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Preface

Probability is the bedrock for data analysis and statistics. Students
in computer and data science need a solid background in probability,
especially for areas such as machine learning and artificial intelli-
gence. This undergraduate text is a truly accessible introduction
to the fundamental principles of probability. The book emphasizes
probabilistic and computational thinking rather than theorems and
proofs. It provides insights and motivates the students by showing
them why probability works and how to apply it.

The book starts at the beginning; no specific knowledge of prob-
ability is required. It introduces probabilistic ideas and probability
models with their solution methods that are most useful in computer
and data science. Unique features of this undergraduate textbook are
the Bayesian approach to inference, the interaction between proba-
bility and Monte Carlo simulation, real-world applications of prob-
ability, Poisson heuristic for weakly dependent trials, and a gentle
introduction to Markov chains.

In Chapter 1 the basics of combinatorial analysis are discussed along
with the important role of the exponential function in probability.
Chapter 2 covers not only standard material such as sample space,
conditional probability, discrete random variables, expected value,
standard deviation, the square-root law, the law of large numbers,
and generating functions, but it also covers several topics not found
in most introductory texts, such as Bayesian probability with real-
life cases in law and medicine, naive Bayes and logistic regression,
and the Kelly strategy for gambling and investing. Chapter 3 deals
with specific probability distributions that are useful in applications.
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First, the binomial, hypergeometric, and Poisson distributions are
discussed and the connection between them. Attention is also given
to the important Poissonization method for the multinomial proba-
bility experiment. Next, the most important continuous distributions
are introduced. The normal probability distribution and the central
limit theorem are discussed in detail. Much attention is also given
to the exponential distribution and the Poisson process. The Q-Q
plot and the chi-square test are also covered. The chapter is con-
cluded with a brief discussion of the bivariate normal distribution.
Chapter 4 covers ten real-world applications of probability. Insight
into the occurrence of coincidences in lotteries and birthday-type of
problems are given by using the Poisson distribution. Benford’s law
and coupon collecting are also discussed. Chapter 5 highlights the
role of Monte Carlo simulation in probability. Teaching probability
and statistics well is not easy. Monte Carlo methods may be very
helpful. The basic tools of Monte Carlo simulation are treated and
illustrated with many examples. Attention is also given to the sta-
tistical analysis of simulation output, including confidence intervals
for the simulated estimates. Chapter 6 gives a primer on Markov
chains. The core idea of Markov chains is state and state transi-
tion, which is extremely useful for both modeling and computational
purposes. Many probability problems can be solved by an appropri-
ately chosen Markov chain. Chapter 6 also presents a lucid introduc-
tion to Markov chain Monte Carlo simulation and discusses both the
Metropolis-Hastings algorithm and the Gibbs sampler. All chapters
are interspersed with historical facts about probability.

The text contains many worked examples. Problems are an integral
part of the text. Many instructive problems scattered throughout
the text are given along with problem-solving strategies. Several
of the problems extend previously covered material. Answers to all
problems and worked-out solutions to selected problems are provided.
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Chapter 1

Combinatorics and a Few Calculus Facts

This chapter presents a number of results from combinatorics and
calculus, in preparation for the subsequent chapters. Section 1.1
introduces you to the concepts of factorials and binomial coefficients.
In Section 1.2 the exponential function and the natural logarithm will
be discussed.

1.1 Combinatorial analysis

Many probability problems require counting techniques. In particu-
lar, these techniques are extremely useful for computing probabilities
in a chance experiment in which all possible outcomes are equally
likely. In such experiments, one needs effective methods to count the
number of outcomes in any specific event. In counting problems, it
is important to know whether the order in which the elements are
counted is relevant or not. Factorials and binomial coefficients will
be discussed and illustrated.

In the discussion below, the fundamental principle of counting is
frequently used: if there are a ways to do one activity and b ways to
do another activity, then there are a x b ways of doing both. As an
example, suppose that you go to a restaurant to get some breakfast.
The menu says pancakes, waffles, or fried eggs, while for a drink you
can choose between juice, coffee, tea, and hot chocolate. Then the
total number of different choices of food and drink is 3 x 4 = 12.
As another example, how many different license plates are possible
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when the license plate displays a nonzero digit, followed by three let-
ters, followed by three digits? The answer is that the total number
of possible license plates is

9 x 26 x 26 x 26 x 10 x 10 x 10 = 158 184 000.

Example 1.1. How many ordinary five-card poker hands containing
four of a kind are possible?

Solution. You can choose the four cards of a kind (4, K,...,2)in 13
ways. The fifth card can be chosen in 48 ways. Thus, 13 x 48 = 624
ordinary five-card poker hands containing four of a kind are possible.

Factorials and permutations

How many different ways can you order a number of different objects
such as letters or numbers? For example, what is the number of
different ways that the three letters A, B, and C can be ordered?
By writing out all the possibilities ABC, ACB, BAC, BCA, CAB,
and CBA, you can see that the total number is 6. This brute-force
method of writing down all the possibilities and counting them is
naturally not practical when the number of possibilities gets large,
as is the case for the number of possible orderings of the 26 letters
of the alphabet. You can also determine that the three letters A,
B, and C' can be ordered in 6 different ways by reasoning as follows.
For the first position, there are 3 available letters to choose from, for
the second position, there are 2 letters left over to choose from, and
only one letter for the third position. Therefore, the total number of
possibilities is 3 x 2 x 1 = 6. The general rule should now be evident.
Suppose that you have n distinguishable objects. How many ordered
arrangements of these objects are possible? Any ordered sequence
of the objects is called a permutation. Reasoning in the same way
as above gives that there are n ways for choosing the first object,
leaving n — 1 choices for the second object, etc. Therefore, the total
number of ways to order n distinguishable objects is equal to the
product n x (n —1) X --- x 2 x 1. This product is denoted by n! and
is called ‘n factorial’. Thus, for any positive integer n,

’n!:1><2><---><(n—1)><n.‘
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A useful convention is
0l=1,

which simplifies the presentation of several formulas to be given be-
low. Note that n! = n x (n — 1)! and so n! grows very quickly as
n gets larger. For example, 5! = 120, 10! = 3628800 and 15! =
1307674 368 000. Summarizing, for any positive integer n,

the total number of ordered sequences (permuta-
tions) of n distinguishable objects is n!.

Example 1.2. Eight important heads of state, including the U.S.
President and the British Premier, are present at a summit confer-
ence. For the perfunctory group photo, the eight dignitaries are lined
up next to one other. What is the number of possible arrangements
in which the U.S. President and the British Premier stand next to
each other?

Solution. If the positions of the U.S. President and the British
Premier are fixed, there remain 6! possible arrangements for the other
six statesmen. The U.S. President and the British Premier stand next
to each other if they take up the positions ¢ and i+ 1 for some ¢ with
1 <4 < 7. If these two statesmen take up the positions ¢ and ¢ + 1,
there are 2! possibilities for the order among them. Thus, the total
number of possible arrangements in which the U.S. President and
the British Premier stand next to each other is 6! x 7 x 2! = 10 080.

Example 1.3. How many different words can be composed from 11
letters consisting of five letters A, two letters B, two letters R, one
letter C, and one letter D?

Solution. Imagine that the five letters A are numbered as A; to As,
the two letters B as B and Bs, and the two letters R as Ry and Rs.
Then you have 11 different letters, and the number of ways to order
those letters is 11!. The five letters A; to As, the two letters By and
Bs, and the two letters R; and Ro can among themselves be ordered
in 5! x 2! x 2! ways. Each of these orderings gives the same word.
Thus, the total number of different words that can be formed from
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the original 11 letters is

11!

5% 2l x 21 83 160.

Thus the word ABRACADABRA will appear with probability 83—1160
when the 11 letters are put in random order.

Binomial coefficients and combinations

How many different juries of three persons can be formed from five
persons A, B, C, D, and E? By direct enumeration, you see that the
answer is 10: {A, B,C}, {A, B, D}, {A,B,E}, {A,C,D}, {A,C, E},
{A,D,E}, {B,C,D}, {B,C,E}, {B,D,E}, and {C, D, E}. In this
problem, the order in which the jury members are chosen is not rele-
vant. The answer 10 juries could also have been obtained by a basic
principle of counting. First, count how many juries of three persons
are possible when attention is paid to the order. Then determine
how often each group of three persons has been counted. Thus, the
reasoning is as follows. There are 5 ways to select the first jury mem-
ber, 4 ways to then select the next member, and 3 ways to select the
final member. This would give 5x4 x 3 ways of forming the jury
when the order in which the members are chosen would be relevant.
However, this order makes no difference. For example, for the jury
consisting of the persons A, B, and C, it is not relevant which of the
3! ordered sequences ABC, ACB, BAC, BCA, CAB, and C' BA has
led to the jury. Hence, the total number of ways a jury of 3 persons
can be formed from a group of 5 persons is equal to 5X§‘,X3. This

expression can be rewritten as

5><4><3><2><1_ 5!
3! x 2! - 3lx 2l

In general, you can calculate that the total number of possible ways
to choose a jury of k persons out of a group of n persons is equal to

nx(n—1)x---x(n—k+1)
k!
nx(n—1)x---x(n—k+1)x(n—-Fk)x---x1 n!
k! x (n —k)! CkIx (n—k)
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This leads to the definition

(W)=t

for non-negative integers n and k& with k& < n. The quantity (Z)
(pronounce: n choose k) has the interpretation:

(Z) is the total number of ways to choose k differ-
ent objects out of n distinguishable objects, pay-
ing no attention to their order.

In other words, (z) is the total number of combinations of k differ-
ent objects out of n and is referred to as the binomial coefficient.
The key difference between permutations and combinations is order.
Combinations are unordered selections, permutations are ordered ar-
rangements.

The binomial coefficients play a key role in the so-called urn model.
This model has many applications in probability. Suppose that an
urn contains R red and W white balls. What is the probability of
getting exactly 7 red balls when blindly grasping n balls from the urn?
To answer this question, it is helpful to imagine that the balls are
made distinguishable by giving each of them a different label.! The
total number of possible combinations of n different balls is (RTLW).
Under these combinations there are (f‘) X (nVYT) combinations with
exactly r red balls (and thus n — r white balls). Thus, if you blindly
grasp n balls from the urn, then

() * (s)
(F)

n

the probability of getting exactly r red balls =

with the convention that (Z) = 0 for b > a. These probabilities repre-
sent the so-called hypergeometric distribution. Probability problems
that can be translated into the urn model appear in many disguises.
A nice illustration is the lottery 6/45. In each drawing of the lottery,

'Labeling objects to distinguish them from each other can be very helpful
when solving a combinatorial probability problem.
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six different numbers are chosen from the numbers 1,2, ...,45. Sup-
pose you have filled in one ticket with six distinct numbers. Then
the probability of matching exactly r of the drawn six numbers is

6 39
(r) X (677")
(s)
6
as you can see by identifying the six drawn numbers with 6 red balls
and the other 39 numbers with 39 white balls. In particular, the

probability of matching all six drawn numbers (the jackpot) equals
1 to 8145 060.

forr=20,1,...,6,

Example 1.4. How many ordinary five-card poker hands containing
one pair are possible? One pair means two cards of the same face
value plus three cards with different face values.

Solution. The answer to the question requires careful counting to
avoid double counting. To count the number of hands with one pair,
you proceed as follows. Pick the face value for the pair: (113) choices.
Pick two cards from the face value: (3) choices. Pick three other face
values: (132) choices. Pick one card from each of the other three face
values: 4 x4 x 4 choices. This gives that the total number of possible

hands with one pair is

13 4 12 3
<1> X <2> X <3> x 4° = 1098 240.

You can choose five cards out of the 52 playing cards in (552) ways,
and so the probability of getting a five-card poker hand with one pair

is
1098240

52

(5)
Example 1.5. Six socks are lost when washing ten different pairs of
socks. How many combinations of seven matching pairs are possible

for the remaining socks? How many combinations are possible for
four matching pairs?

= 0.4226.

Solution. You are left with seven complete pairs of socks only if
both socks of three pairs are missing. You can choose three pairs in
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(130) = 120 ways. Thus, 120 combinations of seven complete pairs
are possible for the remaining socks. You are left with four matching
pairs of socks only if exactly one sock of each of six pairs is missing.
These six pairs can be chosen in (160) ways. There are two possibilities
for how to choose one sock from a given pair. This means that
(160) %26 = 13 440 combinations of four matching pairs are possible for
the remaining socks. It is much more likely that four matching pairs
of socks remain than seven matching pairs of socks. The probability
of seven complete pairs and the probability of four complete pairs

have the values

120 1 13440 112
720\ ~ 399 A4 oy T oo
( 6) 323 ( 6) 323
When things go wrong, they really go wrong!

Combinatorial identities

In mathematics there are many identities in which binomial coeffi-
cients appear. The following recursive relation is known as Pascal’s

triangle?:
n n—1 n—1
= <k <n.
(k) <k—1>+< k) for1<k<n

You can algebraically prove this. A more elegant proof is by in-
terpreting the same ‘thing’ in two different ways. This is called a
word-proof. Think of a group of n persons from which a committee
of k persons must be chosen. The k persons can be chosen in (Z)
ways. However, you can also count as follows. Take a particular
person, say John. The number of possible committees containing
John is given by (Zj), and the number of possible committees not

containing John is given by (";1), which verifies the identity.

2Pascal was far from the first to study this triangle. The Persian mathemati-
cian Al-Karaji had produced something very similar as early as the 10th century,
and the triangle is called Yang Hui’s triangle in China after the 13th century
Chinese mathematician Yang Hui, and Tartaglia’s triangle in Italy after the 16th
century Italian mathematician Niccolo Tartaglia.
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Test questions

e How many distinct license plates with three letters followed by
three digits are possible? How many if the letters and numbers must
be different? (answer: 17576 000 and 11232 000)

e What is the total number of ways to arrange 5 letters A and 3
letters B in a row? (answer: 56)

e Five football players A, B, C, D, and E are designated to take a
penalty kick after the end of a football match. In how many orders
can they shoot if A must shoot immediately after C? How many if
A must shoot after C? (answer: 24 and 60)

e What is the total number of distinguishable permutations of the
eleven letters in the word Mississippi? (answer: 34 650)

e John and Pete are among 10 players who are to be divided into two
teams A and B, each consisting of five players. How many formations
of the two teams are possible so that John and Pete belong to a same
team? (answer: 112)

e Suppose that from 10 children, five are to be chosen and lined up.
How many different lines are possible? (answer: 30 240)

e How many ordinary five-card poker hands containing two pairs plus
one card with a different face value are possible? (answer: 123 552)

e Five dots are placed on a 7 x 7 grid so that no cell contains more
than one dot. How many configurations are possible so that no row
or column contains more than one dot? (answer: 52920)

* Give word proofs of (,"}) = () and 333 (1) (,") = (3)-

e How many ways are there to distribute eight identical chocolate
bars between five children so that each child gets at least one choco-
late bar? (answer: 35)3

3The number of combinations of non-negative integers 1, ...,x, satisfying
r1 4 -+ xn =7 is equal to ("+:71). This result is stated without proof.
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1.2 The exponential and logarithmic functions

The history of the number e begins with the discovery of logarithms
by John Napier in 1614. At this time in history, international trade
was experiencing a period of strong growth, and as a result, there
was much attention given to the concept of compound interest. At
that time, it was already noticed that (14 )" tends to a certain
limit if n is allowed to increase without bound:

lim (1 " l)n — ¢ with e = 2.7182818 . .. .
n

n—oo

The famous mathematical constant e is called the Euler number, and
it crops up everywhere in the field of probability. This constant is
named after Leonhard Euler (1707-1783) who is considered as the
most productive mathematician in history.

The exponential function is defined by e”, where the variable x
runs through the real numbers. This is one of the most important
functions in mathematics. A fundamental property of e* is that this
function has itself as derivative:

d xr
- e? for all z.

dr

How to calculate the function e*? The generally valid relation

X n
lim (1 + —) =e¥ forall x
n—o00 n

is not useful for that purpose. The calculation of e* is based on

2 3

e —1+$+2!+3!+ for all z.

The proof of this power series expansion requires Taylor’s theorem
from calculus. The fact that e® has itself as derivative is crucial
in the proof. Note that term-by-term differentiation of the series
1+2+ %? + .-+ leads to the same series, in agreement with the fact
that e® has itself as derivative.

The series expansion of e* leads to e* ~ 1+ for x close to 0. This
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is one of the most useful approximation formulas in mathematics! In
probability theory the formula is often used as

e "~1—x for z close to 0.

A nice illustration of the usefulness of this formula is provided by
the birthday problem. What is the probability that two or more
people share a birthday in a randomly formed group of m people
(no twins)? To simplify the analysis, it is assumed that the year has
365 days (February 29 is excluded) and that each of these days is
equally likely as birthday. Number the people as 1 to m and let the
sequence (v1,vg,...,0y) denote their birthdays. The total number
of possible sequences is 365 x 365 x --- x 365 = 365™, while the
number of sequences in which each person has a different birthday
is 365 x 364 x --- x (365 — m + 1). Denoting by P, the probability
that each person has a different birthday, you have
365 x 364 x --- x (365 —m + 1)

P, .
365™

If m is much smaller than 365, the insightful approximation

P, ~ e—%m(m—l)/365

applies. To see this, write P, as

1 2 -1
P,=1x (1——) X (1——) X e X (1—L).
365 365 365
Next, by e™® ~ 1 — x for x close to zero and the algebraic formula
142+ +n=1in(n+1)for n > 1, you get
P o o 1/365 o o=2/365 o o o—(m=1)/365 _ ,—(1+2+..4m—1)/365
S =

_ ef%m(mfl)/365.

The sought probability that two or more people share a same birth-
day is one minus the probability that each person has a different
birthday. Thus,

probability of two or more people sharing a birthday

~1_— 67%m(m71)/365'
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This probability is already more than 50% for m = 23 people (the
exact value is 0.5073, and the approximate value is 0.5000). The
intuitive explanation that the probability of a match is already more
than 50% for such a small value as m = 23 is that there are (223) =253
combinations of two persons, each combination having a matching
probability of %.

Natural logarithm

The function e” is strictly increasing on (—oo, 00) with lim,_, . e* =
0 and lim;_,, € = co. Therefore, for each fixed ¢ > 0, the equation
e¥ = con (—o0, 00) has a unique solution y. This solution as function
of ¢ is called the natural logarithm. It is denoted by In(c) for ¢ > 0.
Thus, the natural logarithm is the inverse function of the exponential
function. The function In(z) is the logarithmic function with base e.
In statistical computing, the relationship

e™@ = ¢ for any a >0

can be very helpful. Logarithms have the property that they enable
you to reduce the manipulation with extremely large or extremely
small numbers to the manipulation with moderately sized numbers.
Doing calculations on a log scale and then exponentiating them usu-
ally resolves numerical problems of overflow or underflow.

The natural logarithm can also be defined by the integral

Y1
lm(y):/1 ;dv for y > 0.

This integral representation of In(y) shows that

dIn(y)
dy

1
=— fory>0.
Yy

The integral formula for In(x) implies In(n + 1) < H, < 1+ In(n),
where H, =1+ % 4+ % is the partial sum of the harmonic series.
A very accurate approximation for H,, is

1
~1 —
n(n) + v+ 5

S

1
14+ =4 ...
+o et
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where v = 0.57721 ... is the Euler-Mascheroni constant. The abso-
lute error of the approximation is bounded by #.4

Geometric series

In probability analysis you will often encounter the geometric series.
The basic formula for the geometric series is

1
l+z+a2+-=—— forlz <1,
1-2z

or, shortly, Y72 a* = ;2= for |z| < 1. You can easily verify this
result by working out (1 — z)(1 + 2 + 22 + -+ +2™) as 1 — z™*L,
If you take |z| < 1 and let m tend to infinity, then 2™ %1 tends to 0.
This gives (1 — 2)(1 + o + 2%+ ---) = 1 for |z| < 1, which verifies
the desired result. Differentiating the geometric series term-by-term
and noting that ﬁ has ﬁ as derivative, you get

> 1
E kb=l = ———  for |z < 1.
P (1—x)2

By differentiating both sides of this equation, you get

> 2
k(k—1a" 2= —"  for |z| < 1.
O

Integrating both sides of lJ%m =1l-a+22—23+-.. for |z| < 1, you
get the series expansion

2 3 4
1n(1+y):y—%+y§—%+-~- for |y| < 1.

4The harmonic series Doy % has the value co. There are many proofs for this
celebrated result. The first proof dates back to about 1350 and was given by the
philosopher Nicolas Oresme. His argument is ingenious. Oresme simply observed
that 3+ >2=34, t+s+3+s>8=5, s+ 5+ +5>5=3 etc
In general, ?11 +tom T+ 217 > % for any r, showing that Y, _, % eventually
grows beyond any bound as n gets larger. Isn’t it a beautiful argument?




Chapter 2
Fundamentals of Probability

Probability is the science of uncertainty and it is everywhere:
e What is the chance of winning the jackpot in the national lottery?
e What is the chance of having some rare disease if tested positive?

e What is the chance that the last person to draw a ticket will be
the winner if one prize is raffled among 10 people?

e How many cards would you expect to draw from a standard deck
before seeing the first ace?

e What is the expected value of your loss when you are going to bet
50 times on red in roulette?

e What is the expected number of different values that come up when
six fair dice are rolled? What is the expected number of rolls of a
fair die it takes to see all six sides of the die?

The tools to answer these kinds of questions will be given in this
chapter, which aims to familiarize yourself with the most important
basic concepts in elementary probability. The standard axioms of
probability are introduced, the important properties of probability
are derived, the key ideas of conditional probability and Bayesian
thinking are covered, and the concepts of random variable, expected
value, and standard deviation are explained. All this is illustrated
with insightful examples and instructive problems.

13



14 A First Course in Probability

2.1 Foundation of probability

Approximately four hundred years after the colorful Italian math-
ematician and physician Gerolamo Cardano (1501-1576) wrote his
book Liber de Ludo Aleae (Book on Games of Chance) and laid a
cornerstone for the foundation of the field of probability by introduc-
ing the concept of sample space, celebrated Russian mathematician
Andrey Kolmogorov (1903-1987) cemented that foundation with ax-
ioms on which a solid theory can be built.

The sample space of a chance experiment is a set of elements
that one-to-one correspond to all of the possible outcomes of the
experiment. Here are some examples:

e The experiment is to roll a die once. The sample space can be
taken as the set {1,2,...,6}, where the outcome ¢ means that i dots
appear on the up face.

e The experiment is to repeatedly roll a die until the first six shows
up. The sample space can be taken as the set {1,2, ...} of the positive
integers. Outcome k indicates that a six appears for the first time
on the kth roll.

e The experiment is to measure the time until the first emission of
a particle from a radioactive source. The sample space can be taken
as the set (0,00) of the positive real numbers, where the outcome ¢
means that it takes a time ¢ until the emission of a particle.

In the first example, the sample space is a finite set. In the second
example, the sample space is a so-called countably infinite set, while
in the third example, the sample space is a so-called uncountable set.

In set theory, a non-finite set is called countably infinite if the el-
ements of the set one-to-one correspond to the natural numbers. Not
all sets with a non-finite number of elements are countably infinite.
The set of all points on a line and the set of all real numbers between
0 and 1 are examples of infinite sets that are not countable. Sets
that are neither finite nor countably infinite are called uncountable,
whereas sets that are either finite or countably infinite are called
countable.

The idea of Kolmogorov was to consider a sufficiently rich class of
subsets of the sample space and to assign a number, P(A), between 0
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and 1, to each subset A belonging to this class of subsets. The class
of subsets consists of all possible subsets if the sample space is finite
or countably infinite, but certain ‘weird’ subsets must be excluded
if the sample space is uncountable. For the probability measure P,
three natural postulates are assumed. Denoting by P(A or B) the
number assigned to the set of all outcomes belonging to either subset
A or subset B or to both, the axioms for a finite sample space are:

Axiom 1. P(Q) =1 for the sample space Q.
Axiom 2. 0 < P(A) <1 for each subset A of €.

Axiom 3. P(A or B) = P(A) + P(B) if the subsets A and B have
no element in common (so-called disjoint subsets).

Axiom 3 needs a modification if the sample space is non-finite. Then
the axiom is P(A; or Ap or ...) = > 72, P(A) for pairwise disjoint
subsets A, As,.... The sample space endowed with a probability
measure P on the class of subsets is called a probability space.

If the sample space contains a countable number of elements, it is
sufficient to assign a probability p(w) to each element w of the sample
space. The probability P(A) that is then assigned to a subset A of
the sample space is defined by the sum of the probabilities of the
individual elements of set A. That is, in mathematical notation,

P(A) =) pw).

w€eA

A special case is the case of a finite sample space in which each
outcome is equally likely. Then P(A) can be calculated as

the number of outcomes belonging to A

P(A) = .
(4) the total number of outcomes of the sample space

This probability model is known as the Laplace model, named after
the famous French scientist Pierre Simon Laplace (1749-1827), who
is sometimes called the ‘French Newton’. What is called the Laplace
model was first introduced by Gerolamo Cardano in his 16th century
book. This probability model was used to solve a main problem



16 A First Course in Probability

in early probability: the probability of not getting a 1 in two rolls
of a fair die is 22. Galileo Galilei (1564-1642), one of the greatest
scientists of the Renaissance, used the model to explain to the Grand
Duke of Tuscany, his benefactor, that it is more likely to get a sum of
10 than a sum of 9 in a single roll of three fair dice (the probabilities
are 22—176 and 2).

In probability language, any subset A of the sample space is called an
event. It is said that event A occurs if the outcome of the experiment
belongs to the set A. The number P(A) is the probability that event
A will occur. Any individual outcome is also an event, but events
correspond typically to more than one outcome. For example, the
sample space of the experiment of a single roll of a die is the set
{1,2,3,4,5,6}, where outcome ¢ means that i dots appear on the up
face of the die. Then, the subset A = {1,3,5} represents the event
that an odd number shows up. Events A and B are called mutually
exclusive (or disjoint) if they cannot both occur at the same time.

The probability measure P does not appear out of thin air, rather
you must consciously choose it. Naturally, this must be done in such
a way that the axioms are satisfied and the model reflects the reality
of the problem at hand in the best possible way. The axioms must
hold true not only for the interpretation of probabilities in terms of
relative frequencies for a repeatable experiment such as the rolling of
a die. They must also remain valid for the Bayesian interpretation
of probability as a measure of personal belief in the outcome of a
non-repeatable experiment, for example, a horse race. A subjective
probability depends on one’s knowledge or information about the
event in question.

Example 2.1. You are randomly dealt four cards from an ordinary
deck of 52 playing cards. What is the probability of getting no ace?

Solution. Two methods will be presented to solve this problem.
It is always helpful if you can check the solution using alternative
solution methods.

Solution method 1: This method uses an unordered sample space.
The sample space consists of all possible combinations of four differ-
ent cards. This sample space has (542) equally likely elements. The
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number of elements for which there is no ace among the four cards
is (448). Thus, the probability of getting no ace is

(%)
4
Solution method 2: This method uses an ordered sample space. The
sample space consists of all possible orderings of the 52 cards. The
sample space has 52! equally likely elements. The number of possible
orderings for which there is no ace among the first four cards in the
ordering is 48 x 47 x 46 x 45 x 48!. Thus, the probability of getting
no ace can also be found as

48 x 47 x 46 x 45 x 48
52!

Example 2.2. Three players enter a room and are given a red
or a blue hat to wear. The color of each hat is determined by a
fair coin toss. Players cannot see the color of their own hats, but
do see the color of the other two players’ hats. The game is won
when at least one of the players correctly guesses the color of his
own hat, and no player gives an incorrect answer. In addition to
having the opportunity to guess a color, players may also pass. No
communication of any kind between players is allowed after they
have been given hats; however, they may agree on a group strategy
beforehand. The players decided upon the following strategy. A
player who sees that the other two players wear a hat with the same
color guesses the opposite color for his/her own hat; otherwise, the
player says nothing. What is the probability of winning the game
under this strategy?

= 0.7187.

Solution. This problem boils down to the chance experiment of
tossing a fair coin three times. As sample space, take the set con-
sisting of the eight elements RRR, RRB, RBR, BRR, BBB, BBR,
BRB, and RBB, where R stands for a red hat and B for a blue
hat. Each element of the sample space is equally probable and gets
assigned a probability of %. The strategy is winning if one the six
outcomes RRB, RBR, BRR, BBR, BRB, or RBB occurs (verify!).
Thus, the probability of winning the game under the chosen strategy

e 3
ISZ.
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Sample points may be easily incorrectly counted. In his book Opera
Ompnia, the German mathematician Gottfried Wilhelm Leibniz (1646
1716) — inventor of differential and integral calculus along with Isaac
Newton — made a famous mistake by stating: “with two dice, it is
equally likely to roll twelve points than to roll eleven points because
one or the other can be done in only one manner”. He argued: two
sixes for a sum 12, and a five and a six for a sum 11. However, there
are two ways to get a sum 11; that is obvious by imagining that one
die is blue and the other is red. Alternatively, you can think of two
rolls of a single die instead of a single roll of two dice.

Another psychologically tempting mistake that is sometimes made
is to treat sample points as equally likely when this is actually not
the case. This mistake can be illustrated with a famous misstep of
Jean le Rond d’Alembert (1717-1783) who was one of the foremost
intellectuals of his time. D’Alembert made the error to state that
the probability of getting heads in no more than two coin tosses is %
rather than %. He reasoned as follows: “once heads appears upon the
first toss, there is no need for a second toss. The possible outcomes of
the game are thus H, T H, and T'T, and so the required probability is
%”. However, these three outcomes are not equally likely, but should
be assigned the probabilities %, %, and %, respectively. The correct
answer is %, as would be immediately clear from the sample space
{HH,HT,TH,TT} for the experiment of two coin tosses.

Example 2.3. Two desperados, A and B, are playing a game of
Russian roulette using a gun. One of the gun’s six cylinders contains
a bullet. The desperados take turns pointing the gun at their own
heads and pulling the trigger. Desperado A begins. If no fatal shot
is fired, they give the cylinder a spin such that it stops at a random
chamber, and the game continues with desperado B, and so on. What
is the probability that desperado A will fire the fatal shot?

Solution. The set {1,2,...} of the positive integers is taken as
sample space for the experiment. Outcome ¢ means that the fatal
shot occurs at the ith trial. In view of the independence of the
trials, an appropriate probability model is constructed by assigning
the probability % to outcome 1, the probability % X é to outcome 2,
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and so on. In general, the probability assigned to outcome ¢ is

5 5 1 5yi—1 1
F—= — X e X — X — = — X — f :12
Pi= 66(6) 6 T oo
This is an example of the so-called geometric distribution.’® Let A be
the event that desperado A fires the fatal shot. This event occurs for
the outcomes 1, 3,5, .... Thus, using the geometric series > -, zk =
L for |z| < 1, you get

25 1 1
Zp%“ kz<36> 6 1-25/36°
and so the probability that desperado A will fire the fatal shot is 1%.

Product rule for a compound chance experiment

The chance experiment from Example 2.3 is a so-called compound
chance experiment. Such an experiment consists of a sequence of
elementary sub-experiments. In the compound experiment from Ex-
ample 2.3, the sub-experiments are physically independent of each
other, that is, the outcome of one sub-experiment does not affect the
outcome of any other sub-experiment. The probabilities to the out-
comes of the compound experiment were assigned by taking the prod-
uct of probabilities of individual outcomes of the sub-experiments.
This is the only assignment that reflects the physical independence
of the sub-experiments.

How to assign probabilities to the outcomes of a compound chance
experiment when the sub-experiments are not physically indepen-
dent? This is also done by a product rule. To explain this rule,
consider the experiment of sequentially picking two balls at random
from a box containing four red and two blue balls, where the first
picked ball is not put back in the box when drawing the second ball.
What is the probability of picking at least one blue ball? This exper-
iment is a compound experiment with two physically dependent sub-
experiments. The sample space of the compound experiment consists

In general, this is the probability distribution of the number of trials until
the first success occurs in a sequence of independent trials each having the same
success probability p. A very useful probability model!
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of the four ordered pairs (r,7), (r,b), (b,7), and (b, b), where the first
component of each pair indicates the color of the first picked ball and
the second component indicates the color of the second picked ball.
Outcome (r,7) gets assigned the probability p(r,r) = § x 2 = 2.
The rationale behind this assignment is that the first ball you pick
will be red with probability %. If the first ball you pick is red, three
red and two blue balls remain in the box, in which case the second

ball you pick will be red with probability % By the same argument,

outcome (r,b) gets assigned the probability p(r,b) = % X % = 1%,
p(b, ) = % X % = %7 and p(b,b) = % X % = % This probability

model is an adequate representation of the experiment and enables
us to answer the question of what the probability of picking at least
one blue ball is. This probability is

4 4 1 3

p(r,b) +p(b,r) + p(b,b) = Tt tE =5
The basis of the probability model used to obtain this answer was
a product rule. This rule will be encountered again in Section 2.3

when discussing conditional probabilities.

It is fun to also give a probability problem with an uncountable
sample space.

Example 2.4. The game of franc-carreau was a popular game in
eighteenth-century France. In this game, a coin is tossed on a chess-
board. The player wins if the coin does not fall on one of the lines of
the board. Suppose a coin with a diameter of d is blindly tossed on
a large table. The surface of the table is divided into squares whose
sides measure a in length such that a > d. What is the probability
of the coin falling entirely within the confines of a square?

Solution. The trick is to concentrate on the center point of the
coin. Take as sample space the square in which this point falls. The
meaning of a point in the sample space is that the center of the coin
lands on that point. Since the coin lands randomly on the table,
the probability that is assigned to each measurable subset A of the
sample space is the area of the region A divided by the area of the
square. The coin falls entirely within a square if and only if the center
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—d/2 —>| «—d/2—>| a

Figure 1: Franc-carreau game.

point of the coin lands on a point in the shaded square in Figure 1.
The area of the shaded square is (a — d)2. Therefore,

o . o (a — d)?
P(the coin will fall entirely within a square) = ~——5—.
a

Complement rule

One of the most useful calculation rules in the field of probability
is the complement rule, which states that the probability of a given
event occurring can be found by calculating the probability that the
event will not occur. These two probabilities sum to 1. The com-
plement rule is often used to find the probability of ‘something’ oc-
curring at least once. For example, the rule is very helpful to find
the probability of at least one six occurring in four rolls of a die,
and the probability of at least one double six in 24 rolls of two dice,
see Problem 2.2 below. This probability problem has an interest-
ing history. The French nobleman Chevalier de Méré was a famous
gambler of the 17th century. He frequently offered the bet that he
could obtain a six in four rolls or less of a single die, and the bet that
he could obtain a double six with two dice in 24 rolls or less. The
Chevalier believed that the chance of winning the bet was the same
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in both games (can you explain why the respective chances are not
% and g—é?). In reality, however, he won the first game more often
than not. The Chevalier approached the mathematician Blaise Pas-
cal for clarification. This inquiry led to a correspondence between
the two famous French mathematicians Blaise Pascal (1623-1662)
and Pierre de Fermat (1601-1665).°® They mathematically clarified
the dice problem by simply calculating the chances of not rolling a

six or double six, see Problem 2.2 below.

The complement rule says that, for any event A,

P(A) =1 — P(A),

where the complementary event A is defined as the event that A
does not occur. A formal proof of this obvious result goes as follows.
The events A and A are mutually exclusive, and together they form
the whole sample space. Then, by the Axioms 1 and 3, you have
P(Aor A)=1and P(A or A) = P(A) + P(A).

Example 2.5. You hear that a draw in the 6/45 lotto has produced
six consecutive numbers. How unlikely do you think this is?

Solution. The probability that the numbers 1 to 6 will appear in
the upcoming draw of the 6/45 lotto is (2)/(465)7 see Section 1.1.
So the probability of six consecutive numbers is p = 40 x (g) / (465) =
4.91x107%. This is a very small probability, but the picture changes if
the question is put into context. There are many lottos in the world.
Imagine one hundred 6/45 lottos each with two draws per week.
The probability that in the next, say, 5 years, no six consecutive
numbers will appear in the 100 x 5 x 52 x 2 = 52000 draws is (1 —
p)°20% = 0.7746, by the product rule. The complement rule then
gives that the probability of at least one draw occurring with six

5The 1654 Pascal-Fermat correspondence marks the beginning of modern
probability theory. In this correspondence, another famous probability prob-
lem was solved. Chevalier de Méré had also brought to Pascal’s attention the
problem of points, in which the question is how the winnings of a game of chance
should be divided between two players if the game was ended prematurely. This
problem will be discussed in Section 3.1.
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consecutive numbers is 1 — 0.7746 = 0.2254. This is by no means a
small probability. The lesson is that, however improbable an event
may be, it will almost certainly occur at some point if the event is
given a sufficiently large number of opportunities to manifest itself.

Problem 2.1. A dog has a litter of four puppies. Use an appropriate
sample space to verify that it is more likely that the litter consists
of three puppies of the same gender and one of the other than two

: . 8 6
puppies of each gender. (answer: 5 versus 5)

Problem 2.2. Use an appropriate sample space to argue that the
probability of getting at least one six in r rolls of a single die is
1-— 2—:, and the probability of getting at least one double six in r rolls
of two dice is 1 — gg: What are the smallest values of r for which
the probabilities are more than 0.5? (answer: r = 4 and r = 25)

Problem 2.3. (a) What is the probability of getting two or more
times a same number in one roll of three dice? (answer: %)
(b) Two dice are rolled. If the biggest number is 1, 2, 3, or 4, player

1 wins; otherwise, player 2. Who has an edge? (answer: player 2)

Problem 2.4. Three balls are randomly placed one by one in three
boxes. What is the probability that exactly one box remains empty?

(answer: %)

Problem 2.5. You have two gift cards, each loaded with 10 free
drinks from your favorite coffee shop. Each time you get a drink,
you randomly pick one of the cards to pay with. One day, it happens
for the first time that the waiter can’t accept the card because it
does not have any drink credits left on it. What is the probability
that the other card has also no free drinks on it? (answer: 0.1762)

Problem 2.6. In a game show, a father and his daughter are stand-
ing in front of three closed doors, behind which a car, the key to the
car, and a goat are hidden in random order. Each of them can open
up to two doors, one at a time, and this must be done out of sight
of the other. The daughter is given the task of finding the car, and
the father must find the key. Only if both are successful, they get to
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keep the car. Father and daughter are allowed to discuss a strategy
before the game starts. What is an optimal strategy? What is the

maximum probability of winning the car? (answer: %)

Problem 2.7. For non-disjoint sets A and B, the sum rule is
P(Aor B) = P(A)+P(B)—P(A and B), where ‘A and B’ is the set
of outcomes belonging to both A and B.” Can you explain this rule?
What is the probability of getting an ace or a heart when picking

randomly one card from a deck of 52 cards? (answer: %)

Problem 2.8. An experiment has three possible outcomes O1, Os,
and O3 with probabilities p; = 0.10, p2 = 0.15, and p3 = 0.75,

respectively. What is the probability that outcome O; will appear
before Oz if the experiment is done repeatedly? (answer: 0.40)

Problem 2.9. Two people have agreed to meet at the train station.
Independently of one other, each person is to appear at a random
moment between 12 p.m. and 1 p.m. What is the probability that

they will meet within 10 minutes of each other? (answer: 3%)

2.2 The concept of conditional probability

The concept of conditional probability lies at the heart of probability
theory. It is an intuitive concept. To illustrate this, most people
reason as follows to find the probability of getting two aces when
two cards are selected at random in succession from an ordinary
deck of 52 cards. The probability of getting an ace on the first card
is %. Given that one ace is gone from the deck, the probability of
getting an ace on the second card is 5% Therefore,

4 3

P(the first two cards are aces) = 5 X BT

What is applied here is the product rule for probabilities:

|P(Aand B) = P(A)P(B | A),

"In mathematical notation, P(A or B) is written as P(AUB), and P(A and B)
as P(AN B). The sum rule reads as P(AUB) = P(A)+ P(B) — P(AN B) in the
set-theoretic notation.
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where P(A and B) stands for the probability that both event A (‘the
first card is an ace’) and event B (‘the second card is an ace’) will
occur, P(B | A) is the notation for the conditional probability that
event B will occur given that event A has occurred.® In words, the
unconditional probability that both event A and event B will occur is
equal to the unconditional probability that event A will occur times
the conditional probability that event B will occur given that event
A has occurred. This is one of the most useful rules in probability.

Example 2.6. Someone is looking to rent an apartment on the top
floor of a certain building. The person gets wind of the fact that
two apartments in the building are empty and are up for rent. The
building has seven floors with eight apartments per floor. What is
the probability of having a vacant apartment on the top floor?

Solution. There are two possible approaches to solving this prob-
lem. In both, the complement rule is applied. This means that,
instead of calculating the probability in question, you calculate the
complementary probability of no top floor apartment being available.
Subtracting this probability from 1 gives the probability of having a
vacant apartment on the top floor.

Approach 1: This approach is based on counting and requires the
specification of a sample space. The elements of the sample space
are all possible combinations of two of the 56 apartments. The total

8In fact, the other way around, P(B | A) is defined as the ratio of P(A and B)
and P(A) if P(A) > 0. This definition can be motivated as follows. Suppose that
n physically independent repetitions of a chance experiment are done under the
same conditions. Let r be the number of times that event A occurs simultaneously
with event B, and s be the number of times that event A occurs but not event B.
The frequency at which event B occurs in the cases that event A has occurred
is equal to T_T_S. The frequency at which both event A and event B occur is .,
and the frequency at which event A occurs is T::S. The ratio of these frequencies
is Tis. This ratio is exactly the frequency at which event B occurs in the cases
that event A has occurred. This explains the definition of P(B | A).

The conditional probability P(B | A) is in fact a probability measure on a
reduced sample space. For example, suppose a blue and red die are rolled and
you get the information that there is a six among the two outcomes. Then
the reduced sample space of the experiment is {(1,6),...,(5,6),(6,1),...(6,6)},
where outcome (4, j) means that the blue and red die show ¢ and j points.
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number of possible combinations is (526) = 1540, whereas the number
of possible combinations without a vacant apartment on the top floor
is (428) = 1128. Then, taking the ratio of all favorable combinations
and the total number of combinations,

P(no apartment is vacant on the top floor) = % = 0.7325.
Approach 2: The second approach is based on conditional prob-
abilities. Imagine that the two available apartments were vacated
one after the other. Then, let A be the event that the first vacant
apartment is not located on the top floor and B be the event that
the second vacant apartment is not located on the top floor. Then
P(A) = % and P(B | A) = %. Next, by the product rule, you find
again the value 0.7325 for the probability that no top floor apartment
is available:

8 A = 0.7325.

P(A and B) = P(A)P(B | A) = = x

Example 2.7. Three boys and three girls are planning a dinner
party. They agree that two of them will do the washing up, and they
draw lots to determine which two it will be. What is the probability
that two boys will wind up doing the washing up?

Solution. A useful solution strategy in probability is to see whether
your problem is the same as another problem, for which the solu-
tion is more obvious. This is the situation, here. The sought-after
probability is the same as the probability of getting two red balls
when blindly choosing two balls from a bowl containing three red
and three blue balls. If A represents the event that the first ball cho-
sen is red, and B represents the event that the second ball chosen is
red, then the sought-after probability is equal to P(A and B). Thus,
using the basic formula P(A and B) = P(A)P(B | A), you find that
1

P(two boys will do the washing up) = % X % = ;.

An obvious extension of the product formula is

P(A; and Ay and ... and A,)
= P(Al)XP(AQ ‘ Al)X”-X P(An | A1 and A2 and... and An—l)-
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This useful extension is illustrated with the following example.

Example 2.8. What is the probability that you must pick five or
more cards from a shuffled deck of 52 cards before getting an ace?

Solution. Noting that the sought-after probability is nothing else
than the probability of getting no ace among the first four picked
cards, let A; be the event that the ith picked card is not an ace for
i = 1,...,4. The probability P(A4; and Az and As and Ay) is the
probability that five or more cards are needed to get an ace. This
probability is calculated from the extended product formula with
n = 4 and has the value g—g X % X % X i—g = 0.7187.

An alternative calculation is as follows: let F) be the event that
the first k — 1 cards are non-aces and F} be the event that the kth
card is an ace. Then, the probability py of getting the first ace at

the kth pick is P(Ej and Fy) = P(Ey)P(Fy, | E). Verify yourselves

_ (:2) 4 _
Pr = X for k=1,2 49
(k5_21) 52—(k—1) 9y P ’

which gives Zing) pr = 0.7187. It never hurts to solve a problem in
different ways. It allows you to double check your answer.

The foregoing examples show that when you use an approach based
on conditional probabilities to solve the problem, you usually go
straight to work without first defining a sample space. The counting
approach, however, does require the specification of a sample space.
If both approaches are possible for a given problem, then the ap-
proach based on conditional probabilities will, in general, be simpler
than the counting approach.

For events A and B with nonzero probabilities, the formula

P(A and B)

P(B|4) = =5

quantifies how the original probability P(B) changes when new in-
formation becomes available. If P(B | A) = P(B), then the events
A and B are said to be independent. An equivalent definition of
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independence is P(A and B) = P(A)P(B). The concept of indepen-
dence will be further explored in Section 2.7.

Beginning students sometimes think that independent events A
and B with nonzero probabilities are disjoint. This is not true. The
explanation is that P(A and B) = 0 if A and B are disjoint, whereas
P(A and B) = P(A)P(B) > 0 if A and B are independent.

Problem 2.10. Five friends are sitting at a table in a restaurant.
Two of them order white wine, and the other three order red wine.
The waiter has forgotten who ordered what and puts the drinks in
random order before the five persons. What is the probability that
each person gets the correct drink? (answer: %)

Problem 2.11. A bag contains 14 red cards and 7 black cards.
You pick two cards at random from the bag. Verify that it is more
likely to pick one red and one black card rather than two red cards.
(answer: the probabilities are 33 and 13)

Problem 2.12. Someone has rolled two dice out of your sight. You
ask this person to answer “yes or no” on the question whether there
is a six among the two rolls. He truthfully answers, “yes.” What is
the probability that two sixes were rolled? (answer: --)

Problem 2.13. A prize is raffled among 10 people. In a pre-agreed
order, each of them draws a lottery ticket from a bowl with 10 tickets,
including one winning ticket. What is the probability that the kth
person in the row will win the prize? (answer: 1% for all k)

Problem 2.14. In a variation of the hilarious TV-show game of
Egg Russian roulette, two participants are shown an egg box with
four boiled eggs and two raw eggs in random order. They take turns
taking an egg and smashing it upon their heads. What is the prob-
ability that the one who starts will be the first to smash a raw egg?
(answer: 0.6) How does this probability change when there are five
boiled eggs and one raw egg? (answer: 0.5)

Problem 2.15. Four British teams are among the eight teams
that have reached the quarter-finals of the Champions League soc-
cer. What is the probability that the four British teams will avoid
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each other in the quarter-finals draw if the eight teams are paired
randomly? (answer: =) Hint: think of a bowl containing four red
and four blue balls where you remove each time two randomly cho-
sen balls from the bowl. What is the probability that you remove
each time a red and a blue ball? Solving a probability problem be-
comes often simpler by casting the problem into an equivalent form.
Analogical thinking is creative thinking!

Problem 2.16. If you pick at random two children from the Johnson
family, the chances are 50% that both children have blue eyes. How
many children does the Johnson family have, and how many of them
have blue eyes? (answer: 4 and 3)

Problem 2.17. Your friend shakes thoroughly two dice in a dice-
box. He then looks into the dice-box. Your friend is honest and
always tells you if he sees a six, in which case he bets with even odds
that both dice show an even number. Is the game favorable to you?
(answer: yes, your probability of winning is %)

2.3 The law of conditional probability

Suppose that a closed box contains one ball. This ball is white. An
extra ball is added to the box, and the added ball is white or red
with equal chances. Next one ball is blindly removed from the box.
What is the probability that the removed ball is white? A natural
reasoning is as follows. The probability of removing a white ball is
1 if a white ball is added to the box and is % if a red ball is added
to the box. It is intuitively reasonable to average these conditional
probabilities over the probability that a white ball is added and the
probability that a red ball is added. The latter two probabilities are
both equal to % Therefore,

11 1 3

P(th 1l is white) =1 x = 4+ = x = = —.

(the removed ball is white) x5 + 5%X53=7
This is an application of the law of conditional probability. This law
calculates a probability P(A) with the help of appropriately chosen
conditioning events By and Bs. These events must be such that event
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A can occur only if one of events B; and Bs has occurred, and events
B; and By must be disjoint. Then, P(A) can be calculated as

|P(A) = P(A| BI)P(B)) + P(A| B)P(B). |

This is the law of conditional probability. It is a very useful rule
to calculate probabilities.” The extension of the rule to more than
two conditioning events B; is obvious. In general, the choice of the
conditioning events is self-evident. In the above example of the two
balls, the conditioning event Bj is the event that a white ball was
added to the box and By is the event that a red ball was added.

Example 2.9. A drunkard removes two randomly chosen letters of
the message HAPPY HOUR that is attached on a billboard outside
a pub. His drunk friend puts the two letters back in a random order.
What are the chances of HAPPY HOUR appearing again?

Solution. Let A be the event that the message HAPPY HOUR
appears again. In order to calculate P(A), it is obvious to condition
on the two events By and By, where Bj is the event that two identical
letters were removed and By is the event that two different letters
were removed. In order to apply the law of conditional probability,
you need to know the probabilities P(B;), P(B2), P(A | By) and
P(A | By). The latter two probabilities are easy: P(A | By) = 1
and P(A | By) = 3. The probabilities P(By) and P(B,) require
some more thought. It suffices to determine P(B;) because P(Bg) =
1— P(Bj). The probability P(B;) is the sum of the probability that
the drunkard has removed the two H’s, and the probability that the
drunkard has removed the P’s. Each of the latter two probabilities

is equal to % X % = 3—16, by the product rule. Thus,
1 17
P(By) = — and P(Bsy) = —.
(B1) = 1g and P(B2) = 335
Then, by the law of conditional probability,
17 19

1 1
PA)=1X —4+-X —=—
(4) 18 2718 36’
9The proof is simple. Since A can only occur if one of events B; or By has
occurred and events By and Bj are disjoint, P(A) = P(A and B:1)+ P(A and Bs)
(by Axiom 3 in Section 2.1). The product rule next leads to P(A) = P(A |
Bl)P(Bl) + P(A | BQ)P(BQ).
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and so the probability that the message appears again is %.

The following problems ask you to apply the law of conditional prob-
ability.

Problem 2.18. Michael arrives home on time with probability 0.8.
If Michael does not arrive home on time, the probability that his
dinner is burnt is 0.5; otherwise, this probability is 0.15. What is the
probability that Michael’s dinner will be burnt? (answer: 0.22)

Problem 2.19. Your friend has chosen at random a card from
a standard deck of 52 cards, but keeps this card concealed. You
have to guess which of the 52 cards it is. Before doing so, you can
ask your friend the question whether the chosen card is red or the
question whether the card is the ace of spades. Your friend will
answer truthfully. What question would you ask? (answer: the
probability of a correct guess is 2—16 in both cases)

Problem 2.20. A toss of a biased coin gives heads with probability
p and tails with probability ¢ = 1 — p. What is the probability that
more than n tosses are needed to get both heads and tails? (answer:

p"+q")

Problem 2.21. You are the first to spin a wheel of fortune once or
twice and then followed by your friend. The wheel has 20 sections
numbered as 5,10,...,100. Each number has an equal chance of
being the outcome of a spin. The winner is the one with a total score
closest to 100 without exceeding it. In the event of a tie, you will
be declared the winner. What is your maximum chance of winning?
(answer: your chance of winning is 0.4824 if you do a second spin if
the first spin scores less than 55 points and otherwise.)

Problem 2.22. Arthur and Mark play a series of games until one
of the players has won two games more than the other player. Any
game will be won by Arthur with probability p and by Mark with
probability ¢ = 1 —p. The outcomes of the games are independent of
each other. What is the probability that Arthur will be the winner
of the match? (answer: p?/(1 — 2pq))
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2.4 Bayesian approach to inference

The Bayesian view of probability is interwoven with conditional prob-
ability. Bayes’ formula, which is nothing else than logical thinking, is
the most important rule in Bayesian probability.!? To introduce this
rule, consider again Problem 2.18. In this problem, Michael finds
his dinner burnt (event A) with probability 0.5 if he does not arrive
home on time (event B). That is, P(A | B) = 0.5. Suppose you
are asked to give the probability P(B | A), being the conditional
probability that Michael did not arrive home on time given that his
dinner is burnt. In fact you are asked to reason back from effect to
cause. Then, you are in the area of Bayesian probability. The basic
form of Bayes’ rule is

P(B)P(A| B)

P(B|4) = =55

for any two events A and B with P(A) > 0. The derivation of this
formula is strikingly simple. The basic form of Bayes’ rule follows
directly from the definition of conditional probability:

P(Band A) P(B)P(A|B)

PBIA= =50 = P4

In Problem 2.18, the values of P(B) and P(A | B) were given as 0.2
and 0.5, and the value of P(A) can be calculated as 0.22. Thus the
probability that Michael did not arrive home on time given that his
dinner is burnt is equal to

2 x0.
PB|A)=22200_ 5
0.22 11
You see that Bayes’ rule enables you to reason back from effect to

cause in terms of probabilities. Many interesting queries are matters

'0This formula is named after the English clergyman Thomas Bayes (1702
1762) who derived a special case of the formula. The formula in its general form
was first written down by Pierre Simon Laplace (1749-1827). The famous British
scientist Sir Harold Jeffreys (1891-1989) once stated that Bayes’ formula is to the
theory of probability what the Pythagorean theorem is to geometry.
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of statistical inference, where the aim is to reason “backwards” from
observed effects to unknown causes. In medical diagnosis, for exam-
ple, the physician records a set of symptoms and must identify the
underlying disease. Bayes’ rule is the answer to such questions.

There are various versions for Bayes’ rule. The most insightful
version is the Bayes’ rule in odds form. This version is mostly used
in practice. Before stating Bayes’ rule in odds form, the concept
of odds will be discussed. Let G be any event that will occur with
probability p, and so event G will not occur with probability 1 — p.
Then the odds of event G are defined by:

omq:T§3

Conversely, the odds o(G) of an event G determines p = P(G) as

o(G)

P=1yoay

For example, an event G with probability % has odds 2 (it is often
said the odds are 2:1 in favor of event (), while an event with odds
% (odds are 2:9) has a probability % of occurring.

Bayes’ rule in odds form will be formulated in terms of events H
(hypothesis) and E (evidence) rather than events A and B. Also,
the standard notation H is used for the event that event H does not
occur. Then, Bayes’ rule in odds form reads as'!

P(H|E) P(H) P(E|H)

P(HE)  P(H)  PE|H)

What does this formula say and how to use it? This is easiest ex-
plained with the help of an example. Suppose that a team of divers

1This rule is obtained as follows. The basic form of the formula of Bayes gives
that P(H | E) = P(H)P(E | H)/P(E) and P(H | E) = P(H)P(E | H)/P(E).
Taking the ratio of these two expressions, P(F) cancels out and you get Bayes’
rule in odds form. The derivation shows that the formula is also true when H
would not be the complement of H. That is, for any two hypotheses H; and H,

P(Hy|E) _ P(Hy) . P(E|Hy) ;
the general Bayes formula P(H;|E) = P(H;) X P(E|H;) applies.
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believes that a sought-after wreck will be in a certain sea area with
a probability of p = 0.4. A search in that area will detect the wreck
with a probability of d = 0.9 if it is there. What is the revised prob-
ability of the wreck being in the area when the area is searched and
no wreck is found? To answer this question, let hypothesis H be the
event that the wreck is in the area in question and thus H is the event
that the wreck is not in that area. Before the search takes place, your
belief is that the events H and H have probabilities P(H) = 0.4 and
P(H) = 0.6. These probabilities are called prior probabilities. The
ratio

P(H) 04

P(H) 0.6
is the prior odds of hypothesis H. These odds will change if ad-
ditional information becomes available. Denote by evidence E the
event that the search for the wreck is not successful. The proba-
bilities P(E | H) and P(E | H) are given by 1 — 0.9 and 1. The
ratio

PE|H) 0.1
P(E|H) 1
is called the likelihood ratio or Bayes factor. In the example, it has a
value less than 1 and so the evidence does not support the hypothesis
H. The posterior odds of hypothesis H can now be calculated as
PH|E) 04 01 1

PH|E) 06 1 15

Then, by P(H | E) = 1 — P(H | E), you get that the posterior
probability of hypothesis H is
PH | By =15 L
1+1/15 16
This is the revised value of the probability that the wreck is in the
area in question after the futile search. In general, the posterior
probability P(H | E) gives the updated value of the probability that
hypothesis H is true after that additional information has become
available through the evidence event E. Bayesian updating — revis-
ing an estimate when new information is available — is a key concept
in statistics and data science.
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Example 2.10. An athlete selected by lot has to go to the doping
control. On average, 7 out of 100 athletes use doping. The doping
test gives a positive result with a probability of 96% if the athlete has
used doping and with a probability of 5% if the athlete has not used
doping. Suppose that the athlete gets a negative test result. What
is the probability that the athlete has nevertheless used doping?

Solution. Let the hypothesis H be the event that the athlete has
used doping. The prior probabilities are P(H) = 0.07 and P(H) =
0.93. Let E be the event that the athlete has a negative test result.
Then, P(E | H) = 0.04 and P(E | H) = 0.95. The posterior odds of
the hypothesis H are

P(H|E) 0.07 _0.04

il RPN — 0.003169.
P(H|E) 093 09

Thus, the revised value of the probability of doping use notwith-
standing a negative test result is

0.003169

PH|E)=——F—7F——
(H | B) 1+ 0.003169

= 0.003159,
or rather about 0.32%. A very small probability indeed.

The posterior probability of 0.32% can also be calculated with-
out using conditional probabilities and Bayes’ rule. The alternative
calculation is based on the method of expected frequencies. This
method is also easy to understand by the layman. Imagine a very
large number of athletes that are selected by lot for the doping con-
trol, say 10000 athletes. On average, 700 of these athletes have used
doping, and 9300 athletes have not used doping. Of these 700 ath-
letes, 700 x 0.04 = 28 athletes test negative on average, whereas
9300 x 0.95 = 8835 athletes of the other 9300 athletes test negative
on average. Thus, a total of 28 + 8 835 = 8863 athletes test negative
and among those 8863 athletes, there are 28 doping users. There-
fore, the probability that an athlete has used doping notwithstanding
a negative test result is % = 0.003159. The same probability as
found with Bayes’ rule. A similar reasoning shows that the proba-
bility that an athlete with a positive test result has not used doping

is qorosms = 0.40987 (verify!).
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The following example is a fun application of Bayes’ rule.

Example 2.11. Two closed boxes are placed in front of you. One
box contains nine $1 bills and one $5 bill, while the other box contains
two $1 bills and one $100 bill. You choose at random one box. Then,
out of your sight, two bills are randomly picked out of the chosen
box. It appears that these two bills are $1 bills. Next, you get the
opportunity to pick a third bill out of one of the two boxes. Should
you stick to the chosen box, or should you switch to the other box
when you want to maximize the probability of picking the $100 bill?

Solution. Let the hypothesis H be the event that you have chosen

the box with the $100 bill and H be the event that you have not

chosen the $100 bill box. The prior probabilities are P(H) = P(H) =

%. Let the evidence E be the event that the two bills taken out of

the chosen box are $1 bills. Then P(E | H) = 2 x 3 = % and

PE|H)=3%x5= %. Thus, by Bayes’ rule in odds form,
PH|E) 1/2 13 5

PEIE) 12 15 12
This leads to P(H | E) = 175/; = & and P(H | E) = 1- £ = {Z.
Thus, P(H | E) x 1 = % is the probability of picking the $100 bill
as third bill if you stick to the chosen box. If you switch to the other
box, your win probability is P(H | E) x % = 1%. Therefore you better
stick to the chosen box. A surprising finding! Can you explain it?

The following problems ask you to apply Bayes’ rule in odds form.
You should first identify the hypothesis H and the evidence E.

Problem 2.23. An oil explorer performs a seismic test to determine
whether oil is likely to be found in a certain area. The probability
that the test indicates the presence of oil is 90% if oil is indeed present
in the test area, while the probability of a false positive is 15% if no
oil is present in the test area. Before the test is done, the explorer
believes that the probability of presence of oil in the test area is 40%.
What is the revised probability of oil being present in the test area
given that the test is positive? (answer: 0.8)
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Problem 2.24. In a certain region, it rains on average once in every

ten days during the summer. Rain is predicted on average for 85%

of the days when rainfall actually occurs, while rain is predicted on

average for 25% of the days when it does not rain. The weather on

one day does not depend on the weather on previous days. Rain is

predicted for tomorrow. What is the probability of rainfall actually
17

occurring on that day? (answer: &)

Problem 2.25 A murder is committed. The perpetrator is either
one or the other of the two persons X and Y. Both persons are
on the run from authorities, and after an initial investigation, both
fugitives appear equally likely to be the perpetrator. Further inves-
tigation reveals that the actual perpetrator has blood type A. Ten
percent of the population belongs to the group having this blood
type. Additional inquiry reveals that person X has blood type A,
but offers no information concerning the blood type of person Y. In
light of this new information, what is the probability that person X
is the perpetrator? (answer: 1)

Problem 2.26. One fish is contained in an opaque fishbowl. The
fish is equally likely to be a piranha or a goldfish. A sushi lover
throws a piranha into the fishbowl alongside the other fish. Then,
immediately, before either fish can devour the other, one of the fish is
blindly removed from the fishbowl. The removed fish appears to be
a piranha. What is the probability that the fish that was originally

2

in the bowl by itself was a piranha? (answer: %)

Problem 2.27. On the island of liars, each inhabitant lies with prob-

ability % You overhear an inhabitant making a statement. Next, you

ask another inhabitant whether the inhabitant you overheard spoke

truthfully. What is the probability that the inhabitant you over-

heard indeed spoke truthfully given that the other inhabitant says
1

so? (answer: )

Problem 2.28. You have two symmetric dice in your pocket. One
die is a standard die, and the other die has each of the three numbers
2, 4, and 6 twice on its faces. You randomly pick one die from your
pocket without looking. Someone else rolls this die and informs you
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that a 6 has shown up. What is the revised value of the probability
that you have picked the standard die? How does this probability
change if the die is rolled a second time and a 6 appears again?
(answer: 3 and 1)

Problem 2.29. Someone visits the doctor because he fears having a
very rare disease. This disease occurs in only 0.1% of the population.
The doctor proposes a test that correctly identifies 99% of the people
who have the disease, and only incorrectly identifies 1% of the people
who don’t have the disease. Suppose the person in question has
tested positive. What is the probability that he actually has the
disease? (answer: 9.02%) How does the answer change if a second
independent test is also positive? (answer: 90.75%)

2.4.1 Real-life cases of Bayesian thinking

This subsection presents cases from law and medicine in which con-
ditional probabilities are incorrectly used. Attention will be paid to
the prosecutor’s fallacy often associated with miscarriages of justice.

The case of Sally Clark: a miscarriage of justice

Sally Clark was arrested in 1999 after her second child, who was
a few months old, died, ostensibly by cot death, just as her first
child had died a year earlier. She was accused of suffocating both
children. During the trial the prosecutor called a famous pediatrician
as an expert. He stated that the chance of cot death of a child was
1 in 8 543, and that the chance of two cot deaths in the same family
was (ﬁ)2 or about 1 in 73 million. The prosecutor argued that,
beyond any reasonable doubt, Sally Clark was guilty of murdering
her two children, and the jury sentenced her to life imprisonment,
though there was no other evidence that Sally Clark had killed her
two children. This is a classic example of the ‘prosecutor’s fallacy’.
The probability of innocence given the death of the two children —
the probability that matters — is confused with the tiny probability
that in the same family two infant children will die of sudden infant
death syndrome.

The conviction of Sally Clark led to great controversy, and several
leading British statisticians threw themselves into the case. The
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statisticians came up with various estimates for Sally Clark’s chance
of innocence, and all these estimates showed that the condemnation
of her was not beyond reasonable doubt. The formula of Bayes was
the basis of the calculations of the statisticians. How did this work?
Let H be the event that Sally Clark is guilty and the evidence E be
the event that both of her children died in the first few months of their
lives. The probability that matters is the conditional probability
P(H | E). To get this probability, you need prior probabilities P(H)
and P(H) together with likelihood ratio P(E | H)/P(E | H). The
assumption is made that murder by the mother (hypothesis H) and
cot death (hypothesis H) are the only two possibilities for the death
of the two children. Of course, P(E | H) = 1. The pediatrician
called as expert gave the estimate gi= X g2 for P(E | H), but this
estimate assumes independence between both deaths. However, a
cot death in a family increases the likelihood that a subsequent birth
in the family will also die of cot death. In an article in the British
Medical Journal, it was made plausible that a factor of 5 applies to
the increased chance. Thus, the probability P(E | H) is estimated
by

1 5
— ~6.85 x 1078,

PIETH) = 3505 * S513
or, about 1 in 14.8 million, which is still a very small probability.
However, this probability should be weighed with the very small
prior probability that a mother will kill both of her children at the
beginning of their first year of life by suffocation. How do you get
a good estimate for the prior probability P(H)? This is not simple.
However, on the basis of statistical data, an upper bound for the
prior probability P(H) can be estimated. Instead of asking how
often mothers in a family like the Clarks kill their first two children
in their first year of life, the question can be answered on how often
mothers kill one or more of their children of any age. Data available
in the U.S. Statistics give about 100 cases per year in the U.S. In
the U.S. there are about 120 million adult women, and about half
of them have children, so about 1 in 0.6 million American women
murders one or more of their children. The frequency of murders in
America is about 4 times as large as in England. This leads to the
estimate that about 1 in 2.4 million women in England kills one or
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more of their children. This is, of course, an overestimate of the prior
probability P(H). If you nevertheless take P(H) then you
find

_ 1
T 2.4x106°

PHI|E) _ 1/(24x107° 1

=P E) S 1-1/(24x100) " 685 x 108 ~ 008

Thus, the posterior probability of Sally Clark’s guilt is given by

6.08
P(H|E)~ 15608 0.859.

In other words, the posterior probability of Sally Clark’s innocence
is estimated by 0.141. In fact, this is an underestimate, since 0.859
is an overestimate of the probability of Sally Clark’s guilt.'? So a
probability of 14.1% or more is a reasonable estimate for the prob-
ability of Sally Clark’s innocence. This is of course no base for a
conviction when there is no other evidence. Despite the arguments
that statisticians presented, Sally Clark lost the appeal against her
conviction. But in 2003 she was acquitted after it came out that her
second child had a bacterial infection in the brain at the time of his
death, a fact that was withheld from the defense in the earlier trial.
The tragic event surrounding Sally Clark is similar with the miscar-
riage of justice that took place in the Netherlands around the nurse
Lucia de Berk who was wrongly accused of murdering a number of
her patients who died during her night shifts.

People v. Collins

An older famous example of the prosecutor’s fallacy is People v.
Collins, an American robbery trial. On June 18, 1964, Juanita
Brooks was attacked in an alley near to her home in Los Angeles and
her purse stolen. A witness reported that a white woman running
from the scene was blond, had a pony tail, and fled from the scene
in a yellow car driven by a black man with a beard and a mustache.
Police arrested a couple, Janet and Mark Collins, which fit the de-
scription. Unfortunately for the prosecutor, neither Juanita Brooks

'2An overestimate of the prior P(H) always results in an overestimate of the
posterior P(H | E). This intuitive result can be deduced from Bayes’ formula,
using the fact that a/(1 —a) < b/(1 —b) if and only if @ < b when 0 < a,b < 1.
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nor the witness could make a positive identification of either of the
defendants. At the trial, following testimony by a college mathemat-
ics instructor, the prosecutor provided the following probabilities of
occurrence of the reported characteristics: girl with blond hair %,
girl with ponytail 1—10, yellow car %, man with mustache %, black
man with beard %, and interracial couple in car ﬁ. Although
the instructor had told the prosecutor that these individual proba-
bilities could not simply be multiplied by each other, the prosecutor

multiplied them to arrive at a joint probability of

1 1 1 1 1 1 1

X —X-—X=X-—X = .
3 10 10 4 10 1000 12000000
In his summation, the prosecutor emphasized the extreme unlikeli-
hood that a couple other than the defendants had all these character-
istics. Impressed by the long odds, the jury convicted the couple for
second-degree robbery. But did they make the right decision? The
answer is no! The fundamental flaw in the prosecutor’s reasoning
was to equate the probability of innocence of the Collins couple with
the probability that a randomly chosen couple would have the six
characteristics in question. Moreover, the individual probabilities of
the characteristics were unfounded, and by dependence between the
characteristics (beards and mustaches are not independent events), it
was wrong to multiply them to arrive at a probability of 1 in 12 mil-
lion. Defense appealed and the California Supreme Court reversed
the conviction, very critical of the statistical reasoning used and the
way it was put to the jury.

0. J. Simpson trial

A remarkable example of confusing conditional probabilities hap-
pened in the O. J. Simpson trial. This trial, regarded by many as
‘the trial of the century’, dominated the news for more than a year
and was broadcast on television. In 1994, O. J. Simpson, an ac-
tor and former American football star, was accused of murdering
his ex-wife, Nicole Brown. The trial started with prosecution prov-
ing that O. J. Simpson has a history of physical violence against
his ex-wife Nicole. The famous lawyer Alan Dershowitz countered
for the defense. Dershowitz argued, “Only about one in 2500 men
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who batter their domestic partners go on to murder them, so the
fact that O. J. Simpson battered his wife is irrelevant to the case.”
This was a clever trick to fool the non-mathematical jury. The de-
fense lawyer confused the jury with asking the question: what is the
probability of a man murdering his partner given that he previously
battered her? This conditional probability is indeed about 0.04%,
but it is not the right statistic. It ignores the crucial fact that Nicole
Brown was actually murdered. The real question is: what is the
probability that a man murdered his wife given that he previously
battered her and she was murdered? That conditional probability
P(abusive husband is guilty | wife is murdered) turns out to be very
far from 0.04%. It can be approximated by Bayes’ rule. Instead,
let us use the expected frequency approach. Imagine a sample of
100000 battered women. According to Dershowitz’s number of 1 in
2500, you can expect about 40 of these women to be murdered by
their violent partners in a given year. Let us take as rough estimate
that an additional 5 of the 100000 battered women will be killed
by someone else, on the basis of the fact that the murder rate for
all women in the United States at the time of the trial was about
1 in 20000 per year. Then the conditional probability that a man
murdered his wife given that he previously battered her and she was
murdered can be approximated by % = %, or about 89%. This
probability is much and much larger than the probability of 0.04%
in the defense lawyer’s argument. The estimated probability of 89%
shows that the fact that O. J. Simpson had physically abused his wife
in the past was certainly very relevant to the case. This probability
should not be confused with the probability that O. J. Simpson did
it. Many other factors also determine this probability.

2.4.2 Bayesian statistics vs. classical statistics

Bayesian probability is the basis of Bayesian statistics. This field of
statistics is very different from the field of classical statistics deal-
ing with hypothesis-testing. Imagine that a new medication is being
tested on a given number of patients, and that it appears to be ef-
fective for a number of them. You want to know if this means that
the medication works. In classical statistics, you would start with
the assumption that mere fluke is the cause of the test results (this is
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called the null hypothesis). The null hypothesis is then tested using
the so-called p-value, being the probability of getting data that are
at least as good as the observed data if the null hypothesis would be
true. If the p-value is below some threshold value — the value 0.05 is
often used as a cut-off value — the null hypothesis is rejected and it is
assumed that the medication is effective (it is said that the findings
are ‘statistically significant’). The p-value, however, does not tell
you what the probability is that the new medication is not effective.
And this is, in fact, the probability you really want to know. Scien-
tific studies have shown that the p-value can give a highly distorted
picture of this probability. The probability that the medication is
not effective can be considerably larger than the p-value. As a con-
sequence, you must be careful with drawing a conclusion when the
p-value is just below 0.05; the test p < 0.05 is not a litmus test. As
such the test was never intended, but it was meant as a signal to
investigate matters further. In the case that the p-value is extremely
small and the study is carefully designed, then further investigations
are not necessary. Physicists reported the ‘discovery’ of the Higgs
boson in 2012 after a statistical analysis of the data showed that
they had attained a confidence level of about a one-in-3.5 million
probability that the experimental results would have been obtained
if there were no Higgs particle. Again, in all clarity, this p-value is
not the probability that the Higgs boson doesn’t exist. Another ex-
tremely small p-value occurred in the famous 1954 Salk vaccine polio
study. In this statistical study, a double-blind study was conducted
with two groups of 200 000 children each. This huge number of chil-
dren was required to get enough observations of polio for statistical
analysis. A total of 142 children in the placebo group developed polio
and 57 children in the vaccine group. The p-value was on the order
of 107 and removed any doubts about the vaccine’s efficacy.

Bayesian statistics enables you to give a judgment about the prob-
ability that the medication works. The judgment uses the generic
Bayesian formula:

p(data | 0)p(6)

p(0 | data) = p(data)
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What is the meaning of the elements of this formula? This formula
determines the posterior probability distribution p(f | data) of an
unknown parameter . For example, you can think of 8 as the per-
centage of people for whom a new medication is working. To estimate
the posterior distribution, you need data from test experiments. Be-
fore the tests are done, you should specify a prior probability distri-
bution p(f) on the parameter . The (subjective) prior probabilities
represent the uncertainty in your knowledge about the true value
of 6. It is your knowledge about the parameter that is modeled as
random, not the parameter itself. The use of priors distinguishes
Bayesian statistics from classical statistics. The so-called likelihood
p(data | 0) is the probability of finding the observed data for a given
value of 0, and p(data) is obtained by averaging p(data | 0) over
the prior probabilities p(f). This describes in general terms how
Bayesian statistics works. To illustrate this, consider the following
experiment. Suppose that there is a reason to believe that a coin
might be slightly biased towards heads. To test this, you decide to
throw the coin 1000 times. Before performing the experiment, you
express your uncertainty about the unbiasedness of the coin by as-
suming that the probability of getting heads in a single toss of the
coin can take on the values 8 = 0.50, 0.51, and 0.52 with prior prob-
abilities p(0) = %, %, and %, respectively. Next, the experiment is
performed and 541 heads are obtained in 1000 tosses of the coin. The
likelihood of getting 541 heads in 1000 tosses is

1
p(data | 0) = ( 5(330) 0541 (1 — 0)1°  for # = 0.50,0.51,0.52.

By the law of conditional probability,

p(data) =p(data | 0.50)p(0.50) + p(data | 0.51)p(0.51)
+ p(data | 0.52)p(0.52).

The Bayes formula p(6 | data) = p(data | 8)p(6)/p(data) now gives
that the posterior probability of a fair coin is

p(0.50 | data) = 0.1282.

That is, your posterior belief that the coin is fair equals 0.1282. In
classical statistics, one would compute the probability of getting 541
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or more heads in 1000 tosses of the coin under the hypothesis that the
coin is fair. This excess probability is equal to 0.0052. Many classical
statisticians would consider this small p-value as significant evidence
that the coin is biased towards heads. However, your subjective
Bayesian probability of 0.1282 for the hypothesis of a fair coin is not
strong enough evidence for such a conclusion. The difference in the
conclusions can be explained as follows. The p-value is based on the
set of all possible observations that cast as much or more doubt on the
hypothesis than the actual observations do. It is not possible to base
the p-value only on the actual data because it frequently happens
that all individual outcomes have such small probabilities that every
outcome would look significant. The inclusion of unobserved data
means that the resulting p-value may greatly exaggerate the strength
of evidence against the hypothesis.

The Bayesian approach is used more and more in practice. Nowa-
days, Bayesian methods are used widely to address pressing questions
in diverse application areas such as astrophysics, actuarial sciences,
neurobiology, weather forecasting, spam filtering, and criminal jus-
tice. The next subsection discusses a practically useful Bayesian
heuristic that is often used in data science.

2.4.3 Naive Bayes in data analysis

Naive Bayes is a simple machine learning method that is used to
classify objects based on features. For example, an email can be
classified as spam/non-spam by the words in it. The model is called
naive because it naively assumes conditional independence of the
features given the class of the target variable, regardless of possi-
ble correlations between the features. The target variable is often
a binary variable with yes/no values. Despite the fact that the in-
dependence assumption is often inaccurate in reality, naive Bayes is
remarkably useful in practice.

Let us explain naive Bayes by using the application area of spam fil-
tering. Particular words have high probabilities of occurring in spam
email. For instance, most email users will frequently encounter words
such as viagra, replica, sex, etc. in spam email, but will seldom see
them in other email. The filter doesn’t know these probabilities in
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advance, and must first be trained so that it can be built upon. Sup-
pose that for each word W in a set of relevant words, the following
probabilities have been estimated using sufficiently large, represen-
tative data sets of spam and non-spam messages:

e P(W | spam), the probability that a spam message will contain
the word W.

e P(W | no spam), the probability that a non-spam message contain
the word W.

e P(spam), the prior probability that a message is spam.
e P(no spam), the prior probability that a message is non-spam.

How to combine the individual word probabilities to estimate the
probability that an email with a particular set of words is spam
or non-spam? Suppose an e-mail contains the words wi,...,wy,
which can appear in both spam and non-spam emails. To determine
whether the email is spam or not, you need P(spam | wy,...,wy)
and P(no spam | w,...,w,) =1 — P(spam | wy,...,w,), where

P(spam | wy,...,w,) =the probability that the email is spam

given that it contains the words w; ..., wy.

By Bayes’ rule in odds form,

P(spam | wy,...,w,)  P(spam) P(wi,...,w, | spam)

P(no spam | wy,...,w,) P(nospam)  P(ws,...,w, | no spam)’

Naive Bayes now comes into the picture. Assuming that the words
are conditionally independent given the target variable spam/no
spam, this Bayes’ formula gets the computationally tractable form:

P(spam | wy,...,wy)
P(no spam | wy,...,wy)
P(spam) P(w; | spam) x -+ x P(w, | spam)

~ P(nospam) = P(w; | no spam) x --- x P(w,, | no spam)

The decision to classify the email as spam or non-spam depends on
the ratio of P(spam | wi,...,w,) and P(no spam | wy,...,wy). A
typical threshold value is 0.5.
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2.5 The concept of random variable

In performing a chance experiment, one is often not interested in the
particular outcome that occurs but in a specific numerical value as-
sociated with that outcome. Any function that assigns a real number
to each outcome in the sample space is called a random variable.

The concept of random variable is always a difficult concept for
the beginner. A random variable is not a variable in the traditional
sense of the word, and actually it is a little misleading to call it a
variable. Intuitively, a random variable is a function that takes on its
value by chance. Formally, a random variable is defined as a function
that assigns a numerical value to each element of the sample space.
The observed value, or realization, of a random variable is completely
determined by the realized outcome of the chance experiment, and
consequently, probabilities can be assigned to the possible values of
the random variable. A random variable gets its value only after the
chance experiment has been done. Before the chance experiment is
done, you can only speak of the probability that the random variable
will take on a particular value. It is common to use uppercase let-
ters such as X, Y, and Z to denote random variables, and lowercase
letters x, y, and z to denote their numerical values.

Illustrative examples of random variables are:

e The number of goals to be scored in a soccer game.

e The number of major hurricanes that will hit the United States
next year.

e The number of claims that will be submitted to an insurance com-
pany next month.

e The amount of rainfall that the city of London will receive next
year.

e The time until radioactive material will emit a particle.
e The duration of your next mobile phone call.

The first three examples are examples of discrete random variables
taking on a discrete number of values, and the other three examples
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describe continuous random wvariables taking on a continuum of val-
ues. In this book, the emphasis is on discrete random variables, but
Chapter 3 also pays attention to continuous random variables.

Suppose that a1, as,...,a, are the possible values of a discrete ran-
dom variable X. The notation P(X = a) is used for the probability
that the random variable X will take on the value ag. These prob-
abilities satisfy > ,_; P(X = ai) = 1 and constitute the so-called
probability mass function of the random variable X.

Example 2.12. What is the probability mass function of the random
variable X denoting the sum of one roll of two fair dice?

Solution. It is helpful to think of a blue and a red die. The sample
space of the chance experiment consists of the 36 outcomes (i, 7) for
1,7 =1,...,6, where ¢ is the number rolled by the blue die and j is
the number rolled by the red die. Each outcome is equally likely and
gets assigned a probability of %. The random variable X takes on the
value 7 4 j when the realized outcome is (i, ). The possible values of
X are 2,...,12. To find the probability P(X = k), you must know
the outcomes (i,7) for which the random variable X takes on the
value k. For example, X takes on the value 7 for the outcomes (1, 6),
(2,5), (3,4), (4,3), (5,2), and (6,1). Each of these six outcomes has
probability %. Thus, P(X =7) = %. You are asked to verify

PIX = j) = (j—1)/36  for2<j<T,
D=V 13-5)/36 for 8 <j<12.

Can you explain why P(X =14 —j) = P(X =j) for j =2,...,67

Problem 2.30. Let the random variable X be the largest number
rolled in one roll of two fair dice. What is the probability mass
function of X7 (answer: P(X =j)=(2j—1)/36 for j=1,...,6)

Problem 2.31. Each week the value of a particular stock either
increases by 5% or decreases by 4% with equal chances, regardless of
what happened before. The current value of the stock is $100. What
is the probability mass function of the value of the stock two weeks
later? (answer: 0.25, 0.50, 0.25 for $110.25, $100.80, $92.16)
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2.6 Expected value and standard deviation

Suppose that aq,as,...,a, are the possible values of the discrete
random variable X. The ezpected value (or mean or average value)
of the random variable X is defined by

|B(X)=a1 x P(X = a1)+a x P(X = a3)++--+a, x P(X =a,)|

In words, F(X) is a weighted average of the possible values that
X can take on, where each value is weighted with the probability
that X will take on that particular value.'> The term ‘expected
value’ can be misleading. This term should not be confused with the
term ‘most probable value’. Consider the following simple gambling
game. A fair die is rolled. If a 6 appears, you get paid $3; otherwise,
you have to pay 60 cents. Define the random variable X as your
gain (in dollars). Then X has the possible values 3 and —0.6 with
probabilities % and %, respectively. The most probable value of X is
—0.6, but the expected value is
1 5
E(X)=3x 6—0.6>< 5 =0.

As another example, let the random variable Y be the number of
points in a single roll of a fair die. Then,

1 1 1 1 1 1
E(Y)_lx6+2><6—|—3><6+4x6+5><6+6><6_3.5.
Using these two examples, the term ‘average value’ instead of ‘ex-
pected value’ can be explained. Suppose a fair die is repeatedly
rolled. It will come as no surprise that the fraction of the number
of rolls with outcome j goes to % for all j = 1,2,...,6 if the num-
ber of rolls gets larger and larger. Thus, if the number of rolls gets
very large, the average number of points obtained per roll tends to
(1 42+ -+ 6) = 3.5, which is the expected value for a single
roll. In the gambling game, your average gain per play tends to 0 if

13The idea of an expected value appears in the 1654 Pascal-Fermat corre-
spondence, and this idea was elaborated on by the Dutch astronomer Christiaan
Huygens (1625-1695) in his famous 1657 book Ratiociniis de Ludo Aleae (On
Reasoning in Games of Chance).
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the number of plays gets larger and larger. This is known as the law
of large numbers. This law can be mathematically proved from the
axioms and definitions of probability.

In many practical problems, it is helpful to interpret the expected
value of a random variable as a long-term average. This is the case
in the following example, which has its origin in World War IT when
a large number of soldiers had their blood tested for syphilis.

Example 2.13. A large number of individuals must undergo a blood
test for a certain disease. The probability that a randomly selected
person will have the disease is p = 0.005. In order to reduce costs, it
is decided that the large group should be split into smaller groups,
each made up of r persons, after which the blood samples of the r
persons will be pooled and tested as one. The pooled blood samples
will only test negative (disease free) if all of the individual blood
samples were negative. If a test returns a positive result, then all of
the r samples from that group will be retested, individually. What
is the expected value of the number of tests that will have to be
performed on one group of r individuals?

Solution. Define the random variable X as the number of tests that
will have to be performed on a group of r individuals. The random
variable X has the two possible values 1 and r 4+ 1. The probability
that X will take on the value 1 is equal to the probability that
each individual blood sample will test negative, and this probability
is(1—-p)x(1—=p)x-+-x(1-=p)=(1-p)". This means that
P(X=1)=0.995" and P(X =r+1) =1—0.995". Therefore,

E(X) =1x0.995" + (r+1) x (1 —0.995").

In other words, by pooling the blood samples of the r individuals, an
average of 1(1x 0.995" + (r+1) x (1 —0.995")) tests per individual
will be needed when many groups are tested. The average is minimal
for r = 15 with 0.1391 as minimum value. Thus, the pooling of 15
individual blood samples saves about 86% on the number of tests
necessary.

Example 2.14. You play the following game. A fair coin is tossed.
If it lands heads, it will be tossed one more time; otherwise, it will
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be tossed two more times. You win eight dollars if heads does not
come up at all, but you must pay one dollar each time heads does
turn up. Is this a fair game?

Solution. The set {HH, HT, THH, THT,TTH,TTT} is an obvi-
ous choice for the sample space, where H stands for heads and T
for tails. The random variable X being defined as your net winnings
in a game takes on the value 8 for outcome TTT, the value —1 for
each of the outcomes HT', THT, and TTH, and the value —2 for
each of the outcomes HH and T'HH. The probability L

1,1 .
S X s =518
27271
assigned to each of the outcomes HH and HT, and the probability

%x % x%:éto each of the other four outcomes. Thus,
1 11 1 1 1
P X=8)=—-,PX=-1)=-4+=-+4-= dP(X=-2)=-+-.
This gives
1 1 3 1
E(X)_8X§_1X§_2X§__Z'

The game is not fair. In the long run, you lose a quarter of a dollar
per game.

Linearity property and the substitution rule

A very useful property of the expected value is the linearity property.
This property states that

|B(aX +bY) = aB(X) + bE(Y))|

for any two random variables X and Y and any constants a and b,
regardless whether or not there is dependence between X and Y.
This result is valid for any type of random variables, as long as the
expected values E(X) and E(Y) are well-defined. For the special
case of discrete random variables each having only a finite number of
possible values, a proof will be given in Section 2.10. More generally,
for any random variables X1, ..., X, and constants cy, ..., cp,

(Bler X+ 4 enXn) = 1 E(X1) + -+ + ca B(X,). |
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Another important result is the substitution rule (also called the
law of the unconscious statistician), which will also be proved in
Section 2.10. Suppose that g(z) is a given function, e.g. g(x) =
2?2 or g(x) = sin(z). Then g(X) is also a random variable when
X is a random variable. If X is a discrete random variable with
possible values aq,...,a,, then the substitution rule tells you that
the expected value of g(X) can be calculated through the intuitive

formula:

E[g(X)] = ZQ(G;‘)P(X = aj).

Thus, you do not need to know the probability mass function of the
random variable g(X) in order to calculate its expected value. This
is a very useful result. A special case of the substitution rule is

’E(aX +b) =aE(X) + b for any constants a and b.

In many cases, the expected value of a random variable can be cal-
culated by writing the random variable as a sum of indicator random
variables that can take on only the values 0 and 1. This powerful
trick is illustrated in the next example dealing with the celebrated
coupon collector’s problem.

Example 2.15. Each box of a newly launched breakfast cereal con-
tains one baseball card, which is equally likely to be one of 50 different
cards. What is the expected number of cards you are still missing
after having purchased 100 boxes?

Solution. Define the random variable X as the number of cards
you are still missing after having purchased 100 boxes. It is quite
complicated to get E(X) through the probability mass function of
X. However, it is very easy to calculate F(X) through the trick of
writing X as X = I; + Is + - -+ + I59, where I = 1 if the kth card
is missing and I = 0 otherwise. By the linearity property of the
expected value, you get
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The E(I}) are easy to get. For any k, the probability that a box does

not contain the kth card is g—g and so P(I, =1) = (%)100' Since

you have E(I}) = (%)100 for all k. Therefore, the expected value of
100

the number of missing cards is 3o, E(I) = 50 x (2)™ =6.631.
The coupon collector’s problem from Example 2.15 is an application
of the oft-used balls-and-bins model: each of b = 100 balls (purchases)
is put randomly into one of n = 50 bins (baseball cards).

Variance and standard deviation

The expected value is an informative statistic in chance experiments
that can be repeated indefinitely often. In other situations, it may
be dangerous to rely merely on the expected value. Think of non-
swimmer going into a lake that is, on average, 30 centimeters deep.
A measure for the variability of a random variable X around its
expected value p = F(X) is the variance that is defined by

var(X) = E[(X — p)?].

To illustrate, consider again random variable X with P(X =3) = 1
and P(X = —0.6) = 2. The random variable X has the expected
value ¢ = 0 and its variance is equal to

E[(X — p)*] = (3—-0)% x é + (—0.6 — 0)? x g =18.

You might wonder why E(|X — p|) is not used as measure for the
spread of X. One answer is that this measure has not such nice
mathematical properties as the mean square of the deviations, but
the use of the variance over the mean absolute error is really justified
by the normal probability distribution and the central limit theorem,
which will be discussed in Section 3.2.

The notation 02(X) is often used for var(X). Alternatively,
var(X) can be calculated as
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as can be seen by writing (X — )% as X2 — 2uX + p? and using the
linearity property of expectation. Also, using this property and the
definition of variance, you can readily verify that

var(aX + b) = a*var(X) for any constants a and b.

By the substitution rule, the variance of a discrete random variable
X with ay,as,...,a, as possible values can be calculated as

Var(X):Z(aj —p)*P(X = a;) or var(X)zZa?P(X = a;) — 2.
=1 i=1

The variance of a random variable X does not have the same units
(e.g., dollar or cm) as F(X). For example, if X is expressed in
dollars, then var(X) has (dollars)? as dimension. Therefore, one
often uses the standard deviation that is defined as the square root
of the variance. The standard deviation of X is denoted by o(X),
that is,

o(X) = +/var(X).

As an illustration, suppose that X is the number of points to be
obtained in a single roll of a die. Since E(X) = 3.5, the variance and

standard deviation of X are Zgzl(j —3.5)2 % = % and \/%.

Example 2.16. Joe and his friend bet every week whether the Dow
Jones index will have risen at the end of the week or not. Both put
$10 in the pot. Joe observes that his friend is just guessing and is
making his choice by the toss of a fair coin. Joe asks his friend if he
could contribute $20 to the pot and submit his guess together with
that of his brother. The friend agrees. In each week, however, Joe’s
brother submits a prediction opposite to that of Joe. If there is only
one correct prediction, the entire pot goes to that prediction. If there
is more than one correct prediction, the pot is split evenly between
the correct predictions. How favorable is the game to the brothers?

Solution. Let the random variable X denote the payoff to Joe and
his brother in any given week. Either Joe or his brother will have
a correct prediction. They win the $30 pot if Joe’s friend is wrong;
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otherwise, they share the pot with Joe’s friend. The possible values
of X are 30 and 15 dollars. Each of these two values is equally likely,
since Joe’s friend makes his prediction by the toss of a coin. Thus,

1 1
E(X) =30 x B + 15 x 5= 22.5 dollars.

Joe and his brother have an expected profit of E(X — 20) = 2.5
dollars, each week. To obtain ¢(X), you first calculate

1 1
E(X?) =900 x 5 225 % 5 =562.5 (dollars)?.

This gives var(X) = 562.5 — 22.5% = 56.25 (dollars)?. Thus,
o(X) = Vv56.25 = 7.5 dollars.

Since o(X —20) = o(X), the standard deviation of the profit X — 20
for Joe and his brother is also equal to 7.5 dollars.

Problem 2.32. You roll a die. If a 6 six appears, you win $10. If
not, you roll the die again. If a 6 appears the second time, you win
$5. If not, you win nothing. What are the expected value and the
standard deviation of your winnings? (answer: $2.36 and $3.82)

Problem 2.33. Consider again Problem 2.30. What are the ex-
pected value and standard deviation of X? (answer: 4.472 and 1.404)

Problem 2.34. Consider again Problem 2.31. What are the ex-
pected value and the standard deviation of the sum of the scores on
the rolled dice? (answer: 3.5 and 3.001)

Problem 2.35. Investment A has a 0.8 probability of a $2 000 profit
and a 0.2 probability of a $3000 loss. Investment B has a 0.2 proba-
bility of a $5000 profit and a 0.8 probability of a zero profit. Verify
that both investments have the same expected value and the same

standard deviation for the net profit. (answer: expected value is
$1 000 and standard deviation is $2000)



56 A First Course in Probability

Problem 2.36. There are four courses having 15, 20, 75, and 125
students. No student takes more than one course. Let the random
variable X be the number of students in a randomly chosen class
and Y be the number of students in the class of a randomly cho-
sen student. Can you explain beforehand why E(Y') is larger than
E(X)? What are E(X) and E(Y)? (answer: 58.750 and 93.085)
What are the coefficients of variation (or relative standard devia-
tions) o(X)/E(X) and o(Y)/E(Y)? (answer: 0.764 and 0.415)

Problem 2.37. You throw darts at a circular target on which two
concentric circles of radius 1 cm and 3 cm are drawn. The target
itself has a radius of 5 cm. You receive 15 points for hitting the
target inside the smaller circle, 8 points for hitting the middle an-
nular region, and 5 points for hitting the outer annular region. The
probability of hitting the target at all is 0.75. If the dart hits the
target, then the hitting point is a random point on the target. Let
the random variable X be the number of points scored on a single
throw of the dart. What is the expected value of X7 (answer: 4.77)

Problem 2.38. Shuffle an ordinary deck of 52 playing cards. Then
turn up the cards from the top until the first ace appears. What is
the expected number of cards to be turned over? (answer: 10.6)

Problem 2.39. A bowl has 10 white and 2 red balls. You pick m
balls at random, where m can be chosen at your discretion. If each
picked ball is white, you win $m; otherwise, you win nothing. What
value of m maximizes your expected winnings? (answer: m = 4)

Problem 2.40. You have five distinct pairs of socks in a drawer.
The socks are not folded in pairs. You pick socks out of the drawer,
one at a time and at random. What are the expected value and the
standard deviation of the number of socks you must pick out of the
drawer in order to get a matching pair? (answer: 4.06 and 1.19)

Problem 2.41. In a barn, 100 chicks sit peacefully in a circle.
Suddenly, each chick randomly pecks the chick immediately to its
left or right. What is the expected value of the number of unpicked
chicks? (answer: 25)
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Problem 2.42. What is the expected number of different values
that come up when six fair dice are rolled? (answer: 3.991)

Problem 2.43. In the lotto 6/42 a player chooses six different num-
bers from 1,...,42. Suppose players have filled in 5 million tickets
with random picks. What is the expected value of the number of
different six-number combinations filled in? (answer: 3223 398)

Problem 2.44. A random variable X is said have a discrete uniform
distribution with integer-valued parameters a and b (> a) if

1
P(X:k):m fork:a,a+1,...,b.

Verify that E(X) = (b —a) and 0*(X) = 5[(b—a+1)2—1].

Problem 2.45. A random variable X is said to have a Bernoulli
distribution with parameter p (0 < p < 1) if

P(X=1)=p and P(X=0)=1-p.
Verify that E(X) =p and o(X) = /p(1 — p).

Problem 2.46. A random variable X is said to have a geometric
distribution with parameter p (0 < p < 1) if

PX=k=0-pklp fork=12,...
Verify that F(X) = % and o(X) = %\/1 —p.

Problem 2.47. Verify the formulas E(N) = Y 72 P(N > k) and
E[N(N—1)] =32, 2kP(N > k) for a non-negative, integer-valued
random variable N.

Problem 2.48. What is the expected number of boxes that must
be purchased in order to get a complete set of cards in the coupon
collector’s problem from Example 2.157 (answer: 224.96)

Problem 2.49. What is the expected number of rolls of a fair die
it takes to see all six sides of the die at least once? (answer: 14.7)
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Problem 2.50. You play a game in which you can pick a random
number from 1 to 25 as often as you wish. Each pick costs you
one dollar. If you decide to stop, you get paid in dollars your last
picked number. What strategy maximizes your expected net payoff?
(answer: stop if your picked number is > 19)

Problem 2.51. On a game show, you can bet on one of the numbers
1 to 100. Then, a random number is generated from 1 to 100. If your
guess is less than the randomly chosen number, you win in dollars
the square of your guess; otherwise, you win nothing. What number
should you guess to maximize your expected winning? (answer: 67)

2.7 Independent random variables and the square root law

As you have seen in Section 2.6, it is always true that E(X +Y) =
E(X) + E(Y) for any two random variables X and Y. A similar
result for the variance is in general not true. You can see this from
the example with P(X =1) = P(X = -1) = and Y = —X. In
this example, var(X +Y) = 0 and var(X) = var(Y) = 1 (verify!).
The reason that var(X +Y') is not equal to var(X) + var(Y) is that
X and Y are not independent of each other. Two random variables
X and Y are said to be independent of each other if

’P(X <zandY <y)=P(X <z)P(Y <y) for all  and y‘

For discrete random variables X and Y, an alternative definition of
independence is P(X =z and Y = y) = P(X = 2)P(Y = y) for all
2 and y. Then the following result holds

var(aX + bY) = a®var(X) 4 b?var(Y) for independent X and Y,

where a and b are constants. This result is true for any type of ran-
dom variables. For the special case of discrete random variables X
and Y, a proof is given in Section 2.10. More generally, for indepen-
dent X1,...,X, and constants ci, ..., cp, 2

var(c; Xy + - + ¢, X)) = ¢ var(Xy) + - - - + 2 var(X,).

1411 general, random variables X1, ..., X, are said to be independent if P(X: <
z1 and ... and X,, < zp) = P(X1 <z1)--- P(Xn < zp) for all z1,22,...,Tn.
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As an illustration, what is the standard deviation of the sum of one
roll of two dice? Let X be the outcome of the first die and Y of the
second die. The sum of one roll of two dice is X + Y. As calculated
before, var(X) = var(Y) = 32. The random variables X and Y are
independent of each other. Then var(X +Y") = var(X)+var(Y) = 32

6
Thus, the standard deviation of the sum of one roll of two dice is

o(X+Y)= 1/ D~ 2.415 points.
The square root law for the standard deviation

Let X1,...,X, be independent random variables each having stan-
dard deviation . Then, by Var(zzzl Xk) =Y var(Xy) = no?

and var(1 >0 Xp) = L 570 var(Xy) = %2, you have

J(I;Xk> =ov/n and U(i;Xk> = %

This is called the square root law (or the y/n-law) for the standard
deviation. It is an extremely important result in probability and
statistics. In Figure 2 an experimental demonstration of the \/n-law
is given. For each of the values n = 1, 4, 16, and 64, one hundred
random outcomes of the so-called sample mean % > p—y X are sim-
ulated for the case that the X have a same probability distribution
with expected value 0 and standard deviation 1 (the chosen distri-
bution is the standard normal distribution, which will be discussed
in Section 3.4). You see from the figure that the bandwidths within
which the simulated outcomes lie are indeed reduced by a factor of
about 2 when the sample sizes increase by a factor of 4.

The y/n-law is sometimes called the De Moivre’s equation, after
Abraham de Moivre (1667-1754).'5 This formula had an immediate
impact on methods used to inspect gold coins struck at the London

5The French-born Abraham de Moivre was the leading probabilist of the eigh-
teenth century and lived most of his life in England. The protestant De Moivre
left France in 1688 to escape religious persecution. He was a good friend of Isaac
Newton and supported himself by calculating odds for gamblers and insurers and
by giving private lessons to students.
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Figure 2: An illustration of the square root law.

Mint. The standard gold weight, per coin, was 128 grains (one grain
was equal to 0.0648 gram), and the allowable deviation from this
standard was ﬁ of that amount, or 0.32 grains. A test case of 100
coins was periodically performed on coins struck, their total weight
then being compared with the standard weight of 100 coins. The
gold used in the striking of coins was the property of the king, who
sent inspectors to discourage minting mischief. The royal watch dogs
had traditionally allowed a deviation of 100 x 0.32 = 32 grains in the
weight of 100 inspected coins. Directly after De Moivre’s publication
of the square root formula in 1733, the allowable deviation in the
weight of 100 coins was changed to v/100 x 0.32 = 3.2 grains; alas for
the English monarchy, previous ignorance of the square root formula
had cost them a fortune in gold.

The square root law has many applications, providing explanation,
for example, for why city or hospital size is important for measuring
crime statistics or death rates after surgery. Small hospitals, for
example, are more likely than large ones to appear at the top or
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bottom of ranking lists. This makes sense if you consider that, when
tossing a fair coin, the probability that more than 70%, or less than
30%, of the tosses will turn up heads is much larger for 10 coin
tosses, than for 100. The smaller the numbers, the larger the chance
fluctuations!

Example 2.17. ‘Unders and Overs’ is a popular game formerly
played during open house events at American schools, for the purpose
of adding money to the school coffers. The game is played with two
dice and a playing board divided into three sections: ‘Under 7°, ‘7,
and ‘Over 7’. The two dice are rolled, and players place chips on
one or more of the three sections. Chips may be placed on the game
board for 1 dollar apiece. For every chip placed in the ‘Under 7’
section, the payoff is 2 dollars if the total number of points rolled
with the dice is less than 7. The payoff is the same for every chip in
the ‘Over 7’ section if the total number of points is higher than 7.
The payoff is 5 dollars for each chip placed on ‘7’ if the total number
of points is 7. A popular strategy is to place 1 chip on each of the
three sections. Suppose that 500 rounds of the game are played using
this strategy. In each round there is a single player. What are the
expected value and standard deviation of the net amount taken in
by the school as a result of the 500 bets?

Solution. Let the random variable X be the net profit of the school
in a single play of the game. The random variable X can take on the
two values $1 and —$2. The net profit is 3—5 = —2 if the sum of the
diceis 7andis3—2 =1 otherwise Using the results of Example 2.10,
you find P(X = —2) = & and P(X =1) =1 — & = 3. Thus,
6 30
EX)=-2x —=+4+1x —=—.
& “36 7 36 2
The alternative definition o2(X) = E(XQ) (E(X)) is used to
calculate 0'( ). Since E(X?) =4x £ +1x33 =32 you get 02(X) =

3 (3)?=2andso

o(X) = %\/5

The total net profit of the school is X7 + - - - + X509 dollars, where X;
is the net profit of the school in the ith round. The random variables
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X1,..., X500 are each distributed as X and are independent of each
other. Using the linearity property of expectation,

1
E(X1 + -+ X500) = 500 x 5 = 250 dollars.
By the y/n-law for the standard deviation,

1
(X + -+ Xs00) = §\/5 x v/500 = 25 dollars.

Problem 2.52. A fair die will be thrown 100 times. What are the
expected value and the standard deviation of the average number of
points per throw? (answer: 3.5 and 0.171)

Problem 2.53. The Mang Kung dice game is played with six non-
traditional dice. Each of the six dice has five blank faces and one
face marked with one of the numbers 1 up to 6 such that no two
dice have the same number. What are the expected value and the
standard deviation of the total number of points showing up when
the six dice are rolled? (answer: 3.5 and 3.555)

Problem 2.54. Consider Problem 2.48 again. Use results from
Problem 2.46 to calculate the standard deviation of the number of
purchases needed to get a complete set of cards. (answer: 61.951)

Problem 2.55. Consider Problem 2.49 again. What is the stan-
dard deviation of the number of rolls needed to get all six possible
outcomes? (answer: 6.244)

2.8 Generating functions

Counting was used in Example 2.12 to calculate the probability mass
function of the sum of the upturned faces when rolling two dice. The
counting approach becomes very tedious when asking about three
dice, not to mention five or ten dice. A kind of magic approach to
handle these cases is the generating function approach. Generating
functions were introduced by the Swiss genius Leonhard Euler (1707—
1783) to facilitate calculations in counting problems. The idea is very
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simple and illustrates that simple ideas are often the best.
The generating function Gx(z) of a non-negative, integer-valued
random variable X is defined by the power series

Gx(z) = ZP(X =k)2*F  for |z < 1.
k=0

The generating function G x(z) uniquely determines the probability
mass function of X: taking the rth derivative of Gx(z) at z = 0 gives
rIP(X = r) (verify). The derivative of Gx(z) at z = 1 is equal to

reo k P(X = k) and so the expected value of X can be calculated
as

B(X) = Gy (1).

Similarly, taking the second derivative of Gx(z) at z = 1 leads to

EIX(X —1)] = G%(1).

A useful representation can be given for Gx(z). By the substitution
rule, E(2%) =332, 2 P(X = k) and so

Gx(z) = E(zX) for |z| < 1.

A very important result is that

(Gxiv(2) = Gx(2)Gy(2) for [z < 1]

for independent random variables X and Y on the non-negative in-
tegers. That is, the generating function of the sum of independent
random variables is the product of the generating functions of the
individual random variables. This result can be explained as follows.
First, it is noted that f(X) and g(Y') are independent random vari-
ables for any functions f(z) and g(y). Taking this fact for granted, it
follows that the random variables z*X and z¥ are independent for any
|z] < 1. In Section 2.10 it will be proved that E(VW) = E(V)E(W)
for independent random variables V' and W. Thus, for any |z| < 1,

Gy (2) = B(=¥) = B(=X ) = B(=X)E(="),
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and so Gx1y(2) = Gx(2)Gy(z), as was to be verified.

Example 2.18. A random variable X with the probability mass

function .

P(X:k‘):e_’\% for k=0,1,...

is said to have a Poisson distribution with parameter \, where A is
a positive number. What is the generating function of X7 What is
E(X)? Suppose that X; and Xy are independent random variables
having Poisson distributions with respective parameters A1 and As.
What is the probability distribution of the sum X7 + X57?

Solution. The generating function of a random variable X having
a Poisson distribution with parameter A is

— & O e N O ) L
G)((Z):ZZ P(X:k:):Ze e = Z =e e

The generating function Gx(z) = e~ 2(=2) yniquely determines the

Poisson distribution with parameter A. By G’y (1) = A, the expected
value of X is A. To answer the third question, note that

Gxy+x,(2) = E(z7%2) = B(2%1) B(2%),
where the latter equality uses the independence of X7 and Xs. Thus,

Gxyix,(2) = e M7 gmha(1=2) — o=t d)(1=2)  fop || < 1.

The function e~(M1+22)(1=2) 5 the generating function of a Poisson

distributed random variable with parameter A1 + As. This shows
that the sum of two independent random variables having Poisson
distributions with parameters A\; and Ay is Poisson distributed with
parameter A1 + As.

Generating functions are very useful for computational purposes. As
an example, let us apply the generating function method to the cal-
culation of the probability mass function of the sum of the upturned
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faces when rolling three dice. For i = 1,2, 3, let X; be the upturned
face value of the ith die. The generating function of X; is

1 1 1 1 1 1
Gx,(z) = 62+ 622 + 623 + 624 + 625 + 626 fori=1,2,3.

Since X1, X3, and X3 are independent, the generating function of
the sum of the upturned face values is given by

1 1 1 1 1 1 3
Gx,+Xo+X5(2) = (6’2+ 622+623+624+6z5+626) for |z < 1.

Using standard software for calculating the product of polynomials,
Ly

= —2Z z —Z —2Z —Z —Z
216~ 727 T36° T108° T72° "7
25 9 1 10 1 11 25 12 7 13
to6° T8F TRF tagt Tt
5 14 5 15 1 16 1 17
Tt st Ta6® T2 T arg

The probability mass function of the sum can be directly read off
from this expansion. The coefficient of z* gives the probability that
the sum X; + X2 + X3 takes on the value k for £ = 3,...,18. Can

you explain why the probability for the sum 21 — k is the same as
the probability for the sum k for k = 3,...,107

GX1+X2+X3 (Z)

18

Problem 2.56. Use the generating function method to find the
standard deviation of a Poisson distributed random variable with
parameter \. (answer: v/\)

Problem 2.57. You have 8 symmetric six-sided dice. Five of these
dice have the number six on two of the faces and the other three have
the number six on three of the faces. What is the probability mass

function of the number of sixes appearing when rolling the 8 dice?
(4 22 52 23 25 77 73 13 1
(answer: (553, 545> 545> 517 1087 6487 911> To41> T904))

Problem 2.58. Let X;,..., X5 be independent Bernoulli variables
with P(X; = 1) = 7 and P(X; = 0) = 1 — 75 for i = 1,...,5.
What is the probability mass function of the sum X7 + --- + X57

(answer: (1, BT 2 10 L 1))
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2.9 Inequalities and the law of large numbers

This section discusses famous inequalities in probability and two ver-
sions of the law of arge numbers. The inequalities include Markov’s
inequality and Chebyshev’s inequality. The latter inequality will be
used to prove the weak law of large numbers, which goes back to
Jakob Bernoulli (1654-1705). The proof of the strong law of numbers
will not be given, but this law will be illustrated with the derivation
of the Kelly betting fraction in a repeatable gambling game in which
the player has an advantage.

Markov’s inequality

For a mnon-negative random variable Y with finite expected value,
Markov’s inequality states that

E(Y)

PY >a) <
a

for any constant a > 0.

The proof is simple. For fixed a > 0, let the indicator variable I be
equal to 1 if Y > a and 0 otherwise. Then, E(I) = P(Y > a). By
the non-negativity of Y, you have that Y > al, and so

E(Y)>aE(I)=aP(Y > a),

which gives the inequality. Beauty in simplicity! The inequality was
proved by the Russian mathematician Andrey A. Markov (1856—
1922) in 1889 and it is the basis for many other useful inequalities in
probability, including the so-called Chernoff bounds which we briefly
touch on in Problem 2.60 below.

Chebyshev’s inequality

For any random variable X having finite expected value p and finite
variance o2, Chebyshev’s inequality states that

0,2

P(|X —ul>c) < =2 for any constant ¢ > 0.
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This inequality is named after the Russian mathematician Pafnuty
L. Chebyshev (1821-1894) who proved the inequality in 1867. A
simpler proof was later given by his famous student Andrey Markov:
taking Y = (X — p)? and a = ¢ in Markov’s inequality, you get
E(X —p? o2
P(IX —p|>¢)=P(X —p)?>c) < — a2 T &
Law of large numbers

There are two main versions of the law of large numbers. They
are called the weak and strong laws of large numbers. Both laws
deal with the behavior of the sample mean %22:1 X, for large n,
where X1, Xs,...,X,, are independent random variables having a
same probability distribution with finite mean u. The assumption
of a finite variance o2 is not required for the laws, but is often used
because it makes the proofs easier and shorter. The weak law of large
numbers essentially states that for any nonzero specified margin, no
matter how small, there is a high probability that the sample mean
for large n will be close to its expected value p within the margin.
That is,

n—o0

1 n
lim P(‘—ZXk —,u‘ > 6) =0 for any € > 0.
"=

A simple proof can be given when it is assumed that the variance o2

of the random variables X} is finite. Noting that the sample mean
%22:1 X}, has expected value p and standard deviation o/v/n, it
follows from Chebyshev’s inequality that

1 o 2
P<‘*ZX]€—H‘ZE)SM for any n > 1 and ¢ > 0.
n & €

By letting n — oo, the result follows.

The strong law of large numbers states that with probability 1 the
sequence of sample means %Zzzl X}, converges to p as n becomes
very large. That is,
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In other words, in practice you always get a realization w of the
sequence X1, ..., X, such that the average value 2 3" | X (w) con-
verges to p as m becomes very large. In accordance with our intu-
ition, the strong law of large numbers ‘guarantees’ stable long-term
results for random events. For example, a casino may lose money
in a few spins of the roulette wheel, but its earnings will tend to a
predictable percentage over a large number of spins. Not only the
profits of casinos are based on the strong law, but the profits of in-
surance companies as well. Also, estimating probabilities by Monte
Carlo simulation relies on the strong law of large numbers.

2.9.1 Kelly formula in gambling and investment

In this subsection, the law of large numbers will be used to derive
the famous Kelly betting formula in gambling and investment.

Example 2.19. Consider the situation in which you can repeatedly
make bets in a particular game with a single betting object. The
outcomes of the successive bets are independent of each other. For
every dollar bet, you receive w; dollars back with probability p and
wy dollars with probability 1 — p, where 0 < p < 1, w; > 1, and
0 < we < 1. The key assumption is that the game is favorable to
the player, that is, pw; + (1 — p)wa > 1. Also, it is assumed that
pwi + (1 — p)we — 1 < (w1 — 1)(1 — wa). How should you bet to
manage your bankroll in a good way in the long run?

Solution. If you bet your entire bankroll each time to maximize
the expected value of your winnings, ruin beckons. If you bet too
little, the advantage is squandered. The optimal bet size is found
by maximizing the expected value of the logarithm of wealth, which
is equivalent to maximizing the expected geometric growth rate of
your bankroll. It is best to bet the same fixed proportion o* of your
bankroll each time according to the Kelly betting formula

_pwit+(1—pwy—1
~ (w = 1)1~ w)

Note that, by the assumptions made, 0 < o < 1. In the special case
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of wo = 0, the Kelly formula reduces to

*:pwl_]-
wl—l’

which can be interpreted as the ratio of the expected net gain per
staked dollar and the payoff odds.

The derivation of the Kelly formula goes as follows. The strategy
is to bet a fixed fraction « of your current bankroll each time, where
0 < a < 1. Letting V, be your starting bankroll, define the random
variable V}, as the size of your bankroll after n bets. Let the random
variable N, ;. denote how many of the first n bets result in a payoff
wy, for K =1,2. Then V,, can be represented as

Vo=(01—a+aw)"! x(1-a+aw)2Vy forn=12,....

The growth factor G,, of your bankroll V,, after n bets is defined
through V,, = €"¢» 1}, or equivalently, G, = %ln(Vn/Vo). This
gives

N,
G, = el (1—a—|—aw1)+
n

n,2

In (1—a—i—aw2) forn=1,2,....

The random variable NV, 1 can be written as the sum of n indepen-
dent 0—1 indicator variables, where each variable is equal to 1 with
probability p and equal to 0 with probability 1 — p, and thus has ex-
pected value p. Thus, by the law of large numbers, N, 1 /n converges
to p with probability 1 as n — oo. By the same argument, N, 2/n
converges to 1 — p with probability 1 as n — oo. Thus, the long-run
growth rate of your bankroll is equal to

li_>m G = pIn(1—a+aw;)+(1—p) In(1—a+aws) with probability 1.

Putting the derivative of g(a) = pln(1 —a+aw;)+ (1 —p) In(1 —a+
aws) equal to 0 and using the fact that the function g(«) is concave
in a, you get after a little algebra that g(«) takes on its absolute
maximum for o = o, verifying the Kelly formula.

Problem 2.60. Use Markov’s inequality to verify for a generally
distributed random variable X the generic Chernoff bound

E (CtX)
etc

P(X >¢) < for t > 0 and any c.
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2.10 Additional material

This section first proves the properties that were given in the Sections 2.6
and 2.7 for the expected value and variance. It then discusses the con-
cepts of covariance, correlation, conditional expectation, and the classi-
fication tool of logistic regression in data science.

The proofs for the properties of the expected value and variance will be
given for the case that X and Y are discrete random variables that can
take on only a finite number of values. Let I be the set of possible values
of X and .J be the set of possible values of Y. For the moment, you are
asked to take for granted the following result that will be proved below:
for any function g(x,y), the expected value of the random variable
g(X,Y) is given by the two-dimensional substitution rule

ElgX, V)] =Y ) gla,y)P(X =z and Y =y).

zel yeJ

A double sum >, 377" | a;; should be read as 377 (ai1 + - - + @im).
You can always interchange the order of summation when there are
finitely many terms: 71", 37 ai; = >0 D71 aij. The following
properties can now be easily proved:

Property 1. E(aX +bY) = aF(X) 4+ bE(Y) for constants a and b.

Property 2. E(XY) = E(X)E(Y) if X and Y are independent of
each other.

Property 3. var(aX + bY) = a?var(X) + b?var(Y) for any constants
a and b if X and Y are independent of each other.

Proof of Property 1. Using the basic result for E(g(X, Y)) for g(z,y) =
ax + by, you get that E(aX + bY) is equal to

Z Z(ax +by)P(X =z and Y =vy)

zel yeJ
= ZZa:cP(X =zandY =y) +ZZbyP(X =zandY =y)
zel yeJ zel yeJ

:aZxZP(X:xandY:y)+beZP(X:xandY:y)a

zel yeJ yeJ x€l
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where the order of summation is interchanged in the second term of the
last equation. Next you use the formula

PX=1z)=) P(X=zandY =y).
yeJ

This formula is a direct consequence of Axiom 3 in Section 2.1. A similar
formula applies to P(Y = y). This gives

E(aX+bY) =a) aP(X =2)+bY yP(Y =y) = aE(X)+bE(Y).
xzel yed

Proof of Property 2. The definition of independent random variables X
andY is P(X =z and Y =y) = P(X = 2)P(Y = y) for all possible
values = and y. Next, by applying the basic result for E(g(X,Y)) with
g(z,y) = xy, you find that E(XY") is equal to

ZnyP(X::c and Y =) :ZZaUyP(X:x)P(Y:y)

zel yeJ zel yeJ
=S aP(X =) S yP(Y = y) = B(X)E(Y).
zel yeJ

Proof of Property 3. For ease of notation, write E(X) as ux and
E(Y) as py. Using the alternative definition var(V) = E(V?) — u? for
the variance of a random variable V' with expected value i and using
Property 1, you get
var(aX +bY) = E[(aX +bY)?] — (E(aX +bY))?
= a’E(X?) 4+ 2abE(XY) + B E(Y?) — (apx + buy)>.

Next, you use the independence of X and Y. This gives E(XY) =
E(X)E(Y), by Property 2, and so var(aX + bY) is equal to

a®E(X?) + 2abux py + 0’ E(Y?) — a*p% — 2abuxpy — by

= d?[E(X?) — y%] + V[E(Y?) — pi3] = a®var(X) + b*var(Y).
A special case of Property 3 is that var(aX + b) = a?var(X) for any

constants a and b. This follows by taking for Y a degenerate random
variable with P(Y = 1) = 1 for which var(Y") = 0 (verify).
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It remains to prove the formula 3_, v 9(z,y)P(X =z and Y = y) for

E(g9(X,Y)). The trick is to define the random variable Z = g(X,Y).
Then, > ;) 9(z,y)P(X =2 and Y = y) can be written as

Z [ Z g(z,y))P(X =z and Y = y)]

z (x,y):g9(x,y)=2

=Yz Y PX=zandY=y)=) :P(Z=2)

z (zy)g(zy)==2 z
=FE(Z)= E[g(X,Y)}.
Taking Y = X and g(z,y) = g(x), this result proves the substitution
rule in Section 2.6 as special case.
2.10.1 Covariance and correlation

How to calculate var(X + Y) if X and Y are not independent ran-
dom variables? To do this, you need the concept of covariance. The
covariance cov(X,Y’) of two random variables X and Y is defined by

cov(X,Y) = E[(X - E(X))(Y - E(Y))].

Note that cov(X,X) = var(X). The formula for cov(X,Y) can be
written in the equivalent form

[cov(X,Y) = B(XY) — B(X)E(Y),

by writing (X — E(X))(Y — E(Y)) as XY — XE(Y) - YE(X) +
E(X)E(Y) and using the linearity property of the expectation operator.
It is straightforward to verify from the definition of covariance that

’ cov(aX + ¢, bY +d) = abcov(X,Y) ‘

for any constants a, b, ¢, and d. Also, using the fact that E(XY) =
E(X)E(Y) for independent X and Y (see Property 2), it follows that

’cov(X, Y)=0 if X and Y are independent random variables.‘

However, the converse of this result is not always true. As a coun-
terexample, let X take on the equally likely values —1 and 1, and let
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Y = X2 Then, by E(X) =0 and E(X3) =0, you have cov(X,Y) =
E(X3) - E(X)E(X?) =0, but X and Y are dependent.

The following formula for the variance of any two random variables X
and Y can now be formulated:

var(X +Y) = var(X) + 2cov(X, V) + var(Y).

The proof of this result is a matter of some algebra. Put for abbreviation
ux = E(X) and puy = E(Y). Using the definition of variance and the
linearity of the expectation operator, you have that

var(X +Y)=E[(X +Y — (ux + MY))2]
=E[(X — ux)*]+2E[(X — ux)(Y — py) |+ E[(Y — py)?]
=var(X) + 2cov(X,Y) + var(Y),

as was to be verified. The formula for var(X + Y') can be extended to
the case of finitely many random variables:

n n—1 n
var(Xy +---+ X)) = Zvar(Xi) + 22 Z cov(X;, Xj).
i=1 i=1 j=i+1

Another very important concept in statistics is the concept of correlation
coefficient. The units of cov(X,Y) are not the same as the units of
E(X) and E(Y). Therefore, it is often more convenient to use the
correlation coefficient of X and Y. This statistic is defined as

cov(X,Y)

PXY) = X))

provided that o(X) > 0 and o(Y) > 0. The correlation coefficient is a
dimensionless quantity with the property that

—1<p(X,V) <1

The algebraic proof of this property is omitted. The random variables X
and Y are said to be uncorrelated if p(X,Y) = 0. Independent random
variables X and Y are always uncorrelated, since their covariance is zero.
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However, the converse of this result is not always true. Nevertheless,
p(X,Y) is often used as a measure of the dependence of X and Y.

2.10.2 Conditional expectation

Let X and Y be two dependent random variables. The conditional
expectation of X given that Y = y is defined in an obvious way: take
the expectation with respect to the probability distribution of X given
that Y = y. The concept of conditional expectation will be discussed
for the simplest case of discrete random variables, but all results also
apply to the case of general random variables.

If X and Y are discrete random variables, the conditional mass
function of X given that Y = y is defined by

P(X=zand Y =y)
PY =y

PX=z|Y=y) =

in accordance with P(A | B) = P(A and B)/P(B). The conditional
expectation of X given that Y = y is defined by

EX|Y=y) =) aP(X=x2|Y =y).

The conditional expectation E(X | Y = y) can be thought of as the
best estimate of the random variable X given that Y = y. That is, the
function g(y) minimizing the squared error distance

E[(X — g(V))?]

can be shown to be g(y) = E(X | Y = y). In words, if you observe y,
the best prediction of the value of X is E(X | Y = y). A simple heuristic
argument can be given for this fact. Take one random variable Z and
ask yourselves the question “what value of ¢ minimizes E[(Z — ¢)?]?"
Since E[(Z — ¢)?] = E(Z?) — 2¢cE(Z) + ¢, taking the derivative with
respect to ¢ gives —2E(Z) + 2c = 0 and so ¢ = E(Z). In general,
E(X | Y =y) is a nonlinear function of y, but in some special cases it
is a linear function, see also Section 3.9.

A very useful result is the law of conditional expectation:

E(X)=) EX|Y =yP( =y).
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The proof is simple:

BX) = Y aP(X =2) = Y Y PO =z and ¥ =)
T x Y
=> 2 PY=y)P(X=x|Y =y)
=Y P(Y=y)) sP(X=z|Y =y).
Yy X

This shows that E(X) =} E(X | Y = y)P(Y = y), by the definition
of E(X | Y =y). The computation of the unconditional expectation of
X is often simplified by conditioning on an appropriately chosen random
variable Y. In the context of the problem it is usually obvious how
to choose Y. The law of conditional expectation can be seen as a
generalization of the law of conditional probability:

PX=z)=) PX=z|Y=y)PY=y) foraluz

Example 2.20. A bin contains 10 strings. You randomly choose two
loose ends and tie them up. You continue until there are no more two
free ends. What is the expected number of loops you get?

Solution. It is helpful to parameterize the problem by assuming n
strings. Let the random variable X,, be the number of loops you get for
the case of n strings. To find E(X,,), let the conditioning variable Y,
be 1 if the first two ends you choose belong to the same string and let
Y,, be zero otherwise. Then, by the law of conditional expectation,

E(X,) = E(14 Xn_1)P(Y, = 1) + E(X,_1)P(Y, = 0),

where P(Y,, = 1) = 52~ and P(Y,, = 0) = 1 — ;2. This recursion

can be rewritten as E(X,,) = 525 + E(X,—1), where E(X() = 0. This

gives E(X,) = > p_; 5= In particular, E(X;0) = 2.133.

Recursive thinking and the law of conditional expectation are very useful
in solving probability problems and often go together.
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Problem 2.61. The returns of funds A and B have the same expected
value, standard deviations 04 and og, and a negative correlation coef-
ficient pap. A fraction f of your money is invested in A and a fraction
1 — f in B. Verify that the standard deviation of the portfolio’s return

is minimized by f = (0123 — O'AO'BpAB) / (0'124 + J% — 20‘AO‘BpAB).

Problem 2.62. The least squares regression line of a dependent variable
Y with respect to X is defined by y = a + S, where the coefficients
o and 3 minimize E[(Y — (o + ,BX))Q}. Verify that the least squares

regression line is y = E(Y) + p(X,Y) 25 (z — E(X)).

Problem 2.63. In one roll of two fair dice, let X be the largest number
rolled and Y be the sum of the roll. What is the value of the conditional

expectation E(X | Y =10)? (answer: %)

Problem 2.64. You randomly choose three different numbers from the
numbers 1 to 100. Let X be the smallest of these numbers and Y be
the largest. What is E(X | Y = y)? (answer: %y)

Problem 2.65. Suppose n cars start in a random order along an in-
finitely long one-lane highway. They are all going at different but con-
stant speeds and cannot pass each other. If a faster car ends up behind
a slower car, it must slow down to the speed of the slower car. Even-
tually the cars will clump up in traffic jams. What is the expected
number of clumps of cars? (answer: Y }_; +) Hint: set up a recursion
by conditioning on the position of the slowest car.

2.10.3 Logistic regression in data analysis

Logistic regression analyzes the relationship between multiple explana-
tory random variables X, ..., X between which no strong correlation
exists and a categorical dependent variable Y. This section only deals
with the binary logistic regression model in which the response variable
Y is a 0—1 variable. As an illustrative example: how to predict the prob-
ability of approval of your application for a home mortgage given your
credit score? Denoting by X your credit score and letting Y = 1 if your
application is approved and Y = 0 otherwise, then logistic regression
models the probability p = P(Y =1 | X =) as

In (%p) = 0y + 01
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Figure 3: The sigmoid function.

This can be rewritten as p/(1 — p) = e%+%1%_ Solving for p gives

1

P(Y:l‘X:w):—1+6_(00+91$)

The so-called sigmoid function o(z) shows up in this formula, where

1

= 1re for —oo < z < 0.
e

o(z)

This function is nearly linear around 0 and flattens towards the ends,
see Figure 3. The function o(z) has the beautiful property o'(z) =
o(2)[1 — o(2)]. Since the variable Y is binary, P(Y =0 | X = z) =
1—P(Y =1|X =), and this leads to the useful representation

PY =y | X =2z) = [0(0g+612)]Y x [1—0(fpg+612)]} 7Y fory =0, 1.
The simple model with one explanatory variable can be extended to the
case of multiple explanatory variables X1, ..., X,:

1

PY=1|X;=xjforj=1,...,s) = PO ——n

How to estimate the parameters 6y, 04, ...,0s from a sufficiently large
set of data? Suppose that independent data points (x(i),y(i)) for ¢ =
1,...,n are given, where x() = (xgz),...,x?). Using the shorthand
notation 6 = (6,...,6s) and

0 -x =gy + Hlxgi) ot Oz,

S



78 A First Course in Probability

the likelihood function of all data points is given by
L) = ﬁ P(Y =¢y@ | (Xy,...,Xs) = (&7, 2®))
= ﬁ [0(8 - x)Y" x [1— o (8- xD)v?,
Taking the logarithm of both sides, you get the log likelihood function
LL(6) = zn: y D Info(0 - x)] + (1 —yD) In[1 — (8 - xD)].
i=1

To find the parameters 6; that maximize the likelihood function, the clas-
sic gradient descent method is used. Maximizing the likelihood function
is equivalent to minimizing the loss function J(0) = —LL(0). The loss
function can be shown to be convex and thus has just one minimum.
Therefore, gradient descent starting from any point is guaranteed to find
the minimum. The algorithm requires the partial derivatives of .J(8).
Using the property o'(z) = o(z)[1 — o(2)], it is a matter of simple
algebra to get

0 S , i
%J(B) =— Z [y® — (8- x(l))]x§-) for j=0,1,...,s,
J i=1
where a:(()i) = 1 for all ¢ for a unified notation. Since gradient descent

algorithm moves in the direction of the negative of the gradient, an
iteration of the algorithm goes as follows:

n
07 = 9;-’“ + nz [y — o (6% . x(i))]xy) forj=0,1,...,s.
i=1
The learning rate n > 0 is a flexible parameter that strongly influences
the convergence of the algorithm. In large-scale data sets, convergence
can be significantly improved by using stochastic gradient descent. This
algorithm calculates the gradient for one or more observations picked at
random instead of calculating the gradient for the entire data set.



Chapter 3
Useful Probability Distributions

In this chapter, the more common and important probability dis-
tributions are discussed in detail. The discrete binomial, hyperge-
ometric and Poisson distributions are derived and illustrated with
applications in Sections 3.1-3.3. The continuous normal, uniform,
beta and exponential distributions and the Poisson process are cov-
ered in Sections 3.4-3.7. Other topics covered are the bivariate nor-
mal density, linear regression, and the chi-square test.

3.1 The binomial distribution

A random variable X with 0,1,...,n as possible values is said to
have a binomial distribution with parameters n and p if

n

P(X =k)= (k)pk(l—p)"l‘C for k=0,1,...,n,

where (Z) is the binomial coefficient. This distribution arises in prob-

ability problems that can be formulated within the framework of a
sequence of physically independent trials, where each trial has the
two possible outcomes ‘success’ (S) and ‘failure’ (F'). The outcome
success occurs with probability p and the outcome failure with prob-
ability 1 — p. The random variable X defined as the total number
of successes in n trials has a binomial distribution. This result is
easily derived. The probability that a pre-specified sequence of k
successes and n — k failures will occur is pk(l — p)”_k ; for example,

79
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for n = 5 and k = 3, the sequence SSFSF will occur with proba-
bility p x p x (1 —p) x p x (1 —p) = p*>(1 — p)?. The total number
of possible sequences with k successes and n — k failures is (Z), since
the binomial coefficient (Z) is the total number of ways to choose k
different positions from n available positions, see Section 1.1.

The expected value and standard deviation of X are given by

E(X)=mnp and o(X)=+/np(l —p).

The simplest way to derive these formulas is to use indicator vari-
ables. Write X as X = I; + --- + I,, where I is 1 if the kth trial
is a success and I is 0 otherwise. The Bernoulli variable I has
E(I;) = p and o(Ix) = \/p(1 — p), see Problem 2.45. Applying the
linearity property for expectation and the y/n-law for the standard
deviation (the I;’s are independent of each other), you get

E(Zn:Ik) - zn:E(Ik) — np and a(ifk) — /p(1—p) x V.
k=1 k=1 k=1

The binomial distribution is a versatile probability distribution
and has numerous applications.

Example 3.1. A military early-warning installation is constructed
in a desert. The installation consists of seven detectors including
two reserve detectors. If fewer than five detectors are working, the
installation ceases to function. Every six months an inspection of the
installation is mounted, and at that time all detectors are replaced
by new ones. There is a probability of 0.05 that any given detector
will fail between two inspections. The detectors are all in operation
and act independently of one another. What is the probability that
the system will cease to function between two inspections?

Solution. Let the random variable X denote the number of detectors
that will cease to function between two inspections. The random
variable X has a binomial distribution with parameters n = 7 and
p = 0.05. The probability that the system will cease to function
between two inspections is
P(X >2) = 27: <7> 0.05% 0.9577% = 0.0038.
k=3 k
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The binomial distribution can be used to solve the famous problem
of points. In 1654, this problem was posed to Pascal and Fermat by
the compulsory gambler Chevalier de Méré. Mathematics historians
believe that the Chevalier posed the following problem: “Two players
play a chance game of three points and each player has staked 32
pistoles. How should the sum be divided if they break off prematurely
when one player has two points and the other player has one point?”
A similar problem was earlier posed by the Italian mathematician
Luca Pacioli in 1494 and led to heated discussions among Italian
mathematicians in the 16th century, but none of them could come
up with a satisfactory answer. The starting insight for Pascal and
Fermat was that what is important is not so much the number of
points each player has won yet, but the ultimate win probabilities
of the players if the game were to continue at the point of stopping.
The stakes should be divided in proportion to these win probabilities.
Today the solution to the problem is obvious, but it was not at
all obvious how to solve the problem in a time that the theory of
probability was at an embryonic stage. The next example analyzes
the problem of points in a modern outfit.

Example 3.2. In the World Series Baseball, the final two teams
play a series consisting of no more than seven games until one of the
teams has won four games. The winner takes all of the prize money
of $1000000. In one such a final, two teams are pitted against one
another and the stronger team will win any given game with a prob-
ability of 0.55. Unexpectedly, the competition must be suspended
when the weaker team leads two games to one. How should the prize
money be divided if the remaining games cannot be played?

Solution. At the point of stopping, the weaker team is 2 points
away from the required 4 points and the stronger team 3 points.
In the actual game, at most 2 + 3 — 1 = 4 more matches would be
needed to declare a winner. A trick to solve the problem is to imagine
that four additional matches would be played. The probability of the
weaker team being the ultimate winner if the original game was to be
continued is the same as the probability that the weaker team would
win two or more matches in four additional matches (explain!). The



82 A First Course in Probability

latter probability is equal to the binomial probability

4

4
Z (k) 0.45% 0.55*% = 0.609019.
k=2

The weaker team should receive $609019 and the stronger team
$390981.

A less famous but still interesting problem from the history of prob-
ability is the Newton-Pepys problem. Isaac Newton was not much
interested in probability. Nevertheless, Newton solved the following
dice problem brought to him by Samuel Pepys who was a president of
the Royal Society of London and apparently a gambling man. Which
game is more likely to win: at least one six in one throw of six dice,
at least two sixes in one throw of twelve dice, or at least three sixes
in one throw of eighteen dice? What do you think? Pepys believed
that the last option was the most favorable one.

Problem 3.1. A fair coin is to be tossed six times. You win two
dollars if heads appears exactly three times (the expected number)
and you lose one dollar otherwise. Is this game advantageous to you?
(answer: no, your win probability is %)

Problem 3.2. Each day, the teacher randomly draws the names of
four pupils in a class of 25 pupils. The homework of those four pupils
is checked. What is the probability that your name will be drawn
three or more times in the next five days? (answer: 0.0318)

Problem 3.3. Daily Airlines flies from Amsterdam to London ev-
ery day. The plane has a passenger capacity of 150. The airline
management has made it a policy to sell 160 tickets for this flight
in order to protect themselves against no-show passengers. Experi-
ence has shown that the probability of a passenger being a no-show
is equal to 0.08. The booked passengers act independently of each
other. What is the probability that some passengers will have to be
bumped from the flight? (answer: 0.0285)

Problem 3.4. Chuck-a-Luck is a carnival game of chance. To play
this game, the player chooses one number from the numbers 1, ..., 6.
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Then three dice are rolled. If the player’s number does not come
up at all, the player loses 10 dollars. If the chosen number comes up
one, two, or three times, the player wins $10, $20, or $30 respectively.
What are the expected value and the standard deviation of the win
for the house per wager? (answer: $0.787 and $11.13)

Problem 3.5. Suppose that 500 debit cards are stolen in a certain
area. A thief can make three attempts to guess the four-digit pin
code. The debit card is blocked after three unsuccessful attempts.
What is the probability that the pin code of two or more debit cards
is guessed correctly, assuming that each four-digit pin code is equally
likely? (answer: 0.01017)

Problem 3.6. In the final of the World Series Baseball, two unevenly
matched teams play a series consisting of at most seven games until
one of the two teams has won four games. The probability that the
weaker team will win any given game is 0.45, and the outcomes of
the games are independent. What is the probability of the weaker
team winning the final? (answer: 0.3917) What is the probability of
the weaker team winning the final after six games? (answer: 0.1240)

Problem 3.7. What is the expected number of values showing up
two or more times when six fair dice are rolled? (answer: 1.579)
Hint: use indicator variables and the linearity of expectation.

Problem 3.8. In an ESP-experiment a medium has to guess the
correct symbol on each of 250 Zener cards. Each card has one of the
five possible Zener symbols on it and each of the symbols is equally
likely to appear. The medium will get $100000 dollars if he gives 82
or more correct answers. What is the probability that the medium
must be paid out? (answer: 1.36 x 1076)

Problem 3.9. You enter a gambling house (stock market) with a
bankroll of $100, and you are going to play a game with 10 sequential
bets. Each time, you bet your whole current bankroll. A fair coin
is tossed. Your current bankroll increases with 70% if heads appears
and decreases with 50% if tails appears (an expected return of 10%
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for each bet!). What is the probability that your starting bankroll
will be more than halved after 10 bets? (answer: 0.6230)

Problem 3.10. Seven friends are having a pleasant evening at the
pub. Eventually they decide to play a coin game to determine how
the beer will be paid for. Each of them tosses a fair coin and those
who have tossed heads toss their coins again. This continues until
there is one person left who has tossed heads or until there is no one
left. In the first situation, that person pays for the beer; in the other
situation, the friends share the bill. What is the probability that one
unlucky person will have to pay the bill? (answer: 0.7211) Hint: use
a recursion for the general case of n friends.

3.2 The hypergeometric distribution

The hypergeometric distribution is a discrete distribution that is
closely related to the binomial distribution. The difference is that
the trials in the hypergeometric context are not independent. The
hypergeometric distribution describes the probability distribution of
the number of successes when sampling without replacement from a
finite population consisting of elements of two kinds. Think of an
urn containing red and white balls or a shipment containing good
and defect items. Suppose the population has R elements of the first
type (for convenience, called successes) and W elements of the sec-
ond type (called failures). Let n be the given number of elements
that are randomly drawn from the population without replacement.
Denote by the random variable X the number of successful elements
drawn. Then, X has the hypergeometric probability distribution

() ()

(%)

PX=r)= forr=0,1,...,R,

with the convention that (g) = 0 for b > a. The derivation of this
distribution was already given in Section 1.1 and went as follows.
Imagine that the elements are labeled so that all elements are dis-
tinguishable. Then the total number of possible combinations of n
distinguishable elements is (R+W) and among those combinations

there are (f) X (nvfr) combinations with r elements of the first type
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and n — r elements of the second type. Each combination is equally
likely and so P(X = r) is the ratio of (f) x ( W ) and (R‘;W),

n—r
The expected value and the standard deviation of X are

R+W —n
R+W -1’

E(X)=mnp and o(X)= \/np(l —p)
where p = RJFLW. A probabilistic derivation of the expected value
and the variance will be given as a bonus at the end of this section.
The hypergeometric distribution can be approximated by a binomial
distribution with parameters n and p = R+LW when n is much smaller
than R+ W.

The best example for the hypergeometric distribution is the lot-
tery, see Section 1.1. The hypergeometric model has many appli-
cations and shows up in various disguises, which at first sight have
little to do with the classical model of red and white balls in an urn.

Example 3.3. In a close election between two candidates A and B
in a small town, the winning margin of candidate A is 1422 to 1405
votes. However, 101 votes are found to be illegal and have to be
thrown out. It is not said how the illegal votes are divided between
the two candidates. Assuming that the illegal votes are not biased
in any particular way and the count is otherwise reliable, what is the
probability that the removal of the illegal votes will change the result
of the election?

Solution. The problem can be translated into the urn model with
1422 red and 1405 white balls. If a is the number of illegal votes for
candidate A and b the number of illegal votes for candidate B, then
candidate A will no longer have most of the votes only if a — b > 17.
Since a + b = 101, the inequality a — b > 17 boils down to 2a >
101 + 17, or @ > 59. The probability that the removal of the illegal
votes will change the election result is the same as the probability of
getting 59 or more red balls when randomly picking 101 balls from
an urn with 1422 red and 1405 white balls. This probability is

101 (1 422) ( 1405 )

2 : a 101—a

a=>59 (2180217)

= 0.0592.
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The following example deals with a problem known as the German
Tank Problem, in which statisticians helped the Allies estimate the
number of tanks the Germans produced in World War II.

Example 3.4. In a bag there are n balls numbered as 1, ..., n, where
n is unknown. You can win a prize by guessing the right number of
balls in the bag. To help you make a sensible guess, you are told that
four balls drawn at random from the bag without replacement have
the numbers 26, 33, 106, 108. How many balls should you estimate
are in the bag?

Solution. Suppose that » numbers are drawn at random from 1 to
n without replacement. Let the random variable M be the largest
number drawn. The hypergeometric model is used to get P(M = m).
Fix m and imagine that the numbers 1 to m — 1 are green numbers,
number m is a blue number, and the other numbers are red numbers.
Then P(M = m) can be interpreted as the probability of getting
r — 1 green numbers and one blue number when drawing r numbers
at random from 1 to n without replacement. This gives

(=)0
()

Next, using the binomial identity >_» _ (7") = (”H), you find

P(M =m)= form=r,...,n.

r+1
) e & m\ () e+ 1)
B = Somi = 3 (1) = T =

Solving n in terms of r and E(M) gives

1
n:E(M)<1+7) _1
r
Suppose the observed value of the largest of the » numbers drawn
is m*. Taking m* as the best guess for E(M), you estimate the
unknown n by

1
n%m*(l—i—f)—l.
r

Substituting r = 4 and m* = 108 in this expression, you get the
estimate 108(1+ 0.25) — 1 = 134 for the number of balls in the bag.
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Problem 3.11. In the game “Lucky 10” twenty numbers are drawn
from the numbers 1 to 80. You tick 10 numbers on the game form.
What is the probability of matching 5 or more of the 20 numbers
drawn? (answer: 0.0647)

Problem 3.12. A bowl contains 10 red and 15 white balls. You
randomly pick without replacement one ball at a time until you have
5 red balls. What the probability that more than 10 picks are needed?
(answer: 0.6626)

Problem 3.13. For a final exam, your professor gives you a list of 15

items to study. He indicates that he will choose eight for the actual

exam. You will be required to answer correctly at least five of those.

You decide to study 10 of the 15 items. What is the probability that
9

you will pass the exam? (answer: 17)

Problem 3.14. What is the probability that a bridge player has
more than one ace among 13 randomly dealt cards from a standard
deck of 52 cards given that the player has an ace? (answer: 0.3696)
How does this probability change if the player had the ace of hearts?
(answer: 0.5612)

Problem 3.15. Two people, perfect strangers to one another, both
living in the same city of one million inhabitants, meet each other.
Fach has approximately 500 acquaintances in the city. Assuming
that for each of the two people, the acquaintances represent a ran-
dom sampling of the city’s various population sectors, what is the
probability of the two people having an acquaintance in common?

Probabilistic derivation of the expected value and variance

It is instructive to give a probabilistic derivation of the expected value
and the variance of the hypergeometric distribution. Take an urn with
R red balls and W white balls. There is no restriction to assume that
the R 4+ W balls are distinguishable. Imagine that the R + W balls are
randomly ordered in a row and that the balls in the first n positions
represent the n balls that are randomly drawn from the urn without
replacement. Using the assumption of distinguishable balls, the total
number of orderings is (R + W)! and the number of orderings for which
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there is a red ball at a given position i is R(R+ W —1)!. Then, letting
the indicator variable X; be 1 if there is a red ball at the ith position
and be 0 otherwise,

R(R+W-1! R
(R+W)  R+W

PX;=1)= fori=1,...,n

The number of orderings for which there is a red ball both at the ith
position and at the jth position is R(R — 1)(R+ W — 2)! and so

R(R—1)(R+W —2)! R(R 1)
(R+W)! C(R+W)(R+W —1)

P(X;=X;=1)=

Let the random variable X be the number of red balls among the balls
in the first n positions, then X = 3" | X;. Since E(X;) = P(X; = 1),
you get by the linearity of expectation that E(X) = nmiw. By the
dependence of the X, the formula

E(X®) =E[(X1+... ZEX2 +22 Z

=1 j=i+1

must be used to calculate var(X). Since E(X?) = P(X; = 1) for all i
and E(X;X;) = P(X; =1and X; = 1) for all i # j, you find after a
little algebra that

N R(R—1)

R+W (R+W)R+W —1)

Next, the formula for var(X) follows by using var(X) = F(X?)—E?(X).

E(X*) =n

n(n—1)

3.3 The Poisson distribution

A random variable X with 0,1, ... as possible values is said to have
a Poisson distribution with parameter A > 0 if

k

P(X:k):e_’\% for k=0,1,...,

where e = 2.71828. .. is the Euler number. The expected value and
the standard deviation of X are

E(X)=XA and o(X)=VA
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The proof is simple. Noting that k! =k x (k—1)! and >°72, e_“]f—{ =
1, you get

E(X):ike)‘z':)\ie)‘()\ - —)\i ’A)\] =
k=0 k=1

In the same way, you get E[X(X — 1)] = A2, which gives E(X?) =
AN+ E(X)andso o2(X) = A2+ X - A2 =\

The Poisson distribution is useful in studying rare events. It is a
very good approximation to the binomial distribution of the total
number of successes in a wvery large number of independent trials
each having a very small probability of success. That is, the binomial
probability (’,;‘) pF(1 — p)"~F of getting k successes in n independent
trials each having success probability p tends to e_’\%lf for all k if
n — oo and p — 0 such that np — X for a constant A > 0. To avoid
technicalities, we prove this only for the case that np is kept fixed
on the value A\ (p = %) The proof then goes as follows: write the

binomial probability (7)p*(1 —p)"~* as
w\ (AN (AT el X"
D)) Um0) “me o g ey

3 (-3 [rm] 0-3)

The first term }\TI,C does not depend on n. The second term (1 — %)n
tends to e~ if n tends to infinity. The third term ﬁ'—k)'
written as: n(n —1)---(n — k4 1)/n* and thus equals (1 — %)(1 -
%) e (1—%). Thus, for fixed k, the third term tends to 1if n — oc.

For fixed k, the last term (1 — %)_k also tends to 1 if n — oo. This
completes the proof.

can be

A very important observation is that only the product value A = np
is relevant for the Poisson approximation to the binomial distribution
with parameters n and p. You do not need to know the particular val-
ues of the number of trials and the success probability. It is enough
to know what the expected (or average) value of the total number of
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successes is. This is an extremely useful property when it comes to
practical applications. The physical background of the Poisson dis-
tribution, as a distribution of the total number of successes in a large
number of trials each having a small probability of success, explains
why this distribution has so many practical applications: the annual
number of damage claims at insurance companies, the annual num-
ber of severe traffic accidents in a given region, the annual number of
stolen credit cards, the annual number of fatal shark bites worldwide,
etc.16 Also, the Poisson distribution often provides a good descrip-
tion of many situations involving points randomly distributed in a
bounded region in the plane or space.

The mathematical derivation of the Poisson distribution assumes
that the trials are physically independent of each other, but, in many
practical situations, the Poisson distribution also appears to give
good approximations when there is a ‘weak’ dependence between the
outcomes of the trials. The Poisson heuristic is especially useful for
quickly arriving at good approximated results in problems for which
it would otherwise be difficult to find exact solutions. Applications
of the Poisson heuristic will be given in Chapter 4.

Example 3.5. There are 500 people present at a gathering. For the
fun of it, the organizers have decided that all of those whose birthday
is that day will receive a present. How many presents are needed to
ensure a less than 1% probability of having too few presents?

Solution. Let the random variable X represent the number of indi-
viduals with a birthday on the day of the gathering. Leap year day,
February 29, is discounted, and apart from that, it is assumed that
every day of the year is equally likely as birthday. The distribution of
X can then be modeled by a binomial distribution with parameters
n =500 and p = %. Calculating P(X > k) reveals that

P(X >4)=0.0130 and P(X >5)=0.0028,

and so five presents suffice. Since n = 500 is large and p = %

is small, the binomial distribution of X can be approximated by a

Under rather weak conditions the Poisson distribution also applies under
non-identical success probabilities of the trials.
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Table 1: Binomial and Poisson probabilities

k 0 1 2 3 4 5 6
bin | 0.2537 0.3484 0.2388 0.1089 0.0372 0.0101 0.0023
Poi | 0.2541 0.3481 0.2385 0.1089 0.0373 0.0102 0.0023

Poisson distribution with expected value A = np = %. For com-
parison, for both the binomial and the Poisson distribution, Table 1
gives the probability that exactly k persons have a birthday on the
day of the gathering for k = 0,1,...,6. The probabilities agree very

well.
The z-score test

A practically useful characteristic of the Poisson distribution is that
the probability of a value more than three standard deviations re-
moved from the expected value is very small (1073 or smaller) when
the expected value A is sufficiently large. A rule of thumb is A > 25.
This rule is very useful for judging the value of all sorts of statistical
facts reported in the media. In order to judge how exceptional a
certain random outcome is, you measure how many standard devia-
tions the outcome is removed from the expected value. This is called
the z-score test in statistics. For example, suppose that in a given
year the number of break-ins occurring in a given area increases more
than 15% from an average of 64 break-ins per year to 75 break-ins.
Since the z-score is (75 — 11)/4/64 = 1.38, the increase can be ex-
plained as a chance fluctuation and so there is no reason to demand
the resignation of the police officer.

Example 3.6. The Pegasus Insurance Company has introduced a
policy that covers certain forms of personal injury with a standard
payment of $100000. On average, 100 claims per year lead to pay-
ment. There are many tens of thousands of policyholders. What can
be said about the probability that more than 15 million dollars will
have to be paid out in the space of a year?

Solution. In fact, every policyholder conducts a personal experi-
ment in probability after purchasing this policy, which can be con-
sidered to be “successful” if the policyholder files a rightful claim
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during the ensuing year. In view of the many policyholders, there is
a large number of independent probability experiments each having
a very small probability of success. Therefore, the Poisson model can
be used. Denoting by the random variable X the total number of
claims that will be approved for payment during the year of cover-
age, the random variable X can be modeled by a Poisson distribution
with parameter A = 100. The probability of having to pay out more
than 15 million dollars is given by P(X > 150). Since E(X) = 100
and o(X) = 10, a value of 150 claims lies five standard deviations
above the expected value. Thus, without doing any further calcu-
lations, you can draw the conclusion that the probability of paying
out more than 15 million dollars in the space of a year must be ex-
tremely small. The precise value of the probability is 1.23 x 1076,
Not a probability the insurance executives need to worry about.

For a binomially distributed random variable X with parameters
n and p, it is also true that almost all probability mass from the
distribution lies within three standard deviations from the expected
value when np(1 — p) is sufficiently large. A rule of thumb for this is
np(1l —p) > 20. A beer brewery once made brilliant use of this. In a
television advertisement spot broadcast during the American Super
Bowl final, 100 beer drinkers were asked to do a blind taste test
comparing beer brewed by the sponsored brewery, and beer brewed
by a competitor. The brilliance of the stunt is that the 100 beer
drinkers invited to participate were regular drinkers of the brand
made by the competitor. In those days, all brands of American
beer tasted more or less the same, and most drinkers weren’t able
to distinguish between brands. The marketers of the sponsored beer
could therefore be pretty sure that more than 35% of the participants
in the stunt would prefer the sponsored beer over their regular beer.
The target value of 35 is (50 — 35)/5 = 3 standard deviations below
the expected value of 50 and so the binomial probability of falling
below 35 is very small. This did, in fact, occur, and made quite an
impression on the television audience.

As another illustration of the z-score test, in Problem 3.8 the z-
value for 82 or more good answers is (82—50)/v/40 ~ 5.06 and so you
can conclude without any further calculations that the probability of
payout is extremely small.
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Poissonization of the binomial experiment

In the experiment with a fixed number of independent Bernoulli trials
each having the same probability of success, the number of successes
and the number of failures both have a binomial distribution. These
two distributions are dependent. The picture changes in a surprising
way if you randomize the number of trials according to a Poisson
distribution.

The experiment is to have a sequence of independent Bernoulli
trials each having the same probability p of success, where the num-
ber of trials is Poisson distributed with parameter A\. Then the fol-
lowing result holds:

(a) The number of successes and the number of failures are Poisson
distributed with parameters Ap and \(1 — p).

(b) The number of successes and the number of failures are indepen-
dent of each other.

The proof goes as follows. Let the random variable X be the number
of successes and the random variable Y be the number of failures.
The probability P(X = j and Y = k) can be written as P(A and B),
where A is the event that the number of trials is j + k& and B is the
event that there are exactly j successes among the j + k£ Bernoulli

trials. By P(A and B) = P(A)P(B | A),

MR+ kN
PX=jandY =Fk) =e = < . >p7 1 —p)* for all j, k.
| : RN (t=2)
Writing e * = e *? ¢ 21-P) and (j;k) = (]']T;)!, it follows that

j k
P(X=jandY =k) = eAp(Aﬁ)] X eA(1P>(A(1];79)) for all 7, k.
Summing P(X = jandY = k) over k gives P(X = j) = e *(\p)’ /5!
for all j. Similarly, P(Y = k) = e 2P} (\(1—p))*/k! for all k. Since
P(X=jandY =k) = P(X = j)P(Y = k) for all j, k, the Poisson
distributed random variables X and Y are independent. A surprising
finding!

The result for the binomial experiment can be straightforwardly ex-
tended to the multinomial experiment, see Problem 3.24. In this
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experiment, each trial has r different possible outcomes with proba-
bilities p1,...,pr. Think of putting balls one at a time into one of r
bins, where each ball is put into the ith bin with a given probability
p;- In the multinomial experiment with n independent trials, the
calculation of probabilities of interest can become computationally
quite demanding. However, tractable results are obtained when the
number of trials is randomized and has a Poisson distribution with
an expected value of A\ = n. For large n, this Poissonized model can
be used as an approximation to the model with a fixed number of n
trials.

Problem 3.16. What is the Poisson approximation for the sought
probability in Problem 3.5? (answer: 0.01019)

Problem 3.17. What is the probability of the jackpot falling in
lotto 6/42 when 5 million tickets are randomly filled in? (answer:
0.6145)

Problem 3.18. In a coastal area, the average number of serious
hurricanes is 3.1 per year. Use an appropriate probability model to
calculate the probability of a total of more than 5 serious hurricanes
in the next year (answer: 0.0943)

Problem 3.19. The low earth orbit contains many pieces of space
debris. It is estimated that an orbiting space station will be hit by
space debris beyond a critical size and speed on average once in 400
years. Estimate the probability that a newly launched space station
will not be penetrated in the first 20 years. (answer: 0.951)

Problem 3.20. Suppose r dice are simultaneously rolled each time.
A roll in which each of the r dice shows up a six is a called a king’s
roll (generalization of de Méré’s dice problem). For larger values of
r, what is the probability of not getting a king’s roll in 4 x 6”1 rolls
of the 7 dice? (answer: e~2/3 = 0.5134)

Problem 3.21. In a particular rural area, postal carriers are at-
tacked by dogs 324 times per year on average. Last year there were
379 attacks. Is this exceptional? (answer: yes, the z-score is 3.1)
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Problem 3.22. An average of 20 fires occur in a given region each
year. Last year, the number of fires increased by 35% over this
average. Is this exceptional? (answer: no, the z-score is 1.57)

Problem 3.23. On average there are 4.2 fatal shark attacks each
year worldwide. What is the probability that there will more than
seven fatal shark attacks next year worldwide? (answer: 0.0639)

Problem 3.24. You put balls, one at a time, into one of b bins
labeled as 1 to b. Any ball is put into bin j with probability p;. The
number of balls to be put into the bins is Poisson distributed with an
expected value of A\. Let X; be the number of balls that will be put
into bin j. Verify that X; is Poisson distributed with an expected
value of Ap; for j = 1,...,b. Show that X;,..., X} are independent
of each other.

3.4 The normal probability density

Many probabilistic situations are better described by a continuous
random variable rather than a discrete random variable. Think of
the annual rainfall in a certain area or the decay time of a radioactive
particle. Calculations in probability and statistics are often greatly
simplified by approximating the probability mass function of a dis-
crete random variable by a continuous curve. As illustrated in Fig-
ure 4, the probability mass function of the binomial distribution with
parameters n and p can very well be approximated by the graph of
the continuous function

f(z) = 1 te-w?/e?

- oV2r

with ¢ = np and o = /np(l —p) if n is sufficiently large, say
np(l — p) > 20. This function f(x) is called the normal density
function (or the Gaussian density function). Likewise, the probabil-
ity mass function of the Poisson distribution with parameter A can
be approximated by the graph of the normal density function f(x)
with g = X and o = v/X if X is sufficiently large, say A > 25. In Fig-
ure 4, the parameters of the binomial and the Poisson distributions
are (n =125, p= 1) and A = 25.
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Figure 4: Normal approximation.

You have now arrived at the normal distribution, which is the most
important probability distribution. A continuous random variable X
is said to have a normal distribution with parameters p and o > 0 if

1 €T
P(X <z)= / e 27" gt for — 0o < 2 < 0.

o oV2

The notation N (u,0?) is often used for a normally distributed ran-
dom variable X with parameters p and o.
The normal density function

f(z) = L Law?/o?
oV2m

is found as the derivative of the probability distribution function
F(z) = P(X < z). The non-negative function f(z) can be shown to
integrate to 1 over (—oo, 00). The parameters p and o of the normal
density are the expected value and the standard deviation of X,

,uz/ooa:f(:z)dx and JQZ/OO(m—u)Qf(x)d:z.

—00 —00

The derivation of these formulas is beyond the scope of this book.
The following remarks are made. The normal density function f(x)
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is maximal for x = p and is symmetric around the point x = p. The
point © = p is also the median of the normal probability distribu-
tion.!” About 68.3% of the probability mass of a normally distributed
random variable with expected value u and standard deviation o is
between the points y— o and p+ o, about 95.4% between p— 20 and
i+ 20, and about 99.7% between p — 30 and p + 30. These facts
are displayed in Figure 5 and will be explained below after having
introduced the standard normal distribution.

68.3% 95.4%

u-o L+o u-2c u+2c

99.7%

u-3c u+3c

Figure 5: Characteristics of the normal density function.

The normal distribution has the important characteristic that a X +
bY is normally distributed for any constants a and b if the random
variables X and Y are normally distributed and independent of each
other. The expected value p and the standard deviation o of a X +bY
are then equal to

p=aBE(X)+bEY) and o=+/a202(X)+b252(Y).

"The median of a continuous random variable is defined as a point such that
the random variable has 50% of its probability mass left from that point and 50%
of its probability mass right from that point. It is noted that for a continuous
random variable each individual point has probability mass zero.
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In particular, the random variable aX + b is N(au + b,a%0?) dis-
tributed if the random variable X is N(u,0?) distributed.

The standard normal distribution is the normal distribution with
expected value 0 and standard deviation 1. This distribution is usu-
ally denoted as the N(0,1) distribution. For a standard normally
distributed random variable Z, the notation

(0(2) = P(Z < 2)]

is used for the probability distribution function of Z. The function
®(z) is given by the famous integral

1.2

1 z
d(z) = \/%/ e 2* dx for any z.
—00

If X has an N(p,0?) distribution, then, by E(aX +b) = aE(X) +b
and 0%(aX +b) = a?0?(X), the normalized random variable

_X—un
N g

Z

has a standard normal distribution. This is a very useful result for
the calculation of the probabilities P(X < z). Writing

P(ng):P<X_M§$_M>7

g g

you see that P(X < z) can be calculated as

P(X <) :@(“’Z“).

®(0) = 0.5. Using the formula

In particular, you have P(X < u) =
< a), it follows that P(a < X < b)

1
Pla< X <b)=P(X<b-P(X
can be calculated as

)

P(a<X§b):<I><b_’u>—<I>(a_’u> for any a < b.

g g
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This result explains the percentages in Figure 5. As an example, an
N (u,0?) distributed random variable has about 95.4% of its proba-
bility mass between p— 20 and p+ 20, since ®(2) — &(—2) = 0.9545.

As an illustration of the normal distribution, the length of Northern
Furopean boys who are born after a gestational period between 38
and 42 weeks has a normal distribution with an expected value of
50.9 cm and a standard deviation of 2.4 cm at birth. How exceptional
is it that a boy at birth has a length of 48 cm? A quick answer to this
question can be given by using the z-score test: a length of 48 cm is
% = 1.2083 standard deviations below the expected value and
this is not exceptional. The undershoot probability ®(—1.2083) =

0.1135 corresponds to a z-score of —1.2083.

Figure 6: Histogram of height measurements.

As said before, the normal distribution is the most important con-
tinuous distribution. Many stochastic situations in practice can be
modeled with the help of the normal distribution. For example, the
annual rainfall in a certain area, the cholesterol level of an adult
male of a specific racial group, errors in physical measurements, the
length of men in a certain age group, etc. Figure 6 displays a his-
togram of height measurements of a large number of men in a cer-
tain age group. A histogram divides the range of values covered by
the measurements into intervals of the same width, and shows the
proportion of the measurements in each interval. You see that the
histogram has the characteristic bell-shaped form of the graph of



100 A First Course in Probability

the normal density function. Making the width of the intervals
smaller and smaller and the number of observations larger and larger,
the graph of the histogram changes into the graph of a normal density
function.

Problem 3.25. The annual rainfall in Amsterdam has a normal
distribution with an expected value of 799.5 mm and a standard
deviation of 121.4 mm. What is the probability of having more than
1000 mm rainfall in Amsterdam next year? (answer: 0.0493)

Problem 3.26. Gestation periods of humans have a normal distri-
bution with an expected value of 280 days and a standard deviation
of 10 days. What is the percentage of births that are more than 15
days overdue? (answer: 0.0668)

Problem 3.27. The diameter of a 1 euro coin has a normal distribu-
tion with an expected value of 23.25 mm and a standard deviation
of 0.10 mm. A vending machine accepts only 1 euro coins with a
diameter between 22.90 mm and 23.60 mm. What is the probability
that a 1 euro coin will not be accepted? (answer: 4.65 x 10~%)

Problem 3.28. The annual grain harvest in a certain area is nor-
mally distributed with an expected value of 15000 tons and a stan-
dard deviation of 2000 tons. In the past year the grain harvest was
21500 tons. Is this exceptional? (answer: yes, the z-score is 3.075)

Problem 3.29. What is the standard deviation of the demand for
a certain item if the demand has a normal distribution with an ex-

pected value of 100 and the probability of a demand exceeding 125
is 0.057 (answer: 15.2)

Problem 3.30. A stock return can be modeled by an N(u,o?)
distributed random variable. An investor believes that there is a
10% probability of a return below $80 and a 10% probability of a
return above $120. What are the investor’s estimates of p and o?
(answer: p =100 and o = 15.6)

Problem 3.31. Verify that P(|X — p| > ko) = 2[1 — ®(k)] for any
k> 0if X is N(u,0?) distributed.
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3.5 Central limit theorem and the normal distribution

In this section, the most famous theorem of probability and statistics
is discussed. This theorem explains why many stochastic situations
in practice can be modeled with the help of a normal distribution.
If a random variable can be seen as the result of the sum of a large
number of small independent random effects, then it is approximately
normally distributed. Mathematically, this result is expressed by
the central limit theorem, which is the most celebrated theorem in
probability and statistics. Loosely formulated,

if the random variables X, Xo,...,X,, are inde-
pendent of each other and have each the same
probability distribution with expected value 1 and
standard deviation o, then the sum X;+ X5+ -+
X, has approximately a normal distribution with
expected value npu and standard deviation o+/n if
n is sufficiently large.

Alternatively, it can be said: the sample mean %(Xl + X0+ +Xp)
has approximately a normal distribution with expected value p and
standard deviation % if n is sufficiently large.'® That is, for any z,

T —ni

P(X1+X2+---+Xn§x)%<1>( ) for large n

a\/Nn

X4+ Xod -4+ X _
P( 1+ X+ n§x>%<b($ n
n o/\/n

How large n should be depends on the shape of the probability distri-
bution of the X;; the more symmetric this distribution is, the sooner
the normal approximation applies. To illustrate this, Figure 7 dis-
plays the probability histogram of the total sum obtained in n rolls
of a symmetrical die for several values of n, and Figure 8 does the
same thing for an asymmetrical die. The figures nicely show that the
more skewed the probability mass function, the larger n must be so
that Y ,_, X} is approximately normally distributed.

) for large n.

L8 imy oo P(m(fi\/}%_"“ < m) = ®(x) for all z is the mathematically precise

formulation of the central limit theorem.
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Figure 7: Probability histograms when the die is symmetrical.

The central limit theorem explains why the histogram of the prob-
ability mass function of a binomially distributed random variable
with parameters n and p can be nicely approximated by the graph
of a normal density with expected valued np and standard devia-
tion y/np(1 — p) if n is sufficiently large: a binomial random variable
can be written as the sum X; + --- 4+ X,, of n independent random
variables X; with P(X; =1) =pand P(X; =0)=1—p.

The central limit theorem is extremely useful for both practical and
theoretical purposes. To illustrate, consider Example 2.15 again.
Using the fact that an N(a,3?) distributed random variable has
95.4% of its probability mass between o — 23 and o + 243, there is a
probability of about 95% that the net profit of the school after 500
bets will be between 250 —2 x 25 = 200 dollars and 250+2 x 25 = 300
dollars.

The central limit theorem has an interesting history. The first version
of this theorem was postulated in 1738 by the French-born English
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n=15

Figure 8: Probability histograms when the die is asymmetrical.

mathematician Abraham de Moivre, who used the normal distribu-
tion to approximate the distribution of the number of heads result-
ing from many tosses of a fair coin. De Moivre’s finding was far
ahead of its time, and was nearly forgotten until the famous French
mathematician Pierre Simon Laplace rescued it from obscurity in his
monumental work Théorie Analytique des Probabilités, which was
published in 1812. Laplace expanded De Moivre’s finding by ap-
proximating the binomial distribution with the normal distribution.
But as with De Moivre, Laplace’s finding received little attention in
his own time. It was not until the nineteenth century was at an end
that the importance of the central limit theorem was discerned when,
in 1901, the Russian mathematician Aleksandr Lyapunov defined it
in general terms and proved precisely how it worked mathematically.

The central limit theorem and the law of large numbers are two
pillars of probability theory. The law of large numbers states that
LN k1 X, tends to E(X) with probability one as n tends to infinity,
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and the central limit theorem enables you to give probabilistic error
bounds on deviations of 2 3} | X from E(X) for large n. These
matters will come back in Chapter 5 on simulation, including the
statistical concept of confidence interval.

Example 3.7. For an expedition with a duration of one and a half
years, a number of spare copies of a particular filter must be taken
along. The filter will be used daily. The lifetime of the filter has
a continuous probability distribution with an expected value of one
week and a standard deviation of half a week. Upon failure a filter
is replaced immediately by a new one. How many filters should be
taken along with the expedition in order to ensure that there will be
no shortage with a probability of at least 99%?

Solution. Suppose n filters are taken along for the expedition of
78 weeks. The probability of no shortage during the expedition is
P(Xi+---+ X, > 78), where Xj is the lifetime (in weeks) of the ith
filter. The lifetimes of the filters are assumed to be independent of
each other. Then, by the central limit theorem,

PXi+ - +X,>78)=1-P(X; +--- 4+ X, <78)
X1+--'+Xn—n<78—n>~1_q)<78—n>
0.5v/n = 05yn/ " 0.5yn/"

The requirement is that 1 —®((78 —n)/(0.5y/n)) > 0.99, and so you
need the smallest value of n for which

—1-p(

(o5

The solution of the equation ®(x) = 0.01 is x = —2.326 (the so-called
1% percentile!?). Next, you solve the equation

)gam.

78—z
— = —2.326.
0.5v/z

The solution is z = 88.97. Thus, 89 copies of the filter are needed.

YFor any 0 < p < 1, the 100p% percentile z, of the standard normal distribu-
tion is defined as the unique solution to ®(z) = p. For example, z0.025 = —1.960
and 20.975 = 1.960.
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Figure 9: Probability histogram for r = 6 and s = 49.

Statistical application

The central limit theorem also applies to the following situation in
which you have weakly dependent random variables. Suppose that r
distinct numbers are sequentially drawn from the numbers 1 up to s,
one at a time and at random. Let the random variables X; represent
the ith number drawn. For reasons of symmetry, each of the X; has
the same probability distribution, but they are not independent. If s
is large and 7 is much smaller than s, the dependency between the X;
is weak. Then, it can be proved that X; + - - - 4+ X,. is approximately
N(u,0?) distributed with

= 17“(5 +1) and o2 = i7“(5 —r)(s+1).
2 12
This result can be used to demystify a widely advertised lottery sys-
tem claimed to increase one’s chances to win the lottery. As an ex-
ample, let’s take the lottery 6/49 in which six different numbers are
randomly drawn from the numbers 1 up to 49. The lottery system is
based on the bell curve and fools lottery players by suggesting them
to choose six different numbers that add up to a number between
117 and 183. If you take r = 6 and s = 49 in the above probability
model, you get ;= 150 and ¢ = 32.8. The normal curve has about
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68% of its probability mass between u—o and p+o. That’s why the
lottery system suggests players to choose six lottery numbers that
add up to a number between 150 — 33 = 117 and 150 + 33 = 183.
It is true that the sum of the six winning numbers will fall between
117 and 183 with a probability of about 68%, but this lottery system
does not increase the player’s odds of winning a prize. The advice
completely neglects the fact that there are many more combinations
of six numbers whose sum falls in the middle of the sum’s distribu-
tion than the combinations of six numbers whose sum falls in the
tail of the distribution. Figure 9 displays the simulated frequency
of the sum of the six winning lottery numbers, based on one million
drawings. As you see, the probability histogram can accurately be
approximated by a normal density function.

Problem 3.32. An insurance company has 20000 policyholders.
The amount claimed yearly by a policyholder has an expected value
of $150 and a standard deviation of $750. Calculate an approxima-
tion for the probability that the total amount claimed in the coming
year will exceed 3.3 million dollars. (answer: 0.0023)

Problem 3.33. Let the random variable H,, be the number of heads
showing up in n tosses of a fair coin. What is the approximate
distribution of H,, — %n for large n? (answer: N (0, (%\/5)2))
Problem 3.34. In the random walk on the line, a drunkard takes
each time a unit step to the right or to the left with equal proba-
bilities, independently of the previous steps. Let D, be the distance
of the drunkard from the starting point after n steps. What is an
approximation to FE(D,,) for n large? (answer: /2n/m)

Problem 3.35. The Nero Palace casino has a new, exciting gam-
bling machine: the multiplying bandit. How does it work? The
bandit has a lever or “arm” that the player can depress up to ten
times. After each pull, an H (heads) or a T' (tails) appears, each
with probability % The game is over as soon as heads appears or
the player has pulled the arm ten times. The player wins $2* if heads
appears at the k pull for 1 < k < 10, and wins $1500 otherwise. The
stake for this game is $15. What are the expected value and the
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standard deviation of the casino’s profit for each game? (answer:
$3.5352 and $45.249) What is the approximate distribution of the
casino’s profit over 2500 games? (answer: N (8838, (2262)2))

Problem 3.36. A new online casino has just opened and is making
a promotional offer. Each of the first 2500 online bets of $10 on
red at roulette gets back $5 when the bet is lost and $20 when the
bet is won. A bet on red is lost with probability é—? and is won
with probability %. Use the central limit theorem to approximate
the probability that the casino will lose no more than $6 500 on the
promotional offer. (answer: 0.978)

3.6 More on probability densities

First, we discuss in more detail the tricky and subtle concept of
probability density function. A random variable X is said to be
continuously distributed with probability density function f(x) if

P(X <z)= / f(y)dy for all real numbers z,

where f(z) is a non-negative function with [* f(z)dz = 1 and
f(x) is continuous with the possible exception of a finite number of
points.2’ The number f(x) is not a probability but measures how
densely the probability mass of X is smeared out around a continuity
point x:

’P(:U <X <z+Az)~ f(x)Az for Az close to O.‘

This follows from P(z < X < z+Azx) = P(X <z+4+Ax)—P(X < z)
and the fact that f(z) is the derivative of P(X < x) (if g(z) is the
derivative of G(x), then G(x+ Az) — G(z) ~ g(x)Ax for Az close to
0). The density function f(x) specifies how the probability mass of
the continuously distributed random variable X is smeared out, as
were it liquid mass, over the range of the possible values of X. Note

20Tn general, you find the probability density function of a continuous random
variable X by determining F(z) = P(X < z) and differentiating F'(z).
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that a density function can have values larger than 1, though it must
integrate to 1.

In view of the interpretation of f(x)Axz for very small Az, it is
reasonable to define the expected value and variance of X as

E(X) = / Ooxf(x)dx and var(X) = / h [z — B(X))*f(2) dx,

o0 —00

assuming that the integrals are well-defined and are finite. Using the
formula P(a < X <b) = P(X <b) — P(X < a) and the integral
representation of P(X < x), you have

b
P(a<X§b)—/ f(z)dx for a <b.

The integral f: f(z)dz is the area under the graph of the density
function f(x) between the points a and b. This area goes to 0 if a
tends to b. Thus, each individual point has probability mass zero for
the random variable X and so P(a < X <b) = Pla < X <b) =
Pla< X <b)=P(a< X <b).

3.6.1 The uniform and the beta densities

Let the random variable X be a random point in the finite interval
(a,b), where a random point means that the probability of X falling
in a sub-interval of (a,b) is proportional to the length of the sub-
interval (think of throwing blindly a dart with an infinitely thin point
on the interval (a,b)). The proportionality constant must be ;1
(why?). In particular, for any a < x < b, the probability of X falling

in the interval (a,z) is (z — a)/(b — a). Thus,

r—a

P(X <z)= —

for a < x < b,

with P(X < z) =0 for v <aand P(X <z) =1 for x > b. The
derivative of P(X < z) on (a,b) is

f(m):b_a fora <x <b.
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Defining f(x) = 0 for = ¢ (a,b), it follows that f(x) is the probabil-
ity density function of the random point X. This density function is
called the uniform density function on (a,b). The probability mass
of X is evenly spread out over the interval (a,b). The uniform den-
sity function underlies the so-called random numbers in computer
simulation. It is a matter of simple algebra to verify that

a+b

1
5 and  var(X) = —(b—a)?

B(X) =

The beta density

The uniform density on (0,1) is a special case of the beta density. The
class of beta densities is much used in Bayesian analysis. To introduce
the beta density, imagine that you have a biased coin with an unknown
probability of coming up heads. Suppose that you model your ignorance
about the true value of this probability by a random variable having the
uniform density on (0, 1) as probability density. In other words, the prior
density f(p) of your belief about the probability of coming up heads is
f(p) =1 for 0 < p < 1. How does your belief about the probability
of coming up heads change when you have tossed the coin n times
with heads coming up s times and tails » = n — s times? Denote by
f(p | s heads) the posterior density of your belief about the probability
of coming up heads. This density satisfies the Bayes formula

f(p) L(s heads | p)

heads) =
fp| s heads) ) £(8) L(s heads | 6) df’

where the likelihood L(s heads | p) is the probability of getting s heads
and r tails in r 4+ s tosses of the coin when the probability of coming
up heads is p. You are asked to take this formula for granted, see also
subsection 2.4.2. The essence of the formula is that the posterior density
is proportional to the product of the prior density and the likelihood
function. In the coin-tossing example the likelihood function is given by
the binomial probability

L(s heads | p) = <T—:8>ps(1_p)r for0 <p<1,
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and so, with f(p) =1 for 0 < p < 1, you get the posterior density

P (L—p)
165 (1—6)rde
This density is the beta (s+ 1,7+ 1) density. In general, the beta (o, 3)
density with parameters « > 0 and 8 > 0 has the interval (0,1) as its
range and is defined by

1
B(a, B)

where B(a, ) = [ 2® "' (1 — 2)’ 1dz. Using induction, it can be
shown that B(«, ) equals (o — D!(8 — 1)!/(a+  — 1) if « and 8
are integer-valued. The expected value and the variance of a random
variable X with a beta (a, 3) density are given by

f(p| s heads) = for 0 <p< 1.

1 -2 for0<z <1,

ap
(a+B8)2(a+B8+1)

The uniform density on (0,1) is the beta (a, 3) density with o = 8 = 1.
A closer look at the above derivation shows that you would have found
the beta (s + a, r + [3) density as posterior density for the probability of
coming up heads if you had taken the beta («, ) density as prior density
for this probability. As an illustration, assuming the uniform density as
prior density for the probability of coming up heads and tossing the coin
10 times, then the posterior density becomes the beta (8, 4) density when
heads appears s = 7 times and tails » = 3 times. If another 10 tosses are
done and these tosses result in 6 heads and 4 tails, the posterior density
becomes the beta (14, 8) density. In Bayesian probability, the prior is
said to be conjugate for the likelihood when the posterior distribution
is in the same family of distributions as the prior belief, but with new
parameter values, which have been updated to reflect what has been
learned from the data.

E(X):aiﬁ and var(X) =

3.6.2 The exponential density

The density function of continuous random variable X is said to be
an exponential density function with parameter A > 0 if

f(z) =A™ forz >0,
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and f(z) =0 for x < 0. A random variable X with this density can
only take on positive values. The exponential probability distribu-
tion is often used to model the time until the occurrence of a rare
event (e.g., serious earthquake, the decay of a radioactive particle).
Figure 10 gives the histogram of a large number of observations of
the time until the decay of a radioactive particle. An exponential
density function can indeed be very well fitted to this histogram.
The probability distribution function P(X < z) is (verify!)

P(X <z)=1-—e? forxz>0.

A basic formula in integral calculus is [;° rke= " dr = % for k =
0,1,... and A > 0. Using this formula, you can readily verify that

E(X):/Oooxf(x)dx:i, Var(X):Am(I—i>2f($)dI:1.

i

Figure 10: A histogram for decay times.

A characteristic property of the exponential random variable X is its
lack of memory. That is, for any s > 0,

’P(X>s+m|X>s):P(X>x) for all z > 0.
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In other words, imagine that X represents the lifetime of an item,
the residual life of the item has the same exponential distribution
as the original lifetime, regardless of how long the item has already
been in use (‘used is as good as new’). The proof is very simple.
Since P(X > v) = e~ for all v > 0, you find for any s > 0 that

P(X >s+zand X > s)
P(X > s)
P(X > s+x) e~ Ast2) Az

= PX > 3) = =e for all z > 0.

PX>s4+z|X>s) =

The exponential distribution can be shown to be the only continuous
distribution having the memoryless property. This property is crucial
in the following example.

Example 3.8. You wish to cross a one-way traffic road on which cars
drive at a constant speed and pass according to independent inter-
arrival times having an exponential distribution with an expected
value of 1/X seconds. You can only cross the road when no car
has come round the corner since ¢ seconds. What is the probability
distribution of the number of passing cars before you can cross the
road when you arrive at an arbitrary moment?

Solution. Imagine that the time axis is divided in segments of ¢
seconds measured from the moment you arrive at the road. The
probability p that the time between the passing of two consecutive
cars is more than c seconds is fcoo Xe Mdt = e, By the lack of
memory of the exponential distribution, p = e™*¢ gives also the prob-
ability that no car comes around the corner during any time segment
of ¢ seconds, independently of other time segments. Denoting by the
random variable X the number of passing cars before you can cross
the road, you now get the shifted geometric distribution

P(X=k)=Q1-pkp fork=01,....
Problem 3.37. A satellite has a lifetime that is exponentially dis-

tributed with an expected value of 15 years. The satellite is in use
for already 12 years. What are the expected value and the standard



Useful Probability Distributions 113

deviation of the residual lifetime of the satellite? (answer: 15 years)
What is the probability that the satellite will survive for another 10
years? (answer: 0.5134)

Problem 3.38. You go by bus to work. It takes 5 minutes to walk
from home to the bus stop. To get to work on time, you must take
a bus no later than 7:45 a.m. The independent inter-arrival times of
the buses are exponentially distributed with a mean of 10 minutes.
What is the latest time you must leave home to be on time for work
with a probability of at least 0.957 (answer: 7:10 a.m.)

Problem 3.39. The lifetime X of an item is exponentially dis-
tributed with expected value % Verify that the lifetime has a con-
stant failure rate, that is, P(t < X <t+ At | X > t) ~ AAt for any

t > 0 if At is close to zero.
3.7 The Poisson process

The Poisson process links the discrete Poisson distribution and the
continuous exponential distribution. Suppose events (e.g. emission of
radioactive particles) occur one at a time, where the inter-occurrences
times are independent random variables having a same exponential
distribution with expected value % For any t > 0, define the random
variable N(t) as

N(t) = the number of events occurring in (0, ¢],

where N(0) = 0. The random process {N(t),t > 0} is called a
Poisson process with rate A. It can be shown that, for any s > 0,

tk
P(N(s—i—t)—N(s):k):e)‘t()\k') for k=0,1,... and t > 0,

independently of what happened before time s. Thus, the Poisson
process is memoryless, and the number of events occurring in any
time interval of length ¢ has a Poisson distribution with expected
value At.

As shown by the Russian mathematician Alexsandr Khinchin (1894
1959), the Poisson process arises only if the following conditions are
satisfied:
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e Events occur one at a time, that is, two or more events in a very
small time interval is practically impossible.

e The numbers of events in non-overlapping time intervals are inde-
pendent of one another (no after-effects).

e The probability distribution of the number of events occurring dur-
ing any finite time interval depends only on the length of the interval
and not on its position on the time axis.

Example 3.9. In a traditional match between two university soccer
teams, goals are scored according to a Poisson process at a rate of
A= % per minute. The playing time of the match is 90 minutes.
What is the probability of having three or more goals during the
match? What is the probability that exactly two goals will be scored
in the first half of the match and exactly one goal in the second half?

Solution. The number of goals scored during the match has a Pois-
son distribution with an expected value of A x 90 = 3. Therefore,
the probability of having three or more goals during the match is

By the memoryless property of the Poisson process, the number of
goals scored in the first half of the match and the number of goals
scored in the second half are independent and have each a Poisson
distribution with an expected value of A x 45 = 1.5. Thus, the
probability of two goals in the first half of the match and one goal in
the second half is given by

—1.5 —-1.5

Example 3.10. A piece of radioactive material emits particles ac-
cording to a Poisson process with a rate of 0.84 particles per second.
A counter detects each emitted particle with probability 0.95, inde-
pendently of any other particle. In a 10-second period, 12 particles
were detected. What is the probability that more than 15 particles
were emitted in that period?
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Solution. The number of particles that will be emitted during a 10-
second period has a Poisson distribution with expected value 10 x
0.84 = 8.4. Using the Poissonization result in Section 3.3, the number
of emitted particles that will be missed by the counter in the 10-
second period has a Poisson distribution with expected value 0.05 x
8.4 = 0.420. The sought probability is the probability of having more
than three emissions of undetected particles in the 10-second period.
This probability is

3

0.4207
1= e 0 ——— = 0.00093.
: J:
Jj=0

Merging and splitting of Poisson processes

In general, random splitting of a Poisson process leads to separate,
independent Poisson processes. Also, merging independent Poisson
processes leads to a Poisson process, see also Example 2.18. In math-
ematical terms, if {V;(¢),¢ > 0} is a Poisson process in which type-i
events occur at a rate of \; per unit time for ¢ = 1, 2, then the merged
process {Ni(t) + Na(t),t > 0} is a Poisson process in which events
occur at a rate of Ay + Ao per unit time and each event is a type
event with probability ﬁ, independently of any other event. On
the other hand, if {N(¢),t > 0} is a Poisson process with rate A and
any event occurring in this process gets label j with probability p;
for j = 1,...,r, independently of any other event, then the split-off
process {N;(t),t > 0} of events with label j is a Poisson process with
rate Ap;, and these r Poisson processes are independent.

The Poisson process and the uniform distribution

In a Poisson process, events occur completely randomly in time. This
fact is reflected in the following relationship between a Poisson pro-
cess and the uniform distribution: given that exactly n events have
occurred in a given time interval (0,t), the joint distribution of the
epochs of the n events is the same as the joint distribution of the or-
der statistics of n independent random variables that are uniformly
distributed on (0,¢). Randomly chosen points in an interval are not
evenly distributed over the interval (otherwise, they would not be
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Figure 11: Simulated events in a Poisson process.

random), but tend to cluster. Therefore, a Poisson process also has
the property that the epochs at which events occur tend to cluster.
For example, this property may be used to explain the surprisingly
large number of shark attacks in Florida in the summer of 1991. Un-
predictable events such as shark attacks can be modeled by a Poisson
process with its bursty behavior. This means that there are periods
with a much higher than average number of attacks, as well as peri-
ods with no attacks at all. The clustering phenomenon is illustrated
in Figure 11, which gives the simulated epochs of events in the time
interval (0,45) for a Poisson process with rate A = 1. How to simulate
a Poisson process will be discussed in subsection 5.2.6.

Problem 3.40. Major cracks on a highway occur according to a
Poisson process at a rate of one per 10 miles. What is the probability
of two or more major cracks on a specific 15-mile stretch of the
highway? (answer: 0.4422)

Problem 3.41. In any 20-minute interval, there is a 10% probability
of seeing at least one shooting star. What is the probability of seeing
at least one shooting star in the period of an hour? (answer: 0.271)

Problem 3.42. In a video game with a time slot of fixed length
T, signals occur according to a Poisson process with rate A\, where
T> % In the time slot you can push a button only once. You win if
at least one signal occurs in the time slot, and you push the button
at the occurrence of the last signal. Your strategy is to let pass a
fixed time s and push the button upon the first occurrence of a signal
(if any) after time s. What value of s maximizes the probability of
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winning the game? (answer: s = T — %) What is the maximum
probability of winning the game? (answer: %)

Problem 3.43. The amount of time needed to wash a car at a
washing station is exponentially distributed with an expected value
of 15 minutes. The washing station can handle only one car at a
time. You arrive at the washing station while it is occupied, and one
other car is waiting for a washing. The owner of this car informs you
that the car in the washing station is already there for 10 minutes.
What is the probability that you have to wait more than 20 minutes
before your car can be washed? (answer: 0.6151)

Problem 3.44. On Wednesday afternoon between 1 p.m. and
4:30 p.m., buses with tourists arrive in Gotham city to visit the castle
in this picturesque town. The times between successive arrivals of
buses are independent random variables each having an exponential
distribution with an expected value of 45 minutes. Each bus stays
exactly 30 minutes on the parking lot of the castle. The parking
lot has ample space. What is the probability mass function of the
number of buses on the parking lot at 4 p.m.? (answer: Poisson
distribution with expected value ).

3.8 The Q-Q plot and the chi-square test

In this section the chi-square test along with the visual assessment
tool of the Q-Q plot will be discussed. The Q-Q plot is used to get
a first idea of the shape of the distribution underlying a set of inde-
pendent data and the chi-square test is used to determine whether
there is a statistically significant difference between the observed fre-
quencies and the expected frequencies of the data.

Q-Q plot

In general, the Q-Q plot can be used when you have data indepen-
dently drawn from the same underlying probability distribution and
you wish to get some idea of the unknown underlying distribution.
Before you estimate the parameters of the population distribution,
you should decide what general family of distributions is appropriate



118 A First Course in Probability

for the data. Does the underlying distribution belong to the family of,
for example, the normal, uniform or exponential distributions? The
procedure for the Q-Q plot is as follows. Suppose the data x1,...,x,
are independently drawn from a continuous probability distribution.
The first step is to order the data according to

Ty <) < < Iy

The z(;) are called order statistics. The proportion of the data that
are smaller than or equal to ;) is % That is, x(;) can be seen
as the %th percentile of the empirical distribution of the data. For
technical reasons, it is more convenient to consider z; as an %
percentile. The next step is to hypothesize some distributional form
for the data, and then compare percentiles. The pth percentile 1, of a
continuous random variable X with a strictly increasing probability
distribution function F(x) = P(X < z) is defined as the unique
solution of F'(z) = p, and so

Np = Fl(p) foro<p<l.

The empirical % percentiles z(;) are now compared with the hy-
pothesized % percentiles F*I(%) fori=1,...,n. In the Q-Q

plot the points 05
_1,1—0.
(20 F (=)

are plotted for ¢ = 1,...,n and you look for linearity. If the points
lie closely on a straight line, you have strong (but not conclusive) ev-
idence that the data are independently drawn from the hypothesized
distribution. It is noted that for some hypothesized distributional
forms you don’t need to know the parameters of the distribution for
the Q-Q plot. The standard normal distribution suffices, the uniform
distribution on (0, 1), and the exponential distribution with scale pa-
rameter 1. By doing so, you only apply a linear transformation on
the parameters of these three distributions. You should realize that
the Q-Q plot is only an exploratory tool which gives you a first idea
about the distribution. After you have chosen the distributional form
for the data, you can estimate the parameters of the distribution from
the data and apply the chi-square test to find out how well the fitted
distribution agrees with the data.
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Chi-square test

The chi-square test (x? test) is one of the most useful statistical
tests. It is used to test whether data were generated from a par-
ticular probability distribution. The test can also be used to assess
whether data has been manipulated to bring observed frequencies
closer to expected frequencies.

Suppose you want to find out whether the probability mass func-

tion pi,...,p, fits a random sample of observations obtained for a
repeatable chance experiment with a finite number of possible out-
comes O1,...,0,. To introduce the chi-square test, denote by the

random variable N; the number of times that outcome O; will appear
in n physically independent repetitions of the chance experiment in
which outcome O; occurs with probability p;. The random variable
N; has a binomial distribution with parameters n and p;, and so the
expected value of N; is np;. By the principle of least squares, it is rea-
sonable to consider a test statistic of the form »7._; w;(N; — np;)?
for appropriately chosen weights w;. It turns out that the choice
wj = % yields a statistic with a tractable distribution. Thus, the
so-called chi-square statistic is defined by

D= Z ”pJ

The probability distribution of the statistic D is difficult to compute.
However, the discrete probability distribution of D can be very ac-
curately approximated by a tractable continuous distribution when
np; is sufficiently large for all j, say np; > 5 for all j (in order to
achieve this, it might be necessary to pool some data groups). Then,

P(D<z)~P(x? ,<z) forxz>0,

where the continuous random variable x2_; is distributed as the sum
of the squares of r — 1 independent N (0, 1) distributed random vari-
ables. The probability distribution of x2_; is called the chi-square
distribution with r — 1 degrees of freedom. Its expected value is

E(xjy) =r—1.
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It should be pointed out that the above approximation for the chi-
square statistic D assumes that the probabilities p; are not estimated
from the data but are known beforehand; if you have to estimate one
or more parameters to get the probabilities p;, you must lower the
number of degrees of freedom of the chi-square distribution by one
for every parameter estimated from the data.

How do you apply the chi-square test in practice? Using the data
that you have obtained for the chance experiment in question, you
calculate the numerical value d of the test statistic D for these data.
The (subjective) judgment whether the probability mass function
pi, ...,y fits the data depends on the value of P(D < d).

Example 3.11. Somebody claims to have rolled a fair die 1 200 times
and to have found that the outcomes 1, 2, 3, 4, 5, and 6 occurred
196, 202, 199, 198, 202, and 203 times. Do you believe these results?

Solution. The reported frequencies are very close to the expected
frequencies. Since the expected value and the standard deviation
of the number of rolls with outcome j are 1200 x % = 200 and
/1200 x (1/6) x (5/6) = 12.91 for all j, you should be suspicious
about the reported results. You can substantiate this with the chi-
square test. The chi-square statistic D takes on the value
1
200

[(196 — 200)* + (202 — 200)? + (199 — 200)* + (198 — 200)*
+ (202 — 200)% + (203 — 200)*] = 0.19.

The value 0.19 lies far below the expected value 5 of the chi-square
distribution with 6 — 1 = 5 degrees of freedom. The probability
P(D <0.19) is approximated by

P(2 < 0.19) = 0.00078.

The simulated value of P(D < 0.19) is 0.00083 (four million simula-
tion runs). The very small probability for the test statistic indicates
that the data are indeed most likely fabricated.

Example 3.12. A total of 64 matches were played during the World
Cup soccer 2010 in South Africa. There were 7 matches with zero
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goals, 17 matches with 1 goal, 13 matches with two goals, 14 matches
with three goals, 7 matches with four goals, 5 matches with five goals,
and 1 match with seven goals. Does a Poisson distribution fit these
data?

Solution. In this example you must first estimate the unknown
parameter A of the hypothesized Poisson distribution. The parameter
A is estimated by

1

6—4(17><1+13><2—|—14><3+7><4+5><5—|—0><6—l—1><7)
and so A\ = %. In order to satisfy the requirement that each data
group should have an expected size of at least 5, the matches with 5 or
more goals are aggregated, and so six data groups are considered. If
a Poisson distribution with expected value A = % applies, then the

expected number of matches with exactly j goals is 64 x e=* A /! for

7 =0,1,...,4 and the expected number of matches with 5 or more
goals is 64 x (1 — Z?:o e X /j!). These expected numbers have

the values 6.641, 15.046, 17.044, 12.872, 7.291, and 5.106. Thus, the
value of the chi-square test statistic D is given by

(7 — 6.641)? N (17 — 15.046)? N (13 — 17.044)2 N (14 — 12.872)?
6.641 15.046 17.044 12.872
(7—7.291)%2 (6 —5.106)>

7201 5.106

= 1.500.

Since the parameter A was estimated from the data, the test statistic
D has approximately a chi-square distribution with 6 — 1 —1 =4
degrees of freedom. By

P(x3 > 1.500) = 0.827,
the Poisson distribution gives an excellent fit to the data.

Problem 3.45. In a classical study on the distribution of 196 sol-
diers kicked to death by horses among 14 Prussian cavalry corps
over the 20 years from 1875 to 1894, the data are as follows. In
144 corps-years no deaths occurred, 91 corps-years had one death,
32 corps-years had two deaths, 11 corps-years had three deaths, and
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2 corps-years had four deaths. Does a Poisson distribution fit the
data? (answer: yes, P(x3 > 1.952) = 0.377)%

Problem 3.46. In a famous physics experiment done by Rutherford,
Chadwick, and Ellis in 1920, the number of a-particles emitted by a
piece of radioactive material were counted during 2608 time intervals
of each 7.5 seconds. Denoting by O; the number of intervals with
exactly j particles, the observed data are Oy = 57, O1 = 203, Oy =
383, O3 = 525, O4 = 532, O5 = 408, Og = 273, O7 = 139, Og = 45,
09 = 27, 010 = 10, 011 = 4, 012 = 0, 013 = 1, and 014 = 1. Do the
observed frequencies conform to Poisson frequencies? (answer: yes,
P(x3, > 12.961) = 0.226)

3.9 The bivariate normal density

Multivariate normal distributions are the most important joint dis-
tributions of two or more random variables. This section deals with
the bivariate normal distribution. An addendum briefly discusses the
general case of two jointly distributed continuous random variables.

A random vector (X,Y) is said to have a standard bivariate nor-
mal distribution with parameter p if

oy
P(ngandYSy):/ / o(v,w)dw dv for —oo < x,y < 00,

where p(z,y) is the standard bivariate normal density function

1
T,Y) = ——F—
e(@,y) T

The parameter p is a constant with —1 < p < 1. Figure 12 shows
the characteristic shape of the bivariate normal density. The density
function ¢ (z, y) allows for the interpretation: the probability that the
pair (X,Y) will take on a value in a small rectangle around the point
(z,y) with side lengths Az and Ay is approximately ¢(z,y)AxAy.

e~ 3 (@ =2029+9°)/(1=0%) {61 all 2 and y.

2!This study was done by the Russian statistician Ladislaus von Bortkiewicz
(1868-1931), who first discerned and explained the importance of the Poisson dis-
tribution in his book Das Gesetz der Kleinen Zahlen. The French mathematician
Siméon-Denis Poisson (1781-1840) himself did not recognize the huge practical
importance of the distribution that would later be named after him. By the way,
this distribution was first found by Abraham de Moivre (1667-1754) in 1711.
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Figure 12: A bivariate normal density.

For a pair (X,Y) having a standard bivariate normal distribution
with parameter p, it is a matter of integral calculus to show that

e both X and Y are N(0,1) distributed;??
e the correlation coefficient of X and Y is p.

More generally, the vector (X,Y) is said to have a bivariate nor-
mal density with parameters (ux, py, 03(, O'%/, p) if the standardized
vector (X;)’:X , Y;i;‘y) has the standard bivariate normal density
with parameter p. Then, by taking the partial derivatives of P(X <
randY < y) = fo(xf’”()/ox fo(yfw)/gy (v, w)dw dv with respect
to = and vy, it follows that the joint density fx y(z,y) of the vector
(X,Y) is equal to

Ll ) () s () )

99X Yy Yy
2roxoyy/1— p?

#The proof is based on P(X < x) = [*_ ( [*_ ¢(v,w)dw) dv. Differentiation

— 00

gives that the density of X is [* ¢(x,w)dw. You can decompose ¢(z,w) as
(1/+/27) e 2% x o(w | z) with p(w | z) = (1/(y/1 — p2v2m)) e=3(w=p2)?/(1=p?)
Noting that ¢(w | z) is an N(px, 1 — p?) density for fixed = and thus integrates to
1, you get that (1/\/%)6_%962 is the marginal density of X. Since E(XY) =
I I zye(x, y)dy dz, the decomposition of ¢(z,y) leads to E(XY) = p,
which gives that the correlation coefficient p(X,Y) = p.
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The random variables X and Y are N(ux,0%) and N(uy,o?) dis-
tributed, and their correlation coefficient is p. A characteristic
property of the bivariate normal distribution is that X and Y are
independent if p = 0 (the converse is always true).

In general, a linear combination of normally distributed random vari-
ables is not normally distributed. However, it can be shown that the
random vector (X,Y’) has a bivariate normal distribution if and only
if any linear combination of X and Y is normally distributed. This
alternative definition is useful when generalizing to the multivariate
normal distribution.

An important concept is the conditional density function of Y given
that X = . This density function is denoted by fy(y | ) for fixed
x and can be defined through the product rule

Ixy(x,y) = fx(@)fy(y | z),

where the N(px,0%) density fx(z) is the probability density of X.
Similarly, the conditional density function fx(z | y) of X is defined.
The definition of the conditional densities parallels the formula

PV=vand W =w)=PV =v)P(W=w |V =v)

for discrete random variables V' and W. The conditional density
function fy(y | ) can be shown to be a normal density function
whose expected value and variance are given by

EY|X=z)=puy +pa—y(x —px) forall x
2D'¢

and

2(Y|X =x)=(1-p"o} forall z.

Thus, a random vector (X,Y) with a bivariate normal distribution
has the nice property that the optimal predictor E(Y | X = z) is
given by the linear least squares regression line, see also Problem 2.62.
The predictor E(Y | X = z) minimizes E[(Y — g(X))?] over all
functions g(x). Note that the residual variance (1 — p?)o3 of Y does
not depend on z.
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Regression to the mean

Linear regression attempts to model the relationship between two
variables by fitting a linear equation to observed data. One variable is
considered to be an explanatory variable, and the other is considered
to be a dependent variable. In a classical study on the heights of
fathers and their adult sons at the same age, Sir Francis Galton
(1822-1911) measured the heights of 1078 fathers and sons. Galton
observed that tall fathers tend to have somewhat shorter sons and
short fathers somewhat taller sons. The phenomenon of regression
to the mean can be explained with the help of the regression line.
Think of X as the height of a 25-year-old father and think of Y
as the height his newborn son will have at the age of 25 years. If
(X,Y) has a bivariate normal distribution such that px = py = p
and ox = oy = o, the best prediction of Y given that X = x is
E(Y | X =z)=p+ p(x — p). Thus, if the observed height x of the
father scores above the mean p and the correlation p between X and
Y is positive, you get 0 < E(Y | X = z) — p < x — pu. That is, the
best linear prediction is that the height of the son will score closer
to the mean than the height of the father. Very tall fathers tend to
have somewhat shorter sons and very short fathers somewhat taller
ones! Regression to the mean shows up in a wide variety of places:
it helps explain why great movies have often disappointing sequels,
and disastrous presidents have often better successors.

Multiple linear regression

In multiple regression, you want to predict the value of a response
variable Y based on the values of explanatory variables X1,..., X;.
Let’s assume that (Y, X1,..., Xs) has a multivariate normal distri-
bution, that is, each linear combination of these s + 1 variables is
normally distributed. Then it can be shown that

E(Y’X]:SL‘] fOI‘jzl,..‘,S):00+91$1+'-'+935E5.

The parameters 6,01, ...,0s can be estimated by minimizing

n

J(0) =" [y — (o + 12t + - + 0,2
1=1
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when n independent observations (y(i) , wgi), . ,xgi)) are available for
large n. As done for logistic regression in subsection 2.10.3, gradient
descent can be applied to minimize .J(6).

Problem 3.47. A statistics class has two exams, and the scores of
the students on the exams 1 and 2 follow a bivariate normal distri-
bution with parameters pu; = 75, us = 65, 01 = 12, o9 = 15, and
p = 0.7. Take a randomly chosen student. What is the probability
that the score on exam 1 is 80 or more? (answer: 0.3385) What is
the probability that total score over the two exams will exceed 1507
(answer: 0.3441) What is the probability that the student will do
better on exam 2 than on exam 17 (answer: 0.1776) What is the
probability that the score on exam 2 will be over 80 given a score of
80 on exam 1?7 (answer: 0.1606)

Problem 3.48. Suppose that the joint distribution of the heights
of fathers and their adult sons at the same age can be modeled by
a bivariate normal density with ux = 67.7, py = 68.7, ox = 2.7,
oy = 2.7, and p = 0.5. What is the prediction for the height of the
son if the father has a height of 73.1 inches? (answer: 71.4 inches)

3.9.1 Additional material for joint random variables

In the foregoing discussion, key concepts for the joint distribution of
two random variables were introduced between the lines. This subsec-
tion briefly discusses these concepts again in a more general context.

In general, two continuous random variables X and Y that are de-
fined on a same sample space are said to have a joint probability density
function fxy(z,y) if

a b
P(X<aandY <b) = / / fxy(z,y)dyde
y

T=—00 =—00

for all —oo < a,b < oo, where fxy(x,y) is a non-negative function
satisfying [ [ fxy(z,y)dydz = 1. In specific applications, you
usually find the joint density function by determining first the joint cumu-
lative probability distribution function and taking next the second-order
partial derivative. Since P((X,Y) € C) = [[ fx,v(z,y) dy dx for any



Useful Probability Distributions 127

neat region C' in the plane, the probability that (X,Y") falls in the region
C'is the volume under the joint density surface over the region C.

An important joint density is the uniform density. Suppose that a
point (X,Y) is picked at random inside a bounded region R in the plane.
The joint density of (X,Y’) is the uniform density

1

.F
area of region R or (z,9) € R,

Ixy(z,y) =

and fxy(x,y) =0 for (x,y) ¢ R. In particular, a random point inside

a circle with radius r has the density fxy(z,y) = # on the circle.

If the random vector (X,Y’) has a joint probability density fx y(x,y),
then each of the random variables X and Y has a probability density
itself. These densities are called marginal densities. Differentiating

P(X<z)=lim P(X <z, Y <y)= / / fxy(v,w)dw| dv

Y—00

gives the marginal density of the random variable X:

:/ fxy(z,y)dy for —oo <z < oo.

As an illustration, let the random variable L be the length of the line
segment between the center of a circle with radius r and a randomly
picked point inside the circle, and let © be the angle between this line
segment and the horizontal axis. What are the marginal densities of L
and ©7 Since the area of a circle sector with radius x and central angle
0is £ x m2% = 1022, you get

2

P(L<zand © <0)= for0<axz<r 0<60<2r.

mr2

Taking the second-order partial derivative, you get

fL7@(a:,9):i2 for0 <z <rand0<6<2m.
r

Then, by the formulas fr(z) = f df and fo(0) = [y % du,

7rr2

2z 1
fL(x):ﬁforO<:r<r and f@(ﬁ):%for0<0<27r.
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It is interesting to note that fr o(x,0) = fr(x) x fo(0) for all (z,0).
This means that L and © are independent of each other.

Another important concept is that of conditional density. The condi-
tional density function of X given that Y = y with fy-(y) > 0 is denoted
by fx(x | y) and is defined through the formula

fxy(@,y) = frw)fx@|y).

Thus, for any fixed y with fy(y) >0, fx(x | y) is defined by

Ixy(z,y)
fr(y)

The conditional expectation of X given that Y = y is defined by

for — oo <z < o0.

fx(zly) =

[e9]

E<X1Y=y>=/ zfx(z | ) de.

—00

As an illustration, let (X,Y) be a randomly chosen point inside the
unit circle with the origin as center. Then, the joint density of (X,Y)

is the uniform density fxy(z,y) = % on the circle. By integrat-

ing fx,v(z,y) = L over x from —/1—92 to \/1 —y2, you get the
marginal density

fry)==v1—-9y? for —1<y<l.

Next, you find for fx(z | y) the uniform density

1
fx(m\y):ﬁ for —\1—y?<z<1-12
-y
You are asked to verify that E(X | Y =y) =0 forall -1 <y < 1 and
p(X,Y)=0. But X and Y are not independent!

The two-dimensional version of the substitution rule is:

Blgx.v)] - | h / " gy oy (o y) dyda
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for any function g(z, y) for which the double integral is well-defined. The
integral always exists when the function g(z,y) is non-negative. As an
illustration, let's calculate the expected value of the distance between a
randomly chosen point (X,Y") inside the unit circle and the center of the
circle. The expected distance can be written as [, /22 + 21 dy dz,
where C' = {(x,y) : 2% 4+ y? < 1}. Using polar coordinates = = rcos(f)
and y = rsin(#), this double integral can be computed as

1 21 1 1
— / / rrdrdf = 2/ r2 dr,
m™Jo 0 0

and so the expected distance between a random point (X, Y) inside the
unit circle and the center of the circle is %

The basic formula fxy(z,y) = fy(y)fx(z | y) is very important.
It may be helpful in simulating a random observation from the joint
density fx y(z,y) of the random vector (X,Y): first, an observation y
is simulated from the marginal density fy(y), and then an observation
x from the conditional density fx(x | y).

Also, the formula fxy(z,y) = fy(y)fx(z | y) is crucial in the
proof of the continuous version of the law of conditional expectation:

B = [ EX|Y =)y

A sketch of the proof is as follows. Using the definitions fx(z) =
2 fxy(zy)dy and fxy(z,y) = fy(y)fx(z | y), you get

B0 = [ apx@do= [ wae] [" frfstelna
~ [ wdn [ atslnde= [T BETY =@y

Here the assumption is made that the integrals exist and that the in-
terchange of the order of integration is allowed. This assumption is
satisfied when X and Y are non-negative random variables. The faw of
conditional probability can be obtained in the same way as the law of
conditional expectation:

o

P <o)= [ POXC<a|Y=)fy()dy forany e

—00
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The laws of conditional expectation and conditional probability are very
useful in solving probability problems, where the choice of the condi-
tioning variable Y is usually obvious from the context of the problem.

Example 3.13. When you go home from work, you will arrive at the bus
stop at a random time between 5:45 p.m. and 6:00 p.m. Bus numbers 1
and 3 bring you home. You take the first bus that arrives. Bus number
1 arrives exactly every 15 minutes starting from the hour, and the inter-
arrival times of buses number 3 are independent random variables having
an exponential distribution with a mean of 15 minutes. What is your
expected waiting time until the first arrival of a bus? What is the
probability that bus number 1 will arrive first to take you home?

Solution. Let the random variable X be your waiting time (in minutes)
until the first arrival of a bus. To calculate E(X), condition on the
random variable Y denoting the number of minutes between your arrival
time at the bus stop and 6:00 p.m. The random variable Y is uniformly
distributed on (0,15) and has density fy(y) = 1—15 for 0 < y < 15.
Using the lack of memory of the exponential distribution, the conditional
expected waiting time E(X | Y = y) is the same as the expected value
of the random variable min(y, V'), where the inter-arrival time V' has
the exponential density %e‘”/lf’. Then, using the substitution rule,

E(X|Y =y) = E[min(y,V)] = / min(y,v)li&,)e*”/15 dv
0

vl >~ 1
— - —U/15d - —U/l5d
/0 v 156 U—i—y/y 156 v

— 15[1 _eu/15 %e—y/m] n ye—y/15 —15(1 — e_y/m)‘

The law of conditional expectation now gives

15 1 15 15
E(X)= E(X\Y_y)dy_/ (1—e¥/1B)dy = —.
0 15 0 (&
The probability that bus number 1 will arrive first to take you home is
J3? P(V > y) dy =11, by the law of conditional probability.



Chapter 4
Real-World Applications of Probability

This chapter discusses real-world applications of probability. The
Poisson distribution plays a key role in several applications involving
rare events. This distribution is a particularly suitable distribution
for modeling rare events. It has also the practically useful property
that its standard deviation is the square root of its mean. Applica-
tions include detecting fraud in a Canadian lottery, real-life cases of
the birthday problem, collecting coupons at World Cup soccer tour-
naments, and Benford’s law for detecting potential fraud in financial
records.

4.1 Fraud in a Canadian lottery

In the Canadian province of Ontario, a strong suspicion arose at a
certain point that winning lottery tickets were repeatedly stolen by
lottery employees from people who had their lottery ticket checked at
a point of sale. These people, mostly the elderly, were then told that
their ticket had no prize and that it could go into the trash. The
winning ticket was subsequently surrendered by the lottery ticket
seller, who pocketed the cash prize. The ball started to roll when
an older participant — who always entered the same numbers on his
ticket — found out that in 2001 a prize of $250000 was taken from
him by a sales point employee.

How do you prove a widespread fraud in the lottery system? Statis-
tical analysis by Jeffrey Rosenthal, a well-known Canadian professor

131
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of probability, showed the fraud. The Poisson distribution played a
major role in the analysis. How was the analysis done? Rosenthal
worked together with a major Canadian TV channel. Investigation
by the TV channel, making an appeal to the freedom of information
act, revealed that in the period 1999-2006 there were 5713 big prizes
(350000 or more) of which 200 prizes were won by lottery ticket sell-
ers. Can this be explained as a fluke of chance? To answer this
question, you need to know how many people are working at points
of sale of the lottery. There were 10300 sales outlets in Ontario, and
research by the TV channel led to an estimated average of 3.5 em-
ployees per point of sale, or about 36 thousand employees in total.
The lottery organization fought this number and came up with 60
thousand lottery ticket sellers. You also need to know how much the
average lottery ticket seller spends on the purchase of lottery tickets
compared to the average adult inhabitant of Ontario. The estimate
by the TV channel was that the average expenditure on lottery tick-
ets taken over all lottery ticket sellers was about 1.5 times as large as
the average expenditure on lottery tickets taken over all 8.9 million
adult residents of Ontario.

Let’s now calculate the probability that the lottery sellers will win
200 or more of the 5 713 big prizes when there are 60 thousand lottery
ticket sellers with an expenditure factor of 1.5. In that case, the
expected number of winners of big prizes among the lottery ticket
sellers can be estimated as

60000 x 1.5

1 _ 57,
STI3 X =g 500000~ °F

In view of the physical background of the Poisson distribution — the
probability distribution of the total number of successes in a very
large number of independent trial each having a very small proba-
bility of success — it is plausible to use the Poisson distribution to
model the number of winners among the lottery ticket sellers. The
Poisson distribution has the nice feature that its standard deviation
is the square root of its expected value. Moreover, nearly all the
probability mass of the Poisson distribution lies within three stan-
dard deviations from the expected value when the expected value
is not too small, see Section 3.3. Two hundred winners among the
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lottery ticket sellers lies

200 — 57
=~ 19
V57

standard deviations above the expected value. The probability cor-
responding to a z-score of 19 is inconceivably small (on the order of
10~%9) and makes clear that there is large-scale fraud in the lottery.

The lottery organization objected to the calculations and came
with new figures. Does the conclusion of large-scale fraud change
for the rosy-tinted figures of 101000 lottery ticket sellers with an
expenditure factor of 1.97 Then you get the estimate

101000 x 1.9

1 ~ 12
5713 X 2500000 3

for the expected number of winners under the lottery ticket sellers.
Two hundred winners is still

200 - 123
V123

standard deviations above the expected value. A z-score of 7 has
also a negligibly small probability (on the order of 10~7) and cannot
be explained as a chance fluctuation. It could not be otherwise that
there was large-scale lottery fraud at the sales points of lottery tick-
ets. This suspicion was also supported by other research findings.
The investigations led to a great commotion. Headings rolled and
the control procedures were adjusted to better protect the customer.
The stores’ ticket checking machines must now be viewable by cus-
tomers, and make loud noises to indicate wins. Customers are now
required to sign their names on their lottery tickets before redeeming
them, to prevent switches.

4.2 Bombs over London in World War 11

A famous application of the Poisson model is the statistical analysis
of the distribution of hits of flying bombs (V-1 and V-2 missiles)
in London during the second World War. The British authorities
were anxious to know if these weapons could be accurately aimed
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at a particular target, or whether they were landing at random. If
the missiles were in fact only randomly targeted, the British could
simply disperse important installations to decrease the likelihood of
their being hit. An area of 36 square kilometers in South London was
divided into 576 small regions of 250 meter wide by 250 meter long,
and the number of hits in each region was determined. There were
229 regions with zero hits, 211 regions with one hit, 93 regions with
two hits, 35 regions with three hits, 7 regions with four hits, 1 region
with five hits, and 0 regions with six or more hits. The 576 regions
were struck by 229 x 04+211x1+4+93x24+35x3+7x4+1x5=>535
bombs and so the average number of hits per region was

535
A= — =0.9288.
576

If it can be made plausible that the number of hits per region closely
follows a Poisson distribution with an expected value of 0.9288, then
it can be safely concluded that the missiles landed at random, in
view of properties of the two-dimensional Poisson process on the
plane. You would expect

—0.9288 0.9228"
k!
regions with exactly k hits for k£ = 0, 1,... if the number of hits per

sector is approximately Poisson distributed with an expected value
of 0.9288. Calculating Vi for k =0,1,...,5, you get

Vi, = 576 x e

Vo =227.5, V4 = 211.3, Vo = 98.1, V3 = 30.4,V, = 7.1, and Vi = 1.3.

You see that the observed relative frequencies 229, 211, 93, 35, 7,
and 1 for the numbers of hits are each very close to these theoretical
relative frequencies corresponding to a Poisson distribution (this can
be formalized with the chi-square test from Section 3.8). It could
be concluded that the distribution of hits in the South London area
was much like the distribution of hits when a flying bomb was to
fall on any of the equally sized regions with the same probability,
independently of the other flying bombs. The statistical analysis
convinced the British military that the bombs struck at random and
had no advanced aiming ability.
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4.3 Winning the lottery twice

The following item was reported in the February 14, 1986 edition of
The New York Times: “A New Jersey woman wins the New Jersey
State Lottery twice within a span of four months.” She won the
jackpot for the first time on October 23, 1985 in the 6/39 lottery.
Then she won the jackpot in the new 6/42 lottery on February 13,
1986. In the r/s lottery, r different numbers are randomly drawn
from the numbers 1 to s, and you win the jackpot if you have correctly
predicted all six winning numbers. Lottery officials of New Jersey
State Lottery declared that the probability of winning the jackpot
twice in one lifetime is approximately one in 17.1 trillion. What do
you think of this statement? The claim made in this statement is
easily challenged. The officials’ calculation proves correct only in the
extremely farfetched case scenario of a given person submitting one
ticket for the 6/39 lottery and one ticket for the 6/42 lottery just
one time in his/her life. In this case, the probability of getting all
six numbers right, both times, is equal to

1 r 1
G " (@) T 1T < 107

But the event of someone winning the jackpot twice is far from mirac-
ulous when you consider a very large number of people who play the
lottery for many weeks. The explanation is the law of truly large
numbers: any event with a nonzero probability will eventually occur
when it is given enough opportunity to occur. Let’s illustrate this
lottery principle by considering the many 6/42 lotteries in the world
that have two draws each week. Suppose that each of 50 million
people fills in five tickets for each drawing. Then the probability of
one of them winning the jackpot at least twice in the coming four
years is close to 1. The calculation of this probability is based on the
Poisson distribution, and goes as follows. The probability of win-
ning the jackpot in a particular week when filling in five tickets is
equal to 5/(462) = 9.531 x 1077, In view of the physical background
of the Poisson distribution, the number of times that a given player
will win the jackpot in the next 4 x 52 x 2 = 416drawings of a 6/42
lottery is modeled by a Poisson distribution whose expected value is
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Ao = 416 x 9.531 x 1077 = 3.965 x 10~%. For the next 416 drawings,
this means that

P(a particular player will win the jackpot two or more times)
=1—e 0 —e M)y =7.859 x 1075

Next, using again the physical background of the Poisson distribu-
tion, we can conclude that the number of people under the 50 million
mark, who win the jackpot two or more times in the coming four years
is Poisson distributed with expected value

A = 50000000 x (7.859 x 10~%) = 3.93.

Thus, the probability that at some point in the coming four years at
least one of the 50 million players will win the jackpot two or more
times can be given as 1 — e~ = 0.980. A probability very close to
1! A few simplifying assumptions are used to make this calculation,
such as the players choose their six-number sequences randomly. This
does not influence the conclusion that it may be expected once in a
while, within a relatively short period of time, that someone will win
the jackpot two times.

4.4 Santa Claus and a baby whisperer

In 1996, the James Randi Educational Foundation was founded by
James Randi, a former top magician who fought and exposed mock-
ery and pseudo-sciences. The goal of the foundation was to make
the public and the media aware of the dangers associated with the
performances of psychic mediums. James Randi offered a $1 million
prize to anyone who could demonstrate psychic abilities. Obviously,
this had to be demonstrated under verifiable test conditions, which
would be agreed on beforehand. For example, someone like Uri Geller
who claimed to be able to bend spoons without applying force could
not bring his own spoons. Different mediums took up the challenge
but nobody succeeded. The ‘baby whisperer’ Derek Ogilvie was one
of the mediums who accepted the challenge. This medium claimed
to be capable of extrasensory distant observations. He was allowed
to choose a child with whom he thought he would have telepathic
contact, and he was subjected to the following test. The medium was
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shown ten different toys that would be given to the child one after
the other, in random order, out of sight of the medium. The child
was taken to an isolated chamber, and each time the child received
a toy, the medium was asked to say what toy it was. If the medium
was right six or more times, he would win one million dollars. What
is the probability of six or more correct answers?

The problem is in fact a variation of the Santa Claus problem: at
a Christmas party, each one of a group of children brings a present,
after which the children draw lots randomly to determine who gets
which present. What is the probability that none of the children
will wind up with their own present??®> The Poisson heuristic will
be used to get this probability. Suppose there are n children at the
party and imagine that the children are numbered as 1,2,...,n. The
Santa Claus problem can be formulated within the framework of a
sequence of n trials. In the ith trial, a lot is drawn by the child hav-
ing number ¢. Let’s say that a trial is successful if the child draws
the lot for his/her own present. Then, the success probability of each
trial has the same value w = % (and so the order in which lots
are drawn does not matter). Thus, the expected value of the number
of successes is n x % = 1, regardless of the value of n. The outcomes
of the trials are not independent of each other, but the dependence
is ‘weak’ if n is sufficiently large. The success probability % is small
for n large. Then, as noted before in Section 3.3, you can use the
Poisson heuristic for the probability distribution of the total number
of successes. This probability distribution is then approximated by
a Poisson distribution with an expected value of 1. Thus, since a
‘success’ means that the child gets his/her own present, you get

-1

P(exactly k children will get their own present) = € 0<k<n.

K
Numerical investigations reveal that this is a remarkably good ap-
proximation for n > 10 (the first seven decimals of the approximate
values agree with the exact values already for n as large as 10). In
particular, taking kK = 0, the probability that none of the children

23The Santa Claus problem and its variations boil down to the following com-
binatorial problem. Take a random permutation of the integers 1,2,...,n. What
is the probability that none of the integers keeps its original position?
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will get their own present is about % = 0.36787..., or, about 36.8%,
regardless of the number of children.

Going back to the ESP experiment with the medium, James
Randi was in very little danger of having to cough up the loot. The
probability of six or more correct answers for random guessing is
practically equal to the Poisson probability 1 — ZZ:O ek;,l = 0.0006,
or, about 0.06%. The medium perhaps thought, beforehand, that
five correct guesses was the most likely outcome, and a sixth correct
guess on top of that wasn’t that improbable, so, why not go for it.
In the test, he had only one correct answer.

4.5 Birthdays and 500 Oldsmobiles

In 1982, the organizers of the Quebec Super Lotto decided to use
a fund of unclaimed winnings to purchase 500 Oldsmobiles, which
would be raffled off as a bonus prize among the 2.4 million lottery
subscribers in Canada. They did this by letting a computer randomly
pick 500 times a number from the 2.4 million registration numbers
of the subscribers. To the lottery officials’ astonishment, they were
contacted by one subscriber claiming to have won two Oldsmobiles.
The lottery had neglected to program the computer not to choose the
same registration number twice. The probability of a pre-specified
subscriber winning the car two times is indeed astronomically small,
but not so the case of the probability that, out of 2.4 million sub-
scribers, there will be someone whose number appears at least twice
in the list of 500 winning numbers. The latter event has a probability
of about 5%. That is quite a small probability, but not a negligible
probability. How can we calculate the probability of 5%7 To do
so, let’s translate the lottery problem into a birthday problem on a
planet with d = 2400000 days in the year and a randomly formed
group of m = 500 aliens. What is the probability that two or more
aliens share a birthday, assuming that each day is equally likely as
birthday? This probability can be accurately approximated by

1— 6—%m(m—1)/d‘

This formula is easily obtained by the Poisson heuristic. There are
(3) = im(m — 1) different combinations of two aliens. Each combi-

2
nation has the same success probability of é that the two aliens have
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a common birthday. In other words, you have a very large number
of %m(m —1) trials, each having the same tiny success probability é.
The dependence between the trials is very weak and so the proba-
bility of no success is approximately equal to the Poisson probability
e, where \ = %m(m —1)x é is the expected number of successful
trials. This verifies the above approximation formula.

Identifying the Oldsmobiles with the aliens and the registration
numbers with the birthdays, substitution of d = 2400000 for the
probability of winning two or more Oldsmobiles by the same lot-
tery subscriber. The approximation is very accurate and agrees with
the exact value in the first five decimals. The exact formula for the
probability of two or more matching birthdays is

d(d—1)--(d—m+1)
dm ’

as can be seen by the same arguments as used for the classical birth-
day problem with 365 equally likely birthdays, see Section 1.2. In
this birthday problem, 23 people suffice to have a fifty-fifty match
probability under the assumption of equally likely birthdays. In real-
ity, birthdays are not uniformly distributed throughout the year, but
follow a seasonal pattern. However, for birth frequency variation as
occurring in reality, the match probability is very insensitive to de-
viations from uniform birth rates. Empirical studies have been done
that confirm this finding. For example, during the 2014 World Cup
soccer championship, 32 national teams of 23 players each took part.
It turned out that 18 of those teams had at least one double birthday
(double birthdays for 15 teams at the 2018 World Cup soccer). The
2019 World Cup women'’s soccer had 24 teams of 23 players each and
had 10 teams with at least one double birthday.

1—

4.6 Cash Winfall lottery: a revenue model for stats geeks

This lottery was an obscure state lottery game that was gamed by
sophisticated stats geeks. Some smart people had figured out how to
get rich while everyone else funded their winnings. What made the
Cash Winfall lottery unique is that the progressive jackpot could not
grow past $2 million. Once it reached this level and there was no
winner, the prizes for matching 3, 4, and 5 balls grew instead of the
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jackpot growing. And the smaller prizes were not parimutuel, i.e.
winners did not have to share a fixed pot of money. So if the jack-
pot rose to $2 million or more without a winner, the jackpot would
‘roll-down’ and instead be split among the players who had matched
three, four, or five numbers. Lower-tier prizes were $4000, $150, or
$5 for matching five, four, or three numbers respectively, and those
prizes were increased by a factor of five to ten if the jackpot reached
$2 million and was not won. In the lottery, six different numbers
were drawn from the numbers 1 to 46.

Each week, the lottery published the estimated amount of the
jackpot for that week’s draw. Each time a roll-down draw approached,
several syndicates bought a very large number of tickets. This was
not too risky for them since the jackpot was seldom hit, and ordinary
players barely bought more tickets as a roll-down draw approached.
What can be said about the cash winnings of the syndicates? Let’s
say that one syndicate invested $400000 in 200 thousand lottery
tickets of $2 per ticket when a roll-down was expected. Under the
assumption that those tickets are Quick Pick tickets whose ticket
numbers are randomly generated by the lottery’s computers, let’s
make some rough calculations for the case that the jackpot reached
$2 million and was not won. Let’s take the conservative estimates

as = $27.50, ag = $925, and as = $25000

for the payoff ar on any ticket that matches exactly k of the six
winning Winfall numbers. Denote by pi the probability of a single
ticket matching exactly k of the six winning numbers given that the
jackpot was not won. Then py, is (z) (G@k) / (466) divided by 1 -1/ (%6)
and has the values

p3 = 2.10957x 1072, py = 1.24909 x 1073, and ps = 2.56224 x 107°.

Let’s define the random variable X} as the number of syndicate tick-
ets that match exactly k£ of the six winning numbers for k = 3,4, 5.
In view of the physical background of the Poisson distribution, it is
reasonable to approximate the distribution of X} by a Poisson distri-
bution with expected value A\ = 200000 X pg. The numerical values
of the \; are

A3 = 4219.149, Ay = 249.8180, and A5 = 5.12447.
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This gives that the expected cash winnings of the syndicate can be
estimated as

Agasg + Agaq4 + Asas = 475220 dollars.

An expected profit of more than $75000, a healthy return of about
19%. What is an estimate for the probability that the syndicate does
not a profit on its $400 000 investment? In order to find this, we need
the standard deviation of the cash winnings of the syndicate. The
random variables X3, X4, and X5 are nearly independent of each
other. The variance of a Poisson variable X is equal to its mean,
and so the standard deviation of cash winnings of the syndicate is
approximately equal to

V@A + s+ a2hs = 58453 dollars.

Next, note that the Poisson distribution can be accurately approx-
imated by the normal distribution when the expected value of the
distribution is not too small. Also, a linear combination of inde-
pendent normally distributed random variables is again normally
distributed. This gives that the distribution of the cash winnings
a3X3 + a4 X4 + a5 X5 can be approximated by a normal distribution
with expected value $475 220 and standard deviation $58 453. Thus,
the probability that the syndicate will lose money on its investment
of $400000 can be estimated as

(400 000 — 475220
08453

):0%9

Three syndicates, one of which was a group of MIT students, won
millions of dollars by making clever use of the ‘roll-down’ character
of the lottery, and in fact, profiting from a jackpot that had been
amassed by other participants. By 2011, syndicate activity was get-
ting a lot of negative publicity, which prompted lottery officials to
adjust the rules, and ultimately to abandon the game altogether.

4.7 Coupon collecting

Suppose that a new brand of breakfast cereal is brought to the mar-
ket. The producer has introduced a campaign offering one baseball
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card in each cereal box purchased. As baseball fan, you want to col-
lect a complete set of baseball cards. What are the first two moments
and the probability mass function of the number of cereal boxes you
must buy in order to get all baseball cards? It is assumed that trad-
ing is not an option. The problem is an instance of the so-called
coupon collector’s problem that appears in many disguises: there are
c different types of coupons labeled as ¢ = 1,...,c and you will get
one coupon with each purchase. This coupon will be coupon ¢ with
probability p;, where Y ;_; p; = 1. How many purchases must be
done in order to get a complete collection of coupons?

Case of equal probabilities

It is assumed that each coupon has the same probability of being
collected, that is p; = % fori=1,...,c. Let the random variable N
be the number of purchases needed to collect all ¢ coupons. In the
solutions of the Problems 2.48 and 2.54, it is shown that

1 2 ax 1 1
E(N)—c;k and o°(N)=c kzle c;k.

What about the probability distribution of the random variable N7
It is not too difficult to compute the exact probability distribution
of N. There are several methods. In Example 6.5 of Chapter 6, the
powerful method of absorbing Markov chains is used. A practically
useful approximation can be determined fairly easily with the help of
the Poisson heuristic. Then a Poisson approximation to the probabil-
ity that more than n purchases are needed to collect all coupons can
be obtained by the following subtle argument. Take a fixed number
of n purchases and imagine a series of ¢ trials, where the ith trial
refers to coupon ¢ and this trial is said be successful if coupon i is
not among the n purchases. The success probability of each trial is
(%)n Thus, the expected value of the number of successful trials
is c(%)”. Then, for ¢ and n large enough, the distribution of the
number of successful trials can be approximated by a Poisson dis-
tribution with expected value C(%)" Thus, the probability of no

successful trials can be approximated by e=e(5)" . The probability
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Table 2: Numerical results for the case of equal probabilities

n 150 200 250 300 350 400 500
app | 0.9106 0.5850 0.2740 0.1101 0.0416 0.0153 0.0020
exa | 0.9324 0.6017 0.2785 0.1109 0.0417 0.0154 0.0020

that not all ¢ coupons are among the first n purchases is one minus
the probability of no successful trials. Thus,

P(N>n)=1- e )" forn>e.

For ¢ = 50 and several values of n, Table 2 gives the exact and
approximate values of the probability that more than r purchases
are needed to get a complete collection. Using the formulas

E(X) = iP(X >n) and FEX(X-1)]= iQnP(X > n)
n=0 n=0

for a non-negative, integer-valued random variable X (see Prob-
lem 2.47), the approximate values 222.71 and 63.48 are obtained
for E(N) and o(NN), where the exact values are 224.96 and 61.95.
The Poisson heuristic gives excellent approximations.

Case of unequal probabilities

For the case of ¢ coupons with unequal probabilities p1,...,p., the
probability that more than n purchases are needed to get all ¢ coupons
can be approximated by

PIN>n)m=1—(1—-e"P)x ... x(1—e"P) forn>c,

where P(N > n) = 1 for 0 < n < ¢ — 1. This approximation is
motivated in the solution of Problem 3.24. It turns out that this is
a very useful approximation. This is illustrated with the example of
rolling two fair dice until each of the eleven possible sums has shown
up. The probability pi of getting the sum k in a single roll of two fair
dice is p2 = p12 = 35, P3 = P11 = 55, P4 = P10 = 35, P5 = P9 = 35
P = pg = %, and p7 = %. For several values of n, Table 3 gives the
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Table 3: Numerical results for the case of unequal probabilities

n 25 50 75 100 125 150 200

app | 0.9120 0.5244 0.2604 0.1277 0.0630 0.0304 0.0077
sim | 0.9227 0.5168 0.2524 0.1225 0.0599 0.0294 0.0072

simulated and the approximate values of P(N > n). The simulated
values are based on ten million runs. The approximate values for
E(N) and o(N) are 61.72 and 36.82, where the exact values are
equal to 61.22 and 35.98.

Multiple coupons

The approximation for P(N > n) can be adapted for the coupon
collector’s problem in which you get d different coupons with each
purchase. If the coupons are uniformly distributed among the pack-
ets with d coupons and d is much smaller than ¢, then numerical
experiments indicate that

d

P(N>n)~1—(1—e )"

is a useful approximation. The rationale behind this approximation
is that a specific coupon is contained in a packet of d coupons with
probability %.24 The famous Panini football sticker collection is an
example of the coupon collector’s problem with multiple coupons.
The Italian firm Panini produces sticker albums for World Cup and
Euro Cup soccer. The Euro Cup 2020 album had 678 stickers to col-
lect, and you got a packet of six different stickers with each purchase.
Under the assumption that all stickers are equally rare, a simulation
study showed that you need 780, 878, and 993 packets of six stickers
to have a complete album with probabilities of 50%, 75%, and 90%,
respectively. In agreement with these simulation results, the approx-
imation formula with d = 6 and ¢ = 678 gives the values 779, 878,

2In the nonuniform case, this probability is approximately dps for coupon
k when c is large, d < c and each p; is small enough so that dp; is a small
probability for all j. To explain this: the simplification that coupons are picked
with replacement then has little impact and so the probability that coupon k is
not in a packet of d coupons is approximately (1 — pk)d ~ e Pk 1 — dpy.
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and 991 for the smallest value of n such that P(N > n) is less than
0.5, 0.25, and 0.10, respectively.

4.8 Benford’s law

Benford’s law, also called the Newcomb—Benford law, is a mathemat-
ical law about the leading digit number in real-world data. The law
states that the first significant digit of numbers in various naturally
occurring data sets does not always follow a uniform distribution,
but rather the logarithmic probability distribution

logyg (1+%> fork=1,...,9.

In 1881, the famous astronomer Simon Newcomb (1835-1909) pub-
lished a short article in which he observed that the initial pages of
reference books containing logarithmic tables were far more worn and
dog-eared than the later pages. He found that numbers beginning
with a 1 were looked up more often than numbers beginning with 2,
numbers beginning with 2 were looked up more often than numbers
beginning with 3, etc. For digits 1 through 9, Newcomb found the
relative frequencies to be

30.1%, 17.6%, 12.5%, 9.7%, 7.9%, 6.7%, 5.8%, 5.1%, 4.6%,

which is consistent with the mathematical formula log;(1+ 1/k) for
k=1,...,9. This result was more or less forgotten until Frank Ben-
ford, an American physicist, published in 1938 an article in which he
demonstrated empirically that the first nonzero digit in many types
of data (lengths of rivers, metropolitan populations, universal con-
stants in the fields of physics and chemistry, numbers appearing in
front page newspaper articles, etc.) approximately follows a loga-
rithmic distribution.

How to explain this law? Benford’s law has the remarkable char-
acteristic of being scale invariant: if a data set conforms to Benford’s
law, then it does so regardless of the physical unit in which the data
are expressed. Whether river lengths are measured in kilometers or
miles, or stock options are expressed in dollars or euros, it makes
no difference for Benford’s law. But this does not explain the fre-
quent occurrence of the law. A satisfying mathematical explanation
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for Benford’s law was a long time coming. In 1996, the American
mathematician Ted Hill proved that if numbers are picked randomly
from various randomly chosen sets of data ranging in orders of magni-
tude, the numbers from the combined sample approximately conform
to Benford’s law. This is a perfect description of what happens with
numbers appearing in, e.g. front-page newspaper articles.

Although it may seem bizarre at first glance, the Benford’s law phe-
nomenon has important practical applications. In particular, Ben-
ford’s law can be used for investigating financial data — income tax
data, corporate expense data, corporate financial statements. Foren-
sic accountants and taxing authorities use Benford’s law to identify
possible fraud in financial transactions. Many crucial bookkeeping
items, from sales numbers to tax allowances, conform to Benford’s
law, and deviations from the law can be quickly identified using sim-
ple statistical controls. A deviation does not necessarily indicate
fraud, but it does send up a red flag that will spur further research
to determine whether or not there is a case of fraud. This applica-
tion of Benford’s law was successfully applied for the first time by a
District Attorney in Brooklyn, New York. He was able to identify
and obtain convictions in cases against seven fraudulent companies.
In more recent years, the fraudulent Ponzi scheme of Bernard Mad-
off — the man behind the largest case of financial fraud in U.S.
history — could have been stopped earlier if the tool of Benford’s
law had been used. Benford’s law can also be used to identify fraud
in macroeconomic data. Economists at the IMF have applied it to
gather evidence in support of a hypothesis that countries sometimes
manipulate their economic data to create strategic advantages, as
Greece did in the time of the European debt crisis. This is a dif-
ferent kettle of fish altogether from the quaint application regarding
dog-eared pages in old-fashioned books of logarithm tables. Nowa-
days, Benford’s law has multiple statistical applications on a great
many fronts. It is a little gem in data analysis.

4.9 What is casino credit worth?

In 1980, an Atlantic City casino extended a more or less unlimited
credit line to gambling addict David Zarin. They only cut him off
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when his gambling debt passed the 3-million-dollar mark. Partly
due to New Jersey state laws that provide a shield for gambling
addicts, the casino in question had no legal recourse to collect the
full amount of the debt; in fact, it was required to discharge the
lion’s share of the debt. But the story doesn’t end there. Shortly
after the court’s decision was rendered, Zarin received a federal tax
assessment claim from the Internal Revenue Service demanding tax
payment on the sum of 3 million dollars, which had been defined
as income. Zarin returned to court to fight this assessment, and
won. His most important argument was that he had received no
cash money from the casino, only casino chips with which to gamble.
In the end, the court determined that Zarin did not owe taxes on
the portion of the debt that had been discharged by the casino. This
lawsuit generated much interest and has since been taken up into
the canon of required case studies for law students studying in the
United States.

In coming to its decision, the court neglected to ask this simple
question: what monetary value can be assigned to a credit line of
3 million dollars in casino chips, that allows a player to gamble at
a casino? First of all, it must be said that the odds of the player
beating the casino are small. Still, the player does have a chance
of beating the casino, of claiming a profit, and, after repaying the
3-million-dollar advance, of going home with a sum of money that
was gained on the loan. The gambler’s ruin formula enables us to
quantify the monetary value of this loan.

Zarin’s game at the casino was the tremendously popular game of
craps. Craps is a dice game played with two dice. There are various
betting options, but the most popular, by far, is the so-called ‘pass-
line’ bet. It is not needed to get into the intricacies of the game or of
pass-line betting procedure; suffice it to say that, using the pass-line
bet, the probability that the player wins and the probability that the
player loses have the values

244 251

= — d = —
P="%95 ¢ 97 Yo5

respectively. When the player wins, the player gets a return of two
times the amount staked; otherwise, the player loses the amount
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staked. This is precisely the situation of the classical gambler’s ruin
problem. In this problem, the gambler starts with a units of money,
stakes one unit on each gamble, and then sees his bankroll increase
by one unit with probability p and sees it decrease by one unit with
probability ¢ = 1 — p. The gambler stops when his bankroll reaches
a predetermined sum of a + b units of money, or when he has gone
broke. Letting P(a,b) be the probability that the gambler reaches
his target of a + b units of money without first having gone broke,
the classical gambler’s ruin formula is

a
P(a,b): 1_(Q/p) ,
1—(q/p)**?
where P(a,b) must be read as a/(a + b) when p = ¢ = 0.5. This
formula will be proved in Section 6.3 of Chapter 6. The gambler’s
ruin formula can be used to show that, in David Zarin’s case, it would
not have been unreasonable to assign a value of 195 thousand dollars
to his credit line of 3 million dollars. If a player wants to achieve
the maximal probability of a predetermined winning sum in a casino
game such as craps, then the best thing the player can do is to bet
boldly, or rather, to stake the maximum allowable sum (or house
limit) on each gamble. Intuition alone will tell us that betting the
maximum exposes the player’s bankroll to the casino’s house edge for
the shortest period of time. In Zarin’s case, the casino had imposed
a house limit of 15 thousand dollars for the pass-line bet in the game
of craps. So, we may reasonably think that Zarin staked 15 thousand
dollars on each gamble. In terms of the gambler’s ruin formula then,
15 thousand dollars would be equal to one unit of money. We can
further assume that Zarin’s target goal was to increase his bankroll
of 3000000/15 000 = 200 units of money by b units of money, having
assigned a value to b beforehand. What is a reasonable choice for b
when the casino gives a credit line of a units of money as starting
bankroll? Part of the agreement is that the player will owe nothing
to the casino if he goes broke, and the player will go home with a
profit of b units of money if he increases his bankroll to a + b units of
money. The derivation of the best value of b uses the utility function
u(a, b), which is defined as the expected value of the sum with which
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the player will exit the casino. This utility function is given by
u(a,b) =b x P(a,b) + 0 x (1 — P(a,b)).

For a given bankroll a, a rational choice for b is that value for which
u(a,b), as a function of b, is maximal. This value of u(a,b) for the
maximizing b could be considered, by the court, to be the value of
the credit advance of a units of money extended by the casino to the
player. An insightful approximation can be given to the maximizing
value of b, which we denote with b*, and the corresponding value of
the credit line. For the case of a sufficiently large bankroll a, it will
be shown that
U g M ) gy

Surprisingly, the value of the bankroll a is not relevant. These ap-
proximations can be derived by writing the gambler’s ruin formula

- (a/p) 1
(¢/p)~* —(a/p)®’

and noting that, for large a, the term (¢/p)~* can be neglected when
q/p > 1. Thus, P(a,b) ~ (1)~* and

P(a,b) =

u(a,b) ~ b x (Z)_b.

Putting the derivative of u(a,b) with respect to b equal to zero, the
approximations for b* and wu(a, b*) follow after a little bit of algebra.
An interesting result is that, for a sufficiently large bankroll a¢ and
a target amount of b = b*, the probability of reaching the target is
approximately equal to

e '~ 0.3679,

regardless of the precise value of the bankroll a (note that pl/In(r) — ¢
for any r > 0). If you apply these results to David Zarin’s case, using

the data a = 200, p = % and ¢ = %, then you find that

b*~35 and wu(a,b*)~13.
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This means that the value of the credit line extended by the casino is
about 13 units of money. Each unit of money represents 15 thousand
dollars. So, it can be concluded that the 3-million-dollar credit line
extended to Zarin by the casino can be valued at about 195 thousand
dollars. And that is the amount the American tax authorities would
have been justified in taxing.

4.10 Devil’s card game: a psychological test

This test was created for analyzing feelings of regret for a missed
opportunity. The game underlying the test is played with 11 cards:
an ace, a two, a three, a four, a five, a six, a seven, an eight, a nine,
a 10, and a joker. Each card is worth its face value in points, while
the ace counts for 1 point. To play the game, the cards are shuffled
so that they are randomly arranged, and then they are turned over
one at a time. You start with 0 points, and as you flip over each card
your score increases by that card’s points — as long as the joker has
not shown up. The moment the joker appears, the game is over and
your score is 0. The key is that you can stop any moment and walk
away with a nonzero score. What strategy maximizes your expected
number of points and how many points would you earn on average
in the game?

Determining the optimal stopping rule is not difficult, unlike deter-
mining the maximum average score per game. The key to the solution
is to see what the effect is on the current score when the player does
not stop but draws one additional card from the remaining cards
containing the joker. If your current score is p points and c¢ cards
have been drawn so far, then there are 10 — ¢ non-joker cards left
in the game with a total value of 55 — p points, where each of these
cards has an average value of (55— p)/(10 —¢) points. The next card
you draw has a probability of 1/(11 — ¢) that it is the joker and a
probability of (10 —¢)/(11 — ¢) that it is not the joker. Thus, if you
continue, the expected increase of your current score of p points is

100—¢c 55—p 55—p

X )
11—¢c 10—c¢ 11—c¢
whereas the expected decrease of your current score is

I =

D=px

11 —¢’
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The expected increase I is more than the expected decrease D if

55 —p D
11—c> 11—¢’

that is, I > D if and only if p < 27.5. Intuitively, you would conclude
that it is optimal to continue if the current score is below 28 and
to stop otherwise. This “one-stage-look-ahead” rule is indeed the
optimal stopping rule.?® In optimal stopping theory, it is proved
that the one-stage-look-ahead rule is optimal if the process has the
property that it stays in the set of unfavorable states once it has
entered this set. It is interesting to note that the optimal stopping
rule does not depend on the number of cards already drawn, but
depends only on the number of points gained so far.

Monte Carlo simulation can be used to find that the average score per
game is 15.453 (with a standard deviation of 15.547 points) under
the optimal stopping rule and to verify the remarkable fact that
the probability of drawing the joker is exactly 50%. However, these
results can also be analytically obtained without simulation. To that
end, note that for the optimal stopping threshold of 28 points, you
need at least 4 cards and at most 7 cards. Moreover, the final score
cannot be more than 37 (= 27 + 10) points. Then, using the fact
that the probability of not getting the joker is (100)/(161) = (11—¢)/11
when randomly drawing c cards from the 11 cards, you have
11

7
P(the final score is p points) = Z 1; . a(cl(O];)
c=4 c

where a.(p) denotes the number of possible combinations of ¢ distinct
non-joker cards such that the sum of the values of the cards is equal
to p and less than 28 if one of these ¢ cards would be removed. The
relevant values of p and ¢ are small enough to determine the numbers
a.(p) by enumeration. This leads to the values 0.5, 0.0952, 0.0826,
0.0751, 0.0643, 0.0536, 0.0442, 0.0356, 0.0249, 0.0162, and 0.0083 for

for p=28,...,37,

25If there are N cards with values 1,..., N along with one joker card, the
optimal threshold is %S, where S = %N(N + 1) is the sum of the points of the
non-joker cards. The optimal threshold becomes %S if there are two jokers instead
of one.
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the probability of a final score of p points for p = 0,28,29,...,3T7.
The expected value and the standard deviation of the final score
follow from these probabilities. Since the probability of not picking
the joker is 0.5, the end score has the expected value of 2 x 15.453 =
30.906 points under the condition that the joker has not been picked.

Problem 4.1. The thirteen cards of a particular suit are taken from
a standard deck of 52 playing cards and are thoroughly shuffled. A
dealer turns over the cards one at a time, calling out “ace, two, three,
..., king”. A match occurs when the card turned over matches the
rank called out by the dealer as he turns it over. What do you think
are the chances of a match?

Problem 4.2. A blindfolded person is tasting ten different wines.
Beforehand, he is informed of the names of the participating wineries,
but is not told the order in which the ten wines will be served. The
person may name each winery just once. During the taste-test, he
succeeds in identifying five of the ten wineries correctly. Do you think
this person is a wine connoisseur?

Problem 4.3. In the Massachusetts Numbers Game, lottery officials
were confused when, as their lottery celebrated its second anniver-
sary, they noticed that the same four-digit number had been drawn
multiple times over the course of the 625 lottery draws that had taken
place. They expected to run about 5000 draws before they would
encounter this phenomenon. Can you explain why it is almost cer-
tain that the same four-digit number will be drawn more than once
in 625 draws?

Problem 4.4. Argue that 1 — e~ am(m=1)/d approximates the prob-
ability that two or more aliens in the birthday problem from Sec-
tion 4.5 have a birthday within one day from each other.

Problem 4.5. In the South African lottery, the numbers 5, ..., 10
were drawn on Dec. 1, 2020. There was much fuss in the media and
many people thought the lottery was a scam. With one hundred
6/42 lotteries with two draws per week, what are the chances of a
draw with six consecutive numbers in some lottery in the next two
years?



Chapter 5
Monte Carlo Simulation and Probability

Monte Carlo simulation is a natural partner for probability. It imi-
tates a concrete probability situation on the computer. In this chap-
ter you will see how simulation works and how you can simulate many
probability problems with relatively simple tools.? You will notice
that simulation is not a simple gimmick, but requires mathematical
modeling and algorithmic thinking. The emphasis is on the modeling
behind computer simulation, not on the programming itself.

5.1 Introduction

Monte Carlo simulation is a powerful probabilistic analysis tool,
widely used in both engineering fields and non-engineering fields.
It is named after the famous gambling hot spot, Monte Carlo, in the
Principality of Monaco. Monte Carlo simulation was initially used
to solve neutron diffusion problems in atomic bomb research at Los
Alamos National Laboratory in 1944. From the time of its introduc-
tion during World War II, Monte Carlo simulation has remained one
of the most-utilized mathematical tools in scientific practice. And in
addition to that, it also functions as a very useful tool for adding an
extra dimension to the teaching and learning of probability. It may
help students gain a better understanding of probabilistic ideas and

26The law of large numbers is the mathematical basis for the application of com-
puter simulation to solve probability problems. The probability of a given event
in a chance experiment can be estimated by the relative frequency of occurrence
of the event in a very large number of repetitions of the experiment.
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Table 4: Simulation results for 100 000 coin tosses

n Hy — %n In n Hy, — %TL In

10 1 0.6000 5000 —-9.0 0.4982
25 1.5 0.5600 7500 11 0.5015
50 2 0.5400 10000 24 0.5024
100 2 0.5200 15000 40 0.5027
250 1 0.5040 20000 91 0.5045
500 —2 0.4960 25000 64 0.5026
1000 10 0.5100 30000 78 0.5026
2500 12 0.5048 100000 129 0.5013

to overcome common misconceptions about the nature of ‘random-
ness’. As an example, a key concept such as the law of large numbers
can be made to come alive before one’s eyes by watching the results
of many simulation trials. The nature of this law is best illustrated
through the coin-toss experiment. The law of large numbers says
that the percentage of tosses to come out heads will be as close to
50% as you can imagine, provided that the number of coin tosses
is large enough. But how large is large enough? Experiments have
shown that the relative frequency of heads may continue to deviate
significantly from 0.5 after many tosses, though it tends to get closer
and closer to 0.5 as the number of tosses gets larger and larger. The
convergence to the value 0.5 typically occurs in a rather erratic way.
The course of a game of chance, although eventually converging in
an average sense, is a whimsical process. To illustrate this, a sim-
ulation run of 100000 coin tosses was made. Table 4 summarizes
the results of this particular simulation study; any other simulation
experiment will produce different numbers. The statistic H,, — %n
gives the observed number of heads minus the expected number af-
ter n tosses and the statistic f,, gives the observed relative frequency
of heads after n tosses. It is worthwhile to take a close look at the
results in the table. You see that the realization of the relative fre-
quency, f,, indeed approaches the true value of the probability in a
rather irregular manner and converges more slowly than most of us
would expect intuitively. That is why you should be suspicious of the
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outcomes of simulation studies that consist of only a small number
of simulation runs, see also Section 5.5.

10

0 400 800 1200 1600 2000

Figure 13: A random walk of 2000 coin tosses.

The law of large numbers does not imply that the absolute difference
between the actual number of heads and the expected number should
oscillate close to zero. It is even typical for the coin-toss experiment
that this difference has a tendency to become larger and larger and
to grow proportionally with the square root of the number of tosses,
whereby returns to 0 become rarer and rarer as the number of coin
tosses gets larger and larger. This is illustrated in Figure 13 which
displays a simulated realization of the random walk describing the
actual number of heads minus the expected number over 2000 coin
tosses. The mathematical explanation of the growing oscillations
displayed in Figure 13 is provided by the central limit theorem to-
gether with the square root law: the actual number of heads minus
the expected number after n tosses is approximately normally dis-
tributed with expected value 0 and standard deviation %\/ﬁ for large
n. The coin-toss experiment is full of surprises that clash with intu-
itive thinking. Unexpectedly long sequences of either heads or tails
can occur (‘local clusters’ of heads or tails are absorbed in the aver-
age). If you don’t believe this, convince yourselves with simulation.
Simulation can reveal interesting and surprising patterns.

Monte Carlo simulation is not only a very useful tool for helping
students to gain a better understanding of probabilistic ideas and
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to overcome common misconceptions about the nature of “random-
ness”, but also enables you to get quick answers to specific proba-
bility problems or to check analytical solutions. For example, what
is the probability that any two adjacent letters are different when
the eleven letters of the word Mississippi are put in random order?
Seemingly a simple probability problem, but it turns out that this
combinatorial probability problem is difficult to solve analytically. In
combinatorial probability, it is often beforehand not clear whether a
probability problem easily allows for an analytical solution. Many
probability problems are too difficult or too time-consuming to solve
exactly, while a simulation program is easily written. Monte Carlo
simulation can also be used to settle disagreement on the correct an-
swer to a particular probability problem. It is easy to make mistakes
in probability, so checking answers is important. Take the famous
Monty Hall problem. This probability puzzle raised a lot of discus-
sion about its solution. Paul Erdds, a world famous mathematician,
remained unconvinced about the correct solution of the problem un-
til he was shown a computer simulation confirming the correct result.
In the Monty Hall problem, a contestant in a TV game show must
choose between three doors. An expensive car is behind one of the
three doors, and gag prizes are behind the other two. He chooses a
door randomly, appealing to Lady Luck. Then the host opens one of
the other two doors and, as promised beforechand, takes a door that
conceals a gag prize. With two doors remaining unopened, the host
now asks the contestant whether he wants to remain with his choice
of door, or whether he wishes to switch to the other remaining door.
What should the contestant do? Simulating this game is a convinc-
ing approach to show that it is better to switch, which gives a win
probability of %

5.2 Simulation tools

Simple tools often suffice for the simulation of probability problems.
This section discusses first the concept of random generator. Next
several useful simulation tools are presented. These tools include
methods to generate a random point inside a bounded region and a
random permutation of a finite set of objects. The simulations tools
will be illustrated in the next section.
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5.2.1 Random number generators

In the simulation of probability models, access to random numbers is
of crucial importance. A random number generator, as it is called, is
indispensable. A random number generator produces random num-
bers between 0 and 1 (excluding the values 0 and 1). For a ‘truly’
random number generator, it is as if fate falls on a number between
0 and 1 by pure coincidence. A random number between 0 and 1
is characterized by the property that the probability of the number
falling in a sub-interval of (0,1) is the same for each interval of the
same length and is equal to the length of the interval. A truly ran-
dom number can take on any possible value between 0 and 1. A
random number from (0,1) enables you to simulate, for example,
the outcome of a single toss of a fair coin without actually tossing
the coin: if the generated random number is between 0 and 0.5 (the
probability of this is 0.5), then the outcome of the toss is heads;
otherwise, the outcome is tails. Producing random numbers is not
as easily accomplished as it seems, especially when they must be
generated quickly, efficiently, and in massive amounts. Even for sim-
ple simulation experiments, the required amount of random numbers
runs quickly into the hundreds of thousands or higher.?” Generating
a very large amount of random numbers on a one-time only basis,
and storing them up in a computer memory, is practically infeasi-
ble. But there is a solution to this kind of practical hurdle that is as
handsome as it is practical.

Instead of generating truly random numbers, a computer can gen-
erate so-called pseudo random numbers, and it achieves this through
anonrandom procedure. This idea comes from the famous Hungarian-
American mathematician John von Neumann (1903-1957) who made
very important contributions not only to mathematics but also to
physics and computer science. The procedure for a pseudo random
number generator is iterative by nature and is determined by a suit-
ably chosen function f. Starting with a seed number zg, numbers
21, 22, .. . are successively generated by 21 = f(z20), 22 = f(21), and

2"In earlier times creative methods were sometimes used to generate random
numbers. Around 1920 crime syndicates in New York City’s Harlem used the last
five digits of the daily published U.S. treasure balance of the American Treasury
to generate the winning numbers for their illegal ‘Treasury Lottery’.
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so on.?® The function f is referred to as a pseudo random number

generator and it must be chosen such that the sequence {z;} is statis-
tically indistinguishable from a sequence of truly random numbers.
The output of function f must be able to stand up to a great many
statistical tests for ‘randomness’.

The first pseudo random number generators were the so-called
multiplicative congruential generators. Starting with a positive inte-
ger zp, the z; are generated by z; = az;_; (modulo m) fori =1,2,...,
where a and m are carefully chosen positive integers, e.g. a = 16 807
and m = 23! — 1. Then the sequence {z;} repeats itself after m — 1
steps, and so m is the cycle length. The number z; determines the
random number u; by u; = Z.

The newest pseudo random number generators do not use the
multiplicative congruential scheme. In fact, they do not involve mul-
tiplications or divisions at all. These generators are very fast, have
incredibly long periods before they repeat the same sequence of ran-
dom numbers, and provide high-quality pseudo random numbers.
In software tools, you will find not only the so-called Christopher
Columbus generator with a cycle length of about 2!4%? (at ten mil-
lion pseudo random numbers per second, it will take more than 10434
years before the sequence of numbers will repeat!), but you will also
find the Mersenne twister generator with a cycle length of 219937 — 1,
This generator would probably take longer to cycle than the entire
future existence of humanity. It has passed numerous tests for ran-
domness, including tests for uniformity of high-dimensional strings
of numbers. The modern generators are needed in Monte Carlo sim-
ulations requiring huge masses of pseudo random numbers, as is the
case in applications in physics and financial engineering.

In the sequel, we omit the additive ‘pseudo’ and simply speak of
random number and random number generator.

5.2.2 Simulating from a finite range

How do you choose randomly a number between two given numbers
a and b with a < b? To do so, you first use the random number

28Pseudo random number generators enable you to reproduce a sequence of
random numbers by using the same seed. This is practically useful when you
want to compare random systems under the same experimental conditions.
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generator to get a random number u between 0 and 1. Next, you
find a random number x between a and b as

r=a+ (b—a)u.

How do you choose randomly an integer from the integers 1,2,..., M?
To do so, you first use the random number generator to get a random
number u between 0 and 1. Then a random integer k is

E=1+int(M x u).

The function int(z) rounds the number z to the nearest integer k
that is smaller than or equal to x. That is,

int(x) =k ifk<zx<k+1

for an integer k. More generally, a random integer k from the integers
a,a+1,...,bis obtained as

k=a+int((b—a+1) xu).

This can be used to simulate the outcome of a roll of a fair die.
The procedure for selecting a random integer can be used to sim-
ulate an outcome in a chance experiment in which each outcome is
equally likely. A more general case is that of a chance experiment
in which each possible outcome has a probability that is a multi-
ple of % for some integer . Then, you can use the ingenious array
method to simulate an outcome. In this method, you only need to
generate one random integer from the integers 1 to r. To explain
the method, consider a chance experiment with three possible out-
comes O1, Oy, and O3 with probabilities p; = 0.50, po = 0.15, and
p3 = 0.35, respectively. Then r = 100 and you form the array A[i]

fori=1,...,100 with A[1] = --- = A[50] = 1, A[51] = --- = A[65] = 2
and A[66] = --- = A[100] = 3. You generate a random number u be-
tween 0 and 1. Next, you calculate & = 1 + int(100 X u), being
a random integer from 1,...,100. Then A[m] gives you the ran-

dom observation from the probability mass function. For example,
suppose u© = 0.63044 ... has been generated. Then, m = 64 with
A[64] = 2. This gives the random outcome Os.
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5.2.3 Simulating a random permutation

Suppose you have 10 people and 10 labels numbered as 1 to 10. How
to assign the labels at random such that each person gets assigned a
different label? This can be done by making a random permutation
of the integers 1,...,10 and assigning the labels according to the
random order in the permutation. An algorithm for generating a
random permutation is useful for many probability problems. A
simple and elegant algorithm can be given for generating a random
permutation of (1,2,...,n). The idea of the algorithm is first to
randomly choose one of the integers 1, ..., n and to place that integer
in position n. Next you randomly choose one of the remaining n — 1
integers and place it in position n — 1, etc.

Algorithm for random permutation

1. Initialize t:=n and a[j]:=j for j =1,...,n.
2. Generate a random number © between 0 and 1.

3. Set k:= 1+int(txu) (random integer from the integers 1,. .., t).
Interchange the current values of a[k] and alt].

4. t:=t—1. If t > 1, return to step 2; otherwise, stop with the
random permutation (a[l],...,a[n]).

As an illustration, the algorithm is used to construct a random per-
mutation of the integers 1, 2, 3, and 4.

Iteration 1. t := 4. If the generated random number v = 0.71397 .. .,
then k =1+ int(4 x 0.71397...) = 3. Interchanging the elements of
the positions £k =3 and t =4 in (1,2, 3,4) gives (1,2,4,3).

Iteration 2. t := 3. If the generated random number u = 0.10514.. .,
then £ =1+ int(3 x 0.10514...) = 1. Interchanging the elements of
the positions k =1 and ¢t = 3 in (1, 2,4, 3) gives (4,2,1,3).

Iteration 3. t := 2. If the generated random number u = 0.05982. . .,
then k£ = 1+ int(2 x 0.05982...) = 1. Interchanging the elements of
the positions £k =1 and ¢t = 2 in (4,2, 1, 3) gives (2,4, 1, 3).

Iteration 4. t := 1. The algorithm stops with the random permuta-
tion (2,4, 1,3).
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Verify yourselves that the algorithm carries literally over to the con-
struction of a random permutation of a finite sequence of objects in
which some objects appear multiple times.

The algorithm can also be used to simulate a random subset of inte-
gers. For example, how to simulate a draw of the lotto 6/45 in which
six distinct numbers are randomly drawn from the number 1 to 45?7
This can be done by using the algorithm with n = 45 and performing
only the first 6 iterations until the positions 45,44, ...,40 are filled.
Then a[45], ..., a[40] give the six numbers for the lottery draw.

5.2.4 Hit-and-miss method

Let’s first discuss how to choose a random point inside a rectangle.

(ay, 1) (ay, ¢1)
/R SEEEEEEEEEEEEEEE + ()
(ag, o) X (ay, ¢

Figure 14: Simulating a random point inside a rectangle.

Let (ao, o), (a1,co), (ap,c1), and (ay,c1) be the four corner points
of the rectangle, see Figure 14. You first use the random number
generator to get two random numbers u; and ug from (0,1). Then
the random point (z,y) inside the rectangle is

x=ag+ (a1 —ap)u; and y=co+ (c1 — co)ua.

How do you generate a random point inside a circle? To do this, you
face the complicating factor that the coordinates of a random point
inside a circle cannot be generated independently of each other. Any
point (z,y) inside a circle with radius r and the origin (0, 0) as center
must satisfy 22 +y? < r2. A tempting procedure is to generate first a
random number z = a from the interval (—r, ) and to generate next
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Figure 15: Simulating a random point inside the circle.

a random number ¥ from the interval (—v/r2 — a2, v/r2 — a2). This
procedure, however, violates the requirement that the probability of
the random point falling into a sub-region should be the same for
any two sub-regions having the same area.

A simple but powerful method to generate a random point inside
the circle is the hit-and-miss method. The idea of this method is to
take a rectangle that envelopes the bounded region and to gener-
ate random points inside the rectangle until a point is obtained that
falls inside the circle. This simple approach can be used to generate
a random point inside any bounded region in the plane. As an il-
lustration, take the unit circle with radius 1 and the origin (0,0) as
center. The circle is clamped into the square with the corner points
(—=1,-1), (1,-1), (—=1,1), and (1,1), see Figure 15. A random point
(z,y) inside this square is found by generating two random numbers
up and ug from (0, 1) and taking x and y as

r=—-14+2xu; and y=—142 X us.

Next, you test whether
2+ y2 < 1.

If this is the case, you have found a random point (x,y) inside the
unit circle; otherwise, you repeat the procedure. On average, you
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have to generate % = 1.273 random points inside the square until
you get a random point inside the circle. To see this, note that % is
the ratio of the area of the square and the area of the unit circle.

The idea of the hit-and-miss method is generally applicable. It is
often used to find the area of a bounded region in the two-dimensional
plane or a higher-dimensional space by enveloping the region by a
rectangle or in a higher-dimensional cube. These areas are typically
represented by multiple integrals. A classic example of the use of
Monte Carlo simulation to compute such integrals goes back to the
analysis of neutron diffusion problems in the atomic bomb research at
the Los Alamos National Laboratory in 1944. The physicists Nicholas
Metropolis and Stanislaw Ulam had to compute multiple integrals
representing the volume of a 20-dimensional region, and they devised
the hit-and-miss method for that purpose.

5.2.5 Rejection sampling

Rejection sampling is an extension of the hit-and-miss method. It
underlies many specialized algorithms to simulate from specific prob-
ability distributions. The method will be given for the case of a
continuously distributed random variable with a general probability
density f(z), but the method also applies to a discrete random vari-
able. Rejection sampling is used when it is difficult to sample directly
from the probability density f(z). Instead of sampling directly from
f(x), rejection sampling uses an envelope density g(x) from which
sampling is easier. The proposal density g(z) must satisfy

f(x) <cg(x) forallx

for some constant c. Note that ¢ must be at least 1 since both f(x)
and g(z) integrate to 1. Rejection sampling goes as follows:

Step 1. Simulate a candidate x from g(z) and a random number
ue (0,1).

Step 2. If u < %, then accept x as a sample from f(x); otherwise,
repeat step 1.

The rejection sampling method is illustrated in Figure 16. The par-
ticular sample shown in the figure will be rejected. Since the average
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Figure 16: Rejection sampling.

number of iterations needed to obtain an accepted draw can be shown
to be equal ¢, the method is only attractive when c is not too large.
Rejection sampling is a very useful method for simulating from one-
dimensional densities. However, in high dimensions the method is
impractical. Apart from the difficulty of finding an envelope density,
the bounding constant ¢ will be typically very large.

Let’s illustrate how the rejection sampling method can be used to
sample from the standard normal random variable Z. To do so,
observe that a random sample from X = |Z| yields a random sample
from Z by letting Z be equally likely to be either X or —X. The
probability density of X is
f(z) = \/2277[_6;132 for 0 <z < 0.

As proposal density g(x), the exponential density e for 0 < x < 00
is taken. It is easy to simulate from the exponential density by ap-
plying the inverse transform method. This method will be described
below. The smallest constant ¢ such that f(z) < cg(x) for all z > 0
is found as

max @ = max z e®—0.50%
>0 g(z) 2>0 Vo

The maximum is achieved for x =1 and so ¢ = Qf ~ 1.315.

Inverse transform method

How to sample a random observation from an exponential distributed
random variable? This can be done by the inverse transform method.
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This method is the preferred method for a random variable X having
a cumulative probability distribution function F(z) = P(X < x)
that is strictly increasing in  and has an easily computed inverse
function F~!'. The method is based on the fact that the random
variable F~1(U) has the same probability distribution as X if the
random variable U is uniformly distributed on (0,1). This fact is
easy to verify: P(F~Y(U) < z) = P(U < F(z)) = F(z), since
P(U <wu)=wufor 0 <wu<1. The inverse transform method goes as
follows:

Step 1. Generate a random number u € (0, 1).
Step 2. Calculate # = F~!(u). Then x is a random observation of
the random variable X.

For the case that X has an exponential density ue #* for x > 0, the
cumulative distribution function F(z) = 1 — e #* for x > 0. This
function is strictly increasing and has the inverse function

Flu) = — L In(1— w),
I
as follows by solving the equation 1 — e ™% = . Since 1 — U is also
uniformly distributed on (0, 1), you can also use —% In(u) as random
observation. Simulation of the Poisson process becomes easy, using
the inverse transform method for the exponential density.

5.3 Probability applications of simulation

Monte Carlo simulation is a powerful tool for getting numerical an-
swers to probability problems, which are otherwise too difficult for
an analytical solution. Various examples will be given to illustrate
this. Simulation can also be used as a sanity check for an analytical
solution or as a validation tool for an approximate solution. Random-
ization of deterministic algorithms is another area in which random
numbers can be used to improve the average-case performance of the
algorithm. This will be illustrated with the quick-sort algorithm.

5.3.1 Geometric probability problems

Geometric probability problems constitute a class of probability prob-
lems that often seem very simple but are sometimes very difficult to
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solve analytically. Take the problem of finding the expected value
of the distance between two random points inside the unit square
(sides with length 1) and the expected value of two random points
inside the unit circle (radius 1). The analytical derivation of these
expected values requires advanced integral calculus and leads to the
following exact results:

1 [2+V2+5In(1+v?2)] =0.5214 and 128 _ 0.9054.

15 457
It is a piece of cake to estimate the expected values by computer sim-
ulation. How does the simulation program look like? Perform a very
large number of simulation runs. In each simulation run, two random
points (x1,y1) and (z2, y2) are generated inside the unit square or the
unit circle, see subsection 5.2.4. In each run, the distance between
the two points is calculated by Pythagoras as

\/(»”Ul —22)2 + (y1 — y2)%

Then, the average of the distances found in the simulation runs is cal-
culated. By the law of large numbers, the average gives an estimate
for the expected value of the distance between two random points.
Many simulation runs are needed to get accurate estimates. The
question of how many runs should be done will be addressed in the
next section. In one million simulation runs, the estimates 0.5213
and 0.9053 were obtained for the expected values of the distances
between two random point inside the unit square and between two
random points inside the unit circle. The computing times for the
one million simulation runs are a matter of seconds on a computer.

5.3.2 Almost-birthday problem

In the classic birthday problem the question is what the probability
is that two or more people share a birthday in a randomly formed
group of people. This problem was analytically solved in Section 1.2.
It was easy to find the answer. The problem becomes much more
difficult when the question is what the probability is that two or more
people have a birthday within one day from each other. This is the
almost-birthday problem. However, the simulation program for the
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almost-birthday problem is just as simple as the simulation program
for the birthday problem. An outline of the simulation programs
is as follows. The starting point is a randomly formed group of m
people (no twins), where each day is equally likely as birthday for any
person. For ease, it is assumed that the year has 365 days (February
29 is excluded). For each of the two birthday problems, a very large
number of simulation runs is performed. In each simulation run, m
random integers g1, ..., g, are generated, where the random integer
g; represents the birthday of the ith person. Each of these integers is
randomly chosen from the integers 1, ..., 365, see subsection 5.2.2. In
each simulation run for the classic birthday problem you test whether
there are distinct indices ¢ and j such that

while in each simulation run for the almost-birthday problem you
test whether there are distinct indices ¢ and j such that

lgi — gj] <1 or |g; — g;| = 364.

You find an estimate for the sought probability by dividing the num-
ber of simulation runs for which the test criterion is satisfied by
the total number of runs. As you see, the simulation program for
the almost-birthday problem is just as simple as that for the classic
birthday problem.

5.3.3 Consecutive numbers in lottery

What is the probability of getting two or more consecutive numbers
when six distinct numbers are randomly drawn from the numbers 1
to 45 in the lotto 6/457 The exact value of this probability is

(s)
6/) _
1-— @ = 0.5287,

6
but the argument to get this result is not simple. However this
probability, which is surprisingly large, can be quickly and easily
obtained by computer simulation. In each simulation run, you get
the six lottery numbers by applying six iterations of the algorithm
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from subsection 5.2.3 and taking the six integers in the array elements
a[45],al44], ..., a[40]. Next, you test whether there are two or more
consecutive numbers among these six numbers. This is easily done
by checking whether afi] — a[j] is 1 or —1 for some i and j with
40 < 1,7 < 45. The desired probability is estimated by dividing the
number of simulations runs for which the test criterion is satisfied
by the total number of simulation runs. One million simulation runs
resulted in the estimate 0.5289. The simulation program needs only
a minor modification to simulate the probability of getting three or
more consecutive numbers. Simulation leads to the estimate 0.056
for this probability.

5.3.4 Mississippi problem

An amusing but very difficult combinatorial probability problem is
the Mississippi problem. What is the probability that any two adja-
cent letters are different in a random permutation of the eleven letters
of the word Mississippi? A simulation model can be constructed by
identifying the letter m with the number 1, the letter ¢ with the
number 2, the letter s with the number 3, and the letter p with the
number 4. In each simulation run, a random permutation of the se-
quence (1,2,3,3,2,3,3,2,4,4,2) is constructed by using an obvious
modification of the permutation algorithm from subsection 5.2.3: the

initialization of the algorithm now becomes a[l] = 1, a[2] = 2, ...,
a[10] = 4, a[11] = 2. To test whether any two adjacent numbers are
different in the resulting random permutation (a[l],a[2],...,a[11]),

you check whether ali + 1] — afi] # 0 for ¢ = 1,...,10. The es-
timate 0.058 was obtained for the sought probability after 100000
simulation runs.

5.3.5 Venice-53 lottery: what’s in a number?

Misconceptions over the way that truly random sequences behave fall
under the heading gambler’s fallacy. This refers to the gambler who
believes that, if a certain event occurs less often than average within
a given period of time, it will occur more often than average dur-
ing the next period. This misconception is persistent in the roulette
game. The gambler’s fallacy is also behind the Venice-53 hysteria in
the national Italian lottery when the number 53 remained elusive for
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many months in the bi-weekly Venice lottery draw. Monte Carlo sim-
ulation can help convince people that such a remarkable happening
is less coincidental than it seems.

In the Italian Regional Lottery, there is a bi-weekly draw in each of
ten Italian cities, including Venice. Each draw, in each of the ten
cities, consists of five numbers picked from the numbers 1 through
90. While the number 53 had fallen repeatedly in other cities, it did
not come up at all in Venice, in any of the 182 draws occurring in
the period from May, 2003, to February, 2005. During this period,
more than 3.5 billion euro was bet on the number 53, entire family
fortunes risked. In a frenzy that even lottery-mad Italy has rarely
seen, some 53 addicts ran up debts, went bankrupt, and lost their
homes to the bailiffs. In the month of January, 2005, alone, 672
million euro were staked on the number 53. Several professors of
probability theory made appearances on Italian television to alert
people to the fact that lottery balls have no memory, an attempt to
stave off irresponsible betting behavior. All in vain. Many Italians
held firmly to the belief that the number 53 was about to fall, and
they continued to bet large sums. Some tragic events occurred during
that January, 2005, direct consequences of the enormous amounts of
money bet and lost on the number 53 in the Venice lottery. After
182 successive draws resulting in no number 53, that number finally
made its appearance in the February 9, 2005 draw, thus bringing an
end to the gambling frenzy that had held sway over Italy for such a
long time. It is estimated that the lottery paid out about 600 million
euro to those that had placed bets on the number 53 on that day.
This is a lot of money, but it is nothing compared to the amount
taken in by the lottery during the Venice-53 gambling craze. It is
only a question of time before Venice-53 history repeats itself. Using
Monte Carlo simulation, it can be demonstrated that there is a high
probability that this will happen within 10 years, or 25 years of the
event. A simulation model can be easily set up, using the procedure
from subsection 5.2.5 for a random draw of five different numbers
from numbers 1 to 90. Simulation shows that there is a probability
of about 50% that in a period of 10 years there is some number that
will not appear in some of the ten Italian city lotteries in a window of
182 or more consecutive draws, while this probability is about 91%
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for a period of 25 years. It is to be feared that these hard facts will
have little power to prevent future outbreaks of lottery madness.

A heuristic solution approach can also be given, which can be val-
idated by simulation. Take a specific city (say, Venice) and a par-
ticular number (say, 53). The probability @, that there will be a
window of 182 consecutive draws in which number 53 does not ap-
pear in the next n draws of the Venice lottery can be exactly calcu-
lated, see Problem 6.9 in Chapter 6. This probability has the values
@, = 0.0007754 for n = 1040 and @Q,, = 0.0027013 for n = 2600.
The numbers drawn from 1 to 90 in the lottery are not independent
of each other, but the dependence is weak enough to justify the ap-
proximation (1—@Q,)% for the probability that in the next n draws of
the Venice lottery there will not be some number that remains absent
during 182 consecutive draws. The lottery takes place in 10 cities.
Thus, using again the unsurpassed complement rule, 1—(1—@Q,,)'9*%
gives approximately the probability that there will be some number
not appearing in one or more of the 10 Italian city-lotteries during
182 or more consecutive draws within the next n draws. Simulation
experiments show that this approximation is remarkably accurate.
It has the values 0.5025 for n = 1040 (period of 10 years) and 0.9124
for n = 2600 (period of 25 years).

5.3.6 Kruskal’s count and another card game

A fascinating card game, or magic trick if you like, goes by the name
of Kruskal’s count. The game is not only fun, but Kruskal’s principle
has also useful applications in computer science and cryptography.
The card game goes like this: a magician invites a spectator to thor-
oughly shuffle a deck of cards. Then the magician lays out the cards,
face up, in one long row (or in a grid). Each card has a number
value: aces have the value 1, the face cards (king, queen, jack) have
the value 5, and the number cards have the value of the number on
the card. The spectator is asked to think of a secret number from
one to 10. The magician explains that the spot corresponding to
that number, in the row of cards, is the spectator’s first ‘key card’,
and that the value of this key card determines the distance, in steps,
to the next key card. If the secret number chosen by the player is 7,
then the 7th card in the row of cards will be the spectator’s first key
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card. If the 7th card is a 4, then the 11th card in the row is the new
key card. If the 11th card is a jack, the 16th card in the row is the
new key card, etc. The spectator counts in silence until reaching a
key card with a value that doesn’t permit continuing on because the
deck has been exhausted and there aren’t enough cards left. This
ultimate key card is called the spectator’s ‘final card’. The magician
then predicts which card is the final card. And more often than not,
the magician will be right! So, what’s the trick? It is astonishingly
simple. Just as the spectator does, the magician also chooses a se-
cret number between 1 and 10, and starting with this initial key card,
silently counts through the row of cards just as the spectator does.
It appears that there is a high probability that the two paths will
meet at some point in their ‘walk’ through the sequence of cards,
and from that point on, the paths remain the same.?® An exact
formula for the magician’s success probability in Kruskal’s count is
not known, but the success probability can be easily found by Monte
Carlo simulation. If the spectator and the magician each, blindly and
independently of one another, choose a number between 1 and 10 for
the starting state, then Monte Carlo simulation with one million runs
gives an estimate of about 84% for the probability of the magician
correctly ‘predicting’ which card is the spectator’s final card. The
success probability of the magician increases to about 97% when a
double deck of 104 playing cards is used.3"

The Humble-Nishyama card game

This is another interesting card game whose solution requires Monte
Carlo simulation. You play against an opponent using an ordinary
deck of 52 cards consisting of 26 black (B) cards and 26 red (R)
cards, thoroughly shuffled. Before play starts, each player chooses
a three-card-code sequence of red and black. For example, your op-
ponent chooses BBR and you choose RBR. The cards are laid on
the table, face up, one at a time. Each time that one of the two

29The success of the trick is based on path coupling in random walks.
39The approximation 1 — (1 — a%)N can be given for the probability of a correct
guess of the magician, where N is the number of cards and a is the average value

of a card (a has the value 72 in the above cases).
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chosen sequences of red and black appears, the player of this se-
quence gets one point. The cards that were laid down are removed
and the game continues with the remaining cards. The player who
collects the most points is the winner, with a tie being declared if
both players have the same number of points. Your opponent is first
to choose a sequence. The 64000 dollar question is this: how can
you choose, in response to the sequence chosen by your opponent,
in such a way as to give you the maximum probability of winning
the game? The counter-strategy is simple and renders you a surpris-
ingly high win probability. The first element in your counter-move
should be the opposite of the second element in the sequence cho-
sen by your opponent. The last two elements in your counter-move
should be the same as the first two elements in the sequence of your
opponent. Your opponent chooses first a three-card-code sequence
of red and black. The possible choices for your opponent are BBB,
BBR, BRB, BRR, RRR, RRB, RBR, RBB, which leaves you
to parry with the counter-moves RBB, RBB, BBR, BBR, BRR,
BRR, RRB, RRB. Then, using Monte Carlo simulation with one-
million runs for each case, the values 0.995, 0.935, 0.801, 0.883, 0.995,
0.935, 0.801, 0.883 are found for your probability of winning the card
game. The probability of the card game ending in a tie has the values
0.004, 0.038, 0.083, 0.065, 0.004, 0.038, 0.083, and 0.065, respectively.

5.3.7 Randomized quick-sort algorithm

By adding randomness into a deterministic algorithm, the average-
case performance of the algorithm can sometimes be improved. A
nice example is the quick-sort algorithm that sorts the elements of
a large array of data. The basic idea of the algorithm for sorting a
given array of distinct elements is:

1. Pick an element of the array as pivot.

2. Compare each element of the array with the pivot and generate
two sub-arrays A; and As, where Ay contains the elements that are
smaller than the pivot and Ay contains the elements that are greater
than the pivot.

3. Recursively sort array A; and array As.

In the basic version of quick-sort, the choice of the pivot is determin-
istic, usually the first element of the array is taken. For example,
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suppose the elements of the following array must be sorted:
[9,5,12,15,7,4,8,11].
Picking 9 as pivot, you get
[5,7,4,8],9,[12,15,11],

where the pivot 9 is on its final position. In the worst-case scenario
of the basic version of quick-sort, the number of comparisons needed
is Y p k= %n(n — 1). A better criterion for the performance of
the algorithm is the average number of comparisons needed, but
in the deterministic algorithm this number depends very much on
the input values. By adding randomization to the algorithm, the
average number of comparisons needed can be guaranteed to be on
the order of nln(n), no matter how the input values are distributed.
In randomized quick-sort, the pivot element is chosen at random
from the n elements of the array. Let the random variable C), be the
number of comparisons needed by randomized quick-sort on an array
of n elements. To find E(C,,), condition on the rank of the pivot. If
the randomly chosen pivot is the jth smallest among the n elements,
then the conditional distribution of C), is equal to the unconditional
distribution of n — 14 Cj_1 + Cp—j. Let p,, = E(Cy). Then, by the
law of conditional expectation,

n

= E(n—1+Ci+Cnj)— =D (n—1+p1+pnj)—
Jj=1 j=1

Since pg = 0, this expression can be rewritten as
9 n—1
=n—14— for n > 1.
Hn n ’; 1273 =

Without details of the derivation, the solution of this recurrence
equation is
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Thus, by the asymptotic expansion of the partial sum of the harmonic
series in Section 1.2, you get that E(C,,) is of the order 2nlIn(n) for
larger values of n.

5.4 Bootstrap method in data analysis

The bootstrap method differs from traditional statistical methods
by letting the data speak for themselves, using the number-breaking
power of modern-day computers. The method is used in situations
that you have a representative random sample from a population and
other samples from the population cannot be drawn. Assuming that
the data are random observations that are independent of each other
and are representative of the population, the bootstrap method takes
the sample data that a study obtains, and then resamples it over and
over to create many simulated samples. Each bootstrap sample has
the same size as the original sample and is created by sampling at
random from the original data with replacement. Why is it called
bootstrapping method? The term “bootstrapping” originated with
a phrase in use in the 18th and 19th century: “to pull oneself up by
one’s bootstraps” (the tale of Baron von Miinchhausen who pulled
himself up by the bootstraps out of a swamp). The bootstrap is not
a magic technique that provides a panacea for all statistical inference
problems, but it has the power to substitute tedious and often im-
possible analytical derivations with Monte Carlo calculations. Boot-
strapping is a way to estimate the variation of a statistic based on
the original data. Let’s give two applications of bootstrapping.

Comparing two groups of data

In order to test a new skin infection remedy, twenty healthy volun-
teers are infected with the corresponding ailment. They are then
randomly split up into two groups of equal size: a remedy group and
a placebo group. The study being a randomized double-blind study,
the volunteers are not aware of which group they are assigned to,
and the doctors do not have this information either. Each volun-
teer undergoes daily examinations until the malady is cured. In the
remedy group, the values for the number of days required until all
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patients are cured are 7, 9, 9, 11, 12, 14, 15, 15, 15, and 17. In the
placebo group, the values for the number of days until all patients
are cured are 9, 11, 11, 11, 12, 15, 17, 18, 18, and 20. In order to test
whether the remedy helps or not, the difference in the total number
of days until cured between the placebo group and the remedy group
is taken as test statistic. For the original sample, this statistic has
the value 142 — 124 = 18. In order to make a statistical statement
of whether the remedy works or not, you combine the m = 10 data
points of the placebo group and the n = 10 data points of the rem-
edy group and you assume that it does not matter whether or not
the remedy is used. Under this so-called null-hypothesis, the twenty
data points are seen as twenty independent observations from a same
unknown probability distribution. In each bootstrap run, you draw
at random m = 10 data points for the placebo group and n = 10
data points for the remedy group from the original combined data set
without replacement (thus, each of the twenty original data points
in the combined set is equally likely to be chosen as new data point).
Then the difference between the sum of the m = 10 values drawn
and the sum of the n = 10 values drawn is calculated. Using 10000
bootstrap runs, it was found that the proportion of runs in which
this difference is 18 or more is 0.135. A probability of 0.135 is not
small enough to reject the null-hypothesis. The conclusion is that
more investigations should be done before any definitive conclusion
can be reached about the remedy’s effectiveness.

Predicting election results

In some polling method, voters are not asked to choose a favorite
party, but instead they are asked to indicate how likely they are to
vote for each party. Suppose that there are three parties A, B, and
C. Let’s assume that a representative group of 1 000 voters is polled.
A probability distribution (p;a, pip, pic) with p;a + pip + pic = 1
describes the voting behavior of respondent ¢ for ¢ = 1,...,1000.
That is, p;x is the probability that respondent ¢ will vote for party
X on election day. The voting probability distributions of the 1000
voters can be summarized in 8 groups that are given in Table 5:
the vote of each of 230 people will go to parties A, B, and C' with
probabilities 0.20, 0.80, and 0, the vote of each of 140 people will go
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to parties A, B, and C with probabilities 0.65, 0.35, and 0, and so
on. Each person votes independently of the other people.

Table 5: Voting probabilities

No. of voters (pia, piB, pic)
230 (0.20, 0.80, 0)
140 (0.65, 0.35, 0)
60 (0.70, 0.30, 0)
120 (0.45, 0.55, 0)
70 (0.90, 0.10, 0)
40 (0.95, 0, 0.05)
130 (0.60, 0.35, 0.05)
210 (0.20, 0.55, 0.25)

How do we calculate probabilities such as the probability that party
A will become the largest party and the probability that parties A
and C together will get the majority of the votes? This can be
done by the bootstrap method. In each simulation run, 230 draws
are done from the distribution (0.2,0.8,0), 140 random draws from
(0.65,0.35,0), and so on. A Monte Carlo simulation with 100 boot-
strap runs each with 1000 new data points leads to the following
bootstrap estimates with their 95% confidence intervals:

P(party A becomes the largest party) = 0.120 (+0.002)
P(party B becomes the largest party) = 0.872 (£0.002)
P(parties A and C' get the majority of the votes) = 0.851 (£0.002).

5.5 Statistical analysis of simulation output

It is never possible to achieve perfect accuracy through simulation.
All you can measure is how likely the estimate is to be correct. It
is important to have a probabilistic judgment about the accuracy of
the point estimate. Such a judgment is provided by the concept of
confidence interval. You will see that, if you want to achieve one
more decimal digit of precision in the estimate, you have to increase
the number of simulation runs with a factor of about one hundred. In
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other words, the probabilistic error bound decreases as the reciprocal
of the square root of the number of simulation runs.

Suppose that you want to estimate the unknown probability p of
a particular event . To that end, n simulation runs are done. Let
the indicator variable X; be 1 if event E occurs in the 7th simulation
run and X; be 0 otherwise. Then,

is an estimator for the true value of p. The accuracy of this estimator
is expressed by the 95% confidence interval

(p — 1.96”6(\1%_13), Pt 1.96Vﬁ(\1fn_ﬁ)).

The 95% confidence interval should be interpreted as follows: any
such interval to be constructed by simulation will cover the true
value of p with a probability of about 95% when n is large. In other
words, in about 95 out of 100 cases, the confidence interval covers
the true value of p. Each simulation study gives an other confidence
interval!

The effect of n on the term /p(1 — p) fades away quickly if n
gets larger. This means that the width of the confidence interval is
nearly proportional to 1/4/n for n sufficiently large. This conclusion
leads to a practically important rule of thumb:

to reduce the width of a confidence interval by a
factor of two, about four times as many observa-
tions are needed.

This is a very useful rule for simulation purposes. Let’s illustrate
this with the almost-birthday problem with a group of 20 people.
For the probability that two or more people will have their birthdays
within one day of each other, a simulation with 25000 runs results
in the probability estimate of 0.8003 with (0.7953, 0.8052) as 95%
confidence interval, whereas 100 000 simulation runs result in an es-
timate of 0.8054 with (0.8029, 0.8078) as 95% confidence interval.
The confidence interval has indeed been narrowed by a factor of 2.
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How can you construct a confidence interval if the simulation study
is set up to estimate an unknown expected value of some random
variable X rather than an unknown probability? Letting X1,..., X,
represent the observations for X resulting from n independent sim-
ulation runs, then estimators for u = F(X) and 0 = o(X) are

n n

ﬂ:ﬁZXk and 6 = %Z(Xk—ﬂ)z.

k=1 k=1

The 95% confidence interval for the unknown p = E(X) is

5 5
T 1.96—).
v B

The statistic /4/n, which is the estimated standard deviation of the
sample mean [i, is usually called the standard error of the sample
mean. Any 95% confidence interval to be constructed by simulation
will cover the true value of y with a probability of about 95% when
n is large. In other words, the confidence level specifies the long-run
percentage of intervals containing the true value of u. It is really
important to reflect on this probability statement. The parameter
u does not vary: it is fixed, but unknown. The random element
in the probability statement are the two random endpoints of the
confidence interval around p.

(g ~1.96

The foregoing will be illustrated with an inventory problem known
as the newsboy problem. In this problem, a newsboy decides at the
beginning of each day how many newspapers he will purchase for
resale. Let’s assume that the daily demand for newspapers is uni-
formly distributed between 150 and 250 papers. Demand on any
given day is independent of demand on any other day. Assume that
at the beginning of each day the newsboy purchases 217 newspapers.
The purchase price per newspaper is one dollar. The resale price per
newspaper is two dollars; the agency will buy back any unsold news-
papers for fifty cents apiece. One hundred simulation experiments
were performed, where in each experiment the sales over n = 2000
days were simulated and a confidence interval was constructed for
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183.17

Figure 17: One hundred confidence intervals.

the expected net profit on a given day. Figure 17 displays the re-
sulting one hundred 95% confidence intervals for the expected value
of the net profit on any given day. The exact value of this expected
value is p = 183.17, as can be analytically shown. It is instructive
to have a look at the figure. Indeed, in approximately 95 of the 100
cases, the true value of u is contained within the confidence interval.

To conclude, let’s sketch how the 95% confidence interval is obtained
from the central limit theorem. By this theorem, (1 Y7, X; —
1)/ (o /y/n) has approximately a standard normal distribution for
large n. This result remains true when o is replaced by its estimator
¢. The standard normal distribution has 95% of its mass between
the percentiles zg 25 = —1.96 and zg 975 = 1.96. Thus, for large n,

P( 196<< ZX 1) /(5/v/) < 1.96) ~ 0.95.
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This can be rewritten as

(ZX—lQ\&fg g%z +1967>~095

Voila, the 95% confidence interval (i — 1. 96\‘}, i+ 1.96%). The

estimated standard deviation & does not vary much if n gets larger,
and so the width of the confidence interval is proportional to ﬁ
for larger values of n, implying that you need about four times as
many simulation runs in order to reduce the width of the interval
by a factor of two. To illustrate, let the random variable X be
the distance between two randomly chosen point in the unit square,
see subsection 5.3.1. One hundred thousand simulation runs gives
the estimate 0.5220 for p = E(X) with the 95% confidence interval
(0.5204,0.5235), and four hundred thousand simulation runs gives
the estimate 0.5212 with the 95% confidence interval (0.5205, 0.5220).

5.5.1 Variance reduction through importance sampling

The estimation of very small probabilities with standard simulation gen-
erally requires a great deal of computing time; the number of runs needed
to find a confidence interval with a given relative precision is inversely
proportional to the value of the probability that is to be estimated. Im-
portance sampling is useful in such situations.

Let f(z) be the probability density of a random variable X and
suppose you want to estimate

Ela(0)) = [ a(o)f(@) do

for some function a(x). Importance sampling is a useful simulation
method for doing this when the variance of the random variable a(X) is
very large. The idea is to sample from another probability density g(y)
to achieve variance reduction, using the observation that

_ _ f(yq _ [ f (Yq
Blox))= [ a(o)f(@)do= [ |t 2] st dy=ry Jar) T2
where Y is an appropriately chosen random variable with probability
density g(y). The random variable
S
Z=alY) 9(Y)
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is the importance sampling estimator for E(a(X). This is the basis of

importance sampling. For large n, let y1, ..., y, be independent samples
from g(y). Then, by the strong law of large numbers,
1 ¢ , f (i)
Ela(X)]~ =) w;a(y;) with w; = :
w2 ) with = gr

To estimate a small probability of the form P(X € A), apply the above
with a(z) = 1 for x € A and a(x) = 0 for x ¢ A so that E[a(X)] =
P(X € A). Inthis particular case, the second moment of the importance
sampling estimator Z is

E(Zz)=/A(%)29(y)dy=[4%f(y)dy-

Comparing the second moment of the importance sampling estimator Z
with the second moment E[a(X)? = [, f(z) dz of the standard estima-
tor a(X), you see that variance reduction is achieved if f(y)/g(y) <1
for all y € A. In other words, the new probability density g(z) must
have a greater mass on the set A than the old probability density f(x).
The choice of g(x) is a subtle matter and is problem dependent.

As an illustration, consider the problem of estimating the probability
that a random walk with a negative drift will exceed a value b > 0 before
dropping below a value a < 0 for given a and b. Suppose that the step
sizes X1, Xo, ... of the random walk are independent random variables
each having an N(u,0?) density with 1 < 0. Let 6 be defined as the
probability that the random walk starting at the origin exceeds b before
it drops below a. How can importance sampling be used to estimate
the probability & more effectively than with standard simulation? To
do so, consider a random walk with positive drift, where each of the
independent step sizes Y1, Y5, ... has the N (—u, o) density g(x). This
density puts more mass on (b, 00) than the original density f(z) so that
the event of exceeding the level b before dropping below the level a
will occur more often in the modified random walk than in the original
random walk. Now, for any k > 1, define the function a(x1,...,xy) as

1 forxi+---+xp > b,
a(zy,...,TK) =

0 otherwise.
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Define the random variable N as the smallest n for which Y1 +...4+Y,
is either less than a or greater than b. Then, the importance sampling

estimator Z = a(Y3,...,Yn) vazl 58?3 is

Z=a(Y1+ -+ Yn) 62H(Y1+"'+YN)/‘72‘

The expected value of this estimator is the sought probability 8. The
variance of the importance sampling estimator is less than the variance
of the standard estimator. For example, taking u=—1, 0 =1, a = —4,
and b = 3 and doing 100000 simulation runs, the 95% confidence in-
terval 0.00078 (£0.00017) is found for 6 under standard simulation and
the 95% confidence interval 0.000793 (44.3 x 10~°) under importance-
sampling simulation. A considerable reduction in the width of the con-
fidence interval.

Simulation modeling problems

In each of the following modeling problems you are asked to set up
a mathematical model for a simulation program for the problem in
question. It is fun and instructive to write a simulation program,
using a programming language such as Python or R.

Problem 5.1. Set up a simulation model in order to estimate the
probability that the equation Az? + Bx + C' = 0 has two real roots
if A, B, and C are randomly chosen numbers from (—1,1). Do the
same if A, B, and C are randomly chosen nonzero integers between
—1000 and 1000.

Problem 5.2. You draw random numbers from (0, 1) until the sum
of the picked numbers is larger than 1. Set up a simulation model to
estimate the expected number of picks needed.

Problem 5.3. A dealer draws random numbers from (0, 1) until the
sum exceeds a predefined value a with 0 < a < 1. The dealer has to
beat the sum a without exceeding 1. Set up a simulation model to
estimate the probability of the dealer winning the game.

Problem 5.4. You randomly pick two points on a stick. At these
points the stick is broken into three pieces. Set up a simulation model
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to estimate the probability that a triangle can be formed with the
pieces.

Problem 5.5. Three points are randomly chosen inside the unit
circle. Set up a simulation model in order to estimate the probability
that the center of the circle is contained in the triangle formed by
the three random points.

Problem 5.6. You randomly choose two points inside a circle. Set
up a simulation model to estimate the probability that these two
random points and the center of the circle form an obtuse triangle.
Do the same for a sphere in which two random points are chosen.

Problem 5.7. Set up a simulation model to estimate the expected
value of the area of the triangle that is formed by three randomly
chosen points inside the unit square. Do the same for three randomly
chosen points inside the unit circle. Hint: the area of a triangle
with sides of lengths a, b, and ¢ is \/s(s —a)(s — b)(s — ¢), where
s=1(a+b+c).

Problem 5.8. Let f(z) be a positive function on a finite interval
(a,b) such that 0 < f(x) < M for a < z < b. How can you use
simulation to estimate the integral f; f(x)dx?

Problem 5.9. Set up a simulation model to estimate the expected
value of the distance between two randomly chosen points inside the
unit cube. Do the same for the unit sphere.

Problem 5.10. A die is rolled until either each of the six possible
outcomes has appeared or one of these outcomes has appeared six
times. Set up a simulation model to estimate the probability that
the first event will occur before the second event.

Problem 5.11. Seven students live in a same house. Set up a
simulation model to estimate the probability that two or more of
them have their birthdays within one week of each other.

Problem 5.12. The eight teams that have reached the quarter-
finals of the Champions League soccer consist of two British teams,
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two German teams, two Italian teams, and two Spanish teams. Set
up a simulation model to estimate the probability that no two teams
from the same country will be paired in the quarter-finals draw if the
eight teams are paired randomly.

Problem 5.13. Sixteen teams remain in a soccer tournament. A
drawing of lots will determine which eight matches will be played.
Before the drawing takes place, it is possible to place bets with book-
makers over the outcome of the drawing. Set up a simulation model
to estimate the probability mass function of the number of correctly
predicted matches.

Problem 5.14. Consider Problem 3.2 again. Set up a simulation
model to estimate the probability of drawing the same pupil’s name
three or more times.

Problem 5.15. Consider Problem 2.41 again. Set up a model
for simulating the probability histogram of the number of unpicked
chickens.

Problem 5.16. In European roulette, a popular betting system is
the d’Alembert system. You play this system with a starting bankroll
of $500 and you bet a multiple of the unit stake of $5 each time.
Starting with a bet of one unit, your bet is increased by one unit
after a loss and decreased by one unit after a win. Each bet is either
on red or black. The game continues until 100 bets have been made
or you have lost your entire bankroll. Set up a simulation model
to estimate the probability histogram of your end capital and the
casino’s average profit per unit staked.

Problem 5.17. Consider the devil’s card game from Section 4.10
again. Suppose you stop as soon as your score is s or more. Set up a
simulation model to estimate the probability of an end score of zero
and the expected value of your end score as function of s.

Problem 5.18. You roll two fair dice until each of the 11 possible
values of the sum of the roll has appeared. Set up a simulation model
to estimate the expected number of rolls needed.
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Problem 5.19. Set up a simulation model to estimate the expected
number of draws needed in lottery 6/45 to get each of the 45 lottery
numbers.

Problem 5.20. Five boys and five girls are lined up in random
order. Set up a simulation model to estimate the probability that
none of the girls is surrounded by two boys.

Problem 5.21. You have 10 cards, where each card is labeled with
one of the numbersl to 5. For each of these numbers there are two
cards with that number. You deal the cards out randomly to five
people so that each person gets two cards. Set up a simulation model
to estimate the probability that two people have the same hand.

Problem 5.22. On two consecutive days, the same n people sit in
random order at a round dining table. Set up a simulation model to
validate the approximation e 2 (1 — % + 32%) for the probability that
no two people sit next to each other at both dinners.

Problem 5.23. Set up a simulation model to estimate the proba-
bility of getting either five or more consecutive heads or five or more
consecutive tails, or both, in 25 tosses of a fair coin.3!

Problem 5.24. Consider Problem 3.9 again. You now bet each time
the same fraction % of your current bankroll (this is the so-called
Kelly strategy that maximizes the growth rate of your bankroll on
the long run). Set up a simulation model to estimate the probability
distribution of your end capital.

31Surprisingly long runs can occur in coin tossing. A rule of thumb says that the
probability mass function of the longest run of either heads or tails, or both, in n
tosses of a fair coin is strongly concentrated around logg(%n) + 1 for larger values
of n. A true story in this regard is the following. At the end of the 19th century,
the Le Monaco newspaper regularly published the results of roulette spins in the
casino of Monte Carlo. The famous statistician Karl Pearson (1857-1936) studied
these data to test his theories. He observed that red and black came up a similar
number of times, but also noticed that lengths of runs of either reds or blacks
were much shorter than he would have expected. What caused that? Well, it
turned out that the journalists at Le Monaco just made up the roulette results
at the bar of the casino. They didn’t think anybody would notice.
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Problem 5.25. You have three fair dice and you initially roll all
three dice. Any die that falls on a six is ‘banked’ and set aside.
You continue to roll all the unbanked dice again until all the dice
are banked. Set up a simulation model to find the probability mass
function of the number of rolls required to bank all three dice.

Problem 5.26. The Benford game is a new casino game. First, the
casino’s computer generates a random number u and calculates the
largest four-digit number below 103 x 10%. The player cannot see this
number until he has chosen his own four-digit number. The player’s
number is then multiplied by the casino’s number. The player wins
if the product number begins with a 4, 5, 6, 7, 8, or 9; otherwise,
the casino wins. Set up a simulation model to investigate the claim
that the casino wins with a probability of about 60%, regardless of
the number chosen by the player.

Problem 5.27. A Christmas party is held for 10 persons. Each
person brings a gift to the party for a gift exchange. The gifts are
numbered 1 to 10 and each person knows the number of their own
gift. Cards with the numbers 1 to 10 are put in a hat. The party
goers consecutively pull a card out of the hat at random. If a person
pulls out a card corresponding to the number of their own gift, then
the card is put back in the hat, and that person draws another card.
Each time the next person to take a card is chosen at random. Set up
a simulation model to estimate the probability that the last person
gets stuck with his or her own gift.

Problem 5.28. A famous TV show is The Tonight Show with
Jimmy Fallon. In this show Jimmy plays the Egg Russian Roulette
game with a guest of the show. The guest is always a celebrity from
sports or film. The guest and Jimmy take turns picking an egg from
a carton and smashing it on their heads. The carton contains a dozen
eggs, four of which are raw and the rest are boiled. Neither Jimmy
nor the guest knows which eggs are raw and which are boiled. The
first person who has cracked two raw eggs on their head loses the
game. The guest is the first to choose an egg. Set up a simulation
model to estimate the probability that the guest will lose the game.
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Problem 5.29. A radio station presents the following game every
day. A number is drawn at random from the numbers 1 to 100.
Listeners can call the station and guess the number drawn. If a
caller guesses correctly, the caller gets a prize and the game is over;
if not, the station informs the listeners whether the guess is too high
or too low. The next caller then randomly guesses a number that
has not yet been excluded. Set up a simulation model to estimate
the probability distribution of the number of trials required.

Problem 5.30. There are ten chocolates in a Christmas tree, two
of which are white and the other eight are dark. You take chocolates
from the tree, one at a time and at random, and eat them until you
pick a chocolate of the other color. You hang this chocolate back and
start again with the leftover chocolates. Set up a simulation model
to estimate the probability that the last chocolate you eat is white.

Problem 5.31. A retired gentleman considers participation in an
investment fund. An adviser shows him that with a fixed yearly
return of 14%, which was realized in the last few years, he could
withdraw $15098 from the fund at the end of each of the coming
20 years. This is music to the ears of the retired gentleman, and he
decides to invest $100000. However, the yearly return fluctuates. If
the return was r% for the previous year, then for the coming year
the return will remain at % with a probability of 0.5, will change
to 0.8r% with a probability of 0.25, and will change to 1.2r% with
a probability of 0.25. Set up a simulation model to estimate the
probability distribution of the capital left after 15 years.

Problem 5.32. In the show game Big Wheel, the wheel contains 20
sections showing cash values from $0.05 to $1.00 in 5-cent increments.
Three contestants take turns spinning the wheel once or twice with
the goal of getting as close to $1.00 as possible without going over
it. If a participant decides to do a second spin, it must be done
immediately after the first spin and the value of the second spin is
added to that of the first spin. The winner is the player who comes
closest to $1.00 without going over it. In case of a tie, the tied players
draw lots to determine the winner. Set up a simulation model to find
the optimal winning strategy for each player.
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Problem 5.33. An opaque bowl contains 11 envelopes in the colors
red and blue. You are told that there are four envelopes of one color
each containing $100 and seven empty envelopes of the other color,
but you cannot see the envelopes in the bowl. The envelopes are
taken out of the bowl, one by one and in random order. Every time
an envelope is taken out, you have to decide whether or not to open
this envelope. Once you have opened an envelope, you get the money
in that envelope (if any), and the process stops. Your stopping rule
is to open the envelope drawn as soon as four or more envelopes of
each color have been taken out of the bowl. Set up a simulation
model to estimate your probability of winning $100.

Problem 5.34. In the first 1240 draws of the UK National Lottery, a
record gap of length 72 appeared on 4th November 2000. The number
17 did not appear for 72 consecutive draws in this 6/49 lottery. Set
up a simulation model to find the probability that some number will
not appear during 72 or more consecutive draws in the next 1240
draws of the lottery.

Problem 5.35. An alarm is triggered by events occurring according
to a Poisson process at a rate of 0.5 per hour. If three or more
events occur in a 15—minute time interval, the alarm sounds. Set up
a simulation model to find the probability that the alarm will sound
in a 15—minute time interval somewhere in a 24-hour period.

Problem 5.36. A beer company brings a new beer with the brand
name Babarras to the market and prints one of the letters of this
brand name underneath each bottle cap. Each of the letters A, B,
R, and S must be collected a certain number of times in order to get
a nice beer glass. The quota for the letters A, B, R, and S are 3, 2,
2, and 1. These letters appear with probabilities 0.15, 0.10, 0.40, and
0.35, where the letters underneath the bottle caps are independent of
each other. Set up a simulation to estimate the expected value and
the probability mass function of the number of bottles that must be
purchased in order to form the word Babarras.



Chapter 6
A Gentle Introduction to Markov Chains

This chapter introduces you to the very basic concepts and features
of Markov chains. A Markov chain is basically a sequence of random
variables evolving over time and have a weak form of dependency
between them. This very useful model was developed in 1906 by
Russian mathematician A.A. Markov (1856-1922).32 In a famous
paper written in 1913, he used his probability model to analyze the
frequencies at which vowels and consonants occur in Pushkin’s novel
“FKugene Onegin.” Markov showed empirically that adjacent letters
in Pushkin’s novel are not independent but obey his theory of de-
pendent random variables. The characteristic property of a Markov
chain is that its memory goes back only to the most recent state. The
Markov chain model is a very powerful probability model that is used
today in countless applications in many different areas, such as voice
recognition, DNA analysis, stock control, telecommunications, and a
host of others.

6.1 Markov chain model

A Markov chain can be seen as a dynamic stochastic process that
randomly moves from state to state with the property that only

32Markov lived through a period of great political activity in Russia and, having
firm opinions as left wing activist, he became heavily involved. In 1913, the
Romanov dynasty, which had been in power in Russia since 1613, celebrated
their 300 years of power. Markov disapproved of the celebration and instead
celebrated 200 years of the Law of Large Numbers!

189
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the current state is relevant for the next state. In other words, the
memory of the process goes back only to the most recent state. A
picturesque illustration of this would show the image of a frog jump-
ing from lily pad to lily pad with appropriate transition probabilities
that depend only on the position of the last lily pad visited. In or-
der to plug a specific problem into a Markov chain model, the state
variable(s) should be appropriately chosen in order to ensure the
characteristic memoryless property of the process. The basic steps
of the modeling approach are:

e Choosing the state variable(s) such that the current state sum-
marizes everything about the past that is relevant to the future
states.

e The specification of the one-step transition probabilities of mov-
ing from state to state in a single step.

Using the concept of state and choosing the state in an appropriate
way, surprisingly many probability problems can be solved within
the framework of a Markov chain. In this chapter it is assumed that
the set of states to be denoted by I is finite. This assumption is im-
portant. The theory of Markov chains involves quite some subtleties
when the state space is countably infinite.

The following notation is used for the one-step transition proba-
bilities:

pi; = the probability of going from state i to state j in one step

for 4,5 € I. Note that the one-step probabilities must satisfy p;; > 0
for all 4,5 € I and Zje]pij =1foralliel.

Example 6.1. A faulty digital video conferencing system has a
clustering error pattern. If a bit is received correctly, the probability
of receiving the next bit correctly is 0.99. This probability is 0.95 if
the last bit was received incorrectly. What is an appropriate Markov
chain model?

Solution. The choice of the state is obvious in this example. Let
state 0 mean that the last bit sent is not received correctly, and state
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1 mean that the last bit sent is received correctly. The sequence
of states is described by a Markov chain with one-step transition
probabilities pgg = 1—0.95, pg1 = 0.95, p1g = 1—0.99, and p1; = 0.99.

The choice of an appropriate state is more tricky in the next example.
Putting yourself in the shoes of someone who must write a simulation
program for the problem in question may be helpful in choosing the
state variable(s).

Example 6.2. An absent-minded professor drives every morning
from his home to the office and at the end of the day from the office
to home. At any given time, his driver’s license is located at his home
or at the office. If his driver’s license is at his location of departure,
he takes it with him with probability 0.5. What is an appropriate
Markov chain model for this situation?

Solution. Your first thought might be to define two states 1 and
0, where state 1 describes the situation that the professor has his
driver’s license with him when driving his car, and state 0 describes
the situation that he does not have his driver’s license with him when
driving his car. However, these two states do not suffice for a Markov
model: state 0 does not provide enough information to predict the
state at the next drive (why?). In order to give the probability dis-
tribution of this next state, you need information about the current
location of the driver’s license of the professor. You get a Markov
model by simply inserting this information into the state description.
Therefore, the following three states are defined:

e state 1 = the professor is driving his car and has his driver’s
license with him,

e state 2 = the professor is driving his car and his driver’s license
is at the point of departure,

e state 3 = the professor is driving his car and his driver’s license
is at his destination.

This state description has the Markovian property that the present
state contains sufficient information for predicting future states. The
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Markov chain model has state space I = {1,2,3}. What are the one-
step transition probabilities p;;? The only possible one-step transi-
tions from state 1 are to the states 1 and 2 (verify!). A one-step
transition from state 1 to state 1 occurs if the professor does not
forget his license on the next trip and so p;; = 0.5. By a similar
argument, pj2 = 0.5. Obviously, p13 = 0. A one-step transition from
state 2 is always to state 3, and so pes = 1 and po; = pog = 0.
The only possible transitions from state 3 are to the states 1 and 2,
and so p33 = 0. A one-step transition from state 3 to state 1 occurs
if the professor takes his license with him on the next trip, and so
p31 = 0.5. Similarly, pss = 0.5. A matriz is the most useful way to
display the one-step transition probabilities:

from\to 1 2 3
1 05 05 0
2 0 0 1
3 05 05 0

Time-dependent analysis of Markov chains

In Markov chains, a key role is played by the n-step transition prob-
abilities. For any n = 1,2, ..., these probabilities are defined as

(n)

Py = the probability of going from state i to state j in n steps

for all 4,5 € I. Note that pgjl-) = p;j. How to calculate the n-step
transition probabilities? It will be seen that these probabilities can
be calculated by matrix products. Many calculations for Markov
chains can be boiled down to matrix calculations

The so-called Chapman-Kolmogorov equations for calculating the

n-step transition probabilities pz(?) are

pE}L) = Zpgg_l)mj foralli,jelandn=2,3,....
kel

This recurrence relation says that the probability of going from state
1 to state j in n steps is obtained by summing the probabilities of
the mutually exclusive events of going from state ¢ to some state k
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in the first n — 1 steps and then going from state k to state j in the

nth step. A formal proof proceeds as follows. For initial state i, let

A be the event that the state is j after n steps of the process and

By, be the event that the state is k after n — 1 steps. Then, by the

law of conditional probability, P(A) = >, .; P(A | By)P(By). Since
-1

P(A) = pg}), P(By) = pl(z ) and P(A | B) = pij, the Chapman-

Kolmogorov equations follow.

Let’s now verify that the n-step transition probabilities can be calcu-

lated by multiplying the matrix of one-step transition probabilities

by itself n times. To do so, let P be the matrix with the p;; as entries
and P be the matrix with the pg-n) as entries. In matrix notation,
the Chapman-Kolmogorov equations read as

P = p-l) x p forn=2,3,....

This gives P?) = P(U x P = P x P. Next, you get P®) = PG xP =
P x P x P. Continuing in this way, you see that P(™ is given by the
n-fold matrix product P x P x - - - x P, shortly written as P". Thus,
P = P"_ which verifies that

ng) is the (7, j)th entry of the n-fold matrix product P".

Example 6.3. On the Island of Hope the weather each day is classi-
fied as sunny, cloudy, or rainy. The next day’s weather depends only
on today’s weather and not on the weather of the previous days.
If the present day is sunny, the next day will be sunny, cloudy, or
rainy with probabilities 0.70, 0.10, and 0.20. The transition proba-
bilities for the weather are 0.50, 0.25, and 0.25 when the present day
is cloudy, and they are 0.40, 0.30, and 0.30 when the present day is
rainy. What is the probability that it will be sunny three days from
now if it is cloudy today? What is the probability distribution of the
weather on a given day far away?

Solution. These questions can be answered by using a three-state
Markov chain. Let’s say that the weather is in state S if it is sunny,
in state C if it is cloudy, and in state R if it is rainy. The evolution
of the weather is described by a Markov chain with state space I =
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{S,C, R}. The matrix P of the one-step transition probabilities of
this Markov chain is given by

from\to S C R

S 0.70 0.10 0.20
C 0.50 0.28 0.22
R 0.40 0.30 0.30

To find the probability of having sunny weather three days from now,
you need the matrix product

0.6018 0.1728 0.2254
P = 0.5928 0.1805 0.2266
0.5864 0.1857 0.2279

From this matrix you read off that the probability of having sunny
weather three days from now is p(c?% = 0.5928 if it is cloudy today.
What is the probability distribution of the weather on a day far
away? Intuitively, you expect that this probability distribution does
not depend on the present state of the weather. This is indeed the
case. Trying several values of n, it was found after n = 7 matrix
multiplications that the elements of the matrix P” agree row-to-row

to four decimal places:

0.5967 0.1771 0.2262
P" = | 0.5967 0.1771 0.2262 for all n > 7.
0.5967 0.1771 0.2262

Thus, the weather on a day far away will be sunny, cloudy, or rainy
with probabilities of about 59.7%, 17.7%, and 22.6%, regardless of
the present weather. It is intuitively obvious that these probabilities
also give the long-run proportions of time that the weather will be
sunny, cloudy, or rainy, respectively.

Many probability problems, which are seemingly unrelated to Markov
chains, can be modeled as a Markov chain with the help of a little
imagination. This is illustrated with the next example. This exam-
ple nicely shows that the line of thinking through the concepts of
state, and state transition is very useful to analyze the problem (and
many other problems in applied probability!).
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Example 6.4. Six fair dice will be simultaneously rolled. What is
the probability mass function of the number of different outcomes
that will show up?

Solution. In solving a probability problem, it is often helpful to
recognize when two problems are equivalent even if they sound dif-
ferent. To put the dice problem into the framework of a Markov
chain, consider the equivalent problem of repeatedly rolling a sin-
gle die six times (the reformulated problem is an instance of the
coupon collector’s problem). For the reformulated problem, define
the state of the process as the number of different face values seen so
far. The evolution of the state is described by a Markov chain with
state space I = {0,1,...,6}, where state 0 is the initial state. The
one-step transition probabilities are given by (verify!):

po1 = 1, piiZéaﬂdpi,i+1=1—éf0r1§i§5,
pe6 = 1, and the other p;; = 0.

The sought probability mass function is obtained by calculating the
probability pé?c) for k =1,...,6, which gives the probability of getting
exactly k different face values when rolling a single die six times. Mul-
tiplying the matrix P of one-step transition probabilities six times

by itself results in the matrix

0 0.0001 0.0199 0.2315 0.5015 0.2315 0.0154
0 0.0000 0.0068 0.1290 0.4501 0.3601 0.0540
0 0 0.0014 0.0570 0.3475 0.4681 0.1260

P°=1]0 0 0 0.0156 0.2165 0.5248 0.2431
0 0 0 0 0.0878 0.4942 0.4180
0 0 0 0 0 0.3349 0.6651
00 0 0 0 0 1

The first row of P©) gives the sought probabilities p((ﬁ) = 0.0001,
Py = 0.0199, pfy = 0.2315, pi} = 05015, p(y) = 0.2315, pfy) =
0.0154. The tail probability 1 — PE)?;) = (0.9846 gives the probability
that more than 6 rolls of a die will be needed to get all six possible
outcomes. In the same way, you can use a Markov chain to calculate
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the tail probabilities for the number of purchases needed to get a
complete collection in the general coupon collector’s problem with
equally likely coupons.

Problem 6.1. Consider Example 6.2 again. It is Wednesday evening
and the professor is driving to home, unaware of the fact that there
will be traffic control on the roadway to his house coming Friday
evening. What is the probability that the professor will be fined for
not having his license with him given that he left his license at the
university on Wednesday evening? (answer: 0.625)

Problem 6.2. Every day, it is either sunny or rainy on Rainbow Is-
land. The weather for the next day depends only on today’s weather
and yesterday’s weather. The probability that it will be sunny to-
morrow is 0.9 if the last two days were sunny, is 0.45 if the last two
days were rainy, is 0.7 if today’s weather is sunny and yesterday’s
weather was rainy, and is 0.5 if today’s weather is rainy and yes-
terday’s weather was sunny. Define a Markov chain that describes
the weather on Rainbow Island and specify the one-step transition
probabilities. What is the probability of having sunny weather five
days from now if it rained today and yesterday? (answer: 0.7440)

Problem 6.3. An airport bus deposits 10 passengers at 7 stops.
Each passenger is as likely to get off at any stop as at any other, and
the passengers act independently of one another. The bus makes a
stop only if someone wants to get off. Use Markov chain analysis to
calculate the probability mass function of the number of bus stops.
(answer: (0.0000, 0.0000, 0.0069, 0.1014, 0.3794, 0.4073, 0.1049))

Problem 6.4. Consider Example 6.3 again. Use indicator random
variables to calculate the expected value of the number of sunny
days in the coming seven days given that it is cloudy today. (answer:
4.049)

6.2 Absorbing Markov chains

A powerful trick in Markov chain analysis is to use one or more
absorbing states. A state ¢ of a Markov chain is said to be absorbing if
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pii = 1, that is, once the process enters an absorbing state i, it always
stays there. Absorbing Markov chains are very useful to analyze
success runs. This is illustrated with the following two examples.

Example 6.3 (continued). What is probability there will be three
or more consecutive days with sunny weather in the coming 14 days
given that it is rainy today?

Solution. Augment the three states in the Markov chain model
from Example 6.3 with two additional states SS and SSS, where
state S5 means that it was sunny the last two days, and state SS.S
means that it was sunny the last three days. State SS55 is taken as
an absorbing state. The matrix P of one-step transition probabilities
now becomes

from\to S C R SS SSS

S 0 010 020 070 O
C 0.50 028 022 O 0
R 0.40 030 030 O 0
SS 0 010 020 0 0.70
SSS 0 0 0 0 1

Since the process stays in state S.SS once it is there, three consecutive
days with sunny weather occur somewhere in the coming 14 days if
and only if the process is in state SSS 14 days hence. Thus, pgzljgss
gives the probability that there will three or more consecutive days
with sunny weather in the coming 14 days given that it is rainy today.
The matrix P is obtained by multiplying the matrix P by itself

14 times and is given by

0.0214 0.0186 0.0219 0.0178 0.9203
0.0320 0.0278 0.0328 0.0265 0.8809

P — | 0.0344 0.0290 0.0342 0.0277 0.8757
0.0117 0.0102 0.0120 0.0097 0.9564
0 0 0 0 1

You read off from row 3 that the desired probability equals 0.8757.

Example 6.5. What is the probability of getting either five or more
consecutive heads or five or more consecutive tails, or both, in 25
tosses of a fair coin?
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Solution. Use a Markov chain with six states 0,1,...,5. State
0 corresponds to the start of the coin-tossing experiment. For i =
1,...,5, state ¢ means that the last ¢ tosses constitute a run of length
1, where a run consists of only heads or only tails. State 5 is taken
as an absorbing state. The one-step transition probabilities of the
Markov chain are po1 = 1, piiy1 = pi1 = 0.5 for 1 < ¢ < 4, ps5 = 1,
and the other p;; = 0. The probability of getting either five or more
consecutive heads or five or more consecutive tails, or both, in 25

tosses is p((ff). Calculating

0.2336 0.1212 0.0629 0.0326 0.5496
0.2252 0.1168 0.0606 0.0314 0.5659
0.2089 0.1084 0.0562 0.0292 0.5974
0.1774 0.0920 0.0478 0.0248 0.6580 |’
0.1168 0.0606 0.0314 0.0163 0.7748

0 0 0 0 1

[esilen B en B e B e B @)

you find that p8255) = 0.5496. A remarkably high probability! Most

people grossly underestimate the lengths of longest runs.

Example 6.6. Joe Dalton desperately wants to raise his bankroll of
$600 to $1000 in order to pay his debts before midnight. He enters
a casino to play European roulette. He decides to bet on red each
time using bold play, that is, Joe bets either his entire bankroll or
the amount needed to reach the target bankroll, whichever is smaller.
Thus the stake is $200 if his bankroll is $200 or $800, and the stake
is $400 if his bankroll is $400 or $600. In European roulette a bet on
red is won with probability % and is lost with probability %. What
is the probability that Joe will reach his goal?

Solution. Two approaches will be given to calculate the probability
of Joe reaching his goal. The problem is modeled by a Markov chain
with the six states ¢ = 0,1,...,5, where state ¢ means that Joe’s
bankroll is 7 x 200 dollars. The states 0 and 5 are absorbing and the
game is over as soon one of these states is reached. Thus pyg = ps5 =
1. The other p;; are easily found. For example, the only possible one-
step transitions from state ¢ = 2 are to the states 0 and 4 because
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Joe bets $400 in state 2. Thus, payg = % and poy = %. The other
pi;j are in the matrix P of one-step transition probabilities:

from\to 0 1 2 3 4 5
0 1 0 0 0 0 O
1 % 0 ¥ 0 0 0
2 =2 0 0 0 £ o0
3 0 2 0 0 0 %
19
4 0 0 0 2 o0 £
5 00 0 0 0 1

For any starting state, the process will ultimately be absorbed in ei-
ther state 0 or state 5. The absorption probabilities can be obtained
by calculating P™ for n sufficiently large.?® Trying several values of
n, it was found that n = 20 is large enough to have convergence

of all p{”

P20 = 0.3820, p2¥ = 0.5819 and p{2 = 0.7853. Thus, the prob-
ability of Joe reaching his goal when starting with $600 is 0.5819.
This probability is the maximum probability of Joe for reaching his
goal. The intuitive explanation that bold play is optimal in Joe’s
situation is that the shorter Joe exposes his bankroll to the casino’s
house advantage, the better it is (e.g., if Joe bets $50 each time, he
reaches his goal with probability 0.4687).

Alternatively, the probability of Joe reaching his goal can be ob-
tained by solving four linear equations. To do so, define f; as the
probability of getting absorbed in state 5 when the starting state is
i. By definition, fo = 0 and f5 = 1. By conditioning on the next
state after state ¢, you get the linear equations

in four or more decimals. In particular, p%o) = 0.1859,

19 18

fi= 3 f0+ ><f2, fo= f0+§><f4,
19 18

fz= 37 f1+ ><f57 fa= f3+§ X fs5,

giving fi = 0.1859, f» = 0.3820, f3 = 0.5819, and f; = 0.7853.

33The computational effort to calculate P™ for large n can be considerably
reduced by the trick P* = P? x P2, P® = P* x P%, P! = P® x P®, and so on.
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Problem 6.5. What is the probability of getting five or more con-
secutive heads during 25 tosses of a fair coin? (answer: 0.3116)

Problem 6.6. Consider Problem 5.25 again. For n = 5, 10, 15, and
25, calculate the probability that more than n trials are needed until
all dice are banked. (answer: 0.7860, 0.4102, 0.1824, and 0.0311)

Problem 6.7. What is the probability of getting two consecutive
totals of 7 before a total of 12 when repeatedly rolling two dice?
(answer: 0.4615)

Problem 6.8. You toss a fair coin until HTH or HHT appears.
What is the probability that HHT appears first? (answer: %)

Problem 6.9. For the Venice-53 lottery in Section 5.3, formulate
an absorbing Markov chain to calculate the probability that it takes
more than n draws before number 53 shows up.

Problem 6.10. You have three whiskey glasses labeled 1, 2, and 3.
Initially, all glasses are filled. A fair die is rolled. If the outcome is
1 or 6, then glass 1 is emptied if it is full and is filled if it is empty.
The same happens to glass 2 if a 2 or a 5 is rolled, and to glass 3 if
a 3 or a 4 is rolled. What is the probability that more than 10 dice
rolls are needed until all three glasses are empty? (answer: 0.3660)

Problem 6.11. In the dice game of Pig, you repeatedly roll a single
die. Upon rolling a 1, your turn is over, and you get a score zero.
Otherwise, you can stop whenever you want and then your score is
the total number of points rolled. Under the hold-at-20 rule, you stop
when you have rolled 20 points or more.?* Use Markov chain analysis
to get the probability mass function of your end score under the hold-
at-20 rule. (answer: (0.6245, 0.0997, 0.0950, 0.0742, 0.0542, 0.0352,
0.0172) on (0, 20, 21, 22, 23, 24, 25) with E(end score) = 8.14)

34The rationale behind this stopping rule is as follows. Suppose your current
score is x points and you decide for one other roll of the die. Then, the expected
value of the change of your score is ZQZQ 20

%xkféxx: & — &> Which is
non-positive for x > 20. This is the principle of the one-stage-look-ahead rule.
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Problem 6.12. You are fighting a dragon with two heads. Each time
you swing at the dragon with your sword, there is a 75% chance of
knocking off one head and a 50% chance of missing. If you miss,
either one additional head or two additional heads will grow imme-
diately before you can swing again at the dragon. The probability
of one additional head is 0.7 and of two additional heads is 0.3. You
win if you have knocked off all of the dragon’s heads, but you must
run for your life if the dragon has five or more heads. Use Markov
chain analysis to calculate your chance of winning. (answer: 0.5210)

Problem 6.13. Consider Problem 5.27 from Chapter 5 again. Use
Markov chain analysis to compute the probability that the guest will
lose the game. (answer: 3)

6.3 The gambler’s ruin problem

A nice illustration of an absorbing Markov chain is the gambler’s
ruin problem that goes back to Christiaan Huygens (1629-1695) and
Blaise Pascal (1623-1662). This random walk problem will be used to
demonstrate that the absorption probabilities can also be calculated
by solving a system of linear equations instead of taking matrix prod-
ucts. The method of linear equations can also be used to calculate
the expected time until absorption. The gambler’s ruin problem is as
follows. Two players A and B with initial bankrolls of a dollars and
b dollars play a game until one of the players is bankrupt. In a play
of the game, player a wins one dollar from player B with probability
p and loses one dollar to player B with probability ¢ = 1 — p. The
successive plays of the game are independent of each other. What
is the probability P(a,b) that player A is the ultimate winner, and
what is the expected value E(a,b) of the number of plays until one
of the players goes broke?

The quantities P(a,b) and E(a,b) can be found by using an ab-
sorbing Markov chain. The Markov chain has the states 0,1,...,a+b,
where state ¢ means that the current bankroll of player A is ¢ dollars
(and that of player B is a + b — ¢ dollars). The states 0 and a + b
are taken as absorbing states. The other one-step transition proba-
bilities are given by p;;+1 = p, pii—1 = ¢, and p;; = 0 otherwise for
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i=1,2,...,a+b— 1. The probability P(a,b) that player A will be
the ultimate winner can be found by calculating the n-step transition
probability p((lni 4 for sufficiently large values of n. However, a more
elegant approach is as follows. For ¢ = 0,1,...,a + b, define f; as
the probability that the Markov chain will be ultimately absorbed
in state a + b when the starting state is ¢. By definition, fo = 0 and

faxrs = 1. The other f; can be found by solving the linear equations
fi:pfi+1+qfi—1 fori:1727"'7a/+b_1'

In particular, f, gives the desired probability P(a,b). The equation
for f; is easily explained from the law of conditional probability:
the term pfi1 accounts for the case of a win of player A in state
1 and the term ¢fi;—1 for a win of player B in state ¢. Since the
equations for the f; are so-called linear difference equations, they
can be explicitly solved. The details are omitted and we state only
the famous gambler’s ruin formula for f, = P(a,b):

1—(q/p)* :
Pla,b) = {1—<q/p>a+b i
a5 if p=gq.

To get E(a,b), define e; as the expected value of the number of
transitions of the Markov chain needed to reach either state 0 or
state a + b when starting from state i. By definition, ey = e,1p = 0.
The other e; can be found by solving the linear equations

e; =14+peir1+qei—1 fori=1,2,...,a+b—1.

To derive these equations, let Z; be the remaining number of plays
when ¢ is the current state. Under the condition that player A wins
the next play, the conditional distribution of Z; is the same as the
distribution of 1+ Z;,1; otherwise, it is the same as the distribution
of 1 + Z;_1. Thus, by the law of conditional expectation, F(Z;) =
pE(1+ Z;11) + qE(1 + Z;—1). The resulting equations for the e¢; =
E(Z;) can be explicitly solved. In particular, by F(a,b) = e,,

_a_ _ a+b 1-(¢/p)° ;
Blab) = a7 arpTwpes  TPF4
ab if p=gq.
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To illustrate the gambler’s ruin formula, suppose you go to the casino
of Monte Carlo with 100 euro, and your goal is to double it. You
opt to play European roulette, betting each time on red. You will
double your stake with probability p = %, and you will lose with
probability ¢ = %. So, if you stake $5 each time (a = b = 20),
or $10 (@ = b = 10), or $25 (@ = b = 4), or $50 (a = b = 2),
the probability of reaching your goal will have the values of 0.2533,
0.3680, 0.4461, and 0.4730, respectively. The expected number of

bets has the values 365.19, 97.66, 15.94, and 4.00, respectively.
6.4 Long-run behavior of Markov chains

Let’s consider a Markov chain with a finite set of states I (the as-
sumption of a finite state space is important in the steady-state anal-
ysis of Markov chains). The process starts in one of the states and
moves successively from one state to another, where the probability
of moving from state i to state j in one step is denoted by p;;. What
about the probability distribution of the state after many, many tran-
sitions? Does the effect of the starting state ultimately fade away?
In order to answer these questions, two conditions are introduced.

Condition ;. The Markov chain has no two or more disjoint closed
sets of states, where a set C is said to be closed if p;; = 0 for i € C
and j ¢ C.

Condition Cs. The set of states cannot be split into multiple dis-
joint sets S1,...,Sg with d > 2 such that a one-step transition from
a state in S is always to a state in Siy1, where Sy = 51.

The condition C is satisfied in nearly any application, but this is
not the case for condition Cy. The condition Cs rules out periodicity
in the state transitions such as is the case in the three-state Markov
chain with pi12 = p13 = 0.5, p21 = p31 = 1, and p;; = 0 otherwise. In
this Markov chain, pgq) is alternately 0 or 1 and so lim;,,_,~ p(ﬁ) does
not exist (neither any of the pﬁ?) has a limit as n tends to infinity).
Under the conditions C7 and Cs the equilibrium probability)

C— lim ™
=l v
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exists for all 4, j € I and is independent of the starting state i. The
m; can be calculated as the unique solution to the balance equations

T = Zpkjwk for jel
kel

together with the normalization equation Zjel mj = 1. The balance
equations can be easily explained from the Chapman-Kolmogorov
equations pl(-;l) = Zkelpgz_l)pkj. Letting n — oo in both sides
of the Chapman-Kolmogorov equations and interchanging limit and
summation (justified by the finiteness of I), you get the balance equa-
tions. The reader is asked to take for granted that the limits 7; exist
and are uniquely determined by the set of linear equations.

As an illustration, consider Example 6.3 again. The balance equa-

tions are then given by

mg = 0.70mg + 0.50m¢c + 0.407R,
o = 0.10mg + 0.287¢ + 0.307R,
mr = 0.20mg 4+ 0.227¢ 4 0.307R.

In solving these equations together with ng + m¢ + mg = 1, you are
allowed to delete one of the balance equations in order to get a square
system of linear equations. Solving the equations gives mg = 0.5967,
o = 0.1771, and g = 0.2262. The same numerical answers as were
obtained in Example 6.3 by calculating P" for large n.

Interpretation of the equilibrium probabilities

The equilibrium probability 7; can be interpreted as the probability
that you will find the Markov chain in state j many, many transitions
later, whatever the current state is. Essential to this interpretation
is that you are not given any information about the course of the
process between now and the distant future. A second interpretation
of m; is that of a long run average: the proportion of transitions
to state j will be 7; when averaging over many, many transitions.
This second interpretation remains valid when the non-periodicity
Condition Cs is not satisfied. In general, it is true that

T = 1 -
nlfgonZ%
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exists for all 4, j € I and is independent of the starting state ¢ (this so-
called Césaro limit is equal to the ordinary limit if the latter exists).
Again, the 7; are the unique solution to the balance equations m; =
> ker Py for j € I together with the equation } ., m; = 1.

The following example deals with a periodic Markov chain and is
prelude to material on reversibility in Section 6.5.

Example 6.7. Two compartments A and B together contain r
particles. With the passage of every time unit, one of the particles
is selected at random and is removed from its compartment to the
other. What is the equilibrium distribution of the number of particles
in compartment A?

Solution. The process describing the number of particles in com-
partment A is a Markov chain with state space I = {0,1,...7}. The
one-step transition probabilities are p; ;11 = % fori=0,1,...,r—1,
pii—1 = y for i =1,2,...,r, and p;; = 0 otherwise. This Markov
model is known as the Ehrenfest model in physics. The equilibrium
equations are

r—j3+1 J+1

T =T T T

forj=1,...,r—1,
with m = %7’[‘1 and m, = %m_l. Intuitively, any marked particle is
to be found equally likely in either of the two compartments after
many transitions. This suggests that {m;} is a binomial distribution.
Indeed, by substitution, it is readily verified that w; = (;) (%)” for j =
0,1,...,7. The Markov chain is periodic: a transition from any state
in the subset of even-numbered states leads to a state in the subset
of odd-numbered states, and vice versa. Hence, the probability m;
can only be interpreted as the long-run proportion of time during
which compartment A contains j particles. It is interesting to note
that the average number of transitions from state i to state ¢ — 1 per
unit time must be equal to the average number of transitions from
state i — 1 to state ¢ per unit time in the long run for any i (between
any two transitions from 4 to ¢ — 1 there must be a transition from
i—1 to 4, and vice versa, as a consequence of p;; = 0 for |i —j| > 1).
The Ehrenfest model is an example of a so-called reversible Markov
chain, which concept will be discussed in Section 6.5.
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Page-ranking algorithm

The equilibrium theory of Markov chains has many applications. The
most famous application is Markov’s own analysis of the frequencies
at which vowels and consonants occur in Pushkin’s novel “Eugene
Onegin,” see also Problem 6.14 below.

An important application of more recent date is the application
of Markov chains to the ranking of web pages. The page-ranking
algorithm is one of the methods Google uses to determine a page’s
relevance or importance. Suppose that you have n interlinked web
pages. Let n; be the number of outgoing links on page j. It is
assumed that n; > 0 for all j. Let o be a given number with 0 <
a < 1. Imagine that a random surfer jumps from his current page
by choosing with probability @ a random page amongst those that
are linked from the current page, and by choosing with probability
1 — « a completely random page. Hence the random surfer jumps
around the web from page to page according to a Markov chain with
the one-step transition probabilities

1
p]k:a’r’]k—f—(]_—a)ﬁ forj,k:1,...7n,

where rj;, = % if page k is linked from page j and 7, = 0 other-
wise. The parameter o was originally set to 0.85. The inclusion of
the term (1 — «)/n can be justified by assuming that the random
surfer occasionally gets bored and then randomly jumps to any page
on the web. Since the probability of such a jump is rather small, it
is reasonable that it does not influence the ranking very much. By
the term (1 — «)/n in the pji, the Markov chain has no two or more
disjoint closed sets and is aperiodic. Thus, the Markov chain has
a unique equilibrium distribution {7;}. These probabilities can be
estimated by multiplying the matrix P of one-step transition proba-
bilities by itself repeatedly. Because of the constant (1 —«)/n in the
matrix P, things mix better up so that the n-fold matrix product
P" converges very quickly to its limit. The equilibrium probability
m; gives us the long-run proportion of time that the random surfer
will spend on page j. If m; > 7, then page j is more important than
page k and should be ranked higher.
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Problem 6.14. In a famous paper written in 1913, Andrey Markov
analyzed an unbroken sequence of 20000 letters from the poem Eu-
gene Onegin. He found that the probability of a vowel following a
vowel is 0.128, and that the probability of a vowel following a con-
sonant is 0.663. Use a Markov chain to estimate the percentages of
vowels and consonants in the novel. (answer: 43.2% and 56.8%)

Problem 6.15. What is for Example 6.1 the long-run fraction of

bits that are incorrectly received? (answer: %)

Problem 6.16. In a small college town, there are an Italian, a
Mexican, and a Thai restaurant. A student eating at the Italian
restaurant will eat the following evening at the Italian restaurant
with probability 0.10, in the Mexican restaurant with probability
0.35, at the Thai restaurant with probability 0.25, or at home with
probability 0.30. The probabilities of switching are 0.4, 0.15, 0.25,
and 0.2 when eating at the Mexican restaurant, 0.5, 0.15, 0.05, and
0.3 when eating at the Thai restaurant, and 0.40, 0.35, 0.25, and 0
when eating at home. What proportion of time the student will eat
at home? (answer: 0.2110)

Problem 6.17. In a certain town, there are four entertainment
venues. Both Linda and Bob are visiting every weekend one of these
venues, independently of each other. Each of them visits the venue
of the week before with probability 0.4 and chooses otherwise at
random one of the other three venues. What is the long-run fraction
of weekends that Linda and Bob visit a same venue? (answer: %)

Problem 6.18. Consider the following modification of Example 6.2.
In case the driver’s license of the professor is at his point of departure,
the professor takes it with him with probability 0.75 when departing
from home and with probability 0.5 when departing from the office.
What is the long-run fraction of time the professor has his license
with him? (answer: 0.4286)

Problem 6.19. Consider Problem 6.2 again. What is the long-run
fraction of sunny days? (answer: 0.7912) The entrepreneur Jerry
Wood has a pub on the island. On every sunny day, his sales are
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N(u1,0?) distributed with 1=%1000 and o1 = $200, while on rainy
days his sales are N (ug,03) distributed with py = $500 and o9 = $75.
What is the long-run average sales per day? (answer: $895.60)

6.5 Markov chain Monte Carlo simulation®®

This section gives a first introduction to Markov chain Monte Carlo
(MCMC). This method can be used to tackle computational prob-
lems that arise among others in Bayesian inference. Let S be a very
large but finite set on which a probability mass function 7(s) is given
that is only known up to a multiplicative constant. It is not feasible
to compute the constant directly. How to calculate ) | g h(s)7(s) for
a given function h(s)? The idea is to construct a Markov chain that
has 7(s) as its equilibrium distribution and to simulate a sequence
$1,89,...,8m of successive states of this Markov chain for large m.
Then Y, g h(s)m(s) can be estimated by L 31" | h(sy).

Reversible Markov chains

The concept of reversible Markov chains plays a crucial role in Markov
chain Monte Carlo simulation. Let’s consider an irreducible Markov
chain with finite state space I and one-step transition probabilities
pij- Irreducibility means that each state can be reached from any
other state, that is, for any two states ¢ and j there is a n > 1 such
that pgl) > (. Since an irreducible Markov chain satisfies Condition
C1, it has a unique equilibrium distribution {7;}. The irreducible
Markov chain is said to be reversible if the equilibrium probabilities
m; satisfy the so-called detailed balance equations

mipjk = Tkpr;  for all j k€ 1.

These equations have the following physical interpretation: the av-
erage number of transitions from state j to state k per unit time is
equal to the average number of transitions from state k to state j
per unit time in the long-run for any j, k € I. The following result

35This section contains advanced material. This material is taken from Henk
Tijms, Probability, a Lively Introduction, Cambridge University Press, 2017.
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will be crucial. In the Metropolis—Hastings algorithm below, the fol-
lowing result is crucial. If a probability distribution {a;} on I can
be constructed such that

a;pjr = appy; forall j, keI,

then {a;} gives the equilibrium distribution {7;} of the Markov
chain. This is easy to prove. Sum both sides of the equation a;p;; =
appr; over k € I. Together with ), ; pjr = 1, this gives

a; = Zakpkj for all j € I.
kel

These equations are precisely the equilibrium equations of the Markov
chain and so, by the uniqueness of the equilibrium distribution,
a; = m; for all j.

6.5.1 Metropolis—Hastings algorithm

The Metropolis—Hastings algorithm is an example of a Markov chain
Monte Carlo method. The algorithm will be first explained for the
case of a discrete probability distribution, but the basic idea of the
algorithm can be directly generalized to the case of a continuous
probability distribution.

Let S be a very large but finite set of states on which a probability
mass function {7 (s), s € S} is given, where 7(s) > 0 for all s, and the
7(s) are only known up to a multiplicative constant. The Metropolis—
Hastings algorithm generates a sequence of states (si, s2,...) from
a Markov chain that has {m(s), s € S} as its unique equilibrium
distribution. To that end, the algorithm uses a candidate-transition
function ¢(¢ | s) (for clarity of presentation, the notation ¢(¢ | s) is
used rather than pg). This function is to be interpreted as saying
that when the current state is s, the candidate for the next state
is ¢ with probability ¢(¢ | s). Thus, you first choose, for each s €
S, a probability mass function {q(¢t | s),t € S}. These functions
must be chosen in such a way that the Markov matrix with the
q(t | s) as one-step transition probabilities is irreducible. The idea
is to next adjust these transition probabilities in such a way that
the resulting Markov chain has {7 (s), s € S} as unique equilibrium
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distribution. The reversibility equations are the key to this idea. If
the candidate-transition function (¢ | s) already satisfies the detailed
balance equations

m(s)q(t|s) =n(t)g(s|t) forall s,teS,

you are done: the Markov chain with the (¢ | s) as one-step transi-
tion probabilities is reversible and has {7(s)} as its unique equilib-
rium distribution. What should you do when the detailed balance
equations are not fully satisfied? The answer is to modify the one-
step transition probabilities by rejecting certain transitions. To work
out this idea, fix two states s and ¢ for which the detailed balance
equation is not satisfied. There is no restriction to assume that
w(s)q(t | s) > m(t)q(s | t). Otherwise, reverse the roles of the states
s and t. If w(s)q(t | s) > w(t)q(s | t), then, loosely speaking, the
process moves from s to ¢ too often. How could you restore this? A
simple trick to reduce the number of transitions from s to ¢ is to use
an acceptance probability «(t | s): the process is allowed to make the
transition from s to ¢ with probability (¢ | s) and otherwise the pro-
cess stays in the current state s. The question remains how to choose
a(t | s). The choice of a(t | s) is determined by the requirement

m(s)lg(t [ s)a(t | s)] = 7(t)[a(s | t)a(s [ 1)].

Taking a(s | t) = 1 for transitions from ¢ to s, you get

m(t)g(s | t)
m(s)q(t|]s)

Therefore, for any s,t € 5, the acceptance probability is defined by

a(t]s) =

a(t | s) = min [77:(

Finally, the one-step transition probabilities to be used in the algo-
rithm are defined by

q(t | s)a(t|s) for t # s
1=> " sat]s)a(t]s) fort=s.

auu(t]s) = {
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The Markov chain with these one-step transition probabilities satis-
fies the detailed balance equations 7(s)qnrm(t | s) = w(t)qarm (s | t)
for all s,t. Therefore, this Markov chain has {m(s), s € S} as its
unique equilibrium distribution. It is important to note that for the
construction of the Markov chain, it suffices to know the 75 up to a
multiplicative constant because the acceptance probabilities involve
only the ratio’s m(s)/m(t).

Summarizing, the Markov chain operates as follows. If the cur-
rent state is s, a candidate state ¢ is generated from the probability
mass function {q(t | s), t € S}. If t # s, then state ¢ is accepted with
probability a(t | s) as the next state of the Markov chain; otherwise,
the Markov chain stays in state s.

Metropolis—Hastings algorithm

Step 0. Choose probability mass functions {q(t | s),t € S} for
s € S such that the Markov matrix with the ¢(¢ | s) as elements is
irreducible. Choose a starting state sqg. Let n := 1.

Step 1. Generate a candidate state ¢, from the probability mass
function {q(t | sp—1), t € S}. Calculate the acceptance probability

T(tn)q(sn—1 | tn)
7r(Sn—l)Q(tn ’ Sn—l)’

a = min

Step 2. Generate a random number u from (0,1). If u < «, accept
t, and let s, := t,,; otherwise, s, := s,,_1.
Step 3. n:=n + 1. Repeat Step 1 with s,_1 replaced by s,.

Note that when the chosen probability densities ¢(¢ | s) are symmet-
ric, that is, q(t | s) = q(s | t) for all s,t € S, then the acceptance
probability a in Step 1 reduces to

t
a = min <7T(n), 1) .
T (Sn—l)
In applications of the algorithm, one typically want to estimate

E[h(X)] for a given function h(z), where X is a random variable
with 7(s) as its probability density. If the states si,sa,..., Sy are
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generated by the Metropolis—Hastings algorithm for a sufficiently
large m, then E[h(X)] = > . h(s)m(s) is estimated by

This estimate is based on a law of large numbers result for Markov
chains, saying that lim,, % Y ey h(sg) = E[h(X)]. A heuristic
explanation is as follows. The probability 7(s) can be interpreted
as the long-run fraction of transitions into state s and so, for large
m, 7(s) = w, where m(s) is the number of times that state s oc-
curs among the sequence sy, 52, ..., 8p,. This gives Y o h(s)7(s) ~
m 2oses (s)m(s) = 5 3L h(sk).

The Metropolis—Hastings algorithm directly extends to the case of a
probability density 7(s) on a (multi-dimensional) continuous set S,
where you want to calculate [ _h(s)m(s)ds for the case that the
density 7(s) is only known up to a multiplicative constant.

What are the best options for the proposal functions ¢(¢ | s)? There
are two general approaches:

(a) In independent chain sampling the candidate state t is drawn
independently of the current state s of the Markov chain, that is,
q(t | s) = g(t) for some proposal density g(x). It is important that
the tail of the proposal density g(s) dominates the tail of the target
density 7(s) in order to have a well-mixing Markov chain.

(b) In random walk chain sampling the candidate state t is the cur-
rent state s plus a draw from a random variable Z that does not
depend on the current state. In this case, q(t | s) = g(t — s) with
g(z) the density of the random variable Z.

6.5.2 Gibbs sampler

The Gibbs sampler is another Markov chain Monte Carlo method. It
is frequently used in Bayesian statistics. Gibbs sampling is applicable
when a multivariate probability density function is not known explic-
itly or is difficult to sample from, whereas the univariate conditional
probability densities are known and are easy to sample from. For ease
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of presentation, consider a three-component joint probability density
m(x,y, z) of a random vector (X,Y, Z) whose univariate conditional
probability densities 7x(x | y,2), 7y (y | z, 2), and 7z(z | x,y) are
fully known.?® Starting with arbitrarily chosen values (o, %o, 20),
the Gibbs sampler iteratively updates one of the components of the
state (z,y,z). There are two common schemes to determine which
component to update. One scheme is to choose the component ran-
domly, the other known as the standard Gibbs sampler is to choose
the component by sequentially scanning through the components.

Standard Gibbs sampling goes as follows. If the current state is
(Zn, Yn, zn) after the nth iteration, the state is updated at the (n +
1)th iteration according to the scheme

a. Sample z,,41 from wx(z | yn, 2n)-
b. Sample ¥, 1 from WY(y | Tn+1, zn)
c. Sample 2,41 from 77(z | Zpy1, Ynt1)-

At each step of the sampling, the most recent values of the other
components are used in the univariate conditional densities. Letting
7" (z,y, z) and 7T§?> (x), ﬂg/n)(b), W(Zn)(z) be the estimates of w(x, y, 2)
and the marginal univariate densities mx (z), 1y (y), 7z(2), it can be
shown under conditions of irreducibility and aperiodicity that these
estimates converge to 7(x,y, z) and wx (z), 1y (y), 7z(z) as n — oo.

Example 6.8. In an actuarial model, the vector (X,Y,Z) has a
trivariate probability density m(z,y, z) that is proportional to

e
(Z) yx-i—a—l (1 _ y)z—xﬁ-,@—le—)\i‘
T z!

forx=0,1,...,2,0<y<1,and z =0, 1,.... The random variable
Z is the number of policies in a portfolio, the random variable Y is
the claim probability for any policy, and the random variable X is
the number of policies resulting in a claim. Take the data o = 2,
8 =8, and A = 50. How to estimate the expected value, the standard
deviation, and the marginal density of the random variable X7

36For clarification, take the case of discrete random variables. Then mx (x | v, 2)
is defined as P(X =z | Y = y and Z = 2) and can be written as the ratio of
P X=2zandY =yand Z=2z2)and ), P(X =sand Y =y and Z = z).
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Solution. The estimates can be found by the Gibbs sampler. The
univariate conditional densities can be explicitly determined by using

m(x,y, 2) m(x,y, 2)
x(x|y,2) ==, 7"y(ylzz2)= ,
> izo(8,y,2) fslzo (x,s,z)ds
m(x,y, 2)

and 7TZ(Z ‘ :C,y) - m

A little algebra shows that mx (x | y, z) is proportional to y*(1—y
as function of z with = = 0,1,...,z, my(y | z,2) is proportional
to y*to1(1 — y)*~**+B~1 as function of y with 0 < y < 1, and
mz(z | x,y) is proportional to [A(1 — y)]*"*/(z — z)! as function of
z with z =z, + 1,.... Thus, mx(z | y,2) is the binomial density
with parameters z and y, my (y | ,2) is the beta distribution with
parameters x4+« and z—x+ 3, and mz(z | z,y) is the Poisson density
shifted to x and having parameter A\(1—y). Next, it is straightforward
to apply the Gibbs sampler. Ready-to-use codes to simulate from
specific probability distributions are available in languages as Python
and R. The estimates 9.992 and 6.836 are found for E(X) and o(X)
after 100 000 iterations (the exact values are 10 and 6.809). Figure 18
gives the simulated histogram for the marginal density of X.

)Z—(E
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Figure 18: Gibbs results for the density of X.



Solutions to Selected Problems

Fully worked-out solutions to a number of problems are given. Including
worked-out solutions is helpful for students who use the book for self-
study and stimulates active learning. Make sure you try the problems
before looking to the solutions.

2.4. A useful trick is to imagine that both the balls and the boxes are
labeled as 1, 2, and 3. The sample space consists of 3% = 27 equally
likely outcomes (b1, ba, bg), where b; is the label of the box into which
the ball with label i falls. The number of outcomes in which only a
specified box remains empty is 2 x (g) = 6: two possibilities for the box
that gets two balls and (g) possibilities for these two balls. Thus, the
total number of outcomes in which exactly one box remains empty is
3 x 6 = 18. Thus, the sought probability is ;—? = %

2.5. It is often helpful to rephrase a probability problem in another
context. The probability that the other card has no free drinks either is
nothing else than the probability of getting 10 heads and 10 tails in 20
coin tosses (think about it!). To calculate the latter probability, use as
sample space the set consisting of all possible sequences of H's and T's
of length 20. The sample space has 2%° equally likely elements. There
are (7)) sequences having 10 H's and 10 T's. Thus, the probability
of getting 10 heads and 10 tails is (39)/2%° = 0.1762. Therefore, the
sought-after probability is 0.1762.

2.6. The strategy is that the daughter (father) opens door 1 (2) first. If
the key (car) is behind door 1 (2), the daughter (father) goes on to open
door 2 (1). If the goat is after the first opened door, door 3 is opened

215
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as second. Then four of the six possible configurations of the car, key,
and goat are favorable: the configurations (car, key, goat), (car, goat,
key), (key, car, goat), and (goat, key, car) are winning, and the two
configurations (key, goat, car) and (goat, car, key) are losing.

2.7. If the sets A and B are not disjoint, then P(A) + P(B) counts
twice the probability of the set of outcomes that belong to both A and
B. Therefore, P(A and B) should be subtracted from P(A) + P(B).
Let A be the event that the chosen card is a heart and B be the event
that it is an ace, then P(A) =13 P(B) % and P(A and B) = &5,

57"
and so P(A or B) = 52 5+ 52 52 52

Note: The formula for P(A or B) can be directly extended to

P(Aor BorC)=P(A)+ P(B)+ P(C)— P(A and B)
— P(Aand C) — P(B and C) + P(A and B and C).

More generally,

P(Ajor Ayor ... or A,) = ZP(Ai) - ZP(Ai and A;)
- i<j
+ Z P(A; and A; and Ay) — ...+ (=1)""'P(A; and ... and A,).

i<j<k

This is the inclusion-exclusion formula. This formula is very useful in
combinatorial probability. As an illustration, suppose that balls are put
in three bins numbered as ¢ = 1, 2, and 3 until each bin contains one or
more balls. Each ball is put in bin ¢ with probability p;, where p; = 0.2,
p2 = 0.3, and p3 = 0.5. What is the probability @,, that more than
n balls are needed to get at least one ball in each bin? For fixed n,
let A; be the event that bin ¢ is still empty after putting n balls in
the bins. Then @, = P(A; or Az or A3). Since P(A;) = (1 —pi)",
P(A; and Aj) = (1—p;—p;)" fori # j and P(A; and A and A3) =0,
the inclusion-exclusion formula gives

3 2 3
Qn = Zl—pz ZZ(l—pi—pj)” for all n. > 3.
i=1

i=1 j=i+1
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As sanity check, take n = 3. The alternative calculation Q3 = 1 —
3!p1paps gives the same answer 0.81 as the inclusion-exclusion formula.

2.8. The probability is >.7° (1 —p1 — p2)¥~1p) = o, = 0.40.

56T r

1/6

l/l6 5/=6
Figure 19: Meeting problem.

2.9. Translate the problem into choosing a point at random inside the
unit square. The probability that the two persons will meet within 10
minutes of each other is equal to the probability that a point chosen at

random in the unit square will fall inside the shaded region, see Figure 19.

The area of the shaded region is calculated as 1 —% X % = %. Dividing

this by the area of the unit square, you get that the desired probability
11

is 35

2.11. Imagine that the two cards are picked one by one. Then, using

the product rule, the probability of getting two red cards is % X % =
@ and the probability of getting one red card and one black card is
« 14

51 X 39 —|— 21 X 505 :1,)4 Alternatively, the probability of getting two red
cards is (124)/(221) = :133 and the probability of getting one red card and
one black card is (1) (])/ (%) = 4.

2.14. For the case of 4 boiled eggs and 2 raw eggs, the probability that

: Cer 24,32 4
the person who begins smashes a raw egg as firstis ¢ + 5 x £ X 7+ X

% X % X % x 1 = 0.6. For the other case, the probability is %—I— % —i—% = %
2.22. Let A be the event that Arthur wins the match and B; be the

event that Arthur loses ¢ games of the first two for ¢ = 0,1, and 2. By
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the law of conditional probability,
P(A) = P(A| By)P(By) + P(A | B1)P(B1) + P(A| B2)P(Bz2)
=1xp?+ P(A) x 2pq + 0 x ¢°.

2

This gives P(A) p2 = ﬁ, where the last equality uses the fact
that p* +2pg + ¢* = (p+ )* =

2.28. Let the hypothesis H be the event that the standard die was
picked and let the evidence E; be the event that the first roll of the die
has the outcome 6. The prior probabilities are P(H) = P(ﬁ) = 1, and
the likelihood ratio has P(E; | H) = £ and P(E; | H) = 3. Thus, the
posterior odds of the hypothesis H are
PH | Ey) 1)2 " 1/6 1

P(H|E) 1/2°1/3 2

which gives the updated value % = % for the probability that the

standard die was picked. The second question can be answered in two
ways. After the first roll has been done but before the second roll
will be done, you take the posterior probabilities P(H | E) = % and

P(H | E) = % as the prior probabilities for P(H) and P(H). Doing so
and letting F> be the event that the second roll has outcome 6, you get

P(H|Ey) _1/3 1/6 1

ol
I

P(H|E;) 2/3°1/3 4
and so the newly updated value of the probability that the standard
die was picked is % Alternatively, this probability can be calculated by
letting the evidence Ej o be the event that each of the first two rolls
of the picked die has outcome 6. Then, before the first two rolls are
done, the priors P( ) and P(H) are 5, and the likelihood ratio has
P(Ei12 | H)=% X% and P(E12 | H) = % x %. This leads to

P(H [ Biz) _1/2 1/36 1

P(H | Bz 127 1/9 &

which gives again the update % for the probability that the standard die
was picked. The Bayesian approach has the feature that you can contin-
uously update your beliefs as information accrues. Verify yourselves that
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the updated value of the probability that the standard die was picked
becomes % after a third roll with outcome 2. Note: this problem nicely
illustrates the Bayesian view that probabilities represent the knowledge
an observer has about the state of nature of a physical object.

2.29. Let the hypothesis H be the event that the person has the disease
and the evidence E be the event that he has tested positive. The prior
probabilities are P(H) = 0.001 and P(H) = 0.999. Also, the likelihood
ratio has P(E | H) = 0.99 and P(E | H) = 0.01. Thus, the posterior

odds of hypothesis H are % X % = % and so the posterior
probability of hypothesis H is lill/ll/llln = 0.0902. In other words, the

probability that the person has the disease is only 9.02% if the first test
is positive. The low value of this probability may be surprising when
not taking into account the base rate: most positive tests come from
people who don't have the disease. If a second independent test also
gives a positive test result, then use the posterior probabilities 0.0902
and 1—0.0902 = 0.9098 as new prior probabilities for P(H) and P(H).
This leads to the new posterior odds 8:888% X % = 9.815. Thus, after
a second positive test, the probability that the person has the disease is
e x 100 = 90.75%.

The posterior probabilities can also be heuristically argued be the
expected frequency approach. This is first done for the case that 0.1%
of the test population has the disease. Think of a large number of people,
say 10000. Of these 10000 people, 10 will have the disease on average,
and 9990 will not. Of the 10 persons with the disease 0.99 x 10 = 9.9
will test positive on average, and of the 9990 persons with no disease
0.01 x 9990 = 99.9 will test positive on average. Thus, the posterior
probability of the disease is equal to 9.9/(9.9 + 99.9) = 0.0902 when
the first test is positive. Similarly, if a second test is also positive, you
get the posterior probability 892.98/(892.98+-90.98) =0.9075.

2.38. Let X be the number of cards that need to be turned over. Using
conditional probabilities, E(X) = Zigzl kay, where a; = 2 and

(1 ! ) x (1 A ) « — 2 for k > 2
—(1-2)«... _ or :
o 52 52— k+2) 52— k+1 =
You can write ay, as [(,'*))/(,”%)] % s3=%=5- This gives E(X) = 10.6.

An alternative calculation is as follows. In a random shuffle, four aces
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divide the deck into five parts, each of which can contain from 0 to 48
non-ace cards. By a symmetry argument, all five parts must have the
same expected length of % = 9.6 cards. Thus, the expected number
of cards to be turned over until an ace appears for the ith time is
ix(96+1)=ix10.6fori=1,... 4.

2.39. E(X) = m(;?)/(lg) is maximal for m = 4 with E(X) = 25.
2.43. This problem is an application of the balls-and-bins model with
n= (462) bins (six-number combinations) and b = 5000 000 balls (tick-
ets). By the same reasoning as in Example 2.13, you find that the

expected value of the number of empty bins is n x ("T_l)b which
equals 2022388 for n = 5245786 bins and b = 5000000 balls. Thus,
the expected number of different six-number combinations filled in is
5245786 — 2022388 = 322 398.

2.44. Using the algebraic identities Y ), k = in(n+1) and 37 _; k* =
in(n+ 1)(2n + 1), the results are obtained after some algebra.

2.46. The formulas > 72 | kak~1 = (1_1I)2 and Y22, k(k — 1)2k=2 =

ﬁ for |z| < 1 are given in Section 1.2. The first formula shows

that B(X) = Y22, k(1 — p)Flp = = L1 The second
formula shows that E[X (X —1)] = 332, k(k — 1)(1 — p)*~!p is equal

P
1-0-p)? — p
to (12_13((11:5)))3 = 2(;;”). Thus, E(X?) equals 72(;;1;) +% = %, and

so 0(X) = QP;QP — (%)2 = P Note: the geometric distribution is
memoryless, that is, for any r, P(X >r+k | X >r) = P(X > k)
for k =1,2,..., as is easily verified by using the fact that P(X > j) =

(1 —p)7 for all j.

2.47. Writing 372, P(N > k) as 372,372, P(N = j), you get

that 377 P(N > k) equals >0, Z?{;B P(N=j)=372jP(N =
j) = E(N), by an interchange of the order of summation. In the same
way, you get the alternative formula for E[N(N —1)], using the identity

S ok =23 —1).

2.48. Let S be the number of purchases needed to get a complete set of
cards. Then S can be written as S = Yy + Y1+ - -+ Yy, where Y] is the



Solutions to Selected Problems 221

number of purchases needed to go from i distinct cards to 7+ 1 distinct

cards. Then Y; is geometrically distributed with parameter p; = 5(5)6i

and so E(Y;) = 2. This gives E(S) = 50 Zk L+ = 224.96. For the
case of ¢ equally likely cards, E(S) =c> f_; +.

2.50. Suppose the strategy is to stop as soon as you have picked a
number larger than or equal to r. The number of trials needed is geo-
metrically distributed with success probability p = 25_27?“1 (and expected

value 25 1) Each of the values r, r+1,...,25 is equaIIy likely for your

payout. Thus the expected net payoff is Zk P kX = r+1 25,2§+1

which can be simplified as 2(25+ r)— 25_r+1. This expression has the
maximal value 18.4286 for r = 19.

x 1,

2.51. Let the number a be your guess and Y be the randomly chosen
number. Your expected winning is E[g(Y")], where g(y) =a?fory >a
and ¢(y) = 0 otherwise. Then E[g(Y)] = Z}COOGH a*P(Y = k). Since
P(Y = k) = 1/100 for all k, you get E[g(Y)] = (100 —a)a?/100. This
expression is maximal for ¢ = 67 with 1481.37 as maximum value.

2.54. Let the random variable S be number of purchases needed to get
a complete set of cards. Then S = Z?ﬂolﬁ, where Y; is geometrically

)

distributed with parameter 5(5)5 and the Y; are independent. Using the
formula o (S) = ZfQOUQ(Yi) and results of Problem 2.46, 02(S) =

380 (52%)°(1 — 9951y = 3837.872 and so 0(5’) = 61.951. For the

case of ¢ equally I|ke|y cards, 02(S) = 2> 0, - = CY e %

2.60. Since P(X > ¢) = P(tX > tc) = P(eX > e!¢) for any t > 0,
you get the generic Chernoff bound by applying Markov's inequality with
Y = eX and a = e'®. Noting that P(X < c¢) = P(tX > tc) for t <0,
a repetition of the above argument gives the generic bound P(X <
c) < E(e!X)/e' for any t < 0. The bounds depend on the moment
generating function E(e'X) and the chosen value for t. There are many
Chernoff bounds as a result. Chernoff bounds are particularly useful to
bound tail probabilities of a finite sum of independent random variables.
For example, suppose that X = X + --- + X,,, where Xq,..., X,
are independent Bernoulli variables with P(X; = 1) = p;. Then, the
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following Chernoff bounds can be derived
P(X >ap) < e 9D for q > 1, P(X <ap) < e 9D for 0 < a < 1,

where = E(X) = 3" p; and g(a) = aln(a) —a+1. For0 < 4§ <1,
these bounds are the basis for the simpler but weaker Chernoff bounds

152

P(X> 1+ <e 3" and P(X < (1-08)p) < e 25K,
The Chernoff bounds P(X > u+a) < e~29°/m and P(X <p—a)<
e=39°/n for any a > 0 can be derived with X = >} | X}, and p =
E(X), where Xi,...,X,, are independent random variables on [0, 1].
In computer science, Chernoff bounds are often used in the performance
analysis of randomized algorithms.

2.62. Put for abbreviation ux = E(X), py = E(Y), ox = /var(X),
oy = /var(Y), and p = p(X,Y). Writing Y — (o + 8X) in the form
Y — py — B(X — ux) + (uy — a — Bux) and using the linearity of
expectation, you get after some algebra that

E[(Y = (a+8X))%] = 0% + 20% — 2Bcov(X,Y) + (uy — a— Bux)>.

Putting the partial derivatives with respect to « and S equal to zero
and noting that cov(X,Y) = poxoy, you find that 5 = % and o =
y — %MX. which gives the regression line y = py + p 2= (z — px).
Note: if n independent observations (x;,y;) are given, then, for n large,
jtx can be estimated by 7 = %Z?:l xj, py by g = %Z?Zl yj, ox by
ox = 5y iy (zj —T)? oy by gy = £ Y0 (y; — )% and p(X,Y)
by %Z?:l(f’?j —Z)(y; —9)/(@x0y). The least squares regression line
is trustworthy if the residuals — the differences between the observed
values y; and the fitted values §j; of the dependent variable Y — do not
show a pattern but are randomly scattered around zero. The residual
plot, plotting the residuals y; —7; against the x;, provides a useful visual
assessment of the appropriateness of the linear regression model.

2.63. The underlying sample space for (X,Y) is the set of the 36
equally likely sample points (i, 7) for i, = 1,...,6, where i is the score
of the first die and j is the score of the second die. The variable Y is
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equal to 10 for the three sample points (4,6), (6,4), and (5,5). Thus,
P(X =5|Y =10) = 3 = and P(X =6 | Y =10) = /38 = 2,
andso E(X |Y =10)=5x § +6x 2 =1,
2.64. Since P(X =z and Y =y) = (y—z — 1)/(1g0) for 1< <98
and z + 2 < y < 100, you get the marginal distribution P(Y = y) =

Sy—1)(y—2)/("3°) for y = 3,...,100 and the conditional distribution

P(X:xyyzy):%_ This leads to E(X | Y = y) =

Ty Sitey -z —1) = dy.

3.7. Let the indicator variable I be 1 if the outcome k appears two or
more times when rolling six dice and let Ij; be 0 otherwise. Then E(I}) =
P(Ij = 1), where P(I}, = 1) is equal to 3_°_, () (§)(§)°~7 = 0.2632.
This gives E(Y0_, Ix) = So_, E(I;) = 1.579.

3.9. Your bankroll after 10 bets is 1.7% x 0.5'07% x 100 dollars if k of
the 10 tosses result in heads. The largest value of k such that 1.7% x
0.50=% < 0.5 is k = 5. The binomial probability of getting no more
than 5 heads in 10 tosses is 0.6230. The lesson is: do not simply rely
on averages in situations of risk, but use probability distributions!

3.10. For fixed n, let A be the event that some person has to pay for the
beer when n friends are still in the game. Let p, = P(A). Then, p; = 1.
By the law of conditional probability, p, = >, P(A | By)P(By) for
n > 2, where By is the event that £ tails appear when n coins are tossed.
Since P(A | By) = pn—i and P(By) = (})(3)", you get the recursion
Pn = Z;(l) (1) (3)" pn—y for n = 2,3,.... Starting with p; = 1, the
Pr,can be recursively computed. This gives p; = 0.7211. Recursive
thinking can be very rewarding!

3.15. A bit of imagination shows that this problem can be translated
into the urn model with R = 500 red and W = 999498 white balls,
where the red balls represent the 500 acquaintances of the first person.
The sought probability is given by the probability that at least one red
ball will be drawn when 500 balls are randomly taken out of the urn.
This probability is given by the ratio of 1 — (995?0%98) and (99590%98) and
equals 0.2214. The probability of 22% is surprisingly large. Events are

often less “coincidental” than we may tend to think!
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3.24. The probability P(X; =z and ... and X} = ) equals

_ AT+ T r1+ -+ T Tp—1 + Tp
o >X( ) (ot

(z1 4+ xp)!
= e_>‘p1 (Apl)zl, NEE _>\pb Apb b .
1'1! iL'b'
This implies that the random variables Xi,..., X} are independent,

where X is Poisson distributed with parameter Ap; for j = 1,...,b. By
the independence of the separate Poisson distributions, the Poissonized
balls-and-bins model is computationally easy to handle. For example,
the probability that each bin will contain at least one ball is

(1— €M) x--ox (1 — M),

Similarly, the probability that each bin will contain two or more balls is
(1 — et — Apre 1) x - . x (1 — e — Appe™*P¢). The Poissonized
balls-and-bins model in which the number of balls to be put into the bins
is randomized and has a Poisson distribution with expected value A = n
can be used to get approximate results for the classical balls-and-bins
model in which a fixed number of n balls are put into the bins, where
n is large. The Poisson distribution with expected value A = n is nearly
symmetric around n and has most of its mass concentrated near n when
n is large, and so it is reasonable to use the Poissonized balls-and-bins
model as an approximation to the classical balls-and-bins model, see also
Section 4.7 and Problem 5.35 which deal with the coupon collector’s
problem. This problem is a manifestation of the balls-and-bins model.

3.26. The length X of a gestation period is N(u,o?) distributed with
1 = 280 days and ¢ = 10 days. The probability that a birth is more than
15 days overdue is 1 — P(X < 295). This probability can be evaluated
as 1 — P(X5280 < 295-280) — 1 — ¢(1.5) = 0.0668.

3.29. Let X denote the demand for the item. The normally distributed
random variable X has an expected value of u = 100 and satisfies
P(X > 125) = 0.05. To find the unknown standard deviation o of X,
write P(X > 125) = 0.05 as (X100 > 125-100) — 1 (25) = 0.05.
Thus, @( ) = 0.95. The percentile £y.95 = 1.645 is the unique solution
to the equation ®(z) = 0.95. Thus, 22 = 1.645, which gives o = 15.2.
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3.34. Letting X1, ..., X,, beindependent random variables with P(X; =
1) = P(X; = —1) = 0.5 for all ¢, the random variable D,, can be repre-
sented as D, = | X1+ -+ X,|. Since E(X;) = 0and o(X;) = 1 for all
1, the expected value and standard deviation of X7 +---4 X, are 0 and
v/n. By the central limit theorem, the random variable X7 + --- + X,
is approximately N(0,n) distributed for large n. Let's now calculate
E(|V|) if V is N(0,0?) distributed:

2 o0 1,2 2
\%4 vle= 2V gy = ve 37 d.
e =

You get E(|V|) = \ﬁ I e —9W duy = % by the change of variable
w = (v/o)?. This gives the desired result for E(D,,).

3.36. Let the random variable X; be the dollar amount the casino loses
on the ith bet. The X; are independent random variables with P(X; =
10) = and P(X; = —5) = 2. Then E(X;) = £ and 0(X;) =
37 38. The total dollar amount lost by the casino is 22500 X;. By the
central limit theorem this sum is apprOX|mate|y N (p,0?) distributed
with g = 2500 >< and o =50 >< 38. The casino will lose no more

than 6500 dollars W|th a probablllty of about @(650‘? 2l = 0.978.

3.38. By the memoryless property of the exponential distribution, your
waiyng time at the bus stop is more than s minutes with probability
e~ 10°, Solving e”170° = 0.05 gives s = 29.96. Thus, you should leave
home about 7:10 a.m.

3.39. The result follows by noting that P(t < X <t+ At | X > t)
equals (e M — e MR Jo=M — ] _ oA — NAt + o(At), where
o(At) is the generic symbol for a term that is negligibly small compared
to At as At tends to zero.

Note: An alternative definition of a Poisson process with rate \ is: for
any t > 0, the probability of exactly one event in a very small time
interval (¢,t + At) is AAt + o(At), the probability of zero events in
the interval is 1 — AA¢ + o(At), and the probability of two or more
events in the interval is o(At) itself, independent of the history of the
process before time t. The alternative definition of the Poisson process
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can be extended to the situation in which the occurrence of events is
time-dependent. A counting process {N(t),t > 0} is called a non-
homogeneous Poisson process with event rate function A(t) if

(a) the numbers of events in disjoint time intervals are independent.
(b) P(N(t + At) — N(t) = 1) = A(t)At + o(At) as At — 0.
(c) P(N(t+ At) — N(t) > 2) = o(At) as At — 0.

If the event rate function A(¢) is bounded in ¢, the non-homogeneous
Poisson process can be constructed from a homogeneous Poisson pro-
cess with rate A, where A > A(¢) for all ¢. If an event occurring at
time s is accepted with probability @ and is rejected otherwise, then
the counting process {N(t),t > 0} with N(¢) the number of accepted
events up to time ¢ is a non-homogeneous Poisson process with event
rate function A(f). The explanation is simple: the probability of an

accepted event in (¢,t + At) is

AAE x A(;) + o(At) = A(t)At + o(At) as At — 0.

This construction enables you to simulate a non-homogeneous Poisson
process.

3.42. Your win probability is the probability of having exactly one signal
n (s,T). This probability is e *7=*)\(T — 5). Putting the derivative
of e T =) \(T' — s) with respect to s equal to zero, you get that the

optimal value of s is T — % The maximal win probability is e .

3.43. Imagine that there is an infinite queue of cars waiting to be served.
Then, service completions occur according to Poisson process with a rate
of 1/15 car per minute. The sought probability is the probability of no
more than one service completion in 20 minutes, and is thus equal to
the Poisson probability ¢=20/15 4 ¢=20/15 20715 — ( 151

3.47. Let the random variable X; be the score on exam ¢ for i = 1, 2.
(a) The density of X is the N(u1,07) = N(75,12) density. This gives

80— 75

P(X;>80)=1— <I>< ) — 0.3385.
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(b) The random variable X1 + Xs is N(u1 + pa, 0% + 03 + 2po103) =
N(140, 621) distributed. Thus,

150 — 140
V621

(c) The random variable Xo — X7 is N(ug — 1,03 + 03 — 2po102) =
N(—10,117) distributed. Thus,

P(X1 + X5 > 150) = 1 — <I>< ) = 0.3441.

10
V117
(d) The conditional distribution of X5 given that X; = 80 equals the

N (65 + 0.7 x % X (80 — 75), (1 — 0.49) x 225) = N(69.375,114.75)
distribution. Thus,

P(X» >X1):1—<I>< ):0.1776.

80 — 69.375

P(X2>X1\X1:80):1—®< e

) — 0.1606.

6.1. p5y + oy = 0.625.

6.2. Use a Markov model with four states SS, SR, RS, and RR
describing the weather of yesterday and today. The one-step transition
probabilities are

from\to SS SR RS RR

SS 09 01 O 0
SR 0 0 05 05
RS 0.7 03 O 0
RR 0 0 045 0.55

The probability of having sunny weather five days from now if it rained
(5)

both today and yesterday is PRR.SS —i—pg%ﬁs. Calculating
0.7178 0.0977 0.0879 0.0966
0.6151 0.1024 0.1325 0.1501
0.6837 0.0997 0.1024 0.1142 |~
0.6089 0.1028 0.1351 0.1532

P’ =

you find that the desired probability is 0.6089 + 0.1351 = 0.7440.
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6.3. This problem is an instance of the balls-and-bins model, as can be
seen by imagining that the passengers inform the bus driver one by one
of their destination before boarding the bus. The state is the current
number of known stops. The p;; are po1 = 1, p;; = % and p; 11 = 1—%
for 1 <14 <6, prr = 1 and p;; = 0 otherwise. Calculating P10 gives
(p(()}co)):(0.0000, 0.0000, 0.0069, 0.1014, 0.3794, 0.4073, 0.1049). As
a sanity check, 7(1 — (g)lo) = 5.502 is the expected number of stops.

6.4. Let the indicator variable I be 1 if it is sunny k days from now
and be 0 otherwise, given that it is cloudy today. Then P(I; = 1) =

p(cl% This gives E(Z/,Z:1 Ik) = 22:1 E(I) = Zzzlpg%, and so the
expected number of sunny days is 4.049.

6.9. Take a Markov chain with states s = 0,1, ..., 182, where state 4
means that number 53 did not occur in the last ¢ draws of the lottery.
State 182 is absorbing with pig2 182 = 1 and the other p;; are p;g = %,
Dijit1 = % and p;; = 0 otherwise. The element pgfbl)w of the matrix
product P" gives the probability that within n draws there will be some
window of 182 consecutive draws in which number 53 does not occur.

Note: the above solution method can be used as an approximation
method for the following practical problem. For a Poisson process with
rate A, what is the probability that s of more events will occur in a
time window of length w somewhere in a given time interval (0,¢)? An
example is Problem 5.35. The approximation approach is to divide the
interval (0,t) in n = L time slots of length A with AA close to zero
(say, 0.01) and then consider a sequence of n independent Bernoulli
trials with success probability p = AA. An absorbing Markov chain
can then be used to calculate the probability that there is somewhere a

window of s = % consecutive successful slots.

6.10. A Markov chain with four states suffices. Take as state the
number of filled glasses. State 0 is absorbing, p1p = % P12 = % P21 =
2 (

3. D23 = % and p32 = 1. The sought probability is 1 —pggo) = 0.3660.

6.13. The state of the Markov chain is described by the triple (4,71, 72),
where i denotes the number of smashed eggs, 71 is the number of raw
eggs picked by the guest, and 75 is the number of raw eggs picked by
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the host of the game. The states satisfy 0 < ¢ < 11 and r; + 71 < 3.
The process starts in state (0,0,0) and ends when one of the absorbing
states (4,2,0), (¢,2,1), (4,0,2), or (i,1,2) is reached. The guest loses
the game if the game ends in a state (4,2,0) or (i,2,1) with 7 odd.
In a non-absorbing state (i,71,72) with i even, the guest picks an egg
and the process goes either to state (i + 1,71 + 1,72) with probability
4_13%[2 or to state (i + 1,71,72) with probability 1 — 4_{217:[2. In a
non-absorbing state (4,71, r2) with 7 odd, the host picks an egg and the
process goes either to state (i+ 1,71, 72+ 1) with probability 4_{217__2.7’2 or
to state (i + 1,71, r2) with probability 1 — 4_1’”217__[2. This sets the matrix
P of one-step transition probabilities. The probability that the guest will
lose can be computed by calculating P!, It is easier to use a recursion
to calculate the probability of the guest losing the game. For any state
(i,71,72), let p(i,r1,r2) be the probability that the guest will lose if
the process starts in state (¢,71,72). The goal is to find p(0,0,0). This
probability can be calculated by a recursion with the boundary conditions
p(4,2,0) = p(i,2,1) =1 and p(i+1,0,2) = p(i+1,1,2) =0 for i = 3,
5, 7,9, and 11. The recursion is

4—7‘1—7"2
12 —4

4—7‘1—7‘2

p(i,?"l,’l“g): p(i+1,7“1+1,7“2)+(1— 12— )p(i+1,T1,T2)

fori =0, 2, 4, 6, 8 and 10, and

4—r1—179
12 — 1

p(i,r1,re) = p(i+1,r1,r2+1)+< —%)p(i—&—l,rl,rg)
fori =1, 3,5, 7,9 and 11. The recursive computations lead to the
value 8 for the probability that the guest of the show will lose the game.
The expected value of the number of trials can be calculated as 6.86.
Interestingly enough, the game turns out to be fair for the case of three
raw eggs and nine boiled eggs, in which case the expected number of

trials is 8.41.

6.17. The first thought might be to use a Markov chain with 16 states.
However, a Markov chain with two states 0 and 1 suffices, where state 0
means that Linda and Bob are in different venues and state 1 means that
they are in the same venue. The one-step-transition probability po; is
equal to po; = 2x0.4% (0.6x 1)+ (0.6x2) x (0.6x 1) = 0.24. Similarly,
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p11 =0.4x0.4+40.6 x (0.6 x 3) = 0.28. Further, poo = 1—po1 = 0.76
and p1g = 1 — p11 = 0.72. Solving the equations mg = 0.767g + 0.72m
and mp + m = 1 gives mg = % and 1 = %. The long-run fraction of

weekends that Linda and Bob visit a same venue is 7 = %.

6.18. Let state 1 correspond to the situation that the professor is driving
to the office and has his driver’s license with him, state 2 to the situation
that the professor is driving to his office and has his driver's license at
home, state 3 to the situation that the professor is driving to the office
and has his driver’'s license at the office, state 4 to the situation that
the professor is driving to home and has his driver's license with him,
state 5 to the situation that the professor is driving to his home and
has his driver’s license at the office, and state 6 to the situation that
the professor is driving to his home and has his driver's license at home.
The process describing the state is a Markov chain with state space

I={1,2,...,6}. The matrix of one-step transition probabilities is
from /to 1 2 3 4 5 6
1 0 0 0 05 05 O
2 0 0 0 O 0 1
3 0 0 0 05 05 O
4 075 025 0 O 0 O
) 0 0 1 0 0 0
6 075 025 0 O 0 O

Clearly, the Markov chain is periodic and has period 2. The equilibrium
equations are m; = 0.75m4 + 0.75mg, Mo = 0.2574 + 0.257g, w3 = 735,
my = 0.50m; + 0.507s3, w5 = 0.50m; 4+ 0.5073, and wg = ma. Solving
these equations together with my +--- + g = 1 gives 11 = 3 = my =
s = 0.2143, my = mg = 0.0714. The long-run proportion of time the
professor has his license with him is equal to 7 + m4 = 0.4286.

6.19. (a) The equilibrium probabilities are g5 = 0.6923, Tsr = Trs =
0.0989, mrr = 0.1099. The long-run fraction of sunny days is wgs +
mrs = 0.7912. (b) The long-average sales per day is 1000 x 0.7912 +
500 x 0.2088 = 895.60 dollars. The standard deviations o1 and oy are
irrelevant for the long-run average sales.
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