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Preface

Statistics provides one of the few principled means to extract information
from random data, and has perhaps more interdisciplinary connections than
any other field of science. However, for a beginning student of statistics the
abundance of mathematical concepts, statistical philosophies, and numerical
techniques can seem overwhelming. The purpose of this book is to provide a
comprehensive and accessible introduction to modern statistics, illuminating
its many facets, both from a classical (frequentist) and Bayesian point of
view. The book offers an integrated treatment of mathematical statistics and
modern statistical computation.

The book is aimed at beginning students of statistics and practitioners
who would like to fully understand the theory and key numerical techniques
of statistics. It is based on a progression of undergraduate statistics courses
at the University of Queensland, the Australian National University, and
Purdue University. Emphasis is laid on the mathematical and computational
aspects of statistics. No prior knowledge of statistics is required, but we as-
sume that the reader has a basic knowledge of mathematics, which forms an
essential basis for the development of the statistical theory. Starting from
scratch, the book gradually builds up to an advanced undergraduate level,
providing a solid basis for possible postgraduate research. Throughout the
text we illustrate the theory by providing working code, rather than relying
on black-box statistical packages. Because not all readers will have access to
MaTLAB, we have switched in this Second Edition to the Julia programming
language, which is freely available and is very close in syntax to MATLAB. In
addition, being a compiled language, Julia is computationally significantly
faster than R. We make frequent use of the symbol = in the margin to facili-
tate cross-referencing between related pages. The book is accompanied by the
website https://people.smp.uqg.edu.au/DirkKroese/statbook/ from which the
Julia code and data files can be downloaded. In addition, we provide MATLAB
and R versions for each Julia program.

The book is structured into three parts. In Part I we introduce the fun-
damentals of probability theory. We discuss models for random experiments,
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viii Preface

conditional probability and independence, random variables, and probability
distributions. Moreover, we explain how to carry out random experiments on
a computer.

In Part IT we introduce the general framework for statistical modeling and
inference, both from a frequentist and Bayesian perspective. We discuss a
variety of common models for data, such as independent random samples,
linear regression, and ANOVA models. In this Second Edition we expanded
the modeling framework by adding a section on statistical learning. We dis-
cuss the difference between supervised and unsupervised learning, explain
training and test loss, and examine prediction accuracy in terms of approxi-
mation and statistical error.

Once a model for the data is determined one can carry out a mathematical
analysis of the model on the basis of the available data. We discuss a wide
range of concepts and techniques for statistical inference, including likelihood-
based estimation and hypothesis testing, sufficiency, confidence intervals, and
kernel density estimation. We encompass both frequentist and Bayesian ap-
proaches, and also highlight popular Monte Carlo sampling techniques.

In Part III we address the statistical analysis and computation of a vari-
ety of advanced models, such as generalized linear models, autoregressive and
moving average models, Gaussian models, and state space models. This Sec-
ond Edition features two completely new chapters. The first is on shrinkage
estimators and regularization techniques, which include ridge and lasso re-
gression, as well as multiple hypothesis testing. The second new chapter is on
nonparametric models. This features nonparametric statistical tests, kernel
functions, regression and smoothing splines, and Gaussian process regression.
Particular attention is paid to fast numerical techniques for frequentist and
Bayesian inference on these models. Throughout the book our leading prin-
ciple is that the mathematical formulation of a statistical model goes hand
in hand with the specification of its simulation counterpart.

The book contains a large number of illustrative examples and problem
sets (with solutions). To keep the book fully self-contained, we include the
more technical proofs and mathematical theory in an appendix. To facilitate
the use of Julia we have added a concise introduction to the Julia computing
language.

Brisbane, QLD, Australia Dirk P. Kroese
West Lafayette, IN, USA Joshua C. C. Chan
June 11, 2024
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Mathematical Notation

Throughout this book we use notation in which different fonts and letter
cases signify different types of mathematical objects. For example, vectors
a,b,x,... are written in lowercase slanted boldface font, and matrices A, B,
X in uppercase upright boldface font. Euler script fonts N and U are used for
the normal and uniform distributions, and sans serif fonts for other probabil-
ity distributions, such as Exp, Gamma and Bin. Probability and expectation
symbols are written in black board bold font: P and E, as well as the identity
matrix I. Julia code will always be written in typewriter font.
Traditionally, frequentist and Bayesian statistics use a different notation
system for random variables and their probability density functions. In fre-
quentist statistics and probability theory random variables usually are de-

noted by uppercase letters X,Y, Z,..., and their outcomes by lower case
letters x,y, 2, . ... Similarly, for multivariate random variables (i.e., random
vectors), we use the notation X,Y, Z, ..., with outcomes @, y, z, . . .. Observe

the notational distinction between a random vector X and a matrix X.

Bayesian statisticians typically use lower case letters for both the random
variable/vector and its outcome. More importantly, in the Bayesian notation
system it is common to use the same letter f (or p) for different probability
densities, as in f(z,y) = f(x)f(y). Frequentist statisticians and probabilists
would prefer a different symbol for each function, as in f(x,y) = fx(z)fy (y).
We will predominantly use the frequentist notation, especially in the first part
of the book. However, when dealing with Bayesian models and inference, such
as in Chaps. 8 and 13, it will be convenient to switch to the Bayesian notation
system. Here is a list of frequently used symbols:

is approximately
is proportional to
infinity

Kronecker product

g ® 8 R «

is defined as

i

is distributed as

xix



XX

iid
~, ~iid

approx.
~

H
AUB
ANB
AC
ACB
0

||
Vf
V2 f
AT T
diag(a)
tr(A)
det(A)
|A|

argmax

Q

R

Ry
Bn

0
x,y
XY
z

Mathematical Notation

are independent and identically distributed as

is approximately distributed as

maps to

union of sets A and B

intersection of sets A and B

complement of set A

A is a subset of or is equal to B

empty set

Euclidean norm of vector x

gradient of f

Hessian of f

transpose of matrix A or vector

diagonal matrix with diagonal entries defined by a

trace of matrix A

determinant of matrix A

absolute value of the determinant of matrix A. Also, |4| is the
number of elements in set A, and |a| the absolute value of real
number a

argmax f(x) is a value a* for which f(x*) > f(z) for all
differential symbol

expectation

Euler’s constant lim,,_,o.(1 +1/n)" = 2.71828. ..

the square root of —1
indicator function: equal to 1 if the condition/event A holds, and

0 otherwise.

identity matrix

(natural) logarithm

set of natural numbers {0, 1,...}

pdf of the standard normal distribution

cdf of the standard normal distribution

probability measure

big-O order symbol: f(z) = O(g(x)) if |f(z)| < ag(x) for some
constant v as ¢ — a

little-o order symbol: f(x) = o(g(z)) if f(x)/g(z) > 0asz —a
the real line = one-dimensional Euclidean space

positive real line: [0, c0)

n-dimensional Euclidean space

estimate/estimator

vectors

random vectors

set of integers {...,—1,0,1,...}

Probability Distributions

Ber
Beta

Bernoulli distribution
beta distribution
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Bin
Cauchy

X2

Dirichlet
DU

Exp

F
Gamma
Geom
InvGamma
Mnom
N

Poi

t

TN

u

Weib

binomial distribution

Cauchy distribution
chi-squared distribution
Dirichlet distribution

discrete uniform distribution
exponential distribution

F' distribution

gamma distribution
geometric distribution
inverse-gamma distribution
multinomial distribution
normal or Gaussian distribution
Poisson distribution
Student’s ¢ distribution
truncated normal distribution
uniform distribution

Weibull distribution



Part 1
Fundamentals of Probability

In Part I of the book, we consider the probability side of statistics. In particu-
lar, we will consider how random experiments can be modeled mathematically
and how such modeling enables us to compute various properties of interest
for those experiments.
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Chapter 1
Probability Models

1.1 Random Experiments

The basic notion in probability is that of a random experiment: an ex-
periment whose outcome cannot be determined in advance, but which is
nevertheless subject to analysis. Examples of random experiments are:

1. Tossing a die and observing its face value

2. Measuring the amount of monthly rainfall in a certain location

3. Counting the number of calls arriving at a telephone exchange during a
fixed time period

4. Selecting at random 50 people and observing the number of left-handers

5. Choosing at random ten people and measuring their heights

The goal of probability is to understand the behavior of random experi-
ments by analyzing the corresponding mathematical models. Given a math-
ematical model for a random experiment one can calculate quantities of in-
terest such as probabilities and expectations. Moreover, such mathematical
models can typically be implemented on a computer, so that it becomes pos-
sible to simulate the experiment. Conversely, any computer implementation
of a random experiment implicitly defines a mathematical model. Mathemat-
ical models for random experiments are also the basis of statistics, where the
objective is to infer which of several competing models best fits the observed
data. This often involves the estimation of model parameters from the data.

Example 1.1 (Coin Tossing). One of the most fundamental random ex-
periments is the one where a coin is tossed a number of times. Indeed, much
of probability theory can be based on this simple experiment. To better un-
derstand how this coin toss experiment behaves, we can carry it out on a
computer, using programs such as Julia. The following simple Julia program

© The Author(s), under exclusive license to Springer Science+Business 3
Media, LLC, part of Springer Nature 2025

J. C. C. Chan, D. P. Kroese, Statistical Modeling and Computation,

Springer Texts in Statistics, https://doi.org/10.1007/978-1-0716-4132-3 1
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simulates a sequence of 100 tosses with a fair coin (i.e., Heads and Tails are
equally likely) and plots the results in a bar chart.

x = rand(100) .< 0.5 # generate a vector of coin tosses

t = 1:100 # range of times

using Plots # load the plotting library
bar(t,x,1egend=false,color=:darkb1ue) # plot as a bar chart

The function rand draws uniform random numbers from the interval
[0, 1]—in this case a 100-element vector of such numbers. By testing whether
the uniform numbers are less than 0.5, we obtain a vector x of logicals (true
or false), indicating, say, Heads and Tails. Typical outcomes for three such
experiments are given in Fig. 1.1.

1 50 100

Fig. 1.1 Three experiments where a fair coin is tossed 100 times. The dark bars indicate
when “Heads” (=1) appears

We can also plot the average number of Heads against the number of
tosses. In the same Julia program, this is accomplished by adding two lines
of code:

y = cumsum(x)./t # average number of Heads
plot(t,y) # plot the result in a line graph

The result of three such experiments is depicted in Fig.1.2. Notice that
the average number of Heads seems to converge to 0.5, but there is a lot of
random fluctuation.
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Fig. 1.2 The average number of Heads in n tosses, where n = 1,...,100

Similar results can be obtained for the case where the coin is biased, with
a probability of, say, Heads of p. Here are some typical probability questions.

e What is the probability of z Heads in 100 tosses?

e What is the expected number of Heads?

o How long does one have to wait until the first Head is tossed?
e How fast does the average number of Heads converge to p?

A statistical analysis would start from observed data of the experiment—for
example, all the outcomes of 100 tosses are known. Suppose the probability
of Heads p is not known. Typical statistics questions are:

e Is the coin fair?
e How can p be best estimated from the data?
o How accurate/reliable would such an estimate be?

The mathematical models that are used to describe random experiments
consist of three building blocks: a sample space, a set of events, and a proba-
bility. We will now describe each of these objects.

1.2 Sample Space

Although we cannot predict the outcome of a random experiment with cer-
tainty, we usually can specify a set of possible outcomes. This gives the first
ingredient in our model for a random experiment.

Definition 1.1. (Sample Space). The sample space {2 of a random
experiment is the set of all possible outcomes of the experiment.
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Examples of random experiments with their sample spaces are:

1. Cast two dice consecutively and observe their face values.
2={(1,1),(1,2),...,(1,6),(2,1),...,(6,6)} .
2. Measure the lifetime of a machine in days.
2 =R, = { positive real numbers }.

3. Count the number of arriving calls at an exchange during a specified time
interval.
2={0,1,...}.

4. Measure the heights of ten people.
2 ={(z1,...,210) 17, > 0,i=1,...,10} =R’ .

Here (z1,...,x10) represents the outcome that the height of the first
selected person is x1, the height of the second person is x2, and so on.

Notice that for modeling purposes it is often easier to take the sample
space larger than is strictly necessary. For example, the actual lifetime of
a machine would in reality not span the entire positive real axis, and the
heights of the 10 selected people would not exceed 9 feet.

1.3 Events

Often we are not interested in a single outcome but in whether or not one of
a group of outcomes occurs.

Definition 1.2. (Event). An event is a subset of the sample space 2
to which a probability can be assigned.

Events will be denoted by capital letters A, B,C,... . We say that event
A occurs if the outcome of the experiment is one of the elements in A.
Examples of events are:

1. The event that the sum of two dice is 10 or more:

A= {(47 6)’ (57 5)’ (57 6)’ (6a 4)7 (6a 5)7 (6> 6)} .
2. The event that a machine is functioning for less than 1000 days:

A = [0,1000) .
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3. The event that out of a group of 50 people 5 are left-handed:

A={5}.

Example 1.2 (Coin Tossing). Suppose that a coin is tossed three times,
and that we record either Heads or Tails at every toss. The sample space can
then be written as

2 = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT},

where, for instance, HTH means that the first toss is Heads, the second Tails,
and the third Heads. An alternative (but equivalent) sample space is the set
{0, 1}? of binary vectors of length 3; for example, HTH corresponds to (1,0,1)
and THH to (0,1,1).

The event A that the third toss is Heads is

A = {HHH, HTH, THH, TTH} .

Since events are sets, we can apply the usual set operations to them, as
illustrated in the Venn diagrams in Fig. 1.3.

1. The set AN B (A intersection B) is the event that A and B both occur.
2. The set AU B (A union B) is the event that A or B or both occur.

3. The event A° (A complement) is the event that A does not occur.

4. If BC A (B is a subset of A) then event B is said to imply event A.

ANB AuUB A¢ BcCA

Fig. 1.3 Venn diagrams of set operations. Each square represents the sample space {2

Two events A and B which have no outcomes in common, that is, ANB = ()
(empty set), are called disjoint events.

Example 1.3 (Casting Two Dice). Suppose we cast two dice consecu-
tively. The sample space is given by 2 = {(1,1),(1,2),...,(1,6),(2,1),...,
(6,6)}. Let A={(6,1),...,(6,6)} be the event that the first die is 6, and
let B={(1,6),...,(6,6)} be the event that the second die is 6. Then
ANB={(6,1),...,(6,6)} n{(1,6),..., (6,6)} = {(6,6)} is the event that
both dice are 6.
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Example 1.4 (System Reliability). In Fig. 1.4 three systems are depicted,
each consisting of three unreliable components. The series system works if all
components work; the parallel system works if at least one of the components
works; and the 2-out-of-3 system works if at least two out of three components
work.

Series w
Parallel 2-out-of-3

Fig. 1.4 Three unreliable systems

Let A; be the event that the i-th component is functioning, ¢ = 1,2, 3; and
let D,, Dy, D. be the events that respectively the series, parallel, and 2-out-
of-3 system are functioning. Then, D, = A1NA3;N A3 and D, = Ay UAs U As.
Also,

D, =(A1NA;NA3)U(ATNANA3)U (A1 NASN As) U (A N Az N AS)
= (A1 NA)U (A1 NA3)U (AN A;g) .

Two useful results in the theory of sets are the following, due to De Morgan:

Theorem 1.1. (De Morgan’s Laws). If {A;} is a collection of sets,

then .
(UAi> =4 (1.1)
and

(ﬂ/h-) = J4s. (1.2)

Proof. If we interpret A; as the event that component i works in Example 1.4,
then the left-hand side of (1.1) is the event that the parallel system is not
working. The right-hand side of (1.1) is the event that all components are not
working. Clearly these two events are identical. The proof for (1.2) follows
from a similar reasoning; see also Problem 1.2. ([l
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1.4 Probability

The third ingredient in the model for a random experiment is the specification
of the probability of the events. It tells us how likely it is that a particular
event will occur.

Definition 1.3. (Probability). A probability P is a function which
assigns a number between 0 and 1 to each event and which satisfies the
following rules:

1. 0<P(A) <1.
2. P(2)=1.
3. For any sequence A1, As, ... of disjoint events we have

Sum Rule: P(UAi) =S Z]P’(Ai) . (1.3)

The crucial property (1.3) is called the sum rule of probability. It simply
states that if an event can happen in several distinct ways (expressed as a
union of events, none of which are overlapping), then the probability that at
least one of these events happens (i.e., the probability of the union) is simply
the sum of the probabilities of the individual events. Figure 1.5 illustrates
that the probability P has the properties of a measure. However, instead
of measuring lengths, areas, or volumes, P(A) measures the likelihood or
probability of an event A as a number between 0 and 1.

Fig. 1.5 A probability
rule P has exactly the
same properties as an area
measure. For example, the
total area of the union
of the non-overlapping
triangles is equal to the
sum of the areas of the
individual triangles

The following theorem lists some important properties of a probability
measure. These properties are direct consequences of the three rules defining
a probability measure.
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Theorem 1.2. (Properties of a Probability). Let A and B be
events and P a probability. Then,

1. P(0)=0.

2. if A C B, then P(A) <P(B),

3. P(A°) =1-P(4).

4. P(AUB) =P(A)+P(B)-P(ANB) .

Proof.

1. Since 2 = 2 U § and 2 N O = 0, it follows from the sum rule that
P(£2) = P(2) + P(). Therefore, by Rule 2 of Definition 1.3, we have
1 =1+ P(0), from which it follows that P(0) = 0.

2. If A C B, then B =AU (BN A®), where A and B N A¢ are disjoint.
Hence, by the sum rule, P(B) = P(A) + P(B N A°), which (by Rule 1) is
greater than or equal to P(A).

3. 2 = AU A, where A and A° are disjoint. Hence, by the sum rule and
Rule 2: 1 = P(2) =P(A) + P(A°), and thus P(A°) =1 —P(A).

4. Write AU B as the disjoint union of A and B N A¢. Then, P(AU B) =
P(A) +P(BNA°). Also, B=(ANB)U (BN A°), so that P(B) =P(AN
B)+P(BnNA°). Combining these two equations gives P(AUB) = P(A) +
P(B) — P(AN B). O

We have now completed our general model for a random experiment. Of
course for any specific model we must carefully specify the sample space {2
and probability P that best describe the random experiment.

Example 1.5 (Casting a Die). Counsider the experiment where a fair die
is cast. How should we specify 2 and P? Obviously, 2 = {1,2,...,6}; and
common sense dictates that we should define P by
A
P(A) = %, AC S,
where |A| denotes the number of elements in set A. For example, the proba-
bility of getting an even number is P({2,4,6}) = 3/6 = 1/2.

In many applications the sample space is countable: 2 = {a1,aq9,...,a,}
or 2 ={ay,az,...}. Such a sample space is said to be discrete. The easiest
way to specify a probability IP on a discrete sample space is to first assign a
probability p; to each elementary event {a;} and then to define

P(A)= Y pi forall AC Q.
:a; €A
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Fig. 1.6 A discrete sam-
ple space \ J

This idea is graphically represented in Fig.1.6. Each element a; in the
sample space is assigned a probability weight p; represented by a dot—the
size of the dot represents the magnitude of p;. To find the probability of an
event A we have to sum up the weights of all the elements in the set A.

Again, it is up to the modeler to properly specify these probabilities. For-
tunately, in many applications all elementary events are equally likely, and
thus the probability of each elementary event is equal to 1 divided by the to-
tal number of elements in {2. In such case the probability of an event A C (2
is simply
|A]  Number of elements in A

P(A)

provided that the total number of elements in {2 is finite. The calculation of
such probabilities thus reduces to counting; see Problem 1.6.

When the sample space is not countable, for example, 2 = R, , it is said
to be continuous.

- 12| ~ Number of elements in 2’

Example 1.6 (Drawing a Random Point in the Unit Interval). We
draw at random a point in the interval [0, 1] such that each point is equally
likely to be drawn. How do we specify the model for this experiment?

The sample space is obviously 2 = [0,1], which is a continuous sample
space. We cannot define P via the elementary events {z}, = € [0, 1] because
each of these events has probability 0. However, we can define P as follows.
Foreach 0 <a <b<1,let

P(la,b]) =b—a.

This completely defines P. In particular, the probability that a point will fall
into any (sufficiently nice) set A is equal to the length of that set.

Describing a random experiment by specifying explicitly the sample space
and the probability measure is not always straightforward or necessary. Some-
times it is useful to model only certain observations on the experiment. This is
where random variables come into play, and we will discuss these in Chap. 2.

=19

I 23
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1.5 Conditional Probability and Independence

How do probabilities change when we know that some event B C (2 has
occurred? Thus, we know that the outcome lies in B. Then A will occur if
and only if AN B occurs, and the relative chance of A occurring is therefore
P(AN B)/P(B), which is called the conditional probability of A given B. The
situation is illustrated in Fig.1.7.

Fig. 1.7 What is the
probability that A occurs
given that the outcome is
known to lie in B?

Definition 1.4. (Conditional Probability). The conditional
probability of A given B (with P(B) # 0) is defined as:

P(AN B)

P(41B) = —55;

(1.4)

Example 1.7 (Casting Two Dice). We cast two fair dice consecutively.
Given that the sum of the dice is 10, what is the probability that one 6 is
cast? Let B be the event that the sum is 10:

B = {(476)7 (5a5), (674)} .
Let A be the event that one 6 is cast:
A={(1,6),...,(5,6),(6,1),...,(6,5)} .

Then, AN B = {(4,6),(6,4)}. And, since for this experiment all elementary
events are equally likely, we have
2/36 2

PAIB) =576 = 3
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Example 1.8 (Monty Hall Problem). Consider a quiz in which the final
contestant is to choose a prize which is hidden behind one of three curtains
(A, B, or C). See Fig. 1.8 for an illustration. Suppose without loss of generality
that the contestant chooses curtain A. Now the quiz master (Monty) always
opens one of the other curtains: if the prize is behind B, Monty opens C; if
the prize is behind C, Monty opens B; and if the prize is behind A, Monty
opens B or C with equal probability, e.g., by tossing a coin (of course the
contestant does not see Monty tossing the coin!).

Fig. 1.8 Given that X

Monty opens curtain B,
should the contestant stay

with his/her original choice LN
(A) or switch to the other i w w T
unopened curtain (C)? A B C

Suppose, again without loss of generality, that Monty opens curtain B.
The contestant is now offered the opportunity to switch to curtain C. Should
the contestant stay with his/her original choice (A) or switch to the other
unopened curtain (C)?

Notice that the sample space here consists of four possible outcomes: Ac,
the prize is behind A, and Monty opens C; Ab, the prize is behind A, and
Monty opens B; Be, the prize is behind B, and Monty opens C; and Cb, the
prize is behind C, and Monty opens B. Let A, B, C' be the events that the
prize is behind A, B, and C, respectively. Note that A = {Ac, Ab}, B = {Bc},
and C = {Cb}; see Fig. 1.9.

Ac .~ Ab
° L o
6 1/6/,"
Cb ~~ Be
P [
Fig. 1.9 The sample Y /3
space for the Monty Hall
problem

Now, obviously P(A) = P(B) = P(C), and since Ac and Ab are equally
likely, we have P({Ab}) = P({Ac}) = 1/6. Monty opening curtain B means
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that we have information that event {Ab, Cb} has occurred. The probability
that the prize is behind A given this event is therefore
, P({Ac, Ab} N {Ab, Cb}) P({Ab}) i 1
P(A|B is d) = ’ ’ = = 6 = — .
(4]B is opened) P({Ab, Cb)) B({AbCO) L+l 3

This is what is to be expected: the fact that Monty opens a curtain does
not give any extra information that the prize is behind A. Obviously,
P(B|B is opened) = 0. It follows then that P(C'| B is opened) must be 2/3,

since the conditional probabilities must sum up to 1. Indeed,
3 2

. _P{Cbyn{4b,CbY)  P{ChY) L
P(O]B s opened) = — 0 ooy = B{Ab.Cb]) %i% 3

Hence, given the information that B is opened, it is twice as likely that the
prize is behind C than behind A. Thus, the contestant should switch!

1.5.1 Product Rule

By the definition of conditional probability (1.4) we have
P(ANB)=P(A)P(BJ|A).

It is not difficult to generalize this to n intersections A; N AsN---NA,,, which
we abbreviate as Ay A -+ A,. This gives the product rule of probability.
We leave the proof as an exercise; see Problem 1.11.
Theorem 1.3. (Product Rule). Let A,..., A, be a sequence of

events with P(A; -+ A, _1) > 0. Then,
(1.5)

P(A; -+ Ay) =
(A1) P(As | A1) P(Az | AyAs) - P(Ap | A1+ Ap_y) .

Example 1.9 (Urn Problem). We draw consecutively three balls from an
urn with five white and five black balls, without putting them back. What is

the probability that all drawn balls will be black?
Let A; be the event that the i-th ball is black. We wish to find the prob-

ability of A; A3 A3, which by the product rule (1.5) is

P(A1) P(A2 | A1) P(As | A1 ds) = 15
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Example 1.10 (Birthday Problem). What is the probability that in a
group of n people all have different birthdays? We can use the product rule.
Let A; be the event that the first ¢ people have different birthdays, i = 1,2, ....
Note that --- C A3 C Ay C Ay. Therefore, A,, = A1 NAsN---NA,, and thus
by the product rule

P(A,) =P(A1)P(As | A1) P(As | A2) - - P(An | Ap—q) -

Now P(Ak | Arp—1) = (365 — k + 1)/365, because given that the first & — 1
people have different birthdays, there are no duplicate birthdays among the
first k£ people if and only if the birthday of the k-th person is chosen from
the 365 — (k — 1) remaining birthdays. Thus, we obtain

3656 364 363 365 —n+1

P(A,) = 222 202 209 2T s (16
(An) = 365 * 365 “ 365 © X 363 " (1.6)

A graph of P(A,) against n is given in Fig. 1.10. Note that the probability
P(A,,) rapidly decreases to zero. For n = 23 the probability of having no
duplicate birthdays is already less than 1/2.

1peee.,
0.8
—~ 0.6
=
N
& 0.4
0.2
Fig. 1.10 The probability
of having no duplicate 0 ‘ ‘ e,
birthday in a group of n 0 10 20 30 40 50 60
people against n n

1.5.2 Law of Total Probability and Bayes’ Rule

Suppose that By, Bs, ..., B, is a partition of (2. That is, By, Bs, ..., B, are
disjoint and their union is {2; see Fig. 1.11.

Fig. 1.11 A partition
Bi,...,Bgs of the sample
space (2. Event A is parti-
tioned into events A N Bi,
..., AN Bg
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A partitioning of the state space can sometimes make it easier to calculate
probabilities via the following theorem.

Theorem 1.4. (Law of Total Probability). Let A be an event and
let By, Bs, ..., B, be a partition of {2. Then,

n

P(4) = > P(A|B)B(B;) . (L.7)

i=1

Proof. The sum rule gives P(A) =Y | P(AN B;), and by the product rule

Combining the law of total probability with the definition of conditional
probability gives Bayes’ Rule:

Theorem 1.5. (Bayes Rule). Let A be an event with P(A) > 0 and
let By, Bs, ..., B, be a partition of {2. Then,

P(A|B;) P(B;)

e P(A| B)P(B;) (1.8)

P(B;|A) =

Proof. By definition, P(B; | A) = P(A N B;)/P(A) = P(A| B;)P(B;)/P(A).
Now apply the law of total probability to P(A). O

Example 1.11 (Quality Control Problem). A company has three facto-
ries (1, 2, and 3) that produce the same chip, each producing 15%, 35%, and
50% of the total production. The probability of a faulty chip at factories 1,
2, and 3 is 0.01, 0.05, and 0.02, respectively. Suppose we select randomly a
chip from the total production and this chip turns out to be faulty. What is
the conditional probability that this chip has been produced in factory 1?7

Let B; denote the event that the chip has been produced in factory ¢. The
{B;} form a partition of {2. Let A denote the event that the chip is faulty.
We are given the information that P(B;) = 0.15,P(B;) = 0.35,P(B3) = 0.5
as well as P(A| By) = 0.01, P(A| By) = 0.05, P(A| B3) = 0.02.

We wish to find P(B; | A), which by Bayes’ rule is given by

0.15 x 0.01

P(B, | A) = =0.052.
(B1[4) 0.15 x 0.01 + 0.35 x 0.05 + 0.5 x 0.02
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1.5.3 Independence

Independence is a very important concept in probability and statistics.
Loosely speaking it models the lack of information between events. We say
events A and B are independent if the knowledge that B has occurred does
not change our assessment of the probability of A. More precisely, A and B are
said to be independent if P(A| B) = P(A). Since P(A| B) =P(AN B)/P(B),
an alternative definition of independence is: A and B are independent if
P(AN B) =P(A)P(B). This definition covers the case where B = (.

We can extend the definition to arbitrarily many events (compare with
the product rule (1.5)):

Definition 1.5. (Independence). The events A;, As,. .., are said to
be independent if for any k and any choice of distinct indices i1, .. ., ix,

P(A;, N A, N---NA;,) =P(A4;,) P(A4,) - P(A;,) - (1.9)

Remark 1.1. In most cases independence of events is a model assumption.
That is, P is chosen such that certain events are independent.

Example 1.12 (Coin Tossing and the Binomial Law). We toss a coin
n times. The sample space can be written as the set of binary n-tuples:

2={0,...,0),...,(1,...,1)}.
Here, 0 represents Tails and 1 represents Heads. For example, the outcome
(0,1,0,1,...) means that the first time Tails is thrown, the second time Heads,
the third times Tails, the fourth time Heads, etc.
How should we define P? Let A; denote the event of Heads at the ¢-th
throw, ¢ = 1,...,n. Then, P should be such that the following holds.

e The events Aq,..., A, should be independent under PP.
o P(A4;) should be the same for all 7. Call this known or unknown probability
p(0<p<).

These two rules completely specify P. For example, the probability that
the first k£ throws are Heads and the last n — k are Tails is

P({(1,1,...,1,0,0,...,00}) = P(A; M-+~ N Ag N AS,, N+ M AS)
———— ——
k times n—k times

=P(A1) - P(AR) P(AG ) - (A7) = p* (1 —p)" .

Note that if A; and A; are independent, then so are A; and Af; see Prob-
lem 1.12.
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Let By be the event that k Heads are thrown in total. The probability of
this event is the sum of the probabilities of elementary events {(x1,...,2,)}
for which @y +-- -+, = k. Each of these events has probability p*(1—p)"~*,
and there are (Z) of these. We thus obtain the binomial law:

P(By) = <Z> PFAL—-p)"F, k=0,1,...,n. (1.10)

Example 1.13 (Geometric Law). There is another important law associ-
ated with the coin toss experiment. Let C} be the event that Heads appears
for the first time at the k-th toss, k = 1,2,.... Then, using the same events
{A;} as in the previous example, we can write

Cr=ATNASN---NA;_1NA.
Using the independence of A, ..., A7 _,, Ai, we obtain the geometric law:
P(Cr) = P(A]) - - - P(AF ;) P(Ax)

=(1-p) - A-pp=1-p""p.

k—1 times

1.6 Problems

1.1. For each of the five random experiments at the beginning of Sect. 1.1,
define a convenient sample space.

1.2. Interpret De Morgan’s rule (1.2) in terms of an unreliable series system.
1.3. Let P(A) = 0.9 and P(B) = 0.8. Show that P(AN B) > 0.7.

1.4. Throw two fair dice one after the other.

a. What is the probability that the second die is 3, given that the sum of the
dice is 67
b. What is the probability that the first die is 3 and the second is not 3?7

1.5. An “expert” wine taster has to try to match six glasses of wine to six
wine labels. Each label can only be chosen once.

a. Formulate a sample space {2 for this experiment.

b. Assuming the wine taster is a complete fraud, define an appropriate prob-
ability P on the sample space.

c. What is the probability that the wine taster guesses four labels correctly,
assuming he/she guesses them randomly?
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1.6. Many counting problems can be cast into the framework of drawing k
balls from an urn with n balls, numbered 1,...,n; see Fig. 1.12.

Fig. 1.12 Draw k balls
from an urn with n = 10
numbered balls

@)
o607

The drawing can be done in several ways. Firstly, the k balls could be
drawn one by one or all at the same time. In the first case the order in which
the balls are drawn can be noted. In the second case we can still assume that
the balls are drawn one by one, but we do not note the order. Secondly, once
a ball is drawn, it can either be put back into the urn or be left out. This is
called drawing with and without replacement, respectively. There are thus
four possible random experiments. Prove that for each of these experiments
the total number of possible outcomes is the following:

1. Ordered, with replacement: n*.
2. Ordered, without replacement: "P, =n(n —1)---(n — k + 1).

3. Unordered, without replacement: "C}, = (Z) = n,f!’“ = (nfi];),k,

4. Unordered, with replacement: ("Jr,’j*l).
Provide a sample space for each of these experiments. Hint: it is important to
use a notation that clearly shows whether the arrangements of numbers are
ordered or not. Denote ordered arrangements by vectors, e.g., [1,1,2], and
unordered arrangements by sets, e.g., {1,2,3} or multisets, e.g., {1,1,2}.

1.7. Formulate the birthday problem in terms of an urn experiment, as in
Problem 1.6, and derive the probability (1.6) by counting.

1.8. Three cards are drawn from a full deck of cards, noting the order. The
cards may be numbered from 1 to 52.

a. Give the sample space. Is each elementary event equally likely?

b. What is the probability that we draw three Aces?

c. What is the probability that we draw one Ace, one King, and one Queen
(not necessarily in that order)?

d. What is the probability that we draw no pictures (no A, K, Q, or J)?

1.9. In a group of 20 people there are 3 brothers. The group is separated at
random into two groups of ten. What is the probability that the brothers are
in the same group?
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1.10. Two fair dice are thrown.

a. Find the probability that both dice show the same face.
b. Find the same probability, using the extra information that the sum of the
dice is not greater than 4.

1.11. Prove the product rule (1.5). Hint: first show it for the case of three
events:

P(ANBNC) =P(A)P(B|A)P(C|ANB).

1.12. If A and B are independent events, then A and B¢ are also independent.
Prove this.

1.13. Select at random three people from a large population. What is the
probability that they all have the same birthday?

1.14. In a large population 40% votes for A and 60% for B. Suppose we select
at random ten people. What is the probability that in this group exactly four
people will vote for A?

1.15. A certain AIDS test has a 0.98 probability of giving a positive result
when the blood is infected, and a 0.07 probability of giving a positive result
when the blood is not infected (a so-called false positive). Suppose 1% of the
population carries the HIV virus.

a. Using the law of total probability, what is the probability that the test is
positive for a randomly selected person?

b. What is the probability that a person is indeed infected, given that the
test yields a positive result?

1.16. A box has three identical-looking coins. However the probability of
success (Heads) is different for each coin: coin 1 is fair, coin 2 has a success
probability of 0.4, and coin 3 has a success probability of 0.6. We pick one
coin at random and throw it 100 times. Suppose 43 Heads come up. Using
this information assess the probability that coin 1, 2, or 3 was chosen.

1.17. In a binary communication channel, Os and 1s are transmitted with
equal probability. The probability that a 0 is correctly received (as a 0) is
0.95. The probability that a 1 is correctly received (as a 1) is 0.99. Suppose
we receive a 0, what is the probability that, in fact, a 1 was sent?

1.18. A fair coin is tossed 20 times.

a. What is the probability of exactly ten Heads?
b. What is the probability of 15 or more Heads?

1.19. Two fair dice are cast (at the same time) until their sum is 12.

a. What is the probability that we have to wait exactly ten tosses?
b. What is the probability that we do not have to wait more than 100 tosses?
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1.20. Independently throw 10 balls into one of three boxes, numbered 1, 2,
and 3, with probabilities 1/4, 1/2, and 1/4, respectively.

a. What is the probability that box 1 has two balls, box 2 has five balls, and
box 3 has three balls?
b. What is the probability that box 1 remains empty?

1.21. Implement a Julia program that performs 100 tosses with a fair die.
Hint: use the rand and ceil functions, where ceil (x) returns the smallest
integer larger than or equal to x.

1.22. For each of the four urn experiments in Problem 1.6 implement a Julia
program that simulates the experiment. Hint: in addition to the functions
rand and ceil, you may wish to use the functions sortperm and sort.

1.23. Verify your answers for Problem 1.20 with a computer simulation,
where the experiment is repeated many times.
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Chapter 2

Random Variables and Probability
Distributions

Specifying a model for a random experiment via a complete description of
the sample space {2 and probability measure P may not always be necessary
or convenient. In practice we are only interested in certain numerical mea-
surements pertaining to the experiment. Such random measurements can be
included into the model via the notion of a random variable.

2.1 Random Variables

Definition 2.1. (Random Variable). A random variable is a func-
tion from the sample space (2 to R.

Example 2.1 (Sum of Two Dice). We throw two fair dice and note the
sum of their face values. If we throw the dice consecutively and observe both
throws, the sample space is 2 = {(1,1),...,(6,6)}. The function X defined
by X (i,5) =i+ j is a random variable which maps the outcome (¢, 7) to the
sum % + 7, as depicted in Fig.2.1.

Note that five outcomes in the sample space are mapped to 8. A natural
notation for the corresponding set of outcomes is {X = 8}. Since all outcomes
in £2 are equally likely, we have

P(X =8)) = =

This notation is very suggestive and convenient. From a non-mathematical
viewpoint we can interpret X as a “random” variable. That is, a variable
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Fig. 2.1 Random variable X represents the sum of two dice

that can take several values with certain probabilities. In particular, it is not
difficult to check that

6—|7— x|

PUX =a)) = =,

=2 12,

Although random variables are, mathematically speaking, functions, it is
often convenient to view them as observations of a random experiment that
has not yet taken place. In other words, a random variable is considered as a
measurement that becomes available tomorrow, while all the thinking about
the measurement can be carried out today. For example, we can specify today
exactly the probabilities pertaining to the random variables.

We often denote random variables with capital letters from the last part
of the alphabet, e.g., X, X1, X5,...,Y, Z. Random variables allow us to use
natural and intuitive notations for certain events, such as {X = 10}, {X >
1000}, {max(X,Y) < Z}, etc.

Example 2.2 (Coin Tossing). In Example 1.12 we constructed a proba-
bility model for the random experiment where a biased coin is tossed n times.
Suppose we are not interested in a specific outcome but only in the total num-
ber of Heads, X, say. In particular, we would like to know the probability
that X takes certain values between 0 and n. Example 1.12 suggests that

P(X = k) = <Z> PFAL—p)"F, k=0,1,...,n, (2.1)

providing all the information about X that we could possibly wish to know.
To justify (2.1) mathematically, we can reason as in Example 2.1. First, define
X as the function that assigns to each outcome w = (z1,...,z,) the number
r1+ -+ x,. Thus, X is a random variable in mathematical terms, that is,
a function. Second, the event By that there are exactly k Heads in n throws
can be written as
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By ={we: X(w)=Fk}.

If we write this as {X = k}, and further abbreviate P({X = k}) to P(X = k),
then we obtain (2.1) directly from (1.10).

We give some more examples of random variables without specifying the
sample space.

1. The number of defective transistors out of 100 inspected ones
2. The number of bugs in a computer program

3. The amount of rain in a certain location in June

4. The amount of time needed for an operation

The set of all possible values that a random variable X can take is called
the range of X. We further distinguish between discrete and continuous
random variables:

e Discrete random variables can only take countably many values.
e Continuous random variables can take a continuous range of values, for
example, any value on the positive real line R .

2.2 Probability Distribution

Let X be a random variable. We would like to designate the probabilities of
events such as {X =z} and {a < X < b}. If we can specify all probabilities
involving X, we say that we have determined the probability distribution
of X. One way to specify the probability distribution is to give the probabil-
ities of all events of the form {X < z}, z € R. This leads to the following
definition.

Definition 2.2. (Cumulative Distribution Function). The cu-
mulative distribution function (cdf) of a random variable X is the
function F : R — [0, 1] defined by

Flz)=P(X <z), z€R.

Note that we have used P(X < z) as a shorthand notation for P({X < z}).
From now on we will use this type of abbreviation throughout the book. In
Fig.2.2 the graph of a general cdf is depicted.
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Fig. 2.2 A cumulative _/—<>
distribution function (cdf) 0 x

Theorem 2.1. (Properties of Cdf). Let F' be the cdf of a random
variable X. Then,

1. F is bounded between 0 and 1: 0 < F(z) < 1.
2. F is increasing: if < y, then F(x) < F(y).
3. F is right-continuous: limp o F(z + h) = F(x).

Proof.

1. Let A= {X < z}. By Rule 1 in Definition 1.3, 0 <PP(A) <1

2. Suppose < y. Define A = {X <z} and B = {X < y}. Then, A C B,
and, by Theorem 1.2, P(A) < P(B).

3. Take any sequence xi,xs,... decreasing to x. We have to show that
lim, 0o P(X < x,) = P(X < z), or, equivalently, lim,_,, P(4,) =
P(A), where A, = {X > z,} and A = {X > z}. Let B, = {z,_1 >
X >z}, n=12,..., with zo defined as co. Then, A, = U ;B; and
A = U, B;. Since the {B;} are disjoint, we have by the sum rule:

P(A) = B -@hmE}»-—anM%

4 n—o00 n—o00
i=1

as had to be shown. |

Conversely, any function F' with the above properties can be used to specify
the distribution of a random variable X.

If X has cdf F, then the probability that X takes a value in the interval
(a,b] (excluding a, including b) is given by

P(a < X <b) = F(b) — F(a) .

To see this, note that P(X < b) = P{X < a} U {a < X < b}), where
the events {X < a} and {a < X < b} are disjoint. Thus, by the sum rule:
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F(b) = F(a) + P(a < X < b), which leads to the result above. Note however
that

P(a < X <b) = F(b) — F(a) + P(X = a)

where F(a—) denotes the limit from below: lim,4, F(z).

2.2.1 Discrete Distributions

Definition 2.3. (Discrete Distribution). A random variable X is
said to have a discrete distribution if P(X =z;) > 0,7 =1,2,... for
some finite or countable set of values x1, o, ..., such that )  P(X =
x;) = 1. The discrete probability density function (pdf) of X is
the function f defined by f(z) =P(X = ).

We sometimes write fx instead of f to stress that the discrete probability

density function refers to the discrete random variable X. The easiest way

to specify the distribution of a discrete random variable is to specify its pdf.

Indeed, by the sum rule, if we know f(z) for all z, then we can calculate all =9
possible probabilities involving X. Namely,

P(X €B)= Y f(x) (2.2)

zeB

for any subset B in the range of X, as illustrated in Fig. 2.3.

f(x)

Fig. 2.3 Discrete proba- V

bility density function B
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Example 2.3 (Sum of Two Dice, Continued). Toss two fair dice and let
X be the sum of their face values. The discrete pdf is given in Table 2.1,
which follows directly from Example 2.1.

Table 2.1 Discrete pdf of the sum of two fair dice

T 23 45 6 7 8 9101112
flz) L2345 65 4.3 2 1

36 36 36 36 36 36 36 36 36 36 36

2.2.2 Continuous Distributions

Definition 2.4. (Continuous Distribution). A random variable X
with cdf F is said to have a continuous distribution if there exists a
positive function f with total integral 1 such that for all a < b,

b
Pla < X <b) = F(b) — F(a) = / il (2.3)

Function f is called the probability density function (pdf) of X.

Remark 2.1. Note that we use the same notation f for both the discrete
and the continuous pdf, to stress the similarities between the discrete and
continuous case. We will even drop the qualifier “discrete” or “continuous”
when it is clear from the context with which case we are dealing. Henceforth
we will use the notation X ~ f and X ~ F to indicate that X is distributed
according to pdf f or cdf F.

In analogy to the discrete case (2.2), once we know the pdf, we can calculate
any probability of interest by means of integration:

P(X € B) = /B f@)de, (2.4)

as illustrated in Fig. 2.4.

Fig. 2.4 Probability den-
sity function (pdf)
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Suppose that f and F are the pdf and cdf of a continuous random vari-
able X, as in Definition 2.4. Then F is simply a primitive (also called anti-
derivative) of f:

Flz)=P(X <z)= / flw)du .
Conversely, f is the derivative of the cdf F

d
= _—F(z)=F'(z).
fl#) = T F(@) = F'(2)
It is important to understand that in the continuous case f(z) is not equal
to the probability P(X = x), because the latter is 0 for all x. Instead, we
interpret f(z) as the density of the probability distribution at x, in the sense
that for any small h,

x+h
P(xSXSx—I—h):/ fw)du=h f(z) . (2.5)

Note that P(z < X < x + h) is equal to P(x < X < x4+ h) in this case.

Example 2.4 (Random Point in an Interval). Draw a random number
X from the interval of real numbers [0, 2], where each number is equally likely
to be drawn. What are the pdf f and cdf F' of X7 Using the same reasoning
as in Example 1.6, we see that

0 if x <0,
PX<z)=F(z)=qz/2 if0<z<2,
1 if x> 2.

By differentiating F' we find

f(x):{l/Q if0<az<2,

0 otherwise.

Note that this density is constant on the interval [0, 2] (and zero elsewhere),
reflecting the fact that each point in [0, 2] is equally likely to be drawn.

2.3 Expectation

Although all probability information about a random variable is contained in
its cdf or pdf, it is often useful to consider various numerical characteristics of
a random variable. One such number is the expectation of a random variable,
which is a “weighted average” of the values that X can take. Here is a more
precise definition.

I 11



30 2 Random Variables and Probability Distributions

Definition 2.5. (Expectation of a Discrete Random Variable).
Let X be a discrete random variable with pdf f. The expectation (or
expected value) of X, denoted as EX, is defined as

EX =) aP(X=z)=) zf(z). (2.6)

The expectation of X is sometimes written as px. It is assumed that the
sum in (2.6) is well-defined—possibly co or —oo. One way to interpret the
expectation is as a long-run average payout. Suppose in a game of dice the
payout X (dollars) is the largest of the face values of two dice. To play the
game a fee of d dollars must be paid. What would be a fair amount for d?
The answer is

d=EX =1xPX=1)+4+2xP(X=2)4+---4+6xP(X =6)
1 3 5 7 9 11 161

=1x 36+2>< 36+3X 364—4>< 36+5X 36+6X 36— 36 A~ 4.47 .
Namely, if the game is played many times, the long-run fraction of tosses
where the maximum face value is 1, 2,..., 6, is 3—16, 3373’ ce %, respectively.
Hence, the long-run average payout of the game is the weighted sum of
1,2,...,6, where the weights are the long-run fractions (probabilities). The
game is “fair” if the long-run average profit EX — d is zero.

The expectation can also be interpreted as a center of mass. Imagine that
point masses with weights p1, pa, ..., pn are placed at positions x1,za, ..., T,
on the real line; see Fig. 2.5.

P1 b2 Pn

o @ ® —@ ®

T X9 ‘ T
EX

Fig. 2.5 The expectation as a center of mass

The center of mass—the place where the weights are balanced—is
center of mass = x1p1 + -+ T, pn ,

which is exactly the expectation of the discrete variable X that takes val-
ues x1,...,T, with probabilities pi,...,p,. An obvious consequence of this
interpretation is that for a symmetric pdf the expectation is equal to the
symmetry point (provided that the expectation exists). In particular, sup-
pose that f(c+y) = f(c—y) for all y. Then,



2.3 Expectation 31

EX =cf(c)+ > af(x)+ Y af(x)

=cf(e)+ Y (c+y)flc+y)+ > (c—yflc—y)
y>0 y>0

cef @+ e fle ) e Y flemy) = e 3 fa) = c.
y>0 y>0 x

For continuous random variables we can define the expectation in a similar
way, replacing the sum with an integral.

Definition 2.6. (Expectation of a Continuous Random Vari-
able). Let X be a continuous random variable with pdf f. The expec-
tation (or expected value) of X, denoted as EX, is defined as

EX = /_00 x f(x)dx . (2.7)

If X is a random variable, then a function of X, such as X? or sin(X), is
also a random variable. The following theorem simply states that the expected
value of a function of X is the weighted average of the values that this function
can take.

Theorem 2.2. (Expectation of a Function of a Random Vari-
able). If X is discrete with pdf f, then for any real-valued function

g
Eg(X) =) g(x) f(z).

Similarly, if X is continuous with pdf f, then

Proof. The proof is given for the discrete case only, as the continuous case
can be proven in a similar way. Let Y = g(X), where X is a discrete random
variable with pdf fx and g is a function. Let fy be the (discrete) pdf of the
random variable Y. It can be expressed in terms of fx in the following way:

) =PY =y =Pg(X)=y)= Y PX=2)= Y fx@).

z:g(z)=y z:g(z)=y
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Thus, the expectation of YV is

EY = "y fr(y) Zy Yo tx@) =" Y uyfxl
Yy z:g(z)=y Y zig(z)=y
= g(@) fx(x)
O

Example 2.5 (Die Experiment and Expectation). Find EX? if X is
the outcome of the toss of a fair die. We have

1 1 1 1
EX?2=12x2+4+22Xx > 4+32x=4---4+62x ==
6+ 6+ 6+ + 6 6

An important consequence of Theorem 2.2 is that the expectation is “lin-
ear.”

Theorem 2.3. (Properties of the Expectation). For any real num-
bers a and b, and functions g and h,

1. EaX +b =aEX +5b.
2. Elg(X) 4+ h(X)] =Eg(X) + Eh(X) .

Proof. Suppose X has pdf f. The first statement follows (in the discrete case)
from

E(aX +b) =Y (ax+b)f( —awa )+b > flx) =aEX +b.
x x
Similarly, the second statement follows from

E(g(X) +h(X)) =) (g9(z) +h(2))f(x) =) g(a)f(z) + Y h(x)f(z)

T

= Eg(X) + Eh(X) .

The continuous case is proven analogously, simply by replacing sums with
integrals. (]

Another useful numerical characteristic of the distribution of X is the
variance of X. This number, sometimes written as 03, measures the spread
or dispersion of the distribution of X.
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Definition 2.7. (Variance and Standard Deviation). The vari-
ance of a random variable X, denoted as Var(X), is defined as

Var(X) = E(X —EX)?. (2.8)

The square root of the variance is called the standard deviation. The
number EX" is called the r-th moment of X.

Theorem 2.4. (Properties of the Variance). For any random vari-
able X the following properties hold for the variance.

1. Var(X) = EX? — (EX)2.
2. Var(a + bX) = b? Var(X) .

Proof. Write EX = p, so that Var(X) = E(X — p)? = E(X? — 2uX + p?).
By the linearity of the expectation, the last expectation is equal to the sum
EX? - 2uEX + p? = EX? — u2, which proves the first statement. To prove
the second statement, note that the expectation of a + bX is equal to a + bpu.
Consequently,

Var(a + bX) = E(a + bX — (a + bp))? = E(B*(X — p)?) = b*Var(X) .

O

Note that Property 1 in Theorem 2.4 implies that EX? > (EX)?, because
Var(X) > 0. This is a special case of a much more general result, regarding
the expectation of convex functions. A real-valued function h(x) is said to be
convex if for each = there exists a constant v (depending on x) such that

h(y) > h(z) +v(y —z) forall y. (2.9)

Examples are the functions x — |z|, 2 +— 2%, 2+ €%, and z — —In .

Theorem 2.5. (Jensen’s Inequality). Let h(z) be a convex function
and X a random variable. Then,

EA(X) > h(EX) . (2.10)

Proof. Replacing z with EX and y with X in (2.9), it holds that h(X) >
REX) 4+ v(X — EX) for some v, because h is convex. Taking expectations
vields Eh(X) > h(EX). O
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2.4 Transforms

Many probability calculations—such as the evaluation of expectations and
variances—are facilitated by the use of transforms. We discuss here a number
of such transforms.

Definition 2.8. (Probability Generating Function). Let X be a
non-negative and integer-valued random variable with discrete pdf f.
The probability generating function (PGF) of X is the function G
defined by

G(z) =Ez* = izxf(x) , |zl <R,
=0

where R > 1 is the radius of convergence.

Example 2.6 (Poisson Distribution). Let X have a discrete pdf f given
by
)\31'

!’

flz)=e? z=0,1,2,....

X is said to have a Poisson distribution. The PGF of X is given by

|
=0 Z.:
Y - (zA)"
=) !
z=0 x
_ e—)\ez)\ —A(1-=2)

As this is finite for every z, the radius of convergence is here R = oo.

Theorem 2.6. (Derivatives of a PGF). The k-th derivative of a
PGF Ez¥ can be obtained by differentiation under the expectation sign:

=E[X(X-1)- (X —k+1)2"] for|z| <R,

where R > 1 is the radius of convergence of the PGF.

=" 477 Proof. The proof is deferred to Appendix B.2. O
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Let G(z) be the PGF of a random variable X. Thus, G(z) = 2 P(X = 0)+
2P(X =1)+22P(X =2) +---. Substituting 2z = 0 gives G(0) = P(X = 0).
By Theorem 2.6 the derivative of G is

G'(2)=P(X =1)+22P(X =2)+322P(X =3)+--- .

In particular, G'(0) = P(X = 1). By differentiating G'(z), we see that the
second derivative of G at 0 is G’ (0) = 2P(X = 2). Repeating this procedure
gives the following corollary to Theorem 2.6.

Corollary 2.1. (Probabilities from PGFs). Let X be a non-
negative integer-valued random variable with PGF G(z). Then,

1 d*
MX:M:H&#Wy

The PGF thus uniquely determines the discrete pdf. Another consequence
of Theorem 2.6 is that expectations, variances, and moments can be easily
found from the PGF.

Corollary 2.2. (Moments from PGFs). Let X be a non-negative
integer-valued random variable with PGF G(z) and k-th derivative
G®)(2). Then,

k

limy %G(z) _EX(X —1)(X—k+1)] .  (211)
|z|<1

In particular, if the expectation and variance of X are finite, then EX =
G'(1) and Var(X) = G (1) + G'(1) — (G'(1)).

Proof. The proof is deferred to Appendix B.2. O

Definition 2.9. (Moment Generating Function). The moment
generating function (MGF) of a random variable X is the function
M : R — [0, 0] given by

M(s) = EeX .

I 477
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In particular, for a discrete random variable with pdf f,
M(s) =) e f(x),
and for a continuous random variable with pdf f,

M(s) = /Oo o f(z)dz .

— 00

Note that M (s) can be infinite for certain values of s. We sometimes write
Mx to stress the role of X.

Similar to the PGF, the MGF has the uniqueness property: two MGFs
are the same if and only if their corresponding cdfs are the same. In addition,
the integer moments of X can be computed from the derivatives of M, as
summarized in the next theorem. The proof is similar to that of Theorem 2.6

=" 478 and Corollary 2.2 and is given in Appendix B.3.

Theorem 2.7. (Moments from MGFs). If the MGF is finite in an
open interval containing 0, then all moments EX™, n = 0,1,... are
finite and satisfy

EX™ = M™(0),

where M (™) (0) is the n-th derivative of M evaluated at 0.

Note that under the conditions of Theorem 2.7, the variance of X can be
obtained from the moment generating function as

Var(X) = M"(0) — (M'(0))? .

A transform with better analytical properties than the moment generating
function is the characteristic function.

Definition 2.10. (Characteristic Function). The characteristic
generating function of a random variable X is the function ¢ : R — C
given by

Y(r) =Ee'™ =Ecos(rX) +iEsin(rX), recR.

The characteristic function is well-defined and finite for any random vari-
able, whereas for certain probability distributions the moment generating
function may not be finite for any value of other than 0.
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2.5 Common Discrete Distributions

In this section we give a number of common discrete distributions and list
some of their properties. Note that the discrete pdf of each of these distri-
butions, denoted f, depends on one or more parameters; so in fact we are
dealing with families of distributions.

2.5.1 Bernoulli Distribution

Definition 2.11. (Bernoulli Distribution). A random variable X
is said to have a Bernoulli distribution with success probability p if X
can only assume the values 0 and 1, with probabilities

fO)=P(X=0)=1-p and f)=PX=1)=p.

We write X ~ Ber(p).

The Bernoulli distribution is the most fundamental of all probability distri-
butions. It models a single coin toss experiment. Three important properties
of the Bernoulli are summarized in the following theorem.

Theorem 2.8. (Properties of the Bernoulli Distribution). Let
X ~ Ber(p). Then,

1. EX =p.
2. Var(X) =p(1—p) .
3. The PGFis G(z) =1—p+2p.

Proof. The expectation and the variance of X can be obtained by direct
computation:

EX=0xPX=0)4+1xP(X=1)=0x(1—-p)+1xp=p
and
Var(X) = EX? — (EX)* =EX — (EX)* =p—p* = p(1 - p),

where we have used the fact that in this case X? = X. Finally, the PGF is
given by G(2) = 2°(1 —p) + 2'p=1—p+ 2p. O
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2.5.2 Binomzial Distribution

Definition 2.12. (Binomial Distribution). A random variable X is
said to have a binomial distribution with parameters n and p if X has
pdf

f(sc‘)ZP(X:x)z<n)pz(1—p)”‘z, r=0,1,...,n. (212

We write X ~ Bin(n,p).

=" 17  From Example 2.2 we see that X can be interpreted as the total number of
Heads in n successive coin flip experiments, with probability of Heads equal
to p. An example of the graph of the pdf is given in Fig.2.6. Theorem 2.9
lists some important properties of the binomial distribution.

031
0251
0.2
g 0.15r

g
0.1r

0.05

Fig. 2.6 The pdf of the
Bin(10, 0.7)-distribution x

Theorem 2.9. (Properties of the Binomial Distribution). Let
X ~ Bin(n,p). Then,

1. EX =np.
2. Var(X) =np(l —p) .
3. The PGF is G(z) = (1 —p+ 2zp)" .

Proof. Using Newton’s binomial formula:

n __ - n kin—k
(a+0) —kz_o(k>a b ,



2.5 Common Discrete Distributions 39

we see that

6 =3 (L)t - =30 (3) en a-p ™ = G-

n n
k=0 k=0

From Corollary 2.2 we obtain the expectation and variance via G'(1) = np I 35
and G”(1) + G'(1) — (G'(1))? = (n — )np® + np — n?p? = np(1 — p). O

2.5.3 Geometric Distribution

Definition 2.13. (Geometric Distribution). A random variable X
is said to have a geometric distribution with parameter p if X has pdf

f@)=PX=2)=01-p)*'p, 2=1,2,3,.... (2.13)

We write X ~ Geom(p).

From Example 1.13 we see that X can be interpreted as the number of = 18
tosses needed until the first Heads occurs in a sequence of coin tosses, with

the probability of Heads equal to p. An example of the graph of the pdf is

given in Fig. 2.7. Theorem 2.10 summarizes some properties of the geometric
distribution.

0251

Fig. 2.7 The pdf of the
Geom(0.3)-distribution z



40 2 Random Variables and Probability Distributions

Theorem 2.10. (Properties of the Geometric Distribution). Let
X ~ Geom(p). Then,

1. EX=1/p.
2. Var(X) = (1—p)/p?.
3. The PGF is
_ zZp 1
G(Z)_l—z(l—p)’ |z|<71_p. (2.14)

Proof. The PGF of X follows from

_ . x x—1 __ - k _ zZp
G(z) =) 2"p(1—p)" ' =zp» (2(1-p)) =TS0
r=1 k=0
using the well-known result for geometric sums: 1 +a+a?+---= (1 —a)~?,

¥ 35 for |a| < 1. By Corollary 2.2 the expectation is therefore

1
EX =G'(1)=~.
D=3

By differentiating the PGF twice we find the variance:

2(1-p) n

Var(X) = G"(1) + G'(1) — (G"(1))* = p? 11? 2 p?

One property of the geometric distribution that deserves extra attention
is the memoryless property. Consider again the coin toss experiment.
Suppose we have tossed the coin k times without a success (Heads). What is
the probability that we need more than x additional tosses before getting a
success? The answer is, obviously, the same as the probability that we require
more than x tosses if we start from scratch, that is, P(X > z) = (1 — p)7,
irrespective of k. The fact that we have already had k failures does not make
the event of getting a success in the next trial(s) any more likely. In other
words, the coin does not have a memory of what happened—hence the name
memoryless property.

Theorem 2.11. (Memoryless Property). Let X ~ Geom(p). Then
for any z,k=1,2,...,

PX>k+z|X>k)=PX >x).
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Proof. By the definition of conditional probability,

PUX > k+a2}N{X >k})

PX>k+a|X>k) = PX > h)

The event {X > k + z} is a subset of {X > k}; hence, their intersection is
{X > k+ z}. Moreover, the probabilities of the events {X > k + z} and
{X >k} are (1 — p)*** and (1 — p)*, respectively. Therefore,
(1 _ p)k—i-w
PX>k+z|X >k)=—""——
( | ) (L—p)*

as required. O

:(1—p)"L:P(X>{I})7

2.5.4 Poisson Distribution

Definition 2.14. (Poisson Distribution). A random variable X is
said to have a Poisson distribution with rate parameter A > 0 if X
has pdf

flz)=PX=2)=—¢ ", z=0,12,.... (2.15)

We write X ~ Poi(\).

The Poisson distribution may be viewed as the limit of the Bin(n, A/n) dis-
tribution. Namely, if X,, ~ Bin(n, A/n), then

== ()Y (-3

A axn-1)x--x(n-z+1) (1_)\)" (1_,\>‘$.

z! nXnNX-Xn n n

As n — oo the second and fourth factors converge to 1, and the third factor
to e~ (this is one of the defining properties of the exponential function).
Hence, we have
A
lim P(X, =z) = —e .
An example of the graph of the Poisson pdf is given in Fig. 2.8. Theorem 2.12
summarizes some properties of the Poisson distribution.

I 12



42 2 Random Variables and Probability Distributions

0.141
0.12}
011
008
)
" 0.06
0.04 1

0.02

Fig. 2.8 The pdf of the
Poi(10)-distribution x

Theorem 2.12. (Properties of the Poisson Distribution). Let
X ~ Poi(A). Then,

1. EX =\
2. Var(X) = \.
3. The PGF is G(z) = e *(172) |

5" 34 Proof. The PGF was derived in Example 2.6. It follows from Corollary 2.2
that EX = G'(1) = X and

Var(X) =G"(1) + G'(1) = (G'(1))> = X2 + A = 2 = ).

Thus, the rate parameter A can be interpreted as both the expectation and
variance of X. O

2.6 Common Continuous Distributions

In this section we give a number of common continuous distributions and
list some of their properties. Note that the pdf of each of these distributions
depends on one or more parameters; so, as in the previous section, we are
dealing with families of distributions.
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2.6.1 Uniform Distribution

Definition 2.15. (Uniform Distribution). A random variable X is
said to have a uniform distribution on the interval [a,b] if its pdf is
given by

1
a<x<b.

f@)=p—, asos

We write X ~ Ula,b] (and X ~ U(a,b) for a uniform random variable
on an open interval (a,b)).

The random variable X ~ U[a,b] can model a randomly chosen point from
the interval [a, b], where each choice is equally likely. A graph of the pdf is
given in Fig. 2.9.

b—a

Fig. 2.9 The pdf of the
uniform distribution on
[a, b] a x b

Theorem 2.13. (Properties of the Uniform Distribution). Let
X ~ Ula, b]. Then,

1. EX =(a+b)/2.
2. Var(X) = (b—a)?/12.

Proof. We have

b 2 2
EX:/ T g 1 [b a}:a—i—b

2

and

b2 2
Var(X) = EX? — (EX)? :/ bx dz — (a;rb>
a —a

g () =
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2.6.2 Exponential Distribution

Definition 2.16. (Exponential Distribution). A random variable
X is said to have an exponential distribution with rate parameter A
if its pdf is given by

f)=Xe™** £>0. (2.16)

We write X ~ Exp(\).

The exponential distribution can be viewed as a continuous version of the
geometric distribution. Graphs of the pdf for various values of \ are given
in Fig.2.10. Theorem 2.14 summarizes some properties of the exponential
distribution.

Fig. 2.10 The pdf of the
Exp(\)-distribution for
various A x

Theorem 2.14. (Properties of the Exponential Distribution).
Let X ~ Exp()). Then,

1. EX =1/X.

Var(X) = 1/\% .

The MGF of X is M(s) = A/(A — s), s < A,

The cdf of X is F(z) =1—e %, 2 > 0.

The memoryless property holds: for any s,t > 0,

OISR

P(X >s+t|X >s)=P(X >t). (2.17)

Proof. 3. The moment generating function is given by

o] o] 767()\75)1 o
M(s) = / e Ae Mdr = A / e dy = N\ | ————
0 0 A=s o

:)\is, s< A (and M(s) =00 for s > \).
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. From Theorem 2.7, we obtain = 36
A 1
EX=M0) = —— =—.
0) A=5)2],_y A
. Similarly, the second moment is EX? = M"(0) = %L:o =2/)% so

that the variance is

;_2 1 _ 1

Var(X) = EX? — (EX) VISR

The cdf of X is given by

Flz)=P(X <2x)= / e Mdy, = [—e*’\“}g =1—-e?, z>0.
0

Note that the tail probability P(X > z) is exponentially decaying:
P(X>z)=e ", 2>0.

Similar to the proof of the memoryless property for the geometric distri-
bution (Theorem 2.11), we have 1= 40

P(X>s+t, X>s) PX>s+1)
P(X>s+t|X>s)= P(X > 5) = P(X > 5)

ef)\(tJrs)

=eM=P(X >t).

e—As

O

The memoryless property can be interpreted as a “non-aging” property.

For example, when X denotes the lifetime of a machine then, given the fact
that the machine is alive at time s, the remaining lifetime of the machine,
X — s, has the same exponential distribution as a completely new machine. In
other words, the machine has no memory of its age and does not deteriorate
(although it will break down eventually).

2.

In

6.3 Normal (Gaussian) Distribution

this section we introduce the most important distribution in the study

of statistics: the normal (or Gaussian) distribution. Additional properties of
this distribution will be given in Sect. 3.6. IS 83
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Definition 2.17. (Normal Distribution). A random variable X is
said to have a normal or Gaussian distribution with parameters p
and o2 if its pdf is given by

f(z) = e (5)° 2 eR. (2.18)

We write X ~ N(u,0?).

The parameters p and o2 turn out to be the expectation and variance of
the distribution, respectively. If 4 = 0 and o = 1 then

and the distribution is known as the standard normal distribution. The cdf
of the standard normal distribution is often denoted by @ and its pdf by ¢. In
Fig.2.11 the pdf of the N(u, 0?) distribution for various u and o is plotted.

067
<«— p=0,0=05
05F
04 (—ﬂ:lg’:l
B o3t
g

021

0.1F

Fig. 2.11 The pdf of the
N(u,0?) distribution for
various p and o x

We next consider some important properties of the normal distribution.

Theorem 2.15. (Standardization). Let X ~ N(u,0?) and define
Z = (X — p)/o. Then Z has a standard normal distribution.

Proof. The cdf of Z is given by

P(Z < 2) = P((X — p)/o < 2) = (X < i+ 02)

proz g 1(z=p\2 # 1 2
= o3 (554) dm:/ eV 2dy = &(z ,
/,Oo o2 oo V2T Y (2)
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where we make a change of variable y = (z — p)/o in the fourth equation.
Hence, Z ~ N(0,1). O

The rescaling procedure in Theorem 2.15 is called standardization. It
follows from Theorem 2.15 that any X ~ N(u,0?) can be written as

X=p+0Z, where Z~N(0,1).

In other words, any normal random variable can be viewed as an affine
transformation—that is, a linear transformation plus a constant—of a stan-
dard normal random variable.

Next we prove the earlier claim that the parameters y and o? are respec-
tively the expectation and variance of the distribution.

Theorem 2.16. (Expectation and Variance for the Normal Dis-
tribution). If X ~ N(u,0?), then EX = y and Var(X) = o2

Proof. Since the pdf is symmetric around g and EX < oo, it follows that
EX = p. To show that the variance of X is o2, we first write X = p+ 02,
where Z ~ N(0,1). Then, Var(X) = Var(u + 0Z) = o*Var(Z). Hence, it
suffices to show that Var(Z) = 1. Now, since the expectation of Z is 0, we
have

o 1 (e °)
Var(Z):]EZQZ/ 22 e_Z2/2dZ:/ z X Le—z2/2dz.

—o0 27 — o0 V2T

We apply integration by parts to the last integral to find

e > 1 2
EZ? = {— £ o—2/2 + e * 24z =1
V2 o —oo V2T ’

since the last integrand is the pdf of the standard normal distribution. [

Theorem 2.17. (MGF for the Normal Distribution). The MGF
of X ~ N(u,0?) is

2 _2
EesX —eshts07/2  seR. (2.19)

Proof. Write X = pu+ 0Z, where Z ~ N(0,1). We have

e 1 2 2 >~ 1 2 2
EesZ — / e5% e ? /2 dz = e° /2/ e—(z—s) /2 dz = e° /2 ,
oo V2T —oo V2T

pdf of N(s,1)



48 2 Random Variables and Probability Distributions

o that FesX = Fes(tt02) — gsu FesoZ — osheo”s”/2 — gsuto’s?/2, 0

2.6.4 Gamma and x?® Distribution

Definition 2.18. (Gamma Distribution). A random variable X is
said to have a gamma distribution with shape parameter o > 0 and
rate parameter A > 0 if its pdf is given by

)\axaflef)\z

f(z) = Ta) x>0, (2.20)

where I' is the gamma function. We write X ~ Gamma(a, A).

The gamma function I'(«) is an important special function in mathematics,
defined by

I'la) = / u*lte " du . (2.21)
0
We mention a few properties of the I" function.

1. I'la+1) =al(a) for a > 0.
2.I'n)=(n—-1)lforn=1,2,....
3. I'(1/2) = /.

Two special cases of the Gamma(a, \) distribution are worth mentioning.
Firstly, the Gamma(1, \) distribution is simply the Exp(\) distribution. Sec-
ondly, the Gamma(n/2, 1/2) distribution, where n € {1,2,...}, is called the
chi-squared distribution with n degrees of freedom. We write X ~ x2.
A graph of the pdf of the x2 distribution for various n is given in Fig. 2.12.

0.6
0.5
0.4

E o3t

Sy
02+

0.1

Fig. 2.12 The pdf of the
x2 distribution for various
degrees of freedom n x
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The following theorem summarizes some properties of the gamma distri-
bution.

Theorem 2.18. (Properties of the Gamma Distribution). Let
X ~ Gamma(a, A\). Then,

1. EX = a/A.
2. Var(X) = a/)2.
3. The MGF is M(s) = [A\/(A — s)]*, s < A (and oo otherwise).

Proof. 3. For s < A\, the MGF of X at s is given by

o0 —Ax 2\ a—1
M(s) =Ee*X = / € 2T esvdg
0 I'(a)

- (Aisy /0°° e_(A_S)m}A(;)S)axa_l dz = (Aisyl. (2.22)

pdf of Gamma(a,A\—s)

1. Consequently, by Theorem 2.7,

)\ a+1
EX = M'(0) = &
(©) A ()\—s)

s=0

2. Similarly, Var(X) = M”(0) — (M'(0))? = (a + 1)a/A? — (/)% = a/A\2.

2.6.5 F Distribution

Definition 2.19. (F Distribution). Let m and n be strictly positive
integers. A random variable X is said to have an F distribution with
degrees of freedom m and n if its pdf is given by

L) m/mmPam B2y (2.23)

T0= T T [+ G *2

where I denotes the gamma function. We write X ~ F(m, n).

The F distribution plays an important role in classical statistics, through
Theorem 3.11. A graph of the pdf of the F(m,n) distribution for various m
and n is given in Fig.2.13.

=" 36

IS 88
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2,
<— m=100,n = 100

15F

f(z)
3

I
g

I

0.5 -
Fig. 2.13 The pdf of the \&

F(m,n) distribution for
various degrees of freedom 0 1 2 3 4 5
m and n T

2.6.6 Student’s t Distribution

Definition 2.20. (Student’s ¢t Distribution). A random variable X
is said to have a Student’s t distribution with parameter v > 0 if its
pdf is given by

v+l —(v+1)/2
f(z) = L’A’)V (1 + 952) , TER, (2.24)
5) v

where I' denotes the gamma function. We write X ~ t,. For integer
values the parameter v is referred to as the degrees of freedom of the
distribution.

A graph of the pdf of the t, distribution for various v is given in Fig.2.14.
Note that the pdf is symmetric. Moreover, it can be shown that the pdf of
the t, distribution converges to the pdf of the N(0, 1) distribution as v — oo.
The t; distribution is called the Cauchy distribution.

04+ v =10 —xne— v =00 (N(0,1))
§ 4—"'_‘ v=2

Fig. 2.14 The pdfs of ; ‘ ‘ ‘ ;
t1 (Cauchy), t2, ti0, and -6 -4 2 0 2 4 6
too (N(0,1)) distributions x
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For completeness we mention that if X ~ t,, then

EX=0 (v>1) and Var(X)=

2).
v—2’ (v>2)

The t and F distributions are related in the following way.

Theorem 2.19. (Relationship Between the ¢t and F Distribu-
tion). For integer n > 1, if X ~ t,, then X2 ~ F(1,n).

Proof. Let Z = X?2. We can express the cdf of Z in terms of the cdf of X.
Namely, for every z > 0 we have

Fz(z) =P(X? < z) =P(—/z < X < z) = Fx(V2) — Fx(—Vz) .

Differentiating with respect to z gives the following relation between the two
pdfs:

1 1 1
fz(z) = fx(ﬁ)ﬁ + fX(_\/E)ﬁ = fx(ﬁ)ﬁ )

using the symmetry of the ¢ distribution. Substituting (2.24) into the last
equation yields

5—1/2

fZ(Z):c(n) W7 z>0

for some constant ¢(n). The only pdf of this form is that of the F(1,n) dis-
tribution. g

2.7 Generating Random Variables

This section shows how to generate random variables on a computer. We
first discuss a modern uniform random generator and then introduce two
general methods for drawing from an arbitrary one-dimensional distribution:
the inverse-transform method and the acceptance-rejection method.

2.7.1 Generating Uniform Random Variables

The rand function in Julia simulates the drawing of a uniform random num-
ber on the interval (0,1) by generating pseudo-random numbers, that is,
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numbers that, although not actually random (because the computer is a de-
terministic device), behave for all intended purposes as truly random. The
following algorithm (L’Ecuyer (1999)) uses simple recurrences to produce
high-quality pseudo-random numbers, in the sense that the numbers pass all
currently known statistical tests for randomness and uniformity.

Algorithm 2.1. (Combined Multiple-Recursive Generator).

1. Suppose N random numbers are required. Define m; = 232 — 209
and mg = 232 — 22853.

2. Initialize a vector (X_o2,X_1,Xo) = (12345,12345,12345) and a
vector (Y_a,Y_1,Yy) = (12345, 12345, 12345).

3. Fort=1to N let

}(t:: (140358()}(t,2 —’8107284X¥,3) HlOd.ﬂll,
Y; = (527612 Y;_; — 1370589 Y;_3) mod ms ,

and output the ¢t-th random number as

X, - Y,
Ao Bdm ey <y,
mi +—1

Ui=1\x _v,
t— 1t g
St fX,>Y.
mq +*1 ! t>

Here, x mod m means the remainder of x when divided by m. The ini-
tialization in Step 2 determines the initial state—the so-called seed— of the
random number stream. Restarting the stream from the same seed produces
the same sequence.

The current default random number generator in Julia is Xoshiro256++
(XOR/rotate/shift /rotate). A typical usage of Julia’s uniform random num-
ber generator is as follows.

using Random # Loading the Random package
Random.seed! (1234) # set the seed to 1234
rand(1,5) # 1x5 matrix of random numbers

Random.seed! (1234) # reset the seed to 1234
rand(5) # vector of random numbers

1x5 Matrix{Float64}:
0.325977 0.549051 0.218587 0.894245 0.353112

5-element Vector{Float64}:
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0.32597672886359486
0.5490511363155669
0.21858665481883066
0.8942454282009883
0.35311164439921205

The package Random was loaded to set the random seed of the random
number generator. This is useful for testing purposes, as always the same
random sequence is generated. If the random seed is not required, one does
not need to load the Random package to execute the rand function, as the
latter is part of the base package of Julia.

2.7.2 Inverse-Transform Method

Once we have a method for drawing a uniform random number, we can, in
principle, simulate a random variable X from any cdf F' by using the following
algorithm.

Algorithm 2.2. (Inverse-Transform Method).

1. Generate U from U(0,1).
2. Return X = F~Y(U), where F~! is the inverse function of F.

Figure 2.15 illustrates the inverse-transform method. We see that the ran-
dom variable X = F~Y(U) has cdf F, since

P(X <z)=P(F'(U)<z) =PU < F(z)) = F(z) . (2.25)

F(z)
Lo

Fig. 2.15 The inverse- Y
transform method X v

Example 2.7 (Generating Uniformly on a Unit Disk). Suppose we
wish to draw a random point (X,Y") uniformly on the unit disk; see Fig. 2.16.
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In polar coordinates we have X = Rcos® and Y = Rsin ©, where O has a
U(0, 27) distribution. The cdf of R is given by

7'("1"2

F(r):]ID(Rgr):T:rQ, 0<r<1.

Its inverse is F~1(u) = y/u, 0 < u < 1. We can thus generate R via the
inverse-transform method as R = /Uy, where U; ~ U(0,1). In addition, we
can simulate @ as © = 27Us, where Uy ~ U(0,1). Note that U; and U,
should be independent draws from U(0, 1).

Fig. 2.16 Draw a point
(X,Y) uniformly on the
unit disk

The inverse-transform method holds for general cdfs F. Note that F' for
discrete random variables is a step function, as illustrated in Fig.2.17. The
algorithm for generating a random variable X from a discrete distribution
that takes values x1, o, ... with probabilities p1, po, ... is thus as follows.

Algorithm 2.3. (Discrete Inverse-Transform Method).

1. Generate U ~ U(0, 1).
2. Find the smallest positive integer k such that F(xy) > U and return

X = Tk.
F(z)
Lo .
s
E}p4
__________________________ >
P3 { 3
o | Dof: 3
Fig. 2.17 The inverse- D1 { 0
transform method for a 5 \ x
discrete random variable 1 T2 I3 X Zs .
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Drawing one of the numbers 1,...,n according to a probability vector
[p1,-..,pn] can be done in one line of Julia code:

minimum(findall (cumsum(p) .> rand()))

Here p is the vector of probabilities, such as [0.3,0.2,0.5], cumsum gives the
cumulative vector, e.g., [0.3,0.5,1], findall finds all the indices ¢ such that
the cumulative probability is greater than some random number rand (), and
minimum takes the smallest of these indices.

2.7.3 Acceptance—Rejection Method

The inverse-transform method may not always be easy to implement, in
particular when the inverse cdf is difficult to compute. In that case the
acceptance-rejection method may prove to be useful. The idea of this
method is depicted in Fig. 2.18. Suppose we wish to sample from a pdf f. Let g
be another pdf such that for some constant C' > 1 we have that Cg(x) > f(x)
for all x. It is assumed that it is easy to sample from g, for example, via the
inverse-transform method.

WOa) = Cgl)

N

Fig. 2.18 Illustration of the acceptance-rejection method

Tt is intuitively clear that if a random point (X, Y) is uniformly distributed
under the graph of f—that is, on the set {(z,y) : 0 <y < f(x)}—then X
must have pdf f. To construct such a point, let us first draw a random point
(Z,V) by drawing Z from g and then drawing V uniformly on [0, Cg(Z)]. The
point (Z, V) is uniformly distributed under the graph of Cg. If we keep draw-
ing such a point (Z,V) until it lies under the graph of f, then the resulting
point (X,Y") must be uniformly distributed under the graph of f and hence
the X coordinate must have pdf f. This leads to the following algorithm.
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Algorithm 2.4. (Acceptance—Rejection Method).

1 repeat

2 Generate X ~ g.

3 Generate Y ~ U(0, C g(X)).
4 until Y < f(X)

5 return X

Example 2.8 (Generating from the Standard Normal Distribution).
To sample from the standard normal pdf via the inverse-transform method
requires knowledge of the inverse of the corresponding cdf, which involves
numerical integration. Instead, we can use acceptance-rejection. First, ob-
serve that the standard normal pdf is symmetric around 0. Hence, if we can
generate a random variable X from the positive normal pdf (see Fig. 2.19),

fx) = \/Z e w0, (2.26)

then we can generate a standard normal random variable by multiplying X
with 1 or —1, each with probability 1/2. We can bound f(z) by C g(x), where
g(z) = e~ is the pdf of the Exp(1) distribution. The smallest constant C

such that f(z) < Cg(z) is y/2¢/7.

157

Fig. 2.19 Bounding the positive normal density (solid curve) via an Exp(1) pdf (times
C ~ 1.3155)

Drawing from the Exp(1) distribution can be easily done via the inverse-
transform method, noting that the corresponding cdf is the function 1 —
e ®,x > 0, whose inverse is the function —In(1 — u), u € (0,1). This gives
the following specification of Algorithm 2.4, where f and C' are defined above.
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Algorithm 2.5. (N(0,1) Generator).

1 repeat

2 Draw Uy ~ U(0,1) and let Z = —1InUj.

3 Draw Uy ~ U(0,1) and let Y = Uy Ce%.

4 until Y < f(2)

5 Draw Us ~ U(O, 1) and let X =72 (2 1{U3<1/2} = 1)
6 return X

In Step 2, we have used the fact that if U ~ U(0,1) then also 1 — U ~
U(0,1). In Step 5, L1y, <172} denotes the indicator of the event {Us < 1/2},
which is 1 if Us < 1/2 and 0 otherwise. An alternative generation method
is given in Algorithm 3.2. In Julia normal random variable generation is I 82
implemented via the randn function.

2.8 Problems

2.1. Two fair dice are thrown and the smallest of the face values, M say, is
noted.

a. Give the discrete pdf of M in table form, as in Table 2.1. = 28
b. What is the probability that M is at least 37
c. Calculate the expectation and variance of M.

2.2. A continuous random variable X has cdf

0, z <0
Fla) = 22 /5, 0<z<1
)i (-2?+62-4), 1<z<3

1, z>3.

a. Find the corresponding pdf and plot its graph.
b. Calculate the following probabilities:
i P(X <2)
i. P(1 < X <2)
iii. P(1 < X <2).
iv. P(X > 1/2).
c. Show that EX = 22/15.
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2.3. In this book most random variables are either discrete or continuous;
that is, they have either a discrete or continuous pdf. It is also possible to
define random variables that have a mix of discrete and continuous charac-
teristics. A simple example is a random variable X with cdf

0 0
F(:c): , » xr <
l—ce™, 20

for some fixed 0 < ¢ < 1.

a. Sketch the cdf F.
b. Find the following probabilities:

LPO<X <z),z>0.
i.P(0< X <z),z>0.
iii. P(X =), x > 0.
c¢. Describe how the inverse-transform method can be used to draw samples
from this distribution.

2.4. Let X be a positive random variable with cdf F'. Prove that
EX = / (1—-F(z))dz . (2.27)
0

2.5. Let X be a random variable that can possibly take values —oo and oo
with probabilities P(X = —o0) = a and P(X = o) = b, respectively. Show
that the corresponding cdf F satisfies lim,_, o, F/(z) = a and lim,_, o, F'(z) =
1-—0.

2.6. Suppose that in a large population the fraction of left-handers is 12%.
We select at random 100 people from this population. Let X be the number of
left-handers among the selected people. What is the distribution of X? What
is the probability that at most seven of the selected people are left-handed?

2.7. Let X ~ Geom(p). Show that
P(X > k) = (1 —p)*.
2.8. Find the moment generating function (MGF) of X ~ Ula, b].

2.9. Let X = a+ (b —a)U, where U ~ U[0, 1]. Prove that X ~ Ua,b]. Use
this to provide a more elegant proof of Theorem 2.13.

2.10. Show that the exponential distribution is the only continuous (positive)
distribution that possesses the memoryless property. Hint: show that the
memoryless property implies that the tail probability g(x) = P(X > x)
satisfies g(z +y) = g(x)g(y).
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2.11. Let X ~ Exp(2). Calculate the following quantities:

a.P(-1 <X <1).
b. P(X > 4).

c. P(X >4|X > 2).
d. EX2.

2.12. What is the expectation of a random variable X with the following
discrete pdf on the set of integer numbers, excluding 0:

f@)= 2 5, wE€Z\{0}?

What is the pdf of the absolute value | X| and what is its expectation?

2.13. A random variable X is said to have a discrete uniform distribution
on the set {a,a+1,...,b} if

a. What is the expectation of X7

b. Show that Var(X) = (b—a)(b—a+ 2)/12.

c. Find the probability generating function (PGF) of X.

d. Describe a simple way to generate X using a uniform number generator.

2.14. Let X and Y be random variables. Prove that if X <Y, then EX <
EY.

2.15. A continuous random variable is said to have a logistic distribution if
its pdf is given by
e*:l)
=— eR. 2.28
@) = e T (2:29)

a. Plot the graph of the pdf.

b. Show that P(X > z) = 1/(1 + %) for all .

c. Write an algorithm based on the inverse-transform method to generate
random variables from this distribution.

2.16. An electrical component has a lifetime (in years) that is distributed
according to an exponential distribution with expectation 3. What is the
probability that the component is still functioning after 4.5 years, given that
it still works after 4 years? Answer the same question for the case where the
component’s lifetime is normally distributed with the same expected value
and variance as before.
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2.17. Consider the pdf given by

4e_4(’_1)7 z>1,
f(@{o, z<1.

a. If X is distributed according to this pdf f, what is its expectation?
b. Specify how one can generate a random variable X ~ f using a uniform
random number generator.

2.18. Let X ~ N(4,9).

a. Plot the graph of the pdf.
b. Express the following probabilities in terms of the cdf @ of the standard
normal distribution:
i. P(X <3).
i. P(X > 4).
iii. P(—1 < X <5).
c. Find E[2X + 1].
d. Calculate EX2.

2.19. Let @ be the cdf of X ~ N(0,1). The integral

Tl e
d(x) = \/ﬂe 2% du

needs to be evaluated numerically. In Julia there are several ways to do this.

1. If the package Distributions is loaded, the cdf can be evaluated via the
function x -> cdf (Normal(0,1),x). The inverse cdf can be evaluated
via p -> quantile(Normal(0,1),p).

2. Or use the error function from the package SpecialFunctions, defined

as -
erf(x):—/ e du, z€eR.
VT Jo

The inverse of erf is implemented in the same package as erfinv.

3. A third alternative is to use numerical integration (quadrature) via the
package QuadGK. For example, quadgk (f,0,x) integrates a function f on
the interval [0, z].

a. Show that &(z) = (erf(z/v/2) +1)/2.

b. Evaluate @(x) for x = 1,2, and 3 via (a) the error function and (b) nu-
merical integration of the pdf, using the fact that #(0) = 1/2.

c. Show that the inverse of @ is given by

o7 (y) =V2erft(2y—1), O0<y<1.
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2.20. Based on Julia’s rand and randn functions only, implement algorithms
that generate random variables from the following distributions:

- U2, 3].

. N(3,9).

. Exp(4).

. Bin(10,1/2).
. Geom(1/6).

o &0 O

2.21. The Weibull distribution Weib(c, \) has cdf
Flz)=1—¢ X% 2>0. (2.29)

It can be viewed as a generalization of the exponential distribution. Write
a Julia program that draws 1000 samples from the Weib(2, 1) distribution
using the inverse-transform method. Give a histogram of the sample.

2.22. Consider the pdf

flx)=ce"z(1—2), 0<x<1.

a. Show that ¢ =¢/(3 —e).

b. Devise an acceptance-rejection algorithm to generate random variables
that are distributed according to f.

c. Implement the algorithm in Julia.

2.23. Implement two different algorithms to draw 100 uniformly generated
points on the unit disk: one based on Example 2.7 and the other using (two-
dimensional) acceptance-rejection.

I 53
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Chapter 3
Joint Distributions

Often a random experiment is described via more than one random variable.
Here are some examples.

1. We randomly select n = 10 people and observe their heights. Let
X1,...,X, be the individual heights.

2. We toss a coin repeatedly. Let X; = 1 if the i-th toss is Heads and X; = 0
otherwise. The experiment is thus described by the sequence X7, X5, ...
of Bernoulli random variables.

3. We randomly select a person from a large population and measure his/her
weight X and height Y.

How can we specify the behavior of the random variables above? We should
not just specify the pdf of the individual random variables, but also say some-
thing about the interaction (or lack thereof) between the random variables.
For example, in the third experiment above if the height Y is large, then
most likely X is large as well. In contrast, in the first two experiments it is
reasonable to assume that the random variables are “independent” in some
way; that is, information about one of the random variables does not give
extra information about the others. What we need to specify is the joint dis-
tribution of the random variables. The theory below for multiple random
variables follows a similar path to that of a single random variable described
in Sects.2.1-2.3.

Let X4,...,X,, be random variables describing some random experiment.
We can accumulate the {X;} into a random vector X = [X1,..., X,,] (row
vector) or X = [X1,...,X,]" (column vector). Recall that the distribu-
tion of a single random variable X is completely specified by its cumulative
distribution function. For multiple random variables we have the following
generalization.
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Definition 3.1. (Joint Cdf). The joint cdfof X1, ..., X, is the func-
tion F': R™ — [0, 1] defined by

F(zy,...,z,) =P(X71 <21,..., X, < z,) .

Notice that we have used the abbreviation P({X; < 1} n---N{X,, <
xn}) =P(X1 < 21,...,X, <z,)todenote the probability of the intersection
of events. We will use this abbreviation throughout the book.

As in the univariate (i.e., single-variable) case we distinguish between dis-
crete and continuous distributions.

3.1 Discrete Joint Distributions

Example 3.1 (Dice Experiment). In a box there are three dice. Die 1
is an ordinary die; die 2 has no six faces, but instead two 5 faces; die 3 has
no five faces, but instead two 6 faces. The experiment consists of selecting
a die at random followed by a toss with that die. Let X be the die number
that is selected and let Y be the face value of that die. The probabilities
P(X =x,Y = y) in Table 3.1 specify the joint distribution of X and Y. Note
that it is more convenient to specify the joint probabilities P(X = z,Y = y)
than the joint cumulative probabilities P(X < z,Y < y). The latter can
be found, however, from the former by applying the sum rule. For example,
PX<2Y<3)=PX=LY=1)+--+PX=2Y=3)=6/18=1/3.
Moreover, by that same sum rule, the distribution of X is found by summing
the P(X = z,Y = y) over all values of y—giving the last column of Table 3.1.
Similarly, the distribution of Y is given by the column totals in the last row
of the table.

Table 3.1 The joint distribution of X (die number) and Y (face value)

Y
12345 6|

1l 11 afs
18 18 18 18 18 18| 3
1 1 1 1 1
v 2|3sss o V|3
1 1 1 1 1 1
Slsmwi 0 5|3
N

6 6 6 6 6 6
In general, for discrete random variables X7, ..., X, the joint distribution

is easiest to specify via the joint pdf.
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Definition 3.2. (Discrete Joint Pdf). The joint pdf f of discrete
random variables X7, ..., X,, is given by the function

fl@y,.. . xn) =P(X1 =21,..., X =2,) .

We sometimes write fx,, .. x, instead of f to show that this is the pdf of the
random variables X7,..., X,. Or, if X = [X3,...,X,] is the corresponding
random vector, we can write fx instead.

If the joint pdf f is known, we can calculate the probability of any event
{X € B}, B in R", via the sum rule as

P(X €B)= Y f(x)

xcB

Compare this with (2.2). In particular, as explained in Example 3.1, we can
find the pdf of X;—often referred to as a marginal pdf, to distinguish it
from the joint pdf—by summing the joint pdf over all possible values of the
other variables:

Z Z Z Zf L1y L1, T, T 1, L) - (3.1)

Ti—1 Ti+1

The converse is not true: from the marginal distributions one cannot in gen-
eral reconstruct the joint distribution. For example, in Example 3.1 we cannot
reconstruct the inside of the two-dimensional table if only given the column
and row totals.

However, there is one important exception, namely, when the random vari-
ables are independent. We have so far only defined what independence is
for events. We can define random variables Xi,..., X, to be independent
if events {X; € B1},...,{X, € B,} are independent for any choice of sets
{B;}. Intuitively, this means that any information about one of the random
variables does not affect our knowledge about the others.

Definition 3.3. (Independence). Random variables X7, ..., X,, are
called independent if for all events {X; € B;} with B; C R, i =

1,...,n

P(X, €By,...,Xn € By) =P(X; € B))--P(X, €B,). (3.2

= 27

=17
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A direct consequence of the above definition is the following important
theorem.

Theorem 3.1. (Independence and Product Rule). Random vari-
ables Xi,...,X,, with joint pdf f are independent if and only if

f@1,.. %) = fx,(x1) - fx,. (zn) (3.3)

for all 1, ...,z,, where {fx,} are the marginal pdfs.

Proof. The theorem is true in both the discrete and continuous case. We
only show the discrete case, where (3.3) is a special case of (3.2). It follows
that (3.3) is a necessary condition for independence. To see that it is also a
sufficient condition, let X = (X1,...,X,) and observe that

P(X, € By,..., Xy €By) =P(X € Bi x -~ x B,) = Y _ f()
—_—— —
A xcA

=Y @) fx (@) = D fx(@)- D fx (@)

xzEA r1E€DB; T, €By,
=P(X; € B;y)---P(X,, € By) .
Here A = By x --- x B,, denotes the Cartesian product of By, ..., B,. O

Example 3.2 (Dice Experiment Continued). We repeat the experiment
in Example 3.1 with three ordinary fair dice. Since the events {X = z} and
{Y =y} are now independent, each entry in the pdf table is  x §. Clearly in
the first experiment not all events {X = z} and {Y = y} are independent.

Remark 3.1. An infinite sequence X1, Xo,... of random variables is said to
be independent if for any finite choice of positive integers i1, s, ..., %, (none
of them the same) the random variables X;,, ..., X; are independent. Many
statistical models involve random variables X;, X5,... that are indepen-
dent and identically distributed, abbreviated as iid. We will use this
abbreviation throughout this book and write the corresponding model as

Xl,Xg,...iimdaDist (or for F),

where Dist is the common distribution with pdf f and cdf F.

Example 3.3 (Bernoulli Process). Consider the experiment where we
toss a biased coin n times, with probability p of Heads. We can model this
experiment in the following way. For ¢ = 1,...,n let X; be the result of the
i-th toss: {X; = 1} means Heads (or success), and {X; = 0} means Tails (or
failure). Also, let
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PX,=1)=p=1-P(X;=0), i=12,...,n.

Finally, assume that X,...,X,, are independent. The sequence

iid

X1, Xo,... ~ Ber(p)

is called a Bernoulli process with success probability p. Let X = X3 +---+
X, be the total number of successes in n trials (tosses of the coin). Denote
by By the set of all binary vectors @ = [z1,...,,] such that Y .  x; = k.

Note that By has (Z) elements. We have for every k£ =0,...,n,

P(X =k) = Z P(X) =21,..., X, =x,)

xrc By

=Y Py =) P(Xp=z,)= Y p*(1—p)" "
xE By, T € DBy

ny n—k

= 1- .

(k)p (1-p)
In other words, X ~ Bin(n,p). Compare this with Example 2.2. I 24

For the joint pdf of dependent discrete random variables we can write, as
a consequence of the product rule (1.5), I 14

f(xla"'vxn) :]P(Xl :$1,~~';Xn :l'n)
:]P)(Xl :xl)IP’(XQ :I2|X1 :Il) Xoeee
X]P)(Xn :xnIXl =T1,. 5 Xpo1 :xn—l) ;
assuming that all probabilities P(X = x1),...,P(X; = x1,..., Xpn—1 = Tpn_1)
are non-zero. The function which maps, for a fixed x1, each variable x5 to
the conditional probability
P(Xl = Qﬁl,Xg = $2)
]P)(Xl = Il)

IP(XQ = T2 |X1 = {)31) = (34)
is called the conditional pdf of Xs given X; = z;. We write it as
Ix,x, (x2 | 21). Similarly, the function =, — P(X, = z,|X1 = z1,...,
Xp—1 = Zp—1) is the conditional pdf of X, given X7 = x1,..., Xp—1 = Tp—1,
which is written as fx | x,.. x, ,(@n |21, .., 20n_1).

Example 3.4 (Generating Uniformly on a Triangle). We uniformly
select a point (X,Y) from the triangle T = {(z,y) : x,y € {1,...,6},y < x}
in Fig. 3.1.
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16
Fig. 3.1 Uniformly select

a point from the triangle 1 2 3 4 5 6

Because each of the 21 points is equally likely to be selected, the joint pdf
is constant on 1"

f(z,y) = % (z,y) €T .

The pdf of X is found by summing f(z,y) over all y. Hence,

fx(x)=2—xl7 re{l,... 6}.

Similarly,
-y

fY(y):T, ye{l,...,6}.

For a fixed « € {1,...,6} the conditional pdf of Y given X = z is

fY|X(y|x).ffif£j))£ia ye{la"'ax}a

which simply means that, given X = z, Y has a discrete uniform distribution
on {1,...,x}.

3.1.1 Multinomial Distribution

An important discrete joint distribution is the multinomial distribution. It
can be viewed as a generalization of the binomial distribution. We give the
definition and then an example of how this distribution arises in applications.
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Definition 3.4. (Multinomial Distribution). A random vector

[X1, X2,...,X] is said to have a multinomial distribution with pa-
rameters n and pq, po, ..., pr (positive and summing up to 1), if
P(X, = Xp= o) = —— Tt L Tk
( 1=21y---, kixk)il‘l!xz!._.xk!plp2..'pk,‘ ? (35)

for all q,...,25 € {0,1,...,n} such that z1 + 23 + - -+ + 2, = n. We
write (X1,...,Xg) ~ Mnom(n, p1,...,pk)-

Example 3.5 (Urn Problem). We independently throw n balls into &k urns,
such that each ball is thrown in urn ¢ with probability p;, ¢ = 1,...,k; see
Fig. 3.2.

of balls has a multinomial
distribution

p1 p2 p3 Pk
Fig. 3.2 Throwing n
balls into k& urns with e o o
probabilities p1, ..., pk-
The random configuration

1 2 3 k

Let X; be the total number of balls in urn ¢, ¢ = 1,..., k. We show that

[X1,...,Xk] ~ Mnom(n,p1,...,pk). Let 1, ...,z be integers between 0 and

n that sum up to n. The probability that the first x; balls fall in the first
urn, the next x5 balls fall in the second urn, etc., is

€T €T X
p11p22 pkk

To find the probability that there are x; balls in the first urn, x5 in the second,
and so on, we have to multiply the probability above with the number of ways
in which we can fill the urns with a1, xa, ..., xy balls, i.e.,, nl/(z1! zo!- - - xx!).
This gives (3.5).

Remark 3.2. Note that for the binomial distribution there are only two
possible urns. Also, note that for each i = 1,...,k, X; ~ Bin(n,p;).
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3.2 Continuous Joint Distributions

Joint distributions for continuous random variables are usually defined via
their joint pdf. The theoretical development below follows very similar lines
to both the univariate continuous case in Sect.2.2.2 and the multivariate
discrete case in Sect. 3.1.

Definition 3.5. (Continuous Joint Pdf). Continuous random vari-
ables X1,..., X, are said to have a joint pdf f if

b1 bn
]P)(al<X1Sbla"'aan<Xn§bn):/ f(xla"'axn)d:rl"’dxn
al An

for all ay,...,b,.

This implies, similar to the univariate case in (2.3), that the probability
of any event pertaining to X = [X1,...,X,]—say event {X € B}, where B
is some subset of R”—can be found by integration:

IP’(XGB):/ flz,. .. x,) doy .. da, . (3.6)
B

As in (2.5) we can interpret f(z1,...,x,) as the density of the probability
distribution at [x1,...,2,]. For example, in the two-dimensional case, for
small h > 0,

]P(ZL'l §X1 §$1+h, T2 SXQ §$2+h)
z1+h  pxath

:/ / f(u,v)dudv ~ h? f(z1,x5) .
Xy T2

Similar to the discrete multivariate case in (3.1), the marginal pdfs can be
recovered from the joint pdf by integrating out the other variables:

oo oo

fX,,(»T):/ / floy, oz, w241, 2n) doy Lo dey o daggy L day,
— 00 — 00

We illustrate this for the two-dimensional case. We have

FX1 (l‘) = ]P)(Xl S J},XQ S OO) = / (/ f(l'l,l‘g)dl‘g) dxl .
By differentiating the last integral with respect to z, we obtain

@)= [ " fa ) da
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It is not possible, in general, to reconstruct the joint pdf from the marginal
pdfs. An exception is when the random variables are independent; see Defi-
nition 3.3. By modifying the arguments in the proof of Theorem 3.3 to the
continuous case—basically replacing sums with integrals—it is not difficult to
see that the theorem also holds in the continuous case. In particular, contin-
uous random variables X7,..., X,, are independent if and only if their joint
pdf, f say, is the product of the marginal pdfs:

f@esmn) = fx, (@1) - fx,, (20) (3.7)

for all x1,...,x,. Independence for an infinite sequence of random variables
is discussed in Remark 3.1.

Example 3.6 (Generating a General iid Sample). Consider the se-
quence of numbers produced by a uniform random number generator such
as Julia’s rand function. A mathematical model for the output stream is:
Ui,Us, ..., are independent and U(0, 1)-distributed; that is,

iid

Ui, Us, ... 2 U(0,1) .

Using the inverse-transform method it follows that for any cdf F,

F YUy, F N (U,),... S F.

Example 3.7 (Quotient of Two Independent Random Variables).
Let X and Y be independent continuous random variables, with Y > 0.
What is the pdf of the quotient U = X/Y in terms of the pdfs of X and Y?
Consider first the cdf of U. We have

Fy(u)=PU <u) =P(X/Y <u) =P(X <Yu)

:/OOO tfx(x)fY(y)dxdyZ/_to/oooyfx(yz)fy(y)dy dz,

where we have used the change of variable z = z/y and changed the order of
integration in the last equation. It follows that the pdf is given by

fol) = o) = [ ufx fr ) dy (3.)

As a particular example, suppose that X and V' both have a standard normal
distribution. Note that X/V has the same distribution as U = X/Y, where
Y = |V| > 0 has a positive normal distribution. It follows from (3.8) that
2,2 2

u

[e’e] 1 L
fU(U)Z/O y\/T—Fe 2Y Nors

1 1.2 w2 1 1
:/o ype WOy = o, ueR.

e_%yzdy
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This is the pdf of the Cauchy distribution.
Definition 3.6. (Conditional Pdf). Let X and Y have joint pdf f

and suppose fx(z) > 0. The conditional pdf of Y given X = z is
defined as
f(z,y)

fx (@)

frix(ylz) = for all y . (3.9)

For the discrete case, this is just a rewrite of (3.4). For the continuous
case, the interpretation is that fyx (y|z) is the density corresponding to the
cdf Fy|x(y|x) defined by the limit

. . PY <y, z<X<x+h)
F =limP(Y < <X <z+h)=1
vix(y|2) =lmPQY <ylz < X < 2th) = lim Pz <X <z+h)
In many statistical situations, the conditional and marginal pdfs are known
and (3.9) is used to find the joint pdf via

flz,y) = fx(=) fyix(y|z) ,

or, more generally for the n-dimensional case:

flay,. ... zy) =

(3.10)
Ix (551) fXQ\Xl (1:2 | 961) T an\Xl,..‘,Xn,I(mn \131, e 7$n—1) ,

which in the discrete case is just a rephrasing of the product rule in terms
of probability densities. For independent random variables (3.10) reduces
to (3.7). Equation (3.10) also shows how one could sequentially generate
a random vector X = [Xy,...,X,] according to a pdf f, provided that
it is possible to generate random variables from the successive conditional
distributions, as summarized in the following algorithm.

Algorithm 3.1. (Dependent Random Variable Generation).

1 Draw X; from pdf fx,.

2 fort =2 to n do

3 Given X1 = z1,..., X; = 4, generate Xy from the
conditional pdf fx, . x,,.. x, (Te41] 1,..., 7).

4 return X = [Xy,..., X,]

Example 3.8 (Non-uniform Distribution on Triangle). We select a
point (X,Y") from the triangle (0,0)—(1,0)—(1,1) in such a way that X has a
uniform distribution on (0, 1) and the conditional distribution of Y given X =
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x is uniform on (0, x). Figure 3.3 shows the result of 1000 independent draws
from the joint pdf f(z,y) = fx(z) fy|x (v |z), generated via Algorithm 3.1.
It is clear that the points are not uniformly distributed over the triangle.

using Plots

N = 1000
x = rand(N)
y = rand(N).*x

scatter(x,y)

Fig. 3.3 1000 realizations from the joint density f(z,y), generated using the Julia
program on the left, which implements Algorithm 3.1

Random variable X has a uniform distribution on (0, 1); hence, its pdf is
fx(xz) =1onz € (0,1). For any fixed z € (0,1), the conditional distribution
of Y given X = z is uniform on the interval (0, x), which means that

1
fY|X(y|$):;a O<y<wz.

It follows that the joint pdf is given by

1
— O<zx<l, O<y<z.
T

f(x,y) = fx () frix(ylz) =

From the joint pdf we can obtain the pdf of Y as

e’} 11
fY(y)Z/ f(wyy)dm‘:/ —dz=—Iny, 0<y<l.
. ;

Finally, for any fixed y € (0,1) the conditional pdf of X given Y = y is

iy (@ly) = J;f(?yy)) _ x;nly, y<o<l.
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3.3 Mixed Joint Distributions

So far we have only considered joint distributions in which the random vari-
ables are all discrete or all continuous. The theory can be extended to mixed
cases in a straightforward way. For example, the joint pdf of a discrete vari-
able X and a continuous variable Y is defined as the function f(z,y) such
that for all events {(X,Y) € A}, where A C R?,

P(X,V)e4) =Y / L oens F@y) dy .

where 1 denotes the indicator. The pdf is often specified via (3.10).

Example 3.9 (Beta Distribution). Let © ~ U(0,1) and (X |© = 0) ~
Bin(n, 6). Using (3.10), the joint pdf of X and O is given by

F(z,0) = <Z>9$(10)”m, 0€(0,1), 2=0,1,....n.

By integrating out 6, we find the pdf of X:

Fx(z) = /01 (”)9%(1 — )" = (Z)B(m tln—z+1),

€T

where B is the beta function, defined as

L(a)(B)

Tt (3.11)

1
B(a,p) = / (1 -ttt =
0
and I is the gamma function in (2.21). The conditional pdf of © given X = z,
where x € {0,...,n}, is

faux0]a) =522 - PEZD e 0.

The continuous distribution with pdf

(1 - x)Bfl
B(a, ) ’
is called the beta distribution with parameters « and 8. Both parameters

are assumed to be strictly positive. We write Beta(a, ) for this distribution.
For this example we have thus (O | X = x) ~ Beta(x + 1,n —z + 1).

flz;a,8) = z € (0,1) (3.12)
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3.4 Expectations for Joint Distributions

Similar to the univariate case in Theorem 2.2, the expected value of a real-
valued function h of (X71,...,X,) ~ f is a weighted average of all values that
h(Xy,...,X,) can take. Specifically, in the continuous case,

IEh(Xl,...,Xn):/~-~/h(aj1,...,mn)f(xl,...,a:n)dml...dmn. (3.13)

In the discrete case replace the integrals above with sums.

Two important special cases are the expectation of the sum (or more gen-
erally affine transformations) of random variables and the product of random
variables.

Theorem 3.2. (Properties of the Expectation). Let Xi,..., X,
be random variables with expectations pq, ..., t,. Then,

E[a + lel el b2X2 S oo P ann] =a+ bLLL1 ahEELE bn,LLn (314)
for all constants a, by, ...,b,. Also, for independent random variables,

E[XlXQXn] = U1 2y . (315)

Proof. We show it for the continuous case with two variables only. The general
case follows by analogy and, for the discrete case, by replacing integrals with
sums. Let X7 and X5 be continuous random variables with joint pdf f. Then,
by (3.13),

Ela + b1 X1 + b2 X3] = //(a +b121 + bows) f(w1,22) dzy dag
=a+b //xlf(xl,xz)dzldxg +b2//$2f(x1,a:2)d1:1dxg
:a+b1/x1 (/ f(xl,xg)dx2> day +b2/x2 (/ f(xl,xg)dx1> dzs
=a+b /xlfxl(xl)dxl + by /.Tgfxz(.’l,'z)dxg =a+ by + baps .

Next, assume that X; and X, are independent, so that f(x1,22) = fx, (x1)X
fx,(xz2). Then,

E[X1 Xo] = //901 T3 fx, (71) fx, (v2) Aoy dag
:/Ilfxl(ml)dl"l X /‘TQsz(IQ)dIQ = 1 pi2 -

5 3]
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Definition 3.7. (Covariance). The covariance of two random vari-
ables X and Y with expectations EX = pux and EY = py is defined
as

Cov(X,Y) = E[(X — px)(Y — iy )] .

The covariance is a measure of the amount of linear dependency between
two random variables. A scaled version of the covariance is given by the
correlation coefficient:

Cov(X,Y)

Q(XaY):
Ox 0Oy

(3.16)
where 0% = Var(X) and 0% = Var(Y). The correlation coefficient always lies
between —1 and 1; see Problem 3.16.

For easy reference Theorem 3.3 lists some important properties of the
variance and covariance.

Theorem 3.3. (Properties of the Variance and Covariance). For
random variables X, Y, and Z and constants a and b, we have

1. Var(X) —EX2 — (EX)2.
Var(a + bX) = b*Var(X).

Cov(X,Y) = EXY — EXEY.

Cov(X,Y) = Cov(Y, X).
Cov(aX +b0Y,Z) =aCov(X,Z) +bCov(Y, Z).
Cov(X, X) = Var(X).

Var(X —|— Y) = Var(X) + Var(Y) + 2Cov(X,Y).
If X and Y are independent, then Cov(X,Y) = 0.

POF'@P‘PWN

Proof. For simplicity of notation we write EZ = uy for a generic random
variable Z. Properties 1 and 2 were already shown in Theorem 2.4.

3. Cov(X,Y) =E[(X —pux)(Y —py)] =E[XY = X py =Y px + px py] =
E[X Y] — pix sy

4. Cov(X,Y) = E[(X —px)(Y —py)] = E[(Y — py ) (X — px)] = Cov(Y, X).

5. Cov(aX +bY,Z) = E[(aX + bY)Z] — ElaX + bWY]|EZ = aE[XZ] -
aEXEZ +bE[YZ] - bEYEZ = aCov(X, Z) + bCov(Y, Z).

6. Cov(X, X) = E[(X — jux) (X — ux)] = E[(X — ux)?] = Var(X).

7. By Property 6, Var(X+Y) = Cov(X+Y, X+Y). By Property 5, Cov(X+
Y, X+Y) = Cov(X, X)+Cov(Y,Y)+Cov(X,Y)+Cov(Y, X) = Var(X)+
Var(Y) 4+ 2 Cov(X,Y), where in the last equation Properties 4 and 6 are
used.
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8. If X and Y are independent, then E[X Y] = px py. Therefore, Cov(X,Y)
= 0 follows immediately from Property 3.

As a consequence of Properties 2 and 7, we have the following general
result for the variance of affine transformations of random variables.

Corollary 3.1. (Variance of an Affine Transformation). Let
X1,...,X, be random variables with variances o7, ...,02. Then,

n

Var | a + b; X, | = 22 +2 b;b;Cov(X;, X; 3.17
v 71 J J
i=1

i=1 i<j
for any choice of constants a and b1, ...,b,. In particular, for indepen-
dent random variables X1,..., X,
Var(a + b1 X1 + - + b0, X,) = b207 4+ -+ b202 . (3.18)
Let X = [X1,...,X,]" be a random column vector. Sometimes it is con-

venient to write the expectations and covariances in vector notation.

Definition 3.8. (Expectation Vector and Covariance Matrix).
For any random column vector X we define the expectation vector
as the vector of expectations

=1, .. pn]" =[EXL,...,EX,]T .

The covariance matrix ¥ is defined as the matrix whose (i, j)-th
element is
Cov(Xi, Xj) = E[(X; — pi)(X; — p5)] -

If we define the expectation of a matrix to be the matrix of expectations,
then we can write the covariance matrix succinctly as

T=E[(X-p)(X-p'].

Note that any covariance matrix ¥ is symmetric and positive semidefi-
nite; that is, for any (column) vector wu,

u'Zu>0. (3.19)
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To see this, let Y = X — p. Then,
uw Su=u E[YY u=E[u' YY ' 4]
=E[(Y u)" Y u] =E(Y "u)?>0.

Definition 3.9. (Conditional Expectation). The conditional ex-
pectation of Y given X = z, denoted E[Y | X = z], is the expectation
corresponding to the conditional pdf fy|x(y|x). That is, in the contin-
uous case,

E[Y|X=x]=/ny|X<y|x>dy.

In the discrete case replace the integral with a sum.

Note that E[Y' | X = z] is a function of z, say h(z). The corresponding
random variable h(X) is written as E[Y | X]. The expectation of E[Y | X] is,
in the continuous case,

EE[Y | X]

f(z,y)
EY[X =alfx(z)de= [ [y fx (@) dy da
/ * / / ()™ (3.20)

/yfy(y)dy =EY.

This “stacking” of (conditional) expectations is referred to as repeated con-
ditioning.

Example 3.10 (Non-uniform Distribution on Triangle Continued).
In Example 3.8 the conditional expectation of Y given X = z, with 0 < z < 1,
is

E[Y|X:x]:%x,

because conditioned on X = z, Y is uniformly distributed on the interval
(0, x). Using the repeated conditioning rule we find
1

EY = 1EX = 1 |
2 4

3.5 Functions of Random Variables

Suppose X1, ..., X, are measurements of a random experiment. What can be
said about the distribution of a function of the data, say Z = g(X1, ..., Xn),
when the joint distribution of X3,..., X, is known?
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Example 3.11 (Pdf of an Affine Transformation). Let X be a contin-
uous random variable with pdf fx and let Z = a+bX, where b # 0. We wish
to determine the pdf fz of Z. Suppose that b > 0. We have for any z

Fz(2)=P(Z <2)=P(X < (2—a)/b) = Fx((z —a)/b) .

Differentiating this with respect to z gives fz(z) = fx((z — a)/b) /b. For
b < 0 we similarly obtain fz(z) = fx((z —a)/b) /(—b) . Thus, in general,

F2(2) = i Fx (;) | (3.21)

Example 3.12 (Pdf of a Monotone Transformation). Generalizing the
previous example, suppose that Z = g(X) for some strictly increasing func-
tion g. To find the pdf of Z from that of X we first write

Fr(z)=P(Z<z2)=P(X<g ' (2)) =Fx (97'(2)) ,

! is the inverse of g. Differentiating with respect to z now gives

where g~

(3.22)

For strictly decreasing functions, g’ needs to be replaced with its negative
value.

3.5.1 Linear Transformations

Let = [z1,...,2,]" be a column vector in R” and B an m x n matrix.
The mapping « — z, with z = B, is called a linear transformation. Now
consider a random vector X = [X1,...,X,]T, and let

Z=BX.

Then Z is a random vector in R™. In principle, if we know the joint distri-
bution of X, then we can derive the joint distribution of Z. Let us first see
how the expectation vector and covariance matrix are transformed.



80 3 Joint Distributions

Theorem 3.4. (Expectation and Covariance Under a Linear
Transformation). If X has expectation vector px and covariance ma-
trix X x, then the expectation vector and covariance matrix of Z = BX
are given by

nz = Bux (3.23)

and
>,=BXxB'. (3.24)

Proof. We have p, =EZ =EBX =BEX = Bpux and
22 =E[(Z - pz)(Z —pz) " | =EBX — px)BX —px))']
=BE[(X — px)(X - MX)T}BT
=BXxB'.

O

Suppose that B is an invertible n x n matrix. If X has a joint pdf fx,
what is the joint density fz of Z7 Let us consider the continuous case. For
any fixed z, let z = Ba. Hence, = B~ !2. Consider the n-dimensional cube
C = [z1,21 + h] X -+ X [2n, 2zn + h]. Then, by definition of the joint density

for Z, we have P(Z € C)~ h" fz(2) .

Let D be the image of C under B~!—that is, the parallelepiped of all
points « such that Bx € C'; see Fig. 3.4.

E
B—l
-

w¥_’/ z

Fig. 3.4 Linear transformation

A basic result from linear algebra is that any matrix B linearly trans-
forms an n-dimensional rectangle with volume V' into an n-dimensional par-
allelepiped with volume V' |B|, where |B| = |det(B)|. Thus, in addition to
the above expression for P(Z € C) we also have
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P(Z € C) =P(X € D)~ h"B7!| fx(z) = h"|B|™! fx(z) .
Equating these two expressions for P(Z € C) and letting h go to 0, we obtain

_ fx(B7'2)

fZ(z) |B| )

z € R". (3.25)

3.5.2 General Transformations

We can apply similar reasoning as in the previous subsection to deal with
general transformations x — g(x), written out as

T g1(x)

T2 ga(x)
— .

Tn gn(w)

For a fixed z, let z = g(x). Suppose g is invertible; hence, x = g~1(z). Any
infinitesimal n-dimensional rectangle at  with volume V is transformed into
an n-dimensional parallelepiped at z with volume V' |Jg(x)|, where Jg(x) is
the matriz of Jacobi at x of the transformation g; that is,

991 .. 991
axl an
Jg(@) = | : :
% . 9gn
oxq oz,

Now consider a random column vector Z = g(X). Let C be a small cube
around z with volume h". Let D be the image of C' under g—*. Then, as in
the linear case,

h" fz(z) * P(Z € C) ~ h"|J4-1 (2)| fx () .

Hence, we have the following result.

Theorem 3.5. (Transformation Rule). Let X be a continuous n-
dimensional random vector with pdf fx and g a function from R™ to
R" with inverse g—'. Then, Z = g(X) has pdf

fz(2) = fx(g7'(2)) Jg-1(2)], z€R™ (3.26)

Remark 3.3. Note that [Jg-1(z)| = 1/|Jg(x)|.

IS 475



82 3 Joint Distributions

Example 3.13 (Box—Muller Method). The joint distribution of X, Y g
N(0,1) is

1 i 22442
Ixy(@y)=5_e 2@ (2,y) €R?.

In polar coordinates we have
X = Rcos® and Y = Rsin@ (3.27)

where R > 0 and © € (0,27). What is the joint pdf of R and ©7 Consider
the inverse-transformation g—!, defined by

r ’Q rcosf| |z
0 rsinf|  |y|
The corresponding matrix of Jacobi is

Jgfl(r,O) _ {cos@ —rsin 9} ’

sinf rcosf

which has determinant r. Since 2% + y? = r2(cos? 6 + sin? §) = r2, it follows
that

fre(r0) = fxy(z,y)r= %e_%ﬁ r, 0€(0,2r), r>0.
By integrating out 8 and r, respectively, we find fr(r) = r e="/2 and fo(0) =
1/(2m). Since fr, o is the product of fr and fg, the random variables R and ©
are independent. This shows how X and Y could be generated: independently
generate R ~ frand © ~ U(0, 27) and return X and Y via (3.27). Generation
from fr can be done via the inverse-transform method. In particular, R
has the same distribution as v—2InU with U ~ U(0, 1). This leads to the
following method for generating standard normal random variables.

Algorithm 3.2. (Box—Muller Method).
1. Generate Uy, Uy U0, 1).
2. Return two independent standard normal variables, X and Y, via

X = \/TnUl cos(2nUs)
Y =+/—2InU; sin(27Us) .

(3.28)
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3.6 Multivariate Normal Distribution

It is helpful to view a normally distributed random variable as an affine
transformation of a standard normal random variable. In particular, if Z has
a standard normal distribution, then X = p+0Z has a N(u, 02) distribution;
see Theorem 2.15.

We now generalize this to n dimensions. Let Z1,...,Z, be independent
and standard normal random variables. The joint pdf of Z = [Zy,...,Z,]"
is given by

A | n
fz(z) = H 0727 = (2m)~ 2 e 3% 2 ZeR™ (3.29)

g

i=1

We write Z ~ N(0,1,), where I, is the identity matrix. Consider the affine
transformation (i.e., a linear transformation plus a constant vector)

X=p+BZ (3.30)

for some m x n matrix B and m-dimensional vector p. Note that, by Theo-
rem 3.4, X has expectation vector p and covariance matrix ¥ = BBT.

Definition 3.10. (Multivariate Normal Distribution). A random
vector X of dimension m is said to have a multivariate normal or
multivariate Gaussian distribution with mean vector p and covari-
ance matrix X if it can be written as X = p+B Z, where Z ~ N(0,1,,)
and BB = 2. We write X ~ N(u,X).

Suppose that B is an invertible n x n matrix. Then, by (3.25), the density
of Y = X — p is given by

1B 'y) By _

1 1 1 T —1\T -1
fr(y) = ———c¢ BBy
EINGRE EINGRE

We have |B| = /|Z|and (B~™)TB~' = (B")"'B!=(BB") ! =271 50

that
1 _1l Ty 1y

Jaors

Because X is obtained from Y by simply adding a constant vector wu, we
have fx(x) = fy(x — p) and therefore

fr(y) =

1 _
fx(x) = N e 5@ B @-w) g R (3.31)

I 46
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Figure 3.5 shows the pdfs of two bivariate (i.e., two-dimensional) normal dis-
tributions. In both cases the mean vector is g = [0,0] " and the variances (the
diagonal elements of 3) are 1. The correlation coefficients (or, equivalently
here, the covariances) are respectively o = 0 and ¢ = 0.8.

D 3 0 2 -2
Y T Y

Fig. 3.5 Pdfs of bivariate normal distributions with means zero, variances 1, and cor-
relation coefficients 0 (left) and 0.8 (right)

Conversely, given a positive-definite! covariance matrix 3 = [0i;], there
exists a unique lower triangular matrix B such that ¥ = BB'. In Julia,
the function cholesky from the LinearAlgebra package accomplishes this
matrix factorization. Note that the function returns a Julia struct object,
from which the matrix needs to be extracted using the field name L; see the
code in Example 3.3. Once the Cholesky factorization is determined, it is
easy to sample from a multivariate normal distribution.

Algorithm 3.3. (Normal Random Vector Generation). To gen-
erate N independent draws from a N(u, ) distribution of dimension n
carry out the following steps:

1. Determine the lower Cholesky factorization ¥ = BB .

. Generate Z = [Z1,...,Z,]" by drawing Zi, ..., Z, ~iiqa N(0, 1).
. Output X = p+ BZ.

. Repeat Steps 2 and 3 independently N times.

=~ N

Example 3.14 (Generating from a Bivariate Normal Distribution).
The Julia code below draws 1000 samples from the two pdfs in Fig. 3.5. The
resulting point clouds are given in Fig. 3.6.

L A positive-definite matrix satisfies (3.19) with strict inequality.
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using Plots, LinearAlgebra, Random

N = 1000; rho = 0.8;

Sigma = [1 rho; rho 1];

B = cholesky(Sigma).L; # lower-triangular Cholesky matrix
x = Bxrandn(2,N);
scatter(x[1,:],x[2,:],ms=2,msw=0,legend=false)

4 ‘ 4
2 N 2
E 0 B0
= =
2 2
4 4
4 2 0 2 4 4 2 0 2 4
X X

Fig. 3.6 1000 realizations of bivariate normal distributions with means zero, variances
1, and correlation coefficients 0 (left) and 0.8 (right)

The following theorem states that any affine combination of independent
multivariate normal random variables is again multivariate normal.

Theorem 3.6. (Affine Transformation of Normal Random Vec-

tors). Let X1, Xo,..., X, be independent m;-dimensional normal ran-
dom vectors, with X; ~ N(u;,%;), ¢ = 1,...,r. Then, for any n x 1
vector a and n X m; matrices By,...,B,,

a+iBiXi~N(a+iBmi,iBiziBiT). (3.32)

=1 i=1 g=il

Proof. Denote the n-dimensional random vector in the left-hand side of (3.32)
by Y. By Definition 3.10, each X; can be written as u, + A;Z,;, where the
{Z;} are independent (because the {X;} are independent), so that

Y:aJrZBi (ki +AiZ;) :a+ZBiMi+ZBiAiZ1,

=1 =1 =1
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which is an affine combination of independent standard normal random vec-
tors. Hence, Y is multivariate normal. Its expectation vector and covariance
matrix can be found easily from Theorem 3.4. O

The next theorem shows that the distribution of a subvector of a multi-
variate normal random vector is again normal.

Theorem 3.7. (Marginal Distributions of Normal Random
Vectors). Let X ~ N(u, ¥) be an n-dimensional normal random vec-
tor. Decompose X, u, and X as

X I S
X=|3", n=\|"|, ==|3237, 3.33
o el ==[zE] e

where 3, is the upper left p x p corner of 3 and X, is the lower right
q x q corner of 3. Then, X, ~ N(u,,%,).

Proof. Let BBT be the lower Cholesky factorization of 3. We can write

)=l el 2] o
B

where Z, and Z, are independent p- and ¢-dimensional standard normal
random vectors. In particular, X, = p, + B, Z,,, which means that X, ~

N(p,, Xp), since B,B,) = X, O

By relabeling the elements of X we see that Theorem 3.7 implies that
any subvector of X has a multivariate normal distribution. For example,
X~ N(py, Xy).

Not only the marginal distributions of a normal random vector are normal
but also its conditional distributions.

Theorem 3.8. (Conditional Distributions of Normal Random
Vectors). Let X ~ N(u, ¥) be an n-dimensional normal random vec-
tor with det(X) > 0. If X is decomposed as in (3.33), then

(Xq| Xp =) ~ N(l‘q+27:r2;1(mp*“p)a quz;rzgjlxr) - (3.35)

As a consequence, X, and X, are independent if and only if they are
uncorrelated, that is, if 3, = O (zero matrix).
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Proof. From (3.34) we see that
(Xq| Xp=axp) =p,+C. B, (z, — p,) + CoZy

where Z, is a g-dimensional multivariate standard normal random vector.
It follows that X, conditional on X, = @, has a N(u, + C, B, ' (z, —
Hy), CqCJ) distribution. The proof of (3.35) is completed by observing that
2'¥!'=C,B)(B))'B,' =C,B, !, and

Ty-ly _ T T -1 _ T
®, -=/28, =C,C] +C,C] -C,B,! £, =C,C].
B,CT

If X, and X, are independent, then they are obviously uncorrelated, as
B =E[(Xp—p,)(Xq—p,) "] =E(Xp—p,) E(Xy—p,)" = O. Conversely,
if 3, = O, then by (3.35) the conditional distribution of X, given X, is the
same as the unconditional distribution of X, that is, N(p,, X,). In other
words, X, is independent of X . O

Theorem 3.9. (Relationship Between Normal and x2? Distri-
butions). If X ~ N(u,¥) is an n-dimensional normal random vector
with det(X) > 0, then

(X —p)' =X —p) ~ x5 (3.36)

Proof. Let BBT be the Cholesky factorization of 3, where B is invertible.
Since X can be written as u + BZ, where Z = [Zy,...,Z,]" is a vector of
independent standard normal random variables, we have

(X—p)' 2 (X —p)=(X-—p) BB ) (X-p)=2"2=) 7.
i=1
The moment generating function of Y = "7 | Z2 is given by
EetY = EetZi+-+2)) _ | [etzf -~~etzi] = (EetZQ)n

where Z ~ N(0,1). The moment generating function of Z? is

e 2 1 2 1 e 1 2 1
Eot?® — / ot 0—7/2q, — / 312022 4, _ 7
o V2T V2T J oo V1—2t
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so that

w3

3 1
EetY = (1 2 ) , t< =,
I 2
which is the moment generating function of the Gamma(n/2,1/2) distribu-
tion, that is, the x2 distribution—see Theorem 2.18. O

A consequence of Theorem 3.9 is that if X = [Xi,...,X,]" is n-
dimensional standard normal, then the squared length || X||? = X%+ -+ X2
has a x2 distribution. If instead X; ~ N(u;,1), i = 1,..., then || X||? is said
to have a noncentral xi distribution. This distribution depends on the
{u;} only through the norm ||u||; see Problem 3.22. We write || X ||2 ~ x2(0),
where 6 = ||u]| is the noncentrality parameter.

Such distributions frequently occur in statistics when considering projec-
tions of multivariate normal random variables. The proof of the following
theorem can be found in Appendix B.4.

Theorem 3.10. (Relationship Between Normal and Noncen-
tral x? Distributions). Let X ~ N(u,I,) be an n-dimensional nor-
mal random vector and let ¥, and ¥;, be linear subspaces of dimensions
k and m, respectively, with £k < m <n. Let X and X,, be orthogonal
projections of X onto ¥, and ¥,,, and let p, and p,, be the corre-
sponding projections of p. Then, the following holds:

1. The random vectors X, X,, — Xk, and X — X, are independent.

2 X ~ xE ). 1K = Xl ~ Xt — pig]). amd [ X
X[~ X (15—t

Theorem 3.10 is frequently used in the statistical analysis of normal linear
models; see Sect. 5.3.1. In typical situations u lies in the subspace ¥;, or even
¥i—in which case | X, — Xil|? ~ x3,_, and | X — X ||? ~ x2_,,, inde-
pendently. The (scaled) quotient then turns out to have an F' distribution—a
consequence of the following theorem.

Theorem 3.11. (Relationship Between x? and F Distribu-
tions). Let U ~ x2, and V ~ x2 be independent. Then,

U/m

Vin ~ F(m,n) .
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Proof. For notational simplicity, let ¢ = m/2 and d = n/2. It follows from
Example 3.7 that the pdf of W = U/V is given by = 71

fuv (w) = / " fo(wo) v fy (v) dv

00 ( )c—l —wv/2 d—1,—v/2
wv e v e
= v dv
/0

(o) 2 T{d) 2
_ we L /Oo L1 o= (1Hw)o/2 g,
I'(c) I'(d) 2¢+

I'(c+d) wet
I(c) (d) (14 w)etd’

where the last equality follows from the fact that the integrand is equal to
I'(a)\* times the density of the Gamma(a, \) distribution with o = ¢+ d
and A = (1 + w)/2. The proof is completed by observing that the density of
Z = L 2 is given by

fz(z) = fw(zm/n)m/n .

Corollary 3.2. (Relationship Between Normal, x2, and ¢t Dis-
tributions). Let Z ~ N(0,1) and V ~ x2 be independent. Then,

Z

VVin

~t, .

Proof. Let T = Z/\/V/n. Because Z% ~ x3, we have by Theorem 3.11 that
T? ~ F(1,n). The result follows now from Theorem 2.19 and the symmetry ¥ 51
around 0 of the pdf of T'. O

3.7 Limit Theorems

Two main results in probability are the law of large numbers and the cen-
tral limit theorem. Both are limit theorems involving sums of independent
random variables. In particular, consider a sequence X7, Xo,... of iid ran-
dom variables with finite expectation p and finite variance o2. For each n
define S,, = X7 + - - + X,,. What can we say about the (random) sequence
of sums S7,Ss, ... or averages S1,52/2,55/3,...7 By (3.14) and (3.18) we = 75
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have E[S,,/n] = p and Var(S,,/n) = 02 /n. Hence, as n increases the variance
of the (random) average S, /n goes to 0. Informally, this means that (S, /n)
tends to the constant p, as n — co. This makes intuitive sense, but the im-
portant point is that the mathematical theory confirms our intuition in this
respect. Here is a more precise statement.

Theorem 3.12. (Weak Law of Large Numbers). If X;,..., X, are
iid with finite expectation p and finite variance o2, then for all € > 0

lim P(|S,/n—pl>e)=0.

n—oo

Proof. Let Y = (S,,/n — p)? and § = 2. We have

VaI‘(Sn/TL) =EY = ]E[Y]l{y>5}] + E[Yl{ygg}] > E[é ]l{y>5}] +0
=0P(Y > 6) = P(|S,/n — u| > ¢) .

Rearranging gives

< Var(S,/n) o2

P(|Sn/n — pl > €) =2 ez

The proof is concluded by observing that o2/(ne?) goes to 0 as n — co. [

Remark 3.4. In Theorem 3.12 the qualifier “weak” is used to distinguish
the result from the strong law of large numbers, which states that

P(nlingo Sp/n=p)=1.

In terms of a computer simulation this means that the probability of drawing
a sequence for which the sequence of averages fails to converge to u is zero.
The strong law implies the weak law, but is more difficult to prove in its full
generality; see, for example, Feller (1970).

The central limit theorem describes the approximate distribution of S,
(or S, /n), and it applies to both continuous and discrete random variables.
Loosely, it states that

the sum of a large number of iid random variables
approximately has a normal distribution.

Specifically, the random variable S,, has a distribution that is approximately
normal, with expectation nu and variance no?. A more precise statement is
given next.
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Theorem 3.13. (Central Limit Theorem). If X;,..., X, are iid
with finite expectation p and finite variance o2, then for all = € R,

q Sn — Ny _

where @ is the cdf of the standard normal distribution.

Proof. (Sketch) A full proof is out of the scope of this book. However, the

main ideas are not difficult. Without loss of generality assume p = 0 and

o = 1. This amounts to replacing X,, by (X, — u)/o. We also assume, for
simplicity, that the moment generating function of X; is finite in an open

interval containing 0, so that we can use Theorem 2.7. We wish to show I 36
that the cdf of S,,/+/n converges to that of the standard normal distribution.

It can be proved (and makes intuitive sense) that this is equivalent (up to

some technical conditions) to demonstrating that the corresponding moment
generating functions converge. That is, we wish to show that

lim Eex ti —e%t2 teR
00 p \/ﬁ - 9 9

where the right-hand side is the moment generating function of the standard
normal distribution. Because EX; = 0 and EX? = Var(X;) = 1, we have by
Theorem 2.7 that the moment generation function of X; has the following
Taylor expansion: I 477

e 1 1
M) Y ESX =1 +tEX + 5t EXT o) =1+ 56 +o(t?),

where o(t?) is a function for which limg o o(¢?)/t? = 0. Because the {X;} are
iid, it follows that the moment generating function of S,,/v/n satisfies

t

Eexp (ti%) _ Eexp (W(X1 +oen +Xn)> _ f[l]Eexp (\/’%XZ)

= M" <\;ﬁ> = {1 + —i - o(tz/n)r — et

as n — oQ. O

Figure 3.7 shows central limit theorem in action. The left part shows the
pdfs of S1,...,S4 for the case where the {X;} have a U[0,1] distribution.
The right part shows the same for the Exp(1) distribution. We clearly see
convergence to a bell-shaped curve, characteristic of the normal distribution.
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1 1
0.8 0.8
0.6 0.6
04 04
02+ 02+
0 0
0 1 2 3 4 0 2 4 6 8

Fig. 3.7 Illustration of the central limit theorem for (left) the uniform distribution and
(right) the exponential distribution

Recall that a binomial random variable X ~ Bin(n,p) can be viewed as
the sum of n iid Ber(p) random variables: X = X; +--- 4+ X,,. As a direct
consequence of the central limit theorem it follows that for large n P(X <
k) = P(Y < k), where Y ~ N(np,np(1 —p)). As a rule of thumb, this normal
approximation to the binomial distribution is accurate if both np and n(1—p)
are larger than 5.

There is also a central limit theorem for random vectors. The multidimen-
sional version is as follows.

Theorem 3.14. (Multivariate Central Limit Theorem). Let
X1,...,X, be iid random vectors with expectation vector g and co-
variance matrix ¥. For large n the random vector X; + --- + X,, ap-
proximately has a N(nu,nX) distribution.

A more precise formulation of the above theorem is that the average ran-
dom vector Z,, = (X1 + -+ X,)/n, when rescaled via v/n(Z, — u), con-
verges in distribution to a random vector K ~ N(0,X) as n — co. A useful
consequence of this is given next.

Theorem 3.15. (Delta Method). Let Z1,Z5,... be a sequence of
random vectors such that \/n(Z, — u) - K ~ N(0,X) as n — oc.
Then, for any continuously differentiable function g of Z,,,

Vi(g(Z,) — g(n)) — R~ N(0,3237) (3.37)

where J = J(u) = (0g;(p)/0x;) is the Jacobian matrix of g evaluated
at p.



3.8 Problems 93

Proof. (Sketch) A formal proof requires some deeper knowledge of statistical
convergence, but the idea of the proof is quite straightforward. The key step
is to construct the first-order Taylor expansion (see Theorem B.1) of g around
1, which yields

9(Z.) = g(m) +I(W)(Zn — 1)+ 0(|Zn — pll?) -

As n — oo, the remainder term goes to 0, because Z,, — p. Hence, the left-
hand side of (3.37) is approximately J \/n(Z,, — p). For large n this converges
to a random vector R = J K, where K ~ N(0, ¥). Finally, by Theorem 3.4
we have R ~ N(0,JXJ7). O

Example 3.15 (Ratio Estimator). Let [X1,Y1]T,...,[X,,Y,]T be iid
copies of a random (column) vector [X,Y]T with mean vector [ux,uy]" and
covariance matrix ¥. Denoting the average of the {X;} and {Y;} by X and
Y, respectively, what can we say about the distribution of X /Y for large n?

Let Z, = [X,Y]T and p = [ux,py]". By the multivariate central limit
theorem, Z, has approximately a N(u,X/n) distribution. More precisely,
Vn(Z, — p) converges to a N(0, X)-distributed random vector.

We apply the delta method using the function g : R? — R defined by
g(x,y) = x/y, whose Jacobian matrix is

o= 252, 20, 3.

It follows from (3.37) that g(X,Y) = X/Y has approximately a normal
distribution with expectation g(u) = px/py and variance o2 /n, where

P R [ Rt G E
-() (2SS0

(3.38)

3.8 Problems

3.1. Let U and V be independent random variables with P(U = 1) = P(V =
1) = 1/4 and P(U = —1) = P(V = —1) = 3/4. Define X = U/V and
Y = U 4 V. Give the joint discrete pdf of X and Y in table form, as in
Table 3.1. Are X and Y independent?

3.2. Let Xl, N 7.)(4 ~iid Ber(p).

a. Give the joint discrete pdf of Xq,..., X4.
b. Give the joint discrete pdf of Xi,..., X, given X7 4+ --- 4+ Xy = 2.

IS 477
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3.3. Three identical-looking urns each have four balls. Urn 1 has one red and
three white balls, Urn 2 has two red and two white balls, and Urn 3 has three
red and one white ball. We randomly select an urn with equal probability.
Let X be the number of the urn. We then draw two balls from the selected
urn. Let Y be the number of red balls drawn. Find the following discrete
pdfs:

a. The pdf of X.

b. The conditional pdf of Y given X = z for z = 1,2, 3.
. The joint pdf of X and Y.

. The pdf of Y.

. The conditional pdf of X given Y =y for y =0, 1,2.

o &0

3.4. We randomly select a point [X,Y] from the triangle {[z,y] : z,y €
{1,...,6},y <z} (see Fig. 3.1) in the following non-uniform way. First, select
X discrete uniformly from {1,...,6}. Then, given X = x, select Y discrete
uniformly from {1, ..., 2}. Find the conditional distribution of X given Y =1
and its corresponding conditional expectation.

3.5. We randomly and uniformly select a continuous random point (X,Y") in
the triangle (0,0)—(1,0)—(1, 1)—the same triangle as in Example 3.8.

. Give the joint pdf of X and Y.

. Calculate the pdf of Y and sketch its graph.

. Specify the conditional pdf of Y given X = x for any fixed x € (0,1).
. Determine E[Y | X = 1/2].

.6. Let X ~U[0,1] and Y ~ Exp(1) be independent.

. Determine the joint pdf of X and Y and sketch its graph.
. Calculate P((X,Y) € [0,1] x [0, 1]).
c. Calculate P(X +Y < 1).

3.7. Let X ~ Exp(\) and Y ~ Exp(u) be independent.

w A~ T

oo

a. Show that min(X,Y") also has an exponential distribution, and determine
its corresponding parameter.
b. Show that

A

3.8. Let X ~ Exp(1l) and (Y | X = z) ~ Exp(x).

a. What is the joint pdf of X and Y?
b. What is the marginal pdf of Y7

3.9. Let X ~U(—n/2,7/2). Show that ¥ = tan(X) has a Cauchy distribu-

tion.

3.10. Let X ~ Exp(3) and Y = In(X). What is the pdf of Y7
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3.11. We draw n numbers independently and uniformly from the interval
[0,1] and denote their sum S,,.

a. Determine the pdf of S; and sketch its graph.

b. What is approximately the distribution of S5?

¢. Approximate the probability that the average of the 20 numbers is greater
than 0.6.

3.12. A certain type of electrical component has an exponential lifetime dis-
tribution with an expected lifetime of 1/2 year. When the component fails
it is immediately replaced by a second (new) component; when the second
component fails, it is replaced by a third, etc. Suppose there are ten such
identical components. Let T be the time that the last of the components
fails.

a. What is the expectation and variance of T'7

b. Approximate, using the central limit theorem, the probability that T' ex-
ceeds 6 years.

c. What is the exact distribution of T'?

3.13. Let A be an invertible n x n matrix and let X7, ..., X, ~iiqg N(0,1). De-
fine X = [X1,...,X,]" and let [Z,...,Z,]" = AX. Show that Zi,..., 2,
are iid standard normal only if AAT =T, (identity matrix), in other words,

only if A is an orthogonal matrix. Can you find a geometric interpretation of
this?

3.14. Let Xy,...,X,, be independent and identically distributed random
variables with mean y and variance 0®. Let X = (X, +---+X,,)/n. Calculate
the correlation coefficient of X; and X.

3.15. Suppose that X1,..., Xg are iid with pdf

322, 0< 2 <1,
@)= {O, elsewhere.

a. What is the probability that all {X;} are greater than 1/27
b. Find the probability that at least one of the {X;} is less than 1/2.

3.16. Let X and Y be random variables.

a. Express Var(—aX +Y), where a is a constant, in terms of Var(X), Var(Y),
and Cov(X,Y).

b. Take a = Cov(X,Y)/Var(X). Using the fact that the variance in (a) is
always non-negative, prove the following Cauchy—Schwartz inequality:

(Cov(X,Y))? < Var(X) Var(Y) .

c. Show that, as a consequence, the correlation coefficient of X and Y must
lie between —1 and 1.
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3.17. Suppose X and Y are independent uniform random variables on [0,1].
Let U =X/Y and V = XY, which means X =+UV and Y = /V/U.

. Sketch the two-dimensional region where the density of [U, V] is non-zero.

. Find the matrix of Jacobi for the transformation [z,y]" ~ [u,v]".

a
b
c. Show that its determinant is 2x/y = 2u.
d. What is the joint pdf of U and V7
e. Show that the marginal pdf of U is

3.18. Let X3, ..., X, beiid with mean p and variance o2 Let X = % Zﬁ:l X;
and Y =157 (X; — X)%

a. Show that
1 — —2
Y==-) X?-X .
nlzzl ¢

b. Calculate EY.
c. Show that EY — ¢2 as n — oo.

3.19. Let X = [Xy,...,X,]T, with {X;} ~iiqa N(p, 1). Consider the orthog-
onal projection, denoted X, of X onto the subspace spanned by 1 =
1,...,1]7.

a. Show that X1 = X1.
b. Show that X; and X — X; are indepindent.
c. Show that [| X — X1* =3, (X; — X)? has a x2_, distribution.

Hint: apply Theorem 3.10.

3.20. Let X;,..., X4 be the weights of six randomly chosen people. Assume
each weight is N(75,100) distributed (in kg). Let W = X; + - -- + X be the
total weight of the group. Explain why the distribution of W is equal or not
equal to 6.X;.

3.21. Let X ~ x2, and Y ~ x2 be independent. Show that X +Y ~ x2 .
Hint: use moment generating functions.

3.22. Let X ~ N(u,1). Show that the moment generation function of X? is
eh’t/(1-2t)
Vv1—2¢

Next, consider independent random variables X; ~ N(u;,1), i = 1,...,n.
Use the result above to show that the distribution of || X ||? only depends on
n and ||p]|. Can you find a symmetry argument why this must be so?

M(t) = t<1/2.
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3.23. A machine produces cylinders with a diameter which is normally dis-
tributed with mean 3.97 cm and standard deviation 0.03 cm. Another ma-
chine produces (independently of the first machine) shafts with a diameter
which is normally distributed with mean 4.05 cm and standard deviation
0.02 cm. What is the probability that a randomly chosen cylinder fits into a
randomly chosen shaft?

3.24. A sieve with diameter d is used to separate a large number of blue-
berries into two classes: small and large. Suppose that the diameters of the
blueberries are normally distributed with an expectation 1 = 1 (cm) and a
standard deviation o = 0.1 (cm).

a. Find the diameter of the sieve such that the proportion of large blueberries
is 30%.

b. Suppose that the diameter is chosen such as in (a). What is the probability
that out of 1000 blueberries, fewer than 280 end up in the “large” class?

3.25. Suppose X, Y, and Z are independent N(1, 2)-distributed random vari-
ables. Let U = X —2Y +3Z and V = 2X —Y 4 Z. Give the joint distribution
of U and V.

3.26. For many of the above problems it is instructive to simulate the corre-
sponding model on a computer in order to better understand the theory.

a. Generate 10° points (X,Y’) from the model in Problem 3.6.

b. Compare the fraction of points falling in the unit square [0, 1] x [0, 1] with
the theoretical probability in Problem 3.6 (b).

c. Do the same for the probability P(X +Y < 1).

3.27. Simulate 10° draws from U(—7/2,7/2) and transform these using the
tangent function, as in Problem 3.9. Compare the histogram of the trans-
formed values with the theoretical (Cauchy) pdf.

3.28. Simulate 10° independent draws of [U, V] in Problem 3.17. Verify with
a histogram of the U-values that the pdf of U is of the form (3.39).

3.29. Consider the Julia experiments in Example 3.14.

a. Carry out the experiments with ¢ = 0.4,0.7,0.9,0.99, and —0.8, and
observe how the outcomes change.

b. Plot the corresponding pdfs, as in Fig. 3.6.

c. Give also the contour plots of the pdfs, for p = 0 and ¢ = 0.8. Observe
that the contours are ellipses.

d. Show that these ellipses are of the form

22 4+ 201, x9 + 3 = constant .

I 84



Part 11

Statistical Modeling and
Frequentist and Bayesian Inference

In Part IT of the book, we consider the modeling and analysis of random data.
We describe various common models for data and discuss the mathematical
tools of statistical inference. Both the classical (frequentist) and Bayesian
viewpoints of statistics are covered. Frequentist statistics’ main focus is the
likelihood concept, whereas Bayesian statistics deals primarily with the pos-
terior distribution of the model parameters. Both frequentist and Bayesian
methods often involve Monte Carlo sampling techniques. It is assumed that
the reader is familiar with the probability topics discussed in Part I.
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Chapter 4
Common Statistical Models

The conceptual framework for statistical modeling and analysis is sketched
in Fig.4.1. The starting point is some real-life problem (reality) and a corre-
sponding set of data. On the basis of the data we wish to say something about
the real-life problem. The second step consists of finding a probabilistic model
for the data. This model contains what we know about the reality and how
the data were obtained. Within the model we carry out our calculations and
analysis. This leads to conclusions about the model. Finally, the conclusions
about the model are translated into conclusions about the reality.

Reality Model mathematical Conclusion Conclusion
3 for - about about
Data Data analysis Model Reality

Fig. 4.1 Statistical modeling and analysis

Mathematical statistics uses probability theory and other branches of
mathematics to study data. In particular, the data are viewed as realiza-
tions of random variables whose joint distribution is specified in advance,
possibly up to some unknown parameter(s). The mathematical analysis is
then purely about the model and its parameters.

4.1 Independent Sampling from a Fixed Distribution

One of the simplest statistical models is the one where the data X1,..., X,
are assumed to be independent and identically distributed (iid). We write
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X1, o X 8 F or Xy,..., X, " Dist,

to indicate that the random variables form an iid sample from a sampling

pdf f or sampling distribution Dist. Let f denote the joint pdf of X7,..., X,,.

Then, by Theorem 3.1,

o o

f(@1, . mn) = f@1) - fan) -

Example 4.1 (Experiments with Iid Samples). Each of the following
scenarios can be modeled via an iid sample.

1. We roll a die 100 times, and record at each throw whether a 6 appears
or not. Let X; = 1 if the ¢-th throw yields a 6 and X; = 0 otherwise, for
i=1,...,100. Then,

iid
X1,..., X100 ~ Ber(p)

for some known or unknown p. For example, if the die is known to be
fair, then p = 1/6.

2. From a large population we select 300 men between 40 and 50 years of
age and measure their heights. Let X; be the height of the i-th selected
person, ¢ = 1,...,300. Then,

iid
Xl, . ,X300 ~ N(M,O'Q)

for some unknown parameters y and o2.

3. A large marine reserve is divided into 20 similar habitats. In each habitat
the number of octopuses is recorded. Let X; be the number of octopuses
in habitat ¢, ¢ = 1,...,20. Then,

iid .
X17~ .. 7)(20 ~ POI(M)

for some unknown parameter p > 0.

4. We run a simulation program for a production system for cars and record
the total production in a day. We repeat this 10 times, each time starting
the simulation with a different seed. Let X; be the production per day in
the ¢-th simulation, ¢ = 1,...,10. Then,

Gid .
X17-~-aX10 ~ Dist

for some unknown distribution Dist.

Remark 4.1 (About Statistical Modeling). At this point it is good to
emphasize a few points about modeling.

o Any model for data is likely to be wrong. For example, in Scenario 2 above
the height would normally be recorded on a discrete scale, say 1000—
2200 (mm). However, samples from a N(u,0?) can take any real value,
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including negative values. Nevertheless, the normal distribution could be
a reasonable approximation to the real sampling distribution. An impor-
tant advantage of using a normal distribution is that it has many nice
mathematical properties, as described in Sect. 3.6.

e Most statistical models depend on a number of unknown parameters. One
of the main objectives of statistical inference—to be discussed in subse-
quent chapters—is to gain knowledge of the unknown parameters on the
basis of the observed data. Even in Scenario 4 of Example 4.1 the model
depends on underlying simulation parameters, although the distribution
Dist may not be explicitly known.

e Any model for data needs to be checked for suitability. An important
criterion is that data simulated from the model should resemble the ob-
served data—at least for a certain choice of model parameters. This is
automatically satisfied for Scenario 4 but should be verified for Scenar-
ios 2 and 3. Model checking and selection is discussed in Sects.5.3.1, 5.4,
8.6, and 12.1.1.

4.2 Multiple Independent Samples

The single iid sample in Sect. 4.1 is easily generalized to multiple iid samples.
The most common models involve Bernoulli and normal random variables.

Example 4.2 (Two-Sample Binomial Model). To assess whether there
is a difference between boys and girls in their preference for two brands of
cola, say Sweet and Ultra cola, we select at random 100 boys and 100 girls
and ask whether they prefer Sweet or Ultra. We could model this via two
independent Bernoulli samples. That is, for each ¢ = 1,...,100 let X; = 1 if
the i-th boy prefers Sweet and let X; = 0 otherwise. Similarly, let Y; = 1 if
the i-th girl prefers Sweet over Ultra. We thus have the model:

iid
Xi,..., X100 ~ Ber(p1) ,

id
Y1,..., Y100 ~ Ber(pa) ,
X1,...,X100,Y1,...,Y100 independent, with p; and py unknown.

The objective is to assess the difference p; — po on the basis of the observed
values for X1, ..., X100, Y1, .-, Y100- Note that it suffices to only record the
total number of boys or girls who prefer Sweet cola in each group; that is,
X = Zzlg X; and Y = lei(iYi This gives the two-sample binomial
model:

X ~ Bin(100,p1) ,
Y ~ Bin(100, ps) ,
X,Y independent, with p; and p, unknown.
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Example 4.3 (Two-Sample Normal Model). From a large population
we select 200 men between 25 and 30 years of age and measure their heights.
For each person we also record whether the mother smoked during pregnancy
or not. Suppose that 60 mothers smoked during pregnancy.

Let X1, ..., Xgo be the heights of the men whose mothers smoked, and let
Y1,...,Y140 be the heights of the men whose mothers did not smoke. Then,
a possible model is the two-sample normal model:

iid
X17' .. 7X60 ~ N(/J’ho-%) ’

iid
Yi,...,Yia0 ~ N(p2,03) ,
X1,...,X60,Y1,...,Y140 independent,

where the model parameters i, 2,03, and o5 are unknown. One would
typically like to assess the difference py — po. That is, does smoking during
pregnancy affect the (expected) height of the child? A typical simulation
outcome of the model is given in Fig. 4.2, using parameters pu; = 170, yuo =
175,02 = 36, and 03 = 64.

smoker - te mem e coce s mme o o
non-smoker L 4 - i ! |
140 150 160 170 180 190 200
age

Fig. 4.2 Simulated height data from a two-sample normal model

Instead of dividing the data into two groups, one could further divide the
“smoking mother” group into several subgroups according to the intensity of
smoking, e.g., rarely, moderately, and heavily, so that in this case the data
could be modeled via four independent samples from a normal distribution.
This model would, in general, depend on eight unknown parameters—four
expectations and four variances.

4.3 Regression Models

Francis Galton observed in an article in 1889 that the heights of adult off-
spring are, on the whole, more “average” than the heights of their parents.
Galton interpreted this as a degenerative phenomenon, using the term re-
gression to indicate this “return to mediocrity.” Karl Pearson continued Gal-
ton’s original work and conducted comprehensive studies comparing various
relationships between members of the same family. Figure 4.3 depicts the
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measurements of the heights of 1078 fathers and their adult sons (one son
per father).

80 + y=z+1

~
W

height son
(o)) 1
W [e]

D
(]
T

55 1 1 1
55 60 65 70 75 80
height father

Fig. 4.3 A scatter plot of heights from Pearson’s data

The average height of the fathers was 67 inches and of the sons 68 inches.
Because sons are on average 1 inch taller than the fathers, we could try to
“explain” the height of the son by taking the height of his father and adding
1 inch. However, the line y = = + 1 (dashed) does not seem to predict the
height of the sons as accurately as the solid line in Fig.4.3. This line has a
slope less than 1 and demonstrates Galton’s “regression” effect. For example,
if a father is 5% taller than average, then his son will be on the whole less
than 5% taller than average.

In general, regression analysis is about finding relationships between a
number of variables. In particular, there is a response variable which we
would like to “explain” via one or more explanatory variables. Explana-
tory variables are also called predictors, covariates, and independent
variables. In the latter case the response variable is called the dependent
variable. Regression is usually seen as a functional relationship between con-
tinuous variables.

4.3.1 Simple Linear Regression

The most basic regression model involves a linear relationship between the
response and a single explanatory variable. As in Pearson’s height data, we
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have measurements (z1,y1), ..., (Zn, yn) that lie approximately on a straight
line. It is assumed that these measurements are outcomes of pairs (x1,Y7), ...,
(2n, Yn), where, for each deterministic explanatory variable x;, the response
variable Y; is a random variable with

EY; = B0+ Bizi, i=1,...,n (4.1)
for certain unknown parameters 5y and ;. The (unknown) line
y=p0o+ b1z (42)

is called the regression line. To completely specify the model, we need
to designate the joint distribution of Y7,...,Y,. The most common linear
regression model is given next. The adjective “simple” refers to the fact that
a single explanatory variable is used to explain the response.

Definition 4.1. (Simple Linear Regression Model). In a simple

linear regression model the response data Y7, ...,Y,, depend on ex-
planatory variables z1, ..., z, via the linear relationship

}/7;:50+ﬁlxi+5ia izla"wna (43)
where e1, ... e, S N(0, 0?).

This formulation makes it even more obvious that we view the responses
as random variables which would lie exactly on the regression line, were it
not for some “disturbance” or “error” term (represented by the {g;}).

Note that the simple linear regression model (4.3) is a Gaussian model;

that is, Y = [V1,...,Y,]T has a multivariate normal distribution. Namely,
Y ~N(Bol + fiz, 0°1,,) (4.4)
where & = [z1,...,2,]7, 1 is the n-dimensional column vector of 1s, and I,

is the n-dimensional identity matrix.

4.3.2 Multiple Linear Regression

A linear regression model that contains more than one explanatory variable
is called a multiple linear regression model.
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Definition 4.2. (Multiple Linear Regression Model). In a
(Gaussian) multiple linear regression model the response data
Y1,...,Y, depend on d-dimensional explanatory variables x1,...,x,,

with @; = [241,...,24] ", via the linear relationship
Yi=Bot+bizin+ -+ Baviate, t=1,...,n, (4.5)
where &1, ..., e, N(0, 0?).

We can write (4.5) as Y; = Bo+x, B+e;, where 8 = [B1,..., 4] . In other
words, the data (x;,Y;)—where the {Y;} are random—Ilie approximately on

the plane y = 3o +x ' B for some (typically unknown) constant 3y and vector
B. Defining Y = [Y3,...,Y,]T and A as the matrix

we can reformulate (4.5) as the Gaussian model
Y ~N(Bol+AB, 0°1,,) (4.6)

where 1 is the n-dimensional column vector of 1s and I, is the n-dimensional
identity matrix.

Example 4.4 (Multiple Linear Regression Model). Figure 4.4 gives a
realization of the multiple linear regression model

Yi=xpn+xi0+e;, i=1,...,100,

where €1, ..., 100 ~iia N(0,1/16). The fixed vectors [z;1,242],i = 1,...,100
of explanatory variables lie in the unit square.

10

Fig. 4.4 Multiple linear regression
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The multiple linear regression model can be viewed as a first-order ap-
proximation of the general model

Y, =b(x;))+e;, i=1,...,n, (4.7)

where €1,...,¢, £ N(0,0?) and b(z) is some known or unknown function of
a d-dimensional vector & of explanatory variables. To see this, replace b(x)

with its first-order Taylor approximation around some point xg:

b(x) ~ b(xo) + (x — @) ' Vb(xo)
= b(x) — @y Vb(xo) +2' Vb(xg) = B0+ ' . (4.8)
Bo B

4.3.3 Regression in General

General regression models not only deal with multiple explanatory variables
but also with nonlinear relationships between the response and explanatory
variables. A broad class of regression models is (similar to (4.7)) of the form

Yi=g(x;B)+ei, i=1,...,n, (4.9)

where €1, ..., &, ~iiqa N(0,02) and g(x; B8) is a known function of the explana-
tory vector « and the parameter vector 8. Both ¢ and 8 are assumed to be
unknown.

To specify regression models of this form, it suffices to report only the
functional relationship between the expected response y = EY and the ex-
planatory variable (x or ). For the generic model in (4.9) this corresponds to
reporting only y = g(x; 8). We will do this from now on in this section, keep-
ing in mind the general formulation where there are n independent response
variables, each with its own explanatory variable and error term.

When g(x; B) is a linear function, i.e., of the form x + 2 8, the model is
said to be a linear regression model. The obvious examples are the simple
linear regression and multiple linear regression models (note that we need to
include the constant term as an explanatory variable). The following example
gives another important class of linear regression models.

Example 4.5 (Polynomial Regression Models). Suppose the expected
response y depends on a single explanatory variable u via a polynomial rela-
tionship

y="PFo+Pru+Pfru’+ -+ fau’. (4.10)
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This is an example of a polynomial regression model. If we define x =
[1,u,u?,...,u?]" and B = [Bo,..., B4 ", then we can write

y=x'p,

and so the model is linear with respect to the explanatory variable x. In
a similar way one can consider polynomial regression models with multiple
explanatory variables, as in

y=Bo+ P11+ Baxa+ P11 25 + Paz a3 + Pra w1 T2 (4.11)

which defines a second-order polynomial regression model with two explana-
tory variables. Similar to (4.8), this model can be viewed as a second-order
approximation to a general regression model of the form

y = b(x1,2)

for some known or unknown function b. Polynomial regression models are
also called response surface models.

Common examples of nonlinear regression models are the following:
« Exponential Model with parameters a and b:

y=ae™.
e« Power Law Model with parameters a and b:

y=ax

e Logistic Model with parameters a and b and fixed L:

L

Y= 1+ea+bm :

e Weibull Model with parameters a and b:

Example 4.6 (Exponential Model). Table 4.1 lists the free chlorine con-
centration (in mg per liter) in a swimming pool, recorded every 8 hours for
4 days.
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Table 4.1 Chlorine concentration (in mg/L) as a function of time (hours)

Hours Concentration Hours Concentration

0 1.0056 56 0.3293
8 0.8497 64 0.2617
16 0.6682 72 0.2460
24 0.6056 80 0.1839
32 0.4735 88 0.1867
40 0.4745 96 0.1688
48 0.3563

A simple chemistry-based model for the chlorine concentration y as a func-
tion of time ¢ is
Y= ae bt ;
where a is the initial concentration and b > 0 is the reaction rate. Figure 4.5
shows that the data closely follow the curve y = =292 A common method
for fitting regression curves to data is the least-squares method, which will
be discussed in Sect. 5.1.2.

O Il Il Il Il I
0 20 40 60 80 100

t (hours)

Fig. 4.5 The chlorine concentration seems to have an exponential decay

Another way to deal with nonlinearities in the data is to transform the
data in order to achieve a linear relationship.

Example 4.7 (Log-Linear Model). Suppose that the expected chlorine
concentration in Example 4.6 satisfies y = ae™? for some unknown a and
b > 0. Then, Iny = Ina — bt. Hence, there is a linear relationship be-
tween t and Iny. Thus, if for some given data (t1,y1),..., (tn,Yn) we plot
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(t1,Iny1),..., (tn,Iny,), these points should approximately lie on a straight
line, and hence the simple linear regression model applies. Figure 4.6 illus-
trates that the transformed data indeed lie approximately on a straight line.

057

0¢
Iny = —0.02¢

) ‘ ‘ ‘ ‘
0 20 40 60 80 100
t

Fig. 4.6 The log-transform of the chlorine concentration can be modeled via a simple
linear regression

4.4 Analysis of Variance (ANOVA) Models

In this section we discuss models that describe functional relationships be-
tween continuous response variables and explanatory variables that take val-
ues in a discrete number of categories, such as yes/no, green/blue/brown,
and male/female. Such variables are often called categorical. By assigning
numerical values to the categories, such as 0/1 and 1/2/3, one can treat
them as discrete variables. Models with continuous responses and categor-
ical explanatory variables often arise in factorial experiments. These are
controlled statistical experiments in which the aim is to assess how a response
variable is affected by one or more factors tested at several levels. A typical
example is an agricultural experiment where one wishes to investigate how
the yield of a food crop depends on two factors: (1) pesticide, at two lev-
els (yes and no), and (2) fertilizer, at three levels (low, medium, and high).
In factorial experiments one usually wishes to collect one or more responses
from each of the different combinations of levels. A fictitious data set for the
above agricultural experiment with three responses (crop yield) per level pair
is given in Table 4.2.
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Table 4.2 Crop yield

Fertilizer
Pesticide Low Medium High
No 3.23, 3.20, 3.16 2.99, 2.85, 2.77 5.72, 5.77, 5.62
Yes 6.78, 6.73, 6.79 9.07, 9.09, 8.86 8.12, 8.04, 8.31

The main statistical tool to analyze such data is analysis of variance
(ANOVA), which will be discussed in Sect. 5.3.1. We describe next two com-
mon models that are used in such situations.

4.4.1 Single-Factor ANOVA

Consider a response variable which depends on a single factor with d levels.
Within each level ¢ there are n; independent measurements of the response

variable. The data thus consist of d independent samples with sizes nq, ..., ng:
}/17 sty YnlaYn1+17 e 7Yn1+n2a e 7Yn—nd+17 s 7Y7L ’ (412)
level 1 level 2 level d

where n = ny + -+ + ng. An obvious model for the data is that the {Y;}
are assumed to be independent and normally distributed with a mean and
variance which depend only on the level. Such a model is simply a d-sample
generalization of the two-sample normal model in Example 4.3. To be able
to analyze the model via ANOVA, one needs however the additional model
assumption that the wvariances are all equal; that is, they are the same for
each level. Writing Y;; as the response for the k-th replication at level i, we
can define the model as follows.

Definition 4.3. (Single-Factor ANOVA Model). In a single-
factor ANOVA model, let Y;; be the response for the k-th replication
at level ¢. Then,

Yie =i +ei, k=1,....n;,i=1,....d, (4.13)

where {e;} s N(0,0?).

Instead of (4.13) one often sees the “factor effects” formulation

}/}k:u+ai+sik, k':l,...,m,izl,...,d, (414)
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where p is interpreted as the overall effect, common to all levels, and «; =
i — 4 is the incremental effect of level 7. Although p can be defined in several
ways, it is customary to define it as the expected average response:

)

Vit Y] Yl
n n

u=E|

in which case the {o;} must satisfy the relation

d
i=1

In particular, for balanced designs— where the sample sizes in each group
are equal —we have Y% a; = 0.

Returning to the sequence of response variables Y7, ..., Y, in (4.12), sup-
pose that for each Y, we denote the corresponding level by ug, k=1,...,n.
We can then write the model in a form closely resembling a multiple linear
regression model, namely,

‘ 3

Lo =0, (4.15)

3

Y = H1 l{uk:1}+"'+ﬂdl{uk:d}+gk ’ k= L...,n, (416)

where {e} ~iia N(0,0?) and 1g,—q3 = 1 if u = a and 0 otherwise. It follows
that the vector Y = [Y1,...,Y,]T has a multivariate normal distribution with
a mean vector whose k-th component is 1 Ly, =13 + -+ + fta L{y, =q), and
with covariance matrix o2 I,,, where I,, is the n-dimensional identity matrix.

4.-4.2 Two-Factor ANOVA

Many designed experiments deal with responses that depend on more than
one factor. We consider for simplicity only the two-factor ANOVA model.
Models with more than two factors can be formulated analogously.

Suppose Factor 1 has d;y levels and Factor 2 has dy levels. Within each pair
of levels (¢, j) we assume that there are n;; replications. Let Y;;, be the k-th
observation at level (4, ). A direct generalization of (4.13) gives the following
model.

Definition 4.4. (Two-Factor ANOVA Model). In a two-factor
ANOVA model let Y, be the response for the k-th replication at
level (4, 7). Then,

}/;jk:ﬂij+€ijka k:].,...,nij7i:1,...,d1,j:1,...,d2, (417)

where {;;x} ~iia N(0,0?).
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Note that the variances of the responses are assumed to be equal ¢2. To
obtain a “factor effects” representation, we can reparameterize model (4.17)
as follows:

Yije = p+ i + Bj +%ij + €ijik

4.18
k‘:l,...,nij,i:l,...,dl,jzl,...,dg. ( )

The parameter p can be interpreted as the overall mean response, a; as the
incremental effect due to Factor 1 at level 7, and f3; as the incremental effect
of Factor 2 at level j. The {v;;} represent the interaction effects of the two
factors. As in the one-factor model, the parameters can be defined in several
ways. For the most important balanced case (all the n;; are the same), the
default choice for the parameters is as follows:

_ > Zj Hij '

p=EY. = =0 (4.19)
0 =BV ie — Ve = Ejlz“” (4.20)
B =E[Ye; = V] = ZTf” — (4.21)
Vi =EYij = Yie=Yej +Yeal = pij —pp— i — B; . (4.22)

Here, Yo indicates the average of all the {Y;j;}. Similarly, Y;e is the
average of all the {V;;,} within level i of Factor 1, and Y,; denotes the
average of all the {Y;;;} within level j of Factor 2. For this case it is easy to
see that >, a; = 3, B; = 0and 37, v; = >, 7 = 0 for all ¢ and j. Note
that under these restrictions model (4.18) has the same number of parameters
as model (4.17); see Problem 4.5.

One objective of ANOVA is to assess whether the data are best described
by a “saturated” model such as (4.18) or if simpler models, with fewer pa-
rameters, suffice. For example, a model without interaction terms is

Yije = p+a; + B + €iji -
A model where Factor 2 is irrelevant is
Yijk = p+ o + €ijk -

If neither Factor 1 or Factor 2 have an influence on the response, then the
appropriate model would simply be

Yijk = p+€iji

that is, Yijx ~ia N(u, 02).
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Remark 4.2 (Blocking). Not all of the factors in an ANOVA model need
to be of primary interest to the researcher. Some of the factors are included
in the experiment to reduce the variability of the measurements. Such factors
are called nuisance factors. An example of a nuisance factor in the crop data
in Table 4.2 is the plant location of the crop. Suppose the data were gathered
from three different locations. Different soil conditions in these locations could
greatly influence the crop yield and hence the findings of the research. To
reduce the effect of plant location, one could take one measurement for each
(pesticide, fertilizer, location) triplet. The data in Table 4.2 could represent
this situation, where the three measurements for each (pesticide, fertilizer)
pair correspond to location 1, 2, and 3. The idea of grouping data into levels of
a nuisance factor in order to reduce the experimental error is called blocking
and is important in the design of controlled experiments.

4.5 Normal Linear Model

The regression model in Sect.4.3 and the ANOVA models in Sects. 4.4.1
and 4.4.2 are both examples of normal (or Gaussian) linear models.

Definition 4.5. (Normal Linear Model). In a normal linear
model the response Y depends on a p-dimensional explanatory variable
x = [r1,...,7,]", via the linear relationship

Y=z"8+¢, (4.23)

where € ~ N(0, 0?).

Note that (4.23) is a model for a single pair (x,Y"). The model for multiple
data {(x;,Y;)} is simply that each Y; satisfies (4.23) (with # = x;) and
that the {Y;} are independent. Gathering all responses in the vector Y =
[Y1,...,Y,]T, we can write

Y =XB+¢, (4.24)
where € = [e1,...,e,]" is a vector of iid copies of € and X is the so-called
model matrix or design matrix with rows 7 , ...,z . Consequently, Y has a

multivariate normal distribution with mean vector X8 and covariance matrix
021, where I, is the identity matrix of dimension n. From (3.31) it follows
that the joint density of Y at y is given by

fy(y) = (2n02) "% e 2z W X8 W-XB) _ (9552)=% o~ 5,z lly-XAI7

IS 83
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The situation is graphically depicted in Fig. 4.7. Imagine drawing multiple re-
alizations of the random vector Y. These would form a spherically symmetric
cloud of points centered around X/3.

e=Y -Xg

Xp
X)

Fig. 4.7 Normal linear model. (X) is the subspace of R" spanned by the columns of X

To see that the simple linear regression model (4.3) is of the form (4.23),
take

1 I

1 T2 ﬁO
X=1.. and B = .

Do b1

1z,

An equivalent formulation is given in (4.4). Similarly, for the multiple linear
regression model (4.5) we have, in view of (4.6),

1)
lxg
Y= . 60:|+€.
1:1:.T ~
H,n_/ B
X

To see that the one-factor ANOVA model is also of the form (4.3), let us
define 1,, as the m-dimensional column vector of 1s and 0,, as the vector
of 0s. Using the “regression” form (4.16) we can now write the vector Y as
XA + € with

1,, 0,, -~ 0,
0,, 1,, -~ 0, K1

X=1. .. . and B=|:
0,,0,, - 1,, Hd

A similar formulation can be given for the multifactor ANOVA case, as illus-
trated in the following example.
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Example 4.8 (ANOVA as a Normal Linear Model). Regression and
ANOVA data are often represented in the form of a spreadsheet, where each
row corresponds to a single measurement, and the columns correspond to the
response variable and the various factors. Table 4.3 gives such a spreadsheet
for the crop yield data in Table 4.2.

Table 4.3 Crop yield data as a spreadsheet

Crop yield Pesticide Fertilizer
3.23 No Low
3.20 No Low
3.16 No Low
2.99 No Medium
2.85 No Medium
2.77 No Medium
5.72 No High
5.77 No High
5.62 No High
6.78 Yes Low
6.73 Yes Low
6.79 Yes Low
9.07 Yes Medium
9.09 Yes Medium
8.86 Yes Medium
8.12 Yes High
8.04 Yes High
8.31 Yes High

The design matrix can be directly constructed from this table. For ex-
ample, consider the representation (4.17) and define 8 = [u11, p12, f13, 21,
pa2, fi23) . With the responses {Yijr} ordered as [Y7,. .. ,Yig] T asin Table 4.3,
the 18 x 6 design matrix is given by

10---0
X=1.. . .|,

where 1 = [1,1,1]T and 0 = [0,0,0]". This may be written in compact
notation as X = Ig ® 1, where A ® B indicates the Kronecker product
of A = (a;;) and B, that is, the block matrix with (4, j)-th block a;;B.
For the “factor effects” representation (4.18), define B8 = [u, a1, g, f1, B2,
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ﬂg,’}/ll,’)/12,’)/13,’)/21,’}/22,’}/23]T. In this case the design matrix is an 18 x 12
matrix given by

110100100000
110010010000
110001001000
101100000100
101010000010
101001000001

Note that in this case the parameters are linearly dependent. For example,
as = —ay and 13 = — (911 +712). To retain only 6 linearly independent vari-
ables (as in the case (4.17)), one could consider the six-dimensional parame-
ter vector [N'} = [u, a1, B1, B2, Y11, v12] |, which is related to the 12-dimensional
parameter vector B via the transformation

1 0 0 0 0 O W 7
01 00 0 0 a ay
0-1 0 0 0 0 Q2 —a
001 0 0 Of[pu 61 b1
00 01 0 0| B B2
0 0-1-1 0 O |B1]| _|Bs|_|—-BL—5
00 0 0 1 0f]|B| |yl 71
0 000 0 1 Y11 Y12 Y12
0 0 0 0-1-1/ [72 Y13 —Y11 — Y12
00 0 0-1 0|~ |92 —711
000 0 0-1 B Y22 —Y12
(00 0 0 1 1] | V23| | V11 + Y12
N——
M B

The design matrix corresponding to B is simply X = XM, see also Prob-
lem 4.10.

4.6 Statistical Learning

It is useful to view the modeling of data in the wider framework of statis-
tical learning. Here the goal is to accurately predict some future quantity
of interest, given some observed data, or to discover unusual or interesting
patterns in the data. In the first case we speak of supervised learning and in
the second case of unsupervised learning. In both supervised and unsuper-
vised learning the modeling of the data goes hand in hand with the selection
of a suitable “learning” function. In particular, in supervised learning the
goal is to find a prediction function g which takes as input a vector x of
explanatory variables (features) and outputs a guess g(x) for the response
variable y. This is the basic paradigm for regression.
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We can measure the closeness of a prediction § = g(x) to a response y by
using some loss function Loss(y, ). In a regression setting the usual choice
is the squared-error loss (y — 7)?. However, there are many other loss
functions possible. Probability enters the scene by viewing each pair (z,y)
as the outcome of a random pair (X,Y) with some (unknown) probability
density f(x,y). A good prediction function g is one that gives a small loss
for any random pair (X,Y’) drawn from f. More precisely, we seek a g that
minimizes the risk, defined as the expected loss

r(g) = ELoss(Y, g(X)), (4.25)

where (Y, X) ~ f.
For the squared-error loss Loss(y,%) = (y — ¥)?, the optimal prediction
function g* is equal to the conditional expectation of Y given X = x:

g (x) =E[Y | X =2x].

To see this, let g*(x) = E[Y | X = x] and define U = Y — ¢g*(X) and
V =¢*(X) — g(X). Note that,

EUV =EE[UV | X]| =E[VE[U | X]] =E[V(E[Y | X] -E[Y | X])] =0,
using repeated conditioning (see (3.20)). Then, for any function g, we have
r(g) = E(Y — g(X))* =E(Y — g*(X) + g"(X) — 9(X))*

=EU? + 2EUV + EV?
>EU? =E(Y - ¢"(X))* = r(g"),
showing that ¢g* yields the smallest squared-error risk.
In contrast, unsupervised learning makes no distinction between re-
sponse and explanatory variables, and the objective is simply to learn the

unknown pdf f from data xi,...,x, drawn from f. In this case the guess
g(x) is an approximation of f(x) and the risk is of the form

r(g) =ELoss(f(X), g(X)). (4.26)

A convenient loss function is

= n@: nf(x)—Ing(x
Loss(f(x). o(w)) = In 2 25 = In f() ~Ing().

The expected value of this loss (i.e., the risk) is thus

r(g) =Eln ché))g = /f(m) lngéjz)) dex. (4.27)
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The integral in (4.27) provides a fundamental way to measure the distance
between two densities and is called the Kullback—Leibler (KL) diver-
gence between f and g. Note that the KL divergence is not symmetric in f
and g. Moreover, it is always greater than or equal to 0 and equal to 0 when

=g

4.6.1 Training and Test Loss

Returning to the supervised case, it is typically not possible to compute
the risk r(g) in (4.25), let alone find the optimal prediction function g*,
as we do not know the underlying pdf f. However, we can approximate
r(g) from a training set 7 = {(X1,Y1),...,(X,,Y,)} consisting of in-
dependent copies of (X,Y); we denote its (deterministic) outcome by 7 =
{(®1,91),...,(@®n,yn)}. This approximation of r(g) is simply the average loss:

r-(g9) = % > Loss(yi, (i), (4.28)
i=1

which is called the training loss. We then choose g in some class G of
functions that minimizes the training loss. A similar results hold for the
unsupervised case.

Example 4.9 (Linear Model). The simplest and most important model
for supervised learning is where we choose G to be the class of linear predic-
tion functions and assume that it is rich enough to contain the true g*. In
particular, letting X = [X;,..., Xp]—r be the p-dimensional explanatory vari-
able and Y the response variable, the model assumption is that, conditional
on X = x, the response Y depends on x via the linear relationship

Y=x'8+c¢, (4.29)

where Ee = 0 and Vare = 2. Thus, a normal linear model (in the sense of
Definition 4.5) is a linear model with normal error terms. Similar to (4.24)
the model for multiple data {(x;,Y;)} is

Y =XB+e, (4.30)

where € is a zero-mean vector with independent components, and X is the
model matrix with rows z7 ,...,z, . If we view 7 = {(x;, y;)} as the training
data, then the squared-error training loss of a prediction function g :  —

x ' B is given by

1 — 1
r-(9) = - Z(yi —z/B)’ = ﬁlly - XB|*.
=1
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The optimal prediction function, or learner, g, in this class G of linear
functions is the function x +— T 8* for some B* which minimizes ||y — X2

Once a class G of functions has been chosen and a training set 7 is available,
an approximation of the optimal prediction function g* (the minimizer of the
risk 7(g)) is given by

g7g- = argminry(g) . (4.31)

g€eg

Note that minimizing the training loss over all possible functions g (rather
than over all g € G) does not lead to a meaningful optimization problem, as
any function g for which g(x;) = y; for all ¢ gives minimal training loss. In
particular, for a squared-error loss, the training loss will be 0. Unfortunately,
such functions have a poor ability to predict new (i.e., independent from 7)
pairs of data. This poor generalization performance is called overfitting.

The prediction accuracy of new pairs of data is measured by the gener-
alization risk of the learner. For a fized training set 7 it is defined as

r(g7) = ELoss(Y, g7 (X)), (4.32)

where (X,Y) is distributed according to f(x,y). We can approximate the
generalization risk via the test loss:

T gT = ZLOSS )), (4.33)

where 7' = {(X1,Y{),..., (X}, Y!)} is a so-called test sample. The test
sample is completely separate from the training set, but is drawn in the same
way, that is, via independent draws from f(x,y), for some sample size n'.

4.6.2 Trade-Offs in Statistical Learning

Choosing a suitable class G of prediction functions involves the balancing
of various competing demands. For example, G should be rich enough to
adequately approximate, or even contain, the optimal predication function
g*, but also be simple enough to allow fast computations to determine the
learner.

To better understand the relation between model complexity, computa-
tional simplicity, and estimation accuracy, it is useful to decompose the gen-
eralization risk into several parts, so that the trade-offs between these parts
can be studied. For example, we can decompose the generalization risk (4.32)
into the following three components:

rlg)= 2+ )=t +r(ed) —r(e9), (4.34)
—_———— ~—_———

irreducible risk approximation error statistical error
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where r* = r(g*) is the irreducible risk and g9 = argmin g 7(g) is the
best learner within class G. No learner can predict a new response with a
smaller risk than r*.

The second component is the approximation error; it measures the
difference between the irreducible risk and the best possible risk that can
be obtained by selecting the best prediction function in the selected class
of functions G. Determining a suitable class G and minimizing r(g) over this
class is purely a problem of numerical and functional analysis, as the training
data 7 are not present. For a fixed G that does not contain the optimal g*,
the approximation error cannot be made arbitrarily small and may be the
dominant component in the generalization risk. The only way to reduce the
approximation error is by expanding the class G to include a larger set of
possible functions.

The third component is the statistical (estimation) error. It depends
on the training set 7 and, in particular, on how well the learner g9 estimates
the best possible prediction function, ¢9, within class G. For any sensible
estimator this error should decay to zero as the training size tends to infinity.

We thus have two competing demands pitted against each other. The first
is that the class G has to be simple enough so that the statistical error
is not too large. The second is that the class G has to be rich enough to
ensure a small approximation error. Thus, there is a trade-off between the
approximation and estimation errors.

4.7 Problems

4.1. Formulate a statistical model for each of the situations below, in terms
of one or more iid samples. If a model has more than one parameter, specify
which parameter is of primary interest.

a. A ship builder buys each week hundreds of tins of paint, labeled as contain-
ing 20 liters. The builder suspects that the tins contain, on average, less
than 20 liters, and decides to determine the volume of paint in 9 randomly
chosen tins.

b. An electronics company wishes to examine if the rate of productivity dif-
fers significantly between male and female employees involved in assembly
work. The time of completion of a certain component is observed for 12
men and 12 women.

c. The head of a mathematics department suspects that lecturers A and B
differ significantly in the way they assess student work. To test this, 12
exams are both assessed by lecturer A and B.

d. We wish to investigate if a certain coin is fair. We toss the coin 500 times
and examine the results.

e. We investigate the effectiveness of a new teaching method, by dividing 20
students into 2 groups of 10, where the first group is taught by the old
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method and the second group is taught by the new method. Each student
is asked to complete an exam before and after the teaching period.

f. We wish to assess which of two scales is the more sensitive. We measure,
for each scale, 10 times a standard weight of 1kg.

g. To investigate if the support for the Homest party is the same in two
different cities, one hundred voters in each city are asked if they would
vote for the Honest party or not.

h. In a study on the effectiveness of an advertising campaign, a survey was
conducted among 15 retail outlets. For each outlet the sales on a typical
Saturday was recorded 1 month before and 1 month after the advertising
campaign.

i. To focus their marketing of remote-controlled cars, an electronics company
wishes to investigate who in the end decides to buy: the child or the father.
It records who decides in 400 transactions involving a father and a son.

4.2. Formulate appropriate statistical models for the data occurring in the
following quality control processes.

a. Consider a packaging line for 500 gm packets of Yummy breakfast cereal.
The process is monitored by recording each hour the average weight of five
randomly selected packets.

b. A mail-order company selects each day at random 50 invoices from the
many invoices it receives on a day and has these examined for errors. The
number of invoices with errors is recorded.

4.3. An alternative approach to model the height data in Fig.4.3 is to as-
sume that the observations are outcomes of iid random vectors [X1,Y7],...,
[X1,Ys]. What would be a suitable two-dimensional distribution?

4.4. Consider a Gaussian model Y ~ N(u, X), where Y is of dimension n.
Show that the maximum number of model parameters is n(n + 3)/2.

4.5. Show that under the restrictions » 3, a; = >, 8; = 0 and 7, vi; =
>_;%; = 0 the factor effects ANOVA model in (4.18) has dids + 1 free
parameters.

4.6. Verify the relation (4.15).

4.7. For each of the following situations, formulate a regression or ANOVA
model.

a. In a study of shipping costs, a company controller has randomly selected 9
air freight invoices from current shippers in order to assess the relationship
between shipping costs and distance, for a given volume of goods.

b. We wish to test if three different brands of compact cars have the same
average fuel consumption. The fuel consumption for a traveled distance of
100 km is measured for 20 cars of each brand.
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c. Heart rates were monitored for 20 laboratory rats during 3 different stages
of sleep.

d. For the last t10 years a peace organization has been keeping record of the
yearly military expenditure and gross national product of a country, which
appear to be related linearly.

e. We investigate the effectiveness of a new fertilizer, by dividing a large patch
of land into 20 test plots, each of which is divided into 3 small subplots. In
each of the 3 subplots a different concentration of fertilizer is tested: weak,
moderate, and strong. The product yield for each subplot is recorded.

f. One hundred adults are randomly selected from a large population. The
height and weight of each person is recorded, along with their body mass
index (i.e., the weight in kilogram divided by the square of the height in
meters).

4.8. Let Y7,...,Y,, be data from the polynomial regression model (4.10),
with corresponding explanatory variables zi,...,x,. Write the model as a
Gaussian linear model of the form (4.23).

4.9. Specify the design matrix for the multiple polynomial regression model
(4.11), based on n explanatory variable pairs (z11,%21), ..., (Z1n, Zan)-

4.10. Give the 18 x 6 design matrix corresponding to the parameter vector
B for the two-factor ANOVA model in Example 4.8. Verify that the first
column, consisting of only 1s, is orthogonal (perpendicular) to all the other
columns.

4.11. Table 4.2 was produced using the ANOVA model (4.18), with the
following parameters: p = 6, o = 0.1, (a1,a2) = (=2,2), (81,02,03) =
(-1,0,1), and

Y11 M2 V13| _ 0.2 -1 0.8
Y21 Y22 Y23 -02 1 —-0.8

Implement a Julia program to draw realizations from this model, producing
data similar to that in Table 4.2.

4.12. The data in Table 4.1 was computer generated from the nonlinear
regression model

Y — e—0.0Qt,', +E
where t; = (i — 1)8,i = 1,...,13 and {&;} ~ia N(0, (0.03)?). Implement a
Julia program that generates (new) data from the model. Plot the data and
the regression curve as in Fig. 4.5.
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Chapter 5
Statistical Inference

Recall the conceptual framework for Statistics in Fig.4.1. Statistical infer-
ence deals with the middle part of this framework. That is, how to obtain
conclusions about the model on the basis of the observed data. The two main
approaches to statistical inference are:

o Frequentist statistics
o Bayesian statistics

In frequentist statistics the data vector x is viewed as the outcome of a
random vector X described by a probabilistic model-—usually the model is
specified up to a (multidimensional) parameter 0; that is, X ~ f(-;0). The
statistical inference is then purely concerned with the model and in particular
with the parameter 8. For example, on the basis of the data one may wish to

1. Estimate the parameter
2. Perform statistical tests on the parameter

A main difference between the frequentist and the Bayesian approach is that
in the latter case prior information on the parameter vector 6 is used, most
often represented by a probability density for 8. Thus, for the purpose of
computations, we can view @ as as a random vector. Inference about 0 is
carried out by analyzing the conditional pdf f(6|x)—the so-called posterior
pdf. Bayesian inference is discussed in Chap.8. For the remainder of this
chapter we will explain the main ingredients of the classical (frequentist)
approach to statistical inference, starting with a simple motivating example.

Example 5.1 (Biased Coin). We throw a coin 1000 times and observe 570
Heads. Using this information, what can we say about the “fairness” of the
coin? The data (or better, datum) here is the number x = 570. Suppose we
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view z as the outcome of a random variable X which describes the number
of Heads in 1000 tosses. Our statistical model is then:

X ~ Bin(1000,p) ,

where p € [0,1] is unknown. Any statement about the fairness of the coin
is expressed in terms of p and is assessed via this model. It is important to
understand that p will never be known. The best we can do is to provide
an estimate of p. A common-sense estimate of p is simply the proportion of
Heads /1000 = 0.570. But how accurate is this estimate? Is it possible that
the unknown p could in fact be 0.57 One can make sense of these questions
through detailed analysis of the statistical model.

5.1 Estimation

Suppose the distribution of the data X is completely specified up to an
unknown parameter vector . The aim is to estimate @ on the basis of the
observed data @ only. Mathematically, the goal is to find function T' = T'(X)
of the data X such that the random vector T is close to 8. The random
variable T is called an estimator of 8. The corresponding outcome ¢t = T'(x)
is the estimate of 8. The bias of an estimator T is defined as ET' — 0. T is
said to be unbiased if ET = 0. It is important to note that T is a function of
the data only and not of the parameter. Such a function is called a statistic.

Example 5.2 (Iid Sample from a Normal Distribution). Consider the
standard model for data (see Sect.4.1):

Xla"'aXnNN(:u7U2)7

where 1 and 02 are unknown. The random measurements {X;} could repre-
sent the weights of randomly selected teenagers, the heights of the dorsal fin
of sharks, the dioxin concentrations in hamburgers, and so on. Suppose, for
example, that with n = 10, the observed measurements z1,...,z, are:

77.01, 71.37, 77.15, 79.89, 76.46, 78.10, 77.18, 74.08, 75.88, 72.63.

A common-sense estimate (a number) for p is the sample mean

X = w = 75.975 . (5.1)

Note that the estimate X is a function of the data x = [z1,...,x,] only.
The corresponding estimator (a random variable) is

X1 +--+ X,
—n .

Y:



5.1 Estimation 127

To justify why X is a good estimate of u, imagine that we carry out the
experiment and the estimation tomorrow, obtaining the (random) sample
mean X as our guess for u. From the affine transformation property of the
normal distribution (see Theorem 3.6), we see that X ~ N(u,0?/n). Hence,
X is an unbiased estimator for y—it is in expectation equal to the unknown
. Moreover, for large n, the variance of X tends to zero, implying that X
gets closer to p as the sample size n is increased. To specify exactly how
close X is to u one needs to estimate also o2, which is discussed in the next
section.

Remark 5.1 (Notation). It is customary in statistics to denote the esti-
mate of a parameter 6 by 5; for example, /i = X, in the example above. The
same notation, @, is often also used for the corresponding (random) estimator.
It should be clear from the context which meaning is used.

Three systematic approaches to constructing good estimators are the maz-
imum likelihood method, the method of moments, and least-squares minimiza-
tion. Maximum likelihood estimation is the most powerful of the three and
is based on the concept of the likelihood function, which plays a central role
in statistics. The whole of Chap. 6 is devoted to likelihood methods. In par-
ticular, Sect.6.3 deals with maximum likelihood estimation. The other two
estimation procedures are described next.

5.1.1 Method of Moments

Suppose z1,. .., T, are outcomes from an iid sample X;,..., X, ~iuq f(x;0),
where 8 = [0y, ..., 0] is unknown. The moments of the sampling distribution
can be easily estimated. Namely, if X ~ f(z;0), then the r-th moment of
X, that is, p,.(0) = Eg X" (assuming it exists), can be estimated through the

sample r-th moment
I,
m, = — x] .

The method of moments involves choosing the estimate 0 of 0 such that
each of the first £ sample moments is matched with the true moments; that
is, R

my = u-(0), r=12,....k.
In general, this gives a set of nonlinear equations, and so its solution often
has to be found numerically. In the following examples, however, the solution
can be obtained analytically.

Example 5.3 (Sample Mean and Sample Variance). Suppose that the
data are given by X = [Xy,...,X,]", where the {X;} form an iid sample

I 85
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from a general distribution with mean p and variance 0% < occ. Matching the
first moment gives the equation

%in -3, (5.2)

which yields the sample mean i = X (already introduced in Example 5.2)
as the method of moments estimate for p. Matching the second moment,
EX? = (EX)? + Var(X), gives the equation

S et =@t (5.3)

The corresponding estimator turns out to be biased:

Eo? = EX? — E(X)? = Var(X) + (EX)? — (Var(X) + (EX)?)
-1
=0l +pu?—o?/n—pu’ = nn o2 .

By multiplying o2 with n/(n — 1) we obtain an unbiased estimator of o2,
called the sample variance, often denoted by S?:

2_ 5 N _ 1 T2
§? =0 — n—1;(XZ X)%. (5.5)
The square root of the sample variance S = V52 is called the sample
standard deviation.

The method of moments can also be used to estimate parameters of iid
random vectors, as illustrated in the following example.

Example 5.4 (Sample Correlation Coefficient). Let (X3,Y7),...,
(X, Y,) be independent copies of a pair (X,Y) of random variables with
unknown correlation coefficient ¢ = o(X,Y"). Think of iid samples from a bi-
variate normal distribution. We can estimate ¢ by using the same “moment
matching” ideas as in the one-dimensional case. In particular, write
EXY] — px py
0= EXY] = py ; (5.6)
0x 0y

where ux and py are the expectations of X and Y, respectively, and ox
and oy are the standard deviations of X and Y, respectively. We can esti-
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mate these parameters via the corresponding moment estimators, as discussed
above. Moreover, we can estimate E[XY] via the moment estimator

1 n
= Z XY, - XY =
n “ ,
i=1 1=1
This leads to the following estimator of o:
S (X = X)(Y; - Y)
V(X - X2 (v - Y

which is called the sample correlation coefficient.

5.1.2 Least-Squares Estimation

Least-squares estimation is a simple estimation technique that is particularly
useful in regression analysis. In particular, consider the normal linear model
(4.23)

Y =XB+e, e~N(0,0%1,),

where the n x m design matrix X = [z;;] is known, but the parameters 8 =
[B1,---,Bm]" and 6% need to be estimated from an outcome y = [y1,. .., yn] "
of Y. We assume that n > m; that is, there are at least as many observations
as model parameters. The main idea is illustrated in Fig. 5.1: choose estimate
,8 of B such that the (Euclidean) distance between X,B and the observed data
y is as small as possible.

In other words, we seek to minimize ||y — X3| with respect to 8. This is
equivalent to minimizing the squared distance

IIy—Xﬂll2=Z waﬂ]. (5.8)

i=1

(X)

Fig. 5.1 Xﬁ is the orthogonal projection of y onto the linear space spanned by the
columns of the design matrix X

I 115
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To find the optimal S4,..., 5, we take the derivative of (5.8) with respect
to each B,k =1,...,m and set it equal to 0. This leads to the set of linear
equations

03 (v — i wiiBy)? &
>SS IR
i=1

yiziﬂzjﬁj)xik} =0,k=1,...,m,

=1

0Bk B
which can be written in matrix notation as
X'Xg=X"y. (5.9)

These are the so-called normal equations. The rank of X is the number
of linearly independent columns (recall that we assume that the number of
columns is less than the number of rows). If X is of full rank (i.e., none of
the columns can be expressed as a linear combination of the other columns),
then X TX is invertible. In that case,

B=XTX)"'XTy. (5.10)

Note that the matrix P = X(X"X)~!XT is the projection matriz onto the
subspace (X) spanned by the columns of X—and hence XB = Py. Namely,
P maps each vector in (X) to itself, because PX = X, and P maps any
vector v perpendicular to (X) to 0, because X Tv = 0. The m x n matrix

Xt =XxX"x)"1xT (5.11)

is called the (right) pseudo-inverse of X, because X*X = I,,—the m-
dimensional identity matrix. We thus have

B=X"y. (5.12)

Let ; = Y; — (X); be the i-th component of e. Note that the {&;} form an
iid sample from the N(0,0?) distribution. To obtain the method-of-moment
estimate of o2, we match the second moment of € ~ N(0,02) to its sample
average

SO (XB))

where we have plugged in the least-squares estimate B for B. The estimated
errors u; = Y; — [Xf];,i = 1,...,n are called the residuals. Simplifying the
above expression using vector notation, we obtain the estimator

o Y _XA 2 2

where u = [u1,...,u,]" is the vector of residuals.
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Example 5.5 (Simple Linear Regression). For the simple linear regres-
sion case we have a design matrix

1 T
1 xT9
X=[1lx]=1. .|,
1z,
and a parameter vector 8 = [Bo,41] . The least-squares estimator of B is

given by

n ) -1 n :
B(xwaxryl Z] [Zi_m

Z?:l i Z?:l i Z?:l z; Y

It is straightforward to write this out to obtain explicit expressions for EO and
B1 (see Problem 5.10), but in practice it is easier to simply solve the normal
equations (5.10) numerically. The estimator for o2 is

n

—~ 1 ~ 1 NN
ot = IV =XBI = 0D (Y Bo ~ rmi)?
i=1

By taking the square root of the above expression, one obtains a natural
estimator for o.

The following Julia program draws N = 100 samples from a simple lin-
ear regression model with parameters 8 = [6,13]" and ¢ = 2, where the
x-coordinates are evenly spaced on the interval [0,1]. The parameters are
estimated in the last two lines of the program. An important thing to keep
in mind when solving linear equations is that one should avoid computing
costly inverses. In particular, an equation such as Ax = b should never be
solved numerically via £ = A~!'b. Instead, use Julia’s syntax * = A \ b,
as in the second-last line of code below. Typical estimates for 8 and o are

o~

B =1[6.3,12.2]T and & = 1.86.

linregest.jl ]

using LinearAlgebra, Plots
N = 100; x = collect(1:N)/N ;

beta = [6; 13]; sigma = 2; # parameters

X = [ones(N,1) x]; # design matrix

y = X#beta + sigmaxrandn(N); # draw the y-data
scatter(x,y) # plot the data
betahat = X'*X(X'*y) # solve the normal equations

sigmahat = norm(y - X+betahat)/sqrt(N) # estimate for sigma
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5.2 Confidence Intervals

An essential part of any estimation procedure is to provide an assessment
of the accuracy of the estimate. Indeed, without information on its accuracy
the estimate itself would be meaningless. Confidence intervals (sometimes
called interval estimates) provide a precise way of describing the uncer-
tainty in the estimate. In Sect.6.3.1 we will discuss a systematic approach
for constructing (approximate) confidence intervals, based on the likelihood
concept. The bootstrap method, see Sect.7.3, provides another useful way
to construct confidence intervals. The analogue of a confidence interval in
Bayesian statistics is the credible interval; see Example 8.1.

Definition 5.1. (Confidence Interval). Let Xi,..., X, be random
variables with a joint distribution depending on a parameter § € O.
Let T7 < T, be functions of the data but not of . The random in-
terval (T1,T3) is called a stochastic confidence interval for 6§ with
confidence 1 — « if

Po(Th <0 <To)>1—« forall 0 €6O. (5.14)

If t; and to are the observed values of T7 and Ts, then the interval (¢1, t2)
is called the numerical confidence interval for § with confidence
1—oa.

If (5.14) only holds approximately, the interval is called an approximate
confidence interval. The probability Pp(T; < 6 < T3) is called the cover-
age probability. The subscript 8 in Py indicates that the joint distribution
of Xy,...,X,, depends on 6. The coverage probability for an exact 1 —a con-
fidence interval is, by definition, at least 1 — « for every 6. For approximate
1 — « confidence intervals the actual coverage probability could well be less
than 1 — « for certain choices of . An example is given in Problem 5.22.

Remark 5.2. Reducing o widens the confidence interval. A very large con-
fidence interval is not very useful. Common choices for o are 0.01,0.05, and
0.1.

We next describe a simple approach to constructing exact or approximate
confidence intervals that uses a so-called pivot variable T' = T'(X, 6), which
is a function of the data X and of the parameter of interest #, and for
which the distribution is known (sometimes only approximately) and does
not depend on 6. The construction depends on specific quantiles of the pivot
distribution. For v € (0,1), the y-quantile of a distribution with cdf F is
a number z, for which F(z,) = ~ or, equivalently, 2z, = F~!(7). Numerical
values for quantiles of various distributions can be obtained in Julia via the
quantile function from the Distributions package; see Sect. A.9.
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In general, constructing a confidence interval using a pivot variable involves
the following steps.

Steps in the Pivot Method

1. Formulate a statistical model for the data X.

2. Choose an appropriate pivot variable T'(X, 0).

3. Determine the (approximate) distribution of the pivot.

4. Calculate quantiles ¢; and ¢y for the (approximate) pivot distribu-
tion such that P(¢1 < T(X,0) < ¢2) =1 — .

5. Rearrange the event {q1 < T(X,0) < g2} into {T} < 6 < Tr}
and return (77, T») as an (approximate) stochastic 1 — « confidence
interval for 6.

Remark 5.3. For a one-sided confidence interval, such as (T, o0) or (¢, 7)),
where c is fixed, only a single quantile needs to be calculated in Step 4.

Example 5.6 (Confidence Interval for Iid Normal Data). Suppose
X1,..., X5 ~iia N(u, 1). We have seen that we can estimate p with the sam-
ple mean X. Here, X ~ N(u,1/n), so T = (X — u)n'/? ~ N(0,1). Since T
depends only on p and the data and has a distribution which does not depend
on p, we can use it as a pivot variable. To construct a 95% confidence interval
(hence a = 0.05) we consider the 1 — /2 = 0.975- and «/2 = 0.025-quantiles
of the N(0,1) distribution, which are 1.96 and —1.96, respectively. Hence,
P(—1.96 < T < 1.96) = 0.95. Rearranging {—1.96 < (X —u)n'/? < 1.96} into
{X —1.96n712 <y < X +1.96n71/2} gives the 0.95 stochastic confidence
interval (X —1.96n~1/2, X41.96n~'/2), sometimes written as X +1.96n~1/2.
Thus, if we would repeat the experiment many times, and get many outcomes
of the interval X +1.96 n~'/2, the true x would be contained in these intervals
in 95% of the cases.

The remainder of this section is about the construction of (approximate)
confidence intervals for a number of standard situations, using appropriate
pivots.

5.2.1 Iid Data: Approximate Confidence Interval for u

Let Xq,...,X, be an iid sample from a distribution with mean p and vari-
ance 02 < oo (both assumed to be unknown). By the central limit theo-
rem the sample mean X has approximately a N(u,o?/n) distribution, so
(X — p)/(c/+/n) has approximately a standard normal distribution. How-

ever, this is not yet a pivot variable for pu, because it still depends on the
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unknown standard deviation ¢. This can be remedied by substituting o with
the sample standard deviation Sy, which, by the law of large numbers, will
be close to o for large n. This gives the pivot variable

X — M approx.
Sx/vn ©.1) (5.15)

For v € (0,1), let z, denote the y-quantile of the standard normal distribu-
tion. Rearranging the approximate equality P(|T| < z1_,/2) = 1 — «a yields

T

_ S — S
]P<X_Z1a/2\/)% SM§X+Zla/2\/)%> ~1l-a,

so that

(X - Zla/2i)7%a X + Zla/Zf/)’%) ) (516)
abbreviated as X + z;_, /25x /+/n, is an approximate stochastic 1 — « confi-
dence interval for p.

Since (5.16) is only an asymptotic result, care should be taken when apply-
ing it to cases where the sample size is small or moderate and the sampling
distribution is heavily skewed.

Example 5.7 (Monte Carlo Integration). In Monte Carlo integra-
tion, random sampling is used to evaluate complicated integrals. Consider,
for example, the integral

oo oo oo 2 2 2
H = / / / iV, |2’1 + 29 + 23 ei(zl+22+z3)/2 dzy dzodzs .
— 00 — 00 — 00

Defining X = |Z; + Zo + Z5|Y/2(21)3/2, with Z1, Zs, Z5 = N(0,1), we can
write 4 = EX. In the following Julia program we generate an iid sample of
N = 10° copies of X and estimate u via the corresponding sample mean. A
typical outcome is given in the output.

mcint.jl

using Statistics, Printf

c = (2%pi)~(3/2); N = 1078;
H = 2z -> c*sqrt. (abs. (sum(z,dims=2)))
Z = randn(N,3); X = H(Z);

mX = mean(X); sX = std(X);

R = 1.96*sX/sqrt () ;

LCI = mX - R; UCI = mX + R;

@printf("Estimate = %.3f, CI = (%.3f,%.3f)",mX,LCI,UCI)

Estimate = 17.053, CI = (17.039,17.067)
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5.2.2 Normal Data: Confidence Intervals for u and o?

For the standard model X7, ..., X, ~ia N(, 02) it is possible to construct
exact confidence intervals for both 4 and o2, based on the following result.

Theorem 5.1. (Student t and x? Statistics for Normal Data).
Let Yi,...,Y, ~iia N(0,1) and let Y and S% be the sample mean and
sample variance. Then, Yy/n ~ N(0,1) and (n — 1)S2 ~ x2_,, inde-
pendently. Moreover,

Yyn

T=-Y"nt,,. 1
. 1 (5.17)

Proof. By the linearity property of the normal distribution (see Theorem 3.6), =" 85
we have Yy/n ~ N(0,1). Let Y = [Y3,...,Y,]T, and let Y; = Y1 be the

orthogonal projection of Y onto 1 = [1,...,1]". By Theorem 3.10, ||Y1||?> = I 88
nY" is independent of Y =Y1]2=(n—1)S%, and |[Y =Y 1> ~ x2_,. The
result now follows from Corollary 3.2. O I 89

To obtain a stochastic confidence for 1 we take the same pivot as in (5.15).
Defining Y; = (X; — p)/o, i =1,...,n, we can write

T X—p Yyn
Sx/vn Sy ’

where the {Y;} form an iid sample from the standard normal distribution.
By Theorem 5.1, T has a Student’s ¢ distribution with n — 1 degrees of free-
dom. We now rearrange, similar to what was done in Sect.5.2.1, the equality
P(|T| < tp_1;1—as2) = 1 — , where t,,_y;1_o/7 is the 1 — a//2 quantile of the
t,—1 distribution, to find an exact confidence interval for p:

— S
X+ tn—l;l—a/ZT)% .

To obtain an exact confidence interval for o2, we can use the pivot

(5.18)

(5.19)

(n—1)53
CD% s
which by Theorem 5.1 has a x2_; distribution. Note that the corresponding I 48
pdf is not symmetric. Let Xfm be y-quantile of the x2 distribution. Then,

n—1)52
]P <X7211§a/2 < (O'# < X7211;1a/2> =l-a.
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Rearranging gives:
—-1)53 —1)53
P 7(7; )5k <a2<7(n2 x| 1 _a.
Xn—l;l—a/Q Xn—l;oz/Q
Hence, a (1 — a) stochastic confidence interval for o2 is

( (n—1)S% (n- 1>S§> | (5.20)

2 ’ 2
Xn—l;l—a/Q Xn—l;oz/Q

Example 5.8 (Monte Carlo Experiment for Confidence Intervals).
The following Julia program draws an iid sample of size n = 10 from the
N(3,0.25) distribution. It then determines 95% confidence intervals for
and o2 and checks if the true values are contained in the intervals or not.
This is repeated independently 100 times and the total number of times that
p and o2 are contained in the confidence intervals is reported. The quantiles
for the ¢ and x? distributions are determined by using the Distributions
package. The values are tq = 2.2622, cql = 19.0228, and cq2 = 2.7004. A

typical estimate of p is i = 3.22, with a 95% confidence interval (3.02,3.41).

For o2 a typical estimate is 02 = 0.0761, with a 95% confidence interval

(0.0360, 0.2535). In this case only the second confidence interval contains the
true parameter. However, out of the 100 confidence intervals typically only
95 contain the true parameter. The output shows that in this particular case
92 confidence intervals for p contained the true value, and the true o2 was

contained in 97 cases.

confintnorm. jl ]

using Distributions, Random, Statistics
mu = 3; sig = 0.5
# true parameters
alpha = 0.05; n = 10; mu_count = 0; sig_count = 0
for k in 1:100
x = randn(n)*sig .+ mu # draw the iid sample
mu_est = mean(x) # estimate mu
sig_est = std(x) # estimate sigma
tq = quantile(TDist(n-1),1-alpha/2)
mu_lo = mu_est - tg*sig_est/sqrt(n) # low bound CI for mu
mu_hi = mu_est + tg*sig_est/sqrt(n) # upper bound
cql = quantile(Chisq(n-1),1-alpha/2)
cg2 = quantile(Chisq(n-1),alpha/2)
sig_lo = (n-1)*sig_est™2/cql; # lower bound CI for sigma
sig_hi = (n-1)*sig_est™2/cq2; # upper bound
global mu_count = mu_count + (mu_lo < mu < mu_hi)
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global sig_count = sig_count + (sig_lo < sig™2 < sig_hi)
end
println(mu_count, " ", sig_count)

92 97

5.2.3 Two Normal Samples: Confidence Intervals for
tx — py and o% /o3

Suppose we have two independent samples X;,...,X,, and Y7,...,Y,, from
respectively a N(px, 0% ) and N(uy, 0%) distribution. We wish to make con-
fidence intervals for ux — py and 0% /o%. The difference pux — py tells us
how the two means relate to each other, and 0% /0% gives an indication how
the variances relate to each other.

Constructing a confidence interval for px — py is very similar to the one-
sample case provided that we make the extra model assumption that the
variances of the two samples are the same. That is, we assume that 0% =
0% = 02 for some unknown o2. The analysis now proceeds as follows. The

natural estimator for ux — puy is X — Y. Next, observe that

(X -Y) = (ux — py)
oy/1/m+1/n
If 02 is unknown, we must replace it with an appropriate estimator in order

to obtain a pivot variable for . For this we will use the pooled sample
variance, Sf,, which is defined as

~N(0,1) .

m—1)S% + (n—1)S%
m+n—2

s (
S, = , (5.21)
where S% and S% are the sample variances for the {X;} and {Y;}, respec-
tively. It is not difficult to show that SZ% is an unbiased estimator of o2
see Problem 5.9. The following result is the analogue of Theorem 5.1 and is
proved in Appendix B.5.

Theorem 5.2. (¢t Statistic for Two Normal Samples). Let the
random variables X1,...,X,, Y1,...,Y,, be defined as above, then

X —Y) - (ux —
7 ) — (px MY)Nthn,g.

S/ 3

I 479
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Using the pivot T, we find (completely analogously to the one-sample case)
the following 1 — « stochastic confidence interval for px — py:

— — 1 1
X - Y Zl: tm+n—2;1—o¢/2 Sp E + ﬁ . (522)

If the assumption 0% = o2 is dropped, the pivot method no longer pro-

vides the means to obtain an exact confidence interval for px — py, although
it is easy to construct approximate confidence intervals for large sample sizes;
see Problem 5.15.

Next, we turn our attention to a confidence interval for 0% /o%.. Here, we
can employ the pivot

S%/0%
S% /0%

~Fm—-1,n-1).

To see that this pivot has the mentioned F' distribution, first observe that,
by Theorem 5.1, (m — 1)S% /0% ~ x2,_; and (n — 1)S% /0% ~ x2_,, and
then apply Theorem 3.11.

Let Fy, 5.y denote the v quantile of the F(m,n) distribution. Then,

S%/o%
S% /o3

P (le,nl;a/Z < < le,nl;la/2> =l-a.

Rearranging gives the following (1 — «) stochastic confidence interval for

0% 0% , ,
( ! S ! E%() : (5.23)
Fm—l,n—l;l—a/Z S)Q/’ Fm—l,n—l;a/Q S)Q/

Example 5.9 (Comparing Two Means). A study of iron deficiency
among infants compared breast-fed with formula-fed babies. A sample of 25
breast-fed infants gave a mean blood hemoglobin level of 13.3 and a standard
deviation of 1.4, while a sample of 21 formula-fed infants gave a mean and
standard deviation of 12.4 and 2.0, respectively. Assuming the hemoglobin
levels are normally distributed, is there statistical evidence that the mean
hemoglobin levels of the two groups are different?

Let the hemoglobin levels for the breast-fed and formula-fed babies be
X1,y Xos ~iia N(ux,0%) and Y1, . . ., Yao1 ~iig N(uy, 0% ), respectively. The
samples are assumed to be independent of each other. A 95% numerical con-
fidence interval for 0% /0% is

1 142 1 142
2.40756 2.027 0.42969 2.02

) = (0.2035, 1.1404) .
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Because 1 is an element of this interval, there is no reason to believe that o%
is different from 3. We thus assume that the two variances are equal, which
allows us to apply (5.22). The pooled sample variance is s2 = (24(1.4)% +
20(2.0)?)/44 = 2.8873, and the 0.975 quantile of the ty4 distribution is 2.0154,
so that a 95% confidence interval for ux — py is

13.3 — 12.4 + 2.0154/2.8873 1/1/25 + 1/21 = (—0.11, 1.91)

which contains 0. Hence, on the basis of these data and the assumptions of
normality, there is no ground to believe that the expected hemoglobin levels
are different for the two groups.

5.2.4 Binomial Data: Approximate Confidence
Intervals for Proportions

Suppose we have an outcome z of a random variable X with a Bin(n,p)
distribution. We wish to construct a confidence interval for p. In fact, it
is not so easy to find an ezact confidence interval for p, so we settle for
an approximate one. For large n, X has approximately a N(np, np(1 — p))
distribution; see (3.7). The natural estimator for p, that is, p = X/n, has 1= 92
therefore approximately a N(p, p(1—p)/n) distribution. Thus, using the pivot

(p— p)/m, we have

p

ﬁ_
Pl—2_qp<—F————<ziiap|~l-a,
< Vo(1—p)/n

where z1_,/9 is the 1 — a/2 quantile of the standard normal distribution.
Rearranging gives:

. /p(1 —p . /p(l—p
]P’(p—zla/g %<p<p+21,a/2 (n)>,\"\51—04

This would suggest that we take p+z;_/21/ @
confidence interval for p, were it not for the fact that the bounds still contain
the unknown p. However, for large n the estimator p is close to the real p, so
that we may replace p with p under the square roots in the expression above.

Hence, an approximate 1 — « confidence interval for p is

as an approximate 1 —«

-5

- (5.24)

ﬁ:l: fl—a/2
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Example 5.10 (Approximate Confidence Interval for Proportion).
In an opinion poll of 1000 registered voters, 227 voters say they will vote for
the Honest party. We wish to find a 95% approximate confidence interval for
the proportion p of Honest voters of the total population. We hereto view
the datum, 227, as the outcome of a random variable X (the number of
Honest voters out of 1000 registered voters) with a Bin(1000, p) distribution.
We have p = 227/1000 = 0.227, and zg.975 = 1.96, so that an approximate
95% numerical confidence interval for p is

0.227 +1.96 x 0.0132 = (0.20, 0.25) .

The same methodology can be used to construct approximate confidence
intervals for the difference between two proportions. In particular, consider
outcomes z and y of two independent random variables X ~ Bin(m, px) and
Y ~ Bin(n,py). We wish to construct an approximate confidence interval for
px — py- The corresponding estimator is px — py = X/m — Y/n. As in the
one-sample case, for m and n sufficiently large,

1 px — Dby — (px —py)
\/px(l—px) + py (1-py)

n

<Zicap | =l-a.

Rewriting this gives

N 1— 1—
P(pX_pY_Zl—a/2\/pX( mpx) L byl - py) < by —py

1-— 1-—
px(1—px) +PY( py)) ol

<px ]3Y+21—a/2\/ m .

By substituting px and py with their estimators, we obtain the following
approximate 1 — « confidence interval for px — py:

px(1—Dpx) n py (1 —Dpy)
m n ’

px — Dy £ Zl—a/Q\/ (5.25)

Example 5.11 (Approximate Confidence Interval for the Difference
of Two Proportions). Two groups of men and women are asked whether
they would buy Happy or Fun cola, if they were forced to choose between the
two. The results are given in Table 5.1.
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Table 5.1 Counts of men and women preferring Happy or Fun cola

Men ‘Women
Happy 55 60
Fun 105 132

The observed proportions of Happy cola drinkers among the men and
women are 55/160 = 34.4% and 60/192 = 31.3%, respectively. Is this differ-
ence statistically significant or due to chance?

We view the data as outcomes of a two-sample binomial model. Specifically,
let X be the number of Happy cola drinkers among 160 men, and Y the
number of Happy cola drinkers among 192 women. We assume that X ~
Bin(160,px) and Y ~ Bin(192, py ) are independent. To assess the difference
between the true proportions px and py, we simply evaluate the numerical
confidence interval of the form (5.25). We have px = 0.344, py = 0.313, and
20.975 = 1.96, so that a 95% numerical confidence interval for py — py is

0.031 £ 0.099 = (—0.07, 0.13) .

This interval contains 0, so there is no evidence that men and women differ
in their preference for the two brands of cola.

5.2.5 Confidence Intervals for the Normal Linear
Model

Consider the normal linear model
Y =XB+e, e~N(0,5°1,),

where X is an n X m matrix (m < n) of full rank m—thus, the columns of
X are linearly independent, and, as a consequence, the matrix XX has an
inverse.
We saw in Sect.5.1.2 that the parameter vector 8 can be estimated via = 129
the estimator R
B=X"Y =X"X)"'XTY .

Since the random vector 8 is a linear transformation of a normal random
vector, it has a multivariate normal distribution. The mean vector and co-
variance matrix follow from Theorem 3.4: =" 80

EB = (X'X)'X'EY = (X'X)'X'X8 =8

and
25 =(X"X) X L, (XTX)'X)T = o (XTX) 7
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__ Let a be any m-dimensional vector. A natural estimator for 6 = a'pBis
6 = a ' B. The following theorem gives an exact confidence interval for 6.

Theorem 5.3. (Confidence Interval for the Normal Linear
Model). A 1 — « stochastic confidence interval for § = a' 3 is

~ Y — XB|a (XTX) 1
0 :I:tnfm;lfa/2 || ﬂ” 2 ( ) = ) (526)
vn—m

where t,, .1 _q/2 is the 1 — a/2 quantile of the t,,_,, distribution.

Proof. Being linear in the components of @3, the random variable o =

TB has a normal distribution, with expectation a'8 = 6 and variance
a'(X"X) a. Let

S e s

)

n

with Y, = X[Ai', be the least-squares estimator of ¢2. The random variable
=388 || Y=Y, /a2 has, by Theorem 3.10, a x2_,, distribution and is independent

of Y. Since B = XTXB = X*+Y,,, we have that |[Y —Y,, |2 is independent
5" 89 of ﬂ. Using Corollary 3.2, we see that the pivot

r_ 0-0)//aTXTX)T
VIY = XBI2/(n — m)

has a t,,_,, distribution. By rearranging the identity P(|T| < t,_m;1—a/2) =
1 — o in the usual way, we arrive at the confidence interval (5.26). O

Example 5.12 (Confidence Limits in Simple Linear Regression).

Iz 131 We continue Example 5.5 by including confidence intervals, (I(z),u(x)) say,
of the parameter (x) = By + 1, for various z. The points u(z),z € [0,1]
form an upper confidence curve for the regression line y = Sy + S12; and ()
gives the lower confidence curve. The following Julia code, to be appended
to the code in Example 5.5, implements (5.26) and yields a plot of the true
regression line and confidence curves similar to Fig. 5.2.

linregestconf. jl ]

tquant = quantile(TDist(N-2),0.975) # 0.975 quantile

ucl = zeros(N); 1lcl = zeros(N); # upper/lower conf. limits
rl = zeros(N) # (true) regression line

u=0
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for i in 1:N
global u = u + 1/N
a = [1;ul
rl1[i] = a'xbeta;
ucl[i] = dot(a,betahat) .+ tquant*norm(y - X*betahat)*sqrt(
a'*inv(X'*X)*a)/sqrt (N-2)
1cl[i] = dot(a,betahat) .- tquant*norm(y - X*betahat)*sqrt(
a'*inv(X'*X)*a)/sqrt (N-2)
end
plot! (x,rl,legend=false); plot!(x,ucl,legend=false);
plot!(x,1lcl,legend=false); scatter!(x,y,legend=false)

257
True regression line .
y=pBo+ bz :

Py
.
.
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X

Fig. 5.2 The true regression line (solid) and the upper and lower 95% confidence curves
(dashed)

5.3 Hypothesis Testing

Hypothesis testing involves making decisions about certain hypotheses on
the basis of the observed data. In many cases we have to decide whether the
observations are due to “chance” or due to an “effect.” Hypothesis testing has
traditionally played a prominent role in statistics, and many introductory
books still are predominantly about hypothesis testing. Modern statistical
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analyses however, especially those based on computer intensive methods, do
not so heavily rely on hypothesis testing any more, preferring, for example,
inference via confidence intervals to inference based on hypothesis tests. In
Bayesian statistics hypothesis testing is done in a different way, via Bayes
factors. We will address the main ideas of frequentist hypothesis testing in
this section.

Suppose the model for the data X is described by a family of probability
distributions that depend on a parameter 8 € ©. The aim of hypothesis
testing is to decide, on the basis of the observed data @, which of two com-
peting hypotheses, Hy : 8 € Oy (the null hypothesis) and H; : 8 € 6,
(the alternative hypothesis), holds true, where ©y and ©; are subsets of
the parameter space ©. Traditionally, the null hypothesis and alternative hy-
pothesis do not play equivalent roles. Hy contains the “status quo” statement
and is only rejected if the observed data are very unlikely to have happened
under Hy.

The decision whether to reject Hy or not is dependent on the outcome of a
test statistic T' = T'(X). For simplicity, we discuss only the one-dimensional
case T =T1T.

The p-value is the probability that under Hy the (random) test statistic
takes a value as extreme as or more extreme than the one observed. Let ¢
be the observed outcome of the test statistic 7. We consider three types of
tests:

o Left one-sided test. Here H is rejected for small values of ¢, and the
p-value is defined as p = Py, (T < t).

e Right one-sided test: Here Hj is rejected for large values of ¢, and the
p-value is defined as p = Py, (T > t),

e Two-sided test: In this test Hy is rejected for small or large values of ¢,
and the p-value is defined as p = min{2Py, (T < t), 2Py, (T > t)}.

The smaller the p-value, the greater the strength of the evidence against Hy
provided by the data. As a rule of thumb:

p < 0.10 suggestive evidence,
p < 0.05 reasonable evidence,
p < 0.01 strong evidence.

The following decision rule is generally used to decide between Hy and Hj:
Decision rule : Reject Hy if the p-value is smaller than some signifi-

cance level «.

In general, a statistical test involves the following steps.
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Steps for a Statistical Test

Formulate a statistical model for the data.

Give the null and alternative hypotheses (Hp and Hy).
Choose an appropriate test statistic.

Determine the distribution of the test statistic under Hj.
Evaluate the outcome of the test statistic.

Calculate the p-value.

Accept or reject Hy based on the p-value.

NP O

Choosing an appropriate test statistic is akin to selecting a good estima-
tor for the unknown parameter 8. The test statistic should summarize the
information about € and make it possible to distinguish between the alter-
native hypotheses. The likelihood ratio test provides a systematic approach
to constructing powerful test statistics; see Sect. 6.4.

Example 5.13 (Blood Pressure). Suppose the systolic blood pressure for
white males aged 35-44 is known to be normally distributed with expectation
127 and standard deviation 7. A paper in a public health journal considers
a sample of 101 diabetic males and reports a sample mean of 130. Is this
good evidence that diabetics have on average a higher blood pressure than
the general population?

To assess this, we could ask the question how likely it would be, if diabetics
were similar to the general population, that a sample of 101 diabetics would
have a mean blood pressure this far from 127.

Let us perform the seven steps of a statistical test. A reasonable model for
the data is X1,..., X101 ~iia N(u,49). Alternatively, the model could simply
be X ~ N(u,49/101), since we only have an outcome of the sample mean of
the blood pressures. The null hypothesis (the status quo) is Hy : u = 127;
the alternative hypothesis is Hy : u > 127. We take X as the test statistic.
Note that we have a right one-sided test here, because we would reject Hy
for high values of X. Under Hy we have X ~ N(127,49/101). The outcome
of X is 130, so that the p-value is given by

X —127 _ 130 —127
>
V497101~ 4/49/101

P(X >130) =P < ) =P(Z >4.31)=8.16-10",

where Z ~ N(0,1). So it is extremely unlikely that the event {X > 130}
occurs if the two groups are the same with regard to blood pressure. However,
the event has occurred. Therefore, there is strong evidence that the blood
pressure of diabetics differs from the general public.

Example 5.14 (Binomial Test). We suspect a certain die to be loaded.
Throwing 100 times we observe 25 sixes. Is there enough evidence to justify
our suspicion?

I 184
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We ask ourselves the same type of question as in the previous example:
Suppose that the die is fair. What is the probability that out of 100 tosses 25
or more sixes would appear? To calculate this, let X be the number of sixes
out of 100. Our model is X ~ Bin(100,p), with p unknown. We would like
to show the hypothesis Hy : p > 1/6; otherwise, we do not reject (accept)
the null hypothesis Hy : p = 1/6. Our test statistic is simply X. Under Hy,
X ~ Bin(100,1/6), so that the p-value for this right one-sided test is

100

P(X >25) =) (120)(1/6)k (5/6)1997F ~ 0.0217 .

k=25

This is quite small. Hence, we have reasonable evidence that the die is loaded.
Such statistical tests involving count data are often called binomial tests.

Example 5.15 (One-Sample t-Test). In a one-sample t-test the data
are assumed to follow the standard model: 71, ..., Z,, ~iq N(i,02). One typ-
ically wishes to test the null hypothesis Hy : 1 = 0 against Hy : p # 0 or
some one-sided alternative. The test statistic in this case is

Zyn
Sy

T =

where Z and Sz are the sample mean and sample standard deviation of the
data. By Theorem 5.1 T has a t,,_; distribution under Hy.

As a specific example, consider the before and after weights (actually,
masses) of 10 participants in a “miracle” weight loss program, given in Ta-
ble 5.2.

Table 5.2 Weight loss data in kilograms
Before 280 140 90 128 135 98 111 97 89 156
After 240 135 89 135 120 95 99 103 87 140
Loss 40 5 1 -7 15 3 12 —6 2 16

Although the data involve paired observations in which the before and
after weights are highly correlated, it is reasonable to assume that the weight
losses (weight before — weight after), Z1, ..., Z1o, follow the standard model
above. The outcome of the test statistic is here t = 27/1/209 ~ 1.87. For the
alternative hypothesis H; : u > 0 (the weight loss program works!), we obtain
the p-value P(T' > t) = 0.047, giving modest evidence that the program is
effective.

Example 5.16 (Two-Sample ¢t-Test). We return to Example 5.9 and test
whether breast-fed and formula-fed babies have the same hemoglobin levels.
The null and alternative hypotheses are Hy : px = py and Hy : px # py.
For the test statistic we take
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which by Theorem 5.2 has a ty44 distribution under Hy. As we have here a
two-sample normal model, the resulting test is called a two-sample t-test.
The outcome of T is here
X -7 13.3 - 124
G, Sl ) B — 1.7804.
sp\/2+ 1 V28873 /5 +

The corresponding p-value for this two-sided test is 0.08, providing insufficient
evidence that the expected hemoglobin levels are different and corroborating
the findings in Example 5.9.

5.3.1 ANOVA for the Normal Linear Model

Hypothesis testing for the normal linear model in Sect. 4.23 is often related
to model selection. In particular, suppose we have the following model for the
dataY =[Vq,...,Y,]":

Y =X,6; +XoB,+e, €~N(0,0%L,), (5.27)
N—_———

XB

where 8, and 8, are unknown vectors of dimension k and m —k, respectively;
and X; and X5 are full-rank design matrices of dimensions n x k and n X
(m — k), respectively. Above we implicitly defined X = [X1, X5] and B =
(81,83 ]-

Suppose we wish to test the hypothesis Hy : 85, = 0 against H; : B4 # 0.
We saw in Sect. 5.1.2 how to estimate the parameters via least squares. Let B
be the estimate of 8 under the full model, and let 8; denote the estimate of 3
for the reduced model; that is, under Hy. To simplify notation, let Y ,,, = X,/B\
be the projection of Y onto the space (X) spanned by the columns of X; and
let Y = Xlé\l be the projection of Y onto the space (X;) spanned by the
columns of X; only.

A sensible strategy for deciding upon the reduced or full model is to com-
pare ||Y — Y| with [|[Y — Y ,,|| via the quotient of the two. The larger this
quotient, the more evidence for the full model. It is more convenient to use
instead the equivalent statistic

n=m Y =Yi[? —|[Y — YVl _ [V = Yi[*/(m—F)

T = -
m—k 1Y = Yol 1Y =Yoml?/(n—m)

, (5.28)

I 115

I 129
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where we have used Pythagoras’ theorem in the second equation above, as
illustrated in Fig.5.3.

Fig. 5.3 Pythagoras’ theorem

Define X = Y /o with expectation p = Xf/o, and X; = Y ;/o with
expectation p;, j = k,m. Note that p = p,,,, and under Ho, p,,, = py,. We
can directly apply Theorem 3.10 to find that |[Y =Y ,,[|?/0? = | X =X u||* ~
X2 _ ., and, under Ho, |Y,, — Yi|?/0? ~ x?,_,. Moreover, these random
variables are independent of each other. It follows from Theorem 3.11 that,
under Hy,

T~Fm—-k,n—m).

We reject Hy for large values of T. The above methodology is often referred
to as analysis of variance (ANOVA).

Example 5.17 (Hypothesis Testing for Randomized Block Design).

In a randomized block design the data are collected in blocks, in order
to reduce variability in the experiment. Consider, for example, the data in
Table 5.3, representing the crop yield using four different crop treatments
(e.g., strengths of fertilizer) on four different blocks (plots).

Table 5.3 Crop yield

Treatment
Block 1 2 3 4
1 9.2988 9.4978 9.7604 10.1025
2 8.2111 8.3387 8.5018 8.1942
3 9.0688 9.1284 9.3484 9.5086
4 8.2552 7.8999 8.4859 8.9485
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Let us consider the data first as coming from four different groups, depend-
ing only on the level of treatment. A possible model would be the single-factor
ANOVA model

Ye=p+a;+ex, t,k=1,...,4,

with {1} ~iia N(0,0?), and E?:1 a; = 0. Ordering the {Y;;} into a col-

umn vector Y = Y11, Yia,... Y14, Yo1,..., Y] ", we can write Y in the form
(5.27):

1 1 0 O o

1 010 !

Y - 1 M + 0 0 1 32 + €,
1 1-1-1 3
v 32
X1 X2

where 1 and 0 are vectors of 1s and 0s, respectively. We wish to test whether
the treatments make a difference to the crop yield or not. The null hypothesis
Hy : oy = ap = a3 = 0is that the treatments have no effect. As a test statistic
we use (5.28). For the present model we have n = 16, m =4, and k = 1. The
squared norm ||Y — Y, [|2 = |Y — XB||? is often written as SSeror, that is,
the sum of squares of the error terms. Note that ||[Y — X|2/(n — m) is an
unbiased estimator of the variance o2 of the model error.

Similarly, ||Y ,, — Y k|| represents the sum of squares due to the treatment
effect and is written as SStreatment. Our test statistic 7' in (5.28) can thus be
written as
T — SStreatment/(m - k) déf MStreatment

Sserror/(n - m) MSerror ’

where “MS” stands for “mean square.” Under Hy the test statistic T has an
F(m — k,n —m) = F(3,12) distribution.

solvehypotcropl.jl ]

using LinearAlgebra, Statistics, Distributions

yy = [9.2988 9.4978 9.7604 10.1025;

8.2111 8.3387 8.5018 8.1942;

9.0688 9.1284 9.3484 9.5086;

8.2552 7.8999 8.4859 8.9485]

n = length(yy); (nrow,ncol) = size(yy); y = vec(yy)

X_1 = ones(n,1)

KM = kron(diagm(ones(ncol)),ones(nrow,1)); X_2 = KM[:,1:ncol

-1]
X_2[n-nrow+1:n,:] = -ones(nrow,ncol-1)
X = [X_1X_2]
m = size(X,2);

betahat = X'*X(X'x*y)

= 112
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ym = Xxbetahat

yk = X_l*mean(y); # omitting treatment effect
k = 1 # number of parameters in reduced model
T = (n-m)/(m-k)*(norm(ym - yk)~2)/norm(y-ym) 2
pval = 1 - cdf(FDist(m-k,n-m),T)

The outcome of T is found to be 0.4724, which gives a p-value of 0.7072.
This suggests that the treatment does not have an effect on the crop yield.
But what if the crop yield is not only determined by the treatment levels
but also by the blocks? To investigate this, we could describe the data via a
two-factor ANOVA model:

Ye=p+o;+1+eik, t,k=1,...,4,

with {e;} ~iia N(0,02) and Z?:l o; = 0and Z?Zl 7; = 0. Ordering the data
in the same way as for the one-factor case, we can write

c] . 1 00
c| |t ) 0 1 0

Y =Xip+ X8y + C To| +e, with C= 00 11°
c|ll™ 1-1-1
X3 Bs

and X; and X5 are the same as in the one-factor case. We wish to test first if
using such an extended model (as opposed to the previous one-factor model)
is justified. In particular, we test if 4 = 0,...,74 = 0. We can use again a
statistic of the form (5.28). Now the vector Y, is the projection of Y onto
the (m = 7)-dimensional space spanned by the columns of X = [X, X, X3];
and Y is the projection of Y onto the (k = 4)-dimensional space spanned
by the columns of X;2 = [X1, X2]. The test statistic (5.28), which we could

write as
MSblocks

Tyo =
12 MSCI‘I‘OI‘ ’

has under Hy an F(3,9) distribution.

The Julia code below, which has to be appended to the first seven lines of
code for the one-factor case, calculates the outcome of the test statistic Tio
and the corresponding p-value. We find t15 = 34.9998, which gives a p-value
2.73 x 1075, This shows that the block effects are extremely important for
explaining the data.

Using the extended model—thus with the block effects—we can again test
whether the {«;} are all 0 or not. This is done in the last six lines of the code
below. The outcome of the test statistic is 4.4878, with a p-value of 0.0346.
By including the block effects, we effectively reduce the uncertainty in the
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model and are able to more accurately assess the effects of the treatments,
to conclude that the treatment does seem to have an effect on the crop yield.
A closer look at the data shows that within each block (row) the crop yield
roughly increases with the treatment level.

solvehypotcrop2.jl ]

C = vcat(diagm(ones(nrow-1)), -ones(1l,nrow-1))

X_3 = repeat(C,ncol,1)

X = [X_1X.2X.3]

m = size(X,2); # number of parameters in full model
betahat = X'*X(X'*y) # estimate under the full model

ym = Xx*betahat

X_12 = [X_1 X_2] # omitting the block effect

k = size(X_12,2) # number of parameters in reduced model
betahat_12 = X_12'#X_12(X_12'*y)

y_12 = X_12xbetahat_12;

T_12=(n-m)/ (m-k) * (norm(y-y_12) "2 - norm(y-ym) ~2) /norm(y-ym) "2
pval_12 = 1 - cdf (FDist(m-k,n-m),T_12)

X_13 = [X_1 X_3]; # omitting the treatment effect

k = size(X_13,2); # number of parameters in reduced model
betahat_13 = X_13'#X_13(X_13'x*y)

y_13 = X_13xbetahat_13

T_13=(n-m) / (m-k) * (norm(y-y_13) "2 - norm(y-ym) ~2)/norm(y-ym) ~2
pval_13 = 1 - cdf(FDist(m-k,n-m),T_13)

5.4 Cross-Validation

For experimental data it is often the case that several competing models seem
equally appropriate. As a concrete example, suppose we observe n indepen-
dent points in the z-y plane, as depicted in Fig. 5.4. We wish to find a suitable
polynomial that fits the data well. To that end, we consider the 5-th order
polynomial regression model; see (4.10):

Yi=fo+ B+ + Bsx) + &5

where {&;} ~iia N(0,0?). The fitted line is also depicted in Fig.5.4, which

seems to fit the points reasonably well.

I 108
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Fig. 5.4 Quadratic (dotted) and 5-th order

—

solid) polynomial regression lines

Since the 5-th order polynomial is adequate, we might not need to consider
higher-order polynomials. However, it is plausible that a simpler model (e.g.,
a cubic polynomial) would fit the data almost as well, and is therefore more
appropriate. One common approach is to test a sequence of hypotheses to
determine the exact degree needed. That is, first we estimate the 5-th order
polynomial regression model and test the null hypothesis that g5 = 0. If
the null hypothesis is rejected, we stop and use the 5-th order polynomial.
Otherwise, we estimate the 4-th order polynomial regression model, and test
the null hypothesis that 84 = 0. This process is continued until a certain null
hypothesis is rejected.

A more thoughtful approach is to select a model based on its predictive
performance. After all, one main goal of statistical inference is to predict
future observations. One way to assess the predictive ability of a model is to
use it to predict a set of observations not used in the estimation. This can be
done, for example, by partitioning the data into a “training set” and a “test
set.” Then, use the “training set” to estimate the model, and its predictive
accuracy is assessed by some error measure on the “test set”” This is an
example of a cross-validation.

1 |

2 |

3 BN 2 | W testset

4 B [ | training set

Fig. 5.5 A graphical representation of a fourfold cross-validation

More generally, a K-fold cross-validation is implemented as follows:
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1. Partition the data into K subsamples of equal (or nearly equal) size.
Number the subsamples from 1 to K.

2. For k =1,..., K, use all but the k-th subsample to estimate the model
parameters. Compute the prediction errors for the omitted observations
in the k-th subsample.

3. Summarize the predictive performance by some error measure, such as
the sum of squared errors.

A graphical representation of a fourfold cross-validation is depicted in Fig. 5.5.
For a sample with n observations, we can implement at most an n-fold cross-
validation. In fact, this is a popular choice, and it is often called the leave-
one-out cross-validation.

More specifically, suppose there are n independent observations 1, . . ., Yn-
Let 3_j denote the prediction for the k-th observation using all the data
except yr. The prediction error y, — y_x is called a predicted residual—in
contrast to an ordinary residual, ux = yx — ¥, which is the difference between
an observation and its fitted value obtained using the whole sample. At the
end of n iterations, we obtain the collection of predicted residuals {yr —7_}.
One way to summarize them is through the predicted residual sum of
squares or PRESS:

n

PRESS = "(yx — §-)° -
k=1

In general, computing the PRESS is computationally intensive as it in-
volves n separate estimations and predictions. For linear models, however,
the predicted residuals can be calculated quickly using only the ordinary
residuals and the projection matrix.

Theorem 5.4. (PRESS for Linear Models). Consider the normal
linear model (4.23)

Y =XB+e, e~N(0,0%L,),

where the n x m design matrix X = [z;;] is known and is of full rank.
Given an outcome y = [y1,...,yn] of Y, the fitted values can be ob-
tained as y = Py, where P = X(XTX)"!XT is the projection matrix.
Then, the predicted residual sum of squares can be written as

n 2
PRESS:Z(IU’“ ) :

1 — Pk

where ug = yr — Up = Yr — (XB)k is the k-th residual and py, is the k-th
diagonal element of the projection matrix P.

= 115
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Proof (Sketch). Tt suffices to show that the k-th predicted residual can be
written as yx —yJ—r = ug/(1 —pg). Let X_j denote the design matrix X with
the k-th row removed, and define y_; similarly. Then, the least-squares esti-

mate for B using all but the k-th observation is B_k =X, X p) 1 XT,y_4e
It can be shown (see Problem 5.18) that Bfk is related to the full-sample
least-squares estimate 3 via

(XTX)_lmkuk

B, =08— 5.29
B-B-T (5.29)
where m; is the k-th row of the design matrix X. It follows that the predicted

value for the k-th observation is given by

T Ty =1

. T T oz, (X X) T repur . prUuk

Yr=z B =z, 8— =Yk —
Wk b 1—ps 1—ps

)

where we used the fact that p, = ] (X" X) 1z, The desired result now
follows from direct calculation. O

Example 5.18 (Leave-One-Out Cross-Validation for Polynomial Re-
gressions). In this example we revisit the polynomial regression example
in the beginning of this section. Specifically, given the n = 20 points in the
a-y plane listed in Table 5.4 (see also Fig. 5.4), we wish to find the simplest
polynomial that fits the points well.

Table 5.4 Polynomial regression data

z Y z Y T Y T Y

4.7  6.57 3.7 8.95 4.8 3.56 0.4 —0.23
2.0 5.15 2.0 5.24 1.7 3.40 2.6 7.68
2.7 715 3.4 10.54 -04 218 4.0 9.09
0.1 0.18 1.3 1.24 4.5 7.16 2.9 9.13
4.7 648 3.8 8.05 1.3 232 1.6 4.04

For this purpose, we consider five different polynomial regression models:
Y; = fo + i + -+ Braf + &

for k = 1,...,5, where {&;} ~iia N(0,0?). Since they can all be written as
normal linear models, we can use Theorem 5.4 to compute their predicted
residual sums of squares. For each of these models, we compute the least-
squares estimate and the corresponding PRESS using the Julia script below.
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polyreg.jl

using LinearAlgebra
x=1[4.722.70.14.73.723.41.33.84.81.7-0.44.51.3
0.42.642.91.6]'

y = [6.57 5.15 7.15 0.18 6.48 8.95 5.24 10.54 1.24 8.05 3.56
3.4 2.18 7.16 2.32 -0.23 7.68 9.09 9.13 4.04]"
n = length(x);

press = zeros(5)
X = ones(n,1)
for k=1:5
global X = [X x. k]
# construct the design matrix
P = Xx((X'*X\X")
e =y - Pxy
press(k] = sum((e./(1 .-diag(P)))."2)
println(press[k])
end

The PRESS values for the linear, quadratic, cubic, 4-th, and 5-th order
polynomial regression models are, respectively, 117.388, 130.781, 16.0532,
16.3167, and 25.727. Hence, the cubic polynomial regression has the lowest
PRESS, indicating that it has the best predictive performance. It illustrates
that complex models do not necessarily have better predictive accuracy than
simpler models.

5.5 Sufficiency and Exponential Families

A statistic—that is, a function of the data only—is said to be sufficient for
a parameter (vector) @ if it captures all the information about @ contained in
the data. Sufficient statistics can be used to summarize data, often giving a
tremendous reduction in size. To formalize this concept, suppose that T'(X)
is a (possibly multidimensional) statistic for 8 such that any inference about
0 depends on the data X = [X;,...,X,]T only through the value T'(X).
That is, if  and y are outcomes such that T'(x) = T'(y), then the inference
about 6 should be the same whether X = o or X = y is observed. This
observation leads to the following definition.

Definition 5.2. (Sufficient Statistic). A statistic T'(X) is a suffi-
cient statistic for 6 if the conditional distribution of X given T'(X)
does not depend on 6.
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The workhorse for establishing sufficiency is the following theorem.

Theorem 5.5. (Factorization Theorem). Let f(x;60) denote the
pdf of the data X = [X1,...,X,]". A statistic T'(X) is sufficient for 8
if and only if there exist functions g(¢,0) and h(x) such that, for all
and 6,

F(2:6) = g(T(2),0) h(x) . (5.30)

Proof. We give the proof only for the case where X is a discrete random
vector. For this case we can write f(x;0) as

f(@;0) = Po(X = )
— Py(X = 2. T(X) = T(x))
— Po(T(X) = T(x))Po(X = 2| T(X) = T(x))

If T(X) is a sufficient statistic, then Pg(X = x| T(X) = T'(x)) does not
depend on 6. Consequently, (5.30) holds with ¢(t,0) = Pe(T(X) = t) and
hzx)=Pe(X =z |T(X) =T(x)).

Conversely, suppose that (5.30) holds. We need to show that the condi-
tional probability

Po(X = 2, T(X) = t)
Po(T(X) =)

does not depend on 6. If x is a data point such that T'(x) # ¢, then clearly
Po(X = |T(X)=1t)=0.If T(x) =t, then

Po(X = 2|T(X) =1t) =

_ o PeX=x) f(=:0)
X =T = = B TR = 1) T Sy [ 0)
_ JT@.0h@) g8k
Py r()=t 9(T(Y),0)h(y)  g(t,0) >, 1(y)—t M(Y)
@
yrw=th(Y)’
which does not depend on 8. Hence T'(X) is a sufficient statistic. O

Example 5.19 (Sufficient Statistic for Iid Uniform Data). Let X =
[X1,...,X,]T be an iid sample from U(0,6). The pdf of X is given by

f(x;0) =

{(é)” for maX{IEl,...,I’n}SG andx@ZO,izl,...,n

0 otherwise .
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It follows that 7'(X) = max(X,...,X,) is a sufficient statistic for 6.
Example 5.20 (Sufficient Statistic for Iid Normal Data). Let X =

(X1, )in]—'— be an iid sample from N(u, 1). We show that the sample mean
T(X) = X is a sufficient statistic for x. Namely, the pdf is

@) = (\/12—7) exp (; > (@ u)2>
= h(z) exp (un X —np?/2),

9(T(z),1)

for some function h, so that the required factorization holds.

The following general class of distributions plays an important role in
statistics.

Definition 5.3. (Exponential Family). Let X = [X1,...,X,]" be

arandom vector with pdf f(z;0), where @ = [0;,...,04] " is a parameter
vector. X is said to belong to an m-dimensional exponential family
if there exist real-valued functions ¢;(x), 1;(0), ¢ = 1,...,m < n and

h(x) > 0, and a (normalizing) function ¢(@) > 0, such that

f(x;0) = c(0) exp <Z m(@)ti(:c)> h(z) . (5.31)

The representation of an exponential family is in general not unique. It is
often convenient to reparameterize exponential families via the {r;}, that is,
to take 7 = [171(0),...,mm(0)]" as the parameter vector rather than 6. The
reparameterized pdf is then

fl@;n) =cn) e t@ n(z), (5.32)

where ¢(n) is the normalization constant and t(x) = [t1(x), ..., tm(x)]. Such
an exponential family is said to be in canonical form or is said to be a
natural exponential family.

Example 5.21 (Normal Distribution as a Two-Dimensional Expo-
nential Family). The normal distributions N(u, 0?), u € R, 0% > 0 form a
two-dimensional exponential family with parameter 8 = (u,0?). To see this,
write the logarithm of the pdf of the N(u,o?) distribution as
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In f(z:8) = In(1/v2m0?) — L= 10°

2 o2
2
oy M L 1
:ln(l/ 271'0'2)*@4’ ;*1’2?‘_2,

which shows that we can take t,(z) = z, t2(x) = 22, 71(0) = p/o?, and
n2(0) = —1/(20?), with h(x) = 1 and ¢(8) = exp(—pu?/(20?))/V2n02.
Many other families of distributions are of this type, such as the bino-

mial, gamma, beta, geometric, and Poisson distributions, as summarized in
Table 5.5.

Table 5.5 Various univariate exponential families

Distr. (7] t1(x), ta(x) c(0) n(6), 12(0) h(z)

Beta(a, 8) (a,8) Inz, In(1—2) 1/B(a,f) a—1, B—1 1

Bin(n, p) D x, — (1-p)" In ( fp) y - (Z)

)\oz

Gamma(a,\) (o, N) z, Inz @) A, a-—1 1
Geom(p) D r—1, - P In(1-p), - 1
2 2 2 e r?/(2o%) M 1
N(H7O— ) (:uva ) z, T V2ro? ?7 7?
Poi(\) A z, - e In)\, — l,
x!

Sufficiency (and therefore data summarization) is particularly easy to es-
tablish for exponential families of distributions. In particular, suppose that
X =[Xy,...,X,]" is an iid sample from the exponential family with pdf

F(2:0) = c(8) 2= WO 1 ()

For simplicity suppose that z is one-dimensional. By taking the product of
the marginal pdfs we obtain the pdf of X:

n
f(w, 0) — C(e)’n ezi=1 7]@'(9) Zk=1 t7(73k) H ]G'L(])k) .
o(T(2),0) &
h(x)

A direct consequence of the factorization theorem is that
n T

T(X) = |3 (X)) Y (X (5.39)

k=1 k=1
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is a sufficient statistic for 6.

Example 5.22 (Sufficient Statistics for Iid Normal Data). As a par-
ticular instance of the previous setting, consider the case Xy,..., X;, ~jq N
(,0?). Tt follows from (5.33) and Example 5.21 that T(X) = [T1(X),
To(X)) T, with T1(X) = Y0, Xk and To(X) = >°)_, X2, is a sufficient
statistic for @ = (i1, 0%). This means that for this standard data model, the
data can be summarized via only T and T5.

It is not difficult to see that any one-to-one function of a sufficient statistic
yields again a sufficient statistic. To see this, suppose that T'(X) is a sufficient
statistic and T'(X) = »(T(X)) is another statistic, with r being invertible
with inverse »~!. By the factorization theorem

f(@:0) = 9(T(x),0) h(z) = g(r(T(x)), 0) h(z) = §(T (@), 0) h(x)

for some function g. Thus, the factorization theorem also holds for IN“, and
therefore the latter is also a sufficient statistic for 6.

Example 5.23 (Sufficient Statistics for Iid Normal Data Contin-
ued). We have seen that T1(X) = >.;_, Xi and To(X) = >;_, X} are
sufficient statistics for @ = (u, 0?) in the standard model for data. The sam-
ple mean fl = X and the sample variance

1 " —

k=1

S

-1
k:l

also form a pair of sufficient statistics, because the mapping

Ti=—, Th=——(T2—-17/n)

~ T ~ 1
n n—1

is invertible.

5.6 Problems

5.1. Find the method of moments estimators for the parameters of the
Geom(p), Poi(A), and Gamma(a, A) distributions.

5.2. The mean square error (MSE) of a real-valued estimator T' is defined
as MSE = Ey(T — 0)2. Tt can be used to assess the quality of an estimator:
the smaller the MSE, the more efficient the estimator. Show that the MSE
can be written as the sum

MSE = (E¢T — 6)* + Vary(T) .
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In particular, for an unbiased estimator the MSE is simply equal to its vari-
ance.

5.3. The normal equations (5.10) can be derived more directly by solving
Vglly — XB||? = 0, where Vg indicates the gradient with respect to 3.
Show, using Sect. B.1, that

Vely - XB|* =2X"(y — XB) .

5.4. We wish to estimate the area a = pjus of a rectangular plot of land,
with length 7 and width po. We thus measure the length and the width
twice. There are two natural ways to estimate the unknown constant a. We
can either multiply the average width and length, or we can take the average
of the two estimated areas. Suppose the measurements are outcomes of inde-
pendent random variables X1, Xo ~ N(u1,02) and Y7, Ys ~ N(uz,0?). Here
o describes the accuracy of our measuring instrument. Let

X1+Xo Yi+Y X1 xY1+XoxYs
= X and T = .

T
! 2 2 2

a. Show that T7 and T, are unbiased estimators of a.

b. Show that Var(X1Y;) = 0%(0? + u? + p3).

c. Derive the variance of T} and the variance of 75 and infer from this which
estimator is preferred.

5.5. Let X1,..., X, ~iia Exp()\) for some unknown A > 0.

a. Show that the method of moments estimator of \ is 1/X.
b. Construct an approximate 1 — « stochastic confidence interval for A, by
applying the central limit theorem to X.

5.6. Let X1,..., X, ~iia N(1,0?), for some unknown o2 > 0.

a. Show that 7 =" (X; — 1)?/0? ~ x2.
b. Construct a 1 — a stochastic confidence interval for o2 using the pivot 7.

5.7. A buret is a glass tube with scales that can be used to add a specified
volume of a fluid to a receiving vessel. Determine a 95% confidence interval
for the expected volume of one drop of water that leaves the buret, if the
initial volume in the buret is 25.35 (ml), the volume after 50 drops is 22.84,
and the volume after 100 drops is 20.36.

5.8. On the label of a certain packet of aspirin it is written that the standard
deviation of the amount of aspirin per tablet is 1.0 mg, but we suspect this
is not true. To investigate this we take a sample of 25 tablets and find that
the sample standard deviation of the amount of aspirin is 1.3 mg. Determine
a 95% numerical confidence interval for o. Is our suspicion justified?
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5.9. Show that S, in (5.21) is an unbiased estimator of 0.

5.10. Show that for the simple linear regression model in Example 5.5 we
have fp =Y — 81 X and 81 = Siy/Sza, where

n n

Sy = Z(mz —~X)? and S,y = Z(;vz -X)(v;-Y).

i=1 =1

5.11. Consider the model selection for the normal linear model in Sect. 5.3.1.

We wish to assess how the extended model Y = X3 + &, where € ~
N(0,021,), fits the data, compared to the default model Y = p1+-e€ (i.e., the
{Y;} are independent and N(u, 0?) distributed). To do this we can compare
the variance of the original data, estimated via > .(Y; — Y)?*/n = [|Y —
Y'1||?/n, with the variance of the fitted data, estimated via Zl(ﬁ -Y)?/n =

||?—fl||2/n, where ¥ = X3. Note that, in the notation of Fig. 5.3, ¥ =Y,
and Y1 = Y;. The quantity

Y - V12
1Y — Y12

is called the coefficient of determination of the linear model. Note that R?
lies between 0 and 1. An R? value close to 1 indicates that a large proportion
of the variance in the data has been explained by the model.

a. Show that
SScrror def 1—

- SStotal B Zz(
Hint: use Pythagoras’ theorem, as in Fig. 5.3.

b. For the simple linear regression model in Problem 5.10 show that R =
V' R? is equal to the sample correlation coefficient (5.7) —where each X;

R?>=1

is replaced with z;. Hint: write out Y; = Sy + Si;, using the explicit
expressions for 5y and 3y in Problem 5.10.

5.12. A small lead ball is dropped onto a floor from different heights (mea-
sured in meters). The times (in seconds) when the ball hits the floor are given
in the following table.

height| 1 2 3 4
time [0.38 0.67 0.76 0.94

From physics we expect that, ignoring air resistance and the diameter of
the ball, the relationship between the time y and the height h is y = a VA
for some unknown parameter a. Formulate a plausible statistical model for
the data and fit a curve of the form y = av/h to the data using the method
of least squares.

= 131
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5.13. In the past a milk vendor found that 30% of his milk sales were of a
low fat variety. Recently, of his 1500 milk sales, 400 were low fat. Is there any
indication of a move toward low fat milk? Give the p-value associated with
the test.

5.14. Two lakes are being analyzed with respect to their PCB concentration
in fish. The PCB concentration from 10 fish from lake A is given by
11.510.8 11.6 9.4 12.4 11.4 12.2 11.0 10.6 10.8
The concentration from 8 fish from lake B is given by
11.8 12.6 12.2 12.5 11.7 12.1 10.4 12.6

a. Assess whether the true variances are the same.
b. Assuming equality of variances, infer whether there is any difference in
PCB concentration between the fish from the two lakes.

5.15. Let X1,..., X ~iia N(ux,0%) and Yy, ..., Y, ~ia N(py,02) be two
independent normal samples with 0% # o%. Find a pivot variable of the form

(Y—?) — (ux — py)

T =
V(X1 o, X, Y1,...,Y0)

that has approximately (for large m and n) a standard normal distribution
and use this pivot to construct an approximate 1 — a confidence interval for

X — Py

5.16. The Australian Bureau of Statistics reports that during 2003, 48,300
babies were born in the state of Queensland. Of these, 24,800 were boys and
23,500 were girls. Does this suggest that the probability of a male birth is
more likely than that of a female birth? Conduct a suitable statistical analysis
to find this out.

5.17. Gerrit from Gouda is an exporter of cheese. Gerrit requires that his
suppliers produce cheese with an expected percentage fat content (PFC) of
40. From past experience it is known that the PFC has a normal distribution
with standard deviation 4. Gerrit selects from each new batch of cheese n
cheeses at random and measures their fat content. If the average PFC is less
than 39 Gerrit rejects the entire batch.

a. Suppose n = 5. Give the distribution of the average PFC of the five cheeses.

b. Calculate the probability that Gerrit will reject the batch if the expected
PFC is in fact 38.5.

c. Suppose the expected PFC is 38. How large should Gerrit choose n such
that the test rejects the batch with a probability of at least 90%7

5.18. In this problem we prove the identity (5.29).
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a. Suppose A is an m x m invertible matrix and b is an m x 1 vector. Show
that

A~'bb" A

1-b"A-1b
Hint: by direct computation, show that the right-hand side of (5.35) is
indeed the inverse of A — bb ' .

b. Using (5.35), show that

(A—bb' ) P=A"14 (5.35)

(XTX)_lwkw;—(XTX)_l

(X, X ) t=X"X)" +
1—px

, (5.36)

where X_ is the design matrix X with the k-th row removed, @, is the
k-th row of X, and py, is the k-th diagonal element of the projection matrix
P=X(XTX)"!XT.
c. Use (5.36) to show (5.29).
5.19. Let X1q,...,X,, be an iid sample from the pdf
0
f(l’,e) = ﬁx@oil)/(li@v T € (07 1)7 0 € (%7 1) .

Show that {f(x;0)} forms a one-dimensional exponential family. Show that
the joint pdf of X1, ..., X, forms again a one-dimensional exponential family.
Show that 7= """, In X; is a sufficient statistic for 6.

5.20. Implement a Julia program to estimate

—(z+y)
sin(z) e
f= / / ln 1+2x) drdy

via Monte Carlo integration and give a 95% confidence interval.

5.21. Implement a Julia program to estimate

€:‘/_22e_w2/2dx:/H(x)f(x)dx

via Monte Carlo integration using two different approaches: (1) by taking
H(z) = 4e=*"/2 and f the pdf of the U[—2, 2] distribution and (2) by taking
H(x) = V27 1{_a<y<2y and f the pdf of the N(0, 1) distribution.

a. For both cases estimate ¢ via the estimator { = N1 Ef\il H(X;). Use a
sample size of N = 1000.

b. Give an approximate 95% confidence interval for ¢ for both cases.

c. Using (b.), assess how large N should be such that the width of the confi-
dence interval is less than 0.01, and carry out the simulation with this N.
Compare the result with the true (numerical) value of .
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5.22. Consider the approximate confidence interval (5.24) for binomial data.
It is possible to calculate the exact coverage probability via total enumera-
tion. Specifically, define

Ty(x) = x/n — z21_a/2/ (x/n) x (1 —x/n)/n

and

To(z) = x/n—|—zl_a/2\/(x/n) X (1—x/n)/n.

Then, the coverage probability as a function of p is
- n T n—=x
Pyp(T1(X) <p < Ta(X)) = > {1y (2)<p<Ta(a)} <x>P (1-p" .
=0

For various n and o = 0.05 (so that z;_,/5 = 1.96) draw the graph of the
coverage probability as a function of p and comment on the quality of the
coverage (which is aimed to be 95%).

5.23. In order to investigate the effectiveness of “walking exercises” for babies,
24 babies (of the same age and sex) were randomly divided into 4 groups.
Each group followed a different training program. Table 5.6 shows the age (in
months) when the infants first walked alone. Implement a one-factor ANOVA
model and compute 95% confidence intervals for the expected walking age in
each group. Test whether the training programs have any effect.

Table 5.6 Walking age of babies (in months)

Group

A B C D

9 11 11.5 13.25
9.5 10 12 11.5
9.7510 9 12
10 11.7511.5 13.5
13 10.5 13.2511.5
9.5 15 13 11.5

5.24. Rattus Turpis is a manufacturer of rat poison. The company wants
to investigate if adding artificial flavors to their usual mix of cornmeal with
strychnine makes their bait more palatable to the rats. They try three artifi-
cial flavors, as well as their usual plain bait. Table 5.7 lists the percentages of
bait that is eaten, for five different surveys. Does the data suggest that adding
artificial flavor makes a difference? Use the two-factor ANOVA program in
Example 5.17 to investigate this.
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Table 5.7 Percentage of bait eaten

Flavor
Survey Plain Butter Beef Bread
1 13.8 11.7 14.0 12.6
2 12.9 16.7 15.5 13.8
3 25.9 29.8 27.8 25.0
4 18.0 23.1 23.0 16.9
5 15.2 20.2 19.9 13.7
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Chapter 6
Likelihood

The concept of likelihood is central in Statistics. It describes in a precise
manner the information about the parameters of the model given the observed
data.

Definition 6.1. (Likelihood Function). Let X be a random vector
with pdf f(-;0) (discrete or continuous) with parameter vector 8 € ©.
For a given outcome x of X, the function

L(6;x) = f(z;0)

is called the likelihood function of 6 based on x.

Note that L is a function of @ for fixed x, whereas f is a function of x for
fixed 6.

Example 6.1 (Binomial Likelihood). Let X ~ Bin(n,p). For a given
observation z, the likelihood of = under p is given by

L(p;x) = f(w;p) = (Z) p"(L—-p)"", 0<p<l. (6.1)

As a particular example, consider the experiment where we flip 100 times
a biased coin with success probability p. We know that the total number of
successes (say Heads) in 100 tosses, X, has a Bin(100, p) distribution. Suppose
that x = 43 successes were observed. Thus, the likelihood of the observed data
as a function of p is
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100

s = ('

)p43(1_p)577 0<p<17

the graph of which is plotted in Fig.6.1.

0.08
0.06
E)
£ 0.04
3
Fig. 6.1 The likelihood 0.02
function for the Bin(100, p) 0 ‘ ‘ ‘
distribution, with 43 ob- 0 0.2 0.4 0.6 0.8 1
served successes T

We see that the likelihood is largest for values of p that lie between 0.25
and 0.6. It is very implausible that the current datum was obtained from a
p outside this interval. In this sense the likelihood is used to compare the
plausibilities of various parameter values.

Example 6.2 (Normal Likelihood). Suppose we are given data x1,...,x,
from an iid sample X = [X1,..., X,]" of the N(u,c?) distribution, with z
and o2 unknown—in this case § = [u,0?]". The pdf of X (i.e., the joint
pdf of X5,...,X,,) is given by the product of the marginal pdfs; see (3.7).
Consequently, the likelihood of the data as a function of the parameters is

L(p,0%; ) HfX Ti b, O (\/2;7> exp{—;ZW}

i=1

for p € R, 0 > 0. As a particular example, suppose n = 10 and that the data
(computer-generated from some N(u, 0?) distribution) are

2.39876, —0.149451, —0.770132, 0.87627, —0.0852696,
1.58494, 1.32772 1.35611, —0.206479, 0.83773 .

Figure 6.2 gives the three-dimensional graph and the corresponding con-
tour plot of the likelihood function. Note that the values for @ for which the
likelihood of the data is largest are restricted to an ellipse-like region. The
actual parameter values for the data were 1 = 1 and o2 = 1 in this case.
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Fig. 6.2 The graph and contour plot of the likelihood function for the N(u, o?) distri-
bution, for the given data

In general, if Xq,...,X,, is an iid sample from f(, 0), then the likelihood
of the data © = [z1,...,z,] under @ is the product:

f(l‘“ 0) . (6.2)

Example 6.3 (Radioactive Source Detection). Suppose a low-intensity
radioactive source is emitting particles (in pairs). A screen registers the im-
pact of one particle from each pair. Suppose the position of the source is
(a,b), and X is the x-coordinate of the location where a random particle
will hit the screen, and let Y € (—n/2,7/2) be the angle between the line
segments (a,b)-(a,0) and (a,b)-(X,0); see Fig.6.3.

b source
s .
® ® o "o
0 a X screen

Fig. 6.3 A radioactive source at position (a,b) emits particles in a random direction

Since all angles are equally likely, Y is uniformly distributed in (—7/2, 7/2).

Moreover, X and Y are related via tan(Y) = £ . It follows from the trans-

formation formula (3.22) that IS 79
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b

:—w(b2+(xfa)2)’ reR.

fx(z)
In other words, X = a + bZ, where Z has a Cauchy distribution; see Prob-
lem 6.8.
Suppose that we know that the source is at a distance b = 1 from the
screen, but we do not know its position a relative to the origin. However, we
know the impact positions of ten particles:

1.3615, 3.5616, —14.2411, —4.4950, 2.3014,
1.1066, —9.3409, 0.3779, 0.9386, —0.1838.

Based on these data, what can we say about a? A naive guess is to simply
take the mean of the data to estimate the location, which turns out to be
—1.8613. This, however, is a fundamentally flawed approach, because the
expectation of the distribution of X does not exist; namely, fooo zfx(z)de =

oo and ff)oo zfx(x)dr = —o0, and 0o — 0o is not well-defined. Of course the
mode of f (the point where f is maximal) is a, but here the mode is not
equal to the expectation (which does not exist). A much better approach is
to plot the likelihood function for a, which is

= (1) T o

i=1

The graph of the likelihood function is given in Fig.6.4.

13

5 X 10
1.5
0
s 1
3
i 05+
Fig. 6.4 The graph of
the likelihood function
. 0
for the position a of the 2 -1 0 1 2 3
radioactive source a

We see that the most likely position is around 1 and that our initial guess
of —1.8613 is extremely unlikely. We also see that the most likely positions
fall between roughly —1 and 3. In fact, the actual position was a = 1 in this
case. So we see that with relatively sparse information, we can still make
well-founded decisions about a, as long as we use the likelihood.
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6.1 Log-Likelihood and Score Functions

Definition 6.2. (Log-Likelihood and Score Functions). Let X
be a random vector with pdf f(-;0) (discrete or continuous) with pa-
rameter vector 8 € ©. For a given outcome x of X, the log-likelihood
function, denoted [, is the natural logarithm of the likelihood function:

1(0;2) =InL(O;x) =1n f(x;0) .
Its gradient, denoted S (column vector), is called the score function:

Vof(x;0)

S(0;2) = Vol(0;2) = =55

(6.3)

Example 6.4 (Binomial Log-Likelihood and Score Functions). For
the Bin(n, p) distribution with observed datum x, the log-likelihood is

(psa) = 1n<(;’)> Fo ) + (n—2)In(l - p).

Differentiating I(p; z) with respect to p gives the score function:

r n—zx
S(p;x) = — .
(p; @) b 1)

(6.4)

Theorem 6.1. (Log-Likelihood and Score Functions for Iid
Data). Let X = [Xy,...,X,]T be an iid sample from f(-;80), and
let { and S be respectively the log-likelihood and the score function
corresponding to f. Then the log-likelihood and score functions of @
based on an outcome x of X are

) 1(0;x;) and ) (0;x;) .
Z Z
i=1 3=l

Proof. The pdf of X is f(x;0) =[]\, f(xl, 0). Taking the logarithm gives
the log-likelihood as the sum of the logarithms of the pdfs. By differentiating
this sum, we obtain the score function as the sum of the derivatives. O
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Example 6.5 (Log-Likelihood and Score Functions for Normal Iid
Data). Consider the standard model for data: Xi,..., X, ~iq N(u, 02).
The log-likelihood function of (i, 0?) for a single outcome x is given by the
logarithm of the pdf of the N(u, %) distribution:

i(n,0%2) = 3 (2m) ~ £ (%) — 3 (&~ 1)?/0”

By differentiating [ with respect p and o2 (note that o2 is viewed as a single
parameter), we obtain the two components of the score function:

Ol(u,0%z) x—p

& 2., — —
Sl(,uva 7x)* ou T g2
and . ) )
. Ol(p, 0% x) 1 1(z—p)
IS 2. — ) ) = -
2,073 ) 0o? 202 2 (0?)2
It follows from Theorem 6.1 that the log-likelihood and score functions of
(i, 0?) based on an outcome = = [z1,...,2,] are given by
I(u, 0% 2) = —ﬁh’l(Zﬂ') - = ln zn:l
) 9 2 gt 2 )
2 _ ~z—
Sl(ﬂva ,(E)—; 02 (6 5)
and
1o~ (@5 — p)?
Sa(p, 075 ) 202 + 5 Z (02)2 (6.6)

Theorem 6.2. (Score Function for an Exponential Family). The
score function for a natural exponential family with pdf: f(x;60) =

() €® @) h(z) is given by

S(0;x) =

+t(z) . (6.7)

Proof. The log-likelihood function is [(8; ) = Inc¢(0) + 8" t(z) + Inh(x).
Now take the gradient with respect to 6. O
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Example 6.6 (Score Function for Gamma Data). The pdf of the
Gamma(a, \) distribution, where o, A > 0, is

/\azaflesz

() , ©>0.

fz0,0) =

Let us assume that « is known. After the reparameterization n = —\, we
obtain (see Table 5.5) the natural exponential family with pdf

Flasn) = c(n) e™® h(z)

where ¢(n) = (—n)* and t(z) = z. Here, h(x) does not depend on 7 (but does
depend on the known constant «). Since

dm) _«a

cm) n’
we find the score function S (g x) = & 4. In the original parameter, we have
(chain rule) S(\;z) = S(n(\); ) x d—z =— (% + x) =5z

6.2 Fisher Information and Cramér—Rao Inequality

Definition 6.3. (Efficient Score). Let S(0;x) be the score function
corresponding to an outcome x of X ~ f(-;0). The random vector
S(0) = S(0; X) is called the efficient score or simply score of 6.

The expected score under 0 is equal to the zero vector; namely,

EoS(0) = v;{ féf )

:/V.gf(ac;e)dsc=Vg/f(sc;9)dm:V9l:O,

f(x;0)dx
(6.8)

provided that the interchange of differentiation and integration is justified.
This is true for large classes of distributions, including natural exponential
families. From now on we simply assume that such an interchange is permit-
ted.

=]
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Definition 6.4. (Fisher Information Matrix). For the model X ~
f(+;0), let S(0) = S(0; X) be the score of . The covariance matrix of
the random vector S(@), denoted by I(0), is called the Fisher infor-
mation matrix.

Since the expected score is 0, we have:
1(0) = Eo[S(0)S(6)"] (6.9)
and in the one-dimensional case, the information number is

1(6) =y (dan;(GX;e))Z.

Example 6.7 (Information Number for Binomial Data). Let X ~
Bin(n,p). From (6.4) we see that the score is
X n—-X

S(p;X)zg— = (6.10)

The information number is therefore
X n—-X X np(l—p) n
Var, [ — — = Var = = . (6.11
p(z) 1—19) p(P(l—P)> p?*(1-p)?  p(l-p) (6.11)

For iid samples the score has approximately a multivariate normal dis-
tribution that is characterized by the Fisher information of the sampling
distribution, as summarized in the following theorem.

Theorem 6.3. (Asymptotic Distribution of the Score). Let X =
[X1,...,X,]T be an iid sample from f(z;0) and let S(8) = S(6; X)
be the score of 8. Then,

1. L5(6) — 0 as n — oo, and
2. 5(0) "7 N(0,n1(0)) for large n, where I(6) is the Fisher infor-

mation matrix corresponding to f.

Proof. By Theorem 6.1, we can write S(8) = > | 5(0; X;). Note that the
random vectors {5(8; X;)} are independent and identically distributed with
mean 0 and covariance matrix I(H) The law of large numbers and the mul-
tivariate central limit theorem (see Theorem 3.14) now lead directly to the
two properties above. O



6.2 Fisher Information and Cramér—Rao Inequality 175

It is sometimes easier to compute the information number in a different
way to (6.9), based on the following equality (assuming a one-dimensional
parameter 6):

d2 d 2
d—anf(m;e) _ @f(w;(?) - @f(wﬂ)
dg? f(x;0) J(x;0)

Multiplying both sides with f(x;6) and integrating with respect to x gives:

d2In £(X;0) / a2

E, — L\ 70
0 RUE

0 (x;0)dx — 1(0) .

Now if we may change the order of differentiation and integration in the
integral (allowed for exponential families), then

d2 d?

so that the Fisher information number is also given by

21n . .
10 = g, VS50 _EedS(géX)

TE (6.12)

Example 6.8 (Information Number for Binomial Data Continued).
Differentiating the score in (6.10) with respect to p gives:
dS(p; X) X n-—-X

dp  p (1-p?’
The expectation of this random variable (under X ~ Bin(n,p)) is

np  n-—np n

P2 (1-p? p(l—p)’

which is exactly the negative of the information number found in (6.11). O

The multidimensional version of (6.12) is
1(6) = —Eo V?In f(X;0) = ~E4 VS(0) , (6.13)
where V2 In f(X; 0) is the Hessian of In f(X; 6); that is, the (random) matrix

%I f(X;0)]  [0%(6;X)]  [05:(6; X)
T iin, | = e ) = | e

where S; denotes the i-th component of the score. The following is a direct
consequence of Theorem 6.1.
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Theorem 6.4. (Information Matrix for Iid Data). Let X =
[X1,..., X,]T be an iid sample from f(z;0), and let I(6) be the in-
formation matrix corresponding to X ~ f (z;0). Then, the information
matrix for X is given by

1(0) = ni(6) .

Example 6.9 (Information Matrix for Iid Normal Data). Let X, ...,
X, be an iid sample from the N(u, 0?) distribution. Using Examples 6.5 and
(6.13), we see that the information matrix I(y,0?2) is the expectation of the
following matrix of partial derivatives:

351(1502;)() 351(5722:)() _ 1 _(X=-n
L L7 = o @) (6.14)
352(%,52;)() asz(g(;f:x) [ (();;)z;) ﬁ _ ()((;232) ]
where X ~ N(y,0?). Taking expectations gives:
o -2 90
i(u,0?) = [" 04] . (6.15)
U

By Theorem 6.4 the information matrix corresponding to the whole iid sample
is simply a factor n larger: I(uy, 02) = nI(u, o?).

Example 6.10 (Information Matrix for Exponential Families). Con-
sider a natural exponential family with pdf :

F(x;0) = e @O p(g) (6.16)
Then, similar to (6.7),
S(8;x) = t(z) — VC(H) . (6.17)

Since the covariance matrix of a random vector Z is the same as that of Z+a
for any constant vector a, we have that the covariance matrix of S(6;X),
that is, the information matrix, is simply the covariance matrix of ¢(X).

Example 6.11 (Information Number for Location Families). For lo-

cation families {f(z;x)}; that is, when f(z;u) = f(z — p) for some fixed
pdf f, the Fisher information does not depend on p and is therefore constant.
Namely, in this case the log-likelihood satisfies I(u; ) = In f(x — ), and the
score function is thus a function of u — z, say g(x — ). The variance of the
score, that is, the information number, satisfies:
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10 = [ Sai@nde= [ ¢ pfe-w
- [ Pwiw.

which does not depend on pu.

The importance of the Fisher information in statistics is corroborated by
the famous Cramér—Rao inequality.

Theorem 6.5. (Cramér—Rao Information Inequality). Let X ~
f(x;0). The variance of any unbiased estimator Z = Z(X) of ¢g(0) is
bounded from below via

Var(2) > (Vg(6))T 17(8) Vg(6) - (6.18)

Proof. We prove only the one-dimensional case. All expectations and vari-
ances below are taken with respect to f(x;0). Recall that S = S(0; X) =
% In f(X;0) denotes the score and that Var(S) = I(6). The key is to apply
the Cauchy—Schwartz inequality:

Cov(Z,5) < +/Var(Z)Var(95) ,

which immediately yields

(Cov(Z,5))?

Var(Z) > 100)

Thus, it remains to be shown that Cov(Z,S) = ¢’(f). This follows from
Cov(Z,8) =E[ZS]| —EZES =EZS (because ES = 0) and

P 51(X;0)

EZSI=E1 255 )

] - [ 2@ 5 @0y de = 552 = 40).

assuming that we may change the order of integration and differentiation. [J

6.3 Likelihood Methods for Estimation

Suppose we are given data x from a model f(x;80), yielding the likelihood
function L(0;x) = f(x; 0). Although the entire shape of the likelihood func-
tion is valuable for our inference about the unknown parameter @, it is often

I 95
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desirable to summarize the information on the likelihood function into a few
key numbers. One of these numbers is the mode of the likelihood function,
that is, the parameter value @ for which the function is maximal. This num-
ber (or vector of numbers, in the multiparameter case) is in a way our best
estimate for 0. It is called the maximum likelihood estimate (MLE). Note
that 6 = a(a:) is a function of the data «. The corresponding random variable,
also denoted 5, is the maximum likelihood estimator (also abbreviated
as MLE).

Since the natural logarithm is an increasing function, maximization of
L(6;x) is equivalent (in terms of finding the mode) to maximization of the
log-likelihood 1(@; x). This is often easier, especially when X is an iid sample
from some sampling distribution.

Remark 6.1 (Existence and Uniqueness). Maximum likelihood estima-
tors may not always exist (e.g., when estimating a variance with only one
data point), or could be nonunique (when the likelihood function attains its
maximum at more than one point).

If 1(6; x) is a differentiable function with respect to 8 and the maximum is
attained in the interior of ©, and there exists a unique mazximum point, then
we can find the MLE of 8 by differentiating {(8; x) with respect to 8—more
precisely, by solving

Vg l(@;fb) =0.

In other words, the MLE is obtained by solving the root of the score function,
that is, by solving

S;z)=0. (6.19)

In general, solving the above equation only yields a local maximum. If the
likelihood function is multimodal, there will be more than one point 6 that
satisfies (6.19). The evaluation of I at all of these points may then identify
the global maximum.

Example 6.12 (MLE for Binomial Data). Suppose z is an outcome of
X ~ Bin(n,p). By (6.4) the MLE is found by solving:

xT n—=I

p 1-—p

)

which gives the maximum likelihood estimate p = /n and the corresponding
estimator p = X/n.

Example 6.13 (MLE for Iid Normal Data). Suppose x1,...,x, are the
outcomes of Xi,..., X, ~iia N(i,0%). The MLEs follow (see (6.5) and
(6.6) || ) from solving the set of equations:
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(i — )
== 0, (6.20)
=1
n 1 (2 — p)?
[ W AN v — 6.21
202 + 2 Z (02)2 ’ ( )
=1
giving
ﬁ:l - Ti =T and (;'Ezli(x'ff)Q (622)
nia ' nia ' . .

We see that the maximum likelihood method and the method of moments
yield exactly the same estimates in this case.

Example 6.14 (MLE for the Normal Linear Model). Consider the
normal linear model:

Y =XB+e¢, (6.23)

where X is an n xm design matrix, 8 an m-dimensional vector of parameters,
and € a vector of iid N(0, 02) error terms. Since Y ~ N(X3, 02 1,,), it follows
from (3.31) that the likelihood function is

2y (L) o3 lu-xsl/0?
ws.rtn) = (7)o
for a given outcome y of Y. Observe that for any fized o2 the likelihood
L(B,0%;y), as a function of B, is maximized by choosing B8 such that ||y —
X 3||? is minimized. But this gives exactly the least-squares estimate of f3;
see Sect. 5.1.2. To obtain the MLE for o2, it remains to maximize L(3, 02;y)
or, equivalently, solve:

on 1ly=XB|? _

1

= 0
202 2 (0?)2 ’
where /8 is MLE of 8. This gives the same estimate o2 = lly — XBHQ/n as in
(5.13). For a generalization to the general regression case (possibly nonlinear),
see Problem 6.3.

Example 6.15 (MLE for Exponential Families). For natural exponen-
tial families of the form (6.16) the MLE is found by solving

t(x) — V() = t(x) — Egt(X) =0, (6.24)

where we have used the fact that Eg[t(X) — V((0)] = E¢S(0; X) = 0; see
(6.8). Thus, 6 is chosen such that the observed and expected values of ¢(X)
are matched.
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Maximum likelihood estimation arises in a natural way from the statistical
learning framework in Sect. 4.6. Consider the unsupervised setting where we
have a training set 7 = {z1,...,2,} that contains the outcomes of n iid
random variables X1, ..., X, from some unknown pdf f The objective is to
“learn” f from the training data, using a class of probability density functions
G ={9(-;0),0 € O}. In particular, we seek the best ¢ in G that minimizes
the Kullback—Leibler risk r(g) given in (4.27); that is,

f(X)
r(g) =Eln 7(X)

which corresponds to the loss function

ss(f(x x:n@znox—nx
Loss(f(x), g(x)) lg(x) In f(z) —Ing(z) .

Using similar notation as in Sect. 4.6, define g9 as the global minimizer of
the risk in the class G; that is, g9 = argmincg r(g). If we define

0" = argminr(g(-;0)) = argmin/ (In F(z) — Ing(x; 0))f(m),d3:
0 0
= argmax/f(x) In g(z;60) de = argmax Eln g(X; 0),
0 0

then g9 = g(-;0) and learning ¢9 is equivalent to learning (or estimating)
0*. To learn 0 from the training set 7, we then minimize the training loss:

1 < . 1 < 1 < .
- ;Lossmxi),g(xi;e)) =-= ;mgm;e) + = ;mfm),

giving
A~ def 1 -
0, = argmax — Ing(z;;0) . 6.25
o - g (2:56) (6.25)

As the logarithm is an increasing function, this is equivalent to

o~

n
0, = argimax H g(irzv 0)7
o i

where ], g(z;;0) is the likelihood of the data under the model that
X1,..., Xy ~iia g(+; ). We therefore have recovered the maximum likelihood
estimate of 8*. Note that this reasoning still holds even if the class G does
not contain the true f.
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6.3.1 Score Intervals

The score function is not only valuable for finding point estimates, but can

also be used to construct confidence intervals. The key observation here is I 132
that for large iid samples, the score is approximately normally distributed;
see Theorem 6.3. Let us concentrate on the one-dimensional case; that is, 6 I 174

is real-valued. .

Let X = [X1,...,X,]" ~ia f(:;0) and let S(#; X) denote the score. By
Theorem 6.3, the pivot variable S(6; X)(ni(8))~1/2 has approximately a
standard normal distribution, and hence

S(0; X
0 : _Zl—a/2 < g < Zl—a/Q

is an approximate 1 — « stochastic confidence set. We use here “set” instead
of “interval” because this set need not be an interval in general.

Example 6.16 (Score Interval for Iid Bernoulli Data). Let X be an
iid sample from Ber(p). Since the Bernoulli distribution is a special case of
the binomial distribution, we can use (6.10) in combination with Theorem 6.1

to find the score S(p; X) = > (X; —p)/(p(1 — p)) = n(X —p)/(p(1 — p)).
By a similar reasoning, we find the information number I(p) = n/(p(1 — p)).

So the confidence set becomes:

where we have abbreviated z;_,/2 to a. By solving with respect to p the
quadratic equation

(X —p)*=a’*p(1—p)/n,

this confidence set can be written as the interval {T7 < p < T»} with

a’+2nX — a\/a2 —4n(X - 1)X

T =
! 2(a%?+n)
a’ +2nX + a\/a2 —4n(X - 1)X
T, = _ :
2(a% +n)

This score interval has much better coverage behavior than the “standard”
confidence interval (5.24) over the complete range of p. I 139
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6.3.2 Properties of the ML Estimator

An important property of the maximum likelihood estimator is that it is
invariant under transformations.

Theorem 6.6. (Invariance of the MLE). Suppose X ~ f(x;80).
Let  be the MLE of 6 and let g be an invertible function. Then the
MLE of n = g(0) is ) = g(0)

Proof. Let L(8) = f(x;0) be the likelihood function, and let L(n) =
L(g~%(n)) be the reparameterized likelihood function. The MLE of 7 is,
by definition, that number 7} for which E(ﬁ) is maximal. Since L is maximal
for 8 = 6, the function L(g~'(n)) is maximal at 7 for which g~1(7) = 6;
which gives n = g(@) O

Remark 6.2. If g is not invertible, then we can still define the MLE of n as
1 = g(0). In effect, this amounts to defining L(n) = maxg.g(g)—r L(0; ).

Next, we consider the case where X = [X1,...,X,]" is an iid sample from
some pdf f(z;0). Let 6 be the ML estimator of 8. The random variable 8
has some nice asymptotic properties.

Theorem 6.7. (Consistency of the MLE). The ML estimator 0 is
consistent. That is, with probability tending to 1 as n — oo, the
likelihood equation has a root 8 such that for all € > 0

P(||0 — 6| > &) = 0.

Proof. (Sketch.) Let C, be a sphere with radius a centered at the true pa-
rameter 8. We want to show that for sufficiently small a the probability tends

to 1 that ~
1(0) >1(0)

at all points 0 on the surface of C,. This can be established as follows. A
second-order Taylor expansion of [(6) around 6, divided by n, yields:

(1(6: X) —1(0; X)) =

SI—=3|-

S6;:X)7(0—-0)+ %(6 —0)TH(0; X)(6 — 0) + %Rn, (6.26)
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where S(60; X) is the gradient of [ (i.e., the score), H(6; X) is the Hessian
matrix of [ (i.e., the matrix of partial derivatives (9%1/96,00;)), and R,, a
random remainder term. By Theorem 6.3, S(6; X)/n converges to the zero
vector. Similarly, by Theorem 6.1, H(8; X) can be written as the iid sum
- H(0:; X},), where H(6; X;,) denotes the matrix of partial derivatives
(625(0;X;€)/89i89j). Hence, by the law of large numbers and (6.13),

~H(6; X) EoH(6; X) = —1(8) (6.27)

as n — oo, where I is the information matrix corresponding to f . Thus, the
first and second term in (6.26) converge to 0 and —3(6 — 0)7i(6)(0 — 0)
respectively as n — 0o. Since the information matrix is positive definite (i.e.,
wTI(@)w > 0 for any vector w), the second term is strictly negative. If the
remainder term, which depends on the third derivative of [, can be bounded
in norm by a constant times a®/n, then with probability tending to 1 the
right-hand side will be less than 0 for a small enough, proving the assertion
that 1(0) > 1(0) on the surface of the sphere C,. From this we can conclude
that with probability tending to 1, there must be an MLE 0 that lies inside
C,. For a sequence of a,, — 0, we can thus find a sequence of 0 — 6, showing
the consistency of the estimator. O

Note that the above theorem only says that there exists a sequence of
MLEs {6, } that converge (in probability) to the true 8. When there are
multiple local maxima, a particular sequence §n may in fact converge to a
local maximum.

Theorem 6.8. (Asymptotic Distribution of the MLE). Suppose
that {9 } is a sequence of consistent ML estimators for 6. Then,

f(O — ) converges in distribution to a N(0, I71(8))-distributed ran-
dom vector as n — co. In other words,

0, T N(@6,171(60) /n) .

Proof. A sketch of the proof for the one-dimensional case (thus, 8 = 6 is a
scalar) is as follows. The key idea is again to take a Taylor expansion; this

time a Taylor expansion of I’ (9 ) around 6:

U(0n) =1'(0) + (0 — 0)1"(0) + %@ —0)21"(07)

where 6* lies between 6 and 6,,. Since, I (gn) = 0 (by definition), it follows
that

=174
=171
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!/
V8, — 0) = L6)/v/n . (6.28)
—1"(0)/n — (0n — 0)"(6*)/(2n)
The numerator in the right-hand side of (6.28) is S(0; X)/y/n, which by
Theorem 6.3 has approximately a N(O,l2 (0)) distribution for large n. The
first term of the denominator is — >°" | H(0; X;), which by the law of large
numbers converges to 1(6) (see (6.27)). The second term of the denominator
goes to 0 by the consistency property. This shows that either side of (6.28)
is approximately N(6, 1~*(6))-distributed. O

Example 6.17 (Asymptotic Distribution of the Binomial MLE). Let
us check if this theorem makes sense for the case where X3, ..., X,, are iid
and Ber(p) distributed. Here the MLE is X and the information number for
Ber(p) is 1/(p(1 — p)) (see (6.11) with n = 1). Theorem 6.8 states that for

large n
¥ APRIOX: 4 (p, p(1— P)) ’
n

which follows also directly from the normal approximation to the binomial
distribution by noting that nX ~ Bin(n,p).

6.4 Likelihood Methods in Statistical Tests

The likelihood does not only provide a systematic way of defining good es-
timators (via the maximum likelihood principle), it also yields a systematic
way of finding test statistics.

Let Xi1,...,X, be an iid sample from a distribution with unknown pa-
rameter 6. Write X for the corresponding random vector, and let L(6;x) be
the likelihood function for a given outcome x of X. Let © be set of possible
values for 6. Suppose Oy and @ are two nonoverlapping subsets of @ such
that ©9g U ©1 = O. Consider the following hypotheses:

H():BEQ(),
Hi:0c€06,.

Definition 6.5. (Generalized Likelihood Ratio). The general-
ized likelihood ratio is defined as the number

N Mo () def maxgeo, L(0;x)
 M(xz)  maxgeo L(6;x)
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Note that M (x) = L(@; x), where 0 is the ML estimate of 6. Let A denote
the random generalized likelihood ratio obtained by substituting X for .
We can use A as a test statistic for testing the above hypotheses. The general
principle is to reject Hy if A is too small (left one-sided test). To determine
the corresponding p-value P(A < X), we need to know the distribution of A
under Hy. This is in general a difficult task. However, it is sometimes possible
to derive the distribution of a function of A under Hy, which is then taken as
an equivalent test statistic. The new rejection region is no longer necessarily
left one-sided.

Example 6.18 (Generalized Likelihood Ratio Test for Iid Normal
Data). Suppose X1, ..., X, ~iiq N(i,0?), with g and o2 unknown. We wish
to test:

Hy:p=po,
Hy:p# po -

Hence, ©y = {(p0,02),0? > 0}. The random likelihood function is given by

n/2 n 2

1 1 (X; — )

2. _ 7
L(p,o ’X)<27r02) exp( 5 E > )

i=1

Maximizing L (or InL) over @ gives the maximum likelihood estimator
(,0%) = (X,>(X; — X)?/n). Hence, M(X) = L(,0?; X). Optimiz-
ing L over O gives the estimator (pg,0?), with

n

— 1
2= =3 (Xi — o)
o n (z NO)

i=1
Consequently,

n/2

4 Lluo,o% X) _ (Zg;l(xi —X)2>

( 1 ) —n/2
L —(1+ T) ,
L(fi, 0% X) S (Xi — po)? n—1

Y*#0

where T' = T and S is the sample standard deviation. Rejecting Hy for

small values of A is equivalent to rejecting Hy for large values of |T|. By
(5.18), T has a t,,— distribution under Hy.

IS 144

= 135
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Theorem 6.9. (Asymptotic Distribution of the Generalized
Likelihood Ratio). For a k-dimensional parameter space (thus, 8 =
[01,...,0;] "), if the null hypothesis has only one value Hy : @ = 8y and
the alternative hypothesis is Hy : 6 # 0y, then for large n (under some
mild regularity conditions, which are satisfied for exponential families):

—2In A PR Xa .

Proof. (Sketch.) This is again an exercise in Taylor expansions. Let 6 be the
MLE of 6 and let [(0) be the log-likelihood function. Under Hy

o~

—2InA=-2(1(6p) — 1(0)) .
A second-order Taylor expansion at @ around 0 gives:
~ ~ ~ 1 ~ o~ —~
1(80) = 1(8) + (V1)) " (8 —60) + 5(9 —00) " V?1(8)(6 —60) +0(]|6 — 6o]*) -

Because Vl(g) =0 and Vzl(/é) ~ —I(6y), where I is the information matrix
(of dimension k), we have:

—2In A~ (6 —6)T1(60)(6 — 6o) .

By Theorem 6.8, 0—0, has approximately a N(0,171(8y)) distribution. Thus,
for a large sample size, we have that —2In A is approximately distributed as
X TI(00) X with X ~ N(0,171(0y)). From Theorem 3.9 it follows now that
—21n A has approximately a x7 distribution. O

6.5 Newton—Raphson Method

Recall that likelihood maximization often involves solving S(6) = S(0;x) =
0, where S(0) is the score function and 6 a k-dimensional parameter vector.
The maximum likelihood estimate 8 is the solution to this equation; that is,
it is the root of S(@). It is often not possible to find @ in an explicit form.
In that case one needs to solve the equation S(0) = 0 numerically. There
exist many standard techniques for root-finding. A well-known method is the
Newton—Raphson procedure. This is an iterative procedure where, starting
from a guess 6, a “better” guess is obtained by approximating the score via a
linear function. More precisely, suppose that 6 is our initial guess for 6 (the
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root of S). If 0 is reasonably close to 8, a first-order Taylor approximation
of S; = 9l/96; around @ gives:

Si(0) = Si(0) + [VS:(0)] T (0-0), i=1,.. .k,
or in matrix notation:
S(0) ~ S(6) + H(6)(6 — 0) ,

where H is the Hessian of the log-likelihood, that is, the matrix of second-
order partial derivatives of {. Since S(8) = 0 by definition, we have:

6~6—-H(0)S(6).

This suggests the following Newton—Raphson recursion for finding succes-
sively better guesses 01, 65, ... converging to 0:

0,1 =0, —H 10,50, . (6.29)

The sequence of successive values is guaranteed to converge to the actual
root, provided the function is smooth enough (e.g., has continuous second-
order derivatives) and the initial guess is close enough to the root.

Notice that H(@) = H(0;x) depends on the parameter 6 and the data
x, and may be quite complicated. On the other hand, the expectation of
H(6; X) under 0 is simply the negative of information matrix I(@), which
does not depend on the data. This suggests the alternative iterative scheme,
called Fisher’s scoring method:

0.1 =06, +16,)S(6,), (6.30)

which may be much easier to implement if the information matrix can be
readily evaluated.

Example 6.19 (MLE for Iid Normal Data). Suppose x = [x1,...,Z,]"
is the outcome of an iid sample from the N(u, o?) distribution (both param-
eters unknown). The score function is given in (6.5)—(6.6). From (6.14) we
find that the Hessian matrix is given by

n 1 Ti— [

-2 2)2
H(y, 0% ) ZHM,U L *Z zj—u 1 (U()wz —1)?
i=1 | (022 207 " (0?)3

where fI(u, 0?%;x) is the Hessian for the one-dimensional case. Apart from a
starting value, this is all that is required to carry out the Newton—Raphson
iteration (6.29). It is easier, however, to apply the recursion (6.30), using the
exact expression for the information matrix (see (6.15)):

I 477
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. -1 162 0
-1 2\ _ 2 _ 1
I (/J,O’ )_ (TLI([J,,O' )) - n |:0 20.4:| :

It follows that the Newton—Raphson procedure (6.30) involves the following
iterative steps:

1, . (w5 — 1) 1
He4+1 = [t nﬂt ;:1 O_tz Ht n Z_Zl(% ) =7

2 2,2 4 1n(l’i—ﬂt)2 _1n 2

Ut+1_at+gat ﬁ+52702" —EZ(xi—Mt) )
Note that, starting from any initial guess, after only two steps, we get

pe =7 and of = L 3" (x; — %)%, which are the MLEs for p and o2

Example 6.20 (MLE for the Radioactive Source Detection Exam-
¥ 160 ple). Let us return to Example 6.3. Suppose we want to find the most likely
estimate for the position a of the source. The log-likelihood function is

la;x) = —nlnmw — Zln(l + (2 — a)?) .
i=1

Taking the derivative with respect to a gives the score function:

The information number is of form I(a) = ni(a), where I is the information
number for a single sample. Specifically,

f(a) = EoS%(a; X) = / T _Aw—ar ! dz

oo (T+ (2 —0a)?)? 7(1 + (z —a)?)

B ANE (eI hange of variable y = z —
/_DO (0 + 2)° dy (change of variable y = z — a)

DN =

Thus, the information number is constant; this is in agreement with the
fact that we are dealing here with a location family of distributions; see
Example 6.11. Now (6.30) leads to the scheme:

2 2w — ay)
at+1—at+£;m.

This is implemented in the following Julia code.
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lighthousemle. jl ]

[1.3615 3.5616 -14.2411 -4.4950 2.3014 1.1066 -9.3409
0.3779 0.9386 -0.1838]; # the data
a = 2; # initial guess
n = 10;
for i=1:7
println(a)
global a = a + 4xsum( (x .- a)./(1 .+ (x .- a).72) )/n
# note the vectorization!
end

X

2

1.2625662007001668
0.9535905615030806
0.9653773555988199
0.9647755245520702
0.9648071279192287
0.9648054705999485

Thus, the MLE is @ = 0.9648, which is remarkably close to the true value
a=1.

6.6 Expectation-Maximization (EM) Algorithm

Another useful numerical method for likelihood maximization is the expect-
ation—maximization (EM) algorithm.

Suppose that, for a given vector of observations & = [z1,...,2,]", we wish
to compute the maximum likelihood estimate:

6 = argmax L(6; x), (6.31)
0

where L(0;x) = f(x; 0) is the likelihood function.

One could use a root-finding routine, such as the Newton-Raphson method
described in Sect.6.5, to obtain 6. However, for many problems, comput-
ing the score function and the Hessian matrix analytically—required by the
Newton—Raphson method—might be difficult. Instead of maximizing the like-
lihood function directly, the EM algorithm augments the data  with a suit-
able vector of latent (or hidden) variables z such that

f(x;0) :/f(a:,z;ﬂ)dz.

The function of @

L(0;x,2) = f(x,2:;0)

is usually referred to as the complete-data likelihood function. The
main advantage of the data augmentation step is that it is often pos-
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sible to introduce latent variables z in such a way that the maximiza-
tion of the complete-data likelihood L(8;x, z) or log-likelihood 1(;x, z) =
In L(6; x, z) is much easier than maximizing the original likelihood L(8;x)
or log-likelihood {(0; ) = In L(0; x).

Of course, the latent variables z are not observed, and neither Z(G; T, z)

nor [(0;x, z) are available. One feasible approach is to replace it with the

expectation E, [(6;x, Z) with respect to a suitable density g(z). It can be
shown (see Problem 6.20) that for all 8 and any density g,

. def 2)1n f($,z,0) P
0 1(@:0) 2 £0,0) [ g(a)1 (g(z) )d
= ]Egl~(0;a:, Z)-Ey,Ing(Z).

(6.32)

That is, £(g,0) is a lower bound for the log-likelihood 1(0;x). In addition,
this lower bound is attained (see Problem 6.20) for

fl®,20)
[ f(z,z;0)dz

That is, the lower bound is attained when g(z) is taken as the conditional
pdf of the latent data Z given the observed data X = x.

9(2) = Jz x(z|z;0) < (6.33)

Algorithm 6.1. (EM Algorithm). Suppose 0y is an initial guess for
the maximizer. The EM algorithm consists of iterating the following
steps for t =1,2,....

1. Expectation Step (E-Step): Given the current vector 6;_; max-
imize £(g,0;—1) as a function of g. It follows from (6.33) that the
exact solution is

def 7
9:(2) = fzx(z|2;0:-1) .
Compute the expected log-likelihood under g;:

Qi(0) = Ey,1(6;2, Z) . (6.34)
2. Maximization Step (M-Step): Maximize £L(g, @) as a function
of 8. Since L(g,0) = Q(0) — Eq, Ing:(Z), this is equivalent to
finding
0, = argmax QQ,(0) .
0

3. Stopping Condition: If, for example, |I(0;;x) —1(0;—1;x)| < ¢
for some small tolerance ¢, terminate the algorithm.
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A direct consequence of the EM algorithm is that the sequence of log-
likelihood values does not decrease with each iteration. In fact, we have:

1(Oi—1;52) = L(gt,01-1) < L(g1,0¢) < L(ge41,0:) =1(04; ), (6.35)

where the first and last equalities follow from the definitions of L, ¢g;, and
gt+1, whereas the second and third inequalities follow from the M- and E-
steps, respectively. Under certain continuity conditions, the sequence {8} is
guaranteed to converge to a local maximizer of the log-likelihood ¢ (or the
likelihood L). Convergence to a global maximizer (the MLE 6) depends on
the appropriate choice for the starting value. Typically, the algorithm is run
from different random starting points. Note that (6.35) is useful for debug-
ging computer implementations of the EM algorithm: if likelihood values are
observed to decrease at any iteration, then there is an error in the program.
For a further discussion of the theoretical and practical aspects of the EM
algorithm, we refer to McLachlan and Krishnan (2008). We illustrate the EM
algorithm via two examples.

Example 6.21 (EM for the Genetic Linkage Experiment). In a ge-
netic linkage experiment, n animals are randomly assigned (by nature) to
four categories according to the multinomial distribution with pdf:

f(‘rly XT2,T3,T4; 0) X ﬂ-flﬂ-;Qﬂ—gsﬂ—zAl ’
where n = x1 + 22 + x5 + x4 and the cell probabilities are m = 1/2 4 /4,
me = (1 —0)/4, 73 = (1 — 0)/4, and m4 = 0/4. Suppose the observed data
are given as & = [x1, T2, X3, x4] = [125,18, 20, 34], and we wish to obtain the
maximum likelihood estimate for 6.
It is easy to check that the log-likelihood function is given by

1(0;2) =21 In(24+0) + (22 + 23) In(1 — ) + 24 In 6 + const .

The graph of the log-likelihood function (apart from the constant term) is
given in Fig. 6.5.

Since this is a univariate problem, the maximum likelihood estimate for
0 can be obtained by the grid search or the Newton-Raphson method (see
Problem 6.25). In this example we use the EM algorithm to maximize the
log-likelihood.

To that end, we augment the observed data as follows: suppose that the
first of the original four multinomial cells could be split into two subcells
having probabilities 1/2 and /4, respectively. Let Z and X; — Z be the
corresponding split of X3, and note that Z is not observed. Now the ran-
dom vector [Z, X; — Z, X2, X3, X4] has a multinomial distribution with the
following five cell probabilities:

1601-01-090

=" 200
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Fig. 6.5 The log-likelihood function for the genetic linkage experiment

and the complete-data log-likelihood can be written as

1(0;2,@) = (z1 — 2+ 4) In 0 + (2 + 23) In(1 — ) + const .
Suppose that 6;_; is the current guess for . To implement the E-step,

we first derive the conditional density g:(z) = fz| x(z|x;0;_1). Note that
given X7 = x1, Z has a Bin(z1, p) distribution, with success probability

B 1/2 2
/240,44 240,

p

Recall that for Y ~ Bin(n,p), we have EY = np. Hence, we have:
Eth = ]E[Z | X1 = T1; Gt_l} = 21}1/(2 + Ht_l) .

It follows that

2&?1
2401

Qi(0) =E,l(6; Z,x) = (xl + x4 — ) In 0+ (xo+x3) In(1—6)+const .

To implement the M-step, we simply solve %Qt(ﬂ) =0 for 6. It is easy to
check that the solution is given by

r1 + Ty — 2$1/(2 + 9t—1)
n — 2%1/(2 + 0,5_1)

0, =

The following Julia program implements the EM algorithm to find the
maximum likelihood estimate for 6, which is estimated to be 8 = 0.6268.
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geneticEM. j1l ]

x=[125 18 20 34 ]; n = sum(x);

theta = 4% (x[1]/n-1/2); # initial guess

err = 1;

while abs(err) > 107(-5) # stopping criterion
z = 2*x[1]/(2+theta); # E-step

temp = (x[11+x[4] - 2)/(n-z); # M-step
global err = theta - temp;
global theta = temp;

end

In the next example, we illustrate how one can use the EM algorithm for
fitting mixture models. A mixture pdf is a pdf of the form:

f(.f):w1f1($)+"'+wcfc(l’), ’szOaZZL---,C, szzla (636)
z=1

where each f, is itself a pdf. Such a mixture pdf can be thought of in
the following way. Consider two random variables, X and Z, where Z takes
values 1,2, ..., c with probabilities wy, ..., w., and conditional on Z = z, the
random variable X has pdf f.. By the product rule (3.10), the joint pdf of X
and Z is given by fx z(x,2) = w,f.(z), and the marginal pdf of X is found
by summing the joint pdf over the values of z—this gives (6.36).

Example 6.22 (EM for a Gaussian Mixture Model). Let z1,...,2,
be iid observations drawn from the following Gaussian mixture pdf:

o “\ w, T — s
f(ﬂU;o):ZJSD(Ju),
z=1 % z

where ¢ is the pdf of the N(0,1) distribution, 0" = [, 0, w] with p =

(41, s pie)y ¢ = [o1,...,0c), and w = [wy,...,w.]. The likelihood of x
under 6 is
n . n C wz xz _ .
L(0:0) = flas6) = ][ Flowo) = T[S0 25 o (25 ). 0
i=1 i=lz=1 7~ z

Such a mixture distribution is often used for modeling unobserved het-
erogeneity, i.e., the presence of subpopulations that are not identified in the
observed data. For example, suppose that x; is, say, height, of the i-th student
in a class. Further suppose that there are both male and female students in
the class, but the genders of the students are not recorded. Then, a suitable
model for the outcomes is a mixture of two Gaussian distributions.
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Direct maximization of the likelihood in (6.37) could be difficult and time-
consuming. To simplify the computation, introduce a vector of latent vari-
ables Z = [Z,...,Z ]—r each Z; taking values in {1,2,...,c} and such that
(Xi| Z;i = zi) ~ N(uz,,02,). This gives the complete- data hkehhood

L(6:%,2) = f(z,2:0) = ﬁ z_’ ¢ (xa”) . (6.38)

R Zi
=1 *

Note that by summing f(w, z;0) over all z, we obtain f(x;0). The dis-
cussion following (6.36) shows that the latent variable Z; can be interpreted
as the component of the mixture model from which X; is drawn.

To implement the EM algorithm, suppose that 6;_; is the current guess
for 6. In the E-step we first derive the (discrete) pdf of Z given the data
X = _ _

91(2) = fz1x(z|2;01-1) o< f(x, 2;6;-1) .
Thus, to find g; we view the right-hand side of (6.38) as a function of z =

[21,...,2,) 7. It follows that under g; the components of Z are independent,
and each Z; has a (discrete) pdf

gm(z) d:ef Wg—1,z 0 (951 - Mtl,z) /Z Wg—1,k (371‘ - Mtl,k) (6.39)

Ot—1,z Ot—1,z Ot—1,k Ot—1,k

fori=1,...,nand z = 1,...,c. The expected complete-data likelihood in
the E-step is then

o (xi*ﬂZ)Q
Qi(0) =E,,1(6;x, Z) ZZg” (lanIHGZM + const .

i=1 2=1 Z

Next, in the M-step, we maximize @Q:(0) with respect to w (under the con-
straints >, w, = 1, w, > 0 for all z), i, and o. It is easy to check that for
z=1,...,c the solution to VQ.(0) =0 is

1 n
W= = th,i(Z%
i=1

_ i1 9ui(2)wi (6.40)
Hz = n )
> ie19i(2)
o2 = D i 96i(2) (@i — p2)?
- >im 9ti(2)
We then set 6; according to the values in (6.40), and keep iterating the E-Step
(6.39) and the M-Step (6.40) until convergence is reached.
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6.7 Problems

6.1. In a guessing game, Albert chooses a number 6 between 0 and 10, and
the other people have to guess the number; the person whose guess is closest
to # wins. To facilitate the guesswork, Albert draws seven numbers uniformly
from the interval [0, 6] and displays the results to the others. Suppose these
seven values (the observed data) are

4.3180, 4.8007, 0.6730, 4.8409, 3.3515, 0.5170, 1.4760 .

a. Give a model for the data X7,..., X7. Show that M = max{Xy,..., X7}
is a sufficient statistic for 6.

b. Determine the method of moments estimate of 6. Is the corresponding
estimator a function of M?

c. Sketch the graph of the likelihood function, and use it to determine the
maximum likelihood estimate. Is the corresponding estimator a function
of M?

d. Use T = M/0 as a pivot variable to construct a 95% numerical con-
fidence interval for 6 of the form (m,a) for some a > m, where m =
max{z1,..., 7}

6.2. Let X1,..., X, ~iia N(6,0) with an unknown 6 > 0. Find the maximum
likelihood estimator of 6.

6.3. Consider the general regression model
K:g(xzvlg)+5u Z:Lana (641)

where €1, ..., &, ~iia N(0,0%) and g(x; B) is a known function of the explana-
tory vector & and the parameter vector 8. Both 02 and B are assumed to be
unknown.

a. Show that the maximum likelihood estimator of 8 is found by minimizing
the sum of the squared deviations between the {Y;} and the {g(z;;8)};
that is,

~

B = srgmin D (Yi—g(xi8)* .
=1

b. Derive the maximum likelihood estimator of 2.

6.4. For multidimensional parameters 6, it is sometimes useful to draw one-
dimensional graphs for the likelihood function by substituting all parameters
except one with their maximum likelihood estimates (as a function of the
remaining unknown parameter). The function thus obtained is called the
profile likelihood.

Consider the ten iid samples from the N(u,o?) distribution given in Ex-
ample 6.2.
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a. Give the formula for the profile likelihood for o2.
b. Draw the graph of this profile likelihood. Does its mode correspond to the
maximum likelihood estimate of o2?

6.5. Let X1,..., X, be iid random variables with pdf:

f;0)=@+1)2 0<z<1, 6>-1.

a. Find the method of moments estimator of 6.
b. Find the maximum likelihood estimator of 6.

6.6. The weight X (in grams) of an egg is N(u, 02) distributed. Let i = 56.3
and ¢ = 7.6 be the maximum likelihood estimates of p and o. Give the
maximum likelihood estimate of

P(X > 68.5) .

6.7. For X1,..., X, S N(u,0?), let S? be the sample variance and let o2 be

the maximum likelihood estimator of o2.

a. Which of the two is an unbiased estimator of o2?
b. Is V52 an unbiased estimator of o7

c. Is ;5 the maximum likelihood estimator of o7

6.8. Let Y ~ U(—7/2,7/2) and define Z = tan(Y"). Show, using transforma-
tion formula (3.22), that Z has a Cauchy distribution.

6.9. The following iid data, 0.685, 2.586, —1.969, —2.673, 1.464, 2.977,
—1.120, 1.594, —0.543, 1.505, —1.266, 1.981, have been drawn from a double
exponential distribution, with pdf:

f(z) = %e‘”"”‘, reR.

Find the maximum likelihood estimate for \.

6.10. The Weibull distribution with rate parameter A > 0 and shape pa-
rameter a > 0 has cdf

Flz)=1—¢e X% 2>0.

Suppose z1,...,x, are the outcomes of an iid sample from a Weibull distri-
bution with shape parameter o = 2 and unknown rate parameter \. Find the
maximum likelihood estimate of A.

6.11. Suppose X1,..., X, ~iiqa Geom(p). Show that the generalized likelihood
ratio method for the hypothesis Hy : p = pg versus Hy : p # po yields the
test statistic:
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< Po >n(1po)(”X)

_ 1—po

What is the approximate distribution of —21In A for large n?

6.12. Let X1,..., X, be an iid sample from the Bin(k, p) distribution, where
k is given but p € [0, 1] is unknown.

a. Find the maximum likelihood estimator p of p.

b. Show that p attains the Cramér—Rao lower bound.

c. Sketch the log-likelihood function for the case where n = 1, k = 10, and
xry = 5.

6.13. Suppose that 100 observations are taken from the N(u, 1) distribution
with an unknown p. Instead of recording all the observations, one records
only whether the observation is less than 0. Suppose that 40 observations are
less than 0. What is the maximum likelihood estimate for p based on these
observations?

6.14. Let X4, ..., X, be an iid sample from the Exp(1/v) distribution, where
v > 0 is unknown. Let X = [Xy,..., X,,]T.

a. Find the score S(v; X).

b. Give the corresponding Fisher information.

c. Find the maximum likelihood estimator of v.

d. Give the maximum likelihood estimator of sin(v).

6.15. Let X1,..., X, be an iid sample from the distribution with pdf f(z;6),
where

1
flz;0) = ﬁgﬂe*w/@’ x>0, 0>0.

a. Show that EX; = 360 and Var(X;) = 36

. Find a sufficient statistic for the parameter 6 using the factorization The-
orem 5.5.

. Find the MLE of 6.

. Find the Fisher information 7(9).

. Give the asymptotic distribution of the MLE of 6.

. What are the bias and the variance of the MLE of 67

. Determine whether or not the MLE of # attains the Cramér—Rao lower
bound.

o

0Q - ® &0

6.16. An iid sample X1,..., X, is taken from the N(0, §) distribution, where
6 > 0 is unknown. We wish to test the hypothesis Hy : § = 3 against
H, : 0 # 3 using an appropriate test statistic.
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a. Show that the likelihood ratio test statistic is here a function of

2
i

n
X
T:; 5

b. What is the distribution of 7" under Hy?

6.17. Verify that the score function corresponding to the observed iid sample
x1,...,Z, from the Gamma(a, \) distribution is

S( ) = {n(ln)\ ;;tp(—a%z%n_l In x} ’

and that the corresponding Fisher information matrix is

ey 1
I(av)‘) =n |:¢ (?) ozA:| )
X2
where ¢’(«) is the derivative of the digamma function ¢(x) = I''(x) /().

6.18. Suppose x1,...,x10 are the outcomes of an iid sample from Exp(6).
Construct a score confidence interval for 6 with confidence coefficient 0.90 if
the sum of the {z;} is 10.

6.19. Let X¢,...,X,, and Y7,...,Y,, be independent random samples from
the Exp(\) and Exp(u) distributions, for unknown A and p. Suppose we wish
to test the hypothesis Hy : A = p against Hy : A # p.

a. Find the maximum likelihood estimators for A and p.
b. Find the maximum likelihood estimators for # = A = p under Hy.
c. Show that the following test statistic

o T Y
Zi:l Xi

can be derived from the generalized likelihood ratio procedure.
d. For large n, T has approximately a normal distribution. Find the param-
eters of this distribution via the delta method.

6.20. In (4.27) we introduced the Kullback—Leibler (KL) divergence to mea-
sure how far away a pdf g is from a pdf h, via
(X)
D(g,h) =E;In =——= . 42
(9.h) =y n 5 (6.42)
In the EM algorithm, it is used to derive the inequality (6.32) using the
following decomposition:
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In f(z;0) = /g(z) In f(z; 0) dz

J(x,2:0)/9(2)
= z)In | = dz
/“’ (&m@mmmuJ

—/ﬂﬂm<ﬂ22®>®+ﬁmﬁmﬂm®% (6.43)

L(g,0)

a. Using Jensen’s inequality, show that D(g, h) > 0 in (6.42).
b. Verify (6.43) and explain how g should be chosen such that the Kullback—
Leibler term in (6.43) is minimized.

6.21. Let X;,..., X, be an iid sample from the discrete pdf:

gre—?

f(xﬂg):m’

xe{l,2,...}, 6>0.

Suppose that an iid sample of size n = 16 gives two 5s, four 4s, four 3s, four
2s, and two 1s. Plot the likelihood function and the log-likelihood function
of the data and perform a grid search to obtain the maximum likelihood
estimate; that is, of the plotted values, find the 6 for which the likelihood (or
log-likelihood) is maximal.

6.22. The data 1.1668, 0.0738, 0.7740, 1.0160, 0.4822, 1.4559,0.1752,0.5209,
0.1537, 0.2947 are the outcomes of an iid sample Xi, ..., X;¢ from the pdf:

flx)=cld—z), 0<x<b,

where b > 0 is unknown and ¢ is a normalization constant.

a. Show that ¢ = 2/b%.
b. Estimate b via the method of moments. N
c. Show that the maximum likelihood estimate b satisfies:

10 ’\

b ~
> = —20=0, b>1.4559,
im1 b— i

if this equation has a solution. Determine b numerically using Julia’s Roots
package.

6.23. Consider the score interval for the binomial distribution in Exam-
ple 6.16. As in Problem 5.22, the exact coverage probability can be calcu-
lated as a function of p by means of total enumeration. Plot the coverage
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probability for the score interval and compare it with the “standard” one in
Problem 5.22.

6.24. Using Problem 6.17, implement Fisher’s scoring method:
0,.1=0,+170)S(0)

to find the maximum likelihood estimate 6 = (@, X] for the following iid data
from Gamma(a, A)).

29.7679 12.8406 105.3225 46.6101 75.7135  72.0340
33.9008 35.2510 50.9201 29.8086 32.6963 131.5229
29.1369 61.8774 31.0650 54.4877 103.6889  68.0230
30.1994  48.3140 54.4447  29.2253 27.0242 102.5929
43.0354 96.5552 64.1004 65.3381 89.6879 63.7344

Use the method of moment estimates as starting values for the Newton—
Raphson scheme. The function digamma function % is implemented in the
SpecialFunctions package of Julia as the digamma function and its deriva-
tive ¢’ as as trigamma.

6.25. Consider the genetic linkage model in Example 6.21.
a. Show that the score and Hessian functions for 6 are given by

34 125 38 34 125 38
o=t 10 B 4 HEe) = -2 - .
SO =g+ 129 ™ HO =5 - Gior ~a—ee

b. Implement a Newton—Raphson procedure to find the MLE of 6.

¢. Implement a simple grid search to find the MLE.

d. Do the Newton-Raphson, grid search, and EM approaches give the same
estimate?



®

Check for
updates

Chapter 7
Monte Carlo Sampling

Monte Carlo sampling—that is, random sampling on a computer—has be-
come an important methodology in modern statistics. By simulating random
variables from specified statistical models and probability distributions, one
can often estimate certain statistical quantities that may otherwise be dif-
ficult to obtain. In Sect.2.7 we already saw how random variables can be
generated from common probability distributions via the inverse-transform
and acceptance—rejection methods.

In this chapter we discuss two other important Monte Carlo sampling
techniques: the bootstrap method and Markov chain Monte Carlo (MCMC).
The bootstrap method is a sampling procedure in which new samples are
generated by resampling the observed data. MCMC is used extensively in
Bayesian statistics to sample from complicated multidimensional distribu-
tions. Bayesian statistics is introduced in Chap. 8.

The following example illustrates how random sampling can be used to
estimate a p-value without having to derive the specific distribution of the
test statistic.

Example 7.1 (Estimating a p-value). Suppose an iid sample of size
4 from a N(p,0?) distribution has a sample mean T = —0.7 and sample
standard deviation s = 0.4. We wish to test the hypothesis Hy : p = 0
against Hy : u < 0, using the test statistic T = 2X/S, whereby we re-
ject Hy if the outcome of T is too small. The observed outcome of T is
t=2x —0.7/0.4 = —3.5. The corresponding p-value is

p=Pg,(T < -35) =Ep,Lir<_35) -
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This can be estimated by simulating, under Hy, a large iid sample T4, ..., TN
of copies of T" and evaluating the sample average:

1
p=— T <
p N; {T;<-3.5} »

similar to the Monte Carlo integration procedure in Example 5.7. In the
Julia program below, each T; is generated by drawing an iid sample of size
4 from the standard normal distribution and evaluating T for that sample.
The variable count contains the total number of test statistics with a value
less than or equal to the observed value —3.5; the estimate p is simply the
value of count divided by N. A typical estimate for p is 0.02. This indicates
that there is fairly strong evidence that Hj is not true. A huge advantage of
this approach is that we do not have to analyze or evaluate the cdf of the test
statistic under Hjp; we only have to repeat the experiment under Hy many
times. See Problem 7.1 for a further discussion.

pvalsim.jl

using Random, Statistics
xbar_obs = -0.7; s_obs = 0.4; t_obs = 2*xbar_obs/s_obs

N = 1075;
count = 0;
for i in 1:N
x = randn(4);

xbar = mean(x); s = std(x); t = 2*xbar/s;
global count = count + (t <= t_obs);

end

phat = count/N # estimated p-value

Statistical sampling often involves generating an 4id sample from some
specified discrete or continuous pdf. Two important ways to analyze such
data is to use the empirical cdf and density estimation.

7.1 Empirical Cdf

Definition 7.1. (Empirical Cdf). Let x;,...,2x be an iid real-
valued sample from a cdf F'. The function

N
1
Fn(z) = NZ]]‘{IZSI}? r€ER, (7.1)
=1

is called the empirical cdf of the data.
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Here, 1(;,<,3 = 1 if ; < z, and 0 otherwise. Fiy is a nondecreasing step
function which jumps up by an amount of 1/N at each of the points {z;}.
Moreover, Fy is right-continuous and bounded between 0 and 1. In other
words, Fly is a cdf—see Sect. 2.1 It is the cdf of a random variable that takes
one of the values z1,...,2y with equal probability 1/N, assuming that all
the observations are different. In Fig. 7.1 the empirical cdf is shown of an iid
sample of size 10 from the Exp(0.2) distribution. The true cdf is plotted as
well.

0.8

=06 —~

\:; —_

= 04 —
Fig. 7.1 The empirical cdf 0.2¢
for a sample of size 10 from 0 ‘ ‘ ‘ ‘ ‘ ‘
the Exp(0.2) distribution 0 0.5 1 L5 2 25 3
and the true cdf x

We see that the empirical cdf follows the true cdf quite well. The fit be-
comes better and better as the sample size increases. In Fig. 7.2 the empirical

and true cdfs are shown for the same distribution, but now for a sample size
of 200.

0.8
=06
i 04
Fig. 7.2 The empirical //
cdf for a sample of size 027
200 from the Exp(0.2) 0 / ‘ ‘ ‘
distribution and the true 0 1 2 3 4 5 6
cdf
If we order the sample as x(1) < x@) < -+ < x(n), then for each i =
1,...,N, ]
(3
Fn(ze) = 5 (7.2)

assuming for simplicity that all {z;} take different values.

If instead of deterministic {z;} we take random X, in (7.1), then Fy(x)
becomes random as well. To distinguish between the deterministic and the
random case, let us denote the random empirical cdf by Fx(z). We now have:

I 26
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~ i N ; —i
P (Fv(o) = 5 ) = PO <0 X > 0) = () ) (Pl - Fa) ™.
(7.3)
To see this, note that the event {X¢;) < 2} N {X(;11) > 2} means that
exactly ¢ of the N random variables that we draw from F' are less than or equal
to x. Thus, the event is equivalent to having ¢ successes in N independent
Bernoulli experiments with success probability F'(x), which leads to (7.3).
Equation (7.3) can be summarized as: N Fy(z) ~ Bin(N, F(x)). As a
consequence

EFy(z) = F(z)

and
Var(Fy (z)) = F(z)(1 — F(z))/N .

Moreover, by the law of large numbers and the central limit theorem, we
have:

P( lim Fy(z)=F(z)) =1, (7.4)

N—o0

and

. Fy(z) — F(x)
lim P z | =®(2), 7.5
S (mx)(l “F@)N - ) ) (75)

where @ is the cdf of the standard normal distribution.
Exactly as in (5.24), we see that an approximate 1 — a confidence interval
for F(z) is

Puto) 2y ooy PPN

where z;_,/2 is the 1 — a/2 quantile of the standard normal distribution.
Moreover, if we order the observations x(1y < --- < x(yy, then, by (7.2), an
approximate 1 — a confidence interval for F'(z;)) is

i i(1—1i/N)

NjZZl,a/Q N2 5 Zzl,,N

Example 7.2 (Confidence Interval for a Cdf). In Fig.7.3 a 90% con-
fidence interval (hence z1_q/2 = 20.95 = 1.645) is given for the cdf of the
Exp(1) distribution, based on an iid sample of size N = 60. The true cdf is
given by the smooth line. We see that the true cdf lies convincingly within
the confidence curves. However, the actual width of the confidence intervals
(as a function of x) is quite sizable, due to the fact that N is not large.
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1 -

0.8

Fig. 7.3 A 90% confidence interval for the cdf F(z)=1—e %, >0

Let Xq,..., XN ~ijiq F', where F is continuous and strictly increasing. De-
fine Uy = F(X1),...,Uny = F(Xn). From the inverse-transform method (see
Sect. 2.7.2), we see that Uy, ..., Uy is an iid sample from U(0, 1). Denote the
empirical cdf of the {U;} by @N(u), and let z and u be related via z = F~1(u)
and u = F(x). Then,

. 1 1Y 1Y ~
Gn(uw) = & D lw<uy = N > rxy<r@y = N D lix,<ay = Fn(@) .
=1 i=1 =1

Gy is called the reduced empirical cdf. Note that N@N(u) ~ Bin(N, u),
irrespective of F'. Define the maximum distance between the empirical and
the true cdfs as

Dy =sup |Fy(z) — F(z)| = sup |Gn(u)—ul . (7.6)
z€R 0<u<1

This is called the Kolmogorov—Smirnov statistic of the data. Note that
this statistic does not depend on F'. It can be used to test whether iid samples
X1,..., Xy come from a specified cdf F.

Example 7.3 (Kolmogorov—Smirnov Test). The Weibull distribution
Weib(a, A) has cdf

Flz)=1-¢ 2" 2>0.

To generate from this distribution, we can use the inverse-transform method:
generate U ~ U(0,1) and output X = } (—In U)é. Note that the Weib(1, A)
distribution is simply the Exp()) distribution.

Suppose we have an iid sample from the Weib(1.5,1) distribution. Would
the Kolmogorov—Smirnov statistic correctly reject the hypothesis Hy that the
sample is from the Exp(1) distribution? The following Julia program carries
out this experiment. It generates an iid sample of size N = 100 from the

I 53
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Weib(1.5,1) distribution. It then evaluates the Kolmogorov—Smirnov statistic.
Figure 7.4 shows the reduced empirical cdf Gy (u). The maximum distance
between CA?N(u) and u is dy =~ 0.1462 in this case. The p-value Py, (Dy >
dy) is determined by Monte Carlo simulation, by repeating the experiment
K = 10000 times under Hy, that is, using Exp(1) data. The estimated p-value
is approximately 0.024. There is thus reasonable to strong evidence to suggest

that the true distribution is not Exp(1).

kolsmirweib. jl ]

using Random, Plots, StatsBase , StatsPlots
Random.seed! (1234) ;

alpha = 1.5;

N = 100;

U = rand(N);

x = (-log.(U))."(1/alpha); # generate data
y = sort(l .- exp.(-x));

i = 1:N;

ecdfplot(y,legend=false) # empirical cdf
plot!([0,1], [0,1])

dn_up = maximum(abs.(y -i/N));

dn_down = maximum(abs.(y -(i .- 1)/N));
dn = max(dn_up, dn_down);

# Use MC simulation to obtain the p-value

K = 10000;
DN = zeros(K);
for k in 1:K

local i = 1:N; # a global i already exists

local y = sort(rand(N)); # same for y
DN[k] = max( maximum(abs.(y-i/N)), maximum(abs.(y-(i .- 1)
/N
end
p = sum(DN .>= dn)/K
1 -
=
05
Y
0
Fig. 7.4 The reduced 0 02 04 06 08

empirical cdf Gy (x) T




 -2016 45538 a -2016 45538 a
 
https://people.smp.uq.edu.au/DirkKroese/statbook/

7.2 Density Estimation 207

7.2 Density Estimation

Suppose that z1,...,zy is an iid sample from some unknown continuous pdf
f—obtained from Monte Carlo sampling, for example. A useful approach to
estimate f from the data is to use a Gaussian kernel density estimator.

Definition 7.2. (Gaussian Kernel Density Estimator). Let
Z1,...,xN be the outcomes of an iid sample from a continuous pdf
f. The Gaussian kernel density estimator of f with bandwidth
h > 0 is given by

f(m;h)zlz L 55" seR. (7.7)

The idea is illustrated in Fig. 7.5 for the case of N = 5 data points. The
Gaussian kernel density estimate (KDE) is the equally weighed mizture (see
(6.36)) of N Gaussian/normal pdfs, where each pdf is centered around a data
point and has variance h2.

0.8
0.6

=

$04r

(=
021
0 PR PPV IPY ‘
15 -1 05 0 05 1 15 2 25

X

Fig. 7.5 The Gaussian KDE (solid line) is the equally weighted mixture of normal pdfs
centered around the data and with standard deviation h (dashed)

~

How well the Gaussian KDE f(+; h) fits the true pdf f depends crucially
on the choice of the bandwidth parameter h. If h is too small, the density
estimate will be too spiky; if & is too large, the estimate will be too smooth.
An often used rule of thumb is to take

455 4/5
hRot - (3]\]—) )
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where S is the standard deviation of the data. This choice is based on a
mathematical analysis of the discrepancy between f(-;h) and f as N — oo.
There exist many sophisticated modifications of the basic Gaussian KDE in
(7.7). In this book we use the fast and reliable theta KDE of Botev et al.
(2010), with the new optimal bandwidth selection from Botev et al. (2025).

The Julia module ThetaKDE can be downloaded from the book’s homepage.

Example 7.4 (Kernel Density Estimate). The following Julia program
draws an iid sample from the Exp(1) distribution and constructs a Gaussian
kernel density estimate. We see in Fig. 7.6 that with an appropriate choice
of the bandwidth, a good fit to the true pdf can be achieved, except at the
boundary & = 0. The theta KDE, which can be viewed as a generalization
of the Gaussian KDE, does not exhibit this boundary effect. Moreover, it
chooses the bandwidth automatically and optimally, to achieve a superior fit.

gausthetakde. jl ]

include("ThetaKDE. j1") # make sure path is correct
using Random, Plots, .ThetaKDE # dot is important
h =0.1; h2 = h™2; ¢ = 1/sqrt(2*pi)/h; # constants
phi(x,x0) = exp(-(x -x0)"2/(2%h2)) # unscaled kernel
f(x) = x>0 7 exp(-x) : 0 # true pdf

N = 1074 # sample size

x = -log. (rand(N)) # generate the data

xmesh, density, bw = kde(x); # Determine theta KDE
phis = zeros(length(xmesh)) # Determine Gaussian KDE
for i=1:N

global phis = phis + phi. (xmesh,x[i])

end
phis = cxphis/N
plot(xmesh,phis) # Gaussian KDE

plot! (xmesh,density) # theta KDE
plot! (xmesh,f. (xmesh)) # true pdf
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Fig. 7.6 Kernel density estimates for Exp(1)-distributed data

7.3 Resampling and the Bootstrap Method

The idea behind resampling is very simple: an iid sample @ = (x1,...,2N)
from some unknown pdf f represents our best knowledge about f if we make
no further a priori assumptions about f. So, the best way to “repeat” the
experiment is to resample the {z;} by drawing from the empirical distribu-
tion. The following algorithm is a direct consequence of the inverse-transform
method.

Algorithm 7.1. (Sampling from an Empirical Cdf). Let x4, ...,
xn be an iid sample from a continuous cdf F'. To generate an iid sample
of size M from the empirical cdf Fy, carry out the following steps:

1. Draw Uy, ..., Uy < U(0,1).

3. Return zp,,...,21,,.

Here [z] (the ceiling of ) is the smallest integer larger than or equal to x.
The requirement that F' be continuous is to rule out duplicate data points.

By sampling from the empirical cdf, we can thus repeat (approximately)
the experiment that gave us the original data as many times as we like. This
is useful if we want to assess the properties of certain statistics obtained from
the data. For example, suppose that the original data x gave the statistic
t(x). By resampling we can gain information about the distribution of the
corresponding random variable ¢(X).
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Example 7.5 (Resampling Cauchy Data). Suppose we have an iid sam-
ple of size N = 100 from the Cauchy distribution—that is, with pdf

1
fX(x):m, reR;
see also Examples 6.3 and 6.20. We learned from the first example that the
sample mean is a poor estimate of the mode (0) of the distribution. By resam-
pling the data, we can get a good idea how the distribution of the sample mean
compares with that of other estimators—for example, the sample median
of the data. Ordering the data from smallest to largest, x(;) < -+ < (), the
sample median 7 is defined as the “middle” observation; that is 7 = x((n41)/2)
for odd N, and = = (x(n/2) + 2 (n/2+41))/2 for even N.

Figure 7.7 depicts three graphs. The dashed line is the KDE of K = 5000
iid sample means, where each sample mean is obtained from a resampled
data set of size M = 100 from the original iid Cauchy data of size N = 100.
Similarly, the solid line represents the KDE of the sample medians.

25¢
Pdf of Median (S) ——> i}

1.5¢
Pdf of Median (R) ———>

0.5+ Pdfof Mean (R) ———>

-5 -4 -3 -2 -1 0 1

Fig. 7.7 Kernel density estimates for the mean (dashed line) and median (solid line)
of resampled data, as well as for the median of newly sampled data (dotted line)

The figure shows that the sample median has much better statistical prop-
erties than the sample mean. In particular, the pdf of the sample median (es-
timated via the KDE) is much less spread out than that of the sample mean,
and is (here) mostly concentrated in the interval (—0.5,0.5). For comparison,
the figure also shows the KDE of the sample median obtained from K = 5000
iid samples from the original distribution (dotted line). Thus, instead of re-
sampling the data, we draw each time the data from scratch. The following
Julia program can be used to carry out the experiment. We again use the
theta KDE. It is important that when using resampled data, the res=true
flag is set. See Problem 7.6 for a further discussion of this example.
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resampcauchy. jl ]

include("ThetaKDE. j1")
using Random, Plots, StatsBase, .ThetaKDE
N = 100; K = 5000
# Random.seed! (123)
xorg = tan.(pi*(0.5 .- rand(N))) # original data
medxorg = median(xorg); meanxorg = mean(xorg)
x = zeros(N); mx = zeros(K)
for i in 1:K
ind = ceil. (Int64,N*rand(N)) # draw random indices
x = xorglind]; # resampling the data (R)
# x = tan(pi*(0.5 - rand(1,N))) # sampling new data (S)
mx[i] = median(x)
# mx[i] = mean(x);
end
xmesh,density,bw = kde(mx,res=true)
plot(xmesh,density)

The bootstrap method is a formalization of the resampling idea. Sup-
pose we wish to estimate a number ¢ via some estimator H = H (X)), where
X =[Xi,...,Xn]" and the {X;} form an iid sample from some unknown cdf
F'. Tt is assumed that H does not depend on the order of the {X;}. To assess
the quality (e.g., accuracy) of the estimator H, one could draw independent
replications X1, ..., X g of X and find sample estimates for quantities such
as the variance of the estimator:

Var(H) = EH? — (EH)?,

the bias
Bias = EH — 7,

and the mean square error (MSE)
MSE =E(H —{)? .

However, it may be too time-consuming, or simply not feasible, to obtain such
replications. An alternative is to resample the original data, as described
above. To reiterate, given an outcome (x1,...,2y) of X, we draw an iid
sample X* = [X},..., X%]" not from F but from the empirical cdf Fy, via
Algorithm 7.1 (hence M = N here).

The rationale is that the empirical cdf Fiy is close to the actual distribution
F and gets closer as N gets larger. Hence, any quantities depending on F,
such as Erph(H), where h is a function, can be approximated by Ep, h(H).
The latter is usually still difficult to evaluate, but it can be simply estimated
via Monte Carlo simulation as
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1 K
I > h(HY),
i=1

where Hj,...,Hj, are independent copies of H* = H(X™). This seem-
ingly self-referent procedure is called bootstrapping—alluding to Baron von
Miinchhausen, who pulled himself out of a swamp by his own bootstraps. As
an example, the bootstrap estimate of the expectation of H is

— 1
EH=H :?;Hi,

which is simply the sample mean of {H;}. Similarly, the bootstrap estimate
for Var(H) is the sample variance

— 1 K

* T\ 2
Var(H) = - Z;(H H)%. (7.8)
Bootstrap estimators for the bias and MSE are H —H and & Y% | (H7 —H)?,
respectively. Note that for these estimators, the unknown quantity ¢ is re-
placed with the original estimator H. Confidence intervals can be constructed
in the same fashion. We mention two variants: the normal method and the
percentile method. In the normal method, a 1 — a confidence interval for ¢
is given by
(Hizl—a/zs*) )

where S* is the bootstrap estimate of the standard deviation of H, that is, the
square root of (7.8). In the percentile method, the upper and lower bounds of
the 1 — « confidence interval for ¢ are given by the 1 — «/2 and «/2 quantiles
of H, which in turn are estimated via the corresponding sample quantiles of
the bootstrap sample {H}}.

Example 7.6 (Bootstrapping Regression Data). Bootstrapping can be
applied to a variety of statistical models, including regression data. Suppose
that we have linear regression data {(z;,y;),i = 1,...,10} given in Table 7.1.

Table 7.1 Regression Data

T Y T Y

13 5.0768 27 31.4085
16 21.1897 30 26.8648
19 17.1548 33 29.3894
21 22.8325 36 37.4476

24 26.5348 39 44.292
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We wish to fit the data with a straight line. The least-squares method
gives the following fitted regression line:

y = 3.3024 = + 8.0561 .

We can assess the quality of this estimate by resampling the pairs {(z;,v:)}
independently, and then estimating the regression lines for the resampled
data. This is illustrated in Fig. 7.8 for 20 resampled regression lines. We see
that there is quite a lot of variability in the estimate.

50 50
401 40|
zZ =
>~
30 ///// 30}
= .
20| = 20}
=
Z °
10 2 10
[ ] [ ]
0 : : : : 0 : : : : :
0 2 4 6 8 10 0 2 4 6 8 10

Fig. 7.8 Left: The linear regression data (10 points) and 20 resampled regression lines.
Right: A 90% bootstrapped confidence interval obtained from 1000 resampled regression
lines

Let us determine percentile confidence intervals for the regression line
p1z + Bo. We carry out the resampling many times, say 1000 times, and
calculate for each x the values B1x + f3y. A 90% bootstrap confidence interval
is then obtained by recording the 5% and the 95% quantile of these 1000 val-
ues for each z. The result is given in the right pane of Fig.7.8. The straight
line through the middle is the estimated regression line. The curved lines
form the confidence interval—as a function of x.

Example 7.7 (Bootstrapping the Ratio Estimator). Suppose the data
consists of n iid copies [X1,Y1]",..., [Xn,Yn]" of a random vector [X,Y]"
with mean vector [px, uy]' and covariance matrix 3. We wish to estimate
the ratio px /py. A straightforward estimator is the so-called ratio estima-
tor R=X/Y.

As a particular example, consider the data in Fig. 7.9, where a sample of
size N = 100 of pairs (z,y) is plotted. The model that was used to generate
the data is

X ~N(11,25) and (Y| X =z)~U(0,z) .
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The estimate for px /py is in this case T/g = 2.0359. But how accurate is
this estimate? From Example 3.15 (delta method), we see that the estimator
R has approximately a N(ux/uy,0?/N) distribution, where the variance is
given in (3.38). By replacing expectations, variances, and covariance with
their sample means—that is, by using the method of moments—it is easy to
estimate 0. The sample means and the covariance matrix of the {[X;,Y;]"}
are in this case:

7 =10.3026, 7=50604, and S — [19.7626 9.7052} ’

9.7052 12.9859

which gives o2 = 1.3305. Thus, R has approximately a N(2.0359,1.3305)
distribution. Its pdf is plotted in Fig. 7.10 (dotted graph). The 0.025 and 0.975
quantiles of this distribution give an approximate 95% confidence interval for
px/py:

2.0359 + 1.96+/1.33051,/100 = (1.81,2.26) .

The above analysis requires a good deal of mathematical sophistication. In
contrast, the application of the bootstrap method for this data is relatively
easy: independently resample the data K times and plot a kernel density
estimate of the ratios, as in the following Julia code.

resampratio.jl ]

include("ThetakDE. j1")

using Random, Plots, StatsBase, Distributions, .ThetaKDE
# Random.seed! (123)

N = 100 # size of data

K = 5000 # resample size

est = zeros(K)
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xorg = 11 .+ b*randn(N); yorg = rand(N).*xorg; # orig. data

estorg = mean(xorg)/mean(yorg)

x = zeros(N); y = zeros(N);

est = zeros(K);

for i in 1:K
ind = ceil. (Int64,N*rand(N)) # draw random indices
local x = xorgl[ind]; local y = yorglind]; # resampled data
est[i] = mean(x)/mean(y);

end

xmesh,density,bandwidth = kde(est,res=true)

plot(xmesh,density)

cv = cov(hcat(xorg,yorg))

sigma2 = estorg 2+ (var(xorg) /mean(xorg) 2 + var(yorg)/mean(
yorg) 2 - 2*cv[1,2]/mean(xorg) /mean(yorg)) ;

t = estorg-4*sqrt(sigma2/N):0.01: estorgt+d*sqrt(sigma2/N);

z = pdf. (Normal (estorg,sqrt(sigma2/N)),t);

plot! (t,z)

Figure 7.10 shows the kernel density estimate for the bootstrapped sample
of size K = 5000. We see that the density estimate is in excellent agreement
with that of the delta method.

14 16 1.8 2 22 24 26
r

Fig. 7.10 Estimates of the pdf of the ratio estimator R = X /Y using the delta method
(dotted line) and the bootstrap method (solid line)
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7.4 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a Monte Carlo sampling technique
for (approximately) generating samples from an arbitrary distribution—often
referred to as the target distribution. The basic idea is to run a Markov
chain long enough such that its limiting distribution is close to the target
distribution.

Before we discuss the method in more detail, let us go over some facts
about Markov chains.

Definition 7.3. (Markov Chain). A Markov chain is a collection
{X¢t = 0,1,2,...} of random variables (or random vectors) whose
futures are conditionally independent of their pasts given their present
values. That is,

(Xiy1]| Xs,8<t) ~  (Xpqp1|Xe) forallt. (7.9)

In other words, the conditional distribution of the future variable Xy, 1,
given the entire past {X;, s < t}, is the same as the conditional distribution
of X¢41 given only the present X;. Property (7.9) is called the Markov
property.

The index ¢ in X, is usually seen as a “time” or “step” parameter. The in-
dex set {0,1,2,...} in the definition above was chosen out of convenience. It
can be replaced by any countable index set. We restrict ourselves to Markov
chains for which the conditional pdfs fx,.,|x,(y|z) do not depend on t; we
abbreviate these as ¢(y|x). The {q(y|x)} are called the (one-step) tran-
sition densities of the Markov chain. Note that the random variables or
vectors {X;} may be discrete (e.g., taking values in some set {1,...,7}) or
continuous (e.g., taking values in an interval [0, 1] or R?). In particular, in the
discrete case, each ¢(y|x) is a probability: ¢(y | x) = P(X¢41 = y| Xi = 2).

The distribution of X is called the initial distribution of the Markov
chain. The one-step transition densities and the initial distribution completely
specify the distribution of the random vector [Xg, X1, ..., X;]". Namely, we
have by the product rule (3.10) and the Markov property (7.9) that the joint
pdf is given by

fXO,...,Xt (ZOa e ,l‘t)

= on(ﬂﬁo) le \Xo(ﬂh |1‘0) : "th |Xt,1,...,xo($t | Tt—1y-- ,xo)
= fxo(x0) fx, | x0(®1[20) - fx, | 0y (T4 | 22-1)
)

= on(xO q(ﬂfl |.I‘0) Q(Z‘Q ‘-Tl) ce q(J?t | xt—l) .
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This leads to the following generic generation algorithm for Markov chains.

Algorithm 7.2. (Generating a Markov Chain). To generate a
Markov chain Xj,..., X with transition densities {g(y|x)} and
initial pdf fx, execute the following steps

1 Draw Xy ~ fy.
2 fort=1to N do
3 L Draw X; ~ q(-| X¢—1).

4 return Xo,..., Xy

Example 7.8 (Stepping Stones). Imagine a pond with six stepping
stones. From each stone one can step to a neighboring stone with a certain
probability, indicated by the graph in Fig. 7.11. Let X; be the position (step-
ping stone) after t steps, starting from position 1. Then, {X;,t =0,1,2,...}
is a Markov chain. The graph in Fig.7.11 is called the transition graph of
the Markov chain. The arc weights indicate the transition probabilities. For
example, ¢(4|3) =0.7,¢(3|6) = 0.1, and ¢(3|4) = 0.

Fig. 7.11 The transition
graph for the Markov chain
{X:,t=0,1,2,...}

The following Julia program generates the Markov chain for N = 100
steps. Note that the transition probabilities have been gathered into a matrix
P, with P(z,y) = q(y|x). P is called one-step transition matrix of the
Markov chain. Given that X; = x, state X,y is generated from the discrete
distribution defined by the z-th row of P. A typical outcome is depicted in
Fig. 7.12. The program also keeps track of the fraction of visits to each state.
We see that the Markov process spends most of its time in states 4, 5, and 6.
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stepstone.jl ]

using Plots
N = 101; # times

P=[0 0.2 0 0.3 0.5 0;
0.5 0 0.50 0 0;
0.3 0 0 0.7 O 0;
0 0 0 O 0 1;
0 0 0 0.8 0 0.2;
0 0 0.10 0.9 0];

zeros(Int64,N); x[1]= 1;
tot = zeros(6); tot[1] = 1;

for t in 1:N-1 # generate the Markov chain

x[t+1] = minimum(findall(cumsum(P[x[t],:]) .> rand()));
tot [x[t+1]] = tot[x[t+1]] + 1;

"
]

end

p = plot(0:N-1,x) # plot the path

scatter! (0:N-1,x)

println(tot/N) # fractions of visits to the states

[0.0297, 0.0, 0.0792, 0.2970, 0.2673, 0.3267

1 1 1 1 1 T
0 10 20 30 40 50 60 70 80 90 100

t
Fig. 7.12 A realization of the stepping stone Markov process {X,t =0,1,2,...,100}

A Markov chain is said to be ergodic if the probability distribution of X}
converges to a fixed distribution as t — oco. Ergodicity is a natural property
of Markov chains. For example, the Markov chain in Example 7.8 is ergodic.
Intuitively, since this Markov chain cannot run off to infinity (which can only
happen if the state space is infinite) and since each state can be reached
from each other state, the probability fx,(z) = P(X; = z) of encountering
the chain in state x at time ¢ far away in the future depends on = but not
on t. In general, the pdf fx,(z) of an ergodic Markov chain converges to a
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fixed limiting pdf f(z) as t — oo, irrespective of the starting state. For
the discrete case, f(x) corresponds to the long-run fraction of times that the
Markov process visits x.

The limiting pdf f(x) can be found by solving the global balance equa-
tions:

flz) = {Zy fw) gz |y) (discrete case), (7.10)

J W) a(z|y)dy (continuous case).

For the discrete case, the rationale behind this is as follows. Since f(z) is the
long-run proportion of time that the Markov chain spends in x, the proportion
of transitions out of x is f(z). This should be balanced with the proportion
of transitions into state z, which is 3° f(y) q(z|y).

Example 7.9 (Limiting Probabilities for Stepping Stones Example).
For the discrete case, the global balance equations can be written in matrix
form as f = fP, where P is the one-step transition matrix, and f the
row vector of limiting probabilities. This leads to solving the linear equation
f(I—P) =0, or equivalently (I — PT)fT = 0, where I denotes the identity
matrix. In other words, f' lies in the null space of (I — P)T. Also, the
components of f must add to 1. By executing the following lines:

using LinearAlgebra
f = nullspace(I - P');
f = £/sun(f)

appended to the Julia code in Example 7.8, we find the limiting probabilities
f =10.0120,0.0024, 0.0359, 0.2837, 0.3186, 0.3474].

In Markov chain Monte Carlo, one is often interested in a stronger type of
balance equations. Imagine that we have taken a video of the evolution of the
Markov chain, which we may run in forward and reverse time. If we cannot
determine whether the video is running forward or backward (we cannot
determine any systematic “looping”), the chain is said to be time-reversible
or simply reversible.

Although not every Markov chain is reversible, each ergodic Markov chain,
when run backward, gives another Markov chain—the reverse Markov
chain—with transition densities g(y|x) = f(y)q(x|y)/f(x). To see this,
first observe that f(x) is the long-run proportion of time spent in z for both
the original and reverse Markov chains. Second, the “probability flux” from
x to y in the reversed chain must be equal to the probability flux from y
to z in the original chain, meaning f(z)q(y|x) = f(y) ¢(x |y), which yields
the stated transition probabilities for the reversed chain. In particular, for a
reversible Markov chain, we have:

f@)qlylz) = f(y)q(z|y) forall z,y. (7.11)
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These are the detailed (or local) balance equations. Note that the de-
tailed balance equations imply the global balance equations. Hence, if a
Markov chain is irreducible (i.e., every state can be reached from every
other state) and there exists a pdf such that (7.11) holds, then f(z) must be
the limiting pdf. In the discrete state space case, an additional condition is
that the chain must be aperiodic, meaning that the return times to the same
state cannot always be a multiple of some integer > 2; see Problem 7.13.

Example 7.10 (Random Walk on a Graph). Consider a Markov chain
that performs a “random walk” on the graph in Fig. 7.13, at each step jumping
from the current vertex (node) to one of the adjacent vertices, with equal
probability. Clearly this Markov chain is reversible. It is also irreducible and
aperiodic. Let f(x) denote the limiting probability that the chain is in vertex
. By symmetry, f(1) = f(2) = f(7) = f(8), f(4) = f(5) and f(3) = [(6).
Moreover, by the detailed balance equations, f(4)/5 = f(1)/3, and f(3)/4 =
f(1)/3. It follows that f(1)+---+ f(8) =4f(1)+2x5/3 f(1)+2x4/3 f(1) =
10 f(1) =1, so that f(1) =1/10, f(3) =2/15, and f(4) = 1/6.

Fig. 7.13 The random
walk on this graph is 2
reversible 5 8

The idea behind Markov chain Monte Carlo can be summarized as follows.
To draw approximately from an arbitrary pdf f(x), run a Markov chain {X;}
whose limiting distribution is f(z). Often such a Markov chain is constructed
to be reversible, so that the detailed balance equations (7.11) can be used. Af-
ter a sufficiently long burn-in period from 0 to 7, say, the random variables
X141, X142, .. form an approzimate and dependent sample from f(x).

In the next two sections, we discuss two specific MCMC samplers: the
Metropolis—Hastings sampler and the Gibbs sampler.

7.5 Metropolis—Hastings Algorithm

Suppose we wish to sample from a discrete pdf f(x), where x takes values in
the set {1,...,r}. Following Metropolis et al. (1953), we construct a Markov
chain {X;,t = 0,1,...} in such a way that its limiting pdf is f. Suppose
the Markov chain is in state x at time ¢. A transition of the Markov chain
from state z is carried out in two phases. Similar to the acceptance—rejection
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method, first a trial or proposal state Y is drawn from a transition density
q(- | x). This state is accepted as the new state, with probability a(z,Y), or
rejected otherwise. In the latter case, the chain remains in state x. For any
outcome Y = y, the one-step transition probabilities of the Markov chain are
thus

_ ~ Jaly| ) a(z,y), if y#a
Wwle) = {1zz#xq(z|oj)a(:r,z), fy=g. (7.12)
By choosing the acceptance probability as
[T az]y) }
= 1 7.13
alav) =min{ ZHLEHS 1 719

such a Markov chain can be made (see Problem 7.12) to satisfy the detailed
balance equations (7.11):

f@)qlylz) = fly)q(z|y) forall z,y. (7.14)

Consequently, if this Markov chain is irreducible and aperiodic, its limiting
pdf is f(z).

Note that in order to evaluate the acceptance probability a(z,y) in (7.13),
we only need to know the target pdf f(z) up to a constant; that is f(z) =
¢ f(x) for some known function f(x) but unknown constant c.

The extension of the above MCMC approach for generating samples from
an arbitrary joint pdf f(x) is straightforward, giving the following algorithm.

Algorithm 7.3. (Metropolis—Hastings Sampler). Given a
transition density ¢(y | x):

1 Initialize X .

2 fort=0to N —1do

3 Draw Y ~ q(y| X34). // draw a proposal
4 a=aoXY) // acceptance probability as in (7.13)
5 Draw U ~ U(0,1).

6 if U<athen X;;1=Y

7 else X1 = X,

8

return Xq,..., Xy

The above algorithm produces a sequence X1, Xo,... of dependent ran-
dom vectors, with X ; approximately distributed according to f(x) for large ¢.

Since Algorithm 7.3 is of the acceptance-rejection type, its efficiency de-
pends on the acceptance probability a(x,y). Ideally, one would like the pro-
posal transition density ¢(y | ) to reproduce the desired pdf f(y) as faithfully
as possible. Below we consider two particular choices of q(y | x).
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Example 7.11 (Independence Sampler). The simplest Metropolis-type
MCMC algorithm is obtained by choosing the proposal transition density
q(y|x) to be independent of x; that is, ¢(y|x) = g(y) for some pdf g(y).
Thus, starting from a previous state X, a candidate state Y is generated
from ¢(y) and accepted with probability:

a(X,Y) = min { ;

This procedure is very similar to the acceptance-rejection method of
Sect.2.7.3, and, as in that method, it is important that the proposal dis-
tribution ¢ is close to the target f. Note, however, that in contrast to the
acceptance-rejection method, this independence sampler produces depen-
dent samples.

As a particular example, consider the pdf:

f(z) < 22 exp(—2? +sin(z)), z€R,

where the normalization constant remains unspecified (< means “is propor-
tional to”). To sample from this pdf using the independence sampler, we
choose the symmetric proposal pdf g(z) = e~1*!/2, z € R. Drawing from this
pdf is easy; see Problem 7.16. The program below provides a Julia implemen-
tation, and Fig.7.14 shows a kernel density estimate of the data (as well as
a graph of the true pdf f).

indepsamp. jl ]

include("ThetakDE. j1")
using Random, Plots, QuadGK, .ThetaKDE
N = 1075; # sample size
f(x) = x"2%exp(-x~2 + sin(x)); # unnormalized target pdf
g(x) = exp(-abs(x))/2; # proposal pdf
alpha(x,y) = min(f(y)*g(x)/(E(x)*g(y)), 1); # accept. prob.
x = 0; xx = zeros(N);
for t in 2:N
global x
y = -log(rand())*(2*(rand() < 1/2) - 1); # proposal
rand() < alpha(x,y) ? x =y : nothing
xx[t] = x;
end
jx = xx[1:N] + randn(N)*0.05;
xmesh,density,bw = kde(jx);
plot(xmesh,density) # plot the kde of the data
c = quadgk(f,-5,5)[1]; # determine the normalization constant
tt = -4:0.1:4;
plot!(tt,f.(tt)/c) # plot the target pdf
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Fig. 7.14 The kernel density estimate f(x) (smooth curve), obtained by the indepen-
dence sampler, is practically indistinguishable from the target pdf f(z) (dotted curve)

Example 7.12 (Random Walk Sampler). A popular Metropolis—Hastings-
type sampler is the random walk sampler. Here, the proposal state Y, for
a given current state x, is given by Y = &+ Z, where Z is typically generated
from some spherically symmetric distribution, such as N(0,1,). In that case
the proposal transition density pdf is symmetric; that is, ¢(y | ) = ¢(x|y).
It follows that the acceptance probability is

a(z,y) :min{%, 1}. (7.15)

Example 7.13 (Sampling from a Pdf via Random Walk Sampler).

Consider the two-dimensional pdf f(z1,22) = c exp(—4(z2 — 23)% + (z2 —
1)),z € R, 2o < 2, where ¢ is an unknown normalization constant; see
Fig. 7.15.

flz1, )

2

0

T
! 2 B T2

Fig. 7.15 The pdf f(z1,2z2) = c exp(—4(z2 — )2 4 (22 — 1)2), 1 €R, 29 <2
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The following Julia program implements a random walk sampler to (ap-
proximately) draw N = 10* dependent samples from the pdf f. At each step,
given a current state @, a proposal Y is drawn from the N(x, I5) distribution.
That is, Y =« + Z, with Z bivariate standard normal.

We see in Fig. 7.16 that the samples closely follow the contour plot of the
pdf, indicating that the sampler works correctly. The starting point for the
Markov chain is chosen as (0, —1). Note that the normalization constant c is
not used in the program.

rwsamp.jl

using Plots
f(x,y) = exp(-4*(y-x72)72 + (y-1)"2)*(y < 2)
N = 10000
xx = zeros(N,2); x = [0 -1]; xx[1,:] = x;
for i in 2:N
y = x + randn(1,2); # proposal
alpha = min(f(y[1],y[2])/f(x[1],x[2]),1); # acceptance
prob
r = (rand() < alpha);
global x = r*y + (1-r)*x; # next value of the Markov chain
xx[i,:] = x;
end
scatter(xx[:,1],xx[:,2] ,markersize = 1)
x = range(-2, stop=2, length=50)
y = range(-2, stop=2, length=50)
contour! (x,y,f)

Fig. 7.16 Approximate samples from pdf f produced via the random walk sampler
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7.6 Gibbs Sampler

Suppose that X = [Xj,...,X,]T is a random vector with joint pdf f(z).
Direct sampling from f may be difficult, especially if n is large. However,
often sampling from the conditional pdf of X; given X; = x5, j # i is feasible.
Let us denote these one-dimensional pdfs by fi(z; | 21,...,Zi—1, Tit1,---,Tn),
i =1,...,n. If drawing from each f; is easy, then one can use the Gibbs
sampler to construct a Markov chain X1, X, ... with limiting pdf f. This
Markov chain is generated as follows. As in the Metropolis—Hastings sampler,
at each step t, given a current state X; = x, a proposal Y is drawn from a
transition density ¢1,(y|x) given by

Gyl ®) = filyr |22, 20) faya |y 23, 0) - fo(Un | Y153 Yno1) -

Thus, draw Y7 from the conditional pdf fi(yi|xa,...,2,), draw Y3 from
fo(y2 ly1,x3,-..,2,), and so on. However, unlike the Metropolis-Hastings
sampler, this proposal is always accepted; so X¢y1 = Y. The algorithm is
summarized as follows.

Algorithm 7.4. (Gibbs Sampler)

1 Initialize X = (XO,l, coog XO,n)~

2 fort=0to N —1do

3 Draw Y7 from f(y1 | Xe2,--- Xtn)-

4 for i =2 ton do

5 | Draw Y; from f(y; |Y1,...,Yio1, Xeiq1, .-, Xen)-
6 Xt+1 ~—Y

7 return Xg,..., Xy

To verify that the Markov chain X, X1, ... indeed has limiting pdf f(x),
we need to check that the global balance equations (7.10) hold. In gen-
eral the detailed balance equations (7.11) do not hold—f(x) g1—n(y |x) #
f(¥) q1—n(x|y). However, a similar result, due to Hammersley and Clifford,
does hold: if ¢,,—,1 (x| y) denotes the transition density of the reverse move,
in the order n - n—1— --- — 1, that is,

In—s1(z|y)
= fn(xn|y17"'7yn71)fn71($n71 |yl7~-->yn—2,$n)"'fl($1 |$27...,$n) )

then
f(iL') q1-n(y | ZB) = f(y> qnﬂl(w | y) . (7'16)

Intuitively, the long-run proportion of transitions & — y for the “forward
move” chain is equal to the long-run proportion of transitions y — x for the
“reverse move” chain. By integrating (in the continuous case) both sides in
(7.16) with respect to x, we see that the global balance equations hold:
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Example 7.14 (Sampling from Pdf via Gibbs Sampler). Consider the
two-dimensional pdf:

fla1,z2) = ce™™®2717%2 gy > 0,29 >0,

where the normalization constant ¢ remains unspecified. Let (X, X2) be
distributed according to f. The conditional pdf of X; given X5 = x5 is

f(fChﬂ?Q)

Al 22) E ) x, (@1 [ 22) = S22 o f(wr, @) oc e D)

fxz (x2)
It follows that X; given X5 = x5 has an Exp(xz2 + 1) distribution; and, by
symmetry, Xo given X; = x1 has an Exp(z + 1) distribution. Sampling from
the joint pdf can thus be established via the Gibbs sampler by alternately
generating from Exp(z2+1) and Exp(x1 + 1), as implemented in the following
Julia program.

gibbssamp. jl ]

using Plots
f(x,y) = exp(-(x*xy + x + y)*(x > 0 & y > 0)
N = 1074; x = zeros(N,2); x2 = 1;
for i in 2:N
x1 = -log(rand())/(x2+1);
global x2 = -log(rand())/(x1+1);
global x[i,:] = [x1 x2];
end
scatter(x[:,1],x[:,2] ,markersize=0.2)

7.7 Problems

7.1. Consider the estimation of the p-value in Example 7.1

a. Under Hy we have y = 0, but ¢? remains unspecified. Why is it allowed
to take 0 = 1 to generate the sample T3, ...,TN7?

b. Show, using Theorem 5.1, that T under Hy has a t3 distribution, and
calculate the true p-value.

c. Speed up the given Julia code by “vectorizing” the for loop.
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7.2. Monte Carlo sampling methods are useful for calculating p-values for a
goodness-of-fit test, where the data X, ..., X} is assumed to come from
a multinomial distribution Mnom(n, p1,...,pk).

As an example, consider a racetrack with eight starting boxes. Out of 200
races, the numbers of winning horses that started from boxes 1,2,...,8 are
39, 29, 24, 20, 21, 24, 21, and 22, respectively. Is this an indication that the
winning probabilities p1,...,ps are not all equal to 1/87 The test statistic
that is typically used for a goodness-of- fit test is

Oi—EiQ
rey O

i=1

where O; (=X;) is the observed number of observations in class ¢ and E;
(= EX;) is the expected number of observations in class . In this case E; = 25
for all ¢ and the observed counts are given above. The hypothesis Hy : p; =
... = ps = 1/8 is rejected in favor of the negation of Hy for large values of
the test statistic.

a. Write a Monte Carlo sampling program to estimate the p-value for this
test. Do you reject the null hypothesis or not? Hint: to draw a vector
X = [Xy,...,Xg]" ~Mnom(200,1/8,...,1/8), you can use:

using NaNStatistics
winner = ceil. (8*rand(200))
X, bins = histcountindices(winner,0:8);

b. It can be shown that under Hy the test statistic, T has approximately a x?2
distribution. Verify this by drawing an iid sample from T" and comparing
the empirical cdf with that of the x? distribution:

7.3. Let Fy be the empirical cdf of z1,...,zy, and let X be a random
variable with cdf Fiy. Show that EX = 7 and Var(X) = Zil(% —7)%/N,
where T = (z1 + -+ an)/N.

7.4. Consider a mixture pdf:
k
f($)ZW1f1<x)++wkfk($>7 w; ZOaJ:177k7 ijzla (717)
j=1

where each f; is itself a pdf. Let J be a discrete random variable taking
values 1, ..., k with probabilities w1, . .., ws, respectively. Let X be a random
variable such that the conditional pdf of X given J = j is f;.

a. Show that X has mixture pdf (7.17).
b. Using (a.) describe how one could generate a random variable from the
mixture pdf (7.17).
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c. Suppose pdf f; has mean p; and variance crj?, j=1,...,n. Express EX
and Var(X) in terms of these parameters.

7.5. It can be shown that the Kolmogorov-Smirnov statistic Dy in (7.6)
satisfies

lim P(WVNDy <z)= Y (-DFe 20" 250, (7.18)
N—oo i
Compare the estimated p-value in Example 7.3 with an approximated one
calculated via (7.18).

7.6. In Example 7.5 we considered the quality of various estimators for the
mode of the Cauchy distribution using (re)sampling techniques.

a. Instead of estimating the pdf of the sample mean using resampled data
(dashed line in Fig.7.7), estimate the pdf of the sample mean by sam-
pling new data from the Cauchy distribution. How do the kernel density
estimates compare?

b. Another possible estimator for the mode of the Cauchy distribution is
the trimmed mean estimator, which is given by the sample mean of all
outcomes x; with |x;| < /3, where 8 is some positive number. Carry out a
bootstrap procedure for the trimmed mean with 8 = 100 and 8 = 10. How
do the pdfs compare with those of the sample median and sample mean?

7.7. In Example 7.7 we saw that for a sample size of N = 100 the bootstrap
and delta method gave identical results for the ratio estimator X /Y. Repeat
the analysis and compare the two methods for a sample size N = 10, with
z-values

16.4321 2.4334  14.3433 7.9650 14.1052
6.7660 0.1430 10.0420 7.1071 13.5305

and y-values

14.9151 0.4312 11.5407 4.4538 8.7741
0.8462 0.0302 1.7955 1.4568 7.8052

7.8. The median of a distribution with pdf f is the number m such that
J". f(z)dz = 1/2. The data

1.4066 1.2917 1.4080 4.2801 1.2136 2.7461
11.1076  0.9247 5.8833 10.2513 3.8285 3.2116
0.5451 0.9896 1.1602 7.7723 0.1702 0.8907
0.2276 3.1197 11.4909 0.6475 11.2279 0.7639

form an iid sample from an Exp()) distribution.
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a. Show that the median of Exp(A) is In(2)/A.

b. This suggests that we could estimate A via the estimator T = In(2)/X,
where X is the sample median. Find the corresponding estimate. What is
the maximum likelihood estimate of A?

c. Carry out a bootstrap analysis of both estimators and compare their ac-
curacies.

7.9. The concentration of a certain chemical is measured at times 1,2,3, ...,
20. The measurements are

18.9506  41.4228 52.0253 63.5451 71.9634
79.0504 80.9685 84.6222 89.6391 93.5085
95.8680 91.3177 97.7423 97.1969  96.7448
96.81556 96.4435 98.2087 98.3126 97.8173

(e.g., at time t = 12 the concentration is 91.3177). Suppose the data are
modeled by the following nonlinear regression model:

YVi=a(l—e ) 4e, i=1,...,n, (7.19)

where {£;} %3 N(0, 02), and a, b, and o are unknown. To fit the model (7.19)
to the points {(¢;,y;)}, we can apply a least-squares approach, where a and
b are chosen such that the sum of the squared deviations

n

r(a,b) =Y (yi—a(l—e ")), (7.20)

i=1
is minimized. This requires numerical minimization.

a. Plot the points (¢;,v;), i =1,...,n = 20.

b. Show that the values @ and b that minimize the function r in (7.20) are the
maximum likelihood estimates of a and b. Express the maximum likelihood
estimate of 02 in terms of @ and b. R

c¢. Implement a Julia program to find the optimal values @ = 99.14 and b =
0.255, using the following code snippet (yorg and torg store the original
data):

using Optim

r(x) = sum((yorg .- x[1]1*(1 .- exp.(-x[2]*torg)))."2);
res = optimize(r,[100.0,1.0])

mle = res.minimizer

ahat = mle[1]; bhat=mle[2];

d. To assess how accurate the estimates for a and b are, resample the data
1000 times. For each resampled dataset, estimate a and b via optimize, as
above. Plot kernel density estimates for the pdfs of @ and 3, and determine
95% bootstrap intervals for a and b.

I 129
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7.10. Let X4,...,X,, and Y7,...,Y, be independent random samples from
the Exp(\) and Exp(u) distribution, respectively, for unknown A and u. Sup-
pose outcomes of X7, ..., X, are given by the data in Problem 7.8 (so n = 24),
and outcomes of Y7,...,Y,, are

23.9618 4.9055 6.0424 0.5870 4.0856 1.6503
10.1976 4.0208 25.9484 15.3954 19.5160 0.5937
11.5481 18.3895  30.4093 7.6527 9.7329 8.6130

6.2353 5.5157 9.9489  21.3850 5.1142  28.2284

The maximum likelihood estimator for £ = \/pis > 1, Y;/ > " | X;. Find a
95% bootstrap confidence interval (percentile method) for .

7.11. Let X;,..., X, be an iid sample from a U(0,6) distribution, where
# > 0 is unknown. The maximum likelihood estimator of 6 is M =
max{Xy,...,X,}. Suppose M7,..., M}, is a bootstrap sample of M, based
on an outcome z1,...,T,. Explain why it is a bad idea to construct a confi-
dence interval for 6 on the basis of the {M}.

7.12. For the Metropolis—Hastings sampler, verify that the local balance
equations (7.14) hold if the acceptance probability is chosen as in (7.13). Hint:

consider two cases: f(y)q(z|y) < f(z)q(y| ) and f(y)q(x|y) > f(x)q(y|z).

7.13. Let X;,t = 0,1,2,... be a random walk on the graph in Fig.7.17.
From each state the random walk chooses one of the adjacent states with
equal probability. The starting state is 1.

1 3 5
Fig. 7.17 The graph on
which the random walk is
performed 2 4 6

a. Is the chain irreducible and aperiodic?

b. Do the local balance equations hold? If so, find the solution f(1),..., f(6).

c. Explain why the probabilities P(X; = x), x = 1,...,6, do not converge as
t — oo.

7.14. Run the random walk sampler with a N(10,2) target distribution and
N(z,0.01) proposal, drawing the initial point from the N(0, 0.01) distribution.
Take a sample size of N = 5000 and plot {X;} against ¢ = 1,..., N. Based
on the graph, give a rough estimate of the burn-in period.
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We can estimate £ = EIn(X?), where X ~ N(10, 2), by taking the sample av-
erage of ln(X%_H), ...,In(X%), where B is the burn-in size. By independently
generating K = 100 such estimates, find an approximate 95% confidence in-
terval for ¢. Generate 20 such intervals and show that the true value for ¢
(which is 4.58453.. . .) is contained in these intervals with a probability much
smaller than 95%. Hence, the combination of a burn-in size of B = 1000 and

a sample size of N = 5000 is inadequate to provide an accurate estimate
for ¢.

7.15. Let 2 be a finite set on which a neighborhood structure is defined;
that is, each € 2 has a set of neighbors N'(x). Let ng be the number of
neighbors of x € 2. Consider a Metropolis—Hastings algorithm with proposal
density q(y | &) = 1/ng for all y € N(x). That is, from a current state x, the
proposal state is drawn from the set of neighbors with equal probability. Let
the acceptance probability be a(x,y) = min{n,/n,, 1}.

Assuming the chain is irreducible and aperiodic, what is its limiting dis-
tribution?

7.16. Let Ul,UQ ~iid U(O, ].) Explain Why X =—-In U1 X (21{U2§1/2} — ].)
has pdf g(z) = e~1*1/2, 2 € R.

7.17. A Langevin Metropolis—Hastings sampler is a random walk sam-
pler where the proposal state, for a current state x, is given by

Y:x+gv1nf(a:)+\/ﬁz, Z ~N(0,T),

where h > 0 is a step size, f is the target pdf, and VIn f is the gradient
of In f. Note that the proposal distribution is not symmetric around x. Use
this sampler to draw N = 10° dependent samples from the Gamma(2,1)
distribution. Use the kde function (with res = true flag) to assess how well
the estimated pdf fits the true pdf. Investigate how the step size h and the
length of the burn-in period affect the fit.

7.18. Let X = [X,Y]T be a random column vector with a bivariate normal
distribution with expectation vector 0 = [0,0]" and covariance matrix:

=[]

a. Show that (Y| X =) ~N(pz,1 — ¢%) and (X |Y =y) ~ N(oy,1 — 0?).
b. Write a Gibbs sampler to draw 10* samples from the bivariate distribution
N(0, ) and plot the data for o = 0,0.7, and 0.9.
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7.19. Consider the two-dimensional pdf:

fl®)=c exp(—(x%x% + x% + x% —8x1 —8x2)/2), =€ R2 . (7.21)

a. Give a 3D plot and a contour plot for this function (ignoring c).

b. Implement a random walk sampler with proposals of the form Y = x+0Z,
where Z ~ N(0, ;). Start the sampler at the point [0, 4].

c. Plot the progression of the first component of the Markov chain against
time, for o = 0.2 and ¢ = 2. Comment on the difference.

d. Give a kernel density estimate of the pdf X; if X = [X;, Xo]T ~ f.

7.20. Consider the two-dimensional pdf (7.21) in Problem 7.19.

a. Show that conditional on X5 = w5, Xy has a normal distribution with
expectation 4/(1 + z3) and variance 1/(1 + 22).
b. Implement a Gibbs sampler to sample from f.

7.21. In Algorithm 7.4 the vector X is updated in a systematic order:
1,2,...,n,1,2,.... A variant of the algorithm is to update the coordinates in
random order. Specifically, Steps 3-5 of the algorithm are replaced by

Given the current state X, generate Y as follows:

1. Draw J uniformly from {1,...,n}.
2. Given J = j, draw Y—J ~ fj(yj |Xt’1, oo .,Xt’jfl,Xt’j+1, 500 7Xt,n)'
3. For i # j set Y; = X4 ;.

a. Show that, given X; = @, Y has pdf (in the continuous case)

1 fly)
aylz) = - <= : (7.22)
n [7 f(y)dy;
where y = (1,...,%j-1,Yj, Tjt1,-- -, Tn)-

b. Show that the random-order Gibbs sampler can be viewed as an instance
of the Metropolis—Hastings sampler, with transition density ¢(y |x) given
in (7.22) and with acceptance probability a(z,y) = 1.
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Chapter 8
Bayesian Inference

Bayesian statistics is a branch of statistics that is centered around Bayes’
formula (1.8), which is repeated in (8.1). To fully appreciate Bayesian in-
ference, it is important to understand that the type of statistical reasoning
here is somewhat different from that in frequentist statistics. In particular,
model parameters are usually treated as random rather than fixed quantities.
Moreover, Bayesian statistics uses a notation system that deviates from the
frequentist one in two aspects:

1. Pdfs and conditional pdfs always use the same letter f (sometimes p is
used instead of f). For example, instead of writing fx(x) and fy(y) for
the pdfs of X and Y, one simply writes f(z) and f(y). Similarly, the
conditional pdf fx |y (z|y) of X given Y is denoted in Bayesian notation
as f(z|y). This style of notation can be of great descriptive value, despite
its apparent ambiguity, and we will use it in this book whenever we work
in a Bayesian setting. As an example, the Bayesian formula (1.8) in terms
of (conditional) pdfs can be written in Bayesian notation as

_ [y fy)
[ f(=]y) fy)dy

(Replace the integral with a sum in the discrete case.)

2. In Bayesian statistics the notation does not make a distinction between
random variables and their outcomes. Both are usually indicated by low-
ercase letters. It is assumed that it is clear from the context whether a
variable = or 6 should be interpreted as an outcome (a number) or a ran-
dom variable.

flylz)

o flx|y) f(y) - (8.1)
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The general framework for Bayesian statistics is as follows (compare with
the frequentist framework in Chap. 5): it is assumed that the data vector, @
say, has been drawn from a conditional pdf f(z|@), where 6 is a random!
vector of parameters. The pdf of 8 conveys the a priori (existing beforehand,
before any experience) information about 6. Observing the data a will affect
our knowledge of 6, and the way to update this information is to use Bayes’
formula (8.1). The main concepts are summarized in the following definition.

Definition 8.1. (Prior, Likelihood, and Posterior). Let « and 6
denote the data and parameters in a Bayesian statistical model:

e The pdf of @ is called the prior pdf.

o The conditional pdf f(x|8) is called the Bayesian likelihood func-
tion.

o The central object of interest is the posterior pdf f(0|x) which,
by Bayes’ theorem, is proportional to the product of the prior and
likelihood:

f(@|x) o f(z]0) f(0) .

The posterior pdf thus conveys the knowledge of 6 after taking into ac-
count the information . Note that the likelihood function in Bayesian statis-
tics differs slightly from that in frequentist statistics. In Bayesian statistics
the likelihood f(x|0) is a conditional pdf of the data x, whereas in the fre-
quentist case the likelihood L(8;x) = f(x;0) is viewed as a function of 0
for fixed @. The posterior pdf can be viewed as a scaled version of the fre-
quentist likelihood. Indeed, if the prior pdf is constant, then the posterior pdf
coincides with the frequentist likelihood, up to a multiplicative constant.

Example 8.1 (Bayesian Inference for Coin Toss Experiment). Con-
sider the basic random experiment where we toss a biased coin n times. Sup-

pose that the outcomes are x1,...,x,, with x; = 1 if the i-th toss is Heads
and x; = 0 otherwise, i = 1,...,n. Let 8 denote the probability of Heads.
We wish to obtain information about @ from the data @ = [z1,...,2,]". For

example, we wish to construct a confidence interval.

The a priori information about 6 is described by the prior pdf f(6). For
example, the choice of a uniform prior f(0) = 1,0 < 6 <1 indicates no prior
knowledge about §. We assume that conditional on  the {z;} are independent
and Ber(0) distributed. Thus, the Bayesian likelihood is

f(x|6) = Heﬂ 9) % = ¢° (1 — )"

! Strict Bayesians would insist that 8 is not random, but that the information on
is summarized by a probability distribution. However, for computational and analysis
purposes, we can treat 6 as if it were a random vector.
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where s = x1 + --- + x,, represents the total number of successes. Using a
uniform prior gives the posterior pdf:

FOz)=co(1—0)" >, 0<0<1.

This is the pdf of the Beta(s + 1,n — s + 1) distribution. The normalization
constant is ¢ = (n+ 1)(7). The graph of the posterior pdf for n = 100 and
s =1 is given in Fig. 8.1.

40
30t
£
S 20
g
10
O L L n
Fig. 8.1 Posterior pdf for 0 0.02 0.04 0.06 0.08 0.1
0, with n = 100 and s = 1 0

A Bayesian confidence interval, called a credible interval, for 6 is formed
by taking the appropriate quantiles of the posterior pdf. As an example, sup-
pose that n = 100 and s = 1. Then, a left one-sided 95% credible interval for
6 is [0,0.0461], where 0.0461 is the 0.95 quantile of the Beta(2,100) distri-
bution. As an estimate for 6, one often takes the posterior mean, that is,
the expectation corresponding to the posterior pdf. In this case, for general
n and s, the posterior mean is (s+1)/(s+1+n—s+1)=(s+1)/(n+2);
see also Problem 8.1. An alternative estimate for 6 is the value for which
the posterior pdf is maximal—the so-called posterior mode. The posterior
mode is here § = s/n, which coincides with the (frequentist) sample mean.

8.1 Hierarchical Bayesian Models

In the coin flipping example, both the parameter 6 and the data x are random
variables, and the joint distribution of # and «x is specified in a “hierarchical”
way:

0~ f(0)
(@[0) ~ f(z|0) .

By the product rule of probability, the joint pdf is simply the product
f(8) f(x|8), and the posterior pdf is proportional to this last product (viewed
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a function of #). For models involving more than one parameter, a similar
hierarchical structure is often used to specify the model. For example, a three-
parameter model could be specified as follows:

a~ fla)
(Bla)~f(/3\a)
(v, B) ~ f(v| e, B
(x]a,B,7) ~ f(z|a, 5, ) -

That is, first specify the prior pdf of «, then given « specify the pdf of 3, etc.,
until finally the likelihood as a function of all the parameters is given. Often
in practice the reverse order is used: the likelihood is specified first and the
priors are defined last. The hierarchical model approach allows for an easy
evaluation of the joint pdf: it is simply the product of the (conditional) pdfs:

f(iB,OQﬂ,’Y) :f(w|a?ﬂv’Y)f(’Y‘aaﬂ)f<ﬁ‘a)f(a)'

To find the posterior
fle, B,y ),

view f(x, o, 8,7) as a function of a, 8, and ~ for fixed x. To find the marginal
posterior pdfs, f(a|x), f(8|x), f(v]|x), integrate out the other parameters.
For example,

f(’ylw):/ f(e, By |x) dads .

This may not always be easy or feasible. An alternative is to use the Gibbs
sampler to sample from the posterior pdf. After initializing «, 3,7, iterate
the following steps:

1. Draw « from f(«| 8,7, x).
2. Draw 3 from f(8]|a,~,x).
3. Draw v from f(y|«, 3, x).

After a (dependent) sample {(a, B¢, 7:) } from f(a, 8,7 | x) is generated, out-
put only the variables of interest, e.g., only the {c;}.

Example 8.2 (Ticket Inspector). A ticket inspector has the option of
taking three different routes for inspection of parking violations. Each route
is characterized by the time it takes to complete the route and the intensity
of ticket violations. Suppose the time ¢ spent on route k is exponentially
distributed with mean k/2 (hours), k = 1,2, 3. For example, route 2 takes
on average 1 hour to complete. Suppose further that the number of traffic
violations encountered, x say, has a Poisson distribution with mean 10k¢. So
if route 3 takes 2 hours, an average of 60 tickets will be issued. Suppose that
on a particular day the ticket inspector has issued 60 tickets. Which route
has she/he taken?
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Assuming that our prior information about & is that each of the routes is
taken with equal probability, we obtain the following hierarchical model:

k ~DU{1,2,3} (discrete uniform)

(t| k) ~ Exp(2/k)
(x| k,t) ~ Poi(10kt) .

It follows that the joint pdf is

~on (10K1)
te 10kt x' (82)

2
e &

Wl =
NN

flk,tom) = f(R)f(EIR)f (2|t k) =

for k = 1,2,3,t > 0, and =z = 0,1,2,.... Note that k£ and x are discrete
random variables and ¢ is continuous. The posterior pdf f(k,t|z = 60) is
thus of the form:

1
Flk,t]2=60) ox et 10Kt (J)60 (8.3)

The marginal posterior pdf of k can be found by integrating out ¢ in (8.3).
That is, for each k = 1,2, 3, calculate:

1 / ef% teflokt (kt)ﬁ() dt ,
k Jo

and normalize. Numerical evaluation yields the following posterior probabil-
ities (rounded):

0.000353516, 0.30469, and 0.694957 .

Hence, we have deduced from Bayes formula that the most likely route that
was followed is route 3. But route 2 is also quite possible. It is very unlikely
that route 1 was used.

In a similar manner, to find f(¢|x = 60), we sum (8.3) with respect to k,
giving

f(t]z =60)=c1 %0 (3596—9215/3 1999621t | e—12t) .
The normalization constant (which can be expressed in terms of the gamma

function) evaluates to ¢ ~ 3.481048347 x 10'?. The graph of this marginal
posterior pdf is shown in Fig. 8.2 (solid line).
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Fig. 8.2 Posterior pdf of 021
t given z = 60 (solid line)
and its estimate obtained 0 :
via Gibbs sampling (dotted 0 1 2 3 4 5
line) t

To (approximately) sample from f(k,t|x = 60), we can use the Gibbs
sampler (Algorithm 7.4). For this we need to specify:

1. the conditional distribution of k given t and x;
2. the conditional distribution of ¢ given k£ and x.

By viewing ¢ and z as constants in (8.2), we see that, given ¢ and z, k has a
discrete distribution on {1, 2,3} with probabilities proportional to

671215, 29:71672“, and 3z716792t/3 )

Similarly, by viewing k and x as constants in (8.2), we have:

ft)xz, k) o t* exp{—t (i + 10k>} ,

which is the pdf of the Gamma(z + 1, % + 10k) distribution. By alternatively
sampling from f(k|¢,z) and f(t|k,x), we obtain a dependent sample from
f(k,t|x). The following Julia program implements the Gibbs sampler. The
burn-in period was ignored. Throughout this chapter we use the theta KDE
function kde to display a kernel density estimate of the simulated data.

ticketinspector.jl ]

include("ThetaKDE. j1")
using Plots, Distributions, .ThetaKDE
n = 10000;
x = 60; # number of tickets
p = [1/3, 1/3, 1/3] # initial value
kk = zeros(Int64,n);
tt = zeros(n);
k = minimum(findall (cumsum(p) .> rand()));
for i in 1:n
a=x+1;
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b = 2/k + 10%k;
t = rand(Gamma(a,1/b));
tt[i] = t;

global p = [exp(-12%t), 2.07 (x-1)*exp(-21*t), 3.07(x-1)*
exp(-92%t/3)];

p = p/sum(p);
global k = minimum(findall(cumsum(p) .> rand()));
kk[i] = k;
end
plest = sum(kk .== 1)/n # estimate of post. prob. 1
p2est = sum(kk .== 2)/n # estimate of post. prob. 2
p3est = sum(kk .== 3)/n # estimate of post. prob 3
xmesh, density, bw = kde(tt)
plot(xmesh,density)
£1(t) = t760
f2(t) = 3.0759*exp(-92%t/3)
£3(t) = 2.0759%exp(-21*t)

£4(t) = exp(-12%t)
tickf(t) = f1(t)*x(£2(t) + £3(t)+f4(t))/3.481048347e19
plot! (xmesh,tickf. (xmesh))

Typical outcomes of the posterior probabilities for route k are 10~4, 0.32,
and 0.68. These probabilities are in close correspondence with the actual
probabilities. The KDE of the posterior pdf of ¢ is given in Fig. 8.2 (dotted
line). This is in excellent agreement with the true posterior pdf.

8.2 Common Bayesian Models

The common statistical models in Chap. 4 can also be formulated and ana-
lyzed in a Bayesian framework. In this section we give various examples of
how this is done. Note that inference in a Bayesian setting depends on the
prior information, in contrast to the frequentist case.

8.2.1 Normal Model with Unknown p and o?

Let x1,...,2, be a random sample from the N(u,o?) distribution. Let
x = [r1,...,2,]". In frequentist statistics the model can be written as
x ~ N(pl,0%1,), where 1 is the n-dimensional vector of 1s and I,, the n-
dimensional identity matrix. To formulate the corresponding Bayesian model,
we start with a similar likelihood as in the frequentist case; that is,

= 101
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(@ | p,0°) ~ N(u1,0%L,) .

In the Bayesian setting, both p and o2 are random, and we need to specify
their prior distributions to complete the model. In practice the choice of
the prior distribution is governed by two considerations. Firstly, the prior
should be simple enough to facilitate the computation or simulation of the
posterior pdf. Secondly, the prior distribution should be general enough to
model complete ignorance of the parameter of interest. Priors that do not
convey any preknowledge of the parameter are said to be uninformative.
The uniform or flat prior in Example 8.1 is an example.
For the present model, a standard prior for u is

o~ N(0,03) (8.4)

where 02 > 0 is a constant. The larger o3 is, the more uninformative is the
the prior. A standard prior for o2 is

o2 ~ InvGamma(ag, \o) , (8.5)

where a9 > 0 and Ay > 0 are constants and InvGamma(a, A) denotes the
inverse-gamma distribution.

Definition 8.2. (Inverse-Gamma Distribution). A random vari-
able Z is said to have an inverse-gamma distribution with shape
parameter o > 0 and rate parameter A > 0 if its pdf is given by

)\azfaflef)\z_l

) , 2>0. (8.6)

f(za,X) =

This is the pdf of the random variable Z = 1/X with X ~ Gamma(a, ).

Thus, (8.5) is equivalent to

1

Pl Gamma(ag, Ao) - (8.7)
The smaller the ag and \g are, the less informative is the prior. It is further
assumed that p and o2 are independent. The joint pdf of x,u and o2 is
therefore
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f(@,p,0%) = f(p) x f(o?) x f(z|p,0%)

—1/2 1 p?
= (271'03) exp{—202}

g0 (0?)~ 0~ exp {—/\0 (02)_1}
I'(a)

< (2m0%) " exp{—éw} .

o2

X

It follows that the posterior pdf is given by

2 2\ —n/2—ao—1 1Y (e =) 1p? X

To simulate from it using the Gibbs sampler, we need the distributions of
both (u|o?,x) and (02 | p,x). To find f(u|o?, ), view the right-hand side
of (8.8) as a function of u. This gives:

2_2 . 1 2
f(wz’m)ocexp{_wm_u}

202 202
1 2_9 z;)02 )
—oxpd L (np lexz)go +po
2 o2 of

exp{ 1 <u2—2u082ixi/(na§+02)>} |

_ - 8.9
0203 /(nog + o2) (8.9)

2

This shows that (1|02, ) has a normal distribution with mean 03 3" x;/(no?
+0?) and variance 0202 /(no2+o?). By defining «,, = 02/(02 n), we can write

this succinctly as
= 2
(0% @) ~ N, 20,
14k, 14Ky

where T is the sample mean. Similarly, to find f(o?|u, ), view (8.8) as a
function of o2. This gives:

F(02 | 1, @) o (02) /20— oxpy {—; S (@i — p)?fo? — AO/U2} . (8.10)

i=1

In other words,

(02| p, ) ~ InvGamma (ao +n/2, Z(ml —u)?/2+ )\0> .
i=1
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It is interesting to note that in the limit 03 — oo, ap — 0, and \g — 0,
the right-hand sides of (8.10) and (8.9) define valid probability distributions;
namely,

(1| o? ) ~N(z, 0*/n)

(0% | p, ) ~ InvGamma(n/2, z:(:rz —n)?/2) .

i=1

The two distributions above correspond to the following simplified Bayesian
model:

flu,0%) =1/0
(z] ,LL,JQ) ~ N(p1, o’ I,) .

Here the prior for (u,0?) is improper. That is, it is not a pdf in itself, but
by obstinately applying Bayes’ formula it does yield a proper posterior pdf.
In some sense this prior conveys the least amount of information about pu
and o2,

In the following Julia script, an iid sample of size n = 10 is drawn from
N(0,1), and a dependent sample from the posterior distribution for the sim-
plified model is obtained, using the Gibbs sampler with N = 10° samples.

bayesnorm. jl ]

using Distributions, .ThetaKDE, Plots

n = 10;

X = randn(n); # generate the data

sample_mean = mean(X) ;

sample_var = var(X);

sig2 = var(X); mu = sample_mean; # initial state

N = 1075; # sample size for Gibbs sampler

gibbs_sample = zeros(N,2);

for k in 1:N
global mu = sample_mean + sqrt(sig2/n)*randn(); # draw mu
V = sum((X .- mu)."2)/2;
global sig2 = 1/rand(Gamma(n/2,1/V)); # draw sigma”2
gibbs_sample[k,:] = [mu sig2];

end

pl = xmesh,density,bw = kde(gibbs_sample[:,1]);

p2 = xmesh,density,bw = kde(gibbs_sample[:,2]);

plot([p1,p2],layout=(1,2))

The estimated posterior pdfs of ;1 and o2 are given in Fig. 8.3. In this case
the sample mean and sample variance are 0.1298 and 0.5221, respectively. The
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0.05 and 0.95 sample quantiles of the simulated posterior values for p give the
90% credible interval (—0.2919,0.5464). This is in close agreement with the
frequentist confidence interval (5.19), which in this case is (—0.2891, 0.5487).
Similarly, an estimated 90% credible interval for o2 is (0.2773,1.4128), which
is in close agreement with the frequentist confidence interval (5.20), which
here is (0.2777,1.4132). See Problem 8.10 for a further discussion of this
model.

Fig. 8.3 The estimated posterior pdfs of y and 2. The dashed lines correspond to the
sample mean (left) and the sample variance (right)

8.2.2 Bayesian Normal Linear Model

Suppose ¥ = [y1,...,¥yn] " is described via a normal linear model. That is
(see (6.23)) the likelihood is specified by

(y]B,0%) ~N(XB,0°L,) ,

where X = [z;;] is the (known) n x m design matrix and 8 = [B1,..., 8] "
and o2 are unknown parameters. Again, both 8 and ¢? are random in the
Bayesian setting, and we need to specify their prior distributions. The prior
for o2 is the same as in the normal model:

o2 ~ InvGamma(ayg, Ao) ,
with ag > 0 and A\g > 0 known. A standard prior for 8 is
/8 ~ N(IBOa 20),

where ¥ is a known covariance matrix and 8, a known mean vector. The
joint pdf of y, B and o? is thus

I 135
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F(.B.0%) = F(B) x 1(0%) x f(y| B.0")
— (@n) =) 2 exp { 56~ 805 (6 - ) |

" Mg (o)~ exp {—Xo (0?) 7!}
I'(ap)

x (2m0%) "% exp {—Q;(y ~-XB) " (y - XB)} :

It follows that the posterior pdf is given by

F(B.0%|y) o (o7) " exp {—2;@ -XB)(y - XB)
(8.11)
~5(8 -80S 8- 80) - 33}

As before, we use the Gibbs sampler to simulate from this posterior pdf. To
that end, we need to derive the distributions of both (8|02, y) and (02 | B,y).
Following the same argument in Sect. 8.2.1, we can show that

(02| B,y) ~ InvGamma<a0 +n/2, (y—XB) (y —XB)/2 + /\0> )

Next, to find f(B |02, y), view the right-hand side of (8.11) as a function
of B. This gives:

F810% ) xexp {52

iy~ XB) (y—XB) — 2(8— B0) =5 (6 - /30)}

ocexp{—;ngXTXxs—wTXT )+8" 3 %»ﬂ Dh }

:exp{—; [T (XTX/0%+551)8-26" (X Ty/0*+7" By) ]}
(8.12)

Note that the exponent is quadratic in B, and thus (8 |o?,y) ~ N(u, D) for
some mean vector g and covariance matrix D. Therefore,

(810" ) xexp {56~ 1) D8 - )

X exp {—; (,BTD_lﬂ — Q,BTD_lu)} .
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To determine p and D, we only need to compare the linear and quadratic
terms in (8.12) to those of the N(u, D) density above. This process is some-
times called completing the squares. Comparing the quadratic terms gives
D = (X"X/o?+X;!)~". Similarly, equating the linear terms in the two ex-
pressions gives D™y = XTy/O'2—‘rEal,80. In summary, we have the following
result.

Theorem 8.1. (Conditional Posteriors for the Linear Model).
Consider the Bayesian model

B ~ N(Bqg, Zo) , (8.13)
o? ~ InvGamma(ag, \o) , (8.14)
(y]B,0%) ~N(XB,0° L) , (8.15)

where X is a fixed n x m design matrix, 3 is a fixed n X n covariance
matrix, B, is a fixed vector, and ap and A are fixed constants. Then,

(Blo*y) ~N(u,D),

where p = D(XTy/0? + ;' 8,), with D = (XTX/0? + £5')71, and

AR pce— (ao +n/2, (y—XB)T(y — XB)/2 + Ao) .

Note that as the prior precision matrix 3, L approaches the zero matrix,
the prior for B becomes more non-informative. For X ! = O (zero matrix),
the prior for B is improper. However, the conditional density f(8|0?,y) is
still a proper pdf. In fact, for 251 = O, we have p = DX Ty/o?, with
D = 0?(XTX)™!, so that

(Blo®,y) ~ N(XTy,o?(XTX)™),

where X = (XTX)"!XT is the (right) pseudo-inverse of X. Using this im-
proper prior for 3, the conditional expectation E[B3 | o2, y| therefore coincides
with the least-squares estimate in (5.12).

The following corollary presents an important generalization of Theo-
rem 8.1 for the situation where y — X is an affine transformation of y;
that is, y — X8 = a + Ay for some vector a and matrix A. The result will
be heavily relied on in later parts of the book.
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Corollary 8.1. (Conditional Posteriors for the Linear Model
with General Error Covariance Matrix). Consider the Bayesian
model

B ~ N(By, Xo) , (8.16)
o2 ~ InvGamma(ap, \o) , (8.17)
(y —XB[B,0%) ~N(0,0°R), (8.18)

where y — X is an affine transformation of y, R and X, are fixed
n x n (covariance) matrices, B, is a fixed vector, and ag and Ao are
fixed constants. Then,

(Blo* y) ~N(k,D),

where p = D(XTR'y/o? + £;'8,), with D = (XTR™'X/0? +
>, H71, and

(02| B,y) ~ InvGamma(ao +n/2, (y—XB) TRy —XB)/2 + )\0> .

Proof. By assumption we have y— X8 = a+ Ay 4ef - for some vector a and
matrix A, where (z |02, 8) ~ N(0,0%R). It follows that

! (y—Xﬂ)TRl(y—Xﬂ)}~

202

F(y]0%.B)  f(z] 0% Box(2m0®) ™™ exp {—

The rest of the proof follows exactly the same reasoning as for Theorem 8.1.
O

8.2.3 Bayesian Multinomial Model

In this section we extend the Bayesian analysis of the binomial model in
Example 8.1 to the multinomial case. Recall (see Definition 3.4) that a ran-

dom vector X = [X;, Xs,...,X;]" has a multinomial distribution, with
parameters n and p1,pa, ..., pr (probabilities summing up to 1), if
TL' 1, T2 Tl
P(Xl = Il, e 7Xk: = xk) = xl! :I;Q! — .xk! pl p2 .. 'pk: 5 (819)

for all z1,...,z, € {0,1,...,n} such that 1 + 23 + --- + 25 = n. We can
think of X ~ Mnom(n, p) representing the configuration of n balls in k urns
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when the balls are thrown independently into the urns according to a vector
of probabilities p = [p1,...,px]". For the binomial case, there are only two
urns and p = [p,1 —p| T

Suppose we are given data @ from an Mnom(n,p) distribution and wish
to gain information about p on the basis of . Assuming uniform priors, the
Bayesian model is

n!

fp)oc1,  f(x|p)= LRy

.’ElllEQ' k

It follows that the posterior pdf is of the form:
fpla) ocpi'ps®...pp", pel0,1)" sz—l

Since Ele r; = n and Elepi = 1, we can drop pg from the analysis and
look instead at the posterior pdf of py,...,pr—1 given x, which is given by

f(p1a~~~7pk71|$)0<pgfl- kall 1_Zpl)Ik7
where p; > 0,i=1,...,k—1 and ZZ 1 pi < 1. This is the pdf of a Dirichlet

distribution:

(p1,...,pk—1|x) ~ Dirichlet(x; + 1, 2 + 1, ...,z + 1).

Definition 8.3. (Dirichlet Distribution). A random vector Z =
[Z1,...,Z,y]" is said to have a Dirichlet distribution with shape pa-
rameter a = [aq, ..., Q1] if its pdf is given by

F(Z’f{l @) Tr a1 - =1
f(zra) = =—=—=———"F" 1] 2" (1— zz) , z€l0, 1™ zi<1.
Hz‘:tl I(ai) };[1 Z Z

i=1
We write this distribution as Dirichlet(ay, . .., amy1) or Dirichlet(cx).
The m-dimensional Dirichlet(1,...,1) distribution has a constant density

on the set {z € R™ : z; > 0,i = 1,...,m, > .-, 2z < 1} and thus corre-
sponds to the uniform distribution on that set. The Dirichlet(aq, as) distri-
bution is the Beta(ay,as) distribution. Moreover, if Z = [Z,...,Z,]" ~
Dirichlet(au, . . ., a41), the marginal distribution of Z; is Beta(ay, Y, aj);
see Problem 8.6. The following theorem shows how one can simulate from
the Dirichlet distribution using Gamma random variables.
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Theorem 8.2. (Sampling from the Dirichlet Distribution). Let
Y1,..., Y41 be independent random variables with Y; ~ Gamma(a;, 1),
i=1,...,m+ 1, and define

Y

Zij=—2L—, j=1,....m. (8.20)
m-+1 ) ) ’
2 Yi

Then, Z = [Zy,..., Zy]" ~ Dirichlet(ay, . .., 1)

Proof. This is a direct consequence of the transformation rule (3.26). In par-
ticular, consider the transformation g : [y1,...,Ym+1]' = [21,- s Zma1]
defined by (8.20) and 2,41 = y1 + - - - + Ym+1. By rewriting the {y;} in terms
of the {z;}, we see that the inverse transformation is given by

Yi = ZiZm41, t=1,...,m and Ymt1 =1 —(z1 4+ + 2m)) Zm+1 -

The determinant of the corresponding Jacobian matrix is z;., ,; see Prob-
lem 8.5. Using frequentist notation for clarity and defining ¥ = [Y7,...,
Y,ni1] T, we have by the transformation rule and the definition (2.20) of the
Gamma pdf:

=1 [ m—+1

(Hm+1 y%—l) o iy vim

Iz, 201 (2, 2m11) = fy(Y)zmg =

T3 ()
_ ma1—1 _
B s S e  TE!
12 I(ew)
T ) =S e e
T2 I(e) s .
(%)
(8.21)
To obtain the pdf of Z, we need to integrate out z,11 in (8.21). Since (%) is
proportional to the pdf of a Gamma(Z?:[l a;, 1) distribution, this integral

is F(Z:’El «;), which completes the proof. O

Example 8.3 (Bayesian Inference for the Multinomial Model). Five
hundred and one people are randomly selected from a large population. They
are asked if they like, dislike, or are indifferent to the current anti-smoking
campaign. Table 8.1 lists the data.

Let x;; be the count in row % and column j in Table 8.1; for example, x13 =
147 and x99 = 38. Denote by & = [211, . .. ,l’gg]T the vector of counts, and let
P = [p11, P12, P13, P21, P22, P23] | be the corresponding vector of probabilities.
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Table 8.1 Opinions on smoking campaign, by gender.

Opinion
Gender Dislike Neutral Like
Male 53 57 147
Female 93 38 113

Thus, p13 is the probability that a randomly selected person is male and
likes the campaign. A natural Bayesian model for the data is that (x|p) ~
Mnom(501, p), with a uniform prior for p. It follows that ([p11,...,p22]" | )
(i-e., the vector p with component po3 removed) has a Dirichlet distribution
with parameter a = [x17 +1,..., 205 + 1] 7.

Can we conclude from the data that opinion is independent of gender? For
this to be true, it must hold that

Dij =p§”p§-‘:), =12 j=123,

where the row totals pﬁ” = pi1 + Pi2 + pi3, ¢t = 1,2 give the probability that
a selected person is male (i = 1) or female (i = 2); similarly, the column
totals p§-c) = p1j +p2j,J = 1,2,3 give the probabilities of the opinions. It
thus makes sense to investigate the posterior distribution of

a; =piy — 9" p\?, i=12 j=123 (8.22)

and check if 0 lies within a reasonable (say 95%) credible interval of each a;;.
The following Julia program generates N = 10000 vectors p drawn from the
posterior distribution. For each p the row and column totals are calculated,
and subsequently realizations from the posterior distribution of a1;,5 =1,2,3
are obtained via (8.22). Since aq1; = —ao;, it suffices to consider only ai;,j =
1,2, 3. Kernel density plots of the posterior pdfs are shown in Fig.8.4. We
see that opinion and gender are likely to be dependent, as 0 is not contained
in, for example, a 0.99 credible interval of the posterior pdf of ai;.

multinomex. jl ]

include("ThetakDE. j1")
using Distributions, .ThetaKDE, Plots

x = [53,57,147,93,38,113];
N = 10000;
p = zeros(N,2,3); a = zeros(N,2,3);

p_row = zeros(2,N); p_col=zeros(3,N);
alpha = x .+ 1;
for i in 1:N
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h = rand(Dirichlet(alpha));
pli,:,:] = reshape(h',3,2)';
end
for i in 1:2
p_row[i,:]
end
for j in 1:3
p_collj,:] = sum(pl:,:,jl,dims=2);
end
for k in 1:N
for i in 1:2
for j in 1:3
alk,i,j] = plk,i,j] - p_rowli,k]*p_collj,k];
end

sum(p[:,1i,:],dims=2);

end

end

p = plotQ)

for j in 1:3
xmesh, density, h = kde(al:,1,j])
p = plot! (xmesh,density)
display(p)

end

50

P11 — pgr)pgc) (r) (c)
40 \\ P12 — P1 ‘P>

< pis — i p’

30
20
10
0 \ \ —_—
-0.1 -0.08 -0.06 -0.04 -002 O 0.02 0.04 0.06 0.08

Fig. 8.4 Posterior pdfs of a1; = p1; — pgr)ng)

gender are not independent

,j = 1,2,3, indicating that opinion and
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8.3 Bayesian Networks

The formulation and analysis of a Bayesian model can often be facilitated
through the use of Bayesian networks. Mathematically, a Bayesian network
is a directed acyclic graph, that is, a collection of vertices (nodes) and
arcs (arrows between nodes) such that arcs, when put head-to-tail, do not
create loops. Figure 8.5 shows two directed acyclic graphs ((a) and (b)) and
a counterexample (c).

Fig. 8.5 The directed

graphs in (a) and (b) are

acyclic. Graph (c) has a

(directed) cycle and can O/'O
therefore not represent a

Bayesian network

Bayesian networks can be used to graphically represent the joint proba-
bility distribution of a collection of random variables. In particular, consider
a Bayesian network with vertices labeled 1, ..., 2,. Let P; denote the set of
parents of x;, that is, the vertices z; for which there exist an arc from z; to
z; in the graph. We can associate with this network a joint pdf:

f(xl,..., H J)J‘P

Note that any pdf can be represented by a Bayesian network in this way
because, by the product rule (3.10),

flxe, ..o xn) = fla) f(ze|21) - flan |21, oy Tpe1) -

As an example, the left pane of Fig. 8.6 shows a Bayesian network with five
variables, representing the following structure for the pdf:

f(y, .. mn) = f(zo) f(2e | 21) f(3 [ 22) f (24 | 22) f (25 | 23, 74) -

In the same figure, two small black nodes have been added with labels #; and
0>. This is a way of representing fixed parameters of the distribution. Thus,
in this case the (frequentist) pdf is of the form

fl@r, ..o xn) = f(r1;00) f(wo | 21 02) f (23 | 22) f(2a | 22) f(25 | 23, 24)

In the right pane of Fig. 8.6, the corresponding Bayesian model is depicted.
It is useful to distinguish between random variables and their observations,
by using a dark color or gray scale for the latter one. For example, the right
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pane of Fig. 8.6 represents the situation where the “data” zi,...,z, have
been observed. The aim is to find the posterior pdf of #; and 6, given the
data.

01
z1 0, x1 aq
To 02 To 0 as
T3 Z4 T3 T4
x5 T5

Fig. 8.6 Left: a graphical representation of a frequentist statistical model with random
variables x1,...,2zs and fixed parameters 6;,602. The representation is in the form of a
directed acyclic graph (Bayesian network). Right: the graphical representation of the
corresponding Bayesian model with observed (i.e., fixed) data z1,...,zn, indicated by
shaded nodes. In this case the parameters #; and 02 are random and depend on fixed
parameters a1 and a2 (sometimes called hyperparameters)

Figure 8.7 gives two more examples of Bayesian networks. The first cor-
responds to the ticket inspector model in Example 8.2; the second refers to
the normal Bayesian model in Sect. 8.2.1.

k £z
2
UO ), )\0
L] . L]
x1 x2 X3 T

Fig. 8.7 Left: the Bayesian network for the ticket inspector model in Example 8.2.
Right: a representation of the Bayesian model for iid normal data

Example 8.4 (Belief Nets). Bayesian networks are frequently used for
medical diagnosis and statistical classification. In this context they are some-
times called belief nets. An example belief net is shown in Fig. 8.8. The pur-
pose of this belief net is to determine if a patient is to be diagnosed with
heart disease, based on several factors and symptoms. Two important factors
in heart disease are smoking and age, and two main symptoms are chest pains
and shortness of breath. The belief net in Fig. 8.8 shows the prior probabilities
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of smoking and age, the conditional probabilities of heart disease given age
and smoking, and the conditional probabilities of chest pains and shortness
of breath given heart disease.

Chest

Smoking Pains 4 Chest Pains
Smoking H. Disease | Yes No
Yes No . Yes 0.2 0.8
03 07 Heart Disease S No 0.01 0.9
/ Shortness O.1.
Age H. Disease | Yes No
<50 >50 Yes 0.3 0.7
0.6 04 Age Shortness No 0.1 0.9
Heart Disease of Breath

Smoking, Age | Yes No

Yes, <50 | 020 0.80
Yes, ~ 50 | 040 0.60
Nu, <50 | 005 095
No,>50 | 015 085

Fig. 8.8 A Bayesian belief net for the diagnosis of heart disease

Suppose a person experiences chest pains and shortness of breath, but we
do not know her/his age and if she/he is smoking. How likely is it that she/he
has a heart disease?

Define the variables s (smoking), a (age), h (heart disease), ¢ (chest pains),
and b (shortness of breath). We assume that s and a are independent. We
wish to calculate

P(h = Yes| b = Yes, ¢ = Yes) .

From the Bayesian network structure, we see that the joint pdf of s,a, h,c,
and b can be written as

f(sya,h,e,b) = f(s)f(a)f(h|s,a)f(c|h)f(b|R) .
It follows that

F(h|bye) o< f(e|R)F(bIh)> " f(h|s,a)f(s)f(a) -

f(h)
We have:

F(h="Yes) =0.2x 0.3 x0.6+0.4x 0.3 x 0.4
+0.05 % 0.7 x 0.6 4+ 0.15 x 0.7 x 0.4 = 0.147 .

Consequently,

f(h="Yes|b= Yes,c=Yes) =3 x 0.2 x 0.3 x 0.147 = 5 0.00882
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and
f(h=No|b=Yes,c=Yes) = x0.01 x 0.1 x (1—0.147) = £ 0.000853

for some normalization constant 3. Thus,

0.00882
h = Yes|b = Yes,c = Yes) = — 0.911816 ~ 0.91 .
Flh = Yes[b=Yes, c = Nes) = G5ees - 0.000853

8.4 Asymptotic Normality of the Posterior Distribution

We saw in Sect. 6.3.2 various asymptotic properties of the likelihood function.
Similar results can be obtained for the posterior pdf. For clarity we identify
the (conditional) pdfs by different symbols: f, fo, and f.

Theorem 8.3. (Asymptotic Distribution of the Posterior Pdf).
Let = [x1,...,%,] be an iid sample from f(x|6p), where 6, is fixed.
The posterior pdf with prior pdf fo(6):

f0]z) o fo(0) [ f(z:10) (8.23)
=1

is approximately normal with mean 6y and variance I=1(6y)/n, where
1(6o) is the information number of f(x |6y).

Proof. (Sketch). Let 8 be the mode of the posterior pdf in (8.23). The proof
of Theorem 6.7 can be mimicked to show that 6 is consistent; that is, 6 — 6y
as n — 00. A second-order Taylor expansion of In f(6|x) around 6 gives:

Inf(0|z)=1nf@|x)+ (60— 9)%1nf(0|w)+%(9—0) d92

:1nf(§|w)+g(9—§)2(i;;2 ( )%Z lnfxz|9)) :

Inf(6]a) +

()

where ¢(x) is the normalization constant of the posterior and R is the re-
mainder term, which includes higher-order polynomials (6 — @)k, k=3,4,....
Note that the linear term in the Taylor expansion can be omitted since the
derivative of In(f(f|x) at § = 6 is 0. For large n the first term in (x) be-
comes negligible compared to the second one. Moreover, similar to (6.27) the
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second term converges to —I (). Since R/n remains bounded as n — oo and

In f(6| ) is a constant with respect to 6, the posterior pdf f(6|a) becomes
more and more concentrated around 6y, and tends to the form:

F(0] @) o e~ 3000 ni(0)

which is the pdf of the N(f,1~*(y)/n) distribution, in accordance with
Theorem 6.8. g

8.5 Priors and Conjugacy

In Bayesian analysis it is often useful to choose the prior pdf in the same fam-
ily of distributions as the posterior pdf. Consider, for example, the binomial
model in Example 8.1. Using a uniform prior, the posterior pdf belongs to
Beta family of distributions. Suppose we choose the prior in the same family,
giving the Bayesian model:

6 ~ Beta(a,b)
(z]80) ~ Bin(n,0)

for some fixed a and b. By Bayes’ formula the posterior pdf satisfies:

f(@ | Qf) o ea—l(l _ e)b—lem(l _ e)n—r — 9a+m—1 (1 _ 9)b+n—m—1 ,

which corresponds to the Beta(a + z, b+ n — ) distribution. We see that the
posterior and prior are in the same family of distributions. This property is
called conjugacy. The advantage of conjugacy is that only the parameters
of the distribution need to be considered. We say that the Beta family is a
conjugate family for the binomial distribution.

Exponential families provide natural conjugate priors. Recall (see Defini-
tion 5.3) that a random variable z is said to belong to an m-dimensional
exponential family if its pdf is of the form:

Fe10) = oo (3o n0) o) o) (8:20)

where we have used the Bayesian notation f(z|6) instead of the frequentist
notation f(x;8).

I 183
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Theorem 8.4. (Conjugate Prior for an Exponential Family).
Let = [z1,...,7,] " be an iid sample from f(x|8) of the form (8.24).
The prior

f(0) x c(6)° exp (Z m(@)ai> , (8.25)

where the proportionality constant only depends on (ay,...,am,b), is
conjugate to the conditional pdf

f(x|0) = c(0)" exp (Zm(e) Zti(xk)) | J DR (8.26)
=1 k=1 k=1

Proof. By Bayes’ theorem the posterior pdf satisfies:
F6]2) x £16)5(@16) x (O exp (Y n(®)(as+ 3 t())
i=1 k=1

where the proportionality constant does not depend on 6. This shows
that the posterior pdf lies in the same m-dimensional exponential fam-
ily as the prior (8.25). In particular, if the prior is specified by parame-
ters (ai,...,am,b), then the corresponding parameters for the posterior are
(@1, b), with @ = a; + 35— ti(x), i =1,...,m, and b=b+n. O

Example 8.5 (Conjugate Prior for Bernoulli Likelihood). In Exam-
ple 8.1 we are dealing with independent Bernoulli random variables whose
joint pdf conditional on @ is

n

f(x]0) = §2 1 T (1- g)n—szI @,

b

which is of the form (8.26), with m = 1, n(0) = In(0/(1 — 0)), t(zr) = zx,
and ¢(f) = 1 — 0. The corresponding conjugate class is therefore of the form

()P — (1 — gy’ <£9> o 6°(1— 0)

which corresponds to the Beta family of distributions.

Example 8.6 (Conjugate Prior for Poisson Likelihood). Let x4, ..., z,
be an iid sample from the Poisson distribution Poi(A). This is an exponential
family, and the joint pdf can be written as

1
$k! '

f(.’]) ‘ /\) _ efn)\eniln)\ H

k=1
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This is of the form (8.26), which suggests a conjugate prior of the form
f()\) o e—b)\ealn)\ _ e—b)\)\a .

This corresponds to the gamma density. In particular, if we take a Gamma(a, b)
prior for A, that is,
f(A) o e—b)\)\a—l ,

(notice A is the variable here, not the parameter), then the posterior pdf is
f(/\ | 11) o e—(n+b))\ /\a—l—i-ni ,

which corresponds to the Gamma(a + nz, b + n) distribution.

8.6 Bayesian Model Comparison

Under the Bayesian framework, hypothesis testing, or more generally com-
paring models, is straightforward. Suppose we wish to compare two possibly
non-nested models M; and M. Each model M;,: = 1,2, is formally defined
by a likelihood function f(x|8;, M;) and a prior distribution on the model-
specific parameter vector 0; denoted as f(0;|M;). Note that in both the
likelihood function and the prior distribution, we make the dependence on
the model M; explicit.

A popular criterion for comparing models M; and M5 is the Bayes factor
in favor of model M; against model Ms:

where

flz| M) = / f(z |6, M) £(6; | M) d6, (3.27)

is the marginal likelihood under model M;,i =1, 2.

The marginal likelihood f(x|M;) is simply the marginal density of the
data x under model M;. If the actual data are likely under model M;, then
the associated marginal likelihood will be large, and vice versa. Hence, a
Bayes factor BF, greater than 1 indicates that model M; better predicts
the observed data than Ms. It is therefore taken as evidence in favor of
model M;.

The Bayes factor between the two models is related to their posterior
odds ratio:

det P(My |z)  P(My) [z | M)

PO = 50k o) = POL) * f(a| M)
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where P(M;) and P(M; | x) are respectively the prior and posterior model
probabilities of model M;,i = 1,2. If both models are equally probable a
priori, i.e., P(M;) = P(M3), the posterior odds ratio between the two models
is then the same as the Bayes factor. In that case, if, for example, BF12 = 50,
we can say that model M; is 50 times more likely than model M, given the
data.

Example 8.7 (Comparing Multinomial Models). In Example 8.3 we
investigated if opinions on an anti-smoking campaign are independent of gen-
der. Using the data in Table 8.1, we found evidence that suggests opinions
differ by gender. In this example we perform a formal model comparison
exercise to quantity the weight of evidence.

Let M; denote the multinomial model (x| p, M) ~ Mnom(501, p), where
P = [p11, P12, P13, P21, P22, P23] |, with a uniform prior for p, or equivalently,
(p11, .- .,p22 | M1) ~ Dirichlet(1,...,1). Hence, the prior density is given by

f(p11,. .- p22 | M1) =1'(6) =5!.

It follows that the marginal likelihood f(x|M;) can be directly computed
using the definition (8.27):

501! - "
f(fB ‘ M1) = ‘/ﬁ plil .. 'p2§3 % 5! d(Pll, o ,ng)
T11:- - T23:
501! 5! . .
= i1 ... pT23 g
T11! - 3! /pll pa3° d(p11, ..., D22)
_ 501!5! o D(z11 4 1) D(zg + 1)
11! wos! I(507)

_50115!

~ 3.6901 x 10712
=001 3.6901 x 10

Next, if opinion is independent of gender, we must have:
pi=p0 P, =12 =123,

() (r _ () () (e) _ . , i

where p; ' +py’ =1land py’ +py’ +py’ =1 Let ry = 251 + Ti0 + 243,71 =

1,2, and ¢; = 215 + @9;5,5 = 1,2,3, denote the row and column counts,

respectively. Then, the likelihood function under the model Ms (in which
opinion is independent of gender) is given by

_ 501! ) (g r) _()\a
F| P, Ma) = ————— ({7p{?)m - (o p)
11+ -T23:
501' )\r )\ 7 C)\c C)\c C)\c
= ———— ) ) (0) 08 )
11+ -T23:
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where p = (p (T), pér), p( , p(;), p(c)) Further, we assume independent and
© (0 (©

uniform priors for (p (T),pé )) and (p;”,ps”,ps" ). Hence, the prior density is
Foi7 o w5 | M) = D(2)1(3) = 2.

Following a similar computation as before, the marginal likelihood for model
M, is given by

2 x 501! I'(ry + 1) (ro + 1)I(cy + 1) (ca + 1) (cs + 1)

x11!~--x23! F(Tl +T2—|—2)F(Cl +CQ—|—03—|—3)
2 x rilraler! eo! es! 15

= ~ 9.2122 x 10 .
502 x l‘11! s 3323! 503!

fla| M) =

Finally, the Bayes factor is BF13 = f(x | M)/ f(x | M2) ~ 400, showing over-
whelming evidence for M; against Ms. In other words, given the data it is
highly likely (400 times more so) that opinion varies with gender.

The computation of the marginal likelihood in (8.27) involves “integrating
out” all the model parameters, and an analytic expression is often unavailable.
In those cases, Monte Carlo methods are required to estimate the marginal
likelihood. One popular method to do so using posterior output is Chib’s
method (Chib, 1995; Chib and Jeliazkov, 2001).

However, when comparing nested models, i.e., when one model is a re-
stricted version of the other model, the Bayes factor has an alternative ex-
pression that can often be easily estimated using posterior output. To set the
stage, let M,, denote the unrestricted model, where the model parameters are
partitioned into two subsets 8 = (¢, w). Suppose M, is the restricted version
of M,, where 8 = (¥, wy) for some constant vector wg. Clearly, comparing
M, and M, is equivalent to testing the hypothesis w = wy.

Now, suppose f(1,w | M,,) is the prior distribution under the unrestricted
model. Then, the induced prior for 1 under the restricted model M, is simply
the marginal distribution f(¢ | M,) = [ f(¢,w | M,) dw. It turns out that if
this induced prior is the same as the conditional prior for ¥ given w = wy,
then the Bayes factor is equivalent to the ratio of posterior and prior densities
under M, evaluated at w = wq. This is referred to as the Savage—Dickey
density ratio. The result is summarized in the following theorem. Its proof
can be found in, for example, Verdinelli and Wasserman (1995).
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Theorem 8.5. (Savage—Dickey Density Ratio). Let M, denote
the unrestricted model with model parameters 8 = (¢, w), and let M,
be a restricted version of M, with w = wg and free parameter vector
1. Suppose the priors in the two models satisfy

f@ M) = [ |w =wo, My) . (8.28)
Then, the Bayes factor in favor of model M, can be written as

flw=wo|xz, M,)

BF,, =
flw =wo|M,)

In particular, (8.28) holds if ) and w are a priori independent under
My; that is, f(¢h,w | My) = f(3 | M) f(w | My).

Writing the Bayes factor as such a ratio of densities avoids the often
difficult task of computing marginal likelihoods. The denominator f(w =
wo | M) can frequently be calculated analytically, when the conditional prior
f(w]| M,) is of a standard form. In addition, the numerator can often be es-
timated from posterior ou‘ggu‘c of model M,,. In particular, the numerator
can be estimated via & >;0 ;| f(w = wo | @, ;, M,,), where ..., 9y are
posterior draws from model M,,.

Example 8.8 (Comparing Polynomial Regression Models). In Exam-
ple 5.18 we considered five different polynomial regression models for fitting
the data in Table 5.4, and compared the models using cross-validation. In
this example, we perform a Bayesian model comparison on the same data.
Let model M; denote the i-th order polynomial regression model, 7 = 1,...,5:

Yk = Bo + Prxk + - + Biwh + €k

where {e1} ~iia N(0,02). Clearly, models Mj,..., My are all nested within
model Ms. To complete the model specification (of model Ms), we take the
following independent priors: 8 = [Bo,...,35]" ~ N(0,1001¢) and o2 ~
InvGamma(2,1).

To compare models via the Bayes factor, we can obtain posterior draws
from model M5 and estimate the relevant Savage-Dickey density ratio (since
Bo, - - -, Bs are independent under the prior, the condition (8.28) is satisfied).
For example, model Mj is obtained by imposing [B4, 85]T = 0. Hence, the
Bayes factor BF35 can be written as

f([B4, B5] = 0]y, Ms)
f([Ba; Bs] = 0| Ms)

Using the properties of the multivariate normal distribution (see Theo-
rem 3.7), the marginal prior f(B4, 5| Ms) is a bivariate normal density
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and can be evaluated easily. The conditional posterior f(8|y,o?, Ms) is also
a normal density, by Theorem 8.1. Hence, the numerator in the ratio can be
estimated using posterior draws for o2.

The following Julia script estimates the log-Bayes factors In BF;5,i =
1,...,4, via the Savage—Dickey density ratio approach. Note that the state-
ment logpdf (MvNormal (mu,Sig) ,x) evaluates the log density of the N(u, 33)
distribution at x.

polyreg_bayes.jl ]

using LinearAlgebra, Distributions
x=[4.7,2,2.7,0.1,4.7,3.7,2,3.4,1.3,
3.8,4.8,1.7,-0.4,4.5,1.3,0.4,2.6,4,2.9,1.6];

y = [6.57,5.15,7.15,0.18,6.48,8.95,5.24,10.54,1.24,8.05,
3.56,3.4,2.18,7.16,2.32,-0.23,7.68,9.09,9.13,4.04] ;
n
X

= length(x);
= hcat(ones(n), x, x.72, x.73, x.74, x.75);
XX = X'#X;
Xy = X'*y;
m = 6;
N = 1075; # Gibbs sample size
IM = diagm(ones(m))
VO = 100*IM # prior for beta

invV0 = VO\IM;

alp0 = 2; lam0 = 1; # prior for sig2
beta = XX\Xy;

sig2 = sum((y -X*beta)."2)/n
gibbs_sample = zeros(N,m+1);
lpostden_sample = zeros(N,4);

for k in 1:N

global beta, sig2

D = (invV0 + XX/sig2)\IM;

betahat = D*(Xy/sig2)

beta = betahat + cholesky(Hermitian(D)).L*randn(m) ;

sig2 = 1/rand(Gamma(alpO+n/2,1/(lamO+sum((y-X*beta) .~2)/2)

));
gibbs_samplel[k, :]=[beta' sig2];
1pl = logpdf (MvNormal (betahat[3:end],
Hermitian(D[3:end,3:end])) ,zeros(4))

1p2 = logpdf (MvNormal (betahat[4:end],
Hermitian(D[4:end,4:end])) ,zeros(3))

1p3 = logpdf (MvNormal (betahat[5:end],
Hermitian(D[5:end,5:end])),zeros(2))

1p4 = logpdf (Normal(betahat [6],sqrt(D[6,61)),0)
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lpostden_sample[k,:] = [1pl 1p2 1p3 1p4];

end

lpostden = zeros(4,1);

for i in 1:4
maxpden = maximum(lpostden_samplel[:,i]);
lpostden[i]=log. (mean(exp. (lpostden_sample[:,i] .-maxpden))

) + maxpden;

end

lpriden = zeros(4,1);

lpriden[1] = logpdf (MvNormal(zeros(4),

VO[3:end,3:end]),zeros(4));

lpriden[2] = logpdf (MvNormal(zeros(3),
VO[4:end,4:end]) ,zeros(3));
lpriden[3] = logpdf (MvNormal(zeros(2),

VO[5:end,5:end]) ,zeros(2));
lpriden[4] = logpdf (Normal(0,sqrt(VO[6,6])),0);
1BF = lpostden - lpriden;

The log-Bayes factors InBFi5,...,In BFy5 are estimated to be, respec-
tively, —2.08, —2.63, 10.69, and 5.72. In other words, compared to model
M5, the data favor models M3 and My, but not models M7 and Ms. Further-
more, note that the Bayes factor BF34 can be written as

BF,, — LWIMs) _ [y Ms) [(y|Ms) _ BFs;
flylMy)  f(y|Ms)  f(y|My) BFys

Hence, an estimate of BF3, is €!0-697572 ~ 144. To conclude, the data deci-
sively prefer the cubic polynomial regression model. If we assume equal prior
probabilities for all the models, the cubic polynomial is about 144 times more
likely than the next best model (4th-order polynomial) given the data.

8.7 Problems

5" 74 8.1. Let f(x),z € (0,1) be the pdf of X ~ Beta(a, §):

a. Prove that the derivative of f (or, equivalently, of In f) has a unique zero
at ¥ = (o — 1)/(a + B — 2) in the interval (0, 1), provided that either
a>1,>1ora< 1, < 1. For which of these two regimes is z* a
maximum point?

15" 74 b. Show that EX = B(a+1, 8)/B(a, ), where B is the beta function (3.11).
IS 48 Using the properties of the gamma function (2.21), show that EX = o/(a+

B).



8.7 Problems 263

8.2. Suppose 1 = 1.1065,z5 = 0.5343,z3 = 11.1438, x4 = 0.4893,z5 =
2.4748 is an observed iid sample from the Exp(\) distribution. Consider
Bayesian inference for the parameter A, using an improper prior f(A) = 1/\.

a. Show that the posterior pdf of A has a Gamma(5, 15.7487) distribution.
b. Give the expectation of the posterior pdf.

8.3. Let (z|A) ~ Poi(A), and suppose that the prior distribution for A is
Gamma(a,b), where a and b are known. Find the posterior pdf of A.

8.4. Let  ~ Gamma(a, ). Show that the pdf of z = 1/z is given by (8.6).

8.5. Consider the transformation [z1,...,2m41] = [Y1,--,Yms1] ' defined
by ¥ = 2zi zZm+1, 1 = 1,...,mand Y1 = (1 — (21 + - + 2m)) Zm+1. Show
that the determinant of the corresponding matrix of Jacobi is 2], ;. This is
used in the proof of Theorem 8.2.

8.6. Let Z = (Zy,...,Zy) ~ Dirichlet(a, . . ., uny1). Show that the marginal
distribution of Z; is Beta(ay, » - ;; @;). Hint: use Theorem 8.2.

8.7. Let (x| p) ~ Geom(p). Suppose that the prior distribution of p is U(0, 1).

a. Find the posterior pdf of p.
b. Find the posterior mode.
c. Find the posterior expectation.

8.8. The data 0.4453, 9.2865, 0.4077, 2.0623, 10.4737, 5.7525, 2.7159,
0.1954, 0.1608, 8.3143 were drawn from an Exp(1/6) distribution. Consider a
Bayesian model with a constant prior for 6:

a. Show that the posterior distribution of # is inverse-gamma, and determine
the parameters.

b. Determine estimates of the 0.025 and 0.975 quantiles of the posterior distri-
bution, using N = 10° simulated samples from the posterior distribution.

8.9. Suppose & = [21,...,,]" is an iid sample from N(p, 0?) with known

variance o2. As a prior for u take the N(ug,02) distribution for some fixed

parameters po and 2. The Bayesian model is therefore

o~ N(.uO7O-(2)) 5
iid
(@1, s | ) ~ N(p, %) .

Show that the posterior pdf f(u|x) corresponds to the pdf of the N(uq,0%)
distribution with

—03u0+%f and i—i+£
o= L4+ o? o2 o2’
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8.10. Consider the simplified Bayesian model for normal data in Sect. 8.2.1;
that is,

f(U7U2) = 1/02 )
(x| p,0?) ~N(pl,0%1,) .

The joint posterior pdf is

o2

fp, 0| x) o (02)_n/2_1 exp {;W} . (8.29)

The marginal posterior pdfs of y and 02 can be obtained by integrating out
the other variable.

a. Prove that N

D (@i —p)? =) (e —7) +n(n-1). (8.30)

i=1 i=1
b. By using (8.30), show that

flo?|z) o (02) 22 exp {;E?—l(“ —7)° } . (8.31)

o2

c. Show that (8.31) corresponds to the InvGamma((n — 1)/2, s2(n — 1)/2))
distribution, where s2 is the frequentist sample variance of the {z;}.

d. Let g1 and g2 be the v/2 and 1—+/2 quantiles of (8.31). Show that the 1—~
credible interval (q1, g2) is identical to the classic confidence interval (5.20)
(with a replaced by 7).

e. By using (8.30) and (8.6) show that

n —n/2 2 —(v+1)/2
Fu) @) o (Zm— - u)2> (US40 ,

i=1

where v = n — 1. Verify that, in view of (2.24), this means that

(575

f.Let ¢; and g2 be the v/2 and 1 — /2 quantiles of f(u|x). Show that
the 1 — « credible interval (qi1,¢2) is identical to the classic confidence
interval (5.19) (with « replaced by 7).

8.11. In Problem 8.10 compare the simulated densities in Fig. 8.3 with the
exact ones. In particular, plot the pdf of (o2 | ), that is, the pdf of the random
variable (n—1)s2 Y, where Y ~ InvGamma((n—1)/2,1/2). Similarly, plot the
pdf of (] x); that is, of the random variable T + T's, /\/n, where T ~ t,,_.
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8.12. In the zero-inflated Poisson model, random data x1, ..., x, are assumed
to be of the form x; = r;y;, where the {y;} have a Poi(\) distribution and
the {r;} have a Ber(p) distribution, all independent of each other. Given
an outcome x = [x1,... ,xn]—r, the objective is to estimate both A and p.
Consider the following hierarchical Bayesian model:

p~U(0,1),
(M p) ~ Gamma(a,b) ,

(Ti |p7>\

) ~ Ber(p) independently ,
(x;|r,\,p) ~ Poi(Ar;)  independently ,

where r = (r1,...,7,) and a and b are known parameters. We wish to sample
from the posterior pdf f(A, p,r|x) using the Gibbs sampler.

a. Show that
fr A ple) e X te P [T e ()™ pri (1 —p)'
i=1
b. Show that

(M| p,r,x) ~ Gamma <“+Z%b+2m> :
i=1 i=1
(p|A7T,w) ~ Beta <1+Zrl71+nzrl>

i=1 i=1
and, for k=1,...,n,

-
pe
e | A, D, T NBer( ) .
| : pe 4+ (1 =p) Lig,—0

c. Generate an iid sample of size n = 100 for the zero-inflated Poisson model
using parameters p = 0.3 and A = 2.

d. Implement the Gibbs sampler, generate a large (dependent) sample from
the posterior distribution, and use this to construct 95% credible intervals
for p and A using the data in (c¢). Compare these with the true values.

8.13. For a Markov chain z1, ..., z,, the joint pdf is of the form: I 216

f(901, cee 75€n) = f(x1)f(xz |$1)f(9€3 | 582) T f(xn |90n71) .

The corresponding Bayesian network is given in the left pane of Figure 8.9.
An alternative Bayesian network for the same Markov chain is given in the
right pane of the figure, where the arcs have been turned around. Show that
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both networks represent the same joint pdf. Hint: write f(x¢41|2¢) in terms
of f(l't |xt+1).

o900 OO0 -0

A €2 €3 LTp T

Fig. 8.9 Bayesian networks for a Markov chain

8.14. Figure 8.10 shows the Bayesian network for a hidden Markov model.
Here z1,...,2, is a Markov chain on {1,..., K}, defined by an initial (dis-
crete) pdf f(z1) and transition probabilities f(x¢|xi—1), which are here as-
sumed to be known. For each time ¢t = 1,2,...,n, the state of the chain, xzy,
remains hidden. Instead, a variable y; is observed, whose (known) distribution
depends only on x¢; for example, (y; | z¢) ~ N(a, 1).

U1 Y2 Ys Yn

€1 €2 €3 Tp

Fig. 8.10 Bayesian network for a hidden Markov model

A typical object of interest for such models is the posterior pdf f(x:|yq.),
where y;., = (y1,...,y:). That is, we wish to assess the state at time ¢ given
all the observations at and before time ¢.

a. Prove that

f(xtvylzt) = Z f(l'hyt ‘xt—la yl:tfl)f(xt—lvylztfl) . (832)

Tt—1

b. Further, show that

f@e,ye | we1,y10-1) = fl@e|2e1) fye | 2e) - (8.33)

c. Express f(x1,y1) in terms of f(x1) and f(y1|x1). Explain how, with
f(z1,y1), (8.32), and (8.33), the posterior distribution of x; given y.,
can be determined recursively for t = 2,3,...,n.

8.15. Find an appropriate conjugate family for the Exp()\) distribution, using
Theorem 8.4.
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8.16. Let ¢ = [z1,...,7,]" be an iid sample from Exp(1/6) for some 6.
Show that 6 ~ InvGamma(ag, Ag) is a conjugate prior for this distribution.
Determine the resulting posterior distribution.

8.17. Suppose f(0|x) is the posterior pdf for some Bayesian estimation
problem. For example, 8 could represent the parameters of a regression model
based on the data x. An important use for the posterior pdf is to make
predictions about the distribution of other random variables. For example,
suppose that, conditional on &, some random vector y depends on 6 via the
conditional pdf f(y|0,x) = f(y|0). Thus, conditional on 6, the random
vector y is independent of . The predictive pdf of y given « is defined as
f(y|x), which can be written as

flylz) = / f(y10)f(0]z)d6 . (8.34)

This can be viewed as the expectation of f(y|0) under the posterior pdf.
Therefore, we can use Monte Carlo simulation to approximate f(y|x) via

flylz) =~ NZf y6;)

where the sample {0;,i = 1,..., N} is obtained from f(0|x); for example,
via MCMC.

a. Prove (8.34).

b. As a concrete example, suppose that the iid data —0.4326,—1.6656,
0.1253,0.2877, —1.1465 come from some N(u, 0?) distribution. Define 8 =
[,0%]. Let Y ~ N(u,0?) be a new measurement. Estimate and plot
the predictive pdf f(y|x), using a sample 64,...,0y obtained via the
Gibbs sampler of Example 8.2.1. Take N = 1000. Compare this with the
“common-sense” Gaussian pdf with expectation T (sample mean) and vari-

ance s? (sample variance).

8.18. The bag of words method is a popular procedure for classification.
Given are k objects that are each characterized by n features. For example, the
objects could be k different people, and the features could be various facial
measurements, such as the width of the eyes divided by the distance between
the eyes, or the ratio of the nose height and mouth width. The features,
Z1,...,Ty say, have a known distribution and are assumed to be conditionally
independent of each other given the object p; that is, f(z1,...,z,|p) =
f(z1|p) - f(zn]|p). Assuming a uniform prior for p, the posterior pdf is
thus given by

folwy, . xn) o [ ] fwilp) -
=1

= 239
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To classify the object on the basis of the features, simply take the p that
maximizes the unnormalized posterior pdf:

a.

b.

Give the Bayesian network for the joint pdf of p,x1, ..., xy,.

Suppose the i-th feature distribution of object p is N(pi, 02), p=1,...,k,
i = 1,...,n. Define p, = pts--sbtpn]'y p = 1,...,k Let ¢ =
[21,...,2n] " be the vector of observed features. Let p* = argmin,, ||, —||;
that is, among all feature vectors {,,} the vector p,,. is closest to . Show
that p* also maximizes the posterior pdf.

. Next, consider the case where the i-th feature of object p is N(,um-,aii)

distributed. Table 8.2 lists the means p and standard deviations o of the
normal feature distributions of four objects. The observed features of an
object are [z1,72,23)7 = [1.67,2.00,4.23]". How should this object be
classified?

Table 8.2 Feature parameters

Feature 1 Feature 2 Feature 3

Object nw o uw o n oo
1 1.6 01 24 05 43 0.2
2 1.5 02 29 06 6.1 09
3 1.8 03 25 03 42 03
4 1.1 02 31 07 56 0.3
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Advanced Models and Inference

In Part III of the book, we consider estimation and inference for a wide variety
of advanced models. Topics include shrinkage and regularization, generalized
linear models with discrete responses, nonparametric models, autoregressive
moving average models for time series, Gaussian models for data arising from
repeated measurements, and state space models for data exhibiting time-
varying persistence and volatility. Both classical and Bayesian estimation of
these models are covered. It is assumed that the reader is familiar with the
statistical concepts and computational techniques discussed in Part II.
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Chapter 9
Shrinkage and Regularization

For some modern statistical analyses, it may be useful to combine frequentist
and Bayesian techniques. Noticeable examples are found in the theory of
shrinkage estimation and regularization.

Classical (i.e., frequentist) estimation methods focus on obtaining unbiased
estimators. However, when many parameters need to be estimated, unbiased-
ness may not always lead to the best estimators, in terms of their distance
to the true parameters.

9.1 James—Stein Estimator

Consider n estimation problems, where in the i-th estimation problem, there
is a single datum X; ~ N(u;,1), and it is assumed that the {X;} are inde-

pendent. The maximum likelihood estimator for yu; is simply X;, ¢ =1,...,n.
Similarly, the maximum likelihood estimator for the vector p = [u1, ..., ftn] "
is X = [X1,...,X,]". This estimator has a total mean square error (MSE)
of

n n
> E(Xi — i) =Y Var(X;) =n.
i=1 i=1
Can we do better, in terms of MSE, by using some biased estimator of u? To
that end, let us examine the corresponding Bayesian model, with prior

pi ~ N(a,7%), i=1,...,n,independently ,
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where o and 72 are given hyperparameters, and with likelihood

(Xi|pi) ~N(ui, 1), i=1,...,n,independently .
It follows, by integrating out the pu;, that

X; ~N(a,14+7%), i=1,...,n, independently . (9.1)

Moreover, the posterior pdf of w is
- 2 1 )2
L(x 1wz o)
f(N | iL’) X p(w ‘ H)p(ﬂ) X He_i(li_’”) e 27 ;2 ,
i=1

which shows that conditional on @, the {u;} are independent, and

22 + o 72 )

_ 2. 2
21 2 =N(a+o*(x; — ), 0°),

(el )~
where 02 = 72 /(72 + 1). In particular, the posterior mean for y; is
a+o?(z; —a). (9.2)

The idea is now to estimate « and o2 from the data, using the (9.1). We
can estimate these parameters in a purely frequentist way. Namely, « can be
estimated unbiasedly via the sample mean:

~ def ==
a=X

and o2 can be estimated unbiasedly via the estimator:

3 def 7n——3 9.3
iy Z?=1(Xi *Y)Z ’ ( ’ )

for n > 4; see Problem 9.1. If we plug a and o2 into (9.2), we obtain the
famous James—Stein estimator (James and Stein, 1961):
i X+(1 n-3 )(X X), i=1 (9.4)
i = - o = i s t=1,...,n. .
Zz‘L:1(Xi -X )2
Depending on the spread of the {y;}, the James—Stein estimator can yield a
significant reduction of the MSE. The most striking fact is that for n > 4, it
always improves on the total MSE for the unbiased case, no matter what p
is! You can try it out yourself in the following Julia code.
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jamesstein. jl ]

using StatsBase, LinearAlgebra,Plots
n = 100
# mu = rand(n)*100 .- 50 # not much difference
mu = rand(n)*0.1 .- 0.05 # a lot of difference
K = 10000
mse_js = zeros(K)
mse = zeros(K)
for k=1:K
global mu,n
X = mu + randn(n)
mu_js = mean(X) .+ (1 - (0-3)/(var(X)*(n-2)))*(X .- mean(X))
mse_js[k] = norm(mu_js - mu)~2 mse[k] = norm(X - mu)~2
end
ml = mean(mse_js)
m2 = mean(mse)
print ("MSE JS =", mi," MSE MLE = ",m2)

That the James—Stein is a shrinkage estimator, which shrinks the unbiased
estimator toward values which are closer to the true mean, is illustrated in
Fig.9.1. The {u;}12, were here drawn uniformly on [—2,2].

MLE r e ) ) ) e © ) )

T
[ ]
(]
[ ]
(]
[ )
[ ]
(

James-Stein

True : o0 —0 0 @& —0 :
-4 -3 -2 -1 0 1 2 3
M

Fig. 9.1 The James—Stein estimator shrinks the estimates toward the true means

The moral of this story is that for high-dimensional parameter estimation
problems, shrinkage estimators may provide better overall estimates than
unbiased ones. In the next section, we derive shrinkage estimators for linear
regression.

9.2 Ridge Regression

Ridge regression is a simple modification of ordinary regression that yields
shrinkage estimators.
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We motivate the method via the Bayesian normal linear model of Sect. 8.2.2.
In particular, suppose the likelihood of the data y = [y1,...,y.] " is specified
by
(y|B,0%) ~N(XB,0%1,) ,

where X = [z;;] is the (known) n x m design matrix and 8 = [B1,..., Bm] "
and o? are unknown parameters.

We put an improper prior 1/02 on 02, and, given o2, the prior distribution
for B is N(0,02/\1,,,), where A > 0 is a regularization parameter. Thus,
the (joint) prior density of 8 and o is given by

1(8.0) x 5 x (2m0%) ™ exp {_AII/BIIQ} |

202

Consequently, similar to the derivation of (8.11), the posterior density is of
the form:

f(/Bao—z ‘ y) o (0_2)_(n+m)/2_1exp { ||y - XIBH2 o )\||IB|2} ) (95)

202 202

By integrating out o2, we find:

—(n+m)/2

F(Bly) o< (lly = XB|* + MBI (9.6)
The ridge regression estimator B is taken to be the mazimum posterior
estimate of B, that is, the value of B for which the posterior pdf is maximal.
Thus,

B=arglraninlly—XBH2+A||»5’||2 : (9.7)

L(B)
The objective function L in (9.7) is strictly convex and differentiable (see
Problem 9.4), so the solution of this optimization problem can be found by

identifying the stationary points of L; that is, by solving VL(8) = 0. This
leads to the system of linear equations:

X'(XB-—y)+AB=0. (9.8)

If A = 0, these are simply the normal equations (5.9), so that then B is
the ordinary least-squares estimate. For any A > 0, the matrix XX + AL,
is invertible (see Problem 9.2), even if XX is not. This is of particular
relevance when there are more explanatory variables than observations, i.e.,
m > n. In that case the normal equations have multiple solutions. However,
the ridge regression estimator is still unique for any A > 0, and is given by

B=(X"TX+A,,) 'Xy. (9.9)

In fact, by taking the limit of (XX 4 AL,,)"!XT as A — 0, we obtain
the pseudo-inverse X+t of X. Thus, even in the case where m > n, the corre-
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sponding estimator is of the form X Ty, as in (5.12), although X is no longer
defined by (5.11). Moreover, it can be shown that this estimator is the solution
to the normal equations with the smallest squared norm ||B* = Y-, 5.

For A > 0, and a given X, an optimal choice for the parameter \ is typically
determined from test data or via cross-validation.

Example 9.1 (Ridge Regression). Let us examine a ridge regression sce-
nario in which the design matrix X is of dimension 100 x 20 and where its
entries are drawn independently from the U(0, 1) distribution. Let the i-th
component of the 20-dimensional true parameter vector 8 be 3; = /10 if
i € {1,...,10} and B; = 0 if ¢ € {11,...,20}. The 100-dimensional data
vector y is generated from the model:

Y = XB +oe,

where o = 3 and € ~ N(0,I1¢g). Figure 9.2 shows the components of 8 as a
function of the regularization parameter A, as determined from (9.9). We see

the shrinkage of the vector ,/3\ with increasing A.

151

0 0.5 1 1.5 2
A

Fig. 9.2 Ridge regression estimates as a function of the regularization parameter A

Figure 9.3 shows the true values of each 3; as well as the ordinary least-
squares (OLS) estimates and the ridge regression estimates, for A = 0.74. We
see that the ridge regression estimates are on average significantly closer to
the true parameter values. N

Finally, Fig.9.4 shows how the squared error |8 — B||? varies with .
In this case the optimal value for A was 0.74, which was used in Fig.9.4.
Compared with the ordinary least-squares case, the ridge estimate has a
decidedly reduced squared error (around 2.5 times smaller). Of course, in
practical situations the true 8 is not known.
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Fig. 9.3 True and estimated parameters for the linear model
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Fig. 9.4 Ridge regression solutions for a simple linear regression problem

As the m > n case illustrates, the ridge estimator (9.9) can be useful when
the matrix XX T is singular or ill-conditioned, e.g., comprised of highly corre-
lated explanatory variables. Moreover, for cases that are at risk of overfitting,
i.e., when ||y — X,3|| is 0 or very small for some ﬂ € R™, imposing a penalty
on the squared norm of B, as in (9.7), may benefit the predlctlve performance
of the prediction function x mT,B. Note that for large A, the squared-norm
penalty will be the dominant term in the optimization problem (9.7), and
therefore [A’] — 0 as A — oo.

Finally, using optimization theory (see, e.g., Boyd and Vandenberghe
2004), it is possible to recast the regularized minimization program:

mmin |y — XB|* + A| 8]

in (9.7) as the constrained minimization program
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min|ly — Xp|*
A (9.10)
subject to ||B]* < b

for some b > 0. In fact, the rglation betvieen the regularization constant A
and the bound b is that b = ||8]|?, where 3 is the minimizer of the objective
function L in (9.7). Thus, regularization forces 8 to lie in a restricted class
of parameters, and as a result the class of candidate prediction functions
x — x' B is reduced.

9.2.1 Gram Matrix

Suppose that n > m and that X has full rank m. Then, any vector 8 € R™
can be written as a linear combination of the features {x;}; that is

n
B = Z QG T
i=1

for some vector & = [y, ..., a,] " € R™ For n > m there is a whole subspace
of solutions «. As the feature vectors form the rows of X, and thus the
columns of X, we can write 8 = X" a.. Equation (9.8) then leads to

(XX + Ao =1y . (9.11)

This is now a system of n equations and n unknowns, as opposed to (9.8),
which has m equations and m unknowns. The n x n matrix K = XX is
called the Gram matrix of the feature vectors, that is, the matrix of inner
product terms (z;,z;) = x, ;. The Gram matrix is symmetric and not
invertible for n > m. Do not confuse it with the matrix XX, which has
dimension m x m. Assuming invertibility of K + AL, (again, which is always
the case when A\ > 0), the solution to (9.11) is

a=(K+\,) y,

which only depends on the training features through the Gram matrix. See
also Problem 9.13. For A = 0 the matrix K is not invertible. Note that
(with A > 0) the optimal prediction function based on the training data
7 = {(x;,y:)} is a linear combination of inner products:

n

gr@)=a'B=2"X"a=> a ;). (9.12)
1=1
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9.2.2 Not Penalizing the Constant Feature

When A — oo, the optimal prediction function shrinks to 0, and has no merit
for prediction. It would be better if it were to shrink to the constant 7 (the
average of the response data), as this would correspond to the default model
Y ~ N(u,0?), rather than Y = 0. To achieve this, we modify the optimization
problem (9.7) in such a way that the constant feature is not penalized. This
requires a slight alteration of the notation. In particular, we are interested in
prediction functions of the form x — Byl + ' B, where 1 is the n x 1 vector
of 1Is and & = [x1,...,2,,]". We thus have m + 1 features, rather than m.
The optimal Sy and 8 are found from the modified optimization problem:

mig |y~ Bol — XA+ X8I (9.13)

Note that the optimal prediction function converges to § as A — oo. The ob-
jective function in (9.13) is strictly convex and differentiable, so the solution
follows again by identification of the stationary points, which leads to the
linear equations:

X (Bl +XB—y)+AB=0, (9.14)

and

nfo=1"(y - XB) . (9.15)

This means that we can solve 8 from
(X™X —n'XT11"X + A\ [,,,)8= (X" —n'XT11 ")y, (9.16)

and determining By from (9.15). By making the substitution (9.15) in the
quadratic form ||y —By1—Xg|? in (9.13), we can effectively eliminate 3y from
our optimization problem by centering the data, that is, by premultiplying
y and X with the centering matrix C = I, — n~ 111", which subtracts the
mean from y and each column of X. Written out, we have:

y—fol—XB=y—n'1"1(y—XB) - X =Cy—-CX.

To find a Gram matrix representation as in Sect.9.2.1, let us assume
again that n > m and that X has full (column) rank m. Then, with
B =XTa, (9.16) reduces to

(CK + A\, )aa =Cy,

where K = XX T is the Gram matrix. Assuming invertibility of CK + I,
we have the solution:
a=(CK+\I,) 'Cy,
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which depends on the training feature vectors {;} only through the Gram
matrix. From (9.15), the solution for the constant term is Bo=1T (y—Ka)/n.

Thus, similar to (9.12), the optimal prediction function is an affine com-
bination of inner products:

gr(x) = 30 +z'X'a= 30 + Zai (x;, ) ,

i=1
where the coefficients 3y and & only depend on the inner products {(z;, z;)}.

Example 9.2 (Not Penalizing the Constant Feature). We illustrate
in Fig. 9.5 how the solutions of the two differently penalized ridge regression
problems behave as a function of the regularization parameter A. The data
used is that of the elementary normal linear regression model

Yi=00+pizi+e, i=1,....n,

with {g;} ~iia N(0,1), n = 30, 8o = 1 and 81 = —2. The explanatory vari-
ables were independently drawn from the uniform distribution on the interval
[0, 10].

The left panel of Fig. 9.5 shows the positions (indicated by the “+” sym-
bols) of the ridge regression estimates for various values of \; specifically,
A/n € {0.0,0.1,1,10,30,100}. The contours are those of the squared-error
loss (actually the logarithm thereof), which is minimized with respect to the
model parameters 8y and f;. We see that for large values of A, the estimates
tend to the origin (0,0). The circles in the figure are centered at (0,0) and
have a radius equal to the norm of E They illustrate the important point
that the regularization in ridge regression is equivalent to imposing a bound
on the (squared) norm of the parameter vector 3. For large A there is a heavy
restriction on the norm of 8, while for A = 0, there is no restriction, so that
in this case the solution corresponds to the ordinary least-squares solution
(indicated by the symbol “0”).

The right panel of Fig. 9.5 also displays the positions of the ridge regression
estimates for various values of A, but now regularization is only applied to
the parameter 1, not to By, which corresponds to the constant feature. The
regularization parameters are here A\/n € {0.0,0.8,3,8,20,100}. The red line
segments depict the allowed intervals in which ; can lie, for each A. For large
A, B1 goes to 0, while By goes to 7, which in this case is —8.88. For A = 0, we
obtain again the ordinary least-squares solution.
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Fig. 9.5 Ridge regression solutions for a simple linear regression problem. Left: both
Bo and (1 are regularized. Right: only (1 is regularized

9.3 Lasso Regression

We motivated the ridge regression estimator in (9.7) via a Bayesian normal
linear model. Let us repeat the arguments, but now with a joint prior density

1 AN\ A
f(6,0'2)0(§ (W) exp{_ |2|52|1} )

where |81 = Y%, |3i]- The distribution with pdf & — 27 exp(—| 1)
is called the Laplace distribution and is the multivariate equivalent of
the double exponential distribution. A dotplot from the two-dimensional
Laplace distribution is given in Fig.9.6. In contrast to the spherical contours
of the multivariate normal distribution, the Laplace distribution has square
contours. Using a Laplace rather than a normal prior assigns more credibility
to the corner points, that is, to the case where one or more coordinates are 0.
The posterior density is now given by

_lly =XBIP _ AlBlh }

202 202

(9.17)

F(8,0 ) o (02) "™ exp{

and is of the same form as in (9.5), except that the squared Euclidean norm
|B||? is replaced with the 1-norm of 3. By taking again the maximum pos-
terior estimate of B, we arrive at

B=arg;ninuy—xm|2+x||ﬁ||1. (9.18)
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6 4 2 0 2 4 6

Fig. 9.6 10000 realizations from the bivariate Laplace distribution. Compare with
Fig. 3.6

This gives the so-called lasso (least absolute shrinkage and selection opera-
tor) estimator. Similar to (9.10), the minimization program

min |y — X8 + N8 (919)

is equivalent to the constrained minimization program

minly — XA
A (9.20)
subject to ||B]|1 < b,

where the connection between b and \ is that b = ||8]|1, with 8 being the solu-
tion to (9.18). Note that the constraint region matches the (square) contours
of the Laplace distribution.

One could of course create many different regularization problems by
changing the regularization term with some other function of 8. However,
using the lasso estimator has particular advantages. The first is that the
optimization problem in (9.18) is, as in ridge regression, a convez optimiza-
tion problem. Although no explicit solution exists, such as in (9.9), the lasso
estimator can be found very efficiently, as described next.

By introducing an auxiliary variable z, we can write (9.19) as

min |y — XB|* + Al|z[|x
= (9.21)
subject to B—2z=0.
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One way to solve such problems efficiently is to minimize the augmented
Lagrangian:

L(B,z,p) = ly — XBI* + N|zlls + n" (B — 2) + oll B — ||

for some p > 0, where u is a Lagrange multiplier. The alternating direction
method of multipliers (ADMM) algorithm (Boyd et al., 2010) updates the
components iteratively as follows:

B = argmin L(, 21 ) (9.22)
B

2D = argmin L(B4HY, z, u®) (9.23)
z

pt+D = ® 49, (B(t-l—l) _ Z(t+1)) ‘ (9.24)

Explicitly, the ADMM updates are (see Problem 9.6)

BUHD = (XTX + pTL,,) (X Ty + oz — u®)) (9.25)
+ +

S(t+1) (ﬂ(t+1) +au® — /\/(QQ)) — (fﬁ(t“) —u® - )\/(2g)> (9.26)

wtD) = ® ¢ g+ _ (t+1) (9.27)

+

where u®® = p® /(20), and the notation a* means max{a,0}.

Example 9.3 (Lasso Regression). We repeat the estimation of 5y and
f1 in Example 9.2, but now using lasso regression and including both Sy and
(1 in the regularization. The ADMM method was used to find the estimates.
The results are displayed in Fig.9.7; compare with the left panel in Fig.9.5.

The squares in the figure are centered at (0,0) corresponding to points
(Bo, f1) with [|B]l1 = |Bo| + |B1] = b for various values of b, exhibiting the
square constraint region in (9.20). The given solutions correspond to A\/n €
{0.0,0.1,0.5,20, 75,50,100}. We see that the optimal solutions for large X lie
exactly in a corner point of the constraint region. In particular, the estimate
for By is 0 for large value of A.

When it is undesirable to regularize the constant term, one can center
the data to eliminate By from the analysis, in the same way as described in
Sect. 9.2.2 for ridge regression. That is, to solve the modified program

iy |y~ Bol ~ X8>+ A B (9.28)

first center the data via X = CX and y = Cy and then solve the original
lasso program (9.19). In addition, if components of 8 are vastly different in
magnitude, it is often recommended to further scale the input matrix X to
have columns with standard deviation 1.

Example 9.3 hints at a second reason why the lasso estimator has merit:
it can be used for model selection. Namely, the solutions of (9.18) tend to lie
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Fig. 9.7 Lasso regression solutions. Compare with Fig. 9.5

on the corners of the constraint region ||3||1 < b. Consequently, a significant
number of components may be exactly zero, especially for larger values of
A. Such sparsity is desirable in models that contain many parameters. A
graphical methodology for model selection is to plot B against A or, more
transparently, 8 against ||B]|1 for A ranging from 0 to some large enough
value where E = 0. Inspection of such regularization paths or coefficient
profiles may help assess which parameters should be included in a more
parsimonious (i.e., simpler) model to explain the variability in the observed
responses.

Example 9.4 (Regularization Paths). Figure 9.8 shows the regulariza-
tion paths for p = 20 coefficients from the same linear model and data as in
Example 9.1. In particular, we have 8; =i/10 for i = 1,...,10 and 8; = 0 for
i =11,...,20. Before applying the ADMM algorithm, the data was centered,
but not standardized.

As the 1-norm of the parameter vector 8 increases, more and more coeffi-
cients become non-zero. The order in which this happens is roughly the same
as the magnitude of the components; so first S19 = 1 is selected as a non-zero
component, then B9 = 0.9, and so on. When the 1-norm reaches around 3, all
the non-zero components except 51 = 0.1 have been correctly identified as
being significant, and the remaining 10 parameters are estimated as exactly
0. The regularization parameter \ varied here from 0 to 2000. For A = 0, the
1-norm of the ordinary least-squares solution was here 6.1. The parameter o
was taken to be equal to 100.
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Fig. 9.8 Regularization paths for lasso regression solutions as a function of the 1-norm

of the solutions. The solid blue lines correspond to the non-zero components and the
dotted orange lines to the components that are 0

9.4 False-Discovery Rate

Suppose we perform a large number of statistical tests, such as the two-
sample t-test in Example 5.16, providing an outcome of the test statistic for
each test. For example, the data could be measurements on n different genes
for a group of cancer patients and a control (reference) group. For each of
the n genes, a different two-sample t-test is performed, and the objective is
to determine which are the principal genes associated with having cancer.
Simply rejecting/accepting each of the n on the basis of a fixed significance
level a will introduce many false -positive results. In particular, if none of the
n genes have any effect on the cancer, the expected number of false positives
is na.

To reduce the number of false positives, we can use a mix of Bayesian
and frequentist reasoning (Efron and Hastie, 2016). Let Z1,...,Z, denote
the test statistics of the n statistical tests. Under Hy each Z; is assumed to
have a known continuous distribution, such as N(0,1), x2 or t,, with cdf
Fy and pdf fy. For simplicity, we can assume that we are dealing with right
one-sided tests, so that the p-value corresponding to an outcome z of Z is
given by 1 — Fy(z).

Consider the following Bayesian model:

(My, ..., M,) ™ Ber(1 — )

9.29
(Zz|M17,Mn)NfMl, izl,...,n7 ( )
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where n is large, g is close to 1, and f; is unknown. Here, {M; = 0} denotes
the event that the i-th null hypothesis is accepted, and g is the prior prob-
ability of this happening. The second line of the model specifies that if the
null hypothesis holds true, each test statistic Z has pdf fy, and under the
alternative hypothesis, it has pdf f;, which is typically unknown.

Using Bayes’ formula, the probability of a “false discovery” for test statistic

o mo(1— Fy(2))

pfd(Z)ZP(Ml:(”ZZZZ): ]_—F(Z) )

which may be estimated via

) 7T0(1 — F()(Z))
fd(z) = ————
PG =T —F 1)
where Fj, is the empirical cdf of the z1,...,z,, as in (7.1). Ordering the p-
values as p(1) < pa) < -+ < P(ny and z-values as z(D > 2 > ... > 2() e

have: oD

(2 =
pfd(z"") = — Tn
Remembering that 7 is close to 1, the above suggests the following rule:
reject the null hypothesis if the estimated false discovery rate is less than or
equal to a threshold ¢. In other words, reject the null hypothesis for the i-th

smallest p-value if

Algorithm 9.1. (Benjamini-Hochberg (BH) Method).

1. Order the p-values from smallest to largest: p(1) < p@2) < -+ < pey)-
2. Reject the null hypothesis corresponding to the i-th smallest p-value

if pi) < ig/n.

An alternative, but equivalent, procedure is to first “adjust” the p-values,
and then accept or reject the null hypotheses based on ¢ as significance level,
just as in ordinary hypothesis testing. The adjusted p-values pa),i =1,...,n

of the original sorted p-values p(;),7 = 1,...,n are found as follows:
1. Initialize ¢ =1 and i = n.
2. Set pf;) = min{c, p;yn/i}
3. Setc=p2‘i) and i =17 — 1.
4. If i = 0 stop; otherwise, return to Step 2.

Example 9.5 (FDR). We simulated n = 5000 test statistics and p-values
from the Bayesian model (9.29), with mg = 0.95, where fy is the pdf of the
N(0,1) distribution and f; is the pdf of the N(4,4) distribution. Figure 9.9
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shows a kernel density estimate (blue line) of the test statistics. The null
density fq is shown as the dotted red line. The figure indicates that there are
a large number of null cases, but also implies the existence of non-null cases
that are deserving to be identified.

04
03F
02

0.1

test statistic

Fig. 9.9 Kernel density estimate of 5000 test statistics and the pdf of the N(0,1)
distribution under the null hypothesis

The top panel of Fig.9.10 illustrates the BH method with ¢ = 0.05. The
number of identified non-null cases is here 143. Thus, p43) < 143¢/n =
0.00143, but p(144) > 0.00143. The bottom panel shows the adjusted sorted
p-values. We see exactly the same cutoff 143.

0 50 100 150 200 250 300

02F

Adjusted Pval

0 L it / 1 Il Il I
0 50 100 150 200 250 300

Fig. 9.10 Illustration of the BH method. Top: sorted p-values (blue). Bottom: sorted
adjusted p-values
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The p-values corresponded to a two-sided test; so for a test statistic z, the
p-value is 2(1 — §(z)), where @ is the cdf of the N(0, 1) distribution. For the
particular outcome in Fig. 9.10, the actual number of non-null cases was 213.

The BH method can also be analyzed in a purely probabilistic way. De-
noting the p-values of the null cases by Py, ..., P,, and of the non-null cases
by Pay+1,- -, Pn, the model assumption is that the null p-values are inde-
pendent and U(0,1) distributed, which is an appropriate assumption; see
Problem 9.10. The key stochastic processes to investigate are

no n

Vi=> 1{P;<t} and Ry=)» I{P;<t}, te[0,1].

i=1 i=1

Thus, V; is the number of null p-values less than or equal to threshold ¢, and
R; is the number of all p-values less than or equal to ¢. Under the above
assumptions, the random process (V;/t,t € [0, 1]) is a martingale with “time”
t running backward and with filtration F, = 0(V,, Ry,u > t),t € [0,1]. The
precise meaning (see Problem 9.11) is that

5[
S

Since (V;/t) is a martingale, it has the same expectation for all ¢; in par-
ticular it holds that EV;/t = EV; = ng. By Doob’s stopping theorem (see,
e.g., Kroese and Botev 2023, Chapter 5), the same holds if ¢ is replaced
with any (bounded) random stopping time T relative to the filtration (F%),
meaning that every event {T' > t} can be discerned from the information on
Vi, Ry, u > t. The random time

Vi

Vu7Ru,u>t} =7 s<t. (9.30)

t
T =sup{t €[0,1] : R, > En}

is such a bounded stopping time, with Ry = T'n/q. Using these definitions,
we can express the proportion of false discoveries found by the BH method

as
Vo _aVr

Ry nT
The expectation of this random variable is called the false-discovery rate.
Consequently, by Doob’s stopping theorem, we have:

Vi q_ Vr ¢ ng
E—=-E— =-EV; = —¢<gq.
Ry n T not nq*q

That is, the false-discovery rate is bounded by ¢ .
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9.5 Problems

9.1. Show that o2 in (9.3) is an unbiased estimator for o2.

9.2. Show that XX T + AL, is invertible for any A > 0.

9.3. In the Bayesian setting of ridge regression in Sect.9.2, the posterior
expectation of B is identical to 8 in (9.7). Prove this, using Theorem 8.1.

9.4. We can extend the definition of convexity in (2.9) to the n-dimensional
case as follows. Let X C R™. A function A : X — R is said to be convex on
X if for each x in the interior of X, there exists a vector v (depending on )
such that

h(y) > hiz)+(y—=x) v, yeiX. (9.31)

The vector v is typically the gradient of h at «, but can be more general,
and is thus called a subgradient:

a. Show that the function h defined by h(z) = ||[Azx + b||?, where A is a
matrix and b a vector, is convex.
b. Show that the sum of two convex functions is again convex.

9.5.
a. Show that the function

9(z) =(B—=2°+p(B—-2)+Al2|, z€R (9.32)
is convex for any choice of 5, u, and .
b. Show that
argmin g(z) = (8 + /2= \2)* — (~B—p/2-A/2)*,  (9.33)

where 1 = max{z, 0}.
c. The lasso shrinkage function for parameter A > 0 is given by

S,Y(:c)::r<1—7>+, zeR. (9.34)

Draw a plot of S; and show that (9.33) implies that

arginin {(z—=2)>+ Az|} = Sy )a(2) - (9.35)

9.6. Using Problem 9.5 verify that the ADMM updates in (9.25)—(9.27)
follow from (9.22)—(9.24).
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9.7.

a. Write a Julia function that implements the ADMM algorithm, taking as
input X,y and A, and returning the solution, b say, of (9.19).
b. Apply the ADMM function to the data

y:X,B+6,

with
8.46 4.73 6.26
529 0.98 5.54
X =699 296 0.38],
9.87 4.67 8.89
9.58 9.22 5.98

B =10.1,0.2,0.3]T and e = [-0.83,0.93, —0.24, —0.40, —0.02] ". Before ap-
plying the ADMM algorithm, center the matrix X and the vector y. Verify
that for A\ = 10, the solution to (9.19) is given by b = [0, 0.05088, 0.22403] ",
with 1-norm 0.27492.

c. For A ranging from 0 to 30, produce the regularization paths in Fig.9.11.

0.4r
0.2r
@ 001
702 L
Fig. 9.11 Regularization
paths for the lasso esti- —04¢p, [ I I ‘ ‘ ‘
mates as a function of 00 02 04 06 08 10 1.2
their 1-norm 1 —norm

9.8. Let ot
e
L(B) = lly = XBI” + Bl -
An alternative approach to solve the lasso minimization problem (9.19) is the
coordinate descent method, which iteratively solves the one-dimensional
optimization problems ming, L(B) for j = 1,...,m. These optimization prob-
lems can be solved exactly, as will be shown next:

a. Let v; be the j-th column of X and let u-; = y — X8 + f;v; be the
vector of residuals with the j-th residual set to 0. For a fixed 3, we wish
to minimize L(B8 + (z — 8;)e;) with respect to x, where e; is the j-th unit
vector. With z; = [|v;[|?, show that

L(B+ (z — Bj)ej) = z; [(x — 'LL—';jv/zj)2 + Az|/z;] + const . (9.36)
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b. Show that (9.36) is minimized for
B7 = Sxj(azy) (ulj0/25) = Sxj22,)(B) +u'v/2) (9.37)

where u = y = X is the full vector of residuals and S, is the lasso
shrinkage function in (9.34).

c. The coordinate descent method proceeds by iteratively updating 3; with
(9.37) as in:

Algorithm 9.2. (Coordinate Descent)

1 Initialize 8 and u =y — X3

2 Setzj:ij||2,j:1,...,m

3 repeat

4 Bowa =B

5 for j=1,...,mdo

6 b= Sx/(2:;)(B; +u'v;/2)
7 u=u+ (8 —bv,

8 Bj =b

9 until |3 — Bl <e

10 return B

Implement this algorithm as a Julia function and apply it to the same data
as in Problem 9.7.

9.9. Using the generic CE algorithm CEmin in Sect. A.7, verify the solution
to (9.19) for the data in Problem 9.7b.

9.10. Let T be the test statistic for a right one-sided statistical test. Recall
from Sect. 5.3 that the null hypothesis is then rejected for large values of the
test statistic. Suppose that T is a continuous random variable with cdf F
under the null hypothesis. The p-value for an outcome ¢ or 7T is in this case
given by Py, (T > t) = 1 — F(t). Explain why under the null hypothesis the
random p-value (i.e., the random variable 1 — F(X), where X ~ F) has a
U(0, 1) distribution:

9.11. Show that (9.30) holds.
9.12. Reproduce Fig.9.10 using Julia.

9.13. Suppose X is an n X m matrix and y is an n-vector. Show that for
A >0,
XT(XX"T +AL,) " = (XTX + AL,) !XT .

Hence, the ridge regression estimator in (9.9) can be represented as B =XTa,
where & = (XX T + ALL,) " 'y.
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Chapter 10
Generalized Linear Models

The linear models introduced in Chap.4 deal with continuous response
variables—such as height and crop yield—and continuous or discrete explana-
tory variables. For example, under a normal linear model , the responses {Y;}
are independent of each other, and each has a normal distribution with mean
Wi = a:;r B, where w;'— is the i-th row of the design matrix X. However, these
continuous models are obviously not suitable for data that take on discrete
values. For example, we might want to analyze women’s labor market partic-
ipation decision (whether to work or not), voters’ opinion of the government
(rating on the government performance on a scale of five), or the choice
among a few cereal brands, as a function of one or more explanatory vari-
ables. In this chapter we discuss models that are suitable for analyzing these
discrete response variables. We will first introduce the flexible framework of
generalized linear models.

10.1 Generalized Linear Models

Definition 10.1. (Generalized Linear Model). A vector of (re-

sponse) data Y = [Y1,...,Y,]" is said to satisfy a generalized linear
model if the expectation vector ug = EY can be written in the form:
p=g"'(XB),

where X is an n X m design matrix (i.e., a matrix of explanatory

variables), B is an m-dimensional vector of parameters, and g—! is
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the inverse of a link function g. The distribution of Y may depend on
additional dispersion parameters that model the randomness in the
data that is not explained by the explanatory variables.

A common assumption for Y is that its components Y7,...,Y,, are inde-
pendent and come from some exponential family. The central focus is the
parameter vector 3, which summarizes how the matrix of explanatory vari-
ables X affects the response vector Y. By choosing different members of the
exponential family and different link functions, the class of generalized lin-
ear models can encompass a wide variety of popular models as special cases,
some of which are discussed below.

Example 10.1 (Normal Linear Model). The normal linear model Y =
X3 + € in Sect.4.5 is a special case of a generalized linear model. Here,
p = Xp, so that the link function is simply the identity function: g(z) = z.
The vector Y has a multivariate normal distribution:

Y ~ N(u,0%1,),

where o2

the data.

is a dispersion parameter that models the residual randomness in

Example 10.2 (Binary Variable Regression Model). Suppose we are
interested in the effectiveness of a certain insecticide. For this purpose an
experiment is carried out as follows: the i-th insect is exposed to the insec-
ticide with dose level z;, and we observe Y;, whether the insect is killed or
not. Thus, Y; ~ Ber(u;), where u; = EY; is the “success” probability, which
has to lie in the interval (0,1). Let Y and « be the response and explanatory
vectors. One way to link the expectation vector g = [p1,. .., un] ' to @ is to
specify u; as
wi = F(Bo + Brx;)

for some cdf F and “regression” parameters By and (;. Defining the n x
2 design matrix X = [1 ] and 8 = [By,B1]", the distribution of Y =
[Y1,...,Y,]T is completely specified by p, which in turn is determined by
XpA. For different choices of F, we have different binary variable models.
Common choices for F are (1) the cdf of the standard normal distribution
and (2) the cdf of the logistic distribution. These are discussed in detail in
the next section. The choice

2

Fu(z)=1—e¢®

gives the cdf of the extreme value distribution. The corresponding link
function for each component is F~1(z) = In(—In(1 — 2)). Finally, by taking
F as the cdf of the Student’s t distribution with parameter v, we obtain
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the so-called t-link model. One attractive feature of the t-link model is
its flexibility; in particular, it includes the popular probit model (see next
section) as a limiting case.

10.2 Logit and Probit Models

In this section we discuss two popular specifications for binary data: the pro-
bit model and the logit or logistic model. Both models are binary variable
regression models of the form discussed in Example 10.2. More precisely,
the responses Yi,...,Y, are assumed to be independent Bernoulli random
variables with success probabilities:

:uz:F(sz/B)v izla"'ana

where x; is the vector of explanatory variables corresponding to the i-th
response, 3 is the parameter vector of interest, and F' is a cdf.

10.2.1 Logit Model

Definition 10.2. (Logit Model). Let Y; denote the i-th binary re-
sponse, and let x; represent the vector of explanatory variables and
B the associated parameter vector. In a logistic regression or logit
model, the {Y;} are independent and Y; ~ Ber(y;), with u; = F(x; 8),
where F' is the cdf of logistic distribution:

1

PO =15

In other words, the component link function is g(z) = In(z/(1 — z)).

Example 10.3 (Logit Model). Figure 10.1 shows the outcomes of 500 in-
dependent binary response variables for a logistic regression model. The ex-
planatory variables &; = [x;1,%2] ', i = 1,...,500 were chosen uniformly on
the unit square, and B8 = [~8,8]". The S-shaped surface depicts the graph
of the function:

p(x1,32) = F(x"B) = (1 + exp(8(wz — x1)) "

For each given vector of explanatory variables [z;1, %], the response Y; is
generated from a Bernoulli distribution with success probability p(x;1, 22).



10 Generalized Linear Models

294
Using the same notation as in Definition 10.2, we now derive the log-
likelihood function, score function, and the information matrix for this model.

Since the responses are independent Bernoulli random variables, the log-

likelihood function is given by

1(B;y) :Z

[ysln i + (1 — ;) In(1 — py)]

N
Il
-

7
7

y
7
7

x

T2
Fig. 10.1 Responses (0 or 1) for a logistic regression model, with two explanatory

—x/ B —In(1 +e*m:ﬂ). After some

variables for each response
(14+e®P)land 1 -y, = e_miT'B/(l + e~ B)_ Tt follows that

where p; =
—In(1 —1-67“31”3) and In(1 — p;)
(10.1)

Inp; =
algebra, the log-likelihood function can be rewritten as
T

1Biy) =Y |5 — V2l B —In(1+e727)]
i=1

Taking the gradient of the log-likelihood function, we obtain the score func-

-
x; e T B ]
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Differentiating the score function with respect to 8 and multiplying by —1,
we obtain the observed information matrix:

n e_w;rﬁ

1(B;y) = —V3i(Biy) =)

i=1

=Y w1 —p)zx] .
i=1

LS,
(o= T
(10.2)

It is worth noting that the observed information matrix does not depend on
the data y, and therefore it coincides with the Fisher information matrix
I(B). Now, the maximum likelihood estimate can be computed numerically
using, say, Fisher’s scoring method. Specifically, given an initial value 3, for
t=1,2,..., iteratively compute

B, =B +1(B;1)] ' S(B_15y)

until the sequence B, B8, Bs, . .. is found to have converged, using some pre-
fixed convergence criterion. Once the maximum likelihood estimate B is ob-
tained, one can readily compute the corresponding asymptotic covariance

o~

matrix as I71(8); see also Theorem 6.8.

Example 10.4 (MLE for the Logit Model). In the development of
drugs, bioassay experiments are often carried out on animals to test the
potential toxicity of the drugs. Various dose levels are given to batches of
animals, and the animals’ responses—typically characterized by a binary out-
come, say alive or dead—are recorded. The aim is to describe the probability
of “success,” i, as a function of the dose, x, via a link function g(u) = Bo+x51.
In this example we analyze the data with a logit model with

p=g"(Bo+xpr) = (1+e Pothm=1

The outcomes of such an experiment are given in Table 10.1: a total of 20
animals were tested, 5 at each of the 4 dose levels.

Table 10.1 Animal mortality data

Dose (log g/ml) Number of animals Number of deaths

—0.863 ) 0
—0.296 5 1
—0.053 ) 3

0.727 5 5

One obvious quantity of interest is the estimate for §;. In particular, we
are interested to know whether or not it is positive (i.e., if the drug is toxic).
In addition, we might also want to learn about the effect of a specific dose
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level. Since we only have two parameters, we first obtain a contour plot for the
likelihood function to get a rough estimate for 8 = [By, 51] . From Fig. 10.2
it can be seen that the maximum likelihood estimate for B is around [1,8] .

Bo

Fig. 10.2 Contour plot for the likelihood function of the parameters in the bioassay
example

We use the following Julia code to implement Fisher’s scoring method
to obtain the maximum likelihood estimate 8 and the information matrix
evaluated at 3.

bioassay.jl ]

using LinearAlgebra
y=[00000100001110011111]"';
x = repeat([-0.863 -0.296 -0.053 0.727], inner = (1,5));
X = [ones(20, 1) x']; # design matrix
betat = (X' * X) \ (X' * y); # initial guess
S = ones(2, 1); # score
IM = zeros(2,2) # info matrix
e = 107(-5); # tolerance level
while sum(abs.(8)) > e # stopping criterion
global betat, S, IM
mu =1 ./ (1 .+ exp.(-X * betat))
S = sum(repeat((y - mu), outer=(1,2)) .* X, dims=1)'
IM = X' * diagm(vec(mu .* (1 .- muw))) * X
betat = betat + IM \ S
end
V=IM\1I
println(betat)
println(V)
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Note that we have vectorized the computation of the score and information
matrix in the code to avoid for-loops. For example, the information matrix I
in (10.2) can be written as I = X " BX, with

1z pa(l—p) - 0
X=|:": and B = .
1 229 0 <+ p2o(1 — pi20)

The maximum likelihood estimate for 8 and the associated covariance matrix
V =1"1(B) are
B _ [0.873 (10.3)

1.081 3.833
= d V= :
7.912] o { }

3.833 25.624

In particular, a 95% (approximate) confidence interval for 3 is given as
7.912 £+ 1.96v/25.624 or (—2,17.83). It is interesting to note that we cannot
reject the null hypothesis 81 = 0 at significance level 0.05, even though the
contour plot suggests that most of the mass of the likelihood lies in the region
2 — 20. One reason might be because the normal distribution is not a good
approximation due to the small sample size.

Further, suppose that we are interested in the “success” rate at dose level

—0.1 log g/ml. An estimate can be computed as @ = [1, —0.1]8 = 0.082, or
8.2%.

For Bayesian estimation of the logit model, we need to have an efficient
way to obtain draws from the posterior distribution f(8|vy) for a given prior
f(B). Since the likelihood function for the logit model is highly nonlinear, the
posterior distribution is typically nonstandard, and estimation requires more
work. One feasible approach to obtaining posterior draws is to use Markov
chain Monte Carlo. In particular, we will use an independence sampler (see
Example 7.11) with a multivariate Student’s ¢ proposal distribution. The
reason for sampling from a Student’s ¢ proposal is that the samples tend to
be less concentrated around the mode of the distribution than is the case
for the normal distribution, for example. As a result the samples from the
independence sampler tend to be less correlated.

Definition 10.3. (Multivariate Student’s ¢ Distribution). An
n-dimensional random vector X is said to have a multivariate Stu-
dent’s t distribution with mean vector p and scale matrix X if its
pdf is given by
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3V S l:1:— sz - -
S ®) =~ (14 S -2 @), (104

v4+n
where ¢ = r(*52) ) and v > 0 is the degrees of freedom parame-

(mv)n/2 F(%
ter. We write the distribution as ¢, (u, X).

Similar to the multivariate N(u, X) distribution, a vector X ~ t,(u, 3)
can be viewed as an affine transformation X = pu+ B Z of a random vector
Z ~t,(0,1,,) from the standard multivariate Student’s ¢ distribution, where
BB' = X. To simulate draws from the latter distribution, one can use the
following theorem. The proof is left as an exercise; see Problem 10.1.

Theorem 10.1. (Generating from the Multivariate Student’s ¢
Distribution). Let R ~ N(0,1,,) and W ~ x2 be independent. Then,

14
Z=,/— R~1,(0,1,).
WR t,(0,1,,)

To sample from the posterior pdf f(B|y) of the logit model, we draw the
proposal from a t,(8,V) distribution, where 8 is the maximum likelihood

estimate and V the inverse information matrix evaluated at B
Denote the pdf of the t, (8, V) distribution by f;(8). In the independence
sampler, given a current draw 3, the candidate 8* is accepted with proba-

bility:
o fy]B)f(B)f(B) }
ats. ) = min {1
where f(y| ) is the likelihood function and f(3) is the prior density.

Example 10.5 (Bayesian Inference for Logit Model). We continue Ex-
ample 10.4. Taking a uniform prior for B8 (i.e., f(B8) x 1), the posterior pdf
is proportional to the likelihood function. In other words, Fig. 10.2 is also a
contour plot for the posterior distribution. For this example, the posterior
pdf is proper even though the prior pdf is not. To compute other useful sum-
mary statistics, we use the independence sampler with t, (8, V) proposal, as
described above. Note that both the proposal pdf f; and the likelihood only
have to be specified up to a multiplicative normalization constant. In fact,
it is easier to specify the natural logarithms of both pdfs (up to an additive
constant) and evaluate
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o(B,87) =In f(y|B") +In fi(B) —Inf(y|B) —In fe(B7) ,

and accept 8% with probability min{exp(o(8,8")),1}. To obtain a draw from
the proposal distribution, we first sample Z = [Z,Z5]" ~ N(0,I,,) and
W ~ x% = Gamma(v/2,1/2), and return

B*=B+BZ\u/W, (10.5)

where BBT = V. Then, 8* follows the desired ¢ distribution, by Theo-
rem 10.1.

The following Julia code—to be appended to the code of Example 10.4—
implements the independence sampler, and is used to obtain 10,000 draws
from the posterior distribution after a burn-in period of 500. We use v = 5,
giving samples that are spread out relatively far around the mode 3.

bioassay_bayes.jl ]

using Distributions
B = cholesky(V).L
burnin = 500
nloop = 10000 + burnin
store_beta = zeros(nloop, 2)
nu = 5; # df for the proposal
# log posterior density
logf (b)=(sum((y .- 1) .* (X*b) - log.((1 .+ exp.(-X*b)))))[1]
# log density of the t proposal
logprop(b) = (-0.5*%(nu+2)*log(l .+
(b - betat)' * (V\ (b - betat)) / nuw))[1]
beta = betat # initialize the chain
for i = 1:nloop
global beta
# candidate draw from the t proposal
betac = betat + B * randn(2, 1) *
sqrt(nu / rand(Gamma(nu / 2, 2)))
rho = logf(betac) - logf(beta) + logprop(beta) -
logprop(betac)
exp(rho) > rand() 7 beta = betac : nothing
store_betal[i, :] = beta'
end
store_beta = store_beta[burnin+l:end, :] # discard the burnin
cov(store_beta)
mean(store_beta, dims=1)
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The posterior mean and posterior covariance matrix are estimated to be

E(8|y) - [111‘_3968] . Var(8|y) = [iﬁi? 345%672] -

It is interesting to note that even though the posterior mode coincides
with the maximum likelihood estimate under the flat prior, the posterior
mean of 51 is substantially larger than the corresponding maximum likelihood
estimate, reflecting the fact that the marginal distribution of 3; is positively
skewed. Further, a 95% credible interval for /3, is estimated to be (3.52,26.18),
which excludes the value 0.

10.2.2 Probit Model

Definition 10.4. (Probit Model). Let Y; denote the i-th binary
response, and let x; represent the vector of explanatory variables and
B the associated parameter vector. In a probit model, the {Y;} are
independent, and Y; ~ Ber(u;), with u; = &(x, ), where & is the cdf of
the standard normal distribution. That is, the component link function

is g(z) = o~ 1(x).

As in the logit model, we first derive the log-likelihood function, score func-
tion, and information matrix. Let ¢(z) denote the pdf of the standard normal
distribution. Note that since the standard normal distribution is symmet-
ric around 0, it follows that ¢(z) = ¢(—z) and 1 — &(z) = &(—x). Now,
given the independent Bernoulli responses and the component link function
g(z) = &7 1(x), the log-likelihood function for the probit model is

Z yInd(z] B) + (1 —y;) nd(—z/ B)] . (10.6)

The score function is the gradient of the log-likelihood function:

n

S(B)=Vgl(B:y Z [ -(1- yz)wwi

—
— 1

— ) o(—z )
T { =
P [B)  o(—=]B)

Noting that <L¢(z) = —z ¢(x), we differentiate the score function again with

respect to B to obtain:
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2 a N Yi L —yi '
V5B =~ Sl 80w B) | gty gt B
- yip(x] B) | (1—y)e(—x]p)
- ,_Zl*”(mj A) { @ B2 T d(—zl B } @iy

Using the fact that E(Y;) = &(z; B), the information matrix is therefore

1(8) :st o(z; B)

T3)2 T
(z B) P(—= ] B)

i

;X

i=1

Given the score function and the information matrix, one can then obtain
the maximum likelihood estimate via Fisher’s scoring method as before.

For a Bayesian analysis, we can sample from the posterior pdf using
MCMC; for example, using a similar independence sampler as in the logit
model. If we use a normal prior 8 ~ N(bg, Vy), then the logarithm of the
posterior pdf f(8y) o f(8)f(y|B) is

In (8 1y) = 1(B:y) — 5(8 — bo) Vg (8~ b) +const,  (107)

with I(B;vy) given in (10.6). From the (dependent) sample of the posterior
pdf, it is straightforward to estimate the posterior mean, standard deviation,
and quantiles. One can also estimate the marginal posterior pdfs {f(8;|y)},
using a kernel density estimator.

Other quantities of interest include the marginal effects of the covariates,
that is, how a change in the covariate affects the response. To make the
discussion concrete, let x; be the j-th element of a covariate vector x. If z;
is a continuous explanatory variable, then

0
S B 18) = 5-0(aTB) = ol B)S, (10.)
where j3; is the j-th element of 8. This depends on both 8 and . For the
“average” marginal effect of x;, one could consider go(fT,B)ﬁj, where T is
the average of the explanatory vectors x1,...,®, corresponding to the re-
sponses Yi,...,Y,. Similarly, if z; is a binary explanatory variable, the av-
erage marginal effect of z; is

Dz B) — (29 B) ,

where z; = [T1,...,Tj-1,2,Tj41, - - - ,Tn] T for x € {0,1}.

Note that the marginal effect is a (continuous) function of the regression
parameter vector 3, and so it is a random variable. Given the posterior draws
for B, the posterior distribution of the marginal effect can be obtained readily.
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Example 10.6 (Modeling Extramarital Affairs with Probit Model).
Fair (1978) analyzed the decision to have an extramarital affair with a pro-
bit model, using surveys conducted by Psychology Today and Redbook. The
data used in this example are obtained from Koop et al. (2007) and contain
601 independent observations. All observations are taken from individuals
currently married and married for the first time.

The response is a binary variable that indicates if the respondent has
(had) an extramarital affair; the seven explanatory variables are an intercept
(CONST), a male indicator (MALE), number of years married (YEAR),
a binary variable to indicate if the respondent has children from the mar-
riage (KIDS), a binary variable for classifying one’s self as “religious” (RE-
LIGIOUS), years of schooling completed (ED), and a final binary variable
denoting whether the person views the marriage as happier than an average
marriage (HAPPY).

We first obtain the maximum likelihood estimate B via_Fisher’s scoring
method, as well as the information matrix V evaluated at 8. The following
Julia code accomplishes this task.

probit_mle. jl ]

using DelimitedFiles, Distributions, LinearAlgebra
affair = readdlm("affair.csv", ',"')
y = affair[:,1];
X = affair([:,2:end];
n, k = size(X);
# find the MLE and the information matrix
S = ones(k,1); # score
betat = (X'*X) (X'*y); # initial guess
e = 107(-5); # tolerance level
while sum(abs.(S)) > e # stopping criterion
Xbetat = X*betat;
phi = pdf.(Normal(0,1),Xbetat);
Phi = cdf.(Normal(0,1),Xbetat);
global S = sum(repeat(y.*phi./Phi-(1 .- y).*phi./(1 .-Phi)
,outer = [1,k]).*X,dims=1)";
d = phi.”2 ./ (Phi.*(1 .-Phi));
IM = X'*diagm(vec(d))*X; # information matrix
global betat = betat + IM\S;
end
println(round. (betat,digits=4))

[-0.7379; 0.1504; 0.0287; 0.2491; -0.5103; 0.0064; -0.5136; ;]

To sample from the posterior distribution, we use the same MCMC ap-
proach as for the logit model. That is, we use an independence sampler with
a t,(B,V) proposal distribution. The hyperparameters for the normal prior
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are chosen as by = 0 and Vg = 1017, where I is the identity matrix. This
gives a relatively non-informative prior which is centered around zero. The
logarithm of the posterior pdf is given in (10.7). The degrees of freedom is
set to v = 5. We use the method described in (10.5) to generate a draw from
the proposal distribution, and run the sampler for 5500 iterations, discarding
the first 500 as burn-in. Add the following to the previous code.

probit_bayes.m ]

burnin = 500;

nloop = 5000+burnin;

V = IM\I; # scale matrix for the proposal

B = cholesky(Hermitian(V)).L;

nu = 5; # df for the proposal

b0 = zeros(k,1); # prior mean

VO = 10*I; # prior covariance

# log-posterior density

logf(b)= (y'#*log.(cdf.(Normal(0,1),X*b)) + (1 .-y)'*log. (cdf.(
Normal(0,1),-X*b))- 0.5%(b-b0) '*(VO(b-b0))) [1];

# log-proposal density

logprop(b) = (-0.5%(k+nu)*log.(1 .+ (b-betat)'*(V(b-betat))/
nw)) [1];

store_beta = zeros(nloop,k);

beta = betat;

for i = 1:nloop

# candidate draw from the t proposal
global beta
betac = betat + B*randn(k,1)*sqrt(nu/rand(Gamma(nu/2,2)));
rho = logf (betac)-logf (beta) + logprop(beta)-logprop(betac

)
if exp(rho) > rand()
beta = betac;

end

store_betal[i,:] = beta';
end
store_beta = store_betal[burnin+l:end,:]; # discard the burn-in
println(mean(store_beta,dims=1))
println(std(store_beta,dims=1))

Table 10.2 lists various summary statistics of the posterior distribution, in-
cluding the means, standard deviations, and 2.5- and 97.5-percentiles, based
on the 5000 (dependent) samples from the posterior distribution. Of the six
variables (excluding the intercept), only three seem to have a substantial
impact on the response. In particular, the 95% credible intervals for the co-
efficients associated with YEAR, RELIGIOUS, and HAPPY exclude zero,
while the other three do not. On average, people reporting themselves as re-
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ligious or in happy marriages are less likely to have affairs, while the longer
someone is in a marriage, the more likely he or she has an affair.

Table 10.2 Coefficient posterior means, standard deviations, 2.5- and 97.5-percentile
for the probit model

Variable Mean  Std. dev. 2.5-percentile  97.5-percentile
CONST —0.728 0.408 —1.528 0.061
MALE 0.150 0.126 —0.098 0.392
YEAR 0.029 0.013 0.004 0.054
KIDS 0.249 0.161 —0.065 0.561
RELIGIOUS —-0.516 0.122 —0.757 —-0.277
ED 0.005 0.025 —0.045 0.055
HAPPY —0.517 0.124 —0.760 —0.269

To assess the quantitative impacts of the covariates, we estimate the aver-
age marginal effects of the covariates, using the following code, again added
to the previous.

margeff.jl

N = size(store_beta,1);
store_ME = zeros(nloop-burnin,6);
xbar = mean(X,dims=1)"';
for loop in 1:N
global beta = store_beta[loop,:]; # ME for cont. vars.
store_ME[loop, [2 5]] = pdf.(Normal(0,1),xbar'*beta) .*
betal[3,61];
for j in [1 3 4 6] # ME for discrete variables
z0 = copy(xbar); zO0[j+1] = 0; # using copy is important!
zl = copy(xbar); z1[j+1] = 1;
store_ME[loop,j] = (cdf (Normal(0,1),z1'*beta) -
cdf (Normal(0,1) ,z0'*beta)) [1];
end
end
mean(store_ME,dims=1)

The summary statistics of the posterior distribution for the marginal ef-
fects are reported in Table 10.3. For example, people who report themselves
as religious are 15 percent less likely to have affairs (fixing the other covariates
at the sample means), and those who report to be happy in their marriages
are 17 percent less likely.
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Table 10.3 Posterior means, standard deviations, 2.5- and 97.5-percentile for the
marginal effects

variable mean std. dev.  2.5-percentile = 97.5-percentile
MALE 0.045  0.038 —0.030 0.121
YEAR 0.009  0.004 0.001 0.016
KIDS 0.071  0.046 —0.024 0.157
RELIGIOUS —-0.150 0.035 —0.217 —0.082
ED 0.002  0.008 —0.014 0.017
HAPPY —0.167  0.043 —0.255 —0.084

10.2.3 Latent Variable Representation

Estimation and inference under the logit and probit models can be simplified
by using data augmentation. The general idea behind data augmentation is
to include “hidden” variables in the model for the data in order to simplify
the analysis of the model. A prime example of data augmentation is found
in the EM algorithm in Sect. 6.6.

For the logit and probit models, data augmentation can be introduced by
thinking of an observed binary response in terms of whether or not an under-
lying continuous latent (i.e., hidden) variable crosses a particular threshold:
if it does, then we observe, say, 1; otherwise, we observe 0. The advantage of
the latent variable representation is that it is often easier to work with the
continuous latent variables than the observed binary variable. To be mathe-
matically precise, consider again the probit model: each binary response Y;
is distributed as Y; ~ Ber(i;), where p; = ®(z; 8), and z; is a vector of
covariates.

Now, introduce the latent variables {Z;}, each is distributed independently
according to the normal distribution with mean x; 8 and variance 1:

Zi ~N(z} 8,1) . (10.9)
These latent variables are then linked to the observed binary variables {Y;}
as follows: ;
1if Z; > 0,
Vo= {0 it Z; <0. (10.10)

The values of the binary variables {Y;} are observed and the covariates {x;}
are fixed. However, the latent variables {Z;} are unobserved.

To check that this latent variable representation (10.9)—(10.10) does in-
deed give the same probit model, we need to show that it implies the same
likelihood function. To this end, note that under the latent variable repre-
sentation, each Y; is an independent Bernoulli random variable with success
probability:

P(Y; =1) =P(Z; > 0) = 1 - &(~z] B) = D(z] B) ,

7
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which is the same success probability under the probit model. Hence, the la-
tent variable representation in (10.9)—(10.10) implies the same probit model.

Introducing more unobserved variables might seem to be odd as they give
rise to exactly the same model. However, as it turns out, by augmenting the
data with these latent variables, computation becomes more tractable. In fact,
we can use the expectation-maximization algorithm discussed in Sect. 6.6 to
obtain the maximum likelihood estimate easily.

We first determine the complete-data log-likelihood—using frequentist
rather than Bayesian notation. Since conditional on Z the vector Y is de-
terministic, the joint pdf of Y and Z has the same form as the pdf of Z. It
follows that

n

UB;y,2) = n f(z B) = 5 n(2m) = 5 (s — 2] B)?

i=1

—% En: {(=/B)* =2z x/ B} +const . (10.11)
i=1

Now, suppose B,_; is the current value for 8. To implement the E-step,
we derive the conditional density:

9t(z) = fz 1y (z|y; B,-1) = Hfzim(zi |yis Bi—1) 5

=1

where we use the fact that the latent variables Z1, ..., Z, are conditionally
independent. If y; = 1, the only extra information we have is that Z; > 0.
What this means is that given y; = 1, Z; follows the normal distribution
with mean @ 3, ; and variance 1, left-truncated at 0. So, fz, |v,(zi |y =
1;8,_1) = 0 for z < 0 and proportional to exp(—3(z; —x, B,_,)?) for z; > 0.
We write

(Zilyi = 15B4-1) ~ TN .00y (& By_1,1) - (10.12)

Similarly, if y; = 0, then

(Zi|yi = 0:B,-1) ~ TN(— o0y (] By_1,1) - (10.13)

In particular, (see Problem 10.7), we have:

T
E[Zi|yi = 1;Be1] =a{ By + W : (10.14)
So(w;rﬂtq)

¢(_33¢Tﬂt—1) .

Writing v; = Eg, [Z; | yi; B,_1], it follows from (10.11) that

E[Zi|yi = 0;8,_1] = =] B,y — (10.15)
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n

Qt(ﬁ) = Egtl(lg;y? Z) = *% Z {(Jljﬁ)2 — 2w a:,TB} -+ const .

i=1

Next, to implement the M-step, we simply solve VQ,(8) = 0. Since @ is
quadratic in B, we can use the differentiation rules in Sect.B.1 to find (see
also Problem 10.8) the solution:

n -1 5
Bi= (Z :ch) > v (10.16)
=1 i=1

Finally, the maximum likelihood estimate for 8 can be obtained by going
through the E- and M-steps iteratively until convergence.

For Bayesian estimation, the probit model can be fitted using the Gibbs
sampler with data augmentation. Specifically, if we have draws from the joint
posterior pdf f(z, 8 |y) and retain only the draws for 3, then those draws are
from the desired marginal pdf f(8|y). Therefore, we can construct a Gibbs
sampler by sequentially drawing from f(8 |y, z) followed by f(z |y, 8). As it
turns out, both conditional densities are of standard form and samples from
each can be obtained quickly.

For concreteness, assume the prior 8 ~ N(0, ). First, to derive f(8 |y, z)
note that, given the latent vector z, we in fact have a linear regression model,;
see (10.9). Hence, using Theorem 8.1 we have:

(Bly,z) ~N(B,D),

where N
D=X'X+%X;1' and B=DX'"z,

and X is the design matrix with i-th row =, i =1,...,n.

Second, the conditional density f(z|y,8) = [[i; f(zi |y, B) is given
in (10.12)—(10.13). A draw from a truncated normal distribution can be ob-
tained, say, via the inverse-transform method or (faster) the acceptance—
rejection method.

Example 10.7 (Gibbs Sampler for Probit Model). To demonstrate
fitting the probit model using the Gibbs sampler with data augmentation, we
revisit Example 10.6. We use the Truncated function to draw from truncated
distributions; see also Problem 10.7.

In the main script, we implement a Gibbs sampler by alternatively drawing
from f(B|y,z) and f(z|y,B). The estimation results are similar to those
obtained in Example 10.6, and they are not repeated here.

IS 475

IS 245

I 53
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probit_bayes_gibbs.jl ]

using DelimitedFiles, Distributions, LinearAlgebra
affair = readdlm("affair.csv", ',")

y = Int64. (affair[:,1]); # convert to integers
X = affair[:,2:end];

XX = X'*X;

n, k = sizeX);

VO = 10*diagm(ones(k)); # prior covariance
invV0 = VO\I;

burnin = 500;

nloop = 5000+burnin;
store_beta = zeros(nloop,k);
z = 1.0xy; # initial guess, new float copy
beta = XX(X'*z);
# compute a few things before the loop
id0 = findall(y .== 0); idl = findall(y .==1);
n0 = length(id0); nl=n-n0;
V = (invV0 + XX)\I; # posterior covariance
for i in 1:nloop
# sample z
global beta
global Xb = X+*beta;
for k in idO
z[k] = rand(Truncated(Normal(Xb[k],1), -Inf,0))
end
for k in idil
z[k] = rand(Truncated(Normal(Xb[k],1), 0, Inf))
end
# sample beta
dbeta = X'*z;
beta = Vxdbeta + cholesky(Hermitian(V)).L * randn(k,1);
store_betal[i,:] = beta';
end
store_beta = store_beta[burnin+l:end,:]; # discard the burn-in
mean(store_beta,dims=1)

10.3 Poisson Regression

Poisson regression deals with count data Y, for example, the number of cars in
a household. We are interested in how some observed characteristics x—e.g.,
household income, number of children in the household, whether it is a single-
parent household, etc.—affect the response Y. Since Y takes values on the set
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of nonnegative integers, one natural specification for Y is the Poisson model
Y ~ Poi(p). In terms of a generalized linear model (see Definition 10.1), it
remains to link 2" 3 to the mean p, which has to be positive. One easy way
to guarantee this is to specify u as

,u:emTﬁ .

This leads to the following definition.

Definition 10.5. (Poisson Regression Model). Let Y; denote the
i-th response (count) and let x; represent the vector of explanatory vari-
ables and B the associated parameter vector. In a Poisson regression
model, the {Y;} are independent, and Y; ~ Poi(;), with p; = e® 8,
In other words, the component link function is g(z) = Inz.

Let =] be the i-th row of the design matrix X, and let g = [g,...,9] .
We see that the distribution of Y = [Y7,...,Y,]" is completely specified by
p =g~ 1(XA). In this case no additional dispersion parameters are used.

Example 10.8 (MLE for the Poisson Regression Model). Suppose we
are interested in determining the impact of research and development (R&D)
on the number of patents obtained by firms in a certain industry. For this
purpose a total of n = 14 firms are interviewed. For each firm we record its
number of patents obtained over the last 3 years, as well as its R&D budget
(in tens of thousands of dollars) over the same period. The data are presented
in Table 10.4.

To investigate the effectiveness of R&D, let Y; denote the number of
patents obtained by the i-th firm and let @; = [1,2;]" be a 2 x 1 vector
of explanatory variables, where x; is the i-th firm’s R&D budget. We con-
sider the Poisson regression Y; ~ Poi(u;), where p; = e® B and B =[p1,5]"
is a 2 x 1 vector of regression coeflicients.

Table 10.4 Number of patents and R&D

Number of R & D Number of R&D

patents budget patents budget
6 26 8 29
3 21 2 13
2 19 0 5
1 11 2 3
3 21 6 29
1 16 1 3
1 19 3 21

I 291
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The log-likelihood function for the Poisson regression model is given by

n

U(By) = Z [ysz',T,B — o™i P In y;!

i=1

Moreover, it can be shown that the score function and the information matrix
are respectively (see Problem 10.2):

n n

S(B) = Z(yz - emjﬂ)mi and I(B) = Zem:ﬂmim;

i=1 i=1

Hence, the maximum likelihood estimate of B can be computed using Fisher’s
scoring method, which is implemented in the following Julia script.

poissonreg.jl ]

using SparseArrays, LinearAlgebra
y=[6321311820261 3]
RD = [26 21 19 11 21 16 19 29 13 5 3 29 3 21]'
n = length(y)
X = [ones(n,1) RD]
betat = (X'#X) (X'*log.(y .+ .001)) # initial guess
S = ones(2,1) # score
e = 107(-5) # tolerance level
IM = zeros(2,2)
while sum(abs.(S)) > 107(-5) # stopping criterion
global S, betat, IM
mu = exp.(X*betat)
S = sum(repeat((y - mu), 1,2).*X,dims=1)"'
IM = X'*sparse(l:n,1:n,vec(mu))*X # info matrix
betat = betat + IM\S
end
println(round. (betat,digits=4))
V = IM\I # inverse of the info matrix
println(round. (V,digits=4))

[-0.7947; 0.0919;;]
[0.3109 -0.0128; -0.0128 0.0006]

10.4 Problems

10.1. Prove Theorem 10.1; that is, show that if R ~ N(0,I,) and W ~
Gamma(v/2,1/2) are independent, then the random vector Z = /v/W R
has pdf



 -2016 44614 a -2016 44614
a
 
https://people.smp.uq.edu.au/DirkKroese/statbook/

10.4 Problems 311
v+1
(v tn 22\ "=z
RPN |
'(v/2)(mv)n/ v
Hint: consider the coordinate transformation:
21 21/ w/v 1
> : =

Zn/Jw/v Tn

w w w

and determine the determinant of the corresponding Jacobian matrix. Next,
apply the transformation rule (3.26) to find the joint pdf of [Z,W]. Finally 15 81
integrate out W to obtain the pdf of Z.

10.2. Consider the Poisson regression model in Definition 10.5. Given the
data [y1,x,}],...[yn, 2], show that the log-likelihood function is given by

n

(Biy) =) [yiwfﬂ — o™ B _Iny,!

i=1

Further, show that the score function and the information matrix are, respec-
tively,

S(B) =Y (yi—e* Pz, and 1(B) =) e* Paa].
=1

i=1

10.3. It is generally believed that births by Caesarean section are more fre-
quent in private hospitals than in public ones. To investigate if there is any
evidence for this claim, data are collected on the number of Caesarean sec-
tions carried out in three private hospitals (type 0) and seven public hospitals
(type 1), as well as the total number of births in each of the hospitals. These
are presented in Table 10.5.

Table 10.5 Poisson regression example

Number of Number of Hospital Number of Number of Hospital
Caesarean births type Caesarean  births type
sections sections
8 236 0 13 679 1
16 739 1 4 26 0
15 970 1 19 1272 1
23 2371 1 33 3246 1
5 309 1 2 28 0
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Use the data to fit a Poisson regression: regress the response variable “num-
ber of Caesarean sections” on an intercept, “number of births,” and “hospital
type.” Are births by Caesarean section more frequent in private hospitals?
Hint: use the results in Problem 10.2.

10.4. Consider again Example 10.6 where we use the probit model to ana-
lyze the decision to have an extramarital affair. For a nonreligious, college-
educated (16 years of education) male who has married for 10 years with
one child from the marriage, and who reports that his marriage is hap-
pier than average, what is the probability that he has an extramarital af-
fair? Use the kde function to plot a kernel density estimate of the posterior
probability.

10.5. In the linear regression model Y = a7 B + ¢, the parameter vector 3
can be interpreted as the marginal effects of the (continuous) covariates, that
is, the rate at which the response changes as the result of an infinitesimal

change in the covariate:
B =V.EY .

However, for the probit model, the marginal effects depend on both the param-
eter vector 3 and the covariates x; in a nonlinear functional form: p(x ' 3)8;
see (10.8). What are the marginal effects for the logit model?

10.6. In Definition 10.3 the matrix 32 was intentionally called the scale matrix
rather than covariance matrix, because the covariance matrix of X (i.e.,

E[(X — p)(X — u)T]) is not equal to X:

a. Show that the covariance matrix of X is ZE[ZZ '], where Z has a stan-
dard multivariate Student’s ¢ distribution.

b. Use Theorem 10.1 to show that the covariance matrix of Z, that is ]E[ZZT],
is equal to cv 1,,, where I, is the identity matrix and

[e%) 1 % %—1 —%w
C:/ 1(3) wi e |
0o w r(s)

c. Evaluate c.
10.7. Let Z ~ TN(u,0?,a,b), where a < b. Thus, the distribution of Z is
that of a random variable X ~ N(u,0?) conditioned on X lying in [a, b]:

a. Show that the pdf of Z is

o((z—p)/o)/o
(b—m)/o)—P((a—p)/o)’
where ¢ and @ are respectively the pdf and cdf of the standard normal

distribution.
b. For 0 =1, a = —o0, and b = 0, show that EZ = pu — o(u)/P(—p).

fz2(2) = 5
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c. For 0 =1, a =0, and b = oo, show that EZ = pu + o(p) /().
d. Show that the cdf of Z is

£y (2) = PG = m/0) = 9((a =)o)
&((b— /o)~ @((a—p)/o)

e. Explain why the function tnormrnd in Example 10.7 can be used to sim-
ulate Z.

10.8. Prove (10.16).
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Chapter 11
Nonparametric Methods

The standard frequentist and Bayesian models involve parameterized distri-
butions for the data that contain a small number of parameters. For example,
if the data are represented by X, then a typical model is of the form

X ~ Dist(6) , (11.1)

depending on a known distribution (multivariate normal, binomial, gamma,
and so on) up to an unknown parameter vector 6 of small dimension. In
this section we relax the requirement that the form of the distribution needs
to be specified in advance. The resulting models are often said to be non-
parametric. The nonparametric counterpart of (11.1) is that X ~ Dist,
where Dist is left unspecified. The quintessential case is where the data vec-
tor X = [X3,...,X,] is comprised of an iid sample from a distribution with
an unknown cdf F: .
X1, X, S F. (11.2)
Even though the model (11.2) might not seem to carry much information, it
is still feasible to do inference on the data. In particular, we saw in Sect. 7.1
that it is possible to estimate the unknown cdf F' via the empirical cdf of
the data. In a similar way, density estimation (Sect. 7.2) is considered to be a
nonparametric method, as the model for the data is of the form (11.2), where
F' is assumed to have a density f. Nonparametric methods may still involve
parameterized distributions, but the dimension of the parameter vector is
unbounded. Using the general framework for statistical learning in Sect. 4.6,
the same principle applies to nonparametric regression.
We consider various nonparametric methods in this section. Nonparamet-
ric statistical tests often involve the ordering and ranking of data, giving rise
to order statistics, which are discussed in Sect. 11.1. We present nonparamet-
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ric equivalents to the standard one- and two-sample ¢-tests in Sect. 11.2. Sec-
tion 11.3 deals with nonparametric regression using the versatile framework
of kernel functions. Another common approach to nonparametric regression
is to employ spline functions, as treated in Sect. 11.4. Finally, Sect. 11.5 dis-
cusses a Bayesian analysis of nonparametric regression via Gaussian process
Tegression.

11.1 Order Statistics

Let Xq,..., X, be a sequence of iid random variables from some cdf F', which
may be known or unknown. Arrange these in order and denote the ordered
sample by X(1),..., X(,). For example, X(1) is the smallest, and X, is the
largest. Then, X,y is called the r-th order statistic. The order statistics
are neither independent nor identically distributed, but their marginal and
joint distributions are easy to derive.

First consider the marginal distribution of the r-th order statistic. We have

FX(T) (Z) = P(X('r) < l‘)
P(At least 7 of X1,...,X, are <x)

I
MS

P(Exactly j of X1,...,X,, are <)

r

<.
I

|

(") @y Fay.

J=r

Consequently, if X7,...,X,, are continuous random variables with common
pdf f, then

n—1

fe @ = @ =n (17 )F@)y - F@) @), (113)

T Xm r—1
While (11.3) can be derived in a purely combinatorial fashion, it is easier to
show it probabilistically as follows. The most likely way in which the event
{x < Xy < @ + ¢} happens is that evactly one of the n variables falls in
the interval [z, z + €|, while  — 1 variables fall in (—oo, x) and the remaining
n —r fall in (z + €, 00). The probability of having more than one variable in

[z, 2 + €] is negligible as € goes to 0. In particular, we have
fx. (x)e+o(e) =Pz < Xy <z+e¢)
) (r)

. (” - 1) (F()) (1 F())" x f(x)e + o(e).

r—1

where o(e)/e | 0 as € | 0. Dividing both sides by ¢ and letting € | 0 now
gives the stated result.
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In particular, the minimum of the sample has distribution function

(r) =1—-(1—F(x)",

X(1)

and, in the continuous case,
Fr @) = (1 = F@)" (),
while for the mazimum we have
Py, (@) = (F(@))".
and, in the continuous case,
Fro,, (@) = n(F (@) f(z).

Using a symmetry argument, if X5,...,X,, are continuous random vari-
ables with common pdf f, then the order statistics X(y),..., X(,) have joint
pdf

n! [T, fla) ifa <ze<---<ay

) (11.4)
0 otherwise .

h(xl,...,mn) :{

This is intuitively obvious because h is just the joint pdf of Xi,..., X,
multiplied by n! (being the number of arrangements of the sample).

11.2 Nonparametric Statistical Tests

Making assumptions about the distribution of the data is fraught with risks,
in case the assumptions are not true. This may lead to incorrect conclusions.
In nonparametric tests, we still may make assumptions about the data (e.g.,
independence), but we do not model the data via a specific parametric class
of distributions. Nonparametric tests tend to be more “robust” to outliers
in the data. The downside is that they are less “powerful” than parametric
tests, in the sense that it is more difficult to reject the null hypothesis when
it indeed should be rejected. We discuss a number of nonparametric versions
of the standard tests (e.g., one- and two-sample ¢-tests).
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11.2.1 One-Sample Nonparametric Tests

For the one-sample setting, suppose Z1, ..., Z, are iid random variables from
an unknown continuous distribution that is symmetric around some . Hence,
1 is the median of the distribution and also its expectation, if the latter exists.
We wish to assess via a statistical test whether the hypothesis Hy : p = 0
should be accepted or not versus some two- or one-sided alternative; e.g.,
Hy:p#0or Hy : u> 0. The simplest nonparametric test statistic to use in
this situation is

T=Y liz0- (11.5)
=1

This gives the sign test statistic, where we simply count the total number
of positive observations. Under Hy the test statistic 7" has a Bin(n,1/2) dis-
tribution, and for the alternative Hy : u # 0, we reject Hy for large or small
values of T. This is simply the one-sample binomial test in disguise, where
we test Hy : p = 1/2 against Hy : p # 1/2, with p =P(Z > 0).

Example 11.1 (Sign Test for Paired Data). We return to the weight
loss data in Example 5.15, which is replicated in Table 11.1.

Table 11.1 Weight loss data

Before 280 140 90 128 135 98 111 97 89 156
After 240 135 89 135 120 95 99 103 87 140
Loss 40 5 1 -7 15 3 12 —6 2 16
Sign + + + - + + + - + +

For the one-sample t-test, it was assumed that the weight loss data came
from some normal distribution. If instead we carry out a sign test, with
alternative Hy; : p > 0, then the corresponding p-value is P(X > 8) =
1 —P(X <7), where X ~ Bin(10,1/2). Using Julia:

using Distributions
1 - cdf (Binomial(10,0.5),7)

0.0546875

Again, there is modest, but not compelling, evidence that the weight loss
program works.

The sign test uses only minimal information about the values {Z;}—it
records only if the values are positive or negative. To better exploit the sym-
metry assumption in the model, more sophisticated nonparametric tests also
include information on the ranking of the data, as well as the sign of the data.
In particular, by ordering the absolute values {|Z;|} from smallest to largest,
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we can assign a rank R to each absolute value |Z|, where R = r means that
| Z| is the r-th smallest of the {|Z;|}. Note that from the symmetry and conti-
nuity assumption, it follows that under Hy : u = 0 the vector [Ry,..., R,] is
a random permutation of [1,...,n], where all of the n! possible permutations
are equally likely.

We consider test statistics of the form

n
T= E a’!‘BT? (116)
r=1
where aq,...,a, are given numbers and, for r =1,...,n,

B 1 if the variable whose absolute value has rank r is positive,
" )0 otherwise.

Under Hy : p = 0 the {B;} are independent and Ber(1/2) distributed. It
follows that the expectation of T' under Hy is

1 — n__
ET:igar=§a, (11.7)

where @ = 23" | «, is the average of the {c, }. Similarly, the variance of
T under Hy is

n 1 n
Var(T) = Zaf Var(B,) = 1 Zaf . (11.8)
r=1 r=1

For small n, the probability distribution of T" under Hy can be obtained by
full enumeration, as

P(T<t)=2"> lirm<ty
b

where the enumeration is over all 2" binary vectors b = [by,...,b,] and
T(b) = >"_, ayb,. When total enumeration is not feasible one can instead

estimate P(T < t) via the Monte Carlo estimator

1 K
It > Lror<y

i=1

where T ..., T) are iid copies of T.
Note that if a, = 1 for all r, then (11.6) simply yields the test statistic
for the sign test in (11.5). If instead a, = r,r = 1,...,n, the resulting test

statistic
n

T =Y B, (11.9)

r=1
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is called the (Wilcoxon) positive-rank sum test statistic. The test statistic
is thus obtained as follows:

1. First rank the absolute values.
2. The test statistic T is the sum of the ranks of the positive values.

From (11.7) and (11.8) the expectation and variance of T under the null
hypothesis are

nn+1) nn+1)(2n+1) .

ET* =
24

and Var(T+) =

(11.10)

Moreover, it can be shown that under the null hypothesis and for large sample
size n, the test statistic has approximately a normal distribution.

Under the model assumption of a symmetric continuous distribution, there
are no ties. When ties do occur in practical situations, the method is modified
by giving equal fractional ranks to the tied values.

Example 11.2 (Wilcoxon Positive-Rank Sum Test). Consider again
the weight loss data in Table 11.1. The last row in Table 11.2 gives the ranks
of the absolute values.

Table 11.2 Weight loss data with ranks

Loss 40 5 1 -7 15 3 12 —6 2 16
Sign +  + 4+ - + +  + - + +
Rank 10 4 1 6 8 3 7 5 2 9

The outcome of the test statistic is t7 = 10+4+1+8+3+7+2+9 = 44.
Under Hy, T has approximately a normal distribution with expectation 27.5
and standard deviation 9.810708, so that the p-value for this right one-sided
test can be approximated as follows:

using Distributions

n=10; t = 44

et = nx(nt+1)/4

sdt = sqrt(nx(n+1)*(2*n+1)/24)
pval = 1 - cdf(Normal(et,sdt), t)
print (pval)

0.0463

In fact, the exact p-value is a bit larger. The following Julia program
computes the ranks using the Julia function sortperm and invperm and
determines the true p-value via complete enumeration.
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pvalposrank. jl ]

using Distributions

zZ = [40 , 5, 1,-7,15,3, 12, -6, 2, 16]
ind = sortperm(abs. (z))

ranks = invperm(ind)

t = sum(ranks .x (z .> 0))

function pval(t)
tot = 0
a=1:10
for i = 0:2710-1
b = digits(i, base=2, pad=10)
tot = tot + (sum(b .* a) >= t)
end
return tot / 2710
end

pval(t)

0.052734375

11.2.2 Two-Sample Nonparametric Tests

The use of rankings for statistical tests is more natural in a two-sample set-
ting. Consider a two-sample data model, where the measurements X1, ..., X,
from Group 1 are iid from a continuous distribution with cdf F' and the mea-
surements Y7,...,Y, from Group 2 are iid with cdf G, where F' and G are
unspecified. It is assumed that the {X;} and {Y;} are independent. We wish
to test if the distributions of the two groups are the same or not.

Sort pooled data Xi,..., X, Y1,..., Yy a8 Z(q) < -+ < Z(y), where N =
m + n. This gives a rank to each measurement. For ranks r =1,..., N, let

B — 1 if the variable with rank r belongs to Group 1,
" 10 otherwise.

Under Hy the {B,} are Ber(p) distributed with success probability p = m/N,

but note that in this case the {B,} are dependent random variables, in con-

trast to the one-sample scenario in the previous section. In particular, under

Hy we have By, ..., By ~iiq Ber(p) conditional on By +---+ By = m.
Similar to (11.6), we consider test statistics of the form
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N
T:ZaTBT (11.11)
r=1

for some fixed {c; }. As in the one-sample case, the expectation and variance
of T under Hy are readily evaluated. The expectation of T is

N N
ET =Y a,EB, = %Za —ma,
r=1 r=1

where @ = + Zivzl Q.

For the variance, observe that under Hy, it holds that Cov(B,,Bs) =
Cov(By, Bs) for all r # s. If we denote v = Cov(B,, B,) = Var(B,) and
¢ = Cov(By, Bs) for r # s, then

mn

v="Var(By) =p(l -p) = 15

and
¢ = Cov(By, By) = E[B,B,] — p?
=P(B;=1|B1 = )P(B; = 1) - p°

m—1 9 mn

N 1P TN (N 1)

Noting that v — ¢ =mn/(N(N — 1)), it follows that

I
M=
] =

Var(T) aras Cov(By, By)

1s

N N
vZaﬁJcmZaTas

r=1 r=1s=1

SF#T

1

i
Il

N
= (v—c)Zaf—i—cNQEQ

r=1
N
. mn 1 2 2\ _mnV,
N—1<N;O"’O‘>N—1’

where V, = + Ziv:l(ar —@)? is the average squared deviation of the {a;}.

The main instance is where a,- = r, which yields the Wilcoxon’s rank
sum test, where the test statistic is the sum of the ranks of the first group.
In this case, @ = (N +1)/2 and V,, = N(N? —1)/12, so

1
Er—="WED o Var(r) =

mn(N +1)
5 —_—.

12



11.2 Nonparametric Statistical Tests 323

An intuitive way to derive the expectation is that under the null hypothesis,
all ranks are equally likely, so the rank R of one observation is a discrete
uniform random variable taking values in 1,..., N. Its expectation is thus
ER = (N + 1)/2, and since there are m observations in the first group, we
have an expected rank sum of ET' = mER = m(N +1)/2.

Under the null hypothesis and for large n, the test statistic has approxi-
mately a normal distribution; see, for example, Wald and Wolfowitz (1944).

Example 11.3 (Rank Sum Test). The data given in Table 11.3 and de-
picted Fig.11.1 was drawn from cdfs F(z) = 1 — exp(—z + 1), > 1 for
Group 1 and G(z) =1 — exp(—=x),x > 0 for Group 2.

Table 11.3 Data from (shifted) exponential distributions. Ranks are given below the
observations

T 1.04  3.30 1.40 1.53 1.01 1.02  3.93 1.61 1.93  2.25
Rank 8 18 11 14 6 7 19 15 16 17
Y 1.00 140 130 395 008 133 066 073 149 043
Rank 5 12 9 20 1 10 3 4 13 2
Group 2 - ° oo . . . .
Group 1 ¢ <
0 0.5 1 1.5 2 2.5 3 35 4

Fig. 11.1 Data from (shifted) exponential distributions

A two-sample t-test does not detect a difference between the two distribu-
tion, yielding a p-value of 0.166, as obtained via the following Julia program.

wilcoxl.jl

using StatsBase, Distributions

x = [1.04,3.30,1.40,1.53,1.01,1.02,3.93,1.61,1.93,2.25]
y [1.00,1.40,1.30,3.95,0.08,1.33,0.66,0.73,1.49,0.43]
m = length(x); n = length(y); N = m+n;

pooledV = ((m-1)var(x) + (n-1)var(y))/(N-2)

ttest = (mean(x) - mean(y))/sqrt(pooledV)/sqrt(1/m + 1/n)
pl = 2x(1 - cdf(TDist(N-2), ttest))

print(pl)

0.1658502382402547
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Let us investigate if the Wilcoxon rank sum test fairs better here, as the
normality assumption is obviously violated. The smallest measurement is
0.08, so it gets rank 1 while the second smallest measurement is 0.43, and so
on. There are no ties in this case. The null hypothesis is again that there is
no difference between the distributions of the two groups and the alternative
hypothesis is that there is a difference. The outcome of the test statistic is

t1=8+4+184+114+144+64+7+194+ 15416417 = 131.

We reject the null hypothesis for large and small values of the test statistic.
For this two-sided test, the p-value is 2P(T" > 131). Using the normal ap-
proximation, with ET' = 105 and Var(T') = 175, we obtain an approximate
p-value of 0.0494, which gives reasonable evidence against the null hypothe-
sis. The following code should be appended to the previous one to carry out
the rank sum test.

wilcox1.jl

z = cat(x, y, dims=1)
ind = sortperm(z)

ranks = invperm(ind)
t = sum(ranks[1:10])

ET = mx(N+1)/2

sdT = sqrt(m*n*(N+1)/12)

p = 2*x(1 - cdf (Normal(ET,sdT),t))
print(p)

0.0493661947519326

The exact p-value can be determined by enumerating over all (fg) binary
vectors of length 20 with exactly 10 ones. Under the null hypothesis, each of
these vectors has the same probability. We find a p-value of 0.052, which is
close to the normal approximation. The following code, to be appended to
the previous two, carries out the analysis.

wilcox2.jl

function pval(t)

tot = 0

a=1:20

for i = 0:2720-1
b = digits(i, base=2, pad=20)
if sum(b)==10

tot = tot + (sum(b .* a) >= t)

end

end
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return 2*tot / binomial(20,10)
end

print (pval(t))

0.05242590227110351

The Mann—Whitney test is closely related to the Wilcoxon rank sum
test. Here, the test statistic is defined as

= Z Z Lixisvyy -
i=1 j=1

Hence, U is the total number of times where a value in the first group is larger
than a value in the second group. You may verify that the Mann—Whitney
test static is related to the Wilcoxon rank sum test statistic 1" via

(m+1)m

U=1-"=

In fact, U is of the form (11.11), with a, = r — (m +1)/2,r = 1,..., N,
because

+1 (m+Lym
U:ZT’B —LZBT_T (m TRt

asBi+---+By=m

Finally, taking o, = z(;),7 = 1,..., N, we obtain a randomization test,
also called a permutation test. In this case the test statistic T' takes val-
ues z;, + -+ z;,, where [i1,...,i;] is any ordered arrangement of distinct
elements in {1,...,n} of size m. There are (:fl) of such arrangements, and
under the null hypothesis all arrangements are equally likely. Note that the
observed test statistic ¢ is simply the sum of all observations in the first group,
ie.,t =x1+- -+ x,. Using either full enumeration or Monte Carlo methods
we can then assess how ¢ compares with the sum of the variables in the first
group after the observations are reshuffled.

Further information on nonparametric tests can be found in, for example,

Kolassa (2020) and Pratt and Gibbons (1981).

11.3 Gram Matrix and Kernel Functions

For the linear model with n x m model matrix X, with n > m, we saw in
Sect. 9.2.1—leaving out the regularization—that by rewriting 8 = X' c, the
minimization problem ming ||y — X3||? leads to the alternative minimization
problem

I 277
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min ||y — Ka|?, (11.12)
«

where K is the Gram matrix XX . Because K is a singular matrix when n >
m, solving the normal equations K ' (y — Ka) = 0 does not lead to a unique
solution; in fact, there is a subspace of dimension n —m of possible solutions.
However, each of these solutions & = [ay,...,a,]" gives the same value for
X T = B. The minimum-norm solution, that is, the solution & to (11.12)
such that ||a|| < ||@|| for any other solution &, is given by & = KTy, where
K™ is the (Moore-Penrose) pseudo-inverse of K.
Using any solution & leads to the (unique) prediction function

gr(@)=a"B=> " a; (@ ), (11.13)

i=1

for training data 7 = {(«;, y;)}. This reformulation may seem contrived, but
in fact it opens up a whole new way of thinking about linear models. The
key point is that the estimation procedure and the prediction function only
depend on the inner products of the explanatory variables (feature vectors).

Suppose that instead of using the data {(x;,y;)}, we transform the feature

vectors via a function ¢ : R™ — RP, denoting z; = ¢(x;),i = 1,...,n. The
inner products of the transformed features are
(zi,2)) = 2] z; = (p(x:)) " d(x;), (11.14)

and the corresponding Gram matrix can be written as
K=",

where @ is the matrix whose j-th column is ¢(x;),7 = 1,...,n. Note that
any such matrix K is a covariance matriz. For instance, it is the covariance
matrix of the random vector X = ®U, where U ~ N(0,1,,). As such, K is a
symmetric and positive semidefinite matrix.

Example 11.4 (Polynomial Regression). The polynomial regression
model in (4.10) can be viewed in the framework discussed above. Here, each
original one-dimensional explanatory variable (feature) w is transformed into
a (d + 1)-dimensional feature vector = [1,u,...,u% . The corresponding
prediction function is a linear function of & and can also be written as a
linear combination of the inner products (x, x;), as in (11.13).

A powerful generalization of (11.13) and (11.14) is to associate with each
feature & € X for some arbitrary set X (e.g., R or R™) a whole feature
function k(x,-) : X — R and define the inner product of x(x,-) and x(x’, ")
as k(x,x’). This approach is only valid if the matrix K = [k(z;, z;)] is a
covariance matrix for every choice of x;,i = 1,...,n and n. Such a function
k is called a covariance function or kernel function on X. To verify if
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a function x is a kernel function, we need to establish that it is finite and
symmetric (i.e., —oo < k(z,z’) = k(a', ) < 0o) and that

o' Ka >0 (11.15)

for every e € R™ and every choice of {x;} and n. The latter is equivalent to

iiai r(@i,a;) a; >0 (11.16)

i=1 j=1
for all {@;}? ; from X and real numbers {a;}? ;. The prediction function
in (11.13) is then generalized to

n

g-(2) = >_Gi nl@, @), (11.17)

for training data 7 = {(x;,y;)}, with a = K*y.
The standard kernel function on X = R™ is the linear kernel:
Kz, x') =z
An example of a non-standard kernel is given next.

Example 11.5 (Wiener Kernel). The Wiener kernel on X = R} is de-
fined as
k(z,2') = min{z,2'}, =z,2">0.

We will see in Sect. 11.5 that it is the covariance function of the Wiener
process (standard Brownian motion). We can use this kernel to construct
prediction functions of the form

g(z) = Z a; min{z, z; }
i=1

from data {(z;,y;),% = 1,...,n}. As a concrete example, suppose we wish
to reconstruct the function sin(x),z € [0,2n] from the function values at
the points z; = i — 1,i = 1,...,7. The parameter vector o = [y, .., a7]"

is found from (11.12) with K = [k(z;,2;)]. The following Julia program
computes the approximation.

wienerkernel. jl ]

using LinearAlgebra, Plots
x = (0:1:2%pi)"'

n = length(x)

y = sin. (x)




 -2016 58283 a -2016 58283 a
 
https://people.smp.uq.edu.au/DirkKroese/statbook/

328 11 Nonparametric Methods

k(x,u) = min(x,u) # kernel
K = zeros(n,n)

for i=1:n
for j=1:n
K[i,3] = k(x[i], x[5])
end
end
alpha = pinv(K)*y' # compute an optimal alpha

xx = 0:0.01:2%pi
N = length(xx); g = zeros(N);
Kx = zeros(n,N)

for i=1:n
for j=1:N
Kx[i,jl = k(x[i],xx[j])
end
end
g = Kx'xalpha; # function values

plot(xx,sin. (xx),color=:black,linestyle=:dash)
plot!(xx,g,color=:blue)
scatter! (x,y,legend=false,color=:black)

Figure 11.2 shows that the approximating function in this case simply
interpolates between the known values of the function.

Fig. 11.2 Approximating the sine function using the Wiener kernel

Many different ways to build kernel functions may be found in Shawe-
Taylor and Cristianini (2004). For example, the sum of two kernel functions
is again a kernel function and so is their product; see also Problems 11.8—
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11.11. A helpful way to produce kernel functions is to employ the following
result, involving characteristic functions.

Theorem 11.1. (Kernels and Characteristic Functions). Let X
be a random variable with a pdf f that is symmetric around 0 (i.e.,
f(x) = f(—x) for all € R. Define

Y(r) = Be™ = /eim f(x)dz, reR

to be its characteristic function. Then, x(x,2") = ¢ (x — 2’) is a kernel
function.

Proof. Note that ¢ (r) is real-valued, because the imaginary part of 1(r) is

P(r) =Esin(rX) = / sin(rz) f(z)dz =0,
since sin(—rz)f(—z) = —sin(rz)f(z) for all x. To verify (11.15), take any
n>1 a,...,a, €R, and zq,...,2z, € R. We have
a' Ka = Zz%am xj, %) Zz%agw xp)
j=1¢=1 j=1¢=1
_ Z Zajae/eizj e gy, /(Z o ewJu) (Zazeigﬂf“)f(U) du
j=1¢=1 =1

2
(u)du >0,

n

— E Lizju

—/ a e J
Jj=1

where Z denotes that complex conjugate of z € C. Since also k(z,z') =
Y(x — ') =2’ — ) = k(2, x), the function « is a kernel function.

The same principle and proof carries over to the multidimensional case
where X is a random vector in R%. The characteristic function is then defined
as

Y(r) = ]Ee“'TX, r € RY

The most important case is where X ~ N(0,b%I;), which has the character-
istic function )
1
P(r) = exp ( 3 HZQH ) , reR?

Consequently, we obtain the Gaussian kernel on R?

2
k(z,x") = exp (—;Hml);’:') . (11.18)

I 36
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The parameter b is sometimes called the bandwidth. Note that the kernel is
of the form k(x, ') = f(|Jz —'||) for some function f : R — R. Such kernels
are called radial basis function (rbf) kernels. By multiplying (11.18) with
a positive number, we obtain another kernel function, which we call a scaled
Gaussian kernel.

Prediction functions corresponding to (scaled) Gaussian kernels are there-

fore of the form
( 1z —=i? )
E Q; exp = .

Think of each point x; as having a feature x(x;, -) that is a scaled multivariate
Gaussian pdf centered at x;.

Example 11.6 (Gaussian Kernel). Figure 11.3 shows what happens if
in Example 11.5 we replace the Wiener kernel with a Gaussian kernel, but
otherwise keep the Julia code exactly the same.

Fig. 11.3 Approximating the sine function using Gaussian kernels

For large bandwidths (e.g., b > 1), we obtain an excellent agreement with
the true curve. However, for small bandwidths (e.g., b = 0.3), significant
overfitting occurs.

11.4 Regression Splines and Smoothing Splines

In Chap.4 we introduced a variety of nonlinear regression models, such as
polynomial regression and log-linear models, to describe the nonlinear rela-
tionships between the response and explanatory variables. However, they are
all parametric models in the sense that the user needs to specify a known
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functional form that maps the explanatory variables to the response. In many
applications, we might not have sufficient domain knowledge to assume a par-
ticular functional form. In those cases, it is desirable to learn the nonlinear
relationship from the data without imposing strong parametric assumptions.

In this section we consider piecewise polynomials and splines that are
designed to flexibly capture local features of the data. To fix ideas, we focus on
the case where there is a single explanatory variable z. A piecewise polynomial
function g(x) is constructed by first partitioning the domain of « into disjoint
intervals. Then, in each interval, we obtain a separate polynomial function
using only data that fall within the interval. Example 11.7 gives a simple
illustration of approximating the sine function using a piecewise quadratic
polynomial.

Example 11.7 (Piecewise Quadratic Polynomial). In this example we
use a piecewise quadratic polynomial with a break-point or knot at £ to
approximate the sine function in Example 11.5. In particular, we construct a
prediction function of the form

() = Bor + Bz + Pz, x <E,
PEV = oz + Praz + Paza?, x> €.

The parameters of g(z) can be estimated by running two separate regressions
using data x < £ and x > &, respectively. Figure 11.4 shows the estimated
piecewise quadratic polynomial g(z) with a knot at £ = 3.

Fig. 11.4 Approximating the sine function using a piecewise quadratic polynomial

Note that the function g(x) is discontinuous at &, which is often undesirable
in many applications. To ensure that g(z) is continuous at the knot &, one
can impose the linear constraint Bo1 + B11€ + 212 = Boz + Bi2€ + [2262 in
the least squares estimation. Similar constraints can be imposed to ensure
that higher-order derivatives are also continuous at the knot.

In general, constructing a piecewise polynomial that is continuous at the
knots &1,...,£x amounts to solving a least squares problem subject to a
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system of linear constraints. The prototypical problem can be formulated as

min [ly — Xp|*
A (11.19)
subject to RB =7,

where R is assumed to have full row rank (otherwise any redundant equations
can be removed). This problem can be solved using Lagrange’s method (see,
e.g., Botev et al. (2025, Section B.2.2)), which amounts to finding a stationary
point of

ly — X8> + AT (RB —7)

with respect to B and A, where X is the vector of Lagrange multipliers. Since
this is a convex optimization problem, we can take derivative with respect to
B and A and equate them to zero to find that the solution of the constrained
least squares problem in (11.19) follows from solving

R e

To see that (11.20) is the set of optimality conditions for the constrained
least squares problem in (11.19), suppose that (8, A) satisfies (11.20) and B
is any point that satisfies the linear constraints R8 = r. Then,

ly — X8| = |ly - XB - X(8 - B
= |ly — XB|* + IX(8 - B)|I> - 2(8 - B) "X (y — XP)
= |ly — XB|? +IX(8 - B)|> —2(8 - B) TR A
= [ly — XB|* + |X(8 - B)|I
> |ly — XB?,

where the third equality holds because of the optimality condition Xy —
XTXB = RTA; the fourth equality holds because R8 = RB = r. Hence, 8
is a minimizer.

We have seen how one can construct a continuous piecewise polynomial
with continuous higher-order derivatives by solving a linearly constrained
least squares problem. Often, however, it is more convenient to use a different
parameterization that incorporates the constraints directly. As an example,
consider a function of the form

g(z) = Bo + Prz + Box® + B3a® + Ba(z — )%,

where ()3 = 3 for t > 0 and 0 otherwise. It can be shown that this function is
a piecewise cubic polynomial that is continuous at the knot &, with continuous
first and second derivatives at &; see Problem 11.17. This is an instant of a
cubic spline. Estimation of the unknown parameters in g(x) is easy: we can
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simply obtain the least squares estimates of a linear regression of y on an
intercept, z, z2, 2% and (z — ¢£)3..

More generally, splines are a wide class of piecewise polynomial functions
that are continuous and have continuous (higher-order) derivatives at the

knots.

Definition 11.1. (Spline). A degree-N (or order N + 1) spline with
knots &1, ..., &k is a piecewise polynomial of degree N that has contin-
uous derivatives up to order N — 1 at the knots.

The cubic spline example above is a degree-3 spline, and a continuous
piecewise linear function is a degree-1 spline. While there are many ways to
construct splines, a particularly convenient approach, at least theoretically,
is based on the truncated-power basis. More specifically, let

gi(z)=2', j=0,1,...,N,
gN+]<x):( _£j>f7 ]:177K7
where (-)¥ is the truncated power function with exponent N, i.e., (t)} =tV
for t > 0 and 0 otherwise. Then,

N+K

glx) = Bjg;(x)
j=0

is a degree-N spline with knots &1, ..., ¢k

The fit of a spline tends to be erratic near the boundary knots because of
fewer data points at the extremes. As such, extrapolation beyond the bound-
aries can be wildly unreliable. One can ameliorate this problem by regular-
izing the spline outside the knots. An example is a natural cubic spline,
which imposes additional restrictions that the function is linear beyond the
boundary knots. This amounts to imposing four linear constraints on the
coefficients 5;,7 = 0,1,...,3 + K. More specifically, starting from the cubic
spline with knots at &1,...,&k:

3 K
g(x) =Y Bial +> Bax (w — )7,
i=0 k=1

restricting that g(z) is linear on x < & and > £k is equivalent (see Prob-
lem 11.18) to imposing the linear constraints:

K K
Ba=0, Bs=0, > Bk =0, » Barxl=0.
k=1 k=1
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Note that for a natural cubic spline with K knots, there are K free parame-
ters. Finally, the unknown parameters can be estimated by solving a linearly
constrained least squares problem as formulated in (11.19).

Even though splines can be piecewise polynomials of any degree, in prac-
tice cubic splines are the most widely used. They tend to strike the right
balance between flexibility and parsimony in most applications. The fitted
curve typically also appears to be smooth to the naked eye.

In constructing a spline, we need to specify the number and the locations of
the knots. Often domain knowledge about the application would help make
these choices. If the relevant domain knowledge is unavailable, a standard
practice is to select the number of knots using cross-validation. Si