomial Data). Suppose x is an outcome of 
.X ∼ Bin(n, p). By  (6.4) the MLE is found by solving:☞ 171 

. 
x

p
− n − x

1 − p
= 0 ,

which gives the maximum likelihood estimate .~p = x/n and the corresponding 
estimator .~p = X/n. 

Example 6.13 (MLE for Iid Normal Data). Suppose .x1, . . . , xn are the 
outcomes of .X1, . . . , Xn ∼iid N(μ, σ2). The MLEs follow (see (6.5) and 
(6.6) | | ) from solving the set of equations:
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.

n⎲
i=1

(xi − μ)
σ2 = 0 , (6.20) 

− n 
2σ2 + 1 

2 

n⎲
i=1 

(xi − μ)2 

(σ2)2 = 0  , (6.21) 

giving 

.~μ = 1
n

n⎲
i=1

xi = x and ~σ2 = 1
n

n⎲
i=1

(xi − x)2 . (6.22) 

We see that the maximum likelihood method and the method of moments ☞ 127 
yield exactly the same estimates in this case. 

Example 6.14 (MLE for the Normal Linear Model). Consider the 
normal linear model: ☞ 115 

.Y = Xβ + ε , (6.23) 

where . X is an .n×m design matrix, . β an m-dimensional vector of parameters, 
and . ε a vector of iid .N(0, σ2) error terms. Since .Y ∼ N(Xβ, σ2 In), it follows 
from (3.31) that the likelihood function is ☞ 83 

. L(β, σ2; y) =
(

1√
2πσ2

)n

e− 1
2 IIy−XβII2/σ2

for a given outcome . y of . Y . Observe that for any fixed . σ2 the likelihood 
.L(β, σ2; y), as a function of . β, is maximized by choosing . β such that . IIy −
XβII2 is minimized. But this gives exactly the least-squares estimate of . β; 
see Sect. 5.1.2. To obtain the MLE for . σ2, it remains to maximize .L(~β, σ2; y) ☞ 129 
or, equivalently, solve: 

. − n

2σ2 + 1
2

IIy − X~βII2

(σ2)2 = 0 ,

where . ~β is MLE of . β. This gives the same estimate .~σ2 = IIy − X~βII2/n as in 
(5.13). For a generalization to the general regression case (possibly nonlinear), ☞ 130 
see Problem 6.3. 

Example 6.15 (MLE for Exponential Families). For natural exponen-
tial families of the form (6.16) the MLE is found by solving 

.t(x) − ∇ζ(θ) = t(x) − Eθ t(X) = 0 , (6.24) 

where we have used the fact that .Eθ[t(X) − ∇ζ(θ)] = EθS(θ; X) = 0; see  
(6.8). Thus,  . θ is chosen such that the observed and expected values of .t(X) ☞ 173 
are matched.
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Maximum likelihood estimation arises in a natural way from the statistical 
learning framework in Sect. 4.6. Consider the unsupervised setting where we☞ 118 
have a training set .τ = {x1, . . . , xn} that contains the outcomes of n iid 
random variables .X1, . . . , Xn from some unknown pdf . ̊f . The objective is to 
“learn” . ̊f from the training data, using a class of probability density functions 
.G = {g(·; θ), θ ∈ Θ}. In particular, we seek the best g in . G that minimizes 
the Kullback–Leibler risk . r(g) given in (4.27); that is,  

. r(g) = E ln f̊(X)
g(X) ,

which corresponds to the loss function 

. Loss(f̊(x), g(x)) = ln f̊(x)
g(x) = ln f̊(x) − ln g(x) .

Using similar notation as in Sect. 4.6, define . gG as the global minimizer of 
the risk in the class . G; that is,  .gG = argming∈G r(g). If we define 

. 

θ∗ = argmin
θ

r(g(·; θ)) = argmin
θ

( (
ln f̊(x) − ln g(x; θ)

)
f̊(x), dx

= argmax
θ

(
f̊(x) ln g(x; θ) dx = argmax

θ
E ln g(X; θ),

then .gG = g(·; θ∗) and learning . gG is equivalent to learning (or estimating) 
. θ∗. To learn  . θ∗ from the training set . τ , we then minimize the training loss: 

. 
1
n

n⎲
i=1

Loss(f̊(xi), g(xi; θ)) = − 1
n

n⎲
i=1

ln g(xi; θ) + 1
n

n⎲
i=1

ln f̊(xi),

giving 

.~θn
def= argmax

θ

1
n

n⎲
i=1

ln g(xi; θ) . (6.25) 

As the logarithm is an increasing function, this is equivalent to 

. ~θn = argmax
θ

nΠ
i=1

g(xi; θ),

where .
I In

i=1 g(xi; θ) is the likelihood of the data under the model that 
.X1, . . . , Xn ∼iid g(·; θ). We therefore have recovered the maximum likelihood 
estimate of . θ∗. Note that this reasoning still holds even if the class . G does 
not contain the true . ̊f .
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6.3.1 Score Intervals 

The score function is not only valuable for finding point estimates, but can 
also be used to construct confidence intervals. The key observation here is ☞ 132 
that for large iid samples, the score is approximately normally distributed; 
see Theorem 6.3. Let us concentrate on the one-dimensional case; that is, .θ ☞ 174 
is real-valued. 

Let .X = [X1, . . . , Xn]T ∼iid f̊(·; θ) and let .S(θ; X) denote the score. By 
Theorem 6.3, the pivot variable .S(θ; X)(nI̊(θ))−1/2 has approximately a 
standard normal distribution, and hence 

. 

⎧⎨
⎩θ : −z1−α/2 <

S(θ; X)/
nI̊(θ)

< z1−α/2

⎫⎬
⎭

is an approximate .1−α stochastic confidence set. We use here “set” instead 
of “interval” because this set need not be an interval in general. 

Example 6.16 (Score Interval for Iid Bernoulli Data). Let . X be an 
iid sample from .Ber(p). Since the Bernoulli distribution is a special case of 
the binomial distribution, we can use (6.10) in combination with Theorem 6.1 
to find the score .S(p; X) =

∑n
i=1(Xi − p)/(p(1 − p)) = n(X − p)/(p(1 − p)). 

By a similar reasoning, we find the information number .I(p) = n/(p(1 − p)). 
So the confidence set becomes: 

. 

(
p : −z1−α/2 <

n(X − p)
p(1 − p) ×

/
p(1 − p)

n
< z1−α/2

)

=
(

p : −a <
X − p/

p(1 − p)/n
< a

)
,

where we have abbreviated .z1−α/2 to a. By solving with respect to p the 
quadratic equation 

. (X − p)2 = a2 p(1 − p)/n ,

this confidence set can be written as the interval .{T1 < p < T2} with 

. T1 =
a2 + 2nX − a

/
a2 − 4n(X − 1)X

2 (a2 + n)

T2 =
a2 + 2nX + a

/
a2 − 4n(X − 1)X

2 (a2 + n) .

This score interval has much better coverage behavior than the “standard” 
confidence interval (5.24) over the complete range of p. ☞ 139
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6.3.2 Properties of the ML Estimator 

An important property of the maximum likelihood estimator is that it is 
invariant under transformations. 

Theorem 6.6. (Invariance of the MLE). Suppose .X ∼ f(x; θ). 
Let . ~θ be the MLE of . θ and let . g be an invertible function. Then the 
MLE of .η = g(θ) is .~η = g(~θ). 

Proof. Let .L(θ) = f(x; θ) be the likelihood function, and let . ~L(η) =
L(g−1(η)) be the reparameterized likelihood function. The MLE of . η is, 
by definition, that number . ~η for which .~L(~η) is maximal. Since L is maximal 
for .θ = ~θ, the function .L(g−1(η)) is maximal at . ~η for which .g−1(~η) = ~θ; 
which gives .~η = g(~θ).  

Remark 6.2. If . g is not invertible, then we can still define the MLE of . η as 
.~η = g(~θ). In effect, this amounts to defining .~L(η) = maxθ:g(θ)=η L(θ; x). 

Next, we consider the case where .X = [X1, . . . , Xn]T is an iid sample from 
some pdf .f̊(x; θ). Let  . ~θ be the ML estimator of . θ. The random variable . ~θ
has some nice asymptotic properties. 

Theorem 6.7. (Consistency of the MLE). The ML estimator . ~θ is 
consistent. That is, with probability tending to 1 as .n → ∞, the  
likelihood equation has a root . ~θ such that for all . ε > 0

. P(II~θ − θII > ε) → 0 .

Proof. (Sketch.) Let . Ca be a sphere with radius a centered at the true pa-
rameter . θ. We want to show that for sufficiently small a the probability tends 
to 1 that  

. l(θ) > l(~θ)

at all points . ~θ on the surface of . Ca. This can be established as follows. A 
second-order Taylor expansion of . l(θ) around . θ, divided by n, yields:☞ 477 

. 
1
n

(l(~θ; X) − l(θ; X)) =
1
n

S(θ; X)T(~θ − θ) + 1
n

1
2(~θ − θ)TH(θ; X)(~θ − θ) + 1

n
Rn, (6.26)
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where .S(θ; X) is the gradient of l (i.e., the score), .H(θ; X) is the Hessian 
matrix of l (i.e., the matrix of partial derivatives .(∂2l/∂θi∂θj)), and . Rn a 
random remainder term. By Theorem 6.3, .S(θ; X)/n converges to the zero ☞ 174 
vector. Similarly, by Theorem 6.1, .H(θ; X) can be written as the iid sum ☞ 171 
.
∑n

k=1 H̊(θ; Xk), where .H̊(θ; Xk) denotes the matrix of partial derivatives 
.(∂2̊l(θ; Xk)/∂θi∂θj). Hence, by the law of large numbers and (6.13), 

.
1
n

H(θ; X) → EθH̊(θ; X) = −̊I(θ) (6.27) 

as .n → ∞, where . ̊I is the information matrix corresponding to . ̊f . Thus, the  
first and second term in (6.26) converge to 0 and . − 1

2 (~θ − θ)T̊I(θ)(~θ − θ)
respectively as .n → ∞. Since the information matrix is positive definite (i.e., 
.wT̊I(θ)w > 0 for any vector . w), the second term is strictly negative. If the 
remainder term, which depends on the third derivative of l, can be bounded 
in norm by a constant times . a3/n, then with probability tending to 1 the 
right-hand side will be less than 0 for a small enough, proving the assertion 
that .l(θ) > l(~θ) on the surface of the sphere . Ca. From this we can conclude 
that with probability tending to 1, there must be an MLE . ~θ that lies inside 
. Ca. For a sequence of .an → 0, we can thus find a sequence of .~θn → θ, showing 
the consistency of the estimator.  

Note that the above theorem only says that there exists a sequence of 
MLEs .{~θn} that converge (in probability) to the true . θ. When there are 
multiple local maxima, a particular sequence . ~θn may in fact converge to a 
local maximum. 

Theorem 6.8. (Asymptotic Distribution of the MLE). Suppose 
that .{~θn} is a sequence of consistent ML estimators for . θ. Then, 
.
√

n(~θn −θ) converges in distribution to a .N(0, I̊−1(θ))-distributed ran-
dom vector as .n → ∞. In other words, 

. ~θn
approx.∼ N(θ, I̊−1(θ)/n) .

Proof. A sketch of the proof for the one-dimensional case (thus, .θ = θ is a 
scalar) is as follows. The key idea is again to take a Taylor expansion; this 
time a Taylor expansion of .l'(~θn) around . θ: 

. l'(~θn) = l'(θ) + (~θn − θ)l''(θ) + 1
2(~θn − θ)2l'''(θ∗) ,

where . θ∗ lies between . θ and . ~θn. Since, .l'(~θn) = 0 (by definition), it follows 
that
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.
√

n(~θn − θ) = l'(θ)/
√

n

−l''(θ)/n − (~θn − θ)l'''(θ∗)/(2n)
. (6.28) 

The numerator in the right-hand side of (6.28) is .S(θ; X)/
√

n, which by 
Theorem 6.3 has approximately a .N(0, I̊(θ)) distribution for large n. The  
first term of the denominator is .− 1

n

∑n
i=1 H̊(θ; Xi), which by the law of large 

numbers converges to . ̊I(θ) (see (6.27)). The second term of the denominator 
goes to 0 by the consistency property. This shows that either side of (6.28) 
is approximately .N(θ, I̊−1(θ))-distributed.  

Example 6.17 (Asymptotic Distribution of the Binomial MLE). Let 
us check if this theorem makes sense for the case where .X1, . . . , Xn are iid 
and .Ber(p) distributed. Here the MLE is . X and the information number for 
.Ber(p) is .1/(p(1 − p)) (see (6.11) with .n = 1). Theorem 6.8 states that for 
large n 

. X
approx.∼ N

(
p,

p(1 − p)
n

)
,

which follows also directly from the normal approximation to the binomial 
distribution by noting that .nX ∼ Bin(n, p).☞ 92 

6.4 Likelihood Methods in Statistical Tests 

The likelihood does not only provide a systematic way of defining good es-
timators (via the maximum likelihood principle), it also yields a systematic 
way of finding test statistics. 

Let .X1, . . . , Xn be an iid sample from a distribution with unknown pa-
rameter . θ. Write . X for the corresponding random vector, and let .L(θ; x) be 
the likelihood function for a given outcome . x of . X. Let  . Θ be set of possible 
values for . θ. Suppose . Θ0 and . Θ1 are two nonoverlapping subsets of . Θ such 
that .Θ0 ∪ Θ1 = Θ. Consider the following hypotheses: 

. H0 : θ ∈ Θ0 ,

H1 : θ ∈ Θ1 .

Definition 6.5. (Generalized Likelihood Ratio). The general-
ized likelihood ratio is defined as the number 

.λ = M0(x)
M(x)

def= maxθ∈Θ0 L(θ; x)
maxθ∈Θ L(θ; x) .
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Note that .M(x) = L(~θ; x), where . ~θ is the ML estimate of . θ. Let . Λ denote 
the random generalized likelihood ratio obtained by substituting . X for . x. 
We can use . Λ as a test statistic for testing the above hypotheses. The general 
principle is to reject . H0 if . Λ is too small (left one-sided test). To determine ☞ 144 
the corresponding p-value .P(Λ ≤ λ), we need to know the distribution of . Λ
under . H0. This is in general a difficult task. However, it is sometimes possible 
to derive the distribution of a function of . Λ under . H0, which is then taken as 
an equivalent test statistic. The new rejection region is no longer necessarily 
left one-sided. 

Example 6.18 (Generalized Likelihood Ratio Test for Iid Normal 
Data). Suppose .X1, . . . , Xn ∼iid N(μ, σ2), with . μ and . σ2 unknown. We wish 
to test: 

. H0 : μ = μ0 ,

H1 : μ /= μ0 .

Hence, .Θ0 = {(μ0, σ2), σ2 > 0}. The random likelihood function is given by 

. L(μ, σ2; X) =
(

1
2πσ2

)n/2

exp
(

−1
2

n⎲
i=1

(Xi − μ)2

σ2

)
.

Maximizing L (or . ln L) over  . Θ gives the maximum likelihood estimator 
.(~μ, ~σ2) = (X,

∑n
i=1(Xi − X)2/n). Hence, .M(X) = L(~μ, ~σ2; X). Optimiz-

ing L over . Θ0 gives the estimator .(μ0, ~σ2), with 

. ~σ2 = 1
n

n⎲
i=1

(Xi − μ0)2 .

Consequently, 

. Λ = L(μ0, ~σ2; X)
L(~μ, ~σ2; X)

=
(∑n

i=1(Xi − X)2∑n
i=1(Xi − μ0)2

)n/2

=
(

1 + 1
n − 1T 2

)−n/2

,

where .T = X−μ0
S/

√
n

and S is the sample standard deviation. Rejecting . H0 for 
small values of . Λ is equivalent to rejecting . H0 for large values of . |T |. By  
(5.18), T has a .tn−1 distribution under . H0. ☞ 135
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Theorem 6.9. (Asymptotic Distribution of the Generalized 
Likelihood Ratio). For a k-dimensional parameter space (thus, . θ =
[θ1, . . . , θk]T), if the null hypothesis has only one value .H0 : θ = θ0 and 
the alternative hypothesis is .H1 : θ /= θ0, then for large n (under some 
mild regularity conditions, which are satisfied for exponential families): 

. − 2 ln Λ
approx.∼ χ2

k .

Proof. (Sketch.) This is again an exercise in Taylor expansions. Let . ~θ be the☞ 477 
MLE of . θ and let . l(θ) be the log-likelihood function. Under . H0

. − 2 ln Λ = −2(l(θ0) − l(~θ)) .

A second-order Taylor expansion at . θ0 around . ~θ gives: 

. l(θ0) = l(~θ) + (∇l(~θ))T(~θ −θ0) + 1
2(~θ −θ0)T∇2l(~θ)(~θ −θ0) +O(II~θ −θ0II3) .

Because .∇l(~θ) = 0 and .∇2l(~θ) ≈ −I(θ0), where . I is the information matrix 
(of dimension k), we have: 

. − 2 ln Λ ≈ (~θ − θ0)TI(θ0)(~θ − θ0) .

By Theorem 6.8, .~θ−θ0 has approximately a .N(0, I−1(θ0)) distribution. Thus, 
for a large sample size, we have that .−2 ln Λ is approximately distributed as 
.XTI(θ0)X with .X ∼ N(0, I−1(θ0)). From Theorem 3.9 it follows now that☞ 87 
.−2 ln Λ has approximately a . χ2

k distribution.  

6.5 Newton–Raphson Method 

Recall that likelihood maximization often involves solving . S(θ) = S(θ; x) =
0, where .S(θ) is the score function and . θ a k-dimensional parameter vector. 
The maximum likelihood estimate . ~θ is the solution to this equation; that is, 
it is the root of . S(θ). It is often not possible to find . ~θ in an explicit form. 
In that case one needs to solve the equation .S(θ) = 0 numerically. There 
exist many standard techniques for root-finding. A well-known method is the 
Newton–Raphson procedure. This is an iterative procedure where, starting 
from a guess . θ, a “better” guess is obtained by approximating the score via a 
linear function. More precisely, suppose that . θ is our initial guess for . ~θ (the
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root of . S). If . ~θ is reasonably close to . θ, a first-order Taylor approximation ☞ 477 
of .Si = ∂l/∂θi around . θ gives: 

. Si(~θ) ≈ Si(θ) + [∇Si(θ)]T(~θ − θ), i = 1, . . . , k ,

or in matrix notation: 

. S(~θ) ≈ S(θ) + H(θ)(~θ − θ) ,

where . H is the Hessian of the log-likelihood, that is, the matrix of second-
order partial derivatives of l. Since .S(~θ) = 0 by definition, we have: 

. ~θ ≈ θ − H−1(θ) S(θ) .

This suggests the following Newton–Raphson recursion for finding succes-
sively better guesses .θ1, θ2, . . . converging to . ~θ: 

.θt+1 = θt − H−1(θt) S(θt) . (6.29) 

The sequence of successive values is guaranteed to converge to the actual 
root, provided the function is smooth enough (e.g., has continuous second-
order derivatives) and the initial guess is close enough to the root. 

Notice that .H(θ) = H(θ; x) depends on the parameter . θ and the data 
. x, and may be quite complicated. On the other hand, the expectation of 
.H(θ; X) under . θ is simply the negative of information matrix . I(θ), which  
does not depend on the data. This suggests the alternative iterative scheme, 
called Fisher’s scoring method: 

.θt+1 = θt + I−1(θt) S(θt) , (6.30) 

which may be much easier to implement if the information matrix can be 
readily evaluated. 

Example 6.19 (MLE for Iid Normal Data). Suppose . x = [x1, . . . , xn]T
is the outcome of an iid sample from the .N(μ, σ2) distribution (both param-
eters unknown). The score function is given in (6.5)–(6.6). From  (6.14) we ☞ 172 

☞ 176find that the Hessian matrix is given by 

. H(μ, σ2; x) =
n⎲

i=1
H̊(μ, σ2; xi) =

n⎲
i=1

I
− 1

σ2 − xi−μ
(σ2)2

− xi−μ
(σ2)2

1
2σ4 − (xi−μ)2

(σ2)3

I
,

where .H̊(μ, σ2; x) is the Hessian for the one-dimensional case. Apart from a 
starting value, this is all that is required to carry out the Newton–Raphson 
iteration (6.29). It is easier, however, to apply the recursion (6.30), using the 
exact expression for the information matrix (see (6.15)): ☞ 176
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. I−1(μ, σ2) =
(

n̊I(μ, σ2)
)−1

= 1
n

I
σ2 0
0 2σ4

I
.

It follows that the Newton–Raphson procedure (6.30) involves the following 
iterative steps: 

. μt+1 = μt + 1
n

σ2
t

n⎲
i=1

(xi − μt)
σ2

t

= μt + 1
n

n⎲
i=1

(xi − μt) = x

σ2
t+1 = σ2

t + 2
n

σ4
t

(
−n

2σ2
t

+ 1
2

n⎲
i=1

(xi − μt)2

σ4
t

)
= 1

n

n⎲
i=1

(xi − μt)2 .

Note that, starting from any initial guess, after only two steps, we get 
.μt = x and .σ2

t = 1
n

∑n
i=1(xi − x)2, which are the MLEs for . μ and . σ2. 

Example 6.20 (MLE for the Radioactive Source Detection Exam-
ple). Let us return to Example 6.3. Suppose we want to find the most likely☞ 169 
estimate for the position a of the source. The log-likelihood function is 

. l(a; x) = −n ln π −
n⎲

i=1
ln(1 + (xi − a)2) .

Taking the derivative with respect to a gives the score function: 

. S(a; x) =
n⎲

i=1

2(xi − a)
1 + (xi − a)2 .

The information number is of form .I(a) = nI̊(a), where . ̊I is the information 
number for a single sample. Specifically, 

. 

I̊(a) = EaS2(a; X) =
( ∞

−∞

4(x − a)2

(1 + (x − a)2)2
1

π(1 + (x − a)2) dx

=
( ∞

−∞

4y2

π(1 + y2)3 dy (change of variable y = x − a)

= 1
2 .

Thus, the information number is constant; this is in agreement with the 
fact that we are dealing here with a location family of distributions; see 
Example 6.11. Now  (6.30) leads to the scheme: 

. at+1 = at + 2
n

n⎲
i=1

2(xi − at)
1 + (xi − at)2 .

This is implemented in the following Julia code.
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lighthousemle.jl 

x = [1.3615 3.5616 -14.2411 -4.4950 2.3014 1.1066 -9.3409 
0.3779 0.9386 -0.1838]; # the data 

a = 2;  # initial guess 
n = 10; 
for i=1:7 

println(a) 
global a = a + 4*sum( (x .- a)./(1 .+ (x .- a).^2) )/n 
# note the vectorization! 

end 

2 
1.2625662007001668 
0.9535905615030806 
0.9653773555988199 
0.9647755245520702 
0.9648071279192287 
0.9648054705999485 

Thus, the MLE is .~a = 0.9648, which is remarkably close to the true value 
.a = 1. 

6.6 Expectation–Maximization (EM) Algorithm 

Another useful numerical method for likelihood maximization is the expect-
ation–maximization (EM) algorithm. 

Suppose that, for a given vector of observations .x = [x1, . . . , xn]T, we wish 
to compute the maximum likelihood estimate: 

.~θ = argmax
θ

L(θ; x) , (6.31) 

where .L(θ; x) = f(x; θ) is the likelihood function. 
One could use a root-finding routine, such as the Newton–Raphson method 

described in Sect. 6.5, to obtain . ~θ. However, for many problems, comput-
ing the score function and the Hessian matrix analytically—required by the 
Newton–Raphson method—might be difficult. Instead of maximizing the like-
lihood function directly, the EM algorithm augments the data . x with a suit-
able vector of latent (or hidden) variables . z such that 

. f(x; θ) =
( ~f(x, z; θ) dz .

The function of . θ
. ~L(θ; x, z) = ~f(x, z; θ)

is usually referred to as the complete-data likelihood function. The 
main advantage of the data augmentation step is that it is often pos-


 -2016 13005 a -2016 13005 a
 
https://people.smp.uq.edu.au/DirkKroese/statbook/


190 6 Likelihood

sible to introduce latent variables . z in such a way that the maximiza-
tion of the complete-data likelihood .~L(θ; x, z) or log-likelihood . ~l(θ; x, z) =
ln ~L(θ; x, z) is much easier than maximizing the original likelihood . L(θ; x)
or log-likelihood .l(θ; x) = ln L(θ; x). 

Of course, the latent variables . z are not observed, and neither . ~L(θ; x, z)
nor .~l(θ; x, z) are available. One feasible approach is to replace it with the 
expectation .Eg

~l(θ; x, Z) with respect to a suitable density . g(z). It can be  
shown (see Problem 6.20) that for all . θ and any density g, 

.

ln f(x; θ) ≥ L(g, θ) def=
(

g(z) ln
( ~f(x, z; θ)

g(z)

)
dz

= Eg
~l(θ; x, Z) − Eg ln g(Z) .

(6.32) 

That is, .L(g, θ) is a lower bound for the log-likelihood .l(θ; x). In addition, 
this lower bound is attained (see Problem 6.20) for☞ 198 

.g(z) = ~fZ | X(z | x; θ) def=
~f(x, z; θ)( ~f(x, z; θ)dz

. (6.33) 

That is, the lower bound is attained when .g(z) is taken as the conditional 
pdf of the latent data . Z given the observed data .X = x. 

Algorithm 6.1. (EM Algorithm). Suppose . θ0 is an initial guess for 
the maximizer. The EM algorithm consists of iterating the following 
steps for .t = 1, 2, . . .. 

1. Expectation Step (E-Step): Given the current vector .θt−1 max-
imize .L(g, θt−1) as a function of g. It follows from (6.33) that the 
exact solution is 

. gt(z) def= ~fZ | X(z | x; θt−1) .

Compute the expected log-likelihood under . gt: 

.Qt(θ) def= Egt
~l(θ; x, Z) . (6.34) 

2. Maximization Step (M-Step): Maximize .L(gt, θ) as a function 
of . θ. Since .L(gt, θ) = Qt(θ) − Egt

ln gt(Z), this is equivalent to 
finding 

. θt = argmax
θ

Qt(θ) .

3. Stopping Condition: If, for example, . |l(θt; x) − l(θt−1; x)| ≤ ε
for some small tolerance . ε, terminate the algorithm.
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A direct consequence of the EM algorithm is that the sequence of log-
likelihood values does not decrease with each iteration. In fact, we have: 

.l(θt−1; x) = L(gt, θt−1) ≤ L(gt, θt) ≤ L(gt+1, θt) = l(θt; x) , (6.35) 

where the first and last equalities follow from the definitions of . L, . gt, and  
. gt+1, whereas the second and third inequalities follow from the M- and E-
steps, respectively. Under certain continuity conditions, the sequence .{θt} is 
guaranteed to converge to a local maximizer of the log-likelihood . 𝓁 (or the 
likelihood L). Convergence to a global maximizer (the MLE . ~θ) depends on 
the appropriate choice for the starting value. Typically, the algorithm is run 
from different random starting points. Note that (6.35) is useful for debug-
ging computer implementations of the EM algorithm: if likelihood values are 
observed to decrease at any iteration, then there is an error in the program. 
For a further discussion of the theoretical and practical aspects of the EM 
algorithm, we refer to McLachlan and Krishnan (2008). We illustrate the EM 
algorithm via two examples. 

Example 6.21 (EM for the Genetic Linkage Experiment). In a ge-
netic linkage experiment, n animals are randomly assigned (by nature) to 
four categories according to the multinomial distribution with pdf: 

. f(x1, x2, x3, x4; θ) ∝ πx1
1 πx2

2 πx3
3 πx4

4 ,

where .n = x1 + x2 + x3 + x4 and the cell probabilities are .π1 = 1/2 + θ/4, 
.π2 = (1 − θ)/4, .π3 = (1 − θ)/4, and  .π4 = θ/4. Suppose the observed data 
are given as .x = [x1, x2, x3, x4] = [125, 18, 20, 34], and we wish to obtain the 
maximum likelihood estimate for . θ. 

It is easy to check that the log-likelihood function is given by 

. l(θ; x) = x1 ln(2 + θ) + (x2 + x3) ln(1 − θ) + x4 ln θ + const .

The graph of the log-likelihood function (apart from the constant term) is 
given in Fig. 6.5. 

Since this is a univariate problem, the maximum likelihood estimate for 
. θ can be obtained by the grid search or the Newton–Raphson method (see 
Problem 6.25). In this example we use the EM algorithm to maximize the ☞ 200 
log-likelihood. 

To that end, we augment the observed data as follows: suppose that the 
first of the original four multinomial cells could be split into two subcells 
having probabilities . 1/2 and . θ/4, respectively. Let Z and .X1 − Z be the 
corresponding split of . X1, and note that Z is not observed. Now the ran-
dom vector .[Z, X1 − Z, X2, X3, X4] has a multinomial distribution with the 
following five cell probabilities: 

.

I
1
2 ,

θ

4 ,
1 − θ

4 ,
1 − θ

4 ,
θ

4

I
,
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Fig. 6.5 The log-likelihood function for the genetic linkage experiment 

and the complete-data log-likelihood can be written as 

. ~l(θ; z, x) = (x1 − z + x4) ln θ + (x2 + x3) ln(1 − θ) + const .

Suppose that .θt−1 is the current guess for . θ. To implement the E-step, 
we first derive the conditional density .gt(z) = ~fZ | X(z | x; θt−1). Note that 
given .X1 = x1, Z has a .Bin(x1, p) distribution, with success probability 

. p = 1/2
1/2 + θt−1/4 = 2

2 + θt−1
.

Recall that for .Y ∼ Bin(n, p), we have  .EY = np. Hence, we have: 

. Egt
Z = E[Z | X1 = x1; θt−1] = 2x1/(2 + θt−1) .

It follows that 

. Qt(θ) = Egt
~l(θ; Z, x) =

(
x1 + x4 − 2x1

2 + θt−1

)
ln θ+(x2+x3) ln(1−θ)+const .

To implement the M-step, we simply solve . d
dθ Qt(θ) = 0 for . θ. It is easy to  

check that the solution is given by 

. θt = x1 + x4 − 2x1/(2 + θt−1)
n − 2x1/(2 + θt−1) .

The following Julia program implements the EM algorithm to find the 
maximum likelihood estimate for . θ, which is estimated to be .~θ = 0.6268.
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geneticEM.jl 

x = [ 125 18 20 34 ]; n = sum(x); 
theta = 4*(x[1]/n-1/2); # initial guess 
err = 1; 
while abs(err) > 10^(-5) # stopping criterion 

z = 2*x[1]/(2+theta); # E-step 
temp = (x[1]+x[4] - z)/(n-z); # M-step 
global err = theta - temp; 
global theta = temp; 

end 

In the next example, we illustrate how one can use the EM algorithm for 
fitting mixture models. A mixture pdf is a pdf of the form: 

.f(x) = w1f1(x)+· · ·+wc fc(x), wz ≥ 0, z = 1, . . . , c,
c⎲

z=1
wz = 1 , (6.36) 

where each . fz is itself a pdf. Such a mixture pdf can be thought of in 
the following way. Consider two random variables, X and Z, where Z takes 
values .1, 2, . . . , c with probabilities .w1, . . . , wc, and conditional on .Z = z, the  
random variable X has pdf . fz. By the product rule (3.10), the joint pdf of X ☞ 72 
and Z is given by .fX,Z(x, z) = wzfz(x), and the marginal pdf of X is found 
by summing the joint pdf over the values of z—this gives (6.36). 

Example 6.22 (EM for a Gaussian Mixture Model). Let . x1, . . . , xn

be iid observations drawn from the following Gaussian mixture pdf: 

. ̊f(x; θ) =
c⎲

z=1

wz

σz
ϕ

(
x − μz

σz

)
,

where . ϕ is the pdf of the .N(0, 1) distribution, .θT = [μ, σ, w] with . μ =
[μ1, . . . , μc], .σ = [σ1, . . . , σc], and  .w = [w1, . . . , wc]. The likelihood of . x
under . θ is 

.L(θ; x) = f(x; θ) =
nΠ

i=1
f̊(xi; θ) =

nΠ
i=1

c⎲
z=1

wz

σz
ϕ

(
xi − μz

σz

)
. (6.37) 

Such a mixture distribution is often used for modeling unobserved het-
erogeneity, i.e., the presence of subpopulations that are not identified in the 
observed data. For example, suppose that . xi is, say, height, of the i-th student 
in a class. Further suppose that there are both male and female students in 
the class, but the genders of the students are not recorded. Then, a suitable 
model for the outcomes is a mixture of two Gaussian distributions.
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Direct maximization of the likelihood in (6.37) could be difficult and time-
consuming. To simplify the computation, introduce a vector of latent vari-
ables .Z = [Z1, . . . , Zn]T, each  . Zi taking values in .{1, 2, . . . , c} and such that 
(.Xi | Zi = zi) ∼ N(μzi

, σ2
zi

). This gives the complete-data likelihood 

.~L(θ; x, z) = ~f(x, z; θ) =
nΠ

i=1

wzi

σzi

ϕ

(
xi − μzi

σzi

)
. (6.38) 

Note that by summing . ~f(x, z; θ) over all . z, we obtain .f(x; θ). The dis-
cussion following (6.36) shows that the latent variable . Zi can be interpreted 
as the component of the mixture model from which . Xi is drawn. 

To implement the EM algorithm, suppose that .θt−1 is the current guess 
for . θ. In the E-step we first derive the (discrete) pdf of . Z given the data 
.X = x: 

. gt(z) = ~fZ|X(z | x; θt−1) ∝ ~f(x, z; θt−1) .

Thus, to find . gt we view the right-hand side of (6.38) as a function of . z =
[z1, . . . , zn]T. It follows that under . gt the components of . Z are independent, 
and each . Zi has a (discrete) pdf 

.gt,i(z) def= wt−1,z

σt−1,z
ϕ

(
xi − μt−1,z

σt−1,z

)/ c⎲
k=1

wt−1,k

σt−1,k
ϕ

(
xi − μt−1,k

σt−1,k

)
(6.39) 

for .i = 1, . . . , n and .z = 1, . . . , c. The expected complete-data likelihood in 
the E-step is then 

. Qt(θ) = Egt
~l(θ; x, Z) =

n⎲
i=1

c⎲
z=1

gt,i(z)
(

ln wz − ln σz − (xi − μz)2

2σ2
z

)
+const .

Next, in the M-step, we maximize .Qt(θ) with respect to . w (under the con-
straints .

∑
z wz = 1, wz ≥ 0 for all z), . μ, and  . σ. It is easy to check that for 

.z = 1, . . . , c the solution to .∇Qt(θ) = 0 is 

.

wz = 1
n

n⎲
i=1

gt,i(z) ,

μz =
∑n

i=1 gt,i(z)xi∑n
i=1 gt,i(z)

,

σ2
z =

∑n
i=1 gt,i(z)(xi − μz)2∑n

i=1 gt,i(z)
.

(6.40) 

We then set . θt according to the values in (6.40), and keep iterating the E-Step 
(6.39) and the M-Step (6.40) until convergence is reached.
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6.7 Problems 

6.1. In a guessing game, Albert chooses a number . θ between 0 and 10, and 
the other people have to guess the number; the person whose guess is closest 
to . θ wins. To facilitate the guesswork, Albert draws seven numbers uniformly 
from the interval .[0, θ] and displays the results to the others. Suppose these 
seven values (the observed data) are 

4.3180, 4.8007, 0.6730, 4.8409, 3.3515, 0.5170, 1.4760 . 

a. Give a model for the data .X1, . . . , X7. Show that . M = max{X1, . . . , X7}
is a sufficient statistic for . θ. 

b. Determine the method of moments estimate of . θ. Is the corresponding 
estimator a function of M? 

c. Sketch the graph of the likelihood function, and use it to determine the 
maximum likelihood estimate. Is the corresponding estimator a function 
of M? 

d. Use .T = M/θ as a pivot variable to construct a .95% numerical con- ☞ 133 
fidence interval for . θ of the form .(m, a) for some .a > m, where . m =
max{x1, . . . , x7}. 

6.2. Let .X1, . . . , Xn ∼iid N(θ, θ) with an unknown .θ > 0. Find the maximum 
likelihood estimator of . θ. 

6.3. Consider the general regression model ☞ 108 

.Yi = g(xi; β) + εi, i = 1, . . . , n , (6.41) 

where .ε1, . . . , εn ∼iid N(0, σ2) and .g(x; β) is a known function of the explana-
tory vector . x and the parameter vector . β. Both . σ2 and . β are assumed to be 
unknown. 

a. Show that the maximum likelihood estimator of . β is found by minimizing 
the sum of the squared deviations between the .{Yi} and the .{g(xi; β)}; 
that is, 

. ~β = argmin
β

n⎲
i=1

(Yi − g(xi; β))2 .

b. Derive the maximum likelihood estimator of . σ2. 

6.4. For multidimensional parameters . θ, it is sometimes useful to draw one-
dimensional graphs for the likelihood function by substituting all parameters 
except one with their maximum likelihood estimates (as a function of the 
remaining unknown parameter). The function thus obtained is called the 
profile likelihood. 

Consider the ten iid samples from the .N(μ, σ2) distribution given in Ex-
ample 6.2. ☞ 168
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a. Give the formula for the profile likelihood for . σ2. 
b. Draw the graph of this profile likelihood. Does its mode correspond to the 

maximum likelihood estimate of . σ2? 

6.5. Let .X1, . . . , Xn be iid random variables with pdf: 

. f(x; θ) = (θ + 1) xθ, 0 ≤ x ≤ 1, θ > −1 .

a. Find the method of moments estimator of . θ. 
b. Find the maximum likelihood estimator of . θ. 

6.6. The weight X (in grams) of an egg is .N(μ, σ2) distributed. Let . ~μ = 56.3
and .~σ = 7.6 be the maximum likelihood estimates of . μ and . σ. Give the  
maximum likelihood estimate of 

. P(X > 68.5) .

6.7. For .X1, . . . , Xn
iid∼ N(μ, σ2), let . S2 be the sample variance and let . ~σ2 be 

the maximum likelihood estimator of . σ2. 

a. Which of the two is an unbiased estimator of . σ2? 
b. Is .

√
S2 an unbiased estimator of . σ? 

c. Is .
/~σ2 the maximum likelihood estimator of . σ? 

6.8. Let .Y ∼ U(−π/2, π/2) and define .Z = tan(Y ). Show, using transforma-
tion formula (3.22), that Z has a Cauchy distribution.☞ 79 

☞ 50 
6.9. The following iid data, .0.685, .2.586, .−1.969, .−2.673, .1.464, .2.977, 
.−1.120, .1.594, .−0.543, .1.505, .−1.266, .1.981, have been drawn from a double 
exponential distribution, with pdf: 

. f(x) = λ

2 e−λ|x|, x ∈ R .

Find the maximum likelihood estimate for . λ. 

6.10. The Weibull distribution with rate parameter .λ > 0 and shape pa-
rameter .α > 0 has cdf 

. F (x) = 1 − e−(λx)α

, x ≥ 0 .

Suppose .x1, . . . , xn are the outcomes of an iid sample from a Weibull distri-
bution with shape parameter .α = 2 and unknown rate parameter . λ. Find the  
maximum likelihood estimate of . λ. 

6.11. Suppose .X1, . . . , Xn ∼iid Geom(p). Show that the generalized likelihood 
ratio method for the hypothesis .H0 : p = p0 versus .H1 : p /= p0 yields the 
test statistic:



6.7 Problems 197

. Λ =

(
p0

1 − p0

)n

(1 − p0)(nX)

(
1/X

1 − 1/X

)n

(1 − 1/X)(nX)

.

What is the approximate distribution of .−2 ln Λ for large n? 

6.12. Let .X1, . . . , Xn be an iid sample from the .Bin(k, p) distribution, where 
k is given but .p ∈ [0, 1] is unknown. 

a. Find the maximum likelihood estimator . ~p of p. 
b. Show that . ~p attains the Cramér–Rao lower bound. 
c. Sketch the log-likelihood function for the case where .n = 1, .k = 10, and  

.x1 = 5. 

6.13. Suppose that 100 observations are taken from the .N(μ, 1) distribution 
with an unknown . μ. Instead of recording all the observations, one records 
only whether the observation is less than 0. Suppose that 40 observations are 
less than 0. What is the maximum likelihood estimate for . μ based on these 
observations? 

6.14. Let .X1, . . . , Xn be an iid sample from the .Exp(1/v) distribution, where 
.v > 0 is unknown. Let .X = [X1, . . . , Xn]T. 

a. Find the score .S(v; X). 
b. Give the corresponding Fisher information. 
c. Find the maximum likelihood estimator of v. 
d. Give the maximum likelihood estimator of .sin(v). 

6.15. Let .X1, . . . , Xn be an iid sample from the distribution with pdf .f(x; θ), 
where 

. f(x; θ) = 1
2 θ3 x2 e−x/θ, x > 0, θ > 0 .

a. Show that .EXi = 3 θ and .Var(Xi) = 3 θ2. 
b. Find a sufficient statistic for the parameter . θ using the factorization The-

orem 5.5. ☞ 156 
c. Find the MLE of . θ. 
d. Find the Fisher information . I(θ). 
e. Give the asymptotic distribution of the MLE of . θ. 
f. What are the bias and the variance of the MLE of . θ? 
g. Determine whether or not the MLE of . θ attains the Cramér–Rao lower 

bound. 

6.16. An iid sample .X1, . . . , Xn is taken from the .N(0, θ) distribution, where 
.θ > 0 is unknown. We wish to test the hypothesis .H0 : θ = 3 against 
.H1 : θ /= 3 using an appropriate test statistic.
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a. Show that the likelihood ratio test statistic is here a function of 

. T =
n⎲

i=1

X2
i

3 .

b. What is the distribution of T under . H0? 

6.17. Verify that the score function corresponding to the observed iid sample 
.x1, . . . , xn from the .Gamma(α, λ) distribution is 

. S(α, λ) =
I
n(ln λ − ψ(α)) +

∑n
i=1 ln xi

nα
λ −

∑n
i=1 xi

I
,

and that the corresponding Fisher information matrix is 

. I(α, λ) = n

I
ψ'(α) − 1

λ
− 1

λ
α
λ2

I
,

where .ψ'(α) is the derivative of the digamma function .ψ(x) = Γ '(x)/Γ (x). 

6.18. Suppose .x1, . . . , x10 are the outcomes of an iid sample from .Exp(θ). 
Construct a score confidence interval for . θ with confidence coefficient . 0.90 if 
the sum of the .{xi} is 10. 

6.19. Let .X1, . . . , Xn and .Y1, . . . , Yn be independent random samples from 
the .Exp(λ) and .Exp(μ) distributions, for unknown . λ and . μ. Suppose we wish 
to test the hypothesis .H0 : λ = μ against .H1 : λ /= μ. 

a. Find the maximum likelihood estimators for . λ and . μ. 
b. Find the maximum likelihood estimators for .θ = λ = μ under . H0. 
c. Show that the following test statistic 

T =
∑n 

i=1 Yi∑n 
i=1 Xi 

can be derived from the generalized likelihood ratio procedure. 
d. For large n, T has approximately a normal distribution. Find the param-

eters of this distribution via the delta method.☞ 92 

6.20. In (4.27) we introduced the Kullback–Leibler (KL) divergence to mea-☞ 119 
sure how far away a pdf g is from a pdf h, via  

.D(g, h) = Eg ln g(X)
h(X) . (6.42) 

In the EM algorithm, it is used to derive the inequality (6.32) using the☞ 190 
following decomposition:
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. ln f(x; θ) =
(

g(z) ln f(x; θ) dz

=
(

g(z) ln
( ~f(x, z; θ)/g(z)

~fZ|X(z | x; θ)/g(z)

)
dz

=
(

g(z) ln
( ~f(x, z; θ)

g(z)

)
dz

, ,, ,
L(g,θ)

+D(g, ~fZ|X(· | x; θ)) . (6.43) 

a. Using Jensen’s inequality, show that .D(g, h) ≥ 0 in (6.42). ☞ 33 
b. Verify (6.43) and explain how g should be chosen such that the Kullback– 

Leibler term in (6.43) is minimized. 

6.21. Let .X1, . . . , Xn be an iid sample from the discrete pdf: 

. f(x; θ) = θxe−θ

x! (1 − e−θ) , x ∈ {1, 2, . . . }, θ > 0 .

Suppose that an iid sample of size .n = 16 gives two 5s, four 4s, four 3s, four 
2s, and two 1s. Plot the likelihood function and the log-likelihood function 
of the data and perform a grid search to obtain the maximum likelihood 
estimate; that is, of the plotted values, find the . θ for which the likelihood (or 
log-likelihood) is maximal. 

6.22. The data . 1.1668, 0.0738, 0.7740, 1.0160, 0.4822, 1.4559, 0.1752, 0.5209,
.0.1537, 0.2947 are the outcomes of an iid sample .X1, . . . , X10 from the pdf: 

. f(x) = c (b − x), 0 ≤ x ≤ b ,

where .b > 0 is unknown and c is a normalization constant. 

a. Show that .c = 2/b2. 
b. Estimate b via the method of moments. 
c. Show that the maximum likelihood estimate . ~b satisfies: 

. 

10⎲
i=1

~b
~b − xi

− 20 = 0, ~b ≥ 1.4559 ,

if this equation has a solution. Determine . ~b numerically using Julia’s Roots 
package. 

6.23. Consider the score interval for the binomial distribution in Exam-
ple 6.16. As in Problem 5.22, the exact coverage probability can be calcu- ☞ 181 
lated as a function of p by means of total enumeration. Plot the coverage
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probability for the score interval and compare it with the “standard” one in 
Problem 5.22.☞ 164 

6.24. Using Problem 6.17, implement Fisher’s scoring method: 

. θt+1 = θt + I−1(θ) S(θ)

to find the maximum likelihood estimate .~θ = [~α, ~λ] for the following iid data 
from .Gamma(α, λ)). 

29.7679 12.8406 105.3225 46.6101 75.7135 72.0340 
33.9008 35.2510 50.9201 29.8086 32.6963 131.5229 
29.1369 61.8774 31.0650 54.4877 103.6889 68.0230 
30.1994 48.3140 54.4447 29.2253 27.0242 102.5929 
43.0354 96.5552 64.1004 65.3381 89.6879 63.7344 

Use the method of moment estimates as starting values for the Newton– 
Raphson scheme. The function digamma function . ψ is implemented in the 
SpecialFunctions package of Julia as the digamma function and its deriva-
tive . ψ' as as trigamma. 

6.25. Consider the genetic linkage model in Example 6.21. 

a. Show that the score and Hessian functions for . θ are given by☞ 191 

. S(θ) = 34
θ

+ 125
θ + 2 − 38

1 − θ
and H(θ) = −34

θ2 − 125
(θ + 2)2 − 38

(1 − θ)2 .

b. Implement a Newton–Raphson procedure to find the MLE of . θ. 
c. Implement a simple grid search to find the MLE. 
d. Do the Newton–Raphson, grid search, and EM approaches give the same 

estimate?



Chapter 7 
Monte Carlo Sampling 

Monte Carlo sampling—that is, random sampling on a computer—has be-
come an important methodology in modern statistics. By simulating random 
variables from specified statistical models and probability distributions, one 
can often estimate certain statistical quantities that may otherwise be dif-
ficult to obtain. In Sect. 2.7 we already saw how random variables can be ☞ 51 
generated from common probability distributions via the inverse-transform 
and acceptance–rejection methods. 

In this chapter we discuss two other important Monte Carlo sampling 
techniques: the bootstrap method and Markov chain Monte Carlo (MCMC). 
The bootstrap method is a sampling procedure in which new samples are 
generated by resampling the observed data. MCMC is used extensively in 
Bayesian statistics to sample from complicated multidimensional distribu-
tions. Bayesian statistics is introduced in Chap. 8. ☞ 233 

The following example illustrates how random sampling can be used to 
estimate a p-value without having to derive the specific distribution of the 
test statistic. 

Example 7.1 (Estimating a p-value). Suppose an iid sample of size 
4 from a  .N(μ, σ2) distribution has a sample mean .x = −0.7 and sample 
standard deviation .s = 0.4. We wish to test the hypothesis . H0 : μ = 0
against .H1 : μ < 0, using the test statistic .T = 2X/S, whereby we re- ☞ 143 
ject . H0 if the outcome of T is too small. The observed outcome of T is 
.t = 2 × −0.7/0.4 = −3.5. The corresponding p-value is 

. p = PH0(T ≤ −3.5) = EH0 1{T ≤−3.5} .

© The Author(s), under exclusive license to Springer Science+Business 
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This can be estimated by simulating, under . H0, a large iid sample . T1, . . . , TN

of copies of T and evaluating the sample average: 

. ~p = 1
N

N
⎲

i=1
1{Ti≤−3.5} ,

similar to the Monte Carlo integration procedure in Example 5.7. In the☞ 134 
Julia program below, each . Ti is generated by drawing an iid sample of size 
4 from the  standard normal distribution and evaluating T for that sample. 
The variable count contains the total number of test statistics with a value 
less than or equal to the observed value . −3.5; the estimate . ~p is simply the 
value of count divided by N . A typical estimate for . ~p is 0.02. This indicates 
that there is fairly strong evidence that . H0 is not true. A huge advantage of 
this approach is that we do not have to analyze or evaluate the cdf of the test 
statistic under . H0; we only have to repeat the experiment under . H0 many 
times. See Problem 7.1 for a further discussion.☞ 226 

pvalsim.jl 

using Random, Statistics 
xbar_obs = -0.7; s_obs = 0.4; t_obs = 2*xbar_obs/s_obs 
N = 10^5; 
count = 0; 
for i in 1:N 

x =  randn(4); 
xbar = mean(x); s = std(x); t = 2*xbar/s; 
global count = count + (t <= t_obs); 

end 
phat = count/N # estimated p-value 

Statistical sampling often involves generating an iid sample from some 
specified discrete or continuous pdf. Two important ways to analyze such 
data is to use the empirical cdf and density estimation. 

7.1 Empirical Cdf 

Definition 7.1. (Empirical Cdf). Let .x1, . . . , xN be an iid real-
valued sample from a cdf F . The function 

.FN (x) = 1
N

N
⎲

i=1
1{xi≤x}, x ∈ R , (7.1) 

is called the empirical cdf of the data.

https://people.smp.uq.edu.au/DirkKroese/statbook/
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Here, .1{xi≤x} = 1 if .xi ≤ x, and 0 otherwise. . FN is a nondecreasing step 
function which jumps up by an amount of .1/N at each of the points . {xi}. 
Moreover, . FN is right-continuous and bounded between 0 and 1. In other 
words, . FN is a cdf—see Sect. 2.1 It is the cdf of a random variable that takes ☞ 26 
one of the values .x1, . . . , xN with equal probability . 1/N , assuming that all 
the observations are different. In Fig. 7.1 the empirical cdf is shown of an iid 
sample of size 10 from the .Exp(0.2) distribution. The true cdf is plotted as 
well. 

Fig. 7.1 The empirical cdf 
for a sample of size 10 from 
the .Exp(0.2) distribution 
and the true cdf 
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We see that the empirical cdf follows the true cdf quite well. The fit be-
comes better and better as the sample size increases. In Fig. 7.2 the empirical 
and true cdfs are shown for the same distribution, but now for a sample size 
of 200. 

Fig. 7.2 The empirical 
cdf for a sample of size 
200 from the . Exp(0.2)
distribution and the true 
cdf 
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If we order the sample as .x(1) < x(2) < · · · < x(N), then for each . i =
1, . . . , N , 

.FN (x(i)) = i

N
, (7.2) 

assuming for simplicity that all .{xi} take different values. 
If instead of deterministic .{xi} we take random . Xi, in  (7.1), then . FN (x)

becomes random as well. To distinguish between the deterministic and the 
random case, let us denote the random empirical cdf by . ~FN (x). We now have:
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. P

i

~FN (x) = i

N

I

= P(X(i) ≤ x, X(i+1) > x) =
i

N

i

I

(F (x))i (1 − F (x))N−i .

(7.3) 

To see this, note that the event .{X(i) ≤ x} ∩ {X(i+1) > x} means that 
exactly i of the N random variables that we draw from F are less than or equal 
to x. Thus, the event is equivalent to having i successes in N independent 
Bernoulli experiments with success probability .F (x), which leads to (7.3). 

Equation (7.3) can be summarized as: .N ~FN (x) ∼ Bin(N, F (x)). As a  
consequence 

. E ~FN (x) = F (x)

and 
. Var( ~FN (x)) = F (x)(1 − F (x))/N .

Moreover, by the law of large numbers and the central limit theorem, we 
have: 

.P( lim
N→∞

~FN (x) = F (x)) = 1 , (7.4) 

and 

. lim
N→∞

P

I

~FN (x) − F (x)
/

F (x)(1 − F (x))/N
≤ z

I

= Φ(z) , (7.5) 

where . Φ is the cdf of the standard normal distribution. 
Exactly as in (5.24), we see that an approximate .1 − α confidence interval☞ 139 

for .F (x) is 

. FN (x) ± z1−α/2

I

FN (x)(1 − FN (x))
N

,

where .z1−α/2 is the .1 − α/2 quantile of the standard normal distribution. 
Moreover, if we order the observations .x(1) < · · · < x(N), then, by (7.2), an  
approximate .1 − α confidence interval for .F (x(i)) is 

. 
i

N
± z1−α/2

I

i(1 − i/N)
N2 , i = 1, . . . , N .

Example 7.2 (Confidence Interval for a Cdf). In Fig. 7.3 a 90% con-
fidence interval (hence .z1−α/2 = z0.95 = 1.645) is given for the cdf of the 
.Exp(1) distribution, based on an iid sample of size .N = 60. The true cdf is 
given by the smooth line. We see that the true cdf lies convincingly within 
the confidence curves. However, the actual width of the confidence intervals 
(as a function of x) is quite sizable, due to the fact that N is not large.
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Fig. 7.3 A 90% confidence interval for the cdf . F (x) = 1 − e−x, x ≥ 0

Let .X1, . . . , XN ∼iid F , where F is continuous and strictly increasing. De-
fine .U1 = F (X1), . . . , UN = F (XN ). From the inverse-transform method (see 
Sect. 2.7.2), we see that .U1, . . . , UN is an iid sample from .U(0, 1). Denote the ☞ 53 
empirical cdf of the .{Ui} by . ~GN (u), and let x and u be related via . x = F −1(u)
and .u = F (x). Then, 

. ~GN (u) = 1
N

N
⎲

i=1
1{Ui≤u} = 1

N

N
⎲

i=1
1{F (Xi)≤F (x)} = 1

N

N
⎲

i=1
1{Xi≤x} = ~FN (x) .

. ~GN is called the reduced empirical cdf. Note that .N ~GN (u) ∼ Bin(N, u), 
irrespective of F . Define the maximum distance between the empirical and 
the true cdfs as 

.DN = sup
x∈R

| ~FN (x) − F (x)| = sup
0≤u≤1

| ~GN (u) − u| . (7.6) 

This is called the Kolmogorov–Smirnov statistic of the data. Note that 
this statistic does not depend on F . It can be used to test whether iid samples 
.X1, . . . , XN come from a specified cdf F . 
Example 7.3 (Kolmogorov–Smirnov Test). The Weibull distribution 
.Weib(α, λ) has cdf ☞ 196 

. F (x) = 1 − e−(λx)α

, x ≥ 0 .

To generate from this distribution, we can use the inverse-transform method: 
generate .U ∼ U(0, 1) and output .X = 1

λ (− ln U)
1
α . Note that the . Weib(1, λ)

distribution is simply the .Exp(λ) distribution. 
Suppose we have an iid sample from the .Weib(1.5, 1) distribution. Would 

the Kolmogorov–Smirnov statistic correctly reject the hypothesis . H0 that the 
sample is from the .Exp(1) distribution? The following Julia program carries 
out this experiment. It generates an iid sample of size .N = 100 from the
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.Weib(1.5, 1) distribution. It then evaluates the Kolmogorov–Smirnov statistic. 
Figure 7.4 shows the reduced empirical cdf . ~GN (u). The maximum distance 
between . ~GN (u) and u is .dN ≈ 0.1462 in this case. The p-value . PH0(DN >
dN ) is determined by Monte Carlo simulation, by repeating the experiment 
.K = 10000 times under . H0, that is, using .Exp(1) data. The estimated p-value 
is approximately .0.024. There is thus reasonable to strong evidence to suggest 
that the true distribution is not .Exp(1). 

kolsmirweib.jl 

using Random, Plots, StatsBase , StatsPlots 
Random.seed!(1234); 
alpha = 1.5; 
N = 100; 
U =  rand(N); 
x = (-log.(U)).^(1/alpha); # generate data 
y =  sort(1 .- exp.(-x)); 
i = 1:N;  

ecdfplot(y,legend=false) # empirical cdf 
plot!([0,1],[0,1]) 
dn_up = maximum(abs.(y -i/N)); 
dn_down = maximum(abs.(y -(i .- 1)/N)); 
dn = max(dn_up, dn_down); 

# Use MC simulation to obtain the p-value 
K = 10000; 
DN = zeros(K); 
for k in 1:K 

local i = 1:N;  # a global i already exists 
local y =  sort(rand(N)); # same for y 
DN[k] = max( maximum(abs.(y-i/N)), maximum(abs.(y-(i .- 1) 

/N))); 
end 
p =  sum(DN .>= dn)/K 

Fig. 7.4 The reduced 
empirical cdf . ~GN (x)
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7.2 Density Estimation 

Suppose that .x1, . . . , xN is an iid sample from some unknown continuous pdf 
f—obtained from Monte Carlo sampling, for example. A useful approach to 
estimate f from the data is to use a Gaussian kernel density estimator. 

Definition 7.2. (Gaussian Kernel Density Estimator). Let 
.x1, . . . , xN be the outcomes of an iid sample from a continuous pdf 
f . The  Gaussian kernel density estimator of f with bandwidth 
.h > 0 is given by 

. ~f(x; h) = 1
N

N
⎲

i=1

1√
2πh2

e− (x−Xi)2

2h2 , x ∈ R . (7.7) 

The idea is illustrated in Fig. 7.5 for the case of .N = 5 data points. The 
Gaussian kernel density estimate (KDE) is the equally weighed mixture (see 
(6.36)) of  N Gaussian/normal pdfs, where each pdf is centered around a data ☞ 193 
point and has variance . h2.
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Fig. 7.5 The Gaussian KDE (solid line) is the equally weighted mixture of normal pdfs 
centered around the data and with standard deviation h (dashed) 

How well the Gaussian KDE . ~f(·; h) fits the true pdf f depends crucially 
on the choice of the bandwidth parameter h. If  h is too small, the density 
estimate will be too spiky; if h is too large, the estimate will be too smooth. 
An often used rule of thumb is to take 

.hRot =
i

4 S5

3 N

I4/5

,
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where S is the standard deviation of the data. This choice is based on a 
mathematical analysis of the discrepancy between . ~f(·; h) and f as .N → ∞. 
There exist many sophisticated modifications of the basic Gaussian KDE in 
(7.7). In this book we use the fast and reliable theta KDE of Botev et al. 
(2010), with the new optimal bandwidth selection from Botev et al. (2025). 
The Julia module ThetaKDE can be downloaded from the book’s homepage. 

Example 7.4 (Kernel Density Estimate). The following Julia program 
draws an iid sample from the .Exp(1) distribution and constructs a Gaussian 
kernel density estimate. We see in Fig. 7.6 that with an appropriate choice 
of the bandwidth, a good fit to the true pdf can be achieved, except at the 
boundary .x = 0. The theta KDE, which can be viewed as a generalization 
of the Gaussian KDE, does not exhibit this boundary effect. Moreover, it 
chooses the bandwidth automatically and optimally, to achieve a superior fit. 

gausthetakde.jl

include("ThetaKDE.jl") # make sure path is correct 
using Random, Plots, .ThetaKDE # dot is important 
h = 0.1; h2 = h^2; c = 1/sqrt(2*pi)/h; # constants 
phi(x,x0) = exp(-(x -x0)^2/(2*h2)) # unscaled kernel 
f(x) = x  >= 0 ?  exp(-x) : 0 # true pdf 
N = 10^4 # sample size 
x = -log.(rand(N)) # generate the data 

xmesh, density, bw = kde(x); # Determine theta KDE 
phis = zeros(length(xmesh)) # Determine Gaussian KDE 
for i=1:N 

global phis = phis + phi.(xmesh,x[i]) 
end 
phis = c*phis/N 
plot(xmesh,phis) # Gaussian KDE 
plot!(xmesh,density) # theta KDE 
plot!(xmesh,f.(xmesh)) # true pdf 


 -2016 44775 a -2016 44775 a
 
https://people.smp.uq.edu.au/DirkKroese/statbook/


7.3 Resampling and the Bootstrap Method 209

-1 0 1 2 3 4 5 6  
0 

0.2 

0.4 

0.6 

0.8 

1 

Fig. 7.6 Kernel density estimates for .Exp(1)-distributed data 

7.3 Resampling and the Bootstrap Method 

The idea behind resampling is very simple: an iid sample . x = (x1, . . . , xN )
from some unknown pdf f represents our best knowledge about f if we make 
no further a priori assumptions about f . So, the best way to “repeat” the 
experiment is to resample the .{xi} by drawing from the empirical distribu-
tion. The following algorithm is a direct consequence of the inverse-transform 
method. 

Algorithm 7.1. (Sampling from an Empirical Cdf). Let  . x1, . . . ,
. xN be an iid sample from a continuous cdf F . To generate an iid sample 
of size M from the empirical cdf . FN , carry out the following steps: 

1. Draw .U1, . . . , UM 
iid∼ U(0, 1). 

2. Set .Ii = iNUiI, i  = 1, . . . , M . 
3. Return .xI1 , . . . , xIM

. 

Here . ixI (the ceiling of x) is the smallest integer larger than or equal to x. 
The requirement that F be continuous is to rule out duplicate data points. 

By sampling from the empirical cdf, we can thus repeat (approximately) 
the experiment that gave us the original data as many times as we like. This 
is useful if we want to assess the properties of certain statistics obtained from 
the data. For example, suppose that the original data . x gave the statistic 
. t(x). By resampling we can gain information about the distribution of the 
corresponding random variable .t(X).
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Example 7.5 (Resampling Cauchy Data). Suppose we have an iid sam-
ple of size .N = 100 from the Cauchy distribution—that is, with pdf 

. fX(x) = 1
π(1 + x2) , x ∈ R ;

see also Examples 6.3 and 6.20. We learned from the first example that the☞ 188 
sample mean is a poor estimate of the mode (0) of the distribution. By resam-
pling the data, we can get a good idea how the distribution of the sample mean 
compares with that of other estimators—for example, the sample median 
of the data. Ordering the data from smallest to largest, .x(1) ≤ · · · ≤ x(N), the  
sample median . ~x is defined as the “middle” observation; that is . ~x = x((N+1)/2)
for odd N , and  .~x = (x(N/2) + x(N/2+1))/2 for even N . 

Figure 7.7 depicts three graphs. The dashed line is the KDE of . K = 5000
iid sample means, where each sample mean is obtained from a resampled 
data set of size .M = 100 from the original iid Cauchy data of size .N = 100. 
Similarly, the solid line represents the KDE of the sample medians.
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Fig. 7.7 Kernel density estimates for the mean (dashed line) and median (solid line) 
of resampled data, as well as for the median of newly sampled data (dotted line) 

The figure shows that the sample median has much better statistical prop-
erties than the sample mean. In particular, the pdf of the sample median (es-
timated via the KDE) is much less spread out than that of the sample mean, 
and is (here) mostly concentrated in the interval .(−0.5, 0.5). For comparison, 
the figure also shows the KDE of the sample median obtained from . K = 5000
iid samples from the original distribution (dotted line). Thus, instead of re-
sampling the data, we draw each time the data from scratch. The following 
Julia program can be used to carry out the experiment. We again use the 
theta KDE. It is important that when using resampled data, the res=true 
flag is set. See Problem 7.6 for a further discussion of this example.
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resampcauchy.jl 

include("ThetaKDE.jl") 
using Random, Plots, StatsBase, .ThetaKDE 
N = 100; K = 5000 
# Random.seed!(123) 
xorg = tan.(pi*(0.5 .- rand(N))) # original data 
medxorg = median(xorg); meanxorg = mean(xorg) 
x =  zeros(N); mx = zeros(K) 
for i in 1:K 

ind = ceil.(Int64,N*rand(N)) # draw random indices 
x = xorg[ind]; # resampling the data (R) 
# x = tan(pi*(0.5 - rand(1,N))) # sampling new data (S) 
mx[i] = median(x) 
# mx[i] = mean(x); 

end 
xmesh,density,bw = kde(mx,res=true) 
plot(xmesh,density) 

The bootstrap method is a formalization of the resampling idea. Sup-
pose we wish to estimate a number . 𝓁 via some estimator .H = H(X), where 
.X = [X1, . . . , XN ]T and the .{Xi} form an iid sample from some unknown cdf 
F . It is assumed that  H does not depend on the order of the .{Xi}. To assess 
the quality (e.g., accuracy) of the estimator H, one could draw independent 
replications .X1, . . . , XK of . X and find sample estimates for quantities such 
as the variance of the estimator: 

. Var(H) = EH2 − (EH)2 ,

the bias 
. Bias = EH − 𝓁 ,

and the mean square error (MSE) ☞ 159 

. MSE = E(H − 𝓁)2 .

However, it may be too time-consuming, or simply not feasible, to obtain such 
replications. An alternative is to resample the original data, as described 
above. To reiterate, given an outcome .(x1, . . . , xN ) of . X, we draw an iid  
sample .X∗ = [X∗

1 , . . . , X∗
N ]T not from F but from the empirical cdf . FN , via  

Algorithm 7.1 (hence .M = N here). 
The rationale is that the empirical cdf . FN is close to the actual distribution 

F and gets closer as N gets larger. Hence, any quantities depending on F , 
such as .EF h(H), where h is a function, can be approximated by .EFN

h(H). 
The latter is usually still difficult to evaluate, but it can be simply estimated 
via Monte Carlo simulation as
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. 
1
K

K
⎲

i=1
h(H∗

i ) ,

where .H∗
1 , . . . , H∗

K are independent copies of .H∗ = H(X∗). This seem-
ingly self-referent procedure is called bootstrapping—alluding to Baron von 
Münchhausen, who pulled himself out of a swamp by his own bootstraps. As 
an example, the bootstrap estimate of the expectation of H is 

. ~EH = H
∗ = 1

K

K
⎲

i=1
H∗

i ,

which is simply the sample mean of .{H∗
i }. Similarly, the bootstrap estimate 

for .Var(H) is the sample variance 

. ~Var(H) = 1
K − 1

K
⎲

i=1
(H∗

i − H
∗)2 . (7.8) 

Bootstrap estimators for the bias and MSE are .H
∗−H and .

1
K

∑K
i=1(H∗

i −H)2, 
respectively. Note that for these estimators, the unknown quantity . 𝓁 is re-
placed with the original estimator H. Confidence intervals can be constructed 
in the same fashion. We mention two variants: the normal method and the 
percentile method. In the normal method, a .1 − α confidence interval for . 𝓁
is given by 

. (H ± z1−α/2S∗) ,

where . S∗ is the bootstrap estimate of the standard deviation of H, that is, the  
square root of (7.8). In the percentile method, the upper and lower bounds of 
the .1 − α confidence interval for . 𝓁 are given by the .1 − α/2 and . α/2 quantiles 
of H, which in turn are estimated via the corresponding sample quantiles of 
the bootstrap sample .{H∗

i }. 

Example 7.6 (Bootstrapping Regression Data). Bootstrapping can be 
applied to a variety of statistical models, including regression data. Suppose 
that we have linear regression data .{(xi, yi), i = 1, . . . , 10} given in Table 7.1. 

Table 7.1 Regression Data 

x y 

13 5.0768 
16 21.1897 
19 17.1548 
21 22.8325 
24 26.5348 

x y 

27 31.4085 
30 26.8648 
33 29.3894 
36 37.4476 
39 44.292
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We wish to fit the data with a straight line. The least-squares method ☞ 129 
gives the following fitted regression line: 

. y = 3.3024 x + 8.0561 .

We can assess the quality of this estimate by resampling the pairs . {(xi, yi)}
independently, and then estimating the regression lines for the resampled 
data. This is illustrated in Fig. 7.8 for 20 resampled regression lines. We see 
that there is quite a lot of variability in the estimate. 
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Fig. 7.8 Left: The linear regression data (10 points) and 20 resampled regression lines. 
Right: A 90% bootstrapped confidence interval obtained from 1000 resampled regression 
lines 

Let us determine percentile confidence intervals for the regression line 
.β1x + β0. We carry out the resampling many times, say 1000 times, and 
calculate for each x the values .~β1x+ ~β0. A 90% bootstrap confidence interval 
is then obtained by recording the 5% and the 95% quantile of these 1000 val-
ues for each x. The result is given in the right pane of Fig. 7.8. The straight 
line through the middle is the estimated regression line. The curved lines 
form the confidence interval—as a function of x. 

Example 7.7 (Bootstrapping the Ratio Estimator). Suppose the data 
consists of n iid copies .[X1, Y1]T,.. . . , .[XN , YN ]T of a random vector . [X, Y ]T
with mean vector .[μX , μY ]T and covariance matrix . Σ. We wish to estimate 
the ratio .μX/μY . A straightforward estimator is the so-called ratio estima-
tor .R = X/Y . 

As a particular example, consider the data in Fig. 7.9, where a sample of 
size .N = 100 of pairs .(x, y) is plotted. The model that was used to generate 
the data is 

.X ∼ N(11, 25) and (Y | X = x) ∼ U(0, x) .
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Fig. 7.9 An iid sample 
from a two-dimensional 
distribution 
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The estimate for .μX/μY is in this case .x/y = 2.0359. But how accurate is 
this estimate? From Example 3.15 (delta method), we see that the estimator☞ 93 
R has approximately a .N(μX/μY , σ2/N) distribution, where the variance is 
given in (3.38). By replacing expectations, variances, and covariance with 
their sample means—that is, by using the method of moments—it is easy to 
estimate . σ2. The sample means and the covariance matrix of the . {[Xi, Yi]T}
are in this case: 

. x = 10.3026, y = 5.0604, and ~Σ =
I

19.7626 9.7052
9.7052 12.9859

I

,

which gives .~σ2 = 1.3305. Thus,  R has approximately a . N(2.0359, 1.3305)
distribution. Its pdf is plotted in Fig. 7.10 (dotted graph). The 0.025 and 0.975 
quantiles of this distribution give an approximate 95% confidence interval for 
.μX/μY : 

. 2.0359 ± 1.96
/

1.33051/100 = (1.81, 2.26) .

The above analysis requires a good deal of mathematical sophistication. In 
contrast, the application of the bootstrap method for this data is relatively 
easy: independently resample the data K times and plot a kernel density 
estimate of the ratios, as in the following Julia code. 

resampratio.jl

include("ThetaKDE.jl") 
using Random, Plots, StatsBase, Distributions, .ThetaKDE 
# Random.seed!(123) 
N = 100 # size of data 
K = 5000 # resample size 
est = zeros(K)
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xorg = 11 .+ 5*randn(N); yorg = rand(N).*xorg; # orig. data 
estorg = mean(xorg)/mean(yorg) 
x =  zeros(N); y = zeros(N); 
est = zeros(K); 
for i in 1:K 

ind = ceil.(Int64,N*rand(N)) # draw random indices 
local x = xorg[ind]; local y = yorg[ind]; # resampled data 
est[i] = mean(x)/mean(y); 

end 
xmesh,density,bandwidth = kde(est,res=true) 
plot(xmesh,density) 
cv = cov(hcat(xorg,yorg)) 
sigma2 = estorg^2*(var(xorg)/mean(xorg)^2 + var(yorg)/mean( 

yorg)^2 - 2*cv[1,2]/mean(xorg)/mean(yorg)); 
t = estorg-4*sqrt(sigma2/N):0.01: estorg+4*sqrt(sigma2/N); 
z =  pdf.(Normal(estorg,sqrt(sigma2/N)),t); 
plot!(t,z)

Figure 7.10 shows the kernel density estimate for the bootstrapped sample 
of size .K = 5000. We see that the density estimate is in excellent agreement 
with that of the delta method. 
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Fig. 7.10 Estimates of the pdf of the ratio estimator .R = X/Y using the delta method 
(dotted line) and the bootstrap method (solid line)
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7.4 Markov Chain Monte Carlo 

Markov chain Monte Carlo (MCMC) is a Monte Carlo sampling technique 
for (approximately) generating samples from an arbitrary distribution—often 
referred to as the target distribution. The basic idea is to run a Markov 
chain long enough such that its limiting distribution is close to the target 
distribution. 

Before we discuss the method in more detail, let us go over some facts 
about Markov chains. 

Definition 7.3. (Markov Chain). A Markov chain is a collection 
.{Xt, t = 0, 1, 2, . . .} of random variables (or random vectors) whose 
futures are conditionally independent of their pasts given their present 
values. That is, 

.(Xt+1 | Xs, s ≤ t) ∼ (Xt+1 | Xt) for all t . (7.9) 

In other words, the conditional distribution of the future variable .Xt+1, 
given the entire past .{Xs, s ≤ t}, is the same as the conditional distribution 
of .Xt+1 given only the present . Xt. Property (7.9) is called the Markov 
property. 

The index t in . Xt is usually seen as a “time” or “step” parameter. The in-
dex set .{0, 1, 2, . . .} in the definition above was chosen out of convenience. It 
can be replaced by any countable index set. We restrict ourselves to Markov 
chains for which the conditional pdfs .fXt+1 | Xt

(y | x) do not depend on t; we  
abbreviate these as .q(y | x). The  .{q(y | x)} are called the (one-step) tran-
sition densities of the Markov chain. Note that the random variables or 
vectors .{Xt} may be discrete (e.g., taking values in some set .{1, . . . , r}) or  
continuous (e.g., taking values in an interval .[0, 1] or . Rd). In particular, in the 
discrete case, each .q(y | x) is a probability: .q(y | x) = P(Xt+1 = y | Xt = x). 

The distribution of . X0 is called the initial distribution of the Markov 
chain. The one-step transition densities and the initial distribution completely 
specify the distribution of the random vector .[X0, X1, . . . , Xt]T. Namely, we 
have by the product rule (3.10) and the Markov property (7.9) that the joint☞ 72 
pdf is given by 

.fX0,...,Xt
(x0, . . . , xt)
= fX0(x0) fX1 | X0(x1 | x0) · · · fXt | Xt−1,...,X0(xt | xt−1, . . . , x0)
= fX0(x0) fX1 | X0(x1 | x0) · · · fXt | Xt−1(xt | xt−1)
= fX0(x0) q(x1 | x0) q(x2 | x1) · · · q(xt | xt−1) .
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This leads to the following generic generation algorithm for Markov chains. 

Algorithm 7.2. (Generating a Markov Chain). To generate a 
Markov chain .X0, . . . , XN with transition densities .{q(y | x)} and 
initial pdf . fX0 execute the following steps 
1 .X0 ∼ f0 
2 for .t = 1  to N do 
3 Draw .Xt ∼ q(· | Xt−1). 
4 return .X0, . . . , XN 

Draw .

Example 7.8 (Stepping Stones). Imagine a pond with six stepping 
stones. From each stone one can step to a neighboring stone with a certain 
probability, indicated by the graph in Fig. 7.11. Let . Xt be the position (step-
ping stone) after t steps, starting from position 1. Then, . {Xt, t = 0, 1, 2, . . .}
is a Markov chain. The graph in Fig. 7.11 is called the transition graph of 
the Markov chain. The arc weights indicate the transition probabilities. For 
example, .q(4 | 3) = 0.7, q(3 | 6) = 0.1, and  .q(3 | 4) = 0. 

Fig. 7.11 The transition 
graph for the Markov chain 
. {Xt, t = 0, 1, 2, . . .}
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The following Julia program generates the Markov chain for . N = 100
steps. Note that the transition probabilities have been gathered into a matrix 
. P, with .P(x, y) = q(y | x). . P is called one-step transition matrix of the 
Markov chain. Given that .Xt = x, state .Xt+1 is generated from the discrete 
distribution defined by the x-th row of . P. A typical outcome is depicted in 
Fig. 7.12. The program also keeps track of the fraction of visits to each state. 
We see that the Markov process spends most of its time in states 4, 5, and 6.
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stepstone.jl 

using Plots 
N = 101; # times 
P = [0 0.2 0 0.3 0.5 0; 

0.5 0 0.5 0 0 0; 
0.3 0 0 0.7 0 0; 
0 0 0  0  0 1;  
0 0 0 0.8 0 0.2; 
0 0 0.1 0 0.9 0]; 

x =  zeros(Int64,N); x[1]= 1; 
tot = zeros(6); tot[1] = 1; 
for t in 1:N-1 # generate the Markov chain 

x[t+1] = minimum(findall(cumsum(P[x[t],:]) .> rand())); 
tot[x[t+1]] = tot[x[t+1]] + 1; 

end 
p =  plot(0:N-1,x) # plot the path 
scatter!(0:N-1,x) 
println(tot/N) # fractions of visits to the states 

[0.0297, 0.0, 0.0792, 0.2970, 0.2673, 0.3267 
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Fig. 7.12 A realization of the stepping stone Markov process . {Xt, t = 0, 1, 2, . . . , 100}

A Markov chain is said to be ergodic if the probability distribution of . Xt

converges to a fixed distribution as .t → ∞. Ergodicity is a natural property 
of Markov chains. For example, the Markov chain in Example 7.8 is ergodic. 
Intuitively, since this Markov chain cannot run off to infinity (which can only 
happen if the state space is infinite) and since each state can be reached 
from each other state, the probability .fXt

(x) = P(Xt = x) of encountering 
the chain in state x at time t far away in the future depends on x but not 
on t. In general, the pdf .fXt

(x) of an ergodic Markov chain converges to a
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fixed limiting pdf .f(x) as .t → ∞, irrespective of the starting state. For 
the discrete case, .f(x) corresponds to the long-run fraction of times that the 
Markov process visits x. 

The limiting pdf .f(x) can be found by solving the global balance equa-
tions: 

.f(x) =
I

∑

y f(y) q(x | y) (discrete case),
I

f(y) q(x | y) dy (continuous case).
(7.10) 

For the discrete case, the rationale behind this is as follows. Since .f(x) is the 
long-run proportion of time that the Markov chain spends in x, the proportion 
of transitions out of x is . f(x). This should be balanced with the proportion 
of transitions into state x, which  is  .

∑

y f(y) q(x | y). 

Example 7.9 (Limiting Probabilities for Stepping Stones Example). 
For the discrete case, the global balance equations can be written in matrix 
form as .f = fP, where . P is the one-step transition matrix, and . f the 
row vector of limiting probabilities. This leads to solving the linear equation 
.f(I − P) = 0, or equivalently .(I − PT)fT = 0, where . I denotes the identity 
matrix. In other words, . fT lies in the null space of .(I − P)T. Also, the 
components of . f must add to 1. By executing the following lines: 

using LinearAlgebra 
f =  nullspace(I - P'); 
f = f/sum(f) 

appended to the Julia code in Example 7.8, we find the limiting probabilities 
.f = [0.0120, 0.0024, 0.0359, 0.2837, 0.3186, 0.3474]. 

In Markov chain Monte Carlo, one is often interested in a stronger type of 
balance equations. Imagine that we have taken a video of the evolution of the 
Markov chain, which we may run in forward and reverse time. If we cannot 
determine whether the video is running forward or backward (we cannot 
determine any systematic “looping”), the chain is said to be time-reversible 
or simply reversible. 

Although not every Markov chain is reversible, each ergodic Markov chain, 
when run backward, gives another Markov chain—the reverse Markov 
chain—with transition densities .~q(y | x) = f(y) q(x | y)/f(x). To see this, 
first observe that .f(x) is the long-run proportion of time spent in x for both 
the original and reverse Markov chains. Second, the “probability flux” from 
x to y in the reversed chain must be equal to the probability flux from y 
to x in the original chain, meaning .f(x) ~q(y | x) = f(y) q(x | y), which yields 
the stated transition probabilities for the reversed chain. In particular, for a 
reversible Markov chain, we have: 

.f(x) q(y | x) = f(y) q(x | y) for all x, y . (7.11)
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These are the detailed (or local) balance equations. Note that the de-
tailed balance equations imply the global balance equations. Hence, if a 
Markov chain is irreducible (i.e., every state can be reached from every 
other state) and there exists a pdf such that (7.11) holds, then .f(x) must be 
the limiting pdf. In the discrete state space case, an additional condition is 
that the chain must be aperiodic, meaning that the return times to the same 
state cannot always be a multiple of some integer . ≥ 2; see Problem 7.13. 

Example 7.10 (Random Walk on a Graph). Consider a Markov chain 
that performs a “random walk” on the graph in Fig. 7.13, at each step jumping 
from the current vertex (node) to one of the adjacent vertices, with equal 
probability. Clearly this Markov chain is reversible. It is also irreducible and 
aperiodic. Let .f(x) denote the limiting probability that the chain is in vertex 
x. By symmetry, .f(1) = f(2) = f(7) = f(8), .f(4) = f(5) and .f(3) = f(6). 
Moreover, by the detailed balance equations, .f(4)/5 = f(1)/3, and . f(3)/4 =
f(1)/3. It follows that . f(1)+ · · ·+f(8) = 4f(1)+2×5/3 f(1)+2×4/3 f(1) =
10 f(1) = 1, so that .f(1) = 1/10, .f(3) = 2/15, and  .f(4) = 1/6. 

Fig. 7.13 The random 
walk on this graph is 
reversible 

1 

2 

3 

4 

5 

6 

7 

8 

The idea behind Markov chain Monte Carlo can be summarized as follows. 
To draw approximately from an arbitrary pdf . f(x), run a Markov chain . {Xt}
whose limiting distribution is . f(x). Often such a Markov chain is constructed 
to be reversible, so that the detailed balance equations (7.11) can be used. Af-
ter a sufficiently long burn-in period from 0 to  T , say, the random variables 
.XT +1, XT +2, . . . form an approximate and dependent sample from . f(x). 

In the next two sections, we discuss two specific MCMC samplers: the 
Metropolis–Hastings sampler and the Gibbs sampler. 

7.5 Metropolis–Hastings Algorithm 

Suppose we wish to sample from a discrete pdf . f(x), where x takes values in 
the set .{1, . . . , r}. Following Metropolis et al. (1953), we construct a Markov 
chain .{Xt, t = 0, 1, . . .} in such a way that its limiting pdf is f . Suppose 
the Markov chain is in state x at time t. A transition of the Markov chain 
from state x is carried out in two phases. Similar to the acceptance–rejection
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method, first a trial or proposal state Y is drawn from a transition density ☞ 55 
.q(· | x). This state is accepted as the new state, with probability .α(x, Y ), or  
rejected otherwise. In the latter case, the chain remains in state x. For any 
outcome .Y = y, the one-step transition probabilities of the Markov chain are 
thus 

.~q(y | x) =
I

q(y | x) α(x, y), if y /= x

1 −
∑

z /=x q(z | x) α(x, z), if y = x .
(7.12) 

By choosing the acceptance probability as 

.α(x, y) = min
I

f(y) q(x | y)
f(x) q(y | x) , 1

I

, (7.13) 

such a Markov chain can be made (see Problem 7.12) to satisfy the detailed 
balance equations (7.11): 

.f(x) ~q(y | x) = f(y) ~q(x | y) for all x, y . (7.14) 

Consequently, if this Markov chain is irreducible and aperiodic, its limiting 
pdf is . f(x). 

Note that in order to evaluate the acceptance probability .α(x, y) in (7.13), 
we only need to know the target pdf .f(x) up to a constant; that is . f(x) =
c f(x) for some known function .f(x) but unknown constant c. 

The extension of the above MCMC approach for generating samples from 
an arbitrary joint pdf .f(x) is straightforward, giving the following algorithm. 

Algorithm 7.3. (Metropolis–Hastings Sampler). Given a 
transition density .q(y | x): 
1 Initialize .X0. 
2 for .t = 0  to .N − 1 do 
3 Draw .Y ∼ q(y | Xt). // draw a proposal 
4 .α = α(Xt, Y ) // acceptance probability as in (7.13) 
5 Draw .U ∼ U(0, 1). 
6 if .U ≤ α then .Xt+1 = Y 
7 else .Xt+1 = Xt 

8 return .X1, . . . , XN 

The above algorithm produces a sequence .X1, X2, . . . of dependent ran-
dom vectors, with . Xt approximately distributed according to .f(x) for large t. 

Since Algorithm 7.3 is of the acceptance–rejection type, its efficiency de-
pends on the acceptance probability .α(x, y). Ideally, one would like the pro-
posal transition density .q(y | x) to reproduce the desired pdf .f(y) as faithfully 
as possible. Below we consider two particular choices of .q(y | x).
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Example 7.11 (Independence Sampler). The simplest Metropolis-type 
MCMC algorithm is obtained by choosing the proposal transition density 
.q(y | x) to be independent of . x; that is,  .q(y | x) = g(y) for some pdf . g(y). 
Thus, starting from a previous state . X, a candidate state . Y is generated 
from .g(y) and accepted with probability: 

. α(X, Y ) = min
I

f(Y ) g(X)
f(X) g(Y ) , 1

I

.

This procedure is very similar to the acceptance–rejection method of 
Sect. 2.7.3, and, as in that method, it is important that the proposal dis-☞ 55 
tribution g is close to the target f . Note, however, that in contrast to the 
acceptance–rejection method, this independence sampler produces depen-
dent samples. 

As a particular example, consider the pdf: 

. f(x) ∝ x2 exp(−x2 + sin(x)), x ∈ R ,

where the normalization constant remains unspecified (. ∝ means “is propor-
tional to”). To sample from this pdf using the independence sampler, we 
choose the symmetric proposal pdf .g(x) = e−|x|/2, x ∈ R. Drawing from this 
pdf is easy; see Problem 7.16. The program below provides a Julia implemen-☞ 231 
tation, and Fig. 7.14 shows a kernel density estimate of the data (as well as 
a graph of the true pdf f). 

indepsamp.jl

include("ThetaKDE.jl") 
using Random, Plots, QuadGK, .ThetaKDE 
N = 10^5; # sample size 
f(x) = x^2*exp(-x^2 + sin(x)); # unnormalized target pdf 
g(x) = exp(-abs(x))/2; # proposal pdf 
alpha(x,y) = min(f(y)*g(x)/(f(x)*g(y)), 1); # accept. prob. 
x = 0; xx = zeros(N); 
for t in 2:N 

global x 
y = -log(rand())*(2*(rand() < 1/2) - 1); # proposal 
rand() < alpha(x,y) ? x = y :  nothing 
xx[t] = x;  

end 
jx = xx[1:N]  +  randn(N)*0.05; 
xmesh,density,bw = kde(jx); 
plot(xmesh,density) # plot the kde of the data 
c = quadgk(f,-5,5)[1]; # determine the normalization constant 
tt = -4:0.1:4; 
plot!(tt,f.(tt)/c) # plot the target pdf 


 -2016 58489 a -2016 58489 a
 
https://people.smp.uq.edu.au/DirkKroese/statbook/


7.5 Metropolis–Hastings Algorithm 223

-4 -3 -2 -1 0 1 2 3 4 
0 

0.2 

0.4 

0.6 

0.8 

Fig. 7.14 The kernel density estimate .~f(x) (smooth curve), obtained by the indepen-
dence sampler, is practically indistinguishable from the target pdf .f(x) (dotted curve) 

Example 7.12 (Random Walk Sampler). A popular Metropolis–Hastings-
type sampler is the random walk sampler. Here, the proposal state . Y , for  
a given current state . x, is given by .Y = x+Z, where . Z is typically generated 
from some spherically symmetric distribution, such as .N(0, In). In that case 
the proposal transition density pdf is symmetric; that is, .q(y | x) = q(x | y). 
It follows that the acceptance probability is 

.α(x, y) = min
I

f(y)
f(x) , 1

I

. (7.15) 

Example 7.13 (Sampling from a Pdf via Random Walk Sampler). 
Consider the two-dimensional pdf . f(x1, x2) = c exp(−4(x2 − x2

1)2 + (x2 −
1)2), x1 ∈ R, x2 ≤ 2, where c is an unknown normalization constant; see 
Fig. 7.15. 

Fig. 7.15 The pdf .f(x1, x2) = c exp(−4(x2 − x2
1)2 + (x2 − 1)2), x1 ∈ R, x2 ≤ 2
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The following Julia program implements a random walk sampler to (ap-
proximately) draw .N = 104 dependent samples from the pdf f . At each step, 
given a current state . x, a proposal . Y is drawn from the .N(x, I2) distribution. 
That is, .Y = x + Z, with . Z bivariate standard normal. 

We see in Fig. 7.16 that the samples closely follow the contour plot of the 
pdf, indicating that the sampler works correctly. The starting point for the 
Markov chain is chosen as .(0, −1). Note that the normalization constant c is 
not used in the program. 

rwsamp.jl

using Plots 
f(x,y) = exp(-4*(y-x^2)^2 + (y-1)^2)*(y < 2) 
N = 10000 
xx = zeros(N,2); x = [0 -1]; xx[1,:] = x; 
for i in 2:N 

y = x +  randn(1,2); # proposal 
alpha = min(f(y[1],y[2])/f(x[1],x[2]),1); # acceptance 

prob 
r = (rand() < alpha); 
global x = r*y + (1-r)*x; # next value of the Markov chain 
xx[i,:] = x; 

end 
scatter(xx[:,1],xx[:,2],markersize = 1) 
x =  range(-2, stop=2, length=50) 
y =  range(-2, stop=2, length=50) 
contour!(x,y,f) 
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Fig. 7.16 Approximate samples from pdf f produced via the random walk sampler
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7.6 Gibbs Sampler 

Suppose that .X = [X1, . . . , Xn]T is a random vector with joint pdf . f(x). 
Direct sampling from f may be difficult, especially if n is large. However, 
often sampling from the conditional pdf of . Xi given .Xj = xj , j /= i is feasible. 
Let us denote these one-dimensional pdfs by .fi(xi | x1, . . . , xi−1, xi+1, . . . , xn), 
.i = 1, . . . , n. If drawing from each . fi is easy, then one can use the Gibbs 
sampler to construct a Markov chain .X1, X2, . . . with limiting pdf f . This 
Markov chain is generated as follows. As in the Metropolis–Hastings sampler, 
at each step t, given a current state .Xt = x, a proposal . Y is drawn from a 
transition density .q1→n(y | x) given by 

. q1→n(y | x) = f1(y1 | x2, . . . , xn)f2(y2 | y1, x3, . . . , xn) · · · fn(yn | y1, . . . , yn−1) .

Thus, draw . Y1 from the conditional pdf .f1(y1 | x2, . . . , xn), draw  . Y2 from 
.f2(y2 | y1, x3, . . . , xn), and so on. However, unlike the Metropolis–Hastings 
sampler, this proposal is always accepted; so  .Xt+1 = Y . The algorithm is 
summarized as follows. 

Algorithm 7.4. (Gibbs Sampler) 
1 .X0 X0,1, . . . , X0,n 
2 for .t = 0  to .N − 1 do 
3 Draw .Y1 from .f(y1 | Xt,2, . . . , Xt,n). 
4 for .i = 2  to n do 
5 Draw .Yi from .f(yi | Y1, . . . , Yi−1, Xt,i+1, . . . , Xt,n). 
6 .Xt+1 ← Y 
7 return .X0, . . . , XN 

Initialize = ( ).

To verify that the Markov chain .X0, X1, . . . indeed has limiting pdf . f(x), 
we need to check that the global balance equations (7.10) hold. In gen-
eral the detailed balance equations (7.11) do not hold—. f(x) q1→n(y | x) /=
f(y) q1→n(x | y). However, a similar result, due to Hammersley and Clifford, 
does hold: if .qn→1(x | y) denotes the transition density of the reverse move, 
in the order .n → n − 1 → · · · → 1, that is,  

. 
qn→1(x | y)
= fn(xn | y1, . . . , yn−1)fn−1(xn−1 | y1, . . . , yn−2, xn) · · · f1(x1 | x2, . . . , xn) ,

then 
.f(x) q1→n(y | x) = f(y) qn→1(x | y) . (7.16) 

Intuitively, the long-run proportion of transitions .x → y for the “forward 
move” chain is equal to the long-run proportion of transitions .y → x for the 
“reverse move” chain. By integrating (in the continuous case) both sides in 
(7.16) with respect to . x, we see that the global balance equations hold:
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. 

I

f(x) q1→n(y | x) dx = f(y) .

Example 7.14 (Sampling from Pdf via Gibbs Sampler). Consider the 
two-dimensional pdf: 

. f(x1, x2) = c e−x1x2−x1−x2 , x1 ≥ 0, x2 ≥ 0 ,

where the normalization constant c remains unspecified. Let .(X1, X2) be 
distributed according to f . The conditional pdf of . X1 given .X2 = x2 is☞ 72 

. f1(x1 | x2) def= fX1 | X2(x1 | x2) = f(x1, x2)
fX2(x2) ∝ f(x1, x2) ∝ e−x1(x2+1) .

It follows that . X1 given .X2 = x2 has an .Exp(x2 + 1) distribution; and, by 
symmetry, . X2 given .X1 = x1 has an .Exp(x1 + 1) distribution. Sampling from 
the joint pdf can thus be established via the Gibbs sampler by alternately 
generating from .Exp(x2 +1) and .Exp(x1 +1), as implemented in the following 
Julia program. 

gibbssamp.jl 

using Plots 
f(x,y) = exp(-(x*y + x + y))*(x >  0 && y > 0)  
N = 10^4; x = zeros(N,2); x2 = 1;  
for i in 2:N 

x1 = -log(rand())/(x2+1); 
global x2 = -log(rand())/(x1+1); 
global x[i,:] = [x1 x2]; 

end 
scatter(x[:,1],x[:,2],markersize=0.2) 

7.7 Problems 

7.1. Consider the estimation of the p-value in Example 7.1 
☞ 201 

a. Under . H0 we have .μ = 0, but . σ2 remains unspecified. Why is it allowed 
to take .σ = 1 to generate the sample .T1, . . . , TN ? 

b. Show, using Theorem 5.1, that T under . H0 has a . t3 distribution, and☞ 135 
calculate the true p-value. 

c. Speed up the given Julia code by “vectorizing” the for loop.
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7.2. Monte Carlo sampling methods are useful for calculating p-values for a 
goodness-of-fit test, where the data .X1, . . . , Xk is assumed to come from 
a multinomial distribution .Mnom(n, p1, . . . , pk). 

As an example, consider a racetrack with eight starting boxes. Out of 200 
races, the numbers of winning horses that started from boxes .1, 2, . . . , 8 are 
39, 29, 24, 20, 21, 24, 21, and 22, respectively. Is this an indication that the 
winning probabilities .p1, . . . , p8 are not all equal to . 1/8? The test statistic 
that is typically used for a goodness-of- fit test is 

. T =
k

⎲

i=1

(Oi − Ei)2

Ei
,

where . Oi (=. Xi) is the  observed number of observations in class i and . Ei

(.= EXi) is the  expected number of observations in class i. In this case . Ei = 25
for all i and the observed counts are given above. The hypothesis . H0 : p1 =
. . . = p8 = 1/8 is rejected in favor of the negation of . H0 for large values of 
the test statistic. 

a. Write a Monte Carlo sampling program to estimate the p-value for this 
test. Do you reject the null hypothesis or not? Hint: to draw a vector 
.X = [X1, . . . , X8]T ∼ Mnom(200, 1/8, . . . , 1/8), you can use: 

using NaNStatistics 
winner = ceil.(8*rand(200)) 
X, bins = histcountindices(winner,0:8); 

b. It can be shown that under . H0 the test statistic, T has approximately a . χ2
7

distribution. Verify this by drawing an iid sample from T and comparing 
the empirical cdf with that of the . χ2

7 distribution: 

7.3. Let . FN be the empirical cdf of .x1, . . . , xN , and let X be a random 
variable with cdf . FN . Show that .EX = x and .Var(X) =

∑N
i=1(xi − x)2/N , 

where .x = (x1 + · · · + xN )/N . 

7.4. Consider a mixture pdf: 

.f(x) = w1f1(x)+· · ·+wk fk(x), wj ≥ 0, j = 1, . . . , k,

k
⎲

j=1
wj = 1 , (7.17) 

where each . fj is itself a pdf. Let J be a discrete random variable taking 
values .1, . . . , k with probabilities .w1, . . . , wk, respectively. Let X be a random 
variable such that the conditional pdf of X given .J = j is . fj . 

a. Show that X has mixture pdf (7.17). 
b. Using (a.) describe how one could generate a random variable from the 

mixture pdf (7.17).
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c. Suppose pdf . fj has mean . μj and variance . σ2
j , .j = 1, . . . , n. Express  . EX

and .Var(X) in terms of these parameters. 

7.5. It can be shown that the Kolmogorov–Smirnov statistic . DN in (7.6)☞ 205 
satisfies 

. lim
N→∞

P(
√

N DN ≤ x) =
∞

⎲

k=−∞
(−1)ke−2(kx)2

, x > 0 . (7.18) 

Compare the estimated p-value in Example 7.3 with an approximated one 
calculated via (7.18). 

7.6. In Example 7.5 we considered the quality of various estimators for the 
mode of the Cauchy distribution using (re)sampling techniques.☞ 210 

a. Instead of estimating the pdf of the sample mean using resampled data 
(dashed line in Fig. 7.7), estimate the pdf of the sample mean by sam-
pling new data from the Cauchy distribution. How do the kernel density 
estimates compare? 

b. Another possible estimator for the mode of the Cauchy distribution is 
the trimmed mean estimator, which is given by the sample mean of all 
outcomes . xi with .|xi| ≤ β, where . β is some positive number. Carry out a 
bootstrap procedure for the trimmed mean with .β = 100 and .β = 10. How  
do the pdfs compare with those of the sample median and sample mean? 

7.7. In Example 7.7 we saw that for a sample size of .N = 100 the bootstrap 
and delta method gave identical results for the ratio estimator .X/Y . Repeat☞ 213 
the analysis and compare the two methods for a sample size .N = 10, with 
x-values 

16.4321 2.4334 14.3433 7.9650 14.1052 
6.7660 0.1430 10.0420 7.1071 13.5305 

and y-values 

14.9151 0.4312 11.5407 4.4538 8.7741 
0.8462 0.0302 1.7955 1.4568 7.8052 

7.8. The median of a distribution with pdf f is the number m such that 
.
I m

−∞ f(x) dx = 1/2. The data 

1.4066 1.2917 1.4080 4.2801 1.2136 2.7461 
11.1076 0.9247 5.8833 10.2513 3.8285 3.2116 
0.5451 0.9896 1.1602 7.7723 0.1702 0.8907 
0.2276 3.1197 11.4909 0.6475 11.2279 0.7639 

form an iid sample from an .Exp(λ) distribution.
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a. Show that the median of .Exp(λ) is .ln(2)/λ. 
b. This suggests that we could estimate . λ via the estimator .T = ln(2)/ ~X, 

where . ~X is the sample median. Find the corresponding estimate. What is 
the maximum likelihood estimate of . λ? 

c. Carry out a bootstrap analysis of both estimators and compare their ac-
curacies. 

7.9. The concentration of a certain chemical is measured at times . 1, 2, 3, . . . ,
20. The measurements are 

18.9506 41.4228 52.0253 63.5451 71.9634 
79.0504 80.9685 84.6222 89.6391 93.5085 
95.8680 91.3177 97.7423 97.1969 96.7448 
96.8155 96.4435 98.2087 98.3126 97.8173 

(e.g., at time .t = 12 the concentration is .91.3177). Suppose the data are 
modeled by the following nonlinear regression model: 

.Yi = a (1 − e−b ti) + εi , i = 1, . . . , n , (7.19) 

where .{εi} iid∼ N(0, σ2), and  a, b, and . σ2 are unknown. To fit the model (7.19) 
to the points .{(ti, yi)}, we can apply a least-squares approach, where a and ☞ 129 
b are chosen such that the sum of the squared deviations 

.r(a, b) =
n

⎲

i=1
(yi − a (1 − e−b ti))2 , (7.20) 

is minimized. This requires numerical minimization. 

a. Plot the points .(ti, yi), .i = 1, . . . , n = 20. 
b. Show that the values . ~a and . ~b that minimize the function r in (7.20) are the 

maximum likelihood estimates of a and b. Express the maximum likelihood 
estimate of . σ2 in terms of . ~a and . ~b. 

c. Implement a Julia program to find the optimal values .~a = 99.14 and . ~b =
0.255, using the following code snippet (yorg and torg store the original 
data): 

using Optim 
r(x) = sum((yorg .- x[1]*(1 .- exp.(-x[2]*torg))).^2); 
res = optimize(r,[100.0,1.0]) 
mle = res.minimizer 
ahat = mle[1]; bhat=mle[2]; 

d. To assess how accurate the estimates for a and b are, resample the data 
1000 times. For each resampled dataset, estimate a and b via optimize, as  
above. Plot kernel density estimates for the pdfs of . ~a and . ~b, and determine 
.95% bootstrap intervals for a and b.
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7.10. Let .X1, . . . , Xn and .Y1, . . . , Yn be independent random samples from 
the .Exp(λ) and .Exp(μ) distribution, respectively, for unknown . λ and . μ. Sup-
pose outcomes of .X1, . . . , Xn are given by the data in Problem 7.8 (so .n = 24), 
and outcomes of .Y1, . . . , Yn are 

23.9618 4.9055 6.0424 0.5870 4.0856 1.6503 
10.1976 4.0208 25.9484 15.3954 19.5160 0.5937 
11.5481 18.3895 30.4093 7.6527 9.7329 8.6130 
6.2353 5.5157 9.9489 21.3850 5.1142 28.2284 

The maximum likelihood estimator for .𝓁 = λ/μ is .
∑n

i=1 Yi/
∑n

i=1 Xi. Find a  
95% bootstrap confidence interval (percentile method) for . 𝓁. 

7.11. Let .X1, . . . , Xn be an iid sample from a .U(0, θ) distribution, where 
.θ > 0 is unknown. The maximum likelihood estimator of . θ is . M =
max{X1, . . . , Xn}. Suppose .M∗

1 , . . . , M∗
K is a bootstrap sample of M , based  

on an outcome .x1, . . . , xn. Explain why it is a bad idea to construct a confi-
dence interval for . θ on the basis of the .{M∗

i }. 

7.12. For the Metropolis–Hastings sampler, verify that the local balance 
equations (7.14) hold if the acceptance probability is chosen as in (7.13). Hint:☞ 221 
consider two cases: .f(y)q(x | y) ≤ f(x)q(y | x) and .f(y)q(x | y) ≥ f(x)q(y | x). 

7.13. Let .Xt, t = 0, 1, 2, . . . be a random walk on the graph in Fig. 7.17. 
From each state the random walk chooses one of the adjacent states with 
equal probability. The starting state is 1. 

Fig. 7.17 The graph on 
which the random walk is 
performed 

1 3 5  

2 4 6 

a. Is the chain irreducible and aperiodic? 
b. Do the local balance equations hold? If so, find the solution .f(1), . . . , f(6). 
c. Explain why the probabilities .P(Xt = x), .x = 1, . . . , 6, do not converge as 

.t → ∞. 

7.14. Run the random walk sampler with a .N(10, 2) target distribution and 
.N(x, 0.01) proposal, drawing the initial point from the .N(0, 0.01) distribution. 
Take a sample size of .N = 5000 and plot .{Xt} against .t = 1, . . . , N . Based  
on the graph, give a rough estimate of the burn-in period.
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We can estimate .𝓁 = E ln(X2), where .X ∼ N(10, 2), by taking the sample av-
erage of .ln(X2

B+1), . . . , ln(X2
N ), where B is the burn-in size. By independently 

generating .K = 100 such estimates, find an approximate 95% confidence in-
terval for . 𝓁. Generate 20 such intervals and show that the true value for . 𝓁
(which is .4.58453 . . .) is contained in these intervals with a probability much 
smaller than 95%. Hence, the combination of a burn-in size of .B = 1000 and 
a sample size of .N = 5000 is inadequate to provide an accurate estimate 
for . 𝓁. 

7.15. Let . X be a finite set on which a neighborhood structure is defined; 
that is, each .x ∈ X has a set of neighbors .N (x). Let  . nx be the number of 
neighbors of .x ∈ X . Consider a Metropolis–Hastings algorithm with proposal 
density .q(y | x) = 1/nx for all .y ∈ N (x). That is, from a current state . x, the  
proposal state is drawn from the set of neighbors with equal probability. Let 
the acceptance probability be .α(x, y) = min{nx/ny, 1}. 

Assuming the chain is irreducible and aperiodic, what is its limiting dis-
tribution? 

7.16. Let .U1, U2 ∼iid U(0, 1). Explain why . X = − ln U1 × (21{U2≤1/2} − 1)
has pdf .g(x) = e−|x|/2, x ∈ R. 

7.17. A Langevin Metropolis–Hastings sampler is a random walk sam-
pler where the proposal state, for a current state . x, is given by 

. Y = x + h

2 ∇ ln f(x) +
√

h Z, Z ∼ N(0, I) ,

where .h > 0 is a step size, f is the target pdf, and .∇ ln f is the gradient 
of . ln f . Note that the proposal distribution is not symmetric around . x. Use  
this sampler to draw .N = 105 dependent samples from the . Gamma(2, 1)
distribution. Use the kde function (with res = true flag) to assess how well 
the estimated pdf fits the true pdf. Investigate how the step size h and the 
length of the burn-in period affect the fit. 

7.18. Let .X = [X, Y ]T be a random column vector with a bivariate normal 
distribution with expectation vector .0 = [0, 0]T and covariance matrix: 

. Σ =
I

1 ϱ
ϱ 1

I

.

a. Show that .(Y | X = x) ∼ N(ϱ x, 1 − ϱ2) and .(X | Y = y) ∼ N(ϱ y, 1 − ϱ2). 
b. Write a Gibbs sampler to draw . 104 samples from the bivariate distribution 

.N(0, Σ) and plot the data for .ϱ = 0, 0.7, and  . 0.9.
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7.19. Consider the two-dimensional pdf: 

.f(x) = c exp(−(x2
1x2

2 + x2
1 + x2

2 − 8x1 − 8x2)/2) , x ∈ R
2 . (7.21) 

a. Give a 3D plot and a contour plot for this function (ignoring c). 
b. Implement a random walk sampler with proposals of the form .Y = x+σZ, 

where .Z ∼ N(0, I2). Start the sampler at the point . [0, 4]. 
c. Plot the progression of the first component of the Markov chain against 

time, for .σ = 0.2 and .σ = 2. Comment on the difference. 
d. Give a kernel density estimate of the pdf . X1 if .X = [X1, X2]T ∼ f . 

7.20. Consider the two-dimensional pdf (7.21) in Problem 7.19. 

a. Show that conditional on .X2 = x2, . X1 has a normal distribution with 
expectation .4/(1 + x2

2) and variance .1/(1 + x2
2). 

b. Implement a Gibbs sampler to sample from f . 

7.21. In Algorithm 7.4 the vector . X is updated in a systematic order: 
.1, 2, . . . , n, 1, 2, . . .. A variant of the algorithm is to update the coordinates in 
random order. Specifically, Steps 3–5 of the algorithm are replaced by 

Given the current state . Xt, generate . Y as follows: 

1. Draw J uniformly from .{1, . . . , n}. 
2. Given .J = j, draw  .Yj ∼ fj(yj | Xt,1, . . . , Xt,j−1, Xt,j+1, . . . , Xt,n). 
3. For .i /= j set .Yi = Xt,i. 

a. Show that, given .Xt = x, . Y has pdf (in the continuous case) 

.q(y | x) = 1
n

f(y)
I ∞

−∞ f(y) dyj

, (7.22) 

where .y = (x1, . . . , xj−1, yj , xj+1, . . . , xn). 
b. Show that the random-order Gibbs sampler can be viewed as an instance 

of the Metropolis–Hastings sampler, with transition density .q(y | x) given 
in (7.22) and with acceptance probability .α(x, y) = 1.



Chapter 8 
Bayesian Inference 

Bayesian statistics is a branch of statistics that is centered around Bayes’ 
formula (1.8), which is repeated in (8.1). To fully appreciate Bayesian in- ☞ 16 
ference, it is important to understand that the type of statistical reasoning 
here is somewhat different from that in frequentist statistics. In particular, 
model parameters are usually treated as random rather than fixed quantities. 
Moreover, Bayesian statistics uses a notation system that deviates from the 
frequentist one in two aspects: 

1. Pdfs and conditional pdfs always use the same letter f (sometimes p is 
used instead of f). For example, instead of writing .fX(x) and .fY (y) for 
the pdfs of X and Y , one simply writes .f(x) and . f(y). Similarly, the 
conditional pdf .fX | Y (x | y) of X given Y is denoted in Bayesian notation 
as .f(x | y). This style of notation can be of great descriptive value, despite 
its apparent ambiguity, and we will use it in this book whenever we work 
in a Bayesian setting. As an example, the Bayesian formula (1.8) in terms 
of (conditional) pdfs can be written in Bayesian notation as 

.f(y | x) = f(x | y) f(y)
I

f(x | y) f(y) dy
∝ f(x | y) f(y) . (8.1) 

(Replace the integral with a sum in the discrete case.) 
2. In Bayesian statistics the notation does not make a distinction between 

random variables and their outcomes. Both are usually indicated by low-
ercase letters. It is assumed that it is clear from the context whether a 
variable x or . θ should be interpreted as an outcome (a number) or a ran-
dom variable. 
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The general framework for Bayesian statistics is as follows (compare with 
the frequentist framework in Chap. 5): it is assumed that the data vector, .x☞ 125 
say, has been drawn from a conditional pdf .f(x | θ), where . θ is a random1 

vector of parameters. The pdf of . θ conveys the a priori (existing beforehand, 
before any experience) information about . θ. Observing the data . x will affect 
our knowledge of . θ, and the way to update this information is to use Bayes’ 
formula (8.1). The main concepts are summarized in the following definition. 

Definition 8.1. (Prior, Likelihood, and Posterior). Let . x and . θ
denote the data and parameters in a Bayesian statistical model: 

• The pdf of . θ is called the prior pdf. 
• The conditional pdf .f(x | θ) is called the Bayesian likelihood func-

tion. 
• The central object of interest is the posterior pdf .f(θ | x) which, 

by Bayes’ theorem, is proportional to the product of the prior and 
likelihood: 

. f(θ | x) ∝ f(x | θ) f(θ) .

The posterior pdf thus conveys the knowledge of . θ after taking into ac-
count the information . x. Note that the likelihood function in Bayesian statis-
tics differs slightly from that in frequentist statistics. In Bayesian statistics☞ 167 
the likelihood .f(x | θ) is a conditional pdf of the data . x, whereas in the fre-
quentist case the likelihood .L(θ; x) = f(x; θ) is viewed as a function of . θ
for fixed . x. The posterior pdf can be viewed as a scaled version of the fre-
quentist likelihood. Indeed, if the prior pdf is constant, then the posterior pdf 
coincides with the frequentist likelihood, up to a multiplicative constant. 

Example 8.1 (Bayesian Inference for Coin Toss Experiment). Con-
sider the basic random experiment where we toss a biased coin n times. Sup-
pose that the outcomes are .x1, . . . , xn, with .xi = 1 if the i-th toss is Heads 
and .xi = 0 otherwise, .i = 1, . . . , n. Let  . θ denote the probability of Heads. 
We wish to obtain information about . θ from the data .x = [x1, . . . , xn]T. For  
example, we wish to construct a confidence interval. 

The a priori information about . θ is described by the prior pdf . f(θ). For  
example, the choice of a uniform prior .f(θ) = 1, 0 ≤ θ ≤ 1 indicates no prior 
knowledge about . θ. We assume that conditional on . θ the .{xi} are independent 
and .Ber(θ) distributed. Thus, the Bayesian likelihood is 

.f(x | θ) =
nI I

i=1
θxi(1 − θ)1−xi = θs (1 − θ)n−s ,

1 Strict Bayesians would insist that . θ is not random, but that the information on . θ
is summarized by a probability distribution. However, for computational and analysis 
purposes, we can treat . θ as if it were a random vector. 
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where .s = x1 + · · · + xn represents the total number of successes. Using a 
uniform prior gives the posterior pdf: 

. f(θ | x) = c θs (1 − θ)n−s , 0 ≤ θ ≤ 1 .

This is the pdf of the .Beta(s + 1, n − s + 1) distribution. The normalization ☞ 74 
constant is .c = (n + 1)

(
n
s

)
. The graph of the posterior pdf for .n = 100 and 

.s = 1 is given in Fig. 8.1. 

Fig. 8.1 Posterior pdf for 
. θ, with  .n = 100 and . s = 1
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A Bayesian confidence interval, called a credible interval, for . θ is formed 
by taking the appropriate quantiles of the posterior pdf. As an example, sup-
pose that .n = 100 and .s = 1. Then, a left one-sided 95% credible interval for 
. θ is .[0, 0.0461], where .0.0461 is the 0.95 quantile of the .Beta(2, 100) distri-
bution. As an estimate for . θ, one often takes the posterior mean, that is,  
the expectation corresponding to the posterior pdf. In this case, for general 
n and s, the posterior mean is .(s + 1)/(s + 1 + n − s + 1) = (s + 1)/(n + 2); 
see also Problem 8.1. An alternative estimate for . θ is the value for which ☞ 262 
the posterior pdf is maximal—the so-called posterior mode. The posterior 
mode is here .~θ = s/n, which coincides with the (frequentist) sample mean. 

8.1 Hierarchical Bayesian Models 

In the coin flipping example, both the parameter . θ and the data . x are random 
variables, and the joint distribution of . θ and . x is specified in a “hierarchical” 
way: 

. θ ∼ f(θ)
(x | θ) ∼ f(x | θ) .

By the product rule of probability, the joint pdf is simply the product 
.f(θ) f(x | θ), and the posterior pdf is proportional to this last product (viewed
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a function of . θ). For models involving more than one parameter, a similar 
hierarchical structure is often used to specify the model. For example, a three-
parameter model could be specified as follows: 

. α ∼ f(α)
(β | α) ∼ f(β | α)

(γ | α, β) ∼ f(γ | α, β)
(x | α, β, γ) ∼ f(x | α, β, γ) .

That is, first specify the prior pdf of . α, then given . α specify the pdf of . β, etc., 
until finally the likelihood as a function of all the parameters is given. Often 
in practice the reverse order is used: the likelihood is specified first and the 
priors are defined last. The hierarchical model approach allows for an easy 
evaluation of the joint pdf: it is simply the product of the (conditional) pdfs:☞ 72 

. f(x, α, β, γ) = f(x | α, β, γ) f(γ | α, β) f(β | α)f(α) .

To find the posterior 
. f(α, β, γ | x) ,

view .f(x, α, β, γ) as a function of .α, β, and . γ for fixed . x. To find the marginal 
posterior pdfs, .f(α | x), f(β | x), .f(γ | x), integrate out the other parameters.☞ 70 
For example, 

. f(γ | x) =
99

f(α, β, γ | x) dα dβ .

This may not always be easy or feasible. An alternative is to use the Gibbs 
sampler to sample from the posterior pdf. After initializing .α, β, γ, iterate☞ 225 
the following steps: 

1. Draw . α from .f(α | β, γ, x). 
2. Draw . β from .f(β | α, γ, x). 
3. Draw . γ from .f(γ | α, β, x). 

After a (dependent) sample .{(αt, βt, γt)} from .f(α, β, γ | x) is generated, out-
put only the variables of interest, e.g., only the . {αt}. 

Example 8.2 (Ticket Inspector). A ticket inspector has the option of 
taking three different routes for inspection of parking violations. Each route 
is characterized by the time it takes to complete the route and the intensity 
of ticket violations. Suppose the time t spent on route k is exponentially 
distributed with mean . k/2 (hours), .k = 1, 2, 3. For example, route 2 takes 
on average 1 hour to complete. Suppose further that the number of traffic 
violations encountered, x say, has a Poisson distribution with mean .10 k t. So  
if route 3 takes 2 hours, an average of 60 tickets will be issued. Suppose that 
on a particular day the ticket inspector has issued 60 tickets. Which route 
has she/he taken?
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Assuming that our prior information about k is that each of the routes is 
taken with equal probability, we obtain the following hierarchical model: 

. k ∼ DU{1, 2, 3} (discrete uniform)
(t | k) ∼ Exp(2/k)

(x | k, t) ∼ Poi(10 k t) .

It follows that the joint pdf is 

.f(k, t, x) = f(k)f(t | k)f(x | t, k) = 1
3

2
k

e− 2
k te−10kt (10kt)x

x! (8.2) 

for .k = 1, 2, 3, t ≥ 0, and .x = 0, 1, 2, . . .. Note that k and x are discrete 
random variables and t is continuous. The posterior pdf .f(k, t | x = 60) is 
thus of the form: 

.f(k, t | x = 60) ∝ 1
k

e− 2
k te−10kt (kt)60 . (8.3) 

The marginal posterior pdf of k can be found by integrating out t in (8.3). 
That is, for each .k = 1, 2, 3, calculate: 

. 
1
k

9 ∞

0
e− 2

k te−10kt (kt)60 dt ,

and normalize. Numerical evaluation yields the following posterior probabil-
ities (rounded): 

. 0.000353516, 0.30469, and 0.694957 .

Hence, we have deduced from Bayes formula that the most likely route that 
was followed is route 3. But route 2 is also quite possible. It is very unlikely 
that route 1 was used. 

In a similar manner, to find .f(t | x = 60), we sum  (8.3) with respect to k, 
giving 

. f(t | x = 60) = c−1 t60
(

359e−92t/3 + 259e−21t + e−12t
)

.

The normalization constant (which can be expressed in terms of the gamma 
function) evaluates to .c ≈ 3.481048347 × 1019. The graph of this marginal 
posterior pdf is shown in Fig. 8.2 (solid line).
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Fig. 8.2 Posterior pdf of 
t given .x = 60 (solid line) 
and its estimate obtained 
via Gibbs sampling (dotted 
line) 
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To (approximately) sample from .f(k, t | x = 60), we can use the Gibbs 
sampler (Algorithm 7.4). For this we need to specify:☞ 225 

1. the conditional distribution of k given t and x; 
2. the conditional distribution of t given k and x. 

By viewing t and x as constants in (8.2), we see that, given t and x, k has a 
discrete distribution on .{1, 2, 3} with probabilities proportional to 

. e−12 t, 2x−1e−21t, and 3x−1e−92t/3 .

Similarly, by viewing k and x as constants in (8.2), we have:  

. f(t | x, k) ∝ tx exp
(

−t

)
2
k

+ 10k

()

,

which is the pdf of the .Gamma(x + 1, 2
k + 10k) distribution. By alternatively 

sampling from .f(k | t, x) and .f(t | k, x), we obtain a dependent sample from 
.f(k, t | x). The following Julia program implements the Gibbs sampler. The 
burn-in period was ignored. Throughout this chapter we use the theta KDE 
function kde to display a kernel density estimate of the simulated data.☞ 208 

ticketinspector.jl

include("ThetaKDE.jl") 
using Plots, Distributions, .ThetaKDE 
n = 10000; 
x = 60; # number of tickets 
p = [1/3, 1/3, 1/3] # initial value 
kk = zeros(Int64,n); 
tt = zeros(n); 
k =  minimum(findall(cumsum(p) .> rand())); 
for i in 1:n 

a = x + 1;
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b = 2/k +  10*k;  
t =  rand(Gamma(a,1/b)); 
tt[i] = t;  
global p = [exp(-12*t), 2.0^(x-1)*exp(-21*t), 3.0^(x-1)* 

exp(-92*t/3)]; 
p = p/sum(p); 
global k =  minimum(findall(cumsum(p) .> rand())); 
kk[i] = k;  

end 
p1est = sum(kk .== 1)/n # estimate of post. prob. 1 
p2est = sum(kk .== 2)/n # estimate of post. prob. 2 
p3est = sum(kk .== 3)/n # estimate of post. prob 3 
xmesh, density, bw = kde(tt) 
plot(xmesh,density) 
f1(t) = t^60  
f2(t) = 3.0^59*exp(-92*t/3) 
f3(t) = 2.0^59*exp(-21*t) 
f4(t) = exp(-12*t) 
tickf(t) = f1(t)*(f2(t) + f3(t)+f4(t))/3.481048347e19 
plot!(xmesh,tickf.(xmesh))

Typical outcomes of the posterior probabilities for route k are . 10−4, . 0.32, 
and . 0.68. These probabilities are in close correspondence with the actual 
probabilities. The KDE of the posterior pdf of t is given in Fig. 8.2 (dotted 
line). This is in excellent agreement with the true posterior pdf. 

8.2 Common Bayesian Models 

The common statistical models in Chap. 4 can also be formulated and ana- ☞ 101 
lyzed in a Bayesian framework. In this section we give various examples of 
how this is done. Note that inference in a Bayesian setting depends on the 
prior information, in contrast to the frequentist case. 

8.2.1 Normal Model with Unknown . μ and . σ2

Let .x1, . . . , xn be a random sample from the .N(μ, σ2) distribution. Let 
.x = [x1, . . . , xn]T. In frequentist statistics the model can be written as 
.x ∼ N(μ1, σ2 In), where . 1 is the n-dimensional vector of 1s and . In the n-
dimensional identity matrix. To formulate the corresponding Bayesian model, 
we start with a similar likelihood as in the frequentist case; that is,
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. (x | μ, σ2) ∼ N(μ1, σ2 In) .

In the Bayesian setting, both . μ and . σ2 are random, and we need to specify 
their prior distributions to complete the model. In practice the choice of 
the prior distribution is governed by two considerations. Firstly, the prior 
should be simple enough to facilitate the computation or simulation of the 
posterior pdf. Secondly, the prior distribution should be general enough to 
model complete ignorance of the parameter of interest. Priors that do not 
convey any preknowledge of the parameter are said to be uninformative. 
The uniform or flat prior in Example 8.1 is an example. 

For the present model, a standard prior for . μ is 

.μ ∼ N(0, σ2
0) , (8.4) 

where .σ2
0 > 0 is a constant. The larger . σ2

0 is, the more uninformative is the 
the prior. A standard prior for . σ2 is 

.σ2 ∼ InvGamma(α0, λ0) , (8.5) 

where .α0 > 0 and .λ0 > 0 are constants and .InvGamma(α, λ) denotes the 
inverse-gamma distribution. 

Definition 8.2. (Inverse-Gamma Distribution). A random vari-
able Z is said to have an inverse-gamma distribution with shape 
parameter .α > 0 and rate parameter .λ > 0 if its pdf is given by 

.f(z; α, λ) = λαz−α−1e−λz−1

Γ (α) , z > 0 . (8.6) 

This is the pdf of the random variable .Z = 1/X with .X ∼ Gamma(α, λ). 

Thus, (8.5) is equivalent to 

.
1
σ2 ∼ Gamma(α0, λ0) . (8.7) 

The smaller the . α0 and . λ0 are, the less informative is the prior. It is further 
assumed that . μ and . σ2 are independent. The joint pdf of .x, μ and . σ2 is 
therefore
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. 

f(x, μ, σ2) = f(μ) × f(σ2) × f(x | μ, σ2)

=
(
2πσ2

0
)−1/2 exp

(

−1
2

μ2

σ2
0

)

×
λα0

0 (σ2)−α0−1 exp
{

−λ0 (σ2)−1}

Γ (α0)

×
(
2πσ2)−n/2 exp

(

−1
2

∑
i(xi − μ)2

σ2

)

.

It follows that the posterior pdf is given by 

.f(μ, σ2 | x) ∝
(
σ2)−n/2−α0−1 exp

(

−1
2

∑
i(xi − μ)2

σ2 − 1
2

μ2

σ2
0

− λ0

σ2

)

. (8.8) 

To simulate from it using the Gibbs sampler, we need the distributions of 
both .(μ | σ2, x) and .(σ2 | μ, x). To find .f(μ | σ2, x), view the right-hand side 
of (8.8) as a function of . μ. This gives: 

. f(μ | σ2, x) ∝ exp
(

−nμ2 − 2μ
∑

i xi

2σ2 − 1
2

μ2

σ2
0

)

= exp
(

−1
2

)
(nμ2 − 2μ

∑
i xi)σ2

0 + μ2σ2

σ2 σ2
0

()

= exp
(

−1
2

)
μ2 − 2μ σ2

0
∑

i xi/(nσ2
0 + σ2)

σ2σ2
0/(nσ2

0 + σ2)

()

. (8.9) 

This shows that .(μ | σ2, x) has a normal distribution with mean . σ2
0

∑
xi/(nσ2

0
.+σ2) and variance .σ2σ2

0/(nσ2
0 +σ2). By defining .κn = σ2/(σ2

0 n), we can write 
this succinctly as 

. (μ | σ2, x) ∼ N

)
x

1 + κn
,

σ2/n

1 + κn

(

,

where . x is the sample mean. Similarly, to find .f(σ2 | μ, x), view  (8.8) as a 
function of . σ2. This gives: 

.f(σ2 | μ, x) ∝ (σ2)−n/2−α0−1 exp
(

−1
2

n⎲

i=1
(xi − μ)2/σ2 − λ0/σ2

I

. (8.10) 

In other words, 

.(σ2 | μ, x) ∼ InvGamma
)

α0 + n/2,

n⎲

i=1
(xi − μ)2/2 + λ0

(

.
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It is interesting to note that in the limit .σ2
0 → ∞, .α0 → 0, and  .λ0 → 0, 

the right-hand sides of (8.10) and (8.9) define valid probability distributions; 
namely, 

. (μ | σ2, x) ∼ N
(
x, σ2/n

)

(σ2 | μ, x) ∼ InvGamma
(
n/2,

n⎲

i=1
(xi − μ)2/2

)
.

The two distributions above correspond to the following simplified Bayesian 
model: 

. f(μ, σ2) = 1/σ2

(x | μ, σ2) ∼ N(μ1, σ2 In) .

Here the prior for .(μ, σ2) is improper. That is, it is not a pdf in itself, but 
by obstinately applying Bayes’ formula it does yield a proper posterior pdf. 
In some sense this prior conveys the least amount of information about . μ
and . σ2. 

In the following Julia script, an iid sample of size .n = 10 is drawn from 
.N(0, 1), and a dependent sample from the posterior distribution for the sim-
plified model is obtained, using the Gibbs sampler with .N = 105 samples. 

bayesnorm.jl 

using Distributions, .ThetaKDE, Plots 
n = 10; 
X =  randn(n); # generate the data 
sample_mean = mean(X); 
sample_var = var(X); 
sig2 = var(X); mu = sample_mean; # initial state 
N = 10^5; # sample size for Gibbs sampler 
gibbs_sample = zeros(N,2); 
for k in 1:N 

global mu = sample_mean + sqrt(sig2/n)*randn(); # draw mu 
V =  sum((X .- mu).^2)/2; 
global sig2 = 1/rand(Gamma(n/2,1/V)); # draw sigma^2 
gibbs_sample[k,:] = [mu sig2]; 

end 
p1 = xmesh,density,bw = kde(gibbs_sample[:,1]); 
p2 = xmesh,density,bw = kde(gibbs_sample[:,2]); 
plot([p1,p2],layout=(1,2)) 

The estimated posterior pdfs of . μ and . σ2 are given in Fig. 8.3. In this case 
the sample mean and sample variance are .0.1298 and .0.5221, respectively. The
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. 0.05 and . 0.95 sample quantiles of the simulated posterior values for . μ give the 

.90% credible interval .(−0.2919, 0.5464). This is in close agreement with the 
frequentist confidence interval (5.19), which in this case is .(−0.2891, 0.5487). ☞ 135 
Similarly, an estimated . 90% credible interval for . σ2 is .(0.2773, 1.4128), which  
is in close agreement with the frequentist confidence interval (5.20), which  
here is .(0.2777, 1.4132). See Problem 8.10 for a further discussion of this 
model. ☞ 264
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Fig. 8.3 The estimated posterior pdfs of . μ and . σ2. The dashed lines correspond to the 
sample mean (left) and the sample variance (right) 

8.2.2 Bayesian Normal Linear Model 

Suppose .y = [y1, . . . , yn]T is described via a normal linear model. That is 
(see (6.23)) the likelihood is specified by ☞ 179 

. (y | β, σ2) ∼ N(Xβ, σ2In) ,

where .X = [xij ] is the (known) .n × m design matrix and . β = [β1, . . . , βm]T
and . σ2 are unknown parameters. Again, both . β and . σ2 are random in the 
Bayesian setting, and we need to specify their prior distributions. The prior 
for . σ2 is the same as in the normal model: 

. σ2 ∼ InvGamma(α0, λ0) ,

with .α0 > 0 and .λ0 > 0 known. A standard prior for . β is 

. β ∼ N(β0, Σ0),

where . Σ0 is a known covariance matrix and . β0 a known mean vector. The 
joint pdf of . y, β and . σ2 is thus
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. 

f(y, β, σ2) = f(β) × f(σ2) × f(y | β, σ2)

= ((2π)m|Σ0|)−1/2 exp
(

−1
2(β − β0)TΣ−1

0 (β − β0)
)

×
λα0

0 (σ2)−α0−1 exp
{

−λ0 (σ2)−1}

Γ (α0)

×
(
2πσ2)−n/2 exp

(

− 1
2σ2 (y − Xβ)T(y − Xβ)

)

.

It follows that the posterior pdf is given by 

.

f(β, σ2 | y) ∝
(
σ2)−n/2−α0−1 exp

(

− 1
2σ2 (y − Xβ)T(y − Xβ)

−1
2(β − β0)TΣ−1

0 (β − β0) − λ0

σ2

)

.

(8.11) 

As before, we use the Gibbs sampler to simulate from this posterior pdf. To 
that end, we need to derive the distributions of both .(β | σ2, y) and .(σ2 | β, y). 

Following the same argument in Sect. 8.2.1, we can show that 

. (σ2 | β, y) ∼ InvGamma
)

α0 + n/2, (y − Xβ)T(y − Xβ)/2 + λ0

(

.

Next, to find .f(β | σ2, y), view the right-hand side of (8.11) as a function 
of . β. This gives: 

. f(β | σ2, y) ∝ exp
(

− 1
2σ2 (y − Xβ)T(y − Xβ) − 1

2(β − β0)TΣ−1
0 (β − β0)

)

∝ exp
(

− 1
2σ2 (βTXTXβ−2βTXTy)+βTΣ−1

0 β0−1
2βTΣ−1

0 β

)

= exp
(

−1
2

I
βT(XTX/σ2+Σ−1

0 )β−2βT(XTy/σ2+Σ−1
0 β0)

I)

.

(8.12) 

Note that the exponent is quadratic in . β, and thus .(β | σ2, y) ∼ N(μ, D) for 
some mean vector . μ and covariance matrix . D. Therefore, 

.f(β | σ2, y) ∝ exp
(

−1
2(β − μ)TD−1(β − μ)

)

∝ exp
(

−1
2

(
βTD−1β − 2βTD−1μ

))

.
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To determine . μ and . D, we only need to compare the linear and quadratic 
terms in (8.12) to those of the .N(μ, D) density above. This process is some-
times called completing the squares. Comparing the quadratic terms gives 
.D = (XTX/σ2 + Σ−1

0 )−1. Similarly, equating the linear terms in the two ex-
pressions gives .D−1μ = XTy/σ2+Σ−1

0 β0. In summary, we have the following 
result. 

Theorem 8.1. (Conditional Posteriors for the Linear Model). 
Consider the Bayesian model 

.β ∼ N(β0, Σ0) , (8.13) 
σ2 ∼ InvGamma(α0, λ0) , (8.14) 

(y | β, σ2) ∼ N(Xβ, σ2 In) , (8.15) 

where . X is a fixed .n × m design matrix, . Σ0 is a fixed .n × n covariance 
matrix, . β0 is a fixed vector, and . α0 and . λ0 are fixed constants. Then, 

. (β | σ2, y) ∼ N(μ, D) ,

where .μ = D(XTy/σ2 + Σ−1
0 β0), with .D = (XTX/σ2 + Σ−1

0 )−1, and  

. (σ2 | β, y) ∼ InvGamma
)

α0 + n/2, (y − Xβ)T(y − Xβ)/2 + λ0

(

.

Note that as the prior precision matrix .Σ−1
0 approaches the zero matrix, 

the prior for . β becomes more non-informative. For .Σ−1
0 = O (zero matrix), 

the prior for . β is improper. However, the conditional density .f(β | σ2, y) is 
still a proper pdf. In fact, for .Σ−1

0 = O, we have  .μ = DXTy/σ2, with 
.D = σ2(XTX)−1, so that  

. (β | σ2, y) ∼ N(X+y, σ2(XTX)−1) ,

where .X+ = (XTX)−1XT is the (right) pseudo-inverse of . X. Using this im-
proper prior for . β, the conditional expectation .E[β | σ2, y] therefore coincides 
with the least-squares estimate in (5.12). ☞ 130 

The following corollary presents an important generalization of Theo-
rem 8.1 for the situation where .y − Xβ is an affine transformation of . y; 
that is, .y − Xβ = a + Ay for some vector . a and matrix . A. The result will ☞ 83 
be heavily relied on in later parts of the book.
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Corollary 8.1. (Conditional Posteriors for the Linear Model 
with General Error Covariance Matrix). Consider the Bayesian 
model 

.β ∼ N(β0, Σ0) , (8.16) 
σ2 ∼ InvGamma(α0, λ0) , (8.17) 

(y − Xβ | β, σ2) ∼ N(0, σ2 R) , (8.18) 

where .y − Xβ is an affine transformation of . y, . R and . Σ0 are fixed 
.n × n (covariance) matrices, . β0 is a fixed vector, and . α0 and . λ0 are 
fixed constants. Then, 

. (β | σ2, y) ∼ N(μ, D) ,

where .μ = D(XTR−1y/σ2 + Σ−1
0 β0), with . D = (XTR−1X/σ2 +

Σ−1
0 )−1, and  

. (σ2 | β, y) ∼ InvGamma
)

α0 + n/2, (y − Xβ)TR−1(y − Xβ)/2 + λ0

(

.

Proof. By assumption we have .y −Xβ = a+Ay
def= z for some vector . a and 

matrix . A, where .(z | σ2, β) ∼ N(0, σ2R). It follows that 

. f(y | σ2, β) ∝ f(z | σ2, β)∝(2πσ2)−n/2 exp
(

− 1
2σ2 (y−Xβ)TR−1(y−Xβ)

)

.

The rest of the proof follows exactly the same reasoning as for Theorem 8.1.
 

8.2.3 Bayesian Multinomial Model 

In this section we extend the Bayesian analysis of the binomial model in 
Example 8.1 to the multinomial case. Recall (see Definition 3.4) that a ran-☞ 69 
dom vector .X = [X1, X2, . . . , Xk]T has a multinomial distribution, with 
parameters n and .p1, p2, .. . . , pk (probabilities summing up to 1), if 

.P(X1 = x1, . . . , Xk = xk) = n!
x1! x2! · · · xk! px1

1 px2
2 · · · pxk

k , (8.19) 

for all .x1, . . . , xk ∈ {0, 1, . . . , n} such that .x1 + x2 + · · · + xk = n. We can  
think of .X ∼ Mnom(n, p) representing the configuration of n balls in k urns
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when the balls are thrown independently into the urns according to a vector 
of probabilities .p = [p1, . . . , pk]T. For the binomial case, there are only two 
urns and .p = [p, 1 − p]T. 

Suppose we are given data . x from an .Mnom(n, p) distribution and wish 
to gain information about . p on the basis of . x. Assuming uniform priors, the 
Bayesian model is 

. f(p) ∝ 1 , f(x | p) = n!
x1! x2! · · · xk! px1

1 px2
2 · · · pxk

k .

It follows that the posterior pdf is of the form: 

. f(p | x) ∝ px1
1 px2

2 . . . pxk

k , p ∈ [0, 1]k ,

k⎲

i=1
pi = 1 .

Since .
∑k

i=1 xi = n and .
∑k

i=1 pi = 1, we can drop . pk from the analysis and 
look instead at the posterior pdf of .p1, . . . , pk−1 given . x, which is given by 

. f(p1, . . . , pk−1 | x) ∝ px1
1 . . . p

xk−1
k−1

(
1 −

k−1⎲

i=1
pi

)xk ,

where .pi ≥ 0, i = 1, . . . , k − 1 and .
∑k−1

i=1 pi ≤ 1. This is the pdf of a Dirichlet 
distribution: 

. (p1, . . . , pk−1 | x) ∼ Dirichlet(x1 + 1, x2 + 1, . . . , xk + 1).

Definition 8.3. (Dirichlet Distribution). A random vector . Z =
[Z1, . . . , Zm]T is said to have a Dirichlet distribution with shape pa-
rameter .α = [α1, . . . , αm+1]T if its pdf is given by 

. f(z; α) =
Γ

( ∑m+1
i=1 αi

)

I Im+1
i=1 Γ (αi)

mI I

i=1
zαi−1

i

)

1−
m⎲

i=1
zi

(αm+1−1

, z ∈ [0, 1]m ,

m⎲

i=1
zi ≤ 1 .

We write this distribution as .Dirichlet(α1, . . . , αm+1) or .Dirichlet(α). 

The m-dimensional .Dirichlet(1, . . . , 1) distribution has a constant density 
on the set .{z ∈ R

m : zi ≥ 0, i = 1, . . . , m,
∑m

i=1 zi ≤ 1} and thus corre-
sponds to the uniform distribution on that set. The .Dirichlet(α1, α2) distri-
bution is the .Beta(α1, α2) distribution. Moreover, if . Z = [Z1, . . . , Zm]T ∼
Dirichlet(α1, . . . , αm+1), the marginal distribution of . Zi is .Beta(αi,

∑
j /=i αj); 

see Problem 8.6. The following theorem shows how one can simulate from 
the Dirichlet distribution using .Gamma random variables.
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Theorem 8.2. (Sampling from the Dirichlet Distribution). Let 
.Y1, . . . , Ym+1 be independent random variables with .Yi ∼ Gamma(αi, 1), 
.i = 1, . . . , m + 1, and define 

.Zj = Yj
∑m+1

i=1 Yi

, j = 1, . . . , m . (8.20) 

Then, .Z = [Z1, . . . , Zm]T ∼ Dirichlet(α1, . . . , αm+1). 

Proof. This is a direct consequence of the transformation rule (3.26). In par-☞ 81 
ticular, consider the transformation . g : [y1, . . . , ym+1]T I→ [z1, . . . , zm+1]T
defined by (8.20) and .zm+1 = y1 + · · · + ym+1. By rewriting the . {yi} in terms 
of the . {zi}, we see that the inverse transformation is given by 

. yi = zi zm+1, i = 1, . . . , m and ym+1 = (1 − (z1 + · · · + zm)) zm+1 .

The determinant of the corresponding Jacobian matrix is .zm
m+1; see Prob-

lem 8.5. Using frequentist notation for clarity and defining . Y = [Y1, . . . ,
.Ym+1]T, we have by the transformation rule and the definition (2.20) of the☞ 48 
Gamma pdf: 

. fZ,Zm+1(z, zm+1) = fY (y)zm
m+1 =

(I Im+1
i=1 yαi−1

i

)
e−

∑m+1
i=1

yizm
m+1

I Im+1
i=1 Γ (αi)

=
(I Im

i=1 yαi−1
i

)
y

αm+1−1
m+1 e−zm+1zm

m+1
I Im+1

i=1 Γ (αi)

=
(I Im

i=1 zαi−1
i

)
(1 −

∑m
i=1 zi)αm+1−1

I Im+1
i=1 Γ (αi)

z
(
∑m+1

i=1
αi)−1

m+1 e−zm+1

, ,, ,
(*)

.

(8.21) 

To obtain the pdf of . Z, we need to integrate out .zm+1 in (8.21). Since (. *) is  
proportional to the pdf of a .Gamma(

∑m+1
i=1 αi, 1) distribution, this integral 

is .Γ (
∑m+1

i=1 αi), which completes the proof.  

Example 8.3 (Bayesian Inference for the Multinomial Model). Five 
hundred and one people are randomly selected from a large population. They 
are asked if they like, dislike, or are indifferent to the current anti-smoking 
campaign. Table 8.1 lists the data. 

Let . xij be the count in row i and column j in Table 8.1; for example, . x13 =
147 and .x22 = 38. Denote by .x = [x11, . . . , x23]T the vector of counts, and let 
.p = [p11, p12, p13, p21, p22, p23]T be the corresponding vector of probabilities.
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Table 8.1 Opinions on smoking campaign, by gender. 

Opinion 

Gender Dislike Neutral Like 

Male 53 57 147 
Female 93 38 113 

Thus, . p13 is the probability that a randomly selected person is male and 
likes the campaign. A natural Bayesian model for the data is that . (x | p) ∼
Mnom(501, p), with a uniform prior for . p. It follows that . ([p11, . . . , p22]T | x)
(i.e., the vector . p with component . p23 removed) has a Dirichlet distribution 
with parameter .α = [x11 + 1, . . . , x23 + 1]T. 

Can we conclude from the data that opinion is independent of gender? For 
this to be true, it must hold that 

. pij = p
(r)
i p

(c)
j , i = 1, 2, j = 1, 2, 3 ,

where the row totals .p(r)
i = pi1 + pi2 + pi3, .i = 1, 2 give the probability that 

a selected person is male .(i = 1) or female .(i = 2); similarly, the column 
totals .p(c)

j = p1j + p2j , j = 1, 2, 3 give the probabilities of the opinions. It 
thus makes sense to investigate the posterior distribution of 

.aij = pij − p
(r)
i p

(c)
j , i = 1, 2, j = 1, 2, 3 (8.22) 

and check if 0 lies within a reasonable (say 95%) credible interval of each . aij . 
The following Julia program generates .N = 10000 vectors . p drawn from the 
posterior distribution. For each . p the row and column totals are calculated, 
and subsequently realizations from the posterior distribution of . a1j , j = 1, 2, 3
are obtained via (8.22). Since .a1j = −a2j , it suffices to consider only . a1j , j =
1, 2, 3. Kernel density plots of the posterior pdfs are shown in Fig. 8.4. We  
see that opinion and gender are likely to be dependent, as 0 is not contained 
in, for example, a . 0.99 credible interval of the posterior pdf of . a11. 

multinomex.jl

include("ThetaKDE.jl") 
using Distributions, .ThetaKDE, Plots 
x = [53,57,147,93,38,113]; 
N = 10000; 
p =  zeros(N,2,3); a = zeros(N,2,3); 
p_row = zeros(2,N); p_col=zeros(3,N); 
alpha = x .+ 1; 
for i in 1:N
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h =  rand(Dirichlet(alpha)); 
p[i,:,:] = reshape(h',3,2)'; 

end 
for i in 1:2 

p_row[i,:] = sum(p[:,i,:],dims=2); 
end 
for j in 1:3 

p_col[j,:] = sum(p[:,:,j],dims=2); 
end 
for k in 1:N 

for i in 1:2 
for j in 1:3 

a[k,i,j] = p[k,i,j] - p_row[i,k]*p_col[j,k]; 
end 

end 
end 
p =  plot() 
for j in 1:3 

xmesh, density, h = kde(a[:,1,j]) 
p =  plot!(xmesh,density) 
display(p) 

end
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Fig. 8.4 Posterior pdfs of .a1j = p1j − p
(r)
1 p

(c)
j , j = 1, 2, 3, indicating that opinion and 

gender are not independent
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8.3 Bayesian Networks 

The formulation and analysis of a Bayesian model can often be facilitated 
through the use of Bayesian networks. Mathematically, a Bayesian network 
is a directed acyclic graph, that is, a collection of vertices (nodes) and 
arcs (arrows between nodes) such that arcs, when put head-to-tail, do not 
create loops. Figure 8.5 shows two directed acyclic graphs ((a) and (b)) and 
a counterexample (c). 

Fig. 8.5 The directed 
graphs in (a) and (b) are  
acyclic. Graph (c) has  a  
(directed) cycle and can 
therefore not represent a 
Bayesian network 

Bayesian networks can be used to graphically represent the joint proba-
bility distribution of a collection of random variables. In particular, consider 
a Bayesian network with vertices labeled .x1, . . . , xn. Let . Pj denote the set of 
parents of . xj , that is, the vertices . xi for which there exist an arc from . xi to 
. xj in the graph. We can associate with this network a joint pdf: 

. f(x1, . . . , xn) =
nI I

j=1
f(xj | Pj) .

Note that any pdf can be represented by a Bayesian network in this way 
because, by the product rule (3.10), ☞ 72 

. f(x1, . . . , xn) = f(x1)f(x2 | x1) · · · f(xn | x1, . . . , xn−1) .

As an example, the left pane of Fig. 8.6 shows a Bayesian network with five 
variables, representing the following structure for the pdf: 

. f(x1, . . . , xn) = f(x1)f(x2 | x1)f(x3 | x2)f(x4 | x2)f(x5 | x3, x4) .

In the same figure, two small black nodes have been added with labels . θ1 and 
. θ2. This is a way of representing fixed parameters of the distribution. Thus, 
in this case the (frequentist) pdf is of the form 

. f(x1, . . . , xn) = f(x1; θ1)f(x2 | x1; θ2)f(x3 | x2)f(x4 | x2)f(x5 | x3, x4) .

In the right pane of Fig. 8.6, the corresponding Bayesian model is depicted. 
It is useful to distinguish between random variables and their observations, 
by using a dark color or gray scale for the latter one. For example, the right
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pane of Fig. 8.6 represents the situation where the “data” .x1, . . . , xn have 
been observed. The aim is to find the posterior pdf of . θ1 and . θ2 given the 
data. 

Fig. 8.6 Left: a graphical representation of a frequentist statistical model with random 
variables .x1, . . . , x5 and fixed parameters .θ1, θ2. The representation is in the form of a 
directed acyclic graph (Bayesian network). Right: the graphical representation of the 
corresponding Bayesian model with observed (i.e., fixed) data .x1, . . . , xn, indicated by 
shaded nodes. In this case the parameters . θ1 and . θ2 are random and depend on fixed 
parameters . a1 and . a2 (sometimes called hyperparameters) 

Figure 8.7 gives two more examples of Bayesian networks. The first cor-
responds to the ticket inspector model in Example 8.2; the second refers to 
the normal Bayesian model in Sect. 8.2.1. 

Fig. 8.7 Left: the Bayesian network for the ticket inspector model in Example 8.2. 
Right: a representation of the Bayesian model for iid normal data 

Example 8.4 (Belief Nets). Bayesian networks are frequently used for 
medical diagnosis and statistical classification. In this context they are some-
times called belief nets. An example belief net is shown in Fig. 8.8. The pur-
pose of this belief net is to determine if a patient is to be diagnosed with 
heart disease, based on several factors and symptoms. Two important factors 
in heart disease are smoking and age, and two main symptoms are chest pains 
and shortness of breath. The belief net in Fig. 8.8 shows the prior probabilities
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of smoking and age, the conditional probabilities of heart disease given age 
and smoking, and the conditional probabilities of chest pains and shortness 
of breath given heart disease. 

Fig. 8.8 A Bayesian belief net for the diagnosis of heart disease 

Suppose a person experiences chest pains and shortness of breath, but we 
do not know her/his age and if she/he is smoking. How likely is it that she/he 
has a heart disease? 

Define the variables s (smoking), a (age), h (heart disease), c (chest pains), 
and b (shortness of breath). We assume that s and a are independent. We 
wish to calculate 

. P(h = Yes | b = Yes, c = Yes) .

From the Bayesian network structure, we see that the joint pdf of .s, a, h, c, 
and b can be written as 

. f(s, a, h, c, b) = f(s)f(a)f(h | s, a)f(c | h)f(b | h) .

It follows that 

. f(h | b, c) ∝ f(c | h)f(b | h)
⎲

a,s

f(h | s, a)f(s)f(a)

, ,, ,
f(h)

.

We have: 

. 
f(h = Yes) = 0.2 × 0.3 × 0.6 + 0.4 × 0.3 × 0.4

+ 0.05 × 0.7 × 0.6 + 0.15 × 0.7 × 0.4 = 0.147 .

Consequently, 

.f(h = Yes | b = Yes, c = Yes) = β × 0.2 × 0.3 × 0.147 = β 0.00882
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and 

. f(h = No | b = Yes, c = Yes) = β × 0.01 × 0.1 × (1 − 0.147) = β 0.000853

for some normalization constant . β. Thus,  

. f(h = Yes | b = Yes, c = Yes) = 0.00882
0.00882 + 0.000853 = 0.911816 ≈ 0.91 .

8.4 Asymptotic Normality of the Posterior Distribution 

We saw in Sect. 6.3.2 various asymptotic properties of the likelihood function.☞ 182 
Similar results can be obtained for the posterior pdf. For clarity we identify 
the (conditional) pdfs by different symbols: .f, fΘ, and  . ̊f . 

Theorem 8.3. (Asymptotic Distribution of the Posterior Pdf). 
Let .x = [x1, . . . , xn]T be an iid sample from .f̊(x | θ0), where . θ0 is fixed. 
The posterior pdf with prior pdf .fΘ(θ): 

.f(θ | x) ∝ fΘ(θ)
nI I

i=1
f̊(xi | θ) (8.23) 

is approximately normal with mean . θ0 and variance .I̊−1(θ0)/n, where 
.I̊(θ0) is the information number of .f̊(x | θ0). 

Proof. (Sketch). Let . ~θ be the mode of the posterior pdf in (8.23). The proof 
of Theorem 6.7 can be mimicked to show that . ~θ is consistent; that is, .~θ → θ0☞ 182 
as .n → ∞. A second-order Taylor expansion of .ln f(θ | x) around . ~θ gives:☞ 477 

. 

ln f(θ | x) = ln f(~θ | x) + (θ − ~θ) d
dθ

ln f(~θ | x) + 1
2(θ − ~θ)2 d2

dθ2 ln f(~θ | x) + R

= ln f(~θ | x) + n

2 (θ−~θ)2
)

1
n

d2

dθ2 ln
(

c(x)fΘ(~θ)
)

+ 1
n

n⎲

i=1

d2

dθ2 ln f̊(xi | ~θ)
, ,, ,

(*)

(

+R ,

where .c(x) is the normalization constant of the posterior and R is the re-
mainder term, which includes higher-order polynomials .(θ − ~θ)k, k = 3, 4, . . .. 
Note that the linear term in the Taylor expansion can be omitted since the 
derivative of .ln(f(θ | x) at .θ = ~θ is 0. For large n the first term in . (*) be-
comes negligible compared to the second one. Moreover, similar to (6.27) the☞ 183
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second term converges to .−I̊(θ0). Since .R/n remains bounded as .n → ∞ and 
.ln f(~θ | x) is a constant with respect to . θ, the posterior pdf .f(θ | x) becomes 
more and more concentrated around . θ0, and tends to the form: 

. f(θ | x) ∝ e− 1
2 (θ−θ0)2 nI̊(θ0) ,

which is the pdf of the .N(θ0, I̊−1(θ0)/n) distribution, in accordance with 
Theorem 6.8.  ☞ 183 

8.5 Priors and Conjugacy 

In Bayesian analysis it is often useful to choose the prior pdf in the same fam-
ily of distributions as the posterior pdf. Consider, for example, the binomial 
model in Example 8.1. Using a uniform prior, the posterior pdf belongs to 
.Beta family of distributions. Suppose we choose the prior in the same family, 
giving the Bayesian model: 

. θ ∼ Beta(a, b)
(x | θ) ∼ Bin(n, θ)

for some fixed a and b. By Bayes’ formula the posterior pdf satisfies: 

. f(θ | x) ∝ θa−1(1 − θ)b−1θx(1 − θ)n−x = θa+x−1 (1 − θ)b+n−x−1 ,

which corresponds to the .Beta(a + x, b + n − x) distribution. We see that the 
posterior and prior are in the same family of distributions. This property is 
called conjugacy. The advantage of conjugacy is that only the parameters 
of the distribution need to be considered. We say that the Beta family is a 
conjugate family for the binomial distribution. 

Exponential families provide natural conjugate priors. Recall (see Defini-
tion 5.3) that a random variable x is said to belong to an m-dimensional ☞ 157 
exponential family if its pdf is of the form: 

.f̊(x | θ) = c(θ) exp
) m⎲

i=1
ηi(θ) ti(x)

(

h(x) , (8.24) 

where we have used the Bayesian notation .f̊(x | θ) instead of the frequentist 
notation .f̊(x; θ).
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Theorem 8.4. (Conjugate Prior for an Exponential Family). 
Let .x = [x1, . . . , xn]T be an iid sample from .f̊(x | θ) of the form (8.24). 
The prior 

.f(θ) ∝ c(θ)b exp
) m⎲

i=1
ηi(θ)ai

(

, (8.25) 

where the proportionality constant only depends on .(a1, . . . , am, b), is  
conjugate to the conditional pdf 

.f(x | θ) = c(θ)n exp
) m⎲

i=1
ηi(θ)

n⎲

k=1

ti(xk)
( nI I

k=1

h(xk) . (8.26) 

Proof. By Bayes’ theorem the posterior pdf satisfies: 

. f(θ | x) ∝ f(θ)f(x | θ) ∝ c(θ)n+b exp
) m⎲

i=1
ηi(θ)

(
ai +

n⎲

k=1

ti(xk)
)
(

,

where the proportionality constant does not depend on . θ. This shows 
that the posterior pdf lies in the same m-dimensional exponential fam-
ily as the prior (8.25). In particular, if the prior is specified by parame-
ters .(a1, . . . , am, b), then the corresponding parameters for the posterior are 
.(~a1, . . . , ~am,~b), with .~ai = ai +

∑n
k=1 ti(xk), .i = 1, . . . , m, and  .~b = b + n.  

Example 8.5 (Conjugate Prior for Bernoulli Likelihood). In Exam-
ple 8.1 we are dealing with independent Bernoulli random variables whose 
joint pdf conditional on . θ is 

. f(x | θ) = θ
∑n

k=1
xk (1 − θ)n−

∑n

k=1
xk ,

which is of the form (8.26), with .m = 1, .η(θ) = ln(θ/(1 − θ)), .t(xk) = xk, 
and .c(θ) = 1 − θ. The corresponding conjugate class is therefore of the form 

. c(θ)beη(θ)a = (1 − θ)b

)
θ

1 − θ

(a

∝ θa(1 − θ)b ,

which corresponds to the Beta family of distributions. 
Example 8.6 (Conjugate Prior for Poisson Likelihood). Let . x1, . . . , xn

be an iid sample from the Poisson distribution .Poi(λ). This is an exponential 
family, and the joint pdf can be written as 

.f(x | λ) = e−nλenx ln λ
nI I

k=1

1
xk! .
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This is of the form (8.26), which suggests a conjugate prior of the form 

. f(λ) ∝ e−bλea ln λ = e−bλλa .

This corresponds to the gamma density. In particular, if we take a . Gamma(a, b)
prior for . λ, that is,  

. f(λ) ∝ e−bλλa−1 ,

(notice . λ is the variable here, not the parameter), then the posterior pdf is 

. f(λ | x) ∝ e−(n+b)λ λa−1+nx ,

which corresponds to the .Gamma(a + nx, b + n) distribution. 

8.6 Bayesian Model Comparison 

Under the Bayesian framework, hypothesis testing, or more generally com-
paring models, is straightforward. Suppose we wish to compare two possibly 
non-nested models . M1 and . M2. Each model .Mi, i = 1, 2, is formally defined 
by a likelihood function .f(x | θi, Mi) and a prior distribution on the model-
specific parameter vector . θi denoted as .f(θi | Mi). Note that in both the 
likelihood function and the prior distribution, we make the dependence on 
the model . Mi explicit. 

A popular criterion for comparing models . M1 and . M2 is the Bayes factor 
in favor of model . M1 against model . M2: 

. BF12
def= f(x | M1)

f(x | M2) ,

where 
.f(x | Mi) =

9
f(x | θi, Mi) f(θi | Mi) dθi (8.27) 

is the marginal likelihood under model .Mi, i = 1, 2. 
The marginal likelihood .f(x | Mi) is simply the marginal density of the 

data . x under model . Mi. If the actual data are likely under model . Mi, then 
the associated marginal likelihood will be large, and vice versa. Hence, a 
Bayes factor .BF12 greater than 1 indicates that model . M1 better predicts 
the observed data than . M2. It is therefore taken as evidence in favor of 
model . M1. 

The Bayes factor between the two models is related to their posterior 
odds ratio: 

.PO12
def= P(M1 | x)

P(M2 | x) = P(M1)
P(M2) × f(x | M1)

f(x | M2) ,
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where .P(Mi) and .P(Mi | x) are respectively the prior and posterior model 
probabilities of model .Mi, i = 1, 2. If both models are equally probable a 
priori, i.e., .P(M1) = P(M2), the posterior odds ratio between the two models 
is then the same as the Bayes factor. In that case, if, for example, .BF12 = 50, 
we can say that model . M1 is 50 times more likely than model . M2 given the 
data. 

Example 8.7 (Comparing Multinomial Models). In Example 8.3 we☞ 248 
investigated if opinions on an anti-smoking campaign are independent of gen-
der. Using the data in Table 8.1, we found evidence that suggests opinions 
differ by gender. In this example we perform a formal model comparison 
exercise to quantity the weight of evidence. 

Let . M1 denote the multinomial model .(x | p, M1) ∼ Mnom(501, p), where 
.p = [p11, p12, p13, p21, p22, p23]T, with a uniform prior for . p, or equivalently, 
.(p11, . . . , p22 | M1) ∼ Dirichlet(1, . . . , 1). Hence, the prior density is given by 

. f(p11, . . . , p22 | M1) = Γ (6) = 5! .

It follows that the marginal likelihood .f(x | M1) can be directly computed 
using the definition (8.27): 

. f(x | M1) =
9 501!

x11! · · · x23! px11
11 · · · px23

23 × 5! d(p11, . . . , p22)

= 501! 5!
x11! · · · x23!

9
px11

11 · · · px23
23 d(p11, . . . , p22)

= 501! 5!
x11! · · · x23! × Γ (x11 + 1) · · · Γ (x23 + 1)

Γ (507)

= 501! 5!
506! ≈ 3.6901 × 10−12 .

Next, if opinion is independent of gender, we must have: 

. pij = p
(r)
i p

(c)
j , i = 1, 2, j = 1, 2, 3 ,

where .p(r)
1 + p

(r)
2 = 1 and .p(c)

1 + p
(c)
2 + p

(c)
3 = 1. Let  . ri = xi1 + xi2 + xi3, i =

1, 2, and  .ci = x1j + x2j , j = 1, 2, 3, denote the row and column counts, 
respectively. Then, the likelihood function under the model . M2 (in which 
opinion is independent of gender) is given by 

.f(x | ~p, M2) = 501!
x11! · · · x23! (p(r)

1 p
(c)
1 )x11 · · · (p(r)

2 p
(c)
3 )x23

= 501!
x11! · · · x23! (p(r)

1 )r1(p(r)
2 )r2(p(c)

1 )c1(p(c)
2 )c2(p(c)

3 )c3 ,
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where .~p = (p(r)
1 , p

(r)
2 , p

(c)
1 , p

(c)
2 , p

(c)
3 ). Further, we assume independent and 

uniform priors for .(p(r)
1 , p

(r)
2 ) and .(p(c)

1 , p
(c)
2 , p

(c)
3 ). Hence, the prior density is 

. f(p(r)
1 , p

(c)
1 , p

(c)
2 | M2) = Γ (2)Γ (3) = 2 .

Following a similar computation as before, the marginal likelihood for model 
. M2 is given by 

. f(x | M2) = 2 × 501!
x11! · · · x23!

Γ (r1 + 1)Γ (r2 + 1)Γ (c1 + 1)Γ (c2 + 1)Γ (c3 + 1)
Γ (r1 + r2 + 2)Γ (c1 + c2 + c3 + 3)

= 2 × r1! r2! c1! c2! c3!
502 × x11! · · · x23! 503! ≈ 9.2122 × 10−15 .

Finally, the Bayes factor is .BF12 = f(x | M1)/f(x | M2) ≈ 400, showing over-
whelming evidence for . M1 against . M2. In other words, given the data it is 
highly likely (400 times more so) that opinion varies with gender. 

The computation of the marginal likelihood in (8.27) involves “integrating 
out” all the model parameters, and an analytic expression is often unavailable. 
In those cases, Monte Carlo methods are required to estimate the marginal 
likelihood. One popular method to do so using posterior output is Chib’s 
method (Chib, 1995; Chib and Jeliazkov, 2001). 

However, when comparing nested models, i.e., when one model is a re-
stricted version of the other model, the Bayes factor has an alternative ex-
pression that can often be easily estimated using posterior output. To set the 
stage, let . Mu denote the unrestricted model, where the model parameters are 
partitioned into two subsets .θ = (ψ, ω). Suppose . Mr is the restricted version 
of . Mu, where .θ = (ψ, ω0) for some constant vector . ω0. Clearly, comparing 
. Mu and . Mr is equivalent to testing the hypothesis .ω = ω0. 

Now, suppose .f(ψ, ω | Mu) is the prior distribution under the unrestricted 
model. Then, the induced prior for . ψ under the restricted model . Mr is simply 
the marginal distribution .f(ψ | Mr) =

I
f(ψ, ω | Mu) dω. It turns out that if 

this induced prior is the same as the conditional prior for . ψ given .ω = ω0, 
then the Bayes factor is equivalent to the ratio of posterior and prior densities 
under . Mu evaluated at .ω = ω0. This is referred to as the Savage–Dickey 
density ratio. The result is summarized in the following theorem. Its proof 
can be found in, for example, Verdinelli and Wasserman (1995).
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Theorem 8.5. (Savage–Dickey Density Ratio). Let . Mu denote 
the unrestricted model with model parameters .θ = (ψ, ω), and let . Mr

be a restricted version of . Mu, with .ω = ω0 and free parameter vector 
. ψ. Suppose the priors in the two models satisfy 

.f(ψ | Mr) = f(ψ | ω = ω0, Mu) . (8.28) 

Then, the Bayes factor in favor of model . Mr can be written as 

. BFru = f(ω = ω0 | x, Mu)
f(ω = ω0 | Mu) .

In particular, (8.28) holds if . ψ and . ω are a priori independent under 
. Mu; that is,  .f(ψ, ω | Mu) = f(ψ | Mu)f(ω | Mu). 

Writing the Bayes factor as such a ratio of densities avoids the often 
difficult task of computing marginal likelihoods. The denominator . f(ω =
ω0 | Mu) can frequently be calculated analytically, when the conditional prior 
.f(ω | Mu) is of a standard form. In addition, the numerator can often be es-
timated from posterior output of model . Mu. In particular, the numerator 
can be estimated via . 1

N

∑N
i=1 f(ω = ω0 | x, ψi, Mu), where .ψ1, . . . , ψN are 

posterior draws from model . Mu. 
Example 8.8 (Comparing Polynomial Regression Models). In Exam-
ple 5.18 we considered five different polynomial regression models for fitting☞ 154 
the data in Table 5.4, and compared the models using cross-validation. In 
this example, we perform a Bayesian model comparison on the same data. 
Let model . Mi denote the i-th order polynomial regression model, .i = 1, . . . , 5: 

. yk = β0 + β1xk + · · · + βix
i
k + εk ,

where .{εk} ∼iid N(0, σ2). Clearly, models .M1, . . . , M4 are all nested within 
model . M5. To complete the model specification (of model . M5), we take the 
following independent priors: .β = [β0, . . . , β5]T ∼ N(0, 100 I6) and . σ2 ∼
InvGamma(2, 1). 

To compare models via the Bayes factor, we can obtain posterior draws 
from model . M5 and estimate the relevant Savage–Dickey density ratio (since 
.β0, . . . , β5 are independent under the prior, the condition (8.28) is satisfied). 
For example, model . M3 is obtained by imposing .[β4, β5]T = 0. Hence, the 
Bayes factor .BF35 can be written as 

. BF35 = f([β4, β5] = 0 | y, M5)
f([β4, β5] = 0 | M5) .

Using the properties of the multivariate normal distribution (see Theo-
rem 3.7), the marginal prior .f(β4, β5 | M5) is a bivariate normal density☞ 86
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and can be evaluated easily. The conditional posterior .f(β | y, σ2, M5) is also 
a normal density, by Theorem 8.1. Hence, the numerator in the ratio can be ☞ 245 
estimated using posterior draws for . σ2. 

The following Julia script estimates the log-Bayes factors . ln BFi5, i =
1, . . . , 4, via the Savage–Dickey density ratio approach. Note that the state-
ment logpdf(MvNormal(mu,Sig),x) evaluates the log density of the . N(μ, Σ)
distribution at . x. 

polyreg_bayes.jl

using LinearAlgebra, Distributions 
x = [4.7,2,2.7,0.1,4.7,3.7,2,3.4,1.3, 
3.8,4.8,1.7,-0.4,4.5,1.3,0.4,2.6,4,2.9,1.6]; 
y = [6.57,5.15,7.15,0.18,6.48,8.95,5.24,10.54,1.24,8.05, 
3.56,3.4,2.18,7.16,2.32,-0.23,7.68,9.09,9.13,4.04]; 
n =  length(x); 
X =  hcat(ones(n), x, x.^2, x.^3, x.^4, x.^5); 
XX = X'*X; 
Xy = X'*y; 
m = 6;  
N = 10^5; # Gibbs sample size 
IM = diagm(ones(m)) 
V0 = 100*IM # prior for beta 
invV0 = V0\IM; 
alp0 = 2; lam0 = 1; # prior for sig2 
beta = XX\Xy; 
sig2 = sum((y -X*beta).^2)/n 
gibbs_sample = zeros(N,m+1); 
lpostden_sample = zeros(N,4); 

for k in 1:N 
global beta, sig2 
D = (invV0 + XX/sig2)\IM; 
betahat = D*(Xy/sig2) 
beta = betahat + cholesky(Hermitian(D)).L*randn(m); 
sig2 = 1/rand(Gamma(alp0+n/2,1/(lam0+sum((y-X*beta).^2)/2) 

)); 
gibbs_sample[k,:]=[beta' sig2]; 
lp1 = logpdf(MvNormal(betahat[3:end], 

Hermitian(D[3:end,3:end])),zeros(4)) 
lp2 = logpdf(MvNormal(betahat[4:end], 

Hermitian(D[4:end,4:end])),zeros(3)) 
lp3 = logpdf(MvNormal(betahat[5:end], 

Hermitian(D[5:end,5:end])),zeros(2)) 
lp4 = logpdf(Normal(betahat[6],sqrt(D[6,6])),0)
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lpostden_sample[k,:] = [lp1 lp2 lp3 lp4]; 
end 
lpostden = zeros(4,1); 
for i in 1:4 

maxpden = maximum(lpostden_sample[:,i]); 
lpostden[i]=log.(mean(exp.(lpostden_sample[:,i].-maxpden)) 

) + maxpden; 
end 
lpriden = zeros(4,1); 
lpriden[1] = logpdf(MvNormal(zeros(4), 

V0[3:end,3:end]),zeros(4)); 
lpriden[2] = logpdf(MvNormal(zeros(3), 

V0[4:end,4:end]),zeros(3)); 
lpriden[3] = logpdf(MvNormal(zeros(2), 

V0[5:end,5:end]),zeros(2)); 
lpriden[4] = logpdf(Normal(0,sqrt(V0[6,6])),0); 
lBF = lpostden - lpriden;

The log-Bayes factors .ln BF15, . . . , ln BF45 are estimated to be, respec-
tively, .−2.08, .−2.63, .10.69, and  . 5.72. In other words, compared to model 
. M5, the data favor models . M3 and . M4, but not models . M1 and . M2. Further-
more, note that the Bayes factor .BF34 can be written as 

. BF34 = f(y | M3)
f(y | M4) = f(y | M3)

f(y | M5) × f(y | M5)
f(y | M4) = BF35

BF45
.

Hence, an estimate of .BF34 is .e10.69−5.72 ≈ 144. To conclude, the data deci-
sively prefer the cubic polynomial regression model. If we assume equal prior 
probabilities for all the models, the cubic polynomial is about 144 times more 
likely than the next best model (4th-order polynomial) given the data. 

8.7 Problems 

8.1. Let .f(x), x ∈ (0, 1) be the pdf of .X ∼ Beta(α, β):☞ 74 

a. Prove that the derivative of f (or, equivalently, of . ln f) has a unique zero 
at .x∗ = (α − 1)/(α + β − 2) in the interval .(0, 1), provided that either 
.α > 1, β > 1 or .α < 1, β < 1. For which of these two regimes is . x∗ a 
maximum point? 

b. Show that .EX = B(α + 1, β)/B(α, β), where B is the beta function (3.11).☞ 74 
Using the properties of the gamma function (2.21), show that . EX = α/(α+☞ 48
β). 



8.7 Problems 263

8.2. Suppose . x1 = 1.1065, x2 = 0.5343, x3 = 11.1438, x4 = 0.4893, x5 =
2.4748 is an observed iid sample from the .Exp(λ) distribution. Consider 
Bayesian inference for the parameter . λ, using an improper prior .f(λ) = 1/λ. 

a. Show that the posterior pdf of . λ has a .Gamma(5, 15.7487) distribution. 
b. Give the expectation of the posterior pdf. 

8.3. Let .(x | λ) ∼ Poi(λ), and suppose that the prior distribution for . λ is 
.Gamma(a, b), where a and b are known. Find the posterior pdf of . λ. 

8.4. Let .x ∼ Gamma(α, λ). Show that the pdf of .z = 1/x is given by (8.6). ☞ 240 

8.5. Consider the transformation .[z1, . . . , zm+1]T I→ [y1, . . . , ym+1]T defined 
by .yi = zi zm+1, i = 1, . . . , m and .ym+1 = (1 − (z1 + · · · + zm)) zm+1. Show 
that the determinant of the corresponding matrix of Jacobi is .zm

m+1. This is 
used in the proof of Theorem 8.2. ☞ 247 

8.6. Let .Z = (Z1, . . . , Zm) ∼ Dirichlet(α1, . . . , αm+1). Show that the marginal 
distribution of . Zi is .Beta(αi,

∑
j /=i αj). Hint: use Theorem 8.2. ☞ 247 

8.7. Let .(x | p) ∼ Geom(p). Suppose that the prior distribution of p is .U(0, 1). 

a. Find the posterior pdf of p. 
b. Find the posterior mode. 
c. Find the posterior expectation. 

8.8. The data . 0.4453, 9.2865, 0.4077, 2.0623, 10.4737, 5.7525, 2.7159,
.0.1954, 0.1608, 8.3143 were drawn from an .Exp(1/θ) distribution. Consider a 
Bayesian model with a constant prior for . θ: 

a. Show that the posterior distribution of . θ is inverse-gamma, and determine 
the parameters. 

b. Determine estimates of the 0.025 and 0.975 quantiles of the posterior distri-
bution, using .N = 105 simulated samples from the posterior distribution. 

8.9. Suppose .x = [x1, . . . , xn]T is an iid sample from .N(μ, σ2) with known 
variance . σ2. As a prior for . μ take the .N(μ0, σ2

0) distribution for some fixed 
parameters . μ0 and . σ2

0 . The Bayesian model is therefore 

. μ ∼ N(μ0, σ2
0) ,

(x1, . . . , xn | μ) iid∼ N(μ, σ2) .

Show that the posterior pdf .f(μ | x) corresponds to the pdf of the . N(μ1, σ2
1)

distribution with 

.μ1 =
1

σ2
0
μ0 + n

σ2 x

1
σ2

0
+ n

σ2

and 1
σ2

1
= 1

σ2
0

+ n

σ2 .
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8.10. Consider the simplified Bayesian model for normal data in Sect. 8.2.1; 
that is, 

. f(μ, σ2) = 1/σ2 ,

(x | μ, σ2) ∼ N(μ1, σ2 In) .

The joint posterior pdf is 

.f(μ, σ2 | x) ∝
(
σ2)−n/2−1 exp

(

−1
2

∑n
i=1(xi − μ)2

σ2

)

. (8.29) 

The marginal posterior pdfs of . μ and . σ2 can be obtained by integrating out 
the other variable. 

a. Prove that 

.

n⎲

i=1
(xi − μ)2 =

n⎲

i=1
(xi − x)2 + n(μ − x)2 . (8.30) 

b. By using (8.30), show that 

.f(σ2 | x) ∝
(
σ2)−n/2−1/2 exp

(

−1
2

∑n
i=1(xi − x)2

σ2

)

. (8.31) 

c. Show that (8.31) corresponds to the . InvGamma
(
(n − 1)/2, s2

x(n − 1)/2)
)

distribution, where . s2
x is the frequentist sample variance of the . {xi}. 

d. Let . q1 and . q2 be the . γ/2 and .1−γ/2 quantiles of (8.31). Show that the . 1−γ
credible interval .(q1, q2) is identical to the classic confidence interval (5.20)☞ 136 
(with . α replaced by . γ). 

e. By using (8.30) and (8.6) show that☞ 240 

. f(μ | x) ∝
(

n⎲

i=1
(xi − μ)2

)−n/2

∝
)

(μ − x)2n

s2
xν

+ 1
(−(ν+1)/2

,

where .ν = n − 1. Verify that, in view of (2.24), this means that☞ 50 

. 

)
μ − x

sx/
√

n

I
I x

(

∼ tn−1 .

f. Let . q1 and . q2 be the . γ/2 and .1 − γ/2 quantiles of .f(μ | x). Show that 
the .1 − γ credible interval .(q1, q2) is identical to the classic confidence 
interval (5.19) (with . α replaced by . γ).☞ 135 

8.11. In Problem 8.10 compare the simulated densities in Fig. 8.3 with the 
exact ones. In particular, plot the pdf of .(σ2 | x), that is, the pdf of the random 
variable .(n−1)s2

x Y , where .Y ∼ InvGamma((n−1)/2, 1/2). Similarly, plot the 
pdf of .(μ | x); that is, of the random variable .x + Tsx/

√
n, where .T ∼ tn−1.
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8.12. In the zero-inflated Poisson model, random data .x1, . . . , xn are assumed 
to be of the form .xi = ri yi, where the .{yi} have a .Poi(λ) distribution and 
the .{ri} have a .Ber(p) distribution, all independent of each other. Given 
an outcome .x = [x1, . . . , xn]T, the objective is to estimate both . λ and p. 
Consider the following hierarchical Bayesian model: 

. p ∼ U(0, 1) ,

(λ | p) ∼ Gamma(a, b) ,

(ri | p, λ) ∼ Ber(p) independently ,

(xi | r, λ, p) ∼ Poi(λ ri) independently ,

where .r = (r1, . . . , rn) and a and b are known parameters. We wish to sample 
from the posterior pdf .f(λ, p, r | x) using the Gibbs sampler. 

a. Show that 

. f(r, λ, p | x) ∝ λa−1e−bλ
nI I

i=1
e−λ ri(λ ri)xi pri(1 − p)1−ri .

b. Show that 

. (λ | p, r, x) ∼ Gamma
(

a +
n⎲

i=1
xi, b +

n⎲

i=1
ri

)

,

. (p | λ, r, x) ∼ Beta
(

1 +
n⎲

i=1
ri, 1 + n −

n⎲

i=1
ri

)

and, for .k = 1, . . . , n, 

. (rk | λ, p, x) ∼ Ber
)

p e−λ

p e−λ + (1 − p) 1{xk=0}

(

.

c. Generate an iid sample of size .n = 100 for the zero-inflated Poisson model 
using parameters .p = 0.3 and .λ = 2. 

d. Implement the Gibbs sampler, generate a large (dependent) sample from 
the posterior distribution, and use this to construct .95% credible intervals 
for p and . λ using the data in (c). Compare these with the true values. 

8.13. For a Markov chain .x1, . . . , xn, the joint pdf is of the form: ☞ 216 

. f(x1, . . . , xn) = f(x1)f(x2 | x1)f(x3 | x2) · · · f(xn | xn−1) .

The corresponding Bayesian network is given in the left pane of Figure 8.9. 
An alternative Bayesian network for the same Markov chain is given in the 
right pane of the figure, where the arcs have been turned around. Show that
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both networks represent the same joint pdf. Hint: write .f(xt+1 | xt) in terms 
of .f(xt | xt+1). 

Fig. 8.9 Bayesian networks for a Markov chain 

8.14. Figure 8.10 shows the Bayesian network for a hidden Markov model. 
Here .x1, . . . , xn is a Markov chain on .{1, . . . , K}, defined by an initial (dis-
crete) pdf .f(x1) and transition probabilities .f(xt | xt−1), which are here as-
sumed to be known. For each time .t = 1, 2, . . . , n, the state of the chain, . xt, 
remains hidden. Instead, a variable . yt is observed, whose (known) distribution 
depends only on . xt; for example, .(yt | xt) ∼ N(xt, 1). 

Fig. 8.10 Bayesian network for a hidden Markov model 

A typical object of interest for such models is the posterior pdf .f(xt | y1:t), 
where .y1:t = (y1, . . . , yt). That is, we wish to assess the state at time t given 
all the observations at and before time t. 

a. Prove that 

.f(xt, y1:t) =
⎲

xt−1

f(xt, yt | xt−1, y1:t−1)f(xt−1, y1:t−1) . (8.32) 

b. Further, show that 

.f(xt, yt | xt−1, y1:t−1) = f(xt | xt−1)f(yt | xt) . (8.33) 

c. Express .f(x1, y1) in terms of .f(x1) and .f(y1 | x1). Explain how, with 
.f(x1, y1), (8.32), and  (8.33), the posterior distribution of . xt given . y1:t
can be determined recursively for .t = 2, 3, . . . , n. 

8.15. Find an appropriate conjugate family for the .Exp(λ) distribution, using 
Theorem 8.4.☞ 255
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8.16. Let .x = [x1, . . . , xn]T be an iid sample from .Exp(1/θ) for some . θ. 
Show that .θ ∼ InvGamma(α0, λ0) is a conjugate prior for this distribution. 
Determine the resulting posterior distribution. 

8.17. Suppose .f(θ | x) is the posterior pdf for some Bayesian estimation 
problem. For example, . θ could represent the parameters of a regression model 
based on the data . x. An important use for the posterior pdf is to make 
predictions about the distribution of other random variables. For example, 
suppose that, conditional on . x, some random vector . y depends on . θ via the 
conditional pdf .f(y | θ, x) = f(y | θ). Thus, conditional on . θ, the random 
vector . y is independent of . x. The  predictive pdf of . y given . x is defined as 
.f(y | x), which can be written as 

.f(y | x) =
9

f(y | θ)f(θ | x) dθ . (8.34) 

This can be viewed as the expectation of .f(y | θ) under the posterior pdf. 
Therefore, we can use Monte Carlo simulation to approximate .f(y | x) via 

. f(y | x) ≈ 1
N

N⎲

i=1
f(y | θi) ,

where the sample .{θi, i = 1, . . . , N} is obtained from .f(θ | x); for example, 
via MCMC. 

a. Prove (8.34). 
b. As a concrete example, suppose that the iid data . −0.4326, −1.6656,

.0.1253, 0.2877, −1.1465 come from some .N(μ, σ2) distribution. Define . θ =
[μ, σ2]. Let  .Y ∼ N(μ, σ2) be a new measurement. Estimate and plot 
the predictive pdf .f(y | x), using a sample .θ1, . . . , θN obtained via the 
Gibbs sampler of Example 8.2.1. Take  .N = 1000. Compare this with the ☞ 239 
“common-sense” Gaussian pdf with expectation . x (sample mean) and vari-
ance . s2 (sample variance). 

8.18. The bag of words method is a popular procedure for classification. 
Given are k objects that are each characterized by n features. For example, the 
objects could be k different people, and the features could be various facial 
measurements, such as the width of the eyes divided by the distance between 
the eyes, or the ratio of the nose height and mouth width. The features, 
.x1, . . . , xn say, have a known distribution and are assumed to be conditionally 
independent of each other given the object p; that is,  . f(x1, . . . , xn | p) =
f(x1 | p) · · · f(xn | p). Assuming a uniform prior for p, the posterior pdf is 
thus given by 

.f(p | x1, . . . , xn) ∝
nI I

i=1
f(xi | p) .
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To classify the object on the basis of the features, simply take the p that 
maximizes the unnormalized posterior pdf: 

a. Give the Bayesian network for the joint pdf of .p, x1, . . . , xn. 
b. Suppose the i-th feature distribution of object p is .N(μpi, σ2), .p = 1, . . . , k, 

.i = 1, . . . , n. Define .μp = [μp1, . . . , μpn]T, .p = 1, . . . , k. Let  . x =
[x1, . . . , xn]T be the vector of observed features. Let .p∗ = argminp IIμp−xII; 
that is, among all feature vectors .{μp} the vector . μp∗ is closest to . x. Show 
that . p∗ also maximizes the posterior pdf. 

c. Next, consider the case where the i-th feature of object p is . N(μpi, σ2
pi)

distributed. Table 8.2 lists the means . μ and standard deviations . σ of the 
normal feature distributions of four objects. The observed features of an 
object are .[x1, x2, x3]T = [1.67, 2.00, 4.23]T. How should this object be 
classified? 

Table 8.2 Feature parameters 

Feature 1 Feature 2 Feature 3 

Object .μ .σ .μ .σ .μ . σ

1 1.6 0.1 2.4 0.5 4.3 0.2 
2 1.5 0.2 2.9 0.6 6.1 0.9 
3 1.8 0.3 2.5 0.3 4.2 0.3 
4 1.1 0.2 3.1 0.7 5.6 0.3



Part III 
Advanced Models and Inference 

In Part III of the book, we consider estimation and inference for a wide variety 
of advanced models. Topics include shrinkage and regularization, generalized 
linear models with discrete responses, nonparametric models, autoregressive 
moving average models for time series, Gaussian models for data arising from 
repeated measurements, and state space models for data exhibiting time-
varying persistence and volatility. Both classical and Bayesian estimation of 
these models are covered. It is assumed that the reader is familiar with the 
statistical concepts and computational techniques discussed in Part II.
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Chapter 9 
Shrinkage and Regularization 

For some modern statistical analyses, it may be useful to combine frequentist 
and Bayesian techniques. Noticeable examples are found in the theory of 
shrinkage estimation and regularization. 

Classical (i.e., frequentist) estimation methods focus on obtaining unbiased 
estimators. However, when many parameters need to be estimated, unbiased-
ness may not always lead to the best estimators, in terms of their distance 
to the true parameters. 

9.1 James–Stein Estimator 

Consider n estimation problems, where in the i-th estimation problem, there 
is a single datum .Xi ∼ N(μi, 1), and it is assumed that the .{Xi} are inde-
pendent. The maximum likelihood estimator for . μi is simply . Xi, .i = 1, . . . , n. 
Similarly, the maximum likelihood estimator for the vector . μ = [μ1, . . . , μn]T
is .X = [X1, . . . , Xn]T. This estimator has a total mean square error (MSE) 
of 

. 

n⎲

i=1
E(Xi − μi)2 =

n⎲

i=1
Var(Xi) = n .

Can we do better, in terms of MSE, by using some biased estimator of . μ? To  
that end, let us examine the corresponding Bayesian model, with prior 

. μi ∼ N(α, τ2), i = 1, . . . , n, independently ,
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where . α and . τ2 are given hyperparameters, and with likelihood 

. (Xi | μi) ∼ N(μi, 1), i = 1, . . . , n, independently .

It follows, by integrating out the . μi, that 

.Xi ∼ N(α, 1 + τ2), i = 1, . . . , n, independently . (9.1) 

Moreover, the posterior pdf of . μ is 

. f(μ | x) ∝ p(x | μ)p(μ) ∝
nI I

i=1
e− 1

2 (xi−μi)2
e− 1

2
(μi−α)2

τ2 ,

which shows that conditional on . x, the  .{μi} are independent, and 

. (μi | xi) ∼ N

(
τ2xi + α

τ2 + 1 ,
τ2

τ2 + 1

)
= N(α + σ2(xi − α), σ2) ,

where .σ2 = τ2/(τ2 + 1). In particular, the posterior mean for . μi is 

.α + σ2(xi − α) . (9.2) 

The idea is now to estimate . α and . σ2 from the data, using the (9.1). We  
can estimate these parameters in a purely frequentist way. Namely, . α can be 
estimated unbiasedly via the sample mean: 

. ~α def= X

and . σ2 can be estimated unbiasedly via the estimator: 

.~σ2 def= 1 − n − 3
∑n

i=1(Xi − X)2
, (9.3) 

for .n ≥ 4; see Problem 9.1. If we plug  . ~α and . ~σ2 into (9.2), we obtain the 
famous James–Stein estimator (James and Stein, 1961): 

.~μi = X +
(

1 − n − 3∑n
i=1(Xi − X)2

)
(Xi − X), i = 1, . . . , n . (9.4) 

Depending on the spread of the . {μi}, the James–Stein estimator can yield a 
significant reduction of the MSE. The most striking fact is that for .n ≥ 4, it  
always improves on the total MSE for the unbiased case, no matter what . μ
is! You can try it out yourself in the following Julia code.
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jamesstein.jl 

using StatsBase, LinearAlgebra,Plots 
n = 100 
# mu = rand(n)*100 .- 50 # not much difference 
mu = rand(n)*0.1 .- 0.05 # a lot of difference 
K = 10000 
mse_js = zeros(K) 
mse = zeros(K) 
for k=1:K 

global mu,n 
X = mu  +  randn(n) 
mu_js = mean(X) .+ (1 - (n-3)/(var(X)*(n-2)))*(X .- mean(X)) 
mse_js[k] = norm(mu_js - mu)^2 mse[k] = norm(X - mu)^2 

end 
m1 = mean(mse_js) 
m2 = mean(mse) 
print("MSE JS =", m1," MSE MLE = ",m2) 

That the James–Stein is a shrinkage estimator, which shrinks the unbiased 
estimator toward values which are closer to the true mean, is illustrated in 
Fig. 9.1. The  .{μi}10

i=1 were here drawn uniformly on .[−2, 2].

-4 -3 -2 -1 0 1 2 3 

True 

James-Stein 

MLE 

Fig. 9.1 The James–Stein estimator shrinks the estimates toward the true means 

The moral of this story is that for high-dimensional parameter estimation 
problems, shrinkage estimators may provide better overall estimates than 
unbiased ones. In the next section, we derive shrinkage estimators for linear 
regression. 

9.2 Ridge Regression 

Ridge regression is a simple modification of ordinary regression that yields 
shrinkage estimators.
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We motivate the method via the Bayesian normal linear model of Sect. 8.2.2. 
In particular, suppose the likelihood of the data .y = [y1, . . . , yn]T is specified 
by 

. (y | β, σ2) ∼ N(Xβ, σ2In) ,

where .X = [xij ] is the (known) .n × m design matrix and . β = [β1, . . . , βm]T
and . σ2 are unknown parameters. 

We put an improper prior .1/σ2 on . σ2, and, given . σ2, the prior distribution 
for . β is .N(0, σ2/λ Im), where .λ > 0 is a regularization parameter. Thus,  
the (joint) prior density of . β and . σ2 is given by 

. f(β, σ2) ∝ 1
σ2 × (2πσ2)−m/2 exp

(
−λIIβII2

2σ2

)
.

Consequently, similar to the derivation of (8.11), the posterior density is of 
the form: 

.f(β, σ2 | y) ∝
(
σ2)−(n+m)/2−1 exp

(
−IIy − XβII2

2σ2 − λIIβII2

2σ2

)
. (9.5) 

By integrating out . σ2, we find: 

.f(β | y) ∝
(
IIy − XβII2 + λIIβII2)−(n+m)/2

. (9.6) 

The ridge regression estimator . ~β is taken to be the maximum posterior 
estimate of . β, that is, the value of . β for which the posterior pdf is maximal. 
Thus, 

.~β = argmin
β

IIy − XβII2 + λIIβII2
, ,, ,

L(β)

. (9.7) 

The objective function L in (9.7) is strictly convex and differentiable (see 
Problem 9.4), so the solution of this optimization problem can be found by 
identifying the stationary points of L; that is, by solving .∇L(β) = 0. This 
leads to the system of linear equations: 

.XT(Xβ − y) + λ β = 0 . (9.8) 

If .λ = 0, these are simply the normal equations (5.9), so that then . ~β is☞ 130 
the ordinary least-squares estimate. For any .λ > 0, the matrix . XTX + λIm

is invertible (see Problem 9.2), even if .XTX is not. This is of particular 
relevance when there are more explanatory variables than observations, i.e., 
.m > n. In that case the normal equations have multiple solutions. However, 
the ridge regression estimator is still unique for any .λ > 0, and is given by 

.~β = (XTX + λIm)−1XTy . (9.9) 

In fact, by taking the limit of .(XTX + λIm)−1XT as .λ → 0, we obtain 
the pseudo-inverse . X+ of . X. Thus, even in the case where .m > n, the corre-
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sponding estimator is of the form .X+y, as in  (5.12), although . X+ is no longer 
defined by (5.11). Moreover, it can be shown that this estimator is the solution 
to the normal equations with the smallest squared norm .IIβII2 =

∑m
i=1 β2

i . 
For .λ > 0, and a given . X, an optimal choice for the parameter . λ is typically 

determined from test data or via cross-validation. 

Example 9.1 (Ridge Regression). Let us examine a ridge regression sce-
nario in which the design matrix . X is of dimension .100 × 20 and where its 
entries are drawn independently from the .U(0, 1) distribution. Let the i-th 
component of the 20-dimensional true parameter vector . β be .βi = i/10 if 
.i ∈ {1, . . . , 10} and .βi = 0 if .i ∈ {11, . . . , 20}. The 100-dimensional data 
vector . y is generated from the model: 

. Y = Xβ + σε ,

where .σ = 3 and .ε ∼ N(0, I100). Figure 9.2 shows the components of . β as a 
function of the regularization parameter . λ, as determined from (9.9). We see  
the shrinkage of the vector . ~β with increasing . λ. 

0 0.5 1 1.5 2
-0.5 

0 

0.5 

1 

1.5 

Fig. 9.2 Ridge regression estimates as a function of the regularization parameter . λ

Figure 9.3 shows the true values of each . βi as well as the ordinary least-
squares (OLS) estimates and the ridge regression estimates, for .λ = 0.74. We  
see that the ridge regression estimates are on average significantly closer to 
the true parameter values. 

Finally, Fig. 9.4 shows how the squared error .II~β − βII2 varies with . λ. 
In this case the optimal value for . λ was . 0.74, which was used in Fig. 9.4. 
Compared with the ordinary least-squares case, the ridge estimate has a 
decidedly reduced squared error (around 2.5 times smaller). Of course, in 
practical situations the true . β is not known.
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Fig. 9.3 True and estimated parameters for the linear model 
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Fig. 9.4 Ridge regression solutions for a simple linear regression problem 

As the .m > n case illustrates, the ridge estimator (9.9) can be useful when 
the matrix .XXT is singular or ill-conditioned, e.g., comprised of highly corre-
lated explanatory variables. Moreover, for cases that are at risk of overfitting,☞ 121 
i.e., when .IIy − X~βII is 0 or very small for some .~β ∈ R

m, imposing a penalty 
on the squared norm of . β, as in  (9.7), may benefit the predictive performance 
of the prediction function .x I→ xT~β. Note that for large . λ, the squared-norm 
penalty will be the dominant term in the optimization problem (9.7), and  
therefore .~β → 0 as .λ → ∞. 

Finally, using optimization theory (see, e.g., Boyd and Vandenberghe 
2004), it is possible to recast the regularized minimization program: 

. min
β

IIy − XβII2 + λIIβII2

in (9.7) as the constrained minimization program
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.

min
β

IIy − XβII2

subject to IIβII2 ≤ b
(9.10) 

for some .b ≥ 0. In fact, the relation between the regularization constant . λ
and the bound b is that .b = II~βII2, where . ~β is the minimizer of the objective 
function L in (9.7). Thus, regularization forces . β to lie in a restricted class 
of parameters, and as a result the class of candidate prediction functions 
.x I→ xTβ is reduced. 

9.2.1 Gram Matrix 

Suppose that .n ≥ m and that . X has full rank m. Then, any vector . β ∈ R
m

can be written as a linear combination of the features . {xi}; that is  

. β =
n⎲

i=1
αi xi

for some vector .α = [α1, . . . , αn]T ∈ R
n. For .n > m there is a whole subspace 

of solutions . α. As the feature vectors form the rows of . X, and thus the 
columns of . XT, we can write .β = XTα. Equation (9.8) then leads to 

.(XXT + λIn)α = y . (9.11) 

This is now a system of n equations and n unknowns, as opposed to (9.8), 
which has m equations and m unknowns. The .n × n matrix .K = XXT is 
called the Gram matrix of the feature vectors, that is, the matrix of inner 
product terms .(xi, xj) = xT

i xj . The Gram matrix is symmetric and not 
invertible for .n > m. Do not confuse it with the matrix .XTX, which has 
dimension .m × m. Assuming invertibility of .K + λIn (again, which is always 
the case when .λ > 0), the solution to (9.11) is 

. ~α = (K + λIn)−1y ,

which only depends on the training features through the Gram matrix. See 
also Problem 9.13. For  .λ = 0 the matrix . K is not invertible. Note that 
(with .λ > 0) the optimal prediction function based on the training data 
.τ = {(xi, yi)} is a linear combination of inner products: 

.gτ (x) = xT~β = xTXT~α =
n⎲

i=1
~αi (xi, x) . (9.12)
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9.2.2 Not Penalizing the Constant Feature 

When .λ → ∞, the optimal prediction function shrinks to 0, and has no merit 
for prediction. It would be better if it were to shrink to the constant . y (the 
average of the response data), as this would correspond to the default model 
.Y ∼ N(μ, σ2), rather than .Y = 0. To achieve this, we modify the optimization 
problem (9.7) in such a way that the constant feature is not penalized. This 
requires a slight alteration of the notation. In particular, we are interested in 
prediction functions of the form .x I→ β01 + xTβ, where . 1 is the .n × 1 vector 
of 1s and .x = [x1, . . . , xm]T. We thus have  .m + 1 features, rather than m. 
The optimal . β0 and . β are found from the modified optimization problem: 

. min
β0,β

II y − β01 − Xβ II2 + λ IIβII2 . (9.13) 

Note that the optimal prediction function converges to . y as .λ → ∞. The ob-
jective function in (9.13) is strictly convex and differentiable, so the solution 
follows again by identification of the stationary points, which leads to the 
linear equations: 

.XT(β01 + Xβ − y) + λ β = 0 , (9.14) 

and 
.nβ0 = 1T(y − Xβ) . (9.15) 

This means that we can solve . β from 

.(XTX − n−1XT11TX + λ Im)β = (XT − n−1XT11T)y , (9.16) 

and determining . β0 from (9.15). By making the substitution (9.15) in the 
quadratic form .IIy−β01−XβII2 in (9.13), we can effectively eliminate . β0 from 
our optimization problem by centering the data, that is, by premultiplying 
. y and . X with the centering matrix .C = In − n−111T, which subtracts the 
mean from . y and each column of . X. Written out, we have: 

. y − β01 − Xβ = y − n−11T1(y − Xβ) − Xβ = Cy − CX .

To find a Gram matrix representation as in Sect. 9.2.1, let us assume 
again that .n ≥ m and that . X has full (column) rank m. Then, with 
.β = XTα, (9.16) reduces to 

. (CK + λIn)α = Cy ,

where .K = XXT is the Gram matrix. Assuming invertibility of .CK + λIn, 
we have the solution: 

.~α = (CK + λIn)−1Cy ,
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which depends on the training feature vectors .{xi} only through the Gram 
matrix. From (9.15), the solution for the constant term is .~β0 = 1T(y−K~α)/n. 

Thus, similar to (9.12), the optimal prediction function is an affine com-
bination of inner products: 

. gτ (x) = ~β0 + xTXT~α = ~β0 +
n⎲

i=1
~αi (xi, x) ,

where the coefficients . ~β0 and . ~αi only depend on the inner products .{(xi, xj)}. 

Example 9.2 (Not Penalizing the Constant Feature). We illustrate 
in Fig. 9.5 how the solutions of the two differently penalized ridge regression 
problems behave as a function of the regularization parameter . λ. The data 
used is that of the elementary normal linear regression model 

. Yi = β0 + β1xi + εi, i = 1, . . . , n ,

with .{εi} ∼iid N(0, 1), .n = 30, .β0 = 1 and .β1 = −2. The explanatory vari-
ables were independently drawn from the uniform distribution on the interval 
.[0, 10]. 

The left panel of Fig. 9.5 shows the positions (indicated by the “+” sym-
bols) of the ridge regression estimates for various values of . λ; specifically, 
.λ/n ∈ {0.0, 0.1, 1, 10, 30, 100}. The contours are those of the squared-error 
loss (actually the logarithm thereof), which is minimized with respect to the 
model parameters . β0 and . β1. We see that for large values of . λ, the estimates 
tend to the origin .(0, 0). The circles in the figure are centered at .(0, 0) and 
have a radius equal to the norm of . ~β. They illustrate the important point 
that the regularization in ridge regression is equivalent to imposing a bound 
on the (squared) norm of the parameter vector . β. For large . λ there is a heavy 
restriction on the norm of . β, while for .λ = 0, there is no restriction, so that 
in this case the solution corresponds to the ordinary least-squares solution 
(indicated by the symbol “o”). 

The right panel of Fig. 9.5 also displays the positions of the ridge regression 
estimates for various values of . λ, but now regularization is only applied to 
the parameter . β1, not to . β0, which corresponds to the constant feature. The 
regularization parameters are here .λ/n ∈ {0.0, 0.8, 3, 8, 20, 100}. The red line 
segments depict the allowed intervals in which . β1 can lie, for each . λ. For large 
. λ, . β1 goes to 0, while . β0 goes to . y, which in this case is .−8.88. For .λ = 0, we  
obtain again the ordinary least-squares solution.
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Fig. 9.5 Ridge regression solutions for a simple linear regression problem. Left: both 
. β0 and . β1 are regularized. Right: only . β1 is regularized 

9.3 Lasso Regression 

We motivated the ridge regression estimator in (9.7) via a Bayesian normal 
linear model. Let us repeat the arguments, but now with a joint prior density 

. f(β, σ2) ∝ 1
σ2

(
λ

4σ2

)m

exp
(

−λIIβII1

2σ2

)
,

where .IIβII1 =
∑m

i=1 |βi|. The distribution with pdf . x I→ 2−m exp(−IIxII1)
is called the Laplace distribution and is the multivariate equivalent of 
the double exponential distribution. A dotplot from the two-dimensional☞ 196 
Laplace distribution is given in Fig. 9.6. In contrast to the spherical contours 
of the multivariate normal distribution, the Laplace distribution has square 
contours. Using a Laplace rather than a normal prior assigns more credibility 
to the corner points, that is, to the case where one or more coordinates are 0. 

The posterior density is now given by 

.f(β, σ2 | y) ∝
(
σ2)−(n+m)−1 exp

(
−IIy − XβII2

2σ2 − λIIβII1

2σ2

)
(9.17) 

and is of the same form as in (9.5), except that the squared Euclidean norm 
.IIβII2 is replaced with the 1-norm of . β. By taking again the maximum pos-
terior estimate of . β, we arrive at 

.~β = argmin
β

IIy − XβII2 + λIIβII1 . (9.18)
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Fig. 9.6 10000 realizations from the bivariate Laplace distribution. Compare with 
Fig. 3.6 

This gives the so-called lasso (least absolute shrinkage and selection opera-
tor) estimator. Similar to (9.10), the minimization program 

. min
β

IIy − XβII2 + λIIβII1 (9.19) 

is equivalent to the constrained minimization program 

.

min
β

IIy − XβII2

subject to IIβII1 ≤ b ,
(9.20) 

where the connection between b and . λ is that .b = II~βII1, with . ~β being the solu-
tion to (9.18). Note that the constraint region matches the (square) contours 
of the Laplace distribution. 

One could of course create many different regularization problems by 
changing the regularization term with some other function of . β. However, 
using the lasso estimator has particular advantages. The first is that the 
optimization problem in (9.18) is, as in ridge regression, a convex optimiza-
tion problem. Although no explicit solution exists, such as in (9.9), the lasso 
estimator can be found very efficiently, as described next. 

By introducing an auxiliary variable . z, we can write (9.19) as 

.

min
x,z

IIy − XβII2 + λIIzII1

subject to β − z = 0 .
(9.21)
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One way to solve such problems efficiently is to minimize the augmented 
Lagrangian: 

. L(β, z, μ) = IIy − XβII2 + λIIzII1 + μT(β − z) + ϱIIβ − zII2

for some .ϱ > 0, where . μ is a Lagrange multiplier. The alternating direction 
method of multipliers (ADMM) algorithm (Boyd et al., 2010) updates the 
components iteratively as follows: 

.β(t+1) = argmin
β

L(β, z(t), μ(t)) (9.22) 

z(t+1) = argmin 
z 

L(β(t+1), z, μ(t)) (9.23) 

μ(t+1) = μ(t) + 2ϱ
(

β(t+1) − z(t+1)
)

. (9.24) 

Explicitly, the ADMM updates are (see Problem 9.6) 

.β(t+1) = (XTX + ϱ Im)−1(XTy + ϱ(z(t) − u(t))) (9.25) 

z(t+1) =
(

β(t+1) + u(t) − λ/(2ϱ)
)+ 

−
(

−β(t+1) − u(t) − λ/(2ϱ)
)+ 

(9.26) 

u(t+1) = u(t) + β(t+1) − z(t+1) , (9.27) 

where .u(t) = μ(t)/(2ϱ), and the notation . a+ means .max{a, 0}. 

Example 9.3 (Lasso Regression). We repeat the estimation of . β0 and 
. β1 in Example 9.2, but now using lasso regression and including both . β0 and 
. β1 in the regularization. The ADMM method was used to find the estimates. 
The results are displayed in Fig. 9.7; compare with the left panel in Fig. 9.5. 

The squares in the figure are centered at .(0, 0) corresponding to points 
.(β0, β1) with .IIβII1 = |β0| + |β1| = b for various values of b, exhibiting the 
square constraint region in (9.20). The given solutions correspond to . λ/n ∈
{0.0, 0.1, 0.5, 20, 75, 50, 100}. We see that the optimal solutions for large . λ lie 
exactly in a corner point of the constraint region. In particular, the estimate 
for . β0 is 0 for large value of . λ. 

When it is undesirable to regularize the constant term, one can center 
the data to eliminate . β0 from the analysis, in the same way as described in 
Sect. 9.2.2 for ridge regression. That is, to solve the modified program 

. min
β0,β

II y − β01 − Xβ II2 + λ IIβII1 , (9.28) 

first center the data via .X = CX and .y = Cy and then solve the original 
lasso program (9.19). In addition, if components of . β are vastly different in 
magnitude, it is often recommended to further scale the input matrix . X to 
have columns with standard deviation 1. 

Example 9.3 hints at a second reason why the lasso estimator has merit: 
it  can be used for  model selection. Namely, the solutions of (9.18) tend to lie
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Fig. 9.7 Lasso regression solutions. Compare with Fig. 9.5 

on the corners of the constraint region .IIβII1 ≤ b. Consequently, a significant 
number of components may be exactly zero, especially for larger values of 
. λ. Such sparsity is desirable in models that contain many parameters. A 
graphical methodology for model selection is to plot . ~β against . λ or, more 
transparently, . ~β against .II~βII1 for . λ ranging from 0 to some large enough 
value where .~β = 0. Inspection of such regularization paths or coefficient 
profiles may help assess which parameters should be included in a more 
parsimonious (i.e., simpler) model to explain the variability in the observed 
responses. 

Example 9.4 (Regularization Paths). Figure 9.8 shows the regulariza-
tion paths for .p = 20 coefficients from the same linear model and data as in 
Example 9.1. In particular, we have .βi = i/10 for .i = 1, . . . , 10 and .βi = 0 for 
.i = 11, . . . , 20. Before applying the ADMM algorithm, the data was centered, 
but not standardized. 

As the 1-norm of the parameter vector . β increases, more and more coeffi-
cients become non-zero. The order in which this happens is roughly the same 
as the magnitude of the components; so first .β10 = 1 is selected as a non-zero 
component, then .β9 = 0.9, and so on. When the 1-norm reaches around 3, all 
the non-zero components except .β1 = 0.1 have been correctly identified as 
being significant, and the remaining 10 parameters are estimated as exactly 
0. The regularization parameter . λ varied here from 0 to 2000. For .λ = 0, the  
1-norm of the ordinary least-squares solution was here 6.1. The parameter . ϱ
was taken to be equal to 100.
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Fig. 9.8 Regularization paths for lasso regression solutions as a function of the 1-norm 
of the solutions. The solid blue lines correspond to the non-zero components and the 
dotted orange lines to the components that are 0 

9.4 False-Discovery Rate 

Suppose we perform a large number of statistical tests, such as the two-
sample t-test in Example 5.16, providing an outcome of the test statistic for 
each test. For example, the data could be measurements on n different genes 
for a group of cancer patients and a control (reference) group. For each of 
the n genes, a different two-sample t-test is performed, and the objective is 
to determine which are the principal genes associated with having cancer. 
Simply rejecting/accepting each of the n on the basis of a fixed significance 
level . α will introduce many false -positive results. In particular, if none of the 
n genes have any effect on the cancer, the expected number of false positives 
is . nα. 

To reduce the number of false positives, we can use a mix of Bayesian 
and frequentist reasoning (Efron and Hastie, 2016). Let .Z1, . . . , Zn denote 
the test statistics of the n statistical tests. Under . H0 each . Zi is assumed to 
have a known continuous distribution, such as .N(0, 1), . χ2

n or . tn, with cdf 
. F0 and pdf . f0. For simplicity, we can assume that we are dealing with right 
one-sided tests, so that the p-value corresponding to an outcome z of Z is 
given by .1 − F0(z). 

Consider the following Bayesian model: 

.
(M1, . . . , Mn) iid∼ Ber(1 − π0)

(Zi | M1, . . . , Mn) ∼ fMi
, i = 1, . . . , n ,

(9.29)
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where n is large, . π0 is close to 1, and . f1 is unknown. Here, .{Mi = 0} denotes 
the event that the i-th null hypothesis is accepted, and . π0 is the prior prob-
ability of this happening. The second line of the model specifies that if the 
null hypothesis holds true, each test statistic Z has pdf . f0, and under the 
alternative hypothesis, it has pdf . f1, which is typically unknown. 

Using Bayes’ formula, the probability of a “false discovery” for test statistic 
z is 

. pfd(z) = P(Mi = 0 | Zi ≥ z) = π0(1 − F0(z))
1 − F (z) ,

which may be estimated via 

. ~pfd(z) = π0(1 − F0(z))
1 − Fn(z) ,

where . Fn is the empirical cdf of the .z1, . . . , zn, as in  (7.1). Ordering the p-
values as .p(1) ≤ p(2) ≤ · · · ≤ p(n) and z-values as .z(1) ≥ z(2) ≥ · · · ≥ z(n), we  
have: 

. ~pfd(z(i)) =
π0p(i)

i/n
.

Remembering that . π0 is close to 1, the above suggests the following rule: 
reject the null hypothesis if the estimated false discovery rate is less than or 
equal to a threshold q. In other words, reject the null hypothesis for the i-th 
smallest p-value if 

. p(i) ≤ i

n
q .

Algorithm 9.1. (Benjamini–Hochberg (BH) Method). 

1. Order the p-values from smallest to largest: .p(1) ≤ p(2) ≤ · · · ≤ p(n). 
2. Reject the null hypothesis corresponding to the i-th smallest p-value 

if .p(i) ≤ iq/n. 

An alternative, but equivalent, procedure is to first “adjust” the p-values, 
and then accept or reject the null hypotheses based on q as significance level, 
just as in ordinary hypothesis testing. The adjusted p-values . p∗

(i), i = 1, . . . , n
of the original sorted p-values .p(i), i = 1, . . . , n are found as follows: 

1. Initialize .c = 1 and .i = n. 
2. Set . p∗

(i) = min{c, p(i)n/i}
3. Set .c = p∗

(i) and .i = i − 1. 
4. If .i = 0 stop; otherwise, return to Step 2. 

Example 9.5 (FDR). We simulated .n = 5000 test statistics and p-values 
from the Bayesian model (9.29), with .π0 = 0.95, where . f0 is the pdf of the 
.N(0, 1) distribution and . f1 is the pdf of the .N(4, 4) distribution. Figure 9.9
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shows a kernel density estimate (blue line) of the test statistics. The null 
density . f0 is shown as the dotted red line. The figure indicates that there are 
a large number of null cases, but also implies the existence of non-null cases 
that are deserving to be identified.
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Fig. 9.9 Kernel density estimate of 5000 test statistics and the pdf of the . N(0, 1)
distribution under the null hypothesis 

The top panel of Fig. 9.10 illustrates the BH method with .q = 0.05. The  
number of identified non-null cases is here 143. Thus, . p(143) ≤ 143q/n =
0.00143, but .p(144) > 0.00143. The bottom panel shows the adjusted sorted 
p-values. We see exactly the same cutoff 143. 
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Fig. 9.10 Illustration of the BH method. Top: sorted p-values (blue). Bottom: sorted 
adjusted p-values
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The p-values corresponded to a two-sided test; so for a test statistic z, the  
p-value is .2(1 − Φ(z)), where . Φ is the cdf of the .N(0, 1) distribution. For the 
particular outcome in Fig. 9.10, the actual number of non-null cases was 213. 

The BH method can also be analyzed in a purely probabilistic way. De-
noting the p-values of the null cases by .P1, . . . , Pn0 and of the non-null cases 
by .Pn0+1, . . . , Pn, the model assumption is that the null p-values are inde-
pendent and .U(0, 1) distributed, which is an appropriate assumption; see 
Problem 9.10. The key stochastic processes to investigate are 

. Vt =
n0⎲

i=1
1{Pi ≤ t} and Rt =

n⎲

i=1
1{Pi ≤ t}, t ∈ [0, 1] .

Thus, . Vt is the number of null p-values less than or equal to threshold t, and  
. Rt is the number of all p-values less than or equal to t. Under the above 
assumptions, the random process .(Vt/t, t ∈ [0, 1]) is a martingale with “time” 
t running backward and with filtration .Ft = σ(Vu, Ru, u ≥ t), t ∈ [0, 1]. The  
precise meaning (see Problem 9.11) is that 

.E

I
Vs

s

IIIIVu, Ru, u ≥ t

I
= Vt

t
, s ≤ t . (9.30) 

Since .(Vt/t) is a martingale, it has the same expectation for all t; in par-
ticular it holds that .EVt/t = EV1 = n0. By  Doob’s stopping theorem (see, 
e.g., Kroese and Botev 2023, Chapter 5), the same holds if t is replaced 
with any (bounded) random stopping time T relative to the filtration . (Ft), 
meaning that every event .{T ≥ t} can be discerned from the information on 
.Vu, Ru, u ≥ t. The random time 

. T = sup{t ∈ [0, 1] : Rt ≥ tn

q
}

is such a bounded stopping time, with .RT = Tn/q. Using these definitions, 
we can express the proportion of false discoveries found by the BH method 
as 

. 
VT

RT
= q

n

VT

T
.

The expectation of this random variable is called the false-discovery rate. 
Consequently, by Doob’s stopping theorem, we have: 

. E
VT

RT
= q

n
E

VT

T
= q

n
EV1 = n0

n
q ≤ q.

That is, the false-discovery rate is bounded by q .
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9.5 Problems 

9.1. Show that . ~σ2 in (9.3) is an unbiased estimator for . σ2. 

9.2. Show that .XXT + λIm is invertible for any .λ > 0. 

9.3. In the Bayesian setting of ridge regression in Sect. 9.2, the posterior 
expectation of . β is identical to . ~β in (9.7). Prove this, using Theorem 8.1. 

9.4. We can extend the definition of convexity in (2.9) to the n-dimensional 
case as follows. Let .X ⊆ R

n. A function .h : X → R is said to be convex on 
. X if for each . x in the interior of . X , there exists a vector . v (depending on . x) 
such that 

.h(y) ≥ h(x) + (y − x)T v, y ∈ X . (9.31) 

The vector . v is typically the gradient of h at . x, but can be more general, 
and is thus called a subgradient: 

a. Show that the function h defined by .h(x) = IIAx + bII2, where . A is a 
matrix and . b a vector, is convex. 

b. Show that the sum of two convex functions is again convex. 

9.5. 

a. Show that the function 

.g(z) = (β − z)2 + μ(β − z) + λ |z|, z ∈ R (9.32) 

is convex for any choice of .β, μ, and . λ. 
b. Show that 

. argmin
z

g(z) = (β + μ/2 − λ/2)+ − (−β − μ/2 − λ/2)+ , (9.33) 

where .x+ = max{x, 0}. 
c. The lasso shrinkage function for parameter .λ ≥ 0 is given by 

.Sγ(x) = x

(
1 − γ

|x|

)+

, x ∈ R . (9.34) 

Draw a plot of . S1 and show that (9.33) implies that 

. argmin
z

{
(z − x)2 + λ|z|

}
= Sλ/2(x) . (9.35) 

9.6. Using Problem 9.5 verify that the ADMM updates in (9.25)–(9.27) 
follow from (9.22)–(9.24).
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9.7. 

a. Write a Julia function that implements the ADMM algorithm, taking as 
input .X, y and . λ, and returning the solution, . b say, of (9.19). 

b. Apply the ADMM function to the data 

. y = Xβ + e ,

with 

. X =

⎡

⎢⎢⎢⎢⎣

8.46 4.73 6.26
5.29 0.98 5.54
6.99 2.96 0.38
9.87 4.67 8.89
9.58 9.22 5.98

⎤

⎥⎥⎥⎥⎦
,

.β = [0.1, 0.2, 0.3]T and .e = [−0.83, 0.93, −0.24, −0.40, −0.02]T. Before ap-
plying the ADMM algorithm, center the matrix . X and the vector . y. Verify 
that for .λ = 10, the solution to (9.19) is given by .b = [0, 0.05088, 0.22403]T, 
with 1-norm .0.27492. 

c. For . λ ranging from 0 to 30, produce the regularization paths in Fig. 9.11. 

Fig. 9.11 Regularization 
paths for the lasso esti-
mates as a function of 
their 1-norm 

9.8. Let 
. L(β) def= IIy − XβII2 + λ IIβII1 .

An alternative approach to solve the lasso minimization problem (9.19) is the 
coordinate descent method, which iteratively solves the one-dimensional 
optimization problems .minβj

L(β) for .j = 1, . . . , m. These optimization prob-
lems can be solved exactly, as will be shown next: 
a. Let . vj be the j-th column of . X and let .u¬j = y − Xβ + βjvj be the 

vector of residuals with the j-th residual set to 0. For a fixed . β, we wish 
to minimize .L(β + (x − βj)ej) with respect to x, where . ej is the j-th unit 
vector. With .zj = IIvjII2, show that 

.L(β + (x − βj)ej) = zj

I
(x − uT

¬jv/zj)2 + λ|x|/zj

I
+ const . (9.36)
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b. Show that (9.36) is minimized for 

.β∗
j = Sλ/(2zj)(uT

¬jvj/zj) = Sλ/(2zj)(βj + uTvj/zj) , (9.37) 

where .u = y = Xβ is the full vector of residuals and . Sγ is the lasso 
shrinkage function in (9.34). 

c. The coordinate descent method proceeds by iteratively updating . βj with 
(9.37) as in: 

Algorithm 9.2. (Coordinate Descent) 
1 Initialize .β and .u = y − Xβ 
2 Set .zj = IIvjII2, j  = 1, . . . , m  
3 repeat 
4 .βold = β 
5 for .j = 1, . . . , m  do 
6 .b = Sλ/(2zj)(βj + uTvj/zj) 
7 .u = u + (βj − b)vj 
8 .βj = b 
9 until .IIβ − βoldII < ε  

10 return .β 

Implement this algorithm as a Julia function and apply it to the same data 
as in Problem 9.7. 

9.9. Using the generic CE algorithm CEmin in Sect. A.7, verify the solution 
to (9.19) for the data in Problem 9.7b. 

9.10. Let T be the test statistic for a right one-sided statistical test. Recall 
from Sect. 5.3 that the null hypothesis is then rejected for large values of the 
test statistic. Suppose that T is a continuous random variable with cdf F 
under the null hypothesis. The p-value for an outcome t or T is in this case 
given by .PH0(T ≥ t) = 1 − F (t). Explain why under the null hypothesis the 
random p-value (i.e., the random variable .1 − F (X), where .X ∼ F ) has  a  
.U(0, 1) distribution: 

9.11. Show that (9.30) holds. 

9.12. Reproduce Fig. 9.10 using Julia. 

9.13. Suppose . X is an .n × m matrix and . y is an n-vector. Show that for 
.λ > 0, 

. XT(XXT + λIn)−1 = (XTX + λIm)−1XT .

Hence, the ridge regression estimator in (9.9) can be represented as .~β = XT~α, 
where .~α = (XXT + λIn)−1y.



Chapter 10 
Generalized Linear Models 

The linear models introduced in Chap. 4 deal with continuous response ☞ 101 
variables—such as height and crop yield—and continuous or discrete explana-
tory variables. For example, under a normal linear model , the responses .{Yi} ☞ 115 
are independent of each other, and each has a normal distribution with mean 
.μi = xT

i β, where . xT
i is the i-th row of the design matrix . X. However, these 

continuous models are obviously not suitable for data that take on discrete 
values. For example, we might want to analyze women’s labor market partic-
ipation decision (whether to work or not), voters’ opinion of the government 
(rating on the government performance on a scale of five), or the choice 
among a few cereal brands, as a function of one or more explanatory vari-
ables. In this chapter we discuss models that are suitable for analyzing these 
discrete response variables. We will first introduce the flexible framework of 
generalized linear models. 

10.1 Generalized Linear Models 

Definition 10.1. (Generalized Linear Model). A vector of (re-
sponse) data .Y = [Y1, . . . , Yn]T is said to satisfy a generalized linear 
model if the expectation vector .μ = EY can be written in the form: 

. μ = g−1(Xβ) ,

where . X is an .n × m design matrix (i.e., a matrix of explanatory 
variables), . β is an m-dimensional vector of parameters, and  . g−1 is 

© The Author(s), under exclusive license to Springer Science+Business 
Media, LLC, part of Springer Nature 2025 
J. C. C. Chan, D. P. Kroese, Statistical Modeling and Computation, 
Springer Texts in Statistics, https://doi.org/10.1007/978-1-0716-4132-3_10 

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4132-3protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-1-0716-4132-3_10
https://doi.org/10.1007/978-1-0716-4132-3_10
https://doi.org/10.1007/978-1-0716-4132-3_10
https://doi.org/10.1007/978-1-0716-4132-3_10
https://doi.org/10.1007/978-1-0716-4132-3_10
https://doi.org/10.1007/978-1-0716-4132-3_10
https://doi.org/10.1007/978-1-0716-4132-3_10


292 10 Generalized Linear Models

the inverse of a link function . g. The distribution of . Y may depend on 
additional dispersion parameters that model the randomness in the 
data that is not explained by the explanatory variables. 

A common assumption for . Y is that its components .Y1, . . . , Yn are inde-
pendent and come from some exponential family. The central focus is the 
parameter vector . β, which summarizes how the matrix of explanatory vari-
ables . X affects the response vector . Y . By choosing different members of the 
exponential family and different link functions, the class of generalized lin-
ear models can encompass a wide variety of popular models as special cases, 
some of which are discussed below. 

Example 10.1 (Normal Linear Model). The normal linear model . Y =
Xβ + ε in Sect. 4.5 is a special case of a generalized linear model. Here,☞ 115 
.μ = Xβ, so that the link function is simply the identity function: .g(z) = z. 
The vector . Y has a multivariate normal distribution: 

. Y ∼ N(μ, σ2 In) ,

where . σ2 is a dispersion parameter that models the residual randomness in 
the data. 

Example 10.2 (Binary Variable Regression Model). Suppose we are 
interested in the effectiveness of a certain insecticide. For this purpose an 
experiment is carried out as follows: the i-th insect is exposed to the insec-
ticide with dose level . xi, and we observe . Yi, whether the insect is killed or 
not. Thus, .Yi ∼ Ber(μi), where .μi = EYi is the “success” probability, which 
has to lie in the interval .(0, 1). Let . Y and . x be the response and explanatory 
vectors. One way to link the expectation vector .μ = [μ1, . . . , μn]T to . x is to 
specify . μi as 

. μi = F (β0 + β1xi)

for some cdf F and “regression” parameters . β0 and . β1. Defining the . n ×
2 design matrix .X = [1 x] and .β = [β0, β1]T, the distribution of . Y =
[Y1, . . . , Yn]T is completely specified by . μ, which in turn is determined by 
. Xβ. For different choices of F , we have different binary variable models. 
Common choices for F are (1) the cdf of the standard normal distribution 
and (2) the cdf of the logistic distribution. These are discussed in detail in 
the next section. The choice 

. Fex(x) = 1 − e−ex

gives the cdf of the extreme value distribution. The corresponding link 
function for each component is .F −1(z) = ln(− ln(1 − z)). Finally, by taking 
F as the cdf of the Student’s t distribution with parameter . ν, we obtain
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the so-called t-link model. One attractive feature of the t-link model is 
its flexibility; in particular, it includes the popular probit model (see next 
section) as a limiting case. 

10.2 Logit and Probit Models 

In this section we discuss two popular specifications for binary data: the pro-
bit model and the logit or logistic model. Both models are binary variable 
regression models of the form discussed in Example 10.2. More precisely, 
the responses .Y1, . . . , Yn are assumed to be independent Bernoulli random 
variables with success probabilities: 

. μi = F (xT
i β), i = 1, . . . , n ,

where . xi is the vector of explanatory variables corresponding to the i-th 
response, . β is the parameter vector of interest, and F is a cdf. 

10.2.1 Logit Model 

Definition 10.2. (Logit Model). Let . Yi denote the i-th binary re-
sponse, and let . xi represent the vector of explanatory variables and 
. β the associated parameter vector. In a logistic regression or logit 
model, the .{Yi} are independent and .Yi ∼ Ber(μi), with . μi = F (xT

i β),
where F is the cdf of logistic distribution: 

. F (x) = 1
1 + e−x

.

In other words, the component link function is . g(x) = ln(x/(1 − x)).

Example 10.3 (Logit Model). Figure 10.1 shows the outcomes of 500 in-
dependent binary response variables for a logistic regression model. The ex-
planatory variables .xi = [xi1, xi2]T, .i = 1, . . . , 500 were chosen uniformly on 
the unit square, and .β = [−8, 8]T. The S-shaped surface depicts the graph 
of the function: 

. p(x1, x2) = F (xTβ) = (1 + exp(8(x2 − x1))−1 .

For each given vector of explanatory variables .[xi1, xi2]T, the response . Yi is 
generated from a Bernoulli distribution with success probability .p(xi1, xi2).
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Using the same notation as in Definition 10.2, we now derive the log-
likelihood function, score function, and the information matrix for this model. 
Since the responses are independent Bernoulli random variables, the log-
likelihood function is given by 

. l(β; y) =
n⎲

i=1
[yi ln μi + (1 − yi) ln(1 − μi)] ,

Fig. 10.1 Responses (0 or 1) for a logistic regression model, with two explanatory 
variables for each response 

where .μi = (1 + e−xT
i β)−1 and .1 − μi = e−xT

i β/(1 + e−xT
i β). It follows that 

.ln μi = − ln(1 + e−xT
i β) and .ln(1 − μi) = −xT

i β − ln(1 + e−xT
i β). After some 

algebra, the log-likelihood function can be rewritten as 

.l(β; y) =
n⎲

i=1

I
(yi − 1)xT

i β − ln(1 + e−xT
i β)

I
. (10.1) 

Taking the gradient of the log-likelihood function, we obtain the score func-☞ 476 
tion 

.S(β; y) = ∇β l(β; y) =
n⎲

i=1

I
(yi − 1)xi + xi e−xT

i β

1 + e−xT
i

β

I

=
n⎲

i=1

I
yi − (1 + e−xT

i β)−1
I

xi

=
n⎲

i=1
(yi − μi) xi .
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Differentiating the score function with respect to . β and multiplying by . −1, 
we obtain the observed information matrix: ☞ 174 

.

I(β; y) = −∇2
β l(β; y) =

n⎲

i=1

e−xT
i β

(1 + e−xT
i

β)2
xi xT

i

=
n⎲

i=1
μi(1 − μi) xi xT

i .

(10.2) 

It is worth noting that the observed information matrix does not depend on 
the data . y, and therefore it coincides with the Fisher information matrix 
. I(β). Now, the maximum likelihood estimate can be computed numerically ☞ 175 
using, say, Fisher’s scoring method. Specifically, given an initial value . β0, for ☞ 186 
.t = 1, 2, . . . , iteratively compute 

. βt = βt−1 + [I(βt−1)]−1S(βt−1; y) ,

until the sequence .β0, β1, β2, . . . is found to have converged, using some pre-
fixed convergence criterion. Once the maximum likelihood estimate . ~β is ob-
tained, one can readily compute the corresponding asymptotic covariance 
matrix as .I−1(~β); see also Theorem 6.8. ☞ 183 

Example 10.4 (MLE for the Logit Model). In the development of 
drugs, bioassay experiments are often carried out on animals to test the 
potential toxicity of the drugs. Various dose levels are given to batches of 
animals, and the animals’ responses—typically characterized by a binary out-
come, say alive or dead—are recorded. The aim is to describe the probability 
of “success,” . μ, as a function of the dose, x, via a link function .g(μ) = β0+xβ1. 
In this example we analyze the data with a logit model with 

. μ = g−1(β0 + xβ1) = (1 + e−(β0+β1x))−1.

The outcomes of such an experiment are given in Table 10.1: a total of 20 
animals were tested, 5 at each of the 4 dose levels. 

Table 10.1 Animal mortality data 

Dose (log g/ml) Number of animals Number of deaths 

.−0.863 5 0 

.−0.296 5 1 

.−0.053 5 3 
.0.727 5 5 

One obvious quantity of interest is the estimate for . β1. In particular, we 
are interested to know whether or not it is positive (i.e., if the drug is toxic). 
In addition, we might also want to learn about the effect of a specific dose
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level. Since we only have two parameters, we first obtain a contour plot for the 
likelihood function to get a rough estimate for .β = [β0, β1]T. From Fig. 10.2 
it can be seen that the maximum likelihood estimate for . β is around .[1, 8]T.

-1 0 1 2 3  
0 

5 

10 

15 

Fig. 10.2 Contour plot for the likelihood function of the parameters in the bioassay 
example 

We use the following Julia code to implement Fisher’s scoring method 
to obtain the maximum likelihood estimate . ~β and the information matrix 
evaluated at . ~β. 

bioassay.jl 

using LinearAlgebra 
y = [0  0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1]';  
x =  repeat([-0.863 -0.296 -0.053 0.727], inner = (1,5)); 
X = [ones(20, 1) x']; # design matrix 
betat = (X' * X) \ (X' * y); # initial guess 
S =  ones(2, 1); # score 
IM = zeros(2,2) # info matrix 
e = 10^(-5); # tolerance level 
while sum(abs.(S)) > e # stopping criterion 

global betat, S, IM 
mu = 1 ./ (1 .+ exp.(-X * betat)) 
S =  sum(repeat((y - mu), outer=(1,2)) .* X, dims=1)' 
IM = X' * diagm(vec(mu .* (1 .- mu))) * X 
betat = betat + IM \ S 

end 
V = IM  \ I  
println(betat) 
println(V)
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Note that we have vectorized the computation of the score and information 
matrix in the code to avoid for-loops. For example, the information matrix . I
in (10.2) can be written as .I = XTBX, with 

. X =

⎡

⎢⎣
1 x1
...

...
1 x20

⎤

⎥⎦ and B =

⎡

⎢⎣
μ1(1 − μ1) · · · 0

. . .
0 · · · μ20(1 − μ20)

⎤

⎥⎦ .

The maximum likelihood estimate for . β and the associated covariance matrix 
.V = I−1(β) are 

.~β =
I
0.873
7.912

I
and V =

I
1.081 3.833
3.833 25.624

I
. (10.3) 

In particular, a 95% (approximate) confidence interval for . β1 is given as 
.7.912 ± 1.96

√
25.624 or .(−2, 17.83). It is interesting to note that we cannot 

reject the null hypothesis .β1 = 0 at significance level 0.05, even though the 
contour plot suggests that most of the mass of the likelihood lies in the region 
.2 − 20. One reason might be because the normal distribution is not a good 
approximation due to the small sample size. 

Further, suppose that we are interested in the “success” rate at dose level 
.−0.1 log g/ml. An estimate can be computed as .~μ = [1, −0.1]~β = 0.082, or 
8.2%. 

For Bayesian estimation of the logit model, we need to have an efficient 
way to obtain draws from the posterior distribution .f(β | y) for a given prior 
. f(β). Since the likelihood function for the logit model is highly nonlinear, the 
posterior distribution is typically nonstandard, and estimation requires more 
work. One feasible approach to obtaining posterior draws is to use Markov 
chain Monte Carlo. In particular, we will use an independence sampler (see 
Example 7.11) with a multivariate Student’s t proposal distribution. The ☞ 222 
reason for sampling from a Student’s t proposal is that the samples tend to 
be less concentrated around the mode of the distribution than is the case 
for the normal distribution, for example. As a result the samples from the 
independence sampler tend to be less correlated. 

Definition 10.3. (Multivariate Student’s t Distribution). An 
n-dimensional random vector . X is said to have a multivariate Stu-
dent’s t distribution with mean vector . μ and scale matrix . Σ if its 
pdf is given by
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.f(x; ν, μ, Σ) = c/
det(Σ)

I
1 + 1

ν
(x − μ)TΣ−1(x − μ)

I− ν+n
2

, (10.4) 

where .c = Γ( ν+n
2 )

(πν)n/2 Γ( ν
2 ) and .ν > 0 is the degrees of freedom parame-

ter. We write the distribution as .tν(μ, Σ). 

Similar to the multivariate .N(μ, Σ) distribution, a vector .X ∼ tν(μ, Σ)☞ 83 
can be viewed as an affine transformation .X = μ + B Z of a random vector 
.Z ∼ tν(0, In) from the standard multivariate Student’s t distribution, where 
.BBT = Σ. To simulate draws from the latter distribution, one can use the 
following theorem. The proof is left as an exercise; see Problem 10.1. 

Theorem 10.1. (Generating from the Multivariate Student’s t 
Distribution). Let .R ∼ N(0, In) and .W ∼ χ2

ν be independent. Then, 

. Z =
I

ν

W
R ∼ tν(0, In) .

To sample from the posterior pdf .f(β | y) of the logit model, we draw the 
proposal from a .tν(~β, V) distribution, where . ~β is the maximum likelihood 
estimate and . V the inverse information matrix evaluated at . ~β. 

Denote the pdf of the .tν(~β, V) distribution by .ft(β). In the independence 
sampler, given a current draw . β, the candidate . β∗ is accepted with proba-
bility: 

. α(β, β∗) = min
I

f(y | β∗)f(β∗)ft(β)
f(y | β)f(β)ft(β∗) , 1

I
,

where .f(y | β) is the likelihood function and .f(β) is the prior density. 
Example 10.5 (Bayesian Inference for Logit Model). We continue Ex-
ample 10.4. Taking a uniform prior for . β (i.e., .f(β) ∝ 1), the posterior pdf 
is proportional to the likelihood function. In other words, Fig. 10.2 is also a 
contour plot for the posterior distribution. For this example, the posterior 
pdf is proper even though the prior pdf is not. To compute other useful sum-
mary statistics, we use the independence sampler with .tν(~β, V) proposal, as 
described above. Note that both the proposal pdf . ft and the likelihood only 
have to be specified up to a multiplicative normalization constant. In fact, 
it is easier to specify the natural logarithms of both pdfs (up to an additive 
constant) and evaluate
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. ϱ(β, β∗) = ln f(y | β∗) + ln ft(β) − ln f(y | β) − ln ft(β∗) ,

and accept . β∗ with probability .min{exp(ϱ(β, β∗)), 1}. To obtain a draw from 
the proposal distribution, we first sample .Z = [Z1, Z2]T ∼ N(0, In) and 
.W ∼ χ2

ν = Gamma(ν/2, 1/2), and return 

.β∗ = ~β + B Z
/

ν/W , (10.5) 

where .BBT = V. Then, . β∗ follows the desired t distribution, by Theo-
rem 10.1. 

The following Julia code—to be appended to the code of Example 10.4— 
implements the independence sampler, and is used to obtain 10,000 draws 
from the posterior distribution after a burn-in period of 500. We use .ν = 5, 
giving samples that are spread out relatively far around the mode . ~β. 

bioassay_bayes.jl 

using Distributions 
B =  cholesky(V).L 
burnin = 500 
nloop = 10000 + burnin 
store_beta = zeros(nloop, 2) 
nu = 5;  # df for the proposal 
# log posterior density 
logf(b)=(sum((y .- 1) .* (X*b) - log.((1 .+ exp.(-X*b)))))[1] 
# log density of the t proposal 
logprop(b) = (-0.5*(nu+2)*log(1 .+ 

(b - betat)' * (V \ (b - betat)) / nu))[1] 
beta = betat # initialize the chain 
for i = 1:nloop 

global beta 
# candidate draw from the t proposal 
betac = betat + B * randn(2, 1) * 

sqrt(nu / rand(Gamma(nu / 2, 2))) 
rho = logf(betac) - logf(beta) + logprop(beta) -

logprop(betac) 
exp(rho) > rand() ? beta = betac : nothing 
store_beta[i, :] = beta' 

end 
store_beta = store_beta[burnin+1:end, :]  # discard the burnin 
cov(store_beta) 
mean(store_beta, dims=1)
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The posterior mean and posterior covariance matrix are estimated to be 

. E(β | y) =
I

1.36
11.98

I
, Var(β | y) =

I
1.25 4.47
4.47 35.62

I
.

It is interesting to note that even though the posterior mode coincides 
with the maximum likelihood estimate under the flat prior, the posterior 
mean of . β1 is substantially larger than the corresponding maximum likelihood 
estimate, reflecting the fact that the marginal distribution of . β1 is positively 
skewed. Further, a 95% credible interval for . β1 is estimated to be .(3.52, 26.18), 
which excludes the value 0. 

10.2.2 Probit Model 

Definition 10.4. (Probit Model). Let . Yi denote the i-th binary 
response, and let . xi represent the vector of explanatory variables and 
. β the associated parameter vector. In a probit model, the  .{Yi} are 
independent, and .Yi ∼ Ber(μi), with .μi = Φ(xT

i β), where . Φ is the cdf of 
the standard normal distribution. That is, the component link function 
is .g(x) = Φ−1(x). 

As in the logit model, we first derive the log-likelihood function, score func-
tion, and information matrix. Let .ϕ(x) denote the pdf of the standard normal 
distribution. Note that since the standard normal distribution is symmet-
ric around 0, it follows that .ϕ(x) = ϕ(−x) and .1 − Φ(x) = Φ(−x). Now,  
given the independent Bernoulli responses and the component link function 
.g(x) = Φ−1(x), the log-likelihood function for the probit model is 

.l(β; y) =
n⎲

i=1

I
yi ln Φ(xT

i β) + (1 − yi) ln Φ(−xT
i β)

I
. (10.6) 

The score function is the gradient of the log-likelihood function: 

. S(β) = ∇β l(β; y) =
n⎲

i=1

I
yi

ϕ(xT
i β)

Φ(xT
i β)

xi − (1 − yi)
ϕ(−xT

i β)
Φ(−xT

i β)
xi

I

=
n⎲

i=1
ϕ(xT

i β)
I

yi

Φ(xT
i β)

− 1 − yi

Φ(−xT
i β)

I
xi .

Noting that .
d

dx ϕ(x) = −x ϕ(x), we differentiate the score function again with 
respect to . β to obtain:
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. ∇2
β l(β; y) = −

n⎲

i=1
(xT

i β) ϕ(xT
i β)

I
yi

Φ(xT
i β)

− 1 − yi

Φ(−xT
i β)

I
xix

T
i

−
n⎲

i=1
ϕ(xT

i β)
I

yi ϕ(xT
i β)

Φ(xT
i β)2 + (1 − yi) ϕ(−xT

i β)
Φ(−xT

i β)2

I
xix

T
i .

Using the fact that .E(Yi) = Φ(xT
i β), the information matrix is therefore 

. I(β) =
n⎲

i=1

ϕ(xT
i β)2

Φ(xT
i β) Φ(−xT

i β)
xix

T
i .

Given the score function and the information matrix, one can then obtain 
the maximum likelihood estimate via Fisher’s scoring method as before. 

For a Bayesian analysis, we can sample from the posterior pdf using 
MCMC; for example, using a similar independence sampler as in the logit 
model. If we use a normal prior .β ∼ N(b0, V0), then the logarithm of the 
posterior pdf .f(β | y) ∝ f(β)f(y | β) is 

. ln f(β | y) = l(β; y) − 1
2(β − b0)TV−1

0 (β − b0) + const , (10.7) 

with .l(β; y) given in (10.6). From the (dependent) sample of the posterior 
pdf, it is straightforward to estimate the posterior mean, standard deviation, 
and quantiles. One can also estimate the marginal posterior pdfs .{f(βi | y)}, 
using a kernel density estimator. ☞ 208 

Other quantities of interest include the marginal effects of the covariates, 
that is, how a change in the covariate affects the response. To make the 
discussion concrete, let . xj be the j-th element of a covariate vector . x. If  . xj

is a continuous explanatory variable, then 

.
∂

∂xj
E(Y | β) = ∂

∂xj
Φ(xTβ) = ϕ(xTβ)βj , (10.8) 

where . βj is the j-th element of . β. This depends on both . β and . x. For the 
“average” marginal effect of . xj , one could consider .ϕ(xTβ)βj , where . x is 
the average of the explanatory vectors .x1, . . . , xn corresponding to the re-
sponses .Y1, . . . , Yn. Similarly, if . xj is a binary explanatory variable, the av-
erage marginal effect of . xj is 

. Φ(zT
1 β) − Φ(zT

0 β) ,

where .zx = [x1, . . . , xj−1, x, xj+1, . . . , xn]T for .x ∈ {0, 1}. 
Note that the marginal effect is a (continuous) function of the regression 

parameter vector . β, and so it is a random variable. Given the posterior draws 
for . β, the posterior distribution of the marginal effect can be obtained readily.
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Example 10.6 (Modeling Extramarital Affairs with Probit Model). 
Fair (1978) analyzed the decision to have an extramarital affair with a pro-

bit model, using surveys conducted by Psychology Today and Redbook. The  
data used in this example are obtained from Koop et al. (2007) and contain 
601 independent observations. All observations are taken from individuals 
currently married and married for the first time. 

The response is a binary variable that indicates if the respondent has 
(had) an extramarital affair; the seven explanatory variables are an intercept 
(CONST), a male indicator (MALE), number of years married (YEAR), 
a binary variable to indicate if the respondent has children from the mar-
riage (KIDS), a binary variable for classifying one’s self as “religious” (RE-
LIGIOUS), years of schooling completed (ED), and a final binary variable 
denoting whether the person views the marriage as happier than an average 
marriage (HAPPY). 

We first obtain the maximum likelihood estimate . ~β via Fisher’s scoring 
method, as well as the information matrix . V evaluated at . ~β. The following 
Julia code accomplishes this task. 

probit_mle.jl 

using DelimitedFiles, Distributions, LinearAlgebra 
affair = readdlm("affair.csv", ',') 
y = affair[:,1]; 
X = affair[:,2:end]; 
n, k =  size(X); 
# find the MLE and the information matrix 
S =  ones(k,1); # score 
betat = (X'*X)(X'*y); # initial guess 
e = 10^(-5); # tolerance level 
while sum(abs.(S)) > e # stopping criterion 

Xbetat = X*betat; 
phi = pdf.(Normal(0,1),Xbetat); 
Phi = cdf.(Normal(0,1),Xbetat); 
global S =  sum(repeat(y.*phi./Phi-(1 .- y).*phi./(1 .-Phi) 

,outer = [1,k]).*X,dims=1)'; 
d = phi.^2 ./ (Phi.*(1 .-Phi)); 
IM = X'*diagm(vec(d))*X; # information matrix 
global betat = betat + IM\S; 

end 
println(round.(betat,digits=4)) 

[-0.7379; 0.1504; 0.0287; 0.2491; -0.5103; 0.0064; -0.5136;;] 

To sample from the posterior distribution, we use the same MCMC ap-
proach as for the logit model. That is, we use an independence sampler with 
a .tν(~β, V) proposal distribution. The hyperparameters for the normal prior
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are chosen as  .b0 = 0 and .V0 = 10 I7, where . I7 is the identity matrix. This 
gives a relatively non-informative prior which is centered around zero. The 
logarithm of the posterior pdf is given in (10.7). The degrees of freedom is 
set to .ν = 5. We use the method described in (10.5) to generate a draw from 
the proposal distribution, and run the sampler for 5500 iterations, discarding 
the first 500 as burn-in. Add the following to the previous code. 

probit_bayes.m 

burnin = 500; 
nloop = 5000+burnin; 
V = IM\I;  # scale matrix for the proposal 
B =  cholesky(Hermitian(V)).L; 
nu = 5;  # df for the proposal 
b0 = zeros(k,1); # prior mean 
V0 = 10*I; # prior covariance 
# log-posterior density 
logf(b)= (y'*log.(cdf.(Normal(0,1),X*b)) + (1 .-y)'*log.(cdf.( 

Normal(0,1),-X*b))- 0.5*(b-b0)'*(V0(b-b0)))[1]; 
# log-proposal density 
logprop(b) = (-0.5*(k+nu)*log.(1 .+ (b-betat)'*(V(b-betat))/ 

nu))[1]; 
store_beta = zeros(nloop,k); 
beta = betat; 
for i = 1:nloop 
# candidate draw from the t proposal 

global beta 
betac = betat + B*randn(k,1)*sqrt(nu/rand(Gamma(nu/2,2))); 
rho = logf(betac)-logf(beta) + logprop(beta)-logprop(betac 

); 
if exp(rho) > rand() 

beta = betac; 
end 
store_beta[i,:] = beta'; 

end 
store_beta = store_beta[burnin+1:end,:]; # discard the burn-in 
println(mean(store_beta,dims=1)) 
println(std(store_beta,dims=1)) 

Table 10.2 lists various summary statistics of the posterior distribution, in-
cluding the means, standard deviations, and 2.5- and 97.5-percentiles, based 
on the 5000 (dependent) samples from the posterior distribution. Of the six 
variables (excluding the intercept), only three seem to have a substantial 
impact on the response. In particular, the 95% credible intervals for the co-
efficients associated with YEAR, RELIGIOUS, and HAPPY exclude zero, 
while the other three do not. On average, people reporting themselves as re-
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ligious or in happy marriages are less likely to have affairs, while the longer 
someone is in a marriage, the more likely he or she has an affair. 

Table 10.2 Coefficient posterior means, standard deviations, 2.5- and 97.5-percentile 
for the probit model 

Variable Mean Std. dev. 2.5-percentile 97.5-percentile 

CONST −0.728 0.408 −1.528 0.061 
MALE 0.150 0.126 −0.098 0.392 
YEAR 0.029 0.013 0.004 0.054 
KIDS 0.249 0.161 −0.065 0.561 
RELIGIOUS −0.516 0.122 −0.757 −0.277 
ED 0.005 0.025 −0.045 0.055 
HAPPY −0.517 0.124 −0.760 −0.269 

To assess the quantitative impacts of the covariates, we estimate the aver-
age marginal effects of the covariates, using the following code, again added 
to the previous. 

margeff.jl 

N =  size(store_beta,1); 
store_ME = zeros(nloop-burnin,6); 
xbar = mean(X,dims=1)'; 
for loop in 1:N 

global beta = store_beta[loop,:]; # ME for cont. vars. 
store_ME[loop,[2 5]] = pdf.(Normal(0,1),xbar'*beta) .* 

beta[[3,6]]; 
for j in [1 3 4 6] # ME for discrete variables 

z0 = copy(xbar); z0[j+1] = 0; # using copy is important! 
z1 = copy(xbar); z1[j+1] = 1; 
store_ME[loop,j] = (cdf(Normal(0,1),z1'*beta) -

cdf(Normal(0,1),z0'*beta))[1]; 
end 

end 
mean(store_ME,dims=1) 

The summary statistics of the posterior distribution for the marginal ef-
fects are reported in Table 10.3. For example, people who report themselves 
as religious are 15 percent less likely to have affairs (fixing the other covariates 
at the sample means), and those who report to be happy in their marriages 
are 17 percent less likely.
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Table 10.3 Posterior means, standard deviations, 2.5- and 97.5-percentile for the 
marginal effects 

variable mean std. dev. 2.5-percentile 97.5-percentile 

MALE 0.045 0.038 −0.030 0.121 
YEAR 0.009 0.004 0.001 0.016 
KIDS 0.071 0.046 −0.024 0.157 
RELIGIOUS −0.150 0.035 −0.217 −0.082 
ED 0.002 0.008 −0.014 0.017 
HAPPY −0.167 0.043 −0.255 −0.084 

10.2.3 Latent Variable Representation 

Estimation and inference under the logit and probit models can be simplified 
by using data augmentation. The general idea behind data augmentation is 
to include “hidden” variables in the model for the data in order to simplify 
the analysis of the model. A prime example of data augmentation is found 
in the EM algorithm in Sect. 6.6. ☞ 189 

For the logit and probit models, data augmentation can be introduced by 
thinking of an observed binary response in terms of whether or not an under-
lying continuous latent (i.e., hidden) variable crosses a particular threshold: 
if it does, then we observe, say, 1; otherwise, we observe 0. The advantage of 
the latent variable representation is that it is often easier to work with the 
continuous latent variables than the observed binary variable. To be mathe-
matically precise, consider again the probit model: each binary response . Yi

is distributed as .Yi ∼ Ber(μi), where .μi = Φ(xT
i β), and . xi is a vector of 

covariates. 
Now, introduce the latent variables . {Zi}, each is distributed independently 

according to the normal distribution with mean .xT
i β and variance 1: 

.Zi ∼ N(xT
i β, 1) . (10.9) 

These latent variables are then linked to the observed binary variables . {Yi}
as follows: 

.Yi =
I

1 if Zi > 0,
0 if Zi ≤ 0.

(10.10) 

The values of the binary variables .{Yi} are observed and the covariates . {xi}
are fixed. However, the latent variables .{Zi} are unobserved. 

To check that this latent variable representation (10.9)–(10.10) does in-
deed give the same probit model, we need to show that it implies the same 
likelihood function. To this end, note that under the latent variable repre-
sentation, each . Yi is an independent Bernoulli random variable with success 
probability: 

.P(Yi = 1) = P(Zi > 0) = 1 − Φ(−xT
i β) = Φ(xT

i β) ,
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which is the same success probability under the probit model. Hence, the la-
tent variable representation in (10.9)–(10.10) implies the same probit model. 

Introducing more unobserved variables might seem to be odd as they give 
rise to exactly the same model. However, as it turns out, by augmenting the 
data with these latent variables, computation becomes more tractable. In fact, 
we can use the expectation–maximization algorithm discussed in Sect. 6.6 to 
obtain the maximum likelihood estimate easily.☞ 189 

We first determine the complete-data log-likelihood—using frequentist 
rather than Bayesian notation. Since conditional on . Z the vector . Y is de-
terministic, the joint pdf of . Y and . Z has the same form as the pdf of . Z. It  
follows that 

. l(β; y, z) = ln fZ(z; β) = −n

2 ln(2π) − 1
2

n⎲

i=1
(zi − xT

i β)2

= −1
2

n⎲

i=1

I
(xT

i β)2 − 2 zi xT
i β

I
+ const . (10.11) 

Now, suppose .βt−1 is the current value for . β. To implement the E-step, 
we derive the conditional density: 

. gt(z) = fZ | Y (z | y; βt−1) =
nI I

i=1
fZi | Yi

(zi | yi; βt−1) ,

where we use the fact that the latent variables .Z1, . . . , Zn are conditionally 
independent. If .yi = 1, the only extra information we have is that .Zi > 0. 
What this means is that given .yi = 1, . Zi follows the normal distribution 
with mean .xT

i βt−1 and variance 1, left-truncated at 0. So, . fZi | Yi
(zi | yi =

1; βt−1) = 0 for .z < 0 and proportional to .exp(− 1
2 (zi −xT

i βt−1)2) for .zi ≥ 0. 
We write 

.(Zi | yi = 1; βt−1) ∼ TN(0,∞)(xT
i βt−1, 1) . (10.12) 

Similarly, if .yi = 0, then 

.(Zi | yi = 0; βt−1) ∼ TN(−∞,0)(xT
i βt−1, 1) . (10.13) 

In particular, (see Problem 10.7), we have: 

.E[Zi | yi = 1; βt−1] = xT
i βt−1 +

ϕ(xT
i βt−1)

Φ(xT
i βt−1)

, (10.14) 

E[Zi | yi = 0; βt−1] =  xT 
i βt−1 − 

ϕ(xT 
i βt−1) 

Φ(−xT 
i βt−1) 

. (10.15) 

Writing .vi = Egt
[Zi | yi; βt−1], it follows from (10.11) that
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. Qt(β) = Egt
l(β; y, Z) = −1

2

n⎲

i=1

I
(xT

i β)2 − 2 vi xT
i β

I
+ const .

Next, to implement the M-step, we simply solve .∇Qt(β) = 0. Since . Qt is 
quadratic in . β, we can use the differentiation rules in Sect. B.1 to find (see ☞ 475 
also Problem 10.8) the solution: 

.βt =
I

n⎲

i=1
xix

T
i

I−1 n⎲

i=1
vi xi . (10.16) 

Finally, the maximum likelihood estimate for . β can be obtained by going 
through the E- and M-steps iteratively until convergence. 

For Bayesian estimation, the probit model can be fitted using the Gibbs 
sampler with data augmentation. Specifically, if we have draws from the joint 
posterior pdf .f(z, β | y) and retain only the draws for . β, then those draws are 
from the desired marginal pdf .f(β | y). Therefore, we can construct a Gibbs 
sampler by sequentially drawing from .f(β | y, z) followed by .f(z | y, β). As it  
turns out, both conditional densities are of standard form and samples from 
each can be obtained quickly. 

For concreteness, assume the prior .β ∼ N(0, Σ0). First, to derive . f(β | y, z)
note that, given the latent vector . z, we in fact have a linear regression model; 
see (10.9). Hence, using Theorem 8.1 we have: ☞ 245 

. (β | y, z) ∼ N(~β, D) ,

where 
. D = (XTX + Σ−1

0 )−1 and ~β = DXTz ,

and . X is the design matrix with i-th row . xT
i , .i = 1, . . . , n. 

Second, the conditional density .f(z | y, β) =
I In

i=1 f(zi | yi, β) is given 
in (10.12)–(10.13). A draw from a truncated normal distribution can be ob-
tained, say, via the inverse-transform method or (faster) the acceptance– ☞ 53 
rejection method. 

Example 10.7 (Gibbs Sampler for Probit Model). To demonstrate 
fitting the probit model using the Gibbs sampler with data augmentation, we 
revisit Example 10.6. We use  the  Truncated function to draw from truncated 
distributions; see also Problem 10.7. 

In the main script, we implement a Gibbs sampler by alternatively drawing 
from .f(β | y, z) and .f(z | y, β). The estimation results are similar to those 
obtained in Example 10.6, and they are not repeated here.
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probit_bayes_gibbs.jl 

using DelimitedFiles, Distributions, LinearAlgebra 
affair = readdlm("affair.csv", ',') 
y = Int64.(affair[:,1]); # convert to integers 
X = affair[:,2:end]; 
XX = X'*X; 
n, k =  size(X); 
V0 = 10*diagm(ones(k)); # prior covariance 
invV0 = V0\I; 
burnin = 500; 
nloop = 5000+burnin; 
store_beta = zeros(nloop,k); 
z = 1.0*y; # initial guess, new float copy 
beta = XX(X'*z); 
# compute a few things before the loop 
id0 = findall(y .== 0); id1 = findall(y .==1); 
n0 = length(id0); n1=n-n0; 
V = (invV0 + XX)\I; # posterior covariance 
for i in 1:nloop 

# sample z 
global beta 
global Xb = X*beta; 

for k in id0 
z[k] = rand(Truncated(Normal(Xb[k],1), -Inf,0)) 

end 
for k in id1 

z[k] = rand(Truncated(Normal(Xb[k],1), 0, Inf)) 
end 
# sample beta 
dbeta = X'*z; 
beta = V*dbeta + cholesky(Hermitian(V)).L * randn(k,1); 
store_beta[i,:] = beta'; 

end 
store_beta = store_beta[burnin+1:end,:]; # discard the burn-in 
mean(store_beta,dims=1) 

10.3 Poisson Regression 

Poisson regression deals with count data Y , for example, the number of cars in 
a household. We are interested in how some observed characteristics . x—e.g., 
household income, number of children in the household, whether it is a single-
parent household, etc.—affect the response Y . Since Y takes values on the set
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of nonnegative integers, one natural specification for Y is the Poisson model 
.Y ∼ Poi(μ). In terms of a generalized linear model (see Definition 10.1), it ☞ 291 
remains to link .xTβ to the mean . μ, which has to be positive. One easy way 
to guarantee this is to specify . μ as 

. μ = exTβ .

This leads to the following definition. 

Definition 10.5. (Poisson Regression Model). Let . Yi denote the 
i-th response (count) and let . xi represent the vector of explanatory vari-
ables and . β the associated parameter vector. In a Poisson regression 
model, the  .{Yi} are independent, and .Yi ∼ Poi(μi), with . μi = exT

i β.
In other words, the component link function is .g(x) = ln x. 

Let . xT
i be the i-th row of the design matrix . X, and let .g = [g, . . . , g]T. 

We see that the distribution of .Y = [Y1, . . . , Yn]T is completely specified by 
.μ = g−1(Xβ). In this case no additional dispersion parameters are used. 

Example 10.8 (MLE for the Poisson Regression Model). Suppose we 
are interested in determining the impact of research and development (R&D) 
on the number of patents obtained by firms in a certain industry. For this 
purpose a total of .n = 14 firms are interviewed. For each firm we record its 
number of patents obtained over the last 3 years, as well as its R&D budget 
(in tens of thousands of dollars) over the same period. The data are presented 
in Table 10.4. 

To investigate the effectiveness of R&D, let . Yi denote the number of 
patents obtained by the i-th firm and let .xi = [1, xi]T be a .2 × 1 vector 
of explanatory variables, where . xi is the i-th firm’s R&D budget. We con-
sider the Poisson regression .Yi ∼ Poi(μi), where .μi = exT

i β and . β = [β1, β2]T
is a .2 × 1 vector of regression coefficients. 

Table 10.4 Number of patents and R&D 

Number of 
patents 

R & D  
budget 

6 26 
3 21 
2 19 
1 11 
3 21 
1 16 
1 19 

Number of 
patents 

R&D 
budget 

8 29 
2 13 
0 5 
2 3 
6 29 
1 3 
3 21
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The log-likelihood function for the Poisson regression model is given by 

. l(β; y) =
n⎲

i=1

I
yix

T
i β − exT

i β − ln yi!
I

.

Moreover, it can be shown that the score function and the information matrix 
are respectively (see Problem 10.2): 

. S(β) =
n⎲

i=1
(yi − exT

i β)xi and I(β) =
n⎲

i=1
exT

i βxix
T
i .

Hence, the maximum likelihood estimate of . β can be computed using Fisher’s 
scoring method, which is implemented in the following Julia script.☞ 187 

poissonreg.jl 

using SparseArrays, LinearAlgebra 
y = [6  3 2 1 3 1 1 8 2 0 2 6 1 3]'  
RD = [26 21 19 11 21 16 19 29 13 5 3 29 3 21]' 
n =  length(y) 
X = [ones(n,1) RD] 
betat = (X'*X)(X'*log.(y .+ .001)) # initial guess 
S =  ones(2,1) # score 
e = 10^(-5) # tolerance level 
IM = zeros(2,2) 
while sum(abs.(S)) > 10^(-5) # stopping criterion 

global S, betat, IM 
mu = exp.(X*betat) 
S =  sum(repeat((y - mu), 1,2).*X,dims=1)' 
IM = X'*sparse(1:n,1:n,vec(mu))*X # info matrix 
betat = betat + IM\S 

end 
println(round.(betat,digits=4)) 
V = IM\I  # inverse of the info matrix 
println(round.(V,digits=4)) 

[-0.7947; 0.0919;;] 
[0.3109 -0.0128; -0.0128 0.0006] 

10.4 Problems 

10.1. Prove Theorem 10.1; that is, show that if .R ∼ N(0, In) and . W ∼
Gamma(ν/2, 1/2) are independent, then the random vector . Z =

/
ν/W R

has pdf
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. f(z) =
Γ ( ν+n

2 )
Γ (ν/2)(πν)n/2

I
1 + IIzII2

ν

I− ν+1
2

.

Hint: consider the coordinate transformation: 

. 

⎡

⎢⎢⎢⎣

z1
...

w

⎤

⎥⎥⎥⎦ I→

⎡

⎢⎢⎢⎣

z1
/

w/ν
...

zn

/
w/ν

w

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

r1
...

rn

w

⎤

⎥⎥⎥⎦

and determine the determinant of the corresponding Jacobian matrix. Next, 
apply the transformation rule (3.26) to find the joint pdf of .[Z, W ]. Finally ☞ 81 
integrate out W to obtain the pdf of . Z. 

10.2. Consider the Poisson regression model in Definition 10.5. Given the 
data .[y1, xT

n ], . . . [yn, xT
n ], show that the log-likelihood function is given by 

. l(β; y) =
n⎲

i=1

I
yix

T
i β − exT

i β − ln yi!
I

.

Further, show that the score function and the information matrix are, respec-
tively, 

. S(β) =
n⎲

i=1
(yi − exT

i β)xi and I(β) =
n⎲

i=1
exT

i βxix
T
i .

10.3. It is generally believed that births by Caesarean section are more fre-
quent in private hospitals than in public ones. To investigate if there is any 
evidence for this claim, data are collected on the number of Caesarean sec-
tions carried out in three private hospitals (type 0) and seven public hospitals 
(type 1), as well as the total number of births in each of the hospitals. These 
are presented in Table 10.5. 

Table 10.5 Poisson regression example 

Number of 
Caesarean 
sections 

Number of 
births 

Hospital 
type 

8 236 0 
16 739 1 
15 970 1 
23 2371 1 
5 309 1 

Number of 
Caesarean 
sections 

Number of 
births 

Hospital 
type 

13 679 1 
4 26 0 

19 1272 1 
33 3246 1 
2 28 0
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Use the data to fit a Poisson regression: regress the response variable “num-
ber of Caesarean sections” on an intercept, “number of births,” and “hospital 
type.” Are births by Caesarean section more frequent in private hospitals? 
Hint: use the results in Problem 10.2. 
10.4. Consider again Example 10.6 where we use the probit model to ana-
lyze the decision to have an extramarital affair. For a nonreligious, college-
educated (16 years of education) male who has married for 10 years with 
one child from the marriage, and who reports that his marriage is hap-
pier than average, what is the probability that he has an extramarital af-
fair? Use the kde function to plot a kernel density estimate of the posterior 
probability. 
10.5. In the linear regression model .Y = xTβ + ε, the parameter vector . β
can be interpreted as the marginal effects of the (continuous) covariates, that 
is, the rate at which the response changes as the result of an infinitesimal 
change in the covariate: 

. β = ∇xEY .

However, for the probit model, the marginal effects depend on both the param-
eter vector . β and the covariates . xi in a nonlinear functional form: .ϕ(xTβ)β; 
see (10.8). What are the marginal effects for the logit model? 
10.6. In Definition 10.3 the matrix . Σ was intentionally called the scale matrix☞ 298 
rather than covariance matrix, because the covariance matrix of . X (i.e., 
.E[(X − μ)(X − μ)T]) is not equal to . Σ: 
a. Show that the covariance matrix of . X is .ΣE[ZZT], where . Z has a stan-

dard multivariate Student’s t distribution. 
b. Use Theorem 10.1 to show that the covariance matrix of . Z, that is .E[ZZT], 

is equal to .c ν In, where . In is the identity matrix and 

. c =
I ∞

0

1
w

( 1
2
) ν

2 w
ν
2 −1e− 1

2 w

Γ
(

ν
2
) dw .

c. Evaluate c. 
10.7. Let .Z ∼ TN(μ, σ2, a, b), where .a < b. Thus, the distribution of Z is 
that of a random variable .X ∼ N(μ, σ2) conditioned on X lying in . [a, b]: 
a. Show that the pdf of Z is 

. fZ(z) = ϕ((z − μ)/σ)/σ

Φ((b − μ)/σ) − Φ((a − μ)/σ) ,

where . ϕ and . Φ are respectively the pdf and cdf of the standard normal 
distribution. 

b. For .σ = 1, .a = −∞, and  .b = 0, show that .EZ = μ − ϕ(μ)/Φ(−μ).
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c. For .σ = 1, .a = 0, and  .b = ∞, show that .EZ = μ + ϕ(μ)/Φ(μ). 
d. Show that the cdf of Z is 

. FZ(z) = Φ((z − μ)/σ) − Φ((a − μ)/σ)
Φ((b − μ)/σ) − Φ((a − μ)/σ) .

e. Explain why the function tnormrnd in Example 10.7 can be used to sim-
ulate Z. 

10.8. Prove (10.16).



Chapter 11 
Nonparametric Methods 

The standard frequentist and Bayesian models involve parameterized distri-
butions for the data that contain a small number of parameters. For example, 
if the data are represented by . X, then a typical model is of the form 

.X ∼ Dist(θ) , (11.1) 

depending on a known distribution (multivariate normal, binomial, gamma, 
and so on) up to an unknown parameter vector . θ of small dimension. In 
this section we relax the requirement that the form of the distribution needs 
to be specified in advance. The resulting models are often said to be non-
parametric. The nonparametric counterpart of (11.1) is that .X ∼ Dist, 
where . Dist is left unspecified. The quintessential case is where the data vec-
tor .X = [X1, . . . , Xn] is comprised of an iid sample from a distribution with 
an unknown cdf F : 

.X1, . . . , Xn
iid∼ F . (11.2) 

Even though the model (11.2) might not seem to carry much information, it 
is still feasible to do inference on the data. In particular, we saw in Sect. 7.1 
that it is possible to estimate the unknown cdf F via the empirical cdf of ☞ 202 
the data. In a similar way, density estimation (Sect. 7.2) is considered to be a ☞ 207 
nonparametric method, as the model for the data is of the form (11.2), where 
F is assumed to have a density f . Nonparametric methods may still involve 
parameterized distributions, but the dimension of the parameter vector is 
unbounded. Using the general framework for statistical learning in Sect. 4.6, ☞ 118 
the same principle applies to nonparametric regression. 

We consider various nonparametric methods in this section. Nonparamet-
ric statistical tests often involve the ordering and ranking of data, giving rise 
to order statistics, which are discussed in Sect. 11.1. We present nonparamet-
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ric equivalents to the standard one- and two-sample t-tests in Sect. 11.2. Sec-
tion 11.3 deals with nonparametric regression using the versatile framework 
of kernel functions. Another common approach to nonparametric regression 
is to employ spline functions, as treated in Sect. 11.4. Finally, Sect. 11.5 dis-
cusses a Bayesian analysis of nonparametric regression via Gaussian process 
regression. 

11.1 Order Statistics 

Let .X1, . . . , Xn be a sequence of iid random variables from some cdf F , which  
may be known or unknown. Arrange these in order and denote the ordered 
sample by .X(1), . . . , X(n). For example, .X(1) is the smallest, and .X(n) is the 
largest. Then, .X(r) is called the r-th order statistic. The order statistics 
are neither independent nor identically distributed, but their marginal and 
joint distributions are easy to derive. 

First consider the marginal distribution of the r-th order statistic. We have 

. 

FX(r)(x) = P(X(r) ≤ x)
= P(At least r of X1, . . . , Xn are ≤ x)

=
n⎲

j=r

P(Exactly j of X1, . . . , Xn are ≤ x)

=
n⎲

j=r

(
n

j

)
(F (x))j(1 − F (x))n−j .

Consequently, if .X1, . . . , Xn are continuous random variables with common 
pdf f , then 

.f
X(r)

(x) = F '
X(r)

(x) = n

(
n − 1
r − 1

)
(F (x))r−1(1 − F (x))n−rf(x) . (11.3) 

While (11.3) can be derived in a purely combinatorial fashion, it is easier to 
show it probabilistically as follows. The most likely way in which the event 
.{x ≤ X(r) ≤ x + ε} happens is that exactly one of the n variables falls in 
the interval .[x, x + ε], while .r − 1 variables fall in .(−∞, x) and the remaining 
.n − r fall in .(x + ε, ∞). The probability of having more than one variable in 
.[x, x + ε] is negligible as . ε goes to 0. In particular, we have 

. 

fX(r)(x) ε + o(ε) = P(x ≤ X(r) ≤ x + ε)

= n ×
(

n − 1
r − 1

)
(F (x))r−1(1 − F (x))n−r × f(x) ε + o(ε) ,

where .o(ε)/ε ↓ 0 as .ε ↓ 0. Dividing both sides by . ε and letting .ε ↓ 0 now 
gives the stated result.
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In particular, the minimum of the sample has distribution function 

. F
X(1)

(x) = 1 − (1 − F (x))n ,

and, in the continuous case, 

. f
X(1)

(x) = n(1 − F (x))n−1f(x) ,

while for the maximum we have 

. F
X(n)

(x) = (F (x))n ,

and, in the continuous case, 

. f
X(n)

(x) = n(F (x))n−1f(x) .

Using a symmetry argument, if .X1, . . . , Xn are continuous random vari-
ables with common pdf f , then the order statistics .X(1), . . . , X(n) have joint 
pdf 

.h(x1, . . . , xn) =
(

n!
Πn

i=1 f(xi) if x1 < x2 < · · · < xn

0 otherwise .
(11.4) 

This is intuitively obvious because h is just the joint pdf of . X1, . . . , Xn

multiplied by . n! (being the number of arrangements of the sample). 

11.2 Nonparametric Statistical Tests 

Making assumptions about the distribution of the data is fraught with risks, 
in case the assumptions are not true. This may lead to incorrect conclusions. 
In nonparametric tests, we still may make assumptions about the data (e.g., 
independence), but we do not model the data via a specific parametric class 
of distributions. Nonparametric tests tend to be more “robust” to outliers 
in the data. The downside is that they are less “powerful” than parametric 
tests, in the sense that it is more difficult to reject the null hypothesis when 
it indeed should be rejected. We discuss a number of nonparametric versions 
of the standard tests (e.g., one- and two-sample t-tests).
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11.2.1 One-Sample Nonparametric Tests 

For the one-sample setting, suppose .Z1, . . . , Zn are iid random variables from 
an unknown continuous distribution that is symmetric around some . μ. Hence, 
. μ is the median of the distribution and also its expectation, if the latter exists. 
We wish to assess via a statistical test whether the hypothesis . H0 : μ = 0
should be accepted or not versus some two- or one-sided alternative; e.g., 
.H1 : μ /= 0 or .H1 : μ > 0. The simplest nonparametric test statistic to use in 
this situation is 

.T =
n⎲

i=1
1{Zi>0} . (11.5) 

This gives the sign test statistic, where we simply count the total number 
of positive observations. Under . H0 the test statistic T has a .Bin(n, 1/2) dis-
tribution, and for the alternative .H1 : μ /= 0, we reject . H0 for large or small 
values of T . This is simply the one-sample binomial test in disguise, where 
we test .H0 : p = 1/2 against .H1 : p /= 1/2, with .p = P(Z > 0). 

Example 11.1 (Sign Test for Paired Data). We return to the weight 
loss data in Example 5.15, which is replicated in Table 11.1.☞ 146 

Table 11.1 Weight loss data 

Before 280 140 90 128 135 98 111 97 89 156 
After 240 135 89 135 120 95 99 103 87 140 
Loss 40 5 1 .−7 15 3 12 .−6 2 16 
Sign + + + .− + + + .− + + 

For the one-sample t-test, it was assumed that the weight loss data came 
from some normal distribution. If instead we carry out a sign test, with 
alternative .H1 : μ > 0, then the corresponding p-value is . P(X ≥ 8) =
1 − P(X ≤ 7), where .X ∼ Bin(10, 1/2). Using Julia: 

using Distributions 
1 - cdf(Binomial(10,0.5),7) 

0.0546875 

Again, there is modest, but not compelling, evidence that the weight loss 
program works. 

The sign test uses only minimal information about the values . {Zi}—it 
records only if the values are positive or negative. To better exploit the sym-
metry assumption in the model, more sophisticated nonparametric tests also 
include information on the ranking of the data, as well as the sign of the data. 
In particular, by ordering the absolute values .{|Zi|} from smallest to largest,
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we can assign a rank R to each absolute value . |Z|, where .R = r means that 
. |Z| is the r-th smallest of the .{|Zi|}. Note that from the symmetry and conti-
nuity assumption, it follows that under .H0 : μ = 0 the vector .[R1, . . . , Rn] is 
a random permutation of .[1, . . . , n], where all of the . n! possible permutations 
are equally likely. 

We consider test statistics of the form 

.T =
n⎲

r=1
αrBr , (11.6) 

where .α1, . . . , αn are given numbers and, for .r = 1, . . . , n, 

. Br =
(

1 if the variable whose absolute value has rank r is positive,

0 otherwise.

Under .H0 : μ = 0 the .{Bi} are independent and .Ber(1/2) distributed. It 
follows that the expectation of T under . H0 is 

.ET = 1
2

n⎲

r=1
αr = n

2 α , (11.7) 

where .α = 1
n

∑n
r=1 αr is the average of the . {αr}. Similarly, the variance of 

T under . H0 is 

.Var(T ) =
n⎲

r=1
α2

r Var(Br) = 1
4

n⎲

r=1
α2

r . (11.8) 

For small n, the probability distribution of T under . H0 can be obtained by 
full enumeration, as 

. P(T ≤ t) = 2−n
⎲

b

1{T (b)≤t} ,

where the enumeration is over all . 2n binary vectors .b = [b1, . . . , bn] and 
.T (b) =

∑n
r=1 αrbr. When total enumeration is not feasible one can instead 

estimate .P(T ≤ t) via the Monte Carlo estimator 

. 
1
K

K⎲

i=1
1{T (i)≤t} ,

where .T (1), . . . , T (K) are iid copies of T . 
Note that if .ar = 1 for all r, then (11.6) simply yields the test statistic 

for the sign test in (11.5). If instead .ar = r, r = 1, . . . , n, the resulting test 
statistic 

.T + =
n⎲

r=1
rBr (11.9)
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is called the (Wilcoxon) positive-rank sum test statistic. The test statistic 
is thus obtained as follows: 

1. First rank the absolute values. 
2. The test statistic . T + is the sum of the ranks of the positive values. 

From (11.7) and (11.8) the expectation and variance of . T + under the null 
hypothesis are 

.ET + = n(n + 1)
4 and Var(T +) = n(n + 1)(2n + 1)

24 . (11.10) 

Moreover, it can be shown that under the null hypothesis and for large sample 
size n, the test statistic has approximately a normal distribution. 

Under the model assumption of a symmetric continuous distribution, there 
are no ties. When ties do occur in practical situations, the method is modified 
by giving equal fractional ranks to the tied values. 

Example 11.2 (Wilcoxon Positive-Rank Sum Test). Consider again 
the weight loss data in Table 11.1. The last row in Table 11.2 gives the ranks 
of the absolute values. 

Table 11.2 Weight loss data with ranks 

Loss 40 5 1 .−7 15 3 12 .−6 2 16 
Sign + + + .− + + + .− + + 
Rank 10 4 1 6 8 3 7 5 2 9 

The outcome of the test statistic is .t+ = 10+4+1+8+3+7+2+9 = 44. 
Under . H0, . T + has approximately a normal distribution with expectation . 27.5
and standard deviation .9.810708, so that the p-value for this right one-sided 
test can be approximated as follows: 

using Distributions 
n =  10;  t = 44  
et = n*(n+1)/4 
sdt = sqrt(n*(n+1)*(2*n+1)/24) 
pval = 1 - cdf(Normal(et,sdt), t) 
print(pval) 

0.0463 

In fact, the exact p-value is a bit larger. The following Julia program 
computes the ranks using the Julia function sortperm and invperm and 
determines the true p-value via complete enumeration.
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pvalposrank.jl 

using Distributions 
z =  [40  , 5,  1  , -7,  15  , 3  , 12  , -6  , 2  ,  16]  
ind = sortperm(abs.(z)) 
ranks = invperm(ind) 
t =  sum(ranks .* (z .> 0)) 

function pval(t) 
tot = 0 
a = 1:10 
for i = 0:2^10-1 

b =  digits(i, base=2, pad=10) 
tot = tot + (sum(b .* a) >= t) 

end 
return tot / 2^10 

end 

pval(t) 

0.052734375 

11.2.2 Two-Sample Nonparametric Tests 

The use of rankings for statistical tests is more natural in a two-sample set-
ting. Consider a two-sample data model, where the measurements . X1, . . . , Xm

from Group 1 are iid from a continuous distribution with cdf F and the mea-
surements .Y1, . . . , Yn from Group 2 are iid with cdf G, where F and G are 
unspecified. It is assumed that the .{Xi} and .{Yj} are independent. We wish 
to test if the distributions of the two groups are the same or not. 

Sort pooled data .X1, . . . , Xm, Y1, . . . , Yn as .Z(1) < · · · < Z(N), where . N =
m + n. This gives a rank to each measurement. For ranks .r = 1, . . . , N , let  

. Br =
(

1 if the variable with rank r belongs to Group 1,

0 otherwise.

Under . H0 the .{Br} are .Ber(p) distributed with success probability .p = m/N , 
but note that in this case the .{Br} are dependent random variables, in con-
trast to the one-sample scenario in the previous section. In particular, under 
. H0 we have .B1, . . . , BN ∼iid Ber(p) conditional on .B1 + · · · + BN = m. 

Similar to (11.6), we consider test statistics of the form
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.T =
N⎲

r=1
αrBr (11.11) 

for some fixed . {αr}. As in the one-sample case, the expectation and variance 
of T under . H0 are readily evaluated. The expectation of T is 

. ET =
N⎲

r=1
αr EBr = m

N

N⎲

r=1
αr = m α ,

where .α = 1
N

∑N
r=1 αr. 

For the variance, observe that under . H0, it holds that . Cov(Br, Bs) =
Cov(B1, B2) for all .r /= s. If we denote .v = Cov(Br, Br) = Var(Br) and 
.c = Cov(Br, Bs) for .r /= s, then 

. v = Var(B1) = p(1 − p) = m n

N2

and 

. 

c = Cov(B1, B2) = E[B1B2] − p2

= P(B2 = 1 | B1 = 1)P(B1 = 1) − p2

= m − 1
N − 1p − p2 = − m n

N2(N − 1) .

Noting that .v − c = m n/(N(N − 1)), it follows that 

. 

Var(T ) =
N⎲

r=1

N⎲

s=1
αrαs Cov(Br, Bs)

= v

N⎲

r=1
α2

r + c

N⎲

r=1

N⎲

s=1
s /=r

αrαs

= (v − c)
N⎲

r=1
α2

r + cN2 α2

= m n

N − 1

I
1
N

N⎲

r=1
α2

r − α2

I
= m n Vα

N − 1 ,

where .Vα = 1
N

∑N
r=1(αr − α)2 is the average squared deviation of the . {αr}. 

The main instance is where .αr = r, which yields the Wilcoxon’s rank 
sum test, where the test statistic is the sum of the ranks of the first group. 
In this case, .α = (N + 1)/2 and .Vα = N(N2 − 1)/12, so  

.ET = m(N + 1)
2 and Var(T ) = m n(N + 1)

12 .
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An intuitive way to derive the expectation is that under the null hypothesis, 
all ranks are equally likely, so the rank R of one observation is a discrete 
uniform random variable taking values in .1, . . . , N . Its expectation is thus 
.ER = (N + 1)/2, and since there are m observations in the first group, we 
have an expected rank sum of .ET = mER = m(N + 1)/2. 

Under the null hypothesis and for large n, the test statistic has approxi-
mately a normal distribution; see, for example, Wald and Wolfowitz (1944). 

Example 11.3 (Rank Sum Test). The data given in Table 11.3 and de-
picted Fig. 11.1 was drawn from cdfs .F (x) = 1 − exp(−x + 1), x ≥ 1 for 
Group 1 and .G(x) = 1 − exp(−x), x ≥ 0 for Group 2. 

Table 11.3 Data from (shifted) exponential distributions. Ranks are given below the 
observations 

x 1.04 3.30 1.40 1.53 1.01 1.02 3.93 1.61 1.93 2.25 
Rank 8 18 11 14 6 7 19 15 16 17 

y 1.00 1.40 1.30 3.95 0.08 1.33 0.66 0.73 1.49 0.43 
Rank 5 12 9 20 1 10 3 4 13 2 

0 0.5 1 1.5 2 2.5 3 3.5 4 

Group 1 

Group 2 

Fig. 11.1 Data from (shifted) exponential distributions 

A two-sample t-test does not detect a difference between the two distribu-
tion, yielding a p-value of .0.166, as obtained via the following Julia program. 

wilcox1.jl 

using StatsBase, Distributions 
x = [1.04,3.30,1.40,1.53,1.01,1.02,3.93,1.61,1.93,2.25] 
y = [1.00,1.40,1.30,3.95,0.08,1.33,0.66,0.73,1.49,0.43] 
m =  length(x); n = length(y); N = m+n;  

pooledV = ((m-1)var(x) + (n-1)var(y))/(N-2) 
ttest = (mean(x) - mean(y))/sqrt(pooledV)/sqrt(1/m + 1/n) 
p1 = 2*(1 - cdf(TDist(N-2), ttest)) 
print(p1) 

0.1658502382402547


 -2016 55625 a -2016 55625 a
 
https://people.smp.uq.edu.au/DirkKroese/statbook/


324 11 Nonparametric Methods

Let us investigate if the Wilcoxon rank sum test fairs better here, as the 
normality assumption is obviously violated. The smallest measurement is 
. 0.08, so it gets rank 1 while the second smallest measurement is . 0.43, and  so  
on. There are no ties in this case. The null hypothesis is again that there is 
no difference between the distributions of the two groups and the alternative 
hypothesis is that there is a difference. The outcome of the test statistic is 

. t = 8 + 18 + 11 + 14 + 6 + 7 + 19 + 15 + 16 + 17 = 131 .

We reject the null hypothesis for large and small values of the test statistic. 
For this two-sided test, the p-value is .2P(T ≥ 131). Using the normal ap-
proximation, with .ET = 105 and .Var(T ) = 175, we obtain an approximate 
p-value of 0.0494, which gives reasonable evidence against the null hypothe-
sis. The following code should be appended to the previous one to carry out 
the rank sum test. 

wilcox1.jl 

z =  cat(x, y, dims=1) 
ind = sortperm(z) 
ranks = invperm(ind) 
t =  sum(ranks[1:10]) 

ET = m*(N+1)/2 
sdT = sqrt(m*n*(N+1)/12) 
p = 2*(1 - cdf(Normal(ET,sdT),t)) 
print(p) 

0.0493661947519326 

The exact p-value can be determined by enumerating over all . 
I20

10
I

binary 
vectors of length 20 with exactly 10 ones. Under the null hypothesis, each of 
these vectors has the same probability. We find a p-value of 0.052, which is 
close to the normal approximation. The following code, to be appended to 
the previous two, carries out the analysis. 

wilcox2.jl

function pval(t) 
tot = 0 
a = 1:20 
for i = 0:2^20-1 

b =  digits(i, base=2, pad=20) 
if sum(b)==10 

tot = tot + (sum(b .* a) >= t) 
end 

end
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return 2*tot / binomial(20,10) 
end 

print(pval(t))

0.05242590227110351 

The Mann–Whitney test is closely related to the Wilcoxon rank sum 
test. Here, the test statistic is defined as 

. U =
m⎲

i=1

n⎲

j=1
1{Xi>Yj} .

Hence, U is the total number of times where a value in the first group is larger 
than a value in the second group. You may verify that the Mann–Whitney 
test static is related to the Wilcoxon rank sum test statistic T via 

. U = T − (m + 1)m
2 .

In fact, U is of the form (11.11), with .αr = r − (m + 1)/2, r = 1, . . . , N , 
because 

. U =
N⎲

r=1
rBr − m + 1

2

N⎲

r=1
Br = T − (m + 1)m

2 ,

as .B1 + · · · + BN = m. 
Finally, taking .αr = z(r), r = 1, . . . , N , we obtain a randomization test, 

also called a permutation test. In this case the test statistic T takes val-
ues .zi1 + · · · + zim

where .[i1, . . . , im] is any ordered arrangement of distinct 
elements in .{1, . . . , n} of size m. There are . 

I
n
m

I
of such arrangements, and 

under the null hypothesis all arrangements are equally likely. Note that the 
observed test statistic t is simply the sum of all observations in the first group, 
i.e., .t = x1 + · · ·+xm. Using either full enumeration or Monte Carlo methods 
we can then assess how t compares with the sum of the variables in the first 
group after the observations are reshuffled. 

Further information on nonparametric tests can be found in, for example, 
Kolassa (2020) and Pratt and Gibbons (1981). 

11.3 Gram Matrix and Kernel Functions 

For the linear model with .n × m model matrix . X, with .n ≥ m, we saw in  
Sect. 9.2.1—leaving out the regularization—that by rewriting .β = XTα, the ☞ 277 
minimization problem .minβ lly −Xβll2 leads to the alternative minimization 
problem
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. min
α

lly − Kαll2 , (11.12) 

where . K is the Gram matrix .XXT. Because . K is a singular matrix when . n >
m, solving the normal equations .KT(y − Kα) = 0 does not lead to a unique 
solution; in fact, there is a subspace of dimension .n−m of possible solutions. 
However, each of these solutions .α = [α1, . . . , αn]T gives the same value for 
.XTα = β. The minimum-norm solution, that is, the solution . ~α to (11.12) 
such that .ll~αll ≤ ll~αll for any other solution . ~α, is given by .~α = K+y, where 
. K+ is the (Moore–Penrose) pseudo-inverse of . K. 

Using any solution . ~α leads to the (unique) prediction function 

.gτ (x) = xTβ =
n⎲

i=1
~αi (x, xi) , (11.13) 

for training data .τ = {(xi, yi)}. This reformulation may seem contrived, but 
in fact it opens up a whole new way of thinking about linear models. The 
key point is that the estimation procedure and the prediction function only 
depend on the inner products of the explanatory variables (feature vectors). 

Suppose that instead of using the data .{(xi, yi)}, we transform the feature 
vectors via a function .φ : Rm → R

p, denoting .zi = φ(xi), i = 1, . . . , n. The  
inner products of the transformed features are 

.(zi, zj) = zT
i zj = (φ(xi))Tφ(xj) , (11.14) 

and the corresponding Gram matrix can be written as 

. K = ΦΦT ,

where . Φ is the matrix whose j-th column is .φ(xj), j = 1, . . . , n. Note that 
any such matrix . K is a covariance matrix. For instance, it is the covariance 
matrix of the random vector .X = ΦU , where .U ∼ N(0, In). As such, . K is a 
symmetric and positive semidefinite matrix.☞ 77 

Example 11.4 (Polynomial Regression). The polynomial regression 
model in (4.10) can be viewed in the framework discussed above. Here, each☞ 108 
original one-dimensional explanatory variable (feature) u is transformed into 
a .(d + 1)-dimensional feature vector .x = [1, u, . . . , ud]T. The corresponding 
prediction function is a linear function of . x and can also be written as a 
linear combination of the inner products .(x, xi), as in  (11.13). 

A powerful generalization of (11.13) and (11.14) is to associate with each 
feature .x ∈ X for some arbitrary set . X (e.g., . R or .Rm) a whole feature 
function .κ(x, ·) : X → R and define the inner product of .κ(x, ·) and . κ(x', ·)
as .κ(x, x'). This approach is only valid if the matrix .K = [κ(xi, xj)] is a 
covariance matrix for every choice of .xi, i = 1, . . . , n and n. Such a function 
. κ is called a covariance function or kernel function on . X . To verify if
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a function . κ is a kernel function, we need to establish that it is finite and 
symmetric (i.e., .−∞ < κ(x, x') = κ(x', x) < ∞) and that 

.αTKα ≥ 0 (11.15) 

for every .α ∈ R
n and every choice of .{xi} and n. The latter is equivalent to 

.

n⎲

i=1

n⎲

j=1
αi κ(xi, xj) αj ≥ 0 (11.16) 

for all .{xi}n
i=1 from . X and real numbers .{αi}n

i=1. The prediction function 
in (11.13) is then generalized to 

.gτ (x) =
n⎲

i=1
~αi κ(x, xi), (11.17) 

for training data .τ = {(xi, yi)}, with .~α = K+y. 
The standard kernel function on .X = R

m is the linear kernel: 

. κ(x, x') = xTx'.

An example of a non-standard kernel is given next. 

Example 11.5 (Wiener Kernel). The Wiener kernel on .X = R+ is de-
fined as 

. κ(x, x') = min{x, x'}, x, x' ≥ 0 .

We will see in Sect. 11.5 that it is the covariance function of the Wiener 
process (standard Brownian motion). We can use this kernel to construct 
prediction functions of the form 

. g(x) =
n⎲

i=1
αi min{x, xi}

from data .{(xi, yi), i = 1, . . . , n}. As a concrete example, suppose we wish 
to reconstruct the function .sin(x), x ∈ [0, 2π] from the function values at 
the points .xi = i − 1, i = 1, . . . , 7. The parameter vector . α = [α1, . . . , α7]T
is found from (11.12) with .K = [κ(xi, xj)]. The following Julia program 
computes the approximation. 

wienerkernel.jl

using LinearAlgebra, Plots 
x = (0:1:2*pi)' 
n =  length(x) 
y =  sin.(x)
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k(x,u) = min(x,u) # kernel 
K =  zeros(n,n) 
for i=1:n 

for j=1:n 
K[i,j] = k(x[i], x[j]) 

end 
end 
alpha = pinv(K)*y' # compute an optimal alpha 
xx = 0:0.01:2*pi 
N =  length(xx); g = zeros(N); 
Kx = zeros(n,N) 
for i=1:n 

for j=1:N 
Kx[i,j] = k(x[i],xx[j]) 

end 
end 
g = Kx'*alpha; # function values 

plot(xx,sin.(xx),color=:black,linestyle=:dash) 
plot!(xx,g,color=:blue) 
scatter!(x,y,legend=false,color=:black)

Figure 11.2 shows that the approximating function in this case simply 
interpolates between the known values of the function. 

0 1 2 3 4 5 6 7
-1

-0.5 

0 

0.5 

1 

Fig. 11.2 Approximating the sine function using the Wiener kernel 

Many different ways to build kernel functions may be found in Shawe-
Taylor and Cristianini (2004). For example, the sum of two kernel functions 
is again a kernel function and so is their product; see also Problems 11.8–
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11.11. A helpful way to produce kernel functions is to employ the following 
result, involving characteristic functions. ☞ 36 

Theorem 11.1. (Kernels and Characteristic Functions). Let X 
be a random variable with a pdf f that is symmetric around 0 (i.e., 
.f(x) = f(−x) for all .x ∈ R. Define 

. ψ(r) = EeirX =
L

eirx f(x) dx, r ∈ R

to be its characteristic function. Then, .κ(x, x') = ψ(x − x') is a kernel 
function. 

Proof. Note that .ψ(r) is real-valued, because the imaginary part of .ψ(r) is 

. ψ(r) = E sin(rX) =
L ∞

−∞
sin(rx)f(x) dx = 0 ,

since .sin(−rx)f(−x) = − sin(rx)f(x) for all x. To verify (11.15), take any 
.n ≥ 1, .α1, . . . , αn ∈ R, and  .x1, . . . , xn ∈ R. We have  

. αTKα =
n⎲

j=1

n⎲

𝓁=1

αjα𝓁κ(xj , x𝓁) =
n⎲

j=1

n⎲

𝓁=1

αjα𝓁ψ(xj − x𝓁)

=
n⎲

j=1

n⎲

𝓁=1

αjα𝓁

L
eixjue−ix𝓁uf(u) du=

L ( n⎲

j=1
αjeixju

)( n⎲

𝓁=1

α𝓁eix𝓁u

)
f(u) du

=
L IIIIIIII

n⎲

j=1
αjeixju

IIIIIIII
2

f(u) du ≥ 0 ,

where . z denotes that complex conjugate of .z ∈ C. Since also . κ(x, x') =
ψ(x − x') = ψ(x' − x) = κ(x', x), the function . κ is a kernel function. 

The same principle and proof carries over to the multidimensional case 
where . X is a random vector in . Rd. The characteristic function is then defined 
as 

. ψ(r) = EeirTX , r ∈ R
d.

The most important case is where .X ∼ N(0, b2Id), which has the character-
istic function 

. ψ(r) = exp
(

−1
2

llrll2

b2

)
, r ∈ R

d.

Consequently, we obtain the Gaussian kernel on . Rd

.κ(x, x') = exp
(

−1
2

llx − x'll2

b2

)
. (11.18)
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The parameter b is sometimes called the bandwidth. Note that the kernel is 
of the form .κ(x, x') = f(llx−x'll) for some function .f : R → R. Such kernels 
are called radial basis function (rbf) kernels. By multiplying (11.18) with 
a positive number, we obtain another kernel function, which we call a scaled 
Gaussian kernel. 

Prediction functions corresponding to (scaled) Gaussian kernels are there-
fore of the form 

. g(x) =
n⎲

i=1
αi exp

(
−1

2
llx − xill2

b2

)
.

Think of each point . xi as having a feature .κ(xi, ·) that is a scaled multivariate 
Gaussian pdf centered at . xi. 

Example 11.6 (Gaussian Kernel). Figure 11.3 shows what happens if 
in Example 11.5 we replace the Wiener kernel with a Gaussian kernel, but 
otherwise keep the Julia code exactly the same. 
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Fig. 11.3 Approximating the sine function using Gaussian kernels 

For large bandwidths (e.g., .b ≥ 1), we obtain an excellent agreement with 
the true curve. However, for small bandwidths (e.g., .b = 0.3), significant 
overfitting occurs. 

11.4 Regression Splines and Smoothing Splines 

In Chap. 4 we introduced a variety of nonlinear regression models, such as☞ 101 
polynomial regression and log-linear models, to describe the nonlinear rela-
tionships between the response and explanatory variables. However, they are 
all parametric models in the sense that the user needs to specify a known
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functional form that maps the explanatory variables to the response. In many 
applications, we might not have sufficient domain knowledge to assume a par-
ticular functional form. In those cases, it is desirable to learn the nonlinear 
relationship from the data without imposing strong parametric assumptions. 

In this section we consider piecewise polynomials and splines that are 
designed to flexibly capture local features of the data. To fix ideas, we focus on 
the case where there is a single explanatory variable x. A piecewise polynomial 
function .g(x) is constructed by first partitioning the domain of x into disjoint 
intervals. Then, in each interval, we obtain a separate polynomial function 
using only data that fall within the interval. Example 11.7 gives a simple 
illustration of approximating the sine function using a piecewise quadratic 
polynomial. 

Example 11.7 (Piecewise Quadratic Polynomial). In this example we 
use a piecewise quadratic polynomial with a break-point or knot at . ξ to 
approximate the sine function in Example 11.5. In particular, we construct a 
prediction function of the form 

. g(x) =
I

β01 + β11x + β21x2, x ≤ ξ ,
β02 + β12x + β22x2, x > ξ .

The parameters of .g(x) can be estimated by running two separate regressions 
using data .x ≤ ξ and .x > ξ, respectively. Figure 11.4 shows the estimated 
piecewise quadratic polynomial .g(x) with a knot at .ξ = 3. 
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Fig. 11.4 Approximating the sine function using a piecewise quadratic polynomial 

Note that the function . g(x) is discontinuous at . ξ, which is often undesirable 
in many applications. To ensure that .g(x) is continuous at the knot . ξ, one  
can impose the linear constraint .β01 + β11ξ + β21ξ2 = β02 + β12ξ + β22ξ2 in 
the least squares estimation. Similar constraints can be imposed to ensure 
that higher-order derivatives are also continuous at the knot. 

In general, constructing a piecewise polynomial that is continuous at the 
knots .ξ1, . . . , ξK amounts to solving a least squares problem subject to a
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system of linear constraints. The prototypical problem can be formulated as 

.

min
β

lly − Xβll2

subject to Rβ = r ,
(11.19) 

where . R is assumed to have full row rank (otherwise any redundant equations 
can be removed). This problem can be solved using Lagrange’s method (see, 
e.g., Botev et al. (2025, Section B.2.2)), which amounts to finding a stationary 
point of 

. lly − Xβll2 + λT(Rβ − r)

with respect to . β and . λ, where . λ is the vector of Lagrange multipliers. Since 
this is a convex optimization problem, we can take derivative with respect to 
. β and . λ and equate them to zero to find that the solution of the constrained 
least squares problem in (11.19) follows from solving 

.

I
XTX RT

R O

I I
β
λ

I
=
I
XTy

r

I
. (11.20) 

To see that (11.20) is the set of optimality conditions for the constrained 
least squares problem in (11.19), suppose that .(~β, ~λ) satisfies (11.20) and . β
is any point that satisfies the linear constraints .Rβ = r. Then, 

. lly − Xβll2 = lly − X~β − X(β − ~β)ll2

= lly − X~βll2 + llX(β − ~β)ll2 − 2(β − ~β)TXT(y − X~β)

= lly − X~βll2 + llX(β − ~β)ll2 − 2(β − ~β)TRT~λ
= lly − X~βll2 + llX(β − ~β)ll2

≥ lly − X~βll2 ,

where the third equality holds because of the optimality condition . XTy −
XTX~β = RT~λ; the fourth equality holds because .R~β = Rβ = r. Hence, . ~β
is a minimizer. 

We have seen how one can construct a continuous piecewise polynomial 
with continuous higher-order derivatives by solving a linearly constrained 
least squares problem. Often, however, it is more convenient to use a different 
parameterization that incorporates the constraints directly. As an example, 
consider a function of the form 

. g(x) = β0 + β1x + β2x2 + β3x3 + β4(x − ξ)3
+ ,

where .(t)3
+ = t3 for .t > 0 and 0 otherwise. It can be shown that this function is 

a piecewise cubic polynomial that is continuous at the knot . ξ, with continuous 
first and second derivatives at . ξ; see Problem 11.17. This is an instant of a  
cubic spline. Estimation of the unknown parameters in .g(x) is easy: we can
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simply obtain the least squares estimates of a linear regression of y on an 
intercept, x, . x2, . x3 and .(x − ξ)3

+. 
More generally, splines are a wide class of piecewise polynomial functions 

that are continuous and have continuous (higher-order) derivatives at the 
knots. 

Definition 11.1. (Spline). A degree-N (or order .N + 1) spline with 
knots .ξ1, . . . , ξK is a piecewise polynomial of degree N that has contin-
uous derivatives up to order .N − 1 at the knots. 

The cubic spline example above is a degree-3 spline, and a continuous 
piecewise linear function is a degree-1 spline. While there are many ways to 
construct splines, a particularly convenient approach, at least theoretically, 
is based on the truncated-power basis. More specifically, let 

. gj(x) = xj , j = 0, 1, . . . , N ,

gN+j(x) = (x − ξj)N
+ , j = 1, . . . , K ,

where .(·)N
+ is the truncated power function with exponent N , i.e., . (t)N

+ = tN

for .t > 0 and 0 otherwise. Then, 

. g(x) =
N+K⎲

j=0
βj gj(x)

is a degree-N spline with knots .ξ1, . . . , ξK . 
The fit of a spline tends to be erratic near the boundary knots because of 

fewer data points at the extremes. As such, extrapolation beyond the bound-
aries can be wildly unreliable. One can ameliorate this problem by regular-
izing the spline outside the knots. An example is a natural cubic spline, 
which imposes additional restrictions that the function is linear beyond the 
boundary knots. This amounts to imposing four linear constraints on the 
coefficients .βj , j = 0, 1, . . . , 3 + K. More specifically, starting from the cubic 
spline with knots at .ξ1, . . . , ξK : 

. g(x) =
3⎲

j=0
βj xj +

K⎲

k=1

β3+k (x − ξk)3
+ ,

restricting that .g(x) is linear on .x < ξ1 and .x > ξK is equivalent (see Prob-
lem 11.18) to imposing the linear constraints: 

.β2 = 0, β3 = 0,

K⎲

k=1

β3+k = 0,

K⎲

k=1

β3+k ξk = 0 .
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Note that for a natural cubic spline with K knots, there are K free parame-
ters. Finally, the unknown parameters can be estimated by solving a linearly 
constrained least squares problem as formulated in (11.19). 

Even though splines can be piecewise polynomials of any degree, in prac-
tice cubic splines are the most widely used. They tend to strike the right 
balance between flexibility and parsimony in most applications. The fitted 
curve typically also appears to be smooth to the naked eye. 

In constructing a spline, we need to specify the number and the locations of 
the knots. Often domain knowledge about the application would help make 
these choices. If the relevant domain knowledge is unavailable, a standard 
practice is to select the number of knots using cross-validation. Since a spline 
function can be represented as a linear regression, its predicted residual sum 
of squares can be computed easily (see Theorem 5.4). Then, given the number☞ 153 
of knots, the locations can be set as the appropriate empirical percentiles of 
the data. For example, if the number of knots is chosen to be 3, typical choices 
of the locations are the 25-th, 50-th, and 75-th percentiles of x. 

Example 11.8. In Example 5.18 we fitted various polynomial regression 
functions for the data in Table 5.4 and found that a cubic polynomial had☞ 154 
the best predictive performance. Here, we fit a cubic spline and a natural 
cubic spline using the same data. Given the relatively few observations of 
.n = 20, we use  .K = 3 knots at the 25-th, 50-th, and 75-th percentiles of 
the data. To fit the cubic spline, we regress the response y on an intercept, 
x, . x2, . x3, .(x − ξ1)3

+, .(x − ξ2)3
+ and .(x − ξ3)3

+, where .ξ1, ξ2, and . ξ3 are the 
knots. For the natural cubic spline, we impose four linear restrictions on the 
coefficients so that the splines are linear outside the boundary knots . ξ1 and 
. ξ3. In particular, the system of restrictions can be written as 

. 

⎡

⎢⎢⎣

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 ξ1 ξ2 ξ3

⎤

⎥⎥⎦

, ,, ,
R

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
β2
β3
β4
β5
β6
β7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎣

0
0
0
0

⎤

⎥⎥⎦

,,,,
r

.

Figure 11.5 plots the two estimated cubic splines together with the raw 
data. The cubic spline fits the data well and is very similar to the cubic 
polynomial regression function obtained using the least-squares method. In 
contrast, the natural cubic spline is much smoother than the other curves 
and it does not fit the data as closely. This is perhaps not surprising, given 
the moderate sample size of .n = 20—the restriction that the natural cubic 
spline be linear outside the boundary knots has a relatively large impact on 
the shape of the curve. 

The following Julia code implements the estimation of the two spline func-
tions.
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Fig. 11.5 The blue curve is the cubic spline function for the data in Table 5.4 (black 
dots), with three knots at the 25-th, 50-th, and 75-th percentiles of the data. The red 
curve is the natural cubic spline function. The dark dotted curve is the least-square 
cubic polynomial prediction function

spline.jl 

using Plots, LinearAlgebra, StatsBase 
x = [4.7,2,2.7,0.1,4.7,3.7,2,3.4,1.3,3.8,4.8, 

1.7,-0.4,4.5,1.3,0.4,2.6,4,2.9,1.6] 
y = [6.57,5.15,7.15,0.18,6.48,8.95,5.24,10.54,1.24,8.05,3.56, 

3.4,2.18,7.16,2.32,-0.23,7.68,9.09,9.13,4.04] 
n =  length(x) 
xi = quantile(x,[.25,.5,.75]) # knots 
K =  length(xi) 

# cubic polynomial and cubic spline 
X =  hcat(ones(n),x,x.^2,x.^3) 
beta_cp = (X'*X)(X'*y) 
for k=1:K 

global X 
tmpX = (x .- xi[k]).^3; 
X =  hcat(X,tmpX.*(tmpX.>0)) 

end 
beta_cs = (X'*X)(X'*y) 

# natural cubic spline 
R = [0  0 1 0 0 0 0;  0 0 0 1 0 0 0;  0 0 0 0 1 1 1;  0 0 0 0 xi']  
r =  zeros(4) 
A =  vcat(hcat(X'*X,R'), hcat(R,zeros(4,4)))
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beta_ns = A\vcat(X'*y,r) 

xtilde = minimum(x):0.01:maximum(x) 
ngrid = length(xtilde) 
Xtilde = hcat(ones(ngrid),xtilde,xtilde.^2,xtilde.^3) 
cp = Xtilde*beta_cp 
for k=1:K 

global Xtilde 
tmp = (xtilde .- xi[k]).^3 
Xtilde = hcat(Xtilde,tmp.*(tmp.>0)) 

end 
cspline = Xtilde*beta_cs 
nspline = Xtilde*beta_ns[1:K+4] 

plot(xtilde,cp,lw=2,color=:black,ls=:dash) 
plot!(xtilde,cspline,lw=2,color=:blue,legend=false) 
plot!(xtilde,nspline,lw=2,color=:red,legend=false) 
scatter!(x,y,color=:black)

The previous approach of constructing a spline requires the specification 
of the number and the locations of the knots. The estimated spline is often 
sensitive to these choices, especially in applications with moderate sample 
sizes. An alternative approach avoids this specification problem by using a 
maximal set of knots: a knot is placed at every data point. Of course, this leads 
to overfitting, and regularization is used to control this overfitting problem. 

More specifically, a cubic smoothing spline is defined as the minimizer 
of the penalized residual sum of squares 

.~g = argmin
g

n⎲

i=1
(yi − g(xi))2 + λ

L
(g''(t))2 dt , (11.21) 

where .λ ≥ 0 is a regularization parameter. It is clear that when .λ = 0, a solu-
tion must satisfy .~g(xi) = yi, and this gives a perfect fit of the data with zero 
residual sum of squares. This is obviously undesirable—it is overfitting at its 
worst. Similar to the ridge regression defined in (9.7), the objective function☞ 274 
also includes a penalty term that regularizes the solution and penalizes a 
more wiggly function with a large (absolute) second derivative. More specif-
ically, it penalizes any function whose second derivative is not identically 0, 
i.e., any function that is not a line. In the limit .λ → ∞, the solution to the 
minimization problem in (11.21) coincides with the ordinary least squares 
regression line.
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It is also possible to define a smoothing spline of any odd degree N by 
replacing the penalty term by .λ

I
(g(N+1)/2(t))2 dt. However, cubic smoothing 

splines with .N = 3 are by far the most commonly used in applications. 
For any finite .λ > 0, (11.21) is an infinite-dimensional optimization prob-

lem over all functions g for the which the penalty term is defined. Remarkably, 
it can be shown that the minimizer is a natural cubic spline with knots at 
the data points .x1, . . . , xn; see, e.g., Green and Silverman (1993) and Hastie 
et al. (2009, Exercise 5.7). 

Theorem 11.2. (Cubic Smoothing Spline). Given the data points 
.a < x1 < · · · < xn < b, if  .g(x) is any twice differentiable function on 
. [a, b], then there exists a natural cubic spline . ~g with knots at . x1, . . . , xn

such that .~g(xi) = g(xi), i = 1, . . . , n and 

. 

L b

a

(~g''(t))2 dt ≤
L b

a

(g''(t))2 dt .

Proof. Since a natural cubic spline with n knots has n free parameters and its 
basis spans . Rn for any n points .zi = g(xi), i = 1, . . . , n, we can find a natural 
cubic spline .~g(x) with knots at .x1, . . . , xn that satisfies . ~g(xi) = zi = g(xi).
This proves the first part of the theorem. 

To prove the second part of the theorem, define .h(x) = g(x) − ~g(x). We  
claim that 

.

L b

a

~g''(t) h''(t) dt = 0 . (11.22) 

Then, using .g''(x) = ~g''(x) + h''(x), we have  

. 

L b

a

g''(t)2 dt =
L b

a

(~g''(t) + h''(t))2 dt

=
L b

a

~g''(t)2 dt +
L b

a

h''(t)2 dt

≥
L b

a

~g''(t)2 dt ,

where the second equality holds because of (11.22). 
Finally, the claim (11.22) can be proved by using integration by parts:



338 11 Nonparametric Methods

. 

L b

a

~g''(t) h''(t) dt = [~g''(t) h'(t)]ba −
L b

a

~g(3)(t) h'(t) dt

= −
L xn

x1

~g(3)(t) h'(t) dt

= −
n−1⎲

i=1

L xi+1

xi

~g(3)(t) h'(t) dt

= −
n−1⎲

i=1

II
~g(3)(t) h(t)

Ixi+1

xi

−
L xi+1

xi

~g(4)(t) h(t) dt

I

= −
n−1⎲

i=1
~g(3)(x+

i )(h(xi+1) − h(xi)) = 0 ,

where the second equality holds because . ~g is a natural cubic spline that 
is linear outside the boundary knots . x1 and . xn; the fourth equality holds 
because . ~g(3) is constant on .(xi, xi+1) and .~g(4) = 0; and the last equality 
follows from . h(xi) = 0, i = 1, . . . , n.

An implication of Theorem 11.2 is that we can restrict our attention to 
the class of natural cubic splines with knots at the data points . x1, . . . , xn

in solving the functional optimization problem in (11.21). A natural cubic 
spline with n knots has n free parameters, and it can be represented as 

. ~g(x) =
n⎲

j=1
αj gj(x)

for some piecewise cubic polynomial functions .gj , j = 1, . . . , n. Let  . vij =
gj(xi) and 

. kij =
L b

a

g''
i (t) g''

j (t) dt ,

and define .V = [vij ] and .K = [kij ]. Then, the functional optimization prob-
lem in (11.21) reduces to the following finite-dimensional minimization prob-
lem 

.~α = argmin
α

lly − Vαll2 + λαTKα . (11.23) 

This is a slightly more general version of the ridge regression problem dis-
cussed in (9.7). It has an explicit solution (see Problem 11.19)☞ 274 

. ~α =
I
VTV + λK

I−1 VTy .

Therefore, the estimated prediction function has the form of a linear smoother 

.~g(x) =
I
g1(x) . . . gn(x)

I I
VTV + λK

I−1 VTy ,
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where .gj(x) is a function of x and the data .x1, . . . , xn. 
A natural question is whether there exists a kernel function . κ such that 

.~g(x) can be represented as .~g(x) =
∑n

j=1 ~αj κ(x, xj) for some linear functions 
.~α1, . . . , ~αn of the responses .y1, . . . , yn. It turns out that the answer is true, 
with the kernel function (see, e.g., Kroese et al. (2019, Section 6.6)) given by 

. κ(x, u) = 1
2 max{x, u} min{x, u}2 − 1

6 min{x, u}3 .

This thus shows that a cubic smoothing spline is equivalent to a kernel re-
gression estimator. 

11.5 Gaussian Process Regression 

A Gaussian process can be thought of as a generalization of a multivari-
ate Gaussian (i.e., normal) random vector, in the same way that the latter 
generalizes one-dimensional normal random variables. 

Definition 11.2. (Gaussian Process). A Gaussian process on an 
index set .X ⊆ R

d is a stochastic process .Z = {Zx, x ∈ X } where, for 
any choice of indices .x1, . . . , xn and n, the vector .[Zx1 , . . . , Zxn

]T has 
a multivariate Gaussian distribution. 

An alternative, but equivalent, definition is that any linear combination 
.
∑n

i=1 aiZxi
has a Gaussian distribution. The probability distribution of a 

Gaussian process Z is thus completely specified by its expectation function 

. μ(x) = EZx, x ∈ X

and covariance function 

. κ(x, x') = Cov(Zx, Zx'), x, x' ∈ X ,

in the same way that a multivariate normal distribution is completely deter-
mined by its mean vector and covariance matrix. We write .Z ∼ GP(μ, κ). 
We already encountered covariance functions (kernel functions) in Sect. 11.3. 
A zero-mean Gaussian process is one for which .μ(x) = 0 for all . x. 

Example 11.9 (Two Gaussian Processes). Figure 11.6 displays five dif-
ferent paths of two Gaussian processes on the interval . [0, 1]. The paths on the 
left correspond to the Wiener process; that is, the zero-mean Gaussian process 
with covariance function .κ(x, x') = min{x, x'}. The paths on the right are of 
a zero-mean Gaussian process with a Gaussian kernel (11.18), with .b = 0.2. 
Note that in this case the paths are smooth, whereas the Wiener process has
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extremely ragged paths. In fact, the paths of the Wiener process are nowhere 
differentiable. Also, for the Wiener process .Zx ∼ N(0, κ(x, x)) = N(0, x), 
whereas for the second Gaussian process the distribution of each . Zx is .N(0, 1). 
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Fig. 11.6 Left: five realizations of the Wiener process. Right: five realizations of a 
Gaussian process with a Gaussian kernel, with bandwidth parameter . b = 0.2

The following Julia code can be used to simulate the paths (uncomment the 
desired kernel function). To simulate a Gaussian random vector, we can use 
Algorithm 3.3, via a Cholesky factorization .K = BBT of the Gram matrix.☞ 84 
To circumvent numerical issues with the Cholesky factorization, we establish 
a different factorization using a singular value decomposition . K = USVT

and defining .B = U
√

S. 
gp_wienkern.jl 

using LinearAlgebra, Plots 
xx = 0:0.001:1 
kappa(x, u) = min(x, u) 
# sigma = 0.2; 
# kappa(x,u) = exp(-(x-u)^2/(2*sigma^2)) 
n =  length(xx) 
K =  zeros(n, n) 
for i = 1:n  

for j = 1:n  
K[i, j] = kappa(xx[i], xx[j]) 

end 
end 
U,  S, V =  svd(K); # singular value decomposition 
B = U *  diagm(sqrt.(S)); 
g =  plot() 
for i = 1:5 

global g 
yy  = B *  randn(n) 
g =  plot!(xx, yy, legend=false) 
display(g) 

end
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The idea of Gaussian process regression is to represent the regression 
function as a Gaussian process and to update its distribution using Bayesian 
principles. 

Specifically, if g represents the regression function, then the prior informa-
tion on g is modeled as 

.(g | b) ∼ GP(0, κ) , (11.24) 

where . κ is a given covariance function, which may depend on one or more 
parameters b. For simplicity, we assume that . κ is a scaled Gaussian kernel for 
some given bandwidth parameter b. For the likelihood of the data, we follow 
the standard regression model that the feature vectors .x1, . . . , xn are fixed 
and the responses .y1, . . . , yn are such that 

.(yi | g, b, σ2) = g(xi) + εi , i = 1, . . . , n , (11.25) 

where .{εi} iid∼ N(0, σ2) and . σ2 is a known parameter. Observe that the con-
ditional distribution of . y given g is the same as the conditional distribution 
of . y given only the vector of regression values .g = [g(x1), . . . , g(xn)]T. This 
means that instead of using the prior (11.24) and likelihood (11.25), we may  
simplify our Bayesian model by considering only the prior and likelihood in-
formation on the random vectors .y = [y1, . . . , yn]T and . g. Firstly, the prior 
information on . g follows directly from (11.24) 

.(g | b) ∼ N(0, K) , (11.26) 

where .K = [κ(xi, xj)] is the Gram matrix associated with the kernel . κ. 
Secondly, from (11.25), the likelihood of . y given . g (and for a given b and . σ2) 
satisfies 

.(y | g, b, σ2) ∼ N(g, σ2In) . (11.27) 

Solving this finite-dimensional Bayesian problem involves deriving the pos-
terior distribution of .(g | y, b, σ2). As both (11.26) and (11.27) involve multi-
variate normal distributions, and b and . σ2 are fixed, the joint distribution of 
. y and . g is again multivariate normal. Namely, let . B be such that .K = BBT. 
From (11.26) and (11.27), we can write 

. 
g = BU ,

y = g + σV = BU + σV ,

where .U ∼ N(0, In) and .V ∼ N(0, In) are independent. Hence, 

. 

I
y
g

I
=
I
B σ In

B O

I I
U
V

I
,

which shows that
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.

I
y
g

I
∼ N(0, D), D =

I
B σ In

B O

I I
BT BT

σ In O

I
=
I
K + σ2 In K

K K

I
. (11.28) 

In particular, the likelihood of . y as a function of the bandwidth b and noise 
level . σ is given by 

.f(y | b, σ2) = 1/
(2π)n|K + σ2 In|

exp
(

−1
2yT(K + σ2 In)2y

)
. (11.29) 

Moreover, by Theorem 3.8, it follows that the posterior of . g given the data☞ 86 
. y satisfies 

.(g | y, b, σ2) ∼ N
I
K(K + σ2 In)−1y, K − K(K + σ2 In)−1K

I
. (11.30) 

The covariance matrix can be written more compactly as .σ2K(K + σ2 In)−1; 
see Problem 11.14. 

More importantly, we can derive the posterior distribution of .g(~x) for a 
new input . ~x. From the prior information, we know that the random vector 
.[gT, g(~x)]T has a Gaussian distribution with zero mean and covariance matrix 

. 

I
K κ
κT κ(~x, ~x)

I
,

where .κ = [κ(x1, ~x), . . . , κ(xn, ~x)]T. Since .y = g + σV , with .V ∼ N(0, In), 
it follows that the random vector .[yT, g(~x)]T has a .N(0, C) distribution with 
covariance matrix 

.C =
I
K + σ2 In κ

κT κ(~x, ~x)

I
. (11.31) 

Consequently, by Theorem 3.8, .(g(~x) | y) has a normal distribution with mean 
and variance given respectively by 

.μ(~x) = κT(K + σ2 In)−1y (11.32) 

and 
.σ2(~x) = κ(~x, ~x) − κT(K + σ2 In)−1κ . (11.33) 

These are the predictive mean and predictive variance. In particular, the 
predictive mean is equal to the expectation of a new response . ~y ∼ N(g(~x), σ2)
given the data; that is, .E[~y | y] = E[g(~x) | y] = μ(~x) in (11.32). 

There remains the issue of how to choose the (hyper)parameters b and . σ. 
A quick frequentist approach is to simply choose those as the maximum
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likelihood estimates of (11.29). This procedure is sometimes called empirical 
Bayes. Taking the logarithm, we thus need to solve 

. max
b>0,σ>0

I
−n

2 ln(2π) − 1
2 ln |K + σ2 In| − 1

2yT(K + σ2 In)−1y

I
, (11.34) 

where we can ignore the constant first term. 

Example 11.10 (GP Regression). In Example 5.18, we established that 
the best (in terms of predictive performance) polynomial regression function 
for the data in Table 5.4. is a cubic polynomial. In the current example, ☞ 154 
we wish to determine the GP regression function for these data. Figure 5.4 ☞ 152 
shows a dotplot of the data. The response data lie between .−0.23 and .10.54, 
with a mean of .y = 5.394. In our investigation we will use a mix of Bayesian 
and frequentist ideas. We take the Gaussian kernel (11.18) multiplied by 10, 
to better match the spread of the data. The bandwidth b and noise level . σ
are determined numerically from (11.34). Figure 11.7 shows the contour plot 
of the log-likelihood. The maximizer .(~σ,~b) of this function is found to be 
.(0.841, 1.50). 
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Fig. 11.7 Contour plot of the log-likelihood function as a function of the noise level . σ
and the bandwidth b. The maximizer is indicated by a blue dot 

Figure 11.8 shows the GP regression function for the data in Table 5.4, 
using the above values for . σ and b. We obtain a smooth curve that is quite 
close to the best cubic polynomial regression function that is estimated via 
the least-squares method. The Julia code follows.
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Fig. 11.8 The red curve is the GP regression function for the data in Table 5.4 
(black dots), using a scaled Gaussian kernel with multiplication factor 10 and band-
width .b = 1.50. The noise level is .σ = 0.841. The blue dotted curve is the least-square 
cubic polynomial prediction function. The shaded region is the .95% confidence band, 
corresponding to the predictive variance given in (11.33)

gpreg.jl 

using Plots, LinearAlgebra, StatsBase 
x = [4.7,2,2.7,0.1,4.7,3.7,2,3.4,1.3,3.8,4.8, 

1.7,-0.4,4.5,1.3,0.4,2.6,4,2.9,1.6] 
y = [6.57,5.15,7.15,0.18,6.48,8.95,5.24,10.54,1.24,8.05, 

3.56,3.4,2.18,7.16,2.32,-0.23,7.68,9.09,9.13,4.04] 
n =  length(x) 

# construct the optimal cubic regression polynomial 
X =  ones(n) 
for k=1:3 

global X 
X =  hcat(X, x.^k) # make the design matrix 

end 
beta = X'*X(X'*y) # optimal parameters 
g(x,beta)=beta[1] .+ beta[2]*x .+ beta[3]*x.^2 .+ beta[4]*x.^3 

b = 1.5; sigma = 0.841 # optimal hyperparameters 
k(x,u,b) = 10*exp(-0.5*norm(x- u)^2/b^2) # scaled kernel 

# function to construct the predictive mean and variance 
function gp_pred(xtest, xtrain, ytrain, sigma, b, k) 

T =  length(xtrain); N = length(xtest) 
K =  zeros(T, T) 
mu = zeros(N); sigma_squared = zeros(N)
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for z = 1:N  
kappa = zeros(T) 
for i = 1:T  

kappa[i] = k(xtest[z], xtrain[i], b) 
for j = 1:T  

K[i, j] = k(xtrain[i], xtrain[j], b) 
end 

end 
mu[z] = kappa' * (K + sigma^2 * I)^(-1) * ytrain 
sigma_squared[z] = k(xtest[z], xtest[z], b) - kappa' * 

(K + sigma^2 * I)^(-1) * kappa 
end 
return mu, sigma_squared 

end 

xtilde = minimum(x):0.01:maximum(x) 
mu,sigsquare = gp_pred(xtilde,x,y,sigma,b,k) 
lo = mu -1.96*sqrt.(sigsquare); hi = mu+1.96*sqrt.(sigsquare); 
plot(xtilde, mu,lw=2,color=:red,legend=false) 
plot!(xtilde, mu, ribbon = (lo .- hi) ./ 2, fillalpha = 0.1, 

color=:black) 
plot!(xtilde, mu,lw=2,color=:red) 
plot!(xtilde,g(xtilde,beta),lw=2,color=:blue,ls=:dash) 
scatter!(x,y,c=:black)

11.6 Problems 

11.1. Let .X1, . . . , Xn ∼iid U(0, 1). Show that the r-th order statistic .X(r) has 
a .Beta(α, β) distribution for some . α and . β, and identify the parameters. ☞ 74 
Derive the expectation of .X(r) for .r = 1, . . . , n. 
11.2. Let .X1, . . . , Xn ∼iid Exp(1). Show that conditional on .X(1) = x, the  
shifted order statistics .X(2) −x, . . . , X(n) −x have the same joint distribution 
as .n − 1 order statistics from the .Exp(1) distribution. Use this to show that 
the moment generating function of the r-th order statistic is given by 

. EetX(r) =
nI  I

k=r+1

k

k − t
, t < r + 1 .

11.3. In Sect. 11.2.1 we introduced Wilcoxon’s positive-rank sum test statistic 
. T +, which sums the ranks of the absolute values for positive measurements. 
Similarly, we could sum the ranks of the absolute values for negative measure-
ments, to give a test statistic . T −. The Wilcoxon signed-rank test statistic is
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.T = T + −T −. That is, we first rank the absolute values of the measurements 
and then add them multiplied with the sign of the measurements. 

Show that under the null hypothesis that the sampling distribution is 
symmetric around 0 the expectation and variance of T are given by 

. ET = 0 and Var(T ) = 1
6n(n + 1)(2n + 1) .

11.4. Show that under the null hypothesis .H0 : μ = 0 the rank sum test 
statistic . T + in (11.9) has probability generating function 

. G(z) =
n(n+1)/2⎲

k=0

zk
P(T + = k) = 2−n

nI  I

r=1
(1 + zr), |z| ≤ 1 .

For .n = 10 use a symbolic computing package to expand .G(z) to find the 
exact probabilities .P(T + = k) for .k = 0, . . . , 55. As a check, you should have 
.P(T + = 31) = 39/1024. 

11.5. The data in Table 11.4, taken from Cox and Snell (1981), present the 
breaking loads of two types of yarns, from six different bobbins (spools). 
Ignoring the bobbin types, conduct a Wilcoxon ranked sum test to assess 
whether the two types of yarn have different breaking loads. 

Table 11.4 Breaking loads (in ounce = 28.35 gram) 

Bobbin 1 2 3 4 5 6 

Yarn A 15.0 15.7 14.8 14.9 13.0 15.9 
17.0 15.6 15.8 14.2 16.2 15.6 
13.8 17.6 18.2 15.0 16.4 15.0 
15.5 17.1 16.0 12.8 14.8 15.5 

Yarn B 18.2 17.2 15.2 15.6 19.2 16.2 
16.8 18.5 15.9 16.0 18.0 15.9 
18.1 15.0 14.5 15.2 17.0 14.9 
17.0 16.2 14.2 14.9 16.9 15.5 

11.6. The sinc kernel on . R is given by 

. κ(x, x') = sinc(x − x') ,

where .sinc(z) = sin(z)/z for .z /= 0 and .sinc(0) = 1. Show that . κ is indeed 
a valid kernel function. Hint: consider the characteristic function of . X ∼
U[−1, 1]. 

11.7. Let .ψ(t) = 1
2 1{|t| ≤ 1} be the pdf of a uniformly distributed random 

variable on the interval .[−1, 1]. Show that the function .κ(x, x') = ψ(x − x')
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is not a kernel function. Hint: consider a matrix . K = [κ(xi, xj), i, j = 1, 2, 3]
for certain .x1, x2, and  . x3. 

11.8. Let . X be an arbitrary set. If . κ is a kernel function on . Rm and . φ is 
a function from . X to . Rm, then .λ(x, x') = κ(φ(x), φ(x')) defines a kernel 
function . λ on . X . Prove this. 

11.9. If . κ is a kernel function on . X and .f : X → R+ is a function, then 
.λ(x, x') = f(x)κ(x, x')f(x') defines a kernel function . λ on . X . Prove this. 

11.10. Show that if . κ1 and . κ2 are kernel functions on . X , then so is their sum 
.κ = κ1 + κ2. 

11.11. Let . κ1 and . κ2 be kernel functions on . X of the form 

.κ(x, x') = φ(x)Tφ(x') =
⎲

i

φi(x)φi(x') (11.35) 

determined by some finite- or infinite-dimensional feature function . φ(x) =
[φ1(x), φ2(x), . . .]T, .x ∈ X . Show that their product .λ = κ1κ2 is again a 
kernel function on . X and is also of the form (11.35). 

11.12. Let . κ be a kernel function on . X and let p be a positive integer. Using 
Problems 11.10 and 11.11, prove that the function 

. λ(x, x') = (1 + κ(x, x'))p
, x ∈ X

is a kernel function on . X . Such a kernel function is said to be a polynomial 
kernel function. 

For the special case .κ(x, x') = xx', x ∈ R, show that . λ is of the form 

. λ(x, x') = φ(x)Tφ(x') ,

where .φ(x) is a feature vector of dimension . p+1 that involves the polynomials 
.1, x, . . . , xp+1. 

11.13. Let . κ be a kernel function on . X and let .{qj , j = 1, . . . , m} be real-
valued functions on . X . Generalizing (11.13) and (11.17), consider prediction 
functions of the form 

.g(x) =
n⎲

i=1
αi κ(xi, x) +

m⎲

j=1
ηj qj(x) , (11.36) 

where the optimal parameters .α = [α1, . . . , αn]T and .η = [η1, . . . , ηm]T are 
found from the regularized optimization problem: 

. min
α, η

ll y − (Kα + Qη) ll2 + γ αTKα , (11.37)
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where .γ > 0 is a regularization parameter, . K is the .n×n Gram matrix, and . Q
is the .n × m matrix with entries .[qj(xi), i = 1, . . . , n, j = 1, . . . , m]. This is a  
convex optimization problem, and its solution can be found by differentiating 
the function to minimize in (11.37) with respect to . α and . η and equating 
the result to the zero vector. Find the corresponding system of .(n+m) linear 
equations. 

11.14. Assuming that . K is invertible, derive (11.30) directly from Theo-
rem 8.1 and show that☞ 245 

. K − K(K + σ2 In)−1K = σ2 K (K + σ2 In)−1 .

Hint: use the following matrix identity for symmetric invertible matrices: 

.A−1 + B−1 = B(A + B)−1A = A(A + B)−1B . (11.38) 

11.15. In the GP regression model in Sect. 11.5, we have taken the mean 
function for the prior distribution of g to be identically zero. If instead we 
have a general mean function m and replace the prior (11.26) with 

.(g | b) ∼ N(m, K) , (11.39) 

for some mean vector .m = [m(x1), . . . , m(xn)]T, what do the predictive 
mean (11.32) and variance (11.33) change to? 

11.16. Consider again the GP regression model in Sect. 11.5, but now with 
a prior on . σ2, while the bandwidth b remains a constant. 

a. Assuming . K is invertible, show that the prior .f(σ2) = 1/σ2 yields 

.(σ2 | y, g, b) ∼ InvGamma
(

n

2 ,
1
2lly − gll2

)
. (11.40) 

b. Since we already derived the distribution of .(g | y, σ2, b) in (11.30), we can  
simulate from the joint posterior of . g and . σ2. Modify the Julia program in 
Example 11.10 to simulate from posterior pdf of . g and . σ2 and determine 
the posterior expectation of . σ. Use a bandwidth of .b = 1.5. 

11.17. Consider a function of the form 

. g(x) = β0 + β1x + β2x2 + β3x3 + β4(x − ξ)3
+ ,

where .(t)3
+ = t3 if .t > 0 and 0 otherwise. Show that .g(x) is a piecewise cubic 

polynomial, continuous at . ξ, and has continuous first and second derivatives 
at . ξ.
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11.18. Starting from the cubic spline with knots at .ξ1, . . . , ξK : 

. g(x) =
3⎲

j=0
βjxj +

K⎲

k=1

β3+k(x − ξk)3
+ ,

show that restricting .g(x) to be linear on .x < ξ1 and .x > ξK is equivalent to 
imposing the linear constraints: 

. β2 = 0, β3 = 0,

K⎲

k=1

β3+k = 0,

K⎲

k=1

β3+kξk = 0 .

11.19. Show that the generalized ridge regression problem 

. ~α = argmin
α

lly − Vαll2 + λ αTKα

has an explicit solution given by 

.~α =
I
VTV + λK

I−1 VTy .



Chapter 12 
Dependent Data Models 

In the models considered so far the responses .Y1, . . . , Yn have been assumed 
to be independent given the model parameters. Though convenient, this in-
dependence assumption is implausible in two common situations. First, in 
the case of time series—observations measured over time—the responses 
typically exhibit strong serial dependence. For example, high unemployment 
tends to last for a long period of time; given a high unemployment rate in 
this period, one would expect that the unemployment rates in the next few 
periods would also be high. 

The other situation in which observations are likely to be dependent is 
when they are measurements on the same or related subjects. For example, 
learning outcomes of children in the same school tend to be more similar— 
because they share the same academic environment and come from families 
of similar socioeconomic backgrounds—than those of other children in a dif-
ferent school. 

In this chapter we introduce models that relax the usual independence 
assumption and are suitable for modeling data that arise in the two afore-
mentioned situations. 

12.1 Autoregressive and Moving Average Models 

In this section we introduce a widely popular class of simple time series 
models called autoregressive moving average (ARMA) models. We begin 
our study of ARMA models with purely autoregressive specifications. 
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12.1.1 Autoregressive Models 

Example 12.1 (Sales and Ads). In this motivating example, we consider 
a linear regression model in a time series context. Specifically, suppose a com-
pany has collected data on its quarterly sales and advertisement expenditures 
for the last 30 quarters. The data are given in Table 12.1. 

Table 12.1 Sales and advertisement expenditures 

Time Sales Ads 

1 23.45 5.41 
2 26.03 6.30 
3 21.73 4.21 
4 23.66 4.50 
5 26.54 5.63 
6 26.62 5.67 
7 23.59 4.33 
8 20.05 3.54 
9 20.67 3.86 
10 25.97 5.66 

Time Sales Ads 

11 24.92 4.59 
12 25.58 5.04 
13 28.74 5.87 
14 24.69 3.73 
15 29.39 6.02 
16 28.47 5.60 
17 28.66 5.50 
18 25.49 4.39 
19 28.57 5.68 
20 28.23 6.05 

Time Sales Ads 

21 21.42 2.61 
22 30.99 6.59 
23 20.79 2.65 
24 22.99 4.43 
25 23.56 5.18 
26 23.36 5.27 
27 19.03 3.52 
28 24.53 5.76 
29 19.56 4.30 
30 20.90 4.45 

The marketing manager wonders how the two figures are correlated. To 
address this question, she considers the following linear regression model: 

. Yt = β0 + β1 xt + εt , t = 1, . . . , 30, {εt} iid∼ N(0, σ2) ,

where . Yt is the sales at quarter t and . xt is the corresponding advertisement 
expenditure. Given the outcomes .yt, t = 1, . . . , 30, the maximum likelihood 
estimates of the model parameters, . ~β0, . ~β1, and . ~σ2, can be readily computed; 
see Example 5.5.☞ 131 

As a model diagnostic check, we can compute and plot the residuals☞ 130 

. ut = yt − ~β0 − ~β1 xt, t = 1, . . . , 30 .

The residuals .{ut} are our best guess for the (unknown) error terms . {εt}. 
If the model is correct, the residuals should be approximately iid and nor-
mally distributed, because the true error terms behave in this way. A plot of 
the residuals is given in Fig. 12.1. As the graph shows, the residuals exhibit 
systemic patterns across time. In particular, they tend to cluster together, 
indicating that the assumption of serially independent errors might not hold.
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Fig. 12.1 A plot of the residuals of the linear regression model 

Instead of the model .{εt} ∼iid N(0, σ2) for the errors, one could consider 
the model where the current error depends on the past errors in a linear way; 
for example, as in 

.εt = e εt−1 + Ut , {Ut} ∼iid N(0, σ2) , (12.1) 

where and . e and . σ2 are fixed model parameters. 

The model for the errors in (12.1) is an example of an autoregressive model. 

Definition 12.1. (Autoregressive Model). In the p-th-order au-
toregressive (AR(p)) model, the observation at time t depends linearly 
on the previous p observations .Yt−1, . . . , Yt−p: 

.Yt = e0 + e1Yt−1 + · · · + epYt−p + εt , (12.2) 

.t = 1, . . . , T , where .{εt} ∼iid N(0, σ2). 

To complete the model, one needs to specify the initial conditions, that 
is, the probability distribution of the first p observations: .Y−p+1, . . . , Y0. 
For simplicity it is often assumed that these values are known. An al-
ternative approach is to assume that (12.2) holds for every . t ∈ Z =
{. . . , −2, −1, 0, 1, 2, . . .} and that the time series is stationary, meaning that 
the distribution of .Y1, Y2, . . . is the same as that of .Yn+1, Yn+2, . . . for any 
.n ∈ Z. In particular, the distribution of . Yt does not depend on t (is the 
same for all t), and the joint distribution of .(Yt, Yt+s) does not depend on t. 
Stationary AR processes only exist under certain conditions on the . {ei}.
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Example 12.2 (Autocorrelations of AR(1)). Consider an AR(1) time 
series on . Z, governed by 

. Yt = eYt−1 + εt , t ∈ Z ,

where .{εt} ∼iid N(0, σ2). By repeated substitution, we have 

.Yt = εt + eεt−1 + e2εt−2 + e3εt−3 + · · · . (12.3) 

Since the .{εt} are independent by assumption, the variance of . Yt is finite if 
.|e| < 1: 

. Var(Yt) = Var(εt + eεt−1 + e2εt−2 + e3εt−3 + · · · )
= σ2 + e2σ2 + e4σ2 + e6σ2 + · · ·

= σ2

1 − e2 .

It is worth noting that the variance of . Yt is a constant and does not depend on 
the time index t. In fact, using the representation (12.3), it is not difficult to 
see that the time series .{Yt} is stationary and that each . Yt has a . N(0, σ2/(1−
e2)) distribution. 

Next, we compute the covariance .Cov(Yt, Yt−1), or the so-called (first-
order) autocovariance: 

. Cov(Yt, Yt−1) = Cov(eYt−1 + εt, Yt−1) = Cov(eYt−1, Yt−1)

= eVar(Yt−1) = e
σ2

1 − e2 ,

where the second equality holds because .Yt−1 is a function of .εs, s ≤ t − 1, 
and is therefore uncorrelated with . εt. Using a similar argument, one can show 
that in general the autocovariance of lag s is given by 

. R(s) = Cov(Yt, Yt−s) = es σ2

1 − e2 .

Dividing by .Var(Yt) = σ2/(1 − e2) gives the autocorrelation function: 

. Corr(Yt, Yt−s) = es , s = 0, 1, 2, . . . .

In other words, under the assumption .|e| < 1 the autocorrelations of the 
AR(1) model decrease geometrically. If . e is positive, the autocorrelations 
monotonously decrease; if . e is negative, they alternate in sign. In Fig. 12.2 
we plot the autocorrelations of the AR(1) for four different values of . e.
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Fig. 12.2 Autocorrelations for the AR(1) model. Left: .ϱ = 0.8 (solid) and . ϱ = 0.4
(dashed). Right: .ϱ = −0.8 (solid) and .ϱ = −0.4 (dashed) 

Remark 12.1 (Estimating Autocovariances). Suppose that . X1, X2, . . . ,
XT is a stationary time series with autocovariance function . R(s) = Cov(Xt,
Xt+s). Note that .R(0) = Var(Xt). The autocovariances can be estimated via 
their (unbiased) sample averages: 

. ~R(s) = 1
T − s − 1

T −s
7

t=1
(Xt − X)(Xt+s − X), s = 0, 1, . . . , T . (12.4) 

In order to obtain a meaningful estimate, the lag s should be significantly 
smaller than T . If the time series is not stationary, it is customary to delete 
the first K, say, samples, similar to the burn-in period for Markov chain Monte 
Carlo, and view the remaining samples as stationary. ☞ 220 

We now turn to the estimation of the model parameters. Under the AR(p) 
model past observations feed into the current value of the series, where their 
effects are determined by the vector of AR coefficients .ϱ = [e0, e1, . . . , ep]T. 
One main appeal of the AR(p) model is that it is in the form of a normal 
linear model, and as such, estimation of the model parameters . θ = [ϱT, σ2]T
is easy. To proceed, let .y = [y1, . . . , yT ]T be the observed data and denote the 
initial observations by .Y 0 = [Y−p+1, . . . , Y0]T. Recall that the AR(p) model 
determines the conditional pdf of the data given the initial conditions, that 
is, .fY |Y 0(y | y0 ; θ). The likelihood function of . θ for the observed data . y is 
thus given by 

. L(θ; y) = fY |Y 0(y | y0 ; θ)fY 0(y0) .

As mentioned before, there are two ways to deal with the initial observa-
tions. The first is to assume that the time series is stationary, and from this 
assumption, we derive the distributions of . Y 0 and . Y . An easier approach, 
which we will follow here, is to simply assume that .Y 0 = y0 is given and 
specify the likelihood function as 

.L(θ; y, y0) = fY | Y 0(y | y0; θ) .
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In typical situations where T is much greater than p, it makes little difference 
for parameter estimation whether or not the initial conditions are explicitly 
modeled. 

Using the results of the normal linear model in Sect. 4.5, we can easily☞ 115 
derive the joint density .fY |Y 0(y | y0 ; θ) and hence the likelihood function. 
To that end, write the AR(p) model in matrix notation: 

. Y = Xϱ + ε, ε ∼ N(0, σ2IT ) ,

where 

. X =

⎡

⎢

⎢

⎢

⎣

1 Y0 Y−1 · · · Y−p+1
1 Y1 Y0 · · · Y−p+2
...

...
...

. . .
...

1 YT −1 YT −2 · · · YT −p

⎤

⎥

⎥

⎥

⎦

.

Thus, conditional on .Y 0 = y0 the random vector .Z = Y − Xϱ (with . Yk

in matrix . X replaced by . yk for .k = 0, −1, . . . , −p + 1) has a  . N(0, σ2IT )
distribution with density function 

. fZ(z) = (2πσ2)− T
2 e− 1

2σ2 zTz .

Now, given the outcome .Y = y and initial conditions .Y 0 = y0, we have  
.z = y − Xϱ (with . Yk in matrix . X replaced by . yk for .k = −p + 1, . . . , T ), and 
the likelihood function is given by 

. L(θ; y, y0) = (2πσ2)− T
2 e− 1

2σ2 (y−Xϱ)T(y−Xϱ) .

The maximum likelihood estimators of . ϱ and . σ2 are given by 

. ~ϱ = (XTX)−1XTY and ~σ2 = 1
T

(Y − X~ϱ)T(Y − X~ϱ) .

Finally, Bayesian inference in the AR(p) model can proceed as in 
Sect. 8.2.2.☞ 243 

Example 12.3 (Modeling Unemployment with AR Models). In this 
example, we use autoregressive models with different lags to model US quar-
terly unemployment rates from the first quarter in 2002 to the last quarter 
in 2011—a total of 40 observations. The data are given in Table 12.2. 

We fit two autoregressive models with one and two lags respectively. To 
that end, we divide the data into two subsets: the first two observations are 
reserved as the initial conditions, . y−1 and . y0, and we explicitly model the 
remaining 38 observations .y1, . . . , y38. First we fit the following AR(1) model: 

.Yt = e0 + e1Yt−1 + εt ,
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where .εt ∼iid N(0, σ2) for .t = 1, . . . , 38. By defining the design matrix . X
appropriately, the maximum likelihood estimates of .e0, e1, and  . σ2 can be 
computed easily; see the following Julia code. 

urate_ar.jl 

using Plots 
urate = [5.7, 5.8, 5.7, 5.9, 5.9, 6.1, 6.1, 5.8, 5.7, 
5.6, 5.4, 5.4, 5.3, 5.1, 5.0, 5.0, 4.7, 4.6, 4.6, 4.4, 
4.5, 4.5, 4.7, 4.8, 5.0, 5.3, 6.0, 6.9, 8.3, 9.3, 9.6, 
9.9, 9.8, 9.6, 9.5, 9.6, 9.0, 9.0, 9.1, 8.7] 
y = urate[3:end] 
T =  length(y) 
X = [ones(T,1) urate[2:end-1]] 
rhohat = (X'*X)(X'*y) 
yhat1 = X*rhohat # fitted values 
uhat = y-yhat1 # residuals 
sig2hat = uhat'*uhat/T 

t = 2002.5:.25:2011.75 
plot(t,X*rhohat) 
plot!(t,y) 

To assess the model fit, we also computed the fitted values under the AR(1) 
model, as well as the residuals. The fitted values of the AR(1) are plotted in 
Fig. 12.3 (left panel). 
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Fig. 12.3 The fitted values of the AR(1) (left panel) and the AR(2) (right panel) 

It can be seen from the graph that the fitted values appear to be quite close 
to the actual observations. However, the AR(1) model seems to systematically
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Table 12.2 US quarterly unemployment rates from 2002 Q1 to 2011 Q4 

Year Unemploy-
ment rate 

2002 Q1 5.7 
Q2 5.8 
Q3 5.7 
Q4 5.9 

2003 Q1 5.9 
Q2 6.1 
Q3 6.1 
Q4 5.8 

2004 Q1 5.7 
Q2 5.6 
Q3 5.4 
Q4 5.4 

2005 Q1 5.3 
Q2 5.1 
Q3 5.5 
Q4 5.5 

Year Unemploy-
ment rate 

2006 Q1 4.7 
Q2 4.6 
Q3 4.6 
Q4 4.4 

2007 Q1 4.5 
Q2 4.5 
Q3 4.7 
Q4 4.8 

2008 Q1 5.0 
Q2 5.3 
Q3 6.0 
Q4 6.9 

Year Unemploy-
ment rate 

2009 Q1 8.3 
Q2 9.3 
Q3 9.6 
Q4 9.9 

2010 Q1 9.8 
Q2 9.6 
Q3 9.5 
Q4 9.6 

2011 Q1 9.0 
Q2 9.0 
Q3 9.1 
Q4 8.7 

underestimate the unemployment rate before 2007 and then overestimate it 
after 2007. To check whether the residuals have any serial correlation, we can 
estimate the autocovariance function via (12.4). In Julia we can do this, for 
example, via the following function. 

function acov(x,s) # make sure StatsBase is used 
return sum((x[1:end-s] .- mean(x)).*(x[s+1:end] .- mean(x) 

))/(length(x) - s - 1);  
end 

We find the autocorrelation at lag 1 via acov(uhat,1)/acov(uhat,0), 
which turns out to be 0.7028. Similarly, for lags 2 and 3 we find the auto-
correlations 0.5580 and 0.4421, respectively. This indicates that the model 
assumption of serially independent errors might not be valid, since the auto-
correlations of the residuals remain substantial. 

Next, we investigate if we can improve the model fit by using the AR(2): 
model: 

. Yt = φ0 + φ1yt−1 + φ2yt−2 + εt , 

where .εt ∼iid N(0, σ2) for .t = 1, . . . , 38. By defining the design matrix appro-
priately, the maximum likelihood estimates for the model parameters and the 
corresponding fitted values can be obtained easily. The fitted values of the 
AR(2) are plotted in Fig. 12.3 (right panel), which appear to fit the actual 
observations better. In this case the lag-1 and lag-2 autocorrelations of the 
residuals are respectively .−0.12 and .−0.001. 
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We now return to the modeling situation of Example 12.1, using a more ☞ 352 
general setting. In particular, we consider a linear regression model 

. Y = Xβ + ε ,

where the errors .{εt} follow an AR(p) model (with .e0 = 0): 

.εt = e1εt−1 + · · · + epεt−p + Ut , (12.5) 

where .{Ut} ∼iid N(0, σ2) and .ε1−p = · · · = ε0 = 0. To keep the discussion 
concrete, we let .p = 1 and define .e1 = e; higher-order AR models can be 
estimated similarly. Now, rewrite (12.5) in matrix notation 

. Hε = U ,

where .ε = [ε1, . . . , εT ]T, .U = [U1, . . . , UT ]T ∼ N(0, σ2IT ), and  

. H =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0
−e 1 0 · · · 0
0 −e 1 · · · 0
...

. . .
...

0 0 · · · −e 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

is a lower-triangular .T ×T matrix with ones on the main diagonal. Note that 
. H is sparse, i.e., it contains only a small proportion of nonzero elements. 
Now, since its determinant is 1, . H is invertible for any . e. By a simple change 
of variables, we have 

. Y − Xβ = H−1U ∼ N(0, σ2(HTH)−1) .

Noting that the determinant of . H is 1, the log-likelihood function is given by 

.l(β, e, σ2; y) = −T

2 ln(2πσ2) − 1
2σ2 (y − Xβ)THTH(y − Xβ) . (12.6) 

If the number of parameters is small, the maximum likelihood estimates can 
be obtained by numerically maximizing the log-likelihood function in (12.6). 
But when the dimension of the maximization is large, this approach is time-
consuming and sometimes even infeasible. 

Here we introduce a method to reduce the dimension of the numerical opti-
mization; see also Example 6.14. First note that if . e is known, the maximum ☞ 179 
likelihood estimates of . β and . σ2 are available analytically (see Problem 12.6): 

.~β = (XTHTHX)−1XTHTHy, ~σ2 = 1
T

(y−X~β)THTH(y−X~β) . (12.7)
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Now, we plug the maximum likelihood estimators of . β and . ~σ2 back into 
the log-likelihood function to obtain the profile log-likelihood, also called the 
concentrated log-likelihood 

. ~l(e; y) = l(~β, e, ~σ2; y) ,

which is a function of . e only. Thus, we can maximize numerically the profile 
log-likelihood function to obtain the maximum likelihood estimate . ~e. Finally, 
given . ~e, we can use (12.7) to obtain . ~β and . ~σ2 analytically. 

Example 12.4 (Sales and Ads Continued). Consider the model for the 
sales data in Example 12.1 

. Yt = β0 + β1xt + εt ,

εt = eεt−1 + Ut ,

where . Yt is the sales in quarter t, . xt is the corresponding ads expenditure, 
.ε0 = 0, and .{Ut} ∼iid N(0, σ2). We wish to compute the maximum likelihood 
estimates for .β, . σ2, and  . e. Note that throughout we will use the matrix 
notation introduced earlier. 

To that end, we first write a Julia function to evaluate the profile log-
likelihood .~l(e; y) = l(~β, e, ~σ2; y). 

function AR1_loglike(rho,y,X) 
T =  length(y); 
H =  sparse(I,T,T) .- rho*sparse(2:T,1:T-1,ones(T-1),T,T); 
HH = H'*H; 
betahat = (X'*HH*X)(X'*HH*y); 
e = y-X*betahat; 
sigma2hat = e'*HH*e/T; 
l = -T/2*log(2*pi*sigma2hat) - .5/sigma2hat*e'*HH*e; 

return l, betahat,sigma2hat 
end 

In the above code, note that the matrix . H is constructed by writing 

. H =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0
−e 1 0 · · · 0
0 −e 1 · · · 0
...

. . .
...

0 0 · · · −e 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 · · · 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

− e

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 0 · · · 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Then, in the main script, we define the function .f(e) = −~l(e; y) and use 
the built-in minimization function optimize to minimize f to obtain the
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maximum likelihood estimate . ~e. Finally, given . ~e, we use  (12.7) to compute 
. ~β and . ~σ2 analytically. 

sales.jl 

using SparseArrays, LinearAlgebra, Optim, Plots, 
DelimitedFiles 

ads = readdlm("ads.csv",',') 
y = ads[:,1] 
T =  length(y) 
X = [ones(T,1) ads[:,2]] 
f(rho) = -(AR1_loglike(rho,y,X)[1]) 

res = optimize(f,0.1,1) 
rhohat = res.minimizer 
l, betahat, sigma2hat = AR1_loglike(rhohat,y,X) 

The maximum likelihood estimate of . ~e is 0.95, indicating very strong first-
order serial correlation in the error terms . {εt}. The maximum likelihood 
estimates of . ~β and . ~σ2 are, respectively, .[11.03, 2.32]T and 0.81. 

To assess the appropriateness of the model assumption .{Ut} ∼iid N(0, σ2), 
we compute the residuals . {ut}, which are our best guess for the (unknown) 
. {Ut}. Recall that under the model we have .Hε = U . Hence, we can obtain 
the residuals using 

. u = ~H(y − X~β) ,

where . ~H is the same as . H but with . e replaced by its estimate . ~e. This is 
implemented in Julia as follows: 

e = y - X*betahat 
H =  sparse(I,T,T) .- rhohat*sparse(2:T,1:T-1,ones(T-1),T,T); 
u = H*e;  
scatter(u) 
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Fig. 12.4 A plot of the residuals of the linear regression model with AR(1) errors
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A plot of the residuals is given in Fig. 12.4. As the graph shows, the resid-
uals now do not seem to have any systematic patterns across time, indicating 
no evidence of invalidating the assumption that .{Ut} are serially independent; 
see also Problem 12.4. 

12.1.2 Moving Average Models 

In an AR model, dependence of the responses is constructed by defining the 
current response in terms of a linear combination of previous responses. In 
contrast, in a moving average (MA) model the current response . Yt depends 
on a linear combination of past error terms. 

Definition 12.2. (Moving Average Model). In the q-th-order 
moving average (MA(q)) model the observation at time t depends 
linearly on the previous q error terms: 

.Yt = εt + ψ1εt−1 + · · · + ψqεt−q , (12.8) 

where .{εt} ∼iid N(0, σ2). 

A standard way to treat the initial conditions is to assume . ε0 = ε−1 =
· · · = ε1−q = 0, although relaxing this assumption is straightforward (see 
Problem 12.3) 

Under the MA(q) model, past shocks feed into the current value of the 
series, where their effects are determined by the signs and magnitudes of the 
MA coefficients .ψ1, . . . , ψq. Unlike the AR(p) model each response always has 
a finite variance, as the following example shows. 

Example 12.5 (Autocorrelations of MA(q)). We investigate the auto-
correlation structure implied by the MA(q) model. First, we compute the 
variance of . Yt for . t > q

. Var(Yt) = Var(εt + ψ1εt−1 + · · · + ψqεt−q)
= Var(εt) + ψ2

1Var(εt−1) + · · · + ψ2
qVar(εt−q)

= σ2(1 + ψ2
1 + · · · + ψ2

q ) ,

which is finite and independent of the time index t for .t > q. Next,  we  
compute the autocovariance at lag 1 as
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. Cov(Yt, Yt−1) =Cov(εt + · · · + ψqεt−q, εt−1 + · · · + ψqεt−q−1)
=ψ1Cov(εt−1, εt−1) + ψ2ψ1Cov(εt−2, εt−2) + · · · +

ψqψq−1Cov(εt−q, εt−q)
=(ψ1 + ψ2ψ1 + · · · + ψqψq−1)σ2.
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Fig. 12.5 The autocorrelations for the MA(3) with .ψ1 = 0.8, ψ2 = 0.6 and . ψ3 = 0.4
(left panel), and .ψ1 = −0.8, ψ2 = −0.6 and .ψ3 = −0.4 (right panel) 

More generally, it can be shown that (see Problem 12.2) 

.Cov(Yt, Yt−j) =
(

σ2 ∑q−j
i=0 ψi+jψi, j = 0, . . . , q ,

0, j > q ,
(12.9) 

where .ψ0 = 1. Hence, the autocorrelations are 

. Corr(Yt, Yt−j) =
∑q−j

i=0 ψi+jψi

1 + ψ2
1 + · · · + ψ2

q

for .j = 0, . . . , q and .Corr(Yt, Yt−j) = 0 for .j > q. In contrast to the AR case 
where the autocorrelation declines geometrically, those of the MA drop to zero 
after only q lags. As an illustration, in Fig. 12.5 we plot the autocorrelations 
of two MA(3) models. 

We now turn to estimation of the model parameters. Recall that under the 
MA(q) model, the responses .Y1, . . . , YT are a linear combination of T normal 
random variables .ε1, . . . , εT . Therefore, .Y = [Y1, . . . , YT ]T has a multivariate 
normal distribution, and evaluating the log-likelihood should be simple. In ☞ 83 
practice, however, this approach requires manipulating large matrices, which 
is often time-consuming. The key to make this approach feasible is to realize 
that, as in the AR(p) case, the matrices involved in the MA(q) model are 
sparse, which makes the computation quick. 

To keep the discussion concrete, consider evaluating the log-likelihood of 
the MA(1) model 

.Yt = εt + ψ εt−1, t = 1, . . . T, ε0 = 0 .
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First, we write this model in matrix form 

.Y = Hε, (12.10) 

where .ε = [ε1, . . . , εT ]T ∼ N(0, σ2IT ), and  

. H =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0
ψ 1 0 · · · 0
0 ψ 1 · · · 0
...

. . .
...

0 0 · · · ψ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

is a sparse .T ×T matrix that contains only .2T −1 nonzero elements. It follows 
that 

. Y ∼ N(0, σ2HHT) .

Noting that the determinant of . H is 1, the log-likelihood function is given by 

.l(ψ, σ2; y) = −T

2 ln(2πσ2) − 1
2σ2 yT(HHT)−1y . (12.11) 

It is important to note that one need not compute the inverse . (HHT)−1

in order to evaluate the log-likelihood—it is a time-consuming operation. 
Instead, one only needs to obtain the product .(HHT)−1y, which can be 
quickly computed by solving the linear equation 

. HHTz = y

for . z. In Julia it can be done by using the backslash (. \) command. The latter 
operation is much quicker, especially because .HHT is a sparse matrix. 

Hence, one can evaluate the log-likelihood function .l(ψ, σ2; y) quickly 
without inverting any large matrices. Then, the MLE for . ψ and . σ2 can be 
obtained numerically. To evaluate the log-likelihood function for a general 
MA(q) model, one only needs to redefine the matrix . H appropriately, and 
everything else follows directly as in the MA(1) case. 

Given the method to quickly evaluate the log-likelihood function described 
above, the maximum likelihood estimate can be computed readily by numer-
ical methods. For Bayesian inference, posterior draws of the parameters can 
be obtained using the Metropolis–Hastings algorithm. 

Example 12.6 (Modeling U.S. Inflation with MA(1)). In this exam-
ple, we model the dynamics of US quarterly inflation rate—computed from 
the consumer price index (CPI)—using a variant of the MA(1) model. Specif-
ically, given the CPI . zt at time t, we compute the (annualized) inflation rate 
as .yt = 400 ln(zt/zt−1). The CPI inflation rate from the second quarter of 
1947 to the second quarter of 2011 is plotted in Fig. 12.6. A prominent feature 
of the CPI inflation is that it exhibits high persistence, in the sense that high
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(or low) inflation in the past tends to continue into the future. For instance, 
inflation tends to stay high (and variable) in the late 1970s and early 1980s, 
but it has become much lower (and less variable) since the mid-1980 until 
the global financial crisis in 2008. 

Fig. 12.6 US CPI infla-
tion rate from 1947Q2 to 
2011Q2 1950 1960 1970 1980 1990 2000 2010
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There are various reasons why one might want to model the past infla-
tion and accurately forecast future inflation. For example, the prices of many 
financial and real assets—such as bonds, properties, precious metals, etc.— 
depend on future inflation. Another example is for conducting monetary pol-
icy: many central banks have explicit inflation targets, and in order to manage 
future inflation, it is important to be able to forecast it accurately. 

In this example we consider the following model: 

. Yt = Yt−1 + εt + ψ εt−1 ,

where .ε1, . . . , εT ∼iid N(0, σ2) and .ε0 = 0. 
This is a variation of the MA(1) model, sometimes called the first-order 

integrated moving average model. Instead of using the inflation rate as 
our dependent variable to fit the MA(1) model, we use its first difference 
.ΔYt = Yt − Yt−1. Estimation proceeds the same way as in the MA(1) model, 
with the minor modification of using . ΔYt as the dependent variable. 

To obtain the maximum likelihood estimates for . σ2 and . ψ, we first need 
the following function to evaluate the log-likelihood for the MA(1) model as 
given in (12.11): 

function loglike_MA1(theta,y) 
# the log-likelihood function for MA(1) 
# input: theta = [psi sigma2]; y = data 
psi = theta[1]; sigma2 = theta[2]; 
T =  length(y); 
H =  sparse(I,T,T) .+ psi*sparse(2:T,1:T-1,ones(T-1),T,T); 
HH = H*H'; 
l = -T/2*log(2*pi*sigma2) - .5/sigma2*y'*(HH\y); 
return l 

end 
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Then, in the main script, we use the function loglike_MA1 to compute the 
maximum likelihood estimates numerically. Specifically, we first construct the 
function f that evaluates the negative log-likelihood for the MA(1) model. 
(Recall that in Optim all optimization routines are framed in terms of min-
imization.) Then, we minimize f using the numerical minimization function 
optimize with starting values 0 for . ψ and the sample variance of . Δyt for . σ2. 

CPI_MA.jl 

using SparseArrays, LinearAlgebra, Optim, StatsBase,Plots, 
DelimitedFiles 

USCPI= readdlm("USCPI.csv") 
y0 = USCPI[1] 
y = USCPI[2:end] 
Dely = y - [y0; y[1:end-1]]; # define the dependent variable 
T =  length(Dely) 
theta0 = [0 ,var(Dely)] 
f = theta -> -loglike_MA1(theta,Dely) 
res = optimize(f,theta0) 
thetahat = res.minimizer 
psihat = thetahat[1] 
l = loglike_MA1(thetahat,Dely) 

The maximum likelihood estimates for . ψ and . σ2 are, respectively, . −0.402
and .5.245, and the corresponding maximized log-likelihood value is .−577.74. 
To assess model fit, we compute the fitted value . ~yt

. ~yt = yt−1 + ~ψ ~ut−1 ,

where . ~ψ is the maximum likelihood estimate of . ψ and .~ut−1 is the residual for 
period . t − 1. Note that the residuals can be computed easily by 

Hhat = sparse(I,T,T) .+ psihat*sparse(2:T,1:T-1,ones(T-1),T,T) 
uhat = Hhat\Dely 

Finally, we plot the fitted vs. the observed values of the inflation rates in 
Fig. 12.7
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Fig. 12.7 The fitted val-
ues for the MA(1) model 1950 1960 1970 1980 1990 2000 2010
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12.1.3 Autoregressive Moving Average Models 

Of course, we can combine autoregressive and moving average models to have 
more complex autocorrelation patterns. 

Definition 12.3. (Autoregressive Moving Average Model). In 
the .(p, q)-th-order autoregressive moving average (ARMA(. p, q)) 
model the observation at time t depends linearly on the previous p 
observations as well as the previous q error terms 

.Yt = e0 + e1Yt−1 + · · · + epYt−p + εt + ψ1εt−1 + · · · + ψqεt−q , (12.12) 

where .{εt} iid∼ N(0, σ2) for .t = 1, . . . , T, and .ε0 = · · · = ε1−q = 0. 

In matrix notation, we can write the system (12.12) as 

. Y = Xϱ + Hε ,

where .ε = [ε1, . . . , εT ]T ∼ N(0, σ2IT ), .ϱ = [e0, e1, . . . , ep]T, 

. X =

⎡

⎢

⎢

⎢

⎣

1 Y0 Y−1 · · · Y−p+1
1 Y1 Y0 · · · Y−p+2
...

...
...

. . .
...

1 YT −1 YT −2 · · · YT −p

⎤

⎥

⎥

⎥

⎦

,

and . H is a lower triangular matrix with ones on the main diagonal, . ψ1 on 
the first diagonal below the main diagonal, . ψ2 on the second diagonal below 
the main diagonal, and so on. We define .ψ = [ψ1, . . . , ψq]T. Similar to the 
AR and MA models, we have 

.Y − Xϱ ∼ N(0, σ2HHT) ,
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and the log-likelihood function .l(ϱ, ψ, σ2; y, y0) is given by (with . Yk in matrix 
. X replaced by . yk for .k = −p + 1, . . . , T ): 

.

l(ϱ, ψ, σ2; y, y0) = − T

2 ln(2πσ2)

− 1
2σ2 (y − Xϱ)T(HHT)−1(y − Xϱ) .

(12.13) 

In principle we can numerically maximize .l(ϱ, ψ, σ2; y, y0) to find the 
maximum likelihood estimates of the parameters. But this approach is time-
consuming in this context as the dimension of the parameter vector is typ-
ically large. Instead, as discussed earlier, we reduce the dimension of the 
numerical maximization by first obtaining the profile log-likelihood 

. ~l(ψ; y) = l(~ϱ, ψ, ~σ2; y, y0) ,

where the maximum likelihood estimates of . ϱ and . σ2 are available analytically 
(see Problem 12.6) 

.~ϱ = (XTΣ−1X)−1XTΣ−1y, ~σ2 = 1
T

(y − X~ϱ)TΣ−1(y − X~ϱ) , (12.14) 

where .Σ = HHT. We then maximize numerically the profile log-likelihood— 
which is a function of . ψ only—to obtain the maximum likelihood estimate 
. ~ψ. Finally, given . ~ψ, we use  (12.14) to obtain . ~ϱ and . ~σ2 analytically. 

Example 12.7 (Modeling US Inflation with ARMA(1,1)). In Exam-
ple 12.6 we fitted the US inflation data with an integrated MA(1) model. 
In this example we consider a slight generalization by including an intercept 
and allowing a first-order AR coefficient 

. Yt = e0 + e1Yt−1 + εt + ψ εt−1 ,

where .ε1, . . . , εT ∼iid N(0, σ2) and .ε0 = 0. Hence, given the data, the design 
matrix . X is 

. X =

⎡

⎢

⎢

⎢

⎣

1 y0
1 y1
...

...
1 yT −1

⎤

⎥

⎥

⎥

⎦

.

In this example, we compute the maximum likelihood estimates of the 
model parameters; for a Bayesian treatment of the model, see Problem 12.7. 

The Julia function loglike_ARMA11 takes the design matrix . X and the 
outcomes . y and evaluates the profile log-likelihood function at . ψ. Note that 
the function also reports the maximum likelihood estimates of . ϱ = [e0, e1]T

and . ~σ2 given the value of . ψ.
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function loglike_ARMA11(psi,X,y) 
T =  length(y) 
H =  sparse(I,T,T) + psi*sparse(2:T,1:T-1,ones(T-1),T,T) 
HH = H*H' 
rhohat = (X'*(HH\X))(X'*(HH\y)) 
uhat = y-X*rhohat 
sigma2hat = uhat'*(HH\uhat)/T 
l = -T/2*log(2*pi*sigma2hat) - .5/sigma2hat*uhat'*(HH\uhat) 
return l, rhohat, sigma2hat 

end 

Then, in the main script, we numerically minimize the negative of the 
function loglike_ARMA11 with respect to . ψ. Given the maximum likelihood 
estimate . ~ψ, which is calculated as .−0.277, we use  loglike_ARMA11 again to 
compute the maximum likelihood estimates of . ϱ and . σ2, which are, respec-
tively, .[0.536, 0.849]T and .4.91. The corresponding maximized log-likelihood 
value is .−569.15. 

CPI_ARMA.jl 

using SparseArrays, LinearAlgebra, Optim, StatsBase, 
DelimitedFiles 

USCPI= readdlm("USCPI.csv") 
y0 = USCPI[1] 
y = USCPI[2:end] 
T =  length(y) 
X = [ones(T,1) [y0; y[1:end-1]]] 
f = psi -> -loglike_ARMA11(psi,X,y)[1] 
res = optimize(f,-1,1) 
psihat = res.minimizer 
l, rhohat, sigma2hat = loglike_ARMA11(psihat,X,y) 

Compared with the integrated MA(1) model in Example 12.6, it is not  
obvious that the ARMA(1,1) is a better model. Although it does fit the data 
better—its maximized log-likelihood value is .−569.15 compared to .−577.74, 
the corresponding value for the integrated MA(1) model—it is also more 
complex and has more parameters. 

To compare these two models while taking into account both goodness-of-
fit and model complexity, we make use of two popular information criteria: 
Akaike information criterion (AIC) and the Bayesian information cri-
terion (BIC); see Problem 12.4. The AIC and BIC for the integrated MA(1) ☞ 385 
model are, respectively, .−1159.5 and .−1166.6, whereas the corresponding 
values for the ARMA(1,1) model are .−1146.3 and .−1160.5. Hence, both in-
formation criteria suggest that ARMA(1,1) is a better model for the inflation 
data.
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12.2 Gaussian Models 

As discussed in the introduction, an important case where observations are 
likely to be dependent is when there are measurements on related subjects. 
One convenient class of models for dependent data are Gaussian models, 
where the data, say, .Y1, . . . , Yn, are distributed according to a multivariate 
normal (i.e., Gaussian) distribution:☞ 83 

. Y = [Y1, . . . , Yn]T ∼ N(μ, Σ)

for some known or unknown mean vector . μ and covariance matrix . Σ. In order 
for the model to be meaningful for statistical analysis, one usually needs to 
impose extra structure on the parameters . μ and . Σ. 

As a first illustration, consider an extension of the two-sample nor-
mal model in Example 4.3, where in addition to measuring the heights☞ 104 
of men whose mothers smoked (group 1) and did not smoke (group 2), 
we also measure the weights. The data can then be described by a vec-
tor .Y = [X1, V1, . . . X60, V60, Y1, W1, . . . , Y140, W140]T, where .(Xi, Vi) is the 
(height,weight) of person i in group 1 and .(Yi, Wi) the (height,weight) of 
person i in group 2. The vector . Y can be modeled with a .N(μ, Σ) dis-
tribution, where .μ = [μ11, μ12, . . . , μ11, μ12, μ21, μ22, . . . , μ21, μ22]T (60 pairs 
.μ11, μ12 followed by 140 pairs .μ21, μ22), and the covariance matrix . Σ is block-
diagonal with .2 × 2 blocks. The first 60 blocks on the diagonal (all the same) 
correspond to the covariance matrix of the height X and weight W of a per-
son from the first group, which are clearly not independent. Similarly the 
remaining 140 diagonal blocks (all the same) correspond to the covariance 
matrix of the height Y and weight W of a person from the second group. This 
Gaussian model has only 10 parameters, as opposed to the possibly 80600 
parameters of the general multivariate Gaussian model; see also Problem 4.4.☞ 123 

Recall from Sect. 3.6 some important properties of the multivariate normal☞ 83 
distribution. Let .X = [X1, . . . , Xn]T ∼ N(μ, Σ). 
1. All the marginal distributions are Gaussian. 
2. Conditional distributions are Gaussian. 
3. Any affine combination .b0 +

∑n
i=1 biXi has a normal distribution. 

4. To simulate . X: 

a. Derive the Cholesky decomposition .Σ = AAT. 
b. Generate .Z1, . . . , Zn ∼iid N(0, 1). Let .Z = [Z1, . . . , Zn]T. 
c. Return .X = μ + AZ. 

12.2.1 Gaussian Graphical Model 

Since a Gaussian distribution is fully characterized by the mean vector . μ and 
the covariance matrix . Σ, it suffices to specify these two quantities to construct 
a Gaussian model. It is often convenient to represent the covariance structure
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of a Gaussian model via a graph: a Gaussian graphical model. This graph 
is similar to a Bayesian network in Sect. 8.3, but is undirected. ☞ 251 

The purpose of a Gaussian graphical model is to summarize the condi-
tional independence properties of the variables. In particular, in a Gaussian 
graphical model of a random vector .X = [X1, . . . , Xn]T ∼ N(μ, Σ), the  
nodes represent the components .X1, . . . , Xn. Two nodes are connected by an 
undirected edge if and only if the corresponding variables are conditionally 
dependent given all the other values. Recall that . Xi and . Xj are conditionally 
independent if (using Bayesian notation for simplicity) 

. f(xi, xj | xk, k /= i, j) = f(xi | xk, k /= i, j) f(xj | xk, k /= i, j) .

Because . X is Gaussian, its pdf is given by 

. f(x) = (2π)−n/2
√

det(Λ) e− 1
2 (x−μ)TΛ(x−μ) ,

where .Λ = (λij) is the inverse of the covariance matrix . Σ, called the preci-
sion matrix. Therefore, the conditional joint pdf of . Xi and . Xj is 

. f(xi, xj | xk, k /= i, j) ∝ exp
⎛

−1
2(λiix

2
i + 2xi a + λijxixj + λjjx2

j + 2xj b)
⎞

,

where a and b may depend on .xk, k /= i, j. This shows that . Xi and . Xj

are conditionally independent given .{Xk, k /= i, j}, if and only if .λij = 0. 
Consequently, .(i, j) is an edge in the graphical model if and only if .λij /= 0. 
In typical applications (e.g., in image analysis) each vertex in the graphical 
model only has a small number of adjacent vertices. In such cases the precision 
matrix is thus sparse, and the Gaussian vector can be generated efficiently 
using, for example, sparse Cholesky factorization. 

For a sparse precision matrix the following algorithm is more efficient than 
Algorithm 3.3 for generating independent samples. ☞ 84 

Algorithm 12.1. (Multivariate Normal Vector Generation Us-
ing the Precision Matrix). To generate N independent draws from 
a .N(μ, Λ−1) distribution of dimension n carry out the following steps: 

1. Determine the lower Cholesky factorization .Λ = DDT. 
2. Generate .Z = [Z1, . . . , Zn]T, with .Z1, . . . , Zn ∼iid N(0, 1). 
3. Solve . Y from .Z = DTY . 
4. Output .X = μ + Y . 
5. Repeat Steps 2–4 independently N times. 

Example 12.8 (Gaussian Graphical Model). In Fig. 12.8 a Gaussian 
graphical model is depicted for .n = 8 normal random variables, divided into
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three groups. Variables in different groups are independent of each other. The 
first group contains only . X1, which is independent of all the other variables. 
In the second group, .X2, X3, and . X4, each variable is conditionally dependent 
of the other two. In the last group, .X5, . . . , X8, each variable is conditionally 
dependent on one or two variables, while conditionally independent of the 
rest. For example, . X6 is conditionally independent of . X8 given . X7.

Fig. 12.8 An example 
of a Gaussian graphical 
model 

1 2 3  

4 

5 

6 

7 

8 

The covariance and precision matrices have the following structure: 

. 

Namely, the .(i, j)-th element of the covariance matrix . Σ is the covariance 
between . Xi and . Xj . Hence, . Σ consists of three diagonal blocks, each cor-
responding to the covariances among the variables within each group. The 
precision matrix has nonzero entries . λij precisely when .(i, j) is an edge in the 
graph. Notice that here the precision matrix is sparser than the covariance 
matrix. 

12.2.2 Random Effects 

In the ANOVA models introduced in Chap. 4, it was assumed that the “ef-
fects” of the factors—that is, the parameters .μ, αj , βk, etc.—are fixed (deter-
ministic). In a variety of situations, it is more appropriate to assume that 
certain model parameters are random. The following example illustrates the 
idea.
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Example 12.9 (One-factor Random Effects ANOVA Model). To in-
vestigate whether geographical location is important in the effectiveness of a 
new type of herbicide, a researcher selects ten locations from a large num-
ber of possible locations within a country. At each location the herbicide 
is applied to three similar test plots. Each test plot is divided in half. One 
half (randomly selected) receives the herbicide, and the other half is left un-
treated. The difference in crop yield for each plot is measured, giving 30 
measurements (response variables) in total. The experimental design is here 
hierarchical in structure: first the locations are chosen, and then the mea-
surements are taken. The selection of the location could be modeled via 
independent random variables 

. μ1, . . . , μ10
iid∼ N(μ, σ2

μ) ,

representing the expected difference in crop yields at the ten locations, where 
. μ and . σ2

μ are fixed parameters. Given the . {μi}, the actual difference in crop 
yield for the k-th crop at location i could be modeled as 

. (Yik | μi) ∼ N(μi, σ2), independently for i = 1, . . . , 10 ,

where . σ2 is fixed. 
For this designed experiment, the researcher is not interested per se in 

statements about the ten selected locations, but rather in conclusions per-
taining to all possible geographical locations—in particular, regarding the pa-
rameters . μ and . σ2

μ. For example, is the treatment effective across the country 
(.μ > 0)? Is geographical location much more important than measurement 
error in explaining the variability in the measurements (. σ2

μ is much greater 
than . σ2)? 

We summarize the one-factor random effects ANOVA model as follows. 

Definition 12.4. (One-factor Random Effects ANOVA Model). 
Let . Yik be the response for the k-th replication at level i. Then 

.Yik = μi + εik , k = 1, . . . , ni , i = 1, . . . , d , (12.15) 

where 
. μ1, . . . , μd

iid∼ N(μ, σ2
μ) ,

independent of .{εik} ∼iid N(0, σ2). 

The model is again Gaussian, but, due to the hierarchical formulation, the 
.{Yik} are no longer independent within the i-th level. By the model assump-
tions in (12.15), the responses .Yi1, . . . , Yini

are independent conditional on 
the random effect . μi. However, marginalized over . μi, the covariance between, 
say, . Yij and .Yik, j /= k, is nonzero:
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. Cov(Yij , Yik) = Cov(μi + εij , μi + εik) = σ2
μ .

If we define .Y i = (Yi1, . . . , Yini
)T, then, each . Y i is independent but not 

identically distributed (denoted by “ind” below) as 

. Y i
ind∼ N(μ1ni

, σ2Ini
+ σ2

μ1ni
1T

ni
), i = 1, . . . , d ,

where . 1ni
is an .ni × 1 column of ones and . Ini

is the .ni-dimensional identity 
matrix. To see this, first note that, by definition, 

. Y i = μi1ni
+ εi ,

where .εi = [ε1, . . . , εni
]T ∼ N(0, σ2Ini

). In other words, . Y i is a linear com-
bination of normal random variables and therefore has a normal distribution. 
In addition, it is easy to check that its expectation is .EY i = μ1ni

, and its 
covariance matrix is 

. Cov(Y i) = Var(μi)1ni
1T

ni
+ Cov(εi) = σ2

μ1ni
1T

ni
+ σ2Ini

.

Hence, the claim follows. 
From the above discussion, we have also derived the log-likelihood function 

for the one-factor random effects model in (12.15). More specifically, given 
the outcomes .Y 1 = y1, . . . , Y d = yd, the log-likelihood function is given by 

.

l(μ, σ2
μ, σ2; y) = − n

2 ln(2π) − 1
2

d
7

i=1
ln |Σi|

− 1
2

d
7

i=1
(yi − μ1ni

)TΣ−1
i (yi − μ1ni

) ,

(12.16) 

where .y = [yT
1 , . . . , yT

d ]T and .Σi = σ2
μ1ni

1T
ni

+ σ2Ini
. 

Since the log-likelihood function is of low dimension, the maximum like-
lihood estimates of .μ, . σ2

μ, and  . σ2 can be obtained quickly by numerically 
maximizing the log-likelihood. For a Bayesian analysis of the one-factor ran-
dom effect model, see Problem 12.11. 

Example 12.10 (One-factor Random Effects ANOVA Model Con-
tinued). Consider again Example 12.9 in which we investigate if geograph-
ical location is important in the effectiveness of a new type of herbicide. 
Suppose the researcher has carried out the experiments and collected data 
from ten randomly selected locations. Specifically, at each location the dif-
ferences in crop yield (kg) for three test plots are measured. The results are 
reported in Table 12.3.
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Table 12.3 Differences in crop yield (kg) 

Location Difference in Crop Yield 

1 22.6 20.5 20.8 
2 22.6 21.2 20.5 
3 17.3 16.2 16.6 
4 21.4 23.7 23.2 
5 20.9 22.2 22.6 

Location Difference in Crop Yield 

6 14.5 10.5 12.3 
7 20.8 19.1 21.3 
8 17.4 18.6 18.6 
9 25.1 24.8 24.9 
10 14.9 16.3 16.6 

To compute the maximum likelihood estimates of .μ, . σ2
μ, and  . σ2, we first  

write a Julia function to evaluate the log-likelihood function .l(μ, σ2
μ, σ2; y). 

Note that in the code below the outcomes are stored as a matrix, where 
each row contains the experimental results in one of the randomly selected 
locations. 

function sfran_loglike(mu,sigma2_mu,sigma2,y) 
d, ni = size(y) 
Sigmai = sigma2*diagm(ones(ni)) .+ sigma2_mu*ones(ni,ni) 
l = -(ni*d)/2*log(2*pi) - d/2*log(det(Sigmai)) 
for i=1:d 

yi = y[i,:]; 
l = l - .5*(yi .- mu)'*(Sigmai(yi .- mu)) 

end 
return l 

end 

Next, in the main script, we load the data and define a trivariate function 
that is the negative of the log-likelihood function sfran_loglike. The new 
function is then passed to the built-in minimization routine fminsearch to 
compute the minimizer. For the starting values for .μ, σ2

μ, and  . σ2, we use  

. y = 1
d

d
7

i=1
yi, s2 = 1

d − 1

d
7

i=1
(yi − y)2, s2 = 1

d

d
7

i=1
s2

i ,

where . yi and . s2
i are, respectively, the sample mean and sample variance of 

the outcomes in location i. 

sfran.jl 

using LinearAlgebra, StatsBase, Optim 
y = [ 22.6 20.5 20.8; 22.6 21.2 20.5; 17.3 16.2 16.6; 

21.4 23.7 23.2; 20.9 22.2 22.6; 14.5 10.5 12.3; 
20.8 19.1 21.3; 17.4 18.6 18.6; 25.1 24.8 24.9; 
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14.9 16.3 16.6]; 
f = theta -> -sfran_loglike(theta[1],theta[2],theta[3],y) 
ybar = mean(y,dims=2) 
theta0 = [mean(ybar) var(ybar) mean(var(y,dims=2))] 
res = optimize(f,theta0); 
thetahat = res.minimizer 

The maximum likelihood estimates of .μ, σ2
μ, and  . σ2 are 19.6, 12.19, and 

1.167, respectively. For this example the herbicide seems to be quite effective. 

The two-factor random effects ANOVA model can be defined similarly. 
Below we use the “factor effects” representation.☞ 114 

Definition 12.5. (Two-factor Random Effects ANOVA Model). 
Let . Yijk be the response for the k-th replication at cell . (i, j). Then 

.

Yijk = μ + αi + βj + γij + εijk ,

k = 1, . . . , nij , i = 1, . . . , d1 , j = 1, . . . , d2 ,
(12.17) 

where . μ is a fixed constant and the following random variables are 
independent of each other: 

. 
{αi} iid∼ N(0, σ2

α) , {βj} iid∼ N(0, σ2
β),

{γij} iid∼ N(0, σ2
γ), {εijk} iid∼ N(0, σ2).

Note that there are much fewer parameters than for the corresponding 
fixed effects model. Also, there are no restrictions such as .

∑

i αi = 0 on the 
parameters. 

To derive the likelihood function, we first rewrite (12.17) in matrix 
form. To that end, let .α = [α1, . . . , αd1 ]T, .β = [β1, . . . , βd2 ]T, and  . γ =
[γ11, . . . , γd1d2 ]T. Arrange the responses .{Yijk} and errors .{εijk} as . Y =
[Y1, . . . , Yn]T and .ε = [ε1, . . . , εn]T, where .n =

∑

i,j nij . Then, 

.Y = μ1 + Xαα + Xββ + Xγγ + ε , (12.18) 

where . 1 an n-dimensional vector of 1s and the design matrices . Xα, . Xβ, and  
. Xγ are appropriately defined. Again, . Y is an affine transformation of normal 
random variables and therefore has a multivariate normal distribution. Its 
mean is .EY = μ1, and its covariance matrix is given by 

.Σ = σ2
αXαXT

α + σ2
βXβXT

β + σ2
γXγXT

γ + σ2In .
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Hence, given the outcomes .Y = y, the log-likelihood function for the two-
factor ANOVA model is 

.

l(μ, σ2
α, σ2

β, σ2
γ , σ2; y) = − n

2 ln(2π) − 1
2 ln |Σ|

− 1
2(y − μ1)TΣ−1(y − μ1) .

(12.19) 

Calculation of the maximum likelihood estimates involves a five-dimen-
sional maximization problem, which may be time-consuming, but can still be 
done numerically. There are two computational issues that are worth men-
tioning. First, note that evaluation of the log-likelihood function (12.19) in-
volves calculating the log determinant .ln |Σ|. When the dimension n is large, 
computing the determinant . |Σ| first and then taking the log might lead to 
substantial rounding error. Instead, consider the following equivalent calcu-
lations: obtain the Cholesky factor . C of . Σ. Since . C is a lower triangular 
matrix, its determinant is equal to the product of the diagonal elements, say, 
.c11, . . . , cnn. It follows then that 

. ln |Σ| = 2 ln |C| = 2
n

7

i=1
ln cii .

The second issue concerns the restrictions on the variance parameters . σ2
α, 

.σ2
β, . σ2

γ , and . σ2—since they represent variances, they have to be positive. 
In other words, computing their maximum likelihood estimates is in fact a 
constrained maximization problem, and ignoring the restrictions might lead 
to numerical errors. One solution to this problem is to reparameterize in 
terms of 

. ηα = ln(σ2
α), ηβ = ln(σ2

β), ηγ = ln(σ2
γ), η = ln(σ2) ,

and maximize the log-likelihood (12.19) 

. l(μ, σ2
α, σ2

β, σ2
γ , σ2; y) = l(μ, eηα , eηβ , eηγ , eη; y)

with respect to . μ, . ηα, . ηβ, . ηγ , and . η. Once the maximum likelihood estimates 
of the new parameters are obtained, those for the original parameterization 
can be computed easily. The following example illustrates these points. 
Example 12.11 (Two-factor Random Effects ANOVA Model). In 
this example we investigate the breeding value of a set of five sires in raising 
pigs. Each sire is mated to a random group of dams, and the mating produces 
a litter of pigs whose characteristics are measured. In particular, the average 
daily gain of two piglets in each litter (in pounds) over a given period of time 
is recorded. The outcomes are reported in Table 12.4. 

The model we consider is 

.Yijk = μ + αi + γij + εijk ,
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Table 12.4 Average daily gain of two piglets in each litter (in pounds) 

Sire Dam Gain 

1 1 1.39 
1 1 1.29 
1 2 1.12 
1 2 1.16 
2 1 1.52 
2 1 1.62 
2 2 1.88 
2 2 1.87 
3 1 1.24 
3 1 1.18 

Sire Dam Gain 

3 2 0.95 
3 2 0.96 
4 1 0.82 
4 1 0.92 
4 2 1.18 
4 2 1.20 
5 1 1.47 
5 1 1.41 
5 2 1.57 
5 2 1.65 

where . αi is the random effect associated with the i-th sire and . γij is 
the random effect associated with the i-th sire and j-th dam. To write 
the model in matrix form, let .Y = [Y111, Y112, Y121, Y122, . . . , Y521, Y522]T, 
.α = [α1, . . . , α5]T, and .γ = [γ11, γ12, . . . , γ51, γ52]T. Then, 

. Y = μ120 + Xαα + Xγγ + ε ,

where .Xα = I5 ⊗ 14, .Xγ = I10 ⊗ 12, . ⊗ is the Kronecker product, . 1p is a 
.p × 1 vector of ones, and . Iq is the q-dimensional identity matrix. 

As in the previous example, we first write a Julia function to evaluate 
the log-likelihood function parameterized in terms of . μ, .ηα = ln(σ2

α), . ηγ =
ln(σ2

γ), and .η = ln(σ2). 

function sfran2_loglike(mu,eta_alpha,eta_gamma,eta,y,Xalpha, 
Xgamma) 

sigma2_alpha = exp.(eta_alpha) 
sigma2_gamma = exp.(eta_gamma) 
sigma2 = exp.(eta) 
n =  length(y) 
Sigma = sigma2*diagm(ones(n)) .+ sigma2_alpha*(Xalpha* 

Xalpha') .+ 
sigma2_gamma*(Xgamma*Xgamma') 

l = -n/2*log(2*pi) - sum(log.(diag(cholesky(Sigma).L))) -
0.5*(y .- mu)'*(Sigma(y .- mu)); 

end 

Then, in the main script, we maximize the log-likelihood function numeri-
cally with respect to . μ, .ηα, . ηγ , and . η. The maximizer is then transformed to 
get the maximum likelihood estimates of the original parameters. The esti-
mates of . μ, .σ2

α, . σ2
γ , and . σ2 are, respectively, 1.32, 0.0537, 0.0318, and 0.023.
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For this dataset, the sires seem to be the most important factor in explaining 
the variation in the average daily gain of the piglets. 

sfran2.jl 

using Kronecker, LinearAlgebra, StatsBase, Optim 
y = [1.39, 1.29, 1.12, 1.16, 1.52, 1.62, 1.88, 1.87, 1.24, 

1.18,0.95, 0.96, 0.82, 0.92, 1.18, 1.20, 1.47, 1.41, 
1.57, 1.65] 

Xalpha = kronecker(diagm(ones(5)),ones(4,1)) 
Xgamma = kronecker(diagm(ones(10)),ones(2,1)) 
yhat = mean(reshape(y,4,5),dims=2) 
theta0 = [mean(y),log(var(yhat)),log(var(y)/3),log(var(y)/3)] 
f(theta) = -sfran2_loglike(theta[1],theta[2],theta[3], 

theta[4],y,Xalpha,Xgamma) 
res = optimize(f,theta0); 
thetahat = res.minimizer 

12.2.3 Gaussian Linear Mixed Models 

It is also possible to combine fixed and random factors. This leads to the so-
called mixed models. A general formulation for such models is given below. 
We first discuss an example. 

Example 12.12 (Two-Factor Mixed ANOVA Model). Suppose the 
experiment in Example 12.9 is modified in the following way. Each of the 
30 test plots is subjected to three different treatments of herbicide: (1) the 
new herbicide, (2) a standard herbicide, and (3) no herbicide. Specifically, 
each test plot is divided into three subplots, and the three treatments are 
assigned in a random (and uniform) way to the subplots. The crop yield is 
recorded for each of the subplots. For each of the ten plots, there are thus 
nine measurements—three for each treatment. There are now two factors 
to consider: herbicide and location. The first is a fixed factor; the second is 
a random factor. Denoting by .Yijk the k-th crop yield at location j, with 
treatment i, we obtain the two-factor mixed ANOVA model 

. 
Yijk = μ + αi + βj + γij + εijk ,

i = 1, 2, 3, j = 1, 2, . . . , 10, k = 1, 2, 3 ,

where . μ is a constant, .α1, . . . , α3 are the fixed incremental effects of the her-
bicide, and .β1, . . . , β10 are the random incremental effects due to location. As 
in the fixed ANOVA case, we impose the restriction .

∑

i αi = 0. The random
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incremental effects are modeled via .{βj} ∼iid N(0, σ2
β). The measurement er-

rors .{εijk} are assumed to be independent of each other and of the . {βj}
and are all .N(0, σ2

ε)-distributed, for some fixed . σ2
ε . Finally, for the terms . γij

there are two common model choices. The simplest one is to assume that 
.{γij} ∼iid N(0, σ2

γ). However, this introduces a subtle problem regarding the 
interpretation of . αi as an “incremental effect” due to treatment i. To circum-
vent this difficulty, one often imposes the restriction 

. 
7

i

γij = 0 for all j .

The latter is called a restricted mixed ANOVA model, as opposed to the 
former unrestricted model. 

Here we give a general formulation for the linear mixed models. 

Definition 12.6. (Gaussian Linear Mixed Model). Let . Y be an 
.n × 1 vector of responses, then 

.Y = Xβ + ZU + ε , (12.20) 

where . β is a .p × 1 vector of fixed effects, . X is an .n × p design matrix 
for the fixed effects, and . Z is an .n × q design matrix for the random 
effects. In addition, . U and . ε are independent of each other, and 

. U ∼ N(0, ΣU ) , ε ∼ N(0, σ2In) .

The covariance matrix of . Y is .Σ = σ2In + Z ΣU ZT. Hence, given the 
outcome .Y = y, the log-likelihood function is 

.l(β, σ2, ΣU ; y) = −n

2 ln(2π)− 1
2 ln |Σ|− 1

2(y−Xβ)TΣ−1(y−Xβ) . (12.21) 

Unless the dimension of the log-likelihood function is low, direct maxi-
mization could be time-consuming. Instead, dimension reduction techniques 
such as using the profile likelihood can be applied to speed up the estima-
tion. Alternatively, the linear mixed model can be estimated using the Gibbs 
sampler, as the following example illustrates. 

Example 12.13 (Gaussian Linear Mixed Model). In an experiment 
concerning the growth rate of rats, 30 different rats are weighed at five dif-
ferent points in time — 8, 15, 22, 29, and 36 days since birth. Using Bayesian 
notation, let . yik denote the weight of the i-th rat at the k-th measurement, 
and let . xik denote the corresponding age of the rat. Then, 

.xi1 = 8 , xi2 = 15 , xi3 = 22 , xi4 = 29 , xi5 = 36
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for .i = 1, . . . , 30. The data are taken from Gelfand et al. (1990), and the 
growth curves are depicted in Fig. 12.9. 

10 15 20 25 30 35 
100 

200 

300 

400 

Fig. 12.9 Growth curves for 30 rats 

In the model, we allow for individual-specific variation in the initial birth 
weight but assume the same growth rate 

. yik = β0 + β1xik + αi + εik ,

where .{αi} ∼iid N(0, σ2
α) and .{εik} ∼iid N(0, σ2) are independent, . i = 1, . . . ,

. 30, .k = 1, . . . , 5. 
To write the model in the form in (12.20), let  

. y = [y11, . . . , y15, y21, . . . , y25, . . . , y30,1, . . . , y30,5]T,

and define . ε similarly. Further, let .β = [β0, β1]T, .α = [α1, . . . , α30]T, . Z =
I30 ⊗ 15, .X = 130 ⊗ [15, xi], .xi = [xi1, . . . , xi5]T, and let . 1m be an . m × 1
vector of ones. Then, 

. y = Xβ + Zα + ε ,

where .α ∼ N(0, σ2
αI30) and .ε ∼ N(0, σ2I150) are independent. The actual 

outcomes of the experiment are reported in Table 12.5. 
To perform a Bayesian analysis, consider the following independent priors: 

. β ∼ N(β0, 100 I2), σ2
α ∼ InvGamma(3, 100), σ2 ∼ InvGamma(3, 100) ,

where .β0 = [100, 10]T. The degree of freedom parameters for the inverse-
gamma distributions are chosen to be small so that the prior variances 
are large. Since . α and . β enter the likelihood additively, we sample them 
in one block to improve efficiency. Specifically, we consider the three-block 
Gibbs sampler: (1) simulate from .f(α,β |y,σ2, σ2

α), (2) simulate from 
.f(σ2 | y, α, β, σ2

α), and (3) simulate from .f(σ2
α | y, α, β, σ2). Steps  2 and 3 are  

straightforward as the two conditional distributions are both inverse-gamma
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Table 12.5 Weight measurements of rats 

Rat Weights 
i .yi1 .yi2 .yi3 .yi4 .yi5 

1 151 199 246 283 320 
2 145 199 249 293 354 
3 147 214 263 312 328 
4 155 200 237 272 297 
5 135 188 230 280 323 
6 159 210 252 298 331 
7 141 189 231 275 305 
8 159 201 248 297 338 
9 177 236 285 340 376 
10 134 182 220 260 296 
11 160 208 261 313 352 
12 143 188 220 273 314 
13 154 200 244 289 325 
14 171 221 270 326 358 
15 163 216 242 281 312 

Rat Weights 
i .yi1 .yi2 .yi3 .yi4 .yi5 

16 160 207 248 288 324 
17 142 187 234 280 316 
18 156 203 243 283 317 
19 157 212 259 307 336 
20 152 203 246 286 321 
21 154 205 253 298 334 
22 139 190 225 267 302 
23 146 191 229 272 302 
24 157 211 250 285 323 
25 132 185 237 286 331 
26 160 207 257 303 345 
27 169 216 261 295 333 
28 157 205 248 289 316 
29 137 180 219 258 291 
30 153 200 244 286 324 

(see Theorem 8.1):☞ 245 

. (σ2 | y, α, β, σ2
α) ∼ InvGamma(78, λ),

(σ2
α | y, α, β, σ2) ∼ InvGamma(18, λα) ,

where .λ = 100 + (y − Xβ − Zα)T(y − Xβ − Zα)/2 and .λα = 100 + αTα/2. 
For Step 1, let .γ = [βT, αT]T. Then, the prior for . γ is .N(γ0, Vγ), where 

. γ0 =
⎡

β0
0

⎤

, Vγ =
⎡

100 I2 0
0 σ2

α I30

⎤

.

Note that the covariance matrix . Vγ is in fact diagonal. In addition, the linear 
mixed model can be written as 

. y = Wγ + ε ,

where .W = [X, Z]. Hence, using Theorem 8.1, we  have☞ 245 

. (γ | y, σ2, σ2
α) ∼ N(~γ, K−1

γ ) ,

where 

. Kγ = WTW/σ2 + V−1
γ , ~γ = K−1

γ (V−1
γ γ0 + WTy/σ2).

It is important to realize that although . γ is high-dimensional, sampling from 
its conditional distribution is quick if we use sparse matrix routines and avoid 
inverting the large precision matrix; see Algorithm 12.1.☞ 371 

The following Julia code implements the Gibbs sampler discussed above 
to fit the experimental data.
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linmix.jl 

using DelimitedFiles, Kronecker, SparseArrays, Distributions, 
LinearAlgebra 

rats = readdlm("rats.csv",',') 
d, ni = size(rats) 
n = d*ni  
y =  reshape(rats',n,1); 
nloop = 11000 
burnin = 1000 

# storage 
store_beta = zeros(nloop-burnin,2) 
store_alpha = zeros(nloop-burnin,d) 
store_var = zeros(nloop-burnin,2) 

# priors 
beta0 = [100 10]' 
invVbeta = [1/100 1/100] 
gamma0 = [beta0; spzeros(d,1)] 
nu_alpha = 3; lam_alpha = 100 
nu = 3; lam = 100; 

# initialize the Markov chain 
sigma2 = 100 
sigma2_alpha = 100 

# compute a few things before the loop 
Z =  sparse(kronecker(diagm(ones(d)), ones(ni,1))) 
xi = [8 15 22 29 36]'  
X =  kronecker(ones(d,1),[ones(ni,1) xi]) 
W = [X Z]  
WW = W'*W 
Wy = W'*y 
newnu_alpha = d/2 + nu_alpha; 
newnu = n/2 + nu; 
for loop=1:nloop 

global sigma2_alpha, sigma2 
# sample alpha and beta 

invVgamma = sparse(1:d+2,1:d+2, vec([invVbeta 1/ 
sigma2_alpha*ones(1,d)])) 

invDgamma = invVgamma + WW/sigma2 
gammahat = invDgamma(invVgamma*gamma0 + Wy/sigma2) 
gamma = gammahat + cholesky(invDgamma).L'\randn(d+2,1) 
beta = gamma[1:2] 
alpha = gamma[3:end] 

# sample sigma2_alpha 
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newlam_alpha = lam_alpha + sum(alpha.^2)/2 
sigma2_alpha = 1/rand(Gamma(newnu_alpha, 1/newlam_alpha)); 

# sample sigma2 
newlam = lam + sum((y-W*gamma).^2)/2 
sigma2 = 1/rand(Gamma(newnu, 1/newlam)) 

# storage 
if loop>burnin 

i = loop-burnin; 
store_beta[i,:] = beta'; 
store_alpha[i,:] = alpha'; 
store_var[i,:] = [sigma2 sigma2_alpha]; 

end 
end 
betahat = mean(store_beta,dims=1) 
alphahat = mean(store_alpha,dims=1) 
varhat = mean(store_var,dims=1) 

In Table 12.6 we report the posterior means, standard deviations, and 
quantiles for selected parameters. The results indicate that there is substan-
tial variation in initial birth weight—the posterior mean of . σ2

α is about three 
times the estimate corresponding to the measurement error . σ2. Inference on 
individual random effects can also be easily carried out. For example, the 
birth weight of the 14-th rat is estimated to be between 19.90 and 34.73 
above average with probability 80%. 

Table 12.6 Posterior means, standard deviations, and quantiles for selected parameters 

Parameter Post. 
mean 

Post. 
std. 

Post. 0.1 
quantile 

Post. 0.9 
quantile 

.β0 106.10 2.73 102.82 112.58 

.β1 6.19 0.07 6.11 6.35 
.σ2 63.97 8.16 54.38 85.90 
.σ2 

α 170.89 46.62 119.98 313.66 
.α14 25.01 4.19 19.90 34.73 

12.3 Problems 

12.1. Calculate the lag-1, 2, and 3 autocorrelations of the residuals in Ex-
ample 12.1.
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12.2. Prove Eq. 12.9; that is, show that under the MA(q) model, the autoco- ☞ 363 
variances of the responses are given by 

. Cov(Yt, Yt−j) =
(

σ2 ∑q−j
i=0 ψi+jψi, j = 0, . . . , q ,

0, j > q ,

where .ψ0 = 1. 

12.3. Consider again the MA(q) model: 

. Yt = εt + ψεt−1 + · · · + ψqεt−q .

In this exercise we relax the standard assumption that . ε0 = ε−1 = · · · =
ε1−q = 0. Instead, we assume .{εt} ∼iid N(0, σ2) for .t = 1 − q, . . . , T . Derive 
the likelihood function for the outcome .Y = y, where .Y = [Y1, . . . , YT ]T and 
.y = [yt, . . . , yT ]T. 

12.4. In many situations, the data can be described by several competing 
models, and the question then is which model is “the best.” Complex mod-
els tend to fit the data better, but they run the risk of overfitting. Hence, 
we want a measure that awards goodness-of-fit while penalizing model com-
plexity. Two popular selection criteria that explicitly take this trade-off into 
account are the Akaike information criterion (AIC) and the Bayesian 
information criterion (BIC); see, for example, Bishop (2006) for a detailed 
introduction. Given a model defined by the log-likelihood function .l(θ; y), 
where . θ is a .p × 1 vector of model parameters and . y is a .n × 1 vector of 
outcomes, the two information criteria are defined as follows: 

. AIC = 2l(θ; y) − 2p ,

BIC = 2l(θ; y) − p ln n .

The only difference between the two information criteria is the penalty term: 
BIC tends to penalize complex model more heavily when .n ≥ 8. Given a 
set of competing models, the preferred model is the one with the maximum 
AIC/BIC value. 

Use the two information criteria to compare the linear regression models 
in Examples 12.1 and 12.4. 

12.5. Show that the log-likelihood function of the ARMA(. p, q) model in 
(12.12) is given by (12.13). That is,  

. l(ϱ, ψ, σ2; y, y0) = −T

2 ln(2πσ2) − 1
2σ2 (y − Xϱ)T(HHT)−1(y − Xϱ) .

12.6. Consider the linear regression model with general covariance matrix 
. σ2Σ: 

.Y = Xβ + ε , ε ∼ N(0, σ2Σ) .
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Suppose . Σ is a symmetric invertible constant matrix. Show that the maxi-
mum likelihood estimators of . β and . σ2 are 

. ~β = (XTΣ−1X)−1XTΣ−1y, ~σ2 = 1
T

(y − X~β)TΣ−1(y − X~β) .

12.7. We revisit Example 12.7 on fitting the inflation data with an ARMA(1,1) 
model☞ 368 

. Yt = e0 + e1yt−1 + εt + ψεt−1 ,

where .ε1, . . . , εT ∼iid N(0, σ2) and .ε0 = 0. Specifically, we consider a Bayesian 
analysis of the model using the following independent priors: 

. ϱ ∼ N(0, 10 I2), ψ ∼ U(−1, 1), σ2 ∼ InvGamma(3, 1) ,

where .ϱ = [e0, e1]T. 

a. Derive the posterior conditional densities .f(ϱ | y, ψ, σ2), .f(ψ | y, ϱ, σ2), and  
.f(σ2 | y, ϱ, ψ). 

b. Fit the model using the dataset USCPI.csv. 
c. Compute the posterior means of . ϱ, ψ, and  . σ2, and compare them with 

their corresponding maximum likelihood estimates. 

12.8. What is the “factor effects” representation of the one-factor random 
effects model in (12.15)? 

12.9. Write the two-factor mixed ANOVA model in Example 12.12 as a Gaus-
sian model. That is, arrange .{Yijk} as .Y = [Y1, . . . , Yn]T ∼ N(μ, Σ), and  
determine . μ and . Σ. 

12.10. Determine the Gaussian graphical model for each of the following 
situations. 

a. For the random variables .Y1, . . . , Y6, . Y2 depends only on . Y1, and . Yt depends 
only on .Yt−1 and .Yt−2, . t = 3, . . . , 6.

b. A one-factor ANOVA model with .d = 3, .n1 = 2, n2 = 3, and .n3 = 4. 
c. A two-factor ANOVA model with .d1 = 2, .d2 = 3, and  . nij = 1, i = 1, 2,

. j = 1, 2, 3.

12.11. We wish to design a Gibbs sampler for estimating the one-factor ran-
dom effects model. To that end, consider the following independent priors: 

. μ ∼ N(μ0, Vμ), σ2
μ ∼ InvGamma(αμ, λμ), σ2 ∼ InvGamma(α, λ) .

Let .μ = [μ1, . . . , μd]T. Derive the following conditional distributions: 

a. .f(μ | y, μ, σ2
μ, σ2) =

∏d
i=1 f(μi | y, μ, σ2

μ, σ2); 
b. .f(μ | y, μ, σ2

μ, σ2) = f(μ | μ, σ2
μ);
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c. .f(σ2
μ | y, μ, μ, σ2) = f(σ2

μ | μ, μ); 
d. .f(σ2 | y, μ, μ, σ2

μ) = f(σ2 | y, μ). 

12.12. Implement the Gibbs sampler developed in Problem 12.11 for the 
one-factor random effects model to fit the crop yield data in Example 12.10. 
Use the following independent priors: 

. μ ∼ N(0, 100), σ2
μ ∼ InvGamma(3, 1), σ2 ∼ InvGamma(3, 1) .

Estimate the posterior means .E(μ | y), .E(σ2
μ | y), and  .E(σ2 | y). What is the 

posterior probability that .σ2
μ > 5σ2? 

12.13. Show that the two-factor random effects model in (12.18) is a special 
case of the linear mixed model by writing the former in the form (12.20).
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State Space Models 

In this chapter we discuss versatile generalizations of the basic time series 
models in Sect. 12.1, collectively known under the name state space models. ☞ 351 
These models not only can capture the serial dependence of the observations 
(i.e., the dependence across time) but also can describe the persistence and 
volatility of the measurements. That is, they can model continued periods of 
high or low measurements and time-varying amounts of random fluctuation. 
In contrast, the AR(p) model, for example, cannot capture these features, 
as the model parameters do not depend on time. Throughout this chapter 
we shall use Bayesian notation when specifying (conditional) densities, even 
when working in a non-Bayesian setting. 

A state space model typically consists of two modeling levels: in the first 
level, observations are related to the latent or unobserved variables called 
states according to the observation or measurement equation. In the  
second level, the evolution of the states is modeled via the state or transi-
tion equation. 

Definition 13.1. (State Space Model). In a state space model, 
the observations .yt, t = 1, 2, . . . are drawn from a conditional pdf 
.f(yt | xt, yt−1, . . . , y1, θ), where . xt is the hidden state at time t. The  
states .xt, t = .1, 2, . . . evolve according to a Markov chain with transition 
density .f(xt | xt−1, θ). Here, . θ denotes the vector of model parameters. 

Typically one assumes that each observation . yt only depends on the latent 
state . xt and not on previous states or observations. In that case the state 
space model can be viewed as a hidden Markov model; see Problem 8.14. Note ☞ 266 
that the .{xt} and .{yt} may be vector-valued. 
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Example 13.1 (Kalman Filter). State space models originate from the 
analysis of dynamical systems. One of the most fundamental examples is the 
linear Gaussian discrete-time state space model 

. xt = A xt−1 + δt

yt = B xt + εt , t = 1, 2, . . . , (13.1) 

where . xt is an n-dimensional (hidden) state vector and . yt an m-dimensional 
output vector. . A and . B are fixed matrices, and . δt and . εt are zero-mean nor-
mal random vectors with covariance matrices . D and . E, respectively. All . {δt}
and .{εt} are independent. The initial state . x0 is assumed to be . N(μ0, Σ0)
distributed. 

Define .y1:t = [yT
1 , . . . , yT

t ]T. Assuming the model parameters are known, 
two main objectives are to obtain the: 

• predictive distribution; that is, the conditional distribution of . xt given 
.y1:t−1 (the observations before time t), and the 

• filtering distribution; that is, the conditional distribution of . xt given 
. y1:t (the observations up to time t). 

Since we are dealing only with affine transformations of Gaussian vectors, we 
have by Theorem 3.6 that .(xt | y1:t) ∼ N(μt, Σt) for some mean vector .μt☞ 85 
and covariance matrix . Σt. Similarly, .(xt | y1:t−1) ∼ N(~μt, ~Σt) for some mean 
vector . ~μt and covariance matrix . ~Σt. These mean vectors and covariance 
matrices can be computed sequentially. First, since .xt = A xt−1 + δt and 
.(xt−1 | y1:t−1) ∼ N(μt−1, Σt−1), we have  

. (xt | y1:t−1) ∼ N(A μt−1, AΣt−1AT + D) .

Thus, the updating formulas for the predictive distribution are 

.

~μt = A μt−1 ,

~Σt = AΣt−1AT + D .
(13.2) 

Next, we determine the joint pdf of . xt and . yt, given .y1:t−1. Decomposing 
. ~Σt and . E as .~Σt = RRT and .E = QQT, respectively, we can write (using 
Definition 3.10 of the multivariate normal distribution)☞ 83 

. 

⎛

xt

yt

|

|

|

|

y1:t−1

⎞

=
⎾

~μt

B~μt

⏋

+
⎾

R O
BR Q

⏋ ⎾

u
v

⏋

,

where, conditional on .y1:t−1, . u and . v are independent standard normal ran-
dom vectors. The corresponding covariance matrix is 

.

⎾

R O
BR Q

⏋ ⎾

RT RTBT

O QT

⏋

=
⎾

RRT RRTBT

BRRT BRRTBT + QQT

⏋

,
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so that we have 

.

⎛

xt

yt

|

|

|

|

y1:t−1

⎞

∼ N

⎛

⎾

~μt

B~μt

⏋

,

⎾

~Σt
~ΣtBT

B~Σt B~ΣtBT + E

⏋⎞

. (13.3) 

A direct application of Theorem 3.8 yields that . xt given . y1:t has a .N(μt, Σt) ☞ 86 
distribution with 

.

μt = ~μt + ~ΣtBT(B~ΣtBT + E)−1(yt − B~μt) ,

Σt = ~Σt − ~ΣtBT(B~ΣtBT + E)−1B~Σt .
(13.4) 

We leave the details as an exercise; see Problem 13.1. Updating formulas 
(13.2) and (13.4) form the (discrete-time) Kalman filter. Starting with some 
known . μ0 and . Σ0, one determines . ~μ1 and . ~Σ1, then . μ1 and . Σ1, and so on. 
Notice that . ~Σt and . Σt do not depend on the observations .y1, y2, . . . and can 
therefore be determined off-line. 

In the remainder of this chapter, we will discuss various popular state space 
models that fall within the framework defined above. From the definition it is 
obvious that state space models are high-dimensional, often with more latent 
variables and parameters than observations. Instead of using generalizations 
of the Kalman filter, we will discuss the precision-based approach of Chan and 
Jeliazkov (2009), McCausland et al. (2011), and Chan (2013) to estimating 
state space models, which builds upon earlier work by Rue (2001) on Gaussian 
Markov random fields. Due to its simple and transparent derivation as well 
as computational efficiency, the precision-based approach is increasingly used 
in a wide range of empirical applications. 

13.1 Unobserved Components Model 

An important state space model is the unobserved components model 
pioneered by Harvey (1985) and Watson (1986). In the first level, the (real-
valued) observable . yt at time t is modeled to depend on the state or unob-
served component . τt as follows: 

.yt = τt + εt , (13.5) 

where .{εt} ∼iid N(0, σ2). That is, the observable . yt is modeled as the sum of 
the unobserved component . τt and the error term . εt. As we shall see shortly, 
this is a popular specification for modeling the evolution of univariate time 
series such as inflation rate. For example, in the context of inflation modeling 
the unobserved component . τt can be interpreted as the stochastic trend or 
underlying inflation.
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Since for every . yt we have an associated latent variable . τt, there are more 
latent variables and parameters (i.e., .τ = [τ1, . . . , τT ]T and . σ2) than the 
number of observations. As such, if we have the measurement equation only, 
the maximum likelihood estimator for .(τ , σ2) is not defined. Specifically, the 
likelihood function is unbounded in .(τ , σ2), and therefore the maximum does 
not exist (see Problem 13.3). 

The fundamental problem is that if the unobserved components are un-
restricted, then we have the extreme situation where we can fit the data 
perfectly (e.g., by choosing .τt = yt). One way to get around this problem 
is to impose some structure on the model to make estimation feasible. Since 
we are dealing with time series data, it seems reasonable to assume that the 
unobserved component evolves gradually over time. In the inflation example, 
consecutive inflation trends are likely to be “close." More precisely, consider 
the following random walk specification 

.τt = τt−1 + ut , (13.6) 

for .t = 2, . . . , T , where .{ut} ∼iid N(0, ω2). That is, the conditional distri-
bution of . τt given .τt−1 and . ω2 is .N(τt−1, ω2): the current state . τt centers 
around the previous one . τt−1, while . ω2 controls how close the two terms are 
on average. 

The smoothness parameter . ω2 can either be fixed in advance to some 
“reasonable value" or treated as a parameter to be estimated from the data. 
Should it be fixed as a constant, its choice should reflect the desired smooth-
ness of the evolution of the states: large values for . ω2 allow . τt to evolve 
quickly, whereas for small values the transition of . τt becomes more gradual. 
In a Bayesian framework, one often assumes a hierarchical prior distribution 
for . ω2 that reflects the desired smoothness of the transition equation. 

Note that (13.6) does not explicitly provide a distribution for . τ1. To com-
plete the model specification, one typically assumes that the process is ini-
tialized with .τ1 ∼ N(τ0, ω2

0) for some known constants . τ0 and . ω2
0 . This is 

referred to as the initial condition. 
We summarize the unobserved components model as follows: 

Definition 13.2. (Unobserved Components Model). In the un-
observed components model, the measurement equation is given 
by 

. yt = τt + εt ,

where .{εt} ∼iid N(0, σ2). The states, in turn, are initialized with . τ1 ∼
N(τ0, ω2

0) for some known constants . τ0 and . ω2
0 , and evolve according to 

the transition equation 
. τt = τt−1 + ut ,

for .t = 2, . . . , T , where .{ut} ∼iid N(0, ω2).
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It is obvious that the unobserved components model falls within the family 
of state space models. In fact, in the notation of Definition 13.1, the state 
. xt in this case is the univariate unobserved component . τt and .θ = [σ2, ω2]. 
The conditional distribution of . yt given . τt is .N(τt, σ2), whereas the transition 
density .f(τt | τt−1, θ) corresponds to the pdf of the .N(τt−1, ω2) distribution. 
Furthermore, since both the measurement and transition equations are linear 
in the states with Gaussian errors, the unobserved components model is an 
example of the linear Gaussian state space model discussed in Example 13.1. 

13.1.1 Frequentist Inference 

Let .y = [y1, . . . , yT ]T and .τ = [τ1, . . . , τT ]T be the vector of observations 
and latent variables, respectively. Throughout this section, we fix . ω2, and  
the only parameter in the model is . σ2. To obtain the maximum likelihood 
estimate for . σ2, which we denote as . ^σ2, in principle we can maximize the 
likelihood function 

.L(σ2; y) =
⎰

f(y | τ , σ2)f(τ | ω2) dτ (13.7) 

with respect to . σ2, where the densities .f(y | τ , σ2) and .f(τ | ω2) follow 
from (13.5) and (13.6), respectively (their exact expressions are given be-
low). In practice, however, evaluating the above integral directly is often 
time-consuming as it involves a high-dimensional integration. Convention-
ally, Kalman filter is used to evaluate the integral, as discussed in Harvey 
(1990) (see also Problem 13.5 for an alternative method). 

Instead, we will obtain . ^σ2 using the EM algorithm introduced in Chap. 6.6. 
To this end we first write the system (13.5)–(13.6) in matrix form and derive ☞ 189 
explicit expressions for .ln f(y | τ , σ2) and .ln f(τ | ω2). 

Defining .ε = [ε1, . . . , εT ]T, we can rewrite (13.5) as 

.y = τ + ε, ε ∼ N(0, σ2IT ) , (13.8) 

where . 0 is a .T × 1 column of zeros and . IT is the .T × T identity matrix. From 
(13.8), we see that 

. ln f(y | τ , σ2) = −T

2 ln(2πσ2) − 1
2σ2 (y − τ )T(y − τ ) . (13.9) 

Next, we derive an expression for .ln f(τ | ω2). For simplicity, we assume 
.τ0 = 0; the general case follows similarly (see Problem 13.7). Note that we 
can rewrite the transition equation (13.6) as
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.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

◟ ◝◜ ◞

H

⎡

⎢

⎢

⎢

⎢

⎢

⎣

τ1
τ2
τ3
...

τT

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u1
u2
u3
...

uT

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (13.10) 

i.e., .Hτ = u, u ∼ N(0, Ω), where .Ω = diag(ω2
0 , ω2, . . . , ω2) is a diagonal 

matrix. Noting that .|H| def= | det(H)| = 1 and hence . H is invertible, we have 

. τ = H−1u ∼ N(0, (HTΩ−1H)−1) ,

where .Ω−1 = diag(ω−2
0 , ω−2, . . . , ω−2) is again a diagonal matrix. It follows 

that 

. lnf(τ | ω2) = −1
2 ln((2π)T |(HTΩ−1H)−1|) − 1

2τ T(HTΩ−1H)τ

= −T

2 ln(2π) − 1
2 ln ω2

0 − T − 1
2 ln ω2 − 1

2τ T(HTΩ−1H)τ . (13.11) 

To implement the E-step, we need to derive the conditional density of the 
states given the data 

. gi(τ ) = f(τ | y, σ2
i−1, ω2) ,

where .σ2
i−1 is the current value for . σ2 in iteration i. We first show that 

.(τ | y, σ2
i−1, ω2) has a multivariate normal density of dimension T . Then we 

discuss how one can evaluate this typically high-dimensional density effi-
ciently. 

Using (13.9) and (13.11), while ignoring constant terms not involving . τ , 
we have 

. ln f(τ | y, σ2
i−1, ω2) = ln f(y, τ | σ2

i−1, ω2) + const
= ln f(y | τ , σ2

i−1) + ln f(τ | ω2) + const

= −1
2

⎛

(y − τ )T(y − τ )
σ2

i−1
+ τ T(HTΩ−1H)τ

⎞

+ const

= −1
2

⎛

τ TKi τ − 2
σ2

i−1
yTτ

⎞

+ const ,

where .Ki = HTΩ−1H + σ−2
i−1 IT . Note that the expression above defines the 

pdf of a normal distribution, and we only need to determine the mean vector 
and the covariance matrix. By completing the squares as in Theorem 8.1, we☞ 245 
see that 

.(τ | y, σ2
i−1, ω2) ∼ N(τ̂ i, K−1

i ) , (13.12) 

where .τ̂ i = σ−2
i−1K−1

i y.
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Next, we compute the expectation 

. Qi(σ2) = Egi
ln f(y, τ | σ2, ω2) .

To simplify the computation, we ignore all the terms not involving . σ2, as  
they will eventually drop out when we maximize .Qi(σ2) with respect to . σ2. 
Hence, we have, from (13.9), 

. Qi(σ2) = Egi
ln f(y | τ , σ2) + const

= −T

2 ln(2πσ2) − 1
2σ2Egi

(y − τ )T(y − τ ) + const

= −T

2 ln(2πσ2) − 1
2σ2

⎾

tr(K−1
i ) + (y − τ̂ i)T(y − τ̂ i)

⏋

+ const .

Note that we used the fact that for any random vector . x with mean vector . μ
and covariance matrix . Σ, we have .E(xTx) = tr(Σ)+μTμ (see Problem 13.2). 

Finally, to implement the M-step, we differentiate .Qi(σ2) with respect to 
. σ2 and solve for the maximizer: 

.σ2
i = argmax

σ2
Qi(σ2) = 1

T

⎾

tr(K−1
i ) + (y − τ̂ i)T(y − τ̂ i)

⏋

. (13.13) 

We summarize the EM algorithm as follows: given a starting value . σ2
0 , 

iterate the following steps until convergence: 

• E-Step. Given the current value . σ2
i−1, compute 

. Ki = HTΩ−1H + σ−2
i−1IT and τ̂ i = K−1

i y/σ2
i−1 .

• M-Step. Given . Ki and . ̂τ i from the E-step, update the value for . σ2 using 
(13.13). 

Although the estimation procedures presented above are relatively straight-
forward, one thing to notice is that the computations involve various large 
matrices. For example, .K−1

i is a full .T × T matrix. In typical applications 
the sample size T could be as large as several hundred or a few thousand, 
and computing the inverse .K−1

i is very time-consuming. However, note that 
the matrix . Ki, as well as . H and . Ω−1, are  sparse and computations involving 
sparse matrices (multiplication, Cholesky decomposition, etc.) are generally 
very fast. See also Appendix A for some useful Julia built-in routines for 
handling sparse matrices. 

Also, for computing .τ̂ i = K−1
i y/σ2

i−1, one need not obtain the inverse 
. K−1

i , which is a time-consuming matrix operation. Instead, we solve the 
linear system .Kix = y for . x, the solution of which is .K−1

i y. In contrast to 
inverting large matrices, the latter operation can be done much more quickly 
and accurately.
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Finally, to compute .tr(K−1
i ) in (13.13) without obtaining the inverse . K−1

i , 
we use the following result: 

. tr(K−1
i ) =

T
⎲

j=1
λ−1

j ,

where .λ1, . . . , λT are the eigenvalues of the sparse matrix . Ki. At the end 
of the EM iterations, we obtain the estimate . ^σ2. However, it is typically 
not the quantity of interest in the analysis—what we are really after is the 
expected value of the underlying inflation, .E(τ | y, σ2, ω2). We can estimate 
this quantity using the “plug-in” estimate .E(τ | y, σ2 = ^σ2, ω2), which  is  
. ^K−1y/^σ2, where . ^K is the . Ki matrix evaluated at the final iteration of the 
EM algorithm. 

We illustrate the EM algorithm using the following empirical example that 
involves fitting the US inflation with the unobserved components model. 

Example 13.2 (Modeling Inflation with Unobserved Components 
Model). In Example 12.6, we first modeled the US inflation data with☞ 364 
an integrated MA(1) model. Later we continued our analysis with a more 
general ARMA(1,1) model in Example 12.7. In this empirical example, we☞ 368 
consider the unobserved components model for the same data. The unob-
served components model may be viewed as a convenient way to allow for 
a stochastic trend (see Problem 13.4). As such, it is highly flexible and is 
capable of modeling a variety of features. In addition, using the state space 
framework makes it easy to consider further extensions with richer dynamics 
(e.g., see Problem 13.8). 

Recall that the quarterly inflation rate is computed from the consumer 
price index (CPI). Specifically, given . zt, the CPI at time t, we compute the 
(annualized) inflation rate as .yt = 400 ln(zt/zt−1). 

In what follows, we fit the unobserved components model (13.5)–(13.6) 
with the U.S. CPI inflation data. In order to proceed, we first need to set the 
values for . ω2

0 and . ω2. Recall that . ω2
0 is the variance of the initial condition 

(i.e., .τ1 ∼ N(0, ω2
0)). We set .ω2

0 = 9. What this means is that the initial . τ1 is 
between . −6 to 6 with a probability approximately equal to 95%. As for the 
smoothness parameter . ω2, we consider two cases: .ω2 = 12 and .ω2 = 0.52. 
The value for . ω2 reflects the desired smoothness of the transition for . τt. For  
example, if .ω2 = 0.52, then with high probability the difference between 
consecutive unobserved components, .τt − τt−1, is between . −1 and 1. 

Recall that the estimation consists of two steps. First, given the prefixed 
values for . ω2

0 and . ω2, we iterate the E- and M-steps until the sequence of 
. σ2

t converges. Then, given the maximum likelihood estimate . ^σ2, we once
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again use the E-step to obtain .E(τ | σ2 = ^σ2, ω2). The following Julia script 
performs these two tasks. 

UC_EM.jl 

using SparseArrays, LinearAlgebra, StatsBase,Plots, 
DelimitedFiles 

y =  readdlm("USCPI.csv") 
T =  length(y) 
omega2_0 = 9 # initial condition 
omega = .5^2 # fix omega 
H =  sparse(I,T,T) - sparse(2:T,1:(T-1),ones(T-1),T,T) 
invOmega = sparse(1:T,1:T,vcat(1/omega2_0, 1/omega*ones(T-1)), 

T,T) 
HinvOmegaH = H'*invOmega*H 
sigma2t = var(y) # initial guess 
err = 1 
while err> 10^(-4) 

# E-step 
Kt = HinvOmegaH + sparse(I,T,T)/sigma2t 
taut = Kt(y/sigma2t) 

# M-step 
lam = eigvals(Matrix(Kt)) 
newsigma2t = (sum(1 ./ lam) .+ only((y-taut)'*(y-taut)))/T 

# update 
err = abs(sigma2t-newsigma2t) 
sigma2t = newsigma2t 

end 
Kt = HinvOmegaH + sparse(I,T,T)/sigma2t 
taut = Kt(y/sigma2t) 
plot(y) 
plot!(taut) 

We used the above code to obtain the maximum likelihood estimates for 
. σ2 with .ω2 = 12 and .ω2 = 0.52. The plug-in estimates for . τ are plotted in 
Fig. 13.1. It can be seen that both curves fit the data reasonably well, without 
fitting the observed series too closely (otherwise we might run into overfitting 
problems). In particular, both seem to be able to capture the high inflation 
periods in the 1970s and 1980s, whereas the estimated trend remains low and 
stable since the 1990s until the last credit crisis. But as expected, when . ω2

is larger, the estimated . τ fit the data better. But we emphasize that if one 
sets . ω2 to be too large, one might run into over-fitting problems.

https://people.smp.uq.edu.au/DirkKroese/statbook/
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Fig. 13.1 Fitted values for . τ under the unobserved components model with . ω2 = 12

(top panel) and .ω2 = 0.52 (bottom panel) 

13.1.2 Bayesian Estimation 

The unobserved components model, and state space models in general, may 
be viewed as a Bayesian hierarchical model, where the measurement equation☞ 235 
provides the likelihood function and the transition equation specifies a prior 
for the states. For the remaining parameters, namely, . σ2 and . ω2 (note that 
. ω2 can be estimated if we specify a proper prior for . ω2), we assume the 
independent priors 

.σ2 ∼ InvGamma(ασ2 , λσ2), ω2 ∼ InvGamma(αω2 , λω2) , (13.14) 

where .ασ2 , λσ2 , αω2 , are . λω2 constants specified by the user. Typically we set 
the shape parameters . ασ2 and . αω2 to be some small numbers, so that the 
priors are relatively noninformative. We then choose the rate parameters . λσ2

and . λω2 such that the prior means for . σ2 and . ω2 have the desired values. 
Given the measurement and state equations (13.5)–(13.6), as well as the  

prior for . σ2 and . ω2 in (13.14), we have the following joint posterior density: 

.f(τ , σ2, ω2 | y) ∝ f(y | τ , σ2)f(τ | ω2)f(σ2)f(ω2) , (13.15) 

where .f(σ2) and .f(ω2) are the inverse-gamma priors. We can then obtain 
posterior draws via the following two-step Gibbs sampler: alternatively draw 
from .f(τ | y, σ2, ω2) and .f(σ2, ω2 | y, τ ).
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Sampling from the high-dimensional density .f(τ | y, σ2, ω2) is convention-
ally done using Kalman filter based methods, such as in Carter and Kohn 
(1994) and Durbin and Koopman (2002). In contrast, we implement a con-
ceptually simpler and computationally more efficient approach based on fast 
band matrix routines, as proposed in Chan and Jeliazkov (2009). More specif-
ically, we first show that .f(τ | y, σ2, ω2) is a normal density, and then discuss 
how one can sample from it efficiently. To this end, note that from (13.15) 
we have, 

. ln f(τ | y, σ2, ω2) = ln f(τ , σ2, ω2 | y) + const
= ln f(y | τ , σ2) + ln f(τ | ω2) + const

= −1
2

⎛

(y − τ )T(y − τ )
σ2 + τ T(HTΩ−1H)τ

⎞

+ const

= −1
2

⎛

τ TKτ − 2
σ2 yTτ

⎞

+ const .

It follows, similar to the derivation of (13.12), that 

. (τ | y, σ2, ω2) ∼ N(τ̂ , K−1) ,

where .K = HTΩ−1H + σ−2IT , and  .τ̂ = σ−2K−1y. 
Since the covariance matrix .K−1 is a full matrix and is typically of 

very high-dimension, drawing .N(τ̂ , K−1) the usual way (that is, via Algo-
rithm 3.3) is time-consuming. Instead, we exploit the special structure of ☞ 84 
the precision matrix . K, namely, that it is sparse (see the discussion on page 
395). As such, a Cholesky decomposition of the precision matrix .K = CCT ☞ 395 
can be obtained quickly. Then, we can use Algorithm 12.1 to quickly sample ☞ 371 
from .N(τ̂ , K−1). Specifically, if we let .x = (CT)−1z, where .z ∼ N(0, IT ), 
then .x ∼ N(0, K−1). Recall that one can obtain . ̂τ efficiently by solving 
.Kτ̂ = σ−2y. Finally, .τ = τ̂ + (CT)−1z has the desired distribution. 

Next, we derive the conditional density .f(σ2, ω2 | y, τ ). From  (13.15) we 
have 

. f(σ2, ω2 | y, τ ) ∝ f(τ , σ2, ω2 | y)
∝ f(y | τ , σ2)f(σ2) × f(τ | ω2)f(ω2) .

In other words, . σ2 and . ω2 are conditionally independent given . y and . τ , with 

. f(σ2 | y, τ ) ∝ f(y | τ , σ2)f(σ2) and f(ω2 | y, τ ) ∝ f(τ | ω2)f(ω2) .

In fact, one can show that both conditional densities are inverse-gamma den-
sities. Namely, by (13.9) and the prior pdf of . σ2 we have (up to a constant) 

. ln f(σ2 | y, τ ) = T

2 ln( 1
σ2 ) − 1

2σ2 (y − τ )T(y − τ ) + (1 + ασ2) ln( 1
σ2 ) − λσ2

σ2 ,
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which shows that☞ 240 

.(σ2 | y, τ ) ∼ InvGamma
⎛

ασ2 + T

2 , λσ2 + 1
2(y − τ )T(y − τ )

⎞

. (13.16) 

Using a similar reasoning, we find 

.(ω2 | y, τ ) ∼ InvGamma
⎛

αω2 + T − 1
2 , λω2 + 1

2

T
⎲

t=2
(τt − τt−1)2

⎞

. (13.17) 

13.2 Time-Varying Parameter Model 

The unobserved components model discussed in the last section may be 
viewed as a linear regression model with only an intercept, where the in-
tercept is allowed to change over time. More generally, one can consider lin-
ear regression models where all the regression coefficients are time-varying. 
As discussed in the introduction, this is motivated by the empirical find-
ings that typical macroeconomic and financial variables exhibit time-varying 
persistence and dynamics. In this section we discuss a particular type of 
time-varying parameter models, called time-varying parameter autore-
gressive models. Consider again the autoregressive model introduced in 
Definition 12.1. Instead of assuming constant autoregressive coefficients, we 
allow them to evolve over time. 

Definition 13.3. (Time-Varying Parameter Autoregressive 
Model). In the p-th-order time-varying parameter autore-
gressive model, or time-varying parameter AR(p), the measurement 
equation is given by: 

.yt = β0t + β1tyt−1 + · · · + βptyt−p + εt , (13.18) 

for .t = 1, . . . , T , where .{εt} ∼iid N(0, σ2), and  .y0, . . . , y1−p are initial 
observations. The autoregressive coefficients .βt = [β0t, β1t, . . . , βpt]T in 
turn evolve according to the following transition equation: 

.βt = βt−1 + ut , (13.19) 

for .t = 2, . . . , T , where .{ut} ∼iid N(0, Ω), and the transition equation 
is initialized with .β1 ∼ N(β0, Ω0).
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In the above definition, we treat the initial observations .y0, . . . , y1−p as 
given, and we do not model them separately. For T much greater than p this 
has little influence on estimation and inference. 

13.2.1 Bayesian Estimation 

We begin by writing (13.18) in matrix notation: 

. yt = xT
t βt + εt ,

where .xT
t = [1, yt−1, . . . , yt−p], .βt = [β0t, β1t, . . . , βpt]T, and  .εt ∼ N(0, σ2). 

Now, stack the observations over all times t: 

.y = Xβ + ε , (13.20) 

where .y = [y1, . . . , yT ]T, .β = [βT
1 , . . . , βT

T ]T, .ε = [ε1, . . . , εT ]T ∼ N(0, σ2IT ), 
and 

. X =

⎡

⎢

⎢

⎢

⎣

xT
1 0 . . . 0
0 xT

2 . . . 0
...

...
. . .

...
0 0 . . . xT

T

⎤

⎥

⎥

⎥

⎦

.

Thus, the joint density of . y is given by (suppressing the dependence on the 
initial observations .y0, . . . , y1−p): 

. ln f(y | β, σ2) = −T

2 ln σ2 − 1
2σ2 (y − Xβ)T(y − Xβ) + const . (13.21) 

Next, we stack the transition equation (13.19) over t. For simplicity we set 
.β0 = 0 (the general case follows similarly). The transition equations can be 
written in matrix form as 

. Hβ = u ,

where .u ∼ N(0, S), .u = [uT
1 , . . . , uT

T ]T, with 

. H =

⎡

⎢

⎢

⎢

⎣

Ip+1 0 . . . 0 0
−Ip+1 Ip+1 . . . 0 0

...
...

. . .
...

...
0 0 . . . −Ip+1 Ip+1

⎤

⎥

⎥

⎥

⎦

and S =

⎡

⎢

⎢

⎢

⎣

Ω0 0 . . . 0
0 Ω . . . 0
...

...
. . .

...
0 0 . . . Ω

⎤

⎥

⎥

⎥

⎦

.

Note that .|H| = 1 and .|S| = |Ω0| |Ω|T −1. It follows that the joint density 
of . β satisfies 

. ln f(β | Ω) = −T − 1
2 ln |Ω| − 1

2βTHTS−1Hβ + const . (13.22)
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Since . Ω is a .(p + 1) × (p + 1) symmetric matrix, it contains . (p + 1)(p + 2)/2
distinct parameters. Even when p is small, say, .p = 4, there are 15 distinct 
parameters. In typical empirical applications one cannot accurately estimate 
these many parameters. We can reduce the number of parameters by assum-
ing that . Ω is diagonal. We adopt this approach and let . ω2 = [ω2

0 , ω2
1 , . . . , ω2

p]T
denote the vector of diagonal elements of . Ω. 

To derive the posterior density, it remains to specify the prior for . σ2 and 
. ω2 (note that . ω2 can be estimated from the data rather than fixed as a vector 
of constants if a proper prior is adopted). We assume an independent prior 
.f(σ2, ω2) = f(σ2)f(ω2), where 

.σ2 ∼ InvGamma(ασ2 , λσ2), ω2
i ∼ InvGamma(αω2

i
, λω2

i
) , (13.23) 

and .ασ2 , λσ2 , αω2
i
, and .λω2

i
, i = 0, . . . , p, are constants specified by the user. 

Finally, the posterior density is given by 

.f(β, σ2, ω2 | y) ∝ f(y | β, σ2)f(β | ω2)f(σ2)f(ω2) , (13.24) 

where .f(y | β, σ2) and .f(β | Ω) = f(β | ω2) are provided in (13.21) and 
(13.22), respectively. Posterior draws can be obtained using the Gibbs sam-
pler. Specifically, we sequentially draw from .f(β | y, σ2, ω2) followed by a 
draw from .f(σ2, ω2 | y, β). 

For the first step, we note that .f(β | y, σ2, ω2) is again a normal density. 
Hence, once we determine the mean vector and the precision matrix, we can 
apply Algorithm 12.1 to obtain a draw from it efficiently. Using (13.21) and☞ 371 
(13.22), we have,  

. ln f(β | y, σ2, ω2) = ln f(y | β, σ2) + ln f(β | ω2) + const

= − 1
2σ2 (y − Xβ)T(y − Xβ) − 1

2βTHTS−1Hβ + const

= − 1
2(β − ^β)TKβ(β − ^β) + const ,

where 

. Kβ = 1
σ2 XTX + HTS−1H and ^β = K−1

β

⎛

1
σ2 XTy

⎞

.

In other words, .(β | y, σ2, ω2) ∼ N(^β, K−1
β ). 

Next, note that . σ2 and . ω2 are conditionally independent given . y and . β. 
Namely, from (13.24) we have 

. f(σ2 | y, β) ∝ f(y | β, σ2)f(σ2) and f(ω2 | y, β) ∝ f(β | ω2)f(ω2) .

Similar to (13.16) it follows from (13.21) and the prior .f(σ2) that
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. (σ2 | y, β) ∼ InvGamma
⎛

ασ2 + T

2 , λσ2 + 1
2(y − Xβ)T(y − Xβ)

⎞

.

To find the distribution of .(ω2 | y, β), we use  (13.22) and the assumption that 
.Ω = diag(ω2), to find  

. ln f(ω2 | y, β) = −T − 1
2

p
⎲

i=0
ln ω2

i − 1
2

p
⎲

i=0

1
ω2

i

T
⎲

t=2
(βit − βi,t−1)2 + const .

From this we can deduce that conditional on . y and . β the components of . ω2

are independent of each other and each has an inverse-gamma distribution: 

. (ω2
i | y, β) ind∼ InvGamma

⎛

αω2
i

+ T − 1
2 , λω2

i
+ 1

2

T
⎲

t=2
(βit − βi,t−1)2

⎞

for . i = 0, . . . , p.

Example 13.3 (Modeling Inflation with Time-Varying Parameter 
AR Model). In Example 13.2 we used the unobserved components model 
to fit the U.S. quarterly CPI inflation rate from 1947 to 2011. Here we illus-
trate Bayesian estimation in the more general time-varying parameter AR 
model. Specifically, we fit the time-varying parameter AR model in (13.18)– 
(13.19) using the inverse-gamma priors in (13.23). For simplicity, we fix p, the  
number of lags, to be 2. As for the hyperparameters in the prior, we choose 
relatively small values for the shape parameters so that the prior is relatively 
noninformative (e.g., large prior variances): .ασ2 = αω2

i
= 5, i = 0, . . . , p. 

Next, we set .λσ2 = (ασ2 − 1), .λω2
0

= 0.52(αω2
0

− 1), and  . λω2
i

= 0.12(αω2
i

− 1)
for .i = 1, . . . , p. These values imply .Eσ2 = 1, .Eω2

0 = 0.52 and .Eω2
i = 0.12 for 

.i = 1, . . . , p. The covariance matrix . Ω0 is set to be diagonal with diagonal 
elements 5. 

Before we discuss the main Gibbs sampler, we need a fast routine to build 
an appropriate sparse matrix. Recall that we want to write the measurement 
equation in matrix notation .y = Xβ + ε (see (13.20)). 

The following function SURform takes the .T × (p + 1) matrix 

. 

⎡

⎢

⎢

⎢

⎣

xT
1

xT
2
...

xT
T

⎤

⎥

⎥

⎥

⎦

,

and produces the sparse matrix . X, which is of dimension .T × T (p + 1).



404 13 State Space Models

function SURform(X) 
r, c =  size(X); 
idi = vec(Int64.(kronecker(1:r,ones(c)))) 
idj = 1:r*c 
return sparse(idi,idj,X'[:]) 

end 

It is also convenient to use the following function to sample from a Gamma 
distribution for multiple scale parameters. 

function gamrnd(a,c) # c is scale not rate 
n =  length(c) 
x =  zeros(n) 
for i=1:n 
x[i] = rand(Gamma(a,c[i])) 

end 
return x 

end 

The script that implements the Gibbs sampler is given below. The number 
of iterations in the main Gibbs run is 1000. We ignore the burn-in. 

TVPAR.jl 

using SparseArrays, Kronecker,LinearAlgebra, Distributions 
using StatsBase,Plots,DelimitedFiles 
USCPI= readdlm("USCPI.csv") 
nloop = 10000 
p = 2  # number of lags 
y0 = USCPI[1:p]; y = USCPI[p+1:end] 
T =  length(y) 
q = p+1;  Tq  = T*q  # dimensions 

# priors 
asigma2 = 5 
lsigma2 = 1*(asigma2-1) 
aomega2 = 5 
lomega2 = (aomega2-1)*[0.5^2; 0.1^2*ones(p,1)] 
invOmega0 = ones(q)/5 

# initialize 
omega2 = .1*ones(q) 
sigma2 = 1 
store_omega2 = zeros(nloop,q) 
store_sigma2 = zeros(nloop) 
store_beta = zeros(Tq) 

https://people.smp.uq.edu.au/DirkKroese/statbook/
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# construct/compute a few things 
X = [ones(T,1) [y0[end]; y[1:end-1]] [y0; y[1:end-2]]] 
bigX = SURform(X) 
H =  sparse(I,Tq,Tq) - sparse(q+1:Tq,1:(T-1)*q, ones((T-1)*q), 

Tq,Tq) 
newaomega2 = aomega2 + T - 1 
newasigma2 = asigma2 + T 
for loop = 1:nloop 

global omega2,sigma2,store_beta,betahat 
# sample beta 

invS = sparse(1:Tq,1:Tq,vec([invOmega0' repeat(1 ./ omega2 
',1,T-1)])) 

K = H'*invS*H + bigX'*bigX/sigma2 
R =  cholesky(K) # sparse Cholesky 
P =  sparse(1:Tq,R.p,ones(Tq)) 
C = P'*sparse(R.L) # C*C' = K  
betahat = K(bigX'*y/sigma2) 
beta = betahat + C'\ randn(Tq) 

# sample omega2 
erromega2 = reshape(H*beta,q,T) 
newlomega2 = lomega2 + sum(erromega2[:,2:end].^2,dims=2)/2 
omega2 = 1 ./ gamrnd(newaomega2, 1 ./ newlomega2) 

# sample sigma2 
newlsigma2 = lsigma2 + sum((y-bigX*beta).^2)/2 
sigma2 = 1/rand(Gamma(newasigma2,1/newlsigma2)) 

# store 
store_beta = store_beta + beta 
store_omega2[loop,:] = omega2' 
store_sigma2[loop] = sigma2 

end 
betahat = store_beta/nloop 
sigma2hat = mean(store_sigma2) 
omega2hat = mean(store_omega2,dims=1) 
t = 1947.25:.25:2011.5 
p1 = plot(t[3:end],betahat[1:3:end]); 
p2 = plot(t[3:end],betahat[2:3:end]); 
p3 = plot(t[3:end],betahat[3:3:end]); 
plot(p1,p2,p3,layout=(1,3)) 
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Fig. 13.2 Estimated posterior means for . βt

The estimated posterior means for .βt = [β0t, β1t, β2t]T are reported in 
Fig. 13.2. It is evident from the plots that there is a lot of time variation in 
the regression coefficients, which suggests that a time-invariant autoregressive 
model might not be appropriate. For instance, the intercept . β0t is estimated 
to be about 1% in the 1960s, while the estimate jumps to around 2% in 
the 1980s. Moreover, the estimate for the lag-1 coefficient . β1t increases from 
around 0.5 in 1960 to about 0.65 in the 1980s, which then decreases grad-
ually in the following two decades and reaches a small value of 0.2 in 2010. 
Taken together, the hyperinflation in the 1970s–1980s may be viewed as a 
combination of a large shift in the level of the underlying inflation, together 
with an increase in persistence. After the 1980s, however, the underlying in-
flation stays at around 2%, but since the persistence decreases substantially, 
the inflation rate remains at a relatively low level. 

13.3 Stochastic Volatility Model 

A prominent feature of many time series, particularly macroeconomic and 
financial data, is the so-called volatility clustering—the phenomenon that 
large changes in observations tend to be followed by large changes and small 
changes followed by small changes. For example, large movements in asset 
returns tend to cluster together (e.g., during crisis), whereas there might be 
little variation over long stretches of “normal periods.” Models with constant 
variance obviously do not allow the volatility of the observations to change 
over time and hence cannot model volatility clustering. In this section we 
introduce a class of state space models that can accommodate time-varying 
volatility. To focus our discussion on modeling the variance of the time series, 
we assume for the moment that the observations .{yt} have zero mean; one



13.3 Stochastic Volatility Model 407

could add a suitable conditional mean process such as an AR(p) component 
later on. 

Definition 13.4. (Stochastic Volatility Model). In the stochastic 
volatility model the observation at time t is given by 

.yt = eht/2εt, (13.25) 

where .{εt} ∼iid N(0, 1). Consequently, the volatility of . yt is . Var(yt) =
eht . The states are initialized with .h1 ∼ N(h0, σ2

0) for some known 
constants . h0 and . σ2

0 and evolve according to a random walk 

.ht = ht−1 + vt , t = 2, . . . , T , (13.26) 

where .{vt} ∼iid N(0, ω2). The state . ht is called the log-volatility. 

The stochastic volatility model is an example of a nonlinear state space 
model where the measurement equation (13.25) is not linear in the state. One 
challenge of fitting this nonlinear model is that the joint conditional density of 
the states .h = [h1, . . . , hT ]T given . y is nonstandard (in contrast to previous 
examples where the conditional densities of the states are all Gaussian). As 
such, Bayesian estimation using MCMC and frequentist estimation via EM 
both become more difficult. 

13.3.1 Auxiliary Mixture Sampling Approach 

A popular method for estimating the stochastic volatility model is auxiliary 
mixture sampling. The basic idea underlying this approach is as follows. 
First, we transform the observation . yt so that the measurement equation 
becomes linear in . ht. Specifically, we square both sides of the measurement 
equation (13.25) and take the (natural) logarithm 

.y∗
t = ht + ε∗

t , (13.27) 

where .y∗
t = ln y2

t and .ε∗
t = ln ε2

t . In practice, it is often recommended to 
set .y∗

t = ln(y2
t + c) for some small constant c, say,  .c = 0.0001, to avoid 

numerical problems when . yt is close to zero. Now, after the transformation, 
(13.27) and (13.26) define a linear state space model. However, the error . ε∗

t no 
longer has a Gaussian distribution (in fact, it has a log-. χ2

1 distribution), and 
the estimation techniques for linear Gaussian state space models discussed 
earlier cannot be directly applied. 

In view of this difficulty, the second ingredient of the auxiliary mixture 
sampling approach is to find a suitable Gaussian mixture that approximates
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the pdf of . ε∗
t

.f(ε∗
t ) ≈

n
⎲

i=1
pi ϕ(ε∗

t ; μi, σ2
i ) , (13.28) 

where .ϕ(x ; μ, σ2) is the Gaussian density with mean . μ and variance . σ2, . pi

is the mixture probability for the i-th component, and n is the number of 
components. The idea is to approximate the nonlinear stochastic volatility 
model using a mixture of linear Gaussian models, where the estimation of 
the latter models is standard. We can equivalently write (13.28) in terms 
of an auxiliary random variable .st ∈ {1, . . . , n} that serves as the mixture 
component indicator (hence, the name of the approach): 

.(ε∗
t | st = i) ∼ N(μi, σ2

i ) , (13.29) 
P(st = i) =  pi . (13.30) 

Now, conditional on the component indicator . st, we have a linear Gaussian 
model and the machinery for estimating such models can be applied. 

It remains to select a suitable Gaussian mixture. By matching the mo-
ments of the log-. χ2

1 distribution, Kim et al. (1998) propose a seven-component 
Gaussian mixture 

. f(x) =
7

⎲

i=1
pi ϕ(x ; μi − 1.2704, σ2

i ) ,

where the values of the parameters are given in Table 13.1. It is important 
to note that since the log-. χ2

1 distribution does not involve any unknown 
parameters, neither does this Gaussian mixture. In fact, all the parameter 
values of the approximating density are known. 

Table 13.1 A seven-component Gaussian mixture for approximating the log-. χ2
1 distri-

bution 

comp. .pi .μi . σ2
i

1 0.00730 −10.12999 5.79596 
2 0.10556 −3.97281 2.61369 
3 0.00002 −8.56686 5.17950 
4 0.04395 2.77786 0.16735 
5 0.34001 0.61942 0.64009 
6 0.24566 1.79518 0.34023 
7 0.25750 −1.08819 1.26261 

To summarize the model, define .s = [s1, . . . , sT ]T, .y∗ = [y∗
1 , . . . , y∗

T ]T, 
.h = [h1, . . . , hT ]T, .v = [v1, . . . , vT ]T, and  .ε∗ = [ε∗

1, . . . , ε∗
T ]T. Let  . H be the 

same matrix as in (13.10). By  (13.27) we can write 

.y∗ = h + ε∗,
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where .(ε∗ | s) ∼ N(d, Σy∗), with .d = [μs1 − 1.2704, . . . , μsT
− 1.2704]T and 

.Σy∗ = diag(σ2
s1

, . . . , σ2
sT

). The (fixed) .{μi} and .{σ2
i } are given in Table 13.1. 

Consequently, 
.(y∗ | s, h) ∼ N(h + d, Σy∗) . (13.31) 

Using an inverse-gamma prior for . ω2, the hierarchical Bayesian model is thus 
as follows: 

1. .(y∗ | s, h) ∼ N(h + d, Σy∗), 
2. It follows from (13.26) that the random vector . h is of the form .h = H−1v, 

where .v ∼ N(0, Ωv), with .Ωv = diag(ω2
0 , ω2, . . . , ω2), 

3. The components .s1, . . . , st of . s are independent, with . P(st = i) =
pi, i = 1, . . . , T , 

4. .ω2 ∼ InvGamma(αω2 , λω2). 

In order to perform a Bayesian analysis, we need to be able to sample from 
the posterior pdf .f(h, s, ω2 | y). Due to the augmentation of the mixture com-
ponent indicators . s, it becomes more cumbersome to implement a standard 
Gibbs sampler that sequentially samples from all the full conditional distri-
butions. For example, .f(ω2 | y, h, s) is a nonstandard pdf. Instead, we follow 
Del Negro and Primiceri (2015) and implement a collapsed Gibbs sampler, 
by sequentially sampling from (1) .f(s, ω2 | y∗, h), which is done by sampling 
from (1a) .f(ω2 | y∗, h) and (1b) .f(s | y∗, h, ω2); and (2) .f(h | y∗, s, ω2). More  
generally, for models with more blocks of parameters to sample, the main 
thing to remember is that . h should be sampled immediately after . s. 

First, implementation of (1a) is similar to the derivation in (13.17). In  
particular, given . y and . h, . ω2 has again an inverse-gamma distribution: 

. (ω2 | y, h) ∼ InvGamma
⎛

αω2 + T − 1
2 , λω2 + 1

2

T
⎲

t=2
(ht − ht−1)2

⎞

.

To implement (1b), note that .f(s | y∗, h) =
∏T

t=1 f(st | y∗
t , ht), and there-

fore we can draw each . st independently. Since . st is a discrete random variable 
that follows a seven-point distribution, it can be easily sampled as long as we 
can compute .P(st = i | y∗

t , ht) for .i = 1, . . . , 7. In fact, we have 

. P(st = i | y∗
t , ht) = 1

ct
pi ϕ(y∗

t ; μi − 1.2704 + ht, σ2
i ) ,

where .ct =
∑7

j=1 pj ϕ(y∗
t ; μj −1.2704+ht, σ2

j ) is the normalization constant. 
Finally, to implement (2), we write 

. ln f(h | y∗, s, ω2) = ln f(y∗ | s, h) + ln f(h | ω2) + const ,

where .f(y∗ | s, h) follows from (13.31) and .f(h | ω2) follows from 

.(h | ω2) ∼ N(0, (HTΩ−1
v H)−1) .
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Using a similar reasoning as in Sect. 13.1.2, we find 

. (h | y∗, s, ω2) ∼ N(^h, K−1
h ) ,

where 

. Kh = Σ−1
y∗ + HTΩ−1

v H and ^h = K−1
h Σ−1

y∗ (y∗ − d) .

A draw from the above Gaussian distribution can be efficiently obtained using 
Algorithm 12.1.☞ 371 

Example 13.4 (Modeling Inflation with Unobserved Components 
Stochastic Volatility Model). We have considered in Example 13.2 an 
unobserved components model with constant variance for modeling the US 
quarterly CPI inflation. In this example, we extend the constant variance to 
include stochastic volatility in the measurement equation. This model is a 
simplified version of the unobserved components model in Stock and Watson 
(2007) that features stochastic volatility in both the measurement and state 
equations. Specifically, consider 

. yt = τt + eht/2εt ,

τt = τt−1 + ut ,

ht = ht−1 + vt ,

where .{εt} ∼iid N(0, 1), .{ut} ∼iid N(0, ω2
τ ), and  .{vt} ∼iid N(0, ω2

h). The state 
equations are initialized with .τ1 ∼ N(τ0, Vτ ) and .h1 ∼ N(h0, Vh), where 
.τ0 = h0 = 0 and .Vτ = Vh = 9. Again we assume independent inverse-gamma 
priors for . ω2

τ and . ω2
h

. ω2
τ ∼ InvGamma(ατ , λτ ) and ω2

h ∼ InvGamma(αh, λh) ,

where we set .ατ = αh = 10, .λτ = 0.252(ατ −1), and .λh = 0.22(αh −1). These 
values imply .Eω2

τ = 0.252 and .Eω2
h = 0.22. By defining . y∗

t appropriately, the 
results derived earlier in this section can be applied to construct a suitable 
Gibbs sampler. More precisely, let 

. y∗
t = ln((yt − τt)2 + 0.0001) .

Then, by using the auxiliary mixture sampling approach, we sequentially 
draw from 

(1) .f(s | y, τ , h, ω2
τ , ω2

h) = f(s | y∗, τ , h); 
(2) .f(h | y, τ , s, ω2

τ , ω2
h) = f(h | y∗, τ , s, ω2

h); 
(3) .f(τ | y, h, ω2

τ , ω2
h) = f(τ | y, h, ω2

τ ); and  
(4) .f(ω2

τ , ω2
h | y, τ , h) = f(ω2

τ , ω2
h | τ , h). 

For Steps (1) and (2), we can use the following Julia function SVRW to draw 
from the full conditional densities for . s and . h:
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function SVRW(ystar, h, omega2h, Vh) 
T =  length(h) 
# parameters for the Gaussian mixture 
pi = [0.0073 0.10556 0.00002 0.04395 0.34001 0.24566 0.2575] 
mui = [-10.12999 -3.97281 -8.56686 2.77786 0.61942 1.79518

-1.08819] 
sig2i = [5.79596 2.61369 5.17950 0.16735 0.64009 0.34023 

1.26261] 
sigi = sqrt.(sig2i) 
s =  zeros(Int64, T) 
for t = 1:T  

q =  zeros(7) 
for i = 1:7 

q[i] = pi[i]*pdf(Normal(mui[i]-1.2704+h[t],sigi[i]), 
ystar[t]) 

end 
q = q ./  sum(q) 
s[t] = minimum(findall(cumsum(q) .> rand())) 

end 
H =  sparse(I, T, T) - sparse(2:T,1:(T-1),ones(T - 1), T, T) 
invOmegah = spdiagm(vec([1/Vh; 1/omega2h*ones(T - 1, 1)])) 
d = mui[s] 
invSigystar = spdiagm(vec(1 ./ sig2i[s])) 
Kh = H' * invOmegah * H + invSigystar 
R =  cholesky(Kh) 
P =  sparse(1:T, R.p, ones(T)) 
Ch = P' * sparse(R.L) 
hhat = Kh \ (invSigystar * (ystar - d)) 
h = hhat + Ch' \ randn(T, 1) 
return h, s 

end 

Next, using a similar derivation as on Page 398, one can show that 

. (τ | y, h, ω2
τ ) ∼ N(τ̂ , K−1

τ ) ,

where .Σ−1
y = diag(e−h1 , . . . , e−hT ), 

. Kτ = HTΩ−1
τ H + Σ−1

y and τ̂ = K−1
τ Σ−1

y y .

Hence, Step 3 can be implemented easily. Lastly, to complete Step 4, note 
that . ω2

τ and . ω2
h are conditionally independent given the states. Moreover, 

.(ω2
τ | τ , h) ∼ InvGamma

⎛

ατ + T − 1
2 , λτ + 1

2

T
⎲

t=2
(τt − τt−1)2

⎞

,
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. (ω2
h | τ , h) ∼ InvGamma

⎛

αh + T − 1
2 , λh + 1

2

T
⎲

t=2
(ht − ht−1)2

⎞

.

The main script below fits the unobserved components model with stochas-
tic volatility using the auxiliary mixture sampling approach. 

UCSV.jl 

using SparseArrays, Kronecker,LinearAlgebra, Distributions 
using StatsBase,Plots,DelimitedFiles 
y =  readdlm("USCPI.csv") 
T =  length(y) 
nloop = 10000 
Vtau = 9 
Vh = 9 
atau = 10 
ltau = .25^2*(atau-1) 
ah = 10  
lh = .2^2*(ah-1) 

# initialize the Markov chain 
omega2tau = .25^2 
omega2h = .2^2 
h =  log(var(y)*.8)*ones(T) 
H =  sparse(I,T,T) - sparse(2:T,1:(T-1),ones(T-1),T,T) 

# initialize for storage 
store_omega2tau = zeros(nloop) 
store_omega2h = zeros(nloop) 
store_tau = zeros(nloop,T) 
store_h = zeros(nloop,T) 
# compute a few things 

newatau = (T-1)/2 + atau 
newah = (T-1)/2 + ah 

for loop = 1:nloop 
global h, omega2tau, omega2h,tauhat 
invOmegatau = sparse(1:T, 1:T, 

vec([1 / Vtau 1 / omega2tau * ones(1, T - 1)])) 
invSigy = sparse(1:T, 1:T, vec(exp.(-h))) 
Ktau = H' * invOmegatau * H + invSigy 
R =  cholesky(Ktau) # sparse Cholesky ) 
P =  sparse(1:T, R.p, ones(T)) 
Ctau = P' * sparse(R.L) # Ctau*Ctau' = K 
tauhat = Ktau \ (invSigy * y) 
tau = tauhat + Ctau' \ randn(T) 
ystar = log.((y - tau) .^ 2 .+ 0.0001) 

https://people.smp.uq.edu.au/DirkKroese/statbook/
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h, s = SVRW(ystar, h, omega2h, Vh) 
# sample omega2tau 
newltau = ltau + sum((tau[2:end] - tau[1:end-1]) .^ 2) / 2 
omega2tau = 1 / rand(Gamma(newatau, 1 / newltau)) 
# sample omega2h 
newlh = lh + sum((h[2:end] - h[1:end-1]) .^ 2) / 2 
omega2h = 1 / rand(Gamma(newah, 1 / newlh)) 
store_tau[loop, :] = tau' 
store_h[loop, :] = h' 
store_omega2tau[loop] = omega2tau 
store_omega2h[loop] = omega2h 

end 

tauhat = mean(store_tau,dims=1)' 
hhat = mean(store_h,dims=1)' 

t = 1947.25:.25:2011.5 
p1 = plot(t,tauhat); 
p2 = plot(t,hhat); 
plot(p1,p2) 

We use the above code to obtain 10000 posterior, ignoring the burn-in. We 
present in Fig. 13.3 the estimated posterior means for the underlying inflation 
. τ and the log-volatilities . h. 
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Fig. 13.3 Estimated posterior means for . τ (left panel) and . h (right panel) 

Compared to the results obtained under the constant variance unobserved 
components model, the estimated underlying inflation exhibits a similar pat-
tern, but is seemingly more variable. In addition, the estimated log-volatilities
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show that there is substantial time variation in the variance in the measure-
ment equation, highlighting the relevance of the stochastic volatility model. 

13.4 Problems 

13.1. Prove the updating formulas in (13.4) by using the joint distribution 
in (13.3) and Theorem 3.8.☞ 86 

13.2. The trace of a square matrix .A = (aij) is the sum of the diagonal 
elements: .tr(A) =

∑

i aii. 

a. Let . A and . B be matrices (not necessarily square) such that . AB and . BA
are square matrices (not necessarily of the same dimension). Show that 
.tr(AB) = tr(BA). 

b. Let . A be a square matrix and let . x be a random vector with mean . μ and 
covariance matrix . Σ. Using (a) and the fact that .tr(EZ) = E tr(Z) for a 
random square matrix . Z, show that 

. E(xTAx) = tr(AΣ) + μTAμ .

13.3. Show that for the measurement equation in (13.5), if one fixes .τt = yt, 
then the function 

. g(σ2) = ln f(y | τ , σ2)

is unbounded in . σ2. 

13.4. Another interpretation of the unobserved components model is to view 
it as a way to specify stochastic trends. Using the transition equation (13.6) 
and recursive substitution, show that 

. Var(τt | τ1) = (t − 1)ω2 ,

i.e., the stochastic trend . τt has variance that is increasing with time, which 
implies that . τt can wander over an increasing range of values as time increases. 

13.5. For the unobserved components model (and more generally linear Gaus-
sian state space models), it is possible to evaluate the likelihood function 
.L(σ2; y) without computing the high-dimensional integral in (13.7). More  
specifically, by Bayes’ theorem, the likelihood function can be written as (re-
call that . ω2 is a fixed constant) 

.L(σ2; y) = f(y | σ2, ω2) = f(y | τ , σ2)f(τ | ω2)
f(τ | y, σ2, ω2) ,



13.4 Problems 415

where the densities .f(y | τ , σ2), f(τ | ω2), and .f(τ | y, σ2, ω2) are all normal 
and can be evaluated quickly. Since the second equality holds for all . τ , one  
can simply choose some convenient values, say, .τ = 0. 

Redo Example 13.2 by directly maximizing the log-likelihood function 
.l(σ2; y). Specifically, plot .l(σ2; y) as a function of . σ2. Moreover, find the 
maximum likelihood estimate for . σ2. 

13.6. In this exercise we generalize the unobserved components model to 
allow for an additional channel for persistence. Specifically, consider 

. yt = τt + β(yt−1 − τt−1) + εt ,

τt = τt−1 + ut ,

where .{εt} ∼iid N(0, σ2), .{ut} ∼iid N(0, ω2), and  .ω2 = 1. The underlying 
trend is initialized with .τ1 ∼ N(0, 5) and .τ0 = 0. It is obvious that if  .β = 0, 
it reduces to the standard unobserved components model. 

a. Derive the log-density .ln f(y | y0, τ , β, σ2). 
b. Show that the conditional density .f(τ | y, y0, β, σ2, ω2) is normal, and de-

rive its parameters. 
c. Describe how one can estimate the model parameters using frequentist and 

Bayesian methods. 

13.7. Under the unobserved components model, suppose the state equation 
is given by 

. τt = βτt−1 + ut, ut ∼ N(0, ω2)

for .t = 2, . . . , T, with .τ1 ∼ N(τ0, ω2
0). Derive the joint density .f(τ | β, ω2). 

13.8. Consider the following unobserved components model with AR(1) tran-
sition equation: 

. yt = τt + εt ,

τt = βτt−1 + ut ,

where .{εt} ∼iid N(0, σ2), .{ut} ∼iid N(0, ω2), and the underlying trend is ini-
tialized with .τ1 ∼ N(0, 5). Suppose we assume the priors: . β ∼ N(0, 1),
.σ2

τ ∼ InvGamma(10, 9), and .ω2 ∼ InvGamma(10, 9). Derive all the full condi-
tional distributions. Fit this model with the US CPI data. In particular, use 
the kde.m program to plot a kernel density estimate of posterior distribution 
of . β.
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Selected Problems of Chap. 1

1.1 (a) .Ω = {1, 2, 3, 4, 5, 6}; (b) .Ω = R+; (c) .Ω = {0, 1, . . . }; (d) .Ω =
{0, 1, . . . , 50}; (e) .Ω = {(x1, . . . , x10) : xi ≥ 0, i = 1, . . . , 10} = R

10
+ .

1.4 (a) .1/5; (b) .5/36.

1.5 (a) .Ω is the set of all .6! permutations of .(1, . . . , 6); (b) .P(A) = |A|/720;
(c) .15/720.

1.8 (a) .Ω = {(1, 2, 3), . . . , (52, 51, 50)}. Each elementary event is equally
likely; (b) .

4×3×2
52×51×50 = 3

16575 ; (c) .
6×44

52×51×50 = 64/5525; (d) .
36×35×34
52×51×50 = 1071

3315 .

1.9 .
(17

7 )
(20

10)
= 2

19 .

1.10 (a) .
1
6 ; (b) .

1
3 .

1.13 .
1

3652 .

1.14 .
(10

4
)

× 0.44 × 0.66 = 0.2508.

1.15 (a) .0.0791; (b) .0.1239.

1.17 .1/96.

1.19 (a) .
1

36 ×
( 35

36
)9 = 0.0216; (b) .1 − (35/36)100 = 0.94022.

1.21 ceil.(6*rand(100)).
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Selected Problems of Chap. 2

2.1 (a)
x 1 2 3 4 5 6

.f(x) .
11
36 .

9
36 .

7
36 .

5
36 .

3
36 .

1
36

; (b) .
4
9 ; (c) .EM = 91

36 , .Var(M) = 2555
1296 .

2.2 (b): (i) 4/5; (ii) 3/5; (iii) 3/5; (iv) 19/20.

2.6 .X ∼ Bin(100, 0.12); .P(X ≤ 7) =
∑7

k=0
(100

k

)
0.12k(1 − 0.12)100−k =

0.0761.

2.8 .M(s) = ebs−eas

s(b−a) , s ∈ R.

2.11 (a) .1 − e−2; (b) .e−8; (c) .e−4; (d) .1/2.

2.12 (a) The expectation does not exist (.∞ − ∞ is ill-defined); (b) the
expectation is .∞.

2.16 In the first model .X ∼ Exp(1/3) and .P(X > 4.5 | X > 4) = 0.8465. In
the second model .X ∼ N(3, 9) and .P(X > 4.5 | X > 4) = 0.8351.

2.18 (b): (i) .Φ(−1/3), (ii) .1 − Φ(0) = 1/2, (iii) .Φ(1/3) − Φ(−5/3); (c) 9; (d)
25.

2.20 (a) 2+rand(); (b)3+3*randn(); (c) -log(rand())/4; (d) sum(rand(10)
.< 0.5); (e) ceil(log(rand())/(1-1/6)).

2.21 Use X = sqrt.(-log.(rand(1000))); histogram(X).

Selected Problems of Chap. 3

3.1 x

y
.−2 0 2

.−1 0 . 12 0 . 12
1 . 14 0 . 14 . 12

. 14 . 12 . 14 1
X and Y are not independent since, for example, .P(X = −1, Y = −2) = 0 �=
1
2 × 1

4 = P(X = −1)P(Y = −2).

3.3 (a) .fX(x) = 1
3 for .x = 1, 2, 3; (b) .fY |X(y | 1) = 1

2 for .y = 0, 1,
.fY |X(y | 2) = 4−3(y−1)2

6 for .y = 0, 1, 2, .fY |X(y | 3) = 1
2 for .y = 1, 2;
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(c) x

y
0 1 2

1 . 16 . 16 0 . 13
2 . 1

18 . 29 . 1
18 . 13

3 0 . 16 . 16 . 13
. 29 . 59 . 29 1

; (d) .fY (0) = fY (2) = 2/9 and .fY (1) = 5/9; (e) .fX|Y (x | 0) =

{
3
4 , x = 1
1
4 , x = 2,

, .fX|Y (x | 1) =

⎧
⎪⎨

⎪⎩

3
10 , x = 1
2
5 , x = 2
3

10 , x = 3,

, .fX|Y (x | 2) =
{

1
4 , x = 2
3
4 , x = 3

.

3.4 .fX | Y (x | 1) = 1/(6x)
147/360 = 60

147x for .x = 1, . . . , 6, and .E[X | Y = 1] =
∑6

x=1 x × 60
147x = 360

147 .

3.6 (a) .f(x, y) = fX(x)fY (y) = e−y for .0 ≤ x ≤ 1, and .y ≥ 0; (b) .1 − e−1;
(c) .e−1.

3.8 (a) .f(x, y) = fX(x)fY | X(y | x) = e−x × xe−xy = xe−x(y+1) for .x >

0, y > 0; (b) .fY (y) = 1
(y+1)2 , y ≥ 0.

3.9 Since .X ∼ U[−π/2, π/2], .fX(x) = 1/π, x ∈ (−π/2, π/2). Let .Y =
tan(X). Then, the inverse transformation is .g−1(y) = arctan(x), and the
associated matrix of Jacobi is .Jg−1(y) = 1/(1 + y2). Hence, .fY (y) = 1

π(1+y2) ,
which is the pdf of the Cauchy distribution.

3.11 (a) .fS2(x) = x for .0 ≤ x ≤ 1, .fS2(x) = 2 − x for .1 < x ≤ 2, and 0
otherwise; (b) .N(10, 5/3); (c) .0.0607.

3.12 (a) .ET = 5, Var(T ) = 5
2 ; (b) .0.2635; (c) .T ∼ Gamma(10, 2).

3.15 (a) .
( 7

8
)6; (b) .1 −

( 7
8
)6.

3.18 (b) .
(n−1)

n σ2.

3.20 W is the sum of the weights of six randomly chosen people and has a
.N(600, 600) distribution. .6X1 is 6 times the weight of the first chosen person,
and has a .N(600, 3600) distribution.

3.21 Recall that if .Z ∼ χ2
ν , then its moment generating function is .MZ(s) =

1/(1 − 2s)ν/2 = (1 − 2s)−ν/2. Now, .MX+Y (s) = Ees(X+Y ) = EesX
EesY =

(1−2s)−m/2(1−2s)−n/2 = (1−2s)−(m+n)/2, which is the moment generating
function of .χ2

m+n.

3.23 0.9867.

3.24 (a) .1.0524; (b) .0.0838.
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Selected Problems of Chap. 4

4.1

(a) .X1, . . . , X9 ∼iid N(μ, σ2), where .Xi is the volume of paint in the i-th tin.
The primary interest is to determine if .μ is less than 20.

(b) .X1, . . . , X12 ∼iid N(μ1, σ2
1) and .Y1, . . . , Y12 ∼iid N(μ2, σ2

2) independently.
Here, .Xi (.Yi) is the time of completion for the i-th man (woman). The
primary interest is to determine if .μ1 − μ2 is significantly different from
0 or not.

(c) .Z1, . . . , Z12 ∼iid N(μ, σ2), where .Zi is the difference in marks for the i-
th exam as marked by lecturers A and B. The primary interest is to
determine if .μ is significantly different from 0 or not.

(d) .X1, . . . , X500 ∼iid Ber(p), where .Xi = 1 if the i-th coin toss is Heads and
.Xi = 0 otherwise. The primary interest is to determine if p equals 1/2.

4.2 (a) Let .Xi be the average weight of five randomly selected packets from
the packaging line at hour i, .i = 1, . . . , 24. A possible model is to assume that
the .{Xi} are independent and that each .Xi ∼ N(μi, σ2

i ) for some unknown
.μi and .σ2

i . Typical questions of interest are whether the .{μi} and .{σ2
i } lie

within an acceptable range.

4.7

(a) If one expects that shipping cost is a linear or quadratic function in dis-
tance, then a possible model is .Yi =β0 +β1xi +β2x2

i +εi, {εi} ∼iid N(0, σ2),
.i = 1, . . . , 9, where .Yi is the shipping cost of the i-th air freight and .xi

the corresponding distance traveled.
(b) Single-factor ANOVA model .Yik = μi + εik, {εik} ∼iid N(0, σ2), k =

1, . . . , 20, .i = 1, 2, 3, where .Yik is the average fuel consumption for the
k-th car of brand i, .k = 1, . . . , 20, i = 1, 2, 3.

(d) Simple linear regression model .Yi = β0 +β1xi +εi, {εi} ∼iid N(0, σ2), i =
1, . . . , 10, where .Yi is the military expenditure of the country in year i
and .xi is the gross national product in that year.

4.9 The .n × 6 design matrix is given by

.

⎡

⎢
⎢
⎢
⎣

1 x11 x21 x2
11 x2

21 x11x21
1 x12 x22 x2

12 x2
22 x12x22

...
...

...
...

...
...

1 x1n x2n x2
1n x2

2n x1nx2n

⎤

⎥
⎥
⎥
⎦

.

4.11 The following Julia script generates realizations from the linear regres-
sion model.
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using Printf
beta= [-1 0 1]; # 2 free parameters
alpha = [-2 2]; # 1 free parameter
mu = 6; # 1 parameter
gamma = [
0.2 -1 0.8; -0.2 1 -0.8]; # 2 free parameters
eps = 0.1*randn(2,3,3);
y = zeros(2,3,3)
for i=1:2

for j=1:3
y[i,j,:] = mu .+ alpha[i] .+ beta[j] .+ gamma[i,j] .+ eps[

i,j,:];
end

end
for i=1:2

for j=1:3
for k=1:3

@printf("%3.2f ",y[i,j,k])
end

end
@printf("\n");

end

Selected Problems of Chap. 5

5.1 For .Geom(p), .p̂ = 1/x; for .Poi(λ), .λ̂ = x; for .Gamma(α, λ), .α̂ = x2/v2

and .λ̂ = x/v2, where .v2 = n−1 ∑n
i=1(xi − x)2.

5.5 (a) .λ̂ = X; (b) From the central limit theorem, .X has approximately
a normal distribution with expectation .EX = 1/λ and variance .Var(X) =
1/(λ2n), so that

.P

(1 − z1−α/2/
√

n

X
≤ λ ≤

1 + z1−α/2/
√

n

X

)
≈ 1 − α ,

from which the .1 − α approximate confidence interval for .λ follows.

5.7 .(0.045, 0.055) ml.

5.8 The confidence interval .(1.015, 1.810) does not contain the value 1, so
there is reasonable evidence to suspect that the claim on the packet is not
true.
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5.10 Evaluating .β̂ = (X�X)−1X�Y gives

.

β̂ =
[

n
∑n

i=1 xi
∑n

i=1 xi

∑n
i=1 x2

i

]−1 [ ∑n
i=1 Yi

∑n
i=1 xi Yi

]

= 1
n
∑n

i=1 x2
i − n2x2

[∑n
i=1 x2

i −nx

−nx n

] [
nY

∑n
i=1 xi Yi

]

= 1
nSxx

[∑n
i=1 x2

i nY − nx
∑n

i=1 xi Yi

−n2xY + n
∑n

i=1 xi Yi

]

= 1
Sxx

[∑n
i=1 x2

i Y − x
∑n

i=1 xi Yi

SxY

]

= 1
Sxx

[
Y (

∑n
i=1 x2

i − nx2) + x(Y nx −
∑

i=1 xiYi)
SxY

]

=
[
Y − xSxY /Sxx

SxY /Sxx

]
.

5.12 Model: .Yi = a
√

hi +εi, .i = 1, . . . , 4, where the .{εi} are iid and .N(0, σ2)
distributed. The least-square estimate of a is .̂a = 0.452.

5.13 Let X be the number of low fat milk sales out of 1500. The model is
.X ∼ Bin(1500, p) for some unknown p. We wish to test .H0 : p = 0.3 versus
.H1 : p < 0.3. The outcome of X is .x = 400. The corresponding p-value is
.PH0(X ≤ 400) ≈ 0.00243. There is thus very strong evidence that the true
proportion p is less than 0.3, indicating a move toward low fat milk.

5.17 Let .X1, . . . , Xn ∼iid N(μ, 16) be the PFC amounts.

(a) The average PFC is .X, which has a .N(μ, 16/n) = N(μ, 4) distribution.
(b) .Pμ=38.5(X < 39) = Φ(0.025) = 0.51.
(c) Find n such that .Pμ=38(X < 39) ≥ 0.9. The smallest such n is 27.

5.23 Let .Yik be the walking age of the k-th baby in group .i = 1, 2, 3, 4
(corresponding to A,B,C,D). Consider the 1-factor ANOVA model

.Yik = μ + αi + εik, i = 1, . . . , 4, k = 1, . . . , 6 ,

with .{εik} ∼iid N(0, σ2) and .
∑4

i=1 αi = 0. To test the hypothesis .α1 = . . . =
α4 = 0, we use the test statistic .T = MStreatment

MSerror
, which under .H0 has an

.F(3, 20) distribution. By changing the data matrix yy in the first Julia pro-
gram in Example 5.17 , we find the outcome .2.1370 for the test statistic,☞ 148
which gives a p-value of 0.1275. Since this is not very small, we accept the
null hypothesis that there is no difference in expected walking age between
the groups.

To compute the 95% confidence intervals for the expected walking ages
.μi = μ + αi, .i = 1, . . . , 4, we apply Theorem 5.3 using specific vectors☞ 142
.a. For example, to find a confidence interval for .μ1, take .a = [1, 1, 0, 0]�.
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Similarly, for .μ4, take .a = [1, −1, −1, −1]�. By modifying the Julia program
linregestconf.jl in Example 5.12, as in,

tquant = quantile(TDist(n-m),0.975) # 0.975 quantile
a = [1, 1, 0, 0]
ucl = a'*betahat + tquant*norm(y - X*betahat)*sqrt(a'*inv(X'*X

)*a)/sqrt(n-m)
lcl = a'*betahat .- tquant*norm(y - X*betahat)*sqrt(a'*inv(X'*

X)*a)/sqrt(n-m)
[lcl ucl]

we find the following .95% numerical confidence intervals, .(8.85, 11.39), .(10.10,
.12.64), .(10.44, 12.97), and .(10.94, 13.48), which clearly overlap, corroborating
our finding that there is no evidence for a difference in expected walking age.

Selected Problems of Chap. 6

6.2 The derivative of the log-likelihood for .θ is .
dl
dθ = − n

2θ + 1
2θ2

∑n
i=1 x2

i − n
2 .

Solving the likelihood equation .
dl
dθ = 0, one obtains the maximum likelihood

estimate .θ̂ = − 1
2 + 1

2

√
1 + 4

n

∑n
i=1 x2

i . Substitute .Xi for .xi to obtain the
estimator.

6.5 (a) .θ̂M = (2X − 1)/(1 − X); (b) .θ̂ = −1 − n/
∑n

i=1 ln Xi.

6.6 .P(X > 68.5) = P((X − μ)/σ > (68.5 − μ)/σ) = 1 − Φ((68.5 − μ)/σ).
Hence, by Theorem 6.6, the MLE is .1 − Φ((68.5 − 56.3)/7.6) = 0.0542. ☞ 182

6.9 .l(λ; x) = n ln(λ/2) − λ
∑n

i=1 |xi|. Setting .l′(λ; x) = 0 gives .λ̂ =
n/

∑n
i=1 |xi| = 0.5893.

6.12 .l(p; x) = ln p
∑n

i=1 xi + ln(1 − p)
∑n

i=1(k − xi) + const, so that
.l′(p; X) =

∑n
i=1 Xi/p −

∑n
i=1(k − Xi)/(1 − p). Setting .l′(p; X) = 0 gives

the maximum likelihood estimator .p̂ = X/k. The information number .I(p)
is, by Theorem 6.4, equal to .nI̊(p), where .I̊(p) is the information number for ☞ 175
.X ∼ Bin(k, p). By (6.11) .I̊(p) = k/(p(1 − p)). Also, .Var(p̂) = Var(X/k) =
Var(X1)/(nk2) = kp(1−p)/(nk2) = p(1−p)/(nk) = I−1(p). Hence, .p̂ attains
the Cramér–Rao lower bound.

6.14

(a) The log-likelihood corresponding to .X ∼ Exp(1/v) is .̊l(v; x) = − ln(v) −
x/v, with score function .S̊(v; x) = −1/v + x/v2. The score function
corresponding to .X1, . . . , Xn ∼iid Exp(1/v) is .S(v; x) =

∑n
i=1 S̊(v; xi) =

−n/v +
∑n

i=1 xi/v2.
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(b) The Fisher information for .X ∼ Exp(1/v) is .I̊(v) = Var(S̊(v, X)) =
Var(X)/v4 = v2/v4 = 1/v2. The Fisher information corresponding to
.X1, . . . , Xn ∼iid Exp(1/v) is .I(v) = nI̊(v) = n/v2.

(c) Setting .S(v; X) = 0, we find the MLE .v̂ = X.
(d) .ŝin(v) = sin(v̂) = sin(X).
(e) .Var(v̂) = Var(X) = Var(X1)/n = v2/n = I−1(v).

6.18 The score function is .n/θ −
∑n

i=1 Xi, and the Fisher information is
.nVar(θ − X1) = n/θ2. The .1 − α stochastic confidence set is thus

.

{

θ : −z1−α/2 <
n/θ −

∑n
i=1 Xi√

n/θ2
< z1−α/2

}

=
{

n − z1−α/2
√

n
∑n

i=1 Xi
< θ <

n + z1−α/2
√

n
∑n

i=1 Xi

}
,

which is an interval. Taking .z1−α/2 = z0.95 = 1.645, we find the numeric 90%
confidence interval .(0.480, 1.520).

6.19 Let .X = [X1, . . . , Xn] be an iid sample from .Exp(λ) and .Y =
[Y1, . . . , Yn] an iid sample from .Exp(μ).

(a) The MLEs of .λ and .μ are, respectively, .λ̂ = 1/X and .1/Y .
(b) Under .H0, the MLE of .θ is .θ̂ = 2n∑n

i=1
Xi+

∑n

i=1
Yi

.

(c) The likelihood ratio is given by

.Λ = (2n)2n

(
∑n

i=1 xi +
∑n

i=1 yi)
2n × (

∑n
i=1 xi)

n (
∑n

i=1 yi)
n

n2n

= 22n

(
1 +

∑n

i=1
yi∑n

i=1
xi

)2n ×
(∑n

i=1 yi∑n
i=1 xi

)n

= 22n(1 + T )−2nT n = 22n

(
T

(1 + T )2

)n

.

Hence, we can use .T/(1 + T )2 as a test statistic, and we reject .H0 when
the likelihood ratio is “too small," i.e., when .

T
(1+T )2 < α for some critical

value .α.
(d) T has approximately a .N(λ/μ, σ2/n) distribution, with

.σ2 = JΣJ� =
(

−λ2

μ
, λ

)[
λ−2 0

0 μ−2

] [
− λ2

μ

λ

]

= 2λ2

μ2 .

6.24 Initial guesses for .α and .λ are obtained via the method of moments:
.α0 = x2

s2 , λ0 = x
s2 .
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The following Julia program implements the Newton–Raphson scheme to
find the MLE for .α and .λ, which are estimated to be .α̂ = 3.9853 and .λ̂ =
0.0696.

using StatsBase, SpecialFunctions
x = [
29.7679, 12.8406, 105.3225, 46.6101, 75.7135, 72.0340,
64.1004, 33.9008, 35.2510, 50.9201, 29.8086, 32.6963,
131.5229, 65.3381, 29.1369, 61.8774, 31.0650, 54.4877,
103.6889, 68.0230, 89.6879, 30.1994, 48.3140, 54.4447,
29.2253, 27.0242, 102.5929, 63.7344, 43.0354, 96.5552];
n = length(x);
sumlogx = sum(log.(x)); sumx = sum(x);
alpt = mean(x)^2/var(x); lamt = mean(x)/var(x); # intl. guess
thetat = [alpt, lamt]
for i=1:5 # just repeat the NR step 5 times

global lamt, alpt, thetat
S = [ n*(log(lamt) - digamma(alpt)) + sumlogx; n*alpt/lamt

- sumx ];
I = n * [trigamma(alpt) -1/lamt; -1/lamt alpt/lamt^2 ];
thetat = thetat + inv(I)*S # using inv is OK (dim =2)
alpt = thetat[1]; lamt = thetat[2];

end
print(thetat)

[3.9853256640599644, 0.06955520473406741]

Selected Problems of Chap. 7

7.1

(a) The distribution of T does not depend on .σ.
(b) Define .Yi = Xi/σ for .i = 1, . . . , n. Then .Y1, . . . , Yn ∼iid N(0, 1) under

.H0, and .T =
√

nX/SX =
√

nY /SY , which is exactly of the form (5.17). ☞ 135
The true p-value is therefore 0.0197 (using cdf(TDist(3),-3.5) and the
Distributions package in Julia).

(c) The following code uses vectorization and is much faster.

using StatsBase
# @time begin # uncomment begin ... end for timing
xbar_obs = -0.7; s_obs = 0.4; t_obs = 2*xbar_obs/s_obs;
N = 10^5;
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x = randn(4,N);
xbar = mean(x,dims=1);
s = std(x,dims=1);
t = 2*xbar./s;
count = sum(t .<= t_obs);
phat = count/N # estimated p-value
# end

7.3 X takes values .x1, . . . , xN with probability .1/N , so the expectation
is .EX = x1/N + x2/N + · · · + xN /N = x, and the second moment is
.EX2 = N−1 ∑N

i=1 x2
i . The variance is therefore .Var(X) = EX2 − (EX)2 =

N−1 ∑N
i=1 x2

i − x2 = N−1 ∑N
i=1(xi − x)2.

7.4

(a) By the product rule, the joint pdf of X and J is given by .fX,J(x, j) =
fJ(j)fX|J (x | j) .= wjfj(x) and the marginal pdf of X is found as .f(x) =
∑k

j=1 fX,J(x, j) .=
∑k

j=1 wjfj(x).
(b) First, draw .J ∈ {1, . . . , k} with probabilities .w1, . . . , wk. Then, given

.J = j, draw X from the pdf .fj .
(c) .EX =

∑k
j=1 wjμj and .Var(X) =

∑k
j=1 wj(σ2

j + μ2
j ) − (

∑k
j=1 wjμj)2.

7.8

(a) Solving .P(X ≥ m) = e−λm = 1/2 gives .m = ln(2)/λ.
(b) The sample median is .x̃ = 1.4073. Hence, the estimate is .λ̃ = ln(2)/x̃ =

0.4925. The maximum likelihood estimate is .1/x = 0.2773.
(c) The following code produces Fig. 13.4. The pdf of the “median” estimator

(solid line) is bimodal and much more spread out than the pdf of the
maximum likelihood estimator. Because the resampled data is discrete,
the automatic bandwidth selection in kde will produce highly spiked
KDEs, unless the res=true flag is set.

include("ThetaKDE.jl")
using .ThetaKDE, Plots, StatsBase
xorg = [1.4066, 1.2917, 1.408, 4.2801, 1.2136, 2.7461,
11.1076, 0.9247, 5.8833, 10.2513, 3.8285, 3.2116,
0.5451, 0.9896, 1.1602, 7.7723, 0.1702, 0.8907,
0.2276,3.1197, 11.4909,0.6475, 11.2279, 0.7639]
n = length(xorg);
est1org = log(2)/median(xorg)
est2org = 1/mean(xorg)
K= 10000;
est1 = zeros(K); est2 = zeros(K);
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for i=1:K
ind = ceil.(Int64,n*rand(n)); # draw random indices
x = xorg[ind]; # resampled data
est1[i] =log(2)/median(x);
est2[i] =1/mean(x);

end
kde(est1,plt=true,res=true)
xmesh,density,bw = kde(est2,res=true)
plot!(xmesh,density)

Fig. 13.4 KDEs for the
pdfs of .ln(2)/X̃ (solid line)
and .1/X (dashed line) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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7.11 All the .x1, . . . , xn are smaller than .θ, and so are the .M∗
i , k = i, . . . , K.

Hence, .θ is not contained in any .1 − α bootstrap confidence interval.

7.13

(a) With positive probability, it is possible to reach each state from another
state, in at most four steps. So the chain is irreducible. However, to return
to a starting state, it always requires a multiple of two steps. Hence, the
chain is periodic with period 2.

(b) The local balance equations hold, because the system is reversible. By
symmetry .f(1) = f(2) = f(5) = f(6) and .f(3) = f(4). By local balance,
.f(1)/2 = f(3)/3. Hence, .4f(1) + 3f(1) = 1, so that .f(1) = 1/7 and
.f(3) = 3/14.

(c) For example, for odd t the probability .P(Xt = 1) = 0, because, starting
from 1 at time 0, it requires an even number of steps to return to 1. On
the other hand, the probability .P(X2t = 1) converges to .2/7 as .t → ∞.
Hence, the sequence .P(Xt = 1), t = 0, 1, 2, . . . does not converge. In this
case the stationary probability is not equal to the limiting probability.

7.16 .Z = − ln U1 has an .Exp(1) distribution, by the inverse-transform
method and .R = 21{U2≤1/2} − 1 takes values .−1 and 1 with equal prob-
ability. Hence, X is obtained by first generating Z and then flipping its sign
with probability .1/2. The cdf of X is therefore given by
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.P(X ≤ x) =
{

1 − P(X > x) = 1 − P(Z > x)/2 = 1 − e−x/2 for x ≥ 0
P(Z > −x)/2 = ex/2 for x ≤ 0 .

By differentiating the cdf, we obtain the pdf .g(x) = e−|x|/2 for all x.

Selected Problems of Chap. 8

8.2

(a) The posterior pdf is given by .f(λ | x) ∝ f(λ) × f(x | λ) = (1/λ) ×
λ5 exp(−λ

∑5
i=1 xi). This is the pdf of the .Gamma(5,

∑5
i=1 xi) distribu-

tion, where .
∑5

i=1 xi = 15.7487.
(b) The expectation is .5/

∑5
i=1 xi = 0.317487.

8.3 The posterior pdf is .f(λ | x) ∝ f(λ) × f(x | λ) ∝ λa−1 exp(−bλ) ×
λx exp(−λ) = λa+x−1 exp(−λ(1+b)). This is the pdf of the .Gamma(a+x, b+1)
distribution.

8.6 Let .Y1, . . . , Ym+1 with .Yi ∼ Gamma(αi, 1), i = 1, . . . , m + 1 be in-
dependent random variables. By Theorem 8.2, .Zi = Yi/(Yi + Y ), with☞ 247
.Y =

∑
j �=i Yj , has the same distribution as the i-th coordinate of .Z =

(Z1, . . . , Zm) ∼ Dirichlet(α1, . . . , αm+1). Moreover, .Yi and Y are independent,
and .Y ∼ Gamma(

∑
j �=i αj , 1), because its moment generating function is

.(1/(1−s))
∑

j �=i
αj . Hence, again by Theorem 8.2, .Zi ∼ Dirichlet(αi,

∑
j �=i αj).

8.7
(a) The prior pdf is .f(p | x) ∝ f(x | p) = p(1 − p)x−1, which is a .Beta(2, x)

distribution.
(b) The posterior mode is .1/x; see Problem 8.6.
(c) The posterior expectation is .2/(2 + x); see Problem 8.6.
8.13 We have .f(xi+1 | xi) = f(xi, xi+1)/f(xi) = f(xi | xi+1)f(xi+1)/f(xi).
Hence,

.

f(x1, . . . , xn) = f(x1)f(x2 | x1) · · · f(xn | xn−1)

= f(x1)f(x1 | x2)f(x2)
f(x1)f(x2 | x3)f(x3)

f(x2) · · · f(xn−1 | xn) f(xn)
f(xn−1)

= f(xn)f(xn−1 | xn) · · · f(x1 | x2) .

8.14

(a) By the law of total probability .f(xt, y1:t) =
∑

xt−1
f(xt, xt−1, yt, y1:t−1).☞ 16

Conditioning .f(xt, xt−1, yt, y1:t−1) on .xt−1 and .y1:t−1 gives .f(xt, y1:t)
.=
∑

xt−1
f(xt, yt | xt−1, y1:t−1)f(xt−1, y1:t−1).
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(b) .f(xt, yt | xt−1, y1:t−1) = f(xt | xt−1, y1:t−1)f(yt | xt, xt−1, y1:t−1). Because
of the structure of the Bayesian network, .xt given .xt−1 is independent
of .y1:t−1, and .yt given .xt is independent of .xt−1 and .y1:t−1. Hence,
.f(xt | xt−1, y1:t−1) .= f(xt | xt−1) and .f(yt | xt, xt−1, y1:t−1) = f(yt | xt).

(c) .f(x1, y1) = f(y1 | x1)f(x1), where both .f(x1) and .f(y1 | x1) are known.
Hence, .f(x1, y1) can be evaluated. Next, .f(x2 | y1, y2) can be evaluated
via (8.32) because both factors in the sum are known. The first one is
known via (8.33) and the second as part of the recursion for .t = 1.
Repeating this, we see that .f(xt, y1:t) can be evaluated for any t. The
posterior pdf .f(xt | y1:t) ∝ f(xt, y1:t) follows simply by normalization.

8.18
(a) The Bayesian network is given in Fig. 13.5.

Fig. 13.5 The Bayesian
network for the bag-of-
words model

(b) The posterior pdf is

.f(p | x) ∝ exp
(

−1
2

n∑

i=1

(xi − μpi)2

σ2

)

= exp
(

−1
2

‖x − μp‖2

σ2

)

.

This is maximal when .‖x − μp‖ is minimal. Thus .p∗ maximizes the
posterior pdf.

(c) The posterior pdf is

.f(p | x) ∝ (σp1 · · · σpn)−1 exp
(

−1
2

n∑

i=1

(xi − μpi)2

σ2
pi

)

.

The (unscaled) values for .f(p), p = 1, . . . , 4 are 53, .0.24, .8.36, and .3.5 ×
10−6. Hence the object should be classified as 1. The following code was
used.

x = [1.67,2,4.23]
mu = [1.6 2.4 4.3; 1.5 2.9 6.1;

1.8 2.5 4.2; 1.1 3.1 5.6];
sig = [0.1 0.5 0.2; 0.2 0.6 0.9;

0.3 0.3 0.3; 0.2 0.7 0.3];
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f(p) = prod(sig[p,:]).^(-1) .*
exp(-0.5*sum((x-mu[p,:]).^2 ./ sig[p,:].^2));

f(1), f(2), f(3), f(4)

Selected Problems of Chap. 9

9.1 We use the fact that if .Z ∼ InvGamma(a, b), then .EZ = b/(a − 1) for
.a > 1. We know that .{Xi} ∼iid N(α, 1 + τ2). From Theorem 5.1, it follows
that

.Z =
∑N

i=1(Xi − X)2

1 + τ2 ∼ χ2
N−1 = Gamma(a, b),

with .a = (N − 1)/2 and .b = 1/2, so that .E[1/Z] = b/(a − 1) = 1/(N − 3) for
.N > 3. Consequently,

.E

[

1 − N − 3
∑N

i=1(Xi − X)2

]

= 1 − 1
1 + τ2 = τ2/(τ2 + 1) = σ2.

Selected Problems of Chap. 10

10.4 We are interested in the pdf of .Φ(x�β), where .β is distributed according
to the posterior pdf and .x� = [1, 1, 10, 1, 0, 16, 1]. The following Julia script
uses the posterior draws for .β (stored in store_beta) to draw from the
corresponding posterior pdf.

N = size(store_beta)[1];
store_prob = zeros(N);
x = [1 1 10 1 0 16 1];
for loop=1:N
store_prob[loop] = cdf.(Normal(0,1),x*store_beta[loop,:])[1]
end
include("ThetaKDE.jl")
using .ThetaKDE
kde(store_prob,plt=true)

The expected value of the posterior probability is estimated to be 0.324.
A KDE of the posterior probability is plotted in Fig. 13.6.
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Fig. 13.6 A KDE of the
posterior probability that
a subject with certain
characteristics will have an
extramarital affair 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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10.6 (c) .1/(ν − 2).

10.8 First recall that .Qt(β) = − 1
2
∑n

i=1
{

(x�
i β)2 − 2 vi x�

i β
}

+ const. Not-
ing that .(x�

i β)2 = β�xix
�
i β and using the formulas for multivariate differ-

entiation in Appendix B.1, we have ☞ 475

.∇ Qt(β) = −1
2

n∑

i=1

(
2xix

�
i β − 2 vi xi

)
.

Now solve .∇ Qt(β) = 0 for .β to find .
∑n

i=1 xix
�
i β =

∑n
i=1 vi xi.

Selected Problems of Chap. 11

11.3 Note that .T + + T − = n(n + 1)/2 (the sum of all ranks). Hence,

.T = 2T + − n(n + 1)/2.

It follows then from (11.10), that .ET = 2ET + −n(n+1)/2 = 0 and .Var(T ) =
4Var(T +) = n(n + 1)(2n + 1)/6.

11.6 The characteristic function .ψ of a .U[−1, 1] random variable is real-
valued, as the distribution is symmetric around 0. Hence, for .r �= 0:

.ψ(r) =
∫ 1

−1

1
2 cos(rx) dx = sin(x)

x

and for .r = 0, .ψ(r) = 1, trivially. Since .ψ(r) = sinc(r), it follows from
Theorem 11.1. that .κ(x, x′) = sinc(x − x′) is a valid kernel.

11.10 Take an arbitrary collection .{xi}n
i=1 from .X and real numbers .{αi}n

i=1.
Then,
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.

n∑

i=1

n∑

j=1
αi κ(xi, xj) αj =

n∑

i=1

n∑

j=1
αi [κ1(xi, xj)+κ2(xi, xj)] αj

=
n∑

i=1

n∑

j=1
αi κ1(xi, xj) αj +

n∑

i=1

n∑

j=1
αi κ2(xi, xj) αj ≥0,

because .κ1 and .κ2 are kernel functions on .X . Symmetry and finiteness follow
directly from those properties of .κ1 and .κ2.

11.14 We apply Theorem 8.1 with .g taking the role of .β, .Σ0 = K, .β0 = 0,
and .X = In. Thus, .(g | σ2, y) ∼ N(μ, D), with

.D = (σ−2 In + K−1)−1

and
.μ = Dy/σ2.

To verify that the mean vector and covariance matrix are indeed of the form
(11.30), we can use the matrix identity (11.38), which gives

.D = σ2 K (K + σ2 In)−1 = σ2(K + σ2 I)−1 K,

so that indeed
.μ = K (K + σ2 In)−1y.

Moreover, the following shows that .D = K − K(K + σ2 In)−1K:

.

(K − K(K + σ2 In)−1K) D−1

= (K − K(K + σ2 In)−1K) K−1(K + σ2 In) σ−2

= σ−2 K + In − σ−2 K = In.

Selected Problems of Chap. 12

12.1 The lag-1, 2, and 3 autocorrelations are, respectively, 0.830, 0.618, and
0.448.

12.3 Let .ε = [ε1−q, . . . , εT ]� be the vector of error terms, and let .ψ =
[ψ1, . . . , ψq]� denote the vector of MA coefficients. Then we can write the
MA(q) model as

.Y = H ε .

where .H is a .T × (T + q) circulant matrix, where each row vector is rotated
one element to the right relative to the previous row vector. In particular,
the first row is .[ψq, ψq−1, . . . , ψ1, 0, . . . , 0]. Since .ε ∼ N(0, σ2 IT +q), the log-
likelihood function is given by
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.l(ψ, σ2; y) = −T

2 ln(2πσ2) − 1
2 |HH�| − 1

2σ2 y�(HH�)−1y .

12.7 (a) To derive the full conditional distribution, we first write the
ARMA(1,1) as

.y = X� + Hε ,

where .ε = [ε1, . . . , εT ]� ∼ N(0, σ2 IT ), .� = [�0, �1]�,

.X =

⎡

⎢
⎢
⎢
⎣

1 y0
1 y1
...

...
1 yT −1

⎤

⎥
⎥
⎥
⎦

, H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0
ψ 1 0 · · · 0
0 ψ 1 · · · 0
...

. . .
...

0 0 · · · ψ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The likelihood function is given by

.f(y | �, ψ, σ2) = (2πσ2)− T
2 e− 1

2σ2 (y−X�)�(HH�)−1(y−X�) .

Since this has the form of a linear regression model with covariance matrix
.σ2HH�, it follows from Corollary 8.1 that ☞ 246

.(� | y, ψ, σ2) ∼ N(�̂, D�) ,

where

.D� =
(

1
10I + 1

σ2 X�(HH�)−1X
)−1

, �̂ = D�

(
1
σ2 X�(HH�)−1y

)
.

Next, using the likelihood function given above, it can be easily checked that

.(σ2 | y, �, ψ) ∼ InvGamma
(

3 + T

2 , λ

)
,

where .λ = 1 + (y − X�)�(HH�)−1(y − X�)/2.
Lastly, given the uniform prior .ψ ∼ U[−1, 1], the full conditional posterior

distribution for .ψ is simply

.f(ψ | y, �, σ2) ∝ f(y, �, ψ, σ2) ∝ e− 1
2σ2 (y−X�)�(HH�)−1(y−X�)

for .−1 < ψ < 1 and 0 otherwise.

12.9 We first write the two-factor mixed model in matrix form. To that end,
let

.Y = [Y111, Y112, Y113, Y121, Y122, Y123, . . . , Y3,10,1, Y3,10,2, Y3,10,3]�,
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and define .ε accordingly. Also, stack .α = [α1, α2, α3]�, .β = [β1, . . . , β10]�,
and .γ = [γ11, γ12, . . . , γ39, γ3,10]�. Then,

.Y = μ190 + Xαα + Xββ + Xγγ + ε ,

where .Xα = I3 ⊗ 130, .Xβ = 13 ⊗ A, .A = I10 ⊗ 13, .Xγ = I30 ⊗ 13, .⊗ is the
Kronecker product, .1p is a .p × 1 vector of ones, and .Iq is the q-dimensional☞ 117
identity matrix.

Since .Y is an affine transformation of normal random variables, it has
a normal distribution. Its expected value is .EY = μ190, and its covariance
matrix is given by

.Σ = σ2
αXαX�

α + σ2
βXβX�

β + σ2
γXγX�

γ + σ2I90 .

12.11 In deriving the full conditional distributions, we will repeatedly make
use Theorem 8.1. First, the one-factor random effects model can be written☞ 245
as

.Y i = μi1ni
+ εi ,

where .εi = [ε1, . . . , εni
]� ∼ind N(0, σ2Ini

). From this and the assumption
.{μi} ∼iid N(μ, σ2

μ), the random effects .μ1, . . . , μd are conditionally indepen-
dent given .y, .μ, .σ2

μ, and .σ2. In fact, using Theorem 8.1, we have

.(μi | y, μ, σ2
μ, σ2) ind∼ N(μ̂i, Dμi

) ,

where .Dμi
= (1/σ2

μ + ni/σ2)−1 and .μ̂i = Dμi
(μ/σ2

μ + 1�
ni

yi/σ2).
Next, to derive .f(μ | y, μ, σ2

μ, σ2), the relevant distributions are the prior
for .μ and .{μi} ∼iid N(μ, σ2

μ). It is then clear that given .μ and .σ2
μ, .μ is condi-

tionally independent of .y and .σ2. Again, using Theorem 8.1,

.(μ | μ, σ2
μ) ∼ N(μ̂, Dμ) ,

where .Dμ = (1/Vμ + d/σ2
μ)−1 and .μ̂ = Dμ(μ0/Vμ +

∑d
i=1 μi/σ2

μ).
Similarly, .σ2

μ is conditionally independent of .y and .σ2 given .μ and .μ. In
fact, using Theorem 8.1, we have

.(σ2
μ | μ, μ) ∼ InvGamma

(

αμ + d

2 , λμ +
∑d

i=1(μi − μ)2

2

)

.

Finally, following a similar reasoning,

.(σ2 | y, μ) ∼ InvGamma
(

α + n

2 , λ +
∑d

i=1(yi − μi1ni
)�(yi − μi1ni

)
2

)

.
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Selected Problems of Chap. 13

13.3 Recall that the log-density .ln f(y | τ , σ2) is given by

. ln f(y | τ , σ2) = −T

2 ln(2πσ2) − 1
2σ2 (y − τ )�(y − τ ) .

Hence, setting .τ = y, we obtain .ln f(y | τ = y, σ2) = − T
2 ln(2πσ2), which

approaches infinity as .σ2 approaches 0.

13.4 By recursive substitution using the transition equation, we have .τt =
τ1 +

∑t
s=2 us. Hence,

.Var(τt | τ1) = Var
(

t∑

s=2
us

)

=
t∑

s=2
Var(us) = (t − 1)ω2 .

13.5 We first write a Julia function to evaluate the log-likelihood function
via

.l(σ2; y) = ln f(y | τ , σ2) + ln f(τ | ω2) − ln f(τ | y, σ2, ω2) .

Since the equality holds for any .τ , we choose .τ = 0 to reduce the number of
computations involved.

function loglike_UC(sigma2,omega2,omega2_0,y)
T = length(y)
H = sparse(I,T,T) - sparse(2:T,1:(T-1),ones(T-1),T,T)
invOmega = sparse(1:T,1:T, vec([1/omega2_0 1/omega2*ones(1,

T-1)]),T,T)
HinvOmegaH = H'*invOmega*H
K = HinvOmegaH + sparse(I,T,T)/sigma2
tauhat = K\y/sigma2
C = cholesky(Matrix(K)).L # not sparse, so C is triangular
logfy = -T/2*log(2*pi*sigma2) - only(.5/sigma2*(y'*y))
logftau_pri = -T/2*log(2*pi) - .5*log(omega2_0) - (T-1)/2*

log(omega2)
logftau_post = -T/2*log(2*pi) + sum(log.(diag(C))) - only

(.5*tauhat'*K*tauhat)
return logfy + logftau_pri - logftau_post;

end

Note that evaluating the log-density .ln f(τ | y, σ2, ω2) involves the term
.− 1

2 ln |K−1|, where .K = HΩ−1H + IT /σ2. To speed up computation, we use
the fact that if .C is the Cholesky factor of .K such that .K = CC�, then
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. − 1
2 ln |K−1| = 1

2 ln |K| = ln |C| =
∑

i

ln cii ,

where .cii is the i-th diagonal element of .C. The last equality holds because
.C is lower triangular.

Next, in the main script, we build a grid, and use the function loglike_UC
to evaluate the log-likelihood function at every point on the grid. A plot of
.l(σ2; y) is given in Fig. 13.7. The maximum likelihood estimate of .σ2 com-
puted using this grid search is about 4.401, compared to the value 4.405
obtained by the numerical maximization.

Q11_8.jl

using SparseArrays, LinearAlgebra, Distributions
using StatsBase,Plots,DelimitedFiles
y = readdlm("USCPI.csv")
T = length(y)
omega2_0 = 9
# initial condition
omega2 = .5^2
# fix omega2
ngrid = 300
# # of grid points
sigma2grid = range(1,10,length=ngrid)
l = zeros(ngrid)
for i=1:ngrid

l[i] = loglike_UC(sigma2grid[i],omega2,omega2_0,y);
end
plot(sigma2grid,l)
maxl, maxid = findmax(l)
sigma2hat = sigma2grid[maxid]

0 2 4 6 8 10
-750

-700

-650

-600

Fig. 13.7 The log-likelihood function .l(σ2; y) under the unobserved components model

https://people.smp.uq.edu.au/DirkKroese/statbook/


Solutions 437

13.6

(a) First write the model in matrix form: .Hβy = Hβτ + α̃ + ε, where .y =
[y1, . . . , yT ]�, .ε = [ε1, . . . , εT ]�, .α̃ = [βy0, 0, . . . , 0]�, and

.Hβ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0
−β 1 0 · · · 0
0 −β 1 · · · 0
...

. . .
...

0 0 · · · −β 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Since the determinant of .Hβ is 1 for any .β, .Hβ is invertible. Then,
.y = τ + α + H−1

β ε, where .α = H−1
β α̃. In other words,

.(y | y0, τ , β, σ2) ∼ N(τ + α, σ2(H�
β Hβ)−1) ,

and the joint log-density of .y is

. ln f(y | y0, τ , β, σ2) = −T

2 ln(2πσ2)

− 1
2σ2 (y − τ − α)�H�

β Hβ(y − τ − α) .

(b) The derivation of .f(τ | y, y0, β, σ2, ω2) follows closely the discussion in
Sect. 13.1.2. More specifically, since the transition equation is exactly the ☞ 398
same as before, we have

. ln f(τ | ω2) = −T

2 ln(2π) − 1
2 ln ω2

0 − T − 1
2 ln ω2 − 1

2τ �(H�Ω−1H)τ ,

where .H is the usual first difference matrix, .Ω = diag(ω2
0 , ω2, . . . , ω2),

and .ω2
0 = 5. Then, using the expression for .ln f(y | y0, τ , β, σ2) given

above, we “complete the squares” to obtain ☞ 245

.(τ | y, y0, β, σ2, ω2) ∼ N(τ̂ , K−1) ,

where .K = H�Ω−1H + H�
β Hβ/σ2 and .τ̂ = K−1H�

β Hβ(y − α)/σ2.
(c) For classical estimation, we can maximize the log-likelihood function nu-

merically using the method of direct likelihood evaluation described in
Problem 13.5. Since the number of parameters is only two (.β and .σ2),
this approach is computationally feasible.
For Bayesian estimation, if we assume conjugate priors for .β and .σ2,
we can implement a 3-block Gibbs sampler for posterior analysis. The
full conditional distribution for .τ is normal as given above. The full
conditional distributions for .β and .σ2 are normal and inverse-gamma,
respectively, which can be sampled from easily.



Appendix A
Julia Primer

The purpose of this appendix is to give the reader a basic introduction to the
Julia programming language. Julia’s style and syntax are similar to .MATLAB,
R, and Python. As such, Julia provides the same ease of use and flexibility of
these interpreted languages. On the other hand, Julia is a compiled language,
making it almost as fast as C and Fortran.

A.1 Getting Started

Julia can be installed from

https://julialang.org/.

Here you will find full documentation, examples, tools, and more.
Julia comes with an interactive command-line executable, called the REPL

(read-eval-print-loop), which allows for a line-by-line evaluation of Julia state-
ments. Simply click the Julia executable or type julia from a system com-
mand line. For example, entering the following statement in the REPL:

print("Hello World!")

produces the output:

Hello World!

Or we can use the REPL as a calculator (note that .# is used to comment
the code):

© The Author(s), under exclusive license to Springer Science+Business
Media, LLC, part of Springer Nature 2025
J. C. C. Chan, D. P. Kroese, Statistical Modeling and Computation,
Springer Texts in Statistics, https://doi.org/10.1007/978-1-0716-4132-3
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x = 1.234; # the semicolon suppresses output
y = sin(x)*sqrt(x^2)/x

0.9438182093746337

Julia uses the modern software paradigm where a base (i.e., built-in) library
of code can be supplemented by loading additional packages. For example,
the sine function sin is part of the in-built library of functions.

To use a package, two steps need to be taken. First, the package needs
to be installed. Second, to use an installed package in a Julia program, the
package needs to be loaded. The first step only has to be performed once,
as Julia will remember which packages have been installed at any time. The
second step needs to be repeated for every program that wants to use the
particular package. Installing packages can be carried out via Julia’s package
manager, as in

import Pkg
Pkg.add("NameOfPackage")

Table A.1 lists a number of useful Julia packages, some of which are already
built into the base library.

Table A.1 A few useful Julia packages.
Plots Main plotting library
LinearAlgebra Built-in library for linear algebra
IJulia Package to interface with Jupyter notebooks
Random Built-in library for random number generation
Distributions Collection of probability distributions
Statistics Built-in statistics library
StatsBase Basic functionality for statistics
DelimitedFiles Reading and writing delimited files
Downloads Provides download functionality
NaNStatistics Fast statistic with missing data
FFTW Fast Fourier transforms
Optim Optimization package
SparseArrays Functionality for sparse arrays

You can check which additional packages have been installed with

import Pkg
Pkg.status()

Once a package has been installed, it can be included in the code by
preceding the package name with using or import. For example, the following
code uses the built-in random generator to generate a billion random numbers
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and stores them in a vector x. The macro @time reports the run time as well
as the memory storage.

using Random
@time x = rand(10^9);

1.603207 seconds (2 allocations: 7.451 GiB, 15.27% gc time)

A Julia program or script is a collection of statements that can be run by
the julia executable. Its file extension is .jl. A Julia script mycode.jl, say,
can be executed in various ways. One way is to run the Julia executable in a
system shell, as in

julia mycode.jl

It is then important that either Julia is started in the correct working direc-
tory or that the path to the file is specified completely. Another way is to
execute the file from within the REPL, via

include("mycode.jl")

But the most convenient way to develop and execute Julia programs is
to use an integrated development environment such as Visual Studio Code
(VSCode), which can be downloaded from

https://code.visualstudio.com/

After installing the Julia Language Support extension, VSCode will be
able to read and execute Julia programs. The extension also comes with a
debugger. Apart from the main window for the code, the IDE displays the
workspace directory, the REPL window, the system shell, and a plot window.
To execute a region with one or more lines in the code, one can highlight the
region with the mouse and then press Shift-Enter.

Try out the statements in the following Julia file, either by executing them
in the REPL or in VSCode. Running the program via julia first.jl in a
system shell will provide no output, other than the output from the println
and replace functions.

first.jl

i = 1 # assignment
println("i has type ", typeof(i)) # type of i
i, j = 2, 8 # assignment via a tuple
k = j/i # division of (in this case) two integers
typeof(k) # the result, k, is a float!
div(i,j) # integer division

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
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i % j # remainder of integer division
s = "Hello. How are you"
typeof(s) # String
replace(s, "e" => "a", count = 1) # string replacement

u = [1, 2, 3] # vector assignment
typeof(u) # the vector has integer-type elements
w = u .* u # elementwise multiplication
x = u + w # adding two vectors of the same dimension
y = 100 .+ u # constant plus vector. The . is essential!
sin.(u) # elementwise computation of sine function
umat = [1 2 3] # 1x3 matrix is not a vector!
umatT = umat' # transpose is a 3x1 matrix, not the same as u

A = [1 2 3; 4 5 6; 7 8 9] # 3x3 matrix
u[2] # second element of u
A[2,3] # element of A in row 2, column 3
v = A*u # matrix multiplication
w = u'*A # premultiply the matrix A with the transpose

of u
A^2 # square of matrix A
A.^2 # matrix of elementwise squares

A.2 Variables and Their Types

Each variable in Julia is a name associated with a value, and each value
has a type. To find the type of a variable x, use typeof(x). The statement
sizeof(x) returns the size of the value of x; that is the size in bytes of the
object in computer memory to which x refers.

For example, the statement x = 1 creates a integer variable .x, whose value
is 1, with type Int64. Its size is 8 bytes in memory. Similarly, the statement
x = 1.0 creates a float variable .x, whose value is 1.0, with type Float64. Its
size is also 8 bytes in memory. These are the default numerical types (on a
64-bit = 8 bytes) computer.

Types can be abstract or concrete and form a hierarchy. You can find the
supertypes of a type with supertypes and the subtypes with subtypes. At
the top of all types is the abstract type Any. The number hierarchy is headed
by the abstract type Number and lower down the hierarchy are concrete types
such as Int64 and Float64.

For each of the statements below, verify the type and size of the variables.
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typex.jl

x = [1, 2, 3] # same as x = Vector{Int64}([1,2,3])
typeof(x) # 3-element Vector{Int64}
y = Vector{Float64}([1,2,3])
typeof(y) # 3-element Vector{Float64}
A = [1 2 3] # Note the absence of commas!
typeof(A) # 1x3 Matrix{Int64}
b = Vector{Bool}([0,1,1,0]) # 4-element Vector{Bool}
sizeof(b) # 4 bytes
notb = .~ b # elementwise NOT operation
typeof(notb) # 4-element BitVector
tobe = b .| notb # elementwise OR operation
sizeof(tobe) # 8 bytes

Julia is a strongly-typed language, meaning that there are firm restrictions
on mixing different types within a statement. For example, a .1 × n matrix is
not the same as a vector of length n.

x = [1,2,3] # a vector of Int64
A = [1 2 3] # a 1x3 matrix of Int64
z = x + A # gives an error

DimensionMismatch: dimensions must match

However, when applying mathematical operations such as .+ or .∗, the
operands are as a rule converted to a common type. For example, adding a
Int64 variable to a Float64 results in a Float64 variable. In the typex.jl
program above, although b and notb have different types, we can still perform
the elementwise OR operation, as the VectorBool object is converted to a
BitVector object. We can convert the latter it into a VectorBool object via
the collect function:

x = [0.2, 0.6, 0.3, 0.7] . < 0.5 # elementwise comparison
typeof(x) # 4-element BitVector
y = collect(x)
typeof(x) # 4-element Vector{Bool}

Direct conversion between two types can be effected by the function
convert. Below is an example that converts a binary vector in Int64 to
a vector of Bool, thus reducing the size of binary vector by a factor of 8.

x = [1,0,0,1] # 4-element Vector{Int64}
sizeof(x) # 32 bytes
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bx = convert(Vector{Bool},x)
sizeof(bx) # 4 bytes

Composite data types can be created via the Julia structures, consisting of
a collection of field names with (optionally) their types. Here is an example
of a mutable struct object:

mutable struct Person
name :: String
age :: Int
height :: Float64

end

A default way to initialize a struct is to specify the values of the field
names.

p1 = Person("Josh", 39, 1.76)
p2 = Person("Dirk", 60, 1.84)

Some functions will return a struct as their output, so it is important to
understand how to access the field values. This is done via the dot notation, as
is usual in Python and many other languages. For a mutable struct, the field
values can not only be read but also be modified. Removing the mutable
qualifier in the struct definition gives an immutable struct; attempting to
change the field values will give an error message. The function fieldnames
gives the names of the struct.

fieldnames(Person)
println(p1.name) # print the name of person 1
p2.age = 61 # change the age of person 2
println(p2.age)

(:name, :age, :height)
Josh
61

A.3 Vectors, Matrices, and Arrays

Statistical computation often involves the manipulation of vectors and ma-
trices. Julia’s syntax for matrix computation is very similar to .MATLAB’s.
In Julia vectors and matrix are special cases of arrays. A vector is a one-
dimensional array and a matrix a two-dimensional array. For example, to
create a vector .a, enter in the REPL or editor:
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a = [1, 2, 3]

The REPL returns:

3-element Vector{Int64}:
1
2
3

Similarly,

A = [1 2 5; 3 4 7; 6 7 9] # no commas!

creates a .3 × 3 matrix .A. It is worth noting that Julia is case sensitive for
variable names and built-in functions. That means Julia treats .a and .A as
different objects. To display the i-th element in a vector .x, just type x[i].
For example,

a[2]

refers to the second element of .a. Similarly, one can access a particular ele-
ment of .A by specifying its row and column number (row first followed by
column). For instance,

A[2,3]

displays the .(2, 3)-entry of the matrix .A. To display multiple elements in the
matrix, one can use expressions involving colons. For example,

A[1,1:2]

displays the first and second elements in the first row, whereas

A[:,2]

displays all the elements in the second column. The elements of a matrix can
be stacked into a single vector as follows:

v = A[:]
print(v')

[1 3 6 2 4 7 5 7 9]
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To perform numerical computation, one needs some basic matrix opera-
tions. In Julia, the following matrix operations, among several others, are
available:

.+ addition ./ right division

.− subtraction ˆ power

.∗ multiplication .
′ transpose

.\ left division

For example,

a'

1x3 adjoint(::Vector{Int64}) with eltype Int64:
1 2 3

returns the transpose of .a, whereas

a'*A

1x3 adjoint(::Vector{Int64}) with eltype Int64:
30 36 42

gives the product of .a′ and .A.

Other operations are obvious, except for the matrix divisions .\ and ./. If
.A is an invertible square matrix and .a is a compatible vector, then .x = A\a
is the solution of .A x = a and .x = a′/A is the solution of .x A = a′. In
other words, .A\a gives the same result (in principle) as .A−1 a, though they
compute their results in different ways. Specifically, the former solves the
linear system .A x = a for .x by Gaussian elimination, whereas the latter
first computes the inverse .A−1 and then multiplies it by .a. As such, the
second method is in general slower as computing the inverse of a matrix is
time-consuming (and inaccurate).

When using LinearAlgebra, Julia reserves the letter I for a “generic”
identity matrix object of type UniformScaling. The advantage is that this
object has negligible memory requirements. For example, the following com-
putes the inverse of the above matrix .A.

I/A

-6.5 8.5 -3.0
7.5 -10.5 4.0

-1.5 2.5 -1.0
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It is important to note that although addition and subtraction are element-
wise operations, the other operations listed above are not—they are matrix
operations. For example, .A2 gives the square of the matrix .A, not a matrix
whose entries are the squares of those in .A. One can make the operations
.∗, .\, ./, and ˆ to operate element-wise by preceding them by a full stop. For
example, the following returns the square of the matrix .A:

A^2

3x3 Matrix{Int64}:
37 45 64
57 71 106
81 103 160

On the other hand:

A.^2

3x3 Matrix{Int64}:
1 4 25
9 16 49

36 49 81

computes the squares element-wise.
Vectors and matrices are special cases of Julia arrays. The following creates

an .3 × 4 × 2 array .A that is filled with zeros; these are by default of type
Float64. The functions typeof, eltype, ndims, size, and length provide
various properties of an array.

A = zeros(3,4,2)
typeof(A) # type of the array
eltype(A) # type of the elements in the array
ndims(A) # number of dimensions
size(A) # dimensions
length(A) # number of elements

3x4x2 Array{Float64, 3}:
[:, :, 1] =
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

[:, :, 2] =
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

Array{Float64, 3}
Float64
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3
(3, 4, 2)
24

Arrays can be accessed in the same way as vectors and matrices, e.g.,
A[2,1,1] is the (2,1,1)th element of .A, and slice operations such as A[:,:,2]
can also be used. A vector is a one-dimensional array, and a matrix is a two-
dimensional array.

Vectors, matrices, and arrays can be added only if they have the same
dimensions. However, it possible to add a smaller array to a larger one by
the process of broadcasting, which involves elementwise duplication of the
array elements across the smaller dimension to match the larger dimension.
The .+ operator indicates that addition is carried out via broadcasting. The
function reshape can be used to reshape an array into an array with different
dimensions. Finally, vectors and matrices can be horizontally and vertically
concatenated via the hcat and vcat functions. Here are a few examples.

A = [1 2; 3 4]; # matrix (suppress output)
v = [10,20]; # vector (suppress output)
B = v .+ A # adding the vector to the columns of A
C = 1000 .+ A # adding a constant to all elements of A
D = hcat(C,B)
E = vcat(B,C,D')
F = reshape(E,4,4)

2x2 Matrix{Int64}:
11 12
23 24

2x2 Matrix{Int64}:
1001 1002
1003 1004

2x4 Matrix{Int64}:
1001 1002 11 12
1003 1004 23 24

2x8 adjoint(::Matrix{Int64}) with eltype Int64:
11 23 1001 1003 1001 1002 11 12
12 24 1002 1004 1003 1004 23 24

4x4 reshape(adjoint(::Matrix{Int64}), 4, 4) with eltype Int64:
11 1001 1001 11
12 1002 1003 23
23 1003 1002 12
24 1004 1004 24
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An array can have elements of different types. For example, the following
vector has three types of elements.

x = ["string", 1, 1.0]
typeof(x[1])
typeof(x[2])
typeof(x[3])

3-element Vector{Any}:
"string"

1
1.0

String
Int64
Float64

The common type of these elements is the abstract type Any. Finally, note
that vectors are different to tuples (indicated by round brackets) in that tuples
are immutable; that is, they cannot be changed.

x = ("string", 1, 1.0) # same as x = "string", 1, 1.0
typeof(x)
x[1] = "hello"

("string", 1, 1.0)
Tuple{String, Int64, Float64}
MethodError: no method matching setindex!(::Tuple{Int64, ... , ::Int64)

A.4 Functions

Functions make it easier to divide a complex program into simpler parts. To
create a function Julia, the following syntax can be used:

function <function name>(<parameter_list>)
<statements>
return <value> # this may be omitted

end

A shorter way is:

<function name>(<parameter_list>) = <expression>

An expression is any statement that gives a value when executed, such as
in sin(x) + x^2. Thus,
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f(x) = x^2 + 5*x - 10

creates the function with the name f, whose value at x is .f(x) = x2 +5x−10.
An alternative way to define f is

f = x -> x^2 + 5*x - 10

The function name gives a means of invoking the function. The following
evaluates the function for an integer, float, and integer vector argument.

f(10)
f(10.)
f([1,2,3])

140
140.0
MethodError: no method matching ^(::Vector{Int64}, ::Int64)

Note that the function does not know how to evaluate the square of a
vector. We could remedy this by defining the function as

f(x) = x.^2 .+ 5*x .- 10 # note the three dots!

This will take vector and matrix arguments. However, a more elegant ap-
proach is to enforce elementwise operations on the function, i.e., broadcasting,
by using a dot (.) after the function name:

f.([1,2,3]) # vector argument
f.([1 2; 3 4]) # matrix argument

-4
4

14
-4 4
14 26

If the type of function arguments is important, this can be specified in the
function definition, using the ::T syntax, where T is the type. For example:

f(x::Integer) = x^2 + 5*x - 10
f(10) # 140
f(10.) # MethodError: no method matching f(::Float64)

In fact, one of Julia’s strengths is the multiple dispatch mechanism, which
allows many different versions of the same function to be defined for different
types of arguments, similar to function overloading in Python.
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Function names can be passed to other functions as inputs. To create a
function that takes more than one input is just as easy. For example, the
following code takes a column vector of data and computes its mean and
standard deviation:

function stat(x)
n = length(x);
meanx = sum(x)/n;
stdevx = sqrt(sum(x.^2)/n - meanx.^2);
return meanx, stdevx

end

meanx, stdx = stat(randn(100))

(0.038727242782939215, 1.119568688040557)

A function does not make a copy of the values of the names in the pa-
rameter list, but only assigns (binds) new names to these values. This means
that functions can change the value of input arguments! In most cases, we
do not want to change the input argument(s) to a function. When a function
makes changes to the input, it is common to use an exclamation mark (!) at
the end of the function name, as a warning sign. Here is an example:

function change2ndto100!(x)
x[2] = 100

end

y = [1 2 3];
change2ndto100!(y)
print(y)

[1 100 3]

Julia has many in-built functions, and by using packages many more func-
tions become available. Because of the multiple dispatch mechanism, there
may be many different versions, or methods, of the same function. For ex-
ample, without loading any additional packages, the rand function has (cur-
rently) 81 different methods.

rand

rand (generic function with 81 methods)

One can learn more about a specific function, say, rand, by typing ? rand
in the REPL. Here are some useful matrix-building functions. The functions
diag and diagm are part of the LinearAlgebra package.
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zeros create a matrix of zeros
ones create a matrix of ones
diagm create a diagonal matrix from a vector
diag extract the diagonal vector from a matrix
rand generate .U(0, 1) random variables
randn generate .N(0, 1) random variables

Some other useful vector and matrix functions are given below. Note that
exp, sqrt, sin, cos, and log applied to a matrix will yield the corresponding
matrix function, not the element-wise function. For example, exp(A) returns
the matrix

.eA =
∞∑

k=0

Ak

k! .

To obtain the elementwise operations for these functions, remember to use
broadcasting, e.g., exp.(A). The functions det and cholesky require the
LinearAlgebra package.

exp exponential log natural log
sqrt square root abs absolute value
sin sine cos cosine
sum sum prod product
maximum maximum minimum minimum
cholesky Cholesky factorization inv inverse
det determinant size dimensions

If .x is a vector, sum(x) returns the sum of the elements in .x. Likewise,
for a matrix .X, sum(X) returns the sum of all elements. For an .m × n matrix
.X, to obtain the .1 × n matrix consisting of sums of each column, use sum(X,
dims=1) while sum(X,dims=2) returns the .m×1 matrix of sums of each row.
For example:

A = [1 2 5; 3 4 7]
sum(A)
sum(A, dims=1)
sum(A, dims=2)

2x3 Matrix{Int64}:
1 2 5
3 4 7

22

1x3 Matrix{Int64}:
4 6 12

2x1 Matrix{Int64}:
8

14
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The function sum is an example of a function that has a keyword argument
(in this case, dims). Many plotting functions have such keyword arguments. In
general, keyword arguments can be defined via a semicolon in the argument
list. For example, the following function square has a keyword argument
elw which is set to true by default. The function returns the square of a
matrix, unless the elw argument is set to false, in which case the matrix of
elementwise squared values is returned. The function also illustrates the use
of a conditional expression, as in the C language:

<condition> ? <expression1> : <expression2>

function square(A; elw = true)
elw ? A^2 : A.^2 # conditional expression

end
X = [1 2; 3 4]
square(X)
square(X, elw = false) # ; instead of , is allowed

For a positive definite matrix .A, cholesky(A).L returns the (lower)
Cholesky matrix .B such that .BB� = A. Note that cholesky returns a
struct object, which has to be accessed via the dot notation. For example,

using LinearAlgebra
B = [2 0 0; 3 4 0; 5 1 2]
A = B*B';
cholesky(A).L # the L field contains the Cholesky matrix

returns the lower Cholesky factor of .BB�, which is, of course, .B. For some
statistical applications, the current Cholesky implementation gives an error
message for matrices that are ill-conditioned but are nevertheless positive
definite, e.g., covariance matrices with some very small diagonal elements.
For such matrices, the Hermitian nature of the matrix can be enforced via the
function Hermitian, as in cholesky(Hermitian(A)).L. Of course, this stop-
gap solution should be changed in newer implementations of the cholesky
function. Examples are given throughout the book, as in Chaps. 3, 8, 10, 12,
and 13.

A.5 Flow Control

Julia has the usual control flow statements such as if-then-else, while,
and for. For instance, the general form of a simple if statement is
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if <condition1>
<statements>

elseif <condition2>
<statements>

else
<statements>

end

Here, <condition1> and <condition2> are logical conditions that are either
true or false; logical conditions often involve comparison operators (such
as ==, >, <=, !=). In general, there can be more than one elseif part,
or it can be omitted. The else part can also be omitted. For example, the
following code simulate rolling a four-sided die:

u = rand();
if u <= .25

print('1');
elseif u <= .5

print('2');
elseif u <= .75

print('3');
else

print('4');
end

The while loop has the following syntax.

while <condition>
<statements>

end

To illustrate the while loop syntax, suppose we wish to generate a positive
normal random variable (with pdf given in (2.26)). We can do that using☞ 56
the following while loop, wrapped in a function.

function posrand()
u = randn();
while u <= 0

u = randn();
end
return u

end

Unlike a while loop, the for loop executes the statements for a fixed
number of times. The for loop has the following syntax.
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for <variable> in <collection>
<statements>

end

Above, <collection> is any iterable object; that is, an object over which
can be iterated. Typically this is a “range” object, such as start:step:end,
specified by starting value, an optional step size, and an end value. One
can also use the function range to create range objects. Vectors are natural
iterable objects, but note that, in contrast to .MATLAB, a range such as 1:10
is not equal to the vector .[1, . . . , 10]. For one thing, it takes up hardly any
computer memory, as only the start and stop values need to be stored. The
following shows three equivalent ways to create the same iterable object.

r1 = range(start = 0, stop = 1, length =101)
r2 = 0.0:0.01:1.0
r3 = range(start = 0, step = 0.01, stop = 1)
r1 == r2 == r3 # true

As an example, the following code generates five draws from the positive
normal distribution.

x = zeros(5); # create a storage vector
for i in 1:5 # can also write i=1:5

x[i] = posrandn()
end
print(round.(x, digits=4)) # print x, rounded to 4 digits

[0.6404, 0.0033, 0.2557, 1.2712, 2.3754]

For further control in for and while loops, one can use a break statement
to exit the current loop, and the continue statement to continue with the
next iteration of the loop, while abandoning any remaining statements in the
current iteration.

Similar to Python, Julia has a list comprehension syntax:

<expression> for <element> in <collection> if <condition>

This allows arrays to be constructed via embedded for loops. For example,
the following produces the vector of squares of the odd numbers from 1 to
10.

x = [i^2 for i=1:10 if isodd(i)]

When performing loops, speed is important. Consider, for example, the
simulation of a billion uniform random numbers, which we want to store in
a vector .x. The following code is one way to fill the vector .x. Recall that
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the macro @time can be used for timing. In this case we need to wrap the
statements inside a begin-end block.

@time begin
x = zeros(10^9)
for i in 1:10^9

x[i] = rand()
end

end

28.560135 seconds (2.00 G allocations: 37.253 GiB, 1.75% gc time)

We see that the computation takes a long time. However, due to the way
Julia’s compiler works, it is better to put the loop inside a function. In this
case, we refill the vector .x by changing its entries one by one.

function fillrand!(x)
for i in 1:10^9

x[i] = rand()
end

end

@time fillrand!(x)

1.410237 seconds (9.13 k allocations: 578.083 KiB, 0.89% compilation time)

Now it only takes a bit more than 1 second! Of course it is much cleaner
(easier to read) if we create the vector in one go via the rand function, giving
a similar performance:

@time x = rand(10^9)

1.324148 seconds (2 allocations: 7.451 GiB, 0.66% gc time)

A.6 Graphics

Julia has several “back-end” plot facilities. The default module is GR, which
can be accessed via the Plots module. It allows users to create various graph-
ical objects including two- and three-dimensional graphs. One can also have
a title on a graph, add a legend, change the font and font size, label the axis,
etc., by changing the corresponding attributes. A list of plot attributes may
be obtained via plotattr(). See also

https://docs.juliaplots.org

https://docs.juliaplots.org
https://docs.juliaplots.org
https://docs.juliaplots.org
https://docs.juliaplots.org


A.6 Graphics 457

In Julia the most basic function used to create 2D graphs is plot. For
example, to make a graph of .y = sin(x) on the interval from .x = 0 to .x = 2π,
we use the following code, which also shows various plotting attributes, how
to use LATEX strings, and how to save a plot as a pdf file.

using Plots, LaTeXStrings
x = 0:0.01:2*pi
p1 = plot(x,sin.(x), # the . is important! Naming the plot p1

tickfontsize = 15, # axis font size
guidefontsize = 20, # label font size
legend = false, # legend is on by default
grid = false, # grid is on by default
linewidth = 3, # linewidth is 1 by default
tickfont = "Computer Modern", # axis font
color = "salmon" # line color

)
xlabel!(L"x") # using LaTeX font
ylabel!(L"\sin(x)")
savefig(p1,"sin.pdf") # saving the figure

Fig. A.1 A plot of the
graph .y = sin(x) from 0 to
.2π

The graph produced is given in Fig. A.1. Note that the command x =
0:.01:2*pi; creates a iterable grid object of type StepRangeLen that ranges
from 0 to .2π in steps of 0.01. It is important to note that this is not a vector.
As mentioned in the previous section, the function range can also be used to
create range objects, as in range(start=0, stop=2*pi, length=100).

Another useful function is histogram, which allows us to plot histograms.
The following Julia script creates standard normal data of size 10000 and
makes a histogram with 50 bins. Instead of a histogram, it is often more useful
to have a density estimate. The code below uses fast and optimal theta KDE
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of Botev et al. (2010). The corresponding Julia module .ThetaKDE, Plots
which contains the function kde, can be downloaded from the book’s website.
Note that plot! is used to plot the kde and the histogram in the same figure
(see Fig. A.2).

using .ThetaKDE, Plots
data = randn(10000)
histogram(data,bins=50, normalize = true, legend=false)
mindat = minimum(data); maxdat = maximum(data);
h,density,xmesh = kde(data,2^14,mindat,maxdat)
plot!(xmesh[1:2:end],density[1:2:end],linewidth=3)

Fig. A.2 A histogram
of 10000 standard nor-
mal draws and its kernel
density estimate

It is often desirable to plot several graphs in the same figure window. For
this purpose we can use the layout attribute of the plot function.

Suppose we wish to make scatterplots of data from the two-dimensional
standard normal and uniform distributions in the same figure window (see
Fig. A.3). This is accomplished in the code below. The plot attribute
aspectratio ensures that the x and y scaling is equal. The value of the as-
pect ratio variable is in this case :equal, which is a Julia symbol—a unique
identifier. The attributes ms, msw, ma control the size, linewidth, and alpha
value (i.e., transparency) of the marks, respectively. In this case the layout
(1,2) indicates that the figures are to be plotted next to each other. Finally,
size determines the size of the plot window.

x = randn(1000,2) # 2D standard normal data
y = rand(1000,2) # 2D standard uniform data
p3 = scatter(x[:,1],x[:,2], aspectratio = :equal, ms = 5,

msw = 0, ma = 0.3,legend = false)
p4 = scatter(y[:,1],y[:,2], aspectratio = :equal, ms = 5,
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msw = 0, ma= 0.3, legend = false)
p34 = plot(p3,p4,layout = (1,2), size = (600,200))

Fig. A.3 Scatterplots for the two-dimensional standard normal and standard uniform
distributions

In addition, one can also easily produce 3D graphical objects in Julia. To
illustrate various useful routines, suppose we want to plot the density function
of the bivariate normal distribution (see Sect. 3.6) given by ☞ 83

.f(x, y; �) = 1
2π
√

1 − �2
e− 1

2(1−�2)
(x2−2�xy+y2)

.

As in plotting a 2D graph, we first need to build a grid for x and y, which
can be done with the function range. For example, we use the following code
to plot the bivariate normal density function with .� = 0.8 in Fig. A.4.

using Plots
rho = 0.8
x = range(-3, stop=3, length=100)
y = range(-3, stop=3, length=100)
f(x,y) = 1/(2*pi*sqrt(1-rho^2))*exp(-(x^2 -2*rho*x*y + y^2)

/(2*(1-rho^2)))
plt = surface(x, y, f, # surface broadcasts f by default
legend=false,
camera = (75,40) # azimuth and elevation angles
)

By adding the following code, we can even produce an animation that
gradually changes the viewing angle

anim = @animate for i in 0:180
plot!(plt, camera = (i, 40))
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Fig. A.4 The density
function of the bivariate
normal distribution with
.� = 0.6

end
gif(anim, "animsurf.gif", fps = 15)

Also, a contour plot can be obtained by using the function contour:

contour(x,y,f);

The result is shown in Fig. A.5.

Fig. A.5 A contour plot
of the bivariate normal
density function with .� =
0.6
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A.7 Optimization Routines

Julia provides various ways to optimize functions. In this section we discuss
some of them that are used in the main text. Note that, typically, optimiza-
tion routines are framed in terms of minimization. In order to perform max-
imization, some minor changes to the objective function are required. More
precisely, suppose we want to maximize the function .f(x) and find a maxi-
mizer .xmax = argmaxx f(x). Instead of the original maximization problem,
consider minimizing .−f(x) and noting that

.xmax = argmax
x

f(x) = argmin
x

−f(x) .

Hence, without loss of generality, we will focus on minimization routines.
One basic minimization function is optimize from the optimization package
Optim. To illustrate its usage, suppose we wish to minimize the function
.f(x) = sin(x2) over the interval .[0, 3] (see Fig. A.6).

Fig. A.6 A plot of .f(x) =
sin(x2) from 0 to 3

0 1 2 3
-1

-0.5

0

0.5

1

We can define the function in Julia as follows:

f(x) = sin(x^2);

or also as

f = x -> sin(x^2);

To ensure that we only consider arguments in .[0, 3], we could set any
function value outside the interval to a very large value, via
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f(x) = x <= 3 && x >= 0 ? sin(x^2) : 1E50

For scalar arguments, optimize takes three inputs: the function name and
lower and upper bounds of the interval. The minimizer and minimum (i.e.,
minimum value of the function evaluated at the minimizer) can be found as
attributes of the object returned by the function, as illustrated below.

using Optim
f(x) = x < 3 && x > 0 ? sin(x^2) : 1E50
res = optimize(f,0,3)
println("minimum = ", res.minimum, "; minimizer = ",
res.minimizer)

minimum = -1.000000; minimizer = 2.170804

The function optimize can also be used to minimize multivariate func-
tions. However, care should be taken with the choice of the starting point
for the algorithm. As an example, suppose we wish to minimize the peaks
function (from .MATLAB)

.

S(x) = 3 (1 − x1)2 e−x2
1−(x2+1)2 − 10 (x1

5 − x3
1 − x5

2) e−x2
1−x2

2

− 1
3 e−(x1+1)2−x2

2 , [x1, x2] ∈ R
2 ,

with respect to .x = [x1, x2]. A contour plot is given in Fig. A.7.

function S(x)
3*(1-x[1])^2*exp(-x[1]^2 - (x[2]+1)^2) - 10*(x[1]/5-x[1]^3
- x[2]^5)*exp(-x[1]^2-x[2]^2) - 1/3*exp(-(x[1]+1)^2-x[2]^2)

end

x0 = [0.0,0.0]; # starting point
res = optimize(S,x0);
println("minimum = ", res.minimum, "; minimizer = ",
res.minimizer)

minimum = -0.064936; minimizer = [0.296431, 0.320161]

This, however, turns out to yield a local minimum, rather than a global one.
If we instead take the starting point x0 = [0.1,-1], we obtain the global
minimizer and minimum:

minimum = -6.551133; minimizer = [0.228261, -1.625537]
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A simple but powerful alternative is to use the cross-entropy (CE) method
of Rubinstein and Kroese (2004). This is a global optimization function that
uses repeated sampling combined with parameter updating, instead of gra-
dient information. Below is a basic implementation. The function makes use
of the packages LinearAlgebra and Statistics.

function CEmin(f, mu, sigma, N, Nel, tol)
# minimize function f via the CE method
n = length(mu) # dimension

while maximum(sigma) > tol
ds = n == 1 ? sigma : diagm(sigma) # scalars or vectors?
X = randn(N,n)*ds .+ mu' # N rows of n-dim normals
fX = n==1 ? f.(X) : f.(eachrow(X)); # Function values
# sort the samples by their function values
sortfX = sortslices(hcat(X, fX), dims=1, by = x -> x[n

+1])
Elite = sortfX[1:Nel, 1:n]; # smallest (= elite) samples
# update mu and sigma
mu = n == 1 ? mean(Elite) : vec(mean(Elite,dims=1))
sigma = n == 1 ? std(Elite) : vec(std(Elite,dims=1))

end
return f(mu), mu # minimum, minimizer

end

To use the function, specify the starting vector (or value for scalar ar-
guments), a vector of standard deviations (initially chosen large enough to
sample points from a wide region), the number of samples at each iteration,
the number of elite (i.e., best) samples, and a tolerance for stopping.

using LinearAlgebra, Statistics
mu = [0,0]; sigma = 4.0*ones(2);
N = 1000; Nel = 100; tol = 1E-5;
minS, mu = CEmin(S,mu,sigma,N,Nel,tol);
dig = convert(Int64,-log10(tol))
println("minimum = ",minS, digits = dig),
" minimizer = ", round.(mu,digits = dig))

minimum = -6.551130 minimizer = [0.228280, -1.625530]

Figure A.7 illustrates that the correct minimizer for this multimodal func-
tion is found in a few iterations.

Indeed, the same CEmin program can be used to minimize the function f
above.
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Fig. A.7 Contour plot
with the CE minimization
path, starting from the
origin

f(x) = x < 3 && x > 0 ? sin(x^2) : 1E50
minf, mu = CEmin(f,1.0,1.0,100,10,1E-8);
dig = convert(Int64,-log10(tol))
println("minimum = ",round(minf,digits = dig),
" minimizer = ", round.(mu,digits = dig))

minimum = -1.000000 minimizer = 2.170804

A.8 Handling Sparse Matrices

A sparse matrix is simply a matrix that contains a large proportion of
zeros. Computation for sparse matrices can typically be done much faster
than for full matrices. In addition, as most of the elements in a sparse matrix
are zeros, the storage cost of a sparse matrix is also small. In statistics we
often need to deal with large sparse matrices. Thus it is useful to learn how
to employ them in Julia.

The package SparseArrays is necessary for sparse matrix and vector op-
erations, and LinearAlgebra is usually also required. A basic function for
creating sparse matrices is sparse. For example, suppose the matrix

.W =

⎡

⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 3 1

⎤

⎥
⎥
⎦

is stored as a full matrix in Julia. The sparse function converts a full matrix
to sparse form by squeezing out any zero elements.
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using SparseArrays
W = [1 0 0 0 0 ;

0 1 0 0 0
0 0 2 0 0
0 0 0 3 1]

S = sparse(W)

4x5 SparseMatrixCSC{Int64, Int64} with 5 stored entries:
1 . . . .
. 1 . . .
. . 2 . .
. . . 3 1

Notice that only the non-zero elements in .W are stored. To find the indices
and values of the nonzero elements, the function findnz can be used, which
returns a three-tuple of vectors, where the first two vectors identify the indices
and the third vector the values. The function nnz returns the number of
nonzeros of a sparse array.

a = findnz(S)
hcat(a[1], a[2], a[3])
nnz(S)

([1, 2, 3, 4, 4], [1, 2, 3, 4, 5], [1, 1, 2, 3, 1])

1 1 1
2 2 1
3 3 2
4 4 3
4 5 1

5

In general, we can create a sparse matrix .S by the command

S = sparse(i,j,s,m,n)

This uses vectors .i, .j, and .s to generate an .m × n sparse matrix such that
.S(i(k), j(k)) = s(k). For example, to create the matrix .W above, we first
need to build a vector .s that stores all the non-zero elements:

s = [1, 1, 2, 3, 1];

Next, we create a vector .i that stores the row position for each element in
.s. For example, the first element in .s should be in the first row, the second
element in second row, and so on. We then do the same thing for the column
positions and store them in the vector .j:
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i = [1, 2, 3, 4, 4]
j = [1, 2, 3, 4, 5]

To create the .4 × 5 matrix .W above, write

W = sparse(i,j,s,4,5)

The function Array converts a sparse matrix back to dense form. When
using the LinearAlgebra package, the command sparse(I, 100, 100) cre-
ates an n.×n sparse identity matrix. We can accomplish the same goal via

sparse(1:100, 1:100, ones(n))

Another useful function is spdiagm, the sparse version of diagm, which
can be used to create sparse diagonal matrices. To extract the (sparse) main
diagonal from a sparse matrix, use Diagonal; this returns a sparse vector.
Notice the syntax of creating diagonal elements below and above the main
diagonal.

spdiagm(-1 => 1:99, 1 => 1:99) # 100x100 parse matrix with
# entries on the principal sub and sup diagonals

s = Diagonal(S) # yields a sparse vector
spdiagm(ones(10)) # 10x10 sparse identity matrix

As mentioned earlier, one main advantage of working with sparse rather
than full matrices is that computations involving sparse matrices are usually
much quicker. For instance, some methods to simulate a Gaussian random
process on a grid of .400 × 400 pixels, as in Fig. A.8, require a Cholesky de-
composition of a .160000×160000 matrix, which is impossible to store in CPU
memory. However, if each row of the matrix only contains a few nonzero en-
tries, then it is very feasible to compute the Cholesky decomposition quickly;
see also Kroese et al. (2011, Section 5.1).

Finally, it should be noted that, currently, the sparse Cholesky method
in Julia differs from the ordinary (full-matrix) Cholesky method, in that the
sparse method first permutes the rows and columns of the original matrix
for efficient storage and retrieval. In particular, if .A is the sparse matrix of
interest, Julia determines the Cholesky matrix .L such that

.LL� = PAP�,

for some permutation matrix .P—a matrix of 0s and 1s with exactly one
1 in each column and row. Note that such a matrix is orthogonal; that is,
.P� = P−1. Hence, defining .B = P�L, we have the matrix decomposition

.BB� = A.
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Fig. A.8 A Gaussian
spatial process on a .400 ×
400 grid

However, the matrix .B is no longer lower-diagonal! Here is a worked example:

a = [1, 2, 3, 1, 2, 4, 1, 3, 4, 2, 3, 4]
b = [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]
c = [1.0, -0.25, -0.25, -0.25, 1.0, -0.25,

-0.25, 1.0, -0.25, -0.25, -0.25, 1.0]
A = sparse(a,b,c)
R = cholesky(A); # calculate the (sparse) Cholesky matrix
P = sparse(1:4,R.p,ones(4)) # permutation matrix
B = P'*sparse(R.L) # matrix with B*B' = A
isapprox(B*B', A) # true

A.9 Distributions

We have already encountered the functions rand and randn from the base
package to generate uniform and standard normal random variables. The
packages Distributions and Random offer a wide of additional facilities for
probability distributions and random variable simulation. Table A.2 lists
the names of some common distributions available in Distributions. See
Sects. 2.5 and 2.6 for various properties of these distributions.

The following illustrates how these distribution types can be used.

using Random, Distributions, Plots
Random.seed!(1234) # set the random seed (optional)
dist = Poisson(5) # Poisson distribution
mean(dist) # the expectation for this distribution
var(dist) # the variance for this distribution
x = rand(dist,10000) # an iid sample of size 10000
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Table A.2 Names of common distributions in the Distributions package
Name parameters
Bernoulli p
Binomial .n, p
DiscreteUniform .a, b
Geometric p
Poisson .λ

Name parameters
Beta .α, β
Chisq n
Exponential .θ = 1/λ
FDist .m, n
Gamma .α, θ = 1/λ
Normal .μ, σ
TDist n
Uniform .a, b

mean(x) # the sample mean
var(x) # the sample variance
plot(pdf.(dist,0:20), linetype = :scatter,

line = :stem, marker= :circle) # a plot of the pdf

gammalist = [Gamma(i,4) for i in [0.5,1,2,4]]
# 4 different Gamma distributions

mean.(gammalist) # lists of expectations

xmesh = 0:0.01:20
pdfs = [ pdf.(dist, xmesh) for dist in gammalist ];
plot(xmesh, pdfs, ylims=[0,0.5], linewidth=2)

Other useful functions are cdf, quantile, std, and median. Note that the
latter three can be used to compute the exact quantile, standard deviation,
and median of a distribution, as well as calculating approximations thereof
via their sample equivalents.

dist = TDist(4);
cdf(dist,3.0)
quantile(dist,0.95) # exact 95% quantile
std(dist) # exact standard deviation
median(dist) # exact median

x = rand(TDist(4),100);
quantile(x,0.95) # sample 95% quantile
std(x) # sample standard deviation
median(x) # sample median

0.9800290159641406
2.1318467863266495
1.4142135623730951
0.0
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2.4844351992270557
1.3846972965065583
-0.07485935730166166

A.10 Input/Output

Julia treats input and output as a stream: a sequence of data, with a program
adding data to one end of the stream and a device taking data from the other
end. The devices can either be input devices (e.g., a keyboard or a file) or
output devices (e.g., a screen or a file).

The following program writes the prime numbers in the set .{1, . . . , 100}
into the file primes.txt. Note that this file is a binary file, as the num-
bers are written in binary form. To create a human-readable text file, the
number needs to be written to the file as a string. You can try this out by
uncommenting the corresponding lines below.

using Primes # import if not already done so
io = open("primes.txt", "w"); # open the stream for writing
for i in 1:100

if isprime(i) # is the number prime?
write(io,i) # write an Int64 object to the file

# write(io,string(i)*"\n") # write a string + newline
# println(io,i) # same as above

end
end
close(io) # always remember to close the file

To read the file thus created, we basically just reverse the stream, making
sure the correct data type is read.

io = open("primes.txt","r") # open the file for reading
while !eof(io) # while not the end of the file

n = read(io,Int64) # read an Int64 variable
# n = read(io,String) # read a String variable

println(n)
end
close(io)

To write and read CSV (comma separated values) file, one can use the
package DelimitedFiles. Here is an example:
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using DelimitedFiles
y = [0.1, 0.2]
X = [1 2 3; 4 5 6]
A = hcat(y,X)
io = open("mydata.csv","w")
writedlm(io,A, ',') # write A, comma separated
close(io)

A1 = readdlm("mydata.csv",',') # read A back
A == A1 # true
y1 = A[:,1]
X1 = A[:,2:end]

Finally, the following illustrates some dictionary and string operations on
a large text file. A dictionary is a data structure that stores (key,value) pairs
in an efficient way—via a hash-table, similar to an old-fashioned telephone
book. The output of the script is a list of words consisting of at least five
letters that appear at least 250 times in the text file.

io = open("ataleof2cities.txt")
d = Dict() # create a new dictionary
for line in readlines(io)

words = lowercase.(split(strip(line)))
for w in words

w = replace.(w, ['.', ',',';'] => "") # ignore punct.
if !haskey(d,w) # is the word already in the dictionary

?
d[w] = 1 # if not, add it

else
d[w] +=1

end
end

end
close(io)
sortd = sort(collect(d),by=last,rev=true)
for w in sortd

if length(w[1]) >= 5 && w[2] >=250
println(w[1]," ",w[2])

end
end

there 499
which 388
would 335
lorry 320
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their 317
could 280
defarge 265
little 263

A.11 Other Aspects of the Language and Caveats

The previous sections cover most of the elements of the Julia language that
are relevant for this book. However, there are many more language aspects
to discover for the interested reader.

One thing we have not yet discussed is the scoping of variables, i.e., the way
in which variable names are known or unknown within different regions of
the code. Like in most other languages, functions have their own namespace.
That is, any variable defined inside the function is not accessible outside
the function. In general, code in Julia is organized in modules—regions of
code that have their own namespace, and every time a module or package is
loaded, a new namespace is created. The default modules are Main, Core,
and Base. The function varinfo gives a summary of all the variables in
a module. For example, to find the variables in the scope of the REPL,
type varinfo(Main). Likewise, the many variables and functions in the base
module can be viewed with varinfo(Base). As we have no need for user-
defined modules in this book, we will say no more about this topic. Another
feature of Julia that is out of the scope of this book is metaprogramming, i.e.,
writing a program that modifies a Julia program. The only encounter we will
have with metaprogramming is via macros such as @time that measure the
running time of a function or block of code.

We next list a number of caveats of which the reader should be aware,
especially if they are familiar with .MATLAB. Some of the issues have already
been discussed in earlier sections, but it is prudent to emphasize them.

• Like most other computing languages, Julia uses square brackets [ ] to
access arrays, in contrast to .MATLAB, which uses parentheses ( ).

• In Julia, the type of a variable matters, much more than is the case in
.MATLAB. Nevertheless, variables of different types can often be combined
in a natural way. Consider, for example, the following code, where the
variables x, y, and z refer to different types of objects.

x = 1:3 # range object 1:3
y = [1.0,2.0,3.0] # 3-element vector of Float64
z = [1 2 3]' # 3x1 matrix of Int64
x + z # 3x1 matrix of Int64
x + 1 # ERROR



472 A Julia Primer

x + y # 3-element vector of Float64
x .+ 1 # range object 2:4
x/x # 3x3 matrix of Float64
x./x # 3-element vector of 1.0s
A = [1 2 3 ; 4 5 6]# 2x3 matrix of Int64
A*x # 2-element vector of Int64
x + y # 3-element vector of Float64
A*z # 2x1 matrix of Int64

• Elementwise operations on arrays in Julia are generally carried out via
broadcasting, and this needs to be explicitly specified via the dot operator.
For example:

using Plots
x = 1:0.1:3 # range object
y = sin.(x) .- 1 # 21-element Float64 vector
plot(x,y) # plotting y against x

• It is important to realize that assigning a new name to an existing object
does not create another instance of that object. Consider, for example,

x = [1 2 3 4]; # x refers to a matrix object
y = x; # y refers to the SAME matrix object
z = copy(x); # z refers to a NEW matrix object
y[2] = 0; # same as x[2] = 0
z[2] = 0; # now the new object is changed
println(x - y) # x and y still refer to the same
println(x - z)

[0 0 0 0]
[0 2 0 0]

In contrast, in .MATLAB the assignment y = x will automatically create a
new copy of the object to which x refers.

• A main difference with the scoping in .MATLAB is that for and while
loops introduce their own local scope. For example, the following common
construction in .MATLAB gives a warning and error message in Julia:

a = 0;
for i=1:10

a = a + 1
end

Warning: Assignment to `a` in soft scope is ambiguous ...
ERROR: UndefVarError: `a` not defined
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Instead we need to let Julia know that a is a global variable.

a = 0;
for i=1:10

global a = a + 1
end

Another, rather bothersome, issue is that it is not possible to reset or
clear various variables from the workspace. The easiest way to “clear” the
workspace is to restart/delete the REPL.

• Punctuation in Julia is applied in many different ways. For example, a
semicolon (;) at the end of a statement is used to suppress output, but a
semicolon in an argument list of a function indicates a keyword argument.
A colon (:) in front of a name indicates a symbol. For example if f refers
to a function (i.e., a numerical recipe that maps input to output), :f refers
to the symbol/letter f that represents this recipe. This is similar to the
Lisp quote syntax which returns an expression without evaluating it. The
different rules for punctuation are summarized in https://docs.julialang.
org/en/v1/base/punctuation/

• Because Julia uses just in time compilation, first-time compilation or the
“using” of a package or module can be slow. Subsequent running of the
(now compiled) code will be much faster.

• As Julia is still in development (currently version 1.11.1), various scien-
tific computing applications are not as well developed as in more mature
computing platforms. For example, the plotting routines in Julia are still
inferior to .MATLAB’s, especially for 3D plotting. Also the optimization
packages have limited functionality.

• Although Julia has corrected various quirks of other languages (such as the
use of parentheses to access matrices in .MATLAB, and the strange R syntax
for vector/matrix operations), it has itself introduced some idiosyncrasies,
which perhaps may disappear in later versions. An example is the local
scope within for loops and the required use of the global qualifier for
certain global variables within the loop. We also mentioned the different
results that the cholesky method yields when applied to sparse and dense
matrices and use of the function Hermitian to force the method to accept
certain positive definite matrices without throwing a (false) error message.
Here are some more unexpected results:

"hello" * "hello" # * for string concatenation, not +
"hello"^2
10*10^6 # Int64
1e6 # Float64
60^20 # gives a negative integer
80^60 # results in 0

https://docs.julialang.org/en/v1/base/punctuation/
https://docs.julialang.org/en/v1/base/punctuation/
https://docs.julialang.org/en/v1/base/punctuation/
https://docs.julialang.org/en/v1/base/punctuation/
https://docs.julialang.org/en/v1/base/punctuation/
https://docs.julialang.org/en/v1/base/punctuation/
https://docs.julialang.org/en/v1/base/punctuation/
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max(1,2,3) # maximum of 3 arguments
x = [1,2,3]
max(x) # ERROR
maximum(x) # different function name required

"hellohello"
"hellohello"
10000000
1.0e7
-6450068360557232128
0
3
ERROR
3

A.12 Further Reading and References

Recent books that use Julia for statistics and decision-making include Nazarathy
and Klok (2021), Chan (2021), and Kochenderfer et al. (2022). Another useful
resource for learning Julia is

https://juliateachingctu.github.io/Julia-for-Optimization-and-Learning/
stable/

Finally, all programs and (large) data files in this book may be downloaded
from the homepage

https://people.smp.uq.edu.au/DirkKroese/statbook/

To accommodate the users of .MATLAB and R, we have mirrored each Julia
program with its equivalent in .MATLAB and R.
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Appendix B
Mathematical Supplement

B.1 Multivariate Differentiation

For a real-valued multivariate function .f(x1, . . . , xn), the partial derivative
with respect to .xi, denoted .

∂f
∂xi

or simply .∂if , is the derivative taken with
respect to .xi, while all other variables are held constant. The partial derivative
of .∂if with respect to .xj is denoted .

∂2f
∂xi ∂xj

or simply .∂ijf .
Let .f be a multivariate function taking values in .R

m, defined by

.x =

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

�→

⎡

⎢
⎢
⎢
⎣

f1(x)
f2(x)

...
fm(x)

⎤

⎥
⎥
⎥
⎦

= f(x) .

The derivative of .f at .x is defined as the matrix of partial derivatives

.Jf (x) =

⎡

⎢
⎣

∂1f1(x) · · · ∂nf1(x)
... · · ·

...
∂1fm(x) · · · ∂nfm(x)

⎤

⎥
⎦ , (B.1)

and is called the matrix of Jacobi of .f at .x; sometimes written as .
∂f
∂x (x).

Example B.1 (Differentiating a Linear Function). Let .f(x) = Ax for
some .m × n constant matrix .A. Then,

.
∂f(x)

∂x
= A . (B.2)

To see this, let .aij denote the .(i, j)-th element of .A, so that

© The Author(s), under exclusive license to Springer Science+Business
Media, LLC, part of Springer Nature 2025
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Springer Texts in Statistics, https://doi.org/10.1007/978-1-0716-4132-3
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.f(x) = Ax =

⎡

⎢
⎣

∑n
k=1 a1kxk

...∑n
k=1 amkxk

⎤

⎥
⎦ .

To find the .(i, j)-th element of the .m×n Jacobian matrix .Jf , we differentiate
the i-th element of .f with respect to .xj :

.
∂fi(x)

∂xj
= ∂

∂xj

n∑

k=1

aikxk = aij .

In other words, the .(i, j)-th element of .Jf is .aij , the .(i, j)-th element of .A.

For a real-valued multivariate function, that is, .f : Rn → R, the gradient
of f is the transpose of the Jacobian matrix, that is, the column vector

.∇f(x) =

⎡

⎢
⎣

∂1f(x)
...

∂nf(x)

⎤

⎥
⎦ . (B.3)

The derivative of the function .x �→ ∇f(x) is called the Hessian matrix
of f , denoted .Hf (x) or .∇2f(x). In other words, the Hessian is the matrix of
second derivatives:

.∇2f(x) =

⎡

⎢
⎣

∂11f(x) · · · ∂1nf(x)
... · · ·

...
∂n1f(x) · · · ∂nnf(x)

⎤

⎥
⎦ . (B.4)

If the partial derivatives are continuous in a region around .x, then .∂ijf(x) =
∂jif(x) and, hence, the Hessian matrix .Hf (x) is symmetric.

Example B.2 (Differentiating a Quadratic Function). Let .f(x) =
x�Ax for some .n × n constant matrix .A. Then,

.∇f(x) = (A + A�)x . (B.5)

It follows immediately that if .A is symmetric, i.e., .A = A�, then .∇(x�Ax) =
2Ax and .∇2 (x�Ax) = 2A.

To prove (B.5), first observe that the quadratic function .f(x) = x�Ax is
real-valued, and therefore the Jacobian .Jf is a .1×n vector (and its transpose
is the gradient). Specifically,

.f(x) =
n∑

i=1

n∑

j=1
aij xixj ,

and the k-th element of .Jf is obtained by differentiating .f(x) with respect
to .xk:
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.
∂f(x)
∂xk

= ∂

∂xk

n∑

i=1

n∑

j=1
aijxixj =

n∑

j=1
akjxj +

n∑

i=1
aikxi .

The first term on the right-hand side is equal to the k-th element of .Ax,
whereas the second term equals the k-th element of .x�A, or equivalently the
k-th element of .A�x.

Gradients and Hessian matrices feature prominently in multidimensional
Taylor expansions.

Theorem B.1. (Multidimensional Taylor Expansions). Let .X
be an open subset of .R

n and let .a ∈ X . If .f : X → R is a continuously
twice differentiable function with gradient .∇f(x) and Hessian matrix
.Hf (x), then for every .x ∈ X we have the following first- and second-
order Taylor expansions

.f(x) = f(a) + [∇f(a)]� (x − a) + O(‖x − a‖2)

and

.f(x) = f(a)+[∇f(a)]� (x−a)+ 1
2(x−a)� Hf (a) (x−a)+O(‖x−a‖3)

as .‖x − a‖ → 0. By dropping the .O remainder terms, one obtains the
corresponding Taylor approximations.

B.2 Proof of Theorem 2.6 and Corollary 2.2

The proof makes use of two fundamental properties of the expectation .E: ☞ 34
the monotone convergence theorem and the dominated convergence theorem.
The first states that if .X1 ≤ X2 ≤ X3 ≤ . . . is a sequence of positive ran-
dom variables that increases to a random variable X, then the corresponding
expectations .EX1 ≤ EX2 ≤ EX3 . . . converge to .EX. The second theorem
states that the same holds true for any positive sequence .X1, X2, . . . converg-
ing to X, if there exists a Y with .EY < ∞ such that .Xn ≤ Y for all n. An
accessible account of these theorems may be found, for example, in Williams
(1991).

We prove Theorem 2.6 for the case .k = 1 only. Let .G(z) = EzX . Take a
fixed z with .|z| < R and any .r < R such that .r < |z| < R. Let .(hn) be any
sequence converging to 0, such that .|z +hn| < r. By definition, the derivative
of G at z is .limn→∞ ECn, where .Cn = h−1

n [(z + hn)X − zX ]. Observe that

1. .|Cn| is dominated by .X rX−1,
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2. .EXrX−1 < ∞, because the power series .
∑∞

x=0 xzx−1f(x) has again ra-
dius of convergence R,

3. .limn→∞ Cn = XzX−1.

It follows by the dominated convergence theorem that

. lim
n→∞

ECn = E lim
n→∞

Cn = EXzX−1 .

Next, let .(zn) be a sequence of real numbers that is converging to 1, where
.|zn| < 1 for all n. The sequence of random variables .(Yn) defined by .Yn =
X(X − 1) · · · (X − k + 1)zk

n is increasing to .Y = X(X − 1) · · · (X − k + 1).
Hence, by the monotone convergence theorem .limn→∞ EYn = EY . This shows
(2.11). The second statement of the corollary is left as an exercise.

B.3 Proof of Theorem 2.7

If the moment generating function of a random variable X is finite in an open
interval containing 0, then for all .n = 0, 1, . . .,

.EXn = M (n)(0) ,

where .M (n) is the n-th derivative of the MGF M evaluated at 0.

Proof. Let .R > 0 be such that .M(s) < ∞ for all .|s| < R. Choose any
numbers r and s such that .0 < r < R and .|s| < r. Let .(hn) be a sequence
converging to 0 satisfying .|hn| < ε and .|s + hn| < r for some .ε > 0. Let
.Cn = h−1

n [e(s+hn)X − esX ] = esX(ehnX − 1)/hn, which converges to .XesX .
Also, .|Cn| ≤ H(X) def= e(|s|+ε) |X||X|, because .0 ≤ (et − 1)/t ≤ e|t| for all t.
Moreover, because .|s| + ε < r and x grows at a lesser rate than .eax for any
.a > 0, there must exist an .M > 0 such that for all .|x| > M , .H(x) < er|x|. It
follows that

.

EH(X) ≤ EH(X) 1{|X|>M} + EH(X) 1{|X|≤M}

≤ Eer|X| + max
|x|≤M

H(x) < ∞ .

By the dominated convergence theorem, we have .M ′(s) = limn→∞ ECn =
E limn→∞ Cn = E[XesX ]. Finally, take a monotone sequence .(sn) converging
to 0 and apply the monotone convergence theorem to the sequence .(XesnX)
to find .M ′(0) = EX. The proof for higher moments is similar. �
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B.4 Proof of Theorem 3.10

Let .v1, . . . , vn be an orthonormal basis of .R
n such that .v1, . . . , vk spans .Vk

and .v1, . . . , vm spans .Vm. We can write the orthogonal projection matrices
onto .Vj , as .Pj =

∑j
i=1 viv

�
i , .j = k, m, n, where .Vn is defined as .R

n. Note
that .Pn is simply the identity matrix. Let .V = [v1, . . . , vn] and define .Z =
[Z1, . . . , Zn]� = V�X. Recall that any orthogonal transformation such as
.z = V�x is length preserving; that is .‖z‖ = ‖x‖.

To prove the first statement of the theorem, note that .V�Xj = V�PjX =
[Z1, . . . , Zj , 0, . . . , 0]�, .j = k, m. It follows that .V�(Xm − Xk) = [0, . . . , 0,
.Zk+1, . . . , Zm, 0, . . . , 0]� and .V�(X − Xm) = [0, . . . , 0, Zm+1, . . . , Zn]�.
Moreover, being a linear transformation of a normal random vector, .Z is
also normal, with covariance matrix .V�V = I; see also Problem 3.13. In ☞ 95
particular, the .{Zi} are independent. This shows that .Xk, .Xm − Xk and
.X − Xm are independent as well.

Next, observe that .‖Xk‖ = ‖V�Xk‖ = ‖Zk‖, where .Zk = [Z1, . . . , Zk]�.
The latter vector has independent components with variances 1, and its
squared norm has therefore (by definition) a .χ2

k(θ) distribution. The non-
centrality parameter is .θ = ‖EZk‖ = ‖EXk‖ = ‖μk‖, again by the
length-preserving property of orthogonal transformations. This shows that
.‖Xk‖2 ∼ χ2

k(‖μk‖). The distributions of .‖Xm − Xk‖2 and .‖X − Xm‖2

follow by analogy. �

B.5 Proof of Theorem 5.2

First, observe that, by Theorem 5.1, ☞ 135

.
(m − 1)S2

X

σ2 ∼ χ2
m−1 and (n − 1)S2

Y

σ2 ∼ χ2
n−1 .

Because these random variables are independent of each other, their sum,
V say, can be written as the sum of .m + n independent squared standard
normal random variables and has therefore a .χ2

m+n−2 distribution. Thus,

.V =
(m + n − 2)S2

p

σ2 ∼ χ2
m+n−2 .

Second, let

.Z = X − Y − (μX − μY )

σ/
√

1
m + 1

n

.

Then, .Z ∼ N(0, 1) and the square of the pivot T in Theorem 5.2 can be
written as
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.T 2 = Z2

V/(m + n − 2) ,

where Z and V are independent, because .X and .Y are independent of each
other, and are both independent of .S2

X and .S2
Y ; see Theorem 5.1. The random

variable .T 2 is thus the independent quotient of a .χ2
1 and a .χ2

m+n−2 random
variable. Hence, by Theorem 3.11, .T 2 ∼ F(1, m + n − 2). It follows now from☞ 88
Theorem 2.19 (and the fact that the pdf of T is symmetric around 0) that☞ 51
.T ∼ tm+n−2. �
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Index

.∼ distributed as, 28

.E expectation, 30

.
iid∼ independent and identically

distributed as, 66
.1 indicator, 74
.∩ intersection, 7
.P probability, 9
.∝ proportional to, 222
.ϕ standard normal pdf, 46
.Φ standard normal cdf, 46
.∪ union, 7

acceptance–rejection method, 55,
221, 222

affine transformation, 47, 75, 77,
83

Akaike information criterion, 369,
385

alternating direction method of
multipliers, 282

alternative hypothesis, 144
Analysis of Variance (ANOVA),

112, 147, 148, 161
model, 111–115
single-factor, 112, 116, 149
two-factor, 113

autocorrelation, 354
autocovariance, 354, 355

autoregressive moving average,
351, 367

auxiliary mixture sampling, 407
auxiliary variable methods, 189

bag of words method, 267
balanced design, 113
bandwidth, 207
bar, 4
Bayes

empirical, 343
Bayes factor, 144, 257

Savage–Dickey density ratio,
259

Bayes’ rule, 16, 233, 234
Bayesian information criterion,

369, 385
Bayesian network, 251–254
Bayesian statistics, 125, 234, 239
belief net, 252
Bernoulli

distribution, 37
process, 66
regression, 292

beta distribution, 74, 235, 247,
262, 345

beta function, 74
bias, 126, 211
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binomial distribution, 18, 24, 38,
67, 69, 92

normal approximation to, 92
binomial formula, 38
binomial model, 139

two-sample, 103, 140
birthday problem, 15
blocking, 115
bootstrap method, 132, 209,

211
Box–Muller method, 82
burn-in, 220, 355

categorical variable, 111
Cauchy distribution, 50, 72, 94,

170, 210
Cauchy–Schwartz inequality, 95,

177
ceil, 21
central limit theorem, 90, 133

for random vectors, 92
characteristic function, 36
chi-squared distribution, 48, 86,

89, 96, 135, 138
coefficient of determination, 161
coefficient profiles, 283
coin tossing, 3, 7, 17, 24, 38, 39,

66, 125, 234
combined multiple-recursive

generator, 52
complete-data likelihood, 189
completing the squares, 245, 437
concentration matrix, 372
conditional

expectation, 78
pdf, 72
probability, 12–18

confidence
set, 181

confidence interval, 132, 181,
212

approximate, 132
approximate – for p (binomial

distribution), 139

approximate – for p (two-
sample, binomial distribu-
tion), 140

Bayesian, 132, 235
bootstrap, 212
for .μX − μY (two-sample

normal distribution), 138,
162

for .σ2 (normal distribution),
136

for .σ2
X/σ2

Y (two-sample normal
distribution), 138

conjugate family, 255
consistent estimator, 182
convex

function, 288
convex function, 33
correlation coefficient, 76, 85, 95,

128
sample, 129, 161

counting problems, 19
covariance, 76

function, 339
matrix, 77, 77, 79, 83, 84, 86,

92, 174, 312, 370, 372, 374
method, 355

covariate, 105
coverage probability, 132
Cramér–Rao inequality, 177
credible interval, 132, 235
cross-validation, 151

K-fold, 152
leave-one-out, 153
linear model, 153

cumsum, 4, 55
cumulative distribution function

(cdf), 25, 29
joint, 63

data
reduction, 155
transformation, 110

data augmentation, 305
De Morgan’s rules, 8, 18
delta method, 92, 214
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dependent variable, 105
derivatives

multidimensional, 475
partial, 475

design matrix, 118, 129, 131, 153,
179, 243, 274, 291, 356, 368,
380

detailed balance equations, 220,
221

digamma function, 198
directed acyclic graph, 251
Dirichlet distribution, 247
discrete joint pdf, 65
discrete random variable, 111
disjoint events, 7, 9
distribution

Bernoulli, 37
beta, 74, 235, 247, 262, 345
binomial, 38, 67, 69, 92
Cauchy, 50, 72, 94, 170, 210
chi-squared, 48, 86, 89, 96, 135,

138
continuous joint, 70, 73
Dirichlet, 247
discrete joint, 64–69
discrete uniform, 59
double exponential, 196, 280
exponential, 44, 94
exponential family, 157, 172,

179, 292
F , 49, 51, 89, 138
gamma, 48, 49, 238, 248
Gaussian, see normal
geometric, 39
inverse-gamma, 240, 381, 399,

403, 409
Laplace, 280
logistic, 59
mixed joint, 74
mixture, 193, 207, 227
multinomial, 68, 191, 227, 246
multivariate normal, 83, 106,

371
multivariate Student’s t, 297,

312

noncentral .χ2, 88
normal, 45, 57, 82, 83
Poisson, 34, 41
positive normal, 56, 71, 454
Student’s t, 50, 89, 135, 137
truncated normal, 306, 312
uniform, 43, 195
Weibull, 61, 196, 205

dominated convergence theorem,
478

double exponential distribution,
196, 280

drawing with or without replace-
ment, 19

efficient score, 173
erf, 60
EM-algorithm, 189, 306, 393
empirical

Bayes, 343
empirical cdf, 202, 209

reduced, 205
ergodic Markov chain, 218
error terms, 179
estimate, 126
estimator, 126

bias, 126
unbiased, 126

event, 6
elementary, 10

expectation, 31, 30–33
conditional, 78
for joint distributions, 75
function, 339
properties, 33, 75
vector, 77, 79, 83

explanatory variable, 105
exponential distribution, 44,

94
exponential family, 157, 172, 179,

292
conjugate prior, 255–257
information matrix, 176
natural, 157

exponential model, 109
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factor level, 111
factorial experiment, 111
factorization theorem, 156
F distribution, 49, 51, 89, 138
findall, 55
Fisher information matrix, 174

observed, 295
Fisher’s scoring method, 187,

310
frequentist statistics, 125
full rank matrix, 130
function

convex –, 288
functions of random variables, 78

Galton, Francis, 104
gamma distribution, 48, 49, 238,

248
gamma function, 48, 49, 74, 198,

200
Gaussian distribution, see normal

distribution
generalized likelihood ratio, 184
generalized linear model, 291
geometric distribution, 18, 39
geometric sum, 40
Gibbs sampler, 225–226, 231,

232, 236, 238, 240–242,
265, 307, 380–384, 398–400,
402–406, 409–414

global balance equations, 219
goodness of fit test, 227
gradient, 476
grid search, 199

Hessian matrix, 175, 183, 187,
189, 476

hierarchical model, 235, 398
hyperparameter, 252
hypothesis testing, 143–201

improper prior, 242
independence

of events, 17
of random variables, 65, 66, 71,

75

independence sampler, 222
independent and identically

distributed (iid), 66, 71, 90,
101–104, 133

independent variable, 105
indicator, 57, 74
initial distribution, 216
integrated moving average, 365
interval estimate, see confidence

interval, 181
inverse-gamma distribution, 240,

381, 399, 403, 409
inverse-transform method, 53, 71,

205, 209
discrete, 54

irreducible, 220

Jacobian matrix, see matrix of
Jacobi

Jensen’s inequality, 33, 199
joint

cdf, 64
distribution, 63, 79

joint pdf, 70
for dependent random variables,

67
jointly normal distribution,

see multivariate normal
distribution

Kalman filter, 391
kernel density estimation,

207–209, 215, 223, 238
Kolmogorov–Smirnov statistic,

205, 228
Kronecker product, 117, 378, 379,

381, 434
Kullback–Leibler divergence, 120,

199

Langevin Metropolis–Hastings
sampler, 231

Laplace distribution, 280
lasso (regression), 281
latent variable methods, see

auxiliary variable methods
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law of large numbers, 90, 134
law of total probability, 16
least-squares method, 129–131,

229
likelihood, 127, 167, 180

Bayesian, 234
binomial, 167
complete-data, 189
concentrated, 360
normal, 168
optimization, 189
profile, 195, 360, 368

limiting pdf, 219
linear model, 179
linear regression model, 108
linear transformation, 79
local balance equations, see

detailed balance equations
location family, 176, 188
log-likelihood, 171
logistic distribution, 59, 293
logistic model, 109
logistic regression, 293
logit model, 293

marginal effect, 301
marginal likelihood, 257
marginal pdf, 65, 71, 86, 236, 247,

263
Markov

property, 216
Markov chain, 216–220, 224, 225,

265, 389
ergodic, 218
reversible, 219

Markov chain Monte Carlo,
216–226, 301, 302, 355

matrix
covariance, 77, 84, 86, 92, 174,

312, 370, 372, 374
matrix of Jacobi, 81, 248, 263,

311, 475
maximum likelihood estimation,

180

maximum likelihood estimator,
178–186, 189

mean square error, 159, 211
measurement equation, 389
median, 228

sample, 210
memoryless property, 40, 44, 58
method of moments, 127, 128
Metropolis–Hastings algorithm,

220–225
minimum, 55
mixture distribution, 193, 207,

227
mixture model, 193–194
mode, 178, 235
model

Analysis of Variance (ANOVA),
111–115

autoregressive moving average,
351, 367

binomial, 103, 139
exponential, 109
hierarchical Bayesian model,

235, 398
linear regression, 108
logistic, 109
matrix, 115
multinomial, 246
multiple linear regression, 107,

116
nested, 259
normal linear, 88, 115–118, 129,

141, 147, 153, 161, 243
power law, 109
probability, 10, 125
randomized block design, 148
regression, 104–111
response surface, 109
selection, 114, 147, 151, 257,

352
simple linear regression, 106,

116, 131, 142
single-factor ANOVA, 112, 149
state space, 389
stochastic volatility, 406–414
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time-varying parameter
autoregressive, 400–406

two-factor ANOVA, 113
unobserved components,

391–400
Weibull, 109
zero inflated Poisson, 265

moment, 33
sample-, 127

moment generating function
(MGF), 35, 86, 91, 96

Monte Carlo
integration, 134
sampling, 201–232

Monty Hall problem, 13
moving average, 353, 362

integrated, 365
multinomial distribution, 68, 191,

227, 246
multinomial model

Bayesian, 246
multiple linear regression, 107,

116
multivariate normal distribution,

83, 83–89, 95, 106, 371

natural exponential family, 157
neighborhood structure, 231
nested model, 259
Newton’s binomial formula, 38
Newton–Raphson method, 186
noncentral .χ2 distribution, 88
nonlinear regression, 109, 195, 229
normal distribution, 45, 57, 82,

83
generating from, 82
positive, 56, 71, 454

normal equations, 130
normal linear model, 88, 115–118,

129, 141, 147, 153, 161, 292
Bayesian, 243

normal model
two-sample, 104, 112, 137

nuisance factor, 115
null hypothesis, 144

observed information matrix, 295
orthogonal matrix, 95
overfitting, 276

p-value, 144, 201
partial derivative, 475
partition, 15
Pearson’s height data, 105
pivot variable, 132
plot, 4
Poisson distribution, 34, 41
Poisson regression, 309
polynomial regression, 108
pooled sample variance, 137
positive definite matrix, 84
positive normal distribution, 56,

71, 454
positive semidefinite matrix, 77
posterior

mean, 235
mode, 235

posterior pdf, 125
asymptotic normality, 254

power law model, 109
precision matrix, 372
predicted residual, 153
predictive mean, 342
predictive pdf, 267
predictor, 105
prior pdf, 234, 255

improper, 242
uninformative, 240

probability, 3, 5, 9–11
probability density function (pdf)

discrete joint, 65
conditional, 67
continuous, 28
discrete, 27

probability distribution, 25
continuous, 28
discrete, 27

probability generating function
(PGF), 34

probability model, 10, 125
probit model, 300
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product rule, 14, 67, 72, 216, 235,
251

profile likelihood, 195, 360, 368
projection matrix, 96, 130, 153
pseudo-inverse, 130, 245

quad.m, 60
quotient of independent random

variables, 71

radius of convergence, 34
rand.m, 71
rand, 4
randn, 57
random

experiment, 3, 5, 10
number generator, 52
vector, 79

random variable, 23
continuous, 25, 28
discrete, 25, 111
functions of, 78
quotient of, 71
range, 25

random vector, 63
transformation, 81

random walk sampler, 223
randomized block design, 148
range

of a random variable, 25
rank, 130
ratio estimator, 93, 213
reduction of data, 155
regression

line, 106
model, 104–111
multiple linear, 106
nonlinear, 109, 195, 229
polynomial, 108
simple linear, 105–106, 108,

212
regularization, 274

paths, 283
reliability, 8
repeated conditioning, 78
replacement

drawing with or without —,
19

resampling, 209, 211
residuals, 130, 153, 352
response surface model, 109
response variable, 105
reversibility, 219
ridge regression, 273
.R2, see coefficient of determina-

tion

sample
correlation coefficient, 128,

129, 161
mean, 126, 127, 128
median, 210
standard deviation, 128
variance, 127, 128, 212

pooled, 137
sample space, 5

continuous, 11
discrete, 10

Savage–Dickey density ratio,
259

score
efficient, 173
function, 171, 173
interval, 181, 181

seed, 52
significance level, 144
simple linear regression, 105–106,

116, 131, 142
sort, 21
sortperm, 21
sparse matrix, 359, 363, 371, 395,

464
spline, 330, 333
spreadsheet, 117
standard deviation, 33

sample, 128
standard normal distribution,

46
state space model, 389

initial condition, 392
stationarity, 353, 355
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statistic, 126, 144
sufficient, see sufficient statistic

statistical model, 102
statistical test

goodness of fit, 227
steps for, 133, 145

statistics, 3, 5
Bayesian, 125
frequentist, 125

stochastic volatility model,
406–414

Student’s t distribution, 50, 89,
135, 137, 292

multivariate, 297, 312
sufficient statistic, 155, 156, 157,

159, 195
sum rule, 9, 10, 16, 26, 27, 64, 65

target distribution, 216
Taylor’s theorem, 91

multidimensional, 93, 108, 182,
183, 186, 187, 477

test
loss, 121
sample, 121

test statistic, 144
time series, 351–370, 389–414
time-varying parameter autore-

gressive model, 400–406

transformation
of data, 110

transformation rule, 79, 81, 248
transition

density, 216
equation, 389
graph, 217

trimmed mean, 228
truncated normal distribution,

306, 312
two-sample

binomial model, 103, 140
normal model, 104, 112, 137

unbiased estimator, 126
uniform distribution, 43, 195

discrete, 59
unobserved components model,

391–400

variance, 33
properties, 33, 35, 36, 76, 77, 94
sample, 127, 128, 212

Weibull
distribution, 61, 196, 205
model, 109

zero inflated Poisson, 265
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