

RAG-Driven Generative AI

Build custom retrieval augmented generation
pipelines with LlamaIndex, Deep Lake, and
Pinecone

Denis Rothman

RAG-Driven Generative AI

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Senior Publishing Product Manager: Bhavesh Amin

Acquisition Editor – Peer Reviews: Swaroop Singh

Project Editor: Janice Gonsalves

Content Development Editor: Tanya D’cruz

Copy Editor: Safis Editor

Technical Editor: Karan Sonawane

Proofreader: Safis Editor

Indexer: Rekha Nair

Presentation Designer: Ajay Patule

Developer Relations Marketing Executive: Anamika Singh

First published: September 2024

Production reference: 1250924

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN: 978-1-83620-091-8

www.packt.com

https://www.packt.com/

Contributors

About the author
Denis Rothman graduated from Sorbonne University and Paris-
Diderot University, and as a student, he wrote and registered a
patent for one of the earliest word2vector embeddings and word
piece tokenization solutions. He started a company focused on
deploying AI and went on to author one of the first AI cognitive NLP
chatbots, applied as a language teaching tool for Moët et Chandon
(part of LVMH) and more. Denis rapidly became an expert in
explainable AI, incorporating interpretable, acceptance-based
explanation data and interfaces into solutions implemented for
major corporate projects in the aerospace, apparel, and supply chain
sectors. His core belief is that you only really know something once
you have taught somebody how to do it.

About the reviewers
Alberto Romero has always had a passion for technology and open
source, from programming at the age of 12 to hacking the Linux
kernel by 14 back in the 90s. In 2017, he co-founded an AI startup
and served as its CTO for six years, building an award-winning
InsurTech platform from scratch. He currently continues to design
and build generative AI platforms in financial services, leading
multiple initiatives in this space. He has developed and
productionized numerous AI products that automate and improve
decision-making processes, already serving thousands of users. He
serves as an advisor to an advanced data security and governance
startup that leverages predictive ML and Generative AI to address
modern enterprise data security challenges.

I would like to express my deepest gratitude to my wife, Alicia, and
daughters, Adriana and Catalina, for their unwavering support
throughout the process of reviewing this book. Their patience,
encouragement, and love have been invaluable, and I am truly
fortunate to have them by my side.

Shubham Garg is a senior applied scientist at Amazon, specializing
in developing Large Language Models (LLMs) and Vision-
Language Models (VLMs). He has led innovative projects at
Amazon and IBM, including developing Alexa’s translation features,
dynamic prompt construction, and optimizing AI tools. Shubham
has contributed to advancements in NLP, multilingual models, and
AI-driven solutions. He has published at major NLP conferences,

reviewed for conferences and journals, and holds a patent. His deep
expertise in AI technologies makes his perspective as a reviewer both
valuable and insightful.

Tamilselvan Subramanian is a seasoned AI leader and two-time
founder, specializing in generative AI for text and images. He has
built and scaled AI-driven products, including an AI conservation
platform to save endangered species, a medical image diagnostic
platform, an AI-driven EV leasing platform, and an Enterprise AI
platform from scratch. Tamil has authored multiple AI articles
published in medical journals and holds two patents in AI and
image processing. He has served as a technical architect and
consultant for finance and energy companies across Europe, the US,
and Australia, and has also worked for IBM and Wipro. Currently,
he focuses on cutting-edge applications of computer vision, text, and
generative AI.

My special thanks go to my wife Suganthi, my son Sanjeev, and my
mom and dad for their unwavering support, allowing me the
personal time to work on this book.

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://www.packt.link/rag

Preface

Designing and managing controlled, reliable, multimodal generative
AI pipelines is complex. RAG-Driven Generative AI provides a
roadmap for building effective LLM, computer vision, and
generative AI systems that will balance performance and costs.

From foundational concepts to complex implementations, this book
offers a detailed exploration of how RAG can control and enhance AI
systems by tracing each output to its source document. RAG’s
traceable process allows human feedback for continual
improvements, minimizing inaccuracies, hallucinations, and bias.
This AI book shows you how to build a RAG framework from
scratch, providing practical knowledge on vector stores, chunking,
indexing, and ranking. You’ll discover techniques in optimizing
performance and costs, improving model accuracy by integrating
human feedback, balancing costs with when to fine-tune, and
improving accuracy and retrieval speed by utilizing embedded-
indexed knowledge graphs.

Experience a blend of theory and practice using frameworks like
LlamaIndex, Pinecone, and Deep Lake and generative AI platforms
such as OpenAI and Hugging Face.

By the end of this book, you will have acquired the skills to
implement intelligent solutions, keeping you competitive in fields
from production to customer service across any project.

Who this book is for
This book is ideal for data scientists, AI engineers, machine learning
engineers, and MLOps engineers, as well as solution architects,
software developers, and product and project managers working on
LLM and computer vision projects who want to learn and apply
RAG for real-world applications. Researchers and natural language
processing practitioners working with large language models and
text generation will also find the book useful.

What this book covers
Chapter 1, Why Retrieval Augmented Generation?, introduces RAG’s
foundational concepts, outlines its adaptability across different data
types, and navigates the complexities of integrating the RAG
framework into existing AI platforms. By the end of this chapter, you
will have gained a solid understanding of RAG and practical
experience in building diverse RAG configurations for naïve,
advanced, and modular RAG using Python, preparing you for more
advanced applications in subsequent chapters.

Chapter 2, RAG Embedding Vector Stores with Deep Lake and OpenAI,
dives into the complexities of RAG-driven generative AI by focusing
on embedding vectors and their storage solutions. We explore the
transition from raw data to organized vector stores using Activeloop
Deep Lake and OpenAI models, detailing the process of creating and
managing embeddings that capture deep semantic meanings. You
will learn to build a scalable, multi-team RAG pipeline from scratch
in Python by dissecting the RAG ecosystem into independent
components. By the end, you’ll be equipped to handle large datasets
with sophisticated retrieval capabilities, enhancing generative AI
outputs with embedded document vectors.

Chapter 3, Building Index-Based RAG with LlamaIndex, Deep Lake, and
OpenAI, dives into index-based RAG, focusing on enhancing AI’s
precision, speed, and transparency through indexing. We’ll see how
LlamaIndex, Deep Lake, and OpenAI can be integrated to put
together a traceable and efficient RAG pipeline. Through practical
examples, including a domain-specific drone technology project, you

will learn to manage and optimize index-based retrieval systems. By
the end, you will be proficient in using various indexing types and
understand how to enhance the data integrity and quality of your AI
outputs.

Chapter 4, Multimodal Modular RAG for Drone Technology, raises the
bar of all generative AI applications by introducing a multimodal
modular RAG framework tailored for drone technology. We’ll
develop a generative AI system that not only processes textual
information but also integrates advanced image recognition
capabilities. You’ll learn to build and optimize a Python-based
multimodal modular RAG system, using tools like LlamaIndex,
Deep Lake, and OpenAI, to produce rich, context-aware responses to
queries.

Chapter 5, Boosting RAG Performance with Expert Human Feedback,
introduces adaptive RAG, an innovative enhancement to standard
RAG that incorporates human feedback into the generative AI
process. By integrating expert feedback directly, we will create a
hybrid adaptive RAG system using Python, exploring the
integration of human feedback loops to refine data continuously and
improve the relevance and accuracy of AI responses.

Chapter 6, Scaling RAG Bank Customer Data with Pinecone, guides you
through building a recommendation system to minimize bank
customer churn, starting with data acquisition and exploratory
analysis using a Kaggle dataset. You’ll move onto embedding and
upserting large data volumes with Pinecone and OpenAI’s
technologies, culminating in developing AI-driven
recommendations with GPT-4o. By the end, you’ll know how to

implement advanced vector storage techniques and AI-driven
analytics to enhance customer retention strategies.

Chapter 7, Building Scalable Knowledge-Graph-Based RAG with Wikipedia
API and LlamaIndex, details the development of three pipelines: data
collection from Wikipedia, populating a Deep Lake vector store, and
implementing a knowledge graph index-based RAG. You’ll learn to
automate data retrieval and preparation, create and query a
knowledge graph to visualize complex data relationships, and
enhance AI-generated responses with structured data insights. You’ll
be equipped by the end to build and manage a knowledge graph-
based RAG system, providing precise, context-aware output.

Chapter 8, Dynamic RAG with Chroma and Hugging Face Llama,
explores dynamic RAG using Chroma and Hugging Face’s Llama
technology. It introduces the concept of creating temporary data
collections daily, optimized for specific meetings or tasks, which
avoids long-term data storage issues. You will learn to build a
Python program that manages and queries these transient datasets
efficiently, ensuring that the most relevant and up-to-date
information supports every meeting or decision point. By the end,
you will be able to implement dynamic RAG systems that enhance
responsiveness and precision in data-driven environments.

Chapter 9, Empowering AI Models: Fine-Tuning RAG Data and Human
Feedback, focuses on fine-tuning techniques to streamline RAG data,
emphasizing how to transform extensive, non-parametric raw data
into a more manageable, parametric format with trained weights
suitable for continued AI interactions. You’ll explore the process of
preparing and fine-tuning a dataset, using OpenAI’s tools to convert

data into prompt and completion pairs for machine learning.
Additionally, this chapter will guide you through using OpenAI’s
GPT-4o-mini model for fine-tuning, assessing its efficiency and cost-
effectiveness.

Chapter 10, RAG for Video Stock Production with Pinecone and OpenAI,
explores the integration of RAG in video stock production,
combining human creativity with AI-driven automation. It details
constructing an AI system that produces, comments on, and labels
video content, using OpenAI’s text-to-video and vision models
alongside Pinecone’s vector storage capabilities. Starting with video
generation and technical commentary, the journey extends to
managing embedded video data within a Pinecone vector store.

To get the most out of this book
You should have basic Natural Processing Language (NLP)
knowledge and some experience with Python. Additionally, most of
the programs in this book are provided as Jupyter notebooks. To run
them, all you need is a free Google Gmail account, allowing you to
execute the notebooks on Google Colaboratory’s free virtual
machine (VM). You will also need to generate API tokens for
OpenAI, Activeloop, and Pinecone.

The following modules will need to be installed when running the
notebooks:

Modules Version

deeplake 3.9.18 (with Pillow)

openai 1.40.3 (requires regular upgrades)

transformers 4.41.2

numpy >=1.24.1 (Upgraded to satisfy chex)

deepspeed 0.10.1

bitsandbytes 0.41.1

accelerate 0.31.0

tqdm 4.66.1

neural_compressor 2.2.1

onnx 1.14.1

pandas 2.0.3

scipy 1.11.2

beautifulsoup4 4.12.3

requests 2.31.0

Download the example code files
The code bundle for the book is hosted on GitHub at
https://github.com/Denis2054/RAG-Driven-Generative-AI.
We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/.
Check them out!

Download the color images

https://github.com/Denis2054/RAG-Driven-Generative-AI
https://github.com/PacktPublishing/

We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://packt.link/gbp/9781836200918.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText : Indicates code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy URLs,
user input, and Twitter handles. For example: “self refers to the
current instance of the class to access its variables, methods, and
functions”.

A block of code is set as follows:

Cosine Similarity
score = calculate_cosine_similarity(query, best_matching_recor
print(f"Best Cosine Similarity Score: {score:.3f}")

Any command-line input or output is written as follows:

Best Cosine Similarity Score: 0.126

Bold: Indicates a new term, an important word, or words that you
see on the screen. For example, text in menus or dialog boxes
appears like this. Here is an example: “Modular RAG implementing
flexible retrieval methods”.

https://packt.link/gbp/9781836200918

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com , and mention the
book’s title in the subject of your message. If you have questions
about any aspect of this book, please email us at
questions@packtpub.com .

Errata: Although we have taken every care to ensure the accuracy of
our content, mistakes do happen. If you have found a mistake in this
book we would be grateful if you would report this to us. Please visit
http://www.packtpub.com/submit-errata, select your book,
click on the Errata Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any
form on the Internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or
contributing to a book, please visit
http://authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Share your thoughts
Once you’ve read RAG-Driven Generative AI, we’d love to hear your
thoughts! Please click here to go straight to the Amazon
review page for this book and share your feedback.

Your review is important to us and the tech community and will
help us make sure we’re delivering excellent quality content.

https://packt.link/r/1836200919
https://packt.link/r/1836200919

Download a free PDF copy of this
book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print
books everywhere?

Is your eBook purchase not compatible with the device of your
choice?

Don’t worry, now with every Packt book you get a DRM-free PDF
version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste
code from your favorite technical books directly into your
application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836200918

2. Submit your proof of purchase.
3. That’s it! We’ll send your free PDF and other benefits to your

email directly.

https://packt.link/free-ebook/9781836200918

1

Why Retrieval Augmented
Generation?

Even the most advanced generative AI models can only generate
responses based on the data they have been trained on. They cannot
provide accurate answers to questions about information outside
their training data. Generative AI models simply don’t know that
they don’t know! This leads to inaccurate or inappropriate outputs,
sometimes called hallucinations, bias, or, simply said, nonsense.

Retrieval Augmented Generation (RAG) is a framework that
addresses this limitation by combining retrieval-based approaches
with generative models. It retrieves relevant data from external
sources in real time and uses this data to generate more accurate and
contextually relevant responses. Generative AI models integrated
with RAG retrievers are revolutionizing the field with their
unprecedented efficiency and power. One of the key strengths of
RAG is its adaptability. It can be seamlessly applied to any type of
data, be it text, images, or audio. This versatility makes RAG
ecosystems a reliable and efficient tool for enhancing generative AI
capabilities.

A project manager, however, already encounters a wide range of
generative AI platforms, frameworks, and models such as Hugging

Face, Google Vertex AI, OpenAI, LangChain, and more. An
additional layer of emerging RAG frameworks and platforms will
only add complexity with Pinecone, Chroma, Activeloop,
LlamaIndex, and so on. All these Generative AI and RAG frameworks
often overlap, creating an incredible number of possible
configurations. Finding the right configuration of models and RAG
resources for a specific project, therefore, can be challenging for a
project manager. There is no silver bullet. The challenge is
tremendous, but the rewards, when achieved, are immense!

We will begin this chapter by defining the RAG framework at a high
level. Then, we will define the three main RAG configurations: naïve
RAG, advanced RAG, and modular RAG. We will also compare RAG
and fine-tuning and determine when to use these approaches. RAG
can only exist within an ecosystem, and we will design and describe
one in this chapter. Data needs to come from somewhere and be
processed. Retrieval requires an organized environment to retrieve
data, and generative AI models have input constraints.

Finally, we will dive into the practical aspect of this chapter. We will
build a Python program from scratch to run entry-level naïve RAG
with keyword search and matching. We will also code an advanced
RAG system with vector search and index-based retrieval. Finally, we
will build a modular RAG that takes both naïve and advanced RAG
into account. By the end of this chapter, you will acquire a theoretical
understanding of the RAG framework and practical experience in
building a RAG-driven generative AI program. This hands-on
approach will deepen your understanding and equip you for the
following chapters.

In a nutshell, this chapter covers the following topics:

Defining the RAG framework
The RAG ecosystem
Naïve keyword search and match RAG in Python
Advanced RAG with vector-search and index-based RAG in
Python
Building a modular RAG program

Let’s begin by defining RAG.

What is RAG?
When a generative AI model doesn’t know how to answer accurately,
some say it is hallucinating or producing bias. Simply said, it just
produces nonsense. However, it all boils down to the impossibility of
providing an adequate response when the model’s training didn’t
include the information requested beyond the classical model
configuration issues. This confusion often leads to random sequences
of the most probable outputs, not the most accurate ones.

RAG begins where generative AI ends by providing the information
an LLM model lacks to answer accurately. RAG was designed (Lewis
et al., 2020) for LLMs. The RAG framework will perform optimized
information retrieval tasks, and the generation ecosystem will add
this information to the input (user query or automated prompt) to
produce improved output. The RAG framework can be summed up
at a high level in the following figure:

Figure 1.1: The two main components of RAG-driven generative AI

Think of yourself as a student in a library. You have an essay to write
on RAG. Like ChatGPT, for example, or any other AI copilot, you
have learned how to read and write. As with any Large Language
Model (LLM), you are sufficiently trained to read advanced
information, summarize it, and write content. However, like any
superhuman AI you will find from Hugging Face, Vertex AI, or
OpenAI, there are many things you don’t know.

In the retrieval phase, you search the library for books on the topic
you need (the left side of Figure 1.1). Then, you go back to your seat,
perform a retrieval task by yourself or a co-student, and extract the
information you need from those books. In the generation phase (the
right side of Figure 1.1), you begin to write your essay. You are a

RAG-driven generative human agent, much like a RAG-driven
generative AI framework.

As you continue to write your essay on RAG, you stumble across
some tough topics. You don’t have the time to go through all the
information available physically! You, as a generative human agent,
are stuck, just as a generative AI model would be. You may try to
write something, just as a generative AI model does when its output
makes little sense. But you, like the generative AI agent, will not
realize whether the content is accurate or not until somebody corrects
your essay and you get a grade that will rank your essay.

At this point, you have reached your limit and decide to turn to a
RAG generative AI copilot to ensure you get the correct answers.
However, you are puzzled by the number of LLM models and RAG
configurations available. You need first to understand the resources
available and how RAG is organized. Let’s go through the main RAG
configurations.

Naïve, advanced, and modular RAG
configurations
A RAG framework necessarily contains two main components: a
retriever and a generator. The generator can be any LLM or
foundation multimodal AI platform or model, such as GPT-4o,
Gemini, Llama, or one of the hundreds of variations of the initial
architectures. The retriever can be any of the emerging frameworks,
methods, and tools such as Activeloop, Pinecone, LlamaIndex,
LangChain, Chroma, and many more.

The issue now is to decide which of the three types of RAG
frameworks (Gao et al., 2024) will fit the needs of a project. We will
illustrate these three approaches in code in the Naïve, advanced, and
modular RAG in code section of this chapter:

Naïve RAG: This type of RAG framework doesn’t involve
complex data embedding and indexing. It can be efficient to
access reasonable amounts of data through keywords, for
example, to augment a user’s input and obtain a satisfactory
response.
Advanced RAG: This type of RAG involves more complex
scenarios, such as with vector search and indexed-base retrieval
applied. Advanced RAG can be implemented with a wide range
of methods. It can process multiple data types, as well as
multimodal data, which can be structured or unstructured.
Modular RAG: Modular RAG broadens the horizon to include
any scenario that involves naïve RAG, advanced RAG, machine
learning, and any algorithm needed to complete a complex
project.

However, before going further, we need to decide if we should
implement RAG or fine-tune a model.

RAG versus fine-tuning
RAG is not always an alternative to fine-tuning, and fine-tuning
cannot always replace RAG. If we accumulate too much data in RAG
datasets, the system may become too cumbersome to manage. On the
other hand, we cannot fine-tune a model with dynamic, ever-

changing data such as daily weather forecasts, stock market values,
corporate news, and all forms of daily events.

The decision of whether to implement RAG or fine-tune a model
relies on the proportion of parametric versus non-parametric
information. The fundamental difference between a model trained
from scratch or fine-tuned and RAG can be summed up in terms of
parametric and non-parametric knowledge:

Parametric: In a RAG-driven generative AI ecosystem, the
parametric part refers to the generative AI model’s parameters
(weights) learned through training data. This means the model’s
knowledge is stored in these learned weights and biases. The
original training data is transformed into a mathematical form,
which we call a parametric representation. Essentially, the model
“remembers” what it learned from the data, but the data itself is
not stored explicitly.
Non-Parametric: In contrast, the non-parametric part of a RAG
ecosystem involves storing explicit data that can be accessed
directly. This means that the data remains available and can be
queried whenever needed. Unlike parametric models, where
knowledge is embedded indirectly in the weights, non-
parametric data in RAG allows us to see and use the actual data
for each output.

The difference between RAG and fine-tuning relies on the amount of
static (parametric) and dynamic (non-parametric) ever-evolving data
the generative AI model must process. A system that relies too
heavily on RAG might become overloaded and cumbersome to

manage. A system that relies too much on fine-tuning a generative
model will display its inability to adapt to daily information updates.

There is a decision-making threshold illustrated in Figure 1.2 that
shows that a RAG-driven generative AI project manager will have to
evaluate the potential of the ecosystem’s trained parametric
generative AI model before implementing a non-parametric (explicit
data) RAG framework. The potential of the RAG component requires
careful evaluation as well.

Figure 1.2: The decision-making threshold between enhancing RAG or fine-tuning an LLM

In the end, the balance between enhancing the retriever and the
generator in a RAG-driven generative AI ecosystem depends on a
project’s specific requirements and goals. RAG and fine-tuning are
not mutually exclusive.

RAG can be used to improve a model’s overall efficiency, together
with fine-tuning, which serves as a method to enhance the
performance of both the retrieval and generation components within
the RAG framework. We will fine-tune a proportion of the retrieval

data in Chapter 9, Empowering AI Models: Fine-Tuning RAG Data and
Human Feedback.

We will now see how a RAG-driven generative AI involves an
ecosystem with many components.

The RAG ecosystem
RAG-driven generative AI is a framework that can be implemented in
many configurations. RAG’s framework runs within a broad
ecosystem, as shown in Figure 1.3. However, no matter how many
retrieval and generation frameworks you encounter, it all boils down
to the following four domains and questions that go with them:

Data: Where is the data coming from? Is it reliable? Is it
sufficient? Are there copyright, privacy, and security issues?
Storage: How is the data going to be stored before or after
processing it? What amount of data will be stored?
Retrieval: How will the correct data be retrieved to augment the
user’s input before it is sufficient for the generative model? What
type of RAG framework will be successful for a project?
Generation: Which generative AI model will fit into the type of
RAG framework chosen?

The data, storage, and generation domains depend heavily on the
type of RAG framework you choose. Before making that choice, we
need to evaluate the proportion of parametric and non-parametric
knowledge in the ecosystem we are implementing. Figure 1.3
represents the RAG framework, which includes the main components
regardless of the types of RAG implemented:

Figure 1.3: The Generative RAG-ecosystem

The Retriever (D) handles data collection, processing, storage,
and retrieval
The Generator (G) handles input augmentation, prompt
engineering, and generation
The Evaluator (E) handles mathematical metrics, human
evaluation, and feedback

The Trainer (T) handles the initial pre-trained model and fine-
tuning the model

Each of these four components relies on their respective ecosystems,
which form the overall RAG-driven generative AI pipeline. We will
refer to the domains D, G, E, and T in the following sections. Let’s
begin with the retriever.

The retriever (D)
The retriever component of a RAG ecosystem collects, processes,
stores, and retrieves data. The starting point of a RAG ecosystem is
thus an ingestion data process, of which the first step is to collect
data.

Collect (D1)
In today’s world, AI data is as diverse as our media playlists. It can be
anything from a chunk of text in a blog post to a meme or even the
latest hit song streamed through headphones. And it doesn’t stop
there—the files themselves come in all shapes and sizes. Think of
PDFs filled with all kinds of details, web pages, plain text files that
get straight to the point, neatly organized JSON files, catchy MP3
tunes, videos in MP4 format, or images in PNG and JPG.

Furthermore, a large proportion of this data is unstructured and
found in unpredictable and complex ways. Fortunately, many
platforms, such as Pinecone, OpenAI, Chroma, and Activeloop,
provide ready-to-use tools to process and store this jungle of data.

Process (D2)
In the data collection phase (D1) of multimodal data processing,
various types of data, such as text, images, and videos, can be
extracted from websites using web scraping techniques or any other
source of information. These data objects are then transformed to
create uniform feature representations. For example, data can be
chunked (broken into smaller parts), embedded (transformed into
vectors), and indexed to enhance searchability and retrieval
efficiency.

We will introduce these techniques, starting with the Building Hybrid
Adaptive RAG in Python section of this chapter. In the following
chapters, we will continue building more complex data processing
functions.

Storage (D3)
At this stage of the pipeline, we have collected and begun processing
a large amount of diverse data from the internet—videos, pictures,
texts, you name it. Now, what can we do with all that data to make it
useful?

That’s where vector stores like Deep Lake, Pinecone, and Chroma
come into play. Think of these as super smart libraries that don’t just
store your data but convert it into mathematical entities as vectors,
enabling powerful computations. They can also apply a variety of
indexing methods and other techniques for rapid access.

Instead of keeping the data in static spreadsheets and files, we turn it
into a dynamic, searchable system that can power anything from

chatbots to search engines.

Retrieval query (D4)
The retrieval process is triggered by the user input or automated
input (G1).

To retrieve data quickly, we load it into vector stores and datasets
after transforming it into a suitable format. Then, using a
combination of keyword searches, smart embeddings, and indexing,
we can retrieve the data efficiently. Cosine similarity, for example,
finds items that are closely related, ensuring that the search results
are not just fast but also highly relevant.

Once the data is retrieved, we then augment the input.

The generator (G)
The lines are blurred in the RAG ecosystem between input and
retrieval, as shown in Figure 1.3, representing the RAG framework
and ecosystem. The user input (G1), automated or human, interacts
with the retrieval query (D4) to augment the input before sending it
to the generative model.

The generative flow begins with an input.

Input (G1)
The input can be a batch of automated tasks (processing emails, for
example) or human prompts through a User Interface (UI). This
flexibility allows you to seamlessly integrate AI into various
professional environments, enhancing productivity across industries.

Augmented input with HF (G2)
Human feedback (HF) can be added to the input, as described in the
Human feedback (E2) under Evaluator (E) section. Human feedback will
make a RAG ecosystem considerably adaptable and provide full
control over data retrieval and generative AI inputs. In the Building
hybrid adaptive RAG in Python section of this chapter, we will build
augmented input with human feedback.

Prompt engineering (G3)
Both the retriever (D) and the generator (G) rely heavily on prompt
engineering to prepare the standard and augmented message that the
generative AI model will have to process. Prompt engineering brings
the retriever’s output and the user input together.

Generation and output (G4)
The choice of a generative AI model depends on the goals of a project.
Llama, Gemini, GPT, and other models can fit various requirements.
However, the prompt must meet each model’s specifications.
Frameworks such as LangChain, which we will implement in this
book, help streamline the integration of various AI models into
applications by providing adaptable interfaces and tools.

The evaluator (E)
We often rely on mathematical metrics to assess the performance of a
generative AI model. However, these metrics only give us part of the

picture. It’s important to remember that the ultimate test of an AI’s
effectiveness comes down to human evaluation.

Metrics (E1)
A model cannot be evaluated without mathematical metrics, such as
cosine similarity, as with any AI system. These metrics ensure that
the retrieved data is relevant and accurate. By quantifying the
relationships and relevance of data points, they provide a solid
foundation for assessing the model’s performance and reliability.

Human feedback (E2)
No generative AI system, whether RAG-driven or not, and whether
the mathematical metrics seem sufficient or not, can elude human
evaluation. It is ultimately human evaluation that decides if a system
designed for human users will be accepted or rejected, praised or
criticized.

Adaptive RAG introduces the human, real-life, pragmatic feedback
factor that will improve a RAG-driven generative AI ecosystem. We
will implement adaptive RAG in Chapter 5, Boosting RAG Performance
with Expert Human Feedback.

The trainer (T)
A standard generative AI model is pre-trained with a vast amount of
general-purpose data. Then, we can fine-tune (T2) the model with
domain-specific data.

We will take this further by integrating static RAG data into the fine-
tuning process in Chapter 9, Empowering AI Models: Fine-Tuning RAG
Data and Human Feedback. We will also integrate human feedback,
which provides valuable information that can be integrated into the
fine-tuning process in a variant of Reinforcement Learning from
Human Feedback (RLHF).

We are now ready to code entry-level naïve, advanced, and modular
RAG in Python.

Naïve, advanced, and modular RAG
in code
This section introduces naïve, advanced, and modular RAG through
basic educational examples. The program builds keyword matching,
vector search, and index-based retrieval methods. Using OpenAI’s
GPT models, it generates responses based on input queries and
retrieved documents.

The goal of the notebook is for a conversational agent to answer
questions on RAG in general. We will build the retriever from the
bottom up, from scratch, in Python and run the generator with
OpenAI GPT-4o in eight sections of code divided into two parts:

Part 1: Foundations and Basic Implementation

1. Environment setup for OpenAI API integration
2. Generator function using GPT-4o
3. Data setup with a list of documents (db_records)
4. Query for user input

Part 2: Advanced Techniques and Evaluation

1. Retrieval metrics to measure retrieval responses
2. Naïve RAG with a keyword search and matching function
3. Advanced RAG with vector search and index-based search
4. Modular RAG implementing flexible retrieval methods

To get started, open RAG_Overview.ipynb in the GitHub repository. We
will begin by establishing the foundations of the notebook and
exploring the basic implementation.

Part 1: Foundations and basic
implementation
In this section, we will set up the environment, create a function for
the generator, define a function to print a formatted response, and
define the user query.

The first step is to install the environment.

The section titles of the following implementation of
the notebook follow the structure in the code. Thus,
you can follow the code in the notebook or read this
self-contained section.

1. Environment
The main package to install is OpenAI to access GPT-4o through an
API:

!pip install openai==1.40.3

Make sure to freeze the OpenAI version you install. In RAG
framework ecosystems, we will have to install several packages to
run advanced RAG configurations. Once we have stabilized an
installation, we will freeze the version of the packages installed to
minimize potential conflicts between the libraries and modules we
implement.

Once you have installed openai , you will have to create an account on
OpenAI (if you don’t have one) and obtain an API key. Make sure to
check the costs and payment plans before running the API.

Once you have a key, store it in a safe place and retrieve it as follows
from Google Drive, for example, as shown in the following code:

#API Key
#Store you key in a file and read it(you can type it directly i
from google.colab import drive
drive.mount('/content/drive')

You can use Google Drive or any other method you choose to store
your key. You can read the key from a file, or you can also choose to
enter the key directly in the code:

f = open("drive/MyDrive/files/api_key.txt", "r")
API_KEY=f.readline().strip()
f.close()

#The OpenAI Key
import os
import openai
os.environ['OPENAI_API_KEY'] =API_KEY
openai.api_key = os.getenv("OPENAI_API_KEY")

With that, we have set up the main resources for our project. We will
now write a generation function for the OpenAI model.

2. The generator

The code imports openai to generate content and time to measure the
time the requests take:

import openai
from openai import OpenAI
import time
client = OpenAI()
gptmodel="gpt-4o"
start_time = time.time() # Start timing before the request

We now create a function that creates a prompt with an instruction
and the user input:

def call_llm_with_full_text(itext):
 # Join all lines to form a single string
 text_input = '\n'.join(itext)
 prompt = f"Please elaborate on the following content:\n{tex

The function will try to call gpt-4o , adding additional information for
the model:

 try:
 response = client.chat.completions.create(
 model=gptmodel,
 messages=[
 {"role": "system", "content": "You are an expert Na
 {"role": "assistant", "content": "1.You can explain
 {"role": "user", "content": prompt}
],
 temperature=0.1 # Add the temperature parameter here
)
 return response.choices[0].message.content.strip()

 except Exception as e:
 return str(e)

Note that the instruction messages remain general in this scenario so
that the model remains flexible. The temperature is low (more precise)
and set to 0.1 . If you wish for the system to be more creative, you can
set temperature to a higher value, such as 0.7 . However, in this case,
it is recommended to ask for precise responses.

We can add textwrap to format the response as a nice paragraph
when we call the generative AI model:

import textwrap
def print_formatted_response(response):
 # Define the width for wrapping the text
 wrapper = textwrap.TextWrapper(width=80) # Set to 80 colum
 wrapped_text = wrapper.fill(text=response)
 # Print the formatted response with a header and footer
 print("Response:")
 print("---------------")
 print(wrapped_text)
 print("---------------\n")

The generator is now ready to be called when we need
it. Due to the probabilistic nature of generative AI
models, it might produce different outputs each time
we call it.

The program now implements the data retrieval functionality.

3. The Data
Data collection includes text, images, audio, and video. In this
notebook, we will focus on data retrieval through naïve, advanced,
and modular configurations, not data collection. We will collect and
embed data later in Chapter 2, RAG Embedding Vector Stores with Deep
Lake and OpenAI. As such, we will assume that the data we need has
been processed and thus collected, cleaned, and split into sentences.
We will also assume that the process included loading the sentences
into a Python list named db_records .

This approach illustrates three aspects of the RAG ecosystem we
described in The RAG ecosystem section and the components of the
system described in Figure 1.3:

The retriever (D) has three data processing components, collect
(D1), process (D2), and storage (D3), which are preparatory
phases of the retriever.
The retriever query (D4) is thus independent of the first three
phases (collect, process, and storage) of the retriever.
The data processing phase will often be done independently and
prior to activating the retriever query, as we will implement
starting in Chapter 2.

This program assumes that data processing has been completed and
the dataset is ready:

db_records = [
 "Retrieval Augmented Generation (RAG) represents a sophisti
…/…

We can display a formatted version of the dataset:

import textwrap
paragraph = ' '.join(db_records)
wrapped_text = textwrap.fill(paragraph, width=80)
print(wrapped_text)

The output joins the sentences in db_records for display, as printed in
this excerpt, but db_records remains unchanged:

Retrieval Augmented Generation (RAG) represents a sophisticated

The program is now ready to process a query.

4.The query
The retriever (D4 in Figure 1.3) query process depends on how the
data was processed, but the query itself is simply user input or
automated input from another AI agent. We all dream of users who
introduce the best input into software systems, but unfortunately, in
real life, unexpected inputs lead to unpredictable behaviors. We
must, therefore, build systems that take imprecise inputs into
account.

In this section, we will imagine a situation in which hundreds of
users in an organization have heard the word “RAG” associated with
“LLM” and “vector stores.” Many of them would like to understand
what these terms mean to keep up with a software team that’s
deploying a conversational agent in their department. After a couple
of days, the terms they heard become fuzzy in their memory, so they

ask the conversational agent, GPT-4o in this case, to explain what
they remember with the following query:

query = "define a rag store"

In this case, we will simply store the main query of the topic of this
program in query , which represents the junction between the
retriever and the generator. It will trigger a configuration of RAG
(naïve, advanced, and modular). The choice of configuration will
depend on the goals of each project.

The program takes the query and sends it to a GPT-4o model to be
processed and then displays the formatted output:

Call the function and print the result
llm_response = call_llm_with_full_text(query)
print_formatted_response(llm_response)

The output is revealing. Even the most powerful generative AI
models cannot guess what a user, who knows nothing about AI, is
trying to find out in good faith. In this case, GPT-4o will answer as
shown in this excerpt of the output:

Response:

Certainly! The content you've provided appears to be a sequence
that, when combined, form the phrase "define a rag store." Let's
step by step:…
… This is an indefinite article used before words that begin wit

The output will seem like a hallucination, but is it really? The user
wrote the query with the good intentions of every beginner trying to
learn a new topic. GPT-4o, in good faith, did what it could with the
limited context it had with its probabilistic algorithm, which might
even produce a different response each time we run it. However,
GPT-4o is being wary of the query. It wasn’t very clear, so it ends the
response with the following output that asks the user for more
context:

…Would you like more information or a different type of elaborat

The user is puzzled, not knowing what to do, and GPT-4o is awaiting
further instructions. The software team has to do something!

Generative AI is based on probabilistic algorithms. As
such, the response provided might vary from one run
to another, providing similar (but not identical)
responses.

That is when RAG comes in to save the situation. We will leave this
query as it is for the whole notebook and see if a RAG-driven GPT-4o
system can do better.

Part 2: Advanced techniques and
evaluation
In Part 2, we will introduce naïve, advanced, and modular RAG. The
goal is to introduce the three methods, not to process complex
documents, which we will implement throughout the following
chapters of this book.

Let’s first begin by defining retrieval metrics to measure the accuracy
of the documents we retrieve.

1. Retrieval metrics
This section explores retrieval metrics, first focusing on the role of
cosine similarity in assessing the relevance of text documents. Then
we will implement enhanced similarity metrics by incorporating
synonym expansion and text preprocessing to improve the accuracy
of similarity calculations between texts.

We will explore more metrics in the Metrics calculation and display
section in Chapter 7, Building Scalable Knowledge-Graph-Based RAG with
Wikipedia API and LlamaIndex.

In this chapter, let’s begin with cosine similarity.

Cosine similarity
Cosine similarity measures the cosine of the angle between two
vectors. In our case, the two vectors are the user query and each
document in a corpus.

The program first imports the class and function we need:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

TfidfVectorizer imports the class that converts text documents into a
matrix of TF-IDF features. Term Frequency-Inverse Document
Frequency (TF-IDF) quantifies the relevance of a word to a document
in a collection, distinguishing common words from those significant
to specific texts. TF-IDF will thus quantify word relevance in
documents using frequency across the document and inverse
frequency across the corpus. cosine_similarity imports the function
we will use to calculate the similarity between vectors.

calculate_cosine_similarity(text1, text2) then calculates the cosine
similarity between the query (text1) and each record of the dataset.

The function converts the query text (text1) and each record (text2)
in the dataset into a vector with a vectorizer. Then, it calculates and
returns the cosine similarity between the two vectors:

def calculate_cosine_similarity(text1, text2):
 vectorizer = TfidfVectorizer(
 stop_words='english',
 use_idf=True,
 norm='l2',
 ngram_range=(1, 2), # Use unigrams and bigrams
 sublinear_tf=True, # Apply sublinear TF scaling
 analyzer='word' # You could also experiment with '
)
 tfidf = vectorizer.fit_transform([text1, text2])
 similarity = cosine_similarity(tfidf[0:1], tfidf[1:2])
 return similarity[0][0]

The key parameters of this function are:

stop_words='english : Ignores common English words to focus on
meaningful content
use_idf=True : Enables inverse document frequency weighting
norm='l2' : Applies L2 normalization to each output vector
ngram_range=(1, 2) : Considers both single words and two-word
combinations
sublinear_tf=True : Applies logarithmic term frequency scaling
analyzer='word' : Analyzes text at the word level

Cosine similarity can be limited in some cases. Cosine similarity has
limitations when dealing with ambiguous queries because it strictly
measures the similarity based on the angle between vector
representations of text. If a user asks a vague question like “What is
rag?” in the program of this chapter and the database primarily
contains information on “RAG” as in “retrieval-augmented
generation” for AI, not “rag cloths,” the cosine similarity score might
be low. This low score occurs because the mathematical model lacks
contextual understanding to differentiate between the different
meanings of “rag.” It only computes similarity based on the presence
and frequency of similar words in the text, without grasping the
user’s intent or the broader context of the query. Thus, even if the
answers provided are technically accurate within the available
dataset, the cosine similarity may not reflect the relevance accurately
if the query’s context isn’t well-represented in the data.

In this case, we can try enhanced similarity.

Enhanced similarity

Enhanced similarity introduces calculations that leverage natural
language processing tools to better capture semantic relationships
between words. Using libraries like spaCy and NLTK, it preprocesses
texts to reduce noise, expands terms with synonyms from WordNet,
and computes similarity based on the semantic richness of the
expanded vocabulary. This method aims to improve the accuracy of
similarity assessments between two texts by considering a broader
context than typical direct comparison methods.

The code contains four main functions:

get_synonyms(word) : Retrieves synonyms for a given word from
WordNet
preprocess_text(text) : Converts all text to lowercase, lemmatizes
gets the (roots of words), and filters stopwords (common words)
and punctuation from text
expand_with_synonyms(words) : Enhances a list of words by adding
their synonyms
calculate_enhanced_similarity(text1, text2) : Computes cosine
similarity between preprocessed and synonym-expanded text
vectors

The calculate_enhanced_similarity(text1, text2) function takes two
texts and ultimately returns the cosine similarity score between two
processed and synonym-expanded texts. This score quantifies the
textual similarity based on their semantic content and enhanced word
sets.

The code begins by downloading and importing the necessary
libraries and then runs the four functions beginning with
calculate_enhanced_similarity(text1, text2) :

import spacy
import nltk
nltk.download('wordnet')
from nltk.corpus import wordnet
from collections import Counter
import numpy as np
Load spaCy model
nlp = spacy.load("en_core_web_sm")
…

Enhanced similarity takes this a bit further in terms of metrics.
However, integrating RAG with generative AI presents multiple
challenges.

No matter which metric we implement, we will face the following
limitations:

Input versus Document Length: User queries are often short,
while retrieved documents are longer and richer, complicating
direct similarity evaluations.
Creative Retrieval: Systems may creatively select longer
documents that meet user expectations but yield poor metric
scores due to unexpected content alignment.
Need for Human Feedback: Often, human judgment is crucial to
accurately assess the relevance and effectiveness of retrieved
content, as automated metrics may not fully capture user
satisfaction. We will explore this critical aspect of RAG in Chapter
5, Boosting RAG Performance with Expert Human Feedback.

We will always have to find the right balance between mathematical
metrics and human feedback.

We are now ready to create an example with naïve RAG.

2. Naïve RAG
Naïve RAG with keyword search and matching can prove efficient
with well-defined documents within an organization, such as legal
and medical documents. These documents generally have clear titles
or labels for images, for example. In this naïve RAG function, we will
implement keyword search and matching. To achieve this, we will
apply a straightforward retrieval method in the code:

1. Split the query into individual keywords
2. Split each record in the dataset into keywords
3. Determine the length of the common matches
4. Choose the record with the best score

The generation method will:

Augment the user input with the result of the retrieval query
Request the generation model, which is gpt-4o in this case
Display the response

Let’s write the keyword search and matching function.

Keyword search and matching
The best matching function first initializes the best scores:

def find_best_match_keyword_search(query, db_records):
 best_score = 0
 best_record = None

The query is then split into keywords. Each record is also split into
words to find the common words, measure the length of common
content, and find the best match:

Split the query into individual keywords
 query_keywords = set(query.lower().split())
 # Iterate through each record in db_records
 for record in db_records:
 # Split the record into keywords
 record_keywords = set(record.lower().split())
 # Calculate the number of common keywords
 common_keywords = query_keywords.intersection(record_ke
 current_score = len(common_keywords)
 # Update the best score and record if the current score
 if current_score > best_score:
 best_score = current_score
 best_record = record
 return best_score, best_record

We now call the function, format the response, and print it:

Assuming 'query' and 'db_records' are defined in previous cel
best_keyword_score, best_matching_record = find_best_match_keyw
print(f"Best Keyword Score: {best_keyword_score}")
#print(f"Best Matching Record: {best_matching_record}")
print_formatted_response(best_matching_record)

The main query of this notebook will be query = "define a rag
store" to see if each RAG method produces an acceptable output.

The keyword search finds the best record in the list of sentences in
the dataset:

Best Keyword Score: 3
Response:

A RAG vector store is a database or dataset that contains vector

Let’s run the metrics.

Metrics
We created the similarity metrics in the 1. Retrieval metrics section of
this chapter. We will first apply cosine similarity:

Cosine Similarity
score = calculate_cosine_similarity(query, best_matching_record
print(f"Best Cosine Similarity Score: {score:.3f}")

The output similarity is low, as explained in the 1. Retrieval metrics
section of this chapter. The user input is short and the response is
longer and complete:

Best Cosine Similarity Score: 0.126

Enhanced similarity will produce a better score:

Enhanced Similarity
response = best_matching_record
print(query,": ", response)
similarity_score = calculate_enhanced_similarity(query, respons
print(f"Enhanced Similarity:, {similarity_score:.3f}")

The score produced is higher with enhanced functionality:

define a rag store : A RAG vector store is a database or datase
Enhanced Similarity:, 0.642

The output of the query will now augment the user input.

Augmented input
The augmented input is the concatenation of the user input and the
best matching record of the dataset detected with the keyword
search:

augmented_input=query+ ": "+ best_matching_record

The augmented input is displayed if necessary for maintenance
reasons:

print_formatted_response(augmented_input)

The output then shows that the augmented input is ready:

Response:

define a rag store: A RAG vector store is a database or dataset
vectorized data points.

The input is now ready for the generation process.

Generation

We are now ready to call GPT-4o and display the formatted response:

llm_response = call_llm_with_full_text(augmented_input)
print_formatted_response(llm_response)

The following excerpt of the response shows that GPT-4o
understands the input and provides an interesting, pertinent
response:

Response:

Certainly! Let's break down and elaborate on the provided conten
RAG Store: A **RAG (Retrieval-Augmented Generation) vector stor
specialized type of database or dataset that is designed to stor
vectorized data points…

Naïve RAG can be sufficient in many situations. However, if the
volume of documents becomes too large or the content becomes more
complex, then advanced RAG configurations will provide better
results. Let’s now explore advanced RAG.

3. Advanced RAG
As datasets grow larger, keyword search methods might prove too
long to run. For instance, if we have hundreds of documents and each
document contains hundreds of sentences, it will become challenging
to use keyword search only. Using an index will reduce the
computational load to just a fraction of the total data.

In this section, we will go beyond searching text with keywords. We
will see how RAG transforms text data into numerical

representations, enhancing search efficiency and processing speed.
Unlike traditional methods that directly parse text, RAG first converts
documents and user queries into vectors, numerical forms that speed
up calculations. In simple terms, a vector is a list of numbers
representing various features of text. Simple vectors might count
word occurrences (term frequency), while more complex vectors,
known as embeddings, capture deeper linguistic patterns.

In this section, we will implement vector search and index-based
search:

Vector Search: We will convert each sentence in our dataset into
a numerical vector. By calculating the cosine similarity between
the query vector (the user query) and these document vectors,
we can quickly find the most relevant documents.
Index-Based Search: In this case, all sentences are converted into
vectors using TF-IDF (Term Frequency-Inverse Document
Frequency), a statistical measure used to evaluate how
important a word is to a document in a collection. These vectors
act as indices in a matrix, allowing quick similarity comparisons
without parsing each document fully.

Let’s start with vector search and see these concepts in action.

3.1.Vector search
Vector search converts the user query and the documents into
numerical values as vectors, enabling mathematical calculations that
retrieve relevant data faster when dealing with large volumes of data.

The program runs through each record of the dataset to find the best
matching document by computing the cosine similarity of the query

vector and each record in the dataset:

def find_best_match(text_input, records):
 best_score = 0
 best_record = None
 for record in records:
 current_score = calculate_cosine_similarity(text_input,
 if current_score > best_score:
 best_score = current_score
 best_record = record
 return best_score, best_record

The code then calls the vector search function and displays the best
record found:

best_similarity_score, best_matching_record = find_best_match(q
print_formatted_response(best_matching_record)

The output is satisfactory:

Response:

A RAG vector store is a database or dataset that contains vector
points.

The response is the best one found, like with naïve RAG. This shows
that there is no silver bullet. Each RAG technique has its merits. The
metrics will confirm this observation.

Metrics

The metrics are the same for both similarity methods as for naïve
RAG because the same document was retrieved:

print(f"Best Cosine Similarity Score: {best_similarity_score:.3

The output is:

Best Cosine Similarity Score: 0.126

And with enhanced similarity, we obtain the same output as for naïve
RAG:

Enhanced Similarity
response = best_matching_record
print(query,": ", response)
similarity_score = calculate_enhanced_similarity(query, best_ma
print(f"Enhanced Similarity:, {similarity_score:.3f}")

The output confirms the trend:

define a rag store : A RAG vector store is a database or datase
Enhanced Similarity:, 0.642

So why use vector search if it produces the same outputs as naïve
RAG? Well, in a small dataset, everything looks easy. But when we’re
dealing with datasets of millions of complex documents, keyword
search will not capture subtleties that vectors can. Let’s now augment
the user query with this information retrieved.

Augmented input
We add the information retrieved to the user query with no other aid
and display the result:

Call the function and print the result
augmented_input=query+": "+best_matching_record
print_formatted_response(augmented_input)

We only added a space between the user query and the retrieved
information; nothing else. The output is satisfactory:

Response:

define a rag store: A RAG vector store is a database or dataset
vectorized data points.

Let’s now see how the generative AI model reacts to this augmented
input.

Generation
We now call GPT-4o with the augmented input and display the
formatted output:

Call the function and print the result
augmented_input=query+best_matching_record
llm_response = call_llm_with_full_text(augmented_input)
print_formatted_response(llm_response)

The response makes sense, as shown in the following excerpt:

Response:

Certainly! Let's break down and elaborate on the provided conten

While vector search significantly speeds up the process of finding
relevant documents by sequentially going through each record, its
efficiency can decrease as the dataset size increases. To address this
scalability issue, indexed search offers a more advanced solution.
Let’s now see how index-based search can accelerate document
retrieval.

3.2. Index-based search
Index-based search compares the vector of a user query not with the
direct vector of a document’s content but with an indexed vector that
represents this content.

The program first imports the class and function we need:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

TfidfVectorizer imports the class that converts text documents into a
matrix of TF-IDF features. TF-IDF will quantify word relevance in
documents using frequency across the document. The function finds
the best matches using the cosine similarity function to calculate the
similarity between the query and the weighted vectors of the matrix:

def find_best_match(query, vectorizer, tfidf_matrix):
 query_tfidf = vectorizer.transform([query])
 similarities = cosine_similarity(query_tfidf, tfidf_matrix)

 best_index = similarities.argmax() # Get the index of the
 best_score = similarities[0, best_index]
 return best_score, best_index

The function’s main tasks are:

Transform Query: Converts the input query into TF-IDF vector
format using the provided vectorizer
Calculate Similarities: Computes the cosine similarity between
the query vector and all vectors in the tfidf_matrix
Identify Best Match: Finds the index (best_index) of the highest
similarity score in the results
Retrieve Best Score: Extracts the highest cosine similarity score
(best_score)

The output is the best similarity score found and the best index.

The following code first calls the dataset vectorizer and then searches
for the most similar record through its index:

vectorizer, tfidf_matrix = setup_vectorizer(db_records)
best_similarity_score, best_index = find_best_match(query, vect
best_matching_record = db_records[best_index]

Finally, the results are displayed:

print_formatted_response(best_matching_record)

The system finds the best similar document to the user’s input query:

Response:

A RAG vector store is a database or dataset that contains vector
points.

We can see that the fuzzy user query produced a reliable output at
the retrieval level before running GPT-4o.

The metrics that follow in the program are the same as for naïve and
advanced RAG with vector search. This is normal because the
document found is the closest to the user’s input query. We will be
introducing more complex documents for RAG starting in Chapter 2,
RAG Embedding Vector Stores with Deep Lake and OpenAI. For now, let’s
have a look at the features that influence how the words are
represented in vectors.

Feature extraction
Before augmenting the input with this document, run the following
cell, which calls the setup_vectorizer(records) function again but
displays the matrix so that you can see its format. This is shown in
the following excerpt for the words “accurate” and “additional” in
one of the sentences:

Figure 1.4: Format of the matrix

Let’s now augment the input.

Augmented input
We will simply add the query to the best matching record in a
minimal way to see how GPT-4o will react and display the output:

augmented_input=query+": "+best_matching_record
print_formatted_response(augmented_input)

The output is close to or the same as with vector search, but the
retrieval method is faster:

Response:

define a rag store: A RAG vector store is a database or dataset
vectorized data points.

We will now plug this augmented input into the generative AI model.

Generation
We now call GPT-4o with the augmented input and display the
output:

Call the function and print the result
llm_response = call_llm_with_full_text(augmented_input)
print_formatted_response(llm_response)

The output makes sense for the user who entered the initial fuzzy
query:

Response:

Certainly! Let's break down and elaborate on the given content:

This approach worked well in a closed environment within an
organization in a specific domain. In an open environment, the user
might have to elaborate before submitting a request.

In this section, we saw that a TF-IDF matrix pre-computes document
vectors, enabling faster, simultaneous comparisons without repeated
vector transformations. We have seen how vector and index-based
search can improve retrieval. However, in one project, we may need
to apply naïve and advanced RAG depending on the documents we
need to retrieve. Let’s now see how modular RAG can improve our
system.

4. Modular RAG
Should we use keyword search, vector search, or index-based search
when implementing RAG? Each approach has its merits. The choice
will depend on several factors:

Keyword search suits simple retrieval
Vector search is ideal for semantic-rich documents
Index-based search offers speed with large data.

However, all three methods can perfectly fit together in a project. In
one scenario, for example, a keyword search can help find clearly

defined document labels, such as the titles of PDF files and labeled
images, before they are processed. Then, indexed search will group
the documents into indexed subsets. Finally, the retrieval program
can search the indexed dataset, find a subset, and only use vector
search to go through a limited number of documents to find the most
relevant one.

In this section, we will create a RetrievalComponent class that can be
called at each step of a project to perform the task required. The code
sums up the three methods we have built in this chapter and that we
can sum for the RetrievalComponent through its main members.

The following code initializes the class with search method choice
and prepares a vectorizer if needed. self refers to the current
instance of the class to access its variables, methods, and functions:

def __init__(self, method='vector'):
 self.method = method
 if self.method == 'vector' or self.method == 'indexed':
 self.vectorizer = TfidfVectorizer()
 self.tfidf_matrix = None

In this case, the vector search is activated.

The fit method builds a TF-IDF matrix from records, and is
applicable for vector or indexed search methods:

 def fit(self, records):
 if self.method == 'vector' or self.method == 'indexed':
 self.tfidf_matrix = self.vectorizer.fit_transform(r

The retrieve method directs the query to the appropriate search
method:

 def retrieve(self, query):
 if self.method == 'keyword':
 return self.keyword_search(query)
 elif self.method == 'vector':
 return self.vector_search(query)
 elif self.method == 'indexed':
 return self.indexed_search(query)

The keyword search method finds the best match by counting
common keywords between queries and documents:

 def keyword_search(self, query):
 best_score = 0
 best_record = None
 query_keywords = set(query.lower().split())
 for index, doc in enumerate(self.documents):
 doc_keywords = set(doc.lower().split())
 common_keywords = query_keywords.intersection(doc_k
 score = len(common_keywords)
 if score > best_score:
 best_score = score
 best_record = self.documents[index]
 return best_record

The vector search method computes similarities between query TF-
IDF and document matrix and returns the best match:

 def vector_search(self, query):
 query_tfidf = self.vectorizer.transform([query])
 similarities = cosine_similarity(query_tfidf, self.tfid

 best_index = similarities.argmax()
 return db_records[best_index]

The indexed search method uses a precomputed TF-IDF matrix for
fast retrieval of the best-matching document:

 def indexed_search(self, query):
 # Assuming the tfidf_matrix is precomputed and stored
 query_tfidf = self.vectorizer.transform([query])
 similarities = cosine_similarity(query_tfidf, self.tfid
 best_index = similarities.argmax()
 return db_records[best_index]

We can now activate modular RAG strategies.

Modular RAG strategies
We can call the retrieval component for any RAG configuration we
wish when needed:

Usage example
retrieval = RetrievalComponent(method='vector') # Choose from
retrieval.fit(db_records)
best_matching_record = retrieval.retrieve(query)
print_formatted_response(best_matching_record)

In this case, the vector search method was activated.

The following cells select the best record, as in the 3.1. Vector search
section, augment the input, call the generative model, and display the
output as shown in the following excerpt:

Response:

Certainly! Let's break down and elaborate on the content provide
Define a RAG store: A **RAG (Retrieval-Augmented Generation

We have built a program that demonstrated how different search
methodologies—keyword, vector, and index-based—can be
effectively integrated into a RAG system. Each method has its unique
strengths and addresses specific needs within a data retrieval context.
The choice of method depends on the dataset size, query type, and
performance requirements, which we will explore in the following
chapters.

It’s now time to summarize our explorations in this chapter and
move to the next level!

Summary
RAG for generative AI relies on two main components: a retriever
and a generator. The retriever processes data and defines a search
method, such as fetching labeled documents with keywords—the
generator’s input, an LLM, benefits from augmented information
when producing sequences. We went through the three main
configurations of the RAG framework: naïve RAG, which accesses
datasets through keywords and other entry-level search methods;
advanced RAG, which introduces embeddings and indexes to
improve the search methods; and modular RAG, which can combine
naïve and advanced RAG as well as other ML methods.

The RAG framework relies on datasets that can contain dynamic
data. A generative AI model relies on parametric data through its
weights. These two approaches are not mutually exclusive. If the
RAG datasets become too cumbersome, fine-tuning can prove useful.
When fine-tuned models cannot respond to everyday information,
RAG can come in handy. RAG frameworks also rely heavily on the
ecosystem that provides the critical functionality to make the systems
work. We went through the main components of the RAG ecosystem,
from the retriever to the generator, for which the trainer is necessary,
and the evaluator. Finally, we built an entry-level naïve, advanced,
and modular RAG program in Python, leveraging keyword
matching, vector search, and index-based retrieval, augmenting the
input of GPT-4o.

Our next step in Chapter 2, RAG Embedding Vector Stores with Deep Lake
and OpenAI, is to embed data in vectors. We will store the vectors in
vector stores to enhance the speed and precision of the retrieval
functions of a RAG ecosystem.

Questions
Answer the following questions with Yes or No:

1. Is RAG designed to improve the accuracy of generative AI
models?

2. Does a naïve RAG configuration rely on complex data
embedding?

3. Is fine-tuning always a better option than using RAG?
4. Does RAG retrieve data from external sources in real time to

enhance responses?

5. Can RAG be applied only to text-based data?
6. Is the retrieval process in RAG triggered by a user or automated

input?
7. Are cosine similarity and TF-IDF both metrics used in advanced

RAG configurations?
8. Does the RAG ecosystem include only data collection and

generation components?
9. Can advanced RAG configurations process multimodal data

such as images and audio?
10. Is human feedback irrelevant in evaluating RAG systems?

References
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
by Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al.:
https://arxiv.org/abs/2005.11401

Retrieval-Augmented Generation for Large Language Models: A
Survey by Yunfan Gao, Yun Xiong, Xinyu Gao, et al.:
https://arxiv.org/abs/2312.10997

OpenAI models:
https://platform.openai.com/docs/models

Further reading
To understand why RAG-driven Generative AI transparency is
recommended, please see
https://hai.stanford.edu/news/introducing-
foundation-model-transparency-index

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2312.10997
https://platform.openai.com/docs/models
https://hai.stanford.edu/news/introducing-foundation-model-transparency-index
https://hai.stanford.edu/news/introducing-foundation-model-transparency-index

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://www.packt.link/rag

2

RAG Embedding Vector Stores
with Deep Lake and OpenAI

There will come a point in the execution of your project where
complexity is unavoidable when implementing RAG-driven
generative AI. Embeddings transform bulky structured or
unstructured texts into compact, high-dimensional vectors that
capture their semantic essence, enabling faster and more efficient
information retrieval. However, we will inevitably be faced with a
storage issue as the creation and storage of document embeddings
become necessary when managing increasingly large datasets. You
could ask the question at this point, why not use keywords instead of
embeddings? And the answer is simple: although embeddings
require more storage space, they capture the deeper semantic
meanings of texts, with more nuanced and context-aware retrieval
compared to the rigid and often-matched keywords. This results in
better, more pertinent retrievals. Hence, our option is to turn to vector
stores in which embeddings are organized and rapidly accessible.

We will begin this chapter by exploring how to go from raw data to
an Activeloop Deep Lake vector store via loading OpenAI embedding
models. This requires installing and implementing several cross-
platform packages, which leads us to the architecture of such

systems. We will organize our RAG pipeline into separate
components because breaking down the RAG pipeline into
independent parts will enable several teams to work on a project
simultaneously. We will then set the blueprint for a RAG-driven
generative AI pipeline. Finally, we will build a three-component RAG
pipeline from scratch in Python with Activeloop Deep Lake, OpenAI,
and custom-built functions.

This coding journey will take us into the depths of cross-platform
environment issues with packages and dependencies. We will also
face the challenges of chunking data, embedding vectors, and loading
them on vector stores. We will augment the input of a GPT-4o model
with retrieval queries and produce solid outputs. By the end of this
chapter, you will fully understand how to leverage the power of
embedded documents in vector stores for generative AI.

To sum up, this chapter covers the following topics:

Introducing document embeddings and vector stores
How to break a RAG pipeline into independent components
Building a RAG pipeline from raw data to Activeloop Deep Lake
Facing the environmental challenge of cross-platform packages
and libraries
Leveraging the power of LLMs to embed data with an OpenAI
embedding model
Querying an Activeloop Deep Lake vector store to augment user
inputs
Generative solid augmented outputs with OpenAI GPT-4o

Let’s begin by learning how to go from raw data to a vector store.

From raw data to embeddings in
vector stores
Embeddings convert any form of data (text, images, or audio) into
real numbers. Thus, a document is converted into a vector. These
mathematical representations of documents allow us to calculate the
distances between documents and retrieve similar data.

The raw data (books, articles, blogs, pictures, or songs) is first
collected and cleaned to remove noise. The prepared data is then fed
into a model such as OpenAI text-embedding-3-small , which will
embed the data. Activeloop Deep Lake, for example, which we will
implement in this chapter, will break a text down into pre-defined
chunks defined by a certain number of characters. The size of a chunk
could be 1,000 characters, for instance. We can let the system optimize
these chunks, as we will implement them in the Optimizing chunking
section of the next chapter. These chunks of text make it easier to
process large amounts of data and provide more detailed
embeddings of a document, as shown here:

Figure 2.1: Excerpt of an Activeloop vector store dataset record

Transparency has been the holy grail in AI since the beginning of
parametric models, in which the information is buried in learned
parameters that produce black box systems. RAG is a game changer,
as shown in Figure 2.1, because the content is fully traceable:

Left side (Text): In RAG frameworks, every piece of generated
content is traceable back to its source data, ensuring the output’s
transparency. The OpenAI generative model will respond, taking
the augmented input into account.
Right side (Embeddings): Data embeddings are directly visible
and linked to the text, contrasting with parametric models where
data origins are encoded within model parameters.

Once we have our text and embeddings, the next step is to store them
efficiently for quick retrieval. This is where vector stores come into
play. A vector store is a specialized database designed to handle
high-dimensional data like embeddings. We can create datasets on
serverless platforms such as Activeloop, as shown in Figure 2.2. We
can create and access them in code through an API, as we will do in
the Building a RAG pipeline section of this chapter.

Figure 2.2: Managing datasets with vector stores

Another feature of vector stores is their ability to retrieve data with
optimized methods. Vector stores are built with powerful indexing
methods, which we will discuss in the next chapter. This retrieving
capacity allows a RAG model to quickly find and retrieve the most
relevant embeddings during the generation phase, augment user
inputs, and increase the model’s ability to produce high-quality
output.

We will now see how to organize a RAG pipeline that goes from data
collection, processing, and retrieval to augmented-input generation.

Organizing RAG in a pipeline
A RAG pipeline will typically collect data and prepare it by cleaning
it, for example, chunking the documents, embedding them, and
storing them in a vector store dataset. The vector dataset is then
queried to augment the user input of a generative AI model to
produce an output. However, it is highly recommended not to run
this sequence of RAG in one single program when it comes to using a
vector store. We should at least separate the process into three
components:

Data collection and preparation
Data embedding and loading into the dataset of a vector store
Querying the vectorized dataset to augment the input of a
generative AI model to produce a response

Let’s go through the main reasons for this component approach:

Specialization, which will allow each member of a team to do
what they are best at, either collecting and cleaning data,
running embedding models, managing vector stores, or
tweaking generative AI models.
Scalability, making it easier to upgrade separate components as
the technology evolves and scale the different components with
specialized methods. Storing raw data, for example, can be
scaled on a different server than the cloud platform, where the
embedded vectors are stored in a vectorized dataset.
Parallel development, which allows each team to advance at
their pace without waiting for others. Improvements can be
made continually on one component without disrupting the
processes of the other components.

Maintenance is component-independent. One team can work on
one component without affecting the other parts of the system.
For example, if the RAG pipeline is in production, users can
continue querying and running generative AI through the vector
store while a team fixes the data collection component.
Security concerns and privacy are minimized because each team
can work separately with specific authorization, access, and roles
for each component.

As we can see, in real-life production environments or large-scale
projects, it is rare for a single program or team to manage end-to-end
processes. We are now ready to draw the blueprint of the RAG
pipeline that we will build in Python in this chapter.

A RAG-driven generative AI pipeline
Let’s dive into what a real-life RAG pipeline looks like. Imagine we’re
a team that has to deliver a whole system in just a few weeks. Right
off the bat, we’re bombarded with questions like:

Who’s going to gather and clean up all the data?
Who’s going to handle setting up OpenAI’s embedding model?
Who’s writing the code to get those embeddings up and running
and managing the vector store?
Who’s going to take care of implementing GPT-4 and managing
what it spits out?

Within a few minutes, everyone starts looking pretty worried. The
whole thing feels overwhelming—like, seriously, who would even
think about tackling all that alone?

So here’s what we do. We split into three groups, each of us taking on
different parts of the pipeline, as shown in Figure 2.3:

Figure 2.3: RAG pipeline components

Each of the three groups has one component to implement:

Data Collection and Prep (D1 and D2): One team takes on
collecting the data and cleaning it.
Data Embedding and Storage (D2 and D3): Another team works
on getting the data through OpenAI’s embedding model and
stores these vectors in an Activeloop Deep Lake dataset.

Augmented Generation (D4, G1-G4, and E1): The last team
handles the big job of generating content based on user input
and retrieval queries. They use GPT-4 for this, and even though
it sounds like a lot, it’s actually a bit easier because they aren’t
waiting on anyone else—they just need the computer to do its
calculations and evaluate the output.

Suddenly, the project doesn’t seem so scary. Everyone has their part
to focus on, and we can all work without being distracted by the
other teams. This way, we can all move faster and get the job done
without the hold-ups that usually slow things down.

The organization of the project, represented in Figure 2.3, is a variant
of the RAG ecosystem’s framework represented in Figure 1.3 of
Chapter 1, Why Retrieval Augmented Generation?

We can now begin building a RAG pipeline.

Building a RAG pipeline
We will now build a RAG pipeline by implementing the pipeline
described in the previous section and illustrated in Figure 2.3. We will
implement three components assuming that three teams (Team #1 ,
Team #2 , and Team #3) work in parallel to implement the pipeline:

Data collection and preparation by Team #1
Data embedding and storage by Team #2
Augmented generation by Team #3

The first step is to set up the environment for these components.

Setting up the environment
Let’s face it here and now. Installing cross-platform, cross-library
packages with their dependencies can be quite challenging! It is
important to take this complexity into account and be prepared to get
the environment running correctly. Each package has dependencies
that may have conflicting versions. Even if we adapt the versions, an
application may not run as expected anymore. So, take your time to
install the right versions of the packages and dependencies.

We will only describe the environment once in this section for all
three components and refer to this section when necessary.

The installation packages and libraries
To build the RAG pipeline in this section, we will need packages and
need to freeze the package versions to prevent dependency conflicts
and issues with the functions of the libraries, such as:

Possible conflicts between the versions of the dependencies.
Possible conflicts when one of the libraries needs to be updated
for an application to run. For example, in August 2024, installing
Deep Lake required Pillow version 10.x.x and Google Colab’s
version was 9.x.x. Thus, it was necessary to uninstall Pillow and
reinstall it with a recent version before installing Deep Lake .
Google Colab will no doubt update Pillow. Many cases such as
this occur in a fast-moving market.
Possible deprecations if the versions remain frozen for too long.
Possible issues if the versions are frozen for too long and bugs
are not corrected by upgrades.

Thus, if we freeze the versions, an application may remain stable for
some time but encounter issues. But if we upgrade the versions too
quickly, some of the other libraries may not work anymore. There is
no silver bullet! It’s a continual quality control process.

For our program, in this section, we will freeze the versions. Let’s
now go through the installation steps to create the environment for
our pipeline.

The components involved in the
installation process
Let’s begin by describing the components that are installed in the
Installing the environment section of each notebook. The components
are not necessarily installed in all notebooks; this section serves as an
inventory of the packages.

In the first pipeline section, 1. Data collection and preparation, we will
only need to install Beautiful Soup and Requests:

!pip install beautifulsoup4==4.12.3
!pip install requests==2.31.0

This explains why this component of the pipeline should remain
separate. It’s a straightforward job for a developer who enjoys
creating interfaces to interact with the web. It’s also a perfect fit for a
junior developer who wants to get involved in data collection and
analysis.

The two other pipeline components we will build in this section, 2.
Data embedding and storage and 3. Augmented generation, will require

more attention as well as the installation of requirements01.txt , as
explained in the previous section. For now, let’s continue with the
installation step by step.

Mounting a drive
In this scenario, the program mounts Google Drive in Google Colab
to safely read the OpenAI API key to access OpenAI models and the
Activeloop API token for authentication to access Activeloop Deep
Lake datasets:

#Google Drive option to store API Keys
#Store your key in a file and read it(you can type it directly
from google.colab import drive
drive.mount('/content/drive')

You can choose to store your keys and tokens elsewhere. Just make
sure they are in a safe location.

Creating a subprocess to download files from
GitHub
The goal here is to write a function to download the grequests.py file
from GitHub. This program contains a function to download files
using curl , with the option to add a private token if necessary:

import subprocess
url = "https://raw.githubusercontent.com/Denis2054/RAG-Driven-G
output_file = "grequests.py"
Prepare the curl command using the private token
curl_command = [
 "curl",

 "-o", output_file,
 url
]
Execute the curl command
try:
 subprocess.run(curl_command, check=True)
 print("Download successful.")
except subprocess.CalledProcessError:
 print("Failed to download the file.")

The grequests.py file contains a function that can, if necessary, accept
a private token or any other security system that requires credentials
when retrieving data with curl commands:

import subprocess
import os
add a private token after the filename if necessary
def download(directory, filename):
 # The base URL of the image files in the GitHub repository
 base_url = 'https://raw.githubusercontent.com/Denis2054/RAG
 # Complete URL for the file
 file_url = f"{base_url}{directory}/{filename}"
 # Use curl to download the file, including an Authorization
 try:
 # Prepare the curl command with the Authorization heade
 #curl_command = f'curl -H "Authorization: token {privat
 curl_command = f'curl -H -o {filename} {file_url}'
 # Execute the curl command
 subprocess.run(curl_command, check=True, shell=True)
 print(f"Downloaded '{filename}' successfully.")
 except subprocess.CalledProcessError:
 print(f"Failed to download '{filename}'. Check the URL,

Installing requirements

Now, we will install the requirements for this section when working
with Activeloop Deep Lake and OpenAI. We will only need:

!pip install deeplake==3.9.18
!pip install openai==1.40.3

As of August 2024, Google Colab’s version of Pillow conflicts with
deeplake 's package. However, the deeplake installation package deals
with this automatically. All you have to do is restart the session and
run it again, which is why pip install deeplake==3.9.18 is the first
line of each notebook it is installed in.

After installing the requirements, we must run a line of code for
Activeloop to activate a public DNS server:

For Google Colab and Activeloop(Deeplake library)
#This line writes the string "nameserver 8.8.8.8" to the file.
#should use is at the IP address 8.8.8.8, which is one of Googl
with open('/etc/resolv.conf', 'w') as file:
 file.write("nameserver 8.8.8.8")

Authentication process
You will need to sign up to OpenAI to obtain an API key:
https://openai.com/. Make sure to check the pricing policy before
using the key. First, let’s activate OpenAI’s API key:

#Retrieving and setting OpenAI API key
f = open("drive/MyDrive/files/api_key.txt", "r")
API_KEY=f.readline().strip()
f.close()
#The OpenAI API key

https://openai.com/

import os
import openai
os.environ['OPENAI_API_KEY'] =API_KEY
openai.api_key = os.getenv("OPENAI_API_KEY")

Then, we activate Activeloop’s API token for Deep Lake:

#Retrieving and setting Activeloop API token
f = open("drive/MyDrive/files/activeloop.txt", "r")
API_token=f.readline().strip()
f.close()
ACTIVELOOP_TOKEN=API_token
os.environ['ACTIVELOOP_TOKEN'] =ACTIVELOOP_TOKEN

You will need to sign up on Activeloop to obtain an API token:
https://www.activeloop.ai/. Again, make sure to check the
pricing policy before using the Activeloop token.

Once the environment is installed, you can hide the Installing the
environment cells we just ran to focus on the content of the pipeline
components, as shown in Figure 2.4:

Figure 2:4: Hiding the installation cells

The installation cells will then be hidden but can still be run, as
shown in Figure 2.5:

https://www.activeloop.ai/

Figure 2.5: Running hidden cells

We can now focus on the pipeline components for each pipeline
component. Let’s begin with data collection and preparation.

1. Data collection and preparation
Data collection and preparation is the first pipeline component, as
described earlier in this chapter. Team #1 will only focus on their
component, as shown in Figure 2.6:

Figure 2.6: Pipeline component #1: Data collection and preparation

Let’s jump in and lend a hand to Team #1 . Our work is clearly
defined, so we can enjoy the time taken to implement the component.
We will retrieve and process 10 Wikipedia articles that provide a
comprehensive view of various aspects of space exploration:

Space exploration: Overview of the history, technologies,
missions, and plans involved in the exploration of space
(https://en.wikipedia.org/wiki/Space_exploration)

https://en.wikipedia.org/wiki/Space_exploration

Apollo program: Details about the NASA program that landed
the first humans on the Moon and its significant missions
(https://en.wikipedia.org/wiki/Apollo_program)
Hubble Space Telescope: Information on one of the most
significant telescopes ever built, which has been crucial in many
astronomical discoveries
(https://en.wikipedia.org/wiki/Hubble_Space_Telescop
e)
Mars rover: Insight into the rovers that have been sent to Mars to
study its surface and environment
(https://en.wikipedia.org/wiki/Mars_rover)
International Space Station (ISS): Details about the ISS, its
construction, international collaboration, and its role in space
research
(https://en.wikipedia.org/wiki/International_Space_S
tation)
SpaceX: Covers the history, achievements, and goals of SpaceX,
one of the most influential private spaceflight companies
(https://en.wikipedia.org/wiki/SpaceX)
Juno (spacecraft): Information about the NASA space probe that
orbits and studies Jupiter, its structure, and moons
(https://en.wikipedia.org/wiki/Juno_(spacecraft))
Voyager program: Details on the Voyager missions, including
their contributions to our understanding of the outer solar
system and interstellar space
(https://en.wikipedia.org/wiki/Voyager_program)
Galileo (spacecraft): Overview of the mission that studied
Jupiter and its moons, providing valuable data on the gas giant

https://en.wikipedia.org/wiki/Apollo_program
https://en.wikipedia.org/wiki/Hubble_Space_Telescope
https://en.wikipedia.org/wiki/Hubble_Space_Telescope
https://en.wikipedia.org/wiki/Mars_rover
https://en.wikipedia.org/wiki/International_Space_Station
https://en.wikipedia.org/wiki/International_Space_Station
https://en.wikipedia.org/wiki/SpaceX
https://en.wikipedia.org/wiki/Juno_(spacecraft)
https://en.wikipedia.org/wiki/Voyager_program

and its system
(https://en.wikipedia.org/wiki/Galileo_(spacecraft))
Kepler space telescope: Information about the space telescope
designed to discover Earth-size planets orbiting other stars
(https://en.wikipedia.org/wiki/Kepler_Space_Telescop
e)

These articles cover a wide range of topics in space exploration, from
historical programs to modern technological advances and missions.

Now, open 1-Data_collection_preparation.ipynb in the GitHub
repository. We will first collect the data.

Collecting the data
We just need import requests for the HTTP requests, from bs4 import
BeautifulSoup for HTML parsing, and import re , the regular
expressions module:

import requests
from bs4 import BeautifulSoup
import re

We then select the URLs we need:

URLs of the Wikipedia articles
urls = [
 "https://en.wikipedia.org/wiki/Space_exploration",
 "https://en.wikipedia.org/wiki/Apollo_program",
 "https://en.wikipedia.org/wiki/Hubble_Space_Telescope",
 "https://en.wikipedia.org/wiki/Mars_over",
 "https://en.wikipedia.org/wiki/International_Space_Station"
 "https://en.wikipedia.org/wiki/SpaceX",

https://en.wikipedia.org/wiki/Galileo_(spacecraft)
https://en.wikipedia.org/wiki/Kepler_Space_Telescope
https://en.wikipedia.org/wiki/Kepler_Space_Telescope

 "https://en.wikipedia.org/wiki/Juno_(spacecraft)",
 "https://en.wikipedia.org/wiki/Voyager_program",
 "https://en.wikipedia.org/wiki/Galileo_(spacecraft)",
 "https://en.wikipedia.org/wiki/Kepler_Space_Telescope"
]

This list is in code. However, it could be stored in a database, a file, or
any other format, such as JSON. We can now prepare the data.

Preparing the data
First, we write a cleaning function. This function removes numerical
references such as [1] [2] from a given text string, using regular
expressions, and returns the cleaned text:

def clean_text(content):
 # Remove references that usually appear as [1], [2], etc.
 content = re.sub(r'\[\d+\]', '', content)
 return content

Then, we write a classical fetch and clean function, which will return
a nice and clean text by extracting the content we need from the
documents:

def fetch_and_clean(url):
 # Fetch the content of the URL
 response = requests.get(url)
 soup = BeautifulSoup(response.content, 'html.parser')
 # Find the main content of the article, ignoring side boxes
 content = soup.find('div', {'class': 'mw-parser-output'})
 # Remove the bibliography section, which generally follows
 for section_title in ['References', 'Bibliography', 'Extern

 section = content.find('span', id=section_title)
 if section:
 # Remove all content from this section to the end o
 for sib in section.parent.find_next_siblings():
 sib.decompose()
 section.parent.decompose()
 # Extract and clean the text
 text = content.get_text(separator=' ', strip=True)
 text = clean_text(text)
 return text

Finally, we write the content in llm.txt file for the team working on
the data embedding and storage functions:

File to write the clean text
with open('llm.txt', 'w', encoding='utf-8') as file:
 for url in urls:
 clean_article_text = fetch_and_clean(url)
 file.write(clean_article_text + '\n')
print("Content written to llm.txt")

The output confirms that the text has been written:

Content written to llm.txt

The program can be modified to save the data in other formats and
locations, as required for a project’s specific needs. The file can then
be verified before we move on to the next batch of data to retrieve
and process:

Open the file and read the first 20 lines
with open('llm.txt', 'r', encoding='utf-8') as file:

 lines = file.readlines()
 # Print the first 20 lines
 for line in lines[:20]:
 print(line.strip())

The output shows the first lines of the document that will be
processed:

Exploration of space, planets, and moons "Space Exploration" red

This component can be managed by a team that enjoys searching for
documents on the web or within a company’s data environment. The
team will gain experience in identifying the best documents for a
project, which is the foundation of any RAG framework.

Team #2 can now work on the data to embed the documents and store
them.

2. Data embedding and storage
Team #2 's job is to focus on the second component of the pipeline.
They will receive batches of prepared data to work on. They don’t
have to worry about retrieving data. Team #1 has their back with their
data collection and preparation component.

Figure 2.7: Pipeline component #2: Data embedding and storage

Let’s now jump in and help Team #2 to get the job done. Open 2-
Embeddings_vector_store.ipynb in the GitHub Repository. We will
embed and store the data provided by Team #1 and retrieve a batch of
documents to work on.

Retrieving a batch of prepared
documents
First, we download a batch of documents available on a server and
provided by Team #1 , which is the first of a continual stream of

incoming documents. In this case, we assume it’s the space
exploration file:

from grequests import download
source_text = "llm.txt"
directory = "Chapter02"
filename = "llm.txt"
download(directory, filename)

Note that source_text = "llm.txt" will be used by the function that
will add the data to our vector store. We then briefly check the
document just to be sure, knowing that Team #1 has already verified
the information:

Open the file and read the first 20 lines
with open('llm.txt', 'r', encoding='utf-8') as file:
 lines = file.readlines()
 # Print the first 20 lines
 for line in lines[:20]:
 print(line.strip())

The output is satisfactory, as shown in the following excerpt:

Exploration of space, planets, and moons "Space Exploration" red

We will now chunk the data. We will determine a chunk size defined
by the number of characters. In this case, it is CHUNK_SIZE = 1000 , but
we can select chunk sizes using different strategies. Chapter 7,
Building Scalable Knowledge-Graph-based RAG with Wikipedia API and

LlamaIndex, will take chunk size optimization further with automated
seamless chunking.

Chunking is necessary to optimize data processing: selecting portions
of text, embedding, and loading the data. It also makes the embedded
dataset easier to query. The following code chunks a document to
complete the preparation process:

with open(source_text, 'r') as f:
 text = f.read()
CHUNK_SIZE = 1000
chunked_text = [text[i:i+CHUNK_SIZE] for i in range(0,len(text)

We are now ready to create a vector store to vectorize data or add
data to an existing one.

Verifying if the vector store exists and
creating it if not
First, we need to define the path of our Activeloop vector store path,
whether our dataset exists or not:

vector_store_path = "hub://denis76/space_exploration_v1"

Make sure to replace
`hub://denis76/space_exploration_v1` with your
organization and dataset name.

Then, we write a function to attempt to load the vector store or
automatically create one if it doesn’t exist:

from deeplake.core.vectorstore.deeplake_vectorstore import Vect
import deeplake.util
try:
 # Attempt to load the vector store
 vector_store = VectorStore(path=vector_store_path)
 print("Vector store exists")
except FileNotFoundError:
 print("Vector store does not exist. You can create it.")
 # Code to create the vector store goes here
 create_vector_store=True

The output confirms that the vector store has been created:

Your Deep Lake dataset has been successfully created!
Vector store exists

We now need to create an embedding function.

The embedding function
The embedding function will transform the chunks of data we
created into vectors to enable vector-based search. In this program,
we will use "text-embedding-3-small" to embed the documents.

OpenAI has other embedding models that you can use:
https://platform.openai.com/docs/models/embeddings.
Chapter 6, Scaling RAG Bank Customer Data with Pinecone, provides
alternative code for embedding models in the Embedding section. In
any case, it is recommended to evaluate embedding models before

https://platform.openai.com/docs/models/embeddings

choosing one in production. Examine the characteristics of each
embedding model, as described by OpenAI, focusing on their length
and capacities. text-embedding-3-small was chosen in this case
because it stands out as a robust choice for efficiency and speed:

def embedding_function(texts, model="text-embedding-3-small"):
 if isinstance(texts, str):
 texts = [texts]
 texts = [t.replace("\n", " ") for t in texts]
 return [data.embedding for data in openai.embeddings.create(

The text-embedding-3-small text embedding model from OpenAI
typically uses embeddings with a restricted number of dimensions, to
balance obtaining enough detail in the embeddings with large
computational workloads and storage space. Make sure to check the
model page and pricing information before running the code:
https://platform.openai.com/docs/guides/embeddings/embed
ding-models.

We are now all set to begin populating the vector store.

Adding data to the vector store
We set the adding data flag to True :

add_to_vector_store=True
if add_to_vector_store == True:
 with open(source_text, 'r') as f:
 text = f.read()
 CHUNK_SIZE = 1000
 chunked_text = [text[i:i+1000] for i in range(0, len(te
vector_store.add(text = chunked_text,

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models

 embedding_function = embedding_function,
 embedding_data = chunked_text,
 metadata = [{"source": source_text}]*len(chunked_

The source text, source_text = "llm.txt" , has been embedded and
stored. A summary of the dataset’s structure is displayed, showing
that the dataset was loaded:

Creating 839 embeddings in 2 batches of size 500:: 100%|████████
Dataset(path='hub://denis76/space_exploration_v1', tensors=['tex
 tensor htype shape dtype compression
 ------- ------- ------- ------- -------
 text text (839, 1) str None
 metadata json (839, 1) str None
 embedding embedding (839, 1536) float32 None
 id text (839, 1) str None

Observe that the dataset contains four tensors:

embedding : Each chunk of data is embedded in a vector
id : The ID is a string of characters and is unique
metadata : The metadata contains the source of the data—in this
case, the llm.txt file.
text : The content of a chunk of text in the dataset

This dataset structure can vary from one project to another, as we will
see in Chapter 4, Multimodal Modular RAG for Drone Technology. We
can also visualize how the dataset is organized at any time to verify
the structure. The following code will display the summary that was
just displayed:

Print the summary of the Vector Store
print(vector_store.summary())

We can also visualize vector store information if we wish.

Vector store information
Activeloop’s API reference provides us with all the information we
need to manage our datasets:
https://docs.deeplake.ai/en/latest/. We can visualize our
datasets once we sign in at
https://app.activeloop.ai/datasets/mydatasets/.

We can also load our dataset in one line of code:

ds = deeplake.load(vector_store_path)

The output provides a path to visualize our datasets and query and
explore them online:

This dataset can be visualized in Jupyter Notebook by ds.visuali
hub://denis76/space_exploration_v1 loaded successfully.

You can also access your dataset directly on Activeloop by signing in
and going to your datasets. You will find online dataset exploration
tools to query your dataset and more, as shown here:

https://docs.deeplake.ai/en/latest/
https://app.activeloop.ai/datasets/mydatasets/

Figure 2.8: Querying and exploring a Deep Lake dataset online.

Among the many functions available, we can display the estimated
size of a dataset:

#Estimates the size in bytes of the dataset.
ds_size=ds.size_approx()

Once we have obtained the size, we can convert it into megabytes and
gigabytes:

Convert bytes to megabytes and limit to 5 decimal places
ds_size_mb = ds_size / 1048576
print(f"Dataset size in megabytes: {ds_size_mb:.5f} MB")
Convert bytes to gigabytes and limit to 5 decimal places
ds_size_gb = ds_size / 1073741824
print(f"Dataset size in gigabytes: {ds_size_gb:.5f} GB")

The output shows the size of the dataset in megabytes and gigabytes:

Dataset size in megabytes: 55.31311 MB
Dataset size in gigabytes: 0.05402 GB

Team #2 's pipeline component for data embedding and storage seems
to be working. Let’s now explore augmented generation.

3. Augmented input generation
Augmented generation is the third pipeline component. We will use
the data we retrieved to augment the user input. This component
processes the user input, queries the vector store, augments the input,
and calls gpt-4-turbo , as shown in Figure 2.9:

Figure 2.9: Pipeline component #3: Augmented input generation

Figure 2.9 shows that pipeline component #3 fully deserves its
Retrieval Augmented Generation (RAG) name. However, it would
be impossible to run this component without the work put in by Team
#1 and Team #2 to provide the necessary information to generate
augmented input content.

Let’s jump in and see how Team #3 does the job. Open 3-
Augmented_Generation.ipynb in the GitHub repository. The Installing

the environment section of the notebook is described in the Setting up
the environment section of this chapter. We select the vector store
(replace the vector store path with your vector store):

vector_store_path = "hub://denis76/space_exploration_v1"

Then, we load the dataset:

from deeplake.core.vectorstore.deeplake_vectorstore import Vect
import deeplake.util
ds = deeplake.load(vector_store_path)

We print a confirmation message that the vector store exists. At this
point stage, Team #2 previously ensured that everything was working
well, so we can just move ahead rapidly:

vector_store = VectorStore(path=vector_store_path)

The output confirms that the dataset exists and is loaded:

Deep Lake Dataset in hub://denis76/space_exploration_v1 already

We assume that pipeline component #2 , as built in the Data embedding
and storage section, has created and populated the vector_store and
has verified that it can be queried. Let’s now process the user input.

Input and query retrieval

We will need the embedding function to embed the user input:

def embedding_function(texts, model="text-embedding-3-small"):
 if isinstance(texts, str):
 texts = [texts]
 texts = [t.replace("\n", " ") for t in texts]
 return [data.embedding for data in openai.embeddings.create(

Note that we are using the same embedding model as the data
embedding and storage component to ensure full compatibility
between the input and the vector dataset: text-embedding-ada-002 .

We can now either use an interactive prompt for an input or process
user inputs in batches. In this case, we process a user input that has
already been entered that could be fetched from a user interface, for
example.

We first ask the user for an input or define one:

def get_user_prompt():
 # Request user input for the search prompt
 return input("Enter your search query: ")
Get the user's search query
#user_prompt = get_user_prompt()
user_prompt="Tell me about space exploration on the Moon and Ma

We then plug the prompt into the search query and store the output
in search_results :

search_results = vector_store.search(embedding_data=user_prompt

The user prompt and search results stored in search_results are
formatted to be displayed. First, let’s print the user prompt:

print(user_prompt)

We can also wrap the retrieved text to obtain a formatted output:

Function to wrap text to a specified width
def wrap_text(text, width=80):
 lines = []
 while len(text) > width:
 split_index = text.rfind(' ', 0, width)
 if split_index == -1:
 split_index = width
 lines.append(text[:split_index])
 text = text[split_index:].strip()
 lines.append(text)
 return '\n'.join(lines)

However, let’s only select one of the top results and print it:

import textwrap
Assuming the search results are ordered with the top result f
top_score = search_results['score'][0]
top_text = search_results['text'][0].strip()
top_metadata = search_results['metadata'][0]['source']
Print the top search result
print("Top Search Result:")
print(f"Score: {top_score}")
print(f"Source: {top_metadata}")
print("Text:")
print(wrap_text(top_text))

The following output shows that we have a reasonably good match:

Top Search Result:
Score: 0.6016581654548645
Source: llm.txt
Text:
Exploration of space, planets, and moons "Space Exploration" red
For the company, see SpaceX . For broader coverage of this topic
Exploration . Buzz Aldrin taking a core sample of the Moon durin

We are ready to augment the input with the additional information
we have retrieved.

Augmented input
The program adds the top retrieved text to the user input:

augmented_input=user_prompt+" "+top_text
print(augmented_input)

The output displays the augmented input:

Tell me about space exploration on the Moon and Mars. Exploratio

gpt-4o can now process the augmented input and generate content:

from openai import OpenAI
client = OpenAI()
import time

gpt_model = "gpt-4o"
start_time = time.time() # Start timing before the request

Note that we are timing the process. We now write the generative AI
call, adding roles to the message we create for the model:

def call_gpt4_with_full_text(itext):
 # Join all lines to form a single string
 text_input = '\n'.join(itext)
 prompt = f"Please summarize or elaborate on the following c
 try:
 response = client.chat.completions.create(
 model=gpt_model,
 messages=[
 {"role": "system", "content": "You are a space
 {"role": "assistant", "content": "You can read
 {"role": "user", "content": prompt}
],
 temperature=0.1 # Fine-tune parameters as needed
)
 return response.choices[0].message.content.strip()
 except Exception as e:
 return str(e)

The generative model is called with the augmented input; the
response time is calculated and displayed along with the output:

gpt4_response = call_gpt4_with_full_text(augmented_input)
response_time = time.time() - start_time # Measure response ti
print(f"Response Time: {response_time:.2f} seconds") # Print r
print(gpt_model, "Response:", gpt4_response)

Note that the raw output is displayed with the response time:

Response Time: 8.44 seconds
gpt-4o Response: Space exploration on the Moon and Mars has been

Let’s format the output with textwrap and print the result.
print_formatted_response(response) first checks if the response
returned contains Markdown features. If so, it will format the
response; if not, it will perform a standard output text wrap:

import textwrap
import re
from IPython.display import display, Markdown, HTML
import markdown
def print_formatted_response(response):
 # Check for markdown by looking for patterns like headers,
 markdown_patterns = [
 r"^#+\s", # Headers
 r"^*+", # Bullet points
 r"**", # Bold
 r"_", # Italics
 r"\[.+\]\(.+\)", # Links
 r"-\s", # Dashes used for lists
 r"\`\`\`" # Code blocks
]
 # If any pattern matches, assume the response is in markdow
 if any(re.search(pattern, response, re.MULTILINE) for patte
 # Markdown detected, convert to HTML for nicer display
 html_output = markdown.markdown(response)
 display(HTML(html_output)) # Use display(HTML()) to re
 else:
 # No markdown detected, wrap and print as plain text
 wrapper = textwrap.TextWrapper(width=80)
 wrapped_text = wrapper.fill(text=response)
 print("Text Response:")
 print("--------------------")
 print(wrapped_text)

 print("--------------------\n")
print_formatted_response(gpt4_response)

The output is satisfactory:

Moon Exploration
 Historical Missions:
 1. Apollo Missions: NASA's Apollo program, particularly Apol
 2. Lunar Missions: Various missions have been conducted to e
Scientific Goals:
 3. Geological Studies: Understanding the Moon's composition,
 4. Resource Utilization: Investigating the potential for min
 Future Plans:
 1. Artemis Program: NASA's initiative to return humans to th
 2. International Collaboration: Partnerships with other spac
Mars Exploration
 Robotic Missions:
 1. Rovers: NASA's rovers like Curiosity and Perseverance hav
 2. Orbiters: Various orbiters have been mapping Mars' surfac

Let’s introduce an evaluation metric to measure the quality of the
output.

Evaluating the output with cosine
similarity
In this section, we will implement cosine similarity to measure the
similarity between user input and the generative AI model’s output.
We will also measure the augmented user input with the generative
AI model’s output. Let’s first define a cosine similarity function:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def calculate_cosine_similarity(text1, text2):
 vectorizer = TfidfVectorizer()
 tfidf = vectorizer.fit_transform([text1, text2])
 similarity = cosine_similarity(tfidf[0:1], tfidf[1:2])
 return similarity[0][0]

Then, let’s calculate a score that measures the similarity between the
user prompt and GPT-4’s response:

similarity_score = calculate_cosine_similarity(user_prompt, gpt
print(f"Cosine Similarity Score: {similarity_score:.3f}")

The score is low, although the output seemed acceptable for a human:

Cosine Similarity Score: 0.396

It seems that either we missed something or need to use another
metric.

Let’s try to calculate the similarity between the augmented input and
GPT-4’s response:

Example usage with your existing functions
similarity_score = calculate_cosine_similarity(augmented_input,
print(f"Cosine Similarity Score: {similarity_score:.3f}")

The score seems better:

Cosine Similarity Score: 0.857

Can we use another method? Cosine similarity, when using Term
Frequency-Inverse Document Frequency (TF-IDF), relies heavily on
exact vocabulary overlap and takes into account important language
features, such as semantic meanings, synonyms, or contextual usage.
As such, this method may produce lower similarity scores for texts
that are conceptually similar but differ in word choice.

In contrast, using Sentence Transformers to calculate similarity
involves embeddings that capture deeper semantic relationships
between words and phrases. This approach is more effective in
recognizing the contextual and conceptual similarity between texts.
Let’s try this approach.

First, let’s install sentence-transformers :

!pip install sentence-transformers

Be careful installing this library at the end of the session, since it may
induce potential conflicts with the RAG pipeline’s requirements.
Depending on a project’s needs, this code could be yet another
separate pipeline component.

As of August 2024, using a Hugging Face token is
optional. If Hugging Face requires a token, sign up to
Hugging Face to obtain an API token, check the
conditions, and set up the key as instructed.

We will now use a MiniLM architecture to perform the task with all-
MiniLM-L6-v2 . This model is available through the Hugging Face
Model Hub we are using. It’s part of the sentence-transformers
library, which is an extension of the Hugging Face Transformers
library. We are using this architecture because it offers a compact and
efficient model, with a strong performance in generating meaningful
sentence embeddings quickly. Let’s now implement it with the
following function:

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
def calculate_cosine_similarity_with_embeddings(text1, text2):
 embeddings1 = model.encode(text1)
 embeddings2 = model.encode(text2)
 similarity = cosine_similarity([embeddings1], [embeddings2]
 return similarity[0][0]

We can now call the function to calculate the similarity between the
augmented user input and GPT-4’s response:

similarity_score = calculate_cosine_similarity_with_embeddings(
print(f"Cosine Similarity Score: {similarity_score:.3f}")

The output shows that the Sentence Transformer captures semantic
similarities between the texts more effectively, resulting in a high
cosine similarity score:

Cosine Similarity Score: 0.739

The choice of metrics depends on the specific requirements of each
project phase. Chapter 3, Building Index-Based RAG with LlamaIndex,
Deep Lake, and OpenAI, will provide advanced metrics when we
implement index-based RAG. At this stage, however, the RAG
pipeline’s three components have been successfully built. Let’s
summarize our journey and move to the next level!

Summary
In this chapter, we tackled the complexities of using RAG-driven
generative AI, focusing on the essential role of document embeddings
when handling large datasets. We saw how to go from raw texts to
embeddings and store them in vector stores. Vector stores such as
Activeloop, unlike parametric generative AI models, provide API
tools and visual interfaces that allow us to see embedded text at any
moment.

A RAG pipeline detailed the organizational process of integrating
OpenAI embeddings into Activeloop Deep Lake vector stores. The
RAG pipeline was broken down into distinct components that can
vary from one project to another. This separation allows multiple
teams to work simultaneously without dependency, accelerating
development and facilitating specialized focus on individual aspects,
such as data collection, embedding processing, and query generation
for the augmented generation AI process.

We then built a three-component RAG pipeline, beginning by
highlighting the necessity of specific cross-platform packages and
careful system architecture planning. The resources involved were
Python functions built from scratch, Activeloop Deep Lake to

organize and store the embeddings in a dataset in a vector store, an
OpenAI embedding model, and OpenAI’s GPT-4o generative AI
model. The program guided us through building a three-part RAG
pipeline using Python, with practical steps that involved setting up
the environment, handling dependencies, and addressing
implementation challenges like data chunking and vector store
integration.

This journey provided a robust understanding of embedding
documents in vector stores and leveraging them for enhanced
generative AI outputs, preparing us to apply these insights to real-
world AI applications in well-organized processes and teams within
an organization. Vector stores enhance the retrieval of documents that
require precision in information retrieval. Indexing takes RAG
further and increases the speed and relevance of retrievals. The next
chapter will take us a step further by introducing advanced indexing
methods to retrieve and augment inputs.

Questions
Answer the following questions with Yes or No:

1. Do embeddings convert text into high-dimensional vectors for
faster retrieval in RAG?

2. Are keyword searches more effective than embeddings in
retrieving detailed semantic content?

3. Is it recommended to separate RAG pipelines into independent
components?

4. Does the RAG pipeline consist of only two main components?

5. Can Activeloop Deep Lake handle both embedding and vector
storage?

6. Is the text-embedding-3-small model from OpenAI used to
generate embeddings in this chapter?

7. Are data embeddings visible and directly traceable in an RAG-
driven system?

8. Can a RAG pipeline run smoothly without splitting into separate
components?

9. Is chunking large texts into smaller parts necessary for
embedding and storage?

10. Are cosine similarity metrics used to evaluate the relevance of
retrieved information?

References
OpenAI Ada documentation for embeddings:
https://platform.openai.com/docs/guides/embeddings/e
mbedding-models

OpenAI GPT documentation for content generation:
https://platform.openai.com/docs/models/gpt-4-turbo-
and-gpt-4

Activeloop API documentation:
https://docs.deeplake.ai/en/latest/

MiniLM model reference:
https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://docs.deeplake.ai/en/latest/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Further reading
OpenAI’s documentation on embeddings:
https://platform.openai.com/docs/guides/embeddings

Activeloop documentation: https://docs.activeloop.ai/

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://platform.openai.com/docs/guides/embeddings
https://docs.activeloop.ai/
https://www.packt.link/rag

3

Building Index-Based RAG with
LlamaIndex, Deep Lake, and
OpenAI

Indexes increase precision and speed performances, but they offer
more than that. Indexes transform retrieval-augmented generative AI
by adding a layer of transparency. With an index, the source of a
response generated by a RAG model is fully traceable, offering
visibility into the precise location and detailed content of the data
used. This improvement not only mitigates issues like bias and
hallucinations but also addresses concerns around copyright and
data integrity.

In this chapter, we’ll explore how indexed data allows for greater
control over generative AI applications. If the output is
unsatisfactory, it’s no longer a mystery why, since the index allows
us to identify and examine the exact data source of the issue. This
capability makes it possible to refine data inputs, tweak system
configurations, or switch components, such as vector store software
and generative models, to achieve better outcomes.

We will begin the chapter by laying out the architecture of an index-
based RAG pipeline that will enhance speed, precision, and

traceability. We will show how LlamaIndex, Deep Lake, and OpenAI
can be seamlessly integrated without having to create all the
necessary functions ourselves. This provides a solid base to start
building from. Then, we’ll introduce the main indexing types we’ll
use in our programs, such as vector, tree, list, and keyword indexes.
Then, we will build a domain-specific drone technology LLM RAG
agent that a user can interact with. Drone technology is expanding to
all domains, such as fire detection, traffic information, and sports
events; hence, I’ve decided to use it in our example. The goal of this
chapter is to prepare an LLM drone technology dataset that we will
enhance with multimodal data in the next chapter. We will also
illustrate the key indexing types in code.

By the end of this chapter, you’ll be adept at manipulating index-
based RAG through vector stores, datasets, and LLMs, and know
how to optimize retrieval systems and ensure full traceability. You
will discover how our integrated toolkit—combining LlamaIndex,
Deep Lake, and OpenAI—not only simplifies technical complexities
but also frees your time to develop and hone your analytical skills,
enabling you to dive deeper into understanding RAG-driven
generative AI.

We’ll cover the following topics in this chapter:

Building a semantic search engine with a LlamaIndex framework
and indexing methods
Populating Deep Lake vector stores
Integration of LlamaIndex, Deep Lake, and OpenAI
Score ranking and cosine similarity metrics
Metadata enhancement for traceability

Query setup and generation configuration
Introducing automated document ranking
Vector, tree, list, and keyword indexing types

Why use index-based RAG?
Index-based search takes advanced RAG-driven generative AI to
another level. It increases the speed of retrieval when faced with large
volumes of data, taking us from raw chunks of data to organized,
indexed nodes that we can trace from the output back to the source of
a document and its location.

Let’s understand the differences between a vector-based similarity
search and an index-based search by analyzing the architecture of an
index-based RAG.

Architecture
Index-based search is faster than vector-based search in RAG because
it directly accesses relevant data using indices, while vector-based
search sequentially compares embeddings across all records. We
implemented a vector-based similarity search program in Chapter 2,
RAG Embedding Vector Stores with Deep Lake and OpenAI, as shown in
Figure 3.1:

We collected and prepared data in Pipeline #1: Data Collection and
Preparation
We embedded the data and stored the prepared data in a vector
store in Pipeline #2: Embeddings and vector store

We then ran retrieval queries and generative AI with Pipeline #3
to process user input, run retrievals based on vector similarity
searches, augment the input, generate a response, and apply
performance metrics.

This approach is flexible because it gives you many ways to
implement each component, depending on the needs of your project.

Figure 3.1: RAG-driven generative AI pipelines, as described in Chapter 2, with additional
functionality

However, implementing index-based searches will take us into the
future of AI, which will be faster, more precise, and traceable. We will
follow the same process as in Chapter 2, with three pipelines, to make
sure that you are ready to work in a team in which the tasks are
specialized. Since we are using the same pipelines as in Chapter 2,

let’s add the functions from that chapter to them, as shown in Figure
3.1:

Pipeline Component #1 and D2-Index: We will collect data and
preprocess it. However, this time, we will prepare the data
source one document at a time and store them in separate files.
We will then add their name and location to the metadata we
load into the vector store. The metadata will help us trace a
response all the way back to the exact file that the retrieval
function processed. We will have a direct link from a response to
the data that it was based on.
Pipeline Component #2 and D3-Index: We will load the data
into a vector store by installing and using the innovative
integrated llama-index-vector-stores-deeplake package, which
includes everything we need in an optimized starter scenario:
chunking, embedding, storage, and even LLM integration. We
have everything we need to get to work on index-based RAG in a
few lines of code! This way, once we have a solid program, we
can customize and expand the pipelines as we wish, as we did,
for example, in Chapter 2, when we explicitly chose the LLM
models and chunking sizes.
Pipeline Component #3 and D4-Index: We will load the data in
a dataset by installing and using the innovative integrated llama-
index-vector-stores-deeplake package, which includes
everything we need to get indexed-based retrieval and
generation started, including automated ranking and scoring.
The process is seamless and extremely productive. We’ll leverage
LlamaIndex with Deep Lake to streamline information retrieval
and processing. An integrated retriever will efficiently fetch

relevant data from the Deep Lake repository, while an LLM
agent will then intelligently synthesize and interact with the
retrieved information to generate meaningful insights or actions.
Indexes are designed for fast retrieval, and we will implement
several indexing methods.
Pipeline Component #3 and E1-Index: We will add a time and
score metric to evaluate the output.

In the previous chapter, we implemented vector-based similarity
search and retrieval. We embedded documents to transform data into
high-dimensional vectors. Then, we performed retrieval by
calculating distances between vectors. In this chapter, we will go
further and create a vector store. However, we will load the data into
a dataset that will be reorganized using retrieval indexing types. Table
3.1 shows the differences between vector-based and index-based
search and retrieval methods:

Feature Vector-based
similarity search
and retrieval

Index-based vector, tree,
list, and keyword search
and retrieval

Flexibility High Medium (precomputed
structure)

Speed Slower with large
datasets

Fast and optimized for
quick retrieval

Scalability Limited by real-
time processing

Highly scalable with large
datasets

Complexity Simpler setup More complex and requires
an indexing step

Update
Frequency

Easy to update Requires re-indexing for
updates

Table 3.1: Vector-based and index-based characteristics

We will now build a semantic index-based RAG program with Deep
Lake, LlamaIndex, and OpenAI.

Building a semantic search engine
and generative agent for drone
technology
In this section, we will build a semantic index-based search engine
and generative AI agent engine using Deep Lake vector stores,
LlamaIndex, and OpenAI. As mentioned earlier, drone technology is
expanding in domains such as fire detection and traffic control. As
such, the program’s goal is to provide an index-based RAG agent for
drone technology questions and answers. The program will
demonstrate how drones use computer vision techniques to identify
vehicles and other objects. We will implement the architecture
illustrated in Figure 3.1, described in the Architecture section of this
chapter.

Open 2-Deep_Lake_LlamaIndex_OpenAI_indexing.ipynb
from the GitHub repository of this chapter. The titles of
this section are the same as the section titles in the
notebook, so you can match the explanations with the
code.

We will first begin by installing the environment. Then, we will build
the three main pipelines of the program:

Pipeline 1: Collecting and preparing the documents. Using
sources like GitHub and Wikipedia, collect and clean documents
for indexing.
Pipeline 2: Creating and populating a Deep Lake vector store.
Create and populate a Deep Lake vector store with the prepared
documents.
Pipeline 3: Index-based RAG for query processing and
generation. Applying time and score performances with LLMs
and cosine similarity metrics.

When possible, break your project down into separate pipelines so
that teams can progress independently and in parallel. The pipelines
in this chapter are an example of how this can be done, but there are
many other ways to do this, depending on your project. For now, we
will begin by installing the environment.

Installing the environment
The environment is mostly the same as in the previous chapter. Let’s
focus on the packages that integrate LlamaIndex, vector store
capabilities for Deep Lake, and also OpenAI modules. This
integration is a major step forward to seamless cross-platform
implementations:

!pip install llama-index-vector-stores-deeplake==0.1.6

The program requires additional Deep Lake functionalities:

!pip install deeplake==3.9.8

The program also requires LlamaIndex functionalities:

!pip install llama-index==0.10.64

Let’s now check if the packages can be properly imported from
llama-index , including vector stores for Deep Lake:

from llama_index.core import VectorStoreIndex, SimpleDirectoryR
from llama_index.vector_stores.deeplake import DeepLakeVectorSt

With that, we have installed the environment. We will now collect
and prepare the documents.

Pipeline 1: Collecting and preparing
the documents
In this section, we will collect and prepare the drone-related
documents with the metadata necessary to trace the documents back
to their source. The goal is to trace a response’s content back to the
exact chunk of data retrieved to find its source. First, we will create a
data directory in which we will load the documents:

!mkdir data

Now, we will use a heterogeneous corpus for the drone technology
data that we will process using BeautifulSoup :

import requests
from bs4 import BeautifulSoup
import re
import os
urls = [
 "https://github.com/VisDrone/VisDrone-Dataset",
 "https://paperswithcode.com/dataset/visdrone",
 "https://openaccess.thecvf.com/content_ECCVW_2018/papers/11
 "https://github.com/VisDrone/VisDrone2018-MOT-toolkit",
 "https://en.wikipedia.org/wiki/Object_detection",
 "https://en.wikipedia.org/wiki/Computer_vision",…
]

The corpus contains a list of sites related to drones, computer vision,
and related technologies. However, the list also contains noisy links
such as https://keras.io/ and https://pytorch.org/, which do
not contain the specific information we are looking for.

In real-life projects, we will not always have the luxury
of working on perfect, pertinent, structured, and well-
formatted data. Our RAG pipelines must be sufficiently
robust to retrieve relevant data in a noisy environment.

In this case, we are working with unstructured data in various
formats and variable quality as related to drone technology. Of
course, in a closed environment, we can work with the persons or
organizations that produce the documents, but we must be ready for
any type of document in a fast-moving, digital world.

The code will fetch and clean the data, as it did in Chapter 2:

https://keras.io/
https://pytorch.org/

def clean_text(content):
 # Remove references and unwanted characters
 content = re.sub(r'\[\d+\]', '', content) # Remove refere
 content = re.sub(r'[^\w\s\.]', '', content) # Remove punct
 return content
def fetch_and_clean(url):
 try:
 response = requests.get(url)
 response.raise_for_status() # Raise exception for bad
 soup = BeautifulSoup(response.content, 'html.parser')
 # Prioritize "mw-parser-output" but fall back to "conte
 content = soup.find('div', {'class': 'mw-parser-output'
 if content is None:
 return None
 # Remove specific sections, including nested ones
 for section_title in ['References', 'Bibliography', 'Ex
 section = content.find('span', id=section_title)
 while section:
 for sib in section.parent.find_next_siblings():
 sib.decompose()
 section.parent.decompose()
 section = content.find('span', id=section_title
 # Extract and clean text
 text = content.get_text(separator=' ', strip=True)
 text = clean_text(text)
 return text
 except requests.exceptions.RequestException as e:
 print(f"Error fetching content from {url}: {e}")
 return None # Return None on error

Each project will require specific names and paths for the original
data. In this case, we will introduce an additional function to save
each piece of text with the name of its data source, by creating a
keyword based on its URL:

Directory to store the output files
output_dir = './data/'
os.makedirs(output_dir, exist_ok=True)
Processing each URL and writing its content to a separate fil
for url in urls:
 article_name = url.split('/')[-1].replace('.html',") # Han
 filename = os.path.join(output_dir, article_name + '.txt')
 clean_article_text = fetch_and_clean(url)
 with open(filename, 'w', encoding='utf-8') as file:
 file.write(clean_article_text)
print(f"Content(ones that were possible) written to files in th

The output shows that the goal is achieved, although some
documents could not be decoded:

WARNING:bs4.dammit:Some characters could not be decoded, and wer
Content(ones that were possible) written to files in the './data

Depending on the project’s goals, you can choose to investigate and
ensure that all documents are retrieved, or estimate that you have
enough data for user queries.

If we check ./data/ , we will find that each article is now in a separate
file, as shown in the content of the directory:

Figure 3.2: List of prepared documents

The program now loads the documents from ./data/ :

load documents
documents = SimpleDirectoryReader("./data/").load_data()

The LlamaIndex SimpleDirectoryReader class is designed for working
with unstructured data. It recursively scans the directory and
identifies and loads all supported file types, such as .txt , .pdf , and
.docx . It then extracts the content from each file and returns a list of
document objects with its text and metadata, such as the filename
and file path. Let’s display the first entry of this list of dictionaries of
the documents:

documents[0]

The output shows that the directory reader has provided fully
transparent information on the source of its data, including the name
of the document, such as 1804.06985.txt in this case:

'/content/data/1804.06985.txt', 'file_name': '1804.06985.txt',

The content of this document contains noise that seems unrelated to
the drone technology information we are looking for. But that is
exactly the point of this program, which aims to do the following:

Start with all the raw, unstructured, loosely drone-related data
we can get our hands on
Simulate how real-life projects often begin
Evaluate how well an index-based RAG generative AI program
can perform in a challenging environment

Let’s now create and populate a Deep Lake vector store in complete
transparency.

Pipeline 2: Creating and populating a
Deep Lake vector store
In this section, we will create a Deep Lake vector store and populate
it with the data in our documents. We will implement a standard
tensor configuration with:

text (str) : The text is the content of one of the text files listed in
the dictionary of documents. It will be seamless, and chunking
will be optimized, breaking the text into meaningful chunks.

metadata(json) : In this case, the metadata will contain the
filename source of each chunk of text for full transparency and
control. We will see how to access this information in code.
embedding (float32) : The embedding is seamless, using an
OpenAI embedding model called directly by the LlamaIndex-Deep
Lake-OpenAI package.
id (str, auto-populated) : A unique ID is attributed
automatically to each chunk. The vector store will also contain an
index, which is a number from 0 to n , but it cannot be used
semantically, since it will change each time we modify the
dataset. However, the unique ID field will remain unchanged
until we decide to optimize it with index-based search strategies,
as we will see in the Pipeline 3: Index-based RAG section that
follows.

The program first defines our vector store and dataset paths:

from llama_index.core import StorageContext
vector_store_path = "hub://denis76/drone_v2"
dataset_path = "hub://denis76/drone_v2"

Replace the vector store and dataset paths with your account name
and the name of the dataset you wish to use:

vector_store_path = "hub://[YOUR VECTOR STORE/

We then create a vector store, populate it, and create an index over
the documents:

overwrite=True will overwrite dataset, False will append it
vector_store = DeepLakeVectorStore(dataset_path=dataset_path, o
storage_context = StorageContext.from_defaults(vector_store=vec
Create an index over the documents
index = VectorStoreIndex.from_documents(documents, storage_cont
)

Notice that overwrite is set to True to create the vector store and
overwrite any existing one. If overwrite=False , the dataset will be
appended.

The index created will be reorganized by the indexing methods,
which will rearrange and create new indexes when necessary.
However, the responses will always provide the original source of the
data. The output confirms that the dataset has been created and the
data is uploaded:

Your Deep Lake dataset has been successfully created!
Uploading data to deeplake dataset.
100%|██████████| 41/41 [00:02<00:00, 18.15it/s]

The output also shows the structure of the dataset once it is
populated:

Dataset(path='hub://denis76/drone_v2', tensors=['text', 'metadat

The data is stored in tensors with their type and shape:

Figure 3.3: Dataset structure

We will now load our dataset in memory:

import deeplake
ds = deeplake.load(dataset_path) # Load the dataset

We can visualize the dataset online by clicking on the link provided
in the output:

/
This dataset can be visualized in Jupyter Notebook by ds.visuali
hub://denis76/drone_v2 loaded successfully.
This dataset can be visualized in Jupyter Notebook by ds.visuali
hub://denis76/drone_v2 loaded successfully.

We can also decide to add code to display the dataset. We begin by
loading the data in a pandas DataFrame:

import json
import pandas as pd
import numpy as np
Assuming 'ds' is your loaded Deep Lake dataset
Create a dictionary to hold the data
data = {}

Iterate through the tensors in the dataset
for tensor_name in ds.tensors:
 tensor_data = ds[tensor_name].numpy()
 # Check if the tensor is multi-dimensional
 if tensor_data.ndim > 1:
 # Flatten multi-dimensional tensors
 data[tensor_name] = [np.array(e).flatten().tolist() for
 else:
 # Convert 1D tensors directly to lists and decode text
 if tensor_name == "text":
 data[tensor_name] = [t.tobytes().decode('utf-8') if
 else:
 data[tensor_name] = tensor_data.tolist()
Create a Pandas DataFrame from the dictionary
df = pd.DataFrame(data)

Then, we create a function to display a record:

Function to display a selected record
def display_record(record_number):
 record = df.iloc[record_number]
 display_data = {
 "ID": record["id"] if "id" in record else "N/A",
 "Metadata": record["metadata"] if "metadata" in record
 "Text": record["text"] if "text" in record else "N/A",
 "Embedding": record["embedding"] if "embedding" in reco
 }

Finally, we can select a record and display each field:

Function call to display a record
rec = 0 # Replace with the desired record number
display_record(rec)

The id is a unique string code:

ID:
['a89cdb8c-3a85-42ff-9d5f-98f93f414df6']

The metadata field contains the information we need to trace the
content back to the original file and file path, as well as everything we
need to understand this record, from the source to the embedded
vector. It also contains the information of the node created from the
record’s data, which can then be used for the indexing engine we will
run in Pipeline 3:

file_path : Path to the file in the dataset
(/content/data/1804.06985.txt).
file_name : Name of the file (`1804.06985.txt`).
file_type : Type of file (`text/plain`).
file_size : Size of the file in bytes (`3700`).
creation_date : Date the file was created (`2024-08-09`).
last_modified_date : Date the file was last modified (`2024-08-
09`).
_node_content : Detailed content of the node, including the
following main items:

id_ : Unique identifier for the node (`a89cdb8c-3a85-42ff-
9d5f-98f93f414df6 `).
embedding : Embedding related to the text (null).
metadata : Repeated metadata about the file.
excluded_embed_metadata_keys : Keys excluded from
embedding metadata (not necessary for embedding).

excluded_llm_metadata_keys : Keys excluded from LLM
metadata (not necessary for an LLM).
relationships : Information about relationships to other
nodes.
text : Actual text content of the document. It can be the text
itself, an abstract, a summary, or any other approach to
optimize search functions.
start_char_idx : Starting character index of the text.
end_char_idx : Ending character index of the text.
text_template : Template for displaying text with metadata.
metadata_template : Template for displaying metadata.
metadata_seperator : Separator used in metadata display.
class_name : Type of node (e.g., `TextNode`).

_node_type : Type of node (`TextNode`).
document_id : Identifier for the document (`61e7201d-0359-42b4-
9a5f-32c4d67f345e`).
doc_id : Document ID, same as document_id .
ref_doc_id : Reference document ID, same as document_id .

The text field contains the field of this chunk of data, not the whole
original text:

['High Energy Physics Theory arXiv1804.06985 hepth Submitted on

The Embedding field contains the embedded vector of the text content:

[-0.0009671939187683165, 0.010151553899049759, -0.01097981911152

The structure and format of RAG datasets vary from one domain or
project to another. However, the following four columns of this
dataset provide valuable information on the evolution of AI:

id : The id is the index we will be using to organize the chunks
of text of the text column in the dataset. The chunks will be
transformed into nodes that can contain the original text,
summaries of the original text, and additional information, such
as the source of the data used for the output that is stored in the
metadata column. We created this index in Pipeline 2 of this
notebook when we created the vector store. However, we can
generate indexes in memory on an existing database that
contains no indexes, as we will see in Chapter 4, Multimodal
Modular RAG for Drone Technology.
metadata : The metadata was generated automatically in Pipeline
1 when Deep Lake’s SimpleDirectoryReader loaded the source
documents in a documents object, and also when the vector store
was created. In Chapter 2, RAG Embedding Vector Stores with Deep
Lake and OpenAI, we only had one file source of data. In this
chapter, we stored the data in one file for each data source (URL).
text : The text processed by Deep Lake’s vector store creation
functionality that we ran in Pipeline 2 automatically chunked
the data, without us having to configure the size of the chunks,
as we did in the Retrieving a batch of prepared documents section in
Chapter 2. Once again, the process is seamless. We will see how
smart chunking is done in the Optimized chunking section of
Pipeline 3: Index-based RAG in this chapter.
embedding : The embedding for each chunk of data was generated
through an embedding model that we do not have to configure.

We could choose an embedding model, as we did in the Data
embedding and storage section in Chapter 2, RAG Embedding Vector
Stores with Deep Lake and OpenAI. We selected an embedding
model and wrote a function. In this program, Deep Lake selects
the embedding model and embeds the data, without us having
to write a single line of code.

We can see that embedding, chunking, indexing, and other data
processing functions are now encapsulated in platforms and
frameworks, such as Activeloop Deep Lake, LlamaIndex, OpenAI,
LangChain, Hugging Face, Chroma, and many others. Progressively,
the initial excitement of generative AI models and RAG will fade, and
they will become industrialized, encapsulated, and commonplace
components of AI pipelines. AI is evolving, and it might be helpful to
facilitate a platform that offers a default configuration based on
effective practices. Then, once we have implemented a basic
configuration, we can customize and expand the pipelines as
necessary for our projects.

We are now ready to run index-based RAG.

Pipeline 3: Index-based RAG
In this section, we will implement an index-based RAG pipeline
using LlamaIndex , which uses the data we have prepared and
processed with Deep Lake. We will retrieve relevant information
from the heterogeneous (noise-containing) drone-related document
collection and synthesize the response through OpenAI’s LLM
models. We will implement four index engines:

Vector Store Index Engine: Creates a vector store index from the
documents, enabling efficient similarity-based searches.
Tree Index: Builds a hierarchical tree index from the documents,
offering an alternative retrieval structure.
List Index: Constructs a straightforward list index from the
documents.
Keyword Table Index: Creates an index based on keywords
extracted from the documents.

We will implement querying with an LLM:

Query Response and Source: Queries the index with user input,
retrieves the relevant documents, and returns a synthesized
response along with source information.

We will measure the responses with a time-weighted average metric with
LLM score and cosine similarity that calculates a time-weighted
average, based on retrieval and similarity scores. The content and
execution times might vary from one run to another due to the
stochastic algorithms implemented.

User input and query parameters
The user input will be the reference question for the four index
engines we will run. We will evaluate each response based on the
index engine’s retrievals and measure the outputs, using time and
score ratios. The input will be submitted to the four index and query
engines we will build later.

The user input is:

user_input="How do drones identify vehicles?"

The four query engines that implement an LLM (in this case, an
OpenAI model) will seamlessly be called with the same parameters.
The three parameters that we will set are:

#similarity_top_k
k=3
#temperature
temp=0.1
#num_output
mt=1024

These key parameters are:

k=3 : The query engine will be required to find the top 3 most
probable responses by setting the top-k (most probable choices)
to 3. In this case, k will serve as a ranking function that will force
the LLM to select the top documents.
temp=0.1 : A low temperature such as 0.1 will encourage the
LLM to produce precise results. If the temperature is increased to
0.9 , for example, the response will be more creative. However,
in this case, we are exploring drone technology, which requires
precision.
mt=1024 : This parameter will limit the number of tokens of the
output to 1,024 .

The user input and parameters will be applied to the four query
engines. Let’s now build the cosine similarity metric.

Cosine similarity metric
The cosine similarity metric was described in the Evaluating the
Output with the Cosine Similarity section in Chapter 2. If necessary, take
the time to go through that section again. Here, we will create a
function for the responses:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
def calculate_cosine_similarity_with_embeddings(text1, text2):
 embeddings1 = model.encode(text1)
 embeddings2 = model.encode(text2)
 similarity = cosine_similarity([embeddings1], [embeddings2]
 return similarity[0][0]

The function uses sklearn and also Hugging Face’s
SentenceTransformer . The program first creates the vector store
engine.

Vector store index query engine
VectorStoreIndex is a type of index within LlamaIndex that
implements vector embeddings to represent and retrieve information
from documents. These documents with similar meanings will have
embeddings that are closer together in the vector space, as we
explored in the previous chapter. However, this time, the
VectorStoreIndex does not automatically use the existing Deep Lake
vector store. It can create a new in-memory vector index, re-embed
the documents, and create a new index structure. We will take this

approach further in Chapter 4, Multimodal Modular RAG for Drone
Technology, when we implement a dataset that contains no indexes or
embeddings.

There is no silver bullet to deciding which indexing
method is suitable for your project! The best way to
make a choice is to test the vector, tree, list, and
keyword indexes introduced in this chapter.

We will first create the vector store index:

from llama_index.core import VectorStoreIndex
vector_store_index = VectorStoreIndex.from_documents(documents)

We then display the vector store index we created:

print(type(vector_store_index))

We will receive the following output, which confirms that the engine
was created:

<class 'llama_index.core.indices.vector_store.base.VectorStoreIn

We now need a query engine to retrieve and synthesize the
document(s) retrieved with an LLM—in our case, an OpenAI model
(installed with !pip install llama-index-vector-stores-
deeplake==0.1.2):

vector_query_engine = vector_store_index.as_query_engine(simila

We defined the parameters of the query engine in the User input and
query parameters subsection. We can now query the dataset and
generate a response.

Query response and source
Let’s define a function that will manage the query and return
information on the content of the response:

import pandas as pd
import textwrap
def index_query(input_query):
 response = vector_query_engine.query(input_query)
 # Optional: Print a formatted view of the response (remove
 print(textwrap.fill(str(response), 100))
 node_data = []
 for node_with_score in response.source_nodes:
 node = node_with_score.node
 node_info = {
 'Node ID': node.id_,
 'Score': node_with_score.score,
 'Text': node.text
 }
 node_data.append(node_info)
 df = pd.DataFrame(node_data)
 # Instead of printing, return the DataFrame and the respons
 return df, response,

index_query(input_query) executes a query using a vector query
engine and processes the results into a structured format. The

function takes an input query and retrieves relevant information,
using the query engine in a pandas DataFrame: Node ID , Score , File
Path , Filename , and Text .

The code will now call the query:

import time
#start the timer
start_time = time.time()
df, response = index_query(user_input)
Stop the timer
end_time = time.time()
Calculate and print the execution time
elapsed_time = end_time - start_time
print(f"Query execution time: {elapsed_time:.4f} seconds")
print(df.to_markdown(index=False, numalign="left", stralign="le

We will evaluate the time it takes for the query to retrieve the relevant
data and generate a response synthesis with the LLM (in this case, an
OpenAI model). The output of the semantic search first returns a
response synthesized by the LLM:

Drones can automatically identify vehicles across different came

The output then displays the elapsed time of the query:

Query execution time: 0.8831 seconds

The output now displays node information. The score of each node of
three k=3 documents was retrieved with their text excerpts:

Figure 3.4: Node information output

The ID of the node guarantees full transparency and can be traced
back to the original document, even when the index engines re-index
the dataset. We can obtain the node source of the first node, for
example, with the following code:

nodeid=response.source_nodes[0].node_id
nodeid

The output provides the node ID:

4befdb13-305d-42db-a616-5d9932c17ac8

We can drill down and retrieve the full text of the node containing the
document that was synthesized by the LLM:

response.source_nodes[0].get_text()

The output will display the following text:

['These activities can be carried out with different approaches

We can also peek into the nodes and retrieve their chunk size.

Optimized chunking
We can predefine the chunk size, or we can let LlamaIndex select it
for us. In this case, the code determines the chunk size automatically:

for node_with_score in response.source_nodes:
 node = node_with_score.node # Extract the Node object from
 chunk_size = len(node.text)
 print(f"Node ID: {node.id_}, Chunk Size: {chunk_size} chara

The advantage of an automated chunk size is that it can be variable.
For example, in this case, the chunk size shown in the size of the
output nodes is probably in the 4000-to-5500-character range:

Node ID: 83a135c6-dddd-402e-9423-d282e6524160, Chunk Size: 4417
Node ID: 7b7b55fe-0354-45bc-98da-0a715ceaaab0, Chunk Size: 1806
Node ID: 18528a16-ce77-46a9-bbc6-5e8f05418d95, Chunk Size: 3258

The chunking function does not linearly cut content but optimizes the
chunks for semantic search.

Performance metric
We will also implement a performance metric based on the accuracy
of the queries and the time elapsed. This function calculates and
prints a performance metric for a query, along with its execution
time. The metric is based on the weighted average relevance scores of
the retrieved information, divided by the time it took to get the
results. Higher scores indicate better performance.

We first calculate the sum of the scores and the average score, and
then we divide the weighted average by the time elapsed to perform
the query:

import numpy as np
def info_metrics(response):
 # Calculate the performance (handling None scores)
 scores = [node.score for node in response.source_nodes if nod
 if scores: # Check if there are any valid scores
 weights = np.exp(scores) / np.sum(np.exp(scores))
 perf = np.average(scores, weights=weights) / elapsed_time
 else:
 perf = 0 # Or some other default value if all scores are

The result is a ratio based on the average weight divided by the
elapsed time:

perf = np.average(scores, weights=weights) / elapsed_time

We can then call the function:

info_metrics(response)

The output provides an estimation of the quality of the response:

Average score: 0.8374
Query execution time: 1.3266 seconds
Performance metric: 0.6312

This performance metric is not an absolute value. It’s an indicator
that we can use to compare this output with the other index engines.
It may also vary from one run to another, due to the stochastic nature
of machine learning algorithms. Additionally, the quality of the
output depends on the user’s subjective perception. In any case, this
metric will help compare the query engines’ performances in this
chapter.

We can already see that the average score is satisfactory, even though
we loaded heterogeneous and sometimes unrelated documents in the
dataset. The integrated retriever and synthesizer functionality of
LlamaIndex, Deep Lake, and OpenAI have proven to be highly
effective.

Tree index query engine
The tree index in LlamaIndex creates a hierarchical structure for
managing and querying text documents efficiently. However, think
of something other than a classical hierarchical structure! The tree
index engine optimizes the hierarchy, content, and order of the
nodes, as shown in Figure 3.5:

Figure 3.5: Optimized tree index

The tree index organizes documents in a tree structure, with broader
summaries at higher levels and detailed information at lower levels.
Each node in the tree summarizes the text it covers. The tree index is
efficient for large datasets and queries large collections of documents
rapidly by breaking them down into manageable optimized chunks.
Thus, the optimization of the tree structure allows for rapid retrieval
by traversing the relevant nodes without wasting time.

Organizing this part of the pipeline and adjusting parameters such as
tree depth and summary methods can be a specialized task for a team

member. Depending on the project and workload, working on the
tree structure could be part of Pipeline 2 when creating and
populating a vector store. Alternatively, the tree structure can be
created in memory at the beginning of each session. The flexibility of
the structure and implementation of tree structures and index
engines, in general, can be a fascinating and valuable specialization in
a RAG-driven generative AI team.

In this index model, the LLM (an OpenAI model in this case) acts like
it is answering a multiple-choice question when selecting the best
nodes during a query. It analyzes the query, compares it with the
summaries of the current node’s children, and decides which path to
follow to find the most relevant information.

The integrated LlamaIndex-Deep Lake-OpenAI process in this
chapter is industrializing components seamlessly, taking AI to
another level. LLM models can now be used for embedding,
document ranking, and conversational agents. The market offers
various language models from providers like OpenAI, Cohere, AI21
Labs, and Hugging Face. LLMs have evolved from the early days of
being perceived as magic to becoming industrialized, seamless,
multifunctional, and integrated components of broader AI pipelines.

Let’s create a tree index in two lines of code:

from llama_index.core import TreeIndex
tree_index = TreeIndex.from_documents(documents)

The code then checks the class we just created:

print(type(tree_index))

The output confirms that we are in the TreeIndex class:

<class 'llama_index.core.indices.tree.base.TreeIndex'>

We can now make our tree index the query engine:

tree_query_engine = tree_index.as_query_engine(similarity_top_k

The parameters of the LLM are those defined in the User input and
query parameters section. The code now calls the query, measures the
time elapsed, and processes the response:

import time
import textwrap
Start the timer
start_time = time.time()
response = tree_query_engine.query(user_input)
Stop the timer
end_time = time.time()
Calculate and print the execution time
elapsed_time = end_time - start_time
print(f"Query execution time: {elapsed_time:.4f} seconds")
print(textwrap.fill(str(response), 100))

The query time and the response are both satisfactory:

Query execution time: 4.3360 seconds
Drones identify vehicles using computer vision technology relate
technology involves detecting instances of semantic objects of a
digital images and videos. Drones can be equipped with object de

models trained on datasets like COCO, to detect vehicles in real
captured by the drone's cameras.

Let’s apply a performance metric to the output.

Performance metric
This performance metric will calculate the cosine similarity defined in
the Cosine similarity metric section between the user input and the
response of our RAG pipeline:

similarity_score = calculate_cosine_similarity_with_embeddings(
print(f"Cosine Similarity Score: {similarity_score:.3f}")
print(f"Query execution time: {elapsed_time:.4f} seconds")
performance=similarity_score/elapsed_time
print(f"Performance metric: {performance:.4f}")

The output shows that although the quality of the response was
satisfactory, the execution time was slow, which brings the
performance metric down:

Cosine Similarity Score: 0.731
Query execution time: 4.3360 seconds
Performance metric: 0.1686

Of course, the execution time depends on the server (power) and the
data (noise). As established earlier, the execution times might vary
from one run to another, due to the stochastic algorithms used. Also,
when the dataset increases in volume, the execution times of all the
indexing types may change.

The list index query engine may or may not be better in this case.
Let’s run it to find out.

List index query engine
Don’t think of ListIndex as simply a list of nodes. The query engine
will process the user input and each document as a prompt for an
LLM. The LLM will evaluate the semantic similarity relationship
between the documents and the query, thus implicitly ranking and
selecting the most relevant nodes. LlamaIndex will filter the
documents based on the rankings obtained, and it can also take the
task further by synthesizing information from multiple nodes and
documents.

We can see that the selection process with an LLM is not rule-based.
Nothing is predefined, which means that the selection is prompt-
based by combining the user input with a collection of documents.
The LLM evaluates each document in the list independently, assigning
a score based on its perceived relevance to the query. This score isn’t
relative to other documents; it’s a measure of how well the LLM
thinks the current document answers the question. Then, the top-k
documents are retained by the query engine if we wish, as in the
function used in this section.

Like the tree index, the list index can also be created in two lines of
code:

from llama_index.core import ListIndex
list_index = ListIndex.from_documents(documents)

The code verifies the class that we are using:

print(type(list_index))

The output confirms that we are in the list class:

<class 'llama_index.core.indices.list.base.SummaryIndex'>

The list index is a SummaryIndex , which shows the large amount of
document summary optimization that is running under the hood! We
can now utilize our list index as a query engine in the seamless
framework provided by LlamaIndex:

list_query_engine = list_index.as_query_engine(similarity_top_k

The LLM parameters remain unchanged so that we can compare the
indexing types. We can now run our query, wrap the response up,
and display the output:

#start the timer
start_time = time.time()
response = list_query_engine.query(user_input)
Stop the timer
end_time = time.time()
Calculate and print the execution time
elapsed_time = end_time - start_time
print(f"Query execution time: {elapsed_time:.4f} seconds")
print(textwrap.fill(str(response), 100))

The output shows a longer execution time but an acceptable
response:

Query execution time: 16.3123 seconds
Drones can identify vehicles through computer vision systems tha
cameras mounted on the drones. These systems use techniques like
analyze the images and identify specific objects, such as vehicl
features. By processing the visual data in real-time, drones can
their surroundings.

The execution time is longer because the query goes through a list,
not an optimized tree. However, we cannot draw conclusions from
this because each project or even each sub-task of a project has
different requirements. Next, let’s apply the performance metric.

Performance metric
We will use the cosine similarity, as we did for the tree index, to
evaluate the similarity score:

similarity_score = calculate_cosine_similarity_with_embeddings(
print(f"Cosine Similarity Score: {similarity_score:.3f}")
print(f"Query execution time: {elapsed_time:.4f} seconds")
performance=similarity_score/elapsed_time
print(f"Performance metric: {performance:.4f}")

The performance metric is lower than the tree index due to the longer
execution time:

Cosine Similarity Score: 0.775
Query execution time: 16.3123 seconds
Performance metric: 0.0475

Again, remember that this execution time may vary from one run to
another, due to the stochastic algorithms implemented.

If we look back at the performance metric of each indexing type, we
can see that, for the moment, the vector store index was the fastest.
Once again, let’s not jump to conclusions. Each project might produce
surprising results, depending on the type and complexity of the data
processed. Next, let’s examine the keyword index.

Keyword index query engine
KeywordTableIndex is a type of index in LlamaIndex, designed to
extract keywords from your documents and organize them in a table-
like structure. This structure makes it easier to query and retrieve
relevant information based on specific keywords or topics. Once
again, don’t think about this function as a simple list of extracted
keywords. The extracted keywords are organized into a table-like
format where each keyword is associated with an ID that points to
the related nodes.

The program creates the keyword index in two lines of code:

from llama_index.core import KeywordTableIndex
keyword_index = KeywordTableIndex.from_documents(documents)

Let’s extract the data and create a pandas DataFrame to see how the
index is structured:

Extract data for DataFrame
data = []
for keyword, doc_ids in keyword_index.index_struct.table.items(
 for doc_id in doc_ids:
 data.append({"Keyword": keyword, "Document ID": doc_id}
Create the DataFrame
df = pd.DataFrame(data)
df

The output shows that each keyword is associated with an ID that
contains a document or a summary, depending on the way
LlamaIndex optimizes the index:

Figure 3.6: Keywords linked to document IDs in a DataFrame

We now define the keyword index as the query engine:

keyword_query_engine = keyword_index.as_query_engine(similarity

Let’s run the keyword query and see how well and fast it can
produce a response:

import time
Start the timer
start_time = time.time()
Execute the query (using .query() method)
response = keyword_query_engine.query(user_input)
Stop the timer
end_time = time.time()
Calculate and print the execution time
elapsed_time = end_time - start_time
print(f"Query execution time: {elapsed_time:.4f} seconds")
print(textwrap.fill(str(response), 100))

The output is satisfactory, as well as the execution time:

Query execution time: 2.4282 seconds
Drones can identify vehicles through various means such as visua

We can now measure the output with a performance metric.

Performance metric
The code runs the same metric as for the tree and list index:

similarity_score = calculate_cosine_similarity_with_embeddings(
print(f"Cosine Similarity Score: {similarity_score:.3f}")
print(f"Query execution time: {elapsed_time:.4f} seconds")
performance=similarity_score/elapsed_time
print(f"Performance metric: {performance:.4f}")

The performance metric is acceptable:

Cosine Similarity Score: 0.801
Query execution time: 2.4282 seconds
Performance metric: 0.3299

Once again, we can draw no conclusions. The results of all the
indexing types are relatively satisfactory. However, each project
comes with its dataset complexity and machine power availability.
Also, the execution times may vary from one run to another, due to
the stochastic algorithms employed.

With that, we have reviewed some of the main indexing types and
retrieval strategies. Let’s summarize the chapter and move on to
multimodal modular retrieval and generation strategies.

Summary
This chapter explored the transformative impact of index-based
search on RAG and introduced a pivotal advancement: full
traceability. The documents become nodes that contain chunks of
data, with the source of a query leading us all the way back to the
original data. Indexes also increase the speed of retrievals, which is
critical as the volume of datasets increases. Another pivotal advance
is the integration of technologies such as LlamaIndex, Deep Lake, and
OpenAI, which are emerging in another era of AI. The most advanced
AI models, such as OpenAI GPT-4o, Hugging Face, and Cohere, are
becoming seamless components in a RAG-driven generative AI
pipeline, like GPUs in a computer.

We started by detailing the architecture of an index-based RAG
generative AI pipeline, illustrating how these sophisticated

technologies can be seamlessly integrated to boost the creation of
advanced indexing and retrieval systems. The complexity of AI
implementation is changing the way we organize separate pipelines
and functionality for a team working in parallel on projects that scale
and involve large amounts of data. We saw how every response
generated can be traced back to its source, providing clear visibility
into the origins and accuracy of the information used. We illustrated
the advanced RAG technology implemented through drone
technology.

Throughout the chapter, we introduced the essential tools to build
these systems, including vector stores, datasets, chunking,
embedding, node creation, ranking, and indexing methods. We
implemented the LlamaIndex framework, Deep Lake vector stores,
and OpenAI’s models. We also built a Python program that collects
data and adds critical metadata to pinpoint the origin of every chunk
of data in a dataset. We highlighted the pivotal role of indexes
(vector, tree, list, and keyword types) in giving us greater control
over generative AI applications, enabling precise adjustments and
improvements.

We then thoroughly examined indexed-based RAG through detailed
walkthroughs in Python notebooks, guiding you through setting up
vector stores, conducting advanced queries, and ensuring the
traceability of AI-generated responses. We introduced metrics based
on the quality of a response and the time elapsed to obtain it.
Exploring drone technology with LLMs showed us the new skillsets
required to build solid AI pipelines, and we learned how drone
technology involves computer vision and, thus, multimodal nodes.

In the upcoming chapter, we include multimodal data in our datasets
and expand multimodular RAG.

Questions
Answer the following questions with Yes or No:

Do indexes increase precision and speed in retrieval-augmented
generative AI?
Can indexes offer traceability for RAG outputs?
Is index-based search slower than vector-based search for large
datasets?
Does LlamaIndex integrate seamlessly with Deep Lake and
OpenAI?
Are tree, list, vector, and keyword indexes the only types of
indexes?
Does the keyword index rely on semantic understanding to
retrieve data?
Is LlamaIndex capable of automatically handling chunking and
embedding?
Are metadata enhancements crucial for ensuring the traceability
of RAG-generated outputs?
Can real-time updates easily be applied to an index-based search
system?
Is cosine similarity a metric used in this chapter to evaluate
query accuracy?

References

LlamaIndex: https://docs.llamaindex.ai/en/stable/
Activeloop Deep Lake: https://docs.activeloop.ai/
OpenAI: https://platform.openai.com/docs/overview

Further reading
High-Level Concepts (RAG), LlamaIndex:
https://docs.llamaindex.ai/en/stable/getting_started
/concepts/

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://docs.llamaindex.ai/en/stable/
https://docs.activeloop.ai/
https://platform.openai.com/docs/overview
https://docs.llamaindex.ai/en/stable/getting_started/concepts/
https://docs.llamaindex.ai/en/stable/getting_started/concepts/
https://www.packt.link/rag

4

Multimodal Modular RAG for
Drone Technology

We will take generative AI to the next level with modular RAG in this
chapter. We will build a system that uses different components or
modules to handle different types of data and tasks. For example, one
module processes textual information using LLMs, as we have done
until the last chapter, while another module manages image data,
identifying and labeling objects within images. Imagine using this
technology in drones, which have become crucial across various
industries, offering enhanced capabilities for aerial photography,
efficient agricultural monitoring, and effective search and rescue
operations. They even use advanced computer vision technology and
algorithms to analyze images and identify objects like pedestrians,
cars, trucks, and more. We can then activate an LLM agent to retrieve,
augment, and respond to a user’s question.

In this chapter, we will build a multimodal modular RAG program to
generate responses to queries about drone technology using text and
image data from multiple sources. We will first define the main
aspects of modular RAG, multimodal data, multisource retrieval,
modular generation, and augmented output. We will then build a
multimodal modular RAG-driven generative AI system in Python

applied to drone technology with LlamaIndex, Deep Lake, and
OpenAI.

Our system will use two datasets: the first one containing textual
information about drones that we built in the previous chapter and
the second one containing drone images and labels from Activeloop.
We will use Deep Lake to work with multimodal data, LlamaIndex
for indexing and retrieval, and generative queries with OpenAI
LLMs. We will add multimodal augmented outputs with text and
images. Finally, we will build performance metrics for the text
responses and introduce an image recognition metric with GPT-4o,
OpenAI’s powerful Multimodal LLM (MMLLM). By the end of the
chapter, you will know how to build a multimodal modular RAG
workflow leveraging innovative multimodal and multisource
functionalities.

This chapter covers the following topics:

Multimodal modular RAG
Multisource retrieval
OpenAI LLM-guided multimodal multisource retrieval
Deep Lake multimodal datasets
Image metadata-based retrieval
Augmented multimodal output

Let’s begin by defining multimodal modular RAG.

What is multimodal modular RAG?
Multimodal data combines different forms of information, such as
text, images, audio, and video, to enrich data analysis and

interpretation. Meanwhile, a system is a modular RAG system when
it utilizes distinct modules for handling different data types and
tasks. Each module is specialized; for example, one module will focus
on text and another on images, demonstrating a sophisticated
integration capability that enhances response generation with
retrieved multimodal data.

The program in this chapter will also be multisource through the two
datasets we will use. We will use the LLM dataset on the drone
technology built in the previous chapter. We will also use the Deep
Lake multimodal VisDrone dataset, which contains thousands of
labeled images captured by drones.

We have selected drones for our example since drones have become
crucial across various industries, offering enhanced capabilities for
aerial photography, efficient agricultural monitoring, and effective
search and rescue operations. They also facilitate wildlife tracking,
streamline commercial deliveries, and enable safer infrastructure
inspections. Additionally, drones support environmental research,
traffic management, and firefighting. They can enhance surveillance
for law enforcement, revolutionizing multiple fields by improving
accessibility, safety, and cost-efficiency.

Figure 4.1 contains the workflow we will implement in this chapter. It
is based on the generative RAG ecosystem illustrated in Figure 1.3
from Chapter 1, Why Retrieval-Augmented Generation?. We added
embedding and indexing functionality in the previous chapters, but
this chapter will focus on retrieval and generation. The system we
will build blurs the lines between retrieval and generation since the
generator is intensively used for retrieving (seamless scoring and
ranking) as well as generating in the chapter’s notebook.

Figure 4.1: A multimodal modular RAG system

This chapter aims to build an educational modular RAG question-
answering system focused on drone technology. You can rely on the
functionality implemented in the notebooks of the preceding
chapters, such as Deep Lake for vectors in Chapter 2, RAG Embedding
Vector Stores with Deep Lake and OpenAI, and indices with LlamaIndex
in Chapter 3, Building Index-based RAG with LlamaIndex, Deep Lake, and
OpenAI. If necessary, take your time to go back to the previous
chapters and have a look.

Let’s go through the multimodal, multisource, modular RAG
ecosystem in this chapter, represented in Figure 4.1. We will use the
titles and subsections in this chapter represented in italics. Also, each
phase is preceded by its location in Figure 4.1.

(D4) Loading the LLM dataset created in Chapter 3, which contains
textual data on drones.
(D4) Initializing the LLM query engine with a LlamaIndex vector
store index using VectorStoreIndex and setting the created index
for the query engine, which overlaps with (G4) as both a
retriever and a generator with the OpenAI GPT model.
(G1) Defining the user input for multimodal modular RAG for both
the LLM query engine (for the textual dataset) and the
multimodal query engine (for the VisDrone dataset).

Once the textual dataset has been loaded, the query engine has
been created, and the user input has been defined as a baseline
query for the textual dataset and the multimodal dataset, the
process continues by generating a response for the textual
dataset created in Chapter 2.

While querying the textual dataset, (G1), (G2), and (G4) overlap in
the same seamless LlamaIndex process that retrieves data and
generates content. The response is saved as llm_response for the
duration of the session.

Now, the multimodal VisDrone dataset will be loaded into memory
and queried:

(D4) The multimodal process begins by loading and visualizing the
multimodal dataset. The program then continues by navigating the

multimodal dataset structure, selecting an image, and adding
bounding boxes.

The same process as for the textual dataset is then applied to the
VisDrone multimodal dataset:

(D4) Building a multimodal query engine with LlamaIndex by
creating a vector store index based on VisDrone data using
VectorStoreIndex and setting the created index for the query
engine, which overlaps with (G4) as both a retriever and a
generator with OpenAI GPT.
(G1) The user input for the multimodal search engine is the same
as the user input for multimodal modular RAG since it is used for
both the LLM query engine (for the textual dataset) and the
multimodal query engine (for the VisDrone dataset).

The multimodal VisDrone dataset will now be loaded and indexed,
and the query engine is ready. The purpose of (G1) user input is for
the LlamaIndex query engine to retrieve relevant documents from
VisDrone using an LLM—in this case, an OpenAI model. Then, the
retrieval functions will trace the response back to its source in the
multimodal dataset to find the image of the source nodes. We are, in
fact, using the query engine to reach an image through its textual
response:

(G1), (G2), and (G4) overlap in a seamless LlamaIndex query
when running a query on the VisDrone multimodal dataset.
Processing the response (G4) to find the source node and retrieve
its image leads us back to (D4) for image retrieval. This leads to
selecting and processing the image of the source node.

At this point, we now have the textual and the image response. We
can then build a summary and apply an accuracy performance metric
after having visualized the time elapsed for each phase as we built
the program:

(G4) We present a merged output with the LLM response and
the augmented output with the image of the multimodal
response in a multimodal modular summary.
(E) Finally, we create an LLM performance metric and a multimodal
performance metric. We then sum them up as a multimodal modular
RAG performance metric.

We can draw two conclusions from this multimodal modular RAG
system:

The system we are building in this chapter is one of the many
ways RAG-driven generative AI can be designed in real-life
projects. Each project will have its specific needs and
architecture.
The rapid evolution from generative AI to the complexity of
RAG-driven generative AI requires the corresponding
development of seamlessly integrated cross-platform
components such as LlamaIndex, Deep Lake, and OpenAI in this
chapter. These platforms are also integrated with many other
frameworks, such as Pinecone and LangChain, which we will
discuss in Chapter 6, Scaling RAG Bank Customer Data with
Pinecone.

Now, let’s dive into Python and build the multimodal modular RAG
program.

Building a multimodal modular RAG
program for drone technology
In the following sections, we will build a multimodal modular RAG-
driven generative system from scratch in Python, step by step. We
will implement:

LlamaIndex-managed OpenAI LLMs to process and understand
text about drones
Deep Lake multimodal datasets containing images and labels of
drone images taken
Functions to display images and identify objects within them
using bounding boxes
A system that can answer questions about drone technology
using both text and images
Performance metrics aimed at measuring the accuracy of the
modular multimodal responses, including image analysis with
GPT-4o

Also, make sure you have created the LLM dataset in Chapter 2 since
we will be loading it in this section. However, you can read this
chapter without running the notebook since it is self-contained with
code and explanations. Now, let’s get to work!

Open the Multimodal_Modular_RAG_Drones.ipynb notebook in the
GitHub repository for this chapter at
https://github.com/Denis2054/RAG-Driven-Generative-
AI/tree/main/Chapter04. The packages installed are the same as
those listed in the Installing the environment section of the previous
chapter. Each of the following sections will guide you through

https://github.com/Denis2054/RAG-Driven-Generative-AI/tree/main/Chapter04
https://github.com/Denis2054/RAG-Driven-Generative-AI/tree/main/Chapter04

building the multimodal modular notebook, starting with the LLM
module. Let’s go through each section of the notebook step by step.

Loading the LLM dataset
We will load the drone dataset created in Chapter 3. Make sure to
insert the path to your dataset:

import deeplake
dataset_path_llm = "hub://denis76/drone_v2"
ds_llm = deeplake.load(dataset_path_llm)

The output will confirm that the dataset is loaded and will display
the link to your dataset:

This dataset can be visualized in Jupyter Notebook by ds.visuali
hub://denis76/drone_v2 loaded successfully.

The program now creates a dictionary to hold the data to load it into
a pandas DataFrame to visualize it:

import json
import pandas as pd
import numpy as np
Create a dictionary to hold the data
data_llm = {}
Iterate through the tensors in the dataset
for tensor_name in ds_llm.tensors:
 tensor_data = ds_llm[tensor_name].numpy()
 # Check if the tensor is multi-dimensional
 if tensor_data.ndim > 1:
 # Flatten multi-dimensional tensors

 data_llm[tensor_name] = [np.array(e).flatten().tolist()
 else:
 # Convert 1D tensors directly to lists and decode text
 if tensor_name == "text":
 data_llm[tensor_name] = [t.tobytes().decode('utf-8'
 else:
 data_llm[tensor_name] = tensor_data.tolist()
Create a Pandas DataFrame from the dictionary
df_llm = pd.DataFrame(data_llm)
df_llm

The output shows the text dataset with its structure: embedding
(vectors), id (unique string identifier), metadata (in this case, the
source of the data), and text , which contains the content:

Figure 4.2: Output of the text dataset structure and content

We will now initialize the LLM query engine.

Initializing the LLM query engine
As in Chapter 3, Building Indexed-Based RAG with LlamaIndex, Deep
Lake, and OpenAI, we will initialize a vector store index from the
collection of drone documents (documents_llm) of the dataset (ds). The
GPTVectorStoreIndex.from_documents() method creates an index that
increases the retrieval speed of documents based on vector similarity:

from llama_index.core import VectorStoreIndex
vector_store_index_llm = VectorStoreIndex.from_documents(docume

The as_query_engine() method configures this index as a query
engine with the specific parameters, as in Chapter 3, for similarity and
retrieval depth, allowing the system to answer queries by finding the
most relevant documents:

vector_query_engine_llm = vector_store_index_llm.as_query_engin

Now, the program introduces the user input.

User input for multimodal modular RAG
The goal of defining the user input in the context of the modular RAG
system is to formulate a query that will effectively utilize both the
text-based and image-based capabilities. This allows the system to
generate a comprehensive and accurate response by leveraging
multiple information sources:

user_input="How do drones identify a truck?"

In this context, the user input is the baseline, the starting point, or a
standard query used to assess the system’s capabilities. It will
establish the initial frame of reference for how well the system can
handle and respond to queries utilizing its available resources (e.g.,
text and image data from various datasets). In this example, the

baseline is empirical and will serve to evaluate the system from that
reference point.

Querying the textual dataset
We will run the vector query engine request as we did in Chapter 3:

import time
import textwrap
#start the timer
start_time = time.time()
llm_response = vector_query_engine_llm.query(user_input)
Stop the timer
end_time = time.time()
Calculate and print the execution time
elapsed_time = end_time - start_time
print(f"Query execution time: {elapsed_time:.4f} seconds")
print(textwrap.fill(str(llm_response), 100))

The execution time is satisfactory:

Query execution time: 1.5489 seconds

The output content is also satisfactory:

Drones can identify a truck using visual detection and tracking

The program now loads the multimodal drone dataset.

Loading and visualizing the multimodal
dataset

We will use the existing pubic VisDrone dataset available on Deep
Lake:
https://datasets.activeloop.ai/docs/ml/datasets/visdrone
-dataset/. We will not create a vector store but simply load the
existing dataset in memory:

import deeplake
dataset_path = 'hub://activeloop/visdrone-det-train'
ds = deeplake.load(dataset_path) # Returns a Deep Lake Dataset

The output will display a link to the online dataset that you can
explore with SQL, or natural language processing commands if you
prefer, with the tools provided by Deep Lake:

Opening dataset in read-only mode as you don't have write permis
This dataset can be visualized in Jupyter Notebook by ds.visuali
hub://activeloop/visdrone-det-train loaded successfully.

Let’s display the summary to explore the dataset in code:

ds.summary()

The output provides useful information on the structure of the
dataset:

Dataset(path='hub://activeloop/visdrone-det-train', read_only=Tr
tensor htype shape dtype compress
------ ----- ----- ----- -------
boxes bbox (6471, 1:914, 4) float32 N
images image (6471, 360:1500,

https://datasets.activeloop.ai/docs/ml/datasets/visdrone-dataset/
https://datasets.activeloop.ai/docs/ml/datasets/visdrone-dataset/

 480:2000, 3) uint8 j
labels class_label (6471, 1:914) uint32 N

The structure contains images, boxes for the boundary boxes of the
objects in the image, and labels describing the images and boundary
boxes. Let’s visualize the dataset in code:

ds.visualize()

The output shows the images and their boundary boxes:

Figure 4.3: Output showing boundary boxes

Now, let’s go further and display the content of the dataset in a
pandas DataFrame to see what the images look like:

import pandas as pd
Create an empty DataFrame with the defined structure
df = pd.DataFrame(columns=['image', 'boxes', 'labels'])
Iterate through the samples using enumerate
for i, sample in enumerate(ds):
 # Image data (choose either path or compressed representati
 # df.loc[i, 'image'] = sample.images.path # Store image pa
 df.loc[i, 'image'] = sample.images.tobytes() # Store compr
 # Bounding box data (as a list of lists)
 boxes_list = sample.boxes.numpy(aslist=True)

 df.loc[i, 'boxes'] = [box.tolist() for box in boxes_list]
 # Label data (as a list)
 label_data = sample.labels.data()
 df.loc[i, 'labels'] = label_data['text']
df

The output in Figure 4.4 shows the content of the dataset:

Figure 4.4: Excerpt of the VisDrone dataset

There are 6,471 rows of images in the dataset and 3 columns:

The image column contains the image. The format of the image in
the dataset, as indicated by the byte sequence
b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00...' , is JPEG.
The bytes b'\xff\xd8\xff\xe0' specifically signify the start of a
JPEG image file.
The boxes column contains the coordinates and dimensions of
bounding boxes in the image, which are normally in the format
[x, y, width, height] .

The labels column contains the label of each bounding box in
the boxes column.

We can display the list of labels for the images:

labels_list = ds.labels.info['class_names']
labels_list

The output provides the list of labels, which defines the scope of the
dataset:

['ignored regions',
 'pedestrian',
 'people',
 'bicycle',
 'car',
 'van',
 'truck',
 'tricycle',
 'awning-tricycle',
 'bus',
 'motor',
 'others']

With that, we have successfully loaded the dataset and will now
explore the multimodal dataset structure.

Navigating the multimodal dataset
structure
In this section, we will select an image and display it using the
dataset’s image column. To this image, we will then add the

bounding boxes of a label that we will choose. The program first
selects an image.

Selecting and displaying an image
We will select the first image in the dataset:

choose an image
ind=0
image = ds.images[ind].numpy() # Fetch the first image and retu

Now, let’s display it with no bounding boxes:

import deeplake
from IPython.display import display
from PIL import Image
import cv2 # Import OpenCV
image = ds.images[0].numpy()
Convert from BGR to RGB (if necessary)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
Create PIL Image and display
img = Image.fromarray(image_rgb)
display(img)

The image displayed contains trucks, pedestrians, and other types of
objects:

Figure 4.5: Output displaying objects

Now that the image is displayed, the program will add bounding
boxes.

Adding bounding boxes and saving the
image
We have displayed the first image. The program will then fetch all the
labels for the selected image:

labels = ds.labels[ind].data() # Fetch the labels in the select
print(labels)

The output displays value , which contains the numerical indices of a
label, and text , which contains the corresponding text labels of a
label:

{'value': array([1, 1, 7, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 1, 1, 1, 1, 1, 1, 6, 6, 3, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 6, 6, 6], dtype=uint32), 'text': ['pedestrian', 'pedes

We can display the values and the corresponding text in two
columns:

values = labels['value']
text_labels = labels['text']
Determine the maximum text label length for formatting
max_text_length = max(len(label) for label in text_labels)
Print the header
print(f"{'Index':<10}{'Label':<{max_text_length + 2}}")
print("-" * (10 + max_text_length + 2)) # Add a separator line
Print the indices and labels in two columns
for index, label in zip(values, text_labels):
 print(f"{index:<10}{label:<{max_text_length + 2}}")

The output gives us a clear representation of the content of the labels
of an image:

Index Label

1 pedestrian
1 pedestrian
7 tricycle
1 pedestrian
1 pedestrian
1 pedestrian
1 pedestrian
6 truck
6 truck …

We can group the class names (labels in plain text) of the images:

ds.labels[ind].info['class_names'] # class names of the selecte

We can now group and display all the labels that describe the image:

ds.labels[ind].info['class_names'] #class names of the selected

We can see all the classes the image contains:

['ignored regions',
 'pedestrian',
 'people',
 'bicycle',
 'car',
 'van',
 'truck',
 'tricycle',
 'awning-tricycle',
 'bus',
 'motor',
 'others']

The number of label classes sometimes exceeds what a human eye
can see in an image.

Let’s now add bounding boxes. We first create a function to add the
bounding boxes, display them, and save the image:

def display_image_with_bboxes(image_data, bboxes, labels, label
 #Displays an image with bounding boxes for a specific label
 image_bytes = io.BytesIO(image_data)

 img = Image.open(image_bytes)
 # Extract class names specifically for the selected image
 class_names = ds.labels[ind].info['class_names']
 # Filter for the specific label (or display all if class na
 if class_names is not None:
 try:
 label_index = class_names.index(label_name)
 relevant_indices = np.where(labels == label_index)[
 except ValueError:
 print(f"Warning: Label '{label_name}' not found. Di
 relevant_indices = range(len(labels))
 else:
 relevant_indices = [] # No labels found, so display no
 # Draw bounding boxes
 draw = ImageDraw.Draw(img)
 for idx, box in enumerate(bboxes): # Enumerate over bboxes
 if idx in relevant_indices: # Check if this box is re
 x1, y1, w, h = box
 x2, y2 = x1 + w, y1 + h
 draw.rectangle([x1, y1, x2, y2], outline="red", wid
 draw.text((x1, y1), label_name, fill="red")
 # Save the image
 save_path="boxed_image.jpg"
 img.save(save_path)
 display(img)

We can add the bounding boxes for a specific label. In this case, we
selected the "truck" label:

import io
from PIL import ImageDraw
Fetch labels and image data for the selected image
labels = ds.labels[ind].data()['value']
image_data = ds.images[ind].tobytes()
bboxes = ds.boxes[ind].numpy()
ibox="truck" # class in image

Display the image with bounding boxes for the label chosen
display_image_with_bboxes(image_data, bboxes, labels, label_nam

The image displayed now contains the bounding boxes for trucks:

Figure 4.6: Output displaying bounding boxes

Let’s now activate a query engine to retrieve and obtain a response.

Building a multimodal query engine
In this section, we will query the VisDrone dataset and retrieve an
image that fits the user input we entered in the User input for
multimodal modular RAG section of this notebook. To achieve this
goal, we will:

1. Create a vector index for each row of the df DataFrame
containing the images, boxing data, and labels of the VisDrone

dataset.
2. Create a query engine that will query the text data of the dataset,

retrieve relevant image information, and provide a text response.
3. Parse the nodes of the response to find the keywords related to

the user input.
4. Parse the nodes of the response to find the source image.
5. Add the bounding boxes of the source image to the image.
6. Save the image.

Creating a vector index and query
engine
The code first creates a document that will be processed to create a
vector store index for the multimodal drone dataset. The df
DataFrame we created in the Loading and visualizing the multimodal
dataset section of the notebook on GitHub does not have unique
indices or embeddings. We will create them in memory with
LlamaIndex.

The program first assigns a unique ID to the DataFrame:

The DataFrame is named 'df'
df['doc_id'] = df.index.astype(str) # Create unique IDs from t

This line adds a new column to the df DataFrame called doc_id . It
assigns unique identifiers to each row by converting the DataFrame’s
row indices to strings. An empty list named documents is initialized,
which we will use to create a vector index:

Create documents (extract relevant text for each image's labe
documents = []

Now, the iterrows() method iterates through each row of the
DataFrame, generating a sequence of index and row pairs:

for _, row in df.iterrows():
 text_labels = row['labels'] # Each label is now a string
 text = " ".join(text_labels) # Join text labels into a sing
 document = Document(text=text, doc_id=row['doc_id'])
 documents.append(document)

documents is appended with all the records in the dataset, and a
DataFrame is created:

The DataFrame is named 'df'
df['doc_id'] = df.index.astype(str) # Create unique IDs from t
Create documents (extract relevant text for each image's labe
documents = []
for _, row in df.iterrows():
 text_labels = row['labels'] # Each label is now a string
 text = " ".join(text_labels) # Join text labels into a sing
 document = Document(text=text, doc_id=row['doc_id'])
 documents.append(document)

The documents are now ready to be indexed with
GPTVectorStoreIndex :

from llama_index.core import GPTVectorStoreIndex

vector_store_index = GPTVectorStoreIndex.from_documents(documen

The dataset is then seamlessly equipped with indices that we can
visualize in the index dictionary:

vector_store_index.index_struct

The output shows that an index has now been added to the dataset:

IndexDict(index_id='4ec313b4-9a1a-41df-a3d8-a4fe5ff6022c', summa

We can now run a query on the multimodal dataset.

Running a query on the VisDrone
multimodal dataset
We now set vector_store_index as the query engine, as we did in the
Vector store index query engine section in Chapter 3:

vector_query_engine = vector_store_index.as_query_engine(simila

We can also run a query on the dataset of drone images, just as we
did in Chapter 3 on an LLM dataset:

import time
start_time = time.time()
response = vector_query_engine.query(user_input)
Stop the timer

end_time = time.time()
Calculate and print the execution time
elapsed_time = end_time - start_time
print(f"Query execution time: {elapsed_time:.4f} seconds")

The execution time is satisfactory:

Query execution time: 1.8461 seconds

We will now examine the text response:

print(textwrap.fill(str(response), 100))

We can see that the output is logical and therefore satisfactory.

Drones use various sensors such as cameras, LiDAR, and GPS to
identify and track objects like trucks.

Processing the response
We will now parse the nodes in the response to find the unique
words in the response and select one for this notebook:

from itertools import groupby
def get_unique_words(text):
 text = text.lower().strip()
 words = text.split()
 unique_words = [word for word, _ in groupby(sorted(words))]
 return unique_words
for node in response.source_nodes:
 print(node.node_id)
 # Get unique words from the node text:
 node_text = node.get_text()

 unique_words = get_unique_words(node_text)
 print("Unique Words in Node Text:", unique_words)

We found a unique word ('truck') and its unique index, which will
lead us directly to the image of the source of the node that generated
the response:

1af106df-c5a6-4f48-ac17-f953dffd2402
Unique Words in Node Text: ['truck']

We could select more words and design this function in many
different ways depending on the specifications of each project.

We will now search for the image by going through the source nodes,
just as we did for an LLM dataset in the Query response and source
section of the previous chapter. Multimodal vector stores and
querying frameworks are flexible. Once we learn how to perform
retrievals on an LLM and a multimodal dataset, we are ready for
anything that comes up!

Let’s select and process the information related to an image.

Selecting and processing the image of
the source node
Before running the image retrieval and displaying function, let’s first
delete the image we displayed in the Adding bounding boxes and saving
the image section of this notebook to make sure we are working on a
new image:

deleting any image previously saved
!rm /content/boxed_image.jpg

We are now ready to search for the source image, call the bounding
box, and display and save the function we defined earlier:

display_image_with_bboxes(image_data, bboxes, labels, label_nam

The program now goes through the source nodes with the keyword
"truck" search, applies the bounding boxes, and displays and saves
the image:

import io
from PIL import Image
def process_and_display(response, df, ds, unique_words):
 """Processes nodes, finds corresponding images in dataset,
 Args:
 response: The response object containing source nodes.
 df: The DataFrame with doc_id information.
 ds: The dataset containing images, labels, and boxes.
 unique_words: The list of unique words for filtering.
 """
…
 if i == row_index:
 image_bytes = io.BytesIO(sample.images.tobytes(
 img = Image.open(image_bytes)
 labels = ds.labels[i].data()['value']
 image_data = ds.images[i].tobytes()
 bboxes = ds.boxes[i].numpy()
 ibox = unique_words[0] # class in image
 display_image_with_bboxes(image_data, bboxes, l

Assuming you have your 'response', 'df', 'ds', and 'unique_wo
process_and_display(response, df, ds, unique_words)

The output is satisfactory:

Figure 4.7: Displayed satisfactory output

Multimodal modular summary
We have built a multimodal modular program step by step that we
can now assemble in a summary. We will create a function to display
the source image of the response to the user input, then print the user
input and the LLM output, and display the image.

First, we create a function to display the source image saved by the
multimodal retrieval engine:

1.user input=user_input
print(user_input)
2.LLM response
print(textwrap.fill(str(llm_response), 100))
3.Multimodal response
image_path = "/content/boxed_image.jpg"
display_source_image(image_path)

Then, we can display the user input, the LLM response, and the
multimodal response. The output first displays the textual responses
(user input and LLM response):

How do drones identify a truck?
Drones can identify a truck using visual detection and tracking

Then, the image is displayed with the bounding boxes for trucks in
this case:

Figure 4.8: Output displaying boundary boxes

By adding an image to a classical LLM response, we augmented the
output. Multimodal RAG output augmentation will enrich generative
AI by adding information to both the input and output. However, as
for all AI programs, designing a performance metric requires efficient
image recognition functionality.

Performance metric
Measuring the performance of a multimodal modular RAG requires
two types of measurements: text and image. Measuring text is
straightforward. However, measuring images is quite a challenge.
Analyzing the image of a multimodal response is quite different. We
extracted a keyword from the multimodal query engine. We then
parsed the response for a source image to display. However, we will
need to build an innovative approach to evaluate the source image of
the response. Let’s begin with the LLM performance.

LLM performance metric
LlamaIndex seamlessly called an OpenAI model through its query
engine, such as GPT-4, for example, and provided text content in its
response. For text responses, we will use the same cosine similarity
metric as in the Evaluating the output with cosine similarity section in
Chapter 2, and the Vector store index query engine section in Chapter 3.

The evaluation function uses sklearn and sentence_transformers to
evaluate the similarity between two texts—in this case, an input and
an output:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
def calculate_cosine_similarity_with_embeddings(text1, text2):
 embeddings1 = model.encode(text1)
 embeddings2 = model.encode(text2)
 similarity = cosine_similarity([embeddings1], [embeddings2]
 return similarity[0][0]

We can now calculate the similarity between our baseline user input
and the initial LLM response obtained:

llm_similarity_score = calculate_cosine_similarity_with_embeddi
print(user_input)
print(llm_response)
print(f"Cosine Similarity Score: {llm_similarity_score:.3f}")

The output displays the user input, the text response, and the cosine
similarity between the two texts:

How do drones identify a truck?
How do drones identify a truck?
Drones can identify a truck using visual detection and tracking
Cosine Similarity Score: 0.691

The output is satisfactory. But we now need to design a way to
measure the multimodal performance.

Multimodal performance metric

To evaluate the image returned, we cannot simply rely on the labels
in the dataset. For small datasets, we can manually check the image,
but when a system scales, automation is required. In this section, we
will use the computer vision features of GPT-4o to analyze an image,
parse it to find the objects we are looking for, and provide a
description of that image. Then, we will apply cosine similarity to the
description provided by GPT-4o and the label it is supposed to
contain. GPT-4o is a multimodal generative AI model.

Let’s first encode the image to simplify data transmission to GPT-4o.
Base64 encoding converts binary data (like images) into ASCII
characters, which are standard text characters. This transformation is
crucial because it ensures that the image data can be transmitted over
protocols (like HTTP) that are designed to handle text data smoothly.
It also avoids issues related to binary data transmission, such as data
corruption or interpretation errors.

The program encodes the source image using Python’s base64
module:

import base64
IMAGE_PATH = "/content/boxed_image.jpg"
Open the image file and encode it as a base64 string
def encode_image(image_path):
 with open(image_path, "rb") as image_file:
 return base64.b64encode(image_file.read()).decode("utf-
base64_image = encode_image(IMAGE_PATH)

We now create an OpenAI client and set the model to gpt-4o :

from openai import OpenAI
#Set the API key for the client
client = OpenAI(api_key=openai.api_key)
MODEL="gpt-4o"

The unique word will be the result of the LLM query to the
multimodal dataset we obtained by parsing the response:

u_word=unique_words[0]
print(u_word)

We can now submit the image to OpenAI GPT-4o:

response = client.chat.completions.create(
 model=MODEL,
 messages=[
 {"role": "system", "content": f"You are a helpful assis
 {"role": "user", "content": [
 {"type": "text", "text": f"Analyze the following im
 {"type": "image_url", "image_url": {
 "url": f"data:image/png;base64,{base64_image}"}
 }
]}
],
 temperature=0.0,
)
response_image = response.choices[0].message.content
print(response_image)

We instructed the system and user roles to analyze images looking
for our target label, u_word—in this case, truck . We then submitted

the source node image to the model. The output that describes the
image is satisfactory:

The image contains two trucks within the bounding boxes. Here is
1. **First Truck (Top Bounding Box)**:
 - The truck appears to be a flatbed truck.
 - It is loaded with various materials, possibly construction
 - The truck is parked in an area with other construction mate
2. **Second Truck (Bottom Bounding Box)**:
 - This truck also appears to be a flatbed truck.
 - It is carrying different types of materials, similar to the
 - The truck is situated in a similar environment, surrounded
Both trucks are in a construction or industrial area, likely use

We can now submit this response to the cosine similarity function by
first adding an "s" to align with multiple trucks in a response:

resp=u_word+"s"
multimodal_similarity_score = calculate_cosine_similarity_with_
print(f"Cosine Similarity Score: {multimodal_similarity_score:.

The output describes the image well but contains many other
descriptions beyond the word “truck ,” which limits its similarity to
the input requested:

Cosine Similarity Score: 0.505

A human observer might approve the image and the LLM response.
However, even if the score was very high, the issue would be the
same. Complex images are challenging to analyze in detail and with

precision, although progress is continually made. Let’s now calculate
the overall performance of the system.

Multimodal modular RAG performance
metric
To obtain the overall performance of the system, we will divide the
sum of the LLM response and the two multimodal response
performances by 2 :

score=(llm_similarity_score+multimodal_similarity_score)/2
print(f"Multimodal, Modular Score: {score:.3f}")

The result shows that although a human who observes the results
may be satisfied, it remains difficult to automatically assess the
relevance of a complex image:

Multimodal, Modular Score: 0.598

The metric can be improved because a human observer sees that the
image is relevant. This explains why the top AI agents, such as
ChatGPT, Gemini, and Bing Copilot, always have a feedback process
that includes thumbs up and thumbs down.

Let’s now sum up the chapter and gear up to explore how RAG can
be improved even further with human feedback.

Summary

This chapter introduced us to the world of multimodal modular
RAG, which uses distinct modules for different data types (text and
image) and tasks. We leveraged the functionality of LlamaIndex,
Deep Lake, and OpenAI, which we explored in the previous chapters.
The Deep Lake VisDrone dataset further introduced us to drone
technology for analyzing images and identifying objects. The dataset
contained images, labels, and bounding box information. Working on
drone technology involves multimodal data, encouraging us to
develop skills that we can use across many domains, such as wildlife
tracking, streamlining commercial deliveries, and making safer
infrastructure inspections.

We built a multimodal modular RAG-driven generative AI system.
The first step was to define a baseline user query for both LLM and
multimodal queries. We began by querying the Deep Lake textual
dataset that we implemented in Chapter 3. LlamaIndex seamlessly ran
a query engine to retrieve, augment, and generate a response. Then,
we loaded the Deep Lake VisDrone dataset and indexed it in memory
with LlamaIndex to create an indexed vector search retrieval pipeline.
We queried it through LlamaIndex, which used an OpenAI model
such as GPT-4 and parsed the text generated for a keyword. Finally,
we searched the source nodes of the response to find the source
image, display it, and merge the LLM and image responses into an
augmented output. We applied cosine similarity to the text response.
Evaluating the image was challenging, so we first ran image
recognition with GPT-4o on the image retrieved to obtain a text to
which we applied cosine similarity.

The journey into multimodal modular RAG-driven generative AI
took us deep into the cutting edge of AI. Building a complex system

was good preparation for real-life AI projects, which often require
implementing multisource, multimodal, and unstructured data,
leading to modular, complex systems. Thanks to transparent access to
the source of a response, the complexity of RAG can be harnessed,
controlled, and improved. We will see how we can leverage the
transparency of the sources of a response to introduce human
feedback to improve AI. The next chapter will take us further into
transparency and precision in AI.

Questions
Answer the following questions with Yes or No:

1. Does multimodal modular RAG handle different types of data,
such as text and images?

2. Are drones used solely for agricultural monitoring and aerial
photography?

3. Is the Deep Lake VisDrone dataset used in this chapter for
textual data only?

4. Can bounding boxes be added to drone images to identify
objects such as trucks and pedestrians?

5. Does the modular system retrieve both text and image data for
query responses?

6. Is building a vector index necessary for querying the multimodal
VisDrone dataset?

7. Are the retrieved images processed without adding any labels or
bounding boxes?

8. Is the multimodal modular RAG performance metric based only
on textual responses?

9. Can a multimodal system such as the one described in this
chapter handle only drone-related data?

10. Is evaluating images as easy as evaluating text in multimodal
RAG?

References
LlamaIndex: https://docs.llamaindex.ai/en/stable/
Activeloop Deep Lake: https://docs.activeloop.ai/
OpenAI: https://platform.openai.com/docs/overview

Further reading
Retrieval-Augmented Multimodal Language Modeling,
Yasunaga et al. (2023), https://arxiv.org/pdf/2211.12561

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://docs.llamaindex.ai/en/stable/
https://docs.activeloop.ai/
https://platform.openai.com/docs/overview
https://arxiv.org/pdf/2211.12561
https://www.packt.link/rag

5

Boosting RAG Performance with
Expert Human Feedback

Human feedback (HF) is not just useful for generative AI—it’s
essential, especially when it comes to models using RAG. A
generative AI model uses information from datasets with various
documents during training. The data that trained the AI model is set
in stone in the model’s parameters; we can’t change it unless we train
it again. However, in the world of retrieval-based text and
multimodal datasets, there is information we can see and tweak. That
is where HF comes in. By providing feedback on what the AI model
pulls from its datasets, HF can directly influence the quality of its
future responses. Engaging with this process makes humans an active
player in the RAG’s development. It adds a new dimension to AI
projects: adaptive RAG.

We have explored and implemented naïve, advanced, and modular
RAG so far. Now, we will add adaptive RAG to our generative AI
toolbox. We know that even the best generative AI system with the
best metrics cannot convince a dissatisfied user that it is helpful if it
isn’t. We will introduce adaptive RAG with an HF loop. The system
thus becomes adaptive because the documents used for retrieval are
updated. Integrating HF in RAG leads to a pragmatic hybrid

approach because it involves humans in an otherwise automated
generative process. We will thus leverage HF, which we will use to
build a hybrid adaptive RAG program in Python from scratch, going
through the key steps of building a RAG-driven generative AI system
from the ground up. By the end of this chapter, you will have a
theoretical understanding of the adaptive RAG framework and
practical experience in building an AI model based on HF.

This chapter covers the following topics:

Defining the adaptive RAG ecosystem
Applying adaptive RAG to augmented retrieval queries
Automating augmented generative AI inputs with HF
Automating end-user feedback rankings to trigger expert HF
Creating an automated feedback system for a human expert
Integrating HF with adaptive RAG for GPT-4o

Let’s begin by defining adaptive RAG.

Adaptive RAG
No, RAG cannot solve all our problems and challenges. RAG, just
like any generative model, can also produce irrelevant and incorrect
output! RAG might be a useful option, however, because we feed
pertinent documents to the generative AI model that inform its
responses. Nonetheless, the quality of RAG outputs depends on the
accuracy and relevance of the underlying data, which calls for
verification! That’s where adaptive RAG comes in. Adaptive RAG
introduces human, real-life, pragmatic feedback that will improve a
RAG-driven generative AI ecosystem.

The core information in a generative AI model is parametric (stored
as weights). But in the context of RAG, this data can be visualized
and controlled, as we saw in Chapter 2, RAG Embedding Vector Stores
with Deep Lake and OpenAI. Despite this, challenges remain; for
example, the end-user might write fuzzy queries, or the RAG data
retrieval might be faulty. An HF process is, therefore, highly
recommended to ensure the system’s reliability.

Figure 1.3 from Chapter 1, Why Retrieval Augmented Generation?,
represents the complete RAG framework and ecosystem. Let’s zoom
in on the adaptive RAG ecosystem and focus on the key processes
that come into play, as shown in the following figure:

Figure 5.1: A variant of an adaptive RAG ecosystem

The variant of an adaptive RAG ecosystem in this chapter includes
the following components, as shown in Figure 5.1, for the retriever:

D1: Collect and process Wikipedia articles on LLMs by fetching
and cleaning the data
D4: Retrieval query to query the retrieval dataset

The generator’s components are:

G1: Input entered by an end-user
G2: Augmented input with HF that will augment the user’s
initial input and prompt engineering to configure the GPT-4o
model’s prompt
G4: Generation and output to run the generative AI model and
obtain a response

The evaluator’s components are:

E1: Metrics to apply a cosine similarity measurement
E2: Human feedback to obtain and process the ultimate
measurement of a system through end-user and expert feedback

In this chapter, we will illustrate adaptive RAG by building a hybrid
adaptive RAG program in Python on Google Colab. We will build
this program from scratch to acquire a clear understanding of an
adaptive process, which may vary depending on a project’s goals, but
the underlying principles remain the same. Through this hands-on
experience, you will learn how to develop and customize a RAG
system when a ready-to-use one fails to meet the users’ expectations.
This is important because human users can be dissatisfied with a
response no matter what the performance metrics show. We will also
explore the incorporation of human user rankings to gather expert

feedback on our RAG-driven generative AI system. Finally, we will
implement an automated ranking system that will decide how to
augment the user input for the generative model, offering practical
insights into how a RAG-driven system can be successfully
implemented in a company.

We will develop a proof of concept for a hypothetical company called
Company C. This company would like to deploy a conversational
agent that explains what AI is. The goal is for the employees of this
company to understand the basic terms, concepts, and applications of
AI. The ML engineer in charge of this RAG-driven generative AI
example would like future users to acquire a better knowledge of AI
while implementing other AI projects across the sales, production,
and delivery domains.

Company C currently faces serious issues with customer support.
With a growing number of products and services, their product line
of smartphones of the C-phone series has been experiencing technical
problems with too many customer requests. The IT department
would like to set up a conversational agent for these customers.
However, the teams are not convinced. The IT department has thus
decided to first set up a conversational agent to explain what an LLM
is and how it can be helpful in the C-phone series customer support
service.

The program will be hybrid and adaptive to fulfill the needs of
Company C:

Hybrid: Real-life scenarios go beyond theoretical frameworks
and configurations. The system is hybrid because we are
integrating HF within the retrieval process that can be processed

in real time. However, we will not parse the content of the
documents with a keyword alone. We will label the documents
(which are Wikipedia URLs in this case), which can be done
automatically, controlled, and improved by a human, if necessary.
As we show in this chapter, some documents will be replaced by
human-expert feedback and relabeled. The program will
automatically retrieve human-expert feedback documents and
raw retrieved documents to form a hybrid (human-machine)
dynamic RAG system.
Adaptive: We will introduce human user ranking, expert
feedback, and automated document re-ranking. This HF loop
takes us deep into modular RAG and adaptive RAG. Adaptive
RAG leverages the flexibility of a RAG system to adapt its
responses to the queries. In this case, we want HF to be triggered
to improve the quality of the output.

Real-life projects will inevitably require an ML engineer to go beyond
the boundaries of pre-determined categories. Pragmatism and
necessity encourage creative and innovative solutions. For example,
for the hybrid, dynamic, and adaptive aspects of the system, ML
engineers could imagine any process that works with any type of
algorithm: classical software functions, ML clustering algorithms, or
any function that works. In real-life AI, what works, works!

It’s time to build a proof of concept to show Company C’s
management how hybrid adaptive RAG-driven generative AI can
successfully help their teams by:

Proving that AI can work with a proof of concept before scaling
and investing in a project

Showing that an AI system can be customized for a specific
project
Developing solid ground-up skills to face any AI challenge
Building the company’s data governance and control of AI
systems
Laying solid grounds to scale the system by solving the
problems that will come up during the proof of concept

Let’s go to our keyboards!

Building hybrid adaptive RAG in
Python
Let’s now start building the proof of concept of a hybrid adaptive
RAG-driven generative AI configuration. Open Adaptive_RAG.ipynb
on GitHub. We will focus on HF and, as such, will not use an existing
framework. We will build our own pipeline and introduce HF.

As established earlier, the program is divided into three separate
parts: the retriever, generator, and evaluator functions, which can be
separate agents in a real-life project’s pipeline. Try to separate these
functions from the start because, in a project, several teams might be
working in parallel on separate aspects of the RAG framework.

The titles of each of the following sections correspond
exactly to the names of each section in the program on
GitHub. The retriever functionality comes first.

1. Retriever
We will first outline the initial steps required to set up the
environment for a RAG-driven generative AI model. This process
begins with the installation of essential software components and
libraries that facilitate the retrieval and processing of data. We
specifically cover the downloading of crucial files and the installation
of packages needed for effective data retrieval and web scraping.

1.1. Installing the retriever’s
environment
Let’s begin by downloading grequests.py from the commons directory
of the GitHub repository. This repository contains resources that can
be common to several programs in the repository, thus avoiding
redundancy.

The download is standard and built around the request:

url = "https://raw.githubusercontent.com/Denis2054/RAG-Driven-G
output_file = "grequests.py"

We will only need two packages for the retriever since we are
building a RAG-driven generative AI model from scratch. We will
install:

requests , the HTTP library to retrieve Wikipedia documents:

!pip install requests==2.32.3

beautifulsoup4 , to scrape information from web pages:

!pip install beautifulsoup4==4.12.3

We now need a dataset.

1.2.1. Preparing the dataset
For this proof of concept, we will retrieve Wikipedia documents by
scraping them through their URLs. The dataset will contain
automated or human-crafted labels for each document, which is the
first step toward indexing the documents of a dataset:

import requests
from bs4 import BeautifulSoup
import re
URLs of the Wikipedia articles mapped to keywords
urls = {
 "prompt engineering": "https://en.wikipedia.org/wiki/Prompt
 "artificial intelligence":"https://en.wikipedia.org/wiki/Ar
 "llm": "https://en.wikipedia.org/wiki/Large_language_model"
 "llms": "https://en.wikipedia.org/wiki/Large_language_model
}

One or more labels precede each URL. This approach might be
sufficient for a relatively small dataset.

For specific projects, including a proof of concept, this approach can
provide a solid first step to go from naïve RAG (content search with
keywords) to searching a dataset with indexes (the labels in this case).
We now have to process the data.

1.2.2. Processing the data
We first apply a standard scraping and text-cleaning function to the
document that will be retrieved:

def fetch_and_clean(url):
 # Fetch the content of the URL
 response = requests.get(url)
 soup = BeautifulSoup(response.content, 'html.parser')
 # Find the main content of the article, ignoring side boxes
 content = soup.find('div', {'class': 'mw-parser-output'})
 # Remove less relevant sections such as "See also", "Refere
 for section_title in ['References', 'Bibliography', 'Extern
 section = content.find('span', {'id': section_title})
 if section:
 for sib in section.parent.find_next_siblings():
 sib.decompose()
 section.parent.decompose()
 # Focus on extracting and cleaning text from paragraph tags
 paragraphs = content.find_all('p')
 cleaned_text = ' '.join(paragraph.get_text(separator=' ', s
 cleaned_text = re.sub(r'\[\d+\]', '', cleaned_text) # Remo
 return cleaned_text

The code fetches the document’s content based on its URL, which is,
in turn, based on its label. This straightforward approach may satisfy
a project’s needs depending on its goals. An ML engineer or
developer must always be careful not to overload a system with
costly and unprofitable functions. Moreover, labeling website URLs
can guide a retriever pipeline to the correct locations to process data,
regardless of the techniques (load balancing, API call optimization,
etc.) applied. In the end, each project or sub-project will require one
or several techniques, depending on its specific needs.

Once the fetching and cleaning function is ready, we can implement
the retrieval process for the user’s input.

1.3. Retrieval process for user input
The first step here involves identifying a keyword within the user’s
input. The function process_query takes two parameters: user_input
and num_words . The number of words to retrieve is restricted by
factors like the input limitations of the model, cost considerations,
and overall system performance:

import textwrap
def process_query(user_input, num_words):
 user_input = user_input.lower()
 # Check for any of the specified keywords in the input
 matched_keyword = next((keyword for keyword in urls if keyw

Upon finding a match between a keyword in the user input and the
keywords associated with URLs, the following functions for fetching
and cleaning the data are triggered:

if matched_keyword:
 print(f"Fetching data from: {urls[matched_keyword]}")
 cleaned_text = fetch_and_clean(urls[matched_keyword])

 # Limit the display to the specified number of words from t
 words = cleaned_text.split() # Split the text into words
 first_n_words = ' '.join(words[:num_words]) # Join the fir

The num_words parameter helps in chunking the text. While this basic
approach may work for use cases with a manageable volume of data,
it’s recommended to embed the data into vectors for more complex
scenarios.

The cleaned and truncated text is then formatted for display:

 # Wrap the first n words to 80 characters wide for display
 wrapped_text = textwrap.fill(first_n_words, width=80)
 print("\nFirst {} words of the cleaned text:".format(num_wo
 print(wrapped_text) # Print the first n words as a well-fo
 # Use the exact same first_n_words for the GPT-4 prompt to
 prompt = f"Summarize the following information about {match
 wrapped_prompt = textwrap.fill(prompt, width=80) # Wrap pr
 print("\nPrompt for Generator:", wrapped_prompt)
 # Return the specified number of words
 return first_n_words
else:
 print("No relevant keywords found. Please enter a query rel
 return None

Note that the function ultimately returns the first n words, providing
a concise and relevant snippet of information based on the user’s
query. This design allows the system to manage data retrieval
efficiently while also maintaining user engagement.

2. Generator
The generator ecosystem contains several components, several of
which overlap with the retriever functions and user interfaces in the
RAG-driven generative AI frameworks:

2.1. Adaptive RAG selection based on human rankings: This
will be based on the ratings of a user panel over time. In a real-
life pipeline, this functionality could be a separate program.
2.2. Input: In a real-life project, a user interface (UI) will manage
the input. This interface and the associated process should be
carefully designed in collaboration with the users, ideally in a
workshop setting where their needs and preferences can be fully
understood.
2.3. Mean ranking simulation scenario: Calculating the mean
value of the user evaluation scores and functionality.
2.4. Checking the input before running the generator:
Displaying the input.
2.5. Installing the generative AI environment: The installation
of the generative AI model’s environment, in this case, OpenAI,
can be part of another environment in the pipeline in which
other team members may be working, implementing, and
deploying in production independently of the retriever
functionality.
2.6. Content generation: In this section of the program, an
OpenAI model will process the input and provide a response
that will be evaluated by the evaluator.

Let’s begin by describing the adaptive RAG system.

2.1. Integrating HF-RAG for augmented
document inputs
The dynamic nature of information retrieval and the necessity for
contextually relevant data augmentation in generative AI models

require a flexible system capable of adapting to varying levels of
input quality. We introduce an adaptive RAG selection system,
which employs HF scores to determine the optimal retrieval strategy
for document implementation within the RAG ecosystem. Adaptive
functionality takes us beyond naïve RAG and constitutes a hybrid
RAG system.

Human evaluators assign mean scores ranging from 1 to 5 to assess
the relevance and quality of documents. These scores trigger distinct
operational modes, as shown in the following figure:

Figure 5.2: Automated RAG triggers

Scores of 1 to 2 indicate a lack of compensatory capability by the
RAG system, suggesting the need for maintenance or possibly
model fine-tuning. RAG will be temporarily deactivated until the
system is improved. The user input will be processed but there
will be no retrieval.
Scores of 3 to 4 initiate an augmentation with human-expert
feedback only, utilizing flashcards or snippets to refine the
output. Document-based RAG will be deactivated, but the
human-expert feedback data will augment the input.
Scores of 5 initiate keyword-search RAG enhanced by
previously gathered HF when necessary, utilizing flashcards or
targeted information snippets to refine the output. The user is
not required to provide new feedback in this case.

This program implements one of many scenarios. The
scoring system, score levels, and triggers will vary
from one project to another, depending on the
specification goals to attain. It is recommended to
organize workshops with a panel of users to decide
how to implement this adaptive RAG system.

This adaptive approach aims to optimize the balance between
automated retrieval and human insight, ensuring the generative
model’s outputs are of the highest possible relevance and accuracy.
Let’s now enter the input.

2.2. Input
A user of Company C is prompted to enter a question:

Request user input for keyword parsing
user_input = input("Enter your query: ").lower()

In this example and program, we will focus on one question and
topic: What is an LLM? . The question appears and is memorized by
the model:

Enter your query: What is an LLM?

This program is a proof of concept with a strategy and
example for the panel of users in Company C who
wish to understand an LLM. Other topics can be
added, and the program can be expanded to meet
further needs. It is recommended to organize
workshops with a panel of users to decide the next
steps.

We have prepared the environment and will now activate a RAG
scenario.

2.3. Mean ranking simulation scenario
For the sake of this program, let’s assume that the human user
feedback panel has been evaluating the hybrid adaptive RAG system
for some time with the functions provided in sections 3.2. Human user
rating and 3.3. Human-expert evaluation. The user feedback panel ranks
the responses a number of times, which automatically updates by
calculating the mean of the ratings and storing it in a ranking variable

named ranking . The ranking score will help the management team
decide whether to downgrade the rank of a document, upgrade it, or
suppress documents through manual or automated functions. You
can even simulate one of the scenarios described in the section 2.1.
Integrating HF-RAG for augmented document inputs.

We will begin with a 1 to 5 ranking, which will deactivate RAG so
that we can see the native response of the generative model:

#Select a score between 1 and 5 to run the simulation
ranking=1

Then, we will modify this value to activate RAG without additional
human-expert feedback with ranking=5 . Finally, we will modify this
value to activate human feedback RAG without retrieving documents
with ranking=3 .

In a real-life environment, these rankings will be triggered
automatically with the functionality described in sections 3.2 and 3.3
after user feedback panel workshops are organized to define the
system’s expected behavior. If you wish to run the three scenarios
described in section 2.1, make sure to initialize the text_input
variable that the generative model processes to respond:

initializing the text for the generative AI model simulations
text_input=[]

Each time you switch scenarios, make sure to come back and
reinitialize text_input .

Due to its probabilistic nature, the generative AI
model’s output may vary from one run to another.

Let’s go through the three rating categories described in section 2.1.

Ranking 1–2: No RAG
The ranking of the generative AI’s output is very low. All RAG
functionality is deactivated until the management team can analyze
and improve the system. In this case, text_input is equal to
user_input :

if ranking>=1 and ranking<3:
 text_input=user_input

The generative AI model, in this case, GPT-4o, will generate the
following output in section 2.6. Content generation:

GPT-4 Response:

It seems like you're asking about "LLM" which stands for "Langua
An LLM is a type of artificial intelligence model designed to un
Examples of LLMs include OpenAI's GPT (Generative Pre-trained Tr
Transformers).

This output cannot satisfy the user panel of Company C in this
particular use case. They cannot relate this explanation to their
customer service issues. Furthermore, many users will not bother
going further since they have described their needs to the

management team and expect pertinent responses. Let’s see what
human-expert feedback RAG can provide.

Ranking 3–4: Human-expert feedback RAG
In this scenario, human-expert feedback (see section 3.4. Human-expert
evaluation) was triggered by poor user feedback ratings with
automated RAG documents (ranking=5) and without RAG (ranking
1-2) . The human-expert panel has filled in a flashcard, which has
now been stored as an expert-level RAG document.

The program first checks the ranking and activates HF retrieval:

hf=False
if ranking>3 and ranking<5:
 hf=True

The program will then fetch the proper document from an expert
panel (selected experts within a corporation) dataset based on
keywords, embeddings, or other search methods that fit the goals of a
project. In this case, we assume we have found the right flashcard
and download it:

if hf==True:
 from grequests import download
 directory = "Chapter05"
 filename = "human_feedback.txt"
 download(directory, filename, private_token)

We verify if the file exists and load its content, clean it, store it in
content , and assign it to text_input for the GPT-4 model:

if hf==True:
 # Check if 'human_feedback.txt' exists
 efile = os.path.exists('human_feedback.txt')
 if efile:
 # Read and clean the file content
 with open('human_feedback.txt', 'r') as file:
 content = file.read().replace('\n', ' ').replace('#
 #print(content) # Uncomment for debugging or maint
 text_input=content
 print(text_input)
 else:
 print("File not found")
 hf=False

The content of the file explains both what an LLM is and how it can
help Company C improve customer support:

A Large Language Model (LLM) is an advanced AI system trained on

If you now run sections 2.4 and 2.5 once and section 2.6 to generate
the content based on this text_input , the response will be
satisfactory:

GPT-4 Response:

A Large Language Model (LLM) is a sophisticated AI system traine
text data to generate human-like text responses. It understands
language based on patterns and information learned during traini
highly effective in various language-based tasks such as answeri
making recommendations, and facilitating conversations. They can
It can be programmed to handle common technical questions about
troubleshoot problems, guide users through setup processes, and
optimizing device performance. Additionally, it can be used to g

feedback, providing valuable insights into user experiences and
performance. This feedback can then be used to improve products
Furthermore, the LLM can be designed to escalate issues to human
necessary, ensuring that customers receive the best possible sup
levels. The agent can also provide personalized recommendations
based on their usage patterns and preferences, enhancing user sa
loyalty.

The preceding response is now much better since it defines LLMs and
also shows how to improve customer service for Company C’s C-
phone series.

We will take this further in Chapter 9, Empowering AI Models: Fine-
Tuning RAG Data and Human Feedback, in which we will fine-tune a
generative model daily (or as frequently as possible) to improve its
responses, thus alleviating the volume of RAG data. But for now, let’s
see what the system can achieve without HF but with RAG
documents.

Ranking 5: RAG with no human-expert feedback
documents
Some users do not require RAG documents that include human-
expert RAG flashcards, snippets, or documents. This might be the
case, particularly, if software engineers are the users.

In this case, the maximum number of words is limited to 100 to
optimize API costs, but can be modified as you wish using the
following code:

if ranking>=5:
 max_words=100 #Limit: the size of the data we can add to the
 rdata=process_query(user_input,max_words)
 print(rdata) # for maintenance if necessary
 if rdata:
 rdata_clean = rdata.replace('\n', ' ').replace('#', '')
 rdata_sentences = rdata_clean.split('. ')
 print(rdata)
 text_input=rdata
 print(text_input)

When we run the generative AI model, a reasonable output is
produced that software engineers can relate to their business:

GPT-4 Response:

A large language model (LLM) is a type of language model known f
capability to perform general-purpose language generation and ot
and semi-supervised learning. These models can generate text, a
generative AI, by taking an input text and repeatedly predicting

We can see that the output refers to March 2024 data, although GPT-
4-turbo’s training cutoff date was in December 2023, as explained in
OpenAI’s documentation:
https://platform.openai.com/docs/models/gpt-4-turbo-and-
gpt-4.

In production, at the end-user level, the error in the
output can come from the data retrieved or the
generative AI model. This shows the importance of HF.

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

In this case, this error will hopefully be corrected in the
retrieval documents or by the generative AI model. But
we left the error in to illustrate that HF is not an option
but a necessity.

These temporal RAG augmentations clearly justify the need for RAG-
driven generative AI. However, it remains up to the users to decide if
these types of outputs are sufficient or require more corporate
customization in closed environments, such as within or for a
company.

For the remainder of this program, let’s assume ranking>=5 for the
next steps to show how the evaluator is implemented in the Evaluator
section. Let’s install the generative AI environment to generate
content based on the user input and the document retrieved.

2.4.–2.5. Installing the generative AI
environment

2.4. Checking the input before running the generator
displays the user input and retrieved document before
augmenting the input with this information. Then we
continue to 2.5. Installing the generative AI environment.

Only run this section once. If you modified the scenario in section 2.3,
you can skip this section to run the generative AI model again. This
installation is not at the top of this notebook because a project team

may choose to run this part of the program in another environment
or even another server in production.

It is recommended to separate the retriever and generator functions
as much as possible since they might be activated by different
programs and possibly at different times. One development team
might only work on the retriever functions while another team works
on the generator functions.

We first install OpenAI:

!pip install openai==1.40.3

Then, we retrieve the API key. Store your OpenAI key in a safe
location. In this case, it is stored on Google Drive:

#API Key
#Store your key in a file and read it(you can type it directly
from google.colab import drive
drive.mount('/content/drive')
f = open("drive/MyDrive/files/api_key.txt", "r")
API_KEY=f.readline().strip()
f.close()
#The OpenAI Key
import os
import openai
os.environ['OPENAI_API_KEY'] =API_KEY
openai.api_key = os.getenv("OPENAI_API_KEY")

We are now all set for content generation.

2.6. Content generation

To generate content, we first import and set up what we need. We’ve
introduced time to measure the speed of the response and have
chosen gpt-4o as our conversational model:

import openai
from openai import OpenAI
import time
client = OpenAI()
gptmodel="gpt-4o"
start_time = time.time() # Start timing before the request

We then define a standard Gpt-4o prompt, giving it enough
information to respond and leaving the rest up to the model and
RAG data:

def call_gpt4_with_full_text(itext):
 # Join all lines to form a single string
 text_input = '\n'.join(itext)
 prompt = f"Please summarize or elaborate on the following c
 try:
 response = client.chat.completions.create(
 model=gptmodel,
 messages=[
 {"role": "system", "content": "You are an expert Na
 {"role": "assistant", "content": "1.You can explain
 {"role": "user", "content": prompt}
],
 temperature=0.1 # Add the temperature parameter here
)
 return response.choices[0].message.content.strip()
 except Exception as e:
 return str(e)

The code then formats the output:

import textwrap
def print_formatted_response(response):
 # Define the width for wrapping the text
 wrapper = textwrap.TextWrapper(width=80) # Set to 80 colum
 wrapped_text = wrapper.fill(text=response)
 # Print the formatted response with a header and footer
 print("GPT-4 Response:")
 print("---------------")
 print(wrapped_text)
 print("---------------\n")
Assuming 'gpt4_response' contains the response from the previ
print_formatted_response(gpt4_response)

The response is satisfactory in this case, as we saw in section 2.3. In
the ranking=5 scenario, which is the one we are now evaluating, we
get the following output:

GPT-4 Response:

GPT-4 Response:

Summary: A large language model (LLM) is a computational mod

The response looks fine, but is it really accurate? Let’s run the
evaluator to find out.

3. Evaluator
Depending on each project’s specifications and needs, we can
implement as many mathematical and human evaluation functions as

necessary. In this section, we will implement two automatic metrics:
response time and cosine similarity score. We will then implement
two interactive evaluation functions: human user rating and human-
expert evaluation.

3.1. Response time
The response time was calculated and displayed in the API call with:

import time
…
start_time = time.time() # Start timing before the request
…
response_time = time.time() - start_time # Measure response ti
print(f"Response Time: {response_time:.2f} seconds") # Print r

In this case, we can display the response time without further
development:

print(f"Response Time: {response_time:.2f} seconds") # Print r

The output will vary depending on internet connectivity and the
capacity of OpenAI’s servers. In this case, the output is:

Response Time: 7.88 seconds

It seems long, but online conversational agents take some time to
answer as well. Deciding if this performance is sufficient remains a
management decision. Let’s run the cosine similarity score next.

3.2. Cosine similarity score
Cosine similarity measures the cosine of the angle between two non-
zero vectors. In the context of text analysis, these vectors are typically
TF-IDF (Term Frequency-Inverse Document Frequency)
representations of the text, which weigh terms based on their
importance relative to the document and a corpus.

GPT-4o’s input, which is text_input , and the model’s response,
which is gpt4_response , are treated by TF-IDF as two separate
“documents.” The vectorizer transforms the documents into vectors.
Then, vectorization considers how terms are shared and emphasized
between the input and the response with the
vectorizer.fit_transform([text1, text2]) .

The goal is to quantify the thematic and lexical overlap through the
following function:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def calculate_cosine_similarity(text1, text2):
 vectorizer = TfidfVectorizer()
 tfidf = vectorizer.fit_transform([text1, text2])
 similarity = cosine_similarity(tfidf[0:1], tfidf[1:2])
 return similarity[0][0]
Example usage with your existing functions
similarity_score = calculate_cosine_similarity(text_input, gpt4
print(f"Cosine Similarity Score: {similarity_score:.3f}")

Cosine similarity relies on TfidfVectorizer to transform the two
documents into TF-IDF vectors. The cosine_similarity function then
calculates the similarity between these vectors. A result of 1 indicates

identical texts, while 0 shows no similarity. The output of the
function is:

Cosine Similarity Score: 0.697

The score shows a strong similarity between the input and the output
of the model. But how will a human user rate this response? Let’s
find out.

3.3. Human user rating
The human user rating interface provides human user feedback. As
reiterated throughout this chapter, I recommend designing this
interface and process after fully understanding user needs through a
workshop with them. In this section, we will assume that the human
user panel is a group of software developers testing the system.

The code begins with the interface’s parameters:

Score parameters
counter=20 # number of feedback queries
score_history=30 # human feedback
threshold=4 # minimum rankings to trigger hu

In this simulation, the parameters show that the system has
computed human feedback:

counter=20 shows the number of ratings already entered by the
users
score_history=60 shows the total score of the 20 ratings

threshold=4 states the minimum mean rating,
score_history/counter , to obtain without triggering a human-
expert feedback request

We will now run the interface to add an instance to these parameters.
The provided Python code defines the evaluate_response function,
designed to assess the relevance and coherence of responses
generated by a language model such as GPT-4. Users rate the
generated text on a scale from 1 (poor) to 5 (excellent), with the
function ensuring valid input through recursive checks. The code
calculates statistical metrics like mean scores to gauge the model’s
performance over multiple evaluations.

The evaluation function is a straightforward feedback request to
obtain values between 1 and 5 :

import numpy as np
def evaluate_response(response):
 print("\nGenerated Response:")
 print(response)
 print("\nPlease evaluate the response based on the followin
 print("1 - Poor, 2 - Fair, 3 - Good, 4 - Very Good, 5 - Exc
 score = input("Enter the relevance and coherence score (1-5
 try:
 score = int(score)
 if 1 <= score <= 5:
 return score
 else:
 print("Invalid score. Please enter a number between
 return evaluate_response(response) # Recursive cal
 except ValueError:
 print("Invalid input. Please enter a numerical value.")
 return evaluate_response(response) # Recursive call if

We then call the function:

score = evaluate_response(gpt4_response)
print("Evaluator Score:", score)

The function first displays the response, as shown in the following
excerpt:

Generated Response:
Summary:
A large language model (LLM) is a computational model…

Then, the user enters an evaluation score between 1 and 5, which is 1
in this case:

Please evaluate the response based on the following criteria:
1 - Poor, 2 - Fair, 3 - Good, 4 - Very Good, 5 - Excellent
Enter the relevance and coherence score (1-5): 3

The code then computes the statistics:

counter+=1
score_history+=score
mean_score=round(np.mean(score_history/counter), 2)
if counter>0:
 print("Rankings :", counter)
 print("Score history : ", mean_score)

The output shows a relatively very low rating:

Evaluator Score: 3
Rankings : 21

Score history : 3.0

The evaluator score is 3 , the overall ranking is 3 , and the score
history is 3 also! Yet, the cosine similarity was positive. The human-
expert evaluation request will be triggered because we set the
threshold to 4 :

threshold=4

What’s going on? Let’s ask an expert and find out!

3.4. Human-expert evaluation
Metrics such as cosine similarity indeed measure similarity but not
in-depth accuracy. Time performance will not determine the accuracy
of a response either. But if the rating is too low, why is that? Because
the user is not satisfied with the response!

The code first downloads thumbs-up and thumbs-down images for
the human-expert user:

from grequests import download
Define your variables
directory = "commons"
filename = "thumbs_up.png"
download(directory, filename, private_token)
Define your variables
directory = "commons"
filename = "thumbs_down.png"
download(directory, filename, private_token)

The parameters to trigger an expert’s feedback are counter_threshold
and score_threshold . The number of user ratings must exceed the
expert’s threshold counter, which is counter_threshold=10 . The
threshold of the mean score of the ratings is 4 in this scenario:
score_threshold=4 . We can now simulate the triggering of an expert
feedback request:

if counter>counter_threshold and score_history<=score_threshold
 print("Human expert evaluation is required for the feedback l

In this case, the output will confirm the expert feedback loop because
of the poor mean ratings and the number of times the users rated the
response:

Human expert evaluation is required for the feedback loop.

As mentioned, in a real-life project, a workshop with expert users
should be organized to define the interface. In this case, a standard
HTML interface in a Python cell will display the thumbs-up and
thumbs-down icons. If the expert presses on the thumbs-down icon, a
feedback snippet can be entered and saved in a feedback file named
expert_feedback.txt , as shown in the following excerpt of the code:

import base64
from google.colab import output
from IPython.display import display, HTML
def image_to_data_uri(file_path):
 """
 Convert an image to a data URI.
 """

 with open(file_path, 'rb') as image_file:
 encoded_string = base64.b64encode(image_file.read()).de
 return f'data:image/png;base64,{encoded_string}'
thumbs_up_data_uri = image_to_data_uri('/content/thumbs_up.png'
thumbs_down_data_uri = image_to_data_uri('/content/thumbs_down.
def display_icons():
 # Define the HTML content with the two clickable images
…/…
def save_feedback(feedback):
 with open('/content/expert_feedback.txt', 'w') as f:
 f.write(feedback)
 print("Feedback saved successfully.")
Register the callback
output.register_callback('notebook.save_feedback', save_feedbac
print("Human Expert Adaptive RAG activated")
Display the icons with click handlers
display_icons()

The code will display the icons shown in the following figure. If the
expert user presses the thumbs-down icon, they will be prompted to
enter feedback.

Figure 5.3: Feedback icons

You can add a function for thumbs-down meaning that the response
was incorrect and that the management team has to communicate
with the user panel or add a prompt to the user feedback interface.

This is a management decision, of course. In our scenario, the human
expert pressed the thumbs-down icon and was prompted to enter a
response:

Figure 5.4: “Enter feedback” prompt

The human expert provided the response, which was saved in
'/content/expert_feedback.txt' . Through this, we have finally
discovered the inaccuracy, which is in the content of the file
displayed in the following cell:

There is an inaccurate statement in the text:
"As of March 2024, the largest and most capable LLMs are built w
This statement is not accurate because the largest and most capa

The preceding expert’s feedback can then be used to improve the
RAG dataset. With this, we have explored the depths of HF-RAG
interactions. Let’s summarize our journey and move on to the next
steps.

Summary

As we wrap up our hands-on approach to pragmatic AI
implementations, it’s worth reflecting on the transformative journey
we’ve embarked on together, exploring the dynamic world of
adaptive RAG. We first examined how HF not only complements but
also critically enhances generative AI, making it a more powerful tool
customized to real-world needs. We described the adaptive RAG
ecosystem and then went hands-on, building from the ground up.
Starting with data collection, processing, and querying, we integrated
these elements into a RAG-driven generative AI system. Our
approach wasn’t just about coding; it was about adding adaptability
to AI through continuous HF loops.

By augmenting GPT-4’s capabilities with expert insights from
previous sessions and end-user evaluations, we demonstrated the
practical application and significant impact of HF. We implemented a
system where the output is not only generated but also ranked by
end-users. Low rankings triggered an expert feedback loop,
emphasizing the importance of human intervention in refining AI
responses. Building an adaptive RAG program from scratch ensured
a deep understanding of how integrating HF can shift a standard AI
system to one that evolves and improves over time.

This chapter wasn’t just about learning; it was about doing, reflecting,
and transforming theoretical knowledge into practical skills. We are
now ready to scale RAG-driven AI to production-level volumes and
complexity in the next chapter.

Questions
Answer the following questions with Yes or No:

1. Is human feedback essential in improving RAG-driven
generative AI systems?

2. Can the core data in a generative AI model be changed without
retraining the model?

3. Does Adaptive RAG involve real-time human feedback loops to
improve retrieval?

4. Is the primary focus of Adaptive RAG to replace all human input
with automated responses?

5. Can human feedback in Adaptive RAG trigger changes in the
retrieved documents?

6. Does Company C use Adaptive RAG solely for customer support
issues?

7. Is human feedback used only when the AI responses have high
user ratings?

8. Does the program in this chapter provide only text-based
retrieval outputs?

9. Is the Hybrid Adaptive RAG system static, meaning it cannot
adjust based on feedback?

10. Are user rankings completely ignored in determining the
relevance of AI responses?

References
Studying Large Language Model Behaviors Under Realistic Knowledge
Conflicts by Evgenii Kortukov, Alexander Rubinstein, Elisa
Nguyen, Seong Joon Oh: https://arxiv.org/abs/2404.16032
OpenAI models:
https://platform.openai.com/docs/models

https://arxiv.org/abs/2404.16032
https://platform.openai.com/docs/models

Further reading
For more information on the vectorizer and cosine similarity
functionality implemented in this chapter, use the following links:

Feature extraction – TfidfVectorizer : https://scikit-
learn.org/stable/modules/generated/sklearn.feature_e
xtraction.text.TfidfVectorizer.html

sklearn.metrics – cosine_similarity : https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.p
airwise.cosine_similarity.html

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://www.packt.link/rag

6

Scaling RAG Bank Customer Data
with Pinecone

Scaling up RAG documents, whether text-based or multimodal, isn’t
just about piling on and accumulating more data—it fundamentally
changes how an application works. Firstly, scaling is about finding
the right amount of data, not just more of it. Secondly, as you add
more data, the demands on an application can change—it might need
new features to handle the bigger load. Finally, cost monitoring and
speed performance will constrain our projects when scaling. Hence,
this chapter is designed to equip you with cutting-edge techniques
for leveraging AI in solving the real-world scaling challenges you
may face in your projects. For this, we will be building a
recommendation system based on pattern-matching using Pinecone
to minimize bank customer churn (customers choosing to leave a
bank).

We will start with a step-by-step approach to developing the first
program of our pipeline. Here, you will learn how to download a
Kaggle bank customer dataset and perform exploratory data analysis
(EDA). This foundational step is crucial as it guides and supports you
in preparing your dataset and your RAG strategy for the next stages
of processing. The second program of our pipeline introduces you to

the powerful combination of Pinecone—a vector database suited for
handling large-scale vector search—and OpenAI’s text-embedding-3-
small model. Here, you’ll chunk and embed your data before
upserting (updating or inserting records) it into a Pinecone index that
we will scale up to 1,000,000+ vectors. We will ready it for complex
query retrieval at a satisfactory speed. Finally, the third program of
our pipeline will show you how to build RAG queries using
Pinecone, augment user input, and leverage GPT-4o to generate AI-
driven recommendations. The goal is to reduce churn in banking by
offering personalized, insightful recommendations. By the end of this
chapter, you’ll have a good understanding of how to apply the power
of Pinecone and OpenAI technologies to your RAG projects.

To sum up, this chapter covers the following topics:

The key aspects of scaling RAG vector stores
EDA for data preparation
Scaling with Pinecone vector storage
Chunking strategy for customer bank information
Embedding data with OpenAI embedding models
Upserting data
Using Pinecone for RAG
Generative AI-driven recommendations with GPT-4o to reduce
bank customer churn

Let’s begin by defining how we will scale with Pinecone.

Scaling with Pinecone

We will be implementing Pinecone’s innovative vector database
technology with OpenAI’s powerful embedding capabilities to
construct data processing and querying systems. The goal is to build
a recommendation system to encourage customers to continue their
association with a bank. Once you understand this approach, you
will be able to apply it to any domain requiring recommendations
(leisure, medical, or legal). To understand and optimize the complex
processes involved, we will build the programs from scratch with a
minimal number of components. In this chapter, we will use the
Pinecone vector database and the OpenAI LLM model.

Selecting and designing an architecture depends on a project’s
specific goals. Depending on your project’s needs, you can apply this
methodology to other platforms. In this chapter and architecture, the
combination of a vector store and a generative AI model is designed
to streamline operations and facilitate scalability. With that context in
place, let’s go through the architecture we will be building in Python.

Architecture
In this chapter, we will implement vector-based similarity search
functionality, as we did in Chapter 2, RAG Embedding Vector Stores with
Deep Lake and OpenAI, and Chapter 3, Building Index-Based RAG with
LlamaIndex, Deep Lake, and OpenAI. We will take the structure of the
three pipelines we designed in those chapters and apply them to our
recommendation system, as shown in Figure 6.1. If necessary, take the
time to go through those chapters before implementing the code in
this chapter.

Figure 6.1: Scaling RAG-driven generative AI pipelines

The key features of the scaled recommendation system we will build
can be summarized in the three pipelines shown in the preceding
figure:

Pipeline 1: Collecting and preparing the dataset

In this pipeline, we will perform EDA on the dataset with
standard queries and k-means clustering.

Pipeline 2: Scaling a Pinecone index (vector store)

In this pipeline, we will see how to chunk, embed, and upsert
1,000,000+ documents to a Pinecone index (vector store).

Pipeline 3: RAG generative AI

This pipeline will take us to fully scaled RAG when we query a
1,000,000+ vector store and augment the input of a GPT-4o
model to make targeted recommendations.

The main theoretical and practical applications of the three programs
we will explore include:

Scalable and serverless infrastructure: We begin by
understanding Pinecone’s serverless architecture, which
eliminates the complexities of server management and scaling.
We don’t need to manage storage resources or machine usage.
It’s a pay-as-you-go approach based on serverless indexes
formed by a cloud and region, for example, Amazon Web
Services (AWS) in us-east-1 . Scaling and billing are thus
simplified, although we still have to monitor and minimize the
costs!
Lightweight and simplified development environment: Our
integration strategy will minimize the use of external libraries,
maintaining a lightweight development stack. Directly using
OpenAI to generate embeddings and Pinecone to store and
query these embeddings simplifies the data processing pipeline
and increases system efficiency. Although this approach can
prove effective, other methods are possible depending on your
project, as implemented in other chapters of this book.
Optimized scalability and performance: Pinecone’s vector
database is engineered to handle large-scale datasets effectively,
ensuring that application performance remains satisfactory as
the data volume grows. As for all cloud platforms and APIs,
examine the privacy and security constraints when
implementing Pinecone and OpenAI. Also, continually monitor

the system’s performance and costs, as we will see in the Pipeline
2: Scaling a Pinecone index (vector store) section of this chapter.

Let’s now go to our keyboards to collect and process the Bank
Customer Churn dataset.

Pipeline 1: Collecting and preparing
the dataset
This section will focus on handling and analyzing the Bank Customer
Churn dataset. We will guide you through the steps of setting up your
environment, manipulating data, and applying machine learning
(ML) techniques. It is important to get the “feel” of a dataset with
human analysis before using algorithms as tools. Human insights
will always remain critical because of the flexibility of human
creativity. As such, we will implement data collection and
preparation in Python in three main steps:

1. Collecting and processing the dataset:
Setting up the Kaggle environment to authenticate and
download datasets
Collecting and unzipping the Bank Customer Churn dataset
Simplifying the dataset by removing unnecessary columns

2. Exploratory data analysis:
Performing initial data inspections to understand the
structure and type of data we have
Investigating relationships between customer complaints
and churn (closing accounts)

Exploring how age and salary levels relate to customer
churn
Generating a heatmap to visualize correlations between
numerical features

3. Training an ML model:
Preparing the data for ML
Applying clustering techniques to discover patterns in
customer behavior
Assessing the effectiveness of different cluster
configurations
Concluding and moving on to RAG-driven generative AI

Our goal is to analyze the dataset and prepare it for Pipeline 2: Scaling
a Pinecone index (vector store). To achieve that goal, we need to
perform a preliminary EDA of the dataset. Moreover, each section is
designed to be a hands-on walkthrough of the code from scratch,
ensuring you gain practical experience and insights into data science
workflows. Let’s get started by collecting the dataset.

1. Collecting and processing the
dataset
Let’s first collect the Bank Customer Churn dataset on Kaggle and
process it:

https://www.kaggle.com/datasets/radheshyamkollipara/bank
-customer-churn

The file Customer-Churn-Records.csv contains data on 10,000 records of
customers from a bank focusing on various aspects that might

https://www.kaggle.com/datasets/radheshyamkollipara/bank-customer-churn
https://www.kaggle.com/datasets/radheshyamkollipara/bank-customer-churn

influence customer churn. The dataset was uploaded by Radheshyam
Kollipara, who rightly states:

As we know, it is much more expensive to sign in a new client than
keeping an existing one. It is advantageous for banks to know what
leads a client towards the decision to leave the company. Churn
prevention allows companies to develop loyalty programs and
retention campaigns to keep as many customers as possible.

Here are the details of the columns included in the dataset that follow
the description on Kaggle:

RowNumber—corresponds to the record (row) number and has no effect

on the output.

CustomerId—contains random values and has no effect on customers

leaving the bank.

Surname—the surname of a customer has no impact on their decision

to leave the bank.

CreditScore—can have an effect on customer churn since a customer

with a higher credit score is less likely to leave the bank.

Geography—a customer's location can affect their decision to leave

the bank.

Gender—it's interesting to explore whether gender plays a role in a

customer leaving the bank.

Age—this is certainly relevant since older customers are less

likely to leave their bank than younger ones.

Tenure—refers to the number of years that the customer has been a

client of the bank. Normally, older clients are more loyal and less

likely to leave a bank.

Balance—is also a very good indicator of customer churn, as people

with a higher balance in their accounts are less likely to leave

the bank compared to those with lower balances.

NumOfProducts—refers to the number of products that a customer has

purchased through the bank.

HasCrCard—denotes whether or not a customer has a credit card. This

column is also relevant since people with a credit card are less

likely to leave the bank.

IsActiveMember—active customers are less likely to leave the bank.

EstimatedSalary—as with balance, people with lower salaries are

more likely to leave the bank compared to those with higher

salaries.

Exited—whether or not the customer left the bank.

Complain—customer has complained or not.

Satisfaction Score—Score provided by the customer for their

complaint resolution.

Card Type—the type of card held by the customer.

Points Earned—the points earned by the customer for using a credit

card.

Now that we know what the dataset contains, we need to collect it
and process it for EDA. Let’s install the environment.

Installing the environment for Kaggle

To collect datasets from Kaggle automatically, you will need to sign
up and create an API key at https://www.kaggle.com/. At the time
of writing this notebook, downloading datasets is free. Follow the
instructions to save and use your Kaggle API key. Store your key in a
safe location. In this case, the key is in a file on Google Drive that we
need to mount:

#API Key
#Store your key in a file and read it(you can type it directly
from google.colab import drive
drive.mount('/content/drive')

The program now reads the JSON file and sets environment variables
for Kaggle authentication using your username and an API key:

import os
import json
with open(os.path.expanduser("drive/MyDrive/files/kaggle.json")
 kaggle_credentials = json.load(f)
kaggle_username = kaggle_credentials["username"]
kaggle_key = kaggle_credentials["key"]
os.environ["KAGGLE_USERNAME"] = kaggle_username
os.environ["KAGGLE_KEY"] = kaggle_key

We are now ready to install Kaggle and authenticate it:

try:
 import kaggle
except:
 !pip install kaggle

https://www.kaggle.com/

import kaggle
kaggle.api.authenticate()

And that’s it! That’s all we need. We are now ready to collect the Bank
Customer Churn dataset.

Collecting the dataset
We will now download the zipped dataset, extract the CSV file,
upload it into a pandas DataFrame, drop columns that we will not
use, and display the result. Let’s first download the zipped dataset:

!kaggle datasets download -d radheshyamkollipara/bank-customer-

The output displays the source of the data:

Dataset URL: https://www.kaggle.com/datasets/radheshyamkollipara
License(s): other
bank-customer-churn.zip: Skipping, found more recently modified

We can now unzip the data:

import zipfile
with zipfile.ZipFile('/content/bank-customer-churn.zip', 'r') a
 zip_ref.extractall('/content/')
print("File Unzipped!")

The output should confirm that the file is unzipped:

File Unzipped!

The CSV file is uploaded to a pandas DataFrame named data1 :

import pandas as pd
Load the CSV file
file_path = '/content/Customer-Churn-Records.csv'
data1 = pd.read_csv(file_path)

We will now drop the following four columns in this scenario:

RowNumber : We don’t need these columns because we will be
creating a unique index for each record.
Surname : The goal in this scenario is to anonymize the data and
not display surnames. We will focus on customer profiles and
behaviors, such as complaints and credit card consumption
(points earned).
Gender : Consumer perceptions and behavior have evolved in the
2020s. It is more ethical and just as efficient to leave this
information out in the context of a sample project.
Geography : This field might be interesting in some cases. For this
scenario, let’s leave this feature out to avoid overfitting outputs
based on cultural clichés. Furthermore, including this feature
would require more information if we wanted to calculate
distances for delivery services, for example:

Drop columns and update the DataFrame in place
data1.drop(columns=['RowNumber','Surname', 'Gender','Geography'
data1

The output triggered by data1 shows a simplified yet sufficient
dataset:

Figure 6.2: Triggered output

This approach’s advantage is that it optimizes the size of the data that
will be inserted into the Pinecone index (vector store). Optimizing the
data size before inserting data into Pinecone and reducing the dataset
by removing unnecessary fields can be very beneficial. It reduces the
amount of data that needs to be transferred, stored, and processed in
the vector store. When scaling, smaller data sizes can lead to faster
query performance and lower costs, as Pinecone pricing can depend
on the amount of data stored and the computational resources used
for queries.

We can now save the new pandas DataFrame in a safe location:

data1.to_csv('data1.csv', index=False)
!cp /content/data1.csv /content/drive/MyDrive/files/rag_c6/data

You can save it in the location that is best for you. Just make sure to
save it because we will use it in the Pipeline 2: Scaling a Pinecone index
(vector store) section of this chapter. We will now explore the
optimized dataset before deciding how to implement it in a vector
store.

2. Exploratory data analysis
In this section, we will perform EDA using the data that pandas has
just defined, which contains customer data from a bank. EDA is a
critical step before applying any RAG techniques with vector stores,
as it helps us understand the underlying patterns and trends within
the data.

For instance, our preliminary analysis shows a direct correlation
between customer complaints and churn rates, indicating that
customers who have lodged complaints are more likely to leave the
bank. Additionally, our data reveals that customers aged 50 and
above are less likely to churn compared to younger customers.
Interestingly, income levels (particularly the threshold of $100,000) do
not appear to significantly influence churn decisions.

Through the careful examination of these insights, we’ll demonstrate
why jumping straight into complex ML models, especially deep
learning, may not always be necessary or efficient for drawing basic
conclusions. In scenarios where the relationships within the data are
evident and the patterns straightforward, simpler statistical methods
or even basic data analysis techniques might be more appropriate
and resource-efficient. For example, k-means clustering can be

effective, and we will implement it in the Training an ML model
section of this chapter.

However, this is not to understate the power of advanced RAG
techniques, which we will explore in the Pipeline 2: Scaling a Pinecone
index (vector store) section of this chapter. In that section, we will
employ deep learning within vector stores to uncover more subtle
patterns and intricate relationships that are not readily apparent
through classic EDA.

If we display the columns of the DataFrame, we can see that it is
challenging to find patterns:

Column Non-Null Count Dtype
--- ------ -------------- -----
 0 CustomerId 10000 non-null int64
 1 CreditScore 10000 non-null int64
2 Age 10000 non-null int64

 3 Tenure 10000 non-null int64
 4 Balance 10000 non-null float64
 5 NumOfProducts 10000 non-null int64
 6 HasCrCard 10000 non-null int64
 7 IsActiveMember 10000 non-null int64
8 EstimatedSalary 10000 non-null float64

9 Exited 10000 non-null int64

10 Complain 10000 non-null int64

 11 Satisfaction Score 10000 non-null int64
 12 Card Type 10000 non-null object
 13 Point Earned 10000 non-null int64

Age , EstimatedSalary , and Complain are possible determining features
that could be correlated with Exited . We can also display the
DataFrame to gain insights, as shown in the excerpt of data1 in the
following figure:

Figure 6.3: Visualizing the strong correlation between customer complaints and bank
churning (Exited)

The main feature seems to be Complain , which leads to Exited (churn),
as shown by running a standard calculation on the DataFrame:

Calculate the percentage of complain over exited
if sum_exited > 0: # To avoid division by zero
 percentage_complain_over_exited = (sum_complain/ sum_exited
else:
 percentage_complain_over_exited = 0
Print results
print(f"Sum of Exited = {sum_exited}")

print(f"Sum of Complain = {sum_complain}")
print(f"Percentage of complain over exited = {percentage_compla

The output shows a very high 100.29% ratio between complaints and
customers leaving the bank (churning). This means that customers
who complained did in fact leave the bank, which is a natural market
trend:

Sum of Exited = 2038
Sum of Complain = 2044
Percentage of complain over exited = 100.29%

We can see that only a few exited the bank (six customers) without
complaining.

Run the following cells from GitHub; these contain Python functions
that are variations of the exited and complain ratios and will produce
the following outputs:

Age and Exited with a threshold of age=50 shows that persons
over 50 seem less likely to leave a bank:

Sum of Age 50 and Over among Exited = 634
Sum of Exited = 2038
Percentage of Age 50 and Over among Exited = 31.11%

Conversely, the output shows that younger customers seem
more likely to leave a bank if they are dissatisfied. You can
explore different age thresholds to analyze the dataset further.

Salary and Exited with a threshold of salary_threshold=100000
doesn’t seem to be a significant feature, as shown in this output:

Sum of Estimated Salary over 100000 among Exited = 1045
Sum of Exited = 2038
Percentage of Estimated Salary over 100000 among Exited = 5

Try exploring different thresholds to analyze the dataset to
confirm or refute this trend.

Let’s create a heatmap based on the data1 pandas DataFrame:

import seaborn as sns
import matplotlib.pyplot as plt
Select only numerical columns for the correlation heatmap
numerical_columns = data1.select_dtypes(include=['float64', 'in
Correlation heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(data1[numerical_columns].corr(), annot=True, fmt='.
plt.title('Correlation Heatmap')
plt.show()

We can see that the highest correlation is between Complain and
Exited :

Figure 6.4: Excerpt of the heatmap

The preceding heatmap visualizes the correlation between each pair
of features (variables) in the dataset. It shows the correlation
coefficients between each pair of variables, which can range from
-1 (low correlation) to 1 (high correlation), with 0 indicating no
correlation.

With that, we have explored several features. Let’s build an ML
model to take this exploration further.

3. Training an ML model
Let’s continue our EDA and drill into the dataset further with an ML
model. This section implements the training of an ML model using
clustering techniques, specifically k-means clustering, to explore
patterns within our dataset. We’ll prepare and process data for
analysis, apply clustering, and then evaluate the results using
different metrics. This approach is valuable for extracting insights
without immediately resorting to more complex deep learning
methods.

k-means clustering is an unsupervised ML algorithm
that partitions a dataset into k distinct, non-
overlapping clusters by minimizing the variance within
each cluster. The algorithm iteratively assigns data
points to one of the k clusters based on the nearest
mean (centroid), which is recalculated after each
iteration until convergence.

Now, let’s break down the code section by section.

Data preparation and clustering
We will first copy our chapter’s dataset data1 to data2 to be able to go
back to data1 if necessary if we wish to try other ML models:

Copying data1 to data2
data2 = data1.copy()

You can explore the data with various scenarios of feature sets. In this
case, we will select ' CreditScore' , 'Age' , 'EstimatedSalary' ,
'Exited' , 'Complain' , and 'Point Earned' :

Import necessary libraries
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score , davies_bouldin_s
Assuming you have a dataframe named data1 loaded as described
Selecting relevant features
features = data2[['CreditScore', 'Age', 'EstimatedSalary', 'Exi

As in standard practice, let’s scale the features before running an ML
model:

Standardize the features
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)

The credit score, estimated salary, and points earned (reflecting credit
card spending) are good indicators of a customer’s financial standing
with the bank. The age factor, combined with these other factors,

might influence older customers to remain with the bank. However,
the important point to note is that complaints may lead any market
segment to consider leaving since complaints and churn are strongly
correlated.

We will now try to find two to four clusters to find the optimal
number of clusters for this set of features:

Experiment with different numbers of clusters
for n_clusters in range(2, 5): # Example range from 2 to 5
 kmeans = KMeans(n_clusters=n_clusters, n_init=20, random_st
 cluster_labels = kmeans.fit_predict(features_scaled)
 silhouette_avg = silhouette_score(features_scaled, cluster_
 db_index = davies_bouldin_score(features_scaled, cluster_la
 print(f'For n_clusters={n_clusters}, the silhouette score i

The output contains an evaluation of clustering performance using
two metrics—the silhouette score and the Davies-Bouldin index—
across different numbers of clusters (ranging from 2 to 4):

For n_clusters=2, the silhouette score is 0.6129 and the Davies
For n_clusters=3, the silhouette score is 0.3391 and the Davies
For n_clusters=4, the silhouette score is 0.3243 and the Davies

Silhouette score: This metric measures the quality of
clustering by calculating the mean intra-cluster
distance (how close each point in one cluster is to
points in the same cluster) and the mean nearest
cluster distance (how close each point is to points in the
next nearest cluster). The score ranges from -1 to 1,

where a high value indicates that clusters are well-
separated and internally cohesive. In this output, the
highest silhouette score is 0.6129 for 2 clusters,
suggesting better cluster separation and cohesion
compared to 3 or 4 clusters.

Davies-Bouldin index: This index evaluates clustering
quality by comparing the ratio of within-cluster
distances to between-cluster distances. Lower values of
this index indicate better clustering, as they suggest
lower intra-cluster variance and higher separation
between clusters. The smallest Davies-Bouldin index in
the output is 0.6144 for 2 clusters, indicating that this
configuration likely provides the most effective
separation of data points among the evaluated options.

For two clusters, the silhouette score and Davies-Bouldin index both
suggest relatively good clustering performance. But as the number of
clusters increases to three and four, both metrics indicate a decline in
clustering quality, with lower silhouette scores and higher Davies-
Bouldin indices, pointing to less distinct and less cohesive clusters.

Implementation and evaluation of
clustering
Since two clusters seem to be the best choice for this dataset and set
of features, let’s run the model with n_clusters=2 :

Perform K-means clustering with a chosen number of clusters
kmeans = KMeans(n_clusters=2, n_init=10, random_state=0) # Exp

data2['class'] = kmeans.fit_predict(features_scaled)
Display the first few rows of the dataframe to verify the 'cl
data2

Once again, as shown in the 2. Exploratory data analysis section, the
correlation between complaints and exiting is established, as shown
in the excerpt of the pandas DataFrame in Figure 6.5:

Figure 6.5: Excerpt of the output of k-means clustering

The first cluster is class=0 , which represents customers who
complained (Complain) and left (Exited) the bank.

If we count the rows for which Sum where 'class' == 0 and 'Exited'
== 1 , we will obtain a strong correlation between complaints and
customers leaving the bank:

1. Sum where 'class' == 0
sum_class_0 = (data2['class'] == 0).sum()
2. Sum where 'class' == 0 and 'Complain' == 1
sum_class_0_complain_1 = data2[(data2['class'] == 0) & (data2['
3. Sum where 'class' == 0 and 'Exited' == 1
sum_class_0_exited_1 = data2[(data2['class'] == 0) & (data2['Ex
Print the results
print(f"Sum of 'class' == 0: {sum_class_0}")
print(f"Sum of 'class' == 0 and 'Complain' == 1: {sum_class_0_c
print(f"Sum of 'class' == 0 and 'Exited' == 1: {sum_class_0_exi

The output confirms that complaints and churn (customers leaving
the bank) are closely related:

Sum of 'class' == 0: 2039
Sum of 'class' == 0 and 'Complain' == 1: 2036
Sum of 'class' == 0 and 'Exited' == 1: 2037

The following cell for the second class where 'class' == 1 and
'Complain' == 1 confirms that few customers that complain stay with
the bank:

2. Sum where 'class' == 1 and 'Complain' == 1
sum_class_1_complain_1 = data2[(data2['class'] == 1) & (data2['

The output is consistent with the correlations we have observed:

Sum of 'class' == 1: 7961
Sum of 'class' == 1 and 'Complain' == 1: 8
Sum of 'class' == 1 and 'Exited' == 1: 1

We saw that finding the features that could help us keep customers is
challenging with classical methods that can be effective. However,
our strategy will now be to transform the customer records into
vectors with OpenAI and query a Pinecone index to find deeper
patterns within the dataset with queries that don’t exactly match the
dataset.

Pipeline 2: Scaling a Pinecone
index (vector store)
The goal of this section is to build a Pinecone index with our dataset
and scale it from 10,000 records up to 1,000,000 records. Although we
are building on the knowledge acquired in the previous chapters, the
essence of scaling is different from managing sample datasets.

The clarity of each process of this pipeline is deceptively simple: data
preparation, embedding, uploading to a vector store, and querying to
retrieve documents. We have already gone through each of these
processes in Chapters 2 and 3.

Furthermore, beyond implementing Pinecone instead of Deep Lake
and using OpenAI models in a slightly different way, we are
performing the same functions as in Chapters 2, 3, and 4 for the vector
store phase:

1. Data preparation: We will start by preparing our dataset using
Python for chunking.

2. Chunking and embedding: We will chunk the prepared data
and then embed the chunked data.

3. Creating the Pinecone index: We will create a Pinecone index
(vector store).

4. Upserting: We will upload the embedded documents (in this
case, customer records) and the text of each record as metadata.

5. Querying the Pinecone index: Finally, we will run a query to
retrieve relevant documents to prepare Pipeline 3: RAG generative
AI.

Take all the time you need, if necessary, to go through
Chapters 2,3, and 4 again for the data preparation,
chunking, embedding, and querying functions.

We know how to implement each phase because we’ve already done
that with Deep Lake, and Pinecone is a type of vector store, too. So,
what’s the issue here? The real issue is the hidden real-life project
challenges on which we will focus, starting with the size, cost, and
operations involved.

The challenges of vector store
management
Usually, we begin a section by jumping into the code. That’s fine for
small volumes, but scaling requires project management decisions
before getting started! Why? When we run a program with a bad

decision or an error on small datasets, the consequences are limited.
But scaling is a different story! The fundamental principle and risk of
scaling is that errors are scaled exponentially, too.

Let’s list the pain points you must face before running a single line of
code. You can apply this methodology to any platform or model.
However, we have limited the platforms in this chapter to OpenAI
and Pinecone to focus on processes, not platform management. Using
other platforms involves careful risk management, which isn’t the
objective of this chapter.

Let’s begin with OpenAI models:

OpenAI models for embedding: OpenAI continually improves
and offers new models for embedding. Make sure you examine
the characteristics of each one before embedding, including
speed, cost, input limits, and API call rates, at
https://platform.openai.com/docs/models/embeddings.
OpenAI models for generation: OpenAI continually releases
new models and abandons older ones. Google does the same.
Think of these models as racing cars. Can you win a race today
with a 1930 racing car? When scaling, you need the most efficient
models. Check the speed, cost, input limits, output size, and API
call rates at https://platform.openai.com/docs/models.

This means that you must continually take the evolution of models
into account for speed and cost reasons when scaling. Then, beyond
technical considerations, you must have a real-time view of the pay-
as-you-go billing perspective and technical constraints, such as:

Billing management:
https://platform.openai.com/settings/organization/bi

https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models
https://platform.openai.com/settings/organization/billing/overview

lling/overview

Limits including rate limits:
https://platform.openai.com/settings/organization/li
mits

Now, let’s examine Pinecone constraints once you have created an
account:

Cloud and region: The choice of the cloud (AWS, Google, or
other) and region (location of the serverless storage) have pricing
implications.
Usage: This includes read units, write units, and storage costs,
including cloud backups. Read more at
https://docs.pinecone.io/guides/indexes/back-up-an-
index.

You must continually monitor the price and usage of Pinecone as for
any other cloud environment. You can do so using these links:
https://www.pinecone.io/pricing/ and
https://docs.pinecone.io/guides/operations/monitoring.

The scenario we are implementing is one of many other ways of
achieving the goals in this chapter with other platforms and
frameworks. However, the constraints are invariants, including
pricing, usage, speed performances, and limits.

Let’s now implement Pipeline 2 by focusing on the pain points
beyond the functionality we have already explored in previous
chapters. You may open Pipeline_2_Scaling_a_Pinecone_Index.ipynb
in the GitHub repository. The program begins with installing the
environment.

https://platform.openai.com/settings/organization/billing/overview
https://platform.openai.com/settings/organization/limits
https://platform.openai.com/settings/organization/limits
https://docs.pinecone.io/guides/indexes/back-up-an-index
https://docs.pinecone.io/guides/indexes/back-up-an-index
https://www.pinecone.io/pricing/
https://docs.pinecone.io/guides/operations/monitoring

Installing the environment
As mentioned earlier, the program is limited to Pinecone and
OpenAI, which has the advantage of avoiding any intermediate
software, platforms, and constraints. Store your API keys in a safe
location. In this case, the API keys are stored on Google Drive:

#API Key
#Store your key in a file and read it(you can type it directly
from google.colab import drive
drive.mount('/content/drive')

Now, we install OpenAI and Pinecone:

!pip install openai==1.40.3
!pip install pinecone-client==5.0.1

Finally, the program initializes the API keys:

f = open("drive/MyDrive/files/pinecone.txt", "r")
PINECONE_API_KEY=f.readline()
f.close()
f = open("drive/MyDrive/files/api_key.txt", "r")
API_KEY=f.readline()
f.close()
#The OpenAI Key
import os
import openai
os.environ['OPENAI_API_KEY'] =API_KEY
openai.api_key = os.getenv("OPENAI_API_KEY")

The program now processes the Bank Customer Churn dataset.

Processing the dataset
This section will focus on preparing the dataset for chunking, which
splits it into optimized chunks of text to embed. The program first
retrieves the data1.csv dataset that we prepared and saved in the
Pipeline 1: Collecting and preparing the dataset section of this chapter:

!cp /content/drive/MyDrive/files/rag_c6/data1.csv /content/data

Then, we load the dataset in a pandas DataFrame:

import pandas as pd
Load the CSV file
file_path = '/content/data1.csv'
data1 = pd.read_csv(file_path)

We make sure that the 10,000 lines of the dataset are loaded:

Count the chunks
number_of_lines = len(data1)
print("Number of lines: ",number_of_lines)

The output confirms that the lines are indeed present:

Number of lines: 10000

The following code is important in this scenario. Each line that
represents a customer record will become a line in the output_lines
list:

import pandas as pd
Initialize an empty list to store the lines
output_lines = []
Iterate over each row in the DataFrame
for index, row in data1.iterrows():
 # Create a list of "column_name: value" for each column in
 row_data = [f"{col}: {row[col]}" for col in data1.columns]
 # Join the list into a single string separated by spaces
 line = ' '.join(row_data)
 # Append the line to the output list
 output_lines.append(line)
Display or further process `output_lines` as needed
for line in output_lines[:5]: # Displaying first 5 lines for p
 print(line)

The output shows that each line in the output_lines list is a separate
customer record text:

CustomerId: 15634602 CreditScore: 619 Age: 42 Tenure: 2 Balance

We are sure that each line is a separate pre-chunk with a clearly
defined customer record. Let’s now copy output_lines to lines for
the chunking process:

lines = output_lines.copy()

The program runs a quality control on the lines list to make sure we
haven’t lost a line in the process:

Count the lines
number_of_lines = len(lines)

print("Number of lines: ",number_of_lines)

The output confirms that 10,000 lines are present:

Number of lines: 10000

And just like that, the data is ready to be chunked.

Chunking and embedding the dataset
In this section, we will chunk and embed the pre-chunks in the lines
list. Building a pre-chunks list with structured data is not possible
every time, but when it is, it increases a model’s traceability, clarity,
and querying performance. The chunking process is straightforward.

Chunking
The practice of chunking pre-chunks is important for dataset
management. We can create our chunks from a list of pre-chunks
stored as lines:

Initialize an empty list for the chunks
chunks = []
Add each line as a separate chunk to the chunks list
for line in lines:
 chunks.append(line) # Each line becomes its own chunk
Now, each line is treated as a separate chunk
print(f"Total number of chunks: {len(chunks)}")

The output shows that we have not lost any data during the process:

Total number of chunks: 10000

So why bother creating chunks and not just use the lines directly? In
many cases, lines may require additional quality control and
processing, such as data errors that somehow slipped through in the
previous steps. We might even have a few chunks that exceed the
input limit (which is continually evolving) of an embedding model at
a given time.

To better understand the structure of the chunked data, you can
examine the length and content of the chunks using the following
code:

Print the length and content of the first 10 chunks
for i in range(3):
 print(len(chunks[i]))
 print(chunks[i])

The output will help a human controller visualize the chunked data,
providing a snapshot like so:

224
CustomerId: 15634602 CreditScore: 619 Age: 42 Tenure: 2 Balance

The chunks will now be embedded.

Embedding
This section will require careful testing and consideration of the
issues. We will realize that scaling requires more thinking than doing.

Each project will require specific amounts of data through design and
testing to provide effective responses. We must also take into account
the cost and benefit of each component of the pipeline. For example,
initializing the embedding model is no easy task!

At the time of writing, OpenAI offers three embedding models that
we can test:

import openai
import time
embedding_model="text-embedding-3-small"
#embedding_model="text-embedding-3-large"
#embedding_model="text-embedding-ada-002"

In this section, we will use text-embedding-3-small . However, you can
evaluate the other models by uncommenting the code. The embedding
function will accept the model you select:

Initialize the OpenAI client
client = openai.OpenAI()
def get_embedding(text, model=embedding_model):
 text = text.replace("\n", " ")
 response = client.embeddings.create(input=[text], model=mod
 embedding = response.data[0].embedding
 return embedding

Make sure to check the cost and features of each embedding model
before running one of your choice:
https://platform.openai.com/docs/guides/embeddings/embed
ding-models.

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models

The program now embeds the chunks, but the embedding process
requires strategic choices, particularly to manage large datasets and
API rate limits effectively. In this case, we will create batches of
chunks to embed:

import openai
import time
Initialize the OpenAI client
client = openai.OpenAI()
Initialize variables
start_time = time.time() # Start timing before the request
chunk_start = 0
chunk_end = 1000
pause_time = 3
embeddings = []
counter = 1

We will embed 1,000 chunks at a time with chunk_start = 0 and
chunk_end = 1000 . To avoid possible OpenAI API rate limits,
pause_time = 3 was added to pause for 3 seconds between each batch.
We will store the embeddings in embeddings = [] and count the
batches starting with counter = 1.

The code is divided into three main parts, as explained in the
following excerpts:

Iterating through all the chunks with batches:

while chunk_end <= len(chunks):
 # Select the current batch of chunks
 chunks_to_embed = chunks[chunk_start:chunk_end]…

Embedding a batch of chunks_to_embed :

for chunk in chunks_to_embed:
 embedding = get_embedding(chunk, model=embedding_mode
 current_embeddings.append(embedding)…

Updating the start and end values of the chunks to embed for the
next batch:

 # Update the chunk indices
 chunk_start += 1000
 chunk_end += 1000

A function was added in case the batches are not perfect multiples of
the batch size:

Process the remaining chunks if any
if chunk_end < len(chunks):
 remaining_chunks = chunks[chunk_end:]
 remaining_embeddings = [get_embedding(chunk, model=embeddin
 embeddings.extend(remaining_embeddings)

The output displays the counter and the processing time:

All chunks processed.
Batch 1 embedded.
...
Batch 10 embedded.
Response Time: 2689.46 seconds

The response time may seem long and may vary for each run, but
that is what scaling is all about! We cannot expect to process large

volumes of data in a very short time and not face performance
challenges.

We can display an embedding if we wish to check that everything
went well:

print("First embedding:", embeddings[0])

The output displays the embedding:

First embedding: [-0.024449337273836136, -0.00936567410826683,…

Let’s verify if we have the same number of text chunks (customer
records) and vectors (embeddings):

Check the lengths of the chunks and embeddings
num_chunks = len(chunks)
print(f"Number of chunks: {num_chunks}")
print(f"Number of embeddings: {len(embeddings)}")

The output confirms that we are ready to move to Pinecone:

Number of chunks: 10000
Number of embeddings: 10000

We have now chunked and embedded the data. We will duplicate the
data to simulate scaling in this notebook.

Duplicating data

We will duplicate the chunked and embedded data; this way, you can
simulate volumes without paying for the OpenAI embeddings. The
cost of the embedding data and the time performances are linear. So
we can simulate scaling with a corpus of 50,000 data points, for
example, and extrapolate the response times and cost to any size we
need.

The code is straightforward. We first determine the number of times
we want to duplicate the data:

Define the duplication size
dsize = 5 # You can set this to any value between 1 and n as p
total=dsize * len(chunks)
print("Total size", total)

The program will then duplicate the chunks and the embeddings:

Initialize new lists for duplicated chunks and embeddings
duplicated_chunks = []
duplicated_embeddings = []
Loop through the original lists and duplicate each entry
for i in range(len(chunks)):
 for _ in range(dsize):
 duplicated_chunks.append(chunks[i])
 duplicated_embeddings.append(embeddings[i])

The code then checks if the number of chunks fits the number of
embeddings:

Checking the lengths of the duplicated lists
print(f"Number of duplicated chunks: {len(duplicated_chunks)}")

print(f"Number of duplicated embeddings: {len(duplicated_embedd

Finally, the output confirms that we duplicated the data five times:

Total size 50000
Number of duplicated chunks: 50000
Number of duplicated embeddings: 50000

50,000 data points is a good volume to begin with, giving us the
necessary data to populate a vector store. Let’s now create the
Pinecone index.

Creating the Pinecone index
The first step is to make sure our API key is initialized with the name
of the variable we prefer and then create a Pinecone instance:

import os
from pinecone import Pinecone, ServerlessSpec
initialize connection to pinecone (get API key at app.pinecon
api_key = os.environ.get('PINECONE_API_KEY') or 'PINECONE_API_K
pc = Pinecone(api_key=PINECONE_API_KEY)

The Pinecone instance, pc , has been created. Now, we will choose the
index name, our cloud, and region:

from pinecone import ServerlessSpec
index_name = [YOUR INDEX NAME] #'bank-index-900'for example
cloud = os.environ.get('PINECONE_CLOUD') or 'aws'

region = os.environ.get('PINECONE_REGION') or 'us-east-1'
spec = ServerlessSpec(cloud=cloud, region=region)

We have now indicated that we want a serverless cloud instance
(spec) with AWS in the 'us-east-1' location. We are ready to create
the index (the type of vector store) named 'bank-index-50000' with
the following code:

import time
import pinecone
check if index already exists (it shouldn't if this is first
if index_name not in pc.list_indexes().names():
 # if does not exist, create index
 pc.create_index(
 index_name,
 dimension=1536, #Dimension of the embedding model
 metric='cosine',
 spec=spec
)
 # wait for index to be initialized
 time.sleep(1)
connect to index
index = pc.Index(index_name)
view index stats
index.describe_index_stats()

We added the following two parameters to index_name and spec :

dimension=1536 represents the length of the embeddings vector
that you can adapt to the embedding model of your choice.
metric='cosine' is the metric we will use for vector similarity
between the embedded vectors. You can also choose other

metrics, such as Euclidean distance:
https://www.pinecone.io/learn/vector-similarity/.

When the index is created, the program displays the description of
the index:

{'dimension': 1536,
 'index_fullness': 0.0,
 'namespaces': {},
 'total_vector_count': 0}

The vector count and index fullness are 0 since we haven’t been
populating the vector store. Great, now we are ready to upsert!

Upserting
The section’s goal is to populate the vector store with our 50,000
embedded vectors and their associated metadata (chunks). The
objective is to fully understand the scaling process and use synthetic
data to reach the 50,000+ vector level. You can go back to the previous
section and duplicate the data up to any value you wish. However,
bear in mind that the upserting time to a Pinecone index is linear. You
simply need to extrapolate the performances to the size you want to
evaluate to obtain the approximate time it would take. Check the
Pinecone pricing before running the upserting process:
https://www.pinecone.io/pricing/.

We will populate (upsert) the vector store with three fields:

ids : Contains a unique identifier for each chunk, which will be a
counter we increment as we upsert the data
embedding : Contains the vectors (embedded chunks) we created

https://www.pinecone.io/learn/vector-similarity/
https://www.pinecone.io/pricing/

chunks : Contains the chunks in plain text, which is the metadata

The code will populate the data in batches. Let’s first define the batch
upserting function:

upsert function
def upsert_to_pinecone(data, batch_size):
 for i in range(0, len(data), batch_size):
 batch = data[i:i+batch_size]
 index.upsert(vectors=batch)
 #time.sleep(1) # Optional: add delay to avoid rate lim

We will measure the time it takes to process our corpus:

import pinecone
import time
import sys
start_time = time.time() # Start timing before the request

Now, we create a function that will calculate the size of the batches
and limit them to 4 MB, which is close to the present Pinecone upsert
batch size limit:

Function to calculate the size of a batch
def get_batch_size(data, limit=4000000): # limit set slightly
 total_size = 0
 batch_size = 0
 for item in data:
 item_size = sum([sys.getsizeof(v) for v in item.values(
 if total_size + item_size > limit:
 break
 total_size += item_size

 batch_size += 1
 return batch_size

We can now create our upsert function:

def batch_upsert(data):
 total = len(data)
 i = 0
 while i < total:
 batch_size = get_batch_size(data[i:])
 batch = data[i:i + batch_size]
 if batch:
 upsert_to_pinecone(batch,batch_size)
 i += batch_size
 print(f"Upserted {i}/{total} items...") # Display
 else:
 break
 print("Upsert complete.")

We need to generate unique IDs for the data we upsert:

Generate IDs for each data item
ids = [str(i) for i in range(1, len(duplicated_chunks) + 1)]

We will create the metadata to upsert the dataset to Pinecone:

Prepare data for upsert
data_for_upsert = [
 {"id": str(id), "values": emb, "metadata": {"text": chunk}}
 for id, (chunk, emb) in zip(ids, zip(duplicated_chunks, dup
]

We now have everything we need to upsert in data_for_upsert :

"id": str(ids[i]) contains the IDs we created with the seed.
"values": emb contains the chunks we embedded into vectors.
"metadata": {"text": chunk} contains the chunks we embedded.

We now run the batch upsert process:

Upsert data in batches
batch_upsert(data_for_upsert)

Finally, we measure the response time:

response_time = time.time() - start_time # Measure response ti
print(f"Upsertion response time: {response_time:.2f} seconds")

The output contains useful information that shows the batch
progression:

Upserted 316/50000 items...
Upserted 632/50000 items...
Upserted 948/50000 items...
…
Upserted 49612/50000 items...
Upserted 49928/50000 items...
Upserted 50000/50000 items...
Upsert complete.
Upsertion response time: 560.66 seconds

The time shows that it takes just under one minute (56 seconds) per
10,000 data points. You can try a larger corpus. The time should
remain linear.

We can also view the Pinecone index statistics to see how many
vectors were uploaded:

print("Index stats")
print(index.describe_index_stats(include_metadata=True))

The output confirms that the upserting process was successful:

Index stats
{'dimension': 1536,
 'index_fullness': 0.0,
 'namespaces': {'': {'vector_count': 50000}},
 'total_vector_count': 50000}

The upsert output shows that we upserted 50,000 data points but the
output shows less, most probably due to duplicates within the data.

Querying the Pinecone index
The task now is to verify the response times with a large Pinecone
index. Let’s create a function to query the vector store and display the
results:

Print the query results along with metadata
def display_results(query_results):
 for match in query_results['matches']:
 print(f"ID: {match['id']}, Score: {match['score']}")
 if 'metadata' in match and 'text' in match['metadata']:
 print(f"Text: {match['metadata']['text']}")
 else:
 print("No metadata available.")

We need an embedding function for the query using the same
embedding model as we implemented to embed the chunks of the
dataset:

embedding_model = "text-embedding-3-small"
def get_embedding(text, model=embedding_model):
 text = text.replace("\n", " ")
 response = client.embeddings.create(input=[text], model=mod
 embedding = response.data[0].embedding
 return embedding

We can now query the Pinecone vector store to conduct a unit test
and display the results and response time. We first initialize the
OpenAI client and start time:

import openai
Initialize the OpenAI client
client = openai.OpenAI()
print("Querying vector store")
start_time = time.time() # Start timing before the request

We then query the vector store with a customer profile that does not
exist in the dataset:

query_text = "Customer Robertson CreditScore 632Age 21 Tenure 2

The query is embedded with the same model as the one used to
embed the dataset:

query_embedding = get_embedding(query_text,model=embedding_mode

We run the query and display the output:

query_results = index.query(vector=query_embedding, top_k=1, in
#print("raw query_results",query_results)
print("processed query results")
display_results(query_results) #display results
response_time = time.time() - start_time # Measure
print(f"Querying response time: {response_time:.2f} seconds")

The output displays the query response and time:

Querying vector store
Querying vector store
processed query results
ID: 46366, Score: 0.823366046
Text: CustomerId: 15740160 CreditScore: 616 Age: 31 Tenure: 1 Ba
Querying response time: 0.74 seconds

We can see that the response quality is satisfactory because it found a
similar profile. The time is excellent: 0.74 seconds . When reaching a
1,000,000 vector count, for example, the response time should still be
constant at less than a second. That is the magic of the Pinecone
index!

If we go to our organization on Pinecone,
https://app.pinecone.io/organizations/, and click on our
index, we can monitor our statistics, analyze our usage, and more, as
illustrated here:

https://app.pinecone.io/organizations/

Figure 6.6: Visualizing the Pinecone index vector count in the Pinecone console

Our Pinecone index is now ready to augment inputs and generate
content.

Pipeline 3: RAG generative AI
In this section, we will use RAG generative AI to automate a
customized and engaging marketing message to the customers of the
bank to encourage them to remain loyal. We will be building on our
programs on data preparation and Pinecone indexing; we will
leverage the Pinecone vector database for advanced search
functionalities. We will choose a target vector that represents a
market segment to query the Pinecone index. The response will be
processed to extract the top k similar vectors. We will then augment
the user input with this target market to ask OpenAI to make
recommendations to the market segment targeted with customized
messages.

You may open Pipeline-3_RAG_Generative AI.ipynb on GitHub. The
first code section in this notebook, Installing the environment, is the
same as in 2-Pincone_vector_store-1M.ipynb , built in the Pipeline 2:
Scaling a Pinecone index (vector store) section earlier in this chapter. The
Pinecone index in the second code section is also the same as in 2-
Pincone_vector_store-1M.ipynb . However, this time, the Pinecone

index code checks whether a Pinecone index exists and connects to it
if it does, rather than creating a new index.

Let’s run an example of RAG with GPT-4o.

RAG with GPT-4o
In this section of the code, we will query the Pinecone vector store,
augment the user input, and generate a response with GPT-4o. It is
the same process as with Deep Lake and an OpenAI generative
model in Chapter 3, Building Index-Based RAG with LlamaIndex, Deep
Lake, and OpenAI, for example. However, the nature and usage of the
Pinecone query is quite different in this case for the following
reasons:

Target vector: The user input is not a question in the classical
sense. In this case, it is a target vector representing the profile of
a market segment.
Usage: The usage isn’t to augment the generative AI in the
classical dialog sense (questions, summaries). In this case, we
expect GPT-4o to write an engaging, customized email to offer
products and services.
Query time: Speed is critical when scaling an application. We
will measure the query time on the Pinecone index that contains
1,000,000+ vectors.

Querying the dataset
We will need an embedding function to embed the input. We will
simplify and use the same embedding model we used in the

Embedding section of Pipeline 2: Scaling a Pinecone index (vector store)
for compatibility reasons:

import openai
import time
embedding_model= "text-embedding-3-small"
Initialize the OpenAI client
client = openai.OpenAI()
def get_embedding(text, model=embedding_model):
 text = text.replace("\n", " ")
 response = client.embeddings.create(input=[text], model=mod
 embedding = response.data[0].embedding
 return embedding

We are now ready to query the Pinecone index.

Querying a target vector
A target vector represents a market segment that a marketing team
wants to focus on for recommendations to increase customer loyalty.
Your imagination and creativity are the only limits! Usually, the
marketing team will be part of the design team for this pipeline. You
might want to organize workshops to try various scenarios until the
marketing team is satisfied. If you are part of the marketing team,
then you want to help design target vectors. In any case, human
insights into our adaptive creativity will lead to many ways of
organizing target vectors and queries.

In this case, we will target a market segment of customers around the
age of 42 (Age 42). We don’t need the age to be strictly 42 or an age
bracket. We’ll let AI do the work for us. We are also targeting a

customer that has a 100,000+ (EstimatedSalary 101348.88) estimated
salary, which would be a loss for the bank. We’re choosing a
customer who has complained (Complain 1) and seems to be exiting
(Exited 1) the bank. Let’s suppose that Exited 1 , in this scenario,
means that the customer has made a request to close an account but it
hasn’t been finalized yet. Let’s also consider that the marketing
department chose the target vector.

query_text represents the customer profiles we are searching for:

import time
start_time = time.time() # Start timing before the request
Target vector
 "
Target vector
query_text = "Customer Henderson CreditScore 599 Age 37Tenure 2
query_embedding = get_embedding(text,model=embedding_model)

We have embedded the query. Let’s now retrieve the top-k customer
profiles that fit the target vector and parse the result:

Perform the query using the embedding
query_results = index.query(
 vector=query_embedding,
 top_k=5,
 include_metadata=True,
)

We now print the response and the metadata:

Print the query results along with metadata
print("Query Results:")

for match in query_results['matches']:
 print(f"ID: {match['id']}, Score: {match['score']}")
 if 'metadata' in match and 'text' in match['metadata']:
 print(f"Text: {match['metadata']['text']}")
 else:
 print("No metadata available.")
response_time = time.time() - start_time # Measure
print(f"Querying response time: {response_time:.2f} seconds")

The result is parsed to find the top-k matches to display their scores
and content, as shown in the following output:

Query Results:
ID: 46366, Score: 0.854999781
Text: CustomerId: 15740160 CreditScore: 616 Age: 31 Tenure: 1 Ba
Querying response time: 0.63 seconds

We have retrieved valuable information:

Ranking through the top-k vectors that match the target vector.
From one to another, depending on the target vector, the ranking
will be automatically recalculated by the OpenAI generative AI
model.
Score metric through the score provided. A score is returned
providing a metric for the response.
Content that contains the top-ranked and best scores.

It’s an all-in-one automated process! AI is taking us to new heights
but we, of course, need human control to confirm the output, as
described in the previous chapter on human feedback.

We now need to extract the relevant information to augment the
input.

Extracting relevant texts
The following code goes through the top-ranking vectors, searches
for the matching text metadata, and combines the content to prepare
the augmentation phase:

relevant_texts = [match['metadata']['text'] for match in query_
Join all items in the list into a single string separated by
combined_text = '\n'.join(relevant_texts) # Using newline as a
print(combined_text)

The output displays combined_text , relevant text we need to augment
the input:

CustomerId: 15740160 CreditScore: 616 Age: 31 Tenure: 1 Balance

We are now ready to augment the prompt before AI generation.

Augmented prompt
We will now engineer our prompt by adding three texts:

query_prompt : The instructions for the generative AI model
query_text : The target vector containing the target profile chosen
by the marketing team

combined_context : The concentrated metadata text of the similar
vectors selected by the query

itext contains these three variables:

Combine texts into a single string, separated by new lines
combined_context = "\n".join(relevant_texts)
#prompt
query_prompt="I have this customer bank record with interesting
itext=query_prompt+ query_text+combined_context
Augmented input
print("Prompt for the Generative AI model:", itext)

The output is the core input for the generative AI model:

Prompt for GPT-4: I have this customer bank record with interest

We can now prepare the request for the generative AI model.

Augmented generation
In this section, we will submit the augmented input to an OpenAI
generative AI model. The goal is to obtain a customized email to send
the customers in the Pinecone index marketing segment we obtained
through the target vector.

We will first create an OpenAI client and choose GPT-4o as the
generative AI model:

from openai import OpenAI
client = OpenAI()

gpt_model = "gpt-4o

We then introduce a time performance measurement:

import time
start_time = time.time() # Start timing before the request

The response time should be relatively constant since we are only
sending one request at a time in this scenario. We now begin to create
our completion request:

response = client.chat.completions.create(
 model=gpt_model,
 messages=[

The system role provides general instructions to the model:

 {
 "role": "system",
 "content": "You are the community manager can write engag
 },

The user role contains the engineered itext prompt we designed:

 {
 "role": "user",
 "content": itext
 }
],

Now, we set the parameters for the request:

 temperature=0,
 max_tokens=300,
 top_p=1,
 frequency_penalty=0,
 presence_penalty=0
)

The parameters are designed to obtain a low random yet “creative”
output:

temperature=0 : Low randomness in response
max_tokens=300 : Limits response length to 300 tokens
top_p=1 : Considers all possible tokens; full diversity
frequency_penalty=0 : No penalty for frequent word repetition to
allow the response to remain open
presence_penalty=0 : No penalty for introducing new topics to
allow the response to find ideas for our prompt

We send the request and display the response:

print(response.choices[0].message.content)

The output is satisfactory for this market segment:

Subject: Exclusive Benefits Await You at Our Bank!
Dear Valued Customer,
We hope this email finds you well. At our bank, we are constantl
Based on your profile, we have identified several opportunities
1. **Personalized Financial Advice**: Our financial advisors are
2. **Exclusive Rewards and Offers**: As a DIAMOND cardholder, yo
3. **Enhanced Credit Options**: With your current credit score,
4. **Complimentary Financial Health Check**: We understand the i

5. **Loyalty Programs**: Participate in our loyalty programs and
To explore these new advantages and more, please visit the follo

Since the goal of the marketing team is to convince customers not to
leave and to increase their loyalty to the bank, I’d say the email we
received as output is good enough. Let’s display the time it took to
obtain a response:

response_time = time.time() - start_time # Measure
print(f"Querying response time: {response_time:.2f} seconds")

The response time is displayed:

Querying response time: 2.83 seconds

We have successfully produced a customized response based on a
target vector. This approach might be sufficient for some projects,
whatever the domain. Let’s summarize the RAG-driven generative
recommendation system built in this chapter and continue our
journey.

Summary
This chapter aimed to develop a scaled RAG-driven generative AI
recommendation system using a Pinecone index and OpenAI models
tailored to mitigate bank customer churn. Using a Kaggle dataset, we
demonstrated the process of identifying and addressing factors

leading to customer dissatisfaction and account closures. Our
approach involved three key pipelines.

When building Pipeline 1, we streamlined the dataset by removing
non-essential columns, reducing both data complexity and storage
costs. Through EDA, we discovered a strong correlation between
customer complaints and account closures, which a k-means
clustering model further validated. We then designed Pipeline 2 to
prepare our RAG-driven system to generate personalized
recommendations. We processed data chunks with an OpenAI
model, embedding these into a Pinecone index. Pinecone’s consistent
upsert capabilities ensured efficient data handling, regardless of
volume. Finally, we built Pipeline 3 to leverage over 1,000,000 vectors
within Pinecone to target specific market segments with tailored
offers, aiming to boost loyalty and reduce attrition. Using GPT-4o, we
augmented our queries to generate compelling recommendations.

The successful application of a targeted vector representing a key
market segment illustrated our system’s potential to craft impactful
customer retention strategies. However, we can improve the
recommendations by expanding the Pinecone index into a
multimodal knowledge base, which we will implement in the next
chapter.

Questions
1. Does using a Kaggle dataset typically involve downloading and

processing real-world data for analysis?
2. Is Pinecone capable of efficiently managing large-scale vector

storage for AI applications?

3. Can k-means clustering help validate relationships between
features such as customer complaints and churn?

4. Does leveraging over a million vectors in a database hinder the
ability to personalize customer interactions?

5. Is the primary objective of using generative AI in business
applications to automate and improve decision-making
processes?

6. Are lightweight development environments advantageous for
rapid prototyping and application development?

7. Can Pinecone’s architecture automatically scale to accommodate
increasing data loads without manual intervention?

8. Is generative AI typically employed to create dynamic content
and recommendations based on user data?

9. Does the integration of AI technologies like Pinecone and
OpenAI require significant manual configuration and
maintenance?

10. Are projects that use vector databases and AI expected to
effectively handle complex queries and large datasets?

References
Pinecone documentation:
https://docs.pinecone.io/guides/get-
started/quickstart

OpenAI embedding and generative models:
https://platform.openai.com/docs/models

https://docs.pinecone.io/guides/get-started/quickstart
https://docs.pinecone.io/guides/get-started/quickstart
https://platform.openai.com/docs/models

Further reading
Han, Y., Liu, C., & Wang, P. (2023). A comprehensive survey on
vector database: Storage and retrieval technique, challenge.

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://www.packt.link/rag

7

Building Scalable Knowledge-
Graph-Based RAG with Wikipedia
API and LlamaIndex

Scaled datasets can rapidly become challenging to manage. In real-
life projects, data management generates more headaches than AI!
Project managers, consultants, and developers constantly struggle to
obtain the necessary data to get any project running, let alone a RAG-
driven generative AI application. Data is often unstructured before it
becomes organized in one way or another through painful decision-
making processes. Wikipedia is a good example of how scaling data
leads to mostly reliable but sometimes incorrect information. Real-life
projects often evolve the way Wikipedia does. Data keeps piling up in
a company, challenging database administrators, project managers,
and users.

One of the main problems is seeing how large amounts of data fit
together, and knowledge graphs provide an effective way of
visualizing the relationships between different types of data. This
chapter begins by defining the architecture of a knowledge base
ecosystem designed for RAG-driven generative AI. The ecosystem
contains three pipelines: data collection, populating a vector store,
and running a knowledge graph index-based RAG program. We will

then build Pipeline 1: Collecting and preparing the documents, in which
we will build an automated Wikipedia retrieval program with the
Wikipedia API. We will simply choose a topic based on a Wikipedia
page and then let the program retrieve the metadata we need to
collect and prepare the data. The system will be flexible and allow
you to choose any topic you wish. The use case to first run the
program is a marketing knowledge base for students who want to
upskill for a new job, for example. The next step is to build Pipeline 2:
Creating and populating the Deep Lake vector store. We will load the data
in a vector store leveraging Deep Lake’s in-built automated chunking
and OpenAI embedding functionality. We will peek into the dataset
to explore how this marvel of technology does the job.

Finally, we will build Pipeline 3: Knowledge graph index-based RAG,
where LlamaIndex will automatically build a knowledge graph
index. It will be exciting to see how the index function churns
through our data and produces a graph showing semantic
relationships contained in our data. We will then query the graph
with LlamaIndex’s in-built OpenAI functionality to automatically
manage user inputs and produce a response. We will also see how re-
ranking can be done and implement metrics to calculate and display
the system’s performance.

This chapter covers the following topics:

Defining knowledge graphs
Implementing the Wikipedia API to prepare summaries and
content
Citing Wikipedia sources in an ethical approach
Populating a Deep Lake vector store with Wikipedia data

Building a knowledge graph index with LlamaIndex
Displaying the LlamaIndex knowledge graph
Interacting with the knowledge graph
Generating retrieval responses with the knowledge graph
Re-ranking the order retrieval responses to choose a better
output
Evaluating and measuring the outputs with metrics

Let’s begin by defining the architecture of RAG for knowledge-based
semantic search.

The architecture of RAG for
knowledge-graph-based semantic
search
As established, we will build a graph-based RAG program in this
chapter. The graph will enable us to visually map out the
relationships between the documents of a RAG dataset. It can be
created automatically with LlamaIndex, as we will do in the Pipeline
3: Knowledge graph index-based RAG section of this chapter. The
program in this chapter will be designed for any Wikipedia topic, as
illustrated in the following figure:

Figure 7.1: From a Wikipedia topic to interacting with a graph-based vector store index

We will first implement a marketing agency for which a knowledge
graph can visually map out the complex relationships between
different marketing concepts. Then, you can go back and explore any
topic you wish once you understand the process. In simpler words,
we will implement the three pipelines seamlessly to:

Select a Wikipedia topic related to marketing. Then, you can run
the process with the topic of your choice to explore the
ecosystem.
Generate a corpus of Wikipedia pages with the Wikipedia API.
Retrieve and store the citations for each page.
Retrieve and store the URLs for each page.
Retrieve and upsert the content of the URLs in a Deep Lake
vector store.
Build a knowledge base index with LlamaIndex.
Define a user input prompt.
Query the knowledge base index.
Let LlamaIndex’s in-built LLM functionality, based on OpenAI’s
embedding models, produce a response based on the embedded

data in the knowledge graph.
Evaluate the LLM’s response with a sentence transformer.
Evaluate the LLM’s response with a human feedback score.
Provide time metrics for the key functions, which you can extend
to other functions if necessary.
Run metric calculations and display the results.

To attain our goal, we will implement three pipelines leveraging the
components we have already built in the previous chapters, as
illustrated in the following figure:

Figure 7.2: Knowledge graph ecosystem for index-based RAG

Pipeline 1: Collecting and preparing the documents will
involve building a Wikipedia program using the Wikipedia API
to retrieve links from a Wikipedia page and the metadata for all
the pages (summary, URL, and citation data). Then, we will load
and parse the URLs to prepare the data for upserting.
Pipeline 2: Creating and populating the Deep Lake vector store
will embed and upsert parsed content of the Wikipedia pages
prepared by Pipeline 1 to a Deep Lake vector store.
Pipeline 3: Knowledge graph index-based RAG will build the
knowledge graph index using embeddings with LlamaIndex and
display it. Then, we will build the functionality to query the
knowledge base index and let LlamaIndex’s in-built LLM
generate the response based on the updated dataset.

In this chapter’s scenario, we are directly implementing
an augmented retrieval system leveraging OpenAI’s
embedding models more than we are augmenting
inputs. This implementation shows the many ways we
can improve real-time data retrieval with LLMs. There
are no conventional rules. What works, works!

The ecosystem of the three pipelines will be controlled by a scenario
that will enable an administrator to either query the vector base or
add new Wikipedia pages, as we will implement in this chapter. As
such, the architecture of the ecosystem allows for indefinite scaling
since it processes and populates the vector dataset one set of
Wikipedia pages at a time. The system only uses a CPU and an
optimized amount of memory. There are limits to this approach since

the LlamaIndex knowledge graph index is loaded with the entire
dataset. We can only load portions of the dataset as the vector store
grows. Or, we can create one Deep Lake vector store per topic and
run queries on multiple datasets. These are decisions to make in real-
life projects that require careful decision-making and planning
depending on the specific requirements of each project.

We will now dive into the code, beginning a tree-to-graph sandbox.

Building graphs from trees
A graph is a collection of nodes (or vertices) connected by edges (or
arcs). Nodes represent entities, and edges represent relationships or
connections between these entities. For instance, in our chapter’s use
case, nodes could represent various marketing strategies, and the
edges could show how these strategies are interconnected. This helps
new customers understand how different marketing tactics work
together to achieve overall business goals, facilitating clearer
communication and more effective strategy planning. You can play
around with the tree-to-graph sandbox before building the pipelines
in this chapter.

You may open Tree-2-Graph.ipynb on GitHub. The provided program
is designed to visually represent relationships in a tree structure
using NetworkX and Matplotlib in Python. It specifically creates a
directed graph from given pairs, checks and marks friendships, and
then displays this tree with customized visual attributes.

The program first defines the main functions:

build_tree_from_pairs(pairs) : Constructs a directed graph (tree)
from a list of node pairs, potentially identifying a root node

check_relationships(pairs, friends) : Checks and prints the
friendship status for each pair
draw_tree(G, layout_choice, root, friends) : Visualizes the tree
using matplotlib , applying different styles to edges based on
friendship status and different layout options for node
positioning

Then, the program executes the process from tree to graph:

Node pairs and friendship data are defined.
The tree is built from the pairs.
Relationships are checked against the friendship data.
The tree is drawn using a selected layout, with edges styled
differently to denote friendship.

For example, the program first defines a set of node pairs with their
pairs of friends:

Pairs
pairs = [('a', 'b'), ('b', 'e'), ('e', 'm'), ('m', 'p'), ('a',
friends = {('a', 'b'), ('b', 'e'), ('e', 'm'), ('m', 'p')}

Notice that ('a', 'z') are not friends because they are not on the
friends list. Neither are ('b', 'q') . You can imagine any type of
relationship between the pairs, such as the same customer age,
similar job, same country, or any other concept you wish to represent.
For instance, the friends list could contain relationships between
friends on social media, friends living in the same country, or
anything else you can imagine or need!

The program then builds the tree and checks the relationships:

Build the tree
tree, root = build_tree_from_pairs(pairs)
Check relationships
check_relationships(pairs, friends)

The output shows which pairs are friends and which ones are not:

Pair ('a', 'b'): friend
Pair ('b', 'e'): friend
Pair ('e', 'm'): friend
Pair ('m', 'p'): friend
Pair ('a', 'z'): not friend
Pair ('b', 'q'): not friend

The output can be used to provide useful information for similarity
searches. The program now draws the graph with the 'spring'
layout:

Draw the tree
layout_choice = 'spring' # Define your layout choice here
draw_tree(tree, layout_choice=layout_choice, root=root, friends

The 'spring' layout attracts nodes attracted by edges, simulating the
effect of springs. It also ensures that all nodes repel each other to
avoid overlapping. You can dig into the draw_tree function to explore
and select other layouts listed there. You can also modify the colors
and line styles.

In this case, the pairs of friends are represented with solid lines, and
the pairs that are not friends are represented with dashes, as shown
in the following graph:

Figure 7.3: Example of a spring layout

You can play with this sandbox graph with different pairs of nodes. If
you imagine doing this with hundreds of nodes, you will begin to
appreciate the automated functionality we will build in this chapter
with LlamaIndex’s knowledge graph index!

Let’s go from the architecture to the code, starting by collecting and
preparing the documents.

Pipeline 1: Collecting and preparing
the documents
The code in this section retrieves the metadata we need from
Wikipedia, retrieves the documents, cleans them, and aggregates
them to be ready for insertion into the Deep Lake vector store. This
process is illustrated in the following figure:

Figure 7.4: Pipeline 1 flow chart

Pipeline 1 includes two notebooks:

Wikipedia_API.ipynb , in which we will implement the Wikipedia
API to retrieve the URLs of the pages related to the root page of
the topic we selected, including the citations for each page. As
mentioned, the topic is “marketing” in our case.
Knowledge_Graph_Deep_Lake_LlamaIndex_OpenAI_RAG.ipynb , in which
we will implement all three pipelines. In Pipeline 1, it will fetch
the URLs provided by the Wikipedia_API notebook, clean them,
and load and aggregate them for upserting.

We will begin by implementing the Wikipedia API.

Retrieving Wikipedia data and
metadata
Let’s begin by building a program to interact with the Wikipedia API
to retrieve information about a specific topic, tokenize the retrieved
text, and manage citations from Wikipedia articles. You may open
Wikipedia_API.ipynb in the GitHub repository and follow along.

The program begins by installing the wikipediaapi library we need:

try:
 import wikipediaapi
except:
 !pip install Wikipedia-API==0.6.0
 import wikipediaapi

The next step is to define the tokenization function that will be called
to count the number of tokens of a summary, as shown in the
following excerpt:

def nb_tokens(text):
 # More sophisticated tokenization which includes punctuatio
 tokens = word_tokenize(text)
 return len(tokens)

This function takes a string of text as input and returns the number of
tokens in the text, using the NLTK library for sophisticated
tokenization, including punctuation. Next, to start retrieving data, we
need to set up an instance of the Wikipedia API with a specified
language and user agent:

Create an instance of the Wikipedia API with a detailed user
wiki = wikipediaapi.Wikipedia(
 language='en',
 user_agent='Knowledge/1.0 ([USER AGENT EMAIL)'
)

In this case, English was defined with 'en' , and you must enter the
user agent information, such as an email address, for example. We
can now define the main topic and filename associated with the
Wikipedia page of interest:

topic="Marketing" # topic
filename="Marketing" # filename for saving the outputs
maxl=100

The three parameters defined are:

topic : The topic of the retrieval process

filename : The name of the topic that will customize the files we
produce, which can be different from the topic
maxl : The maximum number of URL links of the pages we will
retrieve

We now need to retrieve the summary of the specified Wikipedia
page, check if the page exists, and print its summary:

import textwrap # to wrap the text and display it in paragraphs
page=wiki.page(topic)
if page.exists()==True:
 print("Page - Exists: %s" % page.exists())
 summary=page.summary
 # number of tokens)
 nbt=nb_tokens(summary)
 print("Number of tokens: ",nbt)
 # Use textwrap to wrap the summary text to a specified width,
 wrapped_text = textwrap.fill(summary, width=60)
 # Print the wrapped summary text
 print(wrapped_text)
else:
 print("Page does not exist")

The output provides the control information requested:

Page - Exists: True
Number of tokens: 229
Marketing is the act of satisfying and retaining customers.
It is one of the primary components of business management
and commerce. Marketing is typically conducted by the seller, ty

The information provided shows if we are on the right track or not
before running a full search on the main page of the topic:

Page - Exists: True confirms that the page exists. If not, the
print("Page does not exist") message will be displayed.
Number of tokens: 229 provides us with insights into the size of
the content we are retrieving for project management
assessments.
The output of summary=page.summary displays a summary of the
page.

In this case, the page exists, fits our topic, and the summary makes
sense. Before we continue, we check if we are working on the right
page to be sure:

print(page.fullurl)

The output is correct:

https://en.wikipedia.org/wiki/Marketing

We are now ready to retrieve the URLs, links, and summaries on the
target page:

prompt: read the program up to this cell. Then retrieve all t
Get all the links on the page
links = page.links
Print the link and a summary of each link
urls = []
counter=0
for link in links:
 try:

 counter+=1
 print(f"Link {counter}: {link}")
 summary = wiki.page(link).summary
 print(f"Link: {link}")
 print(wiki.page(link).fullurl)
 urls.append(wiki.page(link).fullurl)
 print(f"Summary: {summary}")
 if counter>=maxl:
 break
 except page.exists()==False:
 # Ignore pages that don't exist
 pass
print(counter)
print(urls)

The function is limited to maxl , defined at the beginning of the
program. The function will retrieve URL links up to maxl links, or less
if the page contains fewer links than the maximum requested. We
then check the output before moving on to the next step and
generating files:

Link 1: 24-hour news cycle
Link: 24-hour news cycle
https://en.wikipedia.org/wiki/24-hour_news_cycle
Summary: The 24-hour news cycle (or 24/7 news cycle) is 24-hour

We observe that we have the information we need, and the
summaries are acceptable:

Link 1 : The link counter
Link : The actual link to the page retrieved from the main topic
page

Summary : A summary of the link to the page

The next step is to apply the function we just built to generate the text
file containing citations for the links retrieved from a Wikipedia page
and their URLs:

from datetime import datetime
Get all the links on the page
links = page.links
Prepare a file to store the outputs
fname = filename+"_citations.txt"
with open(fname, "w") as file:
 # Write the citation header
 file.write(f"Citation. In Wikipedia, The Free Encyclopedia.
 file.write("Root page: " + page.fullurl + "\n")
 counter = 0
 urls = []…

urls = [] will be appended to have the full list of URLs we need for
the final step. The output is a file containing the name of the topic,
datetime , and the citations beginning with the citation text:

Citation. In Wikipedia, The Free Encyclopedia. Pages retrieved

The output, in this case, is a file named Marketing_citations.txt . The
file was downloaded and uploaded to the /citations directory of this
chapter’s directory in the GitHub repository.

With that, the citations page has been generated, displayed in this
notebook, and also saved in the GitHub repository to respect
Wikipedia’s citation terms. The final step is to generate the file

containing the list of URLs we will use to fetch the content of the
pages we need. We first display the URLs:

urls

The output confirms we have the URLs required:

['https://en.wikipedia.org/wiki/Marketing',
 'https://en.wikipedia.org/wiki/24-hour_news_cycle',
 'https://en.wikipedia.org/wiki/Account-based_marketing',
…

The URLs are written in a file with the topic as a prefix:

Write URLs to a file
ufname = filename+"_urls.txt"
with open(ufname, 'w') as file:
 for url in urls:
 file.write(url + '\n')
print("URLs have been written to urls.txt")

In this case, the output is a file named Marketing_urls.txt that
contains the URLs of the pages we need to fetch. The file was
downloaded and uploaded to the /citations directory of the
chapter’s directory in the GitHub repository.

We are now ready to prepare the data for upsertion.

Preparing the data for upsertion
The URLs provided by the Wikipedia API in the Wikipedia_API.ipynb
notebook will be processed in the Knowledge_Graph_

Deep_Lake_LlamaIndex_OpenAI_RAG.ipynb notebook you can find in the
GitHub directory of the chapter. The Installing the environment section
of this notebook is almost the same section as its equivalent section in
Chapter 2, RAG Embedding Vector Stores with Deep Lake and OpenAI,
and Chapter 3, Building Index-Based RAG with LlamaIndex, Deep Lake,
and OpenAI. In this chapter, however, the list of URLs was generated
by the Wikipedia_API.ipynb notebook, and we will retrieve it.

First, go to the Scenario section of the notebook to define the strategy
of the workflow:

#File name for file management
graph_name="Marketing"
Path for vector store and dataset
db="hub://denis76/marketing01"
vector_store_path = db
dataset_path = db
#if True upserts data; if False, passes upserting and goes to c
pop_vs=True
if pop_vs==True, overwrite=True will overwrite dataset, False
ow=True

The parameters will determine the behavior of the three pipelines in
the notebook:

graph_name="Marketing" : The prefix (topic) of the files we will
read and write.
db="hub://denis76/marketing01" : The name of the Deep Lake
vector store. You can choose the name of the dataset you wish.
vector_store_path = db : The path to the vector store.
dataset_path = db : The path to the dataset of the vector store.

pop_vs=True : Activates data insertion if True and deactivates it if
False .
ow=True : Overwrites the existing dataset if True and appends it if
False .

Then, we can launch the Pipeline 1: Collecting and preparing the
documents section of the notebook. The program will download the
URL list generated in the previous section of this chapter:

Define your variables
if pop_vs==True:
 directory = "Chapter07/citations"
 file_name = graph_name+"_urls.txt"
 download(directory,file_name)

It will then read the file and store the URLs in a list named urls . The
rest of the code in the Pipeline 1: Collecting and preparing the documents
section of this notebook follows the same process as the
Deep_Lake_LlamaIndex_OpenAI_RAG.ipynb notebook from Chapter 3. In
Chapter 3, the URLs of the web pages were entered manually in a list.

The code will fetch the content in the list of URLs. The program then
cleans and prepares the data to populate the Deep Lake vector store.

Pipeline 2: Creating and populating
the Deep Lake vector store
The pipeline in this section of Deep_Lake_LlamaIndex_OpenAI_RAG.ipynb
was built with the code of Pipeline 2 from Chapter 3. We can see that
by creating pipelines as components, we can rapidly repurpose and

adapt them to other applications. Also, Activeloop Deep Lake
possesses in-built default chunking, embedding, and upserting
functions, making it seamless to integrate various types of
unstructured data, as in the case of the Wikipedia documents we are
upserting.

The output of the display_record(record_number) function shows how
seamless the process is. The output displays the ID and metadata
such as the file information, the data collected, the text, and the
embedded vector:

ID:
['a61734be-fe23-421e-9a8b-db6593c48e08']
Metadata:
file_path: /content/data/24-hour_news_cycle.txt
file_name: 24-hour_news_cycle.txt
file_type: text/plain
file_size: 2763
creation_date: 2024-07-05
last_modified_date: 2024-07-05
…
Text:
['24hour investigation and reporting of news concomitant with fa
Embedding:
[-0.00040736704249866307, 0.009565318934619427, 0.01590667292475

And with that, we have successfully repurposed the Pipeline 2
component of Chapter 3 and can now move on and build the graph
knowledge index.

Pipeline 3: Knowledge graph index-
based RAG
It’s time to create a knowledge graph index-based RAG pipeline and
interact with it. As illustrated in the following figure, we have a lot of
work to do:

Figure 7.5: Building knowledge graph-index RAG from scratch

In this section, we will:

Generate the knowledge graph index
Display the graph
Define the user prompt
Define the hyperparameters of LlamaIndex’s in-built LLM model
Install the similarity score packages
Define the similarity score functions

Run a sample similarity comparison between the similarity
functions
Re-rank the output vectors of an LLM response
Run evaluation samples and apply metrics and human feedback
scores
Run metric calculations and display them

Let’s go through these steps and begin by generating the knowledge
graph index.

Generating the knowledge graph index
We will create a knowledge graph index from a set of documents
using the KnowledgeGraphIndex class from the llama_index.core
module. We will also time the index creation process to evaluate
performance.

The function begins by recording the start time with time.time() . In
this case, measuring the time is important because it takes quite some
time to create the index:

from llama_index.core import KnowledgeGraphIndex
import time
Start the timer
start_time = time.time()

We now create a KnowledgeGraphIndex with embeddings using the
from_documents method. The function uses the following parameters:

documents is the set of documents to index

max_triplets_per_chunk is set to 2, limiting the number of triplets
per chunk to optimize memory usage and processing time
include_embeddings is set to True , indicating that embeddings
should be included

The graph index is thus created in a few lines of code:

#graph index with embeddings
graph_index = KnowledgeGraphIndex.from_documents(
 documents,
 max_triplets_per_chunk=2,
 include_embeddings=True,
)

The timer is stopped and the creation time is measured:

Stop the timer
end_time = time.time()
Calculate and print the execution time
elapsed_time = end_time - start_time
print(f"Index creation time: {elapsed_time:.4f} seconds")
print(type(graph_index))

The output displays the time:

Index creation time: 371.9844 seconds

The graph type is displayed:

print(type(graph_index))

The output confirms the knowledge graph index class:

<class 'llama_index.core.indices.knowledge_graph.base.KnowledgeG

We will now set up a query engine for our knowledge graph index
and configure it to manage similarity, response temperature, and
output length parameters:

#similarity_top_k
k=3
#temperature
temp=0.1
#num_output
mt=1024
graph_query_engine = graph_index.as_query_engine(similarity_top

The parameters will determine the behavior of the query engine:

k=3 sets the number of top similar results to take into account.
temp=0.1 sets the temperature parameter, controlling the
randomness of the query engine’s response generation. The
lower it is, the more precise it is; the higher it is, the more
creative it is.
mt=1024 sets the maximum number of tokens for the output,
defining the length of the generated responses.

The query engine is then created with the parameters we defined:

graph_query_engine = graph_index.as_query_engine(similarity_top

The graph index and query engine are ready. Let’s display the graph.

Displaying the graph
We will create a graph instance, g , with pyvis.network , a Python
library used for creating interactive network visualizations. The
displayed parameters are similar to the ones we defined in the
Building graphs from trees section of this chapter:

create graph
from pyvis.network import Network
g = graph_index.get_networkx_graph()
net = Network(notebook=True, cdn_resources="in_line", directed=
net.from_nx(g)
Set node and edge properties: colors and sizes
for node in net.nodes:
 node['color'] = 'lightgray'
 node['size'] = 10
for edge in net.edges:
 edge['color'] = 'black'
 edge['width'] = 1

A directed graph has been created, and now we will save it in an
HTML file to display it for further use:

fgraph="Knowledge_graph_"+ graph_name + ".html"
net.write_html(fgraph)
print(fgraph)

The graph_name was defined at the beginning of the notebook, in the
Scenario section. We will now display the graph in the notebook as an
HTML file:

from IPython.display import HTML
Load the HTML content from a file and display it
with open(fgraph, 'r') as file:
 html_content = file.read()
Display the HTML in the notebook
display(HTML(html_content))

You can now download the file to display it in your browser to
interact with it. You can also visualize it in the notebook, as shown in
the following figure:

Figure 7.6: The knowledge graph

We are all set to interact with the knowledge graph index.

Interacting with the knowledge graph
index
Let’s now define the functionality we need to execute the query, as
we have done in Chapter 3 in the Pipeline 3: Index-based RAG section:

execute_query is the function we created that will execute the
query: response = graph_query_engine.query(user_input) . It also
measures the time it takes.
user_query="What is the primary goal of marketing for the

consumer market?" , which we will use to make the query.
response = execute_query(user_query) , which is encapsulated in
the request code and displays the response.

The output provides the best vectors that we created with the
Wikipedia data with the time measurement:

Query execution time: 2.4789 seconds
The primary goal of marketing for the consumer market is to effe

We will now install similarity score packages and define the
similarity calculation functions we need.

Installing the similarity score packages
and defining the functions
We will first retrieve the Hugging Face token from the Secrets tab on
Google Colab, where it was stored in the settings of the notebook:

from google.colab import userdata
userdata.get('HF_TOKEN')

In August 2024, the token is optional for Hugging Face’s sentence-
transformers . You can ignore the message and comment the code.
Next, we install sentence-transformers :

!pip install sentence-transformers==3.0.1

We then create a cosine similarity function with embeddings:

from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
def calculate_cosine_similarity_with_embeddings(text1, text2):
 embeddings1 = model.encode(text1)
 embeddings2 = model.encode(text2)
 similarity = cosine_similarity([embeddings1], [embeddings2]
 return similarity[0][0]

We import the libraries we need:

import time
import textwrap
import sys
import io

We have a similarity function and can use it for re-ranking.

Re-ranking

In this section, the program re-ranks the response of a query by
reordering the top results to select other, possibly better, ones:

user_query=" Which experts are often associated with marketing

theory?" represents the query we are making.
start_time = time.time() records the start time for the query
execution.
response = execute_query(user_query) executes the query.
end_time = time.time() stops the timer, and the query execution
time is displayed.
for idx, node_with_score in enumerate(response.source_nodes)

iterates through the response to retrieve all the nodes in the
response.
similarity_score3=calculate_cosine_similarity_with_embeddings(

text1, text2) calculates the similarity score between the user
query and the text in the nodes retrieved from the response. All
the comparisons are displayed.
best_score=similarity_score3 stores the best similarity score
found.
print(textwrap.fill(str(best_text), 100)) displays the best re-
ranked result.

The initial response for the user_query "Which experts are often
associated with marketing theory?" was:

Psychologists, cultural anthropologists, and market researchers
theory.

The response is acceptable. However, the re-ranked response goes
deeper and mentions the names of marketing experts (highlighted in
bold font):

Best Rank: 2
Best Score: 0.5217772722244263
[…In 1380 the German textile manufacturer
Johann Fugger
Daniel Defoe
 travelled from Augsburg to Graben in order to gather informati
London merchant published information on trade and economic reso

The re-ranked response is longer and contains raw document content
instead of the summary provided by LlamaIndex’s LLM query
engine. The original query engine response is better from an LLM
perspective. However, it isn’t easy to estimate what an end-user will
prefer. Some users like short answers, and some like long documents.
We can imagine many other ways of re-ranking documents, such as
modifying the prompt, adding documents, and deleting documents.
We can even decide to fine-tune an LLM, as we will do in Chapter 9,
Empowering AI Models: Fine-Tuning RAG Data and Human Feedback. We
can also introduce human feedback scores as we did in Chapter 5,
Boosting RAG Performance with Expert Human Feedback, because, in
many cases, mathematical metrics will not capture the accuracy of a
response (writing fiction, long answers versus short input, and other
complex responses). But we need to try anyway!

Let’s perform some of the possible metrics for the examples we are
going to run.

Example metrics
To evaluate the knowledge graph index’s query engine, we will run
ten examples and keep track of the scores. rscores keeps track of
human feedback scores while scores=[] keeps track of similarity
function scores:

create an empty array score human feedback scores:
rscores =[]
create an empty score for similarity function scores
scores=[]

The number of examples can be increased as much as necessary
depending on the needs of a project. Each of the ten examples has the
same structure:

user_query , which is the input text for the query engine
elapsed_time , which is the result of the time measurement of the
system’s response
response = execute_query(user_query) executes the query

The user query and output are the same as in the example used for
the re-ranking function:

Query execution time: 1.9648 seconds
Psychologists, cultural anthropologists, and other experts in be
associated with marketing theory.

However, this time, we will run a similarity function and also ask a
human for a score:

text1=str(response)
text2=user_query
similarity_score3=calculate_cosine_similarity_with_embeddings(t
print(f"Cosine Similarity Score with sentence transformer: {sim
scores.append(similarity_score3)
human_feedback=0.75
rscores.append(human_feedback)

In this function:

text1 is the query engine’s response.
text2 is the user query.
similarity_score3 is the cosine similarity score.
scores.append(similarity_score3) appends the similarity score to
scores.
human_feedback is the human similarity evaluation. We could
replace this score with a document as we did in Chapter 5,
Boosting RAG Performance with Expert Human Feedback, or we
could replace the human score with a human text response,
which will become the ground truth. In both cases, the similarity
score is recalculated with human feedback content.
rscores.append(human_feedback) appends the human score to
rscores .

Let’s review a few of the ten examples’ outputs and add a comment
at the end of each one.

LLMs are stochastic algorithms. As such, the responses
and scores may vary from one run to another.

Example 1:
User query: Which experts are often associated with
marketing theory?

Response: Psychologists, cultural anthropologists, and
other experts in behavioral sciences are often associated
with marketing theory.
Cosine similarity score: 0.809
Human feedback: 0.75
Comment: The response is acceptable, but it could be more
specific and mention the names of experts. However, the
prompt is ambiguous and only mentions experts in
general.

Example 3:
User query: What is the difference between B2B and B2C?
Response: B2B businesses sell products and services to
other companies, while B2C businesses sell directly to
customers.
Cosine Similarity score: 0.760
Human feedback: 0.8
Comment: The response is precise, but in some cases, users
like examples.

Example 7:
User query: What commodity programs does the Agricultural
Marketing Service (AMS) maintain?

Response: The Agricultural Marketing Service (AMS)
maintains programs in five commodity areas: cotton and
tobacco, dairy, fruit and vegetable, livestock and seed, and
poultry.

Cosine Similarity score: 0.904
Human feedback: 0.9
Comment: This response is accurate and interesting
because the information is contained in a page linked to the
main page. Thus, this is information from a linked page to
the main page. We could ask Wikipedia to search the links
of all the linked pages to the main page and go down
several levels. However, the main information we are
looking for may be diluted in less relevant data. The
decision on the scope of the depth of the data depends on
the needs of each project.

We will now perform metric calculations on the cosine similarity
scores and the human feedback scores.

Metric calculation and display
The cosine similarity scores of the examples are stored in scores :

print(len(scores), scores)

The ten scores are displayed:

10 [0.808918, 0.720165, 0.7599532, 0.8513956, 0.5457667, 0.69639

We could expand the evaluations to as many other examples,
depending on the needs of each project. The human feedback scores
for the same examples are stored in rscores :

print(len(rscores), rscores)

The ten human feedback scores are displayed:

10 [0.75, 0.5, 0.8, 0.9, 0.65, 0.8, 0.9, 0.2, 0.2, 0.9]

We apply metrics to evaluate the responses:

mean_score = np.mean(scores)
median_score = np.median(scores)
std_deviation = np.std(scores)
variance = np.var(scores)
min_score = np.min(scores)
max_score = np.max(scores)
range_score = max_score - min_score
percentile_25 = np.percentile(scores, 25)
percentile_75 = np.percentile(scores, 75)
iqr = percentile_75 - percentile_25

Each metric can provide several insights. Let’s go through each of
them and the outputs obtained:

Central tendency (mean, median) gives us an idea of what a
typical score looks like.
Variability (standard deviation, variance, range, IQR) tells us
how spread out the scores are, indicating the consistency or
diversity of the data.
Extremes (minimum, maximum) show the bounds of our
dataset.
Distribution (percentiles) provides insights into how scores are
distributed across the range of values.

Let’s go through these metrics calculated from the cosine similarity
scores and the human feedback scores and display their outputs:

1. Mean (average):
Definition: The mean is the sum of all the scores divided
by the number of scores.
Purpose: It gives us the central value of the data, providing
an idea of the typical score.
Calculation:

Output: Mean: 0.68

2. Median:
Definition: The median is the middle value when the
scores are ordered from smallest to largest.
Purpose: It provides the central point of the dataset and is
less affected by extreme values (outliers) compared to the
mean.
Output: Median: 0.71

3. Standard deviation:
Definition: The standard deviation measures the average
amount by which each score differs from the mean.
Purpose: It gives an idea of how spread out the scores are
around the mean. A higher value indicates more
variability.
Calculation:

Output: Standard Deviation: 0.15

4. Variance:
Definition: The variance is the square of the standard
deviation.
Purpose: It also measures the spread of the scores, showing
how much they vary from the mean.
Output: Variance: 0.02

5. Minimum:
Definition: The minimum is the smallest score in the
dataset.
Purpose: It tells us the lowest value.
Output: Minimum: 0.45

6. Maximum:
Definition: The maximum is the largest score in the
dataset.
Purpose: It tells us the highest value.
Output: Maximum: 0.90

7. Range:
Definition: The range is the difference between the
maximum and minimum scores.
Purpose: It shows the span of the dataset from the lowest
to the highest value.
Calculation:

Range = Maximum - Minimum

Output: Range: 0.46

8. 25th Percentile (Q1):
Definition: The 25th percentile is the value below which
25% of the scores fall.
Purpose: It provides a point below which a quarter of the
data lies.
Output: 25th Percentile (Q1): 0.56

9. 75th Percentile (Q3):
Definition: The 75th percentile is the value below which
75% of the scores fall.
Purpose: It gives a point below which three-quarters of the
data lies.
Output: 75th Percentile (Q3): 0.80

10. Interquartile Range (IQR):
Definition: The IQR is the range between the 25th

percentile (Q1) and the 75th percentile (Q3).
Purpose: It measures the middle 50% of the data, providing
a sense of the data’s spread without being affected by
extreme values.
Calculation:

IQR = Q3 – Q1

Output: Interquartile Range (IQR): 0.24

We have built a knowledge-graph-based RAG system, interacted
with it, and evaluated it with some examples and metrics. Let’s sum
up our journey.

Summary
In this chapter, we explored the creation of a scalable knowledge-
graph-based RAG system using the Wikipedia API and LlamaIndex.
The techniques and tools developed are applicable across various
domains, including data management, marketing, and any field
requiring organized and accessible data retrieval.

Our journey began with data collection in Pipeline 1. This pipeline
focused on automating the retrieval of Wikipedia content. Using the
Wikipedia API, we built a program to collect metadata and URLs
from Wikipedia pages based on a chosen topic, such as marketing. In
Pipeline 2, we created and populated the Deep Lake vector store. The
retrieved data from Pipeline 1 was embedded and upserted into the
Deep Lake vector store. This pipeline highlighted the ease of
integrating vast amounts of data into a structured vector store, ready
for further processing and querying. Finally, in Pipeline 3, we
introduced knowledge graph index-based RAG. Using LlamaIndex,
we automatically built a knowledge graph index from the embedded
data. This index visually mapped out the relationships between
different pieces of information, providing a semantic overview of the
data. The knowledge graph was then queried using LlamaIndex’s
built-in language model to generate optimal responses. We also
implemented metrics to evaluate the system’s performance, ensuring
accurate and efficient data retrieval.

By the end of this chapter, we had constructed a comprehensive,
automated RAG-driven knowledge graph system capable of
collecting, embedding, and querying vast amounts of Wikipedia data
with minimal human intervention. This journey showed the power

and potential of combining multiple AI tools and models to create an
efficient pipeline for data management and retrieval. You are now all
set to implement knowledge graph-based RAG systems in real-life
projects. In the next chapter, we will learn how to implement
dynamic RAG for short-term usage.

Questions
Answer the following questions with yes or no:

1. Does the chapter focus on building a scalable knowledge-graph-
based RAG system using the Wikipedia API and LlamaIndex?

2. Is the primary use case discussed in the chapter related to
healthcare data management?

3. Does Pipeline 1 involve collecting and preparing documents from
Wikipedia using an API?

4. Is Deep Lake used for creating a relational database in Pipeline 2?
5. Does Pipeline 3 utilize LlamaIndex to build a knowledge graph

index?
6. Is the system designed to only handle a single specific topic, such

as marketing, without flexibility?
7. Does the chapter describe how to retrieve URLs and metadata

from Wikipedia pages?
8. Is a GPU required to run the pipelines described in the chapter?
9. Does the knowledge graph index visually map out relationships

between pieces of data?
10. Is human intervention required at every step to query the

knowledge graph index?

References
Wikipedia API GitHub repository:
https://github.com/martin-majlis/Wikipedia-API

PyVis Network: Interactive Network Visualization in Python.

Further reading
Hogan, A., Blomqvist, E., Cochez, M., et al. Knowledge Graphs.
arXiv:2003.02320

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://github.com/martin-majlis/Wikipedia-API
https://www.packt.link/rag

8

Dynamic RAG with Chroma and
Hugging Face Llama

This chapter will take you into the pragmatism of dynamic RAG. In
today’s rapidly evolving landscape, the ability to make swift,
informed decisions is more crucial than ever. Decision-makers across
various fields—from healthcare and scientific research to customer
service management—increasingly require real-time data that is
relevant only within the short period it is needed. A meeting may
only require temporary yet highly prepared data. Hence, the concept
of data permanence is shifting. Not all information must be stored
indefinitely; instead, in many cases, the focus is shifting toward using
precise, pertinent data tailored for specific needs at specific times,
such as daily briefings or critical meetings.

This chapter introduces an innovative and efficient approach to
handling such data through the embedding and creation of
temporary Chroma collections. Each morning, a new collection is
assembled containing just the necessary data for that day’s meetings,
effectively avoiding long-term data accumulation and management
overhead. This data might include medical reports for a healthcare
team discussing patient treatments, customer interactions for service
teams strategizing on immediate issues, or the latest scientific

research data for researchers making day-to-day experimental
decisions. We will then build a Python program to support dynamic
and efficient decision-making in daily meetings, applying a
methodology using a hard science (any of the natural or physical
sciences) dataset for a daily meeting. This approach will highlight the
flexibility and efficiency of modern data management. In this case,
the team wants to obtain pertinent scientific information without
searching the web or interacting with online AI assistants. The
constraint is to have a free, open-source assistant that anyone can use,
which is why we will use Chroma and Hugging Face resources.

The first step is to create a temporary Chroma collection. We will
simulate the processing of a fresh dataset compiled daily, tailored to
the specific agenda of upcoming meetings, ensuring relevance and
conciseness. In this case, we will download the SciQ dataset from
Hugging Face, which contains thousands of crowdsourced science
questions, such as those related to physics, chemistry, and biology.
Then, the program will embed the relevant data required for the day,
guaranteeing that all discussion points are backed by the latest, most
relevant data.

A user might choose to run queries before the meetings to confirm
their accuracy and alignment with the day’s objective. Finally, as
meetings progress, any arising questions trigger real-time data
retrieval, augmented through Large Language Model Meta AI
(Llama) technology to generate dynamic flashcards. These flashcards
provide quick and precise responses to ensure discussions are both
productive and informed. By the end of this chapter, you will have
acquired the skills to implement open-source free dynamic RAG in a
wide range of domains.

To sum that up, this chapter covers the following topics:

The architecture of dynamic RAG
Preparing a dataset for dynamic RAG
Creating a Chroma collection
Embedding and upserting data in a Chroma collection
Batch-querying a collection
Querying a collection with a user request
Augmenting the input with the output of a query
Configuring Hugging Face’s framework for Meta Llama
Generating a response based on the augmented input

Let’s begin by going through the architecture of dynamic RAG.

The architecture of dynamic RAG
Imagine you’re in a dynamic environment in which information
changes daily. Each morning, you gather a fresh batch of 10,000+
questions and validated answers from across the globe. The challenge
is to access this information quickly and effectively during meetings
without needing long-term storage or complicated infrastructure.

This dynamic RAG method allows us to maintain a lean, responsive
system that provides up-to-date information without the burden of
ongoing data storage. It’s perfect for environments where data
relevance is short-lived but critical for decision-making.

We will be applying this to a hard science dataset. However, this
dynamic approach isn’t limited to our specific example. It has broad
applications across various domains, such as:

Customer support: Daily updated FAQs can be accessed in real-
time to provide quick responses to customer inquiries.
Healthcare: During meetings, medical teams can use the latest
research and patient data to answer complex health-related
questions.
Finance: Financial analysts can query the latest market data to
make informed decisions on investments and strategies.
Education: Educators can access the latest educational resources
and research to answer questions and enhance learning.
Tech support: IT teams can use updated technical
documentation to solve issues and guide users effectively.
Sales and marketing: Teams can quickly access the latest
product information and market trends to answer client queries
and strategize.

This chapter implements one type of a dynamic RAG ecosystem.
Your imagination is the limit, so feel free to apply this ecosystem to
your own projects in different ways. For now, let’s see how the
dynamic RAG components fit into the ecosystem we described in
Chapter 1, Why Retrieval Augmented Generation?, in the RAG ecosystem
section.

We will streamline the integration and use of dynamic information in
real-time decision-making contexts, such as daily meetings, in
Python. Here’s a breakdown of this innovative strategy for each
component and its ecosystem component label:

Figure 8.1: The dynamic RAG system

Temporary Chroma collection creation (D1, D2, D3, E2): Every
morning, a temporary Chroma collection is set up specifically for
that day’s meeting. This collection is not meant to be saved post-
meeting, serving only the day’s immediate needs and ensuring
that data does not clutter the system in the long term.
Embedding relevant data (D1, D2, D3, E2): The collection
embeds critical data, such as customer support interactions,
medical reports, or scientific facts. This embedding process
tailors the content specifically to the meeting agenda, ensuring
that all pertinent information is at the fingertips of the meeting
participants. The data could include human feedback from
documents and possibly other generative AI systems.

Pre-meeting data validation (D4): Before the meeting begins, a
batch of queries is run against this temporary Chroma collection
to ensure that all data is accurate and appropriately aligned with
the meeting’s objectives, thereby facilitating a smooth and
informed discussion.
Real-time query handling (G1, G2, G3, G4): During the
meeting, the system is designed to handle spontaneous queries
from participants. A single question can trigger the retrieval of
specific information, which is then used to augment Llama’s
input, enabling it to generate flashcards dynamically. These
flashcards are utilized to provide concise, accurate responses
during the meeting, enhancing the efficiency and productivity of
the discussion.

We will be using Chroma, a powerful, open-source, AI-native vector
database designed to store, manage, and search embedded vectors in
collections. Chroma contains everything we need to start, and we can
run it on our machine. It is also very suitable for applications
involving LLMs. Chroma collections are thus suitable for a
temporary, cost-effective, and real-time RAG system. The dynamic
RAG architecture of this chapter implemented with Chroma is
innovative and practical. Here are some key points to consider in this
fast-moving world:

Efficiency and cost-effectiveness: Using Chroma for temporary
storage and Llama for response generation ensures that the
system is lightweight and doesn’t incur ongoing storage costs.
This makes it ideal for environments where data is refreshed
frequently and long-term storage isn’t necessary. It is very
convincing for decision-makers who want lean systems.

Flexibility: The system’s ephemeral nature allows for the
integration of new data daily, ensuring that the most up-to-date
information is always available. This can be particularly valuable
in fast-paced environments in which information changes
rapidly.
Scalability: The approach is scalable to other similar datasets,
provided they can be embedded and queried effectively. This
makes it adaptable to various domains beyond the given
example. Scaling is not only increasing volumes of data but also
the ability to apply a framework to a wide range of domains and
situations.
User-friendliness: The system’s design is straightforward,
making it accessible to users who may not be deeply technical
but need reliable answers quickly. This simplicity can enhance
user engagement and satisfaction. Making users happy with
cost-effective, transparent, and lightweight AI will surely boost
their interest in RAG-driven generative AI.

Let’s now begin building a dynamic RAG program.

Installing the environment
The environment focuses on open-source and free resources that we
can run on our machine or a free Google Colab account. This chapter
will run these resources on Google Colab with Hugging Face and
Chroma.

We will first install Hugging Face.

Hugging Face
We will implement Hugging Face’s open-source resources to
download a dataset for the Llama model. Sign up at
https://huggingface.co/ to obtain your Hugging Face API token.
If you are using Google Colab, you can create a Google Secret in the
sidebar and activate it. If so, you can comment the following cell—#

Save your Hugging Face token in a secure location :

#1.Uncomment the following lines if you want to use Google Driv
from google.colab import drive
drive.mount('/content/drive')
f = open("drive/MyDrive/files/hf_token.txt", "r")
access_token=f.readline().strip()
f.close()
#2.Uncomment the following line if you want to enter your HF to
#access_token =[YOUR HF_TOKEN]
import os
os.environ['HF_TOKEN'] = access_token

The program first retrieves the Hugging Face API token. Make sure to
store it in a safe place. You can choose to use Google Drive or enter it
manually. Up to now, the installation seems to have run smoothly.
We now install datasets :

!pip install datasets==2.20.0

However, there are conflicts, such as pyarrow , with Google Colab’s
pre-installed version, which is more recent. These conflicts between
fast-moving packages are frequent. When Hugging Face updates its
packages, this conflict will not appear anymore. But other conflicts

https://huggingface.co/

may appear. This conflict will not stop us from downloading
datasets. If it did, we would have to uninstall Google Colab packages
and reinstall pyarrow , but other dependencies may possibly create
issues. We must accept these challenges, as explained in the Setting up
the environment section in Chapter 2, RAG Embedding Vector Stores with
Deep Lake and OpenAI.

We will now install Hugging Face’s transformers package:

!pip install transformers==4.41.2

We also install accelerate to run PyTorch packages on GPUs, which is
highly recommended for this notebook, among other features, such
as mixed precision and accelerated processing times:

!pip install accelerate==0.31.0

Finally, we will initialize meta-llama/Llama-2-7b-chat-hf as the
tokenizer and chat model interactions. Llama is a series of
transformer-based language models developed by Meta AI (formerly
Facebook AI) that we can access through Hugging Face:

from transformers import AutoTokenizer
import tranformers
import torch
model = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model)

We access the model through Hugging Face’s pipeline:

pipeline = transformers.pipeline(
 "text-generation",
 model=model,
 torch_dtype=torch.float16,
 device_map="auto",
)

Let’s go through the pipeline:

transformers.pipeline is the function used to create a pipeline for
text generation. This pipeline abstracts away much of the
complexity we must avoid in this dynamic RAG ecosystem.
text-generation specifies the type of task the pipeline is set up
for. In this case, we want text generation.
model specifies the model we selected.
torch_dtype=torch.float16 sets the data type for PyTorch tensors
to float16 . This is a key factor for dynamic RAG, which reduces
memory consumption and can speed up computation,
particularly on GPUs that support half-precision computations.
Half-precision computations use 16 bits: half of the standard 32-
bit precision, for faster, lighter processing. This is exactly what
we need.
device_map="auto" instructs the pipeline to automatically
determine the best device to run the model on (CPU, GPU,
multi-GPU, etc.). This parameter is particularly important for
optimizing performance and automatically distributing the
model’s layers across available devices (like GPUs) in the most
efficient manner possible. If multiple GPUs are available, it will
distribute the load across them to maximize parallel processing.

If you have access to a GPU, activate it to speed up the
configuration of this pipeline.

Hugging Face is ready; Chroma is required next.

Chroma
The following line installs Chroma, our open-source vector database:

!pip install chromadb==0.5.3

Take a close look at the following excerpt output, which displays the
packages installed and, in particular, Open Neural Network
Exchange (ONNX):

Successfully installed asgiref-3…onnxruntime-1.18.0…

ONNX (https://onnxruntime.ai/) is a key component in this
chapter’s dynamic RAG scenario because it is fully integrated with
Chroma. ONNX is a standard format for representing machine
learning (ML) models designed to enable models to be used across
different frameworks and hardware without being locked into one
ecosystem.

We will be using ONNX Runtime, which is a performance-focused
engine for running ONNX models. It acts as a cross-platform
accelerator for ML models, providing a flexible interface that allows
integration with hardware-specific libraries. This makes it possible to
optimize the models for various hardware configurations (CPUs,
GPUs, and other accelerators). As for Hugging Face, it is

https://onnxruntime.ai/

recommended to activate a GPU if you have access to one for the
program in this chapter. Also, we will select a model included within
ONNX Runtime installation packages.

We have now installed the Hugging Face and Chroma resources we
need, including ONNX Runtime. Hugging Face’s framework is used
throughout the model life cycle, from accessing and deploying pre-
trained models to training and fine-tuning them within its ecosystem.
ONNX, among its many features, can intervene in the post-training
phase to ensure a model’s compatibility and efficient execution across
different hardware and software setups. Models might be developed
and fine-tuned using Hugging Face’s tools and then converted to the
ONNX format for broad, optimized deployment using ONNX
Runtime.

We will now use spaCy to compute the accuracy between the
response we obtain when querying our vector store and the original
completion text. The following command installs a medium-sized
English language model from spaCy, tailored for general NLP tasks:

!python -m spacy download en_core_web_md

This model, labeled en_core_web_md , originates from web text in
English and is balanced for speed and accuracy, which we need for
dynamic RAG. It is efficient for computing text similarity. You may
need to restart the session once the package is installed.

We have now successfully installed the open-source, optimized, cost-
effective resources we need for dynamic RAG and are ready to start
running the program’s core.

Activating session time
When working in real-life dynamic RAG projects, such as in this
scenario, time is essential! For example, if the daily decision-making
meeting is at 10 a.m., the RAG preparation team might have to start
preparing for this meeting at 8 a.m. to gather the data online, in
processed company data batches, or in any other way necessary for
the meeting’s goal.

First, activate a GPU if one is available. On Google Colab, for
example, go to Runtime | Change runtime type and select a GPU if
possible and available. If not, the notebook will take a bit longer but
will run on a CPU. Then, go through each section in this chapter,
running the notebook cell by cell to understand the process in depth.

The following code activates a measure of the session time once the
environment is installed all the way to the end of the notebook:

Start timing before the request
session_start_time = time.time()

Finally, restart the session, go to Runtime again, and click on Run all.
Once the program is finished, go to Total session time, the last
section of the notebook. You will have an estimate of how long it
takes for a preparation run. With the time left before a daily meeting,
you can tweak the data, queries, and model parameters for your
needs a few times.

This on-the-fly dynamic RAG approach will make any team that has
these skills a precious asset in this fast-moving world. We will start
the core of the program by downloading and preparing the dataset.

Downloading and preparing the
dataset
We will use the SciQ dataset created by Welbl, Liu, and Gardner
(2017) with a method for generating high-quality, domain-specific
multiple-choice science questions via crowdsourcing. The SciQ dataset
consists of 13,679 multiple-choice questions crafted to aid the training
of NLP models for science exams. The creation process involves two
main steps: selecting relevant passages and generating questions with
plausible distractors.

In the context of using this dataset for an augmented generation of
questions through a Chroma collection, we will implement the
question , correct_answer , and support columns. The dataset also
contains distractor columns with wrong answers, which we will
drop.

We will integrate the prepared dataset into a retrieval system that
utilizes query augmentation techniques to enhance the retrieval of
relevant questions based on specific scientific topics or question
formats for Hugging Face’s Llama model. This will allow for the
dynamic generation of augmented, real-time completions for Llama,
as implemented in the chapter’s program. The program loads the
training data from the sciq dataset:

Import required libraries
from datasets import load_dataset
import pandas as pd
Load the SciQ dataset from HuggingFace
dataset = load_dataset("sciq", split="train")

The dataset is filtered to detect the non-empty support and
correct_answer columns:

Filter the dataset to include only questions with support and
filtered_dataset = dataset.filter(lambda x: x["support"] != ""

We will now display the number of rows filtered:

Print the number of questions with support
print("Number of questions with support: ", len(filtered_datase

The output shows that we have 10,481 documents:

Number of questions with support: 10481

We need to clean the DataFrame to focus on the columns we need.
Let’s drop the distractors (wrong answers to the questions):

Convert the filtered dataset to a pandas DataFrame
df = pd.DataFrame(filtered_dataset)
Columns to drop
columns_to_drop = ['distractor3', 'distractor1', 'distractor2']
Dropping the columns from the DataFrame
df.drop(columns=columns_to_drop, inplace=True)

We have the correct answer and the support content that we will now
merge:

Create a new column 'completion' by merging 'correct_answer'
df['completion'] = df['correct_answer'] + " because " + df['sup
Ensure no NaN values are in the 'completion' column
df.dropna(subset=['completion'], inplace=True)
df

The output shows the columns we need to prepare the data for
retrieval in the completion columns, as shown in the excerpt of the
DataFrame for a completion field in which aerobic is the correct
answer because it is the connector and the rest of the text is the
support content for the correct answer:

aerobic because "Cardio" has become slang for aerobic exercise t

The program now displays the shape of the DataFrame:

df.shape

The output shows we still have all the initial lines and four columns:

(10481, 4)

The following code will display the names of the columns:

Assuming 'df' is your DataFrame
print(df.columns)

As a result, the output displays the four columns we need:

Index(['question', 'correct_answer', 'support', 'completion'], d

The data is now ready to be embedded and upserted.

Embedding and upserting the data
in a Chroma collection
We will begin by creating the Chroma client and defining a collection
name:

Import Chroma and instantiate a client. The default Chroma cl
import chromadb
client = chromadb.Client()
collection_name="sciq_supports6"

Before creating the collection and upserting the data to the collection,
we need to verify whether the collection already exists or not:

List all collections
collections = client.list_collections()
Check if the specific collection exists
collection_exists = any(collection.name == collection_name for
print("Collection exists:", collection_exists)

The output will return True if the collection exists and False if it
doesn’t:

Collection exists: False

If the collection doesn’t exist, we will create a collection with
collection_name defined earlier:

Create a new Chroma collection to store the supporting eviden
if collection_exists!=True:
 collection = client.create_collection(collection_name)
else:
 print("Collection ", collection_name," exists:", collection_e

Let’s peek into the structure of the dictionary of the collection we
created:

#Printing the dictionary
results = collection.get()
for result in results:
 print(result) # This will print the dictionary for each it

The output displays the dictionary of each item of the collection:

ids
embeddings
metadatas
documents
uris
data
included

Let’s briefly go through the three key fields for our scenario:

ids : This field represents the unique identifiers for each item in
the collection.

embeddings : Embeddings are the embedded vectors of the
documents.
documents : This refers to the completion column in which we
merged the correct answer and the support content.

We now need a lightweight rapid LLM model for our dynamic RAG
environment.

Selecting a model
Chroma will initialize a default model, which can be all-MiniLM-L6-
v2 . However, let’s make sure we are using this model and initialize it:

model_name = "all-MiniLM-L6-v2" # The name of the model to use

The all-MiniLM-L6-v2 model was designed with an optimal, enhanced
method by Wang et al. (2021) for model compression, focusing on
distilling self-attention relationships between components of
transformer models. This approach is flexible in the number of
attention heads between teacher and student models, improving
compression efficiency. The model is fully integrated into Chroma
with ONNX, as explained in the Installing the environment section of
this chapter.

The magic of this MiniLM model is based on compression and
knowledge distillation through a teacher model and the student
model:

Teacher model: This is the original, typically larger and more
complex model such as BERT, RoBERTa, and XLM-R, in our case,

that has been pre-trained on a comprehensive dataset. The
teacher model possesses high accuracy and a deep
understanding of the tasks it has been trained on. It serves as the
source of knowledge that we aim to transfer.
Student model: This is our smaller, less complex model, all-
MiniLM-L6-v2 , which is trained to mimic the teacher model’s
behavior, which will prove very effective for our dynamic RAG
architecture. The goal is to have the student model replicate the
performance of the teacher model as closely as possible but with
significantly fewer parameters or computational expense.

In our case, all-MiniLM-L6-v2 will accelerate the embedding and
querying process. We can see that in the age of superhuman LLM
models, such as GPT-4o, we can perform daily tasks with smaller
compressed and distilled models. Let’s embed the data next.

Embedding and storing the completions
Embedding and upserting data in a Chroma collection is seamless
and concise. In this scenario, we’ll embed and upsert the whole df
completions in a completion_list extracted from our df dataset:

ldf=len(df)
nb=ldf # number of questions to embed and store
import time
start_time = time.time() # Start timing before the request
Convert Series to list of strings
completion_list = df["completion"][:nb].astype(str).tolist()

We use the collection_exists status we defined when creating the
collection to avoid loading the data twice. In this scenario, the

collection is temporary; we just want to load it once and use it once. If
you try to load the data in this temporary scenario a second time, you
will get warnings. However, you can modify the code if you wish to
try different datasets and methods, such as preparing a prototype at
full speed for another project.

In any case, in this scenario, we first check if the collection exists and
then upsert the ids and documents in the complete_list and store the
type of data, which is completion , in the metadatas field:

Avoiding trying to load data twice in this one run dynamic RA
if collection_exists!=True:
 # Embed and store the first nb supports for this demo
 collection.add(
 ids=[str(i) for i in range(0, nb)], # IDs are just strin
 documents=completion_list,
 metadatas=[{"type": "completion"} for _ in range(0, nb)],
)

Finally, we measure the response time:

response_time = time.time() - start_time # Measure response ti
print(f"Response Time: {response_time:.2f} seconds") # Print r

The output shows that, in this case, Chroma activated the default
model through onnx , as explained in the introduction of this section
and also in the Installing the environment section of this chapter:

/root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx.tar.gz: 10

The output also shows that the processing time for 10,000+
documents is satisfactory:

Response Time: 234.25 seconds

The response time might vary and depends on whether you are using
a GPU. When using an accessible GPU, the time fits the needs
required for dynamic RAG scenarios.

With that, the Chroma vector store is now populated. Let’s take a
peek at the embeddings.

Displaying the embeddings
The program now fetches the embeddings and displays the first one:

Fetch the collection with embeddings included
result = collection.get(include=['embeddings'])
Extract the first embedding from the result
first_embedding = result['embeddings'][0]
If you need to work with the length or manipulate the first e
embedding_length = len(first_embedding)
print("First embedding:", first_embedding)
print("Embedding length:", embedding_length)

The output shows that our completions have been vectorized, as we
can see in the first embedding:

First embedding: [0.03689068928360939, -0.05881563201546669, -0

The output also displays the embedding length, which is interesting:

Embedding length: 384

The all-MiniLM-L6-v2 model reduces the complexity of text data by
mapping sentences and paragraphs into a 384-dimensional space.
This is significantly lower than the typical dimensionality of one-hot
encoded vectors, such as the 1,526 dimensions of the OpenAI text-
embedding-ada-002 . This shows that all-MiniLM-L6-v2 uses dense
vectors, which use all dimensions of the vector space to encode
information to produce nuanced semantic relationships between
different documents as opposed to sparse vectors.

Sparse vector models, such as the bag-of-words (BoW) model, can be
effective in some cases. However, their main limitation is that they
don’t capture the order of words or the context around them, which
can be crucial for understanding the meaning of text when training
LLMs.

We have now embedded the documents into dense vectors in a
smaller dimensional space than full-blown LLMs and will produce
satisfactory results.

Querying the collection
The code in this section executes a query against the Chroma vector
store using its integrated semantic search functionality. It queries the
vector representations of all the vectors in the Chroma collection
questions in the initial dataset:

dataset["question"][:nbq].

The query requests one most relevant or similar document for each
question with n_results=1 , which you can modify if you wish.

Each question text is converted into a vector. Then, Chroma runs a
vector similarity search by comparing the embedded vectors against
our database of document vectors to find the closest match based on
vector similarity:

import time
start_time = time.time() # Start timing before the request
number of retrievals to write
results = collection.query(
 query_texts=df["question"][:nb],
 n_results=1)
response_time = time.time() - start_time # Measure response ti
print(f"Response Time: {response_time:.2f} seconds") # Print r

The output displays a satisfactory response time for the 10,000+
queries:

Response Time: 199.34 seconds

We will now analyze the 10,000+ queries. We will use spaCy to
evaluate a query’s result and compare it with the original completion.
We first load the spaCy model we installed in the Installing the
environment section of this chapter:

import spacy
import numpy as np

Load the pre-trained spaCy language model
nlp = spacy.load('en_core_web_md') # Ensure that you've instal

The program then creates a similarity function that takes two
arguments (the original completion, text1 , and the retrieved text,
text2) and returns the similarity value:

def simple_text_similarity(text1, text2):
 # Convert the texts into spaCy document objects
 doc1 = nlp(text1)
 doc2 = nlp(text2)

 # Get the vectors for each document
 vector1 = doc1.vector
 vector2 = doc2.vector

 # Compute the cosine similarity between the two vectors
 # Check for zero vectors to avoid division by zero
 if np.linalg.norm(vector1) == 0 or np.linalg.norm(vector2)
 return 0.0 # Return zero if one of the texts does not
 else:
 similarity = np.dot(vector1, vector2) / (np.linalg.norm
 return similarity

We will now perform a full validation run on the 10,000 queries. As
can be seen in the following code block, the validation begins by
defining the variables we will need:

nbqd to only display the first 100 and last 100 results.
acc_counter measures the results with a similarity score superior
to 0.5, which you can modify to fit your needs.

display_counter to count the number of results we have
displayed:

nbqd = 100 # the number of responses to display, supposing the
Print the question, the original completion, the retrieved do
acc_counter=0
display_counter=0

The program goes through nb results, which, in our case, is the total
length of our dataset:

for i, q in enumerate(df['question'][:nb]):
 original_completion = df['completion'][i] # Access the ori
 retrieved_document = results['documents'][i][0] # Retrieve
 similarity_score = simple_text_similarity(original_completi

The code accesses the original completion and stores it in
original_completion . Then, it retrieves the result and stores it in
retrieved_document . Finally, it calls the similarity function we defined,
simple_text_similarity . The original completion and the retrieved
document store the similarity score in similarity_score .

Now, we introduce an accuracy metric. In this scenario, the threshold
of the similarity score is set to 0.7 , which is reasonable:

 if similarity_score > 0.7:
 acc_counter+=1

If similarity_score > 0.7 , then the accuracy counter, acc_counter , is
incremented. The display counter, display_counter , is also

incremented to only the first and last nbqd (maximum results to
display) defined at the beginning of this function:

 display_counter+=1
 if display_counter<=nbqd or display_counter>nb-nbqd:

The information displayed provides insights into the performance of
the system:

 print(i," ", f"Question: {q}")
 print(f"Retrieved document: {retrieved_document}")
 print(f"Original completion: {original_completion}")
 print(f"Similarity Score: {similarity_score:.2f}")
 print() # Blank line for better readability between entr

The output displays four key variables:

{q} is the question asked, the query.
{retrieved_document} is the document retrieved.
{original_completion} is the original document in the dataset.
{similarity_score:.2f} is the similarity score between the
original document and the document retrieved to measure the
performance of each response.

The first output provides the information required for a human
observer to control the result of the query and trace it back to the
source.

The first part of the output is the question, the query:

Question: What type of organism is commonly used in preparation

The second part of the output is the retrieved document:

Retrieved document: lactic acid because Bacteria can be used to

The third part of the output is the original completion. In this case,
we can see that the retrieved document provides relevant information
but not the exact original completion:

Original completion: mesophilic organisms because Mesophiles gro

Finally, the output displays the similarity score calculated by spaCy:

Similarity Score: 0.73

The score shows that although the original completion was not
selected, the completion selected is relevant.

When all the results have been analyzed, the program calculates the
accuracy obtained for the 10,000+ queries:

if nb>0:
 acc=acc_counter/nb

The calculation is based on the following:

Acc is the overall accuracy obtained

acc_counter is the total of Similarity scores > 0.7
nb is the number of queries. In this case, nb=len(df)
acc=acc_counter/nb calculates the overall accuracy of all the
results

The code then displays the number of documents measured and the
overall similarity score:

 print(f"Number of documents: {nb:.2f}")
 print(f"Overall similarity score: {acc:.2f}")

The output shows that all the questions returned relevant results:

Number of documents: 10481.00
Overall similarity score: 1.00

This satisfactory overall similarity score shows that the system works
in a closed environment. But we need to go further and see what
happens in the open environment of heated discussions in a meeting!

Prompt and retrieval
This section is the one to use during real-time querying meetings. You
can adapt the interface to your needs. We’ll focus on functionality.

Let’s look at the first prompt:

initial question
prompt = "Millions of years ago, plants used energy from the su
variant 1 similar
#prompt = "Eons ago, plants used energy from the sun to form wh

variant 2 divergent
#prompt = "Eons ago, plants used sun energy to form what?"

You will notice that there are two commented variants under the first
prompt. Let’s clarify this:

initial question is the exact text that comes from the initial
dataset. It isn’t likely that an attendee in the meeting or a user
will ask the question that way. But we can use it to verify if the
system is working.
variant 1 is similar to the initial question and could be asked.
variant 2 diverges and may prove challenging.

We will select variant 1 for this section and we should obtain a
satisfactory result.

We can see that, as for all AI programs, human control is mandatory!
The more variant 2 diverges with spontaneous questions, the more
challenging it becomes for the system to remain stable and respond
as we expect. This limit explains why, even if a dynamic RAG system
can adapt rapidly, designing a solid system will require careful and
continual improvements.

If we query the collection as we did in the previous section with one
prompt only this time, we will obtain a response rapidly:

import time
import textwrap
Start timing before the request
start_time = time.time()
Query the collection using the prompt
results = collection.query(
 query_texts=[prompt], # Use the prompt in a list as expect

 n_results=1 # Number of results to retrieve
)
Measure response time
response_time = time.time() - start_time
Print response time
print(f"Response Time: {response_time:.2f} seconds\n")
Check if documents are retrieved
if results['documents'] and len(results['documents'][0]) > 0:
 # Use textwrap to format the output for better readability
 wrapped_question = textwrap.fill(prompt, width=70) # Wrap
 wrapped_document = textwrap.fill(results['documents'][0][0]
 # Print formatted results
 print(f"Question: {wrapped_question}")
 print("\n")
 print(f"Retrieved document: {wrapped_document}")
 print()
else:
 print("No documents retrieved."

The response time is rapid:

Response Time: 0.03 seconds

The output shows that the retrieved document is relevant:

Response Time: 0.03 seconds
Question: Millions of years ago, plants used energy from the sun
Retrieved document: chloroplasts because When ancient plants und
they changed energy in sunlight to stored chemical energy in foo
plants used the food and so did the organisms that ate the plant
After the plants and other organisms died, their remains gradual
changed to fossil fuels as they were covered and compressed by l
of sediments. Petroleum and natural gas formed from ocean organi

and are found together. Coal formed from giant tree ferns and ot
swamp plants.

We have successfully retrieved the result of our query. This semantic
vector search might even be enough if the attendees of the meeting
are satisfied with it. You will always have time to improve the
configuration of RAG with Llama.

Hugging Face Llama will now take this response and write a brief
NLP summary.

RAG with Llama
We initialized meta-llama/Llama-2-7b-chat-hf in the Installing the
environment section. We must now create a function to configure
Llama 2’s behavior:

def LLaMA2(prompt):
 sequences = pipeline(
 prompt,
 do_sample=True,
 top_k=10,
 num_return_sequences=1,
 eos_token_id=tokenizer.eos_token_id,
 max_new_tokens=100, # Control the output length more gr
 temperature=0.5, # Slightly higher for more diversity
 repetition_penalty=2.0, # Adjust based on experimentat
 truncation=True
)
 return sequences

You can tweak each parameter to your expectations:

prompt : The input text that the model uses to generate the output.
It’s the starting point for the model’s response.
do_sample : A Boolean value (True or False). When set to True , it
enables stochastic sampling, meaning the model will pick tokens
randomly based on their probability distribution, allowing for
more varied outputs.
top_k : This parameter limits the number of highest-probability
vocabulary tokens to consider when selecting tokens in the
sampling process. Setting it to 10 means the model will choose
from the top 10 most likely next tokens.
num_return_sequences : Specifies the number of independently
generated responses to return. Here, it is set to 1 , meaning the
function will return one sequence for each prompt.
eos_token_id : This token marks the end of a sequence in
tokenized form. Once it is generated, the model stops generating
further tokens. The end-of-sequence token is an id that points to
Llama’s eos_token .
max_new_tokens : Limits the number of new tokens the model can
generate. Set to 100 here, it constrains the output to a maximum
length of 100 tokens beyond the input prompt length.
temperature : This controls randomness in the sampling process.
A temperature of 0.5 makes the model’s responses less random
and more focused than a higher temperature but still allows for
some diversity.
repetition_penalty : A modifier that discourages the model from
repeating the same token. A penalty of 2.0 means any token
already used is less likely to be chosen again, promoting more
diverse and less repetitive text.

truncation : When enabled, it ensures the output does not exceed
the maximum length specified by max_new_tokens by cutting off
excess tokens.

The prompt will contain the instruction for Llama in iprompt and the
result obtained in the Prompt and retrieval section of the notebook. The
result is appended to iprompt :

iprompt='Read the following input and write a summary for begin
lprompt=iprompt + " " + results['documents'][0][0]

The augmented input for the Llama call is lprompt . The code will
measure the time it takes and make the completion request:

import time
start_time = time.time() # Start timing before the request
response=LLaMA2(lprompt)

We now retrieve the generated text from the response and display the
time it took for Llama to respond:

for seq in response:
 generated_part = seq['generated_text'].replace(iprompt, '')

response_time = time.time() - start_time # Measure response ti
print(f"Response Time: {response_time:.2f} seconds") # Print r

The output shows that Llama returned the completion in a reasonable
time:

Response Time: 5.91 seconds

Let’s wrap the response in a nice format to display it:

wrapped_response = textwrap.fill(response[0]['generated_text'],
print(wrapped_response)

The output displays a technically reasonable completion:

chloroplasts because When ancient plants underwent photosynthesi
they changed energy in sunlight to stored chemical energy in foo
plants used the food and so did the organisms that ate the plant
After the plants and other organisms died, their remains gradual
changed to fossil fuels as they were covered and compressed by l
of sediments. Petroleum and natural gas formed from ocean organi
and are found together. Coal formed from giant tree ferns and ot
swamp plants. Natural Gas: 10% methane (CH4) - mostly derived fr
anaerobic decomposition or fermentation processes involving
microorganism such As those present In wetlands; also contains s
amounts Of ethene(C2H6), propiene/propadiene/(C3 H5-7). This is
most petrol comes frm! But there're more complex hydrocarbons li
pentanes & hexans too which can come

The summary produced by Llama is technically acceptable. To obtain
another, possibly better result, as long as the session is not closed, the
user can run a query and an augmented generation several times
with different Llama parameters.

You can even try another LLM. Dynamic RAG doesn’t necessarily
have to be 100% open-source. If necessary, we must be pragmatic and
introduce whatever it takes. For example, the following prompt was

submitted to ChatGPT with GPT-4o, which is the result of the query
we used for Llama:

Write a nice summary with this text: Question: Millions of year
Retrieved document: chloroplasts because When ancient plants un
they changed energy in sunlight to stored chemical energy in fo
changed to fossil fuels as they were covered and compressed by

The output of OpenAI GPT-4o surpasses Llama 2 in this case and
produces a satisfactory output:

Millions of years ago, plants harnessed energy from the sun thro

If necessary, you can replace meta-llama/Llama-2-7b-chat-hf with
GPT-4o, as implemented in Chapter 4, Multimodal Modular RAG for
Drone Technology, and configure it to obtain this level of output. The
only rule in dynamic RAG is performance. With that, we’ve seen that
there are many ways to implement dynamic RAG.

Once the session is over, we can delete it.

Deleting the collection
You can manually delete the collection with the following code:

#client.delete_collection(collection_name)

You can also close the session to delete the temporary dynamic RAG
collection created. We can check and see whether the collection we

created, collection_name , still exists or not:

List all collections
collections = client.list_collections()
Check if the specific collection exists
collection_exists = any(collection.name == collection_name for
print("Collection exists:", collection_exists)

If we are still working on a collection in a session, the response will
be True :

Collection exists: True

If we delete the collection with code or by closing the session, the
response will be False . Let’s take a look at the total session time.

Total session time
The following code measures the time between the beginning of the
session and immediately after the Installing the environment section:

end_time = time.time() - session_start_time # Measure response
print(f"Session preparation time: {response_time:.2f} seconds")

The output can have two meanings:

It can measure the time we worked on the preparation of the
dynamic RAG scenario with the daily dataset for the Chroma
collection, querying, and summarizing by Llama.

It can measure the time it took to run the whole notebook
without intervening at all.

In this case, the session time is the result of a full run with no human
intervention:

Session preparation time: 780.35 seconds

The whole process takes less than 15 minutes, which fits the
constraints of the preparation time in a dynamic RAG scenario. It
leaves room for a few runs to tweak the system before the meeting.
With that, we have successfully walked through a dynamic RAG
process and will now summarize our journey.

Summary
In a fast-evolving world, gathering information rapidly for decision-
making provides a competitive advantage. Dynamic RAG is one way
to bring AI into meeting rooms with rapid and cost-effective AI. We
built a system that simulated the need to obtain answers to hard
science questions in a daily meeting. After installing and analyzing
the environment, we downloaded and prepared the SciQ dataset, a
science question-and-answer dataset, to simulate a daily meeting
during which hard science questions would be asked. The attendees
don’t want to spend their time searching the web and wasting their
time when decisions must be made. This could be for a marketing
campaign, fact-checking an article, or any other situation in which
hard science knowledge is required.

We created a Chroma collection vector store. We then embedded
10,000+ documents and inserted data and vectors into the Chroma
vector store on our machine with all-MiniLM-L6-v2 . The process
proved cost-effective and sufficiently rapid. The collection was
created locally, so there is no storage cost. The collection is
temporary, so there is no useless space usage or cluttering. We then
queried the collection to measure the accuracy of the system we set
up. The results were satisfactory, so we processed the full dataset to
confirm. Finally, we created the functionality for a user prompt and
query function to use in real time during a meeting. The result of the
query augmented the user’s input for meta-llama/Llama-2-7b-chat-hf ,
which transformed the query into a short summary.

The dynamic RAG example we implemented would require more
work before being released into production. However, it provides a
path to open-source, lightweight, RAG-driven generative AI for rapid
data collection, embedding, and querying. If we need to store the
retrieval data and don’t want to create large vector stores, we can
integrate our datasets in an OpenAI GPT-4o-mini model, for
example, through fine-tuning, as we will see in the next chapter.

Questions
Answer the following questions with Yes or No:

1. Does the script ensure that the Hugging Face API token is never
hardcoded directly into the notebook for security reasons?

2. In the chapter’s program, is the accelerate library used here to
facilitate the deployment of ML models on cloud-based
platforms?

3. Is user authentication separate from the API token required to
access the Chroma database in this script?

4. Does the notebook use Chroma for temporary storage of vectors
during the dynamic retrieval process?

5. Is the notebook configured to use real-time acceleration of
queries through GPU optimization?

6. Can this notebook’s session time measurements help in
optimizing the dynamic RAG process?

7. Does the script demonstrate Chroma’s capability to integrate
with ML models for enhanced retrieval performance?

8. Does the script include functionality for adjusting the parameters
of the Chroma database based on session performance metrics?

References
Crowdsourcing Multiple Choice Science Questions by Johannes
Welbl, Nelson F. Liu, Matt Gardner:
http://arxiv.org/abs/1707.06209.
MiniLMv2: Multi-Head Self-Attention Relation Distillation for
Compressing Pretrained Transformers by Wenhui Wang, Hangbo
Bao, Shaohan Huang, Li Dong, Furu Wei:
https://arxiv.org/abs/2012.15828.
Hugging Face Llama model documentation:
https://huggingface.co/docs/transformers/main/en/mod
el_doc/llama.
ONNX: https://onnxruntime.ai/.

http://arxiv.org/abs/1707.06209
https://arxiv.org/abs/2012.15828
https://huggingface.co/docs/transformers/main/en/model_doc/llama
https://huggingface.co/docs/transformers/main/en/model_doc/llama
https://onnxruntime.ai/

Further reading
MiniLM: Deep Self-Attention Distillation for Task-Agnostic
Compression of Pre-Trained Transformers by Wenhui Wang, Furu
Wei, Li Dong, Hangbo Bao, Nan Yang, Ming Zhou:
https://arxiv.org/abs/2002.10957.
LLaMA: Open and Efficient Foundation Language Models by Hugo
Touvron, Thibaut Lavril, Gautier Lzacard, et al.:
https://arxiv.org/abs/2302.13971.
Building an ONNX Runtime package:
https://onnxruntime.ai/docs/build/custom.html#custom
-build-packages.

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2302.13971
https://onnxruntime.ai/docs/build/custom.html#custom-build-packages
https://onnxruntime.ai/docs/build/custom.html#custom-build-packages
https://www.packt.link/rag

9

Empowering AI Models: Fine-
Tuning RAG Data and Human
Feedback

An organization that continually increases the volume of its RAG
data will reach the threshold of non-parametric data (not pretrained
on an LLM). At that point, the mass of RAG data accumulated might
become extremely challenging to manage, posing issues related to
storage costs, retrieval resources, and the capacity of the generative
AI models themselves. Moreover, a pretrained generative AI model is
trained up to a cutoff date. The model ignores new knowledge
starting the very next day. This means that it will be impossible for a
user to interact with a chat model on the content of a newspaper
edition published after the cutoff date. That is when retrieval has a
key role to play in providing RAG-driven content.

Companies like Google, Microsoft, Amazon, and other web giants
may require exponential data and resources. Certain domains, such
as the legal rulings in the United States, may indeed require vast
amounts of data. However, this doesn’t apply to a wide range of
domains. Many corporations do not need to maintain such large
datasets, and in some cases, large portions of static data—like those

in hard sciences—can remain stable for a long time. Such static data
can be fine-tuned to reduce the volume of RAG data required.

In this chapter, therefore, we will first examine the architecture of
RAG data reduction through fine-tuning. We will focus on a dataset
that contains ready-to-use documents but also stresses the human-
feedback factor. We will demonstrate how to transform non-
parametric data into parametric, fine-tuned data in an OpenAI
model. Then, we will download and prepare the dataset from the
previous chapter, converting the data into well-formatted prompt
and completion pairs for fine-tuning in JSONL. We will fine-tune a
cost-effective OpenAI model, GPT-4o-mini , which will prove sufficient
for the completion task we will implement. Once the model is fine-
tuned, we will test it on our dataset to verify that it has successfully
taken our data into account. Finally, we will explore OpenAI’s
metrics interface, which enables us to monitor our technical metrics,
such as accuracy and usage metrics, to assess the cost-effectiveness of
our approach.

To sum up, this chapter covers the following topics:

The limits of managing RAG data
The challenge of determining what data to fine-tune
Preparing a JSON dataset for fine-tuning
Running OpenAI’s processing tool to produce a JSONL dataset
Fine-tuning an OpenAI model
Managing the fine-tuning processing time
Running the fine-tuned model

Let’s begin by defining the architecture of the fine-tuning process.

The architecture of fine-tuning
static RAG data
In this section, we question the usage of non-parametric RAG data
when it exceeds a manageable threshold, as described in the RAG
versus fine-tuning section in Chapter 1, Why Retrieval Augmented
Generation?, which stated the principle of a threshold. Figure 9.1
adapts the principle to this section:

Figure 9.1: Fine-tuning threshold reached for RAG data

Notice that the processing (D2) and storage (D3) thresholds have
been reached for static data versus the dynamic data in the RAG data
environment. The threshold depends on each project and parameters
such as:

The volume of RAG data to process: Embedding data requires
human and machine resources. Even if we don’t embed the data,
piling up static data (data that is stable over a long period of
time) makes no sense.
The volume of RAG data to store and retrieve: At some point, if
we keep stacking data up, much of it may overlap.
The retrievals require resources: Even if the system is open
source, there is still an increasing number of resources to
manage.

Other factors, too, may come into play for each project. Whatever the
reason, fine-tuning can be a good solution when we reach the RAG
data threshold.

The RAG ecosystem
In this section, we will return to the RAG ecosystem described in
Chapter 1. We will focus on the specific components we need for this
chapter. The following figure presents the fine-tuning components in
color and the ones we will not need in gray:

Figure 9.2: Fine-tuning components of the RAG ecosystem

The key features of the fine-tuning ecosystems we will build can be
summarized in the following points:

Collecting (D1) and preparing (D2) the dataset: We will
download and process the human-crafted crowdsourced SciQ
hard science dataset we implemented in the previous chapter:
https://huggingface.co/datasets/sciq.

https://huggingface.co/datasets/sciq

Human feedback (E2): We can assume that human feedback
played an important role in the SciQ hard science dataset. The
dataset was controlled by humans and updated so we can think
of it as a simulation of how reliable human feedback can be fine-
tuned to alleviate the volume of RAG datasets. We can go further
and say it is possible that, in real-life projects, the explanations
present in the SciQ dataset can sometimes come from human
evaluations of models, as we explored in Chapter 5, Boosting RAG
Performance with Expert Human Feedback.
Fine-tuning (T2): We will fine-tune a cost-effective OpenAI
model, GPT-4o-mini .
Prompt engineering (G3) and generation and output (G4): We
will engineer the prompts as recommended by OpenAI and
display the output.
Metrics (E1): We will look at the main features of OpenAI’s
Metrics interface.

Let’s now go to our keyboards to collect and process the SciQ dataset.

Installing the environment
Installing an environment has become complex with the rapid
evolution of AI and cross-platform dependency conflicts, as we saw
in Chapter 2, RAG Embedding Vector Stores with Deep Lake and OpenAI,
in the Setting up the environment section. We will thus freeze the
package versions when possible.

For this program, open the Fine_tuning_OpenAI_GPT_4o_mini.ipynb
notebook in the Chapter09 directory on GitHub. The program first
retrieves the OpenAI API key:

#You can retrieve your API key from a file(1)
or enter it manually(2)
#Comment this cell if you want to enter your key manually.
#(1)Retrieve the API Key from a file
#Store you key in a file and read it(you can type it directly i
from google.colab import drive
drive.mount('/content/drive')
f = open("drive/MyDrive/files/api_key.txt", "r")
API_KEY=f.readline()
f.close()

We then install openai and set the API key:

try:
 import openai
except:
 !pip install openai==1.42.0
 import openai
#(2) Enter your manually by
replacing API_KEY by your key.
#The OpenAI Key
import os
os.environ['OPENAI_API_KEY'] =API_KEY
openai.api_key = os.getenv("OPENAI_API_KEY")

Now, we install jsonlines to generate JSONL data:

!pip install jsonlines==4.0.0

We now install datasets :

!pip install datasets==2.20.0

Read the Installing the environment section of Chapter 8, Dynamic RAG
with Chroma and Hugging Face Llama, for explanations of the
dependency conflicts involved when installing datasets .

Some issues with the installation may occur but the dataset will be
downloaded anyway. We must expect and accept such issues as the
leading platforms continually update their packages and create
conflicts with pre-installed environments such as Google Colab. You
can create a special environment for this program. Bear in mind that
your other programs might encounter issues due to other package
constraints.

We are now ready to prepare the dataset.

1. Preparing the dataset for fine-
tuning
Fine-tuning an OpenAI model requires careful preparation;
otherwise, the fine-tuning job will fail. In this section, we will carry
out the following steps:

1. Download the dataset from Hugging Face and prepare it by
processing its columns.

2. Stream the dataset to a JSON file in JSONL format.

The program begins by downloading the dataset.

1.1. Downloading and visualizing the
dataset

We will download the SciQ dataset we embedded in Chapter 8. As we
saw, embedding thousands of documents takes time and resources.
In this section, we will download the dataset, but this time, we will not
embed it. We will let the OpenAI model handle that for us while fine-
tuning the data.

The program downloads the same Hugging Face dataset as in Chapter
8 and filters the training portion of the dataset to include only non-
empty records with the correct answer and support text to explain
the answer to the questions:

Import required libraries
from datasets import load_dataset
import pandas as pd
Load the SciQ dataset from HuggingFace
dataset_view = load_dataset("sciq", split="train")
Filter the dataset to include only questions with support and
filtered_dataset = dataset_view.filter(lambda x: x["support"] !
Print the number of questions with support
print("Number of questions with support: ", len(filtered_datase

The preceding code then prints the number of filtered questions with
support text. The output shows that we have a subset of 10,481
records:

Number of questions with support: 10481

Now, we will load the dataset to a DataFrame and drop the distractor
columns (those with wrong answers to the questions):

Convert the filtered dataset to a pandas DataFrame
df_view = pd.DataFrame(filtered_dataset)
Columns to drop
columns_to_drop = ['distractor3', 'distractor1', 'distractor2']
Dropping the columns from the DataFrame
df_view = df.drop(columns=columns_to_drop)
Display the DataFrame
df_view.head()

The output displays the three columns we need:

Figure 9.3: Output displaying three columns

We need the question that will become the prompt. The
correct_answer and support columns will be used for the completion.
Now that we have examined the dataset, we can stream the dataset
directly to a JSON file.

1.2. Preparing the dataset for fine-
tuning
To train the completion model we will use, we need to write a JSON
file in the very precise JSONL format as required.

We download and process the dataset in the same way as we did to
visualize it in the 1.1. Downloading and visualizing the dataset section,

which is recommended to check the dataset before fine-tuning it.

We now write the messages for GPT-4o-mini in JSONL:

Prepare the data items for JSON lines file
items = []
for idx, row in df.iterrows():
 detailed_answer = row['correct_answer'] + " Explanation: "
 items.append({
 "messages": [
 {"role": "system", "content": "Given a science ques
 {"role": "user", "content": row['question']},
 {"role": "assistant", "content": detailed_answer}
]
 })

We first define the detailed answer (detailed_answer) with the correct
answer ('correct_answer') and a supporting (support) explanation.

Then we define the messages (messages) for the GPT-4o-mini model:

{"role": "system", "content": ...} : This sets the initial
instruction for the language model, telling it to provide detailed
answers to science questions.
{"role": "user", "content": row['question']} : This represents
the user asking a question, taken from the question column of
the DataFrame.
{"role": "assistant", "content": detailed_answer} : This
represents the assistant’s response, providing the detailed
answer constructed earlier.

We can now write our JSONL dataset to a file:

Write to JSON lines file
with jsonlines.open('/content/QA_prompts_and_completions.json',
 writer.write_all(items)

We have given the OpenAI model a structure it expects and has been
trained to understand. We can load the JSON file we just created in a
pandas DataFrame to verify its content:

dfile="/content/QA_prompts_and_completions.json"
import pandas as pd
Load the data
df = pd.read_json(dfile, lines=True)
df

The following excerpt of the file shows that we have successfully
prepared the JSON file:

Figure 9.4: File excerpt

That’s it! We are now ready to run a fine-tuning job.

2. Fine-tuning the model

To train the model, we retrieve our training file and create a fine-
tuning job. We begin by creating an OpenAI client:

from openai import OpenAI
import jsonlines
client = OpenAI()

Then we use the file we generated to create another training file that
is uploaded to OpenAI:

Uploading the training file
result_file = client.files.create(
 file=open("QA_prompts_and_completions.json", "rb"),
 purpose="fine-tune"
)

We print the file information for the dataset we are going to use for
fine-tuning:

print(result_file)
param_training_file_name = result_file.id
print(param_training_file_name)

We now create and display the fine-tuning job:

Creating the fine-tuning job

ft_job = client.fine_tuning.jobs.create(
 training_file=param_training_file_name,
 model="gpt-4o-mini-2024-07-18"
)

Printing the fine-tuning job
print(ft_job)

The output first provides the name of the file, its purpose, its status,
and the OpenAI name of the file ID:

FileObject(id='file-EUPGmm1yAd3axrQ0pyoeAKuE', bytes=8062970, cr

The code displays the details of the fine-tuning job:

FineTuningJob(id='ftjob-O1OEE7eEyFNJsO2Eu5otzWA8', created_at=17

The output provides the details we need to monitor the job. Here is a
brief description of some of the key-value pairs in the output:

Job ID : ftjob-O1OEE7eEyFNJsO2Eu5otzWA8 .
Status : validating_files . This means OpenAI is currently
checking the training file to make sure it’s suitable for fine-
tuning.
Model : gpt-4o-mini-2024-07-18 . We’re using a smaller, more cost-
effective version of GPT-4 for fine-tuning.
Training File : file-EUPGmm1yAd3axrQ0pyoeAKuE . This is the file
we’ve provided that contains the examples to teach the model.

Some key hyperparameters are:

n_epochs : 'auto' : OpenAI will automatically determine the best
number of training cycles.
batch_size : 'auto' : OpenAI will automatically choose the
optimal batch size for training.

learning_rate_multiplier : 'auto' : OpenAI will automatically
adjust the learning rate during training.
Created at : 2024-06-30 08:20:50 .

This information will prove useful if you wish to perform an in-depth
study of fine-tuning OpenAI models. We can also use it to monitor
and manage our fine-tuning process.

2.1. Monitoring the fine-tunes
In this section, we will extract the minimum information we need to
monitor the jobs for all our fine-tunes. We will first query OpenAI to
obtain the three latest fine-tuning jobs:

import pandas as pd
from openai import OpenAI
client = OpenAI()
Assume client is already set up and authenticated
response = client.fine_tuning.jobs.list(limit=3) # increase to

We then initialize the lists of information we want to visualize:

Initialize lists to store the extracted data
job_ids = []
created_ats = []
statuses = []
models = []
training_files = []
error_messages = []
fine_tuned_models = [] # List to store the fine-tuned model nam

Following that, we iterate through response to retrieve the
information we need:

Iterate over the jobs in the response
for job in response.data:
 job_ids.append(job.id)
 created_ats.append(job.created_at)
 statuses.append(job.status)
 models.append(job.model)
 training_files.append(job.training_file)
 error_message = job.error.message if job.error else None
 error_messages.append(error_message)
Append the fine-tuned model name
 fine_tuned_model = job.fine_tuned_model if hasattr(job, 'fi
 else None
 fine_tuned_models.append(fine_tuned_model)

We now create a DataFrame with the information we extracted:

import pandas as pd
Assume client is already set up and authenticated
response = client.fine_tuning.jobs.list(limit=3)
Create a DataFrame
df = pd.DataFrame({
 'Job ID': job_ids,
 'Created At': created_ats,
 'Status': statuses,
 'Model': models,
 'Training File': training_files,
 'Error Message': error_messages,
 'Fine-Tuned Model': fine_tuned_models # Include the fine-tu
})

Finally, we convert the timestamps to readable format and display
the list of fine-tunes and their status:

Convert timestamps to readable format
df['Created At'] = pd.to_datetime(df['Created At'], unit='s')
df = df.sort_values(by='Created At', ascending=False)
Display the DataFrame
df

The output provides a monitoring dashboard of the list of our jobs, as
shown in Figure 9.5:

Figure 9.5: Job list in the pandas DataFrame

You can see that for job 0 , the status of the task is running . The status
informs you of the different steps of the process such as validating
the files, running, failed, or succeeded. In this case, the fine-tuning
process is running. If you refresh this cell regularly, you will see the
status.

We will now retrieve the most recent model trained for the Fine-Tuned
Model column. If the training fails, this column will be empty. If not,
we can retrieve it:

import pandas as pd
generation=False # until the current model is fine-tuned
Attempt to find the first non-empty Fine-Tuned Model
non_empty_models = df[df['Fine-Tuned Model'].notna() & (df['Fin
if not non_empty_models.empty:
 first_non_empty_model = non_empty_models['Fine-Tuned Model'
 print("The latest fine-tuned model is:", first_non_empty_mo
 generation=True
else:
 first_non_empty_model='None'
 print("No fine-tuned models found.")
Display the first non-empty Fine-Tuned Model in the DataFrame
first_non_empty_model = df[df['Fine-Tuned Model'].notna() & (df
print("The lastest fine-tuned model is:", first_non_empty_model

The output will display the name of the latest fine-tuned model if
there is one or inform us that no fine-tuned model is found. In this
case, GPT-4o-mini was successfully trained:

The latest fine-tuned model is: ft:gpt-4o-mini-2024-07-18:person

If a fine-tuned model is found, generation=True , it will trigger the
OpenAI completion calls in the following cells. If no model is found,
generation=False , it will not run the OpenAI API in the rest of the
notebook to avoid using models that you are not training. You can set
generation to True in a new cell and then select any fine-tuned model
you wish.

We know that the training job can take a while. You can refresh the
pandas DataFrame from time to time. You can write code that checks
the status of another job and waits for a name to appear for your

training job or an error message. You can also wait for OpenAI to
send you an email informing you that the training job is finished. If
the training job fails, we must verify our training data for any
inconsistencies, missing values, or incorrect labels. Additionally,
ensure that the JSON file format adheres to OpenAI’s specified
schema, including correct field names, data types, and structure.

Once the training job is finished, we can run completion tasks.

3. Using the fine-tuned OpenAI
model
We are now ready to use our fine-tuned OpenAI GPT-4o-mini model.
We will begin by defining a prompt based on a question taken from
our initial dataset:

Define the prompt
prompt = "What phenomenon makes global winds blow northeast to

The goal is to verify whether the dataset has been properly trained
and will produce results similar to the completions we defined. We
can now run the fine-tuned model:

Assume first_non_empty_model is defined above this snippet
if generation==True:
 response = client.chat.completions.create(
 model=first_non_empty_model,
 temperature=0.0, # Adjust as needed for variability
 messages=[
 {"role": "system", "content": "Given a question, re
 {"role": "user", "content": prompt}

]
)
else:
 print("Error: Model is None, cannot proceed with the API re

The parameters of the request must fit our scenario:

model=first_non_empty_model is our pretrained model.
prompt=prompt is our predefined prompt.
temperature=0.0 is set to a low value because we do not want any
“creativity” for this hard science completion task.

Once we run the request, we can format and display the response.
The following code contains two cells to display and extract the
response.

First, we can print the raw response:

if generation==True:
 print(response)

The output contains the response and information on the process:

ChatCompletion(id='chatcmpl-A32pvH9wLvNsSRmB1sUjxOW4Z6Xr6',…

We then extract the text of the response:

if (generation==True):
 # Access the response from the first choice
 response_text = response.choices[0].message.content
 # Print the response
 print(response_text)

The output is a string:

Coriolis effect Explanation: The Coriolis effect is…

Finally, we can format the response string into a nice paragraph with
the Python wrapper:

import textwrap
if generation==True:
wrapped_text = textwrap.fill(response_text.strip(), 60)
print(wrapped_text)

The output shows that our data has been taken into account:

Coriolis effect Explanation: The Coriolis effect is a
phenomenon that causes moving objects, such as air and
water, to turn and twist in response to the rotation of the
Earth. It is responsible for the rotation of large weather
systems, such as hurricanes, and the direction of trade
winds and ocean currents. In the Northern Hemisphere, the
effect causes moving objects to turn to the right, while in
the Southern Hemisphere, objects turn to the left. The
Coriolis effect is proportional to the speed of the moving
object and the strength of the Earth's rotation, and it is
negligible for small-scale movements, such as water flowing
in a sink.

Let’s look at the initial completion for our prompt:

Figure 9.6: Initial completion

The response is thus satisfactory. This might not always be the case
and might require more work on the datasets (better data, large
volumes of data, etc.) incrementally until you have reached a
satisfactory goal.

You can save the name of your model in a text file or anywhere you
wish. You can now run your model in another program using the
name of your trained model, or you can reload this notebook at any
time:

1. Run the Installing the environment section of this notebook.
2. Define a prompt of your choice related to the dataset we trained.
3. Enter the name of your model in the OpenAI completion request.
4. Run the request and analyze the response.

You can consult OpenAI’s fine-tuning documentation for further
information if necessary:
https://platform.openai.com/docs/guides/fine-
tuning/fine-tuning.

Metrics
OpenAI provides a user interface to analyze the metrics of the
training process and model. You can access the metrics related to
your fine-tuned models at
https://platform.openai.com/finetune/.

The interface displays the list of your fine-tuned jobs:

https://platform.openai.com/docs/guides/fine-tuning/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning/fine-tuning
https://platform.openai.com/finetune/

Figure 9.7: List of fine-tuned jobs

You can choose to view all the fine-tuning jobs, the ones that were
successful, or the ones that failed. If we choose a job that was
successful, for example, we can view the job details as shown in the
following excerpt:

Figure 9.8: Example view

Let’s go through the information provided in this figure:

Status: Indicates the status of the fine-tuning process. In this
case, we can see that the process was completed successfully.
Job ID: A unique identifier for the fine-tuning job. This can be
used to reference the job in queries or for support purposes.
Base model: Specifies the pretrained model used as the starting
point for fine-tuning. In this case, gpt-4o-mini is a version of
OpenAI’s models.

Output model: This is the identifier for the model resulting from
the fine-tuning. It incorporates changes and optimizations based
on the specific training data provided.
Created at: The date and time when the fine-tuning job was
initiated.
Trained tokens: The total number of tokens (pieces of text, such
as words or punctuation) that were processed during training.
This metric helps gauge the extent of training.
Epochs: The number of complete passes the training data went
through during fine-tuning. More epochs can lead to better
learning but too many may lead to overfitting.
Batch size: The number of training examples utilized in one
iteration of model training. Smaller batch sizes can offer more
updates and refined learning but may take longer to train.
LR multiplier: This refers to the learning rate multiplier,
affecting how much the learning rate for the base model is
adjusted during the fine-tuning process. A smaller multiplier can
lead to smaller, more conservative updates to model weights.
Seed: A seed for the random number generator used in the
training process. Providing a seed ensures that the training
process is reproducible, meaning you can get the same results
with the same input conditions.

This information will help tailor the fine-tuning jobs to meet the
specific needs of a project and explore alternative approaches to
optimization and customization. In addition, the interface contains
more information that we can explore to get an in-depth vision of the
fine-tuning process. If we scroll down on the Information tab of our
model, we can see metrics as shown here:

Figure 9.9: Metrics for a fine-tuned model

Training loss and the other available information can guide our
training strategies (data, files, and parameters).

Training loss is a reliable metric used to evaluate the performance of
a machine learning model during training. In this case, Training loss
(1.1570) represents the model’s average error on the training dataset.
Lower training loss values indicate that the model is better fitting the
training data. A training loss of 1.1570 suggests that the model has
learned to predict or classify its training data well during the fine-
tuning process.

We can also examine these values with the Time and Step
information:

Figure 9.10: Training loss during the training job

We must also measure the usage to monitor the cost per period and
model. OpenAI provides a detailed interface at
https://platform.openai.com/usage.

Fine-tuning can indeed be an effective way to optimize RAG data if
we make sure to train a model with high-quality data and the right
parameters. Now, it’s time for us to summarize our journey and
move to our next RAG-driven generative AI implementation.

Summary

https://platform.openai.com/usage

This chapter’s goal was to show that as we accumulate RAG data,
some data is dynamic and requires constant updates, and as such,
cannot be fine-tuned easily. However, some data is static, meaning
that it will remain stable for long periods of time. This data can
become parametric (stored in the weights of a trained LLM).

We first downloaded and processed the SciQ dataset, which contains
hard science questions. This stable data perfectly suits fine-tuning. It
contains a question, answer, and support (explanation) structure,
which makes the data effective for fine-tuning. Also, we can assume
human feedback was required. We can even go as far as imagining
this feedback could be provided by analyzing generative AI model
outputs.

We converted the data we prepared into prompts and completions in
a JSONL file following the recommendations of OpenAI’s
preparation tool. The structure of JSONL was meant to be compatible
with a completion model (prompt and completion) such as GPT-4o-
mini . The program then fine-tuned the cost-effective GPT-4o-mini
OpenAI model, following which we ran the model and found that the
output was satisfactory. Finally, we explored the metrics of the fine-
tuned model in the OpenAI metrics user interface.

We can conclude that fine-tuning can optimize RAG data in certain
cases when necessary. However, we will take this process further in
the next chapter, Chapter 10, RAG for Video Stock Production with
Pinecone and OpenAI, when we run the full-blown RAG-driven
generative AI ecosystem.

Questions

Answer the following questions with yes or no:

1. Do all organizations need to manage large volumes of RAG
data?

2. Is the GPT-4o-mini model described as insufficient for fine-
tuning tasks?

3. Can pretrained models update their knowledge base after the
cutoff date without retrieval systems?

4. Is it the case that static data never changes and thus never
requires updates?

5. Is downloading data from Hugging Face the only source for
preparing datasets?

6. Is all RAG data eventually embedded into the trained model’s
parameters according to the document?

7. Does the chapter recommend using only new data for fine-
tuning AI models?

8. Is the OpenAI Metrics interface used to adjust the learning rate
during model training?

9. Can the fine-tuning process be effectively monitored using the
OpenAI dashboard?

10. Is human feedback deemed unnecessary in the preparation of
hard science datasets such as SciQ?

References
OpenAI fine-tuning documentation:
https://platform.openai.com/docs/guides/fine-tuning/

OpenAI pricing: https://openai.com/api/pricing/

https://platform.openai.com/docs/guides/fine-tuning/
https://openai.com/api/pricing/

Further reading
Test of Fine-Tuning GPT by Astrophysical Data by Yu Wang et al. is
an interesting article on fine-tuning hard science data, which
requires careful data preparation:
https://arxiv.org/pdf/2404.10019

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://arxiv.org/pdf/2404.10019
https://www.packt.link/rag

10

RAG for Video Stock Production
with Pinecone and OpenAI

Human creativity goes beyond the range of well-known patterns due
to our unique ability to break habits and invent new ways of doing
anything, anywhere. Conversely, Generative AI relies on our well-
known established patterns across an increasing number of fields
without really “creating” but rather replicating our habits. In this
chapter, therefore, when we use the term “create” as a practical term,
we only mean “generate.” Generative AI, with its efficiency in
automating tasks, will continue its expansion until it finds ways of
replicating any human task it can. We must, therefore, learn how
these automated systems work to use them for the best in our
projects. Think of this chapter as a journey into the architecture of
RAG in the cutting-edge hybrid human and AI agent era we are
living in. We will assume the role of a start-up aiming to build an AI-
driven downloadable stock of online videos. To achieve this, we will
establish a team of AI agents that will work together to create a stock
of commented and labeled videos.

Our journey begins with the Generator agent in Pipeline 1: The
Generator and the Commentator. The Generator agent creates world
simulations using Sora, an OpenAI text-to-video model. You’ll see

how the inVideo AI application, powered by Sora, engages in
“ideation,” transforming an idea into a video. The Commentator
agent then splits the AI-generated videos into frames and generates
technical comments with an OpenAI vision model. Next, in Pipeline 2:
The Vector Store Administrator, we will continue our journey and build
the Vector Store Administrator that manages Pinecone. The Vector
Store Administrator will embed the technical video comments
generated by the Commentator, upsert the vectorized comments, and
query the Pinecone vector store to verify that the system is functional.
Finally, we will build the Video Expert that processes user inputs,
queries the vector store, and retrieves the relevant video frames.
Finally, in Pipeline 3: The Video Expert, the Video Expert agent will
augment user inputs with the raw output of the query and activate its
expert OpenAI GPT-4o model, which will analyze the comment,
detect imperfections, reformulate it more efficiently, and provide a
label for the video.

By the end of the chapter, you will know how to automatically
generate a stock of short videos by automating the process of going
from raw footage to videos with descriptions and labels. You’ll be
able to offer a service where users can simply type a few words and
obtain a video with a custom, real-time description and label.

Summing that up, this chapter covers the following topics:

Designing Generative AI videos and comments
Splitting videos into frames for OpenAI’s vision analysis models
Embedding the videos and upserting the vectors to a Pinecone
index
Querying the vector store

Improving and correcting the video comments with OpenAI
GPT-4o
Automatically labeling raw videos
Displaying the full result of the raw video process with a
commented and labeled video
Evaluating outputs and implementing metric calculations

Let’s begin by defining the architecture of RAG for video production.

The architecture of RAG for video
production
Automating the process of real-world video generation, commenting,
and labeling is extremely relevant in various industries, such as
media, marketing, entertainment, and education. Businesses and
creators are continuously seeking efficient ways to produce and
manage content that can scale with growing demand. In this chapter,
you will acquire practical skills that can be directly applied to meet
these needs.

The goal of our RAG video production use case in this chapter is to
process AI-generated videos using AI agents to create a video stock of
labeled videos to identify them. The system will also dynamically
generate custom descriptions by pinpointing AI-generated technical
comments on specific frames within the videos that fit the user input.
Figure 10.1 illustrates the AI-agent team that processes RAG for video
production:

Figure 10.1: From raw videos to labeled and commented videos

We will implement AI agents for our RAG video production pipeline
that will:

Generate raw videos automatically and download them
Split the videos into frames
Analyze a sample of frames
Activate an OpenAI LLM model to generate technical comments
Save the technical comments with a unique index, the comment
itself, the frame number analyzed, and the video file name
Upsert the data in a Pinecone index vector store
Query the Pinecone vector store with user inputs
Retrieve the specific frame within a video that is most similar to
its technical comment
Augment the user input with the technical comment of the
retrieved frame
Ask the OpenAI LLM to analyze the logic of the technical
comment that may contain contradictions and imperfections
detected in the video and then produce a dynamic, well-tailored
description of the video with the frame number and the video
file name

Display the selected video
Evaluate the outputs and apply metric calculations

We will thus go from raw videos to labeled videos with tailored
descriptions based on the user input. For example, we will be able to
ask precise questions such as the following:

"Find a basketball player that is scoring with a dunk."

This means that the system will be able to find a frame (image) within
the initially unlabeled video, select the video, display it, and generate
a tailored comment dynamically. To attain our goal, we will
implement AI agents in three pipelines, as illustrated in the following
figure:

Figure 10.2: The RAG for Video Production Ecosystem with Generative AI agents

Now, what you see in the figure above is:

Pipeline 1: The Generator and the Commentator

The Generator produces AI-generated videos with OpenAI
Sora. The Commentator splits the videos into frames that are
commented on by one of OpenAI’s vision models. The
Commentator agent then saves the comments.

Pipeline 2: The Vector Store Administrator

This pipeline will embed and upsert the comments made by
Pipeline 1 to a Pinecone index.

Pipeline 3: The Video Expert

This pipeline will query the Pinecone vector store based on user
input. The query will return the most similar frame within a
video, augment the input with the technical comment, and ask
OpenAI GPT-4o to find logic imperfections in the video, point
them out, and then produce a tailored comment of the video for
the user and a label. This section also contains evaluation
functions (the Evaluator) and metric calculations.

Time measurement functions are encapsulated in
several of the key functions of the preceding
ecosystem.

The RAG video production system we will build allows indefinite
scaling by processing one video at a time, using only a CPU and little
memory, while leveraging Pinecone’s storage capacity. This
effectively demonstrates the concept of automated video production,
but implementing this production system in a real-life project
requires hard work. However, the technology is there, and the future
of video production is undergoing a historical evolution. Let’s dive
into the code, beginning with the environment.

The environment of the video
production ecosystem
The Chapter10 directory on GitHub contains the environment for all
four notebooks in this chapter:

Videos_dataset_visualization.ipynb

Pipeline_1_The_Generator_and_the_Commentator.ipynb

Pipeline_2_The_Vector_Store_Administrator.ipynb

Pipeline_3_The_Video_Expert.ipynb

Each notebook includes an Installing the environment section,
including a set of the following sections that are identical across all
notebooks:

Importing modules and libraries
GitHub
Video download and display functions
OpenAI
Pinecone

This chapter aims to establish a common pre-production installation
policy that will focus on the pipelines’ content once we dive into the
RAG for video production code. This policy is limited to the scenario
described in this chapter and will vary depending on the
requirements of each real-life production environment.

The notebooks in this chapter only require a CPU,
limited memory, and limited disk space. As such, the
whole process can be streamlined indefinitely one
video at a time in an optimized, scalable environment.

Let’s begin by importing the modules and libraries we need for our
project.

Importing modules and libraries
The goal is to prepare a pre-production global environment common
to all the notebooks. As such, the modules and libraries are present in
all four notebooks regardless of whether they are used or not in a
specific program:

from IPython.display import HTML # to display videos
import base64 # to encode videos as base64
from base64 import b64encode # to encode videos as base64
import os # to interact with the operating system
import subprocess # to run commands
import time # to measure execution time
import csv # to save comments
import uuid # to generate unique ids
import cv2 # to split videos
from PIL import Image # to display videos
import pandas as pd # to display comments
import numpy as np # to use Numerical Python
from io import BytesIO #to manage a binary stream of data in me

Each of the four notebooks contains these modules and libraries, as
shown in the following table:

Code Comment

from IPython.display

import HTML

To display videos

import base64 To encode videos as base64

from base64 import

b64encode

To encode videos as base64

import os To interact with the operating system

import subprocess To run commands

import time To measure execution time

import csv To save comments

import uuid To generate unique IDs

import cv2 To split videos (open source computer
vision library)

from PIL import Image To display videos

import pandas as pd To display comments

import numpy as np To use Numerical Python

from io import BytesIO For a binary stream of data in memory

Table 10.1: Modules and libraries for our video production system

The Code column contains the module or library name, while the
Comment column provides a brief description of their usage. Let’s
move on to GitHub commands.

GitHub
download(directory, filename) is present in all four notebooks. The
main function of download(directory, filename) is to download the
files we need from the book’s GitHub repository:

def download(directory, filename):
 # The base URL of the image files in the GitHub repository
 base_url = 'https://raw.githubusercontent.com/Denis2054/RAG

 # Complete URL for the file
 file_url = f"{base_url}{directory}/{filename}"
 # Use curl to download the file
 try:
 # Prepare the curl command
 curl_command = f'curl -o {filename} {file_url}'
 # Execute the curl command
 subprocess.run(curl_command, check=True, shell=True)
 print(f"Downloaded '{filename}' successfully.")
 except subprocess.CalledProcessError:
 print(f"Failed to download '{filename}'. Check the URL,

The preceding function takes two arguments:

directory , which is the GitHub directory that the file we want to
download is located in
filename , which is the name of the file we want to download

OpenAI
The OpenAI package is installed in all three pipeline notebooks but
not in Video_dataset_visualization.ipynb , which doesn’t require an
LLM. You can retrieve the API key from a file or enter it manually
(but it will be visible):

#You can retrieve your API key from a file(1)
or enter it manually(2)
#Comment this cell if you want to enter your key manually.
#(1)Retrieve the API Key from a file
#Store you key in a file and read it(you can type it directly i
from google.colab import drive
drive.mount('/content/drive')
f = open("drive/MyDrive/files/api_key.txt", "r")

API_KEY=f.readline()o
Nf.close()

You will need to sign up at www.openai.com before running the code
and obtain an API key. The program installs the openai package:

try:
 import openai
except:
 #!pip install openai==1.45.0
 import openai

Finally, we set an environment variable for the API key:

#(2) Enter your manually by
replacing API_KEY by your key.
#The OpenAI Key
os.environ['OPENAI_API_KEY'] =API_KEY
openai.api_key = os.getenv("OPENAI_API_KEY")

Pinecone
The Pinecone section is only present in
Pipeline_2_The_Vector_Store_Administrator.ipynb and
Pipeline_3_The_Video_Expert.ipynb when the Pinecone vector store is
required. The following command installs Pinecone, and then
Pinecone is imported:

!pip install pinecone-client==4.1.1
import pinecone

The program then retrieves the key from a file (or you can enter it
manually):

f = open("drive/MyDrive/files/pinecone.txt", "r")
PINECONE_API_KEY=f.readline()
f.close()

In production, you can set an environment variable or implement the
method that best fits your project so that the API key is never visible.

The Evaluator section of
Pipeline_3_The_Video_Expert.ipynb contains its own
requirements and installations.

With that, we have defined the environment for all four notebooks,
which contain the same sub-sections we just described in their
respective Installing the environment sections. We can now fully focus
on the processes involved in the video production programs. We will
begin with the Generator and Commentator.

Pipeline 1: Generator and
Commentator
A revolution is on its way in computer vision with automated video
generation and analysis. We will introduce the Generator AI agent
with Sora in The AI-generated video dataset section. We will explore
how OpenAI Sora was used to generate the videos for this chapter
with a text-to-video diffusion transformer. The technology itself is
something we have expected and experienced to some extent in

professional film-making environments. However, the novelty relies
on the fact that the software has become mainstream in a few clicks,
with inVideo, for example!

In the The Generator and the Commentator section, we will extend the
scope of the Generator to collecting and processing the AI-generated
videos. The Generator splits the videos into frames and works with
the Commentator, an OpenAI LLM, to produce comments on
samples of video frames.

The Generator’s task begins by producing the AI-generated video
dataset.

The AI-generated video dataset
The first AI agent in this project is a text-to-video diffusion
transformer model that generates a video dataset we will implement.
The videos for this chapter were specifically generated by Sora, a text-
to-video AI model released by OpenAI in February 2024. You can
access Sora to view public AI-generated videos and create your own
at https://ai.invideo.io/. AI-generated videos also allow for free
videos with flexible copyright terms that you can check out at
https://invideo.io/terms-and-conditions/.

Once you have gone through this chapter, you can also
create your own video dataset with any source of
videos, such as smartphones, video stocks, and social
media.

https://ai.invideo.io/
https://invideo.io/terms-and-conditions/

AI-generated videos enhance the speed of creating video datasets.
Teams do not have to spend time finding videos that fit their needs.
They can obtain a video quickly with a prompt that can be an idea
expressed in a few words. AI-generated videos represent a huge leap
into the future of AI applications. Sora’s potential applies to many
industries, including filmmaking, education, and marketing. Its
ability to generate nuanced video content from simple text prompts
opens new avenues for creative and educational outputs.

Although AI-generated videos (and, in particular, diffusion
transformers) have changed the way we create world simulations,
this represents a risk for jobs in many areas, such as filmmaking. The
risk of deep fakes and misinformation is real. At a personal level, we
must take ethical considerations into account when we implement
Generative AI in a project, thus producing constructive, ethical, and
realistic content.

Let’s see how a diffusion transformer can produce realistic content.

How does a diffusion transformer
work?
At the core of Sora, as described by Liu et al., 2024 (see the References
section), is a diffusion transformer model that operates between an
encoder and a decoder. It uses user text input to guide the content
generation, associating it with patches from the encoder. The model
iteratively refines these noisy latent representations, enhancing their
clarity and coherence. Finally, the refined data is passed to the
decoder to reconstruct high-fidelity video frames. The technology
involved includes vision transformers such as CLIP and LLMs such

as GPT-4, as well as other components OpenAI continually includes
in its vision model releases.

The encoder and decoder are integral components of the overall
diffusion model, as illustrated in Figure 10.3. They both play a critical
role in the workflow of the transformer diffusion model:

Encoder: The encoder’s primary function is to compress input
data, such as images or videos, into a lower-dimensional latent
space. The encoder thus transforms high-dimensional visual data
into a compact representation while preserving crucial
information. A lower-dimensional latent space obtained is a
compressed representation of high-dimensional data, retaining
essential features while reducing complexity. For example, a
high-resolution image (1024x1024 pixels, 3 color channels) can be
compressed by an encoder into a vector of 1000 values, capturing
key details like shape and texture. This makes processing and
manipulating images more efficient.
Decoder: The decoder reconstructs the original data from the
latent representation produced by the encoder. It performs the
encoder’s reverse operation, transforming the low-dimensional
latent space back into high-dimensional pixel space, thus
generating the final output, such as images or videos.

Figure 10.3: The encoding and decoding workflow of video diffusion models

The process of a diffusion transformer model goes through five main
steps, as you can observe in the previous figure:

1. The visual encoder transforms datasets of images into a lower-
dimensional latent space.

2. The visual encoder splits the lower-dimensional latent space into
patches that are like words in a sentence.

3. The diffusion transformer associates user text input with its
dictionary of patches.

4. The diffusion transformer iteratively refines noisy image
representations generated to produce coherent frames.

5. The visual decoder reconstructs the refined latent
representations into high-fidelity video frames that align with
the user’s instructions.

The video frames can then be played in a sequence. Every second of a
video contains a set of frames. We will be deconstructing the AI-
generated videos into frames and commenting on these frames later.
But for now, we will analyze the video dataset produced by the
diffusion transformer.

Analyzing the diffusion transformer
model video dataset
Open the Videos_dataset_visualization.ipynb notebook on GitHub.
Hopefully, you have installed the environment as described earlier in
this chapter. We will move on to writing the download and display
functions we need.

Video download and display functions
The three main functions each use filename (the name of the video
file) as an argument. The three main functions download and display
videos, and display frames in the videos.

download_video downloads one video at a time from the GitHub
dataset, calling the download function defined in the GitHub
subsection of The environment:

downloading file from GitHub
def download_video(filename):
 # Define your variables
 directory = "Chapter10/videos"
 filename = file_name
 download(directory, filename)

display_video(file_name) displays the video file downloaded by first
encoding in base64 , a binary-to-text encoding scheme that represents
binary data in ASCII string format. Then, the encoded video is
displayed in HTML:

Open the file in binary mode
def display_video(file_name):
 with open(file_name, 'rb') as file:
 video_data = file.read()
 # Encode the video file as base64
 video_url = b64encode(video_data).decode()
 # Create an HTML string with the embedded video
 html = f'''
 <video width="640" height="480" controls>
 <source src="data:video/mp4;base64,{video_url}" type="video
 Your browser does not support the video tag.
 </video>
 '''
 # Display the video
 HTML(html)
 # Return the HTML object
 return HTML(html)

display_video_frame takes file_name , frame_number , and size (the
image size to display) as arguments to display a frame in the video.
The function first opens the video file and then extracts the frame
number set by frame_number :

def display_video_frame(file_name, frame_number, size):
 # Open the video file
 cap = cv2.VideoCapture(file_name)
 # Move to the frame_number
 cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)

 # Read the frame
 success, frame = cap.read()
 if not success:
 return "Failed to grab frame"

The function converts the file from the BGR (blue, green, and red) to
the RGB (red, green, and blue) channel, converts it to PIL, an image
array (such as one handled by OpenCV), and resizes it with the size
parameters:

Convert the color from BGR to RGB
 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 # Convert to PIL image and resize
 img = Image.fromarray(frame)
 img = img.resize(size, Image.LANCZOS) # Resize image to sp

Finally, the function encodes the image in string format with base64
and displays it in HTML:

 # Convert the PIL image to a base64 string to embed in HTML
 buffered = BytesIO()
 img.save(buffered, format="JPEG")
 img_str = base64.b64encode(buffered.getvalue()).decode()
 # Create an HTML string with the embedded image
 html_str = f'''
 <img src="data:image/jpeg;base64,{img_str}" width="{size[0]
 '''
 # Display the image
 display(HTML(html_str))
 # Return the HTML object for further use if needed
 return HTML(html_str)

Once the environment is installed and the video processing functions
are ready, we will display the introduction video.

Introduction video (with audio)
The following cells download and display the introduction video
using the functions we created in the previous section. A video file is
selected and downloaded with the download_video function:

select file
print("Collecting video")
file_name="AI_Professor_Introduces_New_Course.mp4"
#file_name = "AI_Professor_Introduces_New_Course.mp4" # Enter t
print(f"Video: {file_name}")
Downloading video
print("Downloading video: downloading from GitHub")
download_video(file_name)

The output confirms the selection and download status:

Collecting video
Video: AI_Professor_Introduces_New_Course.mp4
Downloading video: downloading from GitHub
Downloaded 'AI_Professor_Introduces_New_Course.mp4' successfully

We can choose to display only a single frame of the video as a
thumbnail with the display_video_frame function by providing the
file name, the frame number, and the image size to display. The
program will first compute frame_count (the number of frames in the
video), frame_rate (the number of frames per second), and
video_duration (the duration of the video). Then, it will make sure

frame_number (the frame we want to display) doesn’t exceed
frame_count . Finally, it displays the frame as a thumbnail:

print("Displaying a frame of video: ",file_name)
video_capture = cv2.VideoCapture(file_name)
frame_count = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'Total number of frames: {frame_count}')
frame_rate = video_capture.get(cv2.CAP_PROP_FPS)
print(f"Frame rate: {frame_rate}")
video_duration = frame_count / frame_rate
print(f"Video duration: {video_duration:.2f} seconds")
video_capture.release()
print(f'Total number of frames: {frame_count}')
frame_number=5
if frame_number > frame_count and frame_count>0:
 frame_number = 1
display_video_frame(file_name, frame_number, size=(135, 90));

Here, frame_number is set to 5 , but you can choose another value. The
output shows the information on the video and the thumbnail:

Displaying a frame of video: /content/AI_Professor_Introduces_N
Total number of frames: 340

We can also display the full video if needed:

#print("Displaying video: ",file_name)
display_video(file_name)

The video will be displayed and can be played with the audio track:

Figure 10.4: AI-generated video

Let’s describe and display AI-generated videos in the /videos
directory of this chapter’s GitHub directory. You can host this dataset
in another location and scale it to the volume that meets your
project’s specifications. The educational video dataset of this chapter
is listed in lfiles :

lfiles = [
 "jogging1.mp4",

 "jogging2.mp4",
 "skiing1.mp4",
 …
 "female_player_after_scoring.mp4",
 "football1.mp4",
 "football2.mp4",
 "hockey1.mp4"
]

We can now move on and display any video we wish.

Displaying thumbnails and videos in the AI-
generated dataset
This section is a generalization of the Introduction video (with audio)
section. This time, instead of downloading one video, it downloads
all the videos and displays the thumbnails of all the videos. You can
then select a video in the list and display it.

The program first collects the video dataset:

for i in range(lf):
 file_name=lfiles[i]
 print("Collecting video",file_name)
 print("Downloading video",file_name)
 download_video(file_name)

The output shows the file names of the downloaded videos:

Collecting video jogging1.mp4
Downloading video jogging1.mp4
Downloaded 'jogging1.mp4' successfully.
Collecting video jogging2.mp4…

The program calculates the number of videos in the list:

lf=len(lfiles)

The program goes through the list and displays the information for
each video and displays its thumbnail:

for i in range(lf):
 file_name=lfiles[i]
 video_capture.release()
 display_video_frame(file_name, frame_number=5, size=(100, 110

The information on the video and its thumbnail is displayed:

Displaying a frame of video: skiing1.mp4
Total number of frames: 58
Frame rate: 30.0
Video duration: 1.93 seconds

You can select a video in the list and display it:

file_name="football1.mp4" # Enter the name of the video file to
#print("Displaying video: ",file_name)
display_video(file_name)

You can click on the video and watch it:

Figure 10.5: Video of a football player

We have explored how the AI-generated videos were produced and
visualized the dataset. We are now ready to build the Generator and
the Commentator.

The Generator and the Commentator
The dataset of AI-generated videos is ready. We will now build the
Generator and the Commentator, which processes one video at a

time, making scaling seamless. An indefinite number of videos can be
processed one at a time, requiring only a CPU and limited disk space.
The Generator and the Commentator work together, as shown in
Figure 10.8. These AI agents will produce raw videos from text and
then split them into frames that they will comment on:

Figure 10.6: The Generator and the Commentator work together to comment on video
frames

The Generator and the Commentator produce the commented frames
required in four main steps that we will build in Python:

1. The Generator generates the text-to-video inVideo video dataset
based on the video production team’s text input. In this chapter,
it is a dataset of sports videos.

2. The Generator runs a scaled process by selecting one video at a
time.

3. The Generator splits the video into frames (images)

4. The Commentator samples frames (images) and comments on
them with an OpenAI LLM model. Each commented frame is
saved with:

Unique ID
Comment
Frame
Video file name

We will now build the Generator and the Commentator in Python,
starting with the AI-generated videos. Open
Pipeline_1_The_Generator_and_the_Commentator.ipynb in the chapter’s
GitHub directory. See the The environment section of this chapter for a
description of the Installing the environment section of this notebook.
The process of going from a video to comments on a sample of
frames only takes three straightforward steps in Python:

1. Displaying the video
2. Splitting the video into frames
3. Commenting on the frames

We will define functions for each step and call them in the Pipeline-1
Controller section of the program. The first step is to define a
function to display a video.

Step 1. Displaying the video
The download function is in the GitHub subsection of the Installing the
environment section of this notebook. It will be called by the Vector
Store Administrator-Pipeline 1 in the Administrator-Pipeline 1 section of
this notebook on GitHub.

display_video(file_name) is the same as defined in the previous
section, The AI-generated video dataset:

Open the file in binary mode
def display_video(file_name):
 with open(file_name, 'rb') as file:
 video_data = file.read()
…
 # Return the HTML object
 return HTML(html)

The downloaded video will now be split into frames.

Step 2. Splitting video into frames
The split_file(file_name) function extracts frames from a video, as
in the previous section, The AI-generated video dataset. However, in this
case, we will expand the function to save frames as JPEG files:

def split_file(file_name):
 video_path = file_name
 cap = cv2.VideoCapture(video_path)
 frame_number = 0
 while cap.isOpened():
 ret, frame = cap.read()
 if not ret:
 break
 cv2.imwrite(f"frame_{frame_number}.jpg", frame)
 frame_number += 1
 print(f"Frame {frame_number} saved.")
 cap.release()

We have split the video into frames and saved them as JPEG images
with their respective frame number, frame_number . The Generator’s
job finishes here and the Commentator now takes over.

Step 3. Commenting on the frames
The Generator has gone from text-to-video to splitting the video and
saving the frames as JPEG frames. The Commentator now takes over
to comment on the frames with three functions:

generate_openai_comments(filename) asks the GPT-4 series vision
model to analyze a frame and produce a response that contains a
comment describing the frame
generate_comment(response_data) extracts the comment from the
response
save_comment(comment, frame_number, file_name) saves the
comment

We need to build the Commentator’s extraction function first:

def generate_comment(response_data):
 """Extract relevant information from GPT-4 Vision response.
 try:
 caption = response_data.choices[0].message.content
 return caption
 except (KeyError, AttributeError):
 print("Error extracting caption from response.")
 return "No caption available."

We then write a function to save the extracted comment in a CSV file
that bears the same name as the video file:

def save_comment(comment, frame_number, file_name):
 """Save the comment to a text file formatted for seamless l
 # Append .csv to the provided file name to create the compl
 path = f"{file_name}.csv"
 # Check if the file exists to determine if we need to write
 write_header = not os.path.exists(path)
 with open(path, 'a', newline='') as f:
 writer = csv.writer(f, delimiter=',', quotechar='"', qu
 if write_header:
 writer.writerow(['ID', 'FrameNumber', 'Comment', 'F
 # Generate a unique UUID for each comment
 unique_id = str(uuid.uuid4())
 # Write the data
 writer.writerow([unique_id, frame_number, comment, file

The goal is to save the comment in a format that can directly be
upserted to Pinecone:

ID : A unique string ID generated with str(uuid.uuid4())
FrameNumber : The frame number of the commented JPEG
Comment : The comment generated by the OpenAI vision model
FileName : The name of the video file

The Commentator’s main function is to generate comments with the
OpenAI vision model. However, in this program’s scenario, we will
not save all the frames but a sample of the frames. The program first
determines the number of frames to process:

def generate_openai_comments(filename):
 video_folder = "/content" # Folder containing your image fra
 total_frames = len([file for file in os.listdir(video_folder)

Then, a sample frequency is set that can be modified along with a
counter:

 nb=3 # sample frequency
 counter=0 # sample frequency counter

The Commentator will then go through the sampled frames and
request a comment:

 for frame_number in range(total_frames):
 counter+=1 # sampler
 if counter==nb and counter<total_frames:
 counter=0
 print(f"Analyzing frame {frame_number}...")
 image_path = os.path.join(video_folder, f"frame_{frame_
 try:
 with open(image_path, "rb") as image_file:
 image_data = image_file.read()
 response = openai.ChatCompletion.create(
 model="gpt-4-vision-preview",

The message is very concise: "What is happening in this image?" The
message also includes the image of the frame:

 messages=[
 {
 "role": "user",
 "content": [
 {"type": "text", "text": "What
 {
 "type": "image",
 "image_url": f"data:image/j
 },

],
 }
],
 max_tokens=150,
)

Once a response is returned, the generate_comment and save_comment
functions are called to extract and save the comment, respectively:

 comment = generate_comment(response)
 save_comment(comment, frame_number,file_name)
 except FileNotFoundError:
 print(f"Error: Frame {frame_number} not found.")
 except Exception as e:
 print(f"Unexpected error: {e}")

The final function we require of the Commentator is to display the
comments by loading the CSV file produced in a pandas DataFrame:

Read the video comments file into a pandas DataFrame
def display_comments(file_name):
 # Append .csv to the provided file name to create the complet
 path = f"{file_name}.csv"
 df = pd.read_csv(path)
 return df

The function returns the DataFrame with the comments. An
administrator controls Pipeline 1, the Generator, and the
Commentator.

Pipeline 1 controller

The controller runs jobs for the preceding three steps of the Generator
and the Commentator. It begins with Step 1, which includes selecting
a video, downloading it, and displaying it. In an automated pipeline,
these functions can be separated. For example, a script would iterate
through a list of videos, automatically select each one, and
encapsulate the controller functions. In this case, in a pre-production
and educational context, we will collect, download, and display the
videos one by one:

session_time = time.time() # Start timing before the request
Step 1: Displaying the video
select file
print("Step 1: Collecting video")
file_name = "skiing1.mp4" # Enter the name of the video file to
print(f"Video: {file_name}")
Downloading video
print("Step 1:downloading from GitHub")
directory = "Chapter10/videos"
download(directory,file_name)
Displaying video
print("Step 1:displaying video")
display_video(file_name)

The controller then splits the video into frames and comments on the
frames of the video:

Step 2.Splitting video
print("Step 2: Splitting the video into frames")
split_file(file_name)

The controller activates the Generator to produce comments on
frames of the video:

Step 3.Commenting on the video frames
print("Step 3: Commenting on the frames")
start_time = time.time() # Start timing before the request
generate_openai_comments(file_name)
response_time = time.time() - session_time # Measure response

The response time is measured as well. The controller then adds
additional outputs to display the number of frames, the comments,
the content generation time, and the total controller processing times:

number of frames
video_folder = "/content" # Folder containing your image frame
total_frames = len([file for file in os.listdir(video_folder) i
print(total_frames)
Display comments
print("Commenting video: displaying comments")
display_comments(file_name)
total_time = time.time() - start_time # Start timing before th
print(f"Response Time: {response_time:.2f} seconds") # Print r
print(f"Total Time: {total_time:.2f} seconds") # Print respons

The controller has completed its task of producing content. However,
depending on your project, you can introduce dynamic RAG for
some or all the videos. If you need this functionality, you can apply
the process described in Chapter 5, Boosting RAG Performance with
Expert Human Feedback, to the Commentator’s outputs, including the
cosine similarity quality control metrics, as we will in the Pipeline 3:
The Video Expert section of this chapter.

The controller can also save the comments and frames.

Saving comments
To save the comments, set save=True . To save the frames, set
save_frames=True . Set both values to False if you just want to run the
program and view the outputs, but, in our case, we will set them as
True :

Ensure the file exists and double checking before saving the
save=True # double checking before saving the comments
save_frames=True # double checking before saving the frames

The comment is saved in CSV format in cpath and contains the file
name with the .csv extension and in the location of your choice. In
this case, the files are saved on Google Drive (make sure the path
exists):

Save comments
if save==True: # double checking before saving the comments
 # Append .csv to the provided file name to create the complet
 cpath = f"{file_name}.csv"
 if os.path.exists(cpath):
 # Use the Python variable 'path' correctly in the shell c
 !cp {cpath} /content/drive/MyDrive/files/comments/{cpath}
 print(f"File {cpath} copied successfully.")
 else:
 print(f"No such file: {cpath}")

The output confirms that a file is saved:

File alpinist1.mp4.csv copied successfully.

The frames are saved in a root name direction, for which we remove
the extension with root_name = root_name + extension.strip('.') :

Save frames
import shutil
if save_frames==True:
 # Extract the root name by removing the extension
 root_name, extension = os.path.splitext(file_name)
 # This removes the period from the extension
 root_name = root_name + extension.strip('.')
 # Path where you want to copy the jpg files
 target_directory = f'/content/drive/MyDrive/files/comments/{r
 # Ensure the directory exists
 os.makedirs(target_directory, exist_ok=True)
 # Assume your jpg files are in the current directory. Modify
 source_directory = os.getcwd() # or specify a different dire
 # List all jpg files in the source directory
 for file in os.listdir(source_directory):
 if file.endswith('.jpg'):
 shutil.copy(os.path.join(source_directory, file), targe

The output is a directory with all the frames generated in it. We
should delete the files if the controller runs in a loop over all the
videos in a single session.

Deleting files
To delete the files, just set delf=True :

delf=False # double checking before deleting the files in a se
if delf==True:
 !rm -f *.mp4 # video files

 !rm -f *.jpg # frames
 !rm -f *.csv # comments

You can now process an unlimited number of videos one by one and
scale to whatever size you wish, as long as you have disk space and a
CPU!

Pipeline 2: The Vector Store
Administrator
The Vector Store Administrator AI agent performs the tasks we
implemented in Chapter 6, Scaling RAG Bank Customer Data with
Pinecone. The novelty in this section relies on the fact that all the data
we upsert for RAG is AI-generated. Let’s open
Pipeline_2_The_Vector_Store_Administrator.ipynb in the GitHub
repository. We will build the Vector Store Administrator on top of the
Generator and the Commentator AI agents in four steps, as illustrated
in the following figure:

Figure 10.7: Workflow of the Vector Store Administrator from processing to querying video
frame comments

1. Processing the video comments: The Vector Store Administrator
will load and prepare the comments for chunking as in the
Pipeline 2: Scaling a Pinecone Index (vector store) section of Chapter
6. Since we are processing one video at a time in a pipeline, the
system deletes the files processed, which keeps disk space
constant. You can enhance the functionality and scale this
process indefinitely.

2. Chunking and embedding the dataset: The column names
('ID', 'FrameNumber', 'Comment', 'FileName') of the dataset
have already been prepared by the Commentator AI agent in
Pipeline 1. The program chunks and embeds the dataset using the
same functionality as in Chapter 6 in the Chunking and embedding
the dataset section.

3. The Pinecone index: The Pinecone Index is created, and the data
is upserted as in the Creating the Pinecone Index and Upserting
sections of Chapter 6.

4. Querying the vector store after upserting the dataset: This
follows the same process as in Chapter 6. However, in this case,
the retrieval is hybrid, using both the Pinecone vector store and a
separate file system to store videos and video frames.

Go through Steps 1 to 3 in the notebook to examine the Vector Store
Administrator’s functions. After Step 3, the Pinecone index is ready
for hybrid querying.

Querying the Pinecone index
In the notebook on GitHub, Step 4: Querying the Pinecone index
implements functions to find a comment that matches user input and
trace it to the frame of a video. This leads to the video source and
frame, which can be displayed. We can display the videos and frames
from the location we wish. This hybrid approach thus involves
querying the Pinecone Index to retrieve information and also retrieve
media files from another location.

We saw that a vector store can contain images that are queried, as
implemented in Chapter 4, Multimodal Modular RAG for Drone
Technology. In this chapter, the video production use case videos and
frame files are stored separately. In this case, it is in the GitHub
repository. In production, the video and frame files can be retrieved
from any storage system we need, which may or may not prove to be
more cost-effective than storing data on Pinecone. The decision to

store images in a vector store or a separate location will depend on
the project’s needs.

We begin by defining the number of top-k results we wish to process:

k=1 # number of results

We then design a rather difficult prompt:

query_text = "Find a basketball player that is scoring with a d

Only a handful of frames in the whole video dataset contain an image
of a basketball player jumping to score a slam dunk. Can our system
find it? Let’s find out.

We first embed our query to match the format of the data in the
vector store:

import time
Start timing before the request
start_time = time.time()
Target vector
#query_text = "Find a basketball player."
query_embedding = get_embedding(query_text, model=embedding_mod

Then we run a similarity vector search between the query and the
dataset:

Perform the query using the embedding
query_results = index.query(vector=query_embedding, top_k=k, in
Print the query results along with metadata

print("Query Results:")
for match in query_results['matches']:
 print(f"ID: {match['id']}, Score: {match['score']}")
 # Check if metadata is available
 if 'metadata' in match:
 metadata = match['metadata']
 text = metadata.get('text', "No text metadata available
 frame_number = metadata.get('frame_number', "No frame n
 file_name = metadata.get('file_name', "No file name ava

Finally, we display the content of the response and the response time:

 print(f"Text: {text}")
 print(f"Frame Number: {frame_number}")
 print(f"File Name: {file_name}")
 else:
 print("No metadata available.")
Measure response time
response_time = time.time() - start_time
print(f"Querying response time: {response_time:.2f} seconds")

The output contains the ID of the comment retrieved and its score:

Query Results:
ID: f104138b-0be8-4f4c-bf99-86d0eb34f7ee, Score: 0.866656184

The output also contains the comment generated by the OpenAI LLM
(the Commentator agent):

Text: In this image, there is a person who appears to be in the

The final output contains the frame number that was commented, the
video file of the frame, and the retrieval time:

Frame Number: 191
File Name: basketball3.mp4
Querying response time: 0.57 seconds

We can display the video by downloading it based on the file name:

print(file_name)
downloading file from GitHub
directory = "Chapter10/videos"
filename = file_name
download(directory,file_name)

Then, use a standard Python function to display it:

Open the file in binary mode
def display_video(file_name):
 with open(file_name, 'rb') as file:
 video_data = file.read()
 # Encode the video file as base64
 video_url = b64encode(video_data).decode()
 # Create an HTML string with the embedded video
 html = f'''
 <video width="640" height="480" controls>
 <source src="data:video/mp4;base64,{video_url}" type="video
 Your browser does not support the video tag.
 </video>
 '''
 # Display the video
 HTML(html)
 # Return the HTML object

 return HTML(html)
display_video(file_name)

The video containing a basketball player performing a dunk is
displayed:

Figure 10.8: Video output

We can take this further with more precision by displaying the frame
of the comment retrieved:

file_name_root = file_name.split('.')[0]
…
from IPython.display import Image, display

Specify the directory and file name
directory = '/content/' # Adjust the directory if needed
file_path = os.path.join(directory, frame)
Check if the file exists and verify its size
if os.path.exists(file_path):
 file_size = os.path.getsize(file_path)
 print(f"File '{frame}' exists. Size: {file_size} bytes.")
 # Define a logical size value in bytes, for example, 1000 b
 logical_size = 1000 # You can adjust this threshold as nee
 if file_size > logical_size:
 print("The file size is greater than the logical value.
 display(Image(filename=file_path))
 else:
 print("The file size is less than or equal to the logic
else:
 print(f"File '{frame}' does not exist in the specified dire

The output shows the exact frame that corresponds to the user input:

Figure 10.9: Video frame corresponding to our input

Only the frames of basketball3.mp4 were saved in the
GitHub repository for disk space reasons for this
program. In production, all the frames you decide you
need can be stored and retrieved.

The team of AI agents in this chapter worked together to generate
videos (the Generator), comment on the video frames (the
Commentator), upsert embedded comments in the vector store (the
Vector Store Administrator), and prepare the retrieval process (the
Vector Store Administrator). We also saw that the retrieval process
already contained augmented input and output thanks to the OpenAI
LLM (the Commentator) that generated natural language comments.
The process that led to this point will definitely be applied in many
domains: firefighting, medical imagery, marketing, and more.

What more can we expect from this system? The Video Expert AI
agent will answer that.

Pipeline 3: The Video Expert
The role of the OpenAI GPT-4o Video Expert is to analyze the
comment made by the Commentator OpenAI LLM agent, point out
the cognitive dissonances (things that don’t seem to fit together in the
description), rewrite the comment, and provide a label. The workflow
of the Video Expert, as illustrated in the following figure, also
includes the code of the Metrics calculations and display section of
Chapter 7, Building Scalable Knowledge-Graph-Based RAG with Wikipedia
API and LlamaIndex.

The Commentator’s role was only to describe what it saw. The Video
Expert is there to make sure it makes sense and also label the videos
so they can be classified in the dataset for further use.

Figure 10.10: Workflow of the Video Expert for automated dynamics descriptions and
labeling

1. The Pinecone index will connect to the Pinecone index as
described in the Pipeline 2. The Vector Store Administrator section
of this chapter. This time, we will not upsert data but connect to
the vector store.

2. Define the RAG functions utilizing the straightforward
functions we built in Pipeline 1 and Pipeline 2 of this chapter.

3. Querying the vector store is nothing but querying the Pinecone
Index as described in Pipeline 2 of this chapter.

4. Retrieval augmented generation finally determines the main
role of Video Expert GPT-4o, which is to analyze and improve
the vector store query responses. This final step will include
evaluation and metric functions.

There are as many strategies as projects to implement the video
production use case we explored in this chapter, but the Video Expert
plays an important role. Open Pipeline_3_The_Video_Expert.ipynb on
GitHub and go to the Augmented Retrieval Generation section in Step 2:
Defining the RAG functions.

The function makes an OpenAI GPT-4o call, like for the
Commentator in Pipeline 1. However, this time, the role of the LLM is
quite different:

 "role": "system",
 "content": "You will be provided with comments

The instructions for GPT-4o are:

You will be provided with comments of an image frame taken

from a video : This instructs the LLM to analyze the AI-generated
comments. The Commentator had to remain neutral and
describe the frame as it saw it. The role of the Video Expert agent
is different: it has to analyze and enhance the comment.
1. Point out the cognitive dissonances : This instructs the model
to find contradictions or discrepancies in the comment that can
come from the way the AI-generated video was produced as well
(lack of logic in the video).

2. Rewrite the comment in a logical engaging style : This
instructs the Video Expert agent to rewrite the comment going
from a technical comment to a description.
3. Provide a label for this image such as Label: basketball,

football, soccer or other label : This instructs the model to
provide a label for further use. On GitHub, Step 3: Querying the
Vector Store reproduces the query and output described in
Pipeline 2 for a basketball player scoring with a dunk, with the
corresponding video and frame. The output is:

ID=f104138b-0be8-4f4c-bf99-86d0eb34f7ee
score=0.866193652
text=In this image, there is a person who appears to be in
frame_number=191
file_name=basketball3.mp4

The comment provided seems acceptable. However, let’s see what
GPT-4o thinks of it. The Step 4: Retrieval Augmented Generation section
on GitHub takes the output and submits it as the user prompt to the
Video Expert agent:

prompt=text

We then call the Video Expert agent to obtain its expertise:

response_content = get_openai_response(prompt)
print(response_content)

The output provides the Video Expert’s insights:

1. Cognitive Dissonances:
 - The comment redundantly describes the action of dunking mul
 - The mention of "the word 'dunk' is superimposed on the imag
 - The background details about clear skies and a modern build
2. Rewritten Comment:
 In this image, a basketball player is captured mid-air, execu
3. Label: Basketball

The response is well-structured and acceptable. The output may vary
from one run to another due to the stochastic “creative” nature of
Generative AI agents.

The Evaluator section that follows Step 4 runs ten examples using the
same process as the basketball request we just made. Each example
thus contains:

A user prompt
The comment returned by the vector store query
The enhanced comment made by the GPT-4o model

Each example also contains the same evaluation process as in Chapter
7, Building Scalable Knowledge-Graph-Based RAG with Wikipedia API and
LlamaIndex, in the Examples for metrics section. However, in this case,
the human evaluator suggests content instead of a score (0 to 1). The
human content becomes the ground truth, the expected output.

Before beginning the evaluation, the program creates scores to keep
track of the original response made by the query.

The human evaluator rewrites the output provided by the Video
Expert:

Human feedback flashcard comment
text1 = "This image shows soccer players on a field dribbling a

The content rewritten by the Video Expert is extracted from the
response:

Extract rewritten comment
text2 = extract_rewritten_comment(response_content)

The human comment (ground truth, the reference output) and the
LLM comments are displayed:

print(f"Human Feedback Comment: {text1}")
print(f"Rewritten Comment: {text2}")

Then, the cosine similarity score between the human and LLM
comments is calculated and appended to scores :

similarity_score3=calculate_cosine_similarity_with_embeddings(t
print(f"Cosine Similarity Score with sentence transformer: {sim
scores.append(similarity_score3)

The original score provided with the query is appended to the
query’s retrieval score, rscores :

rscores.append(score)

The output displays the human feedback, the comment rewritten by
GPT-4o (the Video Expert), and the similarity score:

Human Feedback Comment: This image shows soccer players on a fie
Rewritten Comment: "A group of people are engaged in a casual ga
Cosine Similarity Score with sentence transformer: 0.621

This program contains ten examples, but we can enter a corpus of as
many examples as we wish to evaluate the system. The evaluation of
each example applies the same choice of metrics as in Chapter 7. After
the examples have been evaluated, the Metrics calculations and display
section in the program also runs the metric calculations defined in the
section of the same name in Chapter 7.

We can use all the metrics to analyze the performance of the system.
The time measurements throughout the program also provide
insights. The first metric, accuracy, is a good metric to start with. In
this case, it shows that there is room for progress:

Mean: 0.65

Some requests and responses were challenging and required further
work to improve the system:

Checking the quality of the videos and their content
Checking the comments and possibly modifying them with
human feedback, as we did in Chapter 5, Boosting RAG
Performance with Expert Human Feedback
Fine-tuning a model with images and text as we did in Chapter 9,
Empowering AI Models: Fine-Tuning RAG Data and Human Feedback
Designing any other constructive idea that the video production
team comes up with

We can see that RAG-driven Generative AI systems in production are
very effective. However, the road from design to production requires
hard human effort! Though AI technology has made tremendous
progress, it still requires humans to design, develop, and implement
it in production.

Summary
In this chapter, we explored the hybrid era of human and AI agents,
focusing on the creation of a streamlined process for generating,
commenting, and labeling videos. By integrating cutting-edge
Generative AI models, we demonstrated how to build an automated
pipeline that transforms raw video inputs into structured,
informative, and accessible video content.

Our journey began with the Generator agent in Pipeline 1: The
Generator and the Commentator, which was tasked with creating video
content from textual ideas. We can see that video generation
processes will continue to expand through seamless integration
ideation and descriptive augmentation generative agents. In Pipeline
2: The Vector Store Administrator, we focused on organizing and
embedding the generated comments and metadata into a searchable
vector store. In this pipeline, we highlighted the optimization process
of building a scalable video content library with minimal machine
resources using only a CPU and no GPU. Finally, in Pipeline 3: The
Video Expert, we introduced the Expert AI agent, a video specialist
designed to enhance and label the video content based on user
inputs. We also implemented evaluation methods and metric
calculations.

By the end of this chapter, we had constructed a comprehensive,
automated RAG-driven Generative AI system capable of generating,
commenting on, and labeling videos with minimal human
intervention. This journey demonstrated the power and potential of
combining multiple AI agents and models to create an efficient
pipeline for video content creation.

The techniques and tools we explored can revolutionize various
industries by automating repetitive tasks, enhancing content quality,
and making information retrieval more efficient. This chapter not
only provided a detailed technical roadmap but also underscored the
transformative impact of AI in modern content creation and
management. You are now all set to implement RAG-driven
Generative AI in real-life projects.

Questions
Answer the following questions with yes or no:

1. Can AI now automatically comment and label videos?
2. Does video processing involve splitting the video into frames?
3. Can the programs in this chapter create a 200-minute movie?
4. Do the programs in this chapter require a GPU?
5. Are the embedded vectors of the video content stored on disk?
6. Do the scripts involve querying a database for retrieving data?
7. Is there functionality for displaying images in the scripts?
8. Is it useful to have functions that specifically check file existence

and size in any of the scripts?
9. Is there a focus on multimodal data in these scripts?

10. Do any of the scripts mention applications of AI in real-world
scenarios?

References
Sora video generation model information and access:

Sora | OpenAI: https://ai.invideo.io/
https://openai.com/index/video-generation-
models-as-world-simulators/

Sora: A Review on Background, Technology, Limitations, and
Opportunities of Large Vision Models by Yixin Liu, Kai Zhang,
Yuan Li, et al.: https://arxiv.org/pdf/2402.17177

Further reading
OpenAI, ChatGPT: https://openai.com/chatgpt/
OpenAI, Research: https://openai.com/research/
Pinecone: https://docs.pinecone.io/home

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

https://ai.invideo.io/
https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/
https://arxiv.org/pdf/2402.17177
https://openai.com/chatgpt/
https://openai.com/research/
https://docs.pinecone.io/home
https://www.packt.link/rag

Appendix

The appendix here provides answers to all questions added at the
end of each chapter. Double-check your answers to verify that you
have conceptually understood the key concepts.

Chapter 1, Why Retrieval
Augmented Generation?

1. Is RAG designed to improve the accuracy of generative AI
models?

Yes, RAG retrieves relevant data to enhance generative AI
outputs.

2. Does a naïve RAG configuration rely on complex data
embedding?

No, naïve RAG uses basic keyword searches without advanced
embeddings.

3. Is fine-tuning always a better option than using RAG?

No, RAG is better for handling dynamic, real-time data.

4. Does RAG retrieve data from external sources in real time to
enhance responses?

Yes, RAG pulls data from external sources during query
processing.

5. Can RAG be applied only to text-based data?

No, RAG works with text, images, and audio data as well.

6. Is the retrieval process in RAG triggered by a user or automated
input?

The retrieval process in RAG is typically triggered by a query,
which can come from a user or an automated system.

7. Are cosine similarity and TF-IDF both metrics used in advanced
RAG configurations?

Yes, both are used to assess the relevance between queries and
documents.

8. Does the RAG ecosystem include only data collection and
generation components?

No, it also includes storage, retrieval, evaluation, and training.

9. Can advanced RAG configurations process multimodal data
such as images and audio?

Yes, advanced RAG supports processing structured and
unstructured multimodal data.

10. Is human feedback irrelevant in evaluating RAG systems?

No, human feedback is crucial for improving RAG system
accuracy and relevance.

Chapter 2, RAG Embedding Vector
Stores with Deep Lake and OpenAI

1. Do embeddings convert text into high-dimensional vectors for
faster retrieval in RAG?

Yes, embeddings create vectors that capture the semantic
meaning of text.

2. Are keyword searches more effective than embeddings in
retrieving detailed semantic content?

No, embeddings are more context-aware than rigid keyword
searches.

3. Is it recommended to separate RAG pipelines into independent
components?

Yes, this allows parallel development and easier maintenance.

4. Does the RAG pipeline consist of only two main components?

No, the pipeline consists of three components – data collection,
embedding, and generation.

5. Can Activeloop Deep Lake handle both embedding and vector
storage?

Yes, it stores embeddings efficiently for quick retrieval.

6. Is the text-embedding-3-small model from OpenAI used to
generate embeddings in this chapter?

Yes, this model is chosen for its balance between detail and
computational efficiency.

7. Are data embeddings visible and directly traceable in an RAG-
driven system?

Yes, unlike parametric models, embeddings in RAG are
traceable to the source.

8. Can a RAG pipeline run smoothly without splitting into
separate components?

Splitting an RAG pipeline into components improves
specialization, scalability, and security, which helps a system
run smoothly. Simpler RAG systems may still function
effectively without explicit component separation, although it
may not be the optimal setup.

9. Is chunking large texts into smaller parts necessary for
embedding and storage?

Yes, chunking helps optimize embedding and improves the
efficiency of queries.

10. Are cosine similarity metrics used to evaluate the relevance of
retrieved information?

Yes, cosine similarity helps measure how closely retrieved data
matches the query.

Chapter 3, Building Index-Based
RAG with LlamaIndex, Deep Lake,
and OpenAI

1. Do indexes increase precision and speed in retrieval-augmented
generative AI?

Yes, indexes make retrieval faster and more accurate.

2. Can indexes offer traceability for RAG outputs?

Yes, indexes allow tracing back to the exact data source.

3. Is index-based search slower than vector-based search for large
datasets?

No, index-based search is faster and optimized for large
datasets.

4. Does LlamaIndex integrate seamlessly with Deep Lake and
OpenAI?

Yes, LlamaIndex, Deep Lake, and OpenAI work well together.

5. Are tree, list, vector, and keyword indexes the only types of
indexes?

No, these are common, but other types exist as well.

6. Does the keyword index rely on semantic understanding to
retrieve data?

No, it retrieves based on keywords, not semantics.

7. Is LlamaIndex capable of automatically handling chunking and
embedding?

Yes, LlamaIndex automates these processes for easier data
management.

8. Are metadata enhancements crucial for ensuring the traceability
of RAG-generated outputs?

Yes, metadata helps trace back to the source of the generated
content.

9. Can real-time updates easily be applied to an index-based
search system?

Indexes often require re-indexing for updates. However, some
modern indexing systems have been designed to handle real-
time or near-real-time updates more efficiently.

10. Is cosine similarity a metric used in this chapter to evaluate
query accuracy?

Yes, cosine similarity helps assess the relevance of query
results.

Chapter 4, Multimodal Modular
RAG for Drone Technology

1. Does multimodal modular RAG handle different types of data,
such as text and images?

Yes, it processes multiple data types such as text and images.

2. Are drones used solely for agricultural monitoring and aerial
photography?

No, drones are also used for rescue, traffic, and infrastructure
inspections.

3. Is the Deep Lake VisDrone dataset used in this chapter for
textual data only?

No, it contains labeled drone images, not just text.

4. Can bounding boxes be added to drone images to identify
objects such as trucks and pedestrians?

Yes, bounding boxes are used to mark objects within images.

5. Does the modular system retrieve both text and image data for
query responses?

Yes, it retrieves and generates responses from both textual and
image datasets.

6. Is building a vector index necessary for querying the
multimodal VisDrone dataset?

Yes, a vector index is created for efficient multimodal data
retrieval.

7. Are the retrieved images processed without adding any labels
or bounding boxes?

No, images are processed with labels and bounding boxes.

8. Is the multimodal modular RAG performance metric based only
on textual responses?

No, it also evaluates the accuracy of image analysis.

9. Can a multimodal system such as the one described in this
chapter handle only drone-related data?

No, it can be adapted for other industries and domains.

10. Is evaluating images as easy as evaluating text in multimodal
RAG?

No, image evaluation is more complex and requires specialized
metrics.

Chapter 5, Boosting RAG
Performance with Expert Human
Feedback

1. Is human feedback essential in improving RAG-driven
generative AI systems?

Yes, human feedback directly enhances the quality of AI
responses.

2. Can the core data in a generative AI model be changed without
retraining the model?

No, the model’s core data is fixed unless it is retrained.

3. Does Adaptive RAG involve real-time human feedback loops to
improve retrieval?

Yes, Adaptive RAG uses human feedback to refine retrieval
results.

4. Is the primary focus of Adaptive RAG to replace all human
input with automated responses?

No, it aims to blend automation with human feedback.

5. Can human feedback in Adaptive RAG trigger changes in the
retrieved documents?

Yes, feedback can prompt updates to retrieved documents for
better responses.

6. Does Company C use Adaptive RAG solely for customer
support issues?

No, it’s also used for explaining AI concepts to employees.

7. Is human feedback used only when the AI responses have high
user ratings?

No, feedback is often used when responses are rated poorly.

8. Does the program in this chapter provide only text-based
retrieval outputs?

No, it uses both text and expert feedback for responses.

9. Is the Hybrid Adaptive RAG system static, meaning it cannot
adjust based on feedback?

No, it dynamically adjusts to feedback and rankings.

10. Are user rankings completely ignored in determining the
relevance of AI responses?

No, user rankings directly influence the adjustments made to a
system.

Chapter 6, Scaling RAG Bank
Customer Data with Pinecone

1. Does using a Kaggle dataset typically involve downloading and
processing real-world data for analysis?

Yes, Kaggle datasets are used for practical, real-world data
analysis and modeling.

2. Is Pinecone capable of efficiently managing large-scale vector
storage for AI applications?

Yes, Pinecone is designed for large-scale vector storage,
making it suitable for complex AI tasks.

3. Can k-means clustering help validate relationships between
features such as customer complaints and churn?

Yes, k-means clustering is useful for identifying and validating
patterns in datasets.

4. Does leveraging over a million vectors in a database hinder the
ability to personalize customer interactions?

No, handling large volumes of vectors allows for more
personalized and targeted customer interactions.

5. Is the primary objective of using generative AI in business
applications to automate and improve decision-making
processes?

Yes, generative AI aims to automate and refine decision-
making in various business applications.

6. Are lightweight development environments advantageous for
rapid prototyping and application development?

Yes, they streamline development processes, making it easier
and faster to test and deploy applications.

7. Can Pinecone’s architecture automatically scale to accommodate
increasing data loads without manual intervention?

Yes, Pinecone’s serverless architecture supports automatic
scaling to handle larger data volumes efficiently.

8. Is generative AI typically employed to create dynamic content
and recommendations based on user data?

Yes, generative AI is often used to generate customized content
and recommendations dynamically.

9. Does the integration of AI technologies such as Pinecone and
OpenAI require significant manual configuration and
maintenance?

No, these technologies are designed to minimize manual
efforts in configuration and maintenance through automation.

10. Are projects that use vector databases and AI expected to
effectively handle complex queries and large datasets?

Yes, vector databases combined with AI are particularly well-
suited for complex queries and managing large datasets.

Chapter 7, Building Scalable
Knowledge-Graph-based RAG with
Wikipedia API and LlamaIndex

1. Does the chapter focus on building a scalable knowledge graph-
based RAG system using the Wikipedia API and LlamaIndex?

Yes, it details creating a knowledge graph-based RAG system
using these tools.

2. Is the primary use case discussed in the chapter related to
healthcare data management?

No, the primary use case discussed is related to marketing and
other domains.

3. Does Pipeline 1 involve collecting and preparing documents
from Wikipedia using an API?

Yes, Pipeline 1 automates document collection and preparation
using the Wikipedia API.

4. Is Deep Lake used to create a relational database in Pipeline 2?

No, Deep Lake is used to create and populate a vector store,
not a relational database.

5. Does Pipeline 3 utilize LlamaIndex to build a knowledge graph
index?

Yes, Pipeline 3 uses LlamaIndex to build a knowledge graph
index automatically.

6. Is the system designed to only handle a single specific topic,
such as marketing, without flexibility?

No, the system is flexible and can handle various topics
beyond marketing.

7. Does the chapter describe how to retrieve URLs and metadata
from Wikipedia pages?

Yes, it explains the process of retrieving URLs and metadata
using the Wikipedia API.

8. Is a GPU required to run the pipelines described in the chapter?

No, the pipelines are designed to run efficiently using only a
CPU.

9. Does the knowledge graph index visually map out relationships
between pieces of data?

Yes, the knowledge graph index visually displays semantic
relationships in the data.

10. Is human intervention required at every step to query the
knowledge graph index?

No, querying the knowledge graph index is automated, with
minimal human intervention needed.

Chapter 8, Dynamic RAG with
Chroma and Hugging Face Llama

1. Does the script ensure that the Hugging Face API token is never
hardcoded directly into the notebook for security reasons?

Yes, the script provides methods to either use Google Drive or
manual input for API token handling, thus avoiding
hardcoding.

2. In the chapter’s program, is the accelerate library used to
facilitate the deployment of machine learning models on cloud-
based platforms?

No, the accelerate library is used to run models on local
resources such as multiple GPUs, TPUs, and CPUs, not
specifically cloud platforms.

3. Is user authentication, apart from the API token, required to
access the Chroma database in this script?

No, the script does not detail additional authentication
mechanisms beyond using an API token to access Chroma.

4. Does the notebook use Chroma for temporary storage of vectors
during the dynamic retrieval process?

Yes, the script employs Chroma for storing vectors temporarily
to enhance the efficiency of data retrieval.

5. Is the notebook configured to use real-time acceleration of
queries through GPU optimization?

Yes, the accelerate library is used to ensure that the notebook
can leverage GPU resources for optimizing queries, which is
particularly useful in dynamic retrieval settings.

6. Can this notebook’s session time measurements help in
optimizing the dynamic RAG process?

Yes, by measuring session time, the notebook provides insights
that can be used to optimize the dynamic RAG process,
ensuring efficient runtime performance.

7. Does the script demonstrate Chroma’s capability to integrate
with machine learning models for enhanced retrieval
performance?

Yes, the integration of Chroma with the Llama model in this
script highlights its capability to enhance retrieval performance
by using advanced machine learning techniques.

8. Does the script include functionality to adjust the parameters of
the Chroma database based on session performance metrics?

Yes, the notebook potentially allows adjustments to be made
based on performance metrics, such as session time, which can
influence how the notebook is built and adjust the process,
depending on the project.

Chapter 9, Empowering AI Models:
Fine-Tuning RAG Data and Human
Feedback

1. Do all organizations need to manage large volumes of RAG
data?

No, many corporations only need small data volumes.

2. Is the GPT-4-o-mini model described as insufficient for fine-
tuning tasks?

No, GPT-4o-mini is described as cost-effective for fine-tuning
tasks.

3. Can pretrained models update their knowledge base after the
cutoff date without retrieval systems?

No, models are static and rely on retrieval for new information.

4. Is it the case that static data never changes and thus never
requires updates?

No, Only that it remains stable for a long time, not forever.

5. Is downloading data from Hugging Face the only source for
preparing datasets?

Yes, Hugging Face is specifically mentioned as the data source.

6. Are all RAG data eventually embedded into the trained model’s
parameters?

No, non-parametric data remains external.

7. Does the chapter recommend using only new data for fine-
tuning AI models?

No, it suggests fine-tuning with relevant, often stable data.

8. Is the OpenAI metric interface used to adjust the learning rate
during model training?

No, it monitors performance and costs after training.

9. Can the fine-tuning process be effectively monitored using the
OpenAI dashboard?

Yes, the dashboard provides real-time updates on fine-tuning
jobs.

10. Is human feedback deemed unnecessary in the preparation of
hard science datasets such as SciQ?

No, human feedback is crucial for data accuracy and relevance.

Chapter 10, RAG for Video Stock
Production with Pinecone and
OpenAI

1. Can AI now automatically comment and label videos?

Yes, we now create video stocks automatically to a certain
extent.

2. Does video processing involve splitting a video into frames?

Yes, we can split a video into frames before analyzing the
frames.

3. Can the programs in this chapter create a 200-minute movie?

No, for the moment, this cannot be done directly. We would
have to create many videos and then stitch them together with
a video editor.

4. Do the programs in this chapter require a GPU?

No, only a CPU is required, which is cost-effective because the
processing times are reasonable, and the programs mostly rely
on API calls.

5. Are the embedded vectors of the video content stored on disk?

No, the embedded vectors are upserted in a Pinecone vector
database.

6. Do the scripts involve querying a database for retrieving data?

Yes, the scripts query the Pinecone vector database for data
retrieval.

7. Is there functionality for displaying images in the scripts?

Yes, the programs include code to display images after
downloading them.

8. Is it useful to have functions specifically checking file existence
and size in any of the scripts?

Yes, this avoids trying to display files that don’t exist or that
are empty.

9. Is there a focus on multimodal data in these scripts?

Yes, all scripts focus on handling and processing multimodal
data (text, image, and video).

10. Do any of the scripts mention applications of AI in real-world
scenarios?

Yes, these scripts deal with multimodal data retrieval and
processing, which makes them applicable in AI-driven content
management, search, and retrieval systems.

Join our community on Discord
Join our community’s Discord space for discussions with the author
and other readers:

https://www.packt.link/rag

packt.com

Subscribe to our online digital library for full access to over 7,000
books and videos, as well as industry leading tools to help you plan
your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

https://www.packt.com/
https://www.packt.com/

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books
by Packt:

Transformers for Natural Language Processing and Computer
Vision - Third Edition

Denis Rothman

ISBN: 9781805128724

Breakdown and understand the architectures of the Original
Transformer, BERT, GPT models, T5, PaLM, ViT, CLIP, and
DALL-E
Fine-tune BERT, GPT, and PaLM 2 models

https://www.packtpub.com/en-us/product/transformers-for-natural-language-processing-and-computer-vision-9781805128724
https://www.packtpub.com/en-us/product/transformers-for-natural-language-processing-and-computer-vision-9781805128724

Learn about different tokenizers and the best practices for
preprocessing language data
Pretrain a RoBERTa model from scratch
Implement retrieval augmented generation and rules bases to
mitigate hallucinations
Visualize transformer model activity for deeper insights using
BertViz, LIME, and SHAP
Go in-depth into vision transformers with CLIP, DALL-E 2,
DALL-E 3, and GPT-4V

Generative AI Application Integration Patterns

Juan Pablo Bustos, Luis Lopez Soria

ISBN: 9781835887608

Concepts of GenAI: pre-training, fine-tuning, prompt
engineering, and RAG
Framework for integrating AI: entry points, prompt pre-
processing, inference, post-processing, and presentation
Patterns for batch and real-time integration
Code samples for metadata extraction, summarization, intent
classification, question-answering with RAG, and more
Ethical use: bias mitigation, data privacy, and monitoring
Deployment and hosting options for GenAI models

https://www.packtpub.com/en-us/product/generative-ai-application-integration-patterns-9781835887608
https://www.packtpub.com/en-us/product/generative-ai-application-integration-patterns-9781835887608

Packt is searching for authors like
you
If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

https://authors.packtpub.com/

Share your thoughts
Now you’ve finished RAG-Driven Generative AI, we’d love to hear
your thoughts! If you purchased the book from Amazon, please
click here to go straight to the Amazon review page for
this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will
help us make sure we’re delivering excellent quality content.

https://packt.link/r/1836200919

Index

A
Activeloop

URL 40

Activeloop Deep Lake 32, 33
adaptive RAG 116-118

selection system 123

advanced RAG 4, 20
index-based search 23

vector search 21

Agricultural Marketing Service (AMS) 201
AI-generated video dataset 261

diffusion transformer model video dataset, analyzing 264

diffusion transformer, working 262, 263

Amazon Web Services (AWS) 144
Apollo program

reference link 41

augmented generation, RAG pipeline 50, 51
augmented input 53, 54

input and query retrieval 51-53

B
bag-of-words (BoW) model 219
Bank Customer Churn dataset

collecting 144-149

environment, installing for Kaggle 146, 147

exploratory data analysis 149-151

ML model, training 152

preparing 144-146

C
Chroma 212, 213
Chroma collection

completions, embedding 218, 219
completions, storing 218, 219
data, embedding 216, 217
data, upserting 216, 217
embeddings, displaying 219
model, selecting 217

content generation 130-132
cosine similarity

implementing, to measure similarity between user input and
generative AI model's output 56-58

D

data embedding and storage, RAG pipeline 44, 45
batch of prepared documents, retrieving 45, 46

data, adding to vector store 47, 48

embedding function 47

vector store, creating 46

vector store information 48-50

vector store, verifying for existence 46

data embeddings 33
data, for upsertion

preparing 191, 192

dataset
downloading 237

preparing, for fine-tuning 237-240

visualizing 238

Davies-Bouldin index 154
Deep Lake API

reference link 48

Deep Lake vector store
creating 192

populating 192

diffusion transformer model video dataset
analyzing 264

thumbnails and videos, displaying 268, 269

video download and display functions 264, 265

video file 266-268

documents
collecting 186

preparing 186

dynamic RAG
applications 208

architecture 208-210

collection, deleting 228, 229

collection, querying 220-223

dataset, downloading 214, 215

dataset, preparing 214, 215

environment, installing 210

prompt 223

prompt response 225

query result, retrieving 225

session time, activating 213, 214

total session time 229

using, with Llama 225-228

dynamic RAG environment installation
of Chroma 212, 213

of Hugging Face 211, 212

E
embedding models, OpenAI

reference link 47

embeddings 32
entry-level advanced RAG

coding 9

entry-level modular RAG
coding 9

entry-level naïve RAG
coding 9

environment
installing 236, 237

environment setup, RAG pipeline 36
authentication process 39, 40

components, in installation process 36, 37

drive, mounting 37

installation packages 36

libraries 36

requisites, installing 39

subprocess, creating to download files from GitHub 37, 38

evaluator 8, 132
cosine similarity score 132

human-expert evaluation 135-138

human feedback 9

human user rating 133-135

metrics 9

response time 132

F
fine-tuned OpenAI model

using 244-246

fine-tuning
dataset, preparing for 237-240

versus RAG 4

fine-tuning documentation, OpenAI
reference link 246

fine-tuning static RAG data
architecture 234, 235

foundations and basic implementation
data, setting up with list of documents 12, 13

environment, installing 10

generator function, using GPT-4o 11, 12

query, for user input 13, 14

G
Galileo (spacecraft)

reference link 42

generative AI environment
installing 129, 130

generator 8, 122

augmented input with HF 8

content generation 130-132

generation and output (G4) 8

generative AI environment, installing 129, 130

HF-RAG for augmented document inputs, integrating 123, 124

input 8, 124

mean ranking simulation scenario 124

prompt engineering (G3) 8

Generator and Commentator 261, 270, 271
AI-generated video dataset 261

frames, commenting on 272-274

Pipeline 1 controller 274

video, displaying 271

videos, spitting into frames 271, 272

GitHub 259

H
Hubble Space Telescope

reference link 41

Hugging Face 211, 212
reference link 211

hybrid adaptive RAG
building, in Python 118

generator 122

retriever 119

I
index-based RAG 62

architecture 62-64

index-based search 21-24, 62
augmented input 25

feature extraction 24

generation 25

versus vector-based search 64

International Space Station (ISS)
reference link 41

J
Juno (spacecraft)

reference link 41

K
Kaggle

reference link 146

Kepler space telescope
reference link 42

keyword index query engine 74, 85-87
performance metric 87

knowledge-graph-based semantic search
graph, building from trees 183, 185

RAG architecture, using for 180-183

knowledge graph index-based RAG 193, 195
example metrics 199-201

functions, defining 197

generating 194, 195

graph, displaying 195, 197

interacting 197

metrics calculation 201-203

metrics display 201-203

re-ranking 198, 199

similarity score packages, installing 197

knowledge graphs 179

L
Large Language Model (LLM) 3
list index query engine 74, 83, 84

performance metric 84, 85

Llama
using, with dynamic RAG 225-228

LLM dataset
loading 93, 94

LLM query engine

initializing 95

textual dataset, querying 95

user input, for multimodal modular RAG 95

M
machine learning (ML) 144, 213
Mars rover

reference link 41

mean ranking simulation scenario
human-expert feedback RAG 126-128

no human-expert feedback RAG 128, 129

no RAG 125

metadata
retrieving 186-190

metrics
analyzing, of training process and model 247-249

metrics, fine-tuned models
reference link 247

ML model, training 152
clustering evaluation 154-156

clustering implementation 154-156

data preparation and clustering 152-154

modular RAG 4, 26, 27
strategies 28

multimodal dataset structure
bounding boxes, adding 100-103

image, displaying 99

image, saving 100-103

image, selecting 99

navigating 99

multimodal modular RAG 90-92
building, for drone technology 93

performance metric 108

user input 95

multimodal modular RAG, performance metric 108
LLM 109

multimodal 109, 111

overall performance 112

multimodal modular RAG program, for drone technology
building 93, 107, 108

LLM dataset, loading 93, 94

multimodal dataset, loading 96-99

multimodal dataset structure, navigating 99

multimodal dataset, visualizing 96-99

multimodal query engine, building 103

performance metric 108

multimodal query engine
building 103

creating 103, 104

query, running on VisDrone multimodal dataset 105

response, processing 105, 106

source code image, selecting 106, 107

vector index, creating 103, 104

N
naïve RAG 4

augmented input 19

example, creating with 17

generation 20

keyword search and matching 18

metrics 19

O
ONNX

reference link 213

OpenAI 259, 260
URL 39

OpenAI model
fine-tunes, monitoring 242-244

fine-tuning 240, 241

for embedding 157

for generation 157

Pinecone constraints 157

Open Neural Network Exchange (ONNX) 213

P
Pinecone 260

reference link 170

used, for scaling 142

Pinecone index
querying 279-283

Pinecone index (vector store)
challenges 157, 158

creating 164, 165

data, duplicating 163, 164

dataset, chunking 160

dataset, embedding 161-163

dataset, processing 159, 160

environment, installing 158

querying 168-170

scaling 156

upserting 166-168

Pipeline 1 controller 274-276
comments, saving 276, 277

files, deleting 277

Python

used, for building hybrid adaptive RAG 118

R
RAG architecture

for video production 254-256

RAG ecosystem 235, 236
domains 5, 6, 7

evaluator component 8

generator component 8

retriever component 7

trainer component 9

RAG framework
advanced RAG 4

generator 4

modular RAG 4

naive RAG 4

retriever 4

RAG generative AI 170
augmented generation 174-176

augmented prompt 174

relevant texts, extracting 173

using, with GPT-4o 170

RAG pipeline 33, 34
augmented generation 35, 50, 51

building, steps 36

components 34

data collection 35, 40-42

data embedding and storage 35, 44, 45

data preparation 35, 40-44

environment setup 36

reasons, for component approach 34

RAG, with GPT-4o 170, 171
dataset, querying 171

target vector, querying 171, 173

Retrieval Augmented Generation (RAG) 1-3, 50
non-parametric 4

parametric 4

versus fine-tuning 4, 5

retrieval metrics 15
cosine similarity 15, 16

enhanced similarity 16, 17

retriever 119
data, processing 120, 121

dataset, preparing 119

environment, installing 119

user input process 121, 122

retriever component
collect 7

process 7

retrieval query 8

storage 7

S
scaling, with Pinecone 142

architecture 142-144

semantic index-based RAG program
building 64, 65

cosine similarity metric 75, 76

Deep Lake vector store, creating 69-74

Deep Lake vector store, populating 69-74

documents collection 65-69

documents preparation 65-69

environment, installing 65

implementing 74

query parameters 75

user input 75

session time
activating 213, 214

Silhouette score 154
space exploration

reference link 41

SpaceX

reference link 41

T
Term Frequency-Inverse Document Frequency (TF-IDF) 15, 57,
132

trainer 9
training loss 249
tree index query engine 74, 80-82

performance metric 83

U
upserting process

reference link 166

user interface (UI) 122

V
vector-based search

versus index-based search 64

vector search 21
augmented input 22

generation 23

metrics 22

vector similarity
reference link 165

Vector Store Administrator 278, 279
Pinecone index, querying 279-283

vector store index query engine 74-76
optimized chunking 79

performance metric 79, 80

query response and source 77, 78

vector stores 33
Video Expert 283-288
video production ecosystem, environment 257

GitHub 259

modules and libraries, importing 258, 259

OpenAI 259

Pinecone 260

Voyager program
reference link 42

W
Wikipedia data

retrieving 186-190

Download a free PDF copy of this
book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print
books everywhere?

Is your eBook purchase not compatible with the device of your
choice?

Don’t worry, now with every Packt book you get a DRM-free PDF
version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste
code from your favorite technical books directly into your
application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836200918

2. Submit your proof of purchase.
3. That’s it! We’ll send your free PDF and other benefits to your

email directly.

https://packt.link/free-ebook/9781836200918

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Get in touch

	Why Retrieval Augmented Generation?
	What is RAG?
	Naïve, advanced, and modular RAG configurations
	RAG versus fine-tuning
	The RAG ecosystem
	The retriever (D)
	Collect (D1)
	Process (D2)
	Storage (D3)
	Retrieval query (D4)

	The generator (G)
	Input (G1)
	Augmented input with HF (G2)
	Prompt engineering (G3)
	Generation and output (G4)

	The evaluator (E)
	Metrics (E1)
	Human feedback (E2)

	The trainer (T)

	Naïve, advanced, and modular RAG in code
	Part 1: Foundations and basic implementation
	1. Environment
	2. The generator
	3. The Data
	4.The query

	Part 2: Advanced techniques and evaluation
	1. Retrieval metrics
	2. Naïve RAG
	3. Advanced RAG
	4. Modular RAG

	Summary
	Questions
	References
	Further reading

	RAG Embedding Vector Stores with Deep Lake and OpenAI
	From raw data to embeddings in vector stores
	Organizing RAG in a pipeline
	A RAG-driven generative AI pipeline
	Building a RAG pipeline
	Setting up the environment
	The installation packages and libraries
	The components involved in the installation process

	1. Data collection and preparation
	Collecting the data
	Preparing the data

	2. Data embedding and storage
	Retrieving a batch of prepared documents
	Verifying if the vector store exists and creating it if not
	The embedding function
	Adding data to the vector store

	Vector store information
	3. Augmented input generation
	Input and query retrieval
	Augmented input

	Evaluating the output with cosine similarity
	Summary
	Questions
	References
	Further reading

	Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI
	Why use index-based RAG?
	Architecture

	Building a semantic search engine and generative agent for drone technology
	Installing the environment
	Pipeline 1: Collecting and preparing the documents
	Pipeline 2: Creating and populating a Deep Lake vector store
	Pipeline 3: Index-based RAG
	User input and query parameters
	Cosine similarity metric

	Vector store index query engine
	Query response and source
	Optimized chunking
	Performance metric

	Tree index query engine
	Performance metric

	List index query engine
	Performance metric

	Keyword index query engine
	Performance metric

	Summary
	Questions
	References
	Further reading

	Multimodal Modular RAG for Drone Technology
	What is multimodal modular RAG?
	Building a multimodal modular RAG program for drone technology
	Loading the LLM dataset
	Initializing the LLM query engine

	Loading and visualizing the multimodal dataset
	Navigating the multimodal dataset structure
	Selecting and displaying an image
	Adding bounding boxes and saving the image

	Building a multimodal query engine
	Creating a vector index and query engine
	Running a query on the VisDrone multimodal dataset
	Processing the response
	Selecting and processing the image of the source node

	Multimodal modular summary
	Performance metric
	LLM performance metric
	Multimodal performance metric
	Multimodal modular RAG performance metric

	Summary
	Questions
	References
	Further reading

	Boosting RAG Performance with Expert Human Feedback
	Adaptive RAG
	Building hybrid adaptive RAG in Python
	1. Retriever
	1.1. Installing the retriever’s environment
	1.2.1. Preparing the dataset
	1.2.2. Processing the data
	1.3. Retrieval process for user input

	2. Generator
	2.1. Integrating HF-RAG for augmented document inputs
	2.2. Input
	2.3. Mean ranking simulation scenario
	2.4.–2.5. Installing the generative AI environment
	2.6. Content generation

	3. Evaluator
	3.1. Response time
	3.2. Cosine similarity score
	3.3. Human user rating
	3.4. Human-expert evaluation

	Summary
	Questions
	References
	Further reading

	Scaling RAG Bank Customer Data with Pinecone
	Scaling with Pinecone
	Architecture

	Pipeline 1: Collecting and preparing the dataset
	1. Collecting and processing the dataset
	Installing the environment for Kaggle
	Collecting the dataset

	2. Exploratory data analysis
	3. Training an ML model
	Data preparation and clustering
	Implementation and evaluation of clustering

	Pipeline 2: Scaling a Pinecone index (vector store)
	The challenges of vector store management
	Installing the environment
	Processing the dataset
	Chunking and embedding the dataset
	Chunking
	Embedding
	Duplicating data

	Creating the Pinecone index
	Upserting
	Querying the Pinecone index

	Pipeline 3: RAG generative AI
	RAG with GPT-4o
	Querying the dataset
	Querying a target vector

	Extracting relevant texts
	Augmented prompt
	Augmented generation

	Summary
	Questions
	References
	Further reading

	Building Scalable Knowledge-Graph-Based RAG with Wikipedia API and LlamaIndex
	The architecture of RAG for knowledge-graph-based semantic search
	Building graphs from trees

	Pipeline 1: Collecting and preparing the documents
	Retrieving Wikipedia data and metadata
	Preparing the data for upsertion

	Pipeline 2: Creating and populating the Deep Lake vector store
	Pipeline 3: Knowledge graph index-based RAG
	Generating the knowledge graph index
	Displaying the graph
	Interacting with the knowledge graph index
	Installing the similarity score packages and defining the functions
	Re-ranking
	Example metrics
	Metric calculation and display

	Summary
	Questions
	References
	Further reading

	Dynamic RAG with Chroma and Hugging Face Llama
	The architecture of dynamic RAG
	Installing the environment
	Hugging Face
	Chroma

	Activating session time
	Downloading and preparing the dataset
	Embedding and upserting the data in a Chroma collection
	Selecting a model
	Embedding and storing the completions
	Displaying the embeddings

	Querying the collection
	Prompt and retrieval
	RAG with Llama
	Deleting the collection

	Total session time
	Summary
	Questions
	References
	Further reading

	Empowering AI Models: Fine-Tuning RAG Data and Human Feedback
	The architecture of fine-tuning static RAG data
	The RAG ecosystem

	Installing the environment
	1. Preparing the dataset for fine-tuning
	1.1. Downloading and visualizing the dataset
	1.2. Preparing the dataset for fine-tuning

	2. Fine-tuning the model
	2.1. Monitoring the fine-tunes

	3. Using the fine-tuned OpenAI model
	Metrics
	Summary
	Questions
	References
	Further reading

	RAG for Video Stock Production with Pinecone and OpenAI
	The architecture of RAG for video production
	The environment of the video production ecosystem
	Importing modules and libraries
	GitHub
	OpenAI
	Pinecone

	Pipeline 1: Generator and Commentator
	The AI-generated video dataset
	How does a diffusion transformer work?
	Analyzing the diffusion transformer model video dataset

	The Generator and the Commentator
	Step 1. Displaying the video
	Step 2. Splitting video into frames
	Step 3. Commenting on the frames
	Pipeline 1 controller

	Pipeline 2: The Vector Store Administrator
	Querying the Pinecone index

	Pipeline 3: The Video Expert
	Summary
	Questions
	References
	Further reading

	Appendix
	Other Books You May Enjoy
	Index

