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Preface

The world is faced with many serious challenges. In this book, we use mathematics
of uncertainty to study these challenges. We consider the challenges human traffick-
ing, cybersecurity, terrorism, mistreatment of women and children, space debris, and
scamming. We provide Exercises and an instructor’s manual in case the book is used
for a college course on global issues.

In Chapter 1, we provide the notation and mathematical concepts needed for the
book. The first part of the book rests heavily on fuzzy similarity measures. We provide
the basis ideas of fuzzy similarity measures and fuzzy implication operators. We also
lay the foundation to fuzzy graph theory, which is used to examine human trafficking
and other global problems.

In Chapter 2, we discuss how theoretical results from one family of fuzzy sets can
be immediately carried over to another by the use of lattice isomorphisms. We show,
however, that these families of fuzzy sets can arise natural in applications and that
results of the application may not be carried over from one family to another.

In Chapter 3, we consider cyber security. We determine fuzzy similarity measures
of several issues with respect to country rankings. These issues include the risk to
cyber crime. Statista collected data used in NordVPN’s analysis and approved the
methodology used to create the Cyber Risk Index.

In Chapter 4, we consider terrorism and bioterrorism. We examine the impact
of terrorism and its effect on countries. We also find fuzzy similarity measures con-
cerning issues related to terrorism and bioterrorism. We examine the relationship of
Interpol global policy goals and sustainable development goals.

In Chapter 5, we discuss how fuzzy implication operators can be used to deter-
mine fuzzy similarity measures involving the issues of health security and political
risk. We also consider a country’s vulnerability and exposure to natural disaster.

In Chapter 6, we once again use fuzzy similarity to examine country health issues.
The Global Health Security Index has stated that all countries remain dangerously
unprepared for future epidemic and pandemic threats. We use fuzzy implication op-
erators as a basis of our study. For ease of reading, a small amount of results from
Chapter 5 is repeated.

In Chapter 7, we consider the mistreatment of women and children. There are
many types of technology-facilitated violence. Studies confirm a high prevalence rate
against women and girls. We study this situation using fuzzy implication operators.

In Chapter 8, we consider space debris and sustainability. At the current rate of
expansion, an environmental crisis in space will occur unless we act now. We consider
issues involving sustainability and space. In particular, the connection between space
debris and artificial intelligence is examined.

xiii



xiv Preface

In Chapter 9, we consider telecommunications. We provide the ranking of coun-
tries concerning issues of internet speed. We also consider the problem of spam and
scam.

Chapter 10 discusses two topological indices related with fuzzy graphs, namely
eccentric connectivity index and modified eccentric connectivity index. Both indices
are evaluated for most of the important fuzzy graph structures. An application of the
index involving human trafficking chains is also presented.

Chapter 11 deals with another fuzzy graph index known as neighborhood connec-
tivity index, which can be used in quality of service problems and routing problems.
This index is provided for a number of fuzzy graph structures. Neighborhood con-
nectivity index of different types of products of fuzzy graphs is also discussed.

In Chapter 12, we present sigma index and average sigma index of a fuzzy graph.
A number of results evaluating these indices for different categories of fuzzy graphs
and comparison of these indices with first and second Zagreb index are also provided.
An algorithm for the computation of sigma index is given. A related application in
the field of financing is discussed at the end.

Chapter 13 gives another couple of indices namely Banhatti indices of first and
second kind. Index values are obtained for paths, cycles, trees, complete fuzzy graphs,
etc. Banhatti indices of graphs obtained by fuzzy graph operations are also discussed.
Related algorithms and applications are also discussed.

Chapter 14 presents a new type of connectivity parameter in fuzzy graphs called
generalized cycle connectivity. In classical cycle connectivity, we use only strong
cycles, whereas here every cycle is accounted. This will help us in the modeling of
cyclic flow through various types of networks in a very different way. Most of the
major fuzzy graph structures have been examined and their generalized cycle con-
nectivity have been evaluated. Generalized cyclic cut vertices, bridges, generalized
cyclic edge, and vertex connectivity are also discussed in detail. Cyclic stability and
applications are also provided toward the end.

Chapter 15 discusses another important fuzzy graph connectivity parameter called
average fuzzy edge connectivity. We have presented the evaluation of average edge
connectivity for most of the fuzzy graph classes. An application related to stress in
youth is also provided.

John N. Mordeson
Omaha, NE, United States

Sunil Mathew
Calicut, India
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1
CHAPTER

Preliminaries©�

In this chapter, we provide the notation and concepts needed for our book. We assume
the reader is familiar with basic set theory. We first consider notation. We let ∧ denote
minimum or infimum and ∨ denote maximum or supremum. N denotes the positive
integers. We let [0,1] denote the closed unit interval. Let A be a subset of a set X.
Then X\A (or Ac if the context is clear) denotes the complement of A in X. We let
|A| denote the cardinality of A and An denote the Cartesian cross product of A n

times, where n ∈ N. We let P(X) denote the power set of X.

1.1 Fuzzy sets
In 1965, Lotfi A. Zadeh [129] introduced the concept of a fuzzy set and a fuzzy logic.

Let X be a set and A a subset of X. The characteristic function of A is the
function χ of X into {0,1} defined by χ(x) = 1 if x ∈ A and χ(x) = 0 if x /∈ A. The
characteristic function can be used to indicate either members or nonmembers of A.
This notion can be generalized in a way that introduces the notion of a fuzzy subset
of X.

Definition 1.1.1. A fuzzy subset μ of X is a function of X into the closed interval
[0,1].

Let μ be a fuzzy subset of a set X. For all x ∈ X,μ(x) can be thought of as the
degree of membership of x in μ. We sometimes use the notation μA for a fuzzy subset
of X, where A is thought of as a fuzzy set and μA gives the grade of membership of
elements of X in A. At times, A may be merely a description of a fuzzy subset μ

of X.

We let FP(X) denote the fuzzy power set of X, i.e., the set of all fuzzy subsets
of X.

Definition 1.1.2. Let μ be a fuzzy subset of X.
(1) Let α ∈ [0,1]. Define μa = {x ∈ X|μ(x) ≥ α}. We call μα and a-cut or a

α-level set.
(2) The support of μ is defined to be the set Supp(μ) = {x ∈ X|μ(x) > 0}.

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.

Fuzzy Mathematics, Graphs, and Similarity Measures. https://doi.org/10.1016/B978-0-44-333949-3.00009-X
Copyright © 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

1

https://www.elsevier.com/books-and-journals/book-companion/9780443339493
https://doi.org/10.1016/B978-0-44-333949-3.00009-X


2 CHAPTER 1 Preliminaries

Definition 1.1.3. Let μ and ν be fuzzy subsets of X. Define μc,μ ∩ ν, and μ ∪ ν as
follows: ∀x ∈ X,

μc(x) = 1 − μ(x),

(μ ∩ ν)(x) = μ(x) ∧ ν(x),

(μ ∪ ν)(x) = μ(x) ∨ ν(x).

Then μc is called the (standard) complement of μ,μ ∩ ν the intersection of μ and
ν, and μ ∪ ν the union of μ and ν.

We can extend the notions of intersection and union to a family of fuzzy subsets
of X. Let {μ}i∈I be a family of fuzzy subsets of X, where I is an index set. Define
∩i∈I and ∪i∈I as follows: ∀x ∈ X,

(∩i∈Iμi)(x) = ∧i∈Iμi(x),

(∪i∈Iμi)(x) = ∨i∈Iμi(x)

Thus if I is a finite set, say I = {1,2, ..., n}, then (∩i∈Iμi) = μ1 ∩ μ2 ∩ ... ∩ μn

and (∪i∈Iμi) = μ1 ∪ μ2 ∪ ... ∪ μn. In this case, we sometimes write (∩i∈Iμi)(x) =
μ1(x) ∧ μ2(x) ∧ ... ∧ μn(x) and (∪i∈Iμi)(x) = μ1(x) ∨ μ2(x) ∨ ... ∨ μn(x).

The intersection of two fuzzy subsets of a set is specified in general by a binary
operation on the unit interval; that is, a function of the form

i : [0,1] × [0,1] → [0,1].
Definition 1.1.4. A fuzzy intersection (t-norm) is a binary relation i on the unit
interval that satisfies the following properties: ∀a, b, d ∈ [0,1]:

(1) i(a,1) = a (boundary condition);

(2) b ≤ d implies i(a, b) ≤ i(a, d) (monotonicity);

(3) i(a, b) = i(b, a) (commutativity);

(4) i(a, i(b, d)) = i(i(a, b), d) (associativity).

Example 1.1.5. Let a, b ∈ [0,1].
Standard intersection: i(a, b) = a ∧ b,

Algebraic product: i(a, b) = ab,

Bounded difference: i(a, b) = 0 ∨ (a + b − 1).

The general fuzzy union of two fuzzy subsets is specified by a function u : [0,1]×
[0,1] → [0,1].
Definition 1.1.6. A fuzzy union (t-conorm) is a binary relation u on the unit interval
that satisfies the following properties: ∀a, b, d ∈ [0,1]:

(1) u(a,0) = a (boundary condition);
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(2) b ≤ d implies u(a, b) ≤ u(a, d) (monotonicity);

(3) u(a, b) = u(b, a) (commutativity);

(4) u(a,u(b, d)) = u(u(a, b), d) (associativity).

Example 1.1.7. Let a, b ∈ [0,1].
Standard union: u(a, b) = a ∨ b;

Algebraic sum: u(a, b) = a + b − ab;

Bounded sum: u(a, b) = 1 ∧ (a + b).

A special kind of aggregation operations are operations h on [0,1] that satisfy the
properties of monotonicity, commutativity, and associativity, but replace the bound-
ary conditions of t-norms and t-conorms with weaker boundary conditions:

h(0,0) = 0 and h(1,1) = 1.

These operations are called norm operations.

Example 1.1.8. Let i be a t-norm and u be a t-conorm. Let λ ∈ [0,1]. Let hλ be the
fuzzy binary relation on [0,1] defined by for all a, b ∈ [0,1],

hλ(a, b) =
⎧⎨
⎩

λ ∧ u(a, b) if a, b ∈ [0, λ],
λ ∨ i(a, b) if a, b ∈ [λ,1],

λ otherwise.

Then hλ is a norm operation.

1.2 Evidence theory
Evidence theory is one of the broadest frameworks for the representation of uncer-
tainty. Its origins lie in the works of Dempster [27], [28] and Shafer [102] and are
heavily influenced by probability theory, one of the oldest uncertainty frameworks.
Evidence theory encompasses belief, plausibility, necessity, possibility, and proba-
bility among a host of other measures. Here we present Evidence theory as it was
originally characterized by Shafer.

Evidence theory is based on two fuzzy measures: belief measures and plausibility
measures. Belief and plausibility measures can be conveniently characterized by a
function m from the power set of a universal set X into the unit interval. We assume
that X is finite in this section. The function m : P(X) → [0,1] is required to satisfy
two conditions:

(1) m(∅) = 0;

(2)
∑

A∈P(X) m(A) = 1.

The function m is called a basic probability assignment. For each set A ∈P(X),
the value m(A) expresses the proportion to which all available and relevant evidence
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supports the claim that a particular element of X belongs to the set A. This value
m(A) pertains solely to one set, set A; it does not imply any additional claims regard-
ing subsets or supersets of A. If there is some additional subset of A, say B ⊆ A, it
must be expressed by another value m(B).

Given a basic probability assignment, m, every set A ∈ P(X) for which m(A) �=
0 is called a focal element. The pair (F ,m), where F denotes the set of all focal
elements induced by m is called a body of evidence and we denote it by B = (F ,m).

From a basic probability assignment m, the corresponding belief measure and
plausibility measure are determined for all sets A ∈ P(X) by the formulas,

Bel(A) =
∑
B⊆A

m(B),

Pl(A) =
∑

B∩A�=∅
m(B).

Thus the belief of a set A is the sum of all the evidence (basic probability) assigned
to A or any subset of A. The plausibility of A is the sum of all the evidence (basic
probability) that overlaps with A.

It can be shown that the plausibility of an event is one minus the belief of the
compliment of that event, and vice versa. That is,

Bel(A) = 1 − Pl(Ac),

Pl(A) = 1 − Bel(Ac).

Since we can calculate the belief from the plausibility, and the plausibility from the
belief, and both belief and plausibility can be derived from the basic probability as-
signment, we only need one formula to show that all three measures provide the same
information.

Given a belief measure Bel, the corresponding basic probability assignment m is
determined for all A ∈ P(X) by the formula

m(A) =
∑
B⊂A

(−1)|A−B|Bel(B),

where |A−B| is the cardinality of the set difference of A and B, as proven by Shafer
[102]. Thus each of the three functions, m, Bel, and Pl is sufficient to determine the
other two.

Total ignorance is expressed in evidence theory by m(X) = 1 and m(A) = 0 for
all A ⊂ X. Full certainty is expressed by m({x}) = 1 for one particular element x of
X and m(A) = 0 for all A �= {x}.

Guiasu method

The Guiasu method describes the process of reaching a verdict by probabilistic
weighting the available evidence. The classical rules from decision theory proposed
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by Hooper, Dempster, Bayes, and Jeffrey are special cases of Guiasu’s weighting
process. The Guiasu method is a generalization of Dempster-Shafer theory [27,28,
102] and makes use of fuzzy set theory.

A body of information induces a probability (credibility) distribution m on
P(X), the set of all subsets of X. That is, m is a function of P(X) into the
closed interval [0,1], written m : P(X) → [0,1], such that m(A) ≥ 0∀A ∈ P(X)

and
∑

A∈P(X) m(A) = 1. The class of focal subsets of X corresponding to m is
denoted by F(X;m) = {A|A ⊆ X,m(A) > 0}. A pair of dependent bodies of in-
formation, say i and j , induce a joint probability (credibility) distribution, namely
mij : P(X) × P(X) → [0,1] such that mij (A,B) ≥ 0 and

∑
A⊆X mij (A,B) = 1.

If the bodies of information are independent, then mij = mimj . The corresponding
class of focal pairs of subsets is F(X,X;mij ) = {(A,B)|A,B ⊆ X,mij (A,B) > 0}.
The weights corresponding to the body of information for which m is the probabil-
ity (credibility) distribution on P(X) are w(·|·) : P(X) × F(X;m) → [0,∞). The
weighted body of information provides the new probability (credibility) distribu-
tion on P(X) given by μ(C) = ∑

A∈F(X;m) w(C|A)m(A). We can generalize this
procedure to formulate the weights wij (·|·, ·) that are assigned to a mixed body of
information inducing a joint probability (credibility) distribution induced on P(X)

by the weighted (i, j)-th body of information, i.e.,

μij (C) =
∑

(A,B)∈F(X,Xmij )

wij (C|A,B)mij (A,B),C ∈ P(X),

where wij (C|A,B) is the weight of the subset C given (A,B) ∈F(X,X;mij ). If the
probability (credibility) distribution m on X is such that

∑
A∈F(X;m) m(A) = 1 and

∀A ∈F(X;m), |A| = 1, then it is called probabilistic.

The following discussion is explained via sustainable development goals (SDGs).
Given m subgoals (SDGs in this application) and n experts. Assume the experts
assign numbers to each SDG a number with respect to their importance in the ex-
amination of the overarching goal (sustainability) to form a m×n matrix W = [wij ].
When the columns of the matrix are normalized, we can consider that each column
of the resulting matrix N to be a probability (credibility) distribution for each expert
(t-norm in this application). These probability (credibility) distributions are proba-
bilistic with the focal elements being singleton sets consisting of an SDG. The row
averages provide the Guiasu weights, one for each SDG.

Theorem 1.2.1. [84] The row averages of N give the Guiasu weights wi, i =
1, ...,m.

Analytic hierarchy process

The analytical hierarchy process (AHP) is a multicriteria decision method intro-
duced in [93] and [94]. We consider a factor to be studied by the examination of
subfactors of the factor. In our case, each expert Ej assigns a number, wij , to each
subfactor (SDG), Gi, i = 1, ...,m, as to its importance with respect to the overarching
goal (sustainability). The row average, wi , of each row of the matrix W = [wij ] is
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determined to form an m × n-matrix R whose ij -th element is wi/wj . The columns
of R are then normalized in order to form the m × n-matrix N whose ij -th element
is (wi/wj )/

∑m
i=1 wi/wj = wi/

∑m
i=1 wi , i = 1, ...,m. This row vector yields the

weights for the subfactors (SDGs) for the linear equation of the overarching goal
(sustainability), the dependent variable, in terms of the SDGs, the independent vari-
ables.

If the matrix W already has its columns normalized, then wi = ∑n
j=1 wij /n,

i = 1, ...,m. Since
∑m

i=1 wij = 1, j = 1, ..., n, it follows that
∑m

i=1 wi = 1. Hence
wi/

∑m
i=1 wi = wi , i.e., wi is the weight for the i-th SDG in the linear equation,

i = 1, ...,m. It thus follows that if the columns of W are already normal, then the
Guiasu method (with probabilistic assignments) and the analytic hierarchy process
yield the same weights. However, in general, the Guiasu weights and the analytic
hierarchy process can have quite different weights [84].

Yen method

Yen’s method addresses the issue of managing imprecise and vague information
in evidential reasoning by combining the Dempster-Shafer theory with fuzzy set the-
ory [127]. Several researchers have extended the Dempster-Shafer theory to deal with
vague information, but their extensions did not preserve an important principle that
the belief and plausibility measures are lower and upper probabilities. Yen’s method
preserves this principle. Nevertheless, we use various measures of subsethood to de-
termine belief functions. We do this to compare the results of the beliefs with Yen’s
method.

Yen’s method is developed under the assumption that the focal elements are nor-
mal. If the fuzzy focal elements are not normal, he normalizes them.

1.3 Fuzzy similarity measures
In this section, we take a quick look at fuzzy similarity measures. We are interested
in measuring the similarity between rankings.

Definition 1.3.1. Let S be a function of FP(X)×FP(X) into [0,1]. Then S is called
a fuzzy similarity measure on FP(X) if the following properties hold: ∀μ,ν,ρ ∈
FP(X),

(1) S(μ, ν) = S(ν,μ);

(2) S(μ, ν) = 1 if and only if μ = ν;

(3) If μ ⊆ ν ⊆ ρ, then S(μ,ρ) ≤ S(μ, ν) ∧ S(ν,ρ);

(4) If S(μ, ν) = 0, then ∀x ∈ X, μ(x) ∧ ν(x) = 0.

In this section, we consider similarity measures. We apply them in a new way.
Suppose that X is a finite set with n elements. Let A be a one-to-one function of X

onto {1,2, ..., n}. Then A is called a ranking of X. Define the fuzzy subset μA of
X as follows: ∀x ∈ X, μA(x) = A(x)/n. We wish to consider the similarity of two
rankings of X by the use of similarity measures.
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Much of our discussion is from [122].

Example 1.3.2. Let μA and μB be the fuzzy subsets of X associated with two rank-
ings A and B of X, respectively. Then M , L, and S are similarity measures.

M(μA,μB) =
∑

x∈X μA(x) ∧ μB(x)∑
x∈X μA(x) ∨ μB(x)

;
L(μA,μB) = 1 − ∨x∈X|μA(x) − μB(x)|;
S(μA,μB) = 1 −

∑
x∈X |μA(x) − μB(x)|∑
x∈X(μA(x) + μB(x))

.

Lemma 1.3.3. Let a, b, c ∈ [0,1]. Then (a ∨ c) ∧ (b ∨ c) = (a ∧ b) ∨ c.

Lemma 1.3.4. Let x, y, z ∈ (0,1] be such that x ≤ y. Then (x ∨ z)/(y ∨ z) ≥ x/y.

Proof. The result follows by considering the three cases z ≤ x ≤ y, x ≤ z ≤ y, and
x ≤ y ≤ z. �

Theorem 1.3.5. M(μA ∪ μC,μB ∪ μC) ≥ M(μA,μB).

Proof. Applying the previous lemmas, we have that

M(μA ∪ μC,μB ∪ μC) =
∑

x∈X(μA(x) ∨ μC(x)) ∧ (μ(B(x) ∨ μC(x))∑
x∈X μA(x) ∨ μC(x) ∨ μB(x) ∨ μC(x)

=
∑

x∈X(μA(x) ∧ μB(x)) ∨ μC(x))∑
x∈X μA(x) ∨ μB(x) ∨ μC(x)

≥
∑

x∈X μA(x) ∧ μB(x)∑
x∈X μA(x) ∨ μB(x)

= M(μA,μB). �

Lemma 1.3.6. Let x, y, z ∈ [0,1]. Then |(x ∨ z) − (y ∨ z)|/((x ∨ z) + (y ∨ z)) ≤
|x − y|/(x + y).

Proof. There is no loss in generality in assuming x ≥ y. Suppose z ≥ x ≥ y. Then
(x ∨ z)− (y ∨ z) = z− z ≤ x −y. Assume x ≥ y ≥ z. Then (x ∨ z)− (y ∨ z) = x −y.
Suppose x ≥ z ≥ y. Then

y ≤ z

2xy ≤ 2xz

xy − zx ≤ −xy + zx

x2 + xy − zx − zy ≤ x2 − xy + zx − zy

(x − z)(x + y) ≤ (x + z)(x − y)

x − z

x + z
≤ x − y

x + y

x ∨ z − y ∨ z

x ∨ z + y ∨ z
≤ x − y

x + y
. �
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Theorem 1.3.7. S(μA ∪ μC,μB ∪ μC) ≥ S(μA,μB).

Proof. We have by Lemma 1.3.6 that

S(μA ∪ μC,μB ∪ μC) = 1 −
∑

x∈X |(μA(x) ∨ μC(x)) − (μ(B(x) ∨ μC(x))|∑
x∈X μA(x) ∨ μC(x) + μB(x) ∨ μC(x)

≥ 1 −
∑

x∈X |μA(x) − μ(B(x)|∑
x∈X μA(x) + μB(x)

= S(μA,μB). �

Lemma 1.3.8. Let a, b, c ∈ [0,1] be such that a ≥ b. Then

(1) a − b ≥ a ∨ c − b ∨ c;

(2) a − b ≥ a ∧ c − b ∧ c.

Proof. (1) Suppose (i)c ≥ a ≥ b. Then a ∨ c − b ∨ c = c − c ≤ a − b. Suppose
(ii)a ≥ c ≥ b. Then a ∨ c − b ∨ c = a − c ≤ a − b. Suppose (iii)a ≥ b ≥ c. Then
a ∨ c − b ∨ c = a − b.

(2) Suppose (i)c ≥ a ≥ b. Then a ∧ c − b ∧ c = a − b. Suppose (ii)a ≥ c ≥ b.
Then a ∧ c − b ∧ c = c − b ≤ a − b. Suppose (iii)a ≥ b ≥ c. Then a ∨ c − b ∨ c =
c − c = 0 ≤ a − b. �

Theorem 1.3.9. Let μA, μB , μC be fuzzy subsets of X. Then

(1) L(μA,μB) ≤ L(μA ∪ μC,μB ∪ μC);

(2) L(μA,μB) ≤ L(μA ∩ μC,μB ∩ μC).

Proof. (1) By (1) of Lemma 1.3.8, we have for all x ∈ X that

|μA(x) − μB(x)| ≥ |μA(x) ∨ μC(x) − μB(x) ∨ μC(x)|
1 − |μA(x) − μB(x)| ≤ 1 − |μA(x) ∨ μC(x) − μB(x) ∨ μC(x)|.

A similar argument holds for (2). �

Theorem 1.3.10. [71, pp. 12-14] Let M and S be the fuzzy similarity measures of
Example 1.3.2. Let X be a set with n elements and let A and B rankings of X.

(1) If n is even, then the smallest M(μA,μB) can be is n+2
3n+2 and the smallest

S(μA,μB) be is n/2+1
n+1 .

(2) If n is odd, then the smallest M(μA,μB) can be is n+1
3n−1 and the smallest

S(μA,μB) be is 1
2 + 1

2n
.

Theorem 1.3.11. [73] Let M and S be the fuzzy similarity measures s in Theo-
rem 1.3.10. Then S = 2M

1+M
.
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1.4 Implication operations and similarity operations
In this section, we define and examine similarity measures in terms of implication
operators. Our discussion is from [9,122].

Definition 1.4.1. Let I be a function of [0,1] × [0,1] into [0,1] such that I(0,0) =
I(0,1) = I(1,1) = 1 and I(1,0) = 0. Then I is called an implication operation.

Let μA and μB be two fuzzy subsets of a set X. Let I be an implication operator.
Then the degree to which μA is a subset of μB is defined to be

∧{I(μA(x),μB(x))|x ∈ X}.
Define the fuzzy subset ⊆I of FP(X) × FP(X) by ∀μA,μB ∈ FP(X), ⊆I

(μA,μB) = ∧{I(μA(x),μB(x))|x ∈ X}.

Definition 1.4.2. Let I be an implication operator. Define the fuzzy subset EI of
FP(X) ×FP(X) by for all μA,μB ∈ FP(X),

EI(μA,μB) = ∧{∧{I (μA(x),μB(x)) |x ∈ X},∧{I(μB(x),μA(x))|x ∈ X}}.
Then is called the degree of sameness of μA and μB [9].

Let T denote a t-norm. Then there exists an implication operator IT defined by
IT (x, y) = ∨{z|z ∈ [0,1] and T (x, z) ≤ y}. The following implication operators can
be determined by a suitable t-norm, [10].

Example 1.4.3. Let x, y ∈ [0,1].
(1) Godel implication operator: I(x, y) =

{
1 if x ≤ y,

y otherwise.

(2) Goguen implication operator: I(x, y) =
{

1 if x ≤ y,

y/x otherwise.
(3) Luckasiewicz implication operator: I(x, y) = ∧{1 − x + y,1}.

Definition 1.4.4. Let I be an implication operator. Then I is called hybrid
monotonous if I(x, ) is nondecreasing for all x ∈ [0,1] and I( , y) is nonincreasing
for all y ∈ [0,1].

The implication operators in the previous example are hybrid monotonous.

Proposition 1.4.5. [122] Let A be a finite subset of [0,1] and b ∈ [0,1]. Let I be a
hybrid monotonous implication operator. Then

(1) I(∨{a|a ∈ A}, b) = ∧{I(a, b)|a ∈ A};
(2) I(∧{a|a ∈ A}, b) = ∨{I(a, b)|a ∈ A};
(3) I(b,∨{a|a ∈ A}) = ∨{I(a, b)|a ∈ A};
(4) I(b,∧{a|a ∈ A}) = ∧{I(b, a)|a ∈ A}.
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Lemma 1.4.6. [122] Let I be the Luckasiewicz implication operator. Let a, b ∈
[0,1]. Then

I(a, b) ∧ I(b, a) = ((1 − a) ∧ (1 − b)) + a ∧ b.

Proof. We show that

(1 − a + b) ∧ (1 − b + a) ∧ 1

= ((1 − a) ∧ (1 − b)) + a ∧ b.

Suppose that a ≤ b. Then

((1 − a) ∧ (1 − b)) + a ∧ b = 1 − b + a.

Clearly, 1 − a + b ≥ 1 and 1 − b + a ≤ 1. Thus (1 − a + b) ∧ (1 − b + a) ∧ 1 =
1 − b + a.

The proof of the case for a ≥ b is similar. �

Proposition 1.4.7. [9] Let I be the Luckasiewicz implication operator. Then for all
μA,μB ∈ FP(X), EI(μA,μB) = L(μA,μB).

Proof. We have that

L(μA,μB) = 1 − ∨{|μA(x) − μB(x)| |x ∈ X}
= ∧{1 − |μA(x) − μB(x)| |x ∈ X}
= ∧{1 − μA(x) ∨ μB(x) + μA(x) ∧ μB(x))|x ∈ X}
= ∧{(1 − μA(x)) ∧ (1 − μB(x)) + μA(x) ∧ μB(x)|x ∈ X}.

It suffices to show that

I(μA(x),μB(x)) ∧ I(μB(x),μA(x))

= (1 − μA(x)) ∧ (1 − μB(x)) + μA(x) ∧ μB(x).

However, this holds from Lemma 1.4.6. �

We next consider the interactions between the concept of degree of sameness and
fuzzy set theoretical operations.

A fuzzy complement c is called involutive if for all x ∈ [0,1], c(c(x)) = x.
An implication operator I is called contrapositive (with respect to a fuzzy com-

plement c) if ∀x, y ∈ [0,1], I(x, y) = I(c(y), c(x)). Note that the standard comple-
ment is involutive.

Proposition 1.4.8. [122] Let I be a contrapositive implication operator with respect
to an involutive fuzzy complement c. Let μ, ν be fuzzy subsets of X. Then EI(μ, ν) =
EI(νc,μc).
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Proof. We have that

EI(μ, ν) = (∧{I(μ(x), ν(x))|x ∈ X}) ∧ (∧{I(ν(x),μ(x))|x ∈ X})
= (∧{I(νc(x),μc(x))|x ∈ X}) ∧ (∧{I(μc(x), νc(x))|x ∈ X})
= EI(νc,μc). �

Proposition 1.4.8 holds for Kleene-Dienes implication operator, I(x, y) = (1 −
x) ∨ y and the Early Zadeh implication operator I(x, y) = (x ∧ y) ∨ (1 − x) even
though these implication operators are not contrapositive [122].

1.5 Fuzzy graphs
Let V be a nonempty set. Let E denote the set of all subsets of V with cardinality 2.
Let E ⊆ E . A graph is a pair (V ,E). The elements of V are thought of as vertices
of the graph and E as the set of edges. For {x, y} ∈ E, we let xy denote {x, y}. Then
clearly xy = yx.

Definition 1.5.1. [57,92] Let (V ,E) be a graph. Then the pair (�,�) is called a
fuzzy subgraph of (V ,E) if � is a fuzzy subset of V and ψ is a fuzzy subset of E

such that for all xy ∈ E, �(xy) ≤ �(x) ∧ �(y).

Most of the definitions provided here are from [92].

Definition 1.5.2. Let (�,�) be a fuzzy subgraph of the graph (V ,E). Then a fuzzy
subgraph (τ, ν) of (V ,E) is called a partial fuzzy subgraph (�,�) if τ ⊆ � and
ν ⊆ �.

Definition 1.5.3. Let (�,�) be a fuzzy subgraph of the graph (V ,E). Then a partial
fuzzy subgraph (τ, ν) of (�,�) is said to span (�,�) if τ = �. In this case, (τ, ν)

is called a spanning fuzzy subgraph of (�,�).

A path P in a fuzzy graph (�,�) of a graph (V ,E) is a sequence of distinct ver-
tices x0, x1, ..., xn (except possibly x0, ..., xn) such that �(xi−1xi) > 0, i = 1, ..., n.
Here n is called the length of the path. The consecutive pairs are called the edges of
the path. The diameter of x, y ∈ V , written diam(x, y), is the length on the longest
path joining x and y. The strength of P is defined to be ∧n

i=1�(xi−1xi). The strength
of connectedness between two vertices x and y is defined as the maximum of the
strengths of all paths between x and y and is denoted by �∞(x, y) or CONN (x, y).
A strongest path joining any two vertices x and y has strength �∞(x, y). It can be
shown that if (τ, ν) is a partial fuzzy subgraph of (�,�) then ν∞ ⊆ �∞. We call P

a cycle if x0 = xn and n ≥ 3. Two vertices that are joined by a path are called con-
nected. It follows that this notion of connectedness is an equivalence relation. The
equivalence classes of vertices under this equivalence relation are called connected
components of the given fuzzy subgraph. They are its maximal connected partial
fuzzy subgraphs.
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Let G = (�,ψ) be a fuzzy graph, let x, y be distinct vertices, and let G′ be the
partial fuzzy subgraph of G obtained by deleting the edge xy. That is, G′ = (σ,μ′),
where μ′(x, y) = 0 and μ′ = μ for all other pairs. We call xy a fuzzy bridge in G

if μ′∞(u, v) < μ∞(u, v) for some u, v in σ ∗. In words, the deletion of xy reduces
the strength of connectedness between some pair of vertices in G. Thus xy is a fuzzy
bridge if and only if there exists u, v ∈ V such that xy is an edge of every strongest
path between u and v.

Similarly, if the strength of connectedness between some pair of vertices is re-
duced, when it is removed from the fuzzy graph, then such a vertex is called a fuzzy
cutvertex. Fuzzy graph with no fuzzy cutvertices is called nonseparable or a block.
If μ(ab) = σ(a)∧σ(b) for all a, b ∈ �∗ then such a fuzzy graph is called a complete
fuzzy graph (CFG) [11].

Definition 1.5.4. A connected fuzzy graph is called a fuzzy tree if it contains a
spanning subgraph F which is a tree such that, for all edges ab not in F , μ(ab) <

CONNF (a, b).

If (Supp(�), Supp(ψ)) is a cycle then G = (�,ψ) is called a cycle. A fuzzy
graph G is a fuzzy cycle if G is a cycle and it has more than one edge with minimum
weight.

Definition 1.5.5. [14,62] If an edge ab belongs to Supp(�) and �(ab) ≥
CONNG\ab(a, b), then such an edge is called a strong edge. An edge ab is
called α-strong if �(ab) > CONNG\ab(a, b), it is called β-strong if �(ab) =
CONNG\ab(a, b) and is called a δ-edge if �(ab) < CONNG\ab(a, b).

If every edge of a path is α-strong, then the path is said to be an α-strong path.
Similarly, β-strong path is also defined. A strong path P from a to b is called a
geodesic if there are no shorter strong paths from a to b. If α-strong edges are incident
at every vertex of a fuzzy graph, then the graph is called α-saturated fuzzy graph
[66]. Similarly, β-saturated fuzzy graph is also defined. If a fuzzy graph is both
α-saturated and β-saturated, then it is called saturated, else unsaturated.

An isomorphism [35] h : G → G′ is a map h : V → V ′ which is bijective that
satisfies �(u) = �′(h(u)) for all u ∈ V , �(ab) = � ′(h(a)h(b)) for all a, b ∈ V [12].
The complement of a fuzzy graph G = (�,�) is the fuzzy graph Gc = (�c,�c)

where �c = � and �c(ab) = �(a) ∧ �(b) − �(ab) for all a, b ∈ V [108]. The
geodesic eccentricity l(a) of a vertex a is given by l(a) = ∨

m∈W
ds(a,m) [96]. The

sum of weights of all edges incident at a is the degree of a [33]. The sum of weights
of all strong edges incident at a is the strong degree of a [63].

Proposition 1.5.6. [14] Let G = (�,�) be connected, and let a, b be any two ver-
tices in �∗. Then there exists a strong path from a to b.

Theorem 1.5.7. [63] Let G = (�,�) be a complete fuzzy graph. Then G does not
contain any δ-edges.
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Definition 1.5.8. [66] Let G = (�,�) be a fuzzy graph. Let a and b be any two
vertices of G. Then the strong distance between a and b is defined and denoted by
ds(a, b) = ∧{

∑
ab∈Pi

μ(a, b): Pi belongs to the set of all strong paths from a to b}, 0 if

a = b, ∞ if there exists no strong a – b path.

Theorem 1.5.9. [63] Let G = (�,�) be a CFG with |�∗| = n. Then G has a fuzzy
bridge if and only if there exists an increasing sequence {t1, t2, · · · , tn} such that
tn−2 < tn−1 ≤ tn, where ti = �(wi) for i = 1,2, · · · , n. Also, the edge wn−1wn is a
fuzzy bridge of G.

Definition 1.5.10. [15] For a fuzzy graph G = (σ,μ), the Connectivity Index (CI)

is defined as CI (G) =
∑

m,p∈σ ∗
σ(m)σ(p)CONNG(m,p), where CONNG(m,p) is

the strength of connectedness between m and p. For a fuzzy graph G = (σ,μ), the
Wiener Index (WI) [17] is defined as WI(G) =

∑
m,p∈σ ∗

σ(m)σ(p)dS(m,p), where

dS(m,p) is the minimum sum of weights of geodesics from m to p.

1.6 Lattices
Let X be a set and ≤ a relation on X. Then ≤ is called a partial order on X if ≤ is
reflexive, antisymmetric, and transitive. Let ∨, ∧ be commutative, associative opera-
tions on X such that for all x, y ∈ X

x ∧ (x ∨ y) = x,

x ∨ (x ∧ y) = x.

If we define the binary relation ≤ on X by x ≤ y if and only if x ∧ y = x, then
≤ is a partial order on X. Then L = (X,≤) is called a lattice if for all x, y ∈ X,
x ∨ y ∈ X and x ∧ y ∈ X. Let Li = (Xi,≤i ) be lattices on Xi , i = 1, ..., n. Let
X = X1 × ... × Xn denote the Cartesian product of the Xi , i = 1, ..., n. Define ≤ on
X by for all x = (x1, ..., xn) and y = (y1, ..., yn), x ≤ y if and only if xy ≤i yi for all
i = 1, ..., n. Then L = (X,≤) is a lattice.

For two partially ordered sets, (X1,≤1) and (X2,≤2), a function f : X1 → X2 is
called an order homomorphism if x ≤X1 y implies f (x) ≤X2 f (y) for all x, yεX1.
If L1 = (X1,≤1) and L2 = (X2,≤2) are lattices, a function f : X1 → X2 is called a
lattice homomorphism if for all x, yεX1,

f (x ∧L1 y) = f (x) ∧L2 f (y),

f (x ∨L1 y) = f (x) ∨L2 f (y).

A one-to-one homomorphism is called an isomorphism.
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1.7 Exercises
1. Let X = {a, b, c, d}. Let μ and ν be fuzzy subsets of X defined as follows:

μ(a) = 0.3,μ(b) = 0.2,μ(c) = 0.5,μ(d) = 0.7,

ν(a) = 0.8, ν(b) = 0.3, ν(c) = 0.4, ν(d) = 0.1.

Find μ ∩ ν,μ ∪ ν,μc, and νc.

2. Let μ, ν be fuzzy subsets of a set X. Prove that (μ ∪ ν)c = μc ∩ νc and (μ ∩ ν)c =
μc ∪ νc.

3. Let A and B be rankings of a set X. Suppose X has n elements. Prove that∑
xεX(A(x) + B(x)) = n(n + 1).

4. Let A and B be as in Exercise 3. Prove that
∑

xεX(A(x) ∧ B(x))+ ∑
xεX(A(x) ∨

B(x)) = n(n + 1).



2
CHAPTER

Lattice isomorphisms,
trafficking, and global
challenges©�

In this chapter, we will discuss how theoretical results from one family of fuzzy sets
can be carried over immediately to another family of fuzzy sets by the use of lat-
tice isomorphisms. We will also show that these families can occur naturally and that
applications may not necessarily be carried over using these isomorphisms. We illus-
trate this using techniques from the study of human trafficking and its analysis using
mathematics of uncertainty. Mathematics of uncertainty is a very appropriate tool to
use in the study of trafficking. This is because accurate data concerning trafficking
in persons is impossible to obtain. The goal of the trafficker is to be undetected. The
size of the problem also makes it very difficult to obtain accurate data. Victims are
reluctant to report crimes or testify for fear of reprisals, disincentives, both structural
and legal, for law enforcement to act against traffickers, a lack of harmony among
existing data sources, and an unwillingness of some countries and agencies to share
data.

2.1 Fuzzy sets and lattice isomorphisms
One of the most important papers concerning fuzzy set theory in recent years is one
by Klement and Mesiar, [56]. In this paper, it is shown that differently defined fami-
lies of fuzzy sets have lattice structures that are actually isomorphic and so theoretical
results for one family can be carried over to another family.

We show by using a real-world problem with real-world data that even though
theoretical results can be obtained for one family from another, the two families may
arise naturally in an application.

We use the concepts of vulnerability and government response to modern slav-
ery to illustrate our findings. In [118], it is stated that the departing point is the fact
that not only fuzzy sets originate in Language, but that they are just “linguistic en-
tities” genetically different from the concept of “crisp sets” whose origin is either
in a physical collection of objects, or in a list of them. A new definition of a fuzzy

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.

Fuzzy Mathematics, Graphs, and Similarity Measures. https://doi.org/10.1016/B978-0-44-333949-3.00010-6
Copyright © 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
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set is presented by means of two magnitudes: A qualitative one, called a graph, the
basic magnitude, and a quantitative one, a scalar magnitude. If the first reflects the
language’s relational ground of the fuzzy set, the second reflects the (numerical) ex-
tensional state in which it currently appears.

We next illustrate these ideas using the concepts of vulnerability and government
response with respect to modern slavery, [41].

Vulnerability measures
(1) Government issues

(2) Nourishment and access

(3) Inequality

(4) Disenfranchised groups

(5) Effect of conflicts

Countries are scored with respect to these five measures. Then a weighted average
of these scores is taken to provide a single score for each number. For example, the
final score for Brazil is 36.4. The countries are placed into regions. Brazil is in the
Americas. For this region, the highest score was 69.6 and the smallest was 10.2. The
country scores were normalized using the formula (number – minimum)/(maximum
– minimum) to obtain (36.4 − 10.2)/(69.6 − 10.2) = 0.443

Government response
(1) Support for survivors

(2) Criminal justice

(3) Coordination

(4) Response

(5) Supply chains
Similarly, as for the vulnerability measures a final score is determined for each

country. For example, the final score for Brazil is 55.6. For the Americas, the max-
imum score was 71.7 and the minimum was 20.8. Hence the normalized value for
Brazil was (55.6 − 20.8)/(71.6 − 20.8) = 0.684.

2.2 New view of fuzzy subsets
In [118], a new definition of a fuzzy set is presented by means of two magnitudes:
A quantitative one, the basic magnitude, and a quantitative one. The first reflects
the language’s relational ground of a fuzzy set, the second reflects the (numerical)
extensional state in which it currently appears. To know how a predicate P acts on X,
that is, how the elements in X can be distinguished by how they verify P , or how the
property P varies along the universe of discourse, it should be known when, given
two elements x, y in X, which one of them shows P less than the other. Shortening
the statement x less P than y by x �P y. Two fuzzy sets with respective linguistic
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labels P and Q are coincidental, provided both are in the same universe of discourse
and are primarily used in the same form. That is,

P = Q ⇔ X = Y and �P =�Q .

The equality of two fuzzy sets means that their linguistic labels do have the same
primary use or meaning.

A function mP : X → [0,1] is called a measure of P in X if it satisfies the
following three properties:

(i) x �P y ⇒ mP (x) ≤ mP (y);
(ii) If z is minimal, i.e., there is no w such that w ≺P z, then mP (z) = 0;
(iii) If w is maximal, i.e., there is no z in X such that w ≺P z, then mP (w) = 1.

We show in the following how this approach fits naturally with our examination
of modern slavery. We demonstrate this by considering situations where accurate data
is not available.

In [118], it is stated that shortening the statement x is less P , where P is a predi-
cate, by x ≺P y facilitates the basic magnitude. That is, x ≺P y ⊆ X × X.

For our illustration, we let P denote the predicate vulnerable and X denote the
set of countries under consideration. Now the final vulnerable score for Mexico was
57.3. Brazil’s was 36.4. Hence Brazil ≺P Mexico. The final value for government
response for Mexico was 52.4 and for Brazil 55.6. In this case, we have Mexico ≺P

Brazil if P denotes government response and ≺P is the linguistic relation x has less
government response than y.

We see that our membership function mP (x) = #(x)−min
max−min , where #(x) denotes the

final score of x, satisfies these three properties. Thus mV (Brazil) = 0.443, where
V denotes vulnerable and mG(Brazil) = 0.684, where G denotes government re-
sponse. For Mexico, we have mV (Mexico) = 0.796 and mG(Mexico) = 0.621.

We present some isomorphisms and other methods in fuzzy set theory to obtain
results from one family for another.

Neutrosophic fuzzy sets and Pythagorean fuzzy sets: Recall that a neutrosophic
fuzzy set is a triple (σ, τ,μ) of fuzzy subsets of a set. It is based on the lattice of el-
ements (x1, x2, x3) ∈ [0,1]3, where (x1, x2, x3) ≤ (y1, y2, y3) if and only if x1 ≤ y1,
x2 ≤ y2, and x3 ≥ y3, [104]. Also, a Pythagorean fuzzy set is a pair of fuzzy sub-
sets (σ, τ ) of a set X such that for all x ∈ X, σ(x)2 + τ(x)2 ≤ 1, [125]. We can
see that vulnerability and government response corresponding to modern slavery are
opposites, [116]. That is, an increase in government response by a country would
lower the country’s vulnerability. However, mV (Brazil) + mG(Brazil) = 0.443 +
0.684 > 1. This gives meaning to neutrosophic fuzzy sets, [104], even though cer-
tain theoretical results can follow immediately from other types of fuzzy sets. Also,
(0.443)2 + (0.684)2 = 0.096 + 0.468 < 1. Consequently, similar comments might be
able to be made here even though Pythagorean fuzzy sets and intuitionistic fuzzy sets,
[8], have corresponding isomorphic lattices. However, this isomorphism may make
the situation different to the neutrosophic case since it is so straightforward. The lat-
tice isomorphism f involved here is f : P ∗ → L∗ defined by f ((x1, x2)) = (x2

1 , x2
2),
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where

L∗ = {(x1, x2) ∈ [0,1]|x1 + x2 ≤ 1},
P ∗ = {(x1, x2) ∈ [0,1]|x2

1 + x2
2 ≤ 1}.

The paper by Klement and Mesiar [56] contains many other cases, where various
families of fuzzy sets have isomorphic lattices.

Let X be a set with n elements, say X = {x1, ..., xn}. Let μ, ν be fuzzy subsets of
X. Consider the fuzzy similarity measures,

M(μ,ν) =
∑

x∈X μ(x) ∧ ν(x)
∑

x∈X μ(x) ∨ ν(x)
,

S(μ, ν) = 1 −
∑

x∈X |μ(x) − ν(x)|
∑

x∈X(μ(x) + ν(x))
.

Let m be a positive real number. Then
∑

x∈X μ(x)∧ν(x)∑
x∈X μ(x)∨ν(x)

=
∑

x∈X μ(x)/m∧ν(x)/m∑
x∈X μ(x)/m∨ν(x)/m

and
∑

x∈X |μ(x)−ν(x)|∑
x∈X(μ(x)+ν(x))

=
∑

x∈X |μ(x)/m−ν(x)/m|∑
x∈X(μ(x)/m+ν(x)/m)

. Suppose there exists x ∈ X such that μ(x)+
ν(x) > 1. Let m denote the maximal such μ(x) + ν(x). Then we see that we get the
same M and S values if we divide all the μ(x) and ν(x) by m.

Example 2.2.1. Let X = {x1, x2}. Define the fuzzy subsets μ, ν of X as follows:

μ ν

x1 0.1 0.1
x2 0.2 0.91

Then μ(x2) + ν (x2) = 0.2 + 0.91 = 1.11 > 1. Now M(μ,ν) = 0.1∧0.1+0.2∧0.91
0.1∨0.1+0.2∨0.91 =

0.3
1.01 .

Define the fuzzy subsets μ′, ν′ of X as follows:

μ′ ν′
x1 0.1 0.2
x2 0.2 0.82

Then μ′(x2) + ν′ (x2) = 0.2 + 0.82 = 1.02 > 1. Now M(μ′, ν′) = 0.1∧0.2+0.2∧0.82
0.1∨0.2+0.2∨0.82 =

0.3
1.02 .

Thus M(μ,ν) > M(μ′, ν′). We have a Pythagorean situation since (0.2)2 +
(0.91)2 < 1 and (0.2)2 + (0.82)2 < 1.

Squaring the values of μ and ν, we obtain μ2(x1) = 0.01, μ2(x2) = 0.04, and
ν2(x1) = 0.01, ν2(x2) = 0.8281. Hence

M(μ2, ν2) = 0.01 ∧ 0.01 + 0.4 ∧ 0.8281

0.01 ∨ 0.01 + 0.4 ∨ 0.8281
= 0.01 + 0.04

0.01 + 0.8281
.
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Also, μ′
2(x1) = 0.01, μ′

2(x2) = 0.04, ν′
2(x1) = 0.04, ν′

2(x2) = 0.6724. Thus

M(μ′
2, ν

′
2) = 0.01 ∧ 0.04 + 0.04 ∧ 0.6724

0.01 ∨ 0.04 + 0.04 ∨ 0.6724
= 0.01 + 0.04

0.04 + 0.6724
.

Hence M(μ2, ν2) < M(μ′
2, ν

′
2). That is, the inequalities have switched. They were

not preserved.

We next consider S(μ, ν) = 1 −
∑

x∈X |μ(x)−ν(x)|∑
x∈X(μ(x)+ν(x))

. For the previous situation, we

have S(μ, ν) = 1 − 0+0.71
0.2+1.11 = 0.71

1.31 = 1 − 0.542 and S(μ′, ν′) = 1 − 0.1+0.62
0.3+1.02 = 1 −

0.72
1.32 = 1 − 0.545. Thus S(μ, ν) > S(μ′, ν′).

We also have S(μ2, ν2) = 1 − 0+0.7881
0.04+0.8281 = 1 − 0.7881

0.8681 = 1 − 0.9078 and

S(μ′
2, ν

′
2) = 1− 0.03+.6324

0.05+0.7164 = 1− 0.6624
0.7664 = 1−0.8643. Hence S(μ2, ν2) < S(μ′

2, ν
′
2).

Once again the inequalities were not preserved.
We have shown with this example that the isomorphism f : P ∗ → L∗ de-

fined by f ((x1, x2)) = (x2
1 , x2

2), where L∗ = {(x1, x2) ∈ [0,1]|x1 + x2 ≤ 1} and
P ∗ = {(x1, x2) ∈ [0,1]|x2

1 +x2
2 ≤ 1} shows that although theoretical results can deter-

mined between Pythagorean fuzzy sets and intuitionistic fuzzy sets, the isomorphism
may not be suitable in changing a data set from one to another in applications. Also,
isomorphisms in general preserve certain structural properties, but not all outside
functions defined on the sets.

We show in the following how this approaches fits naturally with our examination
of modern slavery. We demonstrate this by considering situations where accurate data
is not available.

Linguistic variables The size of flow of trafficked people from country to country
is given in [115]. It is reported in linguistic terms since accurate data concerning the
size of the flow is impossible to obtain. Information is provided with respect to the
reported human trafficking in terms of origin, transit, and/or destination according
to the citation index. The data is provided in two columns. Information in the left
column as to whether a country ranks (very) low, medium (very) high depends upon
the total number of sources which made reference to this country as one of origins,
transit, or destination. Information provided in then the right column provides further
detail to the information provided in the left column. If a country in the right column
was mentioned by one or two sources, the related country was ranked low. If linkage
between the countries in the two columns was reported by 3-5 sources, the related
country was ranked medium. If 5 or more sources linked the two countries, the coun-
try in the right was ranked high. This method of combining linguistic data provides
an ideal reason for the use of mathematics of uncertainty to study the problem of
trafficking by persons. For example, by assigning numbers in the interval [0,1] to
the linguistic data, the data can be combined in a mathematical way. In [95], the no-
tions of t-norms and t-conorms were used. The number 0.1 can be assigned very low,
0.3 to low. 0.5 to medium, 0.7 to high, and 0.9 to very high. Using the notation and
ideas from [117], we have x ≺P y if and only if country x’s linguistic rank is less



20 CHAPTER 2 Lattice isomorphisms, trafficking, and global challenges

than country y’s linguistic rank. We have mP (x) = 0.1,0.3,0.5,0.7, or 0.9 if x is
assigned very low, low, medium, high, or very high, respectively. We note that here
mP does not satisfy (ii) and (iii).

Colors
In [99], colors are used to determine how well a country is achieving the Sustain-

able Development Goals (SDGs). A green rating on the SDG dashboard is assigned
to a country if all the indicators under that goal are labeled green. Yellow, orange,
and red indicate increasing distance from the SDG achievement. The worst two col-
ors of a target were averaged to determine the color of its SDG. In [72], the numbers
0.2,0.4,0.6, and 0.8 are assigned to the colors red, orange, yellow, and green, respec-
tively. Consequently, the results in [99] are placed into the context of mathematics of
uncertainty.

t-norms and t-conorms Suppose X denotes a set of countries involved in human
trafficking. Suppose also that x, y ∈ X represent vertices of a graph and suppose
that xy is an edge in the graph such that there is trafficking between x and y. Then
mV (x) and mV (y) denotes the measure of vulnerability for x and y, respectively.
Suppose mV (x) = 0.6 and mV (y) = 0.8. If we wish to determine a joint vulnerabil-
ity, we might use a t-conorm, say maximum. Then mV (x) ∨ mV (y) = 0.8. However
if mV (x) = 0.1, then mV (x)∨mV (y) = 0.8 also. It seems that the latter result should
be smaller since 0.1 < 0.6. Thus it seems more realistic to use another t-conorm, say
algebraic sum ⊕. Then mV (x)⊕mV (y) = 0.82 (compared with 0.92). Now consider
mG(x) and mG(y) as the measure of government response for x and y, respectively.
Suppose that mG(x) = 0.7 and mG(y) = 0.4. If we wish to determine a joint govern-
ment response, we might use a t-norm, say minimum. Then mG(x) ∧ mG(y) = 0.4.
However if mG(x) = 0.5, then mG(x)∧mG(y) = 0.4 also. It seems that the latter re-
sult should be smaller since 0.5 < 0.7. Hence it seems more realistic to use a different
t-norm, say product •. Then mG(x) • mG(y) = 0.2 (compared with 0.28).

2.3 Global challenges
There are many global challenges facing the world today. They include global
poverty, global hunger, human trafficking, modern slavery, immigration, homeless-
ness, terrorism, biodiversity, extinction, and pandemics. The worst challenge is cli-
mate change. Climate change creates poverty which makes all the other challenges
worse. Also, climate change can make the planet uninhabitable.

We first concentrate on human trafficking and its analysis using mathematics of
uncertainty. Mathematics of uncertainty is a very appropriate tool to use in the study
of human trafficking. As previously stated, this is because accurate data concerning
trafficking in persons is impossible to obtain. The goal of the trafficker is to be un-
detected. The size of the problem also makes it very difficult to obtain accurate data.
Victims are reluctant to report crimes or testify for fear of reprisals, disincentives,
both structural and legal, for law enforcement to act against traffickers, a lack of
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harmony among existing data sources, and an unwillingness of some countries and
agencies to share data.

Table 2.1 is from [41].

Table 2.1 Americas.

Country Government
Response

Vulnerability Prevalence

Argentina 0.821 0.297 0.156

Barbados 0.365 0.533 0.431

Bolivia 0.402 0.570 0.313

Brazil 0.684 0.441 0.294

Canada 0.742 0.000 0.000

Chile 0.815 0.259 0.058

Columbia 0.398 0.696 0.431

Costa Rica 0.573 0.306 0.156

Cuba 0.000 0.710 0.647

Dominican Rep. 0.730 0.553 0.686

El Salvador 0.326 0.681 0.392

Ecuador 0.502 0.523 0.372

Guatemala 0.479 0.705 0.470

Guyana 0.210 0.592 0.509

Haiti 0.371 1.000 1.000

Honduras 0.318 0.762 0.568

Jamaica 0.742 0.572 0.411

Mexico 0.620 0.792 0.431

Nicaragua 0.500 0.567 0.470

Paraguay 0.394 0.516 0.215

Panama 0.453 0.441 0.313

Peru 0.622 0.574 0.411

Suriname 0.123 0.537 0.352

Trinidad and Tobago 0.571 0.486 0.490

United States 1.000 0.095 0.156

Uruguay 0.581 0.159 0.098

Venezuela 0.145 0.803 1.000

Let m and n be real numbers that are ≥ 1. Let Pm,n = {(x, y)|x, y ∈ [0,1] and
xm + yn ≤ 1}. Then L∗ = P1,1.

Theorem 2.3.1. Define f : Pm,n → L∗ by for all (x, y) ∈ Pm,n, f ((x, y)) =
(xm, yn). Then f is a lattice isomorphism of Pm,n onto L∗.
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Proof. Clearly f is single valued and one-to-one. Let (x, y) ∈ L∗. Then (x
1
m , y

1
n ) ∈

Pm,n and so f maps Pm,n onto L∗. Let (x, y), (u, v) ∈ Pm,n. Then

f ((x, y) ∧ (u, v)) = f ((x ∧ u,y ∧ v))

= ((x ∧ u)m, (y ∧ v)n)

= (xm ∧ um,yn ∧ vn)

= (xm, yn) ∧ (un, vn)

= f ((x, y)) ∧ f ((u, v)).

A similar argument shows f ((x, y) ∨ (u, v)) = f ((x, y)) ∨ f ((u, v)). �

In the above table we see that for Mexico, (0.620,0.792) /∈ P2,2 ∪P3,1 ∪P1,3. We
have (0.620,0.792) ∈ P2,3 ∩ P3,2.

For the United States, �m, n such that (1m,0.095n) ≤ 1.
Let a, b, c, d ∈ [0,1]. Then (a, b) ∧ (c, d) = (a ∧ c, b ∧ d) = (a, d) ∧ (c, b) even

though d �= b is possible. That is, ∧ is not one-to-one.
Consider Mexico again. Let P denote the set of all Pythagorean fuzzy sets. Define

g : P2,3 → P by for all (x, y) ∈ P2,3, g((x, y)) = (x
3
2 , y). Note (x

3
2 , y) ∈ P since

(x
3
2 )2 + y2 = x3 + y2 ≤ 1.

Let i be a positive real number and x ∈ [0,1]. Suppose x
1
i > 1. Then x > 1i = 1,

a contradiction.
Let μ, ν be fuzzy subsets of a set X.
(1) π(x) = 1 − μ2(x) − ν2(x)

(2) π(x) = 2
√

1 − μ2(x) − ν2(x)

μ, ν Pythagorean:
(1) is the uncertainty for μ2, ν2 since μ2, ν2 is intuitionistic.
(2) is the uncertainty for μ, ν since μ, ν are not intuitionistic.
Let I([0,1]) = {[x1, x2]|0 ≤ x1 ≤ x2 ≤ 1}. Define ∧, ∨ on I([0,1]) by [x1, x2],

[y1, y2]ε I([0,1]),

[x1, x2] ∧ [y1, y2] = [x1 ∧ y1, x2 ∧ y2],
[x1, x2] ∨ [y1, y2] = [x1 ∨ y1, x2 ∨ y2].

Define ≤ on I([0,1]) by for all [x1, x2], [y1, y2]ε I([0,1]), [x1, x2] ≤ [y1, y2] if
and only if x1 ≤ y1 and x2 ≤ y2.

Theorem 2.3.2. Define f : L∗ → I([0,1]) by for all (x1, x2)εL
∗, f ((x1, x2)) =

[x1,1 − x2]. Then f is a lattice isomorphism of L∗ onto I([0,1]).
Proof. Let (x1, x2)εL

∗. Then [x1,1−x2]εI([0,1]) since x1 +x2 ≤ 1 and so x1 ≤ 1−
x2. Clearly, f is single-valued and one-to-one. Let [x1, x2]εI([0,1]). Then x1 + 1 −
x2 ≤ 1 and f ((x1,1 − x2)) = [x1, x2]. Thus f maps L∗ onto I([0,1]). Let (x1, x2),
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(y1, y2)εL
∗. Then

f ((x1, x2) ∧ (y1, y2)) = f ((x1 ∧ y1, x2 ∨ y2))

= [x1 ∧ y1,1 − x2 ∨ y2]
= [x1 ∧ y1, (1 − x2) ∧ (1 − y2)]
= [x1,1 − x2] ∧ [y1,1 − y2]
= f ((x1, x2)) ∧ f ((y1, y2)).

Also

f ((x1, x2) ∨ (y1, y2)) = f ((x1 ∨ y1, x2 ∧ y2))

= [x1 ∨ y1,1 − x2 ∧ y2]
= [x1 ∨ y1, (1 − x2) ∨ (1 − y2)]
= [x1,1 − x2] ∨ [y1,1 − y2]
= f ((x1, x2)) ∨ f ((y1, y2)). �

2.4 Exercises
1. Define f : [0,1] → [0,1] by for all xε[0,1], f (x) = xc. Prove that f is a lattice
isomorphism of ([0,1],∧,∨) onto ([0,1],∨,∧).

2. Let L2([0,1]) = {(x1, x2) ⊆ [0,1]|0 ≤ x1 ≤ x2 ≤ 1}. Prove that L2([0,1]) is lattice
isomorphic to L∗.
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Global cybersecurity©�

3.1 Global cybersecurity and cybersecurity threat
The Global Society Security Index (GCI) was first launched in 2015 by the Inter-
national Telecommunication Union (ITU) to measure the commitment of 193 ITU
Member States and the state of Palestine to cybersecurity help them identify areas of
improvement and encourage countries to take action, through raising the awareness
on the state of cybersecurity worldwide. We consider the Americas. The ranking for
column 1 in the following table was taken from [38, p. 28]. The SDG rankings in
columns 2 and 3 were taken from [72]. The ranking in column 4 was taken from [86].
NordVPN’s research partner was Statista, world’s leading business data provider.
Statista collected the data used in analysis and approved the methodology used to
create the Cyber Risk Index.

Americas

Let A denote the Cybersecurity ranking in column 1 and B denote the SDG
ranking in column 2 (see Table 3.1). Here we have n = 27. Let x1, ..., x27 denote
the 27 countries involved. Then M(μA,μB) = ∑27

i=1 μA(xi) ∧ μB(xi)/[27(28) −∑27
i=1 μA(xi)∧μB(xi)]. We find M(μA,μB) = 296

460 = 0.643. The smallest M can be
n+1
3n−1 = 28

80 = 0.35 since n is odd. Hence 0.643−0.350
1−0.350 = 0.451.

Recall S = 2M
1+M

= 2(0.643)
1.643 = 0.783. The smallest S can be is 2(0.35)

1.35 = 0.519.

Thus 0.783−0.519
1−0.519 = 0.264

0.481 = 0.549. Consequently, in both cases the fuzzy similarity
measure is medium.

We next consider the SDG 8,9,10 ranking in column three. Let C denote
the ranking and μC be the associated fuzzy subset. As before, let A denote the
ranking in column one. We rerank the countries that are appear in both the A

and C rankings. Then n = 21 and so n(n + 1) = 462. Let x1, ..., x21 denote the
countries involved. Then M(μA,μC) = 181

462−182 = 181
281 = 0.644. Since n is odd,

the smallest M can be is n+1
3n−1 = 22

62 = 0.355. Hence 0.644−0.355
1−0.355 = 0.289

0.645 = 0.448.

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
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Table 3.1 Cybersecurity and risk.

Country Global
Cyberse-

curity

SDG
Overall

SDG 8,9,10 Cybersecu-
rity Threat

USA 1 17 0.694/2 16

Canada 2 3 0.796/1 23

Brazil 3 12 0.476/12.5 50

Mexico 4 18 0.402/19 64

Uruguay 5 7 0.567/3

Dominican Rep. 6 6 0.476/12.5 48

Chile 7 2 0.512/8

Costa Rica 8 1 0.515/5.5 60

Columbia 9 8 0.417/18 69

Cuba 10 16

Paraguay 11 14 0.503/9 54

Peru 12 5 0.515/5.5 70

Argentina 13 11 0.513/7

Panama 14 19 0.445/16 78

Jamaica 15 20 0.538/4

Suriname 16 10

Guyana 17 26

Venezuela 18 23 0.441/17 85

Ecuador 19 4 0.474/14

Trinidad and Tobago 20 24

Barbados 21

Bolivia 22 9

Antigua and Barbuda 23

Bahamas 24

El Salvador 25 21 0.447/15

Guatemala 26 25 0.374/21

St. Kitts and Nevis 27

St. Vincent and the Grenadines 28

St. Lucia 29

Belize 30 15

Grenada 31

Nicaragua 32 13 0.479/10.5 84

Haiti 33 27 0.479/10.5

Dominica 34

Honduras 35 22 0.398/20 89
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Now S(μA,μC) = 2(0.644)
1.644 = 0.783. The smallest S can be is 2(0.355)

1.355 = 0.524.
Thus 0.783−0.524

1−0.524 = 0.259
0.476 = 0.544. In both cases the fuzzy similarity measure is

medium.

3.2 Risk
The following ranking is from [51]. The countries are ranked from highest risk to
lowest risk (see Table 3.2).

Table 3.2 Risk.
Country Country
Belgium 1 Qatar 30
Finland 2 Israel 31
Spain 3 Serbia 32
Denmark 4 Cyprus 33
Germany 5 Mauritius 34
Lithuania 6 Romania 35
France 7 New Zealand 36
Sweden 8 Russia 37
United Kingdom 9 North Macedonia 38
Portugal 10 Thailand 39
Netherlands 11 Slovenia 40
Poland 12 Georgia 41
Luxembourg 13 Turkey 42
Norway 14 United Arab Emirates 43
Australia 15 Iceland 44
USA 16 Uruguay 45
Croatia 17 Egypt 46
Greece 18 India 47
Slovakia 19 Dominican Republic 48
Italy 20 China 49
Malaysia 21 Brazil 50
Japan 22 Bulgaria 51
Canada 23 Ukraine 52
Singapore 24 Kazakhstan 53
Switzerland 25 Paraguay 54
Latvia 26 Philippines 55
Ireland 27 Tunisia 56
Czech Rep. 28 Nigeria 57
Hungary 29 Morocco 58

continued on next page
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Table 3.2 (continued)

Country Country
South Africa 59 Cambodia 88
Costa Rica 60 Honduras 89
Bangladesh 61 Libya 90
Indonesia 62 Namibia 91
Moldova (Rep. of) 63 Myanmar 92
Mexico 64 Afghanistan 93
Saudi Arabia 65
Albania 66
Kenya 67
Uganda 68
Columbia 69
Peru 70
Zambia 71
Belarus 72
Tanzania (Rep. of) 73
Jordan 74
Uzbekistan 75
Pakistan 76
Sri Lanka 77
Panama 78
Armenia 79
Kyrgyzstan 80
Cameroon 81
Nepal 82
Zimbabwe 83
Nicaragua 84
Venezuela 85
Ethiopia 86
Mongolia 87

In [86], a cyber risk index is provided for 50 countries. The risk of a country to
cybercrime is determined by 14 factors (see Table 3.3).

Factors #1-13 indicated a higher risk, while factor #14 lowered the risk in a given
country. It was determine in [86] that residents of developed countries are more likely
to become victims of cybercrime.

In [51], the countries most at risk of cybercrime were determined. To make this
determination, data from three major cybersecurity authorities was combined. These
authorities were the National Cyber Security Index (NCSI), the Global Cybersecu-
rity Index (GCI) (2020), and the Cybersecurity Exposure Index (CEI) (2020). The
results were determined by finding the cybersecurity scores, all three of which were
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Table 3.3 Risk to cybercrime.

Factor Factor
1 Urban population 8 Online games penetration
2 Monthly average wage 9 VoD penetration
3 Tourism 10 Public Wi-Fi availability
4 Internet penetration 11 Facebook penetration
5 Smartphone penetration 12 Instagram penetration
6 Time spent on internet 13 Crime index
7 E-commerce 14 Global Cybersecurity Index

expressed as percentages and assigned each of those scores to the 93 countries. The
mean average of the NCSI, GCI, and CEI’s total scores is referred in [51] as the
Cyber-Safety Score.

We consider ranking of the 50 countries in [86]. We find the fuzzy similarity mea-
sure of the ranking in [86] and the ranking in [51]. To accomplish this, we delete the
countries which do not appear in both countries and rerank them. The deletion leaves
38 countries. The Cyber Risk ranking is from high risk to low risk while the Cyber
Safety ranking is from low risk for cybercrime to high. Consequently, we reverse rank
the Cyber Safety rank. Let A denote the Cyber Risk ranking and B the Cyber Safety
ranking (see Table 3.4).

Table 3.4 Risk and safety.

Country Cyber Risk Cyber-Safety
Iceland 1/1 44/31
Sweden 2/2 8/7
United Arab Emirates 3/3 43/30
Norway 4/4 14/12
United States 5/5 16/14
Singapore 6/6 24/20
Ireland 7/7 27/23
New Zealand 8/8 36/26
Denmark 9/9 4/3
United Kingdom 10/10 9/8
Israel 11/11 31/25
Finland 12/12 2/1
Belgium 14
Canada 14/13 23/19
Chile 14
Australia 16/14 15/13
Netherlands 17/15 11/10

continued on next page
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Table 3.4 (continued)

Country Cyber Risk Cyber-Safety
Argentina 18
Switzerland 19/16 25/21
South Korea 20
Germany 21/17 5/4
Brazil 22/18 50/33
Austria 23
Italy 24/19 20/16
Saudi Arabia 25.5
Spain 25.5/20 3/2
Greece 27/21 18/15
Malaysia 28/22 21/17
Czech Rep. 29/23 28/24
France 30/24 7/6
Estonia 31
Portugal 32/25 10/9
Mexico 33/26 64/38
Lithuania 34/27 6/5
Japan 35/28 22/18
Hungary 36
Latvia 37/29 26/22
Turkey 38/30 42/29
Poland 39/31 12/11
Russia 40/32 37/27
Ukraine 41/33 52/34
Iran 42
Philippines 43/34 55/35
Thailand 44/35 39/28
China 45/36 49/32
South Africa 46/37 59/37
Indonesia 47
Iraq 48
Nigeria 49/38 57/36
India 50

Let X denote the set of countries. Now S(μA,μB) = 1 − ∑
xεX |μA(x) −

μB(x)|/38(39) = 1 − 366
1482 = 0.753. Since 38 is even, the smallest value S can be is

n/2+1
n+1 = 20

39 = 0.513. Thus 0.753−0.513
1−0.513 = 0.493. Now M = S

2−S
. Thus M(μA,μB) =

0.753
1.247 = 0.604. The smallest M can be is 0.513

2−0.513 = 0.345. Thus 0.604−0.345
1−0.345 = 0.395.

With respect to M and S, the fuzzy similarity measure is low. See Exercise 1.
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3.3 Global cybercrime risk rankings
The remainder of the chapter is taken from [19]. In this section, we develop a mathe-
matical model to examine cybercrime. We start by examining 10 countries that have
been rated most prevalent in cybercrime by the Symantec Corporation, as determined
by annual Internet security threat from 2006 p. 2011, [46]. Our model will depend on
three major factors:

F1: Damage

Identified as any monetary loss incurred by the use of stolen information or the
costs associated with correcting such effects. All figures will be in the United States
dollars

F 2: Prevalence

The relative global frequency of certain computer attacks and the frequency of
online adults who suffer negative effects from a cybercrime attack.

F3: The growth characteristics of certain types of cyber attacks from 2006 to 2011.

We next present subfactors that will be used by both F2 and F3.

f1: Bot-infected computer attacks

Bots are programs installed on a compromised machine to allow an attacker to
remotely control it via a communication channel and orchestrate other attacks.

f2: Hacking

Hacking is any attack aimed at gaining access to computer systems or networks
for the purpose of data mining and system manipulation. Those who use this method
are greatly aided by currently available hacker software such as L0phtCrack, which
is used for password checking.

f3: Malicious code

Malicious code samples, or vandals, are auto-executable applications that are used
to attack network drives. Their behavior is dependent on the code itself, but common
methods are the lifting of data and passwords or gaining access to email for the use
of spamming.

f4: Phishing website hosting

Phishing attacks occur when an attacker attempts to gain confidential information
(credit card number, banking information, etc.) from victims by mimicking a specific
company or brand.

f5: Spam zombies

Spanning is the delivery of unsolicited email, which may contain Trojans, viruses,
and phishing attempts. Spam zombies, similar to bio-infected computers, are ma-



32 CHAPTER 3 Global cybersecurity

chines remotely controlled by an attacker, who uses it to distribute spam without the
victim’s knowledge.

F3 adds another factor to be used as a multiplicand.

f6: Adult victims

The prevalence of adult victims is identified as the percentage of online adults in
each country who have suffered some detrimental effect at the result of a cybercrime
in 2011.

Subfactors for F1 are

f1: Direct cash
f2: Time lost cost

Expert opinion

The rating to follow for the above factors were determined faculty and staff with
expertise in security technology. Their responses indicated the relative risk of cyber-
crime for each country in set S.

We use three different methods to achieve our goal, these methods are the Analytic
Hierarchy Process (AHP), Guiasu, and Yen. Using the expert opinion, we have the
following table:

W =
E1 E2 E3 E4 Row Avg

F1 0.3 0.9 0.5 0.3 0.5
F2 0.5 0.7 0.8 0.6 0.65
F3 0.5 0.8 0.7 0.8 0.7

Using the explanation in Chapter 1, we obtain the AHP equation

G = 0.27F1 + 0.35F2 + 0.38F3

the Guiasu table and equation

E1 E2 E3 E4 Row Avg
F1 0.23 0.375 0.25 0.18 0.259
F2 0.38 0.29 0.40 0.35 0.355
F3 0.38 0.33 0.35 0.47 0.382

G′ = 0.26F1 + 0.35F2 + 0.38F3

and the Yen table and equation

E1 E2 E3 E4 Row Avg
F1 0.61 1 0.625 0.38 0.654
F2 1 0.77 1 0.74 0.877
F3 1 0.88 0.86 1 0.935
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G′′ = 0.27F1 + 0.35F2 + 0.39F3.

See Exercise 2.

Subfactors

The data from each sub-factor of F1 is in terms of monetary U. S. dollars. Since
dollars are inherently equal to each other, we do not assign differing weights to f1
and f2. Thus, we obtain

AHP: F1 = 0.5f1 + 0.5f2
Guiasu: F1 = 0.5f1 + 0.5f2
Yen: F1 = 0.5f1 + 0.5f2

We next consider F2. The equation for F2 will include both a weighted and con-
stant component. The weighted component is determined by expert opinion. This
will be multiplied by f6, which is a constant, nonarbitrary factor which describes the
prevalence of online victims in each country

E1 E2 E3 E4 Row Avg
f1 0.3 0.8 0.7 0.3 0.525
f2 0.5 0.5 0.7 0.4 0.525
f3 0.4 0.6 0.6 0.2 0.45
f4 0.2 0.8 0.4 0.6 0.5
f5 0.1 0.3 0.4 0.7 0.375

AHP: F2 = (0.2211f1 + 0.2211f2 + 0.185f3 + 0.2105f4 + 0.1579f5)f6
Guiasu: F2 = (0.2233f1 + 0.2329f2 + 0.1930f3 + 0.2039f4 + 0.1569f5)f6
Yen: F2 = (0.2280f1 + 0.2301f2 + 0.1938f3 + 0.2036f4 + 0.1545f5)f6

We next consider F3.

E1 E2 E3 E4 Row Avg
f1 0.2 0.7 0.9 0.3 0.525
f2 0.5 0.5 1 0.6 0.65
f3 0.2 0.6 0.7 0.7 0.55
f4 0.2 0.6 0.5 0.3 0.4
f5 0.2 0.3 0.1 0.3 0.225

AHP: F3 = 0.2234f1 + 0.2766f2 + 0.2340f3 + 0.1702f4 + 0.0957f5
Guiasu: F3 = 0.2077f1 + 0.2887f2 + 0.2283f3 + 0.1671f4 + 0.1082f5
Yen: F3 = 0.2132f1 + 0.2790f2 + 0.2310f3 + 0.1708f4 + 0.1060f5

To determine F3 data, linear regression on the rankings of each country in set S

was used. Those countries with the most negative slope—meaning they are ascending
from a low rank to a rank, i.e., 10th to 1st over the course of six years—were granted
the highest rankings and those with most positive were given the lowest rankings.
These rankings can be found in [19].
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Degree of expert opinion

We use fuzzy preference relations to examine the degree to which each major
factor is preferred over other factors. We use matrix W .

Let Rk = [ρk
ij ], where ρk

ij (Fi,Fj ) = (eik − ejk + 0.5) ∧ 1 if eik ≥ ejk and

ρk
ij (Fi,Fj ) = 1 −[(ejk − eik + 0.5)∧ 1] if eik < ejk , i, j = 1,2,3 and k = 1, ...,3,4.

Then

R1 =
F1 F2 F3

F1 0.5 0.3 0.3
F2 0.7 0.5 0.5
F3 0.7 0.5 0.5

and R2 =
F1 F2 F3

F1 0.5 0.7 0.6
F2 0.3 0.5 0.4
F3 0.4 0.6 0.5

R3 =
F1 F2 F3

F1 0.5 0.2 0.3
F2 0.8 0.5 0.6
F3 0.7 0.4 0.5

and R4 =
F1 F2 F3

F1 0.5 0.2 0
F2 0.8 0.5 0.3
F3 1 0.7 0.5

Let Ak = [ak
ij ], where ak

ij = 1 if ρk
ij > 0.5 and i, j = 1,2,3 and k = 1,2,3,4.

Let R = [rij ], where for all i, j = 1,2,3, rij = 1
4

∑4
k=1 ak

ij if i �= j and 0 other-
wise. Then

R =
F1 Ḟ2 F3

F1 0 1/4 1/4
F2 3/4 0 1/4
F3 3.4 2/4 0

Let G = [gij ], gij = 1 if rij > 0.5 and rij > 0.5 and 0 otherwise. Then gij ex-
presses whether Fi defeats Fj .

Now gi = 1
2

∑3
j=1 gij is the mean degree to which Fi is preferred to all other Fj .

We find that g1 = 0, g2 = 1
2 , and g3 = 1

2 .

Let zi
Q be the fuzzy consensus winner, or the extent to which Fi is preferred

to Q other Fj , i, j = 1,2,3 and Q denotes most. We define zi
Q = μQ(gi) = 1 if

0.8 ≤ gi ≤ 1,2gi − 0.6 if 0.3 < gi < 0.8, and 0 if 0 ≤ gi ≤ 0.3. We find that

z1
Q = μQ(g1) = μQ(0) = 0,

z2
Q = μQ(g2) = μQ(

1

2
) = 2(

1

2
) = 0.4,

z3
Q = μQ(g3) = μQ(

1

2
) = 2(

1

2
) = 0.4,

Fuzzy preference relations were used further to determine relationships between
each of the factors.



3.3 Global cybercrime risk rankings 35

Let S, I,>,R,∼ be relations on X having the following meanings:
S: outranking relation
xSy means x is not worse than y

I : indifference relation
xIy means x and y are indifferent
R: incompatibility relation
xRy means x and y are incomparable
	: preference relation
x 	 y means x is preferred to y

∼: nonpreference relation
x ∼ y means that x and y cannot be discriminated against
I (S)(x, y) = S(x, y) ∧ S(y, x)

R(S)(x, y) = (1 − S(x, y)) ∧ (1 − S(y, x))

	 (S)(x, y) = S(x, y) ∧ (1 − S(y, x))

∼ (S)(x, y) = (S(x, y) ∧ S(y, x)) ∨ ((1 − S(x, y)) ∧ (1 − S(y, x)))

Let S = R, where

R =
F1 F2 F3

F1 0 1
4

1
4

F2
3
4 0 1

4

F3
3
4

2
4 0

Then

I (S) =
F1 F2 F3

F1 0 1
4

1
4

F2
1
4 0 1

4

F3
1
4

1
4 0

,R(S) =
F1 F2 F3

F1 1 1
4

1
4

F2
1
4 1 2

4

F3
1
4

2
4 1

and

	 (S) =
F1 F2 F3

F1 0 1
4

1
4

F2
3
4 0 1

4

F3
3
4

2
4 0

,∼ (S) =
F1 F2 F3

F1 1 1
4

1
4

F2
1
4 1 2

4

F3
1
4

2
4 1

For m,n = 1,2,3,4 define ν(n,m) = 1 if |ρm
ij − ρn

ij | ≤ 1 − 0.94 = 0.06 and 0

otherwise. Then

ν(1,2) =
F1 F2 F3

F1 1 0 0
F2 0 1 0
F3 0 0 1

ν(1,3) =
F1 F2 F3

F1 1 0 1
F2 0 1 0
F3 101

ν(1,4) =
F1 F2 F3

F1 1 0 0
F2 0 1 0
F3 0 0 1
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ν(2,3) =
F1 F2 F3

F1 1 0 0
F2 0 1 0
F3 0 0 1

ν(2,4) =
F1 F2 F3

F1 1 0 0
F2 0 1 0
F3 0 0 1

ν(3,4) =
F1 F2 F3

F1 1 1 0
F2 1 1 0
F3 0 0 1

The degree of agreement of all pairs of experts m, n to their preference is by
νB(m,n) = 1

3

∑2
i=1

∑3
j=1+1 νij (m,n). Thus we have

νB(1,2) = 0, νB(1,3) = 1

3
, νB(1,4) = 0

νB(2,3) = 0, νB(2,4) = 0, νB(3,4) = 0

Note νB(1,3) = 1
3 (ν12(1,3) + ν13(1,3) + ν23(1,3)) = 1

3 (0 + 1 + 0).

The degree of agreement of all pairs of experts m, n is given by the formula

νB = 1

6

3∑

m=1

4∑

n=m+1

νB(m,n).

We find that νB = 1
6 (0 + 1

3 + 0 + 0 + 0 + 1
3 ) = 1

9 .

3.4 Exercises
1. Investigate why the fuzzy similarity measure in Section 3.2 (Table 3.4) is low.

2. Put in the details for determining the AHP, Guiasu, and Yen tables and equations
in Section 3.3.
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4.1 Global terrorism index
The Global Terrorism Index (GTI) analyses the impact of terrorism for 163 countries,
which covers 99.7% of the world’s population. The GTI defines terrorism as the sys-
tematic threat or use of violence by non-state actors, whether for or in opposition
to established authority, with the intention of communicating a political, religious,
or ideological message to a group larger than the group by generating fear and so
altering (or attempting to alter) the behavior of the larger.

Table 4.1 presents the ranking of countries by GTI with respect to the impact of
terrorism, [42].

The remaining countries were tied. They had no impact or were not included.

4.2 Terrorism: Interpol global policing goals and SDGs
The following depends heavily on [74]. We determine how well the Organization for
Economic Cooperation and Development (OECD) country is achieving the Interpol
goals with respect to the SDGs pertinent to them. We found that the Scandinavian
countries were at the top in the achievement. In combating terrorism, in general,
we found that the Scandinavian countries were at the top. We also show that the
fuzzy similarity measure of the ranking of countries used by the SDGs relevant to
terrorism compared with SDG 16 alone was high. Let A, B, and C be rankings of
a set X and μA, μB , and μC the associated fuzzy subsets, respectively. Consider
the similarity measures S and M , [75]. Suppose that S(μA,μB) and S(μA,μC) are
known, but S(μB,μC) is unknown. It is shown in [71] that if S(μA,μB) is near 1,
then |S(μA,μC) − S(μB,μC)| is near 0. In this chapter, a similar result for M is
shown.

In [47], seven global policing goals are presented that reflect Interpol’s prior-
ities against criminal and terrorist threats, in alignment with the United Nations
2030 Agenda for Sustainable Development. Interpol developed seven Global Polic-
ing Goals (GPGs) to address a range of issues related to crime and security. Endorsed

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.
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Table 4.1 Impact of terrorism.

Country Rank Country Rank Country Rank
Afghanistan 1 USA 30 Belgium 59
Burkino Faso 2 Greece 31 Spain 60
Somalia 3 Libya 32 Austria 61
Mali 4 Palestine 33 Japan 62
Syria 5 France 34 Saudi Arabia 63
Pakistan 6 Germany 35 Sweden 64
Iraq 7 Nepal 36 Switzerland 65
Nigeria 8 Algeria 37 Ecuador 66
Myanmar 9 Tanzania 38 Netherlands 67
Niger 10 Burundi 39 Jordan 68
Cameroon 11 Tunisia 40 Australia 69
Mozambique 12 Peru 41 Uzbekistan 70
India 13 UK 42 Paraguay 71
Dem. Rep. Congo 14 Bangladesh 43 Mexico 72
Columbia 15 Djibouti 44 Ukraine 73
Egypt 16 Russia 45 Cyprus 74
Chile 17 New Zealand 46 Malaysia 75
Philippines 18 Cote d’lvoire 47 UAE 76
Chad 19 Uganda 48 Senegal 77
Kenya 20 Norway 49 Eswatini 78
Iran 21 Tajikistan 50 Bahrain 80.5
Yemen 22 Venezuela 51 Rwanda 80.5
Turkey 23 Lebanon 52 South Africa 80.5
Indonesia 24 Italy 53 Uruguay 80.5
Israel 25 Canada 54 Morocco 83
Thailand 26 Central African Rep. 55 Romania 84
Togo 27 Ethiopia 56 Brazil 85
Benin 28 Argentina 57 Lithuania 86
Sri Lanka 29 Slovakia 58 Ireland 87.5
Mauritania 87.5 Vietnam 89 Angola 90.5
Denmark 90.5 Kosovo 90.5

by their member countries in 2017, the Goals were officially launched in 2018. The
description of the Goals can be found in the Appendix. The SDGs related to these
goals appear in Table 4.2.

We determine how well an OECD country is achieving the Interpol goals with re-
spect to the SDGs pertinent to them. The OECD is an international organization of 38
countries committed to democracy and the market economy. The OECD’s mission is
to bring together the governments committed to democracy and the market economy
from around the world.
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Table 4.2 Interpol goal and related SDGs.

Interpol Goal SDGs
I1 9,11,16,17
I2 5,8,9,10,16,17
I3 5,8,10,16
I4 9,16,17
I5 11,16,17
I6 2,3,8,11,12,15,16
I7 1,2,3,6,8,11,12,13,14,15,16

4.3 Achievement of goals
Tables 4.3 and 4.4 below provide values for how well an OECD country is achieving
the Interpol Goals. A country with the superscript ∗ is one in which the Interpol Goal
I7 was rated na and a country with a superscript # was one with na for I2 and I3,
see Table 4.3. How the values in Table 4.3 below are determined is illustrated in the
following example. Consider Australia and Goal I1. The SDGs involved for I1 are 9,
11, 16, and 17. We obtain 77.9 = 1

4 (84.2 + 80.6 + 85.7 + 61.1), where 84.2, 80.6,
85.7, 61.1 are the values from [109] denoting how well Australia is achieving SDG
9, SDG 11, SDG16, SDG 17, respectively.

4.4 Fuzzy similarity measures
For ease of reading, we recall some results previously stated.

We apply fuzzy similarity measures to rankings of members of a finite set. Sup-
pose that X is a finite set with n elements. Let A be a one-to-one function of X onto
{1,2, ..., n}. Then A is called a ranking of X. Define the fuzzy subset μA of X as
follows: ∀x ∈ X, μ(x) = A(x)/n. We wish to consider the similarity of two rankings
of X by the use of fuzzy similarity measures.

Let μA, μB be the fuzzy subsets of X associated with two rankings A and B of
X, respectively. Then M and S are fuzzy similarity measures, where

M(μA,μB) =
∑

x∈X μA(x) ∧ μB(x)∑
x∈X μA(x) ∨ μB(x)

,

S(μA,μB) = 1 −
∑

x∈X |μA(x) − μB(x)|∑
x∈X μA(x) + μB(x)

.

Theorem 4.4.1. [71,75] (1) Suppose that n is even. Then the smallest value M can
be is

M = n + 2

3n + 2
.
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Table 4.3 Interpol policing goal scores/rank.

Country I1 I2 I3 I4 I5 I6 I7

Australia 77.90/12 75.62/15 80.68 /17 77.00/10 75.80/21 69.29/34 70.11/29
Austria 81.50/7 81.45/7 85.12/9 80.06 /16 81.93/7 77.60/17 na
Belgium 76.85/16 80.63/8 86.40/7 75.03/14 77.17/16 78.09/13 76.26 /20
Canada 77.08/15 78.52/12 82.82 /11 75.97/12 77.97/13 74.04/25 75.43 /22
Chile 71.30/25 63.83/32 63.60/32 68.70/22 78.67/11 74.14/24 79.58 /6
Czech Rep. 72.70/23 74.98/17 82.80 /12 67.17/26 75.87/20 82.07/1 na
Denmark 90.225/2 89.32/2 89.50/3 90.23/2 90.97/1 81.19/2 81.61 /1.5
Estonia 73.78/20 72.85/19 80.02 /19 68.27/24 77.87/14 79.89/3 81.61 /1.5
Finland 84.72/4 86.70/4 90.62/1 83.53 /4 85.07/5 78.41/11 78.89/14
France 78.08/11 79.25/10 81.70 /14 75.10/13 79.57/10 76.01/20 79.10/11
Germany 84.45/5 81.95/6 82.05/13 82.30/15 85.80/4 78.89/7 79.26 /9
Greece 64.60/34 58.80/33 62.32 /33 58.77/34 72.83/24 69.63/32 74.21/25
Hungary 65.15/32.5 66.05/30 73.80 /26 58.17/30 70.33/31 78.57/10 na
Iceland 81.45/8 83.93/5 90.18/2 78.63 /7 83.43/6 72.93/28 74.82/24
Ireland 68.88/28 72.77/20 84.00 /10 63.67/28 69.43/35 79.53/6 80.32 /3
Israel 71.52/24 69.40/26 71.00 /29 68.67/23 69.53/34 69.31/33 69.75/30
Italy 69.02/27 70.32/22.5 73.75 /27 67.37/25 70.77/30 74.56/22 75.44/21
Japan 77.62/14 76.48/14 78.52/20 78.37/8 76.87/17 77.53/18 79.11 /10
Korea, Rep. 73.20/21 74.85/18 78.00 /22 70.83/19 69.70/33 76.13/19 77.81 /18
Latvia 65.75/31 67.78/27.5 76.75 /24 58.90/33 71.23/27 78.80/8 79.82 /4
Lithuania 65.15/ 32.5 67.78/27.5 70.68 /30 59.17/32 71.73/25 77.86/15 79.61/5
Luxembourg 78.12/10 65.56/31 80.75 /16 72.67/16 81.03/8 71.37/30 na
Mexico 57.70/36 52.43/35 54.52 /35 49.87/36 64.83/36 67.19/36 72.45/27
Netherlands 77.65/13 79.78/9 85.68 /8 73.17/15 76.10/19 78.10/12 78.94 /12

continued on next page
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Table 4.3 (continued)

Country I1 I2 I3 I4 I5 I6 I7

New Zealand 78.6/9 na na 77.13/9 80.17/9 74.29/23 78.11/16
Norway 87.65/3 88.45/3 87.78/5 88.17/3 90.20/3 71.16/31 73.25/26
Poland 67.05/29 66.48/29 72.80/28 63.23/29 71.10/28 79.83/5 79.42/8
Portugal 70.82/26 69.87/24 76.10/25 64.53/27 75.73/22 75.30/21 77.83/17
Slovak Rep. 66.68/30 69.63/25 78.25/21 61.57/31 71.00/29 78.76/9 na
Slovenia 73.15/22 77.78/13 87.025/6 68.90/21 77.20/21 79.90/4 78.72/15
Spain 74.22/19 72.48/21 76.925/23 69.27/20 76.27/20 73.60/26 77.65/19
Sweden 91.00/1 91.02/1 89.05/4 91.23/1 90.77/1 78.01/14 78.92/13
Switzerland 81.98/6 78.60/11 81.25/15 76.53/11 78.20/11 72.44/29 na
Turkey 63.95/35 57.62/34 57.10/34 61.80/30 69.77/30 68.40/35 70.70/28
U. K. 76.70/17 75.27/16 80.32/18 72.00/18 75.13/18 76.70/16 79.44/7
U. S. 74.52/18 70.32/22.5 70.60/31 72.03/17 71.60/17 73.24/27 74.87/23
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(2) Suppose that n is odd. Then the smallest value M can be is

M = n + 1

3n − 1
.

Theorem 4.4.2. [71,75] (1) Suppose that n is even. Then the smallest value S can
be is

S = n/2 + 1

n + 1
.

(2) Suppose that n is odd. Then the smallest value S can be is

S = 1

2
+ 1

2n
.

The equations in the above theorems give the smallest value M(μ,ν) and S(μ, ν)

can take on. In general, M(μ,ν) and S(μ, ν) are bounded below by 1
3 and 1

2 , respec-
tively. If we wish to calculate a value for M(μ,ν) and S(μ, ν) in which the values
are bounded below by 0, we can use the following formulas:

M(μ,ν) − n+2
3n+2

1 − n+2
3n+2

and
S(μ, ν) − n/2+1

n+1

1 − n/2+1
n+1

if n is even and

M(μ,ν) − n+1
3n−1

1 − n+1
3n−21

and
S(μ, ν) − ( 1

2 + 1
2n

)

1 − ( 1
2 + 1

2n
)

if n is odd.
Describing fuzzy similarity values linguistically, one might say the similarity is

very low if the value is between 0 and 0.2, low if the value is between 0.2 and 0.4,
medium if the value is between 0.4 and 0.6, high if the value is between 0.6 and 0,8,
and very high if the value is between 0.8 and 1.

Let A, B, and C be rankings of a set X of n elements. Suppose that S(μA,μB)

and S(μA,μC) are known, but S(μB,μC) is unknown. The following result is given
in [75].

Proposition 4.4.3. |S(μB,μC) − S(μA,μC)| ≤ 1 − S(μA,μB).

Let ε = 1 − S(μA,μB). We wish to determine |M(μB,μC) − M(μA,μC)| if
M(μA,μB) and M(μA,μC) are known, but M(μB,μC) is unknown. We know by
[109] that M = S

2−S
.

Proposition 4.4.4. |M(μB,μC) − M(μA,μC)| < ε′, where 8
9ε ≤ ε′ ≤ 2ε.
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Proof. We have that

|M(μB,μC) − M(μA,μC)|
= | S(μB,μC)

2 − S(μB,μC)
− S(μA,μC)

2 − S(μA,μC)
|

= |S(μB,μC)(2 − S(μA,μC)) − S(μA,μC)(2 − S(μB,μC))

(2 − S(μB,μC))((2 − S(μA,μC)))
|

= 2|S(μB,μC) − S(μA,μC)|
(2 − S(μB,μC))((2 − S(μA,μC)))

<
2

(2 − S(μB,μC))((2 − S(μA,μC))
ε,

where ε = 1 − S(μA,μB). By [4], the smallest S can be is 1
2 (in the limit). Thus the

smallest 2
(2−S(μB,μC))((2−S(μA,μC))

can be 8
9 . The largest S can be is 1. Hence, the

largest 2
(2−S(μB,μC))((2−S(μA,μC))

is 2. �

We next consider rankings on a set with n elements

Suppose n is even. Then the smallest S can be is
n
2 +1
n+1 by [71]. Hence,

|S − n
2 +1
n+1

1 − n
2 +1
n+1

− S′ − n
2 +1
n+1

1 − n
2 +1
n+1

| = |S − S′|
1 − n

2 +1
n+1

< (2 + 1

n
)ε.

Suppose n is odd. Then the smallest S can be is 1
2 + 1

2n
by [71]. Hence,

|S − ( 1
2 + 1

2n
)

1 − ( 1
2 + 1

2n
)

− S′ − ( 1
2 + 1

2n
)

1 − ( 1
2 + 1

2n
)

|

= |S − S′|
1
2 − 1

2n

= 2|S − S′|
1 − 1

n

<
2

1 − 1
n

ε.

Suppose n is even. Then the smallest M can be is n+2
3n+2 by [71]. Hence,

|M − n+2
3n+2

1 − n+2
3n+2

− M ′ − n+2
3n+2

1 − n+2
3n+2

|

= |M − M ′|
1 − n+2

3n+2

= |M − M ′|
2n

3n+2

= 3 + 2
n

2
|M − M ′|.

Suppose n is odd. Then the smallest M can be is n+1
3n−1 by [71]. Hence,

|M − n+1
3n−1

1 − n+1
3n−1

− M ′ − n+1
3n−1

1 − n+1
3n−1

| = |M − M ′|
1 − n+1

3n−1

= |M − M ′|
2n−2
3n−1

= 3 − 1
n

2 − 2
n

|M − M ′|.
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4.5 Scores and ranks by averages
In Table 4.4, we provide Interpol Goal average scores and ranks of countries. For
the weighted average the weights are determined as follows: the number of times an
SDG appears in Table 4.1 is 38. The weight of Ii is the number SDGs appearing for
Ii divided by 38, i = 1, ...,7. For example, the weight for I1 is 4/38.

Table 4.4 Interpol policing goal average scores/rank.

Country Weighted Average/Rank Average/Rank

Australia 73.75/23 75.20/19

Austria 80.90∗/5 81.28/6

Belgium 77.76/12 78.63/8

Canada 76.86/18 77.40/15

Chile 72.60/30 71.40/29

Czech Rep. 76.87∗/17 75.93/18

Denmark 85.91/1 87.58/1

Estonia 77.57/14 76.33/17

Finland 82.74/3 83.99/3

France 78.44/8 78.40/10

Germany 81.21/4 82.10/5

Greece 67.34/34 65.88/34

Hungary 69.91∗/32 68.68/33

Iceland 79.21/7 80.77/7

Ireland 75.99/19 74.08/23

Israel 69.83/33 69.88/32

Italy 72.61/29 71.60/27

Japan 77.95/11 77.79/12

Korea, Rep 75.37/20 74.36/21

Latvia 73.39/26 72.03/26

Lithuania 72.67/28 70.28/31

Luxembourg 73.69∗/24 74.92/20

Mexico 62.49/36 59.86/36

Netherlands 78.91/9 78.49/9

New Zealand 77.34#/15 77.66/13

Norway 80.83/6 83.81/4

Poland 73.54/25 71.42/28

Portugal 73.97/22 72.88/24

Slovak Rep. 72.09∗/31 70.98/30

Slovenia 78.16/10 77.52/14
continued on next page
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Table 4.4 (continued)

Country Weighted Average/Rank Average/Rank
Spain 74.88/21 74.35/22
Sweden 84.91/2 87.14/2
Switzerland 77.62∗/13 78.17/11
Turkey 65.29/35 65.62/35
United Kingdom 77.15/16 76.51/16
United States 72.88/27 72.46/25

4.6 Terrorism and the SDGs
It is stated in [4] that no religious pretext can ever excuse violent methods. At the
same time, we will never be able to defeat terrorism long term unless we address
conditions conducive to its spread. Several Security Council resolutions pertaining to
the most serious threats to international peace and security generally, and to terror-
ism specifically, have underlined this, inter alia, in Security Council resolutions. The
first pillar of the United Nations Global Counter-Terrorism Strategy also resolves to
address conditions conducive to the spread of terrorism. More recently, the security-
General’s Plan of Action to Prevent Extremism elaborates on what some of these
conditions may be lack of socioeconomic opportunities, marginalization and discrim-
ination, poor governance violations of human rights and the rule of law, prolonged
and unresolved conflicts, and radicalization in prisons.

Crucial to the rights of the SDGs as a means to galvanize the international commu-
nity’s efforts to tackle serious developmental-related challenges, the SDGs can also
directly and indirectly help our efforts to counter terrorism by addressing conditions
conducive to its spread.

SDG 16 is the most relevant SDG with respect to terrorism. In [71], SDGs 1, 4, 5,
8, 10, and 16 are listed as the SDGs relevant to terrorism. We next determine scores of
how well countries are achieving these SDGs. We pay individual attention to SDG 16
and SDG 5. SDG 16 is the strongest of all SDGs with respect to combating terrorism
and SDG 5 has been singled out as the SDG most pertinent to terrorism involving
women.

The scores in the SDGs Ref. 5 column of Table 4.5 are determined by taking the
average of how well a country is achieving the SDGs given in [71].

We next find the fuzzy similarity measure of μ and ν, where μ represents the rank-
ing in column 1 and ν represents the ranking in column 3. We find that M(μ,ν) =
572.5
759.5 = 0.754 and S(μ, ν) = 1 − 183

1332 = 0.863. Now n = 36 is even. The smallest M

can be is n+2
3n+2 = 38

110 = 0.345 and the smallest S can be is
n
2 +1
n+1 = 19

37 = 0.514. Now
0.754−0.345

1=0.345 = 0.400
0.655 = 0.611 and 0.863−0.514

1−0.514 = 0.349
0.486 = 0.718. We see that the fuzzy

similarity measures are high.
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Table 4.5 SDG achievement.

Country SDGs Ref. 5/Rank SDG 5/Rank SDG 16/Rank

Australia 85.75/20 78.9/16 85.7/12.5

Austria 89.38/10 79.1/15 92.0/4

Belgium 89.97/8 83.9/8 86.9/11

Canada 88.40/12 80.4/14 88.1/8.5

Chile 74.35/33 70.5/29 75.9/29

Czech Rep. 87.82/13 71.1/27.5 81.2/22

Denmark 92.65/4 84.8/6 82.7/20

Estonia 85.85/19 75.3/19.5 87.8/10

Finland 93.53/1 89.2/1 92.9/2

France 87.28/14 86.5/4 76.6/26

Germany 86.13/17.5 77.0/18 83.4/18

Greece 72.68/34 62.6/34 72.8/34

Hungary 80.75/29 64.1/32 73.4/33

Iceland 92.97/2 85.5/5 93.0/1

Ireland 88.48/11 73.1/24 90.4/6

Israel 80.00/30 75.2/21 73.6/32

Italy 81.65/27 71.2/26 75.2/31

Japan 85.20/21 58.5/35 90.3/7

Korea Rep. 84.47/22 63.9/33 75.4/30

Latvia 83.57/23 70.2/30 77.0/27

Lithuania 79.97/31 72.1/25 80.5/24

Luxembourg 86.27/16 74.6/22 90.2/5

Mexico 66.37/36 77.4/17 53.1/36

Netherlands 89.42/9 81.5/11 83.5/17

New Zealand 92.70∗/3 84.7/7 92.6/3

Norway 91.75/6 87.7/3 84.9/14

Poland 80.82/28 71.1/27.5 81.4/21

Portugal 83.10/25 80.7/13 84.1/15

Slovak Rep. 82.50/26 68.9/31 79.9/25

Slovenia 90.73/7 75.3/19.5 88.1/8.5

Spain 83.53/24 82.7/9 80.6/23

Sweden 92.42/5 88.9/2 83.8/16

Switzerland 86.13/17.5 82.2/10 83.0/19

Turkey 70.27/35 45.3/36 68.1/35

United Kingdom 86.73/15 81.3/12 85.7/12.5

United States 78.43/32 73.4/23 76.1/28
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4.7 Appendix: the Interpol global policing goals and the
SDGs

Interpol global policing goals
Goal 1. Counter the threat of terrorism
Goal 2. Promote border integrity
Goal 3. Protect vulnerable communities
Goal 4. Secure cyberspace for people and businesses
Goal 5. Promote global integrity
Goal 6. Curb illicit markets
Goal 7. Support environmental security and sustainability

Sustainable development goals

Goal 1. End poverty in all its forms everywhere
Goal 2. End hunger, achieve food security, improved nutrition, and promote sus-

tainable agriculture
Goal 3. Ensure healthy lives and promote well-being for all at all ages
Goal 4. Ensure inclusive and equitable quality education and promote lifelong

learning opportunities for all
Goal 5. Achieve gender equality and empower all women and girls
Goal 6. Ensure availability and sustainable management of water and sanitation

for all
Goal 7. Ensure access to affordable, reliable, sustainable and modern energy for

all
Goal 8. Promote sustained, inclusive and sustainable growth, full and productive

employment and decent work for all
Goal 9. Build resilient infrastructure, promote inclusive and sustainable industri-

alization and foster innovation
Goal 10. Reduce inequality within and among countries
Goal 11. Make cities and human settlements inclusive, safe, resilient, and sus-

tainable
Goal 12. Ensure sustainable consumption and production patterns
Goal 13. Take urgent action to combat climate change and its impacts
Goal 14. Conserve and sustainably use the oceans, seas, and marine resources for

sustainable development
Goal 15. Protect, restore, and promote sustainable use of terrestrial ecosystems,

sustainably manage forests, combat desertification, and halt and reverse land degra-
dation and halt biodiversity loss

Goal 16. Promote peaceful and inclusive societies for sustainable development,
private access to justice for all and build effective, accountable, and inclusive institu-
tions at all levels

Goal 17. Strengthen the means of implementation and revitalize the Global Part-
nership for Sustainable Development
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So far, we have determined how well an OECD country is achieving the Interpol
goals with respect to the SDGs pertinent to them. We found that the Scandinavian
countries were at the top in the achievement. In combating terrorism in general, we
found that the Scandinavian countries were also at the top. We also show that the
fuzzy similarity measure of the ranking of countries used by the SDGs relevant to
terrorism compared with SDG 16 alone was high.

4.8 GTI index
We next delete those countries of the GTI Index that were not included or had no
impact from terrorism. We then reverse rank the countries of the GTI rank so that the
rankings would be compatible with that of the IPD average ranking (Table 4.6).

Table 4.6 GTI index.
Country GTI IPG Average
Australia 5 14
Austria 10 5
Belgium 12 6
Canada 14 12
Chile 25 19
Denmark 1 1
France 20 8
Germany 19 4
Greece 21 23
Ireland 2 16
Israel 23 22
Italy 15 18
Japan 9 10
Lithuania 3 21
Mexico 4 25
Netherlands 6 7
New Zealand 17 11
Norway 16 3
Slovak Rep. 13 20
Spain 11 15
Sweden 8 2
Switzerland 7 9
Turkey 24 24
United Kingdom 18 13
United States 22 17
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Let A denote the GTI ranking and B the IPG ranking. Here n = 25. We find
that M(μA,μB) = 243

650−243 = 0.597. From Section 4.4, we have that the small-

est M can be is n+1
3n−1 = 26

74 = 0.351. Thus 0.597−0.351
1−0.351 = 0.246

0.649 = 0.379. Also,

S(μA,μB) = 2(0.597)
1.597 = 0.748. The smallest S can be is 2(0..351)

1.351 = 0.520. Hence
0.748−0.520

1−0.520 = 0.475.
See Exercise 7.

4.9 Bioterrorism
In this section we consider a model developed in [48]. Bioterrorism is defined by
the Centers for Disease Control and Prevention (CDC) as the deliberate release of
viruses, bacteria, or other germs (agents) used to cause illness or death in people,
animals, or plants. In [48], a method of assessing how vulnerable a country is to a
bioterrorism attacks is developed. In [5], a model is proposed for assessing a bioter-
rorist attack using the following equation:

Bioterorist threat = (consequences of attack) × (likelihood of attack),

where

consequence of attack = (value of asset being defended) × (hazard posed by

agents) × (vulnerability of assets being defended)

and

likelihood of attack = (motivation) × (capability of attackers).

The model in [48] is based somewhat on this equation, but not entirely. The three
components of the equation for assessment of consequences of attacks are now ex-
plained and compared to factors used in this model.

Value of the assets being defended: This is a political decision that can be aided
by economic estimates of the monetary worth assets.

Hazard posed by the agents: A variety of factors has to be considered These
include level of communicability, average incubation period, and average rate of
morality, among others. In [48], the average duration of the disease is also considered.

Vulnerability of the assets being defended: Factors such as concentration of popu-
lations in urban centers and the effects of globalization are considered [5]. The effect
of globalization again reinforces the importance of considering the transmission rate
of an infectious agent in this assessment. Values provided by the CIA World Factbook
or urbanization and population residing in main cities are used since urban centers
can be defined in a variety of ways.
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Infectious agents
The U. S. department of Homeland security (DHS) has created a list of biological

agents which are deemed the most important pathogens These pathogens are known
as material threats. This list is comprised of various bacteria, viruses, and toxins of
which the most commonly known and most plausible for use are smallpox (vari-
ola major), anthrax (Bacillus anthraxes), Ebola (a viral hemorrhagic fever), plague
(Yersinia pestis), and botulism (Clostrdium botulinum) (www.nytimes.com). These
five infectious agents re listed as high priority Category A agents by the CDC.

Factors in determining a country’s vulnerability to a bioterrorism attack

The following factors will be considered when assessing how vulnerable a country
is to a biological attack:

1. Urbanization
2. Percentage of population under 14 years old and percentage of population over

65 years old
3. Percentage of population residing in the largest cities
4. Physician density
5. Hospital bed density
6. Incubation period of the agent
7. Lethality of the agent
8. Duration of the disease
9. Degree of person-to-person transmission of the infectious agent

A list of assumptions made for the creation of the model can be found in [48,
p. 67].

Equation behind determining a country’ vulnerability to a bioterrorism attack

Using statistics from the CIA World Factbook, a score was determined for the
top fifty most populated countries. This score is comprised of values of the nine
factors mentioned previously. The scores for each country was determined using the
following equation:

Score = (pop)(lethality)(trans)(treat) + (
bed dens

phys dens
)(dur) + (inc),

where
pop = (%urb)((%<14)+%>65)) + (

∑
%maj cities)

lethality = percent lethality if disease is untreated
trans = availability of treatment
bed dens = number of hospital beds per 1000 people
phys dens = number of physicians per 1000 people
dur = duration of disease
inc = incubation period of disease
%urb = percent of population that is urbanized
%<14 = percent f population under 14 years old

http://www.nytimes.com
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%>65 = percent of population over 65∑
%maj cities = percentage of population living in major cities

An explanation of the values used in the above equation can be found in [48,
p. 68].

Mathematical calculations involving expert opinions

The above equation is applied to each of the five diseases, resulting in five new
cores for each country. Through an electronic survey, a group of experts was asked to
rank the severity of each of the five diseases based n how devastating the infectious
agent could be on a population under the above assumptions. A copy of the survey
can be found in [48].

The following matrix presents the results. The experts ranked the severity of each
disease as “extremely dangerous,” “moderately dangerous,” “dangerous,” “slightly
dangerous,” and “not dangerous.” These rankings were converted into numerical val-
ues based on the following key: 5 = extremely dangerous, 4 = moderately dangerous,
3 = dangerous, 2 = slightly dangerous, 1 = not dangerous. We let Ei be expert i,
where i = 1,2, ...,7 and F1 = small pox, F2 = anthrax, F3 = Ebola, F4 = plague,
and F5 = botulism (Table 4.7).

Table 4.7 Expert opinion.

E1 E2 E3 E4 E5 E6 E7

F1 5 5 3 5 4 4 5
F2 3 4 2 3 5 4 4
F3 5 5 3 5 5 5 4
F4 3 5 2 4 4 5 4
F5 3 3 2 2 3 4 2

This matrix was then adjusted to an equivalent matrix by dividing all values by 5,
which resulted in the matrix below.

A =

E1 E2 E3 E4 E5 E6 E7

F1 1.0 1.0 0.6 1.0 0.8 0.8 1.0
F2 0.6 0.8 0.4 0.6 1.0 0.8 0.8
F3 1.0 1.0 0.6 1.0 1.0 1.0 0.8
F4 0.6 1.0 0.4 0.8 0.8 1.0 0.8
F5 0.6 0.6 0.4 0.4 0.6 0.8 0.4

From the matrix A, we determine next the AHP, Guiasu, and Yen equations. The
method of determining these equations can be found in Chapter 1.

AHP: G = 0.231F1 + 0.187F2 + 0.239F3 + 0.201F4 + 0.148F5

Guiasu: G = 0,234F1 + 0.185F2 + 0.0.240F3 + 0.199F4 + 0.142F5

Yen: G = 0.232F1 + 0.185F2 + 0.239F3 + 0.200F4 + 0.143F5
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Table 4.8 Bio and GTI.
Country Bio Rank GTI Rank Country Bio Rank GTI Rank
China South Africa 36 40
India 3 7 Spain 17 32
US 14 18 Columbia 26 9
Indonesia 12 16 Ukraine 29 38
Brazil 25 42 Tanzania 44 23
Pakistan 2 2 Kenya 41 12
Nigeria 11 4 Argentina 34 31
Bangladesh 6 26 Poland
Russia 21 27 Uganda 19 28
Japan 40 32 Algeria 8 22
Mexico 15 37 Canada 33 29
Philippines 1 11 Sudan
Ethiopia 38 30 Morocco 23 41
Vietnam 13 43 Iraq 32 3
Egypt 4 10 Afghanistan 9 1
Germany 24 20 Nepal 42 21
Turkey 28 15 Peru 30 24
Iran 18 13 Malaysia 20 39
Congo 39 8 Uzbekistan 7 36
Thailand 37 17 Venezuela 27 44
France 31 19 Saudi Arabia 35 34
UK 22 25 Ghana
Italy 10 35 Yemen 16 14
Burma 5 5 North Korea
South Korea Mozambique 43 6

The rankings by the AHP, Guiasu, and Yen methods were exactly the same. We
next provide the ranking together with the GTI rank so that we can provide the fuzzy
similarity measure of the two rankings. We do not include the countries of the GTI
ranking which had no impact or were not included In order for the rankings to be
compatible, i.e., small numbers in the rankings represent high impact and high risk,
we reverse order the bioterrorism rankings (Table 4.8).

Let A denote the Bio ranking, i.e., the first column and let B denote the ranking,
i.e., the second column. Here n = 44. Now M(μA,μB) = 704

1980−704 = 704
1276 = 0.552.

The smallest M can be is n+2
3n+2 = 0.343. Hence 0.552−0.343

1−0.343 = 0.209
0.657 = 0.318. Now

S(μA,μB) = 2M(μA,μB)
1+M(μA,μB)

= 2(0.552)
1.552 = 1.104

1.552 = 0.711. The smallest S can be is
2(0.343)

1.343 = 0.686
1.343 = 0.511. Thus 0.711−.511

1−0.511 = 0.200
0.489 = 0.408.

We next consider preference relations. We use the values from matrix A. Let
Rk = [ρk

ij ], where ρk
ij (Fi,Fj ) = (eik − ejk + 0.5) ∧ 1 if eik ≥ ejk and ρk

ij (Fi,Fj ) =
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1 − (ejk − eik + 0.5)∧ 1 if eik < ejk ρk
ij (Fi,Fj ) = {(eik − ejk + 0.5)∧ 1 if eik ≥ ejk ,

where i, j = 1,2,3,4,5 and k = 1, ...,7. Then

R1 =

F1 F2 F3 F4 F5

F1 0.5 0.9 0.5 0.9 0.9
F2 0.1 0.5 0.1 0.5 0.5
F3 0.5 0.9 0.5 0.9 0.9
F4 0.1 0.5 0.1 0.5 0.5
F5 0.1 0.5 0.1 0.5 0.5

and R2 =

F1 F2 F3 F4 F5

F1 0.5 0.7 0.5 0.5 0.9
F2 0.3 0.5 0.3 0.3 0.7
F3 0.5 0.7 0.5 0.5 0.9
F4 0.5 0.7 0.5 0.5 0.9
F5 0.1 0.3 0.1 0.1 0.5

R3 =

F1 F2 F3 F4 F5

F1 0.5 0.7 0.5 0.7 0.7
F2 0.3 0.5 0.3 0.5 0.5
F3 0.5 0.7 0.5 0.7 0.7
F4 0.3 0.5 0.3 0.5 0.5
F5 0.3 0.5 0.3 0.5 0.5

and R4 =

F1 F2 F3 F4 F5

F1 0.5 0.9 0.5 0.7 1.0
F2 0.1 0.5 0.1 0.3 0.7
F3 0.5 0.9 0.5 0.7 1.0
F4 0.3 0.7 0.3 0.5 0.9
F5 0.0 0.3 0.0 0.1 0.5

R5 =

F1 F2 F3 F4 F5

F1 0.5 0.3 0.3 0.5 0.7
F2 0.7 0.5 0.5 0.7 0.9
F3 0.7 0.5 0.5 0.7 0.9
F4 0.5 0.3 0.3 0.5 0.7
F5 0.3 0.1 0.1 0.3 0.5

and R6 =

F1 F2 F3 F4 F5

F1 0.5 0.5 0.3 0.3 0.5
F2 0.5 0.5 0.3 0.3 0.5
F3 0.7 0.7 0.5 0.5 0.7
F4 0.7 0.7 0.5 0.5 0.7
F5 0.5 0.5 0.3 0.3 0.5

R7 =

F1 F2 F3 F4 F5

F1 0.5 0.7 0.7 0.7 1.0
F2 0.3 0.5 0.5 0.5 0.9
F3 0.3 0.5 0.5 0.5 0.9
F4 0.3 0.5 0.5 0.5 0.9
F5 0.0 0.1 0.1 0.1 0.5

Let Ak = [ak
ij ], where ak

ij = 1 if ρk
ij > 0.5 and 0 otherwise, i.j = 1,2,3,4,5 and

k = 1, ...,7.

Let R = [rij ], where for all i, j = 1,2,3,4,5, rij = 1
7

∑7
k=1 ak

ij if i �= j and 0
otherwise. Then

R =

F1 F2 F3 F4 F5

F1 0 5/7 1/7 4/7 6/7
F2 1/7 0 0 1/7 4/7
F3 2/7 5/7 0 1/7 1
F4 1/7 3/7 0 0 5/7
F5 0 0 0 0 0
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Let G = [gij ], where for all i, j = 1,2,3,4,5, gij = 1 if rij > 0.5 and 0 other-
wise. Then gij expresses whether Fi defeats Fj . Then

G =

F1 F2 F3 F4 F5

F1 0 1 0 1 1
F2 0 0 0 0 1
F3 0 1 0 1 1
F4 0 0 0 0 1
F5 0 0 0 0 0

Now gi = 1
4

∑5
j=1 gij is the mean degree to which Fi is preferred to all other Fj .

We find that g1 = 0.75, g20.25, g3 = 0.75, g40.25, and g5 = 0.

Let zi
Q be the fuzzy consensus winner or the extent to which Fi is preferred to Q

other Fj , where i, j = 1,2,3,4,5 and Q denotes most. We define zi
Q = μQ(gi) = 1

if 0.8 ≤ gi ≤ 1,2gi − 0.6 if 0.3 < gi < 0.8, and 0 if 0 ≤ gi ≤ 0.3. Then

z1
Q = μQ(g1) = μQ(

3

4
) = 0.9

z2
Q = μQ(g2) = μQ(

1

4
) = 0.0

z3
Q = μQ(g3) = μQ(

3

4
) = 0.9

z4
Q = μQ(g4) = μQ(

1

4
) = 0.0

z5
Q = μQ(g5) = μQ(0) = 0.0.

From these values, we see that F2 is not preferred to any other Fi , where i =
1,3,4,5. Similarly, F4 is not preferred to any other Fi , where i = 1,2,3,5, and F5 is
not preferred to any other Fi , where i = 1,2,3,4. Also, F1 is preferred greatly to all
other Fi , where i = 2,3,4,5 and F3 is preferred greatly to any other Fi , where i =
1,2,4,5. From this information, it can be concluded that the experts polled believe
using either smallpox or Ebola in a bioterrorism attack would be the most beneficial
to the attacking party because either of these diseases would cause more damage than
anthrax, plague, or botulism. This conclusion correlates with information about the
disease. Both smallpox and Ebola are biosafety 4 agents whereas anthrax, plague,
and botulism are all biosafety level 2 agents.

Fuzzy preference relations were used further to determine relationships between
each of the diseases.

Let S, I,>,R,∼ be relations on X having the following meanings:

S: outranking relation xSy means x is not worse than y

I : indifference relation xLy means x and y are indifferent
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R: incompatibility relation xRy means x and y are incomparable

>: preference relation x > y means x is preferred to y

∼: non-preference relation x ∼ y means that x and y cannot be discriminated
between

More specifically,
S determines the degree to which one disease is not worse than another. The

larger the value of xSy, the more similar two diseases are in terms of impact on a
population. Conversely, the smaller the value of xSy, more dissimilar two diseases
are in terms of impact on a population.

I determines the degree to which two diseases are indifferent to each other. The
values determined from this matrix are somewhat irrelevant in analysis of a country’s
vulnerability to bioterrorism attack. The indifference relation is used in analysis of
factors that are interrelated. In the case of bioterrorism vulnerability, the release of
one biological agent is not related to the release of another biological agent. If the
decision to release a given infectious agent, however, was dependent on the release
of another agent, this preference relation would indicate the degree of the release of
a given infectious agent was independent of the release of another infectious agent.

R determines the degree to which two diseases are incomparable. Similar to
the indifference relation I , the values determined from this matrix are somewhat
irrelevant in analysis of a country’s vulnerability to a bioterrorism attack. The in-
compatibility relation is used in analysis of related factors and when two factors are
compared. Since the release of one biological agent, this comparison is not helpful
in our analysis. I, however, the release was one disease was related to the release of
another disease, the incompatibility preference relation would indicate the degree to
which two infectious agents cannot be compared.

> determines the degree to which one disease is preferred over another. The larger
the value x > y the more disease x is preferred over disease y for use in a bioterrorism
attack. Conversely, the smaller the value x > y, the less disease x is preferred over
disease for use in a bioterrorism attack.

∼ determines the degree to which discrimination between two diseases is possi-
ble. The larger the value x ∼ y, the more one can tell the difference in the effects of a
bioterrorism attacks utilizing a given infectious agent. Conversely, the smaller x ∼ y,
the less one can tell the difference in the effects of a bioterrorism attack utilizing a
given infectious agent.

We now define the following indices from S : ∀x, yεX,

Indifference index I (S)(x, y) = S(x, y) ∧ S(y, x)

Incompatibility index R(S)(x, ) = (1 − S(x, y)) ∧ (1 − S(y, x))

Preference index > (S)(x, y) = S(x, y) ∧ (1 − S(y, x))
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Non-preference index ∼ (S)(x, y) = (S(x, y) ∧ S(y, x)) ∨ ((1 − S(x, y)) ∧ (1 −
S(y, x))).

Let S = R, where R =

F1 F2 F3 F4 F5

F1 0 5/7 1/7 4/7 6/7
F2 1/7 0 0 1/7 4/7
F3 2/7 5/7 0 4/7 1
F4 1/7 3/7 0 0 5/7
F5 0 0 0 0 0

Then

I (S) =

F1 F2 F3 F4 F5

F1 0 1/7 1/7 1/7 0
F2 1/7 0 0 1/7 0
F3 1/7 0 0 0 0
F4 1/7 1/7 0 0 0
F5 0 0 0 0 0

R(S) =

F1 F2 F3 F4 F5

F1 1 2/7 5/7 3/7 1/7
F2 2/7 1 2/7 4/7 3/7
F3 5/7 2/7 1 3/7 0
F4 3/7 4/7 3/7 1 2/7
F5 1/7 3/7 0 2/7 1

> (S) =

F1 F2 F3 F4 F5

F1 0 5/7 1/7 4/7 6/7
F2 1/7 0 0 1/7 4/7
F3 2/7 5/7 0 4/7 1
F4 1/7 3/7 0 0 5/7
F5 0 0 0 0 0

∼ (S) =

F1 F2 F3 F4 F5

F1 1 2/7 5/7 3/7 1/7
F2 2/7 1 2/7 4/7 3/7
F3 5/7 2/7 1 3/7 0
F4 3/7 4/7 3/7 1 2/7
F5 1/7 3/7 0 2/7 1

For the outranking relation S, the matrix can be interpreted as follows:
F1 is not worse than F2 with intensity 5/7

For the indifference relation I , the matrix can be interpreted as follows:
F1 and F2 are indifferent with intensity 1/7

For the incompatibility relation R, the matrix can be interpreted as follows:
F1 and F2 are incomparable with intensity 2/7
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For the preference relation >, the matrix can be interpreted as follows:
F1 is preferred to F2 with intensity 5/7

For the non-preference relation ∼, the matrix can be interpreted as follows:
F1 and F2 can be discriminated between with intensity 2/7

4.10 Exercises
1. Complete the interpretations given immediately above.

We now consider the degree of agreement between the experts m,n = 1, ...,7,
ν(m,n) = 1 if |ρm

ij − ρn
ij | ≤ 1 − 0.94 = 0.06 and 0 otherwise.

2. Find the ν(m,n). For example,

ν(1,2) =

F1 F2 F3 F4 F5

F1 1 0 1 0 1
F2 0 1 0 0 0
F3 1 0 1 0 1
F4 0 0 0 1 0
F5 1 0 1 0 1

The degree of agreement between the experts m, n as to their preference is deter-
mined by νB(m,n) = 1

10

∑4
i=1

∑5
j=i+1 νij (m,n).

3. Find the νB(m,n). For example, νB(1,2) = 3
10 .

The degree of agreement of all pairs of experts m, n is given by the formula

νB = 1

21

6∑

m=1

7∑

n=m+1

νB(m,n).

4. Show that νB = 1
21 ( 52

10 ) = 26
105 .

From this, we conclude that on average all of the experts agree on the severity of
the disease about 23% of the time. The measure, however, only determines to what
degree the experts agree exactly on the severity of a disease based on the previously
calculated preference relations. Similarly, we can consider the degree of agreement
between experts under different constraints so that the range of differences in opin-
ions is greater. When adjusting the expert opinions to be between 0 and 1 rather than 1
and 5, the smallest possible difference between the expert rankings is 0.2. Translated
to the Ri matrices, where i = 1,2, ...,7, which are used when calculating the ν(i, j)

matrices. This means that the smallest degree of agreement between the experts is
0.2. We now consider the degree of agreement between the experts m,n = 1, ...,7,
where ν(m,n) = 1 if |ρm

ij − ρn
ij | ≤ 1 − 0.80 = 0.20 and 0 otherwise.
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5. Calculate the ν(m,n) under this definition. For example,

ν(1,2) =

F1 F2 F3 F4 F5

F1 1 1 1 0 1
F2 1 1 1 1 1
F3 1 1 1 0 1
F4 0 1 0 1 0
F5 1 1 1 0 1

6. Calculate the νB(m,n) and νB . Show that νB = 27
35 .

From this result, conclude that the experts agree within 1 ranking point about 77%
of the time. This means that the experts ranked each disease with similar severity,
indicating that the analysis using expert opinions is somewhat valid because there are
no outliers in ranking values.

7. Let A′ denote the ranking of the complement of the A ranking of Table 4.6. That is,
if μA(x) = a, then μA′(x) = 1 − a. Show that (M(μA′ ,μB) − 0.351)/(1 − 0.352) =
0.139.



5
CHAPTER

Fuzzy implication
operators: health security
and political risk©�

This chapter rests heavily on [76]. The Global Health Security Index states that all
countries remain dangerously unprepared for future epidemic and pandemic threats,
including threats potentially more devastating than COVID-19, [39]. In this chap-
ter, we rank the Organization for Economic Cooperation and Development (OECD)
countries with respect to their preparation. In [25], countries are ranked with respect
to their health care. We find the fuzzy similarity measure between these two rankings.
We do this in a manner not previously used. We use implication operators to define
a new fuzzy similarity measure to find the fuzzy similarity of these rankings. We
also consider the natural disaster risk, the political stability, and the political risk of
OECD countries. We provide the rankings as given in [61,87,88]. The report in [61]
systematically considers a country’s vulnerability and exposure to natural hazards
to determine a ranking of countries around the world based on their natural disaster
risk. The index of Political Stability and Absence of Violence/Terrorism measures
perceptions of the likelihood that the government will be destabilized or overthrown
by unconstitutional or violent means, including politically motivated violence and
terrorism. In each case, we found the similarities to be medium.

5.1 Preliminary results
Let μ, ν be fuzzy subsets of a set X. Then recall that M and S are fuzzy similarity
measures on FP(X), where

M(μ,ν) =
∑

x∈X μ(x) ∧ ν(x)∑
x∈X μ(x) ∨ ν(x)

,

S(μ, ν) = 1 −
∑

x∈X |μ(x) − ν(x)|∑
x∈X(μ(x) + ν(x))

.
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Definition 5.1.1. [9, p. 14] Let I be a function of [0,1] × [0,1] into [0,1] such
that I (0,0) = I (0,1) = I (1,1) = 1 and I (1,0) = 0. Then I is called an implication
operator.

An implication operator I is said to satisfy the identity principle if I (x, x) = 1
for all x ∈ [0,1]. An implication operator is said to satisfy the ordering principle if
x ≤ y ⇔ I (x, y) = 1. Clearly, the ordering principle implies the identity principle.

I1, I2, and L defined below are implication operators that satisfy the ordering
principle.

Example 5.1.2. Let x, y ∈ [0,1].
(1) Godel implication operator: I1(x, y) = 1 if x ≤ y, I1(x, y) = y otherwise.
(2) Goguen implication operator: I2(x, y) = 1 if x ≤ y and I2(x, y) = y/x other-

wise
(3) Luckasiewicz implication operator: L(x, y) = (1 − x + y) ∧ 1.

Other implication operators can be found in [9].

Let X be a set with n elements, n > 1, say X = {x1, ..., xn). Let A be one-to-one
function of X onto {1, ..., n}. Then A is called a ranking of X. Define the fuzzy
subset μA of X by for all x ∈ X, μA(x) = A(x)

n
. Then μA is called the fuzzy subset

associated with A.

Example 5.1.3. (1) Let X = {x1, ..., x6}. Define A and B as follows: A(x1) =
2, A(x2) = 1, and A(xi) = i, i = 3,4,5,6. Define B(xi) = i, i = 1, ...,6. Then
I1(μA(x1),μB(x1)) = 1

6 and I1(μB(x2),μA(x2) = 1
6 . Also, I2(μA(x1),μB(x1)) =

1
2 , and I2(μB(x2),μA(x2) = 1

2 . Now L(μA(x1),μB(x1)) = 1 − 2
6 + 1

6 = 1 − 1
6 = 5

6
and L(μB(x2),μA(x2)) = 5

6 .
(2) Let X = {x1, ..., x6}. Define A and B as follows: A(x5) = 6, A(x6) = 5, and

A(xi) = 1, i = 1,2,3,4. Define B(xi) = i, i = 1, ...,6. Then I1(μA(x5),μB(x5)) =
5
6 and I1(μB(x6),μA(x6) = 5

6 . Also, I2(μA(x6),μB(x6)) = 5
6 and I2(μB(x5),

μA(x5) = 5
6 . Now L(μA(x5),μB(x5)) = 1 − 6

6 + 5
6 = 1 − 1

6 = 5
6 and L(μB(x6),

μA(x6)) = 5
6 .

Definition 5.1.4. [9, p. 15] Let I be an implication operator. Define the fuzzy subset
EI of FP(X) ×FP(X) by for all μA,μB ∈ FP(X),

EI (μA,μB) = ∧{∧{I (μA(x),μB(x))|x ∈ X},∧{I (μB(x),μA(x))|x ∈ X}}.
Then EI (μA,μB) is called the degree of sameness of μA and μB .

5.2 Main results
Unless some importance is given for the various orders, it seems that L of Exam-
ple 5.1.2 is the best choice for an implication operator for rankings.
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Let L be the Luckasiewicz implication operator. Then L(a, b) ∧ L(b, a) = (1 −
a) ∧ (1 − b) + a ∧ b by [122]. Thus L(a, b) ∧ L(b, a) = 1 − a ∨ b + a ∧ b.

Theorem 5.2.1. Define SL(μA,μB) = 1
n

∑
x∈X[(1 − μA(x)) ∧ (1 − μB(x)) +

μA(x) ∧ μB(x)], where X is set with n elements. Then SL is a fuzzy similarity mea-
sure.

Proof. Clearly, SL(μA,μB) = SL(μB,μA). Now

SL(μA,μB) = 1 ⇔ 1

n

∑

x∈X

[(1 − μA(x)) ∧ (1 − μB(x)) + μA(x) ∧ μB(x)] = 1

⇔ 1

n

∑

x∈X

[(1 − μA(x) ∨ μB(x) + μA(x) ∧ μB(x)] = 1

⇔
∑

x∈X

[(1 − μA(x) ∨ μB(x) + μA(x) ∧ μB(x)] = n

⇔ 1 − μA(x) ∨ μB(x) + μA(x) ∧ μB(x) = 1∀x ∈ X

⇔ μA = μB.

Suppose μA ⊆ μB ⊆ μC . Then

SL(μA,μC) =
∑

x∈X

[1 + μA(x) ∧ μC(x) − μA(x) ∨ μC(x)]

= n +
∑

x∈X

[μA(x) − μC(x)],

SL(μA,μB) =
∑

x∈X

[1 + μA(x) ∧ μB(x) − μA(x) ∨ μB(x)]

= n +
∑

x∈X

[μA(x) − μB(x],

SL(μB,μC) =
∑

x∈X

1 + [μB(x) ∧ μC(x) − μB(x) ∨ μC(x)]

= n +
∑

x∈X

[μB(x) − μC(x)].

Now ∀x ∈ X, μA(x) − μC(x) ≤ (μA(x) − μB(x)) ∧ (μB(x) − μC(x)). Hence
SL(μA,μC) ⊆ SL(μA,μB) ∧ SL(μB,μC).

Suppose SL(μA,μB) = 0. Then 1
n

∑
x∈X[(1 − μA(x)) ∧ (1 − μB(x)) + μA(x) ∧

μB(x)] = 0. Thus ∀x ∈ X, (1 −μA(x))∧ (1 −μB(x))+μA(x)∧μB(x) = 0. Hence
∀x ∈ X, μA(x) ∧ μB(x) = 0. �

We have shown that SL is a fuzzy similarity measure. SL was induced by the
Luckasiewicz implication operator L.
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We next consider a different definition of sameness.

Example 5.2.2. Let n = 6 and X = {xi |i = 1, ...,6}. Define A,B : X → [0,1] as
follows: A(xi) = n − i + 1 B(xi) = 1 for i = 1, ...,6. Then L(μA,μB) = 1

6 [( 1
6 (5 +

3+1)+1+1+1] = 1
6 [ 9

6 +3] = 0.75. By the symmetry of the situation, L(μB,μA) =
0.75. Hence EL = 0.75 ∧ 0.75 = 0.75. However, the sameness 1

6 [ 9
6 + 9

6 ] = 0.5 seems
more reasonable in this case.

Definition 5.2.3. Let I be an implication operator. Define S : FP(X) ×FP(X) →
[0,1] by for all (μ, ν) ∈ FP(X) × FP(X), S(μ, ν) = 1

n

∑
x∈X I ((μ(x), ν(x)) ∧

I ((ν(x),μ(x))). Then S is called a degree of likeness.

An implication operator I is called a hybrid monotonous implication operator
if I (x,_) is non decreasing for all x ∈ [0,1] and I (_, y) is nonincreasing for all
y ∈ [0,1].
Theorem 5.2.4. Suppose I is a hybrid monotonous implication operator that satisfies
the ordering principle. Then S of Definition 5.2.3 is a fuzzy similarity measure.

Proof. Clearly S(μ, ν) = S(ν,μ).
Now S(μ, ν) = 1 ⇔ ∑

x∈X I ((μ(x), ν(x)) ∧ I ((ν(x),μ(x))) = n ⇔ I ((μ(x),

ν(x)) ∧ I ((ν(x),μ(x))) = 1 for all x ∈ X ⇔ I ((μ(x), ν(x)) = 1 and I ((ν(x),

μ(x))) = 1 for all x ∈ X ⇔ μ(x) = ν(x) for all x ∈ X ⇔ μ = ν.
Suppose μ ⊆ ν ⊆ ρ. Then for all x ∈ X,

I (μ(x), ν(x)) ≤ I (μ(x), ρ(x)) and I (ρ(x),μ(x)) ≤ I (ν(x),μ(x)),

I (μ(x), ν(x)) ≤ I (ν(x), ρ(x)) and I (ρ(x),μ(x)) ≤ I (ρ(x).ν(x)).

Thus for all x ∈ X,

I (μ(x), ρ(x)) ∧ I (ρ(x),μ(x)) = I (ρ(x),μ(x))

≤ I (ν(x),μ(x)) = I (μ(x), ν(x)) ∧ I (ν(x),μ(x))

and

I (μ(x), ρ(x)) ∧ I (ρ(x),μ(x)) = I (ρ(x),μ(x))

≤ I (ρ(x), ν(x)) = I (ρ(x), ν(x)) ∧ I (ν(x), ρ(x)).

Therefore for all x ∈ X,

I (μ(x), ρ(x)) ∧ I (ρ(x),μ(x))

≤ [I (μ(x), ν(x)) ∧ I (ν(x),μ(x))] ∧ [I (ρ(x), ν(x)) ∧ I (ν(x), ρ(x))].
Hence S(μ,ρ) ≤ S(μ, ν) ∧ S(ν,ρ).

Suppose S(μ, ν) = 0. Then
∑

x∈X I ((μ(x), ν(x)) ∧ I ((ν(x),μ(x))) = 0 and so
I ((μ(x), ν(x)) ∧ I ((ν(x),μ(x))) = 0 for all x ∈ X. Hence I ((μ(x), ν(x)) = 0 or
I ((ν(x),μ(x))) = 0 for all x ∈ X. Hence μ(x) ∧ ν(x) = 0 for all x ∈ X. �
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Using the new definition of sameness (likeness), we get

S1 : S1(μ, ν) = 1
n

∑
x∈X[I1(μ(x), ν(x)) ∧ I1(ν(x),μ(x)). Define � : [0,1] ×

[0,1] → [0,1] by �(a, b) = 1 if a = b and a ∧ b if a �= b. Then S1(μ, ν) =
1
n

∑
x∈X μ(x) � ν(x).

S2 : S2(μ, ν) = 1
n

∑
x∈X[I2(μ(x), ν(x)) ∧ I2(ν(x),μ(x)). Define ∅ : [0,1] ×

[0,1] → [0,1] by ∅(a, b) = 1 if a = b and a∧B
a∨b

if a �= b. Then S2(μ, ν) =
1
n

∑
x∈X μ(x)∅ν(x).

SL: SL(μ.ν) = 1
n

∑
x∈X[(1 − μ(x) + ν(x)) ∧ 1)] ∧ [(1 − ν(x) + μ(x)) ∧ 1]

= 1
n

∑
x∈X[(1 − μ(x) + ν(x))1)] ∧ [(1 − ν(x) + μ(x))] = 1

n

∑
x∈X(1 − μ(x) ∨

ν(x) + μ(x) ∧ ν(x))

= 1 − 1
n

∑
x∈X(μ(x) ∨ ν(x) − μ(x) ∧ ν(x)).

Consider M of Example 5.1.2. Clearly the smallest value M can be with respect
to rankings of a set with n elements is determined as follows: Consider the rank A

defined by A(xi) = n − i + 1, i = 1, ..., n. Consider the rank B defined by B(xi) = i,

i = 1, ..., n. Then
∑n

i=1 μA(xi )∧μB(xi )∑n
i=1 μA(xi )∨μB(xi )

has the smallest values in the numerator and

largest values in the denominator. Thus the smallest value M can is determined by
these rankings. The rankings of other fuzzy similarity measures can be determined
by a formula relating them to M .

We next consider the smallest SL can be under the new definition of sameness.
Suppose n is even. (Note that then for rankings, μ(x) �= ν(x) for all x ∈ X.) Then
SL(μA,μB) = 1

n
(n − 2 1

n
n
2

n
2 ) = 1 − 1

2 = 0.5. Suppose n is odd. Then SL(μA,μB) =
1
n
(n − 2 1

n
(n+1

2
n−1

2 )) = 1 − 2n2−1
4n2 = 1 − 1

2 + 1
2n2 = 0.5 + 1

2n2 .

Proposition 5.2.5. SL = S + 1
n
(S − 1) for S of Example 5.1.2.

Proof. We have S(μA,μB) = 1 −
∑ |μA(x)−μB(x)|∑

(μA(x)+μB(x))
= 1 −

∑ |μA(x)−μB(x)|
n+1 and

SL(μA,μB) = 1 − 1
n

∑
(μ(x) ∨ ν(x) − μ(x) ∧ ν(x)) = 1 −

∑ |μA(x)−μB(x)|
n

. Hence
(SL −1)n = (S−1)(n+1). Thus nSL = (n+1)S−1 or nSL = nS+S−1. Therefore
SL = S + 1

n
(S − 1). �

We next consider the smallest SL can be. Suppose n is even. Then S = n/2+1
n+1 , [71].

Thus

SL = S + 1

n
(S − 1) = S(1 + 1

n
) − 1

n

= n/2 + 1

n + 1
(
n + 1

n
) − 1

n

= 1

2
+ 1

n
− 1

n
= 1

2
.
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Suppose n is odd. Then S = 1
2 + 1

2n
, [71]. Thus

SL = S(1 + 1

n
) − 1

n

= (
1

2
+ 1

2n
)(1 + 1

n
) − 1

n

= 1

2
+ 1

2n
+ 1

2n
+ 1

2n2
− 1

n

= 1

2
+ 1

2n2
.

Theorem 5.2.6. M ⊆ SL ⊆ S for M and S defined in Section 5.1, with |X| ≥ 2.

Proof. We first show that SL ⊆ S. By Proposition 5.2.5, we have SL = S+ 1
n
(S−1) ≤

S since S − 1 ≤ 0. (Also, SL ≥ 0.5 for n ≥ 2.) We next show M ⊆ SL.

M = S

2 − S
= nSL + 1

n + 1
/(2 − nSL + 1

n + 1
) = nSL + 1

n + 1
/

2(n + 1) − nSL − 1

n + 1

= nSL + 1

2n + 2 − nSL − 1
= nSL + 1

2n + 1 − nSL

.

We now show nSL+1
2n+1−nSL

≤ SL. We have nSL+1
2n+1−nSL

≤ SL ⇔ nSL + 1 ≤ (2n + 1 −
nSL)SL ⇔ 1 ≤ nSL + SL − nS2

L ⇔ 1 ≤ SL + nSL(1 − SL) ⇔ 1 ≤ SL + n(SL − S2
L).

The latter inequality is true for n ≥ 2 since SL ≥ 0.5. It suffices to show this follows
for n = 2. Let f (x) = x +2(x −x2). Then f ( 1

2 ) = 1 = f (1). By elementary calculus,
f takes a maximum at x = 3

4 . Now f ( 3
4 ) = 9

8 . �

5.3 Security index
The 2021 Global Health Security Index measures the capacities of 195 countries to
prepare for epidemics and pandemics. All countries remain dangerously unprepared
for future epidemics and pandemic threats, including threats potentially more devas-
tating than COVID-19, [39]. In Ref. [76], a ranking of countries with respect to health
care is provided. We provide the ranking with respect to OECD countries (Table 5.1).

Let M and S be the fuzzy similarity measures defined in Section 5.1. We deleted
the countries in the Health Security ranking that were not in the Health Care ranking
and then reranked the Health Security countries. We found that S(μA,μB) = 1 −
223
1122 = 1 − 0.199 = 0.801. Hence M(μA,μB) = S(μA,μB)

2−S(μA,μB)
= 0.801

1.199 = 0.668. With

the countries deleted, n = 33. Thus the smallest M can be is n+1
3n−1 = 34

98 = 0.347. The

smallest S can be is 1
2 + 1

2n
= 1

2 + 1
66 = 0.515. Therefore

0.668 − 0.347

1 − 0.347
= 0.321

0.653
= 0.492
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Table 5.1 Health.
Country Health

Security
Health
Care

Country Health
Security

Health
Care

Australia 2 9 Korea, Rep. 8 1
Austria 22 5 Latvia 14
Belgium 19 4 Lithuania 18 26
Canada 4 19 Luxembourg 35
Chile 23 30 Mexico 21 23
Czech Rep. 30 12 Netherlands 10 3
Denmark 11 8 New Zealand 12 16
Estonia 25 18 Norway 17 13
Finland 3 11 Poland 24 29
France 13 6 Portugal 27 22
Germany 7 10 Slovak Rep. 29 28
Greece 32 31 Slovenia 5 27
Hungary 28 33 Spain 15 7
Iceland 34 Sweden 9 20
Ireland 26 32 Switzerland 20 17
Israel 36 15 Turkey 33 21
Italy 31 25 United Kingdom 6 14
Japan 16 2 United States 1 24

and

0.801 − 0.515

1 − 0.515
= 0.286

0.485
= 0.590.

We have by Proposition 5.2.5 that SL = S + 1
n
(S − 1). Thus SL(μA,μB) =

0.801 + 1
33 (0.801 − 1) = 0.801 − 0.006 = 0.795. The smallest SL(μA,μB) is 1

2 +
1

2n2 = 1
2 + 1

2178 = 0.5 + 0.000459, which we round off to 0.5. Thus 0.795−0.5
1−0.5 = 0.59.

Converting a fuzzy similarity measures to a measure using the smallest value it
can be, converts the measure to the interval [0,1]. We can say if this converted value
lies between 0 and 0.2, the similarity is very low, from 0.2 to 0.4 the similarity is low,
from 0.4 to 0.6 the similarity is medium, from 0.6 to 0.8 high, and from 0.8 to 1 very
high. We see that fuzzy similarity measure is medium (almost high).

5.4 Natural disasters, political stability, and political risk
We next consider the natural disaster risk, [61], the political stability, [87], and the po-
litical risk, [88], of OECD countries. We provide the rankings as given in [61,87,88].
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The report in [61] systematically considers a country’s vulnerability and exposure to
natural hazards to determine a ranking of countries around the world based on their
natural disaster risk. The index of Political Stability and Absence of Violence/Terror-
ism measures perceptions of the likelihood that the government will be destabilized
or overthrown by unconstitutional or violent means, including politically motivated
violence and terrorism. The index is an average of several other indexes from the
Economist Intelligence Unit, the Economic Forum, and the Political Risk Services,
among others, [87]. The Political Risk Index is the overall measure of risk for a given
country, calculated by using all 17 risk components from the PRS Methodology in-
cluding turmoil, financial transfer, direct investment, and export markets. The Index
provides a basic convenient way to compare countries directly as well as demonstrat-
ing changes over the last five years, [88].

The rankings in Table 5.2 are from low to high.
Let A denote the ranking of the countries with respect to natural disaster and let

B denote the ranking of countries with respect to political stability. Let X denote the
set of countries. Then n = 36. We have that

SL = S + 1

n
(S − 1)

= (
n + 1

n
)S − 1

n

= (
n + 1

n
)(1 −

∑
xεX |μA(x) − μB(x)|

n(n + 1)
) − 1

n

= 1 −
∑

xεX |μA(x) − μB(x)|
n2

Hence
SL(μA,μB) = 1 − 1

362 (149 + 141) = 1 − 1
1296 (290) = 0.7762. The smallest

SL(μA,μB) can be is 0.5. Thus 0.776−0.5
1−0.5 = 0.276

0.5 = 0.552. Hence the fuzzy simi-
larity measure is medium.

We now consider Political Risk. Delete the countries that do not appear in all the
rankings and rerank. Let A and B be the rankings of Natural Disaster and Political
Stability, respectively, and C denote the ranking of Political Risk. Let X denote the
set of these countries. Then n = 26. We have that SL(μA,μC) = 1− 208

262 = 1− 208
676 =

1 − 0.308 = 0.692. The smallest SL can be is 1
2 + 1

2n2 = 1
2 + 2

0.352 = 0.500. Hence
0.692−0.500

1−0.500 = 0.384. Thus fuzzy similarity measure is low.
We developed a new method to determine a fuzzy similarity method using fuzzy

implication operators. We used this method to determine the fuzzy similarity between
the two rankings of countries involving health security and health care. We then found
a fuzzy similarity involving the rankings of countries with respect to national disaster
and political disaster. In each case, we found the similarities to be medium. Future
research could involve other regions in the world other than the OECD countries.
Further reading on implication operators can be found in [29].
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Table 5.2 Disaster stability risk.

Country Natural Disaster Political Stability Political Risk

Australia 34 17 7

Austria 7 14 3.5

Belgium 19 24 20

Canada 33 12 1.5

Chile 30 32 18.5

Czech Rep. 3 9 3.5

Denmark 5 10 15.5

Estonia 11 19

Finland 8 8 12

France 24 30

Germany 17 20 15.5

Greece 25 31

Hungary 2 15 23

Iceland 10 2

Ireland 15 16 7

Israel 21 35

Italy 26 25 25

Japan 32 6 10

Korea Rep. 28 23 18.5

Latvia 13 22

Lithuania 14 18

Luxembourg 1 3

Mexico 36 34

Netherlands 18 13 9

New Zealand 29 1 5

Norway 16 5 1.5

Poland 20 29 15.5

Portugal 22 11 24

Slovak Rep. 4 27 13

Slovenia 9 21

Spain 27 26 21

Sweden 12 7 7

Switzerland 6 4 11

Turkey 31 36 26

United Kingdom 23 28 22

United States 35 33 15.5
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5.5 Exercises
1. Find SL(μB,μC).

2. Find fuzzy similarity measures for other regions as in Table 5.1 for OECD coun-
tries.
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CHAPTER

Fuzzy implication
operators applied to
country health©�

Much of the work in this chapter is based on [78]. The Global Health Security Index
states that all countries remain dangerously unprepared for future epidemic and pan-
demic threats, including threats potentially more devastating than COVID-19, [39].
In [76], we ranked the Organization for Economic Cooperation and Development
(OECD) countries with respect to their preparation. In [25], countries are ranked
with respect to their health care. We find the fuzzy similarity measure between these
two rankings. We use implication operators to define a new fuzzy similarity measure
to find the fuzzy similarity of these rankings. We also consider the natural disaster
risk, the political stability of OECD countries. We provide the rankings as given in
[61,87,88]. The report in [61] considers a country’s vulnerability and exposure to
natural hazards to determine a ranking of countries around the world based on their
natural disaster risk. The index of Political Stability and Absence of Violence/Terror-
ism measures perceptions of the likelihood that the government will be destabilized
or overthrown by unconstitutional or violent means, including politically motivated
violence and terrorism. We used five different fuzzy similarity measures. In three
cases, we found the similarities to be medium and in two, we found the similarity to
be low.

Define � : [0,1] × [0,1] → [0,1] by �(a, b) = 1 if a = b and a ∧ b if a �= b.
Define ∅ : [0,1]× [0,1] → [0,1] by ∅(a, b) = 1 if a = b and a∧b

a∨b
if a �= b. Note that

for all a, b ∈ [0,1], ∅(a, b) = a∧b
a∨b

.

6.1 Preliminary results
For ease of reading, we recall some definitions from the previous chapter. Let μ, ν

be fuzzy subsets of a set X. Then M and S are fuzzy similarity measures on FP(X),

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.
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where

M(μ,ν) =
∑

x∈X μ(x) ∧ ν(x)∑
x∈X μ(x) ∨ ν(x)

,

S(μ, ν) = 1 −
∑

x∈X |μ(x) − ν(x)|∑
x∈X(μ(x) + ν(x))

.

Results concerning fuzzy similarity measures can be found in [72,122].

Definition 6.1.1. [9, p. 14] Let I be a function of [0,1] × [0,1] into [0,1] such
that I (0,0) = I (0,1) = I (1,1) = 1 and I (1,0) = 0. Then I is called an implication
operator.

An implication operator I is said to satisfy the identity principle if I (x, x) = 1
for all x ∈ [0,1]. An implication operator is said to satisfy the ordering principle if
x ≤ y ⇔ I (x, y) = 1, [11]. Clearly, the ordering principle implies the identity princi-
ple.

I1, I2, and L defined below are implication operators that satisfy the ordering
principle.

Example 6.1.2. Let x, y ∈ [0,1].
(1) Godel implication operator: I1(x, y) = 1 if x ≤ y, I1(x, y) = y otherwise.

(2) Goguen implication operator: I2(x, y) = 1 if x ≤ y and I2(x, y) = y/x otherwise

(3) Luckasiewicz implication operator: L(x, y) = (1 − x + y) ∧ 1.

By [76, Theorem 3.1] SL is a fuzzy similarity, where SL(μA,μB) = 1
n

∑
x∈X(1−

μA(x) ∧ (1 − μB(x) ∧ (μA(x) ∧ μB(x).

Definition 6.1.3. [9, p. 15] Let I be an implication operator. Define the fuzzy subset
EI of FP(X) ×FP(X) by for all μ,ν ∈ FP(X),

EI (μ, ν) = ∧{∧{I (μ(x), ν(x))|x ∈ X},∧{I (ν(x),μ(x))|x ∈ X}}.
Then EI (μ, ν) is called the degree of sameness of μ and ν.

In [76], it was decided that the following definition would be more suitable than
the previous definition for defining fuzzy similarity measures from implication oper-
ators.

Definition 6.1.4. Let I be an implication operator. Define S : FP(X) ×FP(X) →
[0,1] by for all (μ, ν) ∈ FP(X) × FP(X), S(μ, ν) = 1

n

∑
x∈X I ((μ(x), ν(x)) ∧

I ((ν(x),μ(x))). Then S is called a degree of likeness.
In [76, Theorem 2.7], it was shown that the function S of Definition 6.1.4 is a

fuzzy similarity measure.

An implication operator I is called a hybrid monotonous implication operator
if I (x,_) is nondecreasing for all x ∈ [0,1] and i(_, y) is nonincreasing for all y ∈
[0,1].



6.2 Main results 71

Other implication operators can be found in [9].

Let X be a set with n elements, n > 1, say X = {x1, ..., xn). Let A be one-to-one
function of X onto {1, ..., n}. Then A is called a ranking of X. Define the fuzzy
subset μA of X by for all x ∈ X, μA(x) = A(x)

n
. Then μA is called the fuzzy subset

associated with A. For two rankings A and B of X,
∑

x∈X(A(x) + B(x)) = n(n + 1)

and so
∑

x∈X(μA(x) + μB(x)) = n + 1. Thus for S of Example 6.1.2,

S(μA,μB) = 1 −
∑

x∈X |μA(x) − νB(x)|
n + 1

.

6.2 Main results
Let S1 and S2 be the fuzzy similarity measures defined by I1 and I2 under Defini-
tion 6.1.4, respectively. Then

S1(μ, ν) = 1

n

∑

x∈X

μ(x) � ν(x),

S2(μ, ν) = 1

n

∑

x∈X

μ(x)∅ν(x).

We next consider how small S1 can be with respect to rankings A and B.

Suppose n is even. Let A be the ranking: 1,2, ..., n
2 , n+2

2 , ..., n − 1, n and let B be
the ranking n,n − 1, ..., n+2

2 , n
2 , ...,2,1. Then

S1(μA,μB) = 1

n

∑

x∈X

μA(x) � μB(x) = 1

n
(2(1 + 2 + ... + n

2
))

1

n

= 1

n
(2([n

2
(
n

2
+ 1)])/2)

1

n
= 1

n2
(
n2

4
+ n

2
) = 1

4
+ 1

2n
.

Suppose that n is odd. Let A be the ranking 1,2, ..., n+1
2 , ..., n − 1, n and B be the

ranking n,n − 1, ..., n+1
2 , ...,2,1. Then

S1(μA,μB) = 1

n

∑

x∈X

μA(x) � μB(x) = 1

n
(1 + 2(1 + 2 + ... + n − 1

2
))

1

n

= 1

n2 (1 + 2(
n − 1

2
)(

n − 1

2
+ 1)/2) = 1

n2 (1 + 2(
n − 1

2

n + 1

2

1

2
))

= 1

n2 (1 + n2 − 1

4
) = 1

n2 + 1

4
− 1

4n2 = 1

4
+ 3

4n2 .
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Example 6.2.1. Let n = 6. Let A be the ranking 1,2, ...,5,6 and B the ranking
6, ...,2,1. Then μA(xi) = i

6 and B(xi) = 6−i+1
6 , i = 1,2, ...,6. Hence

μA(x1) ∧ μB(x1)

μA(x1) ∨ μB(x1)
=

1
6
6
6

= μA(x6) ∧ μB(x6)

μA(x6) ∨ μB(x6)
,

μA(x2) ∧ μB(x2)

μA(x2) ∨ μB(x2)
=

2
6
5
6

= μA(x5) ∧ μB(x5)

μA(x5) ∨ μB(x5)
,

μA(x3) ∧ μB(x3)

μA(x3) ∨ μB(x3)
=

3
6
4
6

= μA(x4) ∧ μB(x4)

μA(x4) ∨ μB(x4)
.

Let n = 5. Let A be the ranking 1,2, ...,5, and B the ranking 5, ...,2,1. Then
μA(xi) = i

5 and B(xi) = 5−i+1
5 , i = 1,2, ...,5. Hence

μA(x1) ∧ μB(x1)

μA(x1) ∨ μB(x1)
=

1
5
5
5

= μA(x5) ∧ μB(x5)

μA(x5) ∨ μB(x5)
,

μA(x2) ∧ μB(x2)

μA(x2) ∨ μB(x2)
=

2
5
4
5

= μA(x4) ∧ μB(x4)

μA(x4) ∨ μB(x4)
,

μA(x3) ∧ μB(x3)

μA(x3) ∨ μB(x3)
=

3
5
3
5

= μA(x3) ∧ μB(x3)

μA(x3) ∨ μB(x3)
.

We see that for n odd, the middle term will yield the value 1.

The following discussion is to determine the smallest value a fuzzy similarity
measure can be with respect to rankings. Let S be any fuzzy similarity measure with
respect to some rankings A and B. We determine the smallest value S can be for the
following reason: Say, the smallest value S can be is S∗. Then the ratio S−S∗

1−S∗ ranges
from 0 to 1. A clearer picture of the similarity is thus provided.

Lemma 6.2.2. (1) Suppose n is even. Let A be the ranking: 1,2, ..., n
2 , n+2

2 , ..., n −
1, n and let B be the ranking n,n − 1, ..., n+2

2 , n
2 , ...,2,1. Then 1

n
(

n
2

n
2 +1 + ... + 2

n−1 +
1
n
) = (n + 1)(

∑n
j= n

2 +1
1
j
) − n

2 .

(2) Suppose n is odd. Let A be the ranking 1,2, ..., n+1
2 , ..., n − 1, n and B be the

ranking n,n − 1, ..., n+1
2 , ...,2,1. Then

n−1
2

n+3
2

+ ... + 2
n−1 + 1

n
= (n + 1)

∑n

j= n+1
2

1
j
) −

n−1
2 .

Proof. (1)
n
2

n
2 +1 + ... + 2

n−1 + 1
n

=
n
2∑

i=1

i

n − i + 1
=

n∑

j= n
2 +1

n − j + 1

j
=

n∑

j= n
2 +1

(
n

j
− 1 + 1

j
)
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= (n + 1)(

n∑

j= n
2 +1

1

j
) − n

2
.

(2)
n−1

2
n+3

2
+ ... + 2

n−1 + 1
n

= ∑ n−1
2

i=1
i

n−i+1 .

Let j = n − i + 1. Then i = n − j + 1 and j = n,n − 1, ..., n
2 + 3

2 . Now

n−1
2∑

i=1

i

n − i + 1
=

n∑

j= n+3
2

n − j + 1

j
=

n∑

j= n+3
2

(
n

j
− 1 + 1

j
)

= (n + 1)(

n∑

j= n+3
2

1

j
) − n − 1

2
. �

Theorem 6.2.3. (1) Suppose n is even. Let A be the ranking: 1,2, ... n2 , n+2
2 , ..., n −

1, n and let B be the ranking n,n−1, ..., n+2
2 , n

2 , ...,2,1. Then S2(μA,μB) = 2
n
[(n+

1)(
∑n

j= n
2 +1

1
j
) − n

2 ].
(2) Suppose n is odd. Let A be the ranking 1,2, ..., n+1

2 , ..., n − 1, n and B be
the ranking n,n − 1, ..., n+1

2 , ...,2,1. Then S2(μA,μB) = 1
n
[[(n + 1)(

∑n

j= n+3
2

1
j
) −

n−1
2 ]2 + 1].

Proof. (1) S2(μA,μB) = 1
n
(

n
2

n+2
2

+ ... + 2
n−1 + 1

n
)2 = 1

n
(

n
2

n
2 +1 + ... + 2

n−1 + 1
n
)2 =

2
n
[(n + 1)(

∑n
j= n

2 +1
1
j
) − n

2 ] by Lemma 6.2.2 (1).

(2) S2(μA,μB) = 1
n
((

n−1
2

n+3
2

+ ... + 2
n−1 + 1

n
)2 + 1) = 1

n
[[(n + 1)(

∑n

j= n+3
2

1
j
) −

n−1
2 ]2 + 1] by Lemma 6.2.2 (2). �

We next determine approximate values for
∑n

j= n
2 +1

1
j

when n is even and
∑n

j= n+3
2

1
j

when n is odd. Recall that Hn = ∑n
j=1

1
j

is a harmonic sum which sums

approximately to γ + ln 2, where γ is the Euler-Mascheroni constant, γ ≈ 0.5772
and where ≈ denotes approximately equal to.

Let n be even. Consider
∑n

j= n
2 +1

1
j

. We have
∑n

j= n
2 +1

1
j

= ∑n
j=1

1
j

−∑ n
2
j=1

1
j
≈

γ + lnn − (γ + ln n
2 ) = lnn − ln n

2 = ln 2.

Let n be odd. Consider
∑n

j= n+3
2

1
j

. We have
∑n

j= n+3
2

1
j

= ∑n
j=1

1
j

− ∑ n+1
2

j=1
1
j
≈

γ + lnn − (γ + ln n+1
2 ) = lnn − ln n+1

2 = ln 2n
n+1 .
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Theorem 6.2.4. (1) Suppose n is even. Let A be the ranking: 1,2, ... n2 , n+2
2 ..., n −

1, n and let B be the ranking n,n − 1, ..., n+2
2 , n

2 , ...,2,1. Then S2(μA,μB) ≈

0.386 + 2
n

ln 2.

(2) Suppose n is odd. Let A be the ranking 1,2, ..., n+1
2 , ..., n − 1, n and B be the

ranking n,n − 1, ..., n+1
2 , ...,2,1. Then S2(μA,μB) ≈ 2 ln 2n

n+1 + 2
n

ln 2n
n+1 − 1 + 2

n
.

Proof. Theorem 6.2.3 is used in the following arguments.

(1) We have

S2(μA,μB) = 1

n
(

n
2∑

j=1

j

n − j + 1
)2

= 2

n
[(n + 1)(

n∑

j= n
2 +1

1

j
) − n

2
]

≈
2

n
[(n + 1) ln 2 − n

2
]

= (2 + 2

n
) ln 2 − 1

= 2 ln 2 + 2

n
ln 2 − 1

≈ 0.386 + 2

n
ln 2.

(2) We have

S2(μA,μB) = 1

n
[[(n + 1)(

n∑

j= n+3
2

1

j
) − n − 1

2
]2 + 1]

= 2

n
[(n + 1)(

n∑

j= n+3
2

1

j
) − n − 1

2
] + 1

n

≈
2

n
[(n + 1) ln

2n

n + 1
− n − 1

2
] + 1

n

= (2 + 2

n
) ln

2n

n + 1
− (1 − 1

n
) + 1

n

= 2 ln
2n

n + 1
+ 2

n
ln

2n

n + 1
− 1 + 2

n
. �

Proposition 6.2.5. Let S1, ..., Sn be fuzzy similarity measures on FP(X). Let wi ∈
[0,1] be such that

∑n
i=1 wi = 1. Then

∑n
i=1 wiSi is a fuzzy similarity measure on

FP(X).
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Proof. Let S = ∑n
i=1 wiSi and μ,ν,ρ ∈ FP(X). Then S(μ, ν) = ∑n

i=1wiSi(μ, ν) =∑n
i=1wiSi(ν,μ) = S(ν,μ). Now S(μ, ν) = 1 ⇔ ∑n

i=1 wiSi(μ, ν) = 1 ⇔ Si(μ, ν) =
1 for i = 1, ..., n ⇔ μ = ν. Suppose that μ ⊆ ν ⊆ ρ. Then Si(μ,ρ) ≤ Si(μ, ν) ∧
Si(ν, ρ), i = 1, ..., n. Hence

n∑

i=1

wiSi(μ,ρ) ≤
n∑

i=1

wi[Si(μ, ν) ∧ Si(ν, ρ)] =
n∑

i=1

wiSi(μ, ν) ∧ wiSi(ν, ρ)

≤
n∑

i=1

wiSi(μ, ν) ∧
n∑

i=1

wiSi(ν, ρ) = S(μ, ν) ∧ S(ν,ρ).

Suppose S(μ, ν) = 0. Then
∑n

i=1 wiSi(μ, ν) = 0. Thus Si(μ, ν) = 0 for all i such
that wi > 0. Thus for all x ∈ X, μ(x) ∧ ν(x) = 0. �

Proposition 6.2.6. Let S1, ..., Sn be fuzzy similarity measures on FP(X). Let wi ∈
[0,1] be such that

∑n
i=1 wi = 1. Let ai be the smallest value Si can be, i = 1, ..., n.

Then
∑n

i=1 wiai is the smallest value
∑n

i=1 wiSi can be.

Proof. Suppose (
∑n

i=1 wiSi)(μ, ν) = b. Then
∑n

i=1(wiSi)(μ, ν) = b. Let Si(μ, ν) =
bi , i = 1, ..., n. Then bi ≥ ai , i = 1, ..., n. Now b = ∑n

i=1 wibi and so b ≥∑n
i=1 wiai . �

Converting a fuzzy similarity measures to a measure using the smallest value it
can be, converts the measure to the interval [0,1]. We can say if this converted value
lies between 0 and 0.2, the similarity is very low, from 0.2 to 0.4 the similarity is low,
from 0.4 to 0.6 the similarity is medium, from 0.6 to 0.8 high, and from 0.8 to 1 very
high.

6.3 Country health
The 2021 Global Health Security Index measures the capacities of 195 countries to
prepare for epidemics and pandemics. All countries remain dangerously unprepared
for future epidemics and pandemic threats, including threats potentially more dev-
astating than COVID-19, [25]. In [39], a ranking of countries with respect to health
care is provided. We provide the ranking with respect to OECD countries (Table 6.1).

Let M and S be the fuzzy similarity measures defined in Section 6.1. We deleted
the countries in the Health Security ranking that were not in the Health Care ranking
and then reranked the Health Security countries. We found that S(μA,μB) = 1 −
223
1122 = 1−0.199 = 0.801. By [73, Theorem 2.10], S(μA,μB) = 2M(μA,μB)

1+M(μA,μB)
. Hence

M(μA,μB) = S(μA,μB)
2−S(μA,μB)

= 0.801
1.199 = 0.668. With the countries deleted, n = 33. Thus

the smallest M can be is n+1
3n−1 = 34

98 = 0.347. The smallest S can be is 1
2 + 1

2n
=
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Table 6.1 OECD health security and health care rankings.

Country Health
Security

Health
Care

Country Health
Security

Health
Care

Australia 2 9 Korea, Rep. 8 1
Austria 22 5 Latvia 14
Belgium 19 4 Lithuania 18 26
Canada 4 19 Luxembourg 35
Chile 23 30 Mexico 21 23
Czech Rep. 30 12 Netherlands 10 3
Denmark 11 8 New Zealand 12 16
Estonia 25 18 Norway 17 13
Finland 3 11 Poland 24 29
France 13 6 Portugal 27 22
Germany 7 10 Slovak Rep. 29 28
Greece 32 31 Slovenia 5 27
Hungary 28 33 Spain 15 7
Iceland 34 Sweden 9 20
Ireland 26 32 Switzerland 20 17
Israel 36 15 Turkey 33 21
Italy 31 25 United Kingdom 6 14
Japan 16 2 United States 1 24

1
2 + 1

66 = 0.515. Therefore

0.668 − 0.347

1 − 0.347
= 0.321

0.653
= 0.492

and
0.801 − 0.515

1 − 0.515
= 0.286

0.485
= 0.590.

We see that in both cases the similarity is medium.
A fuzzy similarity measure using implication operators was defined in [76]:

SL(μA,μB) = 1
n

∑
x∈X[(1 − μA(x)) ∧ (1 − μB(x)) + μA(x) ∧ μB(x)]. We have by

[2, Proposition 3.5] that SL = S + 1
n
(S −1). Thus SL(μA,μB) = 0.801+ 1

33 (0.801−
1) = 0.801 − 0.006 = 0.795. The smallest SL(μA,μB) is 1

2 + 1
2n2 = 1

2 + 1
2178 =

0.5 + 0.000459 which we round off to 0.5. Thus 0.795−0.5
1−0.5 = 0.59. The similarity is

thus medium.

We have that

S1(μA,μB) = 1

n

∑

x∈X

μA∧μB(x)

= 1

33
(
428

33
) = 0.393.
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The smallest S1 can be is ≈
1
4 + 3

4n2 = 0.25 + 0.003 = 0.253. Thus 0.393−0.253
1−0.253 =

0.140
0.747 = 0.187 and so the similarity is very low.

We find that S2(μA,μB) = 17.921
33 = 0.543. The smallest S2 can be is ≈ 2 ln 66

34 +
2
34 − 1 + 3

33 = 0.426. Thus we have 0.543−0.426
1−0.426 = 0.117

0.514 = 0.228.

Hence the similarity is low.

We have that 1
3S1 + 1

3S2 + 1
3SL ≈

1
3 (0.393+0.543+0.795) = 1

3 (1.649) = 0.577.
The smallest 1

3S1 + 1
3S2 + 1

3SL can be is ≈ 1
3 (0.276 + 0.426 + 0.500) = 1

3 (1.202) =
0.401.

Now 0.577−0.401
1−0.401 = 0.176

0.499 = 0.353. Here the similarity is low.

6.4 Natural disaster, political stability, and political risk
We next consider the natural disaster risk, [61], the political stability, [87], and the po-
litical risk, [88], of OECD countries. We provide the rankings as given in [61,87,88].
The report in [61] systematically considers a country’s vulnerability and exposure to
natural hazards to determine a ranking of countries around the world based on their
natural disaster risk. The index of Political Stability and Absence of Violence/Terror-
ism measures perceptions of the likelihood that the government will be destabilized
or overthrown by unconstitutional or violent means, including politically motivated
violence and terrorism. The index is an average of several other indexes from the
Economist Intelligence Unit, the Economic Forum, and the Political Risk Services,
among others, [87]. The Political Risk Index is the overall measure of risk for a given
country, calculated by using all 17 risk components from the PRS Methodology, in-
cluding turmoil, financial transfer, direct investment, and export markets. The Index
provides a basic convenient way to compare countries directly as well as demonstrat-
ing changes over the last five years, [88].

The rankings in Table 6.2 are from low to high.
Let M and S be the fuzzy similarity measures defined in Section 6.1. Here n =

36. We have that S(μA,μB) = 1 − 290
1332 = 0.782. Thus M(μA,μB) = S(μA,μB)

2−S(μA,μB)
=

0.782
1.218 = 0.642. The smallest M can be is n+2

3n+2 = 38
110 = 0.345. Hence 0.642−0.345

1−0.345 =
0.453. Therefore, the similarity is medium. The smallest S can be is n/2+1

n+1 = 19
37 =

0.514. Thus 0.782−0.514
1−0.514 = 0.551. Hence the similarity is medium.

SL(μA,μB) = 1 − 1
362 (149 + 141) = 1 − 1

1296 (290) = 0.7762. The smallest

SL(μA,μB) can be is 0.5. Thus 0.776−0.5
1−0.5 = 0.276

0.5 = 0.552. Hence the fuzzy simi-
larity measure is medium.

S1(μA,μB) =
∑

x∈X μA(x)∧μB(x)

n
= 549/36

36 = 0.424 and S2 ≈ S1(μA,μB)+ ln 2 −
5
8 = 0.424 + 0.068 = 0.492.



78 CHAPTER 6 Fuzzy implication operators applied to country health

Table 6.2 OECD natural disaster and political stability rankings.

Country Natural
Disaster

Political
Stability

Country Natural
Disaster

Political
Stability

Australia 34 17 Korea, Rep. 28 23
Austria 7 14 Latvia 13 22
Belgium 19 24 Lithuania 14 18
Canada 33 12 Luxembourg 1 3
Chile 30 32 Mexico 36 34
Czech Rep. 3 9 Netherlands 18 13
Denmark 5 10 New Zealand 29 1
Estonia 11 19 Norway 16 5
Finland 8 8 Poland 20 29
France 24 30 Portugal 22 11
Germany 17 20 Slovak Rep. 4 27
Greece 25 31 Slovenia 9 21
Hungary 2 15 Spain 27 26
Iceland 10 2 Sweden 12 7
Ireland 15 16 Switzerland 6 4
Israel 21 35 Turkey 31 36
Italy 26 25 United Kingdom 23 28
Japan 32 6 United States 35 33

The smallest S1 can be is 1
4 + 1

n
= 0.25 + 0.028 = 0.278 since n = 36 is even.

Thus 0.492−0.278
1−0.278 = 0.214

0.722 = 0.296. Hence the similarity is low.

We find that S2(μA,μB) = 22
36 = 0.611. The smallest S2 can be is ≈ 0.386 +

2
36 (0.693) = 0.442. Thus 0.611−0.442

1−0.442 = 0.169
0.558 = 0.303. Once again the similarity is

low.

We have that 1
3S1 + 1

3S2 + 1
3SL ≈

1
3 (0.424+0.611+0.776) = 1

3 (1.811) = 0.604.
The smallest 1

3S1 + 1
3S2 + 1

3SL can be is ≈ 1
3 (0.278 + 0.442 + 0.500) = 1

3 (1.220) =
0.407.

Now 0.604−0.407
1−0.402 = 0.197

0.598 = 0.329. The average similarity is low.

We used fuzzy implication operators to define the fuzzy similarity between the
two rankings of countries involving health security and health care. We then found a
fuzzy similarity involving the rankings of countries with respect to national disaster
and political disaster. In each case, we found the similarity measures to be medium
for SL, M , and S and low for S1 and S2. Future research could involve other regions
in the world other than the OECD countries. It was shown in [39, Theorem 3.6],
that M ⊆ SL ⊆ S. It is clear that S1 ⊆ S2. Another potential project is to determine
the relationship between S2 and M . Further reading on implication operators can be
found in [9].
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6.5 Sustainable development goals and air pollution
The World Health Organization (WHO) works to ensure that health-relevant

indicators of household and ambient pollution exposure and burden of disease are
included in the formal system SDG indicators. WHO monitors and tracks progress of
health indicators to measure progress toward achieving the SDG3 on health, SDG7 on
energy, and SDG11 on cities. In Table 6.3 we rank how well countries are achieving
SDG 3, 7, 11.

In [22], how tackling air pollution contributes to achieving the SDGs. It is stated
in [22] that clean air can be a catalyst for driving progress on agenda 2030. We won’t
be able to meet those goals and ensure no one is left behind if air pollution is not
addressed. The SDGs that can be accelerated by clean air are listed in [22], SDG 3
(Good Health and Well-Being), SDG 7 (Affordable and Clean Energy), SDG 2 (Zero
Hunger), SDG 4 (Quality Education), SDG 5 (Gender Equality), SDG 8 (Decent
Work and Economic Growth), SDG 11 (Sustainable Cities and Communities), SDG
12 (Responsible Construction and Production), SDG 13 (Climate Action) and SDG
15 (Life on Land).

Air pollution can cause respiratory and cardiovascular diseases, which are major
contributors to global mortality rates.

In the column 4 of Table 6.3, we present the region of which the country is a
member.

OECD Organization for Economic Cooperation and Development

ESA East and South Asia

EECA Eastern Europe and Central Asia

LAC Latin America and the Caribbean

MENA Middle East and North Africa.

SSA Sub-Saharan Africa

In column 3, we present the average of the achievement values of the countries
for SDG 3, SDG 7, and SDG 11 as determined in [71]. In column 4, we place the
countries in their region and then provide the rank of the countries for their particular
region.

In the above table, we ranked the OECD countries with respect to their achieve-
ment of SDGs 3, 7, 11. We also reversed the rankings for the OECD countries so that
a small number represented low pollution. Let A denote this ranking and Let B de-
note the SDG 3, 7, and 11 ranking. We next determine the fuzzy similarity measures
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Table 6.3 Air pollution.

Country Most Polluted SDG 3, 7, 11 Region
Chad 1 0.205 SSA
Iraq 2 0.700 MENA
Pakistan 3 0.577 ESA
Bahrain 4 0.787 MENA
Bangladesh 5 0.558 ESA
Burkino Faso 6 0.383 SSA
Kuwait 7 0.749 MENA
India 8 0.584 ESA
Egypt 9 0.738 MENA
Tajikistan 10 0.805 EECA
United Arab Emirates 11 0.843 MENA
Sudan 12 0.480 SSA
Rwanda 13 0.432 SSA
Qatar 14 0.705 MENA
Saudi Arabia 15 0.705 MENA
Nepal 16 0.556 ESA
Uganda 17 0.343 SSA
Nigeria 18 0.326 SSA
Bosnia Herzegovina 19 0.775 EECA
Uzbekistan 20 0.855 EECA
Iran 21 0.804 MENA
Armenia 22 0.804 EECA
Ethiopia 23 0.486 SSA
Kyrgyzstan 24 0.824 EECA
China 25 0.777 ESA
Indonesia 26 0.679 ESA
Ghana 27 0.543 SSA
Mongolia 28 0.564 ESA
Laos 29 0.734 ESA
Vietnam 30 0.783 ESA
North Macedonia 31 0.834 EECA
Gabon 32 0.617 SSA
Serbia 33 0.803 EECA
Zambia 34 0.566 SSA
Myanmar 35 0.571 ESA
Madagascar 36 0.371 SSA
Croatia 37 0.848 EECA
Peru 38 0.783 LAC
South Africa 39 0.685 SSA

continued on next page
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Table 6.3 (continued)

Country Most Polluted SDG 3, 7, 11 Region
Kazakhstan 40 0.800 EECA
Moldova 41 0.815 EECA
Ivory Coast 42
Chile 43 0.861 OECD /30
Turkmenistan 44 0.739 EECA
Turkey 45 0.811 OECD/36
Sri Lanka 46 0.749 ESA
Senegal 47 0.552 SSA
Syria 48 0.675 MENA
Mexico 49 0.832 OECD/35
Greece 50 0.877 OECD/26
Azerbaijan 51 0.831 EECA
Italy 52 0.874 OECD/28
Israel 53 0.834 OECD/34
Guatemala 54 0.752 LAC
Bulgaria 55 0.841 EECA
South Korea 56 0.884 OECD/22.5
Thailand 57 0.811 ESA
Algeria 58 0.760 MENA
Malaysia 59 0.839 ESA
Romania 60 0.836 EECA
Georgia 61 0.830 EECA
Poland 62 0.853 OECD /32
Columbia 63 0.840 LAC
Montenegro 64 0.777 EECA
Cyprus 65 0.876 EECA
Dem. Rep. of the Congo 66
Macao SAR 67
Slovenia 68 0.907 OECD/15.5
Philippines 69 0.671 ESA
Kosovo 70
Slovakia 71 0.874 OECD/27
Hong Kong (SAR) 72
Albania 73 0.831 SSCA
El Salvador 74 0.849 LAC
Czech Rep. 75 0.912 OECD/13.5
Taiwan 76
Singapore 77 0.948 ESA
Lithuania 78 0.837 OECD/33

continued on next page



82 CHAPTER 6 Fuzzy implication operators applied to country health

Table 6.3 (continued)

Country Most Polluted SDG 3, 7, 11 Region
Guyana 79 0.743 LAC
Hungary 80 0.879 OECD/24.5
Brazil 81 0.831 LAC
Malta 82 0.894 EECA
Kenya 83 0.529 SSA
France 84 0.928 OECD/11
Uruguay 85 0.881 LAC
Russia 86 0.839 EECA
Netherlands 87 0.930 OECD/9.5
Germany 88 0.930 OECD/9.5
Spain 89 0.931 OECD/8
Maldives 90 0.947 ESA
Belgium 91 0.894 OECD/20
Austria 92 0.915 OECD/12
Honduras 93 0.765 LAC
Latvia 94 0.873 OECD/29
Switzerland 95 0.976 OECD/1
Ukraine 96 0.798 EECA
Japan 97 0.879 OECD/24.5
Panama 98 0.851 LAC
USA 99 0.884 OECD/22.5
Nicaragua 100 0.750 LAC
United Kingdom 101 0.952 OECD/4
Angola 102 0.428 SSA
Denmark 103 0.933 OECD/7
Cambodia 104 0.611 ESA
Liechtenstein 105
Portugal 106 0.904 OECD/17
Costa Rica 107 0.900 LAC
Argentina 108 0.850 LAC
Ireland 109 0.907 OECD/15.5
Luxembourg 110 0.859 OECD/31
Canada 111 0.902 OECD/18
Bolivia 112 0.740 LAC
Suriname 113 0.787 LAC
Norway 114 0.942 OECD/5
Sweden 115 0.956 OECD/2
Belize 116 0.775 LAC
Andorra 117

continued on next page



6.6 Exercises 83

Table 6.3 (continued)

Country Most Polluted SDG 3, 7, 11 Region
Trinidad and Tobago 118 0.769 LAC
Finland 119 0.936 OECD/6
Estonia 120 0.893 OECD/21
New Zealand 121 0.912 OECD/13.5
Puerto Rico 122
Australia 123 0.897 OECD/19
Grenada 124
New Caledonia 125
Iceland 126 0.954 OECD/3
Bonaire, St. Eustatius
and Saba

127

Burundi 128 0.347 SSA
U.S. Virgin Islands 129
French Polynesia 130
Guam 131

of A and B. Let X denote the set of OECD countries. Then n = 36. We have that

S(μA,μB) = 1 −
∑

xεX |μA(x) − μB(x)|∑
xεX(μA(x) + μB(x))

= 1 − 277

1332
= 0.792.

The smallest S can be is n/2+1
n+1 = 19

37 = 0.51. Thus 0.792−0.51
1−0.51 = 0.282

0.49 = 0.576.

Now M = S
2−S

. Hence

M(μA,μB) = 0.792

2 − 0.792
= 0.656.

The smallest M can be is 0.51
2−0.51 = 0.342. Thus 0.656−0.342

1−0.342 = 0.314
0.658 = 0.477.

We see that the fuzzy similarity measure is medium in both cases.

6.6 Exercises
1. Rank how well countries are achieving these SDGs, SDG 3, (Good Health and
Well-Being), SDG 7 (Affordable and Clean Energy), SDG 2 (Zero Hunger), SDG 4
(Quality Education), SDG 5 (Gender Equality), SDG 8 (Decent Work and Economic
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Growth), SDG 11 (Sustainable Cities and Communities), SDG 12 (Responsible Con-
struction and Production), SDG 13 (Climate Action), SDG 15 (Life on Land). Pro-
ceed as in Table 6.3 with SDG 3, SDG 7, and SDG 11.
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Mistreatment of women
and children©�

In this chapter, we examine the mistreatment of women and children using fuzzy im-
plication operators. We show how fuzzy implication operators can be used to define
fuzzy similarity measures. These fuzzy similarity measures are used to compare the
similarity of various rankings of countries with respect to the security status, gender
equality, and human development of women and children. We prove relationships be-
tween certain fuzzy implication operators. The results in this chapter rely heavily on
[81].

The following is taken from [30]. Technology-facilitated violence: Available evi-
dence collected at country and regional levels confirms high prevalence rates against
women and girls. One in 10 women in the European union has experienced cyber-
harassment since the age of 15. In the Arab States, a regional study found that 60% of
women internet users in the region had been exposed to online violence. In Uganda,
in 2021, 49% of women reported being involved in online harassment at some point
in their lifetime. According to a 2016 survey by the Korean National Human Rights
Commission, 85% of women experienced hate speech online.

Climate change and violence: Climate change and slow environmental degrada-
tion exacerbate the risks of violence against women and girls due to displacement,
resource scarcity and food insecurity and disruption to service provision for survivors.
Following Hurricane Katrina in 2005, the rate of rape among women displaced to
trailer parks rose 53.6 times the baseline rate in Mississippi, USA, for that rate. In
Ethiopia, there was an increase in girls sold into early marriage in exchange for
livestock to help families cope with the impacts of prolonged droughts. Nepal wit-
nessed an increase in trafficking from an estimated 3,000–5,000 annually in 1990 to
12,000–20,000 per year after the 2015 earthquake.

Trafficking in women: In 2020, for every 10 victims of human trafficking detected
globally, about four were women and about two were girls. Most of the detected
victims of trafficking for sexual exploitation (91%) are women.

The study in [30] also considered femicides/feminicides, prevalence of violence
against women and girls, impact of COVID-19 on violence against women and girls,

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.
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reporting violence against women, laws on violence against women and girls, and
many other categories.

The following is from [36]. Gender-based violence occurs in every country in
the world and across all economic and social groups. One in three women and girls
will experience sexual or physical violence in their lifetimes. Gender-based violence
has been ingrained into society, in some countries and regions more than others. In
many communities, violence against girls and women is expected and even accepted.
The military use of schools continues in Syria, Yemen, Sudan, the Philippines and
Afghanistan. In some contexts, schoolgirls have been specifically targeted for sexual
violence and by armed groups who oppose female education. Some global trends are
15 million girls are married before the age of 18, 30 million girls are at risk of female
genital mutilation in the next decade, and 1 in 3 girls and women live in countries
where marital rape is not an explicit crime. Due to their gender, girls are often forced
to drop out of school, are prevented from accessing income-generating opportunities,
and ultimately face social exclusion. More information can be found in [36]. See also
[97,120].

The Women, Peace and Security (WPS) Index ranks 177 countries and economies
on women’s status, [114]. Countries are also ranked according to their achievement
of the rights of a child, [90]. The Gender Inequality Index (GII) ranks countries with
respect to the loss of achievement within a country due to gender inequality, [37].
The Human Development Index (HDI) ranks countries with respect to human devel-
opment. In this chapter, we determine the similarity of the rankings using various
fuzzy similarity measures.

7.1 Preliminary results
Let μ, ν be fuzzy subsets of a set X. Then M and S are fuzzy similarity measures on
FP(X), where

M(μ,ν) =
∑

x∈X μ(x) ∧ ν(x)∑
x∈X μ(x) ∨ ν(x)

,

S(μ, ν) = 1 −
∑

x∈X |μ(x) − ν(x)|∑
x∈X(μ(x) + ν(x))

.

Recall a function I of [0,1] × [0,1] into [0,1] such that I (0,0) = I (0,1) =
I (1,1) = 1 and I (1,0) = 0 is called an implication operator. Other definitions can be
found in the previous chapter.

Let A be the ranking 1,2, ..., n and B be the ranking n, ...,2,1. For n even, we
have I1(μA,μB) = 1

n
(1 + ... + 1 + n

2 + ... + 2 + 1) 1
n

and I2(μA,μB) = 1
n
(1 + ... +

1 + n
2

n+2
2

+ ... + 2
n−1 + 1

n
). For n odd, we have I1(μA,μB) = 1

n
(1 + ... + 1 + n+1

2 +
... + 2 + 1) 1

n
and I2(μA,μB) = 1

n
(1 + ... + 1 + n−1

2
n+3

2
+ ... + 2

n−1 + 1
n
).
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We determine the smallest value a fuzzy similarity measure S can be with respect
to rankings since then the ratio (S-min)/(max− min).

By [76, Theorem 3.1], SL is a fuzzy similarity, where SL(μA,μB) = 1
n

∑
x∈X(1−

μA(x)) ∧ (1 − μB(x) ∧ (μA(x) ∧ μB(x).

Recall the following definition. Let I be an implication operator. Define the fuzzy
subset EI of FP(X) ×FP(X) by for all μ,ν ∈ FP(X),

EI (μ, ν) = ∧{∧{I (μ(x), ν(x))|x ∈ X},∧{I (ν(x),μ(x))|x ∈ X}}.
Then EI (μ, ν) is called the degree of sameness of μ and ν.

Proposition 7.1.1. Let I be a hybrid monotonous implication operator that satisfies
the ordering principle. Then EI satisfies the following properties ∀μ,ν,ρ ∈ FP(X):

(1) EI (μ, ν) = EI (ν,μ);

(2) S(μ, ν) = 1 implies μ = ν;

(3) If μ ⊆ ν ⊆ ρ, then S(μ,ρ) ≤ S(μ, ν) ∧ S(ν,ρ).

Proof. (1) Clearly, EI (μ, ν) = EI (ν,μ).

(2) EI (μ, ν) = 1 ⇔ ∧{I (μ(x), ν(x))|x ∈ X} = 1 and ∧{I (ν(x),μ(x))|x ∈
X}} = 1 ⇔ μ(x) = ν(x) = 1∀x ∈ X ⇒ μ = ν.

(3) Suppose μ ⊆ ν ⊆ ρ. Then ∀x ∈ X, μ(x) ≤ ν(x) ≤ ρ(x). Thus ∀x ∈
X, I (μ(x), ν(x)) = 1, I (μ(x), ρ(x)) = 1, and I (ν(x), ρ(x))) = 1 since I satis-
fies the ordering principle. Hence I (μ, ν) = 1. Now ∀x ∈ X, I (ρ(x),μ(x)) ≤
I (ν(x),μ(x)), and I (ρ(x),μ(x)) ≤ I (ρ(x), ν(x)) since I is hybrid monotonous.
Now EI (μ,ρ) = 1 ∧ (∧{I (ρ(x),μ(x))|x ∈ X}) ≤ 1 ∧ (∧{I (ν(x),μ(x))|x ∈ X}) =
EI (μ, ν) and EI (μ,ρ) = 1 ∧ (∧{I (ρ(x),μ(x))|x ∈ X}) ≤ 1 ∧ (∧{I (ρ(x), ν(x)|x ∈
X}) = EI (ν,ρ). �

In [76], the following definition was used for defining fuzzy similarity measures
from implication operators.

Recall the following. Let I be an implication operator. Define SI : FP(X) ×
FP(X) → [0,1] by for all (μ, ν) ∈FP(X)×FP(X), SI (μ, ν) = 1

n

∑
x∈X I ((μ(x),

ν(x)) ∧ I ((ν(x),μ(x))).
Then SI is called a degree of likeness.
In [76, Theorem 2.7], it was shown that the function S of Section 7.1 is a fuzzy

similarity measure.

Other implication operators can be found in [9].
We determine the smallest value a fuzzy similarity measure can be with respect to

rankings since then the ratio (S − min)/(max−min) provides a similarity measure
that ranges from 0 to 1.
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For EI (μA,μB), (4) of Definition 1.3.1 holds vacuously for rankings A and B

since EI (μA,μB) is never 0. (There does not exist x ∈ X such that μA(x) = 0 or
μB(x) = 0.)

For two rankings A and B of X,
∑

x∈X(A(x) + B(x)) = n(n + 1) and so∑
x∈X(μA(x) + μB(x)) = n + 1. Thus for S of Section 7.1,

S(μA,μB) = 1 −
∑

x∈X |μA(x) − νB(x)|
n + 1

.

7.2 Godel and Goguen implication operators
Recall that I1 and I2 below are defined in Example 6.1.2.

Theorem 7.2.1. (1) Suppose n is even. Let A be the ranking: 1,2, ..., n
2 , n+2

2 , ..., n−
1, n and let B be the ranking n,n − 1, ..., n+2

2 , n
2 , ...,2,1. Then I2(μA,μB) =

I1(μA,μB) + 1
n
((n + 1)(

∑n
j= n

2 +1
1
j
) − n

2 ) − ( 1
8 + 1

2n2 ).

(2) Suppose n is odd. Let A be the ranking 1,2, ..., n+1
2 , ..., n − 1, n and B

be the ranking n,n − 1, ..., n+1
2 , ...,2,1. Then I2(μA,μB) = I1(μA,μB) + 1

n
((n +

1)(
∑n

j= n+3
2

1
j
) − n−1

2 ) − ( 1
8 − 1

8n2 ).

Proof. (1) We have that

I1(μA,μB) = 1

n
(1 + ... + 1 + 1

n
(
n

2
+ ... + 2 + 1)),

I2(μA,μB) = 1

n
(1 + ... + 1 + (

n
2

n+2
2

+ ... + 2

n − 1
+ 1

n
))

= 1

n
(1 + ... + 1 + (

n
2

n
2 + 1

+ ... + 2

n − 1
+ 1

n
)).

Hence

I2(μA,μB) = I1(μA,μB) + 1

n
(

n
2

n
2 + 1

+ ... + 2

n − 1
+ 1

n
))

− 1

n2 (
n

2
+ ... + 2 + 1).

Thus

I2(μA,μB) = I1(μA,μB) + 1

n
(

n
2

n
2 + 1

+ ... + 2

n − 1
+ 1

n
))

− 1

n2
((

n

2
)(

n

2
+ 1)

1

2
)
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= I1(μA,μB) + 1

n

n
2∑

i=1

i

n − i + 1
− (

1

8
+ 1

2n2
)

Let j = n − i + 1. Then i = n − j + 1 and j = n,n − 1, ..., n
2 + 1. Now

n
2∑

i=1

i

n − i + 1
=

n∑

j= n
2 +1

n − j + 1

j
=

n∑

j= n
2 +1

(
n

j
− 1 + 1

j
)

= (n + 1)(

n∑

j= n
2 +1

1

j
) − n

2
. (7.1)

(2) We have that

I1(μA,μB) = 1

n
(1 + ... + 1 + 1

n
(
n − 1

2
+ ... + 2 + 1)),

I2(μA,μB) = 1

n
(1 + ... + 1 + (

n−1
2

n+3
2

+ ... + 2

n − 1
+ 1

n
)).

Thus

I2(μA,μB) = I1(μA,μB) + 1

n
(

n−1
2

n+3
2

+ ... + 2

n − 1
+ 1

n
)

− 1

n2
(
n − 1

2
+ ... + 2 + 1)

= I1(μA,μB) + 1

n

n−1
2∑

i=1

i

n − i + 1
− 1

n2 (
n − 1

2
)(

n − 1

2
+ 1)

1

2
)

= I1(μA,μB) + 1

n

n−1
2∑

i=1

i

n − i + 1
− (

1

8
− 1

8n2
)

Let j = n − i + 1. Then i = n − j + 1 and j = n,n − 1, ..., n
2 + 3

2 . Now

n−1
2∑

i=1

i

n − i + 1
=

n∑

j= n+3
2

n − j + 1

j
=

n∑

j= n+3
2

(
n

j
− 1 + 1

j
)

= (n + 1)(

n∑

j= n+3
2

1

j
) − n − 1

2
. (7.2)

�



90 CHAPTER 7 Mistreatment of women and children

We next determine approximate values for
∑n

j= n
2 +1

1
j

when n is even and
∑n

j= n+3
2

1
j

when n is odd. These approximate values appear in the proof of the

following theorem. We recall that Hn = ∑n
j=1

1
j

is a harmonic sum which sums
approximately to γ + lnn, where γ is the Euler-Mascheroni constant, γ ≈ 0.5772,
where ≈ denotes approximately equal to.

Theorem 7.2.2. (1) Suppose n is even. Let A be the ranking: 1,2, ..., n
2 , n+2

2 , ..., n−
1, n and let B be the ranking n,n − 1, ..., n+2

2 , n
2 , ...,2,1. Then I2(μA,μB) ≈

I1(μA,μB) + ln 2 − 5
8 + 1

n
ln 2 − 1

2n2 .

(2) Suppose n is odd. Let A be the ranking 1,2, ..., n+1
2 , ..., n − 1, n and B be

the ranking n,n − 1, ..., n+1
2 , ...,2,1. Then I2(μA,μB) ≈ I1(μA,μB) + ln 2 − 5

8 +
ln n

n+1 + 1
n

ln 2n
n+1 + 1

2n
+ 1

8n2 .

Proof. (1) Let n be even. Consider
∑n

j= n
2 +1

1
j

. We have
∑n

j= n
2 +1

1
j

= ∑n
j=1

1
j

−
∑ n

2
j=1

1
j
≈ γ + lnn − (γ + ln n

2 ) = lnn − ln n
2 = ln 2. Thus by Theorem 7.2.1 (1) and

Eq. (7.1),

I2(μA,μB)≈ I1(μA,μB) + 1

n
((n + 1) ln 2 − n

2
) − (

1

8
+ 1

2n2
)

= I1(μA,μB) + ln 2 − 5

8
+ 1

n
ln 2 − 1

2n2 .

(2) Let n be odd. Consider
∑n

j= n+3
2

1
j

. We have
∑n

j= n+3
2

1
j

= ∑n
j=1

1
j

−
∑ n+1

2
j=1

1
j
≈ γ + lnn − (γ + ln n+1

2 ) = lnn − ln n+1
2 = ln 2n

n+1 . Thus by Theorem 7.2.1
(2) and Eq. (7.2),

I2(μA,μB_) = I1(μA,μB) + 1

n
((n + 1)(

n∑

j= n+3
2

1

j
) − n − 1

2
) − (

1

8
− 1

8n2
)

≈ I1(μA,μB) + 1

n
((n + 1) ln

2n

n + 1
− n − 1

2
) − (

1

8
− 1

8n2 )

= I1(μA,μB) + (1 + 1

n
) ln

2n

n + 1
− 1

2
+ 1

2n
− 1

8
+ 1

8n2

= I1(μA,μB) + ln
2n

n + 1
+ 1

n
ln

2n

n + 1
− 5

8
+ 1

2n
+ 1

8n2

= I1(μA,μB) + ln 2 − 5

8
+ ln

n

n + 1
+ 1

n
ln

2n

n + 1
+ 1

2n
+ 1

8n2
. �

Example 7.2.3. Consider S1. Let n = 3. Let A be the ranking 1,2,3, and B be the
ranking 3,2,1. Then

S1(μA,μB) = 1

3
(I1(

1

3
,

3

3
) ∧ I1(

3

3
,

1

3
) + I1(

2

3
,

2

3
) ∧ I1(

2

3
,

2

3
) + I1(

3

3
,

1

3
) ∧ I1(

1

3
,

3

3
))
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= 1

3
(
1

3
+ 1 + 1

3
) = 5

9
.

Let C be the ranking 3,1,2. Then

S1(μA,μC) = 1

3
(I1(

1

3
,

3

3
) ∧ I1(

3

3
,

1

3
) + I1(

2

3
,

1

3
) ∧ I1(

1

3
,

2

3
) + I1(

3

3
,

2

3
) ∧ I1(

2

3
,

3

3
))

= 1

3
(
1

3
+ 1

3
+ 2

3
) = 4

9
.

Hence for n odd, the rankings μA and μB do not give the smallest value S1 can
be.

Example 7.2.4. Consider I1. Let n = 6. Let A be the ranking 1,2,3,4,5,6, and let B

be the ranking 6,5,4,3,2,1. Then I1(μA,μB) = 1
6 (1+1+1+ 3

6 + 2
6 + 1

6 ) = 24
36 . Let

C be the ranking 6,5,2,3,1,4. Then I1(μA,μC) = 1
6 (1 + 1 + 2

6 + 3
6 + 1

6 + 4
6 ) = 22

36 .
Hence even though the rankings A and B yield the smallest S1, it is not the case that
A and B yield the smallest I1.

Theorem 7.2.5. Let n be odd. Let A be the ranking 1,2, ..., n+1
2 , ..., n − 1, n and B

the ranking n,n − 1, ..., n+1
2 , ...,2,1. Let C be the ranking obtain from B by inter-

changing the middle and the middle plus next term. Then S1(μA,μC) = 1
4 + 1

2n
− 1

4n2

is the smallest value S1 can be.

Proof.

S1(μA,μC) = 1

n
(n − n − 1

2
+ 2(1 + 2 + ... + n − 1

2
))

1

n

= (1 − 1

2
+ 2

n
((

n − 1

2
)(

n + 1

2
))

1

2
)

1

n

= 1

n
− 1

2n
+ 1

2n2 + n2 − 1

4n2

= 1

2n
+ 1

2n2 + 1

4
− 1

4n2

= 1

4
+ 1

2n
− 1

4n2 .

This is the smallest value S1 can be since the term 2(1 + 2 + ... + n−1
2 ) repre-

sents the smallest element in the ranking while the n − n−1
2 term represents the next

smallest. �

For example, let n = 7. Then A: 1,2,3,4,5,6,7, B: 7,6,5,4,3,2,1, and C:
7,6,5,3,4,2,1. Now

S1(μA,μB) = 1

7
(
1

7
+ 2

7
+ 3

7
+ 1 + 3

7
+ 2

7
+ 1

7
),
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S1(μA,μC) = 1

7
(
1

7
+ 2

7
+ 3

7
+ 4

7
+ 3

7
+ 2

7
+ 1

7
).

The middle term becomes
n− n−1

2
n

instead of n
n

.

Theorem 7.2.6. Let A be the ranking 1,2, ..., n and C be the ranking n,1,2, ..., n −
1. Then I1(μA,μC) = 1

n
(1 + 1

2 + 1
3 + ... + 1

n−1 ) is the smallest value I1 can be.

Proof. In any two μ, ν, only 1 and the values of ν can appear in I1(μ, ν). Now for
rankings, 1

2 , 1
3 , ..., 1

n−1 are the smallest. None of these can appear more than once
although 1 may appear more than once. �

Example 7.2.7. Let A be the ranking 1,2,3,4,5,6 and let C be the ranking
6,1,2,3,4,5. Then I1(μA,μC) = 1

6 (1+ 1
6 + 2

6 + 3
6 + 4

6 + 5
6 ) = 21

36 . By Theorem 7.2.6,
this is the smallest I1 can be. Now S1(μA,μC) = 1

6 ( 1
6 + 1

6 + 2
6 + 3

6 + 4
6 + 5

6 ) = 16
6 . Let

A be the ranking 1,2,3,4,5,6 and B the ranking 6,5,4,3,2,1. Then S1(μA,μB) =
12
36 is the smallest S1 can be. Hence the smallest I1 can be doesn’t yield the smallest
S1 can be.

7.3 Women and children and similarity results
The WPS Index ranks 177 countries and economies on women’s status. As the only
index to bring together indicators of women’s inclusion, justice and security, the
WPS Index is a valuable measure of women’s status that can be used to track trends,
guide policymaking, and hold governments accountable for their promises to advance
women’s rights and opportunities, [114].

The WPS Index reveals glaring disparities around the world. All countries on the
index have room for improvement, and many perform considerably better or worse
on some indicators of women’s status than in others [114].

The application, implementation, and interpretation of the eight Fundamental
Rights of a child is guided and determined by four Guiding Principles of the Conven-
tion on the Rights of the Child; the principle of nondiscrimination, the “best interests
of the child”, the principle of life, the survival and development, and the principle of
inclusion and participation, [90].

Right to Life: The right to life means that each child must be able to live his or
her life. Children have the right not to be killed. They have the right to survive and
grow up in proper conditions.

Right to Education: The right to education allows each child to receive, to enjoy
a social life, and to build his or her own future. The right is essential for economic,
social, and cultural development.

Right to Food: The right to food is the right of each child to eat. It is the right
to not die of hunger and not to suffer from malnutrition. Every 5 s, a child dies of
hunger somewhere in the world.
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Right to Health: The right to health means that children must be protected against
illness. They must be allowed to grow and become healthy adults. This contributes to
developing an active society.

Right to Water: The right to water means children have the right to safe drinking
water and proper sanitary conditions. The right to water is essential for good health,
survival, and proper growth.

Right to Identity: Each child has the right to have a surname, a first name, a
nationality, and to know who his or her relatives are. The right to identity also means
that each child’s existence and rights must be officially recognized.

Right to Freedom: The right to liberty is the child’s right to express him or
herself, to have opinions, to have access to information, and to participate in decisions
which affect his or her life. Children also have the right to religious freedom.

Right to Protection: The right to protection is the right to live in a secure and
protective environment which preserves the child’s well-being. Each child has the
right to be protected from all forms of mistreatment, discrimination, and exploitation.

The Gender Inequality Index (GII) is an index for the measurement of gender
disparity that was introduced in the 2010 Human development report. According to
United Nations Development Programme (UNDP), this index is a composite measure
to quantify loss of achievement within a country due to gender inequality. It uses
three dimensions to measure opportunity cost: reproductive health, empowerment,
and labor market participation [37]. The Human Development Index (HDI) provides
a composite measure of human development used by the UNDP [37].

We next provide the scores and rank for the region: Middle East and North Africa
(Table 7.1).

Let A denote the ranking of the countries for Peace and Security, B the ranking
for Rights, C the ranking for GII, and D the ranking for HDI. Let X denote the set of
countries. We have n = 17. We next determine fuzzy similarity measures. Recall the
formulas M = S

2−S
and SL = S + 1

n
(S − 1). We have

S(μA,μB) = 1 −
∑

xεX |μA − μB |∑
xεX(μA + μB)

= 1 − 56

306
= 1 − 0.183

= 0.817.

Now
∑

xεX |μC −μD| = 35
17 = ∑

xεX |μA−μC | and so S(μC,−μD)=S(μA,μC).
We have

S(μC,μD) = 1 −
∑

xεX |μC − μD|∑
xεX(μC + μD)
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Table 7.1 Women and children.
Country GII Peace and

Security
HDI Rights

Algeria 103/10 118/11 91/8 108/10
Bahrain 49/3 56/2 42/3 85/4
Egypt 108/11 110/9 116/13 110/12
Iran 113/14 140/14 70/7 120/14
Iraq 146/16 16/15 123/15 140/16
Jordan 109/12 92/7 102/11 82/3
Kuwait 53/4 61/3 64/6 95/7
Lebanon 96/9 128/13 92/9 91/5
Libya 56/5.5 122/12 105/12 104/9
Morocco 111/13 114/10 121/14 116/13
Oman 68/8 75/5 60/5 93/6
Qatar 43/2 80/6 45/4 80/2
Saudi Arabia 56/5.5 67/4 40/2 101/8
Syrian Arab Rep. 122/15 171/16 151/16 123/15
Tunisia 65/7 96/8 95/10 79/1
United Arab Emirates 31/1 22/1 31/1 109/11
Yemen Rep. 162/17 176/17 179 / 17 170/17

= 1 − 35

306
= 1 − 0.114

= 0.886.

Hence M(μA,μB) = 0.817
2−0.817 = 0.817

1.183 = 0.691 and M(μC,μD) = 0.886
2−0.886 =

0.886
1.114 = 0.795. Also, SL(μA,μB) = 0.817 + 1

17 (0.817 − 1) = 0.817 − 0.011 = 0.806
and SL(μC,μD) = 0.886 + 1

17 (0.886 − 1) = 0.886 − .0.007 = 0.879.

The smallest S can be 1
2 + 1

2n
= 1

2 + 1
34 = 0.529. The smallest M can be is

0.529
2−0.529 = 0.529

1.471 = 0.360 and the smallest SL can be is 0.529 + 1
17 (.529 − 1) =

0.529 − 0.028 = 0.501. Thus for S

0.817 − 0.529

1 − 0.529
= 0.288

0.471
= 0.611

0.886 − 0.529

1 − 0.529
= 0.357

0.471
= 0.758

For M

0.691 − 0.360

1 − 0.360
= 0.331

0.640
= 0.517
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0.795 − 0.360

1 − 0.360
= 0.435

0.640
= 0.680

For SL

0.806 − 0.501

1 − 0.501
= 0.305

0.499
= 0.611

0.879 − 0.501

1 − 0.501
= 0.378

0.499
= 0.758

7.4 Exercises
1. Find the fuzzy similarity measures for A and C (See Table 7.1).
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Space debris and
sustainability©�

The following is from [124]. The space sector is in the grip of an unprecedented
investment spree. Collectively, there are more and more objects into space every year.
At the current rate of expansion, we risk decimating the value of space for future
generations. Unless we act now, an environmental crisis will be created in space,
which could hamper our efforts to tackle climate change here on earth.

The present pace of growth is unsustainable. Over the past six decades, about
11,000 satellites have been launched, of which 7,000 remain in space. But that num-
ber could swell to the hundreds of thousands by the end of this decade as companies
and other nation-states in building mega-constellations in low Earth orbit (LEO).
Some of these new constellations will boast tens of thousands of satellites. Each one
will have an expected life of between 5 and 10 years, creating vast amounts of space
debris that will clutter their own orbit and endanger anything passing through it.

The environmental dangers of such space debris are myriad, including light pol-
lution that would hinder future scientific discovery. Just as worrying are satellite
reentries from the mega-constellations, which could deposit hazardous levels of alu-
mina into the upper atmosphere. The resulting solar radiation would have pernicious
consequences for the environment. The planned mega-constellations could throttle
competition and innovation too, if one country or company comes to dominate a par-
ticular orbit.

However, the smart use of space can enhance life on Earth. Satellites are reduc-
ing emissions in the aviation industry by optimizing flight paths and help container
ships boost efficiency and profitability. Elsewhere, space technology helps us mea-
sure global carbon emissions more accurately, allows farmers to boost yields and feed
the world’s growing population more sustainably. Satellites will be essential if we are
to connect the roughly three billion people who have yet to use the internet. Whole
industries, from mining to retail, simply would not be able to operate without suitable
communications.

Regulation is needed to address space sustainability. We discuss this in a later
section.

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.
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8.1 Space competitiveness index
The Space Competitive Index (SCI) shows a way to compare countries in their space
participation levels and investments. The overall scale reflects part of a larger report
that dives deeply into participation trends within each evaluated nation. Multiple fac-
tors play into the calculated SCI score. These reported scores for each of the evaluated
nations rank how well each country performs in developing, creating, and execut-
ing space programs. Countries score higher if they have more human and capital
resources dedicated to their space programs, great interest within the populations,
and more policies supporting space participation. Consequently, these higher-scoring
countries are formidable competitors in their presence in space via satellite deploy-
ment and space exploration.

To calculate the SCI, Futron Corporation used 50 separate metrics categorized
into three groups for each country. These three groups of resources are government,
industry, and human capital. Each group has a separate weight for determining the
overall SCI score. Government and industry each account for 40% of the total while
human capital is 20%

Table 8.1 Competitiveness index.

Country Score Rank
United States 99.67 1
Japan 48.76 2
Russia 45.29 3
China 41.85 4
Canada 39.10 5
India 28.64 6
South Korea 15.22 7
Israel 9.30 8
Australia 5.22 9

The SCI considered the European continent as one of the 15 evaluated nations. In
2008, Europe ranked second to the United States, followed by Russia, China, India,
Canada, Japan, South Korea, Israel, and Brazil, [123].

8.2 Countries dominating space
The following is from [3]. Our atmosphere is filled with more than 11,000 objects that
have been launched since the foray in to space began. In [3], data from Our World in
Data, breaks down the amount of objects launched into space by country over time.
Objects being sent into our atmosphere include satellites, crewed spacecraft, probes,
and space flight equipment. Probes and landers have helped scientists explore other
planets. Satellites provide us with everyday necessities like call phone service, far
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reaching television signals, satellite imagery, and GPS. As of late 2021, there were
about 4,852 operational satellites in orbit, 2,944 belong to the United States. Many
satellites in orbit are no longer functional. In fact, there is a lot of junk in space.
According to NASA, there are over 27,000 pieces of space debris in orbit.

Few countries have come close to matching either the U.S. or Russia with re-
spect to launching objects into space. In [3], 86 countries have listed with respect to
having launches belonging to them. Not all these countries have orbital launch capa-
bilities, meaning that although the satellite in space belongs to a certain country, it
was launched by another. The following table is from [3].

Table 8.2 Objects launched.

Country Score Rank
United States 5,534 1
Russia 3,611 2
China 731 3
UK 515 4
Japan 300 5
France 130 6
India 127 7
Germany 114 8
Canada 82 9
Luxembourg 53 10
Italy 52 11
South Korea 43 12
Brazil 39 13
Australia 36 14
Belgium 36 15
Israel 30 16
Spain 29 17
Uruguay 23 18
Indonesia 21 19
Argentina 20 20
Sweden 19 21
Mexico 18 22
Saudi Arabia 17 23
United Arab Emirates 17 24
Taiwan 17 25
Finland 17 26
Turkey 16 27
Switzerland 15 28
Thailand 14 29
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8.3 Responsibility for space junk
Thousands of pieces of debris from broken-down satellites, rocket boosters and
weapons tests that we have launched over the years have got stuck in orbit, creat-
ing clutter which could not only crash into active satellites we need for monitoring
Earth, but also release harmful chemicals into the atmosphere as they burn up on
re-entry, depleting the ozone layer and space exploration.

According to the OECD, active debris removal faces several technological, geopo-
litical, and economic challenges. Manufacturing and launching debris removal vehi-
cles is expensive and if it goes wrong, there is the risk of simply creating more debris.
The retrieval of debris could involve sharing potentially sensitive data about the de-
bris object’s design that could involve national security, foreign policy, intellectual
property. Therefore countries would realistically be limited to removing their own
satellites or those of close military allies.

The issue of space debris will need to be solved soon as companies such as Boeing
Co. and SpaceX get set to launch 65,000 spacecraft into low-Earl orbit, upping the
likelihood of more collisions and even further debris in the future. The following table
is from [32]. It lists the number of spent rocket bodies and other pieces of debris.

Table 8.3 Quantity.

Country Quantity Rank
Russia 7,032 1
USA 5,216 2
China 3,854 3
France 520 4
Japan 117 5
India 114 6
ESA 60 7
UK 1 8

Let A denote the SCI ranking (Table 8.1), B the Counties Dominating Index (Ta-
ble 8.2), and C the Responsibility Space Junk ranking (Table 8.3). We delete those
countries that do not appear in both rankings and then rerank. For A, B, we have n

= 9. We find that

M(μA,μB) =
∑

xεX μA(x) ∧ μB(x)
∑

xεX μA(x) ∨ μB(x)

= 41

90 − 41
= 0.911.

Now the smallest M is n+1
3n−1 = 10

26 = 0.385. Hence 0.911−0.385
1−0.385 = 0.526

0.615 = 0.855.

Now S(μA,μB) = 2(0.911)
1.911 = 1.822

1.911 = 0.953. Now the smallest S can be 2(0.385)
1.385 =

0.770
1.385 = 0.556. Hence 0.953−0.556

1−0.556 = 0.397
0.444 = 0.894.
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In both cases, the fuzzy similarity measure is very high.

We next consider the B and C rankings. Here n = 7. We find that

M(μB,μC) =
∑

xεX μB(x) ∧ μC(x)
∑

xεX μB(x) ∨ μC(x)

= 24

56 − 24
= 0.75.

Now the smallest M can be is n+1
3n−1 = 8

20 = 0.4. Hence 0.75−0.4
1−0.4 = 0.35

0.6 = 0.583.

Now S(μA,μB) = 2(0.75)
1.75 = 1.50

1.75 = 0.857. Now the smallest S can be 2(0.4)
1.4 =

0.8
1.4 = 0.571. Hence 0.857−0.571

1−0.571 = 0.276
0.429 = 0.643.

We see that the fuzzy similarity measure is medium in both cases.

8.4 Sustainability and space
In [23], guidelines for long-term sustainability of outer space activities are developed.
The committee first develops the context of the guidelines. They then provide the
definition, objectives, and scope of the guidelines. In the second part of [23], the
guidelines are presented and explained in detail. We present the guidelines.

Guidelines for the long-term sustainability of outer space activities.

A. Policy and regulatory framework for outer pace activities

A.1 Adopt, revise, and amend, as necessary, national regulatory frameworks for outer
space activities.

A.2 Consider a number of elements when developing, revising, or amending, as nec-
essary, national regulatory frameworks for outer space activities.

A.3 Supervise national space activities.

A.4 Ensure the equitable, rational, and efficient use of the radio frequency spectrum
and the various regions used by satellites.

A.5 Enhance the practice of registering space objectB Safety of space operation.

B.1 Provide updated contact information and share information on space objects and
orbital events.

B.2 Improve accuracy of orbital data on space objects and enhance the practice and
utility of sharing orbital information on space objectives.

B.3 Promote the collection, sharing, and dissemination of space debris monitoring
information.
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B.4 Perform conjunction assessment during all orbital phases of controlled flight.

B.5 Develop practical approaches for prelaunch conjunction assessment.

B.6 Share operational space weather data and forecasts.

B.7 Develop space weather models and tools and collect established practices on the
mitigation of space weather effects.

B.8 Design and operation of space objects regardless of their physical and operation
characteristics.

B.9 Take measures to address risks associated with the uncontrolled reentry of space
objects.

B.10 Observe measures of precaution when using sources of laser beams passing
through outer space.

C. International cooperation, capacity-building awareness

C.1 Promote and facilitate international cooperation in support of the long-term sus-
tainability of outer space activities.

C.2 Share experience related to the long-term sustainability of outer space activities
and develop new procedures, as appropriate, for information exchange.

C.3 Promote and support capacity-building.

C.4 Raise awareness of space activities.

D. Scientific and technical research and development

D.1 Promote and support research into and the development of ways to support sus-
tainable exploration and use of outer space.

D.2 Investigate and consider new measures to manage the space debris population in
the long term.

These guidelines are explained in great detail in [23].

8.5 Space debris and artificial intelligence
In [60], the authors consider the use of artificial intelligence (AI) to combat the
problem of space debris. They state that over the past decades, a considerable and
constantly growing amount of debris is being concentrated in Outer Space, originat-
ing mainly from the fragmentation of spacecraft and launch vehicles. Once in orbit,
they consist in uncontrolled and noncooperative elements, orbiting at a high speed
and eventually degrading under conditions of real microgravity. The main objective
remains not only to estimate their position, orientation, and speed in order to avoid
collision with working space objects (such as Satellites) resulting in their damage, but
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also to maneuver so as to avoid the collision risk below an acceptable level. Space
debris identification is therefore of paramount importance for the security of space
assets and success of space missions in general.

It is concluded in [60] that the use of AI technology expands the boundaries of
real-time exchange and accurate analytical processing of big datasets regarding space
debris identification, location, and collision risks. These benefits can only be put to
good use under a multilateral cooperation scheme of monitoring and communica-
tion/exchange of information.

The following is taken from [87]. Thousands of defunct satellites, spent rocket
stages, metal shards from collisions, and other remnants of human space exploration
are orbiting the Earth at breakneck speeds. In [87], tracking data from the Space-
Track.org maintained by the U.S. Space Force, to help visualize just how much debris
is currently orbiting the Earth while identifying the biggest contributors of this celes-
tial clutter.

It is stated in [101] that according to the data, there are roughly 14,000 small,
medium, and large debris objects floating about LEO as of May 2023. And this is
not counting the millions of tiny debris fragments that are too small to be tracked.
Table 8.4 provides a ranking of countries responsible for most space debris.

Table 8.4 Amount of space debris.

Country Rank # of Space Debris
Russia (including USSR) 1 4,521
United States 2 4,317
China 3 4,137
France 4 370
India 5 62
Japan 6 48
China / Brazil 7 25
European Space Agency 8 22
Canada 9 5
Argentina 10 1
Germany 10 1
Other 24

Let D denote the ranking of the countries with respect to the above table. If we
compare this ranking with the ranking B, we see that the same four countries share
the top four ranks.

In [111], it is stated that the AI revolution will transform business, government,
and society. The rise of ChatGPT and the ensuing arms race between big tech com-
panies develop their own generative AI models has led to a very public debate about
how best to manage the risks of this new technology.
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Table 8.5 Use of AI.

Country Rank Country Rank

United States 1 Hong Kong 32

China 2 Malta 33

Singapore 3 Czech Rep. 34

United Kingdom 4 Brazil 35

Canada 5 New Zealand 36

South Korea 6 Slovenia 37

Israel 7 Hungary 38

Germany 8 Turkey 39

Switzerland 9 Iceland 40

Finland 10 Chile 41

Netherlands 11 Qatar 42

Japan 12 Lithuania 43

France 13 Malaysia 44

India 14 Greece 45

Australia 15 Indonesia 46

Denmark 16 Vietnam 47

Sweden 17 Columbia 48

Luxembourg 18 Argentina 49

Ireland 19 Slovakia 50

Austria 20 Mexico 51

Spain 21 Egypt 52

Belgium 22 Uruguay 53

Italy 23 Armenia 54

Norway 24 South Africa 55

Estonia 25 Tunisia 56

Taiwan 26 Morocco 57

Poland 27 Bahrain 58

UAE 28 Pakistan 59

Portugal 29 Sri Lanka 60

Russia 30 Nigeria 61

Saudi Arabia 31 Kenya 62

The Global AI index aims to make sense of AI in 62 countries that have chosen to
invest in it. It is the first ever ranking of countries based on three pillars of analysis:
investment, innovation, and implementation.

Let E denote the ranking of countries in Table 8.5. We next find the fuzzy sim-
ilarity measure of rankings B and E. We delete the countries that do not appear in
both rankings and the rerank. Thus n = 27. Let X denote the set of the remaining 27
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countries. We have

S(μB,μE) = 1 −
∑

xεX |μB(x) − μE(x)|
∑

xεX(μB(x) + μE(x))

= 1 − 161

756
= 1 − 0.213

= 0.787.

The smallest S can be is 1
2 + 1

2n
= 0.519. Hence 0.787−0.519

1−0.519 = 0.268
0.481 = 0.557.

Now M = S
2−S

. Thus we have

M(μB,μE) = 0.787

2 − 0.787
= 0.649.

The smallest M can be is 0.519
2−0.519 = 0.350. Hence 0.649−0.350

1−0.359 = 0.299
0.650 = 0.458.

We see that the fuzzy similarity measure is medium.

8.6 Space debris and cybersecurity
In [52], using space junk for cyber warfare is considered. It is stated in [52] that a
satellite has a life expectancy of 5 to 30 years, and even after that, it can still be
in orbit with enough propellant to cruise across space and working communications
that can be reactivated. Thousands of satellites, both active and dormant, have been
sent into space by various organizations and governments, with 5,000 space-borne
transponders connecting with Earth. Every transmission is a potential inlet for a cyber
attack. Older satellites have technology commonalities, allowing cyber-exploitation
of industrial systems for control and processing. Supervisory control and data ac-
quisition (SCADA) systems within our municipalities, facilities, infrastructure, and
factories are designed and built on older technology and hardware, sometimes de-
signed decades ago, and the software is seldom updated. These SCADA systems are
seen as a strategic weakness and have received more attention in recent years from the
US cyber-defense sector. Satellites may be based on 1980s hardware and technology
for one simple reason; they are unlikely to be improved once launched into orbit.

8.7 Exercises
1. Determine the fuzzy similarity measures for A and C.
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2. Determine which countries are highly involved in multilateral cooperation scheme
of monitoring and communication/exchange of information as described in Sec-
tion 10.5.

3. It is stated in [31] that space systems, ranging from satellites to mission control
centers are frequently the target of cyberattacks. Use [31] to write a report concerning
these principles.
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9.1 Telecommunications output and network readiness
Telecommunications, also known as telecom, is the exchange of information over
large distances. It is a broad term that includes various sectors, but all include a trans-
mitter and a receiver. The medium of signal transference can be via various means,
e.g., fiber, electromagnetic fields, light, and cable.

We provide the rank of countries with respect to telecommunications output ac-
cording to [110] (Table 9.1).

Table 9.1 Telecommunications output.

Country Rank Country Rank
Germany 1 Ireland 18
United Kingdom 2 Finland 19
France 3 Luxembourg 20
Italy 4 Hungary 21
Spain 5 Slovakia 22
Switzerland 6 Serbia 23
Netherlands 7 Bulgaria 24
Sweden 8 Croatia 25
Belgium 9 Slovenia 26
Poland 10 Latvia 27
Norway 11 Lithuania 28
Austria 12 Estonia 29
Greece 13 Cyprus 30
Romania 14 Bosnia and Herzegovina 31
Denmark 15 Iceland 32
Portugal 16 Macedonia 33
Czech Republic 17 Liechtenstein 34
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Table 9.2 Network readiness.

Country Rank Country Rank

United States 1 United Arab Emirates 30

Singapore 2 Italy 31

Finland 3 Malta 32

Netherlands 4 Lithuania 33

Sweden 5 Poland 34

Switzerland 6 Cyprus 35

Rep. of Korea 7 Hungary 36

Denmark 8 Latvia 37

Germany 9 Russian Federation 38

United Kingdom 10 Slovakia 39

Canada 11 Malaysia 40

Israel 12 Saudi Arabia 41

Japan 13 Thailand 42

Australia 14 Ukraine 43

France 15 Brazil 44

Norway 16 Uruguay 45

Austria 17 Qatar 46

Luxembourg 18 Turkey 47

Ireland 19 Chile 48

China 20 Greece 49

Belgium 21 Croatia 50

Estonia 22 Bahrain 51

New Zealand 23 Romania 52

Iceland 24 Bulgaria 53

Hong Kong 25 Oman 54

Spain 26 Serbia 55

Czechia 27 Vietnam 56

Portugal 28 Costa Rica 57

Slovenia 29 Kazakhstan 58

The Network Readiness Index 2023 ranks a total of 134 economies that collec-
tively account for 95% of global gross domestic product (GDP). We list the ranking
according to [24] (Table 9.2).

We next determine fuzzy similarity measures of telecommunication output and
readiness index, we delete the countries that are not listed in both rankings and rerank.
Let X denote the resulting set of countries. Then n = 33. Let A denote the ranking
of the telecommunication output and let B denote the ranking of the readiness index.
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Then

S(μA,μB) = 1 −
∑

xεX |μA(x) − μB(x)|
∑

xεX(μA(x) + μB(x))

= 1 − 226

1122
= 1 − 0.201

= 0.799.

The smallest S can be is 1
2 + 1

2n
= 1

2 + 1
66 = 0.515. Thus 0.799−0.515

1−0.515 = 0.284
0.485 =

0.586.

Now M = S
2−S

. Hence

M(μA,μB) = 0.799

2 − 0.799

= 0.799

1.201
= 0.665.

The smallest M can be is 0.515
2−0.515 = 0.515

1.485 = 0.347. Thus 0.665−0.347
1−0.347 = 0.318

0.653 =
0.487. We see that the fuzzy similarity measure is medium.

9.2 Internet speed
The following is from [105]. The Speediest Global Index compares internet speed
from around the world on a monthly basis. Data for the Index comes from the hun-
dreds of millions of tests taken by real people using Speediest every month. Internet
measurements made with Speediest occur at the times and in the places that are most
relevant to the person taking the test. Each time a test is initiated, a snapshot of what
the internet looks like in that place and time is recorded. When aggregated together,
these individual experiences represent the typical internet performance for a given
location.

From January 1, 2019 onward, countries must have at least 300 unique user tests
results for mobile or fixed broadband in the reported month to be included in the In-
dex. Prior to January 1, 2019 countries were required to have at least 3,333 unique
user test results for fixed broadband at least 670 unique test results for mobile in
the reported month. Results for mobile are tested on all cellular technologies. Fixed
broadband includes mobile WIFI results. Results are updated mid-month for the pre-
vious month.

We next provide the ranking of countries with respect to internet speed, [105]. For
Mobile 144 counties were listed and 181 for Fixed Broadband. We list only the 144
countries listed for Mobile (Table 9.3).
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Table 9.3 Speediest.

Country Mobile Rank Fixed Broadband Rank
UAE 1 6
Qatar 2 33
Kuwait 3 26
China 4 5
Denmark 5 10
South Korea 6 24
Norway 7 32
Netherlands 8 16
Bahrain 9 69
Iceland 10 3
Saudi Arabia 11 44
United States 12 7
Finland 13 37
Macau (SAR) 14 25
Bulgaria 15 67
Sweden 16 27
Canada 17 17
India 18 87
Luxembourg 19 31
Brunei 20 75
Croatia 21 80
France 22 8
Singapore 23 1
Switzerland 24 14
Estonia 25 59
Australia 26 95
Lithuania 27 42
Latvia 28 54
Portugal 29 21
Malaysia 30 39
North Macedonia 31 115
Austria 32 61
Maldives 33 162
Greece 34 99
Taiwan 35 22
Belgium 36 48
Uruguay 37 34
Oman 38 86
Czechia 39 77
Malta 40 38

continued on next page
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Table 9.3 (continued)

Country Mobile Rank Fixed Broadband Rank
Slovenia 41 52
Hong Kong (SAR) 42
New Zealand 43 23
Cyprus 44 68
Germany 45 53
Romania 46 12
Serbia 47 76
Montenegro 48 65
United Kingdom 49 49
Brazil 50 30
Poland 51 28
Albania 52 85
Italy 53 71
Slovakia 54 72
Japan 55 15
South Africa 56 103
Suriname 57 159
Vietnam 58 43
Azerbaijan 59 118
Hungary 60 20
Spain 61 13
Botswana 62 175
Thailand 63 11
Israel 64 18
Kosovo 65 78
Georgia 66 131
Turkey 67 111
Morocco 68 130
Kazakhstan 69 102
Chile 70 4
Moldova 71 45
Mauritius 72 98
Iran 73 152
Ireland 74 40
Cote d’lvoire 75 91
Laos 76 121
Trinidad & Tobago 77 41
Lebanon 78 163
Armenia 79 96
Uganda 80 154
Zimbabwe 81 155

continued on next page
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Table 9.3 (continued)

Country Mobile Rank Fixed Broadband Rank
Honduras 82 104
Jamaica 83 81
Ethiopia 84 169
Senegal 85 138
Costa Rica 86 50
Philippines 87 51
Ukraine 88 70
Iraq 89 122
Ecuador 90 66
Uzbekistan 91 89
Guatemala 92 100
Nigeria 93 143
Kyrgyzstan 94 94
Mexico 95 88
Tanzania 96 145
El Salvador 97 101
Cambodia 98 106
Russia 99 62
Burkina Faso 100 108
Indonesia 101 126
Argentina 102 74
Kenya 103 164
Dominican Rep. 104 114
Namibia 105 157
Egypt 106 82
Bosnia and Herzegovina 107 129
Bangladesh 108 109
Guyana 109 73
Myanmar 110 143
Tunisia 111 168
Somalia 112 151
Sri Lanka 113 133
Panama 114 29
Algeria 115 158
Jordan 116 38
Paraguay 117 48
Fiji 118 148
DR Congo 119 112
Mozambique 120 153
Peru 121 47

continued on next page
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Table 9.3 (continued)

Country Mobile Rank Fixed Broadband Rank
Papua New Guinea 122 149
Zambia 123 140
Pakistan 124 150
Ghana 125 113
Nepal 126 84
Libya 127 166
Mongolia 128 79
Cameroon 129 167
Belarus 130 90
Nicaragua 131 97
Columbia 132 36
Belize 133 105
Syria 134 179
Venezuela 135 110
Angola 136 135
Bolivia 137 123
Haiti 138 119
Yemen 139 174
Tajikistan 140 132
Afghanistan 141 180
Sudan 142 170
Cuba 143 181
East Timor 144 173

Let X denote the set of 36 OECD countries. Then n = 36. We rerank the OECD
countries. Let C denote the ranking of the OECD countries with respect to mobile
and D the ranking of the OECD countries for Fixed Broadband. Then

S(μC,μD) = 1 −
∑

xεX |μC(x) − μD(x)|
∑

xεX(μC(x) + μD(x))

= 1 − 353

1332
= 1 − 0.266

0.734.

The smallest S can be is n/2+1
n+1 = 19

37 = 0.514. Hence 0.734−0.514
1−0.514 = 0.220

0.486 = 0.453.

Now M = S
2−S

. Thus M(μC,μD) = 0.734
2−0.734 = 0.734

1.266 = 0.580. The smallest M

can be is 0.514
2−0.514 = 0.514

1.486 = 0.346. Hence 0.580−0.346
1−0.346 = 0.234

0.654 = 0.358. We see that
the fuzzy similarity measure is low.
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9.3 Spam and scam
The following is from [119]. The purpose of [119] is to understand how spam works
around the world and to use that information to better protect people, to make their
services better and to build trust in communication. It is stated in [119] that the prob-
lem is large. 59.49 million Americans reported having lost money to scams between
July 2020 and June 2021 with an average loss per person of 02 USD. This equated to
9.8 billion USD loss when extrapolated to the adult US population.

We list the top 20 countries affected by spam calls in 2021 according to [119]
(Table 9.4).

Table 9.4 Spam calls.

Country Rank
Brazil 1
Peru 2
Ukraine 3
India 4
Mexico 5
Indonesia 6
Chile 7
Vietnam 8
South Africa 9
Russia 10
Columbia 11
Spain 12
Ecuador 13
Turkey 14
Italy 15
Honduras 16
Costa Rica 17
Greece 18
United Arab Emirates 19
United States 20

Scamming has become a global problem in recent years, and a multibillion-dollar
business as the E-commerce industry has grown. People are now transferring money
via the internet rather than giving it over. We next list the top 10 most scamming
countries in the world according to [98] (Table 9.5).

The following is from [6]. With the increasing use of the internet in our daily lives,
the risk of falling victim to on line scams is higher than ever before. Internet scam-
ming is a global problem, with criminals operating from various countries across the
world. In [6], common types of internet scams prevalent in each country are explored
and tips are provided on how to stay safe on line.
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Table 9.5 Scamming.

Country Rank
Nigeria 1
India 2
China 3
Brazil 4
Pakistan 5
Indonesia 6
Venezuela 7
South Africa 8
Philippines 9
Romania 10

We list the top 10 internet scamming countries in the world in 2023 according to
[6] (Table 9.6).

Table 9.6 Scamming.

Country Rank
Nigeria 1
Ghana 2
India 3
Indonesia 4
Philippines 5
Romania 6
Russia 7
South Africa 8
Ukraine 9
United States 10

Let E denote the ranking of countries with respect to the top 10 most scamming
countries in the world according to [5] and F denotes the ranking of countries with
respect to the top 10 internet scamming countries in the world according to [6]. We
delete the countries not appearing in both rankings and rerank. We assume E and F

are these rankings. Let X denote the set of these countries. Then n = 6.
Then

S(μE,μF ) = 1 −
∑

xεX |μE(x) − μF (x)|
∑

xεX(μE(x) + μF (x))

= 1 − 4

42
= 1 − 0.095

0.905.
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The smallest S can be is n/2+1
n+1 = 4

7 = 0.571. Hence 0.905−0.571
1−0.571 = 0.334

0.427 = 0.779.

Now M = S
2−S

. Thus M(μE,μF ) = 0.905
2−0.905 = 0.905

1.095 = 0.826. The smallest M

can be is 0.571
2−0.571 = 0.571

1.429 = 0.400. Hence 0.826−0.400
1−0.400 = 0.426

0.600 = 0.710. We see that
the fuzzy similarity measure is high.

9.4 Artificial intelligence
The following is from [20]. The challenges that artificial intelligence (AI) in telecom-
munications can address in 2023 are the following:

Poor Network management: global traffic and the need for more network equip-
ment are growing dramatically, resulting in more complex and costly network man-
agement.

Lack of Data Analysis: telecoms struggle to leverage the vast amounts of data col-
lected from their massive customer bases over the years. Data may be fragmented
or stored across different systems, unstructured and uncategorized, or simply incom-
plete and not very useful.

High Costs: Following massive investments in infrastructure and digitalization, in-
dustry analysts expect telecoms’ global operating expenditures to increase by billions
of dollars. Many telecoms face financial crunch and must find ways to improve their
bottom lines.

Crowded Marketplace: Telecom customers are determining higher quality services
and better customer experience (CX) and are known to be especially susceptible to
churn when their needs are not met.

In [20], common applications of AI in the telecommunication sector are given,
namely,

Network optimization

Customer service automation and virtual assistants

Predictive Maintenance

Robotic Process Automation (RPA) for Telecoms

Fraud Prevention

Revenue Growth

9.5 Exercises
1. Find the fuzzy similarity measures for other regions as done for OECD countries
(Table 9.3).

2. Write a report explaining in depth the common applications of AI in the telecom-
munication sector.
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This chapter depends on [54]. We focus on a very important graph index, known
as eccentric connectivity index initially studied by Chemists, and then adapted into
Mathematics. The fuzzy graph version has an analogous computational formula and
better scope for diverse applications. Topological indices have been studied widely
in topology, mathematical chemistry, and chemical graph theory. Hosoya index,
Wiener index, Estrada index, Hyper-Wiener index, Randic index, Padmakar-Ivan in-
dex, Szeged index, eccentric connectivity index, and Zagreb index are all examples
of topological graph indices. Eccentric connectivity index was first proposed by In-
dian chemists Sharma, Goswami, and Madan [103]. Later Morgan, Mukwembi, and
Swart [85] adopted the index into graph theory. This chapter tries to explore the fuzzy
graph version of the index.

10.1 Eccentric connectivity index
After the introduction of the index by group of mathematicians in 1997 [103], the
index was taken over by chemists and mathematicians, and they studied a number
of properties and invented several related applications. We provide a fuzzy graph
analogue of this index in Definition 10.1.1. If G = (�,�), we consider �(w) = 1
unless otherwise stated. Generally, it can take any value in [0,1].
Definition 10.1.1. [54] The Eccentric Connectivity Index, (ECI) of a fuzzy graph
G = (�,�) denoted by EF(G) is defined as EF(G) =

∑
w∈�∗

d(w)l(w), where d(w)

is the degree of w and l(w) is the geodesic eccentricity of w.

Definition 10.1.2. [96] The weight of a geodesic is the sum of weight of edges
present in the geodesic. The geodesic originating from w having the maximum weight
is the maximum geodesic of w.

Example 10.1.3. Consider G = (�,�) in Fig. 10.1 with �∗ = {w1,w2,w3,w4,w5}
and �(w1w2) = 0.3, �(w2w3) = 0.5, �(w2w4) = 0.2, �(w2w5) = 0.1, �(w4w5) =
0.3.
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FIGURE 10.1

A fuzzy graph G with EF(G) = 2.04.

Choose an arbitrary vertex and calculate its degree and geodesic eccentricity.
For vertex w2, the degree, d(w2) = 0.3 + 0.2 + 0.1 + 0.5 = 1.1. For geodesic ec-
centricity, locate the weights of geodesics originating from w2. ds(w2,w1) = 0.3,
ds(w2,w3) = 0.5, ds(w2,w4) = 0.2, ds(w2,w5) = 0.5. The maximum of these val-
ues is the geodesic eccentricity. It is 0.5. Therefore l(w2) = 0.5. In a similar manner,
we can proceed with the remaining vertices also (Table 10.1).

Table 10.1 ECI of the fuzzy graph given in Fig. 10.1.

Vertex d(x) l(x) d(x)l(x)

w1 0.3 0.8 0.24
w2 1.1 0.5 0.55
w3 0.5 1 0.5
w4 0.5 0.7 0.35
w5 0.4 1 0.4

EF(G) 2.04

The ECI of the given fuzzy graph is, EF(G) = 0.3 × 0.8 + 1.1 × 0.5 + 0.5 × 1 +
0.5 × 0.7 + 0.4 × 1 = 2.04.

Next we have an observation.

Remark. Eccentric connectivity index of a fuzzy graph G = (�,�) is zero if and
only if |�∗| = 0.

Proposition 10.1.4 provides certain bounds for the ECI of a fuzzy graph with
|�∗| = n, |�∗| = m.

Proposition 10.1.4. For G with |�∗| = n, |�∗| = m, we have

1. 0 ≤ EF(G) ≤ n(n − 1)2.
2. 0 ≤ EF(G) ≤ 2mn(n − 1).

Proof. Consider the fuzzy graph G = (�,�). From the definition of the index, it
seems that, always d(w) ≥ 0, l(w) ≥ 0. Therefore EF(G) ≥ 0. When |�∗| = 0,
d(w) = 0 and l(w) = 0, which implies EF(G) =

∑
w∈�∗

d(w)l(w) = 0. Now consider
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the case where |�∗| > 0 and |�∗| > 0. Here d(w) and l(w) are always greater than
0 for at least one w since there exists a strong path between any two vertices. The
maximum value d(w) can attain is n− 1, it is the case when w is adjacent to all other
vertices and the weight of those edges are all one. There is a possibility that for all
w ∈ �∗, d(w) can be n − 1. Now consider l(w), the maximum weight of geodesics
from w can be n − 1, where the graph is a path. But except in the case where the
graph is a complete graph with n = 2 and the weight of each edge is one, we cannot
say that for all w ∈ �∗, l(w) can be n − 1. Thus

1. 0 ≤ EF(G) =
∑

w∈�∗
d(w)l(w) ≤

∑
w∈�∗

(n − 1)(n − 1) = n(n − 1)2.

2. 0 ≤ EF(G) =
∑

w∈�∗
d(w)l(w) ≤

∑
w∈�∗

d(w)
∑

w∈�∗
l(w) ≤ 2m

∑
w∈�∗

(n − 1) =
2mn(n − 1). �

Generally fuzzy graph indices of fuzzy subgraphs show smaller values in com-
parison with the index of the mother graph. But here paradoxically the eccentric
connectivity index does not satisfy this property. This is illustrated below with the
help of some examples.

Example 10.1.5. The ECI of a fuzzy graph can neither be bounded above nor be
bounded below by the ECI of its partial fuzzy subgraph. This is shown using the help
of some examples given below in Case 1 and Case 2.
Case 1: Let H = (�, ν) in Fig. 10.2 be a subgraph of G = (�,�) in Fig. 10.1
with �∗ = {w1,w2,w3,w4,w5} and ν(w1w2) = 0.3, ν(w2w3) = 0.3, ν(w2w4) =
0.2, ν(w2w5) = 0.1. Then ECI of G is 2.04 and ECI of H is 0.77. i.e., EF(H) <

EF(G).

FIGURE 10.2

Fuzzy subgraph H of G with EF(H) = 0.77.

Case 2: Consider G = (�,�) in Fig. 10.3 with �∗ = {w1,w2,w3,w4,w5,w6} and
�(w1w2) = 0.1, �(w2w3) = 0.09, �(w3w4) = 0.09, �(w4w5) = 0.1, �(w5w6) =
0.09, �(w6w1) = 0.09. Let H = (�, ν) in Fig. 10.4 be a subgraph of G with �∗ =
{w1,w2,w3,w4,w5,w6} and ν(w2w3) = 0.09, ν(w3w4) = 0.09, ν(w4w5) = 0.1,
ν(w5w6) = 0.09, ν(w6w1) = 0.09. Then ECI of G is 0.3136 and ECI of H is 0.3224.
That is EF(H) > EF(G).

Eccentric connectivity indices of some of the important structures are discussed
in the following results. When the variable t or ti is mentioned, its value lies between
zero and one.
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FIGURE 10.3

A fuzzy graph G with EF(G) = 0.3136.

FIGURE 10.4

Partial fuzzy subgraph H of G with EF(H) = 0.3224.

Theorem 10.1.6. Let P be a path with �∗ = {w1,w2, · · · ,wn} and �(wiwi+1) = ti ,
1 ≤ i ≤ n − 1. Then

EF(P ) = (t1 + tn−1)
( n−1∑

i=1

ti

)
+

n−1∑
i=2

[
(ti−1 + ti )(∨{

i−1∑
j=1

tj ,
n−1∑
j=i

tj })
]
.

Proof. Let P be a path. Consider vertex w1. The degree of the vertex is t1 since

it is the only edge incident at w1. The geodesic eccentricity of w1 is (

n−1∑
i=1

ti ), since

every other geodesic is contained in this geodesic. Similarly for wn also, i.e., d(wn) =
tn−1 and l(wn) = (

n−1∑
i=1

ti ). Now consider wi , 1 < i < n, here the degree is ti−1 + ti ,

since there are only two edges incident at wi . Now the geodesic eccentricity of wi

is calculated, among all the geodesics originating from wi , two geodesics contain all
other geodesics. Therefore the geodesic which contributes maximum weight among

the two is the maximum geodesic of wi . Therefore l(wi) = ∨{
i−1∑
j=1

tj ,
n−1∑
j=i

tj }. Which
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gives the ECI of a path as EF(P ) = (t1 + tn−1)
( n−1∑

i=1

ti

)
+

n−1∑
i=2

[
(ti−1 + ti )(∨{

i−1∑
j=1

tj ,

n−1∑
j=i

tj })
]
. �

Next result provides ECI of fuzzy cycles.

Theorem 10.1.7. For a fuzzy cycle C with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} where ei = wiwi+1 having �(ei) = ti , we have

EF(C) =
n∑

i=1

[(
n∨

j=1

{
∧

[ j−1∑
k=i

tk,

i−1∑
k=j

tk

]})
(ti−1 + ti )

]

where i, j are taken under modulo n.

Proof. Consider a fuzzy cycle C, since it is a fuzzy cycle all the edges are strong,
therefore all the paths in C are geodesic paths. Throughout the proof i and j are taken
under modulo n. Now consider an arbitrary vertex wi , there are exactly two strong

paths from wi to each wj . Therefore ds(wi,wj ) = ∧
[ j−1∑

k=i

tk,

i−1∑
k=j

tk

]
where 1 ≤ j ≤

n. Therefore l(wi) = n∨
j=1

{
∧

[ j−1∑
k=i

tk,

i−1∑
k=j

tk

]}
. Now the degree of vertex wi , d(wi) =

ti−1 + ti for all i ≤ i ≤ n. Therefore EF(C) =
n∑

i=1

[(
n∨

j=1

{
∧

[ j−1∑
k=i

tk,

i−1∑
k=j

tk

]})
(ti−1 +

ti )
]
. �

The following theorem finds the ECI of a CFG.

Theorem 10.1.8. Let G = (�,�) be a CFG with �∗ = {w1,w2, · · · ,wn} such that
t1 ≤ t2 ≤ · · · ≤ tn, where ti = �(wi), 1 ≤ i ≤ n. Then

EF(G) = (n − 1)t2
1 +

n−1∑
i=2

{[(n − i)ti +
i−1∑
j=1

tj ]l(wi)} + l(wn−1)

n−1∑
i=1

ti ,

where

l(wi) =
{

2t1 : if 2t1 ≤ ti

ti : if 2t1 ≥ ti .

Proof. Let G = (�,�) be a complete fuzzy graph. By Theorem 1.5.7, all edges of G

are strong. The geodesic eccentricity of w1 is t1, since all geodesic paths originating
from w1, which eventually are the edges originating from w1 having membership
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value t1. For each vertex wi , 1 < i < n, there may exist two kinds of geodesics from
wi to wj for 1 ≤ i 	= j ≤ n. First one is the edge from wi to wj , which has weight ti ,
other one is the path wi − w1 − wj , which has weight 2t1. Now maximum geodesic
is found by analyzing whether ti or 2t1 is greater. So l(wi) can be written as

l(wi) =
{

2t1 : if 2t1 ≤ ti

ti : if 2t1 ≥ ti

For the vertex wn, its geodesic eccentricity is same as that of the geodesic ec-
centricity of wn−1, since its geodesic path with maximum weight is same as that of
wn−1. Now the degree of vertices, for wi 1 ≤ i ≤ n, it has n − i edges of weight ti
incident at wi and remaining (n− 1)− (n− i) = i − 1 edges has weight t1 to ti−1, by

construction, i.e., d(wi) = (n − i)ti +
i−1∑
j=1

tj . Therefore the ECI of a complete fuzzy

graph is given by,

EF(G) = (n − 1)t2
1 +

n−1∑
i=2

{[(n − i)ti +
i−1∑
j=1

tj ]l(wi)} + l(wn−1)

n−1∑
i=1

ti , where

l(wi) =
{

2t1 : if 2t1 ≤ ti

ti : if 2t1 ≥ ti . �

Theorem 10.1.9. Let S = (�,�) be a star, with vertex set {w1,w2, · · · ,wn}, where
wn is the central vertex and edge set {e1, e2, · · · , en−1} where ei = wiwn with
�(ei) = ti satisfying t1 ≤ t2 ≤ · · · ≤ tn−1. Then

EF(S) =
[ n−1∑

i=1

t2
i

]
+ t2

n−1 + tn−1

(
2
[ n−2∑

i=1

ti

]
+ tn−2

)
.

Proof. Let S be a star as stated in the theorem. Let wi be an arbitrary vertex other
than the central vertex. Then the degree of wi is ti . The maximum geodesic of wi is
the path having edges ei and the edge with maximum weight where 1 ≤ i ≤ n − 2,
Therefore l(wi) = ti + tn−1. Now consider wn−1. Then the maximum geodesic is
en−1 and the edge having second last highest weight. Therefore l(wn−1) = tn−1 +
tn−2. Next consider wn, the central vertex. The degree, d(wn) =

n−1∑
i=1

ti . The maximum

geodesic is the edge with maximum weight. Therefore l(wi) = tn−1. Summing up

all the findings, we get that EF(S) = (

n−2∑
i=1

[ti × (ti + tn−1)]) + tn−1(tn−1 + tn−2) +

(

n−1∑
i=1

ti ) × tn−1 =
[ n−1∑

i=1

t2
i

]
+ t2

n−1 + tn−1

(
2
[ n−2∑

i=1

ti

]
+ tn−2

)
. �
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Theorem 10.1.10 gives relationship between ECI of a fuzzy tree and its unique
maximum spanning tree.

Theorem 10.1.10. Let G be a fuzzy tree and F be its maximum spanning tree.

1. If G∗ is not a tree, then EF(F ) < EF(G).
2. If G∗ is a tree, then EF(F ) = EF(G).

Proof. Let G be a fuzzy tree, then it has a unique maximum spanning tree. The
strong edges of G are those present in the unique maximum spanning tree. Therefore
dsF (w,m) = dsG(w,m) for all w,m ∈ �∗, which implies lF (w) = lG(w) for all w ∈
�∗. Now consider the degree of an arbitrary vertex w. When G∗ is not a tree, there
exist edges which are present in G and absent in F . Therefore dF (w) < dG(w) for at
least one w. When G∗ is a tree, there does not exist edges which are present in G and
absent in F . Therefore dF (w) = dG(w) for every w ∈ �∗. So

1. If G∗ is not a tree,

EF(F ) =
∑

w∈�∗
dF (w)lF (w) =

∑
w∈�∗

dF (w)lG(w) <
∑

w∈�∗
dG(w)lG(w) = EF(G).

2. If G∗ is a tree,

EF(F ) =
∑

w∈�∗
dF (w)lF (w) =

∑
w∈�∗

dF (w)lG(w) =
∑

w∈�∗
dG(w)lG(w) = EF(G).

�

Certain strong edges play very important role in the evaluation of ECI of a fuzzy
graph as seen from the result given below.

Theorem 10.1.11. Let G = (�,�) be a fuzzy graph with each edge being strong.
For s, t ∈ �∗, let Ps,t denote the geodesic between s and t . Suppose that wm is not a
part of any Ps,t for s, t ∈ �∗ with {s, t} 	= {w,m}. Then

1. If dG
s (w,m) ≤ ∧

j=w,m
{∨{dG

s (j, i); i ∈ �∗}}, then EF(G \ wm) = EF(G) −
�(wm)[lG(w) + lG(m)].

2. If dG
s (w,m) > ∧

j=w,m
{∨{dG

s (j, i); i ∈ �∗}}, then EF(G \ wm) > EF(G) −
�(wm)[lG(w) + lG(m)].

Proof. Let G be a fuzzy graph with each edge being strong. Let wm be the strong
edge that is not a part of any other geodesics. Therefore G \wm is also a fuzzy graph
with each edge strong. The degree of all vertices other than w and m are same in
G and G \ wm, i.e., dG(i) = dG\wm(i) for all i ∈ �∗ \ {w,m}. Now, dG\wm(w) =
dG(w)−�(wm). Similarly, dG\wm(m) = dG(m)−�(wm). The geodesic eccentric-
ity of all vertices other than w and m are same in G and G \ wm, since wm does
not lie on any of the maximum geodesic of those vertices, i.e., lG(i) = lG\wm(i) for
all i ∈ �∗ \ {w,m}. If dG

s (w,m) ≤ ∨{dG
s (w, i); i ∈ �∗}, then the geodesic eccentric-

ity of w is same in G and G \ wm since wm does not lie on any of the maximum
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geodesic of those vertices. Similarly for m also. If dG
s (w,m) > ∨{dG

s (w, i); i ∈ �∗},
then the geodesic eccentricity of w changes to ∨{dG

s (w, i); i ∈ �∗}. Similarly for m

also, i.e., l(m) = ∨{dG
s (m, i); i ∈ �∗} when dG

s (w,m) > ∨{dG
s (m, i); i ∈ �∗}. Now,

1. If dG
s (w,m) ≤ ∧

j=w,m
{∨{dG

s (j, i); i ∈ �∗}},

EF(G \ wm)

=
∑

i∈�∗,i 	=w,m

dG\wm(i)lG\wm(i)

+ [dG(w) − �(wm)]lG\wm(w) + [dG(m) − �(wm)]lG\wm(m)

=
∑

i∈�∗,i 	=w,m

dG(i)lG(i) + [dG(w) − �(wm)]lG(w) + [dG(m) − �(wm)]lG(m)

=
∑

i∈�∗,i 	=w,m

dG(i)lG(i) + dG(w)lG(w)

− �(wm)lG(w) + dG(m)lG(m) − �(wm)lG(m)

= EF(G) − �(wm)[lG(w) + lG(m)],
i.e., EF(G \ wm) = EF(G) − �(wm)[lG(w) + lG(m)].
2. If dG

s (w,m) > ∧
j=w,m

{∨{dG
s (j, i); i ∈ �∗}},

EF(G \ wm)

=
∑

i∈�∗,i 	=w,m

dG\wm(i)lG\wm(i) + [dG(w) − �(wm)]lG\wm(w)

+ [dG(m) − �(wm)]lG\wm(m)

=
∑

i∈�∗,i 	=w,m

dG(i)lG(i) + [dG(w) − �(wm)][∨{dG
s (w, i); i ∈ �∗}]

+ [dG(m) − �(wm)][∨{dG
s (m, i); i ∈ �∗}]

>
∑

i∈�∗,i 	=w,m

dG(i)lG(i) + dG(w)lG(w)

− �(wm)lG(w) + dG(m)lG(m) − �(wm)lG(m)

= EF(G) − �(wm)[lG(w) + lG(m)].
i.e., EF(G \ wm) > EF(G) − �(wm)[lG(w) + lG(m)]. �

For a saturated fuzzy cycle, G = (�,�), |�∗| = 2t . Hence we have the following
result.

Theorem 10.1.12. Let C be a saturated fuzzy cycle with |�∗| = n. If every α-strong
edge has strength t and every β-strong edge has strength s, then
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EF(C) = n(s + t)(
n
4 �s + �n

4 
t).
Proof. Let C be a saturated fuzzy cycle. Consider an arbitrary vertex wi . Since the
graph is a saturated fuzzy cycle, it has an α-strong edge and a β-strong edge incident
at the vertex wi . Thus the degree of wi is s + t . While analyzing the geodesics origi-
nating from wi , it seems that the maximum geodesic is the geodesic ending at wi+ n

2
,

where i taken under modulo n. There are two types of such geodesics depending on
whether n

2 is even or odd, which is shown in Fig. 10.5 and Fig. 10.6. The first kind
has geodesic with edge weights s, t, s, t, · · · , t, s and the second kind has geodesic
with edge weights s, t, s, t, · · · , s, t . In both cases the geodesic has 
n

4 � number of
edges with strength s and �n

4 
 number of edges with strength t . Therefore geodesic

eccentricity of wi is 
n
4 �s +�n

4 
t . Therefore EF(C) =
∑

wi∈�∗
(s + t)(
n

4
�s +�n

4

t) =

n(s + t)(
n

4
�s + �n

4

t). �

FIGURE 10.5

Saturated fuzzy cycle G with |�∗|
2 being even.

Theorem 10.1.13. For isomorphic graphs G1 and G2, ECI of the two graphs are
equal.

Proof. Let G1 and G2 be two isomorphic graphs. Let k be a bijection from G1 to G2.
Since isomorphism preserves weight of edges and vertices, �G1(w) = �G2(k(w))

and �(wm) = �(k(w)k(m)) for w,m ∈ �∗. Consider an arbitrary vertex w. Degree
of the vertex w,dG1(w) =

∑
m∈�∗

�G1(wm) =
∑

m∈�∗
�G2(k(w)k(m)) = dG2(w), i.e.,

the degree of a vertex is preserved. Now we find the geodesic eccentricity of w. Since
the weight of the edge is preserved, the weight of geodesic is also preserved, which



126 CHAPTER 10 Eccentric connectivity

FIGURE 10.6

Saturated fuzzy cycle G with |�∗|
2 being odd.

eventually shows that weight of maximum geodesic of w is also preserved. Therefore,
EF(G1) =

∑
m∈�∗

dG1(w)lG1(w) =
∑

m∈�∗
dG2(k(w))lG2(k(w)) = EF(G2). �

ECI of complement of a fuzzy graph is discussed in Theorem 10.1.14. We use the
complement notion by Sunitha et al. in the theorem [108].

Theorem 10.1.14. Consider a fuzzy cycle G = (�,�) with |�∗| = n ≥ 5 and
�(wi) = t for all wi ∈ �∗. Then EF(G) + (

n−1
2

)
EF(Gc) ≤ n[(n − 1)t]2, where

Gc = (�c,�c) is the complement of the fuzzy graph G = (�,�).

Proof. Suppose G = (�,�) be a fuzzy cycle. Let w be an arbitrary vertex. Then
d(w) = a + b where a and b are weight of the edges incident at w. The geodesic
eccentricity of w, l(w) ≤ (n − 1)t since the maximum geodesic of wi is a path of
length n − 1 with each edge having weight t is the maximum possibility for l(w).
Therefore the ECI,

EF(G) ≤
∑

w∈�∗
(a + b)(n − 1)t (10.1)

Next we consider the complement of the fuzzy graph G,Gc = (�c,�c). Here Gc

has two types of edges. First type has edges with membership value t and the second
has edges with membership value t −�(e), where e is an edge in G and �(e) 	= 0, t .
But all edges which are of the second type are δ-edges in Gc. Now consider the same
arbitrary vertex w mentioned above. By definition of degree, d(w) = (n − 3)t + (t −
a) + (t − b) = (n − 1)t − (a + b). Now consider the geodesic eccentricity of w,



10.1 Eccentric connectivity index 127

l(w) = 2t . Since for n ≥ 5 there exist strong paths of length less than or equal to two,
between each vertex and each edge of this strong path has weight t . Therefore

EF(Gc) =
∑

w∈�∗
[(n − 1)t − (a + b)]2t =

∑
w∈�∗

[2(n − 1)t2 − (a + b)2t] (10.2)

From Eqs. (10.1) and (10.2), EF(G) + (
n−1

2

)
EF(Gc) ≤

∑
w∈�∗

(a + b)(n − 1)t +
∑

w∈�∗
{[(n − 1)t]2 − (a + b)(n − 1)t} =

∑
w∈�∗

[(n − 1)t]2 = n[(n − 1)t]2. �

There always exist a fuzzy graph with a given ECI. It is proved in Theo-
rem 10.1.15.

Theorem 10.1.15. For a given x ∈R
+ there exists a fuzzy graph G = (�,�) of ECI

x.

Proof. The result is proved by constructing such a fuzzy graph with |�∗| = n. Now
choose n and r such that x ≤ 2rn, 0 ≤ r ≤ n − 1, n ≤ 2r . Now construct a fuzzy
graph such that each vertex has r edges incident on it. Let �(w) be greater than(

x
2rn

) 1
2 and for all w ∈ �∗ and �(wm) = (

x
2rn

) 1
2 for all w,m ∈ �∗. Now we can

calculate the ECI of the above constructed graph. Consider an arbitrary vertex w.

The degree, d(w) = r
(

x
2rn

) 1
2 . The geodesic eccentricity, l(w) = 2

(
x

2rn

) 1
2 . Therefore

ECI,

EF(G) =
∑

w∈�∗
r
( x

2rn

) 1
2
2
( x

2rn

) 1
2 =

∑
w∈�∗

2rx

2rn
=

∑
w∈�∗

x

n
= x. �

Theorem 10.1.15 guarantees the existence of a fuzzy graph having a fixed ECI,
but this existence need not be unique. We can find another fuzzy graph with the same
ECI having different values for �.

Actually we obtain a regular graph if we proceed as per the construction in The-
orem 10.1.15. We can find r− regular graphs of order n if and only if at least one of
r and n is even, where 0 ≤ r ≤ n − 1. Harary graphs are examples of such regular
graphs. Construction of Harary graphs is discussed through the following example.

Example 10.1.16. Let n = 8, x = 10. By Theorem 10.1.15, there exists a fuzzy graph
G = (�,�) with ECI 10. Take |�∗| as 8 and r as 5. Clearly, 10 ≤ 2 × 5 × 8 = 80,
0 ≤ 5 ≤ 8 − 1 = 7, 8 ≤ 2 × 5 = 10. So, let �∗ = {w1,w2,w3,w4,w5,w6,w7,w8}
with �(w1) = 0.4, �(w2) = 0.5, �(w3) = 0.4, �(w4) = 0.6, �(w5) = 0.5,
�(w6) = 0.7, �(w7) = 0.6, �(w8) = 0.4 and �(w1w2) = �(w1w3) = �(w1w7) =
�(w1w8) = �(w2w3) = �(w2w4) = �(w2w8) = �(w3w4) = �(w3w5) =
�(w4w5) = �(w4w6) = �(w5w6) = �(w5w7) = �(w6w7) = �(w6w8) =
�(w7w8) = 0.354. Now check the ECI of G. EF(G) =

∑
w∈�∗

d(w)l(w) =
∑

w∈�∗
(5 ×

0.354) × (2 × 0.354) = 8 × 1.25 = 10 (Fig. 10.7).
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FIGURE 10.7

Fuzzy graph G with EF(G) = 10 having eight vertices.

10.2 Modified eccentric connectivity index
Instead of degree of vertices, we can also use the strong degree of vertices in fuzzy
graphs yielding stronger results. When we change the usual degree to strong degree,
we get a new type of ECI as in Definition 10.2.1.

Definition 10.2.1. The Modified Eccentric Connectivity Index (MECI) of a fuzzy
graph G = (�,�) denoted by EF∗(G) is defined as EF∗(G) =

∑
w∈�∗

ds(w)l(w),

where ds(w) is the strong degree of w and l(w) is the geodesic eccentricity of w.

Example 10.2.2. Consider Example 10.1.3. In MECI, strong degree is considered
instead of usual degree in fuzzy graph, and geodesic eccentricity considered is the
same. So the geodesic eccentricity of the vertices is same as that in Example 10.1.3.
The strong degree of vertices is calculated and is tabulated. Also, the geodesic ec-
centricity of the vertices and the resulting MECI is found. Since w2w5 is the only
non-strong edge, change of degree causes only to the vertices incident at w2w5 (Ta-
ble 10.2).

Table 10.2 Calculating MECI of fuzzy graph given in Fig. 10.1.

Vertex d(x) l(x) d(x)l(x)

w1 0.3 0.8 0.24
w2 1.0 0.5 0.5
w3 0.5 1.0 0.5
w4 0.5 0.7 0.35
w5 0.3 1.0 0.3

EF∗(G) 1.89
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After calculations, MECI of the fuzzy graph is found as 1.89.

Proposition 10.2.3. For a fuzzy graph G EF∗(G) ≤ EF(G).

Remark. It is obvious that if a fuzzy graph has only strong edges, then its MECI and
ECI are the same. Paths, stars, and fuzzy cycles have only strong edges and hence
they have this property. Also, a fuzzy tree whose support is a tree has the same MECI
and ECI.

α-distance and β-distance, introduced by Mathew and Mathew [69] is a very use-
ful pseudo-metric. Using this, we can modify the index discussed before to define
α-eccentric connectivity index and β-eccentric connectivity index. A comparison of
the values of these indices with ECI is made below.

Definition 10.2.4. The α-eccentric connectivity index (α − ECI ) of a fuzzy graph
G = (�,�) denoted by α − EF(G) is defined as α − EF(G) =

∑
w∈�∗

dα(w)lα(w),

where dα(w) is the sum of weights of α-strong edges incident at w and lα(w) is the
maximum α-distance from w to m over all m ∈ �∗.

Definition 10.2.5. The β-eccentric connectivity index (β − ECI ) of a fuzzy graph
G = (�,�) denoted by β − EF(G) is defined as β − EF(G) =

∑
w∈�∗

dβ(w)lβ(w),

where dβ(w) is the sum of weights of β-strong edges incident at w and lβ(w) is the
maximum β-distance from w to m over all m ∈ �∗.

Fuzzy graphs like paths and stars behave similarly since they have similar kinds of
edges. If P , is a path, then it has only α-strong edges and hence α−EF(P ) = EF(P )

and β −EF(P ) = 0. For a star S, which is not a fuzzy star, α −EF(S) = EF(S) and
β − EF(S) = 0, since it has only alpha strong edges.

In the case of a fuzzy tree this comparison is little difficult as it can contain δ-
edges apart form α-strong edges. For a fuzzy tree G, α − EF(G) ≤ EF(G) and
β − EF(G) = 0 because α-strong edges of G are precisely the edges present in the
maximum spanning tree of G.

We can observe that α-ECI and β-ECI of two major structures; fuzzy cycle and
a CFG are not generally bounded by their ECI. The case of a fuzzy cycle is given
below using an example and the case of CFG is similar and is left to the reader.

Example 10.2.6. If G is a fuzzy cycle, then the α-ECI of G is neither bounded above
nor bounded below by its ECI. Consider the following three cases.

Case 1: Consider a fuzzy graph G = (�,�) with �∗ = {w1,w2,w3} and �(w1w2) =
0.1, �(w1w3) = 0.1, �(w2w3) = 0.6. After calculations, we can see that α-ECI of
G is 0.72 and ECI of G is 0.3. Therefore α-ECI of G > ECI of G. The case has
depicted in Figs. 10.8 and 10.9.
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FIGURE 10.8

A fuzzy graph G with EF(G) = 0.3.

FIGURE 10.9

Fuzzy subgraph of G in Fig. 10.9 with α-strong edges only, whose α − EF(G) = 0.72.

FIGURE 10.10

A fuzzy graph G with EF(G) = 0.095.

FIGURE 10.11

Fuzzy subgraph of G in Fig. 10.9 with α-strong edges only, whose α − EF(G) = 0.045.

Case 2: Consider a fuzzy graph G = (�,�) with �∗ = {w1,w2,w3} and �(w1w2) =
0.1, �(w1w3) = 0.1, �(w2w3) = 0.15. After calculations we can see that α− ECI
of G is 0.045 and ECI of G is 0.095. Therefore α− ECI of G < ECI of G. The case
has depicted in Figs. 10.10 and 10.11.
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Case 3: A fuzzy cycle has at least two β-strong edges. Therefore α-ECI of G is never
equal to the ECI of G.

The case of β-ECI of a fuzzy cycle G is similar.

Proposition 10.2.7. The β-ECI of a CFG can be greater, equal or lesser than its
ECI.

Proof. Consider a complete fuzzy graph G as stated in Theorem 10.1.8. By The-
orem 1.5.9, G has at most one α-strong edge. If G has no α-strong edges, then
β − EF(G) = EF(G). If it has an α-strong edge, then β − EF(G) = EF(G) −
[d(wn)l(wn) + d(wn−1)l(wn−1)] + 2(d(wn−1 − tn−1)lβ(wn−1) · · · (1)

Case 1: 2tk−1 ≤ tn−1, 1 ≤ k < n − 1.

Then −[d(wn)l(wn) + d(wn−1)l(wn−1)] + 2(d(wn−1 − tn−1)2t1 in equation (1) be-

comes, −2
( n−1∑

i=1

ti

)
2t1 + 2

( n−2∑
i=1

ti

)
2t1 < 0. Therefore β − EF(G) > EF(G).

Case 2: 2tk−1 ≥ tn−1, 1 ≤ k < n − 1.

Then −[d(wn)l(wn) + d(wn−1)l(wn−1)] + 2(d(wn−1 − tn−1)2t1 in equation (1) be-

comes, −2
( n−1∑

i=1

ti

)
2tn−1 + 2

( n−2∑
i=1

ti

)
2t1, which can be positive, negative or equal to

zero. Therefore β− ECI of a complete fuzzy graph can be greater, equal or lesser
than the ECI of a complete fuzzy graph. �

Similarly, we can see that α-ECI of a CFG G is neither bounded above nor
bounded below by ECI of the CFG G.

10.3 Algorithm
We will discuss an algorithm for determining the ECI of a fuzzy graph in this section.

Algorithm. Let G = (�,�) be a fuzzy graph with n vertices. Let �∗ = {w1,w2, · · · ,

wn}.
1. Construct the matrix A = [aij ] with aij = �(wiwj ).

2. Calculate d(i), where d(i) =
n∑

j=1

aij .

3. Using algorithm in [62] find α-strong, β-strong, δ-edges.
4. Obtain a subgraph G′ = (�′,� ′) of G having only alpha and beta strong edges.
5. Using Dijkstra’s Algorithm in [26] find the shortest path between all vertices in

G′. Name the shortest path between wi and wj by Pij .
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6. Let SPij be the sum of weight of edges in Pij .
7. Construct an n × n matrix L corresponding to G = (�,�) with the following

properties. Each row and column corresponds to vertices in �∗. If row i corre-
sponds to vertex wi and column j corresponds to vertex wj , then SPij is the entry
corresponds to row i and column j .

8. Let l(i) be the largest membership value of the ith row of matrix L.

9. Then EF(G) =
n∑

i=1

d(i) × l(i).

Illustration of Algorithm: Let G = (�,�) be a fuzzy graph in Fig. 10.12 with
�∗ = {w1,w2,w3,w4,w5,w6, w7, w8} and �(w1w2) = 0.3, �(w1w3) = 0.4,
�(w2w4) = 0.5, �(w2w6) = 0.3, �(w3w5) = 0.1, �(w3w6) = 0.4, �(w4w6) =
0.2, �(w5w6) = 0.4, �(w6w7) = 0.1, �(w6w8) = 0.3.

FIGURE 10.12

Fuzzy graph for the illustration of Algorithm.

Step 1: The matrix corresponding to the given fuzzy graph is

A =

w1 w2 w3 w4 w5 w6 w7 w8⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w1 0 0.3 0.4 0 0 0 0 0
w2 0.3 0 0 0.5 0 0.3 0 0
w3 0.4 0 0 0 0.1 0.4 0 0
w4 0 0.5 0 0 0 0.2 0 0
w5 0 0 0.1 0 0 0.4 0 0
w6 0 0.3 0.4 0.2 0.4 0 0.1 0.3
w7 0 0 0 0 0 0.1 0 0
w8 0 0 0 0 0 0.3 0 0

Step 2: Calculate d(i) of different vertices. Towards this, take the sum of each
row in matrix discussed in step 1 (Table 10.3).
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Table 10.3 Degree of vertices.

Vertex w1 w2 w3 w4 w5 w6 w7 w8

d(vertex) 0.7 1.1 0.9 0.7 0.5 1.7 0.1 0.3

Step 3: Using algorithm in [62] finds α-strong, β-strong, δ-edges (Table 10.4).

Table 10.4 α-strong, β-strong, and δ-edges of the fuzzy graph.

α-strong edges β-strong edges δ-edges
w1w3, w2w4, w3w6, w1w2, w2w6 w3w5, w4w6

w5w6, w6w7, w6w8

Step 4: The sub-graph having only alpha and beta strong edges is plotted in
Fig. 10.13.

FIGURE 10.13

Subgraph of fuzzy graph in Fig. 10.13.

Step 5, 6, and 7: Dijkstra’s algorithm is used and have found the shortest paths
between each vertex. They are plotted in Table 10.3, in such a way that, each cell
contains the shortest path between vertices given in the column and row head along
with their weight.

Step 8: Calculate l(i) of different vertices. Given in Table 10.5, see also Ta-
ble 10.6.

Step 9: EF(G) = 0.7 × 1 + 1.1 × 0.7 + 0.9 × 1.2 + 0.7 × 1.2 + 0.5 × 1 + 1.7 ×
0.8 + 0.1 × 0.9 + 0.3 × 1.1 = 5.67.

10.4 Application
Human trafficking has taken different forms in the modern era. It includes sex trade,
forced labor, domestic servitude and indecent factory work. The victims generally
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Table 10.5 Shortest path and its weight between vertices.

w1 w2 w3 w4 w5 w6 w7 w8

w1 –
w1w2

0.3
w1w3

0.4
w1w2w4

0.8
w1w2w6w5

1
w1w2w6

0.6
w1w2w6w7

0.7
w1w2w6w8

0.9

w2
w1w2

0.3
–

w2w1w3

0.7
w2w4

0.5
w2w6w5

0.7
w2w6

0.3
w2w6w7

0.4
w2w6w8

0.6

w3
w1w3

0.4
w2w1w3

0.7
–

w3w1w2w4

1.2
w3w6w5

0.8
w3w6

0.4
w3w6w7

0.5
w3w6w8

0.7

w4
w1w2w4

0.8
w2w4

0.5
w3w1w2w4

1.2
–

w4w2w6w5

1.2
w4w2w6

0.8
w4w2w6w7

0.9
w4w2w6w8

1.1

w5
w1w2w6w5

1
w2w6w5

0.7
w3w6w5

0.8
w4w2w6w5

1.2
–

w5w6

0.4
w5w6w7

0.5
w5w6w8

0.7

w6
w1w2w6

0.6
w2w6

0.3
w3w6

0.4
w4w2w6

0.8
w5w6

0.4
–

w6w7

0.1
w6w8

0.3

w7
w1w2w6w7

0.7
w2w6w7

0.4
w3w6w7

0.5
w4w2w6w7

0.9
w5w6w7

0.5
w6w7

0.1
–

w7w6w8

0.4

w8
w1w2w6w8

0.9
w2w6w8

0.6
w3w6w8

0.7
w4w2w6w8

1.1
w5w6w8

0.7
w6w8

0.3
w7w6w8

0.4
–
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Table 10.6 Geodesic eccentricity of vertices.

Vertex w1 w2 w3 w4 w5 w6 w7 w8

l(vertex) 1 0.7 1.2 1.2 1 0.8 0.9 1.1

suffer from psychological and even physical abuses, beatings, sexual slavery and
abuses, food and sleep deprivation, threats to family members, and severe isolation
from the world outside [1].

A study on how governments consider and combat modern slavery was un-
dertaken in [40]. 161 countries were considered and government responses were
recorded. The responses involve (1) survivors supported, (2) criminal justice, (3) co-
ordination and accountability, (4) addressing risk, and (5) government and business.
It can be seen in [40].

By statistical testing the authors grouped 24 countries of vulnerability into four
different dimensions of covering: (1) civil and political protections, (2) social health
and economic rights, (3) personal security, and (4) refugee populations and conflict.
In [40], we provide tables for giving measures of vulnerability to modern slavery by
countries with respect to these four dimensions.

A normalization of the data was carried out of government responses and vulnera-
bility ratings. We take ⊗ as a t-norm and ⊕ as a t-conorm. σ denotes the government
response of country ratings and μ the success of combating modern slavery with
respect to the edge xy, where x and y are countries and μ(xy) = σ(x) ⊗ σ(y).
τ represents the vulnerability ratings of different countries. We define ν to be
ν(xy) = τ(x)⊕ τ(y). We consider ν as giving a measure of failure in fighting human
slavery with regard to the edge xy. The tables in [40] provide large numbers when
the vulnerability of a country is very high. Consequently, the complements provide
large numbers if when the vulnerability is very low. Hence we put more interest in the
vulnerability ratings complements because they provide high government responses.
νc represent the standard complement of ν. In the following, we let ⊗ denote product
and ⊕ denote algebraic sum, i.e., a ⊕ b = a + b − a ⊗ b.

We present a list of countries involved with trafficking to the United States of
America through different routes. The routes are through South America. These
routes are given below and are discussed in [91].

China → Columbia → Guatemala → Mexico → US

India → Guatemala → Mexico → US

Ethiopia → S. Africa → Brazil → Ecuador → Mexico → US

Somalia → UAE → Russia → Cuba → Columbia → Mexico → US

Nigeria → Spain → Cuba → Columbia → Mexico → US

Nigeria → Spain → Columbia → Mexico → US
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FIGURE 10.14

Routes to the US: Mapping human smuggling networks.

In the following, we merge these routes into one directed graph (Fig. 10.14). Our
analysis does not depend on the direction involved between countries. Consequently,
we consider the graph to be undirected (Table 10.7).

Table 10.7 Geodesic eccentricity of vertices.

Country σ τc Edge μ νc

China 0.36 0.55 (China, Columbia) 0.19 0.32
Columbia 0.53 0.58 (Columbia, Guatemala) 0.30 0.34

(Columbia, Mexico) 0.30 0.33
Guatemala 0.56 0.58 (Guatemala, Mexico) 0.32 0.33
Mexico 0.57 0.57 (Mexico, US) 0.47 0.47
India 0.82 0.82 (India, Guatemala) 0.26 0.27
Ethiopia 0.46 0.47 (Ethiopia, S. Africa) 0.21 0.21
S. Africa 0.42 0.42 (S. Africa. Brazil) 0.32 0.35
Brazil 0.49 0.51 (Brazil, Ecuador) 0.34 0.45
Ecuador 0.66 0.69 (Ecuador, Mexico) 0.29 0.37
Somalia 0.51 0.65 (Somalia, UAE) 0.16 0.21
UAE 0.28 0.28 (UAE, Russia) 0.17 0.43
Russia 0.56 0.74 (Russia, Cuba) 0.06 0.39
Cuba 0.30 0.58 (Cuba, Columbia) 0.11 0.39
Nigeria 0.44 0.44 (Nigeria, Spain) 0.31 9.35
Spain 0.71 0.80 (Spain, Cuba) 0.15 0.54

(Spain, Columbia) 0.38 0.39

We next determine the ds values for the source countries China, India, Ethiopia,
Somalia, Nigeria, and the destination country, United States.
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Note that between China and Somalia and between China and Nigeria, there are
two strong paths each.

The ds values are determined as follows: ds(China, India) = μ(China, Columbia)
+μ (Columbia, Guatemala)
+μ(Guatemala, India) = σ(China)⊗σ(Columbia)+σ(Columbia)⊗σ(Guatemala)+
σ(Guatemala) ⊗ σ(India) = 0.75.

We obtain the following ds values in a similar manner.

ds(China, India) = 0.75, ds(China, Ethiopia) = 1.97, ds(China, Somalia) =
0.69, ds(China, Nigeria) = 0.88,

ds(India, Ethiopia) = 1.74, ds(India, Somalia) = 1.38, ds(India, Nigeria) = 1.57,
ds(Ethiopia, Somalia) = 1.96, ds(Ethiopia, Nigeria) = 2.15, ds(Somalia,

Nigeria) = 1.19
ds(China, US) = 1.28,
ds(India, US) = 1.05,
ds(Ethiopia, US) = 1.76,
ds(Somalia, US) = 1.27,
ds(Nigeria, US) = 1.46.

We next determine the vertex degree of some key countries. The vertices have
three or more adjacent edges.

d(Columbia) = 0.1.28,
d(Guatemala) = 0.86,
d(Mexico) = 1.38,
d(Cuba) = 0.32,
d(Spain) = 0.84.

Low government response leads to a higher susceptibility to modern slavery. We
next determine the average of the ds values above taken over the number of edges
involved.

ads(China, India) = 0.75/3 = 0.25, ads(China, Ethiopia ) = 1.97/7 = 0.28,
ads(China, Somalia) = 0.69/5 = 0.14, ads(China, Nigeria) = 0.88/3 = 0.29,

ads(India, Ethiopia) = 1.74/6 = 0.29, ads(India, Somalia) = 1.38/7 = 0.20,

ads(India, Nigeria) = 1.57/5 = 0.31,
ads(Ethiopia, Somalia) = 1.96/9 = 0.22, ads(Ethiopia, Nigeria) = 2.15/6 =

0.36, ads(Somalia, Nigeria)= 1.19/6 = 0.20.

We see that the lowest average government response is the route between China
and Somalia.

ads(China, US) = 1.28/4 = 0.32,
ads(India, US) = 1.05/3 = 0.35,
ads(Ethiopia, US) = 1.76/5 = 0.35,
ads(Somalia, US) = 1.27/6 = 0.22,
ads(Nigeria, US) = 1.46/4 = 0.36.
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We see that lowest average government response is the route to the US from So-
malia.

We next determine the average vertex degree value.
ad(Columbia) = 0.1.28/5 = 0.26,
ad(Guatemala) = 0.86/3 = 0.29,
ad(Mexico) = 1.38/4 = 0.34,
ad(Cuba) = 0.32/3 = 0.11,
ad(Spain) = 0.84/3 = 0.28.
The lowest average response involves Cuba.

We next consider the vulnerability of countries with respect to modern slavery.
Recall that ν(xy) = τ(x) ⊕ τ(y) ≥ τ(x) ∨ τ(y) and

νc(xy) = 1 − ν(xy) = 1 − (τ (x) ⊕ τ(y))

= 1 − τ(x) − τ(y) + τ(x) ⊗ τ(y)

= (1 − τ(x)) ⊗ (1 − τ(y))

= τ c(x) ⊗ τ c(y)

≤ τ c(x) ∧ τ c(y).

Also, let P be a path with n edges and let vi be respective vulnerability values
of the edges, i = 1, ..., n. Consider

∑n
i=1 vi and the ds sum

∑n
i=1(1 − vi) = n −∑n

i=1 vi . Then the average values are 1
n

∑n
i=1 vi and 1 − 1

n

∑n
i=1 vi . Consequently,

we can proceed with vulnerability as we did with government response.

ds(China, India) = 0.93, ds(China, Ethiopia) = 2.37, ds(China, Somalia) =
1.74, ds(China, Nigeria) = 1.06,

ds(India, Ethiopia) = 2.08, ds(India, Somalia) = 2.45, ds(India, Nigeria) = 1.77,
ds(Ethiopia, Somalia) = 3.13, ds(Ethiopia, Nigeria) = 2.45, ds(Somalia, Nigeria)

= 1.92,
ds(China, US) = 1.46,
ds(India, US) = 1.17,
ds(Ethiopia, US) = 1.85,
ds(Somalia, US) = 2.22,
ds(Nigeria, US) = 1.54.

We next determine the vertex degree of some key countries. The vertices have
three or more adjacent edges.

d(Columbia) = 1.77,
d(Guatemala) = 1.04,
d(Mexico) = 1.50,
d(Cuba) = 1.32,
d(Spain) = 1.28.

We next compute average values.
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ads(China, India) = 0.93/3 = 0.31, ads(China, Ethiopia) = 2.37/7 = 0.34,

ads(China, Somalia) = 1.74/5 = 0.35, ads(China, Nigeria) = 1.06/3 = 0.35,
ads(India, Ethiopia) = 2.08/6 = 0.35, ads(India, Somalia) = 2.45/7 = 0.35,

ads(India, Nigeria) = 1.77/5 = 0.35,
ads(Ethiopia, Somalia) = 3.13/9 = 0.35, ads(Ethiopia, Nigeria) = 2.45/6 =

0.34, ads(Somalia, Nigeria) = 1.92/6 = 0.33.
We see that there is no significant difference in vulnerability to modern slavery

among the various routes.

We next consider routes to the United States.
ads(China, US) = 1.46/4 = 0.37,
ads(India, US) = 1.17/3 = 0.39,
ads(Ethiopia, US) = 1.85/5 = 0.37,
ads(Somalia, US) = 2.22/6 = 0.37,
ads(Nigeria, US) = 1.54/4 = 0.38.
Once again, we find no significance in vulnerability among the routes from dif-

ferent origin countries to the United States.

We also have the following average vertex degree values.
ad(Columbia) = 1.77/5 = 0.35,
ad(Guatemala) = 1.04/3 = 0.37,
ad(Mexico) = 1.50/4 = 0.38,
ad(Cuba) = 1.32/3 = 0.44,
ad(Spain) = 1.28/3 = 0.43.

In general, the vulnerability of countries to modern slavery seems to be high. An
increase in government response appears to be necessary.

10.5 Exercises
1. Calculate the eccentric connectivity index of the fuzzy graph given by G = (�,�)

with �∗ = {w1,w2,w3,w4,w5} with �(w1) = 0.15, �(w2) = 0.2, �(w3) = 0.25,
�(w4) = 0.8, �(w5) = 0.9 and �(w1w2) = 0.15, �(w1w3) = 0.15, �(w1w4) =
0.15, �(w1w5) = 0.15, �(w2w3) = 0.2, �(w2w4) = 0.2, �(w2w5) = 0.2,
�(w3w4) = 0.25, �(w3w5) = 0.25, �(w4w5) = 0.8.

2. Calculate the modified eccentric connectivity index of the fuzzy graph given
by G = (�,�) where �∗ = {w1,w2,w3,w4,w5} with �(w) = 1 for every
w ∈ �∗ and �(w1w2) = 0.4, �(w2w3) = 0.6, �(w2w4) = 0.3, �(w2w5) = 0.2,
�(w4w5) = 0.4.

3. Construct a fuzzy graph whose eccentric connectivity index is 12.
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While developing an interconnection network in a particular area A, the information
about the traffic in the surroundings of A is very helpful. Transportation networks and
water connection networks are suitable examples. A new fuzzy graph index which
speaks about the neighborhood flow of its vertices is discussed in this chapter. This
concept is significant in modern networks and can be used in allocation problems
and routing problems. This chapter heavily depends upon [53]. Basics of fuzzy graph
theory can be found in [58,68,79,80,82].

11.1 Neighborhood connectivity index of a fuzzy graph
This section is all about a new connectivity index in fuzzy graphs, named neigh-
borhood connectivity index. The strength of a vertex and strengths of all vertices in
its neighborhoods play significant roles in the index. The following results will be
useful.

Theorem 11.1.1. [34] If G1 = (σ1,μ1) and G2 = (σ2,μ2) are two fuzzy graphs such
that σ1 ≤ μ2, then σ2 ≥ μ1 and vice versa.

Theorem 11.1.2. [17] For a complete fuzzy graph CI (G) = WI(G).

Definition 11.1.3. The Neighborhood Connectivity Index (NCI), of a fuzzy graph
G is defined as NCI (G) =

∑
m∈V (G)

d(m)e(m), where d(m) is the cardinality of N(m)

and e(m) = ∨{μ(mp): p ∈ N(m)} with N(m) = {p : μ(mp) > 0,m,p ∈ σ ∗}. e(m)

is termed as the potential of the vertex m.

In graph theory a vertex having highest value of potential is called maximum
potential vertex. It is denoted by eG(m). Similarly we use dG(m), NG(m) for d(m),
N(m) respectively in graphs.

e(m) can be defined in a different way using connectivity as follows. For any
vertex m, e(m) = ∨{CONNG(m,p) : p ∈ V (G)}. For every x ∈ σ ∗ \{m}, a strongest
m − x path P , (say) contains an edge from E(m), where E(m) = {mp: p ∈ N(m)}.

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.
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If ∨{μ(mp): p ∈ N(m)} = α, then the strength of P is less than or equal to α. In
particular if μ(mz) = α then mz is a strongest path with strength e(m). Therefore
both the definitions of e(m) are equivalent.

Example 11.1.4. Consider G = (σ,μ) with σ ∗ = {l, a,m,b,n, c};σ(l) = 0.5,
σ(a) = 0.6, σ(m) = 0.2, σ(b) = 0.7, σ(n) = 0.4, σ(c) = 0.3, and μ(la) = 0.4,
μ(ln) = 0.1, μ(lc) = 0.2, μ(am) = 0.1, μ(an) = 0.3, μ(mn) = 0.2, μ(bn) = 0.4,
μ(nc) = 0.3.

FIGURE 11.1

A fuzzy graph G with NCI (G) = 5.8.

We can see that d(l) = 3, e(l) = ∨{0.4,0.2,0.1} = 0.4. Similarly, we proceed
with other vertices also.

Vertex d(x) e(x) d(x)e(x)

l 3 0.4 1.2
a 3 0.4 1.2
m 2 0.2 0.4
b 1 0.4 0.4
n 5 0.4 2
c 2 0.3 0.6

NCI (G) 5.8

Thus for G in Fig. 11.1, NCI (G) = 3 × 0.4 + 3 × 0.4 + 2 × 0.2 + 1 × 0.4 + 5 ×
0.4 + 2 × 0.3 = 5.8.

NCI of a fuzzy graph is zero if and only if the cardinality of its edge set is zero.

Proposition 11.1.5. If H = (τ, ν) is a partial fuzzy subgraph of G = (σ,μ), then
NCI (H) ≤ NCI (G).

Proof. Suppose H = (τ, ν) be a partial fuzzy subgraph of G = (σ,μ), with σ ∗ =
{m1,m2, · · · ,mn}. Let m be an arbitrary vertex in τ ∗. Then ν(mmi) ≤ μ(mmi) for
all other vertices mi in τ ∗. Therefore ∨i{ ν(mmi)} ≤ ∨i{ μ(mmi)}. Also, dH (m) ≤
dG(m). Therefore

NCI (H) =
∑
mi

dH (mi) ∨i {ν(mmi)} ≤
∑
mi

dG(mi) ∨i {μ(mmi)} = NCI (G). �
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Example 11.1.6. Consider H = (τ, ν) in Fig. 11.2. Clearly H is a partial fuzzy
subgraph of G = (σ,μ) mentioned in Example 11.1.4. After computing the connect-
edness between the vertices and cardinality of neighborhood for each vertex, NCI of
H can be calculated as 4.2 which is less than NCI of G, which is 5.8.

FIGURE 11.2

Subgraph H of G with NCI (H) = 4.2.

Now we provide some bounds for the index. From Proposition 11.1.5, Corol-
lary 11.1.7 follows.

Corollary 11.1.7. For a fuzzy graph G = (σ,μ) with vertex set σ ∗ and complete
fuzzy super graph G′ = (σ ′,μ′) spanned by σ ∗, we have 0 ≤ NCI (G) ≤ NCI (G′).

Proposition 11.1.8. For G with |σ ∗| = n, 0 ≤ NCI (G) ≤ n(n − 1).

Proof. Consider G = (σ,μ). If μ∗ = φ, then d(m) = 0, e(m) = 0 for all m ∈ σ ∗.
Which implies NCI (G) = 0. If |μ∗| > 0, then 0 < d(m) ≤ n − 1, 0 < e(m) ≤ 1 for
at least one m ∈ σ ∗. Which implies 0 < NCI (G) ≤

∑
m∈σ ∗

(n− 1)× 1 = n(n− 1). The

upper bound occurs when the underlying graph is a complete graph and there exist
at least on edge incident to each vertex having strength 1. Therefore 0 ≤ NCI (G) ≤
n(n − 1). �

Proposition 11.1.9. Let G = (σ,μ) be a connected fuzzy graph with n edges. Then
2nt ≤ NCI (G) ≤ 2ns where t = ∧{e(m) : m ∈ σ ∗} and s = ∨{e(m) : m ∈ σ ∗}.
Proof. Suppose G = (σ,μ) is a fuzzy graph with n edges. Then

NCI (G) =
∑

m∈σ ∗
e(m)d(m) ≤

∑
m∈σ ∗

sd(m) = s
∑

m∈σ ∗
d(m) = s × 2n = 2sn.

Similarly,

NCI (G) =
∑

m∈σ ∗
e(m)d(m) ≥

∑
m∈σ ∗

td(m) = t
∑

m∈σ ∗
d(m) = t × 2n = 2tn.

Therefore 2nt ≤ NCI (G) ≤ 2ns. �
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Note that Equality holds in Proposition 11.1.9 when all vertices have the same
potential.

In the following corollaries, we find the NCI of structures such as trees, cycles
and complete fuzzy graphs.

Corollary 11.1.10. Consider a fuzzy graph G = (σ,μ) where G∗ is a tree. Let
∨{d(m) : m ∈ σ ∗} = r and let Si be the set of vertices containing all vertices with

degree i, 1 ≤ i ≤ r . Then NCI (G) =
r∑

m∈Si ,i=1

i
∑

p∈N(m)

∨{μ(mp)}.

Corollary 11.1.11. For a cycle G = (σ,μ) having edges e1, e2, · · · , en with μ(ei) =
ti and tn+1 = t1 we have NCI (G) = 2

n∑
i=1

∨{ti , ti+1}.

Corollary 11.1.12. Let G = (σ,μ) be a CFG with σ ∗ = {m1,m2, · · · ,mn} such that
t1 ≤ t2 ≤ · · · ≤ tn, where ti = σ(mi), 1 ≤ i ≤ n. Then NCI (G) = (n − 1)(t1 + t2 +
· · · + tn−2 + tn−1 + tn−1).

Proof. Consider the graph G. We know that, for a CFG, μ(mimj ) > 0 for all
mi,mj ∈ σ ∗. Therefore d(mi) = n − 1 for all mi , 1 ≤ i ≤ n. Now, we can check the
potential of vertices. While considering m1 we see that it is the vertex with minimum
membership value. So we can see that CONNG(m1,mi) = t1, 2 ≤ i ≤ n. Therefore
e(m1) = t1. Next, consider the vertices mi , 1 < i < n. Here, CONNG(ms,mi) ≤ ti
for all s < i, CONNG(mr,mi) = ti for all r > i; therefore e(mi) = ti , 2 ≤ i ≤ n− 1.
At last, we consider the vertex mn. Here we can see that CONNG(mi,mn) ≤ tn−1,
1 ≤ i ≤ n − 1, since there is no edge of membership value tn, and there is an edge of
membership value tn−1. Therefore e(mn) = tn−1. Summing up all those values, we
get NCI (G) = (n − 1)(t1 + t2 + · · · + tn−2 + tn−1 + tn−1). �

Proposition 11.1.13. Neighborhood connectivity index of two isomorphic fuzzy
graphs are equal.

Proof. Let j be a bijection between the isomorphic fuzzy graphs G1 and G2. Since
weights of the edges and vertices are preserved by an isomorphism, NG1(m) =
NG2(j (m)), which implies dG1(m) = dG2(j (m)) for m ∈ σ ∗

1 . Similarly,
CONNG1(m,p) = CONNG2(j (m), j (p)) for m,p ∈ σ ∗

1 . Implying eG1(m) =
eG2(j (m)). Therefore

NCI (G1) =
∑

m∈V (G)

dG1(m)eG2(m)

=
∑

f (m)∈V (G)

dG2(j (m))eG2(j (m)) = NCI (G2).

i.e., NCI (G1) = NCI (G2). �
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Theorem 11.1.14. Consider a fuzzy graph G = (σ,μ). If 0 ≤ t1 ≤ t2 ≤ 1, then
NCI (Gt2) ≤ NCI (Gt1).

Proof. Consider a fuzzy graph G = (σ,μ). In Gt2 number of edges with nonzero
strength incident at a vertex is less than or equal to the number of edges with nonzero
strength incident at a vertex in Gt1 . Therefore dGt2 (m) ≤ dGt1 (m). If μG(mp) ≤ t1,
then μGt2 (mp) = μGt1 (mp). If t1 < μG(mp) ≤ t2, then μGt2 (mp) ≤ μGt1 (mp). If
μG(mp) > t2, then μGt2 (mp) = μGt1 (mp). Now for m ∈ σ ∗, CONNGt2 (m,p) ≤
CONNGt1 (m,p) for all p ∈ σ ∗. Therefore eGt2 (m) ≤ eGt1 (m). Therefore

NCI (Gt2) =
∑

m∈V (G)

eGt2 (m)dGt2 (m) ≤
∑

m∈V (G)

eGt1 (m)dGt1 (m) = NCI (Gt1). �

In Theorem 11.1.15, we discuss about saturated fuzzy cycles.

Theorem 11.1.15. Consider a saturated fuzzy cycle G with |V (G∗)| = n for which
every α− strong edge is of strength t and every β− strong edge is of constant
strength, then NCI (G) = 2nt .

Proof. Suppose G = (σ,μ) is as in statement of the theorem. Since G∗ is a saturated
fuzzy cycle, d(m) = 2 for any m ∈ σ ∗. Also from the assumption it follows that t is
greater than the constant strength of β− strong edges, which implies, e(m) = t for

all m ∈ σ ∗. Therefore NCI (G) =
n∑

i=1

2t = 2nt . �

Example 11.1.16. Consider the fuzzy cycle G so that G∗ = Cn as given in Fig. 11.3.
Clearly it is a saturated fuzzy cycle with σ ∗ = {l, a,m,b,n, c, o, d}, μ(la) = 0.4,
μ(am) = 0.2, μ(mb) = 0.4, μ(bn) = 0.2, μ(nc) = 0.4, μ(co) = 0.2, μ(od) = 0.4,
μ(dl) = 0.2. Then neighborhood connectivity index, NCI (G) = 2 × 8 × 0.4 = 6.4.

FIGURE 11.3

Saturated fuzzy cycle G with NCI (G) = 6.4.
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Theorem 11.1.17. There does not exist any kind of connected super fuzzy graph with
equal neighborhood connectivity index as that of the parent graph.

FIGURE 11.4

A fuzzy graph with an extra vertex than the parent graph.

Proof. Consider a graph H which has a vertex p in addition to the parent graph G

as shown in Fig. 11.4. Let m ∈ σ ∗
G then dG(m) ≤ dH (m), since m may or may not

have an edge with p. Now consider p, since p /∈ G, 0 = dG(p) < dH (p). While
considering the potential of the edges. For m ∈ σ ∗

G, eG(m) ≤ eH (m), since there may
or may not have an edge with strength greater than eG(m), adjacent to p. While
considering p it is obvious that 0 = eG(p) < eH (p). Therefore

NCI (G) =
∑

m∈σ ∗
G

dG(m)eG(m)

=
∑

m∈σ ∗
G

dG(m)eG(m) + dG(p)eG(p) <
∑

m∈σ ∗
G

dH (m)eH (m) + dH (p)eH (p)

= NCI (H).

Now we have shown that there does not exist a connected super graph having same
NCI as that of the parent graph when we add a vertex. Next consider a graph H ,
which has an edge e in addition to the parent graph G as shown in Fig. 11.5. There
exists at least one vertex m in G to which e is incident, then dG(m) < dH (m). Also,
we can see that eG(m) ≤ eH (m). Therefore

NCI (G) =
∑

m∈σ ∗
G

dG(m)eG(m) <
∑

m∈σ ∗
G

dH (m)eH (m) = NCI (H).

Now we have shown that there does not exist a connected super graph having same
NCI as that of the parent graph when we add an edge. �

The following two theorems ventilate a way for construction of fuzzy graphs with
a given NCI value with some predefined constraints.
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FIGURE 11.5

A fuzzy graph which has an extra edge than the parent graph.

Theorem 11.1.18. For a given n ∈ N, x ∈ R with x ≤ 2n, there exists a fuzzy graph
G = (σ,μ) of neighborhood connectivity index x with |μ∗| = n.

Proof. Let |μ∗| = n. Construct a fuzzy graph G = (σ,μ) such that σ(mi) ≥ x
2n

for
all mi ∈ σ ∗, μ(mimj ) = x

2n
for all mimj ∈ μ∗. Now we can check neighborhood

connectivity index of the constructed graph. Here e(mi) = x
2n

for all mi ∈ σ ∗. There-
fore

NCI (G) =
∑

mi∈V (G)

d(mi)
x

2n
= x

2n

∑
mi∈V (G)

d(mi) = x

2n
× 2n = x.

Hence our constructed graph is a fuzzy graph of NCI x with |μ∗| = n. �

Theorem 11.1.19. For a given n ∈ N, x ∈ R with x ≤ n(n − 1), there exists a fuzzy
graph G = (σ,μ) of neighborhood connectivity index x with |σ ∗| = n.

Proof. We can prove this theorem by similar construction from Theorem 11.1.18
by taking |σ ∗| = n, σ(mi) ≥ x

n(n−1)
for all mi ∈ σ ∗ and μ(mimj ) = x

n(n−1)
for all

mimj ∈ μ. �

Example 11.1.20. Let |μ∗| = 4, x = 4. Clearly, 4 ≤ 8. Now we can find a fuzzy
graph G = (σ,μ) given in Fig. 11.6 such that σ(l) = 0.8, σ(a) = 0.6, σ(m) = 0.5,
σ(b) = 0.6, μ(la) = 0.5, μ(lm) = 0.5, μ(am) = 0.5, μ(ab) = 0.5 with neighbor-
hood connectivity index, NCI (G) = 4.

Proposition 11.1.21. Consider a fuzzy cycle G = (σ,μ) with |σ ∗| = n ≥ 4 and
σ(mi) = t for all mi ∈ σ ∗. Then NCI (Gc) − NCI (G) ≥ n2t − 5nt , where Gc =
(σ c,μc) is the fuzzy complement of the fuzzy graph G = (σ,μ).
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FIGURE 11.6

Fuzzy graph with NCI (G) = 4, given m = 4, x = 4.

Proof. Suppose G = (σ,μ) is a fuzzy cycle. The neighborhood of each vertex in the
fuzzy cycle has two vertices. Therefore d(m) = 2. The potential of each vertex will
always be less than t , since each vertex has strength t . Therefore e(m) ≤ t . Therefore

NCI (G) =
∑

m∈V (G)

d(m)e(m) = 2
∑

m∈V (G)

e(m) ≤ 2nt (11.1)

Now consider the complement Gc = (σ c,μc) of the graph G = (σ,μ). Clearly Gc

will have all edges which are not present on the cycle. In addition to that some edges
of the cycles can also appear. Therefore each vertex can have a neighborhood of
cardinality greater than n − 3. i.e., d(m) ≥ n − 3 for all m ∈ σ . Since all the edges
other than those lying on the cycle have strength t , and all others have strength less
than t , we can say e(m) = t . Therefore

NCI (Gc) =
∑

m∈V (G)

d(m)e(m) = t
∑

m∈V (G)

d(m) ≥ nt (n − 3) = n2t − 3nt (11.2)

From Eqs. (11.1) and (11.2), NCI (Gc) − NCI (G) ≥ n2t − 3nt − 2nt = n2t −
5nt . �

Theorem 11.1.22. For a fuzzy tree G, which is not a tree, with F = (σ, ν) as its
maximum spanning tree, NCI (F ) < NCI (G).

Proof. Suppose G = (σ,μ) is a fuzzy tree, which is not a tree. Let F = (σ, ν) be the
maximum spanning tree of G.

Claim: For each vertex p in G, the edge with maximum strength incident at p will
also lie on the maximum spanning tree F of G.

Proof of claim: Suppose not, let p be a vertex in G and pm be the edge with maxi-
mum strength incident at p. Suppose pm does not lie on the maximum spanning tree.
Then CONNF (p,m) < CONNG(p,m), a contradiction. Hence the claim. Now
consider an arbitrary vertex m, then e(m) is the maximum of the weight of edges
starting from m. Hence by the claim, we proved that eF (m) = eG(m). Now we will
show that dF (m) < dG(m). Since our given fuzzy graph is not a tree, the maximum
spanning tree of G will be different from G. There will be at least one edge removed



11.1 Neighborhood connectivity index of a fuzzy graph 149

from G. Let mp be such an edge. Then clearly, dF (m) < dG(m) and dF (p) < dG(p).
Therefore

NCI (F ) =
∑

m∈V (G)

dF (m)eF (m) =
∑

m∈V (G)

dF (m)eG(m)

<
∑

m∈V (G)

dG(m)eG(m) = NCI (G),

i.e., NCI (F ) < NCI (G). �

Definition 11.1.23. Two sets of vertices are called a twinning vertex sets of car-
dinality r , if each set has cardinality r and neighborhood connectivity index of the
graph obtained after removing each set is same.

Theorem 11.1.24. Consider a fuzzy graph G. Let A be the set of pendant vertices
with potential a. B be the set of supporting vertices of vertices from A with degree c

and potential b. Then all the subgraphs obtained after removing any one vertex from
the set A will have equal neighborhood connectivity index, i.e., any two subsets of
cardinality one of set A are examples of twinning vertex sets of cardinality one.

Proof. Consider a fuzzy graph G. Let A and B be as defined in the theorem state-
ment. We show that for u,v ∈ A, NCI (G \ u) = NCI (G \ v). First, we consider
vertices which does not belong to B or A. Let f be such a vertex. Then clearly
dG\u(f ) = dG\v(f ) and eG\u(f ) = eG\v(f ). Let a be the supporting vertex of u and
b be the supporting vertex of v. Then dG\u(a) = dG\v(b), since dG(a) and dG(b)

are equal and removing a pendant vertex reduces it by one and eG\u(a) = eG\v(b),
by condition. For those vertices g which belong to A, but they are not u and v

and those vertices belong to B but they are not a and b, dG\u(g) = dG\v(g) and
eG\u(g) = eG\v(g). Now consider u,v ∈ A. For them we have dG\v(u) = dG\u(v)

and eG\v(u) = eG\u(v).

Now,

NCI (G \ v) =
∑

t /∈B,t /∈A

dG\v(t)eG\v(t) +
∑

t∈A,t 
=u,t 
=v

dG\v(t)eG\v(t)

+
∑

t∈B,t 
=a,t 
=b

dG\v(t)eG\v(t) + dG\v(u)eG\v(u) + dG\v(b)eG\v(b)

=
∑

t /∈B,t /∈A

dG\u(t)eG\u(t) +
∑

t∈A,t 
=u,t 
=v

dG\u(t)eG\u(t)

+
∑

t∈B,t 
=a,t 
=b

dG\u(t)eG\u(t) + dG\u(v)eG\u(v) + dG\u(b)eG\u(b)

= NCI (G \ u). �

The following Corollary follows from Theorem 11.1.24.
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Corollary 11.1.25. Consider a fuzzy graph G. Let

1. A be the set of pendant vertices with potential a.
2. B be the set of supporting vertices of vertices from A with degree c and potential b.
3. Ai be the set of vertices of A having same supporting vertex from B.

Then the NCI of the subgraph obtained after removing s number of vertices from any
Ai will be same, i.e., such sets are twinning vertex sets of cardinality s.

Example 11.1.26. Consider the fuzzy graph G as in Fig. 11.7 with σ ∗ = {l, a,m,b,

n, c, o, d,p, e, q, f, r} and μ(la) = 0.3, μ(am) = 0.2, μ(ac) = 0.3, μ(mb) = 0.2,
μ(md) = 0.3, μ(mo) = 0.4, μ(bn) = 0.4, μ(bd) = 0.1, μ(bq) = 0.2, μ(bf ) = 0.1,
μ(pq) = 0.3, μ(eq) = 0.3, μ(f r) = 0.4.

FIGURE 11.7

Fuzzy graph having twinning vertex sets.

Here NCI (G) = 8.9, NCI (G \ l) = 7.9, NCI (G \ p) = 7.9, NCI (G \ {l, c}) =
7.2, NCI (G \ {p, e}) = 7.2. It shows that {l} and {p} are twinning vertex sets of
cardinality one and {l, c} and {p, e} are twinning vertex sets of cardinality two.

The remaining section compares NCI with connectivity index and Wiener index.

Theorem 11.1.27. Let G = (σ,μ) be a complete fuzzy graph, CI (G) be the con-
nectivity index of G and NCI (G) the neighborhood connectivity index of G. Then
2CI (G) ≤ NCI (G).
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Proof. Let G = (σ,μ) be a complete fuzzy graph. Then

2CI (G) = 2
∑

m,p∈σ ∗
σ(m)σ(p)CONNG(m,p) ≤ 2

∑
m,p∈σ ∗

CONNG(m,p),

(since 0 < σ(m), σ(p) ≤ 1) ≤
∑

m,p∈σ ∗
e(m)+

∑
m,p∈σ ∗

e(p), (replace one CONNG(m,p)

with e(m) and another with e(p)) = NCI (G), since each e(m) repeats d(m) times
altogether. �

Remark. For a complete fuzzy graph we have 2WI(G) ≤ NCI (G) since CI (G) =
WI(G) by Theorem 11.1.2.

The above result is not always true. Consider the fuzzy graph G = (σ,μ) given
in Fig. 11.8 such that σ ∗ = {l, a,m,b,n}, μ(la) = 0.1, μ(am) = 0.2, μ(an) = 0.3,
μ(mn) = 0.1, μ(bn) = 0.3. The neighborhood connectivity index, NCI (G) = 2.6
and the connectivity index, CI (G) = 1.9. Here 2CI (G) = 3.8 � 2.6 = NCI (G).
Also note that Wiener index, WI(G) = 4.2 which is greater than 2.6.

FIGURE 11.8

Fuzzy graph with 2CI (G) > NCI (G).

11.2 Fuzzy graph operations
There are several fuzzy graph operations in fuzzy graph theory. This section deals
about the NCI of graphs obtained by some of these operations. As defined earlier, in
this section G1 ∪ G2 represents union, G1 + G2 represents join, G1[G2] represents
composition, G1 × G2 represents Cartesian product and G1 ⊗ G2 represents tensor
product of two fuzzy graphs G1 and G2.

Theorem 11.2.1. Let Gi = (σi,μi) be fuzzy graphs where i = 1,2. Then NCI (G1 ∪
G2) =

∑
m

[(∨{eG1(m), eG2(m)}) (dG1(m) + dG2(m) − |E1 ∩ E2(m)|)], where E1

and E2 are the edge sets of G1 and G2 and |E1 ∩ E2(m)| is the number of edges
arising from the vertex m which lies in both G1 and G2.
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Proof. Consider Gi = (σi,μi), i = 1,2. We prove this theorem by considering three
cases. As the first case, we take m ∈ V1 or m ∈ V2, but not both. If m ∈ V1 then
dG1∪G2(m) = dG1(m) (since there is no new neighbor by construction.) = dG1(m) +
dG2(m)−|E1 ∩E2(m)| (since in this case dG2(m) = |E1 ∩E2(m)| = 0). Similar case
arises when m ∈ V2 also. Now consider the potential of the vertex in G1 ∪G2. For m ∈
G1, eG1∪G2(m) = eG1(m) (since there is no new edge originating from m and there is
no change in weight for the existing edges) = ∨{eG1(m), eG2(m)} (since in this case
eG2(m) = 0). Similarly for m ∈ G2 also. As the second case, we take m ∈ V1 ∩V2, but
no edge incident at m lies in E1 ∩E2. Here for m ∈ V1 ∩V2, dG1∪G2(m) = dG1(m)+
dG2(m) = dG1(m) + dG2(m) − |E1 ∩ E2(m)|. While considering the potential of the
vertex, eG1∪G2(m) = ∨{eG1(m), eG2(m)}, since no edge incident at m lies in E1 ∩E2.
As the third case, we take m ∈ V1 ∩ V2, but some edges incident at m are in E1 ∩ E2.
Here for m ∈ V1 ∩V2, dG1∪G2(m) = dG1(m)+dG2(m)−|E1 ∩E2(m)|. The potential
of the vertex m is eG1∪G2(m) = ∨{eG1(m), eG2(m)}, in this case, since the edges are
taking the maximum weight and the maximum will be any of the eGi

(m), i = 1,2.
From the three cases,

NCI (G1 ∪ G2) =
∑
m

[(∨{eG1(m), eG2(m)})(dG1(m) + dG2(m) − |E1 ∩ E2(m)|)].

�

Theorem 11.2.2. Let Gi = (σi,μi) be fuzzy graphs with |σ ∗
i | = ni where i = 1,2.

Assuming V1 ∩ V2 = φ we have

NCI (G1 + G2) =
∑

m∈Gi,i 
=j

[(dGi
(m) + nj )(∨p∈Gj

{σ(m) ∧ σ(p)})].

Proof. Let Gi = (σi,μi) be fuzzy graphs with |σ ∗
i | = ni where i = 1,2. Suppose

m ∈ G1, then the neighborhood of m has all elements in G2 in addition to its neigh-
borhood in G1 itself. Therefore dG1+G2(m) = dG1(m) + n2. Similarly if m ∈ G2,
dG1+G2(m) = dG2(m) + n1. Now we can check the potential of the vertex m ∈ G1.
Since V1 ∩ V2 = φ there are two types of edges arising from m. One is those edges
whose other endpoint is in G1 and other is those edges whose other endpoint is
in G2. Edges of the first case have maximum connectedness eG1(m). Edges of the
second case have connectedness the minimum of the weight of its adjacent ver-
tices. The maximum among them is greater than or equal to eG1(m). Therefore
eG1+G2(m) = ∨p∈G2{σ(m) ∧ σ(p)}. Similarly if m ∈ G2, therefore eG1+G2(m) =
∨p∈G1{σ(m) ∧ σ(p)}.

Therefore

NCI (G1 + G2) =
∑

m∈G1+G2

dG1+G2(m)eG1+G2(m)

=
∑

m∈G1

[(dG1(m) + n2)(∨p∈G2{σ(m) ∧ σ(p)})]
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+
∑

m∈G2

[(dG2(m) + n1)(∨p∈G1{σ(m) ∧ σ(p)})]

=
∑

m∈Gi,i 
=j

[(dGi
(m) + nj )(∨p∈Gj

{σ(m) ∧ σ(p)})]. �

Example 11.2.3. Consider the fuzzy graphs G1 and G2 with σ ∗
1 = {l, a,m} and

σ ∗
2 = {b,n} where σ(l) = 0.9, σ(a) = 0.4, σ(m) = 1, σ(b) = 0.8, σ(n) = 0.7, and

μ(la) = 0.3, μ(am) = 0.1, μ(lm) = 0.8, μ(bn) = 0.6 (Fig. 11.9). After finding G1 +
G2 we calculate NCI (G1 +G2) = 4×0.8+4×0.4+4×0.8+4×0.8+4×0.7 =
14. Now using Theorem 11.2.2 we can find this without actually finding G1 + G2,
NCI (G1 + G2) = (2 + 2) ∨ {0.8,0.7} + (2 + 2) ∨ {0.4,0.4} +(2 + 2) ∨ {0.8,0.7}
+(1 + 3) ∨ {0.8,0.4,0.8} + (1 + 3) ∨ {0.7,0.4,0.7} = 4 × 0.8 + 4 × 0.4 + 4 × 0.8 +
4 × 0.8 + 4 × 0.7 = 14.

FIGURE 11.9

Join of two fuzzy graphs.

Theorem 11.2.4. Let Gi = (σi,μi) be fuzzy graphs with |σ ∗
i | = ni where i = 1,2.

(i) if σ1 ≤ μ2, then

NCI (G1[G2]) =
∑

(m,p)∈V1×V2

[n2dG1(m) + dG2(p)]σ1(m).

(ii) if σ1 ≥ μ2, σ2 ≥ μ1, then

NCI (G1[G2]) =
∑

(m,p)∈V1×V2

[n2dG1(m) + dG2(p)][∨{eG1(m), eG2(p)}].

Proof. Let G1 and G2 be two fuzzy graphs. Then,

NCI (G1[G2]) =
∑

(m,p)∈V1×V2

dG1[G2](m,p)eG1[G2](m,p).
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We can calculate dG1[G2](m,p) and eG1[G2](m,p) separately. The neighborhood
of (m,p) consists of three types of vertices. (1) {(x, y) : x = m,py ∈ E2}, the
cardinality of this set is dG2(p). (2) {(x, y) : y = p,mx ∈ E1}, the cardinality of
this set is dG1(m). (3) {(x, y) : y 
= p,mx ∈ E1}, the cardinality of this set is
(n2 − 1)dG1(m). Therefore dG1[G2](m,p) = dG2(p) + dG1(m) + (n2 − 1)dG1(m) =
n2dG1(m) + dG2(p). Now we can look into the potential of the vertex (m,p).

eG1[G2](m,p)

= ∨(m,p)∈V1×V2{μG1[G2]((m,p)(x, y)) : (x, y) ∈ V1 × V2}

= ∨(m,p)∈V1×V2

⎧⎨
⎩

σ1(m) ∧ μ2(py) : if x = m,py ∈ E2

σ2(p) ∧ μ1(mx) : if y = p,mx ∈ E1

σ2(p) ∧ σ2(y) ∧ μ1(mx) : if y 
= p,mx ∈ E1

(*)

Now we can analyze the three parts of the theorem.
Part i: σ1 ≤ μ2. By Theorem 11.1.1 Eq. (*) becomes

eG1[G2](m,p) = ∨(m,p)∈V1×V2

⎧⎨
⎩

σ1(m) : if x = m,py ∈ E2

μ1(mx) : if y = p,mx ∈ E1

μ1(mx) : if y 
= p,mx ∈ E1

= σ1(m).

Therefore NCI (G1[G2]) =
∑

(m,p)∈V1×V2

[n2dG1(m) + dG2(p)]σ1(m).

Part ii: σ1 ≥ μ2, σ2 ≥ μ1. Here Eq. (*) becomes

eG1[G2](m,p) = ∨(m,p)∈V1×V2

⎧⎨
⎩

μ2(py) : if x = m,py ∈ E2

μ1(mx) : if y = p,mx ∈ E1

μ1(mx) : if y 
= p,mx ∈ E1

= ∨{eG1(m), eG2(p)}.
Therefore

NCI (G1[G2]) =
∑

(m,p)∈V1×V2

[n2dG1(m) + dG2(p)][∨{eG1(m), eG2(p)}]. �

Corollary 11.2.5. Let Gi = (σi,μi) be fuzzy graphs with |σ ∗
i | = ni where i = 1,2.

(i) if σ1 ≤ μ2, then

NCI (G1 × G2) =
∑

(m,p)∈V1×V2

[dG1(m) + dG2(p)]σ1(m).

(ii) if σ1 ≥ μ2, σ2 ≥ μ1, then

NCI (G1 × G2) =
∑

(m,p)∈V1×V2

[dG1(m) + dG2(p)][∨{eG1(m), eG2(p)}].
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Proof. Since by construction, the Cartesian product of two fuzzy graphs differs from
composition only by the set of edges {xy : y 
= p,mx ∈ E1}. There is no change
for eG1×G2(m,p) from eG1[G2](m,p) which can be observed from Eq. (∗) in Theo-
rem 11.2.4. While considering the neighborhood of the vertex (m,p), third type men-
tioned in the above proof is missing. Therefore dG1×G2(m,p) = dG1(m) + dG2(p).
Hence if σ1 ≤ μ2, then

NCI (G1 × G2) =
∑

(m,p)∈V1×V2

[dG1(m) + dG2(p)]σ1(m)

and if σ1 ≥ μ2, σ2 ≥ μ1, then

NCI (G1 × G2) =
∑

(m,p)∈V1×V2

[dG1(m) + dG2(p)][∨{eG1(m), eG2(p)}]. �

Theorem 11.2.6. Let Gi = (σi,μi) be fuzzy graphs with |σ ∗
i | = ni where i = 1,2.

Then

NCI (G1 ⊗ G2) =
∑

(m,p)∈V1×V2

(d(m)d(p))(∧{e(m), e(p)}).

Proof. Let Gi = (σi,μi) be fuzzy graphs with |σ ∗
i | = ni where i = 1,2. First, we find

dG1⊗G2(m,p) and then eG1⊗G2(m,p). Consider the vertex (m,p) ∈ V1 × V2. In the
vertex set of V1 × V2 we can find n2 number of vertices with same first coordinate.
Among the n2 vertices there exists d(p) vertices which has a neighborhood with
(m,p). And this case repeats d(m) times. Therefore dG1⊗G2(m,p) = d(m)d(p).
Now

eG1⊗G2(m,p) = ∨{μG1⊗G2((m,p)(x, y)); (x, y) ∈ V1 × V2}
= ∨{μG1(mx) ∧ μG2(py);mx ∈ E1and py ∈ E2}
= ∧{[∨μG1(mx),∨μG2(py)];mx ∈ E1and py ∈ E2}
= ∧{e(m), e(p)}.

Therefore

NCI (G1 ⊗ G2) =
∑

(m,p)∈V1×V2

(d(m)d(p))(∧{e(m), e(p)}). �

11.3 Algorithm
This section discusses an algorithm to find the NCI of a fuzzy graph.

Algorithm 11.3.1. Let G = (σ,μ) be a fuzzy graph with n vertices.

1. Construct the matrix A = [aij ] with aij = μ(mimj ).
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2. Find the largest membership value in each row of the matrix. Let it be ti .
3. Find the number of nonzero entries in each row of the matrix. Let it be si .

4. Then NCI (G) =
n∑

i=1

ti × si .

Illustration of Algorithm: Let A = (σ,μ) be a fuzzy graph in Fig. 11.10 with σ ∗ =
{l, a,m,b,n, c, o, d} such that μ(la) = 0.5, μ(lm) = 0.3, μ(am) = 0.4, μ(mb) =
0.1, μ(bn) = 0.2, μ(nc) = 0.3, μ(no) = 0.6, μ(nd) = 0.6, μ(co) = 0.7, μ(od) =
0.5.

FIGURE 11.10

Illustration for Algorithm.

The matrix representation of the given fuzzy graph is

A =

l a m b n c o d⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

l 0 0.5 0.3 0 0 0 0 0
a 0.5 0 0.4 0 0 0 0 0
m 0.3 0.4 0 0.1 0 0 0 0
b 0 0 0.1 0 0.2 0 0 0
n 0 0 0 0.2 0 0.3 0.6 0.6
c 0 0 0 0 0.3 0 0.7 0
o 0 0 0 0 0.6 0.7 0 0.5
d 0 0 0 0 0.6 0 0.5 0

Now NCI can be calculated by summing the product of highest value of each row
and number of nonzero entries in each row. Here NCI, NCI (G) = 0.5 × 2 + 0.5 ×
2 + 0.4 × 3 + 0.2 × 2 + 0.6 × 4 + 0.7 × 2 + 0.7 × 3 + 0.6 × 2 = 10.7.
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11.4 Application
Human trafficking has always been widely studied since its impact on human race is
huge. In 2017, Mathew and Mordeson discussed about this in [69]. Directed graph
techniques was used by them to analyze the given data in Table 11.1. The � in the
data represents extremely small flow between regions and thus we neglect that further.
The flow within a region is also not considered.

First of all, we construct the directed fuzzy graph S from this data. The vertices
represent the regions and the directed edges represent the direction of the transition.
Since the adjacency matrix of S is similar to the analyzed data, it is not mentioned
again. Now by using the algorithm that we mentioned previously, we calculate NCI
of S and it is 6.22. After several calculations we came to an assumption that there
does not exist a twinning vertex set of cardinality one. Consider the vertex set {l, c}.
Now we construct the adjacency matrix of S \ {l, c}.

S \ {l, c} =

a m b n o d p e⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a 0 0 0 0 0 0 0 0
m 0.27 0 0 0.05 0 0 0 0
b 0.04 0.05 0 0 0 0 0 0.06
n 0 0 0 0 0 0 0 0
o 0.07 0 0 0.25 0 0 0 0.33
d 0 0 0 0.07 0 0 0 0.18
p 0.16 0 0 0 0 1.0 0 0.10
e 0 0 0 0 0 0 0 0

After the computation using algorithm we get the NCI of S \ {l, c} as 5.07. Next
consider the vertex set {m,c} and construct the adjacency matrix of S \ {m,c}.

S \ {m,c} =

l a b n o d p e⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

l 0 0.13 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0
b 0.04 0.04 0 0 0 0 0 0.06
n 0.08 0 0 0 0 0 0 0
o 0.07 0.07 0 0.25 0 0 0 0.33
d 0 0 0 0.07 0 0 0 0.18
p 0 0.16 0 0 0 1.0 0 0.10
e 0 0 0 0 0 0 0 0

Here also after the computation we get the NCI of S \ {m,c} as 5.07. Therefore
{l, c} and {m,c} are examples of twinning vertex sets of cardinality two. Similarly,
we can see that {l, p} and {m,d} are also twinning vertex sets of cardinality two with
NCI 2.58.
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Table 11.1 Flows between different regions.

WC Eur
(l)

WS Eur
(a)

C Eur &
Bal (m)

E Eur &
C Asia

(b)

N Am &
C Am &
Car (n)

S Am (c) E Asia &
Pac (o)

S Asia
(d)

S S Afr
(p)

Mid
East (e)

WC Eur (l) 0.62 0.13
WS Eur (a) 0.16
C Eur & Bal (m) 0.27 0.79 0.05
E Eur & C Asia (b) 0.04 0.04 0.05 0.99 0.06
N Am & C Am & Car (n) 0.08 � � 0.59 0.04
S Am (c) 0.07 0.03 0.94
E Asia & Pac(o) 0.07 0.07 � 0.25 0.01 0.97 0.33
S Asia (d ) � 0.07 0.96 0.18
S S Afr (p) 0.16 1.0 0.10
Mid East (e) 0.31
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As this application gives the NCI of a human trafficking network, the value ob-
tained is of real concern. We can subdivide the networks into smaller portions and
compare the regions with different neighborhood connectivity. Also, this example
gives the locality where we have to focus on the removal of the twinning vertex sets
{l, p} and {m,d} provide a much lesser index. Controlling traffic through the loca-
tions l, p, m, and d can substantially reduce the traffic in the network (Fig. 11.11).

FIGURE 11.11

Directed fuzzy graph of the given data.

11.5 Exercises
1. Calculate NCI of G = (σ,μ) with σ ∗ = {l, a,m,b,n, c};σ(l) = 0.7, σ(a) = 0.8,
σ(m) = 0.4, σ(b) = 0.9, σ(n) = 0.6, σ(c) = 0.5, and μ(la) = 0.6, μ(ln) = 0.3,
μ(lc) = 0.4, μ(am) = 0.3, μ(an) = 0.5, μ(mn) = 0.4, μ(bn) = 0.6, μ(nc) = 0.5.

2. Show that the NCI of the maximum spanning tree of a fuzzy tree G is always less
than or equal to that G.

3. Construct a fuzzy graph with 5 vertices whose NCI is 6.
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CHAPTER

Sigma index©�

Among different graph indices, degree-based indices and distance based indices are
generally more easy to handle. Among these, the sigma index, proposed by Gut-
man [43] related to vertex degrees, has gained more academic interest, particularly in
mathematics and chemistry. Sigma index of fuzzy graphs is discussed in this chapter.
The sigma index of well-known graph structures like cycles, saturated fuzzy cycles,
paths, and stars are discussed. Relationships between sigma index and first and sec-
ond Zagreb indices [44,45] are also discussed.

12.1 Sigma index of a fuzzy graph
This section discusses sigma index of a fuzzy graph, a graph index with several appli-
cations in different fields of science and technology including chemistry, information
theory, and computer science.

Gutman et al. introduced the concept of the sigma index in their paper [43]. They
discovered its similarity to the standard deviation in Statistics. Gutman also intro-
duced the inverse sigma index of a graph. Later, several studies on sigma index were
conducted by scientists from different fields. This section discusses the fuzzy sigma
index and its various properties.

Definition 12.1.1. The sigma index, of a fuzzy graph G = (σ,μ) denoted by S(G) is
defined as S(G) =

∑
wm∈μ∗

(d(w) − d(m))2, where the summation goes over all pairs

of adjacent vertices w and m, and d(w) and d(m) are the fuzzy degrees of w and m,
respectively.

Example 12.1.2. Consider G = (σ,μ) in Fig. 12.1 with σ ∗ = {w1,w2,w3,w4,w5,

w6,w7} and μ(w1w2) = 0.1, μ(w2w3) = 0.3, μ(w2w5) = 0.2, μ(w3w4) = 0.4,
μ(w4w5) = 0.2, μ(w4w6) = 0.1, μ(w4w7) = 0.3, μ(w5w6) = 0.3.

Given fuzzy graph has eight edges. For each edge, find the difference between
fuzzy degree of their end vertices and then find its square. Consider the edge w1w2,

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.

Fuzzy Mathematics, Graphs, and Similarity Measures. https://doi.org/10.1016/B978-0-44-333949-3.00020-9
Copyright © 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
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FIGURE 12.1

A fuzzy graph G with S(G) = 1.39.

then d(w1)−d(w2) = 0.5. Now the square gives 0.25 as one of the summands. Simi-
larly, we find the same for the rest of edges also. Tabulations are given in Table 12.1.1
and Table 12.1.2. From Table 12.1.1 and Table 12.1.2, we can find the sigma index

Table 12.1.1 Degree of vertices of G.

vertex w1 w2 w3 w4 w5 w6 w7

d(vertex) 0.1 0.6 0.7 1 0.7 0.4 0.3

Table 12.1.2 Calculation of sigma index.

edge(ab) d(a) − d(b) [d(a) − d(b)]2

w1w2 −0.5 0.25
w2w3 −0.1 0.01
w2w5 −0.1 0.01
w3w4 −0.3 0.09
w4w5 0.3 0.09
w4w6 0.6 0.36
w4w7 0.7 0.49
w5w6 0.3 0.09

S(G) 1.39

of the given fuzzy graph as 1.39.

Unlike other indices, the sigma index of a partial fuzzy subgraph need not be less
than or equal to that of the mother graph. Consider the following examples:

Example 12.1.3. The sigma index of a fuzzy graph can be lesser or greater or equal
to the sigma index of its partial fuzzy subgraph. With suitable examples, it is shown
below.
Case 1: Consider H1 = (σ1, ν1), given in Fig. 12.2, partial fuzzy subgraph of
G = (σ,μ) in Fig. 12.1 with σ ∗ = {w1,w2,w3,w4,w5,w6,w7} and ν(w1w2) = 0.1,
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ν(w2w3) = 0.3, ν(w2w5) = 0.2, ν(w3w4) = 0.4, ν(w4w5) = 0, ν(w4w6) = 0.1,
ν(w4w7) = 0.3, ν(w5w6) = 0.3. Then sigma index of G is 1.39 and sigma index
of H1 is 0.7. i.e., S(H) < S(G).

FIGURE 12.2

A partial fuzzy subgraph H1 of G with S(H1) = 0.7.

Case 2: Consider H2 = (σ2, ν2), given in Fig. 12.3, another partial fuzzy subgraph
of G = (σ,μ) in Fig. 12.1 with σ ∗ = {w1,w2,w3,w4, w5,w6,w7} and ν(w1w2) =
0.1, ν(w2w3) = 0, ν(w2w5) = 0.2, ν(w3w4) = 0.4, ν(w4w5) = 0.2, ν(w4w6) = 0.1,
ν(w4w7) = 0.3, ν(w5w6) = 0.3. Then sigma index of G is 1.39 and sigma index of
H1 is 1.59. i.e., S(H) > S(G).

FIGURE 12.3

A partial fuzzy subgraph H2 of G with S(H2) = 1.59.

Case 3: Consider G = (σ,μ) in Fig. 12.4 with σ ∗ = {w1,w2,w3,w4,w5,w6} and
μ(w1w2) = 0.4, μ(w2w3) = 0.3, μ(w3w1) = 0.1, μ(w3w4) = 0.2, μ(w4w5) = 0.2,
μ(w5w6) = 0.2. Let H = (σ, ν) in Fig. 12.5 be a fuzzy subgraph of G with σ ∗ =
{w1,w2,w3,w4,w5,w6} and μ(w1w2) = 0.4, μ(w2w3) = 0.3, μ(w3w1) = 0.1,
μ(w3w4) = 0.2, μ(w4w5) = 0.2, μ(w5w6) = 0. Then sigma index of G and H are
0.14. i.e., S(H) = S(G).

The following theorem and corollaries discuss certain properties of cycles and
fuzzy cycles. Since cycles are generalized concepts of fuzzy cycles, results true for
cycles are also true for fuzzy cycles. Also whenever t or ti are referenced in this
article, their values fall between 0 and 1.
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FIGURE 12.4

A fuzzy graph G with S(G) = 0.14.

FIGURE 12.5

Partial fuzzy subgraph H of G with S(H) = 0.14.

Theorem 12.1.4. For a cycle Cn with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} where ei = wiwi+1 having μ(ei) = ti > 0, we have

S(Cn) = 2[
n∑

i=1

t2
i−1] − 2[

n∑
i=1

ti−1ti+1],

where i is taken under modulo n.

Proof. Let Cn be a cycle as stated in the theorem. Consider an arbitrary vertex wi .
Fuzzy degree of wi, d(wi) = ti−1 + ti . Therefore the sigma index is given as,

S(Cn) =
n∑

i=1

[d(wi) − d(wi+1)]2 =
n∑

i=1

[(ti−1 + ti ) − (ti + ti+1)]2

=
n∑

i=1

[ti−1 − ti+1]2 =
n∑

i=1

[t2
i−1 − 2ti−1ti+1 + t2

i+1]

= 2[
n∑

i=1

t2
i−1] − 2[

n∑
i=1

ti−1ti+1]. �

Next corollary shows an easy way to find the sigma index of certain large cycles.

We can also write 2[
n∑

i=1

t2
i−1] − 2[

n∑
i=1

ti−1ti+1] as 2[
n∑

i=1

ti−1(ti−1 − ti+1)]. This new

formula is used in the upcoming results.
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Corollary 12.1.5. Let Cn be a cycle with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} where ej = wjwj+1 having μ(ej ) = tj > 0. Let Cin, i ∈ N be cycles
with vertex set {w1,w2, · · · ,win} and edge set {e1, e2, · · · , ein} where ej = wjwj+1

having μ(ej ) = tj , for 1 ≤ j ≤ n, the same tj mentioned in Cn and μ(ek) = μ(el),
k = l mod n. Then

S(Cin) = i × S(Cn).

Proof. From Theorem 12.1.4 we have sigma index of a cycle is 2[
n∑

j=1

tj−1(tj−1 −
tj+1)]. Then

S(Cin) = 2[
in∑

j=1

tj−1(tj−1 − tj+1)]

= 2[
n∑

j=1

tj−1(tj−1 − tj+1)] + 2[
2n∑

j=n+1

tj−1(tj−1 − tj+1)] + · · ·

+ 2[
in∑

j=[(i−1)n]+1

tj−1(tj−1 − tj+1)]

= i × 2[
n∑

j=1

tj−1(tj−1 − tj+1)],

by condition given in the statement = i × S(Cn). �

The following corollary represents the saturated fuzzy cycle’s sigma index.

Corollary 12.1.6. Let Cn be a saturated fuzzy cycle with vertex set {w1,w2, · · · ,wn}
and edge set {e1, e2, · · · , en} where ej = wjwj+1. Suppose that all its β− edges have
weight x and α− edges have weight t1, t2, · · · , t n

2
. i.e., μ(e2i+1) = x, for 0 ≤ i ≤ n−2

2
and μ(e2i ) = ti , for 1 ≤ i ≤ n

2 , then

S(Cn) = 2[
n
2∑

i=1

t2
i ] − 2[

n
2∑

i=1

ti ti+1],

where i is taken under modulo n
2 .

Proof. Let Cn be a cycle as stated in the theorem. Fuzzy degree of w′
i s are given as,

d(w2i ) = d(w2i+1) = ti + x for 1 ≤ i ≤ n
2 . Therefore the sigma index is given as,
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S(Cn) =
n∑

i=1

[d(wi) − d(wi+1)]2

=
n
2∑

i=1

[d(w2i ) − d(w2i+1)]2 +
n
2∑

i=1

[d(w2i+1) − d(w2i+2)]2

=
n
2∑

i=1

[(ti + x) − (ti + x)]2 +
n
2∑

i=1

[(ti + x) − (ti+1 + x)]2

= 0 +
n
2∑

i=1

[ti − ti+1]2 =
n
2∑

i=1

[t2
i − 2ti ti+1 + t2

i+1]

= 2[
n
2∑

i=1

t2
i ] − 2[

n
2∑

i=1

ti ti+1]. �

While considering saturated fuzzy cycles with every α− strong edge having
weight s and every β− strong edge having weight t , we can see that, their sigma
index is zero. A generalized version of the previous argument is given in the follow-
ing corollary.

Corollary 12.1.7. Let Cn be a cycle with |σ ∗| = 2n. If alternative edges share same
weight, then S(Cn) = 0.

Corollary 12.1.8. Let P be a path with σ ∗ = {w1,w2, · · · ,wn} and μ(wiwi+1) = ti ,
1 ≤ i ≤ n − 1, n > 3. Then

S(P ) = t2
1 + 2[

n−2∑
i=2

t2
i ] + t2

n − 2[
n−3∑
i=1

ti ti+2].

Theorem 12.1.9. Let Cn be a cycle with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} with ej = wjwj+1 having μ(ej ) = μ(ej−1) + x, j = 2 to n and
x ∈ (0,1), σ(wn) ∈ (0,1]. Then

S(Cn) = 2n(n − 2)x2.

Proof. Consider a cycle Cn as stated in the theorem. Suppose μ(e1) = t , then
μ(e2) = t + x, μ(e3) = t + 2x, · · · ,μ(en) = t + (n − 1)x. Which gives d(w1) =
2t + (n − 1)x, d(w2) = 2t + x, · · · , d(wn) = 2t + (2n − 3)x. Then S(Cn) =
n∑

i=1

[d(wi) − d(wi+1)]2 = ((n − 2)x)2 + (2x)2 + · · · + (2x)2︸ ︷︷ ︸
(n−2)times

+((n − 2)x)2 = (n −

2)(2x)2 + 2((n − 2)x)2 = 2n(n − 2)x2. �

Next we determine the sigma index of a star.
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Theorem 12.1.10. Let S = (σ,μ) be a star, with vertex set {w1,w2, · · · ,wn+1},
where wn+1 is the central vertex and edge set {e1, e2, · · · , en} where ei = wiwn+1

with μ(ei) = ti . Then

S(S) =
n∑

i=1

[
(n − 1)t2

i

] + 2(n − 2)
[ n∑

i=1

[ n∑
j=i+1

ti tj
]]

.

Proof. Consider S as stated in the theorem. Let wi be an arbitrary vertex different
from the central vertex. Then the fuzzy degree of wi is ti . The fuzzy degree of the

central vertex wn+1 is
n∑

i=1

ti . Therefore the sigma index

S(S) =
n∑

i=1

[d(wn+1) − d(wi)]2

=
n∑

i=1

[
(

n∑
j=1

tj ) − ti

]2

=
n∑

i=1

[
(

n∑
j=1

tj )
2 − 2ti

[ n∑
j=1

tj

]
+ t2

i

]

= n(

n∑
i=1

ti )
2 +

n∑
i=1

[−2ti (

n∑
j=1

tj ) + t2
i ]

= n(

n∑
i=1

ti )
2 − 2

[ n∑
i=1

ti

n∑
j=1

tj

]
+

n∑
i=1

t2
i

= (n − 2)
[ n∑

i=1

ti

]2 +
n∑

i=1

t2
i

= (n − 2)
[ n∑

i=1

t2
i

]
+ 2(n − 2)

[ n∑
i=1

[ n∑
j=i+1

ti tj
]] +

n∑
i=1

t2
i

= (n − 1)
[ n∑

i=1

t2
i

] + 2(n − 2)
[ n∑

i=1

[ n∑
j=i+1

ti tj
]]

. �

Remark. Two isomorphic fuzzy graphs pose the same sigma index.

A fuzzy graph G and another fuzzy graph G + wm formed by adding a pendant
vertex to G have the same sigma index. N(w) represents the neighborhood of the
vertex w.
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Theorem 12.1.11. Let G be a fuzzy graph. Let a vertex w of G be joined to a new
vertex m /∈ σ ∗ by a new pendent edge wm. Then

S(G + wm) = S(G) if and only if
ks(s + 2t) + t2

2s
=

k∑
i=1

d(wi),

where k is the degree of w in G, t is the fuzzy degree of w in G, dG(wi)’s be the fuzzy
degree of vertices incident at w and s be the weight of the edge wm.

Proof. Consider a fuzzy graph G. Let w be a vertex in σ ∗ with {w1,w2, · · · ,wk}
as its adjacent vertices. Let μ(wwi) be ti . Then the degree of w is k and the fuzzy

degree is
k∑

i=1

ti = t . Then

S(G) =
∑

pi,pj /∈N(N(w))

(dG(pi) − dG(pj ))
2 +

∑
wi,wj ∈N(N(w))

(dG(wi) − dG(wj ))
2

+
∑

wi∈N(N(w)),y /∈N(N(w))

(dG(wi) − dG(y))2 +
k∑

i=1

(dG(w) − dG(wi))
2

For convenience, let us denote∑
pi,pj /∈N(N(w))

(dG(pi) − dG(pj ))
2 +

∑
wi,wj ∈N(N(w))

(dG(wi) − dG(wj ))
2

+
∑

wi∈N(N(w)),y /∈N(N(w))

(dG(wi) − dG(y))2

as S(G \ w). Then,

S(G) = S(G \ w) +
k∑

i=1

(t − dG(wi))
2

= S(G \ w) +
k∑

i=1

t2 +
k∑

i=1

dG(wi)
2 − 2t

k∑
i=1

dG(wi)

= S(G \ w) + kt2 +
k∑

i=1

dG(wi)
2 − 2t

k∑
i=1

dG(wi) (i)

Now consider a vertex m /∈ σ ∗ such that μ(wm) = s. Then

S(G + wm) =
∑

pi,pj /∈N(N(w))

(dG+wm(pi) − dG+wm(pj ))
2
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+
∑

wi,wj ∈N(N(w))

(dG+wm(wi) − dG+wm(wj ))
2

+
∑

wi∈N(N(w))
y /∈N(N(w))

(dG+wm(wi) − dG+wm(y))2

+
k∑

i=1

(dG+wm(w) − dG+wm(wi))
2 + (dG+wm(w) − dG+wm(m))2

=
∑

pi,pj /∈N(N(w))

(dG(pi) − dG(pj ))
2 +

∑
wi,wj ∈N(N(w))

(dG(wi) − dG(wj ))
2

+
∑

wi∈N(N(w))
y /∈N(N(w))

(dG(wi) − dG(y))2 +
k∑

i=1

(dG+wm(w) − dG+wm(wi))
2

+ (dG+wm(w) − dG+wm(m))2

= S(G \ w) +
k∑

i=1

(t + s − dG(wi))
2 + (t + s − s))2

= S(G \ w) +
k∑

i=1

t2 +
k∑

i=1

s2 +
k∑

i=1

dG(wi)
2 + 2

k∑
i=1

ts − 2t

k∑
i=1

dG(wi)

− 2s

k∑
i=1

dG(wi) + t2

= S(G \ w) + kt2 + ks2 +
k∑

i=1

dG(wi)
2 + 2kts − 2t

k∑
i=1

dG(wi)

− 2s

k∑
i=1

dG(wi) + t2 (ii)

From Eqs. (i) and (ii), S(G + wm) − S(G) = ks2 + 2kts − 2s

k∑
i=1

dG(wi) + t2.

Therefore S(G + wm) = S(G) if and only if ks2 + 2kts − 2s

k∑
i=1

dG(wi) + t2 = 0.

i.e.,

S(G + wm) = S(G) if and only if
ks(s + 2t) + t2

2s
=

k∑
i=1

dG(wi) (iii)

�
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A special case of the above theorem is discussed in the next corollary.

Corollary 12.1.12. Let G be a fuzzy graph with a pendant vertex w. Suppose w1 is
a pendant vertex in G\w and it is the supporting vertex of w in G with dG(w1) =
2dG(w), then G and G\w share same sigma index. Also, any fuzzy graph obtained by
adjoining a path of length n to the pendant vertex w, with each edge having weight
the same as that of the fuzzy degree of the pendant vertex w, share the same sigma
index.

Proof. Let G be a fuzzy graph and G′ be the fuzzy graph obtained by adjoining a
path of length 1 as stated in the corollary. Let dG(w) be s. By Theorem 12.1.11,

S(G) = S(G′) if and only if ks(s+2t)+t2

2s
=

k∑
i=1

dG(wi). Here k = 1, dG(w) = t = s,

dG(w1) = 2s. Which gives the LHS and RHS of Eq. (iii) as 2s. Therefore S(G) =
S(G′). Similarly adjoining a path of length n is also proved. �

The coalescence of graphs where discussed by Brigham, Chinn, and Dutton in
[18]. Now coalescence of two fuzzy graphs is discussed.

Definition 12.1.13. The coalescence of fuzzy graphs G1 = (W1, σ1,μ1) and
G2 = (W2, σ2,μ2) via wG1 and wG2 is the graph obtained from G1 and G2 by
identifying wG1 ∈ σ ∗(G1) and wG2 ∈ σ ∗(G2) in a vertex labeled w, denoted by
(G1.G2)(wG1 ,wG2 : w)(σ1.σ2,μ1.μ2) with

σ1.σ2(m) =
⎧⎨
⎩

σ1(m) if m ∈ W1,m �= w

σ2(m) if m ∈ W2,m �= w

σ1(wG1) ∨ σ2(wG2) if m = w

,

μ1.μ2(m1m2) =
{

μ1(m1m2) if m1m2 ∈ E(G1)

μ2(m1m2) if m1m2 ∈ E(G2)
,

where, σ1 ◦ σ2 is a fuzzy subset of W = (W1 \ {wG1}) ∪ (W2 \ {wG2}) ∪ {w} and
μ1 ◦ μ2 is a fuzzy subset of E = E(G1) ∪ E(G2).

The sigma index of coalescence of two fuzzy graphs is discussed in the following
theorem.

Theorem 12.1.14. Let G1 and G2 be two fuzzy graphs with |σ1| = n1 and |σ2| = n2.
Let {s1, s2, · · · , sn1} be the vertex set of G1 and {r1, r2, · · · , rn2} be the vertex set of
G2. Let si and rj be arbitrary vertices from G1 and G2. Then the sigma index of fuzzy
graph coalescence of G1 and G2 at si and rj ,

S(G1.G2)(si , rj : w∗)
= S(G1) + S(G2) + degG1(w∗)dG2(w∗)(2dG1(w∗) + dG2(w∗))

+ degG2(w∗)dG1(w∗))(dG1(w∗) + 2dG2(w∗))

− 2dG1(w∗)
∑

wiw∗∈G1

dG2(wi) − 2dG2(w∗)
∑

wiw∗∈G2

dG1(wi).
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Proof. Let G1 and G2 be two fuzzy graphs with |σ1| = n1 and |σ2| = n2, with vertex
set {s1, s2, · · · , sn1} and {r1, r2, · · · , rn2} respectively. Let si and rj be two arbitrary
vertices from G1 and G2 respectively. Let (G1.G2)(si , rj : w∗) with the vertex set
{w1,w2, · · · ,wn1+n2−1} be the fuzzy graph coalescence of G1 and G2 at vertices si
and rj formed by identifying these vertices to a new vertex called w∗. Then the sigma
index is,

S(G1.G2)(si , rj : w∗) =
∑

wiwj ∈μ∗
[dG1.G2(wi) − dG1.G2(wj )]2

The equation can be executed by categorizing the vertices into two distinct cases
based on their characteristics.
Case 1: Consider those edges which are adjacent to w∗.∑
wiw∗∈μ∗

[dG1.G2(wi) − dG1.G2(w∗)]2 =
∑

wiw∗∈μ∗
G1

[dG1.G2(wi) − dG1.G2(w∗)]2

+
∑

wiw∗∈μ∗
G2

[dG1.G2(wi) − dG1.G2(w∗)]2

=
∑

wiw∗∈μ∗
G1

[dG1(wi) − dG1(w∗) − dG2(w∗)]2

+
∑

wiw∗∈μ∗
G2

[dG2(wi) − dG1(w∗) − dG2(w∗)]2

Case 2: Consider those edges which are not adjacent to w∗.∑
wiwj ∈μ∗

[dG1.G2(wi) − dG1.G2(wj )]2 =
∑

wiwj ∈μ∗
G1

[dG1.G2(wi) − dG1.G2(wj )]2

+
∑

wiwj ∈μ∗
G2

[dG1.G2(wi) − dG1.G2(wj )]2

From cases (1) and (2) it can be concluded that

S(G1.G2)(si , rj : w∗)

=
∑

wiw∗∈μ∗
G1

[dG1(wi) − dG1(w∗) − dG2(w∗)]2

+
∑

wiw∗∈μ∗
G2

[dG2(wi) − dG1(w∗) − dG2(w∗)]2

+
∑

wiwj ∈μ∗
G1

[dG1.G2(wi) − dG1.G2(wj )]2
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+
∑

wiwj ∈μ∗
G2

[dG1.G2(wi) − dG1.G2(wj )]2

= S(G1) + S(G2)

+
∑

wiw∗∈μ∗
G1

[(dG2(w∗))2 − 2dG1(wi)dG2(w∗)

+ 2dG1(w∗)dG2(w∗)] +
∑

wiw∗∈μ∗
G2

[(dG1(w∗))2

− 2dG2(wi)dG1(w∗) + 2dG1(w∗)dG2(w∗)]
= degG1(w∗)(dG2(w∗))2 + degG2(w∗)(dG1(w∗))2

+ 2degG1(w∗)dG1(w∗)dG2(w∗)
+ 2degG2(w∗)dG1(w∗)dG2(w∗)

− 2dG1(w∗)
∑

wiw∗∈G1

dG2(wi) − 2dG2(w∗)
∑

wiw∗∈G2

dG1(wi)

= S(G1) + S(G2) + degG1(w∗)dG2(w∗)(2dG1(w∗)
+ dG2(w∗)) + degG2(w∗)dG1(w∗))(dG1(w∗) + 2dG2(w∗))

− 2dG1(w∗)
∑

wiw∗∈G1

dG2(wi)

− 2dG2(w∗)
∑

wiw∗∈G2

dG1(wi) �

Coalescence of odd and even cycles with an arbitrary fuzzy graph is discussed
below.

Theorem 12.1.15. Let G be a fuzzy graph and C2n be a cycle of order 2n,n > 1 with
vertex set {w1,w2, · · · ,w2n} and edge set {e1, e2, · · · , e2n} where ei = wiwi+1 and
μ(e2i ) = t , for 1 ≤ i ≤ n, μ(e2i+1) = r , for 1 ≤ i ≤ n. Let (G.C2n)(m1,w : s) be the
coalescence of G and C2n, where m1 is an arbitrary vertex of G. Then

S((G.C2n)(m1,w : s)) = S((G.C2p)(m1,w : s)), n,p > 1.

Proof. Let G be an arbitrary fuzzy graph. C2n a cycle of order 2n,n > 1 and C2p a
cycle of order 2p as stated in the theorem. Let m1 ∈ G and an arbitrary vertex wC2n

of
C2n be the vertices chosen for coalescence of G and C2n. We know dC2n

(wi) = t + r

for all vertices in C2n. By definition, all vertices of C2n except wC2n
have the same

degree as in C2n in (G.C2n)(m1,w : s). Similarly, all vertices of G except m1 have
the same degree as in G in (G.C2n)(m1,w : s). Then

S((G.C2n)(m1,w : s))
=

∑
mimj ∈μ∗(G)

mi,mj �=s

[d(mi) − d(mj )]2 +
∑

xi∈NG(s)

[d(xi) − d(s)]2
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+
∑

yi∈NC2n
(s)

[d(yi) − d(s)]2 +
2n∑
i=1

wi,wi+1 �=s

[d(wi) − d(wi+1)]2

=
∑

mimj ∈μ∗(G)

mi,mj �=s

[d(mi) − d(mj )]2 +
∑

xi∈NG(s)

[d(xi) − d(s)]2

+
∑

yi∈NC2n
(s)

[d(yi) − d(s)]2 (a)

Since all summands in the last term are zero.
When the sigma index of (G.C2p)(m1,w : s) is calculated, we can see similar

arguments as above. While considering equation (a) in case of (G.C2t )(m1,w : s),
we can see that, there may be more or less number of summands in the last term.
Since all the summands in the last term are zero. We get that S((G.C2n)(m1,w :
s)) = S((G.C2p)(m1,w : s)). �

The proof of Theorem 12.1.16 is similar as that Theorem 12.1.15.

Theorem 12.1.16. Let G be a fuzzy graph and C2n+1 be a cycle of order 2n+ 1 with
vertex set {w1,w2, · · · ,w2n+1} and edge set {e1, e2, · · · , e2n+1} where ei = wiwi+1
having μ(e2i ) = t , for 1 ≤ i ≤ n, μ(e2i+1) = m, for 1 ≤ i ≤ n, and μ(e2n+1) = x. Let
(G.C2n+1)(p1,w : s) be the coalescence of G and C2n+1, where p1 is an arbitrary
vertex of G. Then

1. S((G.C2n+1)(p1,w1 : s)) = S((G.C2t+1)(p1,w1 : s)) n, t ∈ N.
2. S((G.C2n+1)(p1,w2n+1 : s)) = S((G.C2t+1)(p1,w2t+1 : s)) n, t ∈ N.

Example 12.1.17. Consider the fuzzy graphs G = (σ1,μ1), C3 = (σ2,μ2) and C5 =
(σ3,μ3) given in Figs. 12.6 and 12.7 with σ ∗

1 = {m1,m2,m3}, σ ∗
2 = {w1,w2,w3},

FIGURE 12.6

Fuzzy graphs G and C3 with S((G.C3)) = 1.47.
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and σ ∗
3 = {w1,w2,w3,w4,w5} where μ1(m1m2) = 0.3, μ1(m1m3) = 0.4, μ2(w1w2) =

0.2, μ2(w1w3) = 0.1, μ2(w2w3) = 0.3, μ3(w1w2) = 0.2, μ3(w1w5) = 0.1,
μ3(w2w3) = 0.3, μ3(w3w4) = 0.2 and μ3(w4w5) = 0.3. After finding coales-
cence of G and C3, which is shown in Fig. 12.6, we get S((G.C3)(m1,w1 : s))

as 1.47. Also after finding coalescence of G and C5, which is shown in Fig. 12.7,
we get S((G.C5)(m1,w1 : s)) as 1.47. Which gives S((G.C3)(m1,w1 : s)) =
S((G.C5)(m1,w1 : s)).

FIGURE 12.7

Fuzzy graphs G and C5 with S((G.C5)) = 1.47.

Using some preset constraints and a given sigma index value, the next theorem
describes how to design fuzzy graphs.

Theorem 12.1.18. For a given x ∈ R
+ there exists a fuzzy graph G = (σ,μ) of sigma

index x.

Proof. The theorem is proved in two parts. In the first part existence of such a fuzzy
graph in the interval (0,1] is proved, and then in the second part, it is extended to the
positive real line. Let z be an arbitrary real number in the interval (0,1]. Now choose e

such that e = z
4

1
2 . Now construct a cycle of length 4 as mentioned in Theorem 12.1.4

with μ(e1) = x, μ(e2) = y, μ(e3) = x + e or x − e and μ(e4) = y + e or y − e

where x and y satisfies the following properties (1) 0 < x ≤ 1, (2) 0 < y ≤ 1, (3)

0 < x ±e ≤ 1, (4) 0 < y ±e ≤ 1. Now let us check the sigma index of the constructed
graph. Let eiej be the vertex where ei and ej incident. Therefore d(e1e2) = x + y,
d(e2e3) = x + y ± e, d(e3e4) = x + y ± e ± e and d(e4e1) = x + y ± e. Therefore
the sigma index, S(G) = (±e)2 + (±e)2 + (±e)2 + (±e)2 = 4(±e)2 = z. Now using
Corollary 12.1.5 we can extend this to the whole positive real axis. �

Suppose a fuzzy graph of sigma index 9 is to be made. Then construct a fuzzy
graph with sigma index of 0.9. For that use the construction method mentioned in the
above theorem. Now by using Corollary 12.1.5 construct a cycle of length 4 × 10 =
40. Which gives a fuzzy graph of sigma index 0.9 × 10 = 9.

The remaining portion of the section compares the sigma index to the first Zagreb
index and the second Zagreb index.
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Theorem 12.1.19. Let G be a fuzzy graph, S(G) be its sigma index and M2(G) be
its second Zagreb index. Then

S(G) + 2M2(G) ≤
∑

w∈σ ∗
deg(w)d2(w),

where deg(w) is the degree of a vertex in a graph and d(w) is the fuzzy degree of a
vertex in fuzzy graph.

Proof. Consider a fuzzy graph G. Then

S(G) + 2M2(G)

=
∑

wm∈μ∗
(d(w) − d(m))2 + 2

∑
wm∈μ∗

σ(w)σ(m)d(w)d(m)

=
∑

wm∈μ∗
[d2(w) + d2(m) − 2d(w)d(m)] + 2

∑
wm∈μ∗

σ(w)σ(m)d(w)d(m)

=
∑

wm∈μ∗
[d2(w) + d2(m)] − 2

∑
wm∈μ∗

d(w)d(m)

+ 2
∑

wm∈μ∗
σ(w)σ(m)d(w)d(m)

≤
∑

wm∈μ∗
[d2(w) + d2(m)] − 2

∑
wm∈μ∗

d(w)d(m) + 2
∑

wm∈μ∗
d(w)d(m)

=
∑

wm∈μ∗
[d2(w) + d2(m)]

=
∑

w∈σ ∗
deg(w)d2(w). �

Corollary 12.1.20. Let G be a fuzzy graph with σ(w) = 1 for all w ∈ σ ∗. Let S(G)

be its sigma index, M1(G) be its first Zagreb index and M2(G) be its second Zagreb
index. Then

M1(G) ≤ S(G) + 2M2(G) ≤
∑

w∈σ ∗
deg(w)d2(w).

12.2 Average sigma index of a fuzzy graph
In 2018, when Gutman et al., introduced the concept of the sigma index they men-
tioned that this graph invariant, denoted by σ , may be in resemblance with the
standard deviation in statistics.
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Table 12.2.1 Degree of vertices of G.

vertex w1 w2 w3 w4 w5 w6 w7

d(vertex) 0.1 0.6 0.7 1 0.7 0.4 0.3
dA (vertex) 0.1 0.2 0.35 0.25 0.24 0.2 0.3

Table 12.2.2 Calculation of average sigma index.

edge(ab) dA(a) − dA(b) [dA(a) − dA(b)]2

w1w2 −0.1 0.01
w2w3 −0.15 0.0225
w2w5 −0.04 0.0016
w3w4 0.1 0.01
w4w5 0.01 0.0001
w4w6 0.05 0.0025
w4w7 −0.05 0.0025
w5w6 0.04 0.0016

S(G) 0.0508

Definition 12.2.1. The average sigma index, of a fuzzy graph G = (σ,μ) denoted by
SA(G) is defined as SA(G) =

∑
wm∈μ∗

(dA(w) − dA(m))2, where the summation goes

over all pairs of adjacent vertices w and m, and dA(w) = d(w)
deg(w)

and dA(m) = d(m)
deg(m)

are the average degrees of w and m respectively.

Example 12.2.2. Consider the fuzzy graph given in Example 12.1.2. Here the fuzzy
graph has eight edges. For each edge, we have to find the difference between the
average degree of their end vertices and then square it. Consider edge w1w2, then
dA(w1)− dA(w2) = −0.1. Now taking its square gives 0.01 as one of the summands.
Similarly, we find for the rest of the edges. Tabulations are given below.

From Table 12.2.1 and Table 12.2.2, we can see that the average sigma index of
the given fuzzy graph is 0.0508.

The average sigma index of cycles is studied below.

Theorem 12.2.3. For a cycle Cn with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} where ei = wiwi+1 having μ(ei) = ti > 0, we have SA(Cn) =
1
2 [

n∑
i=1

t2
i −

n∑
i=1

ti ti+2], where i is taken under modulo n.

Proof. Let Cn be a cycle as stated in the theorem. Consider an arbitrary vertex wi .
Average degree of wi, dA(wi) = ti−1+ti

2 . Therefore the average sigma index is given



12.2 Average sigma index of a fuzzy graph 177

as,

SA(Cn) =
n∑

i=1

[dA(wi) − dA(wi+1)]2 =
n∑

i=1

[
ti−1 + ti

2
− (ti + ti+1)

2

]2

= 1

4

n∑
i=1

[ti−1 − ti+1]2 = 1

2
[

n∑
i=1

t2
i −

n∑
i=1

ti ti+2],

by Theorem 12.1.4. �

By Theorem 12.2.3 and Corollaries 12.1.5, 12.1.6, 12.1.7, 12.1.8 the following
corollaries can be proved.

Corollary 12.2.4. Let Cn be a cycle with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} where ej = wjwj+1 having μ(ej ) = tj > 0. Let Cin, i ∈ N be cycles
with vertex set {w1,w2, · · · ,win} and edge set {e1, e2, · · · , ein} where ej = wjwj+1
having μ(ej ) = tj , for 1 ≤ j ≤ n, the same tj mentioned in Cn and μ(ek) = μ(el),
k = l mod n. Then

SA(Cin) = i × SA(Cn).

Corollary 12.2.5. Let Cn be a saturated fuzzy cycle with vertex set {w1,w2, · · · ,wn}
and edge set {e1, e2, · · · , en} where ej = wjwj+1. Suppose that all its β− edges
have weight x and α− edges have weight t1, t2, · · · , t n

2
. i.e., μ(e2i + 1) = x, for

0 ≤ i ≤ n−2
2 and μ(e2i ) = ti , for 1 ≤ i ≤ n

2 , then

SA(Cn) = 1

4

⎡
⎣ n

2∑
i=1

t2
i −

n
2∑

i=1

ti ti+1

⎤
⎦ ,

where i is taken under modulo n
2 .

Corollary 12.2.6. Let Cn be a cycle with |σ ∗| = 2n. If alternative edges share same
weight, then SA(Cn) = 0.

Corollary 12.2.7. Let P be a path with σ ∗ = {w1,w2, · · · ,wn} and μ(wiwi+1) = ti ,
1 ≤ i ≤ n − 1, n > 3. Then

SA(P ) = 1

2

[
[

n∑
i=1

t2
i ] − [

n−3∑
i=1

ti ti+2] − t1t2 − tn−2tn−1

]
.

Theorem 12.2.8. Let Cn be a cycle with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} with ej = wjwj+1 having μ(ej ) = μ(ej−1) + x, j = 2 to n and
x ∈ (0,1), wn ∈ (0,1]. Then

SA(Cn) = n(n − 2)x2.
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Finding average sigma index of a star, is similar to the calculation of standard
deviation.

Theorem 12.2.9. Let S = (σ,μ) be a star, with vertex set {w1,w2, · · · ,wn+1}, where
wn+1 is the central vertex and edge set {e1, e2, · · · , en} where ei = wiwn+1 with
μ(ei) = ti . Then

SA(S) = (1 − 1

n
)
[ n∑

i=1

t2
i

] − 2

n

[ n∑
i=1

[ n∑
j=i+1

ti tj
]]

.

Proof. Consider S as stated in the theorem. Let wi be an arbitrary vertex different
from the central vertex. Then the fuzzy degree of wi is ti . Which is the same as

the average degree of w′
i s. The average degree of the central vertex wn+1 is

∑n
i=1 ti
n

.
Therefore the average sigma index

SA(S) =
n∑

i=1

[dA(wn+1) − dA(wi)]2

=
n∑

i=1

⎡
⎣1

n

⎛
⎝ n∑

j=1

tj

⎞
⎠ − ti

⎤
⎦2

=
n∑

i=1

⎡
⎣

⎡
⎣ 1

n2 (

n∑
j=1

tj )
2

⎤
⎦ − 2ti

⎡
⎣1

n

n∑
j=1

tj

⎤
⎦ + t2

i

⎤
⎦

= 1

n
(

n∑
i=1

ti )
2 +

n∑
i=1

⎡
⎣−2ti

n
(

n∑
j=1

tj ) + t2
i

⎤
⎦

= 1

n

[
n∑

i=1

ti

]2

− 2

n

⎡
⎣ n∑

i=1

ti

n∑
j=1

tj

⎤
⎦ +

n∑
i=1

t2
i

= −1

n

[ n∑
i=1

ti

]2 +
n∑

i=1

t2
i

= −1

n

[ n∑
i=1

t2
i

]
− 2

n

[ n∑
i=1

[ n∑
j=i+1

ti tj
]] +

n∑
i=1

t2
i

= (1 − 1

n
)
[ n∑

i=1

t2
i

] − 2

n

[ n∑
i=1

[ n∑
j=i+1

ti tj
]]

. �
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12.3 Algorithm
The algorithm to determine a fuzzy graph’s sigma index is covered in this section.

Algorithm 12.3.1. Let G = (σ,μ) be a fuzzy graph with σ ∗ = {w1,w2, · · · ,wn}.
1. Construct a matrix A = [aij ] with aij = μ(wiwj ).
2. Let di be the sum of entries in the ith row.
3. Make a matrix T such that tij is the square of difference of di and dj , if aij > 0

and j > i and tij is equal to zero otherwise.

4. Then S(G) =
n∑

i=1

n∑
j=1

tij .

Illustration of Algorithm: Let G = (σ,μ) be a fuzzy graph in Fig. 12.8 with σ ∗ =
{w1,w2,w3,w4,w5,w6, w7, w8} and μ(w1w2) = 0.4, μ(w1w3) = 0.3, μ(w2w3) =
0.2, μ(w2w4) = 0.6, μ(w2w6) = 0.4, μ(w3w5) = 0.1, μ(w3w7) = 0.3, μ(w4w6) =
0.3, μ(w5w7) = 0.3, μ(w6w7) = 0.4, μ(w6w8) = 0.1, μ(w7w8) = 0.2.

FIGURE 12.8

Illustration for Algorithm 12.3.1.

Step 1: The matrix corresponding to the given fuzzy graph is

A =

w1 w2 w3 w4 w5 w6 w7 w8⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w1 0 0.4 0.3 0 0 0 0 0
w2 0.4 0 0.2 0.6 0 0.4 0 0
w3 0.3 0.2 0 0 0.1 0 0.3 0
w4 0 0.6 0 0 0 0.3 0 0
w5 0 0 0.1 0 0 0 0.3 0
w6 0 0.4 0 0.3 0 0 0.4 0.1
w7 0 0 0.3 0 0.3 0.4 0 0.2
w8 0 0 0 0 0 0.1 0.2 0
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Table 12.3.1 Degree of vertices.

vertex w1 w2 w3 w4 w5 w6 w7 w8

d(vertex) 0.7 1.6 0.9 0.9 0.4 1.2 1.2 0.3

Step 2: Calculate d(i) of different vertices. For that, we take the sum of each row in
matrix discussed in step 1. The result of the step is given in Table 12.3.1.

Step 3: The matrix T formed by finding square of difference of di and dj , if aij > 0
and j > i and putting zero otherwise.

T =

w1 w2 w3 w4 w5 w6 w7 w8⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w1 0 0.81 0.04 0 0 0 0 0
w2 0 0 0.49 0.49 0 0.16 0 0
w3 0 0 0 0 0.25 0 0.09 0
w4 0 0 0 0 0 0.09 0 0
w5 0 0 0 0 0 0 0.64 0
w6 0 0 0 0 0 0 0 0.81
w7 0 0 0 0 0 0 0 0.81
w8 0 0 0 0 0 0 0 0

Step 4: Now the sigma index is the sum of all entries in T . i.e., S(G) = 0.81+0.04+
0.49 + 0.49 + 0.16 + 0.25 + 0.09 + 0.09 + 0.64 + 0.81 + 0.81 = 4.68.

12.4 Application
Financial experts advocate for the creation of a system where money can grow pas-
sively. They argue that, apart from investing in gold and real estate, it is advantageous
to also invest in the stock market. The stock market provides a platform for trading
company shares. While investing in gold offers slow but relatively low-risk growth,
selling land for profit typically requires a minimum of three years. In contrast, in-
vesting in the stock market allows for flexible withdrawals and the potential for
exponential growth. Even with modest returns, the initial value of shares tends to in-
crease over time. Success stories of individuals who have profited from buying shares
of companies like Apple and Wipro are well-known. To engage in stock market in-
vestments, a Demat account is necessary, similar to a savings account for holding
shares instead of money. If you have a Demat account, you may face the dilemma of
selecting which companies’ shares to purchase for maximum profit. In this situation,
standard deviation can be employed to compare the shares of different companies and
determine which ones are beneficial to buy.

Let us take an illustration to understand this concept. Imagine observing the share
prices of two distinct companies over the course of a week in the Indian stock market.
The market operates from 9 a.m. to 5 p.m., Monday through Friday. During these 8
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Table 12.4.1 Share prices of company A and company B.

Day Company A Company B
Monday 130.15 128.40
Tuesday 132.60 132.90
Wednesday 131.35 127.04
Thursday 130.40 133.60
Friday 130.10 132.60

Table 12.4.2 Fuzzified share prices of company A and company B.

Day Vertex Company A Company B
Monday w1 0.9815 0.9610
Tuesday w2 1 0.9947
Wednesday w3 0.9905 0.9508
Thursday w4 0.9834 1
Friday w5 0.9811 0.9925

hours, the share prices of the companies will not remain constant; they will fluctuate
in response to the prevailing market conditions. This means that the share prices may
experience both upward and downward movements. Shares of companies that exhibit
significant fluctuations are often categorized as risky shares, as their prices can either
rise rapidly or decline dramatically.

The opening price for one week of two companies A and B is given in the below
Table 12.4.1. The data is fuzzified in Table 12.4.2 and the fuzzy graph representation
is given in Figs. 12.9 and 12.10. Here vertices wi represent the weekdays. Vertex
W is the mean vertex. It is actually a dummy vertex that does not have a physical
existence. But the average degree of the vertex is the mean of the data in Table 12.4.2
and edge wiW represents the contribution of vertex wi to the mean of the stock.

Vertex W is the mean vertex. Edge wiW represents the contribution of vertex wi

to the mean of the stock.
Determining the most favorable company can be challenging when we calculate

the average price for each company and obtain a result of 130.9. However, by calcu-
lating the standard deviation, we can differentiate between Company A and Company
B. Company A has a standard deviation of 1.07, while Company B has a higher stan-
dard deviation of 2.97. From the definition of the average sigma index, we can find
that the average sigma index of a star is similar to its standard deviation. In this case,
Company A has an average sigma index of 2.5 × 10−4, and Company B has an aver-
age sigma index of 2 × 10−2, as determined using Theorem 12.2.9.

A low standard deviation or average sigma index indicates that the values are
closer to the central data point, suggesting that they are closer to the mean value. Con-
versely, the large average sigma index of Company B implies that the values deviate
significantly from the mean. Consequently, the share price of Company B is subject
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FIGURE 12.9

Fuzzy graph representation of Company A.

FIGURE 12.10

Fuzzy graph representation of Company B.

to significant fluctuations, making it a high-risk investment. Similar conclusions can
be drawn from the average sigma index of the provided data. After analyzing the data,
we can conclude that purchasing stocks from Company A are the preferable option.

12.5 Exercises
1. Calculate the sigma index of G = (σ,μ) with σ ∗ = {w1,w2,w3,w4,w5,w6,w7},
σ(x) = 1 for every x ∈ σ ∗ and μ(w1w2) = 0.4, μ(w2w3) = 0.6, μ(w2w5) = 0.5,
μ(w3w4) = 0.7μ(w4w5) = 0.5, μ(w4w6) = 0.4, μ(w4w7) = 0.6, μ(w5w6) = 0.6.

2. Show that sigma index of a proper fuzzy subgraph need not be less than that of its
mother graph. Identify a family of fuzzy graphs where this is true.

3. Calculate the average sigma index of the fuzzy graph given in 1.
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CHAPTER

Banhatti indices©�

A topological index of a graph is a numerical value connected with its structure.
There are several such indices studied in the past related to degree, spectrum, and
distance characteristics. The first and second K-Banhatti indices, introduced by Kulli
involving vertex and edge degrees, have attained significant interest, due to their ap-
plications in different fields. This chapter tries to discuss first and second K-Banhatti
indices of fuzzy graphs. Several bounds for the index are presented. Also Banhatti in-
dices of various structures like cycles, complete fuzzy graphs, and complete bipartite
graphs are provided. This chapter totally depends on [55].

13.1 First and second K-Banhatti indices
It was Kulli, an Indian mathematician who introduced the concept of Banhatti indices
in 2016. A series of related indices were found as a consequence, including K-hyper-
Banhatti Indices, Banhatti–Sombor indices, multiplicative-K-Banhatti indices, and
multiplicative-K-hyper-Banhatti indices. The fuzzy graph versions of these indices
are given in Definitions 13.1.4 and 13.1.5. The vertex membership value σ(w) is
taken as one for every vertex w, unless otherwise stated.

Definition 13.1.1. The first K-Banhatti index of a graph G is defined as B1(G) =∑
ew

(degG(e)+ degG(w)), where ew means that the vertex w and edge e are incident

in G, degG(e) is the degree of the edge e = wp in graph G and degG(w) is the degree
of the vertex w in graph G. The second K-Banhatti index of a graph G is defined
as B1(G) =

∑
ew

(degG(e)× degG(w)), where ew means that the vertex w and edge e

are incident in G, degG(e) is the degree of the edge e = wp in graph G and degG(w)

is the degree of the vertex w in graph G [59].

Definition 13.1.2. The corona product of two graphs G = (W1, σ1,μ1) and H =
(W2, σ2,μ2) denoted by G ∗ H = (W,σ1 ◦ σ2,μ1 ◦ μ2); is the graph obtained by
taking one copy of G of order n and n copies of H , and then joining by an edge the

©� This book has a companion website hosting complementary materials. Visit this URL to access it:
https://www.elsevier.com/books-and-journals/book-companion/9780443339493.
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i-th vertex of G to every vertex in the i-th copy of H . Let σi be a fuzzy subset of Wi

and let μi be a fuzzy subset of Ei, i = 1,2. The corona product [49] defined by the
fuzzy subset σ1 ◦ σ2 of W = W1 ∪ |σ ∗

1 |W2 and μ1 ◦ μ2 of E = E1 ∪ |σ ∗
1 |E2 ∪ E′ as

follows:

(σ1 ◦ σ2)(w) = (σ1 ∪ σ2 ∪ · · · ∪ σ2)(w) for all w ∈ W.

(μ1 ◦ μ2)(w) =
{

(μ1 ∪ μ2 ∪ · · · ∪ μ2)(wp) for all wp ∈ E − E′
σ1(w) ∧ σ2(p) wp ∈ E′ ,

where E′ is the set of all edges joining by an edge the i-th vertex of G to every vertex
in the i-th copy of H .

Definition 13.1.3. The coalescence of fuzzy graphs [54] G1 = (W1, σ1,μ1) and
G2 = (W2, σ2,μ2) via wG1 and wG2 is the graph obtained from G1 and G2 by
identifying wG1 ∈ σ ∗(G1) and wG2 ∈ σ ∗(G2) in a vertex labeled w, denoted by
(G1.G2)(wG1 ,wG2 : w)(σ1.σ2,μ1.μ2) with

σ1.σ2(p) =
⎧⎨
⎩

σ1(p) if p ∈ W1,p 	= w

σ2(p) if p ∈ W2,p 	= w

σ1(wG1) ∨ σ2(wG2) if p = w

,

μ1.μ2(p1p2) =
{

μ1(p1p2) if p1p2 ∈ E(G1)

μ2(p1p2) if p1p2 ∈ E(G2)
,

where σ1 ◦ σ2 is a fuzzy subset of W = (W1 \ {wG1}) ∪ (W2 \ {wG2}) ∪ {w} and
μ1 ◦ μ2 is a fuzzy subset of E = E(G1) ∪ E(G2).

Definition 13.1.4. The first K-Banhatti index of a fuzzy graph G = (σ,μ) denoted
by B1(G) is defined as B1(G) =

∑
ew

(d(e) + d(w)), where d(e) is the fuzzy degree

of the edge e = wp, d(w) is the fuzzy degree of the vertex w and ew means that the
vertex w and edge e are incident in G.

Definition 13.1.5. The second K-Banhatti index, of a fuzzy graph G = (σ,μ)

denoted by B2(G) is defined as B2(G) =
∑
ew

(d(e) × d(w)), where d(e) is the fuzzy

degree of the edge e = wp, d(w) is the fuzzy degree of the vertex w and ew means
that the vertex w and edge e are incident in G.

In both Definitions 13.1.4 and 13.1.5, the summations are over all vertex-edge
pairs. For vertex w, all combinations of all wp’s incident at w are considered. An
illustration is provided below.

Example 13.1.6. Consider the fuzzy graph G = (σ,μ) given in Fig. 13.1, with σ ∗ =
{w1,w2,w3,w4,w5,w6,w7} and μ(w1w2) = 0.3, μ(w1w3) = 0.1, μ(w2w3) = 0.4,
μ(w2w4) = 0.3, μ(w2w5) = 0.5, μ(w3w6) = 0.6, μ(w3w7) = 0.2, μ(w5w6) = 0.1.
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FIGURE 13.1

A fuzzy graph G with B1(G) = 28.1 and B2(G) = 13.07.

Table 13.1.1 Degree of vertices and edges of G.

vertex w1 w2 w3 w4 w5 w6 w7

d(vertex) 0.4 1.5 0.7 0.3 0.6 0.7 0.2
edge w1w2 w1w3 w2w3 w2w4 w2w5 w3w6 w3w7 w5w6

d(edge) 1.3 0.9 1.4 1.2 1.1 0.2 0.5 1.1

Here we have seven vertices and eight edges. First, we have to determine the
degree of these vertices and edges. We can see that there are 16 vertex-edge combi-
nations. To find the first K-Banhatti index, we must first add the degree of an edge
and a vertex if they are adjacent and later add all those cases together. To find the
second K-Banhatti index, we must first take the product of the degree of an edge and
a vertex when they are adjacent and then sum all those cases. From Table 13.1.1 and
Table 13.1.2, we can see the corresponding calculations. Finally, we obtain the first
K-Banhatti index of G as 28.1 and the second K-Banhatti index of G as 13.07.

Next proposition gives the bounds for Banhatti indices for a fuzzy graph with
|σ ∗| = n and |μ∗| = m.

Proposition 13.1.7. For a fuzzy graph G with |σ ∗| = n, |μ∗| = m we have

1. 0 ≤ B1(G) ≤ 2m(3n − 5).
2. 0 ≤ B2(G) ≤ 4m(n2 − 3n + 2).

Proof. Consider the fuzzy graph G = (σ,μ). If μ∗ = φ, then d(wi) and d(wiwj )

are zero for all vertices, wi and edges, wiwj in G∗. Then B1(G) =
∑
ew

[dG(e) +

dG(w)] = 0 and B2(G) =
∑
ew

[dG(e) × dG(w)] = 0. Since there does not exist

any vertex or edge with negative membership value B1(G) and B2(G) are al-
ways greater than zero. If |μ∗| > 0, then 0 < d(wi) ≤ n − 1 and 0 < d(wiwj ) ≤
n − 1 + n − 1 − 2 = 2n − 4 for at least some vertices and edges, i.e., 0 < B1(G) =∑
ew

[dG(e) + dG(w)] ≤
∑
ew

n − 1 + 2n − 4 =
∑
ew

3n − 5 = 2m(3n − 5) and 0 <
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Table 13.1.2 Calculation of first and second K-Banhatti indices.
edge(ab)vertex(a) d(ab) + d(a) d(ab) × d(a)

(w1w2)w1 1.7 0.52
(w1w2)w2 2.8 1.95
(w1w3)w1 1.3 0.36
(w1w3)w3 1.6 0.63
(w2w3)w2 2.9 2.1
(w2w3)w3 2.1 0.98
(w2w4)w2 2.7 1.8
(w2w4)w4 1.5 0.36
(w2w5)w2 2.6 1.65
(w2w5)w5 1.7 0.66
(w3w6)w3 0.9 0.14
(w3w6)w6 0.9 0.14
(w3w7)w3 1.2 0.35
(w3w7)w7 0.7 0.1
(w5w6)w5 1.7 0.66
(w5w6)w6 1.8 0.77

B1(G) = 28.1 B2(G) = 13.07

B2(G) =
∑
ew

[dG(e) × dG(w)] ≤
∑
ew

(n − 1) × (2n − 4) = 4m(n2 − 3n + 2). Now

consider the complete fuzzy graph with all vertices having membership value one,
then B1(G) =

∑
ew

[dG(e)+dG(w)] =
∑
ew

n− 1 + 2n− 4 =
∑
ew

3n− 5 = 2m(3n− 5)

and B2(G) ≤
∑
ew

[dG(e) × dG(w)] =
∑
ew

(n − 1) × (2n − 4) = 4m(n2 − 3n + 2).

Therefore 0 ≤ B1(G) ≤ 2m(3n − 5) and 0 ≤ B2(G) ≤ 4m(n2 − 3n + 2). �

The following proposition and corollary give relationship between the first and
second K-Banhatti indices a given fuzzy graph and its partial fuzzy subgraphs.

Proposition 13.1.8. If H = (τ, ν) is a partial fuzzy subgraph of G = (σ,μ), then
B1(H) ≤ B1(G) and B2(H) ≤ B2(G).

Proof. Suppose H = (τ, ν) be a partial fuzzy subgraph of G = (σ,μ), with σ ∗ =
{w1,w2, · · · ,wn}. Let wi be an arbitrary vertex in τ ∗, then ν(wiwj ) ≤ μ(wiwj )

for all other vertices wj in τ ∗. Which gives dH (wi) ≤ dG(wi) for all vertices wi

in τ ∗. Now consider the degree of an arbitrary edge wiwj , dH (wiwj ) = dH (wi) +
dH (wj )−2×μH (wiwj ) ≤ dG(wi)+dG(wj )−2×μG(wiwj ) = dG(wiwj ). Hence,
dH (wi) + dH (wiwj ) ≤ dG(wi) + dG(wiwj ) and dH (wi) × dH (wiwj ) ≤ dG(wi) ×
dG(wiwj ). Therefore B1(H) =

∑
ew

[dH (e) + dH (w)] =
n∑

i=1

∑
j∈N(wi)

[dH (wiwj ) +
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dH (wi)] ≤
n∑

i=1

∑
j∈N(wi)

[dG(wiwj ) + dG(wi)] = B1(G), i.e., B1(H) ≤ B1(G). Also,

B2(H) =
∑
ew

[dH (e) × dH (w)] =
n∑

i=1

∑
j∈N(wi)

[dH (wiwj ) × dH (wi)]

≤
n∑

i=1

∑
j∈N(wi)

[dG(wiwj ) × dG(wi)] = B2(G), i.e., B2(H) ≤ B2(G). �

Corollary 13.1.9. For a fuzzy graph G = (σ,μ) with vertex set σ ∗ and complete
fuzzy graph G′ = (σ ′,μ′) spanned by σ ∗, we have 0 ≤ B1(G) ≤ B1(G

′) and 0 ≤
B2(G) ≤ B2(G

′).

A number of fuzzy graph structures are considered in the following theorems. Cy-
cles, saturated fuzzy cycles, paths, complete fuzzy graphs, complete bipartite graphs,
and stars are considered. The variables t , ti , or tij are considered within the range of
zero to one.

Theorem 13.1.10. For a cycle Cn with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} where ei = wiwi+1 having μ(ei) = ti > 0, we have

1. B1(Cn) = 8
n∑

i=1

ti .

2. B2(Cn) = 2

(
n∑

i=1

t2
i +

n∑
i=1

ti ti+2

)
+ 4

n∑
i=1

ti ti+1 where i is taken under modulo n.

Proof. Let Cn be a cycle as stated in the theorem. Consider an arbitrary vertex
wi . Fuzzy degree of vertex wi, d(wi) = ti−1 + ti . Fuzzy degree of edge wi−1wi ,
d(wi−1wi) = ti−2 + ti and fuzzy degree of edge wiwi+1, d(wiwi+1) = ti−1 + ti+1.

1. The first K-Banhatti index is given as, B1(Cn) =
∑
ew

[dCn(e) + dCn(w)] =
n∑

i=1

2∑
j=1

[dCn(ej )+dCn(wi)] =
n∑

i=1

[dCn(e1)+dCn(wi)]+
n∑

i=1

[dCn(e2)+dCn(wi)] =
n∑

i=1

[(ti−2 + ti ) + (ti−1 + ti )] +
n∑

i=1

[(ti−1 + ti+1) + (ti−1 + ti )] = 8
n∑

i=1

ti .

2. The second K-Banhatti index is given as,

B2(Cn) =
∑
ew

[dCn(e) × dCn(w)]

=
n∑

i=1

2∑
j=1

[dCn(ej ) × dCn(wi)]
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=
n∑

i=1

[dCn(e1) × dCn(wi)] +
n∑

i=1

[dCn(e2) × dCn(wi)]

=
n∑

i=1

[(ti−2 + ti ) × (ti−1 + ti )] +
n∑

i=1

[(ti−1 + ti+1) × (ti−1 + ti )]

=
n∑

i=1

[ti−2ti−1 + ti−2ti + ti ti−1 + t2
i ]

+
n∑

i=1

[t2
i−1 + ti−1ti + ti+1ti−1 + ti+1ti]

= 2

(
n∑

i=1

t2
i +

n∑
i=1

ti ti+2

)
+ 4

n∑
i=1

ti ti+1. �

Corollary 13.1.11. Let Cn be a cycle with vertex set {w1,w2, · · · ,wn} and edge set
{e1, e2, · · · , en} where ej = wjwj+1 having μ(ej ) = tj > 0. Let Cin, i ∈ N be cycles
with vertex set {w1,w2, · · · ,win} and edge set {e1, e2, · · · , ein} where ej = wjwj+1

having μ(ej ) = tj , for 1 ≤ j ≤ n, the same tj mentioned in Cn and μ(ek) = μ(el),
k = l mod n. Then B1(Cin) = i ×B1(Cn) and B2(Cin) = i ×B2(Cn).

Corollary 13.1.12. Let Cn be a saturated fuzzy cycle with vertex set {w1,w2, · · · ,wn}
and edge set {e1, e2, · · · , en} where ej = wjwj+1. Suppose that all its β-edges have
weight x and α-edges have weight t1, t2, · · · , t n

2
, i.e., μ(e2i+1) = x, for 0 ≤ i ≤ n−2

2
and μ(e2i ) = ti , for 1 ≤ i ≤ n

2 , then

B1(Cn) = 8

⎡
⎣

n
2∑

i=1

ti + n

2
x

⎤
⎦ ,

B2(Cn) = 2

⎛
⎝

n
2∑

i=1

t2
i +

n
2∑

i=1

ti ti+1 + nx2

⎞
⎠ + 8

n
2∑

i=1

tix

where i is taken under modulo n
2 .

Proof. Let Cn be a cycle as stated in the theorem. Fuzzy degree of w′
i s are given as,

d(w2i ) = d(w2i+1) = ti + x for 1 ≤ i ≤ n
2 . The fuzzy degree of the edge w2iw2i+1,

d(w2iw2i+1) = 2x and fuzzy degree of the edge w2i+1w2(i+1), d(w2i+1w2(i+1)) =
ti + ti+1.
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The first K-Banhatti index is given as,

B1(Cn) =
∑
ew

[dCn(e) + dCn(w)]

=
n∑

i=1

2∑
j=1

[dCn(ej ) + dCn(wi)]

=
n
2∑

i=1

2∑
j=1

[dCn(ej ) + dCn(w2i )] +
n
2∑

i=1

2∑
j=1

[dCn(ej ) + dCn(w2i+1)]

=
n
2∑

i=1

[dCn(e1) + dCn(w2i )] +
n
2∑

i=1

[dCn(e2) + dCn(w2i )]

+
n
2∑

i=1

[dCn(e1) + dCn(w2i+1)] +
n
2∑

i=1

[dCn(e2) + dCn(w2i+1)]

=
n
2∑

i=1

[(ti−1 + ti ) + (ti + x)] +
n
2∑

i=1

[2x + (ti + x)] +
n
2∑

i=1

[2x + (ti + x)]

+
n
2∑

i=1

[(ti + ti+1) + (ti + x)]

= 8

⎡
⎣

n
2∑

i=1

ti + n

2
x

⎤
⎦ .

The second K-Banhatti index is given as,

B2(Cn) =
∑
ew

[dCn(e) × dCn(w)]

=
n∑

i=1

2∑
j=1

[dCn(ej ) × dCn(wi)]

=
n
2∑

i=1

2∑
j=1

[dCn(ej ) × dCn(w2i )] +
n
2∑

i=1

2∑
j=1

[dCn(ej ) × dCn(w2i+1)]

=
n
2∑

i=1

[dCn(e1) × dCn(w2i )] +
n
2∑

i=1

[dCn(e2) × dCn(w2i )]

+
n
2∑

i=1

[dCn(e1) × dCn(w2i+1)] +
n
2∑

i=1

[dCn(e2) × dCn(w2i+1)]
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=
n
2∑

i=1

[(ti−1 + ti ) × (ti + x)] +
n
2∑

i=1

[2x × (ti + x)] +
n
2∑

i=1

[2x × (ti + x)]

+
n
2∑

i=1

[(ti + ti+1) × (ti + x)]

=
n
2∑

i=1

[ti−1ti + ti−1x + t2
i + tix] +

n
2∑

i=1

[2xti + 2x2] +
n
2∑

i=1

[2xti + 2x2]

+
n
2∑

i=1

[t2
i + tix + ti+1ti + ti+1x]

= 2

⎛
⎝

n
2∑

i=1

t2
i +

n
2∑

i=1

ti ti+1 + nx2

⎞
⎠ + 8

n
2∑

i=1

tix. �

Suppose that every α strong edges have strength s and every β strong edges have
strength t in a saturated fuzzy cycle Cn, then B1(Cn) = 4n(s + t) and B2(Cn) =
2n(s2 + t2 + 2st).

Corollary 13.1.13. Let P be a path with σ ∗ = {w1,w2, · · · ,wn} and μ(wiwi+1) =
ti , 1 ≤ i ≤ n − 1, n > 2. Then,

1. B1(Pn) = 5t1 + 8
n−2∑
i=2

ti + 5tn−1.

2. B2(Pn) = t2
1 + t2

n−1 + 2

(
n−2∑
i=2

t2
i +

n−3∑
i=1

ti ti+2

)
+ 4

n−2∑
i=1

ti ti+1.

Theorem 13.1.14. Let G = (σ,μ) be a CFG with σ ∗ = {w1,w2, · · · ,wn} such
that t1 ≤ t2 ≤ · · · ≤ tn, where ti = σ(wi), 1 ≤ i ≤ n. Then B1(G) = (6n −
10) [(n − 1)t1 + (n − 2)t2 + · · · + tn−1].

Proof. Let G be a complete fuzzy graph as stated in the theorem. Consider an
arbitrary vertex wi , it has n − i edges of weight ti incident at wi and remain-
ing (n − 1) − (n − i) = i − 1 edges of weight t1 to ti−1, by construction, i.e.,

d(wi) = (n − i)ti +
i−1∑
k=1

tk . Now consider an arbitrary edge wiwj , its degree is

(n − i)ti +
i−1∑
k=1

tk + (n − j)tj +
j−1∑
k=1

tk − 2μ(wiwj ). Therefore the first K-Banhatti
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index of a complete fuzzy graph is given by,

B1(G) =
∑
ew

[dG(e) + dG(w)]

=
n∑

i=1

n∑
j=1
j 	=i

[dG(wiwj ) + dG(wi)]

=
n∑

i=1

n∑
j=1
j 	=i

[
(n − i)ti +

i−1∑
k=1

tk + (n − j)tj

+
j−1∑
k=1

tk − 2μ(wiwj ) + (n − i)ti +
i−1∑
k=1

tk

]

=
n∑

i=1

n∑
j=1
j 	=i

⎡
⎣(n − i)ti +

i−1∑
k=1

tk + (n − j)tj +
j−1∑
k=1

tk + (n − i)ti +
i−1∑
k=1

tk

⎤
⎦

− 2
n∑

i=1

n∑
j=1
j 	=i

μ(wiwj )

=
n∑

i=1

n∑
j=1
j 	=i

⎡
⎣2(n − i)ti + 2

i−1∑
k=1

tk + (n − j)tj +
j−1∑
k=1

tk

⎤
⎦ − 2

n∑
i=1

n∑
j=1
j 	=i

μ(wiwj )

=
n∑

i=1

n∑
j=1

⎡
⎣2(n − i)ti + 2

i−1∑
k=1

tk + (n − j)tj +
j−1∑
k=1

tk

⎤
⎦

− 3

[
n∑

i=1

(
(n − i)ti −

i−1∑
k=1

tk

)]
− 2

n∑
i=1

n∑
j=1
j 	=i

μ(wiwj )

=
n∑

i=1

2n

[
(n − i)ti +

i−1∑
k=1

tk

]
+

n∑
j=1

n

⎡
⎣(n − j)tj +

j−1∑
k=1

tk

⎤
⎦

− 3

[
n∑

i=1

(
(n − i)ti −

i−1∑
k=1

tk

)]
− 2

n∑
i=1

n∑
j=1
j 	=i

μ(wiwj )

=
n∑

i=1

3n

[
(n − i)ti +

i−1∑
k=1

tk

]
− 3

[
n∑

i=1

(
(n − i)ti −

i−1∑
k=1

tk

)]
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− 2
n∑

i=1

n∑
j=1
j 	=i

μ(wiwj )

= (3n − 3)

n∑
i=1

[
(n − i)ti +

i−1∑
k=1

tk

]
− 2

n∑
i=1

n∑
j=1
j 	=i

μ(wiwj ) (i)

Now we can find
n∑

i=1

[
(n − i)ti +

i−1∑
k=1

tk

]
and

n∑
i=1

n∑
j=1
j 	=i

μ(wiwj ) separately.

n∑
i=1

[
(n − i)ti +

i−1∑
k=1

tk

]
= (n − 1)t1 + (n − 2)t2 + · · · + (n − (n − 1))tn−1

+ (t1) + (t1 + t2) + · · · + (t1 + t2 + · · · + tn−1)

= 2[(n − 1)t1 + (n − 2)t2 + · · · + tn−1] (ii)

n∑
i=1

n∑
j=1
j 	=i

μ(wiwj ) = 2 times sum of all edge membership values

= 2[(n − 1)t1 + (n − 2)t2 + · · · + tn−1] (iii)

Substituting equation (ii) and Eq. (iii) in Eq. (i) gives

B1(G) = (3n − 3) × 2[(n − 1)t1 + (n − 2)t2 + · · · + tn−1]
− [2 × 2[(n − 1)t1 + (n − 2)t2 + · · · + tn−1]]

= (6n − 10) [(n − 1)t1 + (n − 2)t2 + · · · + (n − (n − 1))tn−1] . �

Theorem 13.1.15. Let G = (σ,μ) be a complete bipartite graph with σ ∗ =
{w1,w2, · · · ,wm,p1,p2, · · ·pn} such that μ(wipj ) = tij , for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Then

1. B1(G) = [3(m + n) − 4]
⎡
⎣ m∑

i=1

n∑
j=1

tij

⎤
⎦.

2. B2(G) = (n−2)

m∑
i=1

n∑
j=1

n∑
k=1

tij tik+(m−2)

m∑
i=1

n∑
j=1

m∑
r=1

tij trj+2
m∑

i=1

n∑
j=1

m∑
r=1

n∑
k=1

tij trk .

Proof. Let G be a complete bipartite graph as stated in the theorem. The ver-
tices of G can be divided into two independent sets, W = {w1,w2, · · · ,wm} and
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P = {p1,p2, · · ·pn}. Take an arbitrary vertex wi ∈ W , its degree is
n∑

k=1

tik . Next con-

sider an arbitrary vertex pj ∈ P , its degree is
m∑

r=1

trj . Now consider an arbitrary edge

wipj connecting W and P , its degree is
n∑

k=1

tik +
m∑

r=1

trj − 2tij . Therefore the first

K-Banhatti index is given as

B1(G) =
∑
ew

[dG(e) + dG(w)]

=
m∑

i=1

n∑
j=1

[
d(wi) + d(wipj )

] +
n∑

j=1

m∑
i=1

[
d(pj ) + d(wipj )

]

=
m∑

i=1

n∑
j=1

[
2

n∑
k=1

tik +
m∑

r=1

trj − 2tij

]
+

n∑
j=1

m∑
i=1

[
2

m∑
r=1

trj +
n∑

k=1

tik − 2tij

]

=
m∑

i=1

2n

n∑
k=1

tik +
n∑

j=1

m

m∑
r=1

trj − 2
m∑

i=1

n∑
j=1

tij +
n∑

j=1

2m

m∑
r=1

trj

+
m∑

i=1

n

n∑
k=1

tik − 2
m∑

i=1

n∑
j=1

tij

= (2n + m − 2)

m∑
i=1

n∑
j=1

tij + (2m + n − 2)

m∑
i=1

n∑
j=1

tij

= [3(m + n) − 4]
⎡
⎣ m∑

i=1

n∑
j=1

tij

⎤
⎦ .

The second K-Banhatti index is given as

B2(G) =
∑
ew

[dG(e) × dG(w)]

=
m∑

i=1

n∑
j=1

[
d(wi) × d(wipj )

] +
n∑

j=1

m∑
i=1

[
d(pj ) × d(wipj )

]

=
m∑

i=1

n∑
j=1

[(
n∑

k=1

tik

)(
n∑

k=1

tik +
m∑

r=1

trj − 2tij

)]

+
n∑

j=1

m∑
i=1

[(
m∑

r=1

trj

)(
m∑

r=1

trj +
n∑

k=1

tik − 2tij

)]
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=
m∑

i=1

n∑
j=1

[
(ti1 + ti2 +· · ·+ tin)

(
ti1 + ti2 + · · · + tin + t1j + t2j +· · ·+ tmj − 2tij

)]

+
n∑

j=1

m∑
i=1

[(
m∑

r=1

trj

)(
m∑

r=1

trj +
n∑

k=1

tik − 2tij

)]

=
m∑

i=1

n∑
j=1

(
ti1ti1 + ti1ti2 + · · · + ti1tin + ti1t1j + ti1t2j + · · · + ti1tmj − 2ti1tij

)
+ (

ti2ti1 + ti2ti2 + · · · + ti2tin + ti2t1j + ti2t2j + · · · + ti2tmj − 2ti2tij
) + · · ·

+ (
tinti1 + tinti2 + · · · + tintin + tint1j + tint2j + · · · + tintmj − 2tintij

)
+

n∑
j=1

m∑
i=1

[(
m∑

r=1

trj

)(
m∑

r=1

trj +
n∑

k=1

tik − 2tij

)]

= n

m∑
i=1

((ti1ti1 + ti1ti2 + · · · + ti1tin) + (ti2ti1 + ti2ti2 + · · · + ti2tin))

+ (· · · + (tinti1 + tinti2 + · · · + tintin))

+
m∑

i=1

n∑
j=1

((ti1t1j + ti1t2j + · · · + ti1tmj ) + (ti2t1j + ti2t2j + · · · + ti2tmj )

+ · · · + (+tint1j + tint2j + · · · + tintmj )
) − 2

m∑
i=1

n∑
j=1

(ti1tij + ti2tij +· · ·+ tintij )

+
n∑

j=1

m∑
i=1

[(
m∑

r=1

trj

)(
m∑

r=1

trj +
n∑

k=1

tik − 2tij

)]

= (n − 2)

m∑
i=1

n∑
j=1

n∑
k=1

tij tik +
m∑

i=1

n∑
j=1

m∑
r=1

n∑
k=1

tij trk

+
n∑

j=1

m∑
i=1

[(
m∑

r=1

trj

)(
m∑

r=1

trj +
n∑

k=1

tik − 2tij

)]
.

After similar calculations for
n∑

j=1

m∑
i=1

[(
m∑

r=1

trj

)(
m∑

r=1

trj +
n∑

k=1

tik − 2tij

)]
we get

B2(G) = (n − 2)

m∑
i=1

n∑
j=1

n∑
k=1

tij tik +
m∑

i=1

n∑
j=1

m∑
r=1

n∑
k=1

tij trk + (m − 2)

m∑
i=1

n∑
j=1

m∑
r=1

tij trj

+
m∑

i=1

n∑
j=1

m∑
r=1

n∑
k=1

tij trk
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= (n − 2)

m∑
i=1

n∑
j=1

n∑
k=1

tij tik + (m − 2)

m∑
i=1

n∑
j=1

m∑
r=1

tij trj + 2
m∑

i=1

n∑
j=1

m∑
r=1

n∑
k=1

tij trk.

�

The following corollary finds the first and second K-Banhatti indices of a star
graph.

Corollary 13.1.16. Let S = (σ,μ) be a star, with vertex set {w1,w2, · · · ,wm,p1},
where p1 is the central vertex and edge set {e1, e2, · · · , em} where ei = wip1 with
μ(wip1) = ti1. Then

1. B1(G) = [3m − 1]
[

m∑
i=1

ti1

]
.

2. B2(G) = m

m∑
i=1

m∑
r=1

ti1tr1 −
m∑

i=1

ti1ti1.

Theorem 13.1.17. For a fuzzy tree G, which is not a tree, with F as its maximum
spanning tree, B1(F ) < B1(G) and B2(F ) < B2(G).

Proof. Let G be a fuzzy graph which is not a tree and F be its maximum spanning
tree. There exist at least one vertex wi with dF (wi) < dG(wi), since G is not a tree.
Similarly, there exist at least an edge wkwj such that dF (wkwj ) < dG(wkwj ). There-

fore B1(F ) =
∑
ew

[dF (e) + dF (w)] <
∑
ew

[dG(e) + dG(w)] = B1(G) and B2(F ) =∑
ew

[dF (e) × dF (w)] <
∑
ew

[dG(e) × dG(w)] = B2(G). �

Remark. Degree of vertices and edges are preserved under isomorphisms. Thus first
and second Banhatti indices of isomorphic graphs are the same. The situation is sim-
ilar in fuzzy graph theory also.

Let σ and τ be fuzzy subsets of a set W . We write σ ⊇ τ if for all w ∈ W,σ(w) ≥
τ(w). If σ ⊇ τ and there exists w ∈ W such that σ(w) > τ(w), we write σ ⊃ τ .

Definition 13.1.18. Let H = (W, τ, ν) be a fuzzy graph. Then a fuzzy graph G =
(W, σ, μ) is called a partial fuzzy supergraph of G if σ ⊇ τ and μ ⊇ ν. Similarly,
the fuzzy graph G = (P, τ, ν) is called a fuzzy supergraph of G if P ⊇ W , τ(w) =
σ(w) for all w ∈ W and ν(wp) = μ(wp) for all w,p ∈ W .

Theorem 13.1.19. There does not exist any connected fuzzy supergraph with same
first or second K-Banhatti index as that of the given graph.

Proof. Let G be a fuzzy graph. Let H be a fuzzy supergraph of G with an addi-
tional vertex p. Then 0 = dG(p) < dH (p), since p does not belong to G. Con-
sider an arbitrary vertex w in G, w may or may not have an edge with p. Thus
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dG(w) ≤ dH (w). Let px be an arbitrary edge in the fuzzy graph H connecting p

and G then 0 = dG(px) < dH (px) = dH (p) + dH (x) − 2μH (px). Let wy be an
arbitrary edge within G. Then dG(wy) = dG(w) + dG(y) − 2μG(wy) ≤ dH (w) +
dH (y) − 2μH (wy) = dH (wy), even though wy lies within G, w, or y may have an
edge with p, which may cause an increase in fuzzy degree for those vertices in H .
Therefore B1(G) =

∑
ew

[dG(e)+dG(w)] <
∑
ew

[dH (e)+dH (w)] = B1(H). Similarly,

B2(G) =
∑
ew

[dG(e) × dG(w)] <
∑
ew

[dH (e) × dH (w)] = B2(H).

Now consider the case where H is a fuzzy supergraph formed with an additional
edge wp where w,p ∈ G. Consider an arbitrary vertex x ∈ G, if x 	= w,p then
dG(x) = dH (x). If x = w,p then dG(x) ≤ dH (x). Consider the edge wp, then 0 =
dG(wp) < dH (wp), since wp does not belong to G. Next consider an arbitrary edge
xy ∈ G,x,y 	= w,p then dG(xy) = dG(x) + dG(y) − 2μG(xy) = dH (x) + dH (y) −
2μH (xy) = dH (xy). Now consider an arbitrary edge xy ∈ G,x or y = w or p then
dG(xy) = dG(x) + dG(y) − 2μG(xy) ≤ dH (x) + dH (y) − 2μH (xy) = dH (xy).
Therefore B1(G) =

∑
ew

[dG(e)+dG(w)] <
∑
ew

[dH (e)+dH (w)] = B1(H). Similarly,

B2(G) =
∑
ew

[dG(e) × dG(w)] <
∑
ew

[dH (e) × dH (w)] = B2(H). �

Proposition 13.1.20 provides the connection between Banhatti indices of a fuzzy
graph and its complement. We follow the definition of complement from [108].

Proposition 13.1.20. Consider a fuzzy cycle G = (σ,μ) having more than 3 vertices
with vertex set {w1,w2, · · · ,wn} and edge set {e1, e2, · · · , en} where ei = wiwi+1
having μ(ei) = ti > 0, and σ(wi) = t for all wi ∈ σ ∗. Then

1. 3nt (n − 1)(n − 3) ≤ B1(G) +B1(G
c) ≤ nt (3n2 − 8n + 13),

2. 2nt2(n − 1)(n − 3)2 ≤ B2(G) +B2(G
c) ≤ 2nt2(n3 − 4n2 + 5n + 2)

where Gc = (σ c,μc) is the fuzzy complement of the fuzzy graph G = (σ,μ).

Proof. Let G be a fuzzy cycle with its vertices having weight t . Let wi be an arbi-
trary vertex, then dG(wi) = ti−1 + ti , which implies 0 ≤ dG(wi) ≤ 2t . Let wiwi+1
be an arbitrary edge from wi , its degree is, dG(wiwi+1) = ti−1 + ti+1, which im-
plies 0 ≤ dG(wiwi+1) ≤ 2t . Therefore 0 ≤ dG(wi) + dG(wiwi+1) ≤ 4t , implies 0 ≤
dG(wi) + dG(wiwi+1) + dG(wi+1) + dG(wiwi+1) ≤ 8t , implies 0 ≤ B1(G) ≤ 8nt ,
since there are n such edges. Similarly, 0 ≤ dG(wi)×dG(wiwi+1) ≤ 4t2, implies 0 ≤
dG(wi)×dG(wiwi+1)+dG(wi+1)×dG(wiwi+1) ≤ 8t2, implies 0 ≤ B2(G) ≤ 8nt2,
since there are n such edges. Now consider the fuzzy complement of G. Consider an
arbitrary vertex wi in Gc. Degree of the vertex wi , dGc(wi) = (n − 1)t − (ti−1 + ti )

which implies (n − 3)t ≤ dGc(wi) ≤ (n − 1)t . Let wiwi+1 be an arbitrary edge from
wi , its degree is, dGc(wiwi+1) = 2t (n−2)− (ti−1 + ti+1), which implies 2t (n−3) ≤
dGc(wiwi+1) ≤ 2t (n − 2). Therefore 3nt − 9t ≤ dGc(wi) + dGc(wiwi+1) ≤ 3nt −
5t , implies 6nt − 18t ≤ dGc(wi) + dGc(wiwi+1) + dGc(wi+1) + dGc(wiwi+1) ≤
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6nt − 10t , implies 3nt (n − 1)(n − 3) ≤ B1(G
c) ≤ nt (n − 1)(3n − 5), since there

are nC2 such edges. Similarly, (nt − 3t)(2nt − 6t) ≤ dGc(wi) × dGc(wiwi+1) ≤
(nt − t)(2nt − 4t), implies 4t2(n − 3)2 ≤ dGc(wi) × dGc(wiwi+1) + dGc(wi+1) ×
dGc(wiwi+1) ≤ 4t2(n−1)(n−2), implies 2nt2(n−1)(n−3)2 ≤ B2(G) ≤ 2nt2(n−
1)2(n − 2), since there are nC2 such edges. From the above obtained inequalities it
can be found that 3nt (n − 1)(n − 3) ≤ B1(G) + B1(G

c) ≤ nt (3n2 − 8n + 13) and
2nt2(n − 1)(n − 3)2 ≤ B2(G) +B2(G

c) ≤ 2nt2(n3 − 4n2 + 5n + 2). �

13.2 Fuzzy graph operations and the K-Banhatti indices
In this section, we look at the first and second K-Banhatti indices of graphs obtained
from various fuzzy graph operations. The symbol G1.G2 represents the coalescence
of two fuzzy graphs, G1 and G2, while G1 ◦G2 represents the corona product of two
fuzzy graphs G1 and G2.

Theorem 13.2.1. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1 and |σ ∗

2 | = n2.
Let {s1, s2, · · · , sn1} be the vertex set of G1 and {r1, r2, · · · , rn2} be the vertex set
of G2. Let si and rj be arbitrary vertices from G1 and G2. Then the first K-Banhatti
index of fuzzy graph coalescence of G1 and G2 at si and rj , B1(G1.G2)(si , rj : w∗) =
B1(G1) +B1(G2) + 3(degG1(w∗)dG2(w∗) + degG2(w∗)dG1(w∗)).

Proof. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1 and |σ ∗

2 | = n2, with vertex
set {s1, s2, · · · , sn1} and {r1, r2, · · · , rn2} respectively. Let si and rj be two arbitrary
vertices from G1 and G2, respectively. Let (G1.G2)(si , rj : w∗) with the vertex set
{w1,w2, · · · ,wn1+n2−1} be the fuzzy graph coalescence of G1 and G2 at vertices si
and rj formed by identifying these vertices to a new vertex called w∗. Then the first
K-Banhatti index is,

B1(G1.G2)(si , rj : w∗) =
∑
ew

[dG1.G2(e) + dG1.G2(w)]

=
n1+n2−1∑

i=1

mi∑
j=1

[dG1.G2(wiwj ) + dG1.G2(wi)]

The equation can be executed by categorizing the vertices into three distinct cases
based on their characteristics.

Case 1: Consider those vertices which are different from w∗ and the vertices belong
to the neighborhood of w∗.

n1+n2−1∑
i=1
i 	=∗

wi /∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) + dG1.G2(wi)]
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=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G1

mi∑
j=1

[dG1(wiwj ) + dG1(wi)] +
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G2

mi∑
j=1

[dG2(wiwj ) + dG2(wi)]

Case 2: Consider the vertex w∗.
Here it can again be considered as edge in G1 and G2.

mi∑
j=1

[dG1.G2(wiwj ) + dG1.G2(w∗)]

=
mi∑

j=1
j∈G1

[dG1.G2(w∗wj) + dG1.G2(w∗)] +
mi∑

j=1
j∈G2

[dG1.G2(w∗wj) + dG1.G2(w∗)]

=
mi∑

j=1
j∈G1

[dG1(w∗wj) + dG2(w∗) + dG1(w∗) + dG2(w∗)]

+
mi∑

j=1
j∈G2

[dG2(w∗wj) + dG1(w∗) + dG1(w∗) + dG2(w∗)]

Case 3: Consider all those vertices which belongs to the neighborhood of w∗.
Again it can be divided as edge in G1 and G2

∑
wi∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) + dG1.G2(wi)]

=
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1.G2(wiwj ) + dG1.G2(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[dG1.G2(wiw∗) + dG1.G2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG1.G2(wiwj ) + dG1.G2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[dG1.G2(wiw∗) + dG1.G2(wi)]
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=
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1(wiwj ) + dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[dG1(wiw∗) + dG2(w∗) + dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG2(wiwj ) + dG2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[dG2(wiw∗) + dG1(w∗) + dG2(wi)]

From cases (1), (2), and (3) it can be concluded that

B1(G1.G2)(si , rj : w∗)

=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) + dG1.G2(wi)] +
mi∑

j=1

[dG1.G2(wiwj ) + dG1.G2(w∗)]

+
∑

wi∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) + dG1.G2(wi)]

=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G1

mi∑
j=1

[dG1(wiwj ) + dG1(wi)] +
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G2

mi∑
j=1

[dG2(wiwj ) + dG2(wi)]

+
mi∑

j=1
j∈G1

[dG1(w∗wj) + dG2(w∗) + dG1(w∗) + dG2(w∗)]

+
mi∑

j=1
j∈G2

[dG2(w∗wj) + dG1(w∗) + dG1(w∗) + dG2(w∗)]

+
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1(wiwj ) + dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[dG1(wiw∗) + dG2(w∗) + dG1(wi)]
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+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG2(wiwj ) + dG2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[dG2(wiw∗) + dG1(w∗) + dG2(wi)]

= B1(G1) +B1(G2) + 2
mi∑

j=1
j∈G1

dG2(w∗) + 2
mi∑

j=1
j∈G2

dG1(w∗)

+
∑

wi∈N(w∗)
wi∈G1

dG2(w∗) +
∑

wi∈N(w∗)
wi∈G2

dG1(w∗)

= B1(G1) +B1(G2) + 3(degG1(w∗)dG2(w∗) + degG2(w∗)dG1(w∗)).

�
Corollary 13.2.2. Let C1 and C2 be two fuzzy cycles with |σ ∗

1 | = n1 and |σ ∗
2 | = n2.

Let {s1, s2, · · · , sn1} be the vertex set of C1 and {r1, r2, · · · , rn2} be the vertex set of
C2. Let si and rj be arbitrary vertices from C1 and C2. Then the first K-Banhatti
index of fuzzy graph coalescence of C1 and C2 at si and rj , B1(C1.C2)(si , rj : w∗) =
B1(C1) +B1(C2) + 6(dG1(w∗) + dG2(w∗)).

Theorem 13.2.3. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1 and |σ ∗

2 | = n2.
Let {s1, s2, · · · , sn1} be the vertex set of G1 and {r1, r2, · · · , rn2} be the vertex set of
G2. Let si and rj be arbitrary vertices from G1 and G2. Then the second K-Banhatti
index of fuzzy graph coalescence of G1 and G2 at si and rj ,

B2(G1.G2)(si , rj : w∗)
= B2(G1) +B2(G2) + [degG1(w∗) + degG2(w∗)][dG1(w∗) × dG2(w∗)]

+ dG1(w∗)

⎡
⎢⎢⎣

mi∑
j=1
j∈G2

[dG2(w∗wj)] + degG2(w∗)dG1(w∗) +
∑

wi∈N(w∗)
wi∈G2

[dG2(wi)]

⎤
⎥⎥⎦

+ dG2(w∗)

⎡
⎢⎢⎣

mi∑
j=1
j∈G1

[dG1(w∗wj)] + degG1(w∗)dG2(w∗) +
∑

wi∈N(w∗)
wi∈G1

[dG1(wi)]

⎤
⎥⎥⎦ .

Proof. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1 and |σ ∗

2 | = n2, with vertex
set {s1, s2, · · · , sn1} and {r1, r2, · · · , rn2} respectively. Let si and rj be two arbitrary
vertices from G1 and G2 respectively. Let (G1.G2)(si , rj : w∗) with the vertex set
{w1,w2, · · · ,wn1+n2−1} be the fuzzy graph coalescence of G1 and G2 at vertices
si and rj formed by identifying these vertices to a new vertex called w∗. Then the
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second K-Banhatti index is,

B2(G1.G2)(si , rj : w∗) =
∑
ew

[dG1.G2(e) × dG1.G2(w)]

=
n1+n2−1∑

i=1

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)]

The equation can be executed by categorizing the vertices into three distinct cases
based on their characteristics.
Case 1. Consider those vertices which are different from w∗ and the vertices belongs
to the neighborhood of w∗.

n1+n2−1∑
i=1
i 	=∗

wi /∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)]

=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G1

mi∑
j=1

[dG1(wiwj ) × dG1(wi)] +
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G2

mi∑
j=1

[dG2(wiwj ) × dG2(wi)]

Case 2. Consider the vertex w∗.
Here it can again be considered as edge in G1 and G2.

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(w∗)]

=
mi∑

j=1
j∈G1

[dG1.G2(w∗wj) × dG1.G2(w∗)] +
mi∑

j=1
j∈G2

[dG1.G2(w∗wj) × dG1.G2(w∗)]

=
mi∑

j=1
j∈G1

[(dG1(w∗wj) + dG2(w∗)) × (dG1(w∗) + dG2(w∗))]

+
mi∑

j=1
j∈G2

[(dG2(w∗wj) + dG1(w∗)) × (dG1(w∗) + dG2(w∗))]

=
mi∑

j=1
j∈G1

[(dG1(w∗wj) × (dG1(w∗)) + ((dG1(w∗wj) × (dG2(w∗))

+ (dG1(w∗) × dG2(w∗)) + d2
G2

(w∗)]
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+
mi∑

j=1
j∈G2

[(dG2(w∗wj) × dG1(w∗)) + (dG2(w∗wj) × dG2(w∗))

+ d2
G1

(w∗) + (dG1(w∗) × dG2(w∗))]
Case 3. Consider all those vertices which belongs to the neighborhood of w∗.
Again it can be divided as edge in G1 and G2

∑
wi∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)]

=
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1.G2(wiwj ) × dG1.G2(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[dG1.G2(wiw∗) × dG1.G2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG1.G2(wiwj ) × dG1.G2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[dG1.G2(wiw∗) × dG1.G2(wi)]

=
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1(wiwj ) × dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[(dG1(wiw∗) + dG2(w∗)) × dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG2(wiwj ) × dG2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[(dG2(wiw∗) + dG1(w∗)) × dG2(wi)]

=
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1(wiwj ) × dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[(dG1(wiw∗) × dG1(wi)) + (dG2(w∗) × dG1(wi))]
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+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG2(wiwj ) × dG2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[(dG2(wiw∗) × dG2(wi)) + (dG1(w∗) × dG2(wi))]

From cases (1), (2), and (3) it can be concluded that

B2(G1.G2)(si , rj : w∗)

=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)] +
mi∑

j=1

[dG1.G2(wiwj ) × dG1.G2(w∗)]

+
∑

wi∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)]

=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G1

mi∑
j=1

[dG1(wiwj ) × dG1(wi)] +
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G2

mi∑
j=1

[dG2(wiwj ) × dG2(wi)]

+
mi∑

j=1
j∈G1

[(dG1(w∗wj) × dG1(w∗)) + (dG1(w∗wj) × dG2(w∗))

+ (dG1(w∗) × dG2(w∗)) + d2
G2

(w∗)]

+
mi∑

j=1
j∈G2

[(dG2(w∗wj) × dG1(w∗)) + (dG2(w∗wj) × dG2(w∗))

+ d2
G1

(w∗) + (dG1(w∗) × dG2(w∗))]

+
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1(wiwj ) × dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[(dG1(wiw∗) × dG1(wi)) + (dG2(w∗) × dG1(wi))]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG2(wiwj ) × dG2(wi)]
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+
∑

wi∈N(w∗)
wi∈G2

[(dG2(wiw∗) × dG2(wi)) + (dG1(w∗) × dG2(wi))]

= B2(G1) +B2(G2)

+
mi∑

j=1
j∈G1

[(dG1(w∗wj) × dG2(w∗)) + (dG1(w∗) × dG2(w∗)) + d2
G2

(w∗)]

+
mi∑

j=1
j∈G2

[(dG2(w∗wj) × dG1(w∗)) + d2
G1

(w∗) + (dG1(w∗) × dG2(w∗))]

+
∑

wi∈N(w∗)
wi∈G1

[(dG2(w∗) × dG1(wi))] +
∑

wi∈N(w∗)
wi∈G2

[(dG1(w∗) × dG2(wi))]

= B2(G1) +B2(G2) + dG2(w∗)
mi∑

j=1
j∈G1

[dG1(w∗wj)]

+ [degG1(w∗) + degG2(w∗)][(dG1(w∗) × dG2(w∗))]

+ degG1(w∗)d2
G2

(w∗) + dG1(w∗)
mi∑

j=1
j∈G2

[dG2(w∗wj)] + degG2(w∗)d2
G1

(w∗)

+ dG2(w∗)
∑

wi∈N(w∗)
wi∈G1

[dG1(wi)] + dG1(w∗)
∑

wi∈N(w∗)
wi∈G2

[dG2(wi)]

= B2(G1) +B2(G2) + [degG1(w∗) + degG2(w∗)][(dG1(w∗) × dG2(w∗))]

+ dG1(w∗)

⎡
⎢⎢⎣

mi∑
j=1
j∈G2

[dG2(w∗wj)] + degG2(w∗)dG1(w∗) +
∑

wi∈N(w∗)
wi∈G2

[dG2(wi)]

⎤
⎥⎥⎦

+ dG2(w∗)

⎡
⎢⎢⎣

mi∑
j=1
j∈G1

[dG1(w∗wj)] + degG1(w∗)dG2(w∗) +
∑

wi∈N(w∗)
wi∈G1

[dG1(wi)]

⎤
⎥⎥⎦ .

�

Corollary 13.2.4. Let C1 and C2 be two fuzzy cycles with |σ ∗
1 | = n1 and |σ ∗

2 | = n2.
Let {s1, s2, · · · , sn1} be the vertex set of C1 and {r1, r2, · · · , rn2} be the vertex set of
C2. Let si and rj be arbitrary vertices from C1 and C2. Then the first K-Banhatti
index of fuzzy graph coalescence of C1 and C2 at si and rj , B1(C1.C2)(si , rj : w∗) =
B1(C1) +B1(C2) + 6(dG1(w∗) + dG2(w∗)).
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Theorem 13.2.5. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1 and |σ ∗

2 | = n2.
Let {s1, s2, · · · , sn1} be the vertex set of G1 and {r1, r2, · · · , rn2} be the vertex set of
G2. Let si and rj be arbitrary vertices from G1 and G2. Then the second K-Banhatti
index of fuzzy graph coalescence of G1 and G2 at si and rj ,

B2(G1.G2)(si , rj : w∗)
= B2(G1) +B2(G2) + [degG1(w∗) + degG2(w∗)][dG1(w∗) × dG2(w∗)]

+ dG1(w∗)

⎡
⎢⎢⎣

mi∑
j=1
j∈G2

[dG2(w∗wj)] + degG2(w∗)dG1(w∗) +
∑

wi∈N(w∗)
wi∈G2

[dG2(wi)]

⎤
⎥⎥⎦

+ dG2(w∗)

⎡
⎢⎢⎣

mi∑
j=1
j∈G1

[dG1(w∗wj)] + degG1(w∗)dG2(w∗) +
∑

wi∈N(w∗)
wi∈G1

[dG1(wi)]

⎤
⎥⎥⎦ .

Proof. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1 and |σ ∗

2 | = n2, with vertex
set {s1, s2, · · · , sn1} and {r1, r2, · · · , rn2} respectively. Let si and rj be two arbitrary
vertices from G1 and G2 respectively. Let (G1.G2)(si , rj : w∗) with the vertex set
{w1,w2, · · · ,wn1+n2−1} be the fuzzy graph coalescence of G1 and G2 at vertices
si and rj formed by identifying these vertices to a new vertex called w∗. Then the
second K-Banhatti index is,

B2(G1.G2)(si , rj : w∗) =
∑
ew

[dG1.G2(e) × dG1.G2(w)]

=
n1+n2−1∑

i=1

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)]

The equation can be executed by categorizing the vertices into three distinct cases
based on their characteristics.

Case 1: Consider those vertices which are different from w∗ and the vertices belongs
to the neighborhood of w∗.

n1+n2−1∑
i=1
i 	=∗

wi /∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)]

=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G1

mi∑
j=1

[dG1(wiwj ) × dG1(wi)] +
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G2

mi∑
j=1

[dG2(wiwj ) × dG2(wi)]
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Case 2: Consider the vertex w∗.
Here it can again be considered as edge in G1 and G2.

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(w∗)]

=
mi∑

j=1
j∈G1

[dG1.G2(w∗wj) × dG1.G2(w∗)] +
mi∑

j=1
j∈G2

[dG1.G2(w∗wj) × dG1.G2(w∗)]

=
mi∑

j=1
j∈G1

[(dG1(w∗wj) + dG2(w∗)) × (dG1(w∗) + dG2(w∗))]

+
mi∑

j=1
j∈G2

[(dG2(w∗wj) + dG1(w∗)) × (dG1(w∗) + dG2(w∗))]

=
mi∑

j=1
j∈G1

[(dG1(w∗wj) × (dG1(w∗)) + ((dG1(w∗wj) × (dG2(w∗))

+ (dG1(w∗) × dG2(w∗)) + d2
G2

(w∗)]

+
mi∑

j=1
j∈G2

[(dG2(w∗wj) × dG1(w∗)) + (dG2(w∗wj) × dG2(w∗))

+ d2
G1

(w∗) + (dG1(w∗) × dG2(w∗))]

Case 3: Consider all those vertices which belongs to the neighborhood of w∗.
Again it can be divided as edge in G1 and G2

∑
wi∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)]

=
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1.G2(wiwj ) × dG1.G2(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[dG1.G2(wiw∗) × dG1.G2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG1.G2(wiwj ) × dG1.G2(wi)]
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+
∑

wi∈N(w∗)
wi∈G2

[dG1.G2(wiw∗) × dG1.G2(wi)]

=
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1(wiwj ) × dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[(dG1(wiw∗) + dG2(w∗)) × dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG2(wiwj ) × dG2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[(dG2(wiw∗) + dG1(w∗)) × dG2(wi)]

=
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1(wiwj ) × dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[(dG1(wiw∗) × dG1(wi)) + (dG2(w∗) × dG1(wi))]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG2(wiwj ) × dG2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[(dG2(wiw∗) × dG2(wi)) + (dG1(w∗) × dG2(wi))]

From cases (1), (2), and (3) it can be concluded that

B2(G1.G2)(si , rj : w∗)

=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj ) × dG1.G2(wi)]

+
mi∑

j=1

[dG1.G2(wiwj )×dG1.G2(w∗)]+
∑

wi∈N(w∗)

mi∑
j=1

[dG1.G2(wiwj )×dG1.G2(wi)]
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=
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G1

mi∑
j=1

[dG1(wiwj ) × dG1(wi)] +
n1+n2−1∑

i=1
i 	=∗

wi /∈N(w∗)
wi∈G2

mi∑
j=1

[dG2(wiwj ) × dG2(wi)]

+
mi∑

j=1
j∈G1

[(dG1(w∗wj) × dG1(w∗)) + (dG1(w∗wj) × dG2(w∗))

+ (dG1(w∗) × dG2(w∗)) + d2
G2

(w∗)]

+
mi∑

j=1
j∈G2

[(dG2(w∗wj) × dG1(w∗)) + (dG2(w∗wj) × dG2(w∗))

+ d2
G1

(w∗) + (dG1(w∗) × dG2(w∗))] +
∑

wi∈N(w∗)
wi∈G1

mi∑
j=1
j 	=∗

[dG1(wiwj ) × dG1(wi)]

+
∑

wi∈N(w∗)
wi∈G1

[(dG1(wiw∗) × dG1(wi)) + (dG2(w∗) × dG1(wi))]

+
∑

wi∈N(w∗)
wi∈G2

mi∑
j=1
j 	=∗

[dG2(wiwj ) × dG2(wi)]

+
∑

wi∈N(w∗)
wi∈G2

[(dG2(wiw∗) × dG2(wi)) + (dG1(w∗) × dG2(wi))]

= B2(G1) +B2(G2) +
mi∑

j=1
j∈G1

[(dG1(w∗wj) × dG2(w∗))

+ (dG1(w∗) × dG2(w∗)) + d2
G2

(w∗)]

+
mi∑

j=1
j∈G2

[(dG2(w∗wj) × dG1(w∗)) + d2
G1

(w∗) + (dG1(w∗) × dG2(w∗))]

+
∑

wi∈N(w∗)
wi∈G1

[(dG2(w∗) × dG1(wi))] +
∑

wi∈N(w∗)
wi∈G2

[(dG1(w∗) × dG2(wi))]

= B2(G1) +B2(G2) + dG2(w∗)
mi∑

j=1
j∈G1

[dG1(w∗wj)]

+ [degG1(w∗) + degG2(w∗)][(dG1(w∗) × dG2(w∗))]
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+ degG1(w∗)d2
G2

(w∗) + dG1(w∗)
mi∑

j=1
j∈G2

[dG2(w∗wj)] + degG2(w∗)d2
G1

(w∗)

+ dG2(w∗)
∑

wi∈N(w∗)
wi∈G1

[dG1(wi)] + dG1(w∗)
∑

wi∈N(w∗)
wi∈G2

[dG2(wi)]

= B2(G1) +B2(G2) + [degG1(w∗) + degG2(w∗)][(dG1(w∗) × dG2(w∗))]

+ dG1(w∗)

⎡
⎢⎢⎣

mi∑
j=1
j∈G2

[dG2(w∗wj)] + degG2(w∗)dG1(w∗) +
∑

wi∈N(w∗)
wi∈G2

[dG2(wi)]

⎤
⎥⎥⎦

+ dG2(w∗)

⎡
⎢⎢⎣

mi∑
j=1
j∈G1

[dG1(w∗wj)] + degG1(w∗)dG2(w∗) +
∑

wi∈N(w∗)
wi∈G1

[dG1(wi)]

⎤
⎥⎥⎦ .

�

Example 13.2.6. Consider the fuzzy graphs G1 = (σ1,μ1) and G2 = (σ2,μ2) given
in Fig. 13.2 with σ ∗

1 = {s1, s2, s3, s4} and σ ∗
2 = {r1, r2, r3} where μ1(s1s2) = 0.3,

μ1(s1s4) = 0.4, μ1(s2s3) = 0.2, μ1(s2s4) = 0.5, μ1(s3s4) = 0.7, μ2(r1r2) = 0.3,
μ2(r1r3) = 0.2, and μ2(r2r3) = 0.9.

FIGURE 13.2

Fuzzy coalescence of two fuzzy graphs G1 and G2.

After finding coalescence of G1 and G2, we calculate B1(G1.G2)(s4, r3 : w∗) =
1.1 + 0.7 + 1.1 + 1 + 1.5 + 1 + 1.5 + 0.9 + 2.6 + 0.7 + 2.6 + 2.7 + 2.2 + 0.9 + 2.2 +
2.7 + 1.1 + 1.2 + 1.1 + 0.5 + 2.8 + 2.7 + 2.8 + 0.5 + 2.1 + 2.7 + 2.1 + 1.2 + 2.7 +
1 + 2.7 + 2.7 = 55.3. Now using Theorem 13.2.1 we can find this without actually
finding (G1.G2)(s4, r3 : w∗), B1(G1.G2)(s4, r3 : w∗) = 1.1 + 0.7 + 1.1 + 1 + 1.5 +
1 + 1.5 + 0.9 + 1.5 + 0.7 + 1.5 + 1.6 + 1.1 + 0.9 + 1.1 + 1.6 + 1.6 + 1 + 1.6 + 1.6 +
8(0.2 + 0.3 + 0.9) + 3(3 × 1.1 + 2 × 1.6) = 55.3.
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Similarly after finding coalescence of G1 and G2, we calculate B2(G1.G2)(s4, r3 :
w∗) = 1.1×0.7+1.1×1+1.5×1+1.5×0.9+2.6×0.7+2.6×2.7+2.2×0.9+
2.2 × 2.7 + 1.1 × 1.2 + 1.1 × 0.5 + 2.8 × 2.7 + 2.8 × 0.5 + 2.1 × 2.7 + 2.1 × 1.2 +
2.7 × 1 + 2.7 × 2.7 = 50.49. Now using Theorem 13.2.5, we can find this without
actually finding (G1.G2)(s4, r3 : w∗), B2(G1.G2)(s4, r3 : w∗) = 1.1 × 0.7 + 1.1 ×
1 + 1.5 × 1 + 1.5 × 0.9 + 1.5 × 0.7 + 1.5 × 1.6 + 1.1 × 0.9 + 1.1 × 1.6 + 1.6 × 1 +
1.6 × 1.6 + 1.1 × 1.2 + 1.1 × 0.5 + 1.2 × 1.1 + 1.2 × 0.5 + 0.5 × 1.1 + 0.5 × 1.2 +
([3 + 2] × 1.6 × 1.1) + 1.6 × ((1.2 + 0.5) + (2 × 1.6) + (0.5 + 1.2)) + 1.1((1.5 +
1.6 + 1.1) + (3 × 1.1) + (0.7 + 1 + 0.9)) = 50.49

Theorem 13.2.7. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1, |σ ∗

2 | = n2 and
|μ∗

1| = m1, |μ∗
2| = m2. Suppose the weight of all vertices in G1 and G2 is r , then the

first K-Banhatti index of corona product of fuzzy graphs G1 and G2 is B1(G1 ◦G2) =
B1(G1) + n1B1(G2) + 6(T n2 + Sn1) + 6r(m1n2 + m2n1) + rn1n2[3n2 − 1], where
T is the sum of all weights of edges in the fuzzy graph G1 and S is the sum of all
weight of edges in the fuzzy graph G2.

Proof. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1, |σ ∗

2 | = n2, and |μ∗
1| = m1,

|μ∗
2| = m2. Suppose σ(wi) = r for all vertices in G1 and G2, T be the sum of

all weight of edges in the fuzzy graph G1 and S be the sum of all weights of
edges in the fuzzy graph G2. Then B1(G1 ◦ G2) =

∑
ew

[dG1◦G2(e) + dG1◦G2(w)] =
n1(1+n2)∑

i=1

mi∑
j=1

[dG1◦G2(wiwj ) + dG1◦G2(wi)]. Here the vertex set of G1 ◦ G2 can be

treated as two cases. The first case is those vertices that belongs to G1 and the
second case is those vertices which belongs to the replica of G2. Now let us call
the union of replicas of G2 as G′

2. Now consider case one, it can again be di-
vided as two subcases, first one is those edges fully lies in G1 itself. Second
subcase is those edges having one vertex in G1 and other in G′

2. For subcase

one
∑

wi∈G1

mi∑
j=1

[dG1◦G2(wiwj ) + dG1◦G2(wi)] =
∑

wi∈G1

mi∑
j=1

[(dG1(wiwj ) + 2n2r) +

(dG1(wi) + n2r)] =
∑

wi∈G1

mi∑
j=1

[dG1(wiwj ) + dG1(wi) + 3n2r]. And for subcase two

∑
wi∈G1

mi∑
j=1

[dG1◦G2(wiwj ) + dG1◦G2(wi)] =
∑

wi∈G1

mi∑
j=1

[(dG1(wi) + dG2(wj ) + (n2 −

1)r) + (dG1(wi) + n2r)] =
∑

wi∈G1

mi∑
j=1

[2dG1(wi) + dG2(wj ) + (2n2 − 1)r]. Now con-

sider case two, here also it has two subcases as of case one. The first one consist
of edges that fully lie in G′

2 itself. Second subcase is those edges having one vertex

in G′
2 and other in G1. For subcase one

∑
wi∈G′

2

mi∑
j=1

[dG1◦G2(wiwj ) + dG1◦G2(wi)] =
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∑
wi∈G′

2

mi∑
j=1

[(dG2(wiwj )+2r)+(dG2(wi)+r)]=
∑

wi∈G′
2

mi∑
j=1

[dG2(wiwj )+dG2(wi)+3r]

and for subcase two
∑

wi∈G′
2

mi∑
j=1

[dG1◦G2(wiwj )+dG1◦G2(wi)] =
∑

wi∈G′
2

mi∑
j=1

[(dG2(wi)+

dG1(wj ) + (n2 − 1)r) + (dG2(wi) + r)] =
∑

wi∈G′
2

mi∑
j=1

[dG1(wj ) + 2dG2(wi) + n2r].

Now from cases 1 and 2 and its subcases, it can be concluded that

B1(G1 ◦G2) =
∑

wi∈G1

mi∑
j=1

[dG1(wiwj )+dG1(wi)+3n2r]+
∑

wi∈G1

mi∑
j=1

[2dG1(wi)+
dG2(wj ) + (2n2 − 1)r]
+

∑
wi∈G′

2

mi∑
j=1

[dG2(wiwj ) + dG2(wi) + 3r] +
∑

wi∈G′
2

mi∑
j=1

[dG1(wj ) + 2dG2(wi) + n2r]

= B1(G1)+n1B1(G2)+ 3
∑

wi∈G1

mi∑
j=1

n2r +
∑

wi∈G1

mi∑
j=1

[2dG1(wi)+dG2(wj )+ (2n2 −

1)r]+3
∑

wi∈G′
2

mi∑
j=1

r +
∑

wi∈G′
2

mi∑
j=1

[dG1(wj )+2dG2(wi)+n2r]= B1(G1)+n1B1(G2)+

6m1n2r + 4T n2 + 2Sn1 + n1n2[(2n2 − 1)r] + 6m2n1r + 2T n2 + 4Sn1 + n1n
2
2r= B1(G1) + n1B1(G2) + 6(T n2 + Sn1) + 6r(m1n2 + m2n1) + rn1n2[3n2 − 1]. �

Theorem 13.2.8. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1, |σ ∗

2 | = n2, and
|μ∗

1| = m1, |μ∗
2| = m2. Let t ′i s be the weight of edges in G1 and s′

i s be the weight
of edges in G2 and the weight of all vertices in G1 and G2 is r , then the second
K-Banhatti index of corona product of fuzzy graphs G1 and G2 is

B2(G1 ◦ G2) = B2(G1) + n1B2(G2) + 2r(n1(Q +
∑

wi∈G2

[degG2(wi)dG2(wi)])

+ n2(R + 2Sn1 + 2T n2 +
∑

wi∈G1

[degG1(wi)dG1(wi)]))

+ 2(n2[
n1∑
i=1

t2
i +

∑
d(wi,wj )=1

ti tj ] + n1[
n2∑
i=1

s2
i +

∑
d(wi ,wj )=1

sisj ])

+ 8T S + r2(4m1n
2
2 + 4n1m2 + (n2

2 − 12)n1n2),

where T is the sum of all weight of edges in the fuzzy graph G1, S is the sum of all
weight of edges in the fuzzy graph G2, R be the sum of degree of all edges in the fuzzy
graph G1 and Q be the sum of degree of all edges in the fuzzy graph G2.
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Proof. Let G1 and G2 be two fuzzy graphs with |σ ∗
1 | = n1, |σ ∗

2 | = n2, and |μ∗
1| = m1,

|μ∗
2| = m2. Suppose that σ(wi) = r for all vertices in G1 and G2. Let t ′i s be the

weight of edges in G1 and s′
i s be the weight of edges in G2. By definition same

weights are followed in G1 ◦ G2 also. Let T be the sum of all weight of edges in the
fuzzy graph G1, S be the sum of all weight of edges in the fuzzy graph G2, R be
the sum of degree of all edges in the fuzzy graph G1 and Q be the sum of degree
of all edges in the fuzzy graph G2. Then B2(C) =

∑
ew

[dG1◦G2(e) × dG1◦G2(w)] =
n1(1+n2)∑

i=1

mi∑
j=1

[dG1◦G2(wiwj ) × dG1◦G2(wi)]. Here the vertex set of G1 ◦ G2 can be

treated as two cases. The first case is those vertices which belongs to G1 and
the second case is those vertices which belongs to the replica of G2. Now let
us call the union of replicas of G2 as G′

2. Now consider case one, it can again
be divided as two sub cases, first one is those edges that fully lies in G1 itself.
Second subcase is those edges having one vertex in G1 and other in G′

2. For

subcase one
∑

wi∈G1

mi∑
j=1

[dG1◦G2(wiwj ) × dG1◦G2(wi)] =
∑

wi∈G1

mi∑
j=1

[(dG1(wiwj ) +

2n2r) × (dG1(wi) + n2r)] =
∑

wi∈G1

mi∑
j=1

[dG1(wiwj )dG1(wi) + dG1(wiwj )n2r +

2n2rdG1(wi) + 2n2
2r

2]. For subcase two
∑

wi∈G1

mi∑
j=1

[dG1◦G2(wiwj ) × dG1◦G2(wi)] =

∑
wi∈G1

mi∑
j=1

[(dG1(wi)+dG2(wj )+(n2 −1)r)×(dG1(wi)+n2r)]=
∑

wi∈G1

mi∑
j=1

[d2
G1

(wi)+

dG2(wj )dG1(wi) + dG2(wj )n2r + (2n2 − 1)rdG1(wi) + (n2 − 1)n2r
2].

Now consider case two, here also it has two subcases as of case one. The first one
is those edges fully lies in G′

2 itself. Second subcase is those edges having one vertex
in G′

2 and other in G1. For subcase one∑
wi∈G′

2

mi∑
j=1

[dG1◦G2(wiwj ) × dG1◦G2(wi)] =

∑
wi∈G′

2

mi∑
j=1

[(dG2(wiwj ) + 2r) × (dG2(wi) + r)]

=
∑

wi∈G′
2

mi∑
j=1

[dG2(wiwj )dG2(wi) + dG2(wiwj )r + 2rdG2(wi) + 2r2] and for subcase

two∑
wi∈G′

2

mi∑
j=1

[dG1◦G2(wiwj ) × dG1◦G2(wi)]
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=
∑

wi∈G′
2

mi∑
j=1

[(dG2(wi)+dG1(wj )+(n2 −1)r)×(dG2(wi)+r)]=
∑

wi∈G′
2

mi∑
j=1

[d2
G2

(wi)+

dG1(wj )dG2(wi) + rdG1(wj ) + n2rdG2(wi) + (n2 − 1)r2].
Now from cases 1 and 2 and its subcases, it can be concluded that B2(G1 ◦G2) =∑

wi∈G1

mi∑
j=1

[dG1(wiwj )dG1(wi) + dG1(wiwj )n2r + 2n2rdG1(wi) + 2n2
2r

2]

+
∑

wi∈G1

mi∑
j=1

[d2
G1

(wi)+dG2(wj )dG1(wi)+dG2(wj )n2r +(2n2 −1)rdG1(wi)+(n2 −

1)n2r
2]

+
∑

wi∈G′
2

mi∑
j=1

[dG2(wiwj )dG2(wi) + dG2(wiwj )r + 2rdG2(wi) + 2r2]

+
∑

wi∈G′
2

mi∑
j=1

[d2
G2

(wi) + dG1(wj )dG2(wi) + rdG1(wj ) + n2rdG2(wi) + (n2 − 1)r2]

= B2(G1) + n1B2(G2) + 2Rn2r +
∑

wi∈G1

[2n2rdegG1(wi)dG1(wi)] + 4m1n
2
2r

2

+ 2n2[
∑

i∈μ1∗
t2
i +

∑
d(wi ,wj )=1

ti tj ] + 4T S + 2Sn1n2r + 2T n2(2n2 − 1)r + (n2 −

1)n1n
2
2r

2

+2n1Qr+n1

∑
wi∈G2

[2rdegG2(wi)dG2(wi)]+4n1m2r
2 +2n1[

n2∑
i=1

s2
i +

∑
d(wi ,wj )=1

sisj ]

+ 4T S + 2T n2r + 2Sn1n2r + n1n2(n2 − 1)r2

= B2(G1) + n1B2(G2) + 2r(n1(Q +
∑

wi∈G2

[degG2(wi)dG2(wi)]) + n2(R + 2Sn1 +

2T n2 +
∑

wi∈G1

[degG1(wi)dG1(wi)])) + 2(n2[
n1∑
i=1

t2
i +

∑
d(wi ,wj )=1

ti tj ]

+n1[
n2∑
i=1

s2
i +

∑
d(wi ,wj )=1

sisj ])+ 8T S + r2
(

4m1n
2
2 + 4n1m2 + (n2

2 − 12)n1n2

)
. �

Example 13.2.9. Let G1 = (σ1,μ1) and G2 = (σ2,μ2) be two fuzzy graphs given in
Fig. 13.3 with σ ∗

1 = {w1,w2,w3,w4} and σ ∗
2 = {q1, q2, q3}. Let σ1(wi) = 0.7 for all i

and σ2(qi) = 0.7 for all i. Also μ1(w1w2) = 0.3, μ1(w1w3) = 0.5, μ1(w1w4) = 0.4,
μ1(w2w4) = 0.2, μ1(w3w4) = 0.1, μ2(q1q2) = 0.4, and μ2(q2q3) = 0.1.

After finding the corona product of fuzzy graphs G1 and G2 as given in Fig. 13.3
we can find B1(G1 ◦G2) = 5.3 + 3.3 + 5.3 + 2.6 + 5.3 + 3.3 + 5.3 + 2.8 + 5 + 3.3 +
5+2.7+5+2.6+5+2.8+5.3+2.8+5.3+2.7+1.5+1.1+1.5+1.2+1.8+1.2+
1.8+0.8+1.5+1.1+1.5+1.2+1.8+1.2+1.8+0.8+1.5+1.1+1.5+1.2+1.8+
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FIGURE 13.3

Corona product of two fuzzy graphs G1 and G2.

1.2 + 1.8 + 0.8 + 1.5 + 1.1 + 1.5 + 1.2 + 1.8 + 1.2 + 1.8 + 0.8 + 3 + 1.1 + 3 + 3.3 +
3.1+1.2+3.1+3.3+2.7+0.8+2.7+3.3+2.3+1.1+2.3+2.6+2.3+1.2+2.3+
2.6 + 2 + 0.8 + 2 + 2.6 + 2.5 + 1.1 + 2.5 + 2.8 + 2.6 + 1.2 + 2.6 + 2.8 + 2.2 + 0.8 +
2.2 + 2.8 + 2.4 + 1.1 + 2.4 + 2.7 + 2.5 + 1.2 + 2.5 + 2.7 + 2.1 + 0.8 + 2.1 + 2.7 =
230.5. Now from Theorem 13.2.7, the first K-Banhatti index can be calculated as
B1(G1 ◦ G2) = 1.1 + 1.2 + 1.1 + 0.5 + 0.8 + 1.2 + 0.8 + 0.6 + 0.8 + 0.5 + 0.8 +
0.7 + 1.1 + 0.6 + 1.1 + 0.7 + 1.1 + 1.2 + 1.1 + 0.7 + 4 × (0.1 + 0.5 + 0.1 + 0.4 +
0.4 + 0.1 + 0.4 + 0.5) + 6 × (1.5 × 3 + 0.5 × 4) + 6 × 0.7 × (5 × 3 + 2 × 4) + 0.7 ×
4 × 3 × (3 × 3 − 1) = 230.5.
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Similarly after finding the corona product of fuzzy graphs G1 and G2 as given in
Fig. 13.3 we can find B2(G1 ◦G2) = 5.3×3.3+5.3×2.6+5.3×3.3+5.3×2.8+5×
3.3+5×2.7+5×2.6+5×2.8+5.3×2.8+5.3×2.7+1.5×1.1+1.5×1.2+1.8×
1.2+1.8×0.8+1.5×1.1+1.5×1.2+1.8×1.2+1.8×0.8+1.5×1.1+1.5×1.2+
1.8 × 1.2 + 1.8 × 0.8 + 1.5 × 1.1 + 1.5 × 1.2 + 1.8 × 1.2 + 1.8 × 0.8 + 3 × 1.1 + 3 ×
3.3+3.1×1.2+3.1×3.3+2.7×0.8+2.7×3.3+2.3×1.1+2.3×2.6+2.4×1.2+
2.4 × 2.6 + 2 × 0.8 + 2 × 2.6 + 2.5 × 1.1 + 2.5 × 2.8 + 2.6 × 1.2 + 2.6 × 2.8 + 2.2 ×
0.8+2.2×2.8+2.4×1.1+2.4×2.7+2.5×1.2+2.5×2.7+2.1×0.8+2.1×2.7 =
294.89. Now from Theorem 13.2.8, the second K-Banhatti index can be calculated as
B2(G1 ◦G2) = (1.1×1.2+1.1×0.5+0.8×1.2+0.8×0.6+0.8×0.5+0.8×0.7+
1.1×0.6+1.1×0.7+1.1×1.2+1.1×0.7)+4×(0.1×0.5+0.1×0.4+0.4×0.1+
0.4×0.5)+2×0.7× (4× (0.5+1×0.4+2×0.5+1×0.1)+3× (4.9+2×0.5×
4+2×1.5×3+3×1.2+2×0.5+3×0.7+2×0.6))+2× (3× (0.55+0.72)+4×
(0.17+0.04))+8×1.5×0.5+0.72 × (4×5×32 +4×4×2+ (32 −12)×4×3) =
294.89.

13.3 Algorithm for Banhatti indices
The algorithm to determine a fuzzy graph’s first and second K-Banhatti indices is
covered in this section.

Algorithm 13.3.1. Let G = (σ,μ) be a fuzzy graph with σ ∗ = {w1,w2, · · · ,wn}.
1. Construct a matrix A = [aij ] with aij = μ(wiwj ).

2. Construct a matrix B = [bij ] with bij =

⎧⎪⎨
⎪⎩

n∑
k=1

aik +
n∑

l=1

ajl − 2aij if aij 	= 0

0 if aij = 0

.

3. Construct a matrix C = [cij ] with cij =

⎧⎪⎨
⎪⎩

n∑
k=1

aik + bij if aij 	= 0

0 if aij = 0

.

4. Construct a matrix D = [dij ] with dij =

⎧⎪⎨
⎪⎩

n∑
k=1

aik × bij if aij 	= 0

0 if aij = 0

.

5. Then B1(G) =
n∑

i=1

n∑
j=1

cij and B2(G) =
n∑

i=1

n∑
j=1

dij .

Illustration of algorithm 13.3.2. Let G = (σ,μ) be a fuzzy graph in Fig. 13.4 with
σ ∗ = {w1,w2,w3,w4,w5,w6, w7,w8,w9} and μ(w1w2) = 0.1, μ(w1w3) = 0.4,
μ(w2w3) = 0.5, μ(w2w6) = 0.4, μ(w3w9) = 0.3, μ(w4w5) = 0.6, μ(w4w7) = 0.1,
μ(w5w8) = 0.3, μ(w6w7) = 0.9, μ(w7w8) = 0.2, μ(w8w9) = 0.7.
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FIGURE 13.4

Fuzzy graph for the illustration for Algorithm.

Step 1: Construct a matrix A = [aij ] with aij = μ(wiwj ). This is the matrix

corresponding to the given fuzzy graph

A =

w1 w2 w3 w4 w5 w6 w7 w8 w9⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w1 0 0.1 0.4 0 0 0 0 0 0
w2 0.1 0 0.5 0 0 0.4 0 0 0
w3 0.4 0.5 0 0 0 0 0 0 0.3
w4 0 0 0 0 0.6 0 0.1 0 0
w5 0 0 0 0.6 0 0 0 0.3 0
w6 0 0.4 0 0 0 0 0.9 0 0
w7 0 0 0 0.1 0 0.9 0 0.2 0
w8 0 0 0 0 0.3 0 0.2 0 0.7
w9 0 0 0.3 0 0 0 0 0.7 0

Step 2: Construct a matrix B = [bij ] with

bij =

⎧⎪⎨
⎪⎩

n∑
k=1

aik +
n∑

l=1

ajl − 2aij if aij 	= 0

0 if aij = 0

. This is a matrix showing corre-

sponding fuzzy edge degrees.
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B =

w1 w2 w3 w4 w5 w6 w7 w8 w9⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w1 0 1.3 0.9 0 0 0 0 0 0
w2 1.3 0 1.2 0 0 1.5 0 0 0
w3 0.9 1.2 0 0 0 0 0 0 1.6
w4 0 0 0 0 0.4 0 1.7 0 0
w5 0 0 0 0.4 0 0 0 1.5 0
w6 0 1.5 0 0 0 0 0.7 0 0
w7 0 0 0 1.7 0 0.7 0 2 0
w8 0 0 0 0 1.5 0 2 0 0.8
w9 0 0 1.6 0 0 0 0 0.8 0

Step 3: Construct a matrix C = [cij ] with cij =

⎧⎪⎨
⎪⎩

n∑
k=1

aik + bij if aij 	= 0

0 if aij = 0

.

C =

w1 w2 w3 w4 w5 w6 w7 w8 w9⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w1 0 1.8 1.4 0 0 0 0 0 0
w2 2.3 0 2.2 0 0 2.5 0 0 0
w3 2.1 2.4 0 0 0 0 0 0 2.8
w4 0 0 0 0 1.1 0 2.4 0 0
w5 0 0 0 1.3 0 0 0 2.4 0
w6 0 2.8 0 0 0 0 2 0 0
w7 0 0 0 2.9 0 1.9 0 3.2 0
w8 0 0 0 0 2.7 0 3.2 0 2
w9 0 0 2.6 0 0 0 0 1.8 0

Step 4: Construct a matrix D = [dij ] with dij =

⎧⎪⎨
⎪⎩

n∑
k=1

aik × bij if aij 	= 0

0 if aij = 0

D =

w1 w2 w3 w4 w5 w6 w7 w8 w9⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w1 0 0.65 0.45 0 0 0 0 0 0
w2 1.3 0 1.2 0 0 1.5 0 0 0
w3 1.08 1.44 0 0 0 0 0 0 1.92
w4 0 0 0 0 0.28 0 1.19 0 0
w5 0 0 0 0.36 0 0 0 1.35 0
w6 0 1.95 0 0 0 0 0.91 0 0
w7 0 0 0 2.04 0 0.84 0 2.4 0
w8 0 0 0 0 1.8 0 2.4 0 0.96
w9 0 0 1.6 0 0 0 0 0.8 0

Step 5: In this step the first and second K-Banhatti indices are found. Now the
first and second K-Banhatti indices are the sum of all entries in C and D, respectively,
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i.e., B1(G) = 1.8 + 1.4 + 2.3 + 2.2 + 2.5 + 2.1 + 2.4 + 2.8 + 1.1 + 2.4 + 1.3 +
2.4 + 2.8 + 2 + 2.9 + 1.9 + 3.2 + 2.7 + 3.2 + 2 + 2.6 + 1.8 = 49.8 and B2(G) =
0.65 + 0.45 + 1.3 + 1.2 + 1.5 + 1.08 + 1.44 + 1.92 + 0.28 + 1.19 + 0.36 + 1.35 +
1.95 + 0.91 + 2.04 + 0.84 + 2.4 + 1.8 + 2.4 + 0.96 + 1.6 + 0.8 = 28.42.

13.4 Application
Let A be a organization, with W and M representing two distinct teams within the
organization. It is assumed that both team W and team M are provided with identical
data sets for analysis. In the context of this analysis, two significant factors come into
play: “pre-knowledge” and “knowledge sharing.” The term “pre-knowledge” refers
to the understanding or expertise that each team member possesses before engag-
ing in the analysis. This pre-existing knowledge is not uniform across all members; it
varies based on their backgrounds, experiences, and capabilities. This diversity in pre-
knowledge is captured by the concept of fuzzy subset, symbolized by σ . On the other
hand, “knowledge sharing” refers to the exchange of insights and information among
team members during discussions. This interplay of ideas contributes to the overall
analytical process. The dynamics of this knowledge sharing are described by a fuzzy
relation, designated as μ. This fuzzy relation outlines how effectively information is
communicated between any two individuals during their discussions. Now, let’s con-
sider the concept of vertex. In a graph, a vertex is a point that represents an entity,
often linked to other vertices by edges. In this context, a vertex represents a team
member, and the edges between vertices symbolize the knowledge shared during in-
teractions. In this context, the degree of an arbitrary vertex equates to the cumulative
knowledge shared by a team member through their interactions with fellow members.
During discussions involving a pair of team members, a trainee is involved to ensure
the quality of the shared knowledge. This trainee reviews and cross-references the
information exchanged by these two individuals with the rest of the team, excluding
the immediate pair. This cross-referencing process corresponds to degree of the edge
connecting these two team members. In essence, it quantifies the depth and accu-
racy of knowledge shared between them. By considering all potential combinations
of team members and trainees, the cumulative output of knowledge sharing is com-
puted by summing the contributions from both the individual team members and the
assisting trainees in each such case. The aggregation of these knowledge-sharing out-
puts parallels the essence of the first K-Banhatti index within the plotted fuzzy graph.
Given that effective discussions among team members inherently involve the shar-
ing of at most one person’s existing knowledge, this scenario aptly aligns with the
concept of a complete fuzzy graph. Leveraging Theorem 13.1.14, the computation
of the first K-Banhatti index within the graphical representation becomes an expe-
dited endeavor. The theorem provides a formula to efficiently calculate this index,
which characterizes the intensity of knowledge sharing within the fuzzy graph. By
constructing separate fuzzy graphs for team W and team M , a comparison can be
drawn between their respective outputs. The team that contributes more to the analy-
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sis is determined by evaluating their first K-Banhatti index. In simpler terms, a higher
first K-Banhatti index signifies a team with more substantial output.

13.5 Exercises
1. Calculate first and second Banhatti indices of the fuzzy graph G = (σ,μ) given by
σ ∗ = {w1,w2,w3,w4,w5,w6,w7}, σ(x) = 1 for every x ∈ σ ∗ and μ(w1w2) = 0.3,
μ(w1w3) = 0.1, μ(w2w3) = 0.4, μ(w2w4) = 0.3, μ(w2w5) = 0.5, μ(w3w6) = 0.6,
μ(w3w7) = 0.2, μ(w5w6) = 0.1.

2. Let G be a fuzzy tree and F its unique spanning tree. Show that the first and second
Banhatti indices of F are always bounded by that of G.

3. In Example 13.2.6, replace all weights by one. Calculate the Banhatti indices of
the coalescence of G1 and G2. What do you observe?
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graphs©�

The cycle connectivity of a network allows us to determine the cyclic flow and hence
to determine the cyclic reachability of the network. Cycle connectivity depends on
the strength of all strong cycles in a fuzzy graph. As a result, certain classes of fuzzy
graphs, like fuzzy trees, that lack strong cycles are left behind. Due to the presence of
cycles in fuzzy trees, it is important to consider the cyclic flow in a fuzzy tree network.
The purpose of this chapter is to study a generalized version of cycle connectivity in
fuzzy graphs, which takes into account of the strengths of all cycles in a fuzzy graph.
This chapter entirely depends on [7]. Basic works on cycle connectivity can be seen
in [16,50,64,83].

14.1 Generalized cycle connectivity
In this section, generalized cycle connectivity in fuzzy graphs are studied, by consid-
ering all cycles in the fuzzy graph.

Consider a fuzzy graph G = (σ , μ). The set

θg(u, v) = {α : α is the strength of a cycle containing both u and v}

is called the θg- evaluation of u and v.
If there is no cycle containing a given pair of vertices u and v of G, then θg(u, v)

= φ.

Definition 14.1.1. Generalized cycle connectivity (GCC) between u and v in a
fuzzy graph G is given by

C
g
D(u, v) = Max {α : α ∈ θg(u, v), u, v ∈ σ ∗}.

If θg(u, v) = ∅ for some u and v in σ ∗, then it indicates that there is no cycle con-
taining u and v in D, and hence we set C

g
D(u, v) = 0.

Example 14.1.2. For a fuzzy graph D = (σ,μ) with vertex set σ ∗ = {u1, u2, u3, u4,

u5}, μ(u1u2) = 0.5, μ(u1u3) = 0.6, μ(u2u3) = 0.3, μ(u2u4) = 0.8, μ(u3u4) = 0.7,
μ(u4u5) = 1, μ(u2u5) = 0.3 and μ(u3u5) = 0.2 (Fig. 14.1).
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FIGURE 14.1

Fuzzy graph G with C
g
G(u1, u4) = 0.5.

There are three cycles containing vertices u1 and u4 namely u1u2u4u3u1,
u1u2u4u5u3u1, and u1u2u5u4u3u1. Hence θg(u1, u4) = {0.5,0.2,0.3} and C

g
G(u1, u4)

= 0.5.
GCC of a fuzzy graph G is defined as

Cg(G) = Max {C
g
G(u, v) : u,v ∈ σ ∗}

That is, GCC of G is the strength of its strongest cycle.
It is obvious that Cg(G) is never greater than the strength of connectedness be-

tween any two vertices of G.
Since in a graph, each cycle is of strength 1, Cg(G) = 1 if G is cyclic and Cg(G)

= 0 if G is a tree.
Clearly, given a fuzzy graph G = (σ , μ), we have CC(G) ≤ Cg(G).

Proposition 14.1.3. For a partial fuzzy subgraph H = (τ, ν) of a fuzzy graph G =
(σ,μ), Cg(H) ≤ Cg(G).

Theorem 14.1.4. Let G = (σ,μ) be a complete fuzzy graph with vertex set σ ∗ =
{u1, u2, ..., un} such that σ(ui) = mi, (i = 1,2, ..., n) where mi’s are in the increas-
ing order of vertex strengths. Then, Cg(G) = mn−2.

Proof. Given G is complete. Then any 3 vertices of G are in a 3-cycle. Therefore in
order to find cycles of maximum strength in G, it is enough to find all the 3-cycles
of maximum strength in G. For, let C = u1u2u3u4 be a 4-cycle of strength p in
G. Consider the 3-cycles C1 = u2u4u1u2 and C2 = u2u4u3u2 in C. Such 3-cycles
exist as G is a CFG. Since C is a cycle of strength p, μ(uiuj ) ≥ p, ∀ edge uiuj

in C. Specifically, μ(u1u4) ≥ p and μ(u1u2) ≥ p. Hence, μ(u2u4) ≥ Min{μ(u1u4),
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μ(u1u2)} as there are no δ-edges in G. Thus μ(u2u4) ≥ p. Suppose μ(u2u4) = p.
Then C1 and C2 have strength p.

Now if μ(u2u4) > p, then at least one of C1 or C2 will have strength p.
Thus, in both cases, strength of C is the minimum of the strengths of C1 and C2.

That is, strengths of a 4-cycle and a 3-cycle are same in G.
Clearly, the 3-cycle formed by the vertices of maximum weight will have the

maximum strength in G. Thus C = un−2un−1unun−2 is a cycle of highest strength
with strength s(C) = mn−2 ∧ mn−1 ∧ mn = mn−2. Hence, Cg(G) = mn−2. �

It follows from the above mentioned theorem that a complete fuzzy graph G ex-
ists, with Cg(G) = m, for every m ∈ (0,1].

Suppose G is a fuzzy tree, then CG
u,v = 0 for every couple of vertices u and v in

G and hence CC(G) = 0. Since a fuzzy tree may contain cycles, we get the result
given below.

Theorem 14.1.5. Given a fuzzy tree G = (σ , μ). Then

Cg(G) =
{

0, G is a tree

wδ, otherwise

where wδ is the maximum weight of δ-edges in G.

Proof. Suppose G is a tree. Then, it is acyclic and hence Cg(G) = 0. Now suppose
G is cyclic. As a fuzzy tree, G lacks strong cycles. Thus, every cycle of G has at least
one δ-edge, and every such edge of G exists in at least one cycle in G. Let wδ be the
highest weight of δ-edges in G. Then, there is a cycle C in G of strength wδ . Since
the strength of each cycle in G is same as the weight of the weakest δ-edge in it, we
have Cg(G) = wδ . �

It is clear that a fuzzy cycle has no δ-edges. Hence GCC and cycle connectivity
of a fuzzy cycle G are equal to the strength of G.

Theorem 14.1.6 proves that the g-cycle connectivity of isomorphic fuzzy graphs
are equal.

Theorem 14.1.6. Consider two fuzzy graphs M = (σ,μ) and K = (τ, ν). If M and
K are isomorphic, then Cg(M) = Cg(K).

Proof. Since M and K are isomorphic, there is a bijection, say h : σ ∗ → τ ∗. For
σ ∗ = {u1, u2, · · · , un}, let h(uj ) = vj for j = 1,2, · · · , n. In that case,

μ(uiuj ) = ν(h(ui)h(uj )) = ν(vivj ).

Suppose that CM = {u1, u2, · · · , up}, p ≤ n, is a cycle of largest strength in M . That
is, s(CM) = Cg(M). Then, CN = {v1, v2, · · · , vp}, p ≤ n, is a cycle in K . It is left
to show that CK has the highest strength in K . Suppose there exists a cycle C̃K

in K with s(C̃K) > s(CK). Let C̃K = {ṽ1, ṽ2, · · · , ṽq}, q ≤ n. Then, corresponding
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to each ṽj ∈ τ ∗, there exists uj ∈ σ ∗ such that h(uj ) = ṽj , j = 1,2, · · · , q, q ≤
n. Since isomorphism on fuzzy graphs preserves vertex strength and weight of the
edges, the cycle {u1, u2, ..., uq} is supposed to be a cycle of highest strength in M .
But this results in a contradiction. Hence, CK is a cycle of highest strength in K with
Cg(K) = s(CK) = s(CM) = Cg(M). �

Theorem 14.1.7. Consider a fuzzy graph G. Suppose that K is a fuzzy graph formed
by removing an edge from G. If Cg(K) < Cg(G), then G contains a unique cycle C
of highest strength.

Proof. Assume that G contains at least two cycles, C and if possible, Ĉ of maximum
strength. Then either C or Ĉ are disjoint or they have at least one vertex in common.
In either cases, deletion of an edge e from C does not affect s(Ĉ). Let K = G − {e}.
Then, Cg(K) = s(Ĉ) = Cg(G), which is a contradiction. Hence, G has a unique
cycle of maximum strength. �

A fuzzy graph H = (σ ′,μ′) is considered a super fuzzy graph of a fuzzy graph G

if G is a fuzzy subgraph of H .

Theorem 14.1.8. Consider a fuzzy graph G = (σ,μ) with g-cycle connectivity
Cg(G). Then, a super fuzzy graph J of G can be constructed with Cg(J ) ≥ Cg(G).

Proof. If all edges of a fuzzy graph G are of equal weight, then clearly G is a super
graph of itself and Cg(G) ≥ Cg(G).

Suppose G = (σ,μ) is a fuzzy graph with σ ∗ = {u}. Then Cg(G) = 0. Construct
a fuzzy graph J = (σ̃ , μ̃) with σ̃ ∗ = σ ∗ ∪ {v,w} and μ̃∗ = {uv, vw,uw} given as

σ̃ (y) =
{

σ(y) : if y = u

1 : if y = v,w

and

μ̃∗(xy) = p, for some p ∈ (0,1], xy ∈ μ̃∗.

That is, J is the cycle uvwu. Thus in this case, it is evident that Cg(J ) = s(J ) > 0 =
Cg(G).

Now, suppose that σ ∗ = {u,v} with μ∗ = {uv}. Here, J can be constructed by
adding a vertex w such that σ̃ ∗ = {u,v,w} and μ̃∗ = {uv, vw,uw}. Rest of the proof
follows from the above case when σ ∗ = {u}.

Finally, suppose that σ ∗ = {u1, u2, · · · , un}. Let ukuk+1, for k < n, be an edge
of maximum weight in G with μ(ukuk+1) = p. Then Cg(G) ≤ p. Consider the sets
σ̃ ∗ = σ ∗ ∪ {v} and μ̃∗ = μ∗ ∪ {vu1, vu2, · · · , vun}. Then J = (σ̃ , μ̃) is a super fuzzy
graph of G. Assign μ̃∗(vui) = ∨{μ(uiuj ) : uj ∈ σ ∗, 1 ≤ i ≤ n}. Then the cycle
vukuk+1v is of strength p, which is the largest. Hence, Cg(J ) = p ≥ Cg(G). �
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14.2 Generalized cyclic cutvertices and bridges
This section focuses on the edges and vertices of a fuzzy graph G whose removal
change the g-cycle connectivity of G. A few results regarding the existence of such
vertices are also given.

Definition 14.2.1. Consider a fuzzy graph G = (σ,μ). A vertex u ∈ σ ∗ is called a
g-cyclic cutvertex of G if

Cg(G − u) < Cg(G).

In other words, if the removal of a vertex u from a fuzzy graph G reduces the
GCC of G, then u is a g-cyclic cutvertex.

Similarly, a g-cyclic bridge of G is an edge uv ∈ μ∗ such that

Cg(G − uv) < Cg(G).

That is, a g-cyclic bridge of a fuzzy graph G is that edge whose deletion reduces the
GCC of G.

Example 14.2.2. Consider an octahedral fuzzy graph G = (σ,μ) with σ ∗ =
{u1, u2, u3, u4, u5, u6}, μ(u1u2) = 0.6, μ(u1u3) = 0.9, μ(u1u5) = μ(u4u5) = 0.3,
μ(u1u6) = μ(u2u3) = 0.7, μ(u2u4) = 0.2, μ(u2u6) = 0.8, μ(u3u4) = μ(u3u5) =
0.5, μ(u4u6) = 0.2, and μ(u5u6) = 0.2 (Fig. 14.2).

FIGURE 14.2

Fuzzy graph containing g-cyclic cutvertices and bridges.

Here, Cg(G) = 0.6. Thus vertices u1 and u2 are g-cyclic cutvertices and u1u2 is
the g-cyclic bridge of G.

Note that a g-cyclic cutvertex need not be a cyclic cutvertex and a g-cyclic bridge
need not be a cyclic bridge.

Proposition 14.2.3. Suppose that uv is a g-cyclic bridge of a fuzzy graph G. Then
both u and v are g-cyclic cutvertices of G.
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Proof. Let edge uv be a g-cyclic bridge of G. Then, Cg(G − uv) < Cg(G).
Since Cg(G − u) ≤ Cg(G − uv), we have Cg(G − u) < Cg(G). Similarly,

Cg(G − v) < Cg(G) and hence u and v are g-cyclic cutvertices of G. �

It is noticeable that all vertices and edges of a fuzzy graph are, respectively, its
g-cyclic cutvertices and g-cyclic bridges if the underlying graph is a cycle. The fol-
lowing result is based on this idea and its proof is omitted.

Proposition 14.2.4. Suppose G is a fuzzy graph such that G∗ is a cycle. Then, every
vertex and edge of G are, respectively, g-cyclic cutvertices and g-cyclic bridges of G.

Theorem 14.2.5 gives a necessary and sufficient condition for the existence of
g-cyclic cutvertices in a fuzzy graph.

Theorem 14.2.5. A vertex r ∈ σ ∗ in a fuzzy graph G = (σ,μ) is a g-cyclic cutvertex
if and only if r lies on all cycles with maximum strength.

Proof. Suppose that u is a g-cyclic cutvertex of G. Then Cg(G − u) < Cg(G). That
is, deletion of u removes all cycles in G with maximum strength. Hence, u is a vertex
common to all cycles with largest strength in G.

Conversely, suppose that u lies on all cycles with greatest strength. Then G − u

removes all such cycles and hence Cg(G − u) < Cg(G). That is, u is a g-cyclic
cutvertex of G. �

Since all cycles are strong in a CFG, the condition for the existence of g-cyclic
cutvertices (or g-cyclic bridges) is the same as that of cyclic cutvertices (or cyclic
bridges), and hence we have the following result. Note that the existence of g-cyclic
cutvertex in a CFG consisting of three vertices is trivial.

Theorem 14.2.6. Consider a complete fuzzy graph G = (σ,μ) with σ ∗ = {u1, u2, ...,

un}, n ≥ 4. Let σ(ui) = mi , 1 ≤ i ≤ n where mi’s are in the increasing order of vertex
strength. Then G contains a g-cyclic cutvertex (or a g-cyclic bridge) if and only if
mn−3 < mn−2.

Proof. Suppose that v is a g-cyclic cutvertex of G. Then Cg(G− s) < Cg(G) which
implies that v lies in a unique cycle C of maximum strength. Since m1 ≤ m2 ≤ ... ≤
mn, the cycle C = un−2un−1un is of maximum strength mn−2, and v ∈ {un−2, un−1,
un}.

It is to prove that mn−3 < mn−2. If possible, suppose the contrary. That is mn−3 =
mn−2. Then the cycles C1 = un−2un−1un and C2 = unun−1un−3 will have the same
strength mn−2 and the removal of vertices un−2, un−1, or un will not reduce Cg(G).
This goes against our presumption that v is a g-cyclic cutvertex of G. Thus mn−3 <

mn−2.
Conversely, suppose that mn−3 < mn−2. Since mn−2 ≤ mn−1 ≤ mn and mn−3 <

mn−2, the cycle C = un−2un−1un will have the maximum strength. Hence removal
of un, un−1, or un−2 will reduce Cg(G) and thus the vertices of C are the g-cyclic
cutvertices of G. �
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The above theorem makes it obvious that a CFG contains three g-cyclic cutver-
tices (or g-cyclic bridges) if it exists.

For a complete fuzzy graph, the concept of cycle connectivity and g-cycle con-
nectivity coincides. Hence, the set of g-cyclic cutvertices (or g-cyclic bridges) is the
same as the set of cyclic cutvertices (or cyclic bridges). Similar is the case with fuzzy
cycles. Theorem 14.2.7 shows the existence of fuzzy graphs other than CFGs and
fuzzy cycles whose cyclic cutvertices and g-cyclic cutvertices coincide.

Theorem 14.2.7. Consider a fuzzy graph G containing exactly one cycle S of max-
imum strength. Let P denote the set of cyclic cutvertices and Q denote the set of
g-cyclic cutvertices of G. Then P = Q if and only if S is a strong cycle.

Proof. Assume that P = Q. Let z ∈ P . Then z ∈ Q. That is, z is a g-cyclic cutvertex
of G. Hence z lies in S and Cg(G − z) < Cg(G). Also z is a cyclic cutvertex and
hence it lies in some strong cycle S′ of maximum strength.

Suppose S �= S′. Then there is at least one vertex y that is a member of either S

or S′ but not both. This contradicts our assumption that P = Q. Hence, S is a strong
cycle.

For the converse, assume that S is a strong cycle. Being the only cycle of maxi-
mum strength, vertices of S are the g-cyclic cutvertices of G. Also since S is strong,
vertices of S are the cyclic cutvertices of G since the absence of any vertex of S

decreases the cycle connectivity of G. �

Definition 14.2.8. A fuzzy graph G is termed cyclically stable if it lacks both g-
cyclic cutvertices and g-cyclic bridges.

14.3 g -Cyclic vertex connectivity and edge connectivity
This section discusses the characteristics of the set of vertices and edges whose re-
moval minimizes the GCC of a fuzzy graph. A set of vertices W ⊆ σ ∗ is known as
g-cyclic vertex cut of the fuzzy graph G = (σ , μ) if Cg(G−W) < Cg(G), provided
G is not a tree.

Similar to a g-cyclic vertex cut, we can refer a collection of edges E ⊆ μ∗ as a
g-cyclic edge cut of G if Cg(G − E) < Cg(G).

Example 14.3.1. Consider a fuzzy graph G = (σ , μ) (Fig. 14.3) with σ ∗ =
{u1, u2, u3, u4, u5, u6} and μ(u1u2) = 0.32, μ(u2u6) = 0.75, μ(u6u3) = μ(u1u4)

= 0.55, μ(u3u4) = 0.75, μ(u1u5) = μ(u4u5) = 0.65, and μ(u5u6) = 0.85. There
are two cycles u1u5u4u1 and u5u6u3u4u5 of strength 0.55 which is equal to Cg(G).
Here the set W = {u3, u4} is a g-cyclic vertex cut and the set E = {u1u4, u3u6} is a
g-cyclic edge cut of G.

Consider a g-cyclic vertex cut W of a fuzzy graph G. The strong weight Sg of
W is given as

Sg(W) =
∑
u∈W

μ(uv),



228 CHAPTER 14 Generalized cycle connectivity of fuzzy graphs

FIGURE 14.3

Fuzzy graph with a g-cyclic vertex cut and a g-cyclic edge cut.

where μ(uv) is the weight of the weakest strong edge incident on u.
Similarly, a strong weight Sg of a g-cyclic edge cut E of G is defined as

Sg(E) =
∑
ej ∈E

μ(ej ),

where ej is a strong edge in E.

Definition 14.3.2. Consider a fuzzy graph G. g-cyclic vertex connectivity of G

denoted by κg(G) is defined as the minimum of strong weights of all g-cyclic vertex
cuts of G.

Definition 14.3.3. For a fuzzy graph G, g-cyclic edge connectivity κg(G) is defined
as the minimum of the nonzero strong weights of all g-cyclic edge cuts of G.

In Example 14.3.1, W1 = {u3, u4} and W2 = {u1, u4} are 2-gCVCs of G with
Sg(W1) = 0.65 + 0.75 = 1.4, Sg(W2) = 0.65 + 0.65 = 1.3. Also, {u5} is a g-cyclic
vertex cut with Sg({u5}) = 0.65, and hence κg(G) = 0.65.

The following result is evident and hence the proof is omitted.

Theorem 14.3.4. Consider a fuzzy graph G = (σ,μ). Let H = (τ, ν) be a partial
fuzzy subgraph of G. Then κg(H) ≤ κg(G).

The following theorem gives the g-cyclic vertex connectivity of a complete fuzzy
graph.

Theorem 14.3.5. Let G = (σ,μ) be a complete fuzzy graph with σ ∗ = {u1, u2, ..., un}
such that σ(ui) = mi , where mi’s are in the increasing order of vertex strength. Then
κg(G) = m1.

Proof. Consider a fuzzy graph G with vertex set σ ∗ = {u1, u2, ..., un} such that σ(ui)

= mi , where m1 ≤ m2 ≤ · · · ≤ mn, m1 being the lowest. Let S be the cycle of
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maximum strength in G. Then Cg(G) = strength of S. Hence, each vertex of S is
a g-cyclic cutvertex of G.

Since there exists at least one edge of weight m1 incident to each vertex ui (1
≤ i ≤ n), we have Sg({x}) = m1, where x is a g-cyclic cutvertex of G. Thus κg(G)

= m1, since m1 is the minimum of strong weights of all g-cyclic cutvertices of G. �

Next theorem gives a relationship between the g-cyclic vertex connectivity and
vertex connectivity of a complete fuzzy graph.

Theorem 14.3.6. Let G represent a complete fuzzy graph. Then κg(G) ≤ κ(G).

Proof. Consider a complete fuzzy graph G = (σ,μ) where σ ∗ = {u1, u2, ..., un}
with ds(u1) ≤ ds(u2) ≤ ... ≤ ds(un). Then ds(u1) = δs(G). We consider two cases:

Case 1. u1 is a g-cyclic cutvertex (Fig. 14.4).

FIGURE 14.4

Illustration to Case 1 of Theorem 14.3.6.

Then X = {u1} is a g-cyclic vertex cut of G. We have,

Sg(X) = ∧{μ(u1uj )},2 ≤ j ≤ n,where ∧ denotes minimum

≤
∑

μ(u1uj )

= δs(G)

Since κg(G) = min{Sg(X)}, where X is a g-cyclic vertex cut of G, we have,

κg(G) ≤ Sg(X) ≤ δs(G) = κ(G).

Case 2. u1 is not a g-cyclic cutvertex (Fig. 14.5).
Choose a g-cyclic vertex cut Y = {y1, y2, ..., ym} of G such that Sg(Y ) = κg(G).
It follows that

κg(G) = Sg(Y )

=
m∑

i=1

min{μ(yiuj )} ∀uj ∈ σ ∗, i �= j, j = 1,2, ..., n.
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FIGURE 14.5

Illustration to Case 2 (Theorem 14.3.6).

=
m∑

i=1

μ(yiu1)

≤ ds(u1)

= δs(G)

= κ(G)

Hence, in both cases, κg(G) ≤ κ(G). �

The upcoming result gives a version of Whitney’s theorem using g-cycle connec-
tivity in fuzzy graphs.

Theorem 14.3.7. Let G be a complete fuzzy graph. Then

κg(G) ≤ κg(G) ≤ δs(G).

Proof. Let C1,C2, ...,Cn be cycles of maximum strength in G. That is, these are the
cycles with strength equal to the g-cycle connectivity of G. Consider the set E =
{e1, e2, ..., en} where edge ei = uivi belongs to cycle Ci,1 ≤ i ≤ n. Then certainly
E is a g-cyclic edge cut of G. Let Sg(E) be the strong weight of E. Then it follows
from the definition of g-cyclic edge connectivity that

κg(G) ≤ Sg(G).

Consider the set Y = {y1, y2, ..., yn} where yi is an end vertex of the edge ei = xiyi ,
1 ≤ i ≤ n. Then Y is a g-cyclic vertex cut of G. Let Sg(Y ) be the strong weight of Y .
Then,

Sg(Y ) ≤ κg(G).

This is clear from the definition of g-cyclic vertex connectivity of G. Since κg(G) ≤
Sg(Y ), we have,

κg(G) ≤ Sg(Y )
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≤ κg(G)

≤ δs(G).

Thus κg(G) ≤ κg(G) ≤ δs(G). �

For a fuzzy tree G, κ(G) is literally the smallest weight of all strong edges in G

[63]. Similarly, we can relate κg(G) to the weights of strong edges in G as in the
theorem below.

Theorem 14.3.8. Consider a fuzzy tree G which is cyclic. Let C be the only cycle
of maximum strength in G. Then κg(G) = κg(G) = ∧{μ(uv) : uv is a strong edge in
C}.
Proof. Let G be a fuzzy tree with a unique maximum spanning tree F . Then all edges
of F are strong and for an edge uv not in F , there exists a path P joining u and v in
F whose strength is greater than μ(uv). Such an edge exists since G is cyclic.

Let uv be an edge of G that does not belong to F such that the cycle C formed by
uv and the u − v path in F is of greatest strength. Then all edges of C are g-cyclic
bridges and hence are the g-cyclic edge cuts of G. Thus, κg(G) is the minimum
weight of all strong edges in C. Since all vertices of C are g-cyclic cutvertices, we
have κg(G) = κg(G) = ∧{μ(uv) : vv is a strong edge in C}. �

Note that for a fuzzy tree G that is not cyclic, κg(G) = 0.
Since a fuzzy tree G lacks strong cycles, κc(G) = 0 and hence κc(G) ≤ κ(G). But

the case is different for g-cyclic vertex connectivity. Clearly, κg(G) = 0 and hence
κg(G) ≤ κ(G) for a fuzzy tree that is acyclic. The following theorem shows the case
when G is cyclic.

Theorem 14.3.9. Let G be a cyclic fuzzy tree. Then κg(G) ≥ κ(G).

Proof. Consider a cyclic fuzzy tree G. Let F be the unique maximum spanning tree
of G. Since G is cyclic, there exist at least one edge not in F . Clearly F contains
only strong edges and let uv be a strong edge of minimum weight w̃. Then κ(G) =
μ(uv) = w̃. Let C be a cycle of largest strength. There are two cases to consider:

Case 1. C is unique.
Suppose that C is the only cycle of maximum strength. There are two possibilities

that occur in this case:

Case 1.1. C contains the edge uv.
Since C is the only cycle of maximum strength, all vertices of C are g-cyclic

cutvertices and hence by Theorem 14.3.8, κg(G) = μ(uv) = w̃.
Thus κg(G) = κ(G) = w̃.

Case 1.2. C does not contain the edge uv.
Suppose that uv lies outside the cycle C. Then all strong edges in C have weight

greater than w̃. Hence, κg(G) > w̃.
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Thus in either cases, κg(G) ≥ κ(G).

Case 2. C is not unique.
Suppose there exists more than one cycle of maximum strength. Let C′ be a cycle

of maximum strength. If C and C′ have a vertex in common, then it is a g-cyclic
cutvertex and hence κg(G) ≥ μ(uv) = w̃, since uv is a strong edge of minimum
weight.

If C and C′ does not have any vertex in common, then clearly every g-cyclic
vertex cut of G contains at least two vertices. Hence, the strong weight of all g-
cyclic vertex cuts exceeds w̃ and thus κg(G) ≥ w̃. Thus both the cases conclude that
κg(G) ≥ κ(G). �

We can define a g-cyclic end vertex as the vertex u that lies on a cycle which is
not a g-cyclic cutvertex of G. It is known that a cyclic cutvertex is never a fuzzy end
vertex [13]. But the situation differs in the case of g-cyclic cutvertices. A g-cyclic
cutvertex can be a fuzzy end vertex as seen in the example below.

Example 14.3.10. Let G = (σ,μ) be a fuzzy graph with σ ∗ = {u1, u2, u3, u4, u5}
such that μ(u1u2) = μ(u2u5) = 0.5, μ(u1u3) = μ(u3u5) = 0.2, μ(u1u4) = 0.4, and
μ(u2u4) = 0.3, μ(u3u4) = 0.1, and μ(u2u3) = 0.6 (Fig. 14.6).

FIGURE 14.6

Fuzzy graph G with a g-cyclic cutvertex u4.

Here Cg(G) = 0.3 and the cycle u1u2u4u1 is of highest strength. Vertices u1, u2,
and u4 are the g-cyclic cutvertices of G. Note that the vertex u4 is a fuzzy end vertex
since u4 has exactly one strong neighbor u1.

Theorem 14.3.11. There always exist g-cyclic end vertices in a complete fuzzy
graph.

Proof. Let G = (σ,μ) be a complete fuzzy graph with |σ ∗| = n where σ ∗ =
{u1, u2, ..., un}. Let mi ∈ (0,1] be such that σ(ui) = mi , 1 ≤ i ≤ n, and mi’s are
in the increasing order of vertex strength. That is, u1 is the vertex of least strength.
We consider two cases:
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Case 1. G contains g-cyclic cutvertices.
Suppose G contain g-cyclic cutvertices. Then mn−3 < mn−2. In that case, the

cycle un−2un−1unun−2 will have the maximum strength and un−2, un−1, and un are
the g-cyclic cutvertices of G. In fact they are the only g-cyclic cutvertices since mi’s
are in the ascending order with mn−3 < mn−2. Being a CFG, all vertices of G lie on
some of its cycles. In particular, the remaining n − 3 vertices u1, u2,..., un−3 that are
not g-cyclic cutvertices lie on some cycles in G. Hence u1, u2,..., un−3 are g-cyclic
end vertices of G.

Case 2. G does not contain g-cyclic cutvertices.
Since all vertices of G lie on some cycles, they are precisely the g-cyclic end

vertices as none of them are g-cyclic cutvertices of G.
Thus, in both cases, a complete fuzzy graph always contains g-cyclic end vertices.

�

14.4 Cyclically stable fuzzy graphs
A cyclically stable fuzzy graph is one without any g-cyclic cutvertices and g-cyclic
bridges. Obviously, a complete fuzzy graph that is cyclically balanced is cyclically
stable, and vice versa. Thus we have the following result.

Theorem 14.4.1. Let G = (σ,μ) be a complete fuzzy graph with σ ∗ = {u1, u2, ..., un},
n ≥ 4. Choose mi ∈ (0,1] such that σ(ui) = mi , 1 ≤ i ≤ n, and m1 ≤ m2 ≤ ... ≤ mn.
Then G is cyclically stable if and only if mn−3 = mn−2.

Proof. Let u1, u2, ..., un ∈ σ ∗ be such that σ(ui) = mi, 1 ≤ i ≤ n with m1 ≤ m2 ≤
... ≤ mn.

Suppose that G is cyclically stable. We need to prove mn−3 = mn−2. Suppose
not. Then mn−3 < mn−2. Clearly, the cycle un−2un−1unun−2 is of maximum strength
since mn−3 < mn−2 and mi’s are in the increasing order of vertex strength. Hence,
removal of any of the three vertices un, un−1, and un−2 reduces the g-cycle connec-
tivity of G. Thus un, un−1, and un−2 are the g-cyclic cutvertices of G, which is a
contradiction to the fact that G is cyclically stable.

Conversely, suppose that mn−3 = mn−2. Then the cycles C′ = unun−1un−2un and
C′′ = unun−1un−3un have the same strength and hence removal of un−2, un−1, or un

will not reduce the g-cycle connectivity of G. Therefore there does not exist g-cyclic
cutvertex in G. That is, G is cyclically stable. �

Corollary 14.4.2. A complete fuzzy graph G = (σ,μ) with |σ ∗| ≥ 4 is cyclically
stable if there exists a subgraph K4 of G, where each cycle has the same maximal
strength.

Proof. Consider a complete fuzzy graph G = (σ,μ) with σ ∗ = {u1, u2, ..., un}. Let
mi ∈ (0,1] be such that σ(ui) = mi, 1 ≤ i ≤ n, and m1 ≤ m2 ≤ ... ≤ mn. A subgraph
K4 of G in which every cycle possesses equal maximum strength occurs only when
mn−3 = mn−2. Then by Theorem 14.4.1, G is cyclically stable. �
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Remark. For a complete fuzzy graph G = (σ,μ), let x ∈ σ ∗ be such that ds(x)

= 
s(G). Let C be a cycle of maximum strength among all cycles containing x.
Suppose σ ∗ = {u1, u2, ..., un} be such that σ(u1) ≤ σ(u2) ≤ ... ≤ σ(un). Then it can
be shown easily that x lies in the strong cycle unun−1un−2un. Clearly, this cycle is
of maximum strength. Hence, C = unun−1un−2un. Since ds(x) = 
s(G), it is clear
that x is of maximum vertex strength. That is, x = un. Hence, S(C) = Cg(G).

The following result shows the existence of cyclically stable fuzzy graphs with
|σ ∗| ≥ 6.

Theorem 14.4.3. Let G = (σ,μ) be a fuzzy graph with |σ ∗| ≥ 6. Then G is cyclically
stable if it satisfies the following:

1. There exist cycles C1 and C2 such that S(C1) = S(C2) = Cg(G).
2. All the cycles with strength equal to Cg(G) are disjoint.

Conversely, if a fuzzy graph is cyclically stable, then there exists at least two disjoint
cycles with strength equal to Cg(G).

Proof. Consider a fuzzy graph G with |σ ∗| ≥ 6 satisfying 1 and 2. Let C1 and C2 be
two disjoint cycles with S(C1) = S(C2) = Cg(G). Let r ∈ σ ∗.

Case 1. u /∈ V (C1 ∪ C2)

Suppose that u is a vertex not in C1 and C2. Then removal of u will not influence
the g-cycle connectivity of G − {u}.
Case 2. u ∈ V (C1) or u ∈ V (C2)

Suppose that u ∈ V (C1). Then deletion of u will not alter the g-cycle connectivity
of the graph as there exists a different cycle C2 with strength same as Cg(G).

Similar is the case when u ∈ V (C2).
Hence, u is not a g-cyclic cutvertex. Next we prove there are no g-cyclic bridges

in G.
Let uv ∈ μ∗. Suppose uv is not an edge of C1 and C2. That is, uv /∈ E(C1 ∪

C2). Then removal of uv will not affect the g-cycle connectivity of the graph G −
{us}. Similarly if uv ∈ E(C1) or rs ∈ E(C2), the removal of the edge uv will not
reduce Cg(G) as there always exists another cycle with strength same as the g-cycle
connectivity of G. Hence uv is not a g-cyclic bridge of G. Thus G is cyclically stable.

Conversely, suppose that G is cyclically stable. That is, G has no g-cyclic cutver-
tices and g-cyclic bridges. Suppose that there exists exactly one cycle C of maximum
strength. Then clearly all vertices and edges of C are g-cyclic cutvertices and g-cyclic
bridges respectively, contradicting the fact that G is cyclically stable. Hence, there ex-
ists at least two cycles with strength equal to Cg(G). Let C1 and C2 be two cycles of
equal strength with strength same as Cg(G). Now it remains to show that C1 and C2
are disjoint. Suppose not. Let z be a vertex common to both the cycles C1 and C2.
Removing the vertex z breaks C1 and C2 and hence reduces the g-cycle connectivity
of G. This leads to a contradiction since G is cyclically stable. Hence C1 and C2 are
disjoint. �
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Next, we analyze the existence of cyclically stable fuzzy graph G with |σ ∗| = 4
and 5. Note that the number of edges incident to a vertex u in G is denoted by the
symbol d(r).

Theorem 14.4.4. A fuzzy graph G with |σ ∗| = 4 is cyclically stable if and only if
there exists at least four cycles of maximum strength in G.

Proof. Suppose G is cyclically stable. We need to prove G contains at least four
cycles of maximum strength.

Suppose G has exactly one cycle of maximum strength. Then all its vertices and
edges are g-cyclic cutvertices and g-cyclic bridges respectively.

Assume G have two cycles of maximum strength as illustrated below (Fig. 14.7).
Then G, being a fuzzy graph with 4 vertices, any pair of cycles in G will have at least
one vertex in common. In particular, the pair of cycles with maximum strength will
have at least one common vertex and removal of this vertex will reduce the g-cycle
connectivity of the graph.

FIGURE 14.7

Fuzzy graph with two cycles of maximum strength.

G with exactly 3 cycles of maximum strength is illustrated in Fig. 14.8. Here there
are two vertices, namely b and d , that are g-cyclic cutvertices.

FIGURE 14.8

Fuzzy graph with exactly three cycles of maximum strength.

Thus, we can conclude that G is not cyclically stable if there are no more than 3
cycles of maximum strength.

Now consider a fuzzy graph G as illustrated below (Fig. 14.9). Since G is cycli-
cally stable, removal of any vertex or edge of G will not reduce Cg(G). If that is
the case, then the only possibility for G to be cyclically stable is when G contains at
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least four cycles of maximum strength, since then no vertex or edge will be a g-cyclic
cutvertex or g-cyclic bridge.

Conversely, suppose that G has at least four cycles of maximum strength. Let G =
(σ,μ) be such that σ ∗ = {u1, u2, u3, u4} and μ∗ = {u1u2, u2u3, u3u4, u4u1, u1u3,

u2u4} (Fig. 14.9).

FIGURE 14.9

Fuzzy graph with at least four cycles of maximum strength.

There are two possibilities to consider,
First, Let C1 = u1u2u4u1, C2 = u1u2u3u1, C3 = u1u4u3u1 and C4 = u2u4u3u2

be four cycles of maximum strength. Then the deletion of any of the vertices or edges
of G will not alter Cg(G) and hence G is cyclically stable.

Now let C1 = u1u2u4u1, C2 = u1u2u3u1, C3 = u1u4u3u1, and C4 = u1u2u3u4u1
be the four cycles of maximum strength. Consider the cycle C′ = u4u3u2u4. If
S(C′) < S(C1), then edges of C′ will have weight less than S(C1). This will af-
fect the strength of other cycles in G and hence is a contradiction to our assumption
that C1, C2, C3, and C4 are cycles of maximum strength. Thus no vertices or edges
of G are g-cyclic cutvertices or bridges. Clearly S(C′) is not greater than S(Ci),
i = 1,2,3,4, since Ci’s are chosen as cycles of maximum strength.

Hence in both possibilities, G is cyclically stable. �

Theorem 14.4.5. A fuzzy graph G = (σ,μ) with |σ ∗| = 5 is cyclically stable if it
satisfies the following conditions:

1. G has at least two vertices r and s with d(r) = d(s) = 4 and at most one vertex j

with d(j) ≤ 2.
2. Every cycle in G is of equal strength.

Proof. Suppose that G satisfies conditions 1 and 2. Let Cg(G) = p. Then s(C) = p

for all cycles C in G. Since G satisfies 2, it is clear that any vertex u removed from G

leaves behind at least one cycle in G − u and hence GCC of the graph is unaltered.
Thus no vertex or edge of G is a g-cyclic cutvertex or g-cyclic bridge, respectively,
and therefore G is cyclically stable. �

The converse of Theorem 14.4.5 need not be true. For instance, consider
G = (σ,μ) with σ ∗ = {u1, u2, u3, u4, u5}, μ(u1u2) = μ(u4u5) = 0.6, μ(u2u3) =
μ(u2u4) = μ(u1u4) = 0.5, μ(u1u5) = 0.3, μ(u1u3) = μ(u3u4) = 0.7, and μ(u2u5) =
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0.8 (Fig. 14.10). Clearly, G is cyclically stable with Cg(G) = 0.5. Note that there
are cycles of strength other than Cg(G) in G, which violates condition 2 of Theo-
rem 14.4.5, even though G meets condition 1.

FIGURE 14.10

Fuzzy graph not meeting condition 2 of Theorem 14.4.5.

Both conditions 1 and 2 are necessary for the cyclic stability of G described in
Theorem 14.4.5. For example, consider the fuzzy graph G given in Fig. 14.10. G

satisfies 1 but not 2 since there are cycles in G of strength different from 0.4, which
is the g-cycle connectivity of G. Note that the vertex k is a g-cyclic cutvertex of G

and hence G is not cyclically stable.
Fig. 14.11 shows a fuzzy graph G′ that contains cycles with the same strength.

Let a be the only vertex of G with d(a) = 4. That is, G′ meets condition 2 but not 1
of Theorem 14.4.5 (Fig. 14.12). It is evident that G′ is not cyclically stable as a is a
g-cyclic cutvertex of G′.

FIGURE 14.11

G satisfying 1 but not 2.

Theorem 14.4.6. There always exists a connected cyclically stable fuzzy graph G

for |σ ∗| ≥ 4.

Proof. Cyclically stable fuzzy graphs with four and five vertices are given below
(Fig. 14.13).
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FIGURE 14.12

G′ satisfying 2 but not 1.

FIGURE 14.13

Cyclically stable fuzzy graphs with four and five vertices.

It is left to construct cyclically stable fuzzy graphs with |σ ∗| ≥ 6. The result is
proved using induction on |σ ∗|.

Consider a fuzzy graph G with |σ ∗| = 6. Let u1, u2, ..., u6 be vertices of G. Con-
struct cycles C1 = u1u2u3u1 and C2 = u4u5u6u4 such that they are disjoint with
maximum strength. Create edges by joining each vertex in C1 to every vertex in C2,
thus forming a complete graph (Fig. 14.14). In the complete graph constructed, dele-
tion of a vertex or an edge will not reduce the g-cycle connectivity of G. Hence, the
graph thus obtained is a cyclically stable fuzzy graph.

Assume that there is a connected cyclically stable fuzzy graph for |σ ∗| = m. Let
Gm be the cyclically stable fuzzy graph with m vertices. Then there exist two cycles
that are disjoint and of maximum strength in Gm.

Obtain a fuzzy graph Gm+1 by adding a vertex, say x, to Gm. Form a complete
graph by joining each vertex of Gm to x and assign weights to all newly connected
edges in such a way that the weight does not exceed the g-cycle connectivity of Gm.
Clearly, on removing the vertex x, g-cycle connectivity of Gm remains the same and
also by assumption, no vertex or edge of Gm is a g-cyclic cutvertex or g-cyclic bridge.
Hence Gm+1 is a cyclically stable fuzzy graph. �
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FIGURE 14.14

Construction of cyclically stable fuzzy graph with |σ ∗| = 6.

14.5 Algorithm
This section tries to develop a fuzzy graph clustering algorithm by utilizing the con-
nectivity notions discussed in the previous sections. Clustering can be accomplished
by a variety of algorithms and the algorithms for fuzzy graph clustering proposed in
the papers [63], [67], [100], and [126] provide the motivation for this section. We
present a few definitions that are required in the procedure to obtain a better insight.

Definition 14.5.1. A connected fuzzy graph G is gm-cyclic vertex connected
if κg(G) ≥ m and G is called gm-cyclic edge connected if κg(G) ≥ m.

That is, G is gm-cyclic vertex connected if there is no g-cyclic vertex cut W with
Sg(W) < m and G is gm-cyclic edge connected if there is no g-cyclic edge cut E

with Sg(E) < m.

Definition 14.5.2. A maximal gm-cyclic edge connected fuzzy subgraph of G is
called a gm-cyclic edge component of G.

Alternatively, a gm-cyclic edge component of G is a fuzzy subgraph H of G

induced by a set of vertices of G in such a way that κg(H) = m.

Definition 14.5.3. A set C̃ of vertices of G is called cyclic cluster of level m if the
fuzzy subgraph of G induced by vertices of C̃ is a gm-cyclic edge component of G.

A vertex or an edge of a fuzzy graph G is called an element of G.

Definition 14.5.4. Cyclic cohesiveness of an element l of a fuzzy graph G denoted
by hc(l) is defined as

hc(l) =
{

∨ {Cg
Gi

(l) : G′
i s are the fuzzy subgraphs of G containing l}, if l is an edge.

0, if l is a vertex.

Definition 14.5.5. Consider a fuzzy graph G. The cyclic cohesive matrix Lc of G

is given by Lc = (uij ) where uij = hc(uiuj ), if i �= j and hc(ui), if i = j.
A vertex u belongs to a cyclic cluster of level m if it is contained in a gm-cyclic

edge component of G. Thus, by finding the clusters of G one can easily identify the
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gm-cyclic edge components of G. The method of finding gm-cyclic edge components
and thus obtaining cyclic clusters in G using g-cyclic edge connectivity κg is known
as gm-cyclic edge connectivity process.

Algorithm

14.5.1 gm-Cyclic edge connectivity process
Step 1: Generate the Cyclic Cohesive matrix Lc of G.

Step 2: Obtain the m - threshold graph Gm of Lc.
Step 3: The maximal complete subgraphs of Gm represent the gm-cyclic edge

components of G.

14.5.2 Illustration
Consider the fuzzy graph representation of a triangular grid network given in
Fig. 14.5. Let H denote the matrix illustration of the fuzzy graph with 10 vertices
as given below.

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.1 0.4 0 0 0 0 0 0 0
0.1 0 0.15 0.2 0.25 0 0 0 0 0
0.4 0.15 0 0 0.35 0.5 0 0 0 0
0 0.2 0 0 0.27 0 0.3 0.45 0 0
0 0.25 0.35 0.27 0 0.37 0 0.55 0.65 0
0 0 0.5 0 0.37 0 0 0 0.75 0.6
0 0 0 0.3 0 0 0 0.7 0 0
0 0 0 0.45 0.55 0 0.7 0 0.8 0
0 0 0 0 0.65 0.75 0 0.8 0 0.9
0 0 0 0 0 0.6 0 0 0.9 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The cyclic cohesive matrix Lc of H is

Lc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.1 0.2 0 0.27 0.35 0.35 0.27 0.35 0.35 0.35
0.1 0.2 0.27 0 0.27 0.27 0.3 0.3 0.27 0.27
0.1 0.2 0.35 0.27 0 0.37 0.27 0.55 0.55 0.37
0.1 0.2 0.35 0.27 0.37 0 0.27 0.37 0.6 0.6
0.1 0.2 0.27 0.3 0.27 0.27 0 0.3 0.27 0.27
0.1 0.2 0.35 0.3 0.55 0.37 0.3 0 0.55 0.37
0.1 0.2 0.35 0.27 0.55 0.6 0.27 0.55 0 0.6
0.1 0.2 0.35 0.27 0.37 0.6 0.27 0.37 0.6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Generating a cyclic cohesive matrix eases the construction of a threshold graph. We
can easily obtain the threshold graph Hm from Lc for any m ∈ (0,∞). The maximal
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complete subgraphs of Hm are the gm-cyclic edge components of H . Cyclic clusters
of level m are formed by the vertices in these components. For instance, let m = 0.3.
The threshold graph H 0.3 is

H 0.3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 1 0 1 1 1
0 0 1 0 1 0 0 1 1 1
0 0 0 1 0 0 0 1 0 0
0 0 1 1 1 1 1 0 1 1
0 0 1 0 1 1 0 1 0 1
0 0 1 0 1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cyclic clusters of level 0.3 derived from H 0.3 are {r, s, t, u, v,w,x, y}, {p}, {q}.
Similarly, cyclic clusters of all levels derived from the corresponding threshold

matrices are listed below:
Level Cyclic clusters

(1, ∞) {p}, {q}, {r}, {s}, {t}, {u}, {v},
{w}, {x}, {y}

(0.6, 1] {p}, {q}, {r}, {s}, {t}, {u}, {v},
{w}, {x}, {y}

(0.55, 0.6] {u,x, y}, {p}, {q}, {r}, {s},
{t}, {v}, {w}

(0.35, 0.55] {t, u,w,x, y}, {p}, {q}, {r},
{s}, {v}

(0.3, 0.35] {r, t, u,w,x, y}, {p}, {q}, {s},
{v}

(0.2, 0.3] {r, s, t, u, v,w,x, y}, {p}, {q}
(0.1, 02] {q, r, s, t, u, v,w,x, y}, {p}
(0, 0.1] {p,q, r, s, t, u, v,w,x, y}

14.6 Application
This section showcases the utility of the concepts discussed in the previous sections
by portraying two important concerns of the modern world.

Application 1: Youth mental illness and homelessness
In [128], it is stated that an estimated 4.2 million youth and young adults experi-

ence homelessness, of which 700,000 are unaccompanied minors, meaning they are
not part of a family or accompanied by a parent or guardian. On any given night, ap-
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FIGURE 14.15

Triangular Grid Network.

proximately 41,00 unaccompanied youth ages 13–15 experience homelessness. One
in 10 young adults 18-15, and at least one in 30 adolescents ages 13–17, experience
some form of homelessness unaccompanied by a parent or guardian (Fig. 14.15).

It is stated in [21] that mental health is an important part of children’s overall
health and well-being. Mental health includes children’s mental, emotional, and be-
havioral well-being. It affects how children think, feel, and act. It also plays a role
in how children handle stress, relate to others, and make healthy choices. ADHD
(Attention Deficit Hyperactivity Disorder), anxiety problems, behavior problems,
and depression are the most commonly diagnosed mental disorder in children. Es-
timates for ever having a diagnosis among children aged 3–17 years, in 2016–2019,
are given in [21] to be ADHD 9.8%, (approximately 6.0 million) Anxiety 9.4%, (ap-
proximately 5.8 million), Behavior problems 8.9%, (approximately 5.5 million), De-
pression 4.4% (approximately 2.7 million). This data is modeled using fuzzy graphs
where the mental disorders mentioned above form the vertices of the graph. These
vertices are assigned a membership value of 1, indicating full membership. Here, we
consider a anxiety, b behavior, d depression, m mental disorder, and c development
disorder as vertices of a fuzzy graph, G.

Some of these conditions commonly occur together, forming an edge in the fuzzy
graph G. For example, if children suffering from depression (d) also experience anx-
iety (a), then there is an edge ad in the corresponding fuzzy graph. Membership
values are assigned to the edges based on the approximations in [21], with the deci-
mal equivalent of the percentage approximation serving as the degree of membership
for the edges. For instance, if 50% of children with depression also experience anxi-
ety, then the edge ad is assigned a weight of 0.5. For convenience, the fuzzy graph is
considered undirected.

Edge ab ad ac am bc bd bm cd cm dm

Weight 0.5 0.5 0.4 0.4 0.4 0.35 0.45 0.2 0.3 0.35
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We see that if we delete edge ab, i.e., assign the weight 0 to ab, then the resulting
fuzzy graph H is such that Cg(H) = 0.35 while Cg(G) = 0.4 (Fig. 14.16). Thus ab

is g-cyclic bridge and so a and b are g-cyclic cut vertices. From this information, we
can conclude that the most effective way to reduce mental illness in youth (including
toxic stress) is concentrating on the anxiety, behavior connection.

FIGURE 14.16

Fuzzy graph illustration to Application 1.

Application 2: Country vulnerability to human trafficking
Consider a directed graph

−→
G = (V ,

−→
E ), where V is a set of vertices and

−→
E ⊆

V × V is a set of directed edges. One can learn properties of the directed graph by
ignoring the direction. In fact, in certain cases, the direction is not important. We
illustrate this for fuzzy-directed graphs related to human trafficking. Suppose

−→
G =

(V ,
−→
E ) has the property that if (u, v) ∈ −→

E , then (v,u) /∈ −→
E . Let (V ,E) be the graph

defined by letting E = {{u,v}|(u, v) ∈ −→
E }. Define

−→
f : −→

E → E by
−→
f ((u, v)) =

{u,v}. Then
−→
f is a one-to-one function of

−→
E onto E which preserves adjacency,

i.e., (u, v) ∈ −→
E if and only if

−→
f ((u, v)) ∈ E. This leads to an isomorphism between−→

G and G. For fuzzy directed graphs, we assign the same weight to {u,v} that is
assigned to (u, v). Of course, these ideas can be generalized; a project to be dealt
with later.

We concentrate on trafficking routes from countries to South America to the
United States through Mexico. We are interested in the vulnerability of countries
to human trafficking. We define the flow from a country to another as a combina-
tion of the origin flow and the transit flow through the country, and the flow into a
country as a combination of the transit flow through it and the destination flow into
it. This combination is accomplished by using the algebraic conorm of these val-
ues. That is, for all p, q in [0,1], algebraic conorm of p and q, denoted as p ◦ q is
the value p + q − pq. If the trafficking route between two countries is active, the
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weight provided to the edge thus formed is the algebraic conorm of the vulnerabili-
ties of the two countries. In this context, the direction of trafficking is not an essential
criterion; therefore the modeled fuzzy graph is undirected to simplify the analysis.
Vulnerability estimates how vulnerable people in a country are to human traffick-
ing. Very low (VL) vulnerability is assigned a value of 0.1, 0.3 for low (L), 0.5 for
medium (M), 0.7 for high (H), and 0.9 for very high (VH) [70] B1987. We have
the following edges and weights given in the following table, [77,115]. They were
determined from [89,121]. We combine the source countries of the routes, China,
India, Ethiopia, Somalia, and Nigeria, into one Source. Since there is flow to the
United States from only one country, namely Mexico, we do not consider the United
States.

In the following table, S denotes Source, C denotes Columbia, G denotes
Guatemala, M denotes Mexico, SA denotes South Africa, B denotes Brazil, E de-
notes Ecuador, UAE denotes United Arab Emirates, R denotes Russia, Cu denotes
Cuba, and SP denotes Spain.

Country S C G SA B E M UAE R Cu Sp

Vulnerability H L M H V L M L L L M V L

Accordingly, the edge weights are approximated as follows:

Edge S,C C,G G,M S,SA SA,B B,E E,M S,UAE

Weight 0.79 0.65 0.65 0.91 0.73 0.55 0.65 0.79

Edge UAE,R R,Cu Cu,C S,Sp Sp,Cu S,G C,M

Weight 0.51 0.65 0.65 0.73 0.55 0.85 0.51

Note that the vertices are assigned a membership value of 1, indicating full mem-
bership. We wish to examine where we can reduce the vulnerability of the fuzzy
directed graph. We can see that the direction of the edge is not needed in this partic-
ular objective.

The strongest cycle containing edge SGuatemala is of strength 0.65. It is ob-
tained from the cycle S,Guatemala,Columbia,S (Fig. 14.17). Thus Cg(G) =
0.65. If we delete SGuatemala to obtain the fuzzy subgraph H , we have Cg(H) =
0.55. The conclusion drawn from these findings is that taking measures to limit hu-
man trafficking from source nations to Guatemala can have a positive impact on
lowering the global rate of human trafficking. The numerical values assigned as
the weights of the directed edges offer a concrete measure of how these relation-
ships influence the network. This information provides valuable insights that can
guide the development of effective strategies to tackle human trafficking on a broader
scale.
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FIGURE 14.17

Fuzzy graph showing country vulnerability to human trafficking.

14.7 Exercises
1. Calculate the generalized cycle connectivity of G = (σ,μ) with vertex set σ ∗ =
{u1, u2, u3, u4, u5}, μ(u1u2) = 0.4, μ(u1u3) = 0.5, μ(u2u3) = 0.2, μ(u2u4) = 0.7,
μ(u3u4) = 0.6, μ(u4u5) = 0.9, μ(u2u5) = 0.2, and μ(u3u5) = 0.1.

2. Identify the g-cyclic cut vertices and g-cyclic bridges of G = (σ,μ) with σ ∗ =
{u1, u2, u3, u4, u5, u6}, μ(u1u2) = 0.7, μ(u1u3) = 1, μ(u1u5) = μ(u4u5) = 0.4,
μ(u1u6) = μ(u2u3) = 0.8, μ(u2u4) = 0.3, μ(u2u6) = 0.9, μ(u3u4) = μ(u3u5) =
0.6, μ(u4u6) = 0.3, and μ(u5u6) = 0.3.

3. Consider a fuzzy graph G = (σ,μ). Let H = (τ, ν) be a partial fuzzy subgraph of
G. Then prove that κg(H) ≤ κg(G).
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Fuzzy vertex and edge
connectivity©�

Fuzzy vertex and edge connectivity play crucial roles in the dynamics of interconnec-
tion networks. Average fuzzy edge connectivity (AFEC) is a better tool to compare
the capacity of large-scale networks. Also, the stability and performance of modern
networks depend largely on the connectivity properties of the graph model. Aver-
age edge connectivity is a means to comprehend the collective relationship intensity
within a fuzzy graph. This chapter depends upon [107].

15.1 Average fuzzy vertex connectivity
We discuss average fuzzy vertex connectivity (AFVC) of fuzzy graphs in this section,
several different fuzzy graph structures are considered.

Lemma 15.1.1. All β-strong edges of a fuzzy cycle have the same strength.

Proof. Since fuzzy cycles have no δ-edges, every edge in a fuzzy cycle is strong. The
weakest edges are the β-strong edges because fuzzy cycles have multiple weakest
edges. Let xy be a weakest edge in the fuzzy graph G. Suppose there exists a β-
strong edge uv whose strength exceeds μ(xy). Then, there exists a strongest u − v

path P in G not containing uv but containing xy. Then, CONNG−uv(u, v) = μ(xy),
since xy is the weakest edge in G, this contradicts the fact that uv is a β-strong
edge. �

Theorem 15.1.2. For a saturated fuzzy cycle G with weight of every α-strong edge
is υ and weight of every β-strong edge is ι, then we have,

∑
u,v∈G

κG(u, v) = n
2 υ +

ι[n(n − 2)], where n is the number of vertices.

Proof. Theorem 4.3 in [2] states that the α-strong and β-strong edges alternately
arise and n = 2k for an integer k when G is a saturated fuzzy cycle with n vertices.
Let {v1, v2, . . . , vn} be vertices in G, and {v1v2, v3v4, . . . , vn−1vn} be α-strong edges
in G. Considering v1 − vi paths for i = 2,3, . . . , n, only v1 − v2 path has strength
υ and all other v1 − vi , i = 3,4, . . . , n, paths have strength ι as it contains β-strong
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https://www.elsevier.com/books-and-journals/book-companion/9780443339493.
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edges. There are precisely two internally disjoint paths between v1 and vi for i =
3,4, . . . , n because the strength of each v1 − vi path for i = 3,4, . . . , n is equal to
the strength of a β-strong edge. Thus

∑
u∈σ ∗\{v1}

mCONNG(v1, u) = υ + 2(n − 2)ι.

Similarly considering v2 − vi , i = 3,4, . . . n, paths there is no α-strong edge incident
on v2 other than v1v2 and all the v2 − vi , i = 3,4, . . . , n paths have strength ι. Hence,∑
u∈σ ∗\{v1,v2}

mCONNG(v2, u) = 2(n − 2)ι. For v3, only the v3 − v4 path has strength

υ and all other v3 − vi path has strength ι for i = 5,6, . . . , n. Thus
∑

u∈σ ∗\{v1,v2,v3}
mCONNG(v3, u) = υ + 2(n − 4)ι.

Correspondingly for v4,
∑

u∈σ ∗\{v1,v2,v3,v4}
mCONNG(v4, u) = 2(n − 4)ι,

and so on. In general,
∑

u∈σ ∗\{v1,v2,...,vt }
mCONNG(vt , u) = υ + 2(n − (t + 1))ι, if t is odd

and ∑
u∈σ ∗\{v1,v2,...,vt }

mCONNG(vt , u) = 2(n − t)ι, if t is even.

Hence,∑
u,v∈G

κG(u, v) = υ + 2ι(n − 2) + 2ι(n − 2) + υ + 2ι(n − 4) + 2ι(n − 4) + · · ·

+ υ + 2ι(n − (n − 2)) + 2ι(n − (n − 2)) + υ

= n

2
υ + 4ι[(n − 2) + (n − 4) + . . . + 2]

= n

2
υ + ι[n(n − 2)]. �

Corollary 15.1.3 provides the fuzzy vertex connectivity of saturated fuzzy cycles
characterized by α-strong edges with unique strengths.

Corollary 15.1.3. For a saturated fuzzy cycle Cn with α-strong edges of strengths

υ1, υ2, . . . , υ n
2
, we have

∑
u,v∈Cn

κCn(u, v) = υ1 + υ2 + · · · + υn
2

+ 4ι[n(n − 1)

2
].

Example 15.1.4. Consider Fig. 15.1, a saturated fuzzy cycle C with α-strong edges
v1v2, v3v4, v5v6, v7v8 having weights μ(v1v2) = υ1 = 0.9, μ(v3v4) = υ2 = 0.7,
μ(v5v6) = υ3 = 0.7, μ(v7v8) = υ4 = 0.6 and β-strong edges having weight ι = 0.4.
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FIGURE 15.1

Saturated fuzzy cycle C in Example 15.1.4.

The edge v1v2 being α-strong, we obtain κC(v1, v2) = υ1. All other v1 − vi paths
for i = 3, . . . ,8 contain β-strong edges of weight ι, and being a cycle there exist
exactly two strongest v1 − vi paths. As a result, for i = 3, . . . ,8, κC(v1, vi) = 2ι and

8∑
i=2

κC(v1, vi) = υ1 + 2(6)ι. All v2 − vi paths for i = 3, . . . ,8 contain β-strong edges

and have strength ι. Thus
8∑

i=3

κC(v2, vi) = 2(6)ι. Similarly,

8∑
i=4

κC(v3, vi) = υ2 + 2(4)ι.

8∑
i=5

κC(v4, vi) = 2(4)ι.

8∑
i=6

κC(v5, vi) = υ3 + 2(2)ι.

8∑
i=7

κC(v6, vi) = 2(2)ι.

κC(v7, v8) = υ4.

Consequently,

∑
u,v∈C

κC(u, v) = υ1 + υ2 + υ3 + υ4 + 2(6)ι + 2(6)ι + 2(4)ι + 2(4)ι + 2(2)ι + 2(2)ι

= 22.1.
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Then AFVC of C will be κ(C) = 1.77.
Theorem 15.1.5 is a characterization of fuzzy graphs where each pair of vertices

is joined by a unique strongest path.

Theorem 15.1.5. For a connected fuzzy graph G = (σ,μ) and for any u,v ∈ σ ∗,
κG(u, v) = CONNG(u, v) if and only if any of the following occurs

(1) u or v is an endvertex in G

(2) There is a cutvertex x ∈ σ ∗ that, when removed, reduces connectivity between u

and v.

Proof. Let κG(u, v) = CONNG(u, v) for vertices u and v in a fuzzy graph G. Then,
there exists precisely one vertex-disjoint strongest path from u to v. Let |σ ∗| = l.
Clearly, both u and v are end vertices when n = 2. Assume n > 2. Since there is only
one strongest path connecting u and v, removing any vertex from that path reduces
the connectivity between u and v. As a result, every vertex in the strongest path that
connects u and v will be a cutvertex in G.

Consider, instead, that either (1) or (2) of the conditions occur. First, let v be an
end vertex. A unique path will exist between any arbitrary vertex of G and v. Thus
κG(u, v) = CONNG(u, v), hence condition (1) follows. Second, suppose a cutvertex
x ∈ σ ∗ exists, which, when removed, reduces the connectivity between u and v. Any
path between u and v which is strongest will then pass through x. As a result, only one
vertex-disjoint strongest u−v path exists, and hence κG(u, v) = CONNG(u, v). �

For a partial fuzzy subgraph H of G, κ(H) ≤ κ(G) is not generally true. We
emphasize that the statement in Theorem 4.22 in [2] may not hold in all cases. Specif-
ically, κ(G − uv) is not necessarily always less than or equal to κ(G), and similarly,
κ(G − d) may not always be less than or equal to κ(G) for a graph G = (σ,μ) and
for all uv ∈ μ∗. This is demonstrated in Examples 15.1.6 and 15.1.7.

Example 15.1.6. Examine Fig. 15.2, the fuzzy graph G = (σ,μ) with σ ∗ =
{v1, v2, v3, v4, v5, v6}, μ(v1v2) = 0.6, μ(v1v2) = μ(v1v4) = μ(v1v6) = μ(v2v3) =
μ(v3v4) = μ(v3v5) = μ(v5v6) = 0.4. There are 15 pairs of vertices vivj , 1 ≤ i <

FIGURE 15.2

Fuzzy graph G and G − v1v3 in Example 15.1.6.
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j ≤ 6, where v1v3 is an α-strong edge and κG(v1, v3) = μ(v1v3) = 0.6. For all other
pairs u and v, there are precisely two strongest paths between them with strength 0.4
and κG(u, v) = 2CONNG(u, v) = 0.8. The AFVC of G is given by

κ(G) =

∑
u,v∈G

κG(u, v)

∑
u,v∈G

CONNG(u, v)
= 14 × 2 × 0.4 + 0.6

14 × 0.4 + 0.6
= 1.90.

The fuzzy graph G − v1v3 is obtained by removing the α-strong edge v1v3 from
G. The connectivity between v1 and v3 decreases to 0.4, with three internally disjoint
strongest v1 − v3 paths. The AFVC of G − v1v3 becomes

κ(G − v1v3) =

∑
u,v∈G−v1v3

κG−v1v3(u, v)

∑
u,v∈G−v1v3

CONNG−v1v3(u, v)
= 14 × 2 × 0.4 + 3 × 0.4

14 × 0.4 + 0.4
= 2.06.

In this case, we can conclude that, κ(G − v1v3) ≥ κ(G). If we remove any
edge vivj other than v1v3 from the given graph G, we get CONNG−vivj

(u, v) =
CONNG(u, v) and

∑
u,v∈G−vivj

κG−vivj
(u, v) <

∑
u,v∈G

κG(u, v) which in turn results

in κ(G − vivj ) ≤ κ(G). Thus it is not always true that κ(G − uv) ≤ κ(G) for all uv

in G.

Using the properties of β-strong and δ edges, we can infer that for any β-strong
or δ edge uv,

κ(G − uv) =

∑
x,y∈G−uv

κG−uv(x, y)

∑
x,y∈G−uv

CONNG−uv(x, y)
≤

∑
x,y∈G

κG(x, y)

∑
x,y∈G

CONNG(x, y)
= κ(G).

Now we consider the AFVC of a fuzzy subgraph obtained by the removal of an
arbitrary vertex. Consider the example given below.

Example 15.1.7. Consider the fuzzy graph G in Fig. 15.3 and its subgraph obtained
from G by removing a vertex. For G, σ ∗ = {v1, v2, . . . , v7} with μ(v1v7) = 0.8,
μ(v1v2) = 0.6, μ(v1v6) = μ(v6v7) = 0.4, μ(v2v3) = 0.4, μ(v2v4) = 0.3, μ(v2v5) =
0.5, and μ(v2v6) = 0.2. There are two vertex-disjoint strongest paths having the same
strength of 0.4 for each of the pairs (v1, v6) and (v6, v7). Every other pair of vertices
is connected by a unique strongest path. We obtain the AFVC κ(G) = 6.4

5.6 = 1.14 by
determining the strength of connectivity between each pair of vertices.
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FIGURE 15.3

Fuzzy graph G and G − v2 in Example 15.1.7.

Now, consider G−v2, the fuzzy graph obtained by removing the vertex v2. There
is no change in the strength of connectedness for the pairs (v1, v6), (v1, v7), and
(v6, v7) on the removal of v2. All other pairs of vertices have zero strength of connect-
edness between them. Consequently, κ(G − v2) = 2.4

1.6 = 1.5 is the AFVC of G − v2.
The statement that κ(G − v) ≤ κ(G) for every v ∈ σ ∗ is therefore not always true.

Theorem 15.1.8. For a fuzzy graph G = (σ,μ), such that G∗, is a cycle, we have for
all d ∈ σ ∗ and uv ∈ μ∗,

(i) κ(G − v) ≤ κ(G)

(ii) κ(G − uv) ≤ κ(G).

Proof. Suppose G∗ is a cycle for the fuzzy graph G = (σ,μ). The fuzzy graph ob-
tained by removing any vertex v is a tree, with each vertex connected to the others by
a unique strongest path. Hence,

κ(G − v) =

∑
x,y∈G−v

κG−v(x, y)

∑
x,y∈G−v

CONNG−v(x, y)
=

∑
x,y∈G−v

CONNG−v(x, y)

∑
x,y∈G−v

CONNG−v(x, y)
= 1.

Similar to this, for an edge uv ∈ μ∗, G − uv is a spanning subgraph which is
a tree. Then there exists precisely one strongest path between any two vertices in
G − uv and

κ(G − uv) =

∑
x,y∈G−uv

κG−uv(x, y)

∑
x,y∈G−uv

CONNG−uv(x, y)
=

∑
x,y∈G−uv

CONNG−uv(x, y)

∑
x,y∈G−uv

CONNG−uv(x, y)
= 1.
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Also, for any non-trivial connected graph G, κ(G) ≥ 1. Hence κ(G − d) ≤ κ(G)

and κ(G − uv) ≤ κ(G). �

15.2 Average fuzzy edge connectivity
We discuss AFEC in this section. The concepts of AFVC and AFEC differ in the cases
with varying numbers of vertex-disjoint strongest paths and edge-disjoint strongest
paths. Consider Examples 15.2.2 and 15.2.2.

FIGURE 15.4

Graph in Example 15.2.1.

Example 15.2.1. Consider G = (σ,μ) in Fig. 15.4 with σ ∗ = {v1, v2, . . . , v6},
μ(v1v2) = 0.4, μ(v2v3) = 0.9, μ(v3v4) = 0.15, μ(v4v5) = 0.8, μ(v5v6) = 0.25,
μ(v6v1) = 0.2, μ(v1v4) = 0.4, and μ(v2v5) = 0.9. Two internally disjoint strongest
paths exist between v1 and v4. All other pairs of vertices have exactly one strongest
path between them, similar to the case of edge-disjoint strongest paths. So, in this
case, there is a likeness between average fuzzy vertex and AFEC.

Example 15.2.2. Let G = (σ,μ) with σ ∗ = {v1, v2, v3, v4, v5}, μ(v3v4) = μ(v4v5) =
0.2, and μ(v1v2) = μ(v1v5) = μ(v2v5) = μ(v3v5) = 1 in Fig. 15.5. The strongest
edge-disjoint v2 − v4 paths are v2v5v4 and v2v1v5v3v4. But they are not vertex dis-
joint. So, here we have more edge-disjoint v2 −v4 strongest paths than vertex-disjoint
v2 − v4 strongest paths.

This distinction led us to formulate the concept of AFEC. Dissimilarities arise
because the edge-disjoint paths may not be internally disjoint. To address this, we
introduce the notion of average edge connectivity and find different results related to
it.

Definition 15.2.3. In the fuzzy graph G = (σ,μ), let m′ signify the number of edge
disjoint strongest u − v paths for a pair of vertices (u, v). The pair of vertices u, v

is referred to as being k-edge connected if m′CONNG(u, v) ≥ k. The (u, v)-edge
connectivity, or λG(u, v), of a fuzzy graph G = (σ,μ) is the maximum value of k for
which u and v are k-edge connected.
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FIGURE 15.5

Fuzzy graph in Example 15.2.2.

Example 15.2.4. All the edges in G, the graph given in Example 15.2.2, are strong.
Also, v1v2, v1v5, v2v5, v3v4, and v4v5 are β-strong edges, each having exactly two
edge-disjoint strongest paths. Hence λG(v1, v2) = 2CONNG(v1, v2) = 2(1) = 2,
λG(v1, v5) = 2CONNG(v1, v5) = 2(1) = 2, λG(v2, v5) = 2CONNG(v2, v5) =
2(1) = 2, λG(v3, v4) = 2CONNG(v3, v4) = 2(0.2) = 0.4, and λG(v4, v5) =
2CONNG(v4, v5) = 2(0.2) = 0.4. v3v5 is an α-strong edge with unique strongest
path and λG(v3v5) = CONNG(v3v5) = μ(v3v5) = 1. The pairs v2v3 and v1v3 have
unique edge-disjoint strongest path and λG(v2, v3) = 1 = λG(v1, v3).

The vertices v1 and v4 have two edge-disjoint strongest paths v1v5v4 and
v1v2v5v3v4 with strength 0.2. Similarly, for the vertices v2 and v4, the strongest edge
disjoint paths are v2v5v4 and v2v5v3v4 of strength 0.2. Thus λG(v1, v4) = 2(0.2) =
0.4 = λG(v2, v4). The total fuzzy edge connectivity is given by

∑
u,v

λG(u, v) =
2 + 2 + 2 + 0.4 + 0.4 + 1 + 1 + 1 + 0.4 + 0.4 = 10.6.

The AFEC of a fuzzy graph G is the ratio of total fuzzy edge connectivity to the
total connectivity of all pairs of vertices in G, that is,

λ(G) =

∑
u,v∈G

λG(u, v)

∑
u,v∈G

CONNG(u, v)
.

The fuzzy graph in Example 15.2.2 has an AFEC of λ(G) = 10.6
6.8 = 1.55.

Consider a fuzzy graph G. Let m denote the number of vertex-disjoint strongest
paths and m′ denote the number of edge-disjoint strongest paths for any two ver-
tices u,v ∈ σ ∗. Clearly, m ≤ m′ and mCONNG(u, v) ≤ m′CONNG(u, v) for pairs
u,v ∈ σ ∗, as all vertex-disjoint strongest paths are also edge-disjoint strongest paths.
Consequently, κG(u, v) ≤ λG(u, v) and κ(G) ≤ λ(G). In Examples 15.2.1 and 15.2.2
of fuzzy graphs, respectively, κ(G) = λ(G) and κ(G) < λ(G).

Theorem 15.2.5. If G = (σ,μ) is a fuzzy graph, then λ(G) = 0 if and only if κ(G) =
0.



15.2 Average fuzzy edge connectivity 255

Proof. Let G be a fuzzy graph with λ(G) = 0, then clearly through the previous
paragraph κ(G) = 0. Conversely, let κ(G) = 0. Then,

∑
u,v∈G

κG(u, v)

∑
u,v∈G

CONNG(u, v)
= 0,

i.e.,
∑

u,v∈G

κG(u, v) = 0. Thus CONNG(u, v) = 0, for each u,v ∈ G which implies

λG(u, v) = 0 for each u,v ∈ G and in turn λ(G) = 0. �

It is important to note that for a fuzzy graph G with l vertices, λ(G) = 0 if and
only if G is trivial when l = 1 and G is totally disconnected when l > 1. Now, let us
examine the AFEC of some particular fuzzy graphs.

Theorem 15.2.6. For an edge-disjoint fuzzy graph G, G is a fuzzy forest, then
λ(G) = 1 and vice versa.

Proof. For an edge-disjoint fuzzy graph G, G is a fuzzy forest if and only if there
is at most one edge-disjoint strongest path between any two vertices of G if and
only if λG(u, v) = CONNG(u, v) for each u,v ∈ σ ∗ if and only if

∑
u,v∈G

λG(u, v) =
∑

u,v∈G

CONNG(u, v) if and only if λ(G) = 1. �

Theorem 15.2.7. If G is a fuzzy cycle, then λ(G) ≤ 2.

Proof. Each fuzzy cycle G contains at least two weak edges. Being a cycle, exactly
two edge-disjoint paths exist between any two vertices in G. Take two vertices, u and
v. Then there exist two paths, say P1 and P2. If all the weak edges lie on P1, then
P2 is the strongest u− v path and λG(u, v) = s(P2) = CONNG(u, v). If weak edges
lies on both P1 and P2, then λG(u, v) = 2CONNG(u, v). Thus

λG(u, v) ≤ 2CONNG(u, v), for each u,v in G

i.e.,
∑

u,v∈G

λG(u, v) ≤ 2
∑

u,v∈G

CONNG(u, v),

and hence λ(G) ≤ 2. �

Theorem 15.2.8. If a fuzzy graph only contains edges that are β-strong, then λ(G) ≥
2.

Proof. Consider the fuzzy graph G whose edges are β-strong. So, if uv is an edge
in G, then μ(uv) = CONNG−uv(u, v). Then, the strongest u − v paths include the
edge uv and a path of length at least two. Thus there exists at least two strongest u−v

paths. That is, m′ ≥ 2 and

m′CONNG(u, v) ≥ 2CONNG(u, v)
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and
∑

u,v∈G

m′CONNG(u, v) ≥
∑

u,v∈G

2CONNG(u, v).

Hence, λ(G) ≥ 2. �

For a fuzzy cycle G with G∗ a cycle and every edge having the same weight,
λ(G) = 2. Also, if v1, v2, . . . , vn are vertices with corresponding degree sequences
δ1 ≤ δ2 ≤ · · · ≤ δn then, λ(G) ≤ δn. If the degree of each vertex in a fuzzy graph
is at most 3, then the vertex-disjoint and edge-disjoint strongest paths are equal and
κ(G) = λ(G).

Let (p1,p2, . . . , pn) be the n − s sequence of a complete fuzzy graph G with l

vertices {v1, v2, . . . , vn} and σ(vi) = pi for i = 1,2, . . . , l. Theorem 15.2.9 analyzes
the AFEC of CFGs with various vertex-strength sequences.

Theorem 15.2.9. For a complete fuzzy graph G = (σ,μ) with n-s sequence of the
form (p

r1
1 ,p

r2
2 , . . . , p

rk−1
k−1 ,p

rk
k ), we have,

∑
u,v∈σ ∗

λG(u, v) =
l−1∑
t=1

(l − t)2σ(vt ) +
k∑

t=1

ptRt

where rk > 1,
∑k

t=1 rt = l and

Rt =
rt−1∑
i=1

i(l − (rt−1 + . . . + r1 + 1 + i))

is known as the Rt -factor of the CFG G.

Proof. Let σ ∗ = {v1, v2, . . . , vn} for a CFG G.

Case 1. Suppose k = l, ri = 1, 1 ≤ i ≤ k, and p1 < p2 < · · · < pn. Consider the edge-
disjoint strongest paths between the vertices v1 and v2. Since all the edges incident on
v1 has strength p1, the edge-disjoint strongest v1 −v2 paths are v1v2 and v1vjv2 with
j = 3,4, . . . , l. Clearly, all strongest paths between v1 and v2 are involved in this and
hence there are l − 1 paths of strength p1. Thus λG(v1, v2) = (l − 1)σ (v1). Hence,
for t = 2,3,4, . . . , l, we have, λG(v1, vt ) = (l − 1)σ (v1). Similarly, considering v2

and v3, v2v3 and v2vjv3, j = 4,5, . . . , l will be the l − 2 edge-disjoint v2v3 paths
with strength p2. Thus λG(v2, vt ) = (l − 2)p2, t = 3,4,5, . . . , l. Hence, for any i =
1,2, . . . , l and t > i, λG(vi, vt ) = (l − i)pi as shown in Fig. 15.6. Therefore

∑
u,v

λG(u, v) =
l−1∑
t=1

(l − t)2σ(vt ).
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FIGURE 15.6

Edge-disjoint paths in Case 1.

Case 2. Suppose k = 1, r1 = l, and p1 = p2 = · · · = pn. Then, for each i, j =
1,2, . . . , l; i �= j , there are (l − 1) vi − vj strongest paths. Hence,

∑
u,v

λG(u, v) = (l − 1)σ (v1)

l−1∑
t=1

(l − t).

Case 3. Suppose 1 < k < l, 1 < ri < l, 1 ≤ i ≤ k, and p1 ≤ p2 ≤ · · · ≤ pn. Let j ,
1 < j < k be the first integer such that rj > 1. Then for 1 ≤ i ≤ j , as in case 1, we
have

l∑
t=2

λG(v1, vt ) = (l − 1)2p1

l∑
t=3

λG(v2, vt ) = (l − 2)2p2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

l∑
t=j+1

λG(vj , vt ) = (l − j)2pj .

Now consider the vertex vj+1. For a fixed t ∈ {j + 2, . . . , l}, the strongest edge-
disjoint vj+1 − vt paths are vj+1vt , vj+1vnvt , j + 2 ≤ l ≤ l, l �= t , and vj+1vjvt .
Then,
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l∑
t=j+2

λG(vj+1, vt ) =
l∑

t=j+2

(l − (j + 1))σ (vj+1) +
l∑

t=j+2

1 × σ(vj+1)

= (l − (j + 1))2σ(vj+1) + 1 × (l − (j + 1))σ (vj+1)

= (l − (j + 1))2σ(vj+1)

+ 1 × (l − (rj−1 + · · · + r1 + 1 + 1))σ (vj+1)

where j in the second term can be rewritten as j = rj−1 + · · · + r1 + 1.

FIGURE 15.7

Edge-disjoint paths in Case 3.

Similarly, consider the vertex vj+2. Proceeding as above, as in Fig. 15.7, the
strongest edge-disjoint vj+2 − vt paths for a fixed t ∈ {j + 2, . . . , n} are vj+2vt ,
vj+2vlvt , j + 3 ≤ l ≤ n, n �= t together with vj+2vjvt and vj+2vj+1vt . Then,
λG(vj+2, vt ) = σ(vj+2)(n − (j + 2)) + 2σ(vj+2). Thus

n∑
t=j+3

λG(vj+2, vt ) =
n∑

t=j+3

(n − (j + 2))σ (vj+2) +
n∑

t=j+3

2 × σ(vj+2)

= (n − (j + 2))2σ(vj+2) + 2 × (n − (j + 3))σ (vj+2)

= (n − (j + 2))2σ(vj+2)

+ 2 × (n − (rj−1 + · · · + r1 + 1 + 2))σ (vj+1).
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In general, for 1 ≤ i ≤ rj − 1,

n∑
t=j+i+1

λG(vj+i , vt ) = (n − (j + i))2σ(vj+i )

+ i × (n − (rj−1 + · · · + r1 + 1 + i))σ (vj+i ).

Finally, if (p
r1
1 ,p

r2
2 , . . . , p

rk−1
k−1 ,p

rk
k ) is the form of the n-s sequence, we can write∑

λG(u, v) as,

∑
u,v∈σ ∗

λG(u, v) =
n−1∑
t=1

(n − t)2σ(vt ) + p1

r1−1∑
i=1

t (n − (1 + t))

+ p2

r2−1∑
i=1

t (n − (r1 + 1 + t))

+ · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+ pk−1

rk−1−1∑
i=1

t (n − (rk−2 + · · · + r1 + 1 + t))

+ pk

rk−1∑
i=1

t (n − (rk−1 + · · · + r1 + 1 + t)).

Define,

Rt =
rt−1∑
i=1

i(n − (rt−1 + · · · + r1 + 1 + i)), 1 ≤ t ≤ k,

as the Rt -factor of the complete fuzzy graph G. Hence,

∑
u,v∈σ ∗

λG(u, v) =
n−1∑
t=1

(n − t)2σ(vt ) +
k∑

t=1

ptRt

where rk > 1,
∑k

t=1 rt = n. �

Corollary 15.2.10. If all the vertices of a complete fuzzy graph G have the same
strength, then

λ(G) = n − 1.

Proof. Let G = (σ,μ) be a complete fuzzy graph with vertices {v1, v2, . . . , vn} hav-
ing strength σ(vi) = p for all i = 1,2, . . . , n. Then, the n-s sequence of G is (pn) i.e.
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r1 = n and p1 = p. Hence, from the above theorem,

∑
u,v∈σ ∗

λG(u, v) =
n−1∑
t=1

(n − t)2σ(vt ) + p1R1

= p

n−1∑
t=1

[(n − t)2 + t (n − (1 + t)]

= p

[
n(n − 1)2

2

]
.

Also,
∑

u,v∈σ ∗
CONNG(u, v) =

n−1∑
t=1

(n− t)σ (vt ) = p

[
n(n − 1)

2

]
. Hence, λ(G) = n−

1. �

Let (p
r1
1 ,p

r2
2 , . . . , p

rk−1
k−1 ,p

rk
k ) be the n-s sequence of a fuzzy graph G with k = n,

r1 = r2 = · · · = rk = 1, and p1 < p2 < · · · < pk . For the abovementioned case 1
scenario, the AFEC is given by

λ(G) =
∑

u,v∈σ ∗
λG(u, v)

∑
u,v∈σ ∗

CONNG(u, v)
=

n−1∑
t=1

(n − t)2pt

n−1∑
t=1

(n − t)pt

.

Example 15.2.11. (Illustration of Theorem 15.2.9) Fig. 15.8 represents a CFG
with the n-s sequence (0.2,0.32,0.4,0.63,0.7). Table 15.2.1 shows the ui −uj edge-
disjoint strongest paths and λG(ui, uj ) for 1 ≤ i < j ≤ 8.

We have,
∑

u,v∈σ ∗
λG(u, v) = 46.8 and

∑
u,v∈σ ∗

CONNG(u, v) = 9.9. Hence, we get

the AFEC λ(G) = 4.72.

Theorem 15.2.12 gives the relation between fuzzy edge connectivity and the av-
erage fuzzy edge connectivity of fuzzy graphs.

Theorem 15.2.12. For a fuzzy graph G, κ ′(G) ≤ λ(G).

Proof. Let S be a fuzzy edge cut with strong weight, s′(S) = ∑
si∈S μ(si). Then

there exists u,v ∈ σ ∗ such that either CONNG−S(u, v) < CONNG(u, v) or G − S

is disconnected. Then, by Menger’s Theorem, Theorem 4 in [65],

∑
si∈S

μ(si)CONNG(u, v) ≤ |S|CONNG(u, v)

≤ m′
u,vCONNG(u, v)
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Table 15.2.1 Table in Example 15.2.11.

ui uj Strongest ui − uj paths κG(ui,uj )

u1

u2 u1u2, u1u3u2, u1u4u2, u1u5u2, u1u6u2, u1u7u2, u1u8u2

7 × 7 × 0.2

u3 u1u3, u1u2u3, u1u4u3, u1u5u3, u1u6u3, u1u7u3, u1u8u3

u4 u1u4, u1u2u4, u1u3u4, u1u5u4, u1u6u4, u1u7u4, u1u8u4

u5 u1u5, u1u2u5, u1u3u5, u1u4u5, u1u6u5, u1u7u5, u1u8u5

u6 u1u6, u1u2u6, u1u3u6, u1u4u6, u1u5u6, u1u7v6, u1u8u6

u7 u1u7, u1u2u7, u1u3u7, u1u4u7, u1u5u7, u1u6u7, u1u8u7

u8 u1u8, u1u2u8, u1u3u8, u1u4u8, u1u5u8, u1u6u8, u1u7u8

u2

u3 u2u3, u2u4u3, u2u5u3, u2u6u3, u2u7u3, u2u8u3

6 × 6 × 0.3

u4 u2u4, u2u3u4, u2u5u4, u2u6u4, u2u7u4, u2u8u4

u5 u2u5, u2u3u5, u2u4u5, u2u6u5, u2u7u5, u2u8u5

u6 u2u6, u2u3u6, u2u4u6, u2u5u6, u2u7u6, u2u8u6

u7 u2u7, u2u3u7, u2u4u7, u2u5u7, u2u6u7, u2u8u7

u8 u2u8, u2u3u8, u2u4u8, u2u5u8, u2u6u8, u2u7u8

u3

u4 u3u4, u3u2u4, u3u5u4, u3u6u4, u3u7u4, u3u8u4

5 × 6 × 0.3
u5 u3u5, u3u2u5, u3u4u5, u3u6u5, u3u7u5, u3u8u5

u6 u3u6, u3u2u6, u3u4u6, u3u5u6, u3u7u6, u3u8u6

u7 u3u7, u3u2u7, u3u4u7, u3u5u7, u3u6u7, u3u8u7

u8 u3u8, u3u2u8, u3u4u8, u3u5u8, u3u6u8, u3u7u8

u4

u5 u4u5, u4u6u5, u4u7u5, u4u8u5

4 × 4 × 0.4u6 u4u6, u4u5u6, u4u7u6, u4u8u6

u7 u4u7, u4u5u7, u4u6u7, u4u8u7

u8 u4u8, u3u5u8, u3u6u8, u3u7u8

u5

u6 u5u6, u5u7u6, u5u8u6
3 × 3 × 0.6u7 u5u7, u5u6u7, u5u8u7

u8 u5u8, u5u6u8, u5u7u8

u6
u7 u6u7, u6u5u7, u6u8u7 2 × 3 × 0.6
u8 u6u8, u6u5u8, u6u7u8

u7 u8 u7u8, u7u5u8, u7u6u8 1 × 3 × 0.6

where m′
u,v is the number of edge-disjoint strongest paths between u and v. Subse-

quently, for all u,v ∈ G,

∑
u,v∈G

∑
si∈S

μ(si)CONNG(u, v) ≤
∑

u,v∈G

m′
u,vCONNG(u, v).

Since κ ′(G) is the minimum strong weight of fuzzy edge cuts we have,

κ ′(G)
∑

u,v∈G

CONNG(u, v) ≤
∑

u,v∈G

m′
u,vCONNG(u, v).

Hence, κ ′(G) ≤ λ(G). �
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FIGURE 15.8

Complete fuzzy graph in Example 15.2.11.

Uncertainty exists regarding the disproportion between AFVC κ(G) and fuzzy
edge connectivity κ ′(G). From [2], we get κ(G) ≤ κ(G). For the fuzzy graph given
in Fig. 15.3, X = {v2v4} is a fuzzy edge cut with minimum strong weight κ ′(G) = 0.1
and κ(G) = 1.14. But, for the fuzzy graph in Fig. 15.2, Y = {v1v4, v3v4} is a fuzzy
edge cut with minimum strong weight κ ′(G) = 0.2 and κ(G) = 1.8. Consequently,
we may only state that

κ(G) ≤ κ ′(G) ≤ λ(G),

κ(G) ≤ κ(G) ≤ λ(G).

Let us examine the sufficient requirement for the inequality of κ(G) and λ(G).

Theorem 15.2.13. For a fuzzy graph G = (σ,μ), if κG(u, v) < λG(u, v), for some
u,v ∈ σ ∗ then there exists an edge-disjoint fuzzy subgraph containing a fuzzy cycle
of strength CONNG(u, v).

Proof. Suppose for a fuzzy graph G, there exist two vertices u, v in G such that
κG(u, v) < λG(u, v). That is, there exist at least two edge-disjoint strongest u, v

paths which are not vertex disjoint. Consider two paths P1 and P2, which are edge
disjoint but not vertex disjoint. Let us assume that P1 and P2 encounter each other
at v1 and v2, respectively, as illustrated in Fig. 15.9. The paths P1 and P2 induces a
subgraph, which is a union of edge-disjoint cycles. Let the cycles be denoted by C1,
C2, and C3. Since edges of C1, C2, and C3 are edges of paths P1 and P2, the strongest
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u−v paths, the strength of each cycle is at least CONNG(u, v). Additionally, at least
one cycle has strength CONNG(u, v). Otherwise, edges of each cycle have weights
greater than CONNG(u, v), which is contradictory.

FIGURE 15.9

Fuzzy graph in Theorem 15.2.13.

We claim that C1, C2, or C3 is a fuzzy cycle. If this is not the case, assume that
each cycle in the induced fuzzy subgraph has precisely one weakest edge. Let the
weakest edges be denoted by thick lines. The u − v path that results from merging
the paths without the weakest edge, as illustrated in Fig. 15.9 by dotted lines, will then
have a strength greater than CONNG(u, v), which is a contradiction. As a result, at
least one cycle has at least two weak edges, forming a fuzzy cycle.

Now, P1 and P2 being strongest, there is at least one edge with a weight of
CONNG(u, v) on P1 and P2. A fuzzy cycle with strength CONNG(u, v) will exist
if at least one of the weakest edges of P1 and P2 is found in the same cycle. If not,
any u − v path that does not contain the weakest edges of P1 and P2 will then be a
path with strength greater than CONNG(u, v). Hence, at least one of C1, C2, or C3
is a fuzzy cycle of strength CONNG(u, v). As a result, we conclude that there exists
a fuzzy subgraph containing a fuzzy cycle with strength CONNG(u, v). �

The converse of the preceding theorem may not hold true in all scenarios. Con-
sider a fuzzy cycle G = (σ,μ) with strength equal to μ(uv) = CONNG(u, v) for
some edge uv ∈ μ∗. In this case, G constitutes an edge-disjoint subgraph of itself,
containing a fuzzy cycle with strength CONNG(u, v). However, for a fuzzy cycle,
κG(u, v) = λG(u, v) for all u,v ∈ σ ∗.

15.3 Application
Children are deeply impacted by the events that take place around them. Even
though they may not understand what they see and hear, they absorb and are af-
fected by the people they rely on for love and security. Constant unrelenting negative
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experiences—known as “toxic stress”—take a toll on a child’s growth and develop-
ment. In response to stress, the brain produces the hormone cortisol. During pro-
longed exposure to stress, cortisol levels remain too high for too long, which inhibits
brain development. Over time, this can change the architecture of a child’s rapidly
developing brain development. Altered brain architecture can result in long-term
problems in learning, behavior, and physical and mental health, [112].

Among the more common disorders that can be diagnosed in childhood are
attention-deficit/hyperactivity disorder (ADHD), anxiety, and behavior disorders as
well as depression. Each of these conditions can significantly impact a child’s life,
and they often interact with each other, leading to complex and varied experiences.
For instance, a child with anxiety might also exhibit symptoms of depression, or a
behavior disorder might be accompanied by anxiety. We first concentrate on anxiety
(A), behavior (B), depression (D), Mental Disorder (Md), and Development Disor-
der (Dd). We construct a fuzzy graph involving these disorders as the vertices as well
weighted graphs associated with their connection. The values are taken from [113].

We illustrate how m′, λG and the deletion of an edge can be used to understand
the structure of a fuzzy graph. Considering the following fuzzy graph G = (V ,E)

given in Fig. 15.10, we get Table 15.3.1.

FIGURE 15.10

Fuzzy graph G.

Table 15.3.1 Table representing connectivity, m and m′ of fuzzy graph M.

Vertices A, B A, D B, D A,
Md

B,
Md

D,
Md

A,
Dd

B,
Dd

D,
Dd

Md,
Dd

CONN 0.35 0.5 0.35 0.4 0.35 0.4 0.4 0.35 0.4 0.4

m′ 2 1 2 2 2 2 2 2 2 2

It follows that
∑

u,v λG(u, v) = 7.3 and
∑

u,v CONNG(u, v) = 3.9. Hence

∑
u,v λG(u, v)∑

u,v CONNG(u, v)
= 7.3

3.9
= 1.87.
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We next delete the edge AD. We obtain Table 15.3.2 with edge AD deleted. Thus

Table 15.3.2 Table representing connectivity, m and m′ of fuzzy graph G−AD.

Vertices A, B A, D B, D A,
Md

B,
Md

D,
Md

A,
Dd

B,
Dd

D,
Dd

Md,
Dd

CONN 0.35 0.4 0.35 0.4 0.35 0.4 0.4 0.35 0.4 0.4
m′ 2 2 2 2 2 1 2 2 2 2

∑
u,v λG−AD(u, v) = 7.6 and

∑
u,v CONNG−AD(u, v) = 3.8. Hence,

∑
u,v λG−AD(u, v)∑

u,v CONNG−AD(u, v)
= 7.6

3.8
= 2.

The increase from 1.87 to 2 shows that the absence of Anxiety(A)- Depression(D)
relationship will leads to stronger influences among the other conditions.

Now, consider the edge ADd . We obtain Table 15.3.3 upon removal of the edge
ADd .

Table 15.3.3 Table representing connectivity, m and m′ of fuzzy graph G−ADd.

Vertices A, B A, D B, D A,
Md

B,
Md

D,
Md

A,
Dd

B,
Dd

D,
Dd

Md,
Dd

CONN 0.35 0.5 0.35 0.4 0.35 0.4 0.4 0.35 0.4 0.4
m′ 2 1 2 2 2 2 1 1 1 1

Thus
∑

u,v λG−ADd(u, v) = 5.75 and
∑

u,v CONNG−ADd(u, v) = 3.9. Hence,
∑

u,v λG−ADd(u, v)∑
u,v CONNG−ADd(u, v)

= 5.75

3.9
= 1.47.

Here, there is a decrease in λ, shows that much concentration has to be done on
the Anxiety-Development disorder connection. It helps in understanding the relative
influence or impact of certain connections on the network’s structure and resilience
to changes or disruptions.

A higher average value would indicate a more interconnected or strongly corre-
lated network of conditions, while a lower value suggests weaker overall interactions.
Understanding these shifts informs adjustments in clinical strategies, guides further
research to explore emerging relationships and highlights the adaptability of mental
health networks in response to changes in connections between conditions. Recogniz-
ing the decrease in AFEC after removing a specific relationship (edge) highlights its
importance in the network. Exposure to many adverse childhood experiences can be
found in [106]. We present this application as a first step in using fuzzy mathematics
in the study of toxic stress among children.

Exposure to many adverse childhood experiences can be found in [106]. We
present this application as a first step in using fuzzy mathematics in the study of
toxic stress among children.
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15.4 Exercises
1. Calculate the AFVC of the fuzzy graph G = (σ,μ) where σ ∗ = {v1, v2, ..., v8}
σ(v) = 1 for every v ∈ σ ∗, μ(v1v2) = 0.1, μ(v2v3) = 0.2, μ(v3, v4) = 0.3,
μ(v4, v5) = 0.4, μ(v5, v6) = 0.5, μ(v6, v7) = 0.6, μ(v7, v8) = 0.7, μ(v8v1) = 0.8.

2. Find the AFVC of G = (σ,μ) with σ ∗ = {v1, v2, v3, v4, v5}, σ(v) = 1 for every
v ∈ σ ∗ μ(v3v4) = μ(v4v5) = 0.3 and μ(v1v2) = μ(v1v5) = μ(v2v5) = μ(v3v5) =
0.5.
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