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Preface

Probability provides by far the most powerful and successful calculus for dealing
with uncertainty. The rules of probability are reasonably quick to master; much
of the interest comes from the tools and techniques that have been developed
to apply probability in different areas. This book provides a high-level guide to
probability theory and the tool set that has developed around it. The text started
life as notes for a course aimed at research students in engineering and science. |
hope the book has retained some of that original spirit. Perhaps inevitably, the
book has grown and many details added. I would, however, encourage the reader
not to get bogged down in the details. I believe that you can pick up the technical
details when you come to use the tools to solve your problem, but it is important
to have some feel for what tools are out there. The book reflects my personal
interests and knowledge. No doubt there are important areas I have missed. The
one benefit of my ignorance is that it keeps the book to manageable proportions.
There are likely to be areas which are over-represented due to the quirks of my
personal interest. [ hope the balance I've struck is not too idiosyncratic and gives
a reasonable overview of the practical applications of probability.

I personally dislike books that demand of their readers that they do all the
problems. Consequently, I had initially intended to avoid providing exercises. In
the end, however, I reconsidered when a student explained that he learns through
doing. I have therefore provided exercises at the end of each chapter. Because I
dislike exercises where I don’t know if I have the right solution, I have supplied
complete solutions to all the problems. The reader is invited to treat the exercises
in any way they wish. You may want to ignore the exercises altogether, just read
the solutions, or carefully work through them yourself. For those who wish to do
even more exercises you may like to consult Grimmett and Stirzaker (2001b) or
Mosteller (1988).

This book intentionally focuses on giving an intuitive understanding of the
techniques rather than providing a mathematically rigorous treatment. I found it
difficult, however, to just present formula and I have mostly tried to give complete
derivations of important results. To avoid expanding the text too much I have
consigned some of the technical material to appendices. I have tried to correct
the text as much as I can, but I possess in abundance the human disposition to err.
If errors remain (and I am sure they will), I hope they are not too off-putting. One
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xii Preface

useful lesson (though one I would prefer not to teach) is never believe things just
because they are in print. This means being able to check results for consistency
and derive them from first principles. Of course, it is useful to have a relatively
reliable source rather than check everything from scratch. The only reward I
can offer is the knowledge that I will put any corrections I receive into any new
editions.

I am deeply indebted to Robert Piché from Tampere University of Technology,
who as a reviewer of the book did me the great honour of providing a very
detailed list of improvements and corrections. Not only did he perform the
Herculean task of correcting my English, but he provided a lot of technical
guidance, introducing me, for example, to a cleaner proof of Jensen’s inequality,
among many other significant improvements. I would also like to thank Dr Jim
Bennett for carefully reading the manuscript and pointing out additional errors
and confusions.



Nomenclature

X, y, ... Normal variables are written in italics

X, Yy, ... Vectors are written in bold roman script

X, Y, ... Random variables are written as capitals

X, Y, ... Random vectors are written as bold capitals

M, A, ... Matrices are written as bold sans-serif capitals

Fx(x) Cumulative probability function of a random variable X, page 12
fx(x) Probability density of a continuous random variable X, page 12

M(x|p, ) Multivariate normal distribution with mean g and covariance X, see
Equation (2.12), page 37

N(x|u, o) Normal (or Gaussian) distribution, see Equation (2.4), page 31

Bern(X|u) Bernoulli distribution for binary variables, see Equation (4.1),
page 60

Bet(x|a, b) Beta distribution, see Equation (2.7), page 34

Bin(m|n, p) Binomial distribution, see Equation (2.1), page 26

Cat(X|p) Categorical distribution, see Equation (4.2), page 68

Cau(x) Cauchy distribution, see Equation (2.8), page 35

Dir(x|@) Dirichlet distribution, see Equation (2.13), page 38

Exp(x|b) Exponential distribution, see Equation (2.6), page 32
Gam(x|a, b) Gamma distribution, see Equation (2.5), page 31

Hyp(k|N, m,n) Hypergeometric distribution, see Equation (2.2), page 27
LogNorm(x|u, o) Log-normal distribution, see Equation (5.2), page 85

Mult(n|n, p) Multinomial distribution, see Equation (2.10), page 36
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Xiv Nomenclature
Poi(m|u) Poisson distribution, see Equation (2.3), page 28

U(x|a, b) Uniform distribution in the interval (a, b), page 48

Wei(x|A, k) Weibull distribution, see Equation (2.6), page 33

0 The empty set

=

Estimator of the quantity x, see Equation (4.1), page 61

A¥ The (k — 1)-dimensional unit simplex (i.e. the set of k-component vectors
with non-negative elements that sum to 1), see Equation (2.9), page 36

Ak The k-dimensional discrete (integer) simplex that sums to n (i.e. the set
of k non-negative integers that sum to n), see Equation (2.11), page 36

log(x) Denotes the natural logarithm of x

N The set of natural numbers (i.e. integers greater than 0)
R The set of real numbers
Q The set of all possible elementary events

[[predicate]] indicator function returning 1 if predicate is true and zero otherwise,
see Equation (1.8), page 16

|A| Determinant of matrix A, see Equation (5.2), page 97

X ~ fx The random variable X is drawn from the distribution fx(x), see
Equation (3.2), page 47

Ex [g(X)] Expectation with respect to random variable X of some function
g(X), see Equation (1.6), page 15

E [g(X)] Short for Ex [g(X)] when there is no ambiguity which variable is being
marginalised (averaged) over, see Equation (1.6), page 15

Cov[X,Y] The covariance of two random variables defined as E [XY]| —
E [X] E [Y], see Equation (1.10), page 18

Cov [X , Y] The covariance matrix of two random vectors X and Y defined so
that the matrix C = Cov[X, Y] has components C;; = Cov|X;,Y;], see
Equation (1.10), page 18

Cov[X] Short form for the covariance matrix Cov [X, X|, see Equation (1.10),
page 18

Var[X] The variance of variable X given by E [X?] —E [X] 2, see Equation (1.8),
page 17

-A Not the event A (logical negation)



Nomenclature XV
AV B Theevent A or B (logical or)

AN B Theevent A and B (logical and)

P (A) Probability of event A happening, see Equation (1.0), page 3

P (A, B) Joint probability of event A and event B both happening, see Equa-
tion (1.0), page 5

P (A|B) Conditional probability of event A happening given event B happens,
see Equation (1.1), page 6
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This book is a survey of the mathematical tools and techniques in probability and
is aimed primarily at scientists and engineers. The intention is to give a broad
overview of the subject, starting from the very basics but covering techniques
used at the forefront of research in probabilistic modelling. Before we get to
some of the more advanced tools it is necessary to understand the language of
probability and some of the foundational concepts.

This chapter sets up the mathematical language we need in order to discuss
probabilities and their properties. Most of this consists of definitions and simple
mathematics, but it is a prerequisite for talking about the more interesting tools
that we meet in later chapters.



2 Introduction

1.1 Why Probabilities?

We live in a world full of uncertainties. The toss of a coin is sufficiently uncertain
that it is regularly used to decide who goes first in many sporting competitions.
Yet even with coin tosses we can make strong predictions. Thus if we toss a coin
1000 times with overwhelming probability, we are likely to get between 450 and
550 heads. The mathematical language that allows us to reason under uncertainty
is probability theory. This book aims to provide a broad-brush overview of the
mathematical and computational tools used by engineers and scientists to make
sense of uncertainties.

In some situations what we observe is the consequence of so many unobserved
and uncertain events that we can make extremely precise predictions that are
taken as laws of physics even though they are just statements about what is over-
whelmingly probable. The field of statistical physics (aka statistical mechanics)
is founded on probability. However, uncertainty is ubiquitous and often does
not involve a sufficient number of events to enable precise predictions. In these
situations probability theory can be important in understanding experiments
and making predictions. For example, if we wish to distinguish between natural
fluctuations in the weather and the effects of climate change it is vital that we
can reason accurately about uncertainty. However, probability can only answer
these pressing scientific questions in combination with accurate models of the
world. Such models are the subject matter of the scientific disciplines. Probability
theory acts as a unifying glue, allowing us to make the best possible predictions or
extract the most amount of information from observations. Although probability
is not a prerequisite for doing good science, in almost any discipline in science,
engineering, or social science it enhances a practitioner’s armoury. I hope to
give a spirit of the range of applications through examples sprinkled across
the text.

Becoming a researcher in any field involves developing a toolkit of techniques
that can be brought out as needed to tackle new problems. To be an accomplished
user, the researcher has to acquire experience through practical application of
the tools. This text cannot replace that step; rather, its intention is to make new
researchers aware of what probabilistic tools exist and provide enough intuition
to be able to judge the usefulness of the tool. In many ways this text is my
personal compilation of tricks I've learned over many years of probabilistic
modelling. The subject, and consequently this book, is mathematical, and in
places I go into detail, but I recommend that you skip sections when you
are getting bogged down or feel you have to push on even though you don’t
understand everything. This is a high-level tour; when there is a technique you
really want to use you can come back and spend the time necessary to master that
technique.

We start slowly by carefully, defining the key concepts we use and point out
possible misunderstandings. Apologies to those who find this too elementary;
however, we will quickly get into more advanced material. Without any more
fuss let’s get started.



1.2 Events and Probabilities 3

1.2 Events and Probabilities

It is useful to know the mathematical language and formalism of probability.
There are two main reasons for this: firstly, it allows you to read and understand
the literature; secondly, when you write papers or your thesis, it is necessary to
be able to talk the talk. For example, if you have a quantity you are treating as a
random variable, you should call it a random variable, but this also requires you
to know precisely what is meant by the term.

1.2.1 Events

The standard mathematical formulation of probability considers a set of elemen-
tary events, Q, consisting of all possible outcomes in the world we are considering.
For example, we might want to model the situation of tossing a coin, in which
case the set of outcomes are Q = {heads, tails}, or if we roll a dice the elementary
events would be Q = {1,2,3,4,5,6}. We take an event, A, to be a subset of
the space of elementary events A C Q (note that there is a distinction made
between the terms ‘elementary event’ and ‘event’, although an event could be an
elementary event). In rolling a dice, the event, A, might be the dice landing on a
six, A = {6}, or a number greater than 3, A = {4,5,6}. The probability of an
event is denoted by P (A) Probabilities take values between zero and one

0<P(A) <1,

with the interpretation that P (A) = 0 means that the event never occurs and
P (A) = 1 meaning that the event always occurs. In this set theory view of
probabilities the probability of no event occurringis 0, i.e. P (#) = 0 where () = {}
is the empty set. In contrast, one elementary event must happen so that P (Q) =1.
For a fair coin we expect P ({head}) = P ({tail}) = 1/2.

Talking about events gets us immediately into a linguistic dilemma. We can
either consider an event to be a set of elementary events (the set theory point of
view), or we can take it as a true—false proposition (the propositional logic point
of view). Thus, when talking about a pair of events, A and B, we can view the
event, C, of both A and B occurring as a set theoretic statement

C={wweAandwec B} =ANB

or alternatively as a logical statement C = A A B about predicates (both A and
B are true). The event, D, that either A or B (or possibly both) are true can be
viewed as a set theoretic statement, D = A U B, or as a propositional statement,
D = AV B. Similarly the event, E, that A does not occur can either be written in
set languageas E = A° = Q— A = {w|w ¢ A} or as the logical statement E = —A.
Both languages have advantages. The set theoretic language makes many simple
results in probability transparent that are more obscure when using the language
of propositional logic. However, often when modelling a system it is much easier
to think in terms of propositions. In this chapter we will tend to migrate from a
language of set theory to the language of propositions.

We use the standard
notation of U and
N to denote union
and intersection or
sets and vV and A to
denote ‘logical or’
and ‘logical and’.
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4 Introduction

Returning to the axioms of probability, denoting the event ‘A does not occur’
by —A then

P (A)+P(~A) =P (Q) = 1

with the intuitively clear meaning that the event will either occur or not (a coin
is either a head or not a head, or a dice is either a six or not a six). If we consider
a set of exhaustive and mutually exclusive events, {A;|i € I}, where I € N is an
index set (that is a set of integers that label the events) then

> P(A) =1

iel
Here exhaustive means that we have covered every possible outcome (i.e.
Uicr Ai = Q) and mutually exclusive means that A; N A; = () for all distinct
pairs i and j. In the example of the dice, the events {1,6}, {2,5}, and {3,4}
form an exhaustive and mutually exclusive set of events. When we roll a dice one
of these events will occur. Note that real coins and real dice behave differently
from mathematicians’ coins and dice. A real coin might land on its edge, or it
might roll away and get lost. Probability, like all applied mathematics, is a model
of reality. It is the responsibility of the user of probability theory to ensure that
their model captures the features that they care about.

Many mathematical texts formalise probabilities in terms of a probability
space, consisting of a state space (or set of elementary events), Q, a family of all
possible events, A, which will frequently be the set of all subsets of elementary
events (A = 29, i.e. the power set of Q) and a probability, P (A), associated with
each event A € A. Thus a formal way of referring to probabilities is as a triple
(Q, A, P). Don’t be put off: this is just how mathematicians like to set things up.

What happens when the set of events are not denumerable? This would occur
if the events took a continuous value, for example, what will the temperature be
tomorrow?, or where does a dart land? This leads to a difficulty: the probability
of any elementary event may well be zero! Worse, the family of all events, A4,
can potentially become precarious, as it involves subsets of a non-denumerable
sets. In over 30 years of working with probabilities I am yet to meet a case where
anything precarious actually happened. To rigorously formulate probabilities in
a way to avoid contradictions, even when working with the most complex of
sets Andrei Kolmogorov borrowed ideas from mathematical analysis known as
measure theory. If you pick up a mathematics text on probability you will get a
good dose of measures (sigma), o-fields (a generalisation of power sets), filtra-
tions (a hierarchy of events), etc. However, don’t panic. This formalism is massive
overkill for nearly all situations. In most of engineering or science you will never
face the pathological functions that keep mathematicians awake at night and
require measure theory. I have never come across a practical application where
the mechanics of measure theory was at all necessary. This is not to put down
the importance of putting probability on a firm theoretical footing. However, in
my experience, measure theory is neither necessary nor even helpful in applying
probability to real-world problems. If you want to know more about measure
theory and the type of problems which necessitate it refer to Appendix 1.A.
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1.2.2 Assigning Probabilities

In the mathematical set-up above probabilities must have certain properties, but
they are assumed to be given. One of the first tasks for engineers and scientist
is to assign meaningful probabilities. How then do we do this and what do
mean by probability? These questions have raised considerable debate among
the philosophically minded. A seeming common-sense answer would be that it
is the expected frequency of occurrence of an outcome in a large number of
independent trials. Indeed, some have argued that is the only rational way of
viewing probabilities. However, doubters have pointed out that there are many
problems with uncertainty that are never repeated (who will win next year’s
Wimbledon final?). Thus, the argument goes that probabilities should be viewed
as our degree of belief about something happening.

This philosophical debate, however, throws little light onto the practical
question of how we should assign probabilities (however, for those interested we
return to this debate in Chapter 8). Suppose we want to assign a probability to the
outcome of a coin toss. If the coin has two distinct sides, then I, like most people,
would happily assume that it has equal probability of being either a head or tail.
Pushed on why, my first response would be that I believe that I would get heads as
often as tails (a frequentist’s explanation). Pushed further, I would argue that the
outcome is likely to depend mainly on the speed of rotation and the time the coin
has to rotate, which is beyond most people’s ability to control precisely. I would
find it very unlikely that the design on the faces of the coin would significantly
bias the outcome. Pushed still further, I might resort to the conservation of angle
momentum and small amount of air resistance or perhaps I might just shrug
my shoulders and say ‘that’s my model of the world and I’'m happy with it’. Of
course, it would be possible to determine empirically the result of many coin
tosses. Although I have never done this, the fact that it’s not common knowledge
whether heads is more likely than tails or the other way around suggests that the
probability is indeed close to a half. In practice, probabilities are often assigned
using a symmetry argument. That is, all outcomes at some level are considered
equally likely.

Alas, one of the drawbacks of this is that the initial task of allocating
probabilities often comes down to counting possible outcomes (combinatorics).
Many people consequently view probability as hard and maybe even boring —
personally I find combinatorics fascinating and beautiful, although I concede
that it is an acquired taste. It is certainly true that combinatorics quickly becomes
difficult and it is very easy to get wrong. However, it is only a very small part
of probability. We are about to see that manipulating probabilities is actually
relatively straightforward, and I hope this book will convince the reader that there
is much, much more to probability than just counting combinations.

1.2.3 Joint and Conditional Probabilities

Probabilities of single events are somewhat boring. There is little to say about
them. The interest comes when we have two or more events. To reason about this
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we need to set up a formalism for calculating with multiple events: a calculus of
probability. It turns out that once you understand how to handle two events then
the generalisation to more events is simple.

The joint probability of two events, A and B, both occurring is denoted
P (A, B). If we think of events A C Q and B C Q being subsets of elementary
events, then

P(A,B)=P(ANB).

That is, it is the probability of the intersection of the two subsets.

Example 1.1 Rolling an Honest Dice

If we consider the probability of the event, A, of an honest dice
landing on an even number (A = {2,4,6}) and the event, B, of
the number being greater than 3 (B = {4,5,6}), then P (A, B) =
P(ANB) =P ({4,6}) =1/3.

From elementary set theory A= ANQ =AN(BU-B)=(ANB)U(AN-B).
However, ANB and AN—B are non-overlapping sets (that is (ANB)N(AN—B) = 0),
so that

P(A)=P(ANB)+P(AN-B) =P (A B) +P (A -B). (1.1)

This is sometimes known as the ‘additive law of probability’. It trivially gener-
alises to many events. If {B;|i € I} forms an exhaustive and mutually exclusive
set of events, so that A = [ J;c, AN B;, then

P(A)=> P(ANB) =) P(AB).
i€T ieT

This is an example of the law of total probability. Although it is possible to
formalise probability in terms of sets (we could, for example, use P (A N B) as
our standard notation for the joint probabilities), when we come to modelling
the real world, it is more natural to think of the events as logical (true-false)
statements (or predicates). The set notation then looks rather confusing. Thus, it
is more usual to think of the additive law of probability as an axiom that we can
exploit when necessary.

The second building block for reasoning about multiple events is the condi-
tional probability of event A occurring given that event B occurs. It is denoted
P (A|B). The conditional probability is equal to the joint probability of both
events occurring divided by the probability that event B occurs

P (A, B)

P (A|B) = 0

(1.2)

It is a probability for A with all the usual properties of a probability, for example
P (A|B) +P (-A|B) = 1.
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(Note that it is ot a probability for B so that P (A|B)+P (A|-B) will not generally
be equal to 1.) The conditional probability is not defined if P (B) = 0 (although
this doesn’t usually worry us as we tend not to care about events that will never
happen). Given Equation (1.2) it might seem that conditional probabilities are
secondary to joint probabilities, but when it comes to modelling real systems it
is often the case that we can more easily specify the conditional probability. That
is, if A depends on B in some way then P <A|B) is the probability of A when you
know B has happened and this is often easy to model. However, it is wrong to
think that conditional probabilities always express causality. If P (A) > 0 and
P (B) > 0, then P (A|B) and P (B|A) are both meaningful whatever the causal
relationship (e.g. P (A|B) is well defined even if A causes B). A consequence of
Equation (1.2) is that

P(A,B) =P (A|B)P(B) =P (B|A)P(A). (1.3)

This is sometimes known as the ‘multiplicative law of probabilities’. Equations
(1.1) and (1.3) provide the cornerstone to developing a calculus for reasoning
about probabilities.

Extending these laws to more events is simple. The trick is to split all the events
into two groups. These groups of event can be considered as single compound
events. We can then apply the laws of probability given above to the compound
events. Thus, for example,

P (A|B,C) +P(-A|B,C) =1 treating B A C as a single event
P(A,B,C)+P(A,B,~C) =P (A,B) treating A A B as a single event.

With three events there are a large number of identities between joint and
conditional probabilities, e.g.

P (A,B,C) =P (A,B|C)P(C) =P (A|B,C) P (B|C) P (C)
=P (A,C|B)P(B) =P (A|B,C)P (C|B) P (B)
=P (B,C|A)P(A) =P (C|A,B) P (B|A) P (A)

etc. This is not difficult, but some care is required to make sure that what you do
is valid.
An obvious consequence of Equation (1.3) is the identity

P (Bl4)* (4)

5 (5) (1.4)

P (A|B) =

This formula provides a means of going from one conditional probability,
P (B|A), to the reverse conditional probability, P (A|B). This seemingly innocu-
ous equation, known as Bayes’ rule, is the basis for one of the most powerful
formalism in probabilistic inference known as the Bayesian approach. We return
to this many times, particular in Chapter 8 which is devoted to Bayesian inference.

We interpret

P (A|B,C) as

P (A|(B,C)), that
is the probability
of A given B and C
(the comma has a
higher precedence
— binds stronger —
than the bar).
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Example 1.2 Manipulating Probabilities
To understand the rules for manipulating probabilities consider two
events, A and B, where the joint probabilities of these events and the
negation of these events (i.e. the outcome when the event does not
happen) are given by

P(A,B)=w P(A,-B) =z

P(-A,B) = x P(-A,-B) =y

where w + x + y +z = 1. The probabilities of events A and B are given
by

P(A)=P(A,B) +P(A,~B) =w+z

P(B) =P (A,B) +P(—A,B) =w +x.

Then (some of) the joint probabilities are given by

P (A|B) = Pé/({;;) = P(-AlB) = Pg{;f) = —
P (B|A) = PIPE?;‘? = inz P (A|-B) = PPS?;:;) - ny.

An example of the ‘addition law of probability’ is
w X

P (A|B) +P (-A|B) = =1

w+ X w+Xx
and the ‘multiplicative law of probability’ is

P(A,B) =P (A|B)P(B) =P (B|A) P (A)

w w
= ——(w+x) = +2).
" w+x(w *) w+z(w 2)

Note, however, that

P (A|B) +P (A|-B) = —

1 G al).
I z+y¢ (in general)

The laws of probability are very simple, but it is very easy to get

confused about exactly what terms are what. Thus care is necessary.
|

1.2.4 Independence
Two events, A and B, are said to be independent if
P (A, B) =P (A) P (B) . (1.5)

Note that independence does not imply ANB = 0, (i.e. P (A, B) = 0) — which says
rather that event A and B cannot both happen, i.e. they are mutually exclusive.
Independence is a rather more subtle, but nevertheless a strong statement about
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two events. Its utility is that it means that you can treat the events in isolation.
From Equations (1.3) and (1.5) it follows that for independent events P (A|B) =
P (A) — i.e. the probability of event A happening is blind to whether event B
happens. Equation (1.5) shows that independence is a symmetric relation and
is well defined even when P (A) = 0 or P(B) = 0 (where the conditional
probability is not defined). Using the formula P (A|B) = P (A) as a definition of
independence doesn’t explicitly show the symmetry and might not be applicable.
However, it is very often how we would use independence.

If two events are causally independent (e.g. the event of tossing heads and
rolling a 6), then they will be probabilistically independent

P (Coin = H,Dice = 6) = P (Coin = H) x P (Dice = 6) .

However, probabilistic independence is a mathematical relationship P (A, B) =
P (A) P (B), which doesn’t require A and B to be causally independent.

Example 1.3 Probabilistic Independence

Consider the (clearly manufactured) situation where we toss a coin
with a probability p of getting heads. If we get heads, then we
choose an honest dice which we throw. Otherwise we choose a biased
dice P(D=1) = P(D=2) = P(D=3) = 1/12,P(D=4) =
P (D =5) =P (D =6) = 1/4, where D denotes the number rolled.

-

Let A be the event of getting tails, and B be the event of getting either
a 1 or 6. The probability of getting tails is P (A) = 1 — p (depending
on the bias of the coin). A simple calculation shows

P(A,B):(l—p)x (112+‘l‘)=;(1p)

11
P(-A,B) =p x (6+6> =3P

so that P(B) = P(A,B) + P(—A,B) = 1/3. Thus, P(A,B) =
(1 —p)/3 =P (A) P (B); so the events are independent, though they
are clearly not causally independent (insofar as which dice we roll
depends on the outcome of event A).

'8
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We can generalise the idea of independence to a family of events {A;|i € I}
(for some index set I C N). The family of events are said to be independent if for
alll’ C 1

P (/\ Al-) =] r(4)
il il
where the left-hand side denotes the joint probability of all events A; for which
i € I'. This is a much stronger statement than pairwise independent (i.e. each pair
of events are independent). It is possible for a family of events to be pairwise
independent without itself being independent.

|
Example 1.4 Eight-Sided Dice

Consider an eight-sided honest dice so that Q = {1,2,3,4,5,6,7,8}
and consider the family of events A = {1,2,3,4}, B = {2,4, 6,8}, and
C ={2,4,5,7}. Since the dice is honest P (A) =P (B) =P (C) = 1/2.
Similarly,

(A,B) =P ({2,4}) = 1/4=P (A) P (B)
(A,C) =P ({2,4}) =1/4=P(A) P(C)
P(B,C) =P ({2,4}) =1/4=P(B) P(C)

P
P

so that the events are pairwise independent, but
P(A.B.C)=P({24}) =3  P(A)P(B)P(C) =3

Thus the family of events are not independent.
|

Often we meet events, A and B, which depend on each other through some
intermediate event, C. We define events as being conditionally independent if

P (A, B|C) =P (A|C) P (B|C).

Example 1.5 Plumbers and Cold Weather

Consider the case where, if it is very cold, a pipe might freeze and
burst, and I am highly likely to call a plumber. Thus, the event of
it being cold and calling a plumber are dependent on each other
so that

P (cold, call plumber) # P (cold) P (call plumber) .

However, they are linked (at least in my simplified version of the
world) through the burst pipe. If I know the pipe is burst, then it
is irrelevant whether it is cold or not. In this example, the events of
calling a plumber and it being cold are conditionally independent
given the event that we have a burst pipe

P (cold, call plumber|burst pipe) = P (cold|burst pipe)
P (call plumber|burst pipe) .
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Conditional independence is not as strong a condition as full independence.
We cannot ignore the dependence of A and B unless we know C. Nevertheless,
there are times when conditional independence can considerably simplify other-
wise complicated relationships. The idea of conditional independence plays an
important role in, for example, graphical models (see Section 8.5.2) and Markov
chains (see Chapter 11).

1.3 Random Variables

A random variable, X, is a number associated with an outcome. That is, it maps
each elementary event to a real number, X : Q — R. Sometimes there is a very
natural mapping from the outcomes to the random variable. For example, in
rolling a dice, X might denote the number shown on the dice. Or in a series
of 100 coin tosses, X might denote the number of heads. In the first example
each elementary event is mapped to a unique number, while in the second many
elementary events (i.e. sequences of heads and tails) will be mapped to the same
number. However, for any mapping from events to numbers we can define a
random variables. As a consequence, if X is a random variable then any function
Y = g(X) is also a random variable.

Example 1.6 Random Variables

In any situation with uncertainty we can define random variables. For
example, when throwing two dice we could assign the total number of
dots to a random variable X that takes values from 2 to 12. However,
we might want to assign a different value to our random variable. For
example, in a simplified game of craps (a gambling game involving
rolling a dice) we might win if we roll a 7 or 11 and lose otherwise. In
this case, we might want to use a different random variable, Y, where
we assign the event of rolling a 7 or 11 a value of | and all other
events the value —1. Y is just a function of X. They are both random
variables.

|

A convention that is often used with random variables (and used throughout
this text) is to write them in upper case. This is to show that random variables are
rather special mathematical objects. The values taken by the random variables are
written in lower case. Although this is a common convention, many authors will
have their own variants of it, such as denoting random variables by Greek letters.
The probability that a random variable X takes a value x is written as P (X = x).
Again this can seem confusing, especially since we are using the symbol x as
an unknown variable. It can also be confusing when considering samples as
it is sometimes unclear whether we have an observed number x or a random
variable X. Some authors make a distinction between potential observations
(pre-statistics) and the actual observations or realisations of the observations.
We will stick with our dichotomy between random and non-random variables
and leave it up to the intelligence of the reader to make sense of notation when

Note that we also
use upper-case
letters to denote
quantities other
than random
variables. Thus, we
have being
denoting events
(subsets of
elementary events)
with upper-case
letters.
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the situation is more complex. Nevertheless, there are good reasons for treating
random variable differently, especially when taking expectations (averages over
probability distributions), since, as we will see in Section 1.4, they don’t always
obey the same laws as numbers.

Random variables provide a partitioning of the elementary event space into
sets labelled by the value of the random variables. When the values taken by the
random variables are discrete (i.e. X € X' = {x1, x2, .. .}) we define the probability
mass function, fx(x) =P (X = x) which has the property

fo(x) = ZP(X =x) =1

xeX xXexX
In Section 2.1 we consider some probability mass distributions for discrete
variables. We cover discrete distribution in more detail in the Chapter 4.

We can also consider situations in which more than one random variable
has been defined. For example, imagine rolling two dice. Then we can define
X €{l,2,3,4,5, 6} as a random variable whose value is equal to the number
rolled by dice 1 and Y € {l, 2, 3,4, 5, 6} as the number rolled by dice 2.
In such situations we can consider the joint probability mass function to be

fxy(x,y)=P(X =xand Y =y).

1.4 Probability Densities

A difficulty arises when we consider a continuous or non-denumerable random
variable, X. For example, X might be a random number that can take a value
anywhere in the range 0 to 1. The probability of the random variable taking any
particular value, X = x, is (usually) zero (i.e. P (X = x) = 0). We therefore have to
proceed a bit more cautiously. Instead of considering the probability of X taking
a particular value we can consider the cumulative distribution function (CDF)

Fx(x)=P(X <x).

This is a function that starts from F(—oo) = 0 and finishes with F(c0) = 1 (e.g.
see Figure 1.1).

It is a well-defined function for any situations (at least, if it is not well
defined you have a pathological distribution — something I've yet to meet in any
real-world situation). If there are two random variables we can define the two
dimensional cumulative probability function

Fxy(x,y) =P(X <xand Y <y).

This generalises to distributions of more than two variables.
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Rather than using cumulative probability functions it is often more natural and
more useful to work with the probability density function (PDF) fx(x) defined
such that

Fx(x)=P(X <x) = /_x Ix(y)dy.

If Fx(x) is differentiable we have

_ dFx(x) . P(x§X<x+5x)

= =]
fx(x) dx 6;1—130 ox

Probability densities play a similar role to probability masses for discrete
distribution. However, it is important to realise that probability densities are
not probabilities! In particular, they are not necessarily less than 1. The value
of a probability density doesn’t tell you that the point is likely to be visited. The
quantity that acts likes a probability is fx (x) dx, which can be thought of as the
probability of X being in an infinitesimal interval around x. The name density is
apt. If we think of probability as a mass that sums to 1, then Fx(x) corresponds
to the mass up to the point x; and fx (x) is the density (probability mass per unit
volume) at the point x. The probability mass between two points a and b is

b
probability mass =P (a < X < b) = / fx(x)dx = F[b] — Fal.

Change of Variables

Probability densities behave rather peculiarly under changes of the variables
because they are densities. Consider a transformation 7 : X — Y from one set
of variables X to another set of variables Y (X). In general, changes of variables
don’t preserve local volumes. As a result, to preserve probability in every volume
we must modify the probability density. Denote the probability density with
respect to these variables by fx(x) and fy(y) respectively. Consider a small
volume 6V around an arbitrarily chosen point x* in X space. This volume gets
transformed to a volume 7' (6V) around y(x*) in Y space. Because it is the same
event, we require that the probability of being in that volume should be the same
in either coordinate system so that

[ rwar= [ pme. (1.6)

xeovV yeT(6V)

Assuming that the densities are sufficiently smooth and 6V sufficiently small that
the density is approximately constant in §V and T(6V), then

t/ fr(x)dr & fy(x*) 6V, ‘/‘ Fr(y)dy = fr (y(x*) T(V).

xeov YET(6V)

The approximations become exact in the limit §V — 0. In other words,

ﬁwuw=n@ﬂ£%§%;

fx(x)dx

T T+ 0T

The density per

em?® will be
different to the
density per inch?.

0

::""--i

v



14 Introduction

The ratio of these two volumes is given by the absolute value of the determi-
nant of the Jacobian. That is,

%
lim —— =|J, *
S TGV [Ty —x (¥(x7))]
where the Jacobian determinant for the mapping from y to x(y) evaluated at the
point y is given by

C")g ) 59‘692 ) 3)31 )
y 5 5
axi(y) IO axnly)
J (y) = O(x1, X2, ..., Xp) _| M 9y2 Iy,
yoE a()’l,)’2s-~a)’n) .
oxi1(y) 0x(y) 0xn(y)
Ayn dyn Oyn

The determinant of a square matrix M, denoted by |M|, measures (up to a sign)
the change of any volume under the linear coordinate transformation defined
by M. The Jacobian determinant measures the local change in volume of the
infinitesimal volume with sides dx; compared with the infinitesimal volume with
sides dy;. This is the same term that appears in the standard rule of calculus for
changing variables

[ ewdx= [ ) s )y
xesv yET(8V)

(the absolute part of the Jacobian determinant appears because any sign change
in the coordinate transform is absorbed into a change in the limits of the integral).
Note that the Jacobian for the inverse transform is just given by the reciprocal of
the Jacobian for the original transform, that is,
3 1

Jy—x(y(x))

Returning to the change in the densities. The condition that the probability is
preserved in any volume of space under a coordinate mapping requires

() =rfxxW)) Jy-x )l

(Y1, Y2 ->Yn)
O(x1,x2, ..., %)

ooy () =)

In one dimension

dx
dy
A useful mnemonic for remembering which way around to put the Jacobian is to
write

fr(y) = fx(x(y))

fr(y)ldyl = fx(x) |dx],

which is to be interpreted as the probability in a small element.

|
Example 1.7 Normal and Log-Normal Distributions

We assume that X is normally distributed according to

1 2 2
x) = Mx|p, 02) = ———e =17/
fX( ) ( |/J ) \/270_
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If Y = eX or (X = log(Y)) then

d 1 1 2202
Fr(3) = Fx(x(0) = Fllog(y)) | = e (0N E,

This distribution is known as the log-normal distribution. We will see
it many times.

1.5 Expectations

To provide some unity between discrete and continuous random variables,
it is customary to have a unified notation for averaging over a probability
distribution. This averaging is known as the expectation and is denoted by
mathematicians by Ex [ - - -|. For an arbitrary function g(X)

Z g(x) fx(x) if X is a discrete variable
Ex[g(X)] = ¢ *G% (1.7)
/ g(x) fx(x)dx if X is a continuous variable.

(Physicists often use angled brackets to denote expectations, i.e. (g(X))x =
Ex [g(X )]. They are also more likely to call expectations averages.) When it is
obvious what we are averaging over we often drop the subscript and write E [X ]
or (X).

Are the expressions in (1.7) obvious? There is an old joke about a professor
being asked whether what he has written on the board is obvious. He thinks
for a while, leaves the room and after half an hour returns and responds to the
questioner ‘yes’, before carrying on where he left off. The equations in (1.7) are
sometimes known as the unconscious statistician theorem as for many statisticians
the results seems so obvious they require no proof. To see if this is justified let’s
do the proof, at least, for the discrete case. What do we mean by E [g(X )] if we
don’t mean Equation (1.7)? Recall that we said any function of a random variable
is itself just a random variable. Let’s denote g(X) by Y. We can surely agree that

Ex[g(X)] =By [Y] =Yy fr(y)
yey

where ) is the set of all possible values Y = g(X) can take. That is, we can take
the defining property of the expectation operator to be that the expectation of a
random variable is its mean. We should also be able to convince ourselves that

=D fx),
x:g(x)=y
where the sum is over all values of x for which g(x) = y. Thus,

Ex[g(X)] =By[Y] =)y D> fx(x)=) > &) fx(x)

yeY x:g(x)=y yEYV x:8(x)=y
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where we have taken y inside the second sum and used that y = g(x). Now for
every value of x we have that g(x) = y for some particular y, therefore

2> =)

yeY x:ig(x)=y x€X

where X'is the set of all possible values taken by x. Using this we obtain Equation
(1.7) for discrete variables. The generalisation to continuous variables follows a
similar line of arguments (you can find a page-long proof showing this in full
measure theoretic glory, although the main idea is the same as that given). So is
the result obvious? I allow you to decide, but many seemingly obvious results are
wrong, so asking the question is always worthwhile.

Expectation is one of the most useful operations when dealing with random
variables. It is a linear operator, meaning that

E[CX] :c]E[X]
E[X+Y|=E[X]+E[Y].

In addition, E [¢] = ¢, where c is a scalar (i.e. a number rather than a random
variable). These results follow immediately from the linearity of summations and
integrals. Note that it is important in taking expectations to distinguish between
scalar quantities, such as ¢ (even though they may be arbitrary), and random
variables, such as X and Y.

If g(X) = aX + b is a linear function then E [¢(X)] = aE [X] + b. That is,
the expectation of a linear function only depends on the mean and not on other
quantities such as the variance (measuring the variation in the random variable).
Note, that in general E [g(X)] # g(E [X]).

1.5.1 Indicator Functions

A useful devices to reason about probabilities is the indicator function. In this
book we denote indicator functions by

. [ 1 predicate is true
IIpredlcate]] = { 0 otherwise (1.8)
where predicate is a statement that is true or false. There are different conventions
for writing indicator functions, the one used here is close to that popularised by
Donald Knuth (Knuth, 1997a; Graham et al., 1989) who attributes the notation
to Kenneth Iverson. Indicator functions allow you to write a large number of
otherwise complex functions in a compact form.

We can relate probabilities and expectations through an indicator function. Let
A be an event, then the probability of A occurring is

P(A) =E “[A occurs]” =E “[w € A]H .

For example, if we want to compute the probability that the random variable,
X, is equal to 0, then we can equivalently compute the expectation E { IIX = O]” .
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If we denote the joint predicate A and B by A A B (in predicate logic A denotes
logical and while V denotes logical or) then we can manipulate predicates using

[anB]=[a][8]  [avB]=[a]+[5]- [~ 5]

These are easily checked by enumerating all possible values that A and B can
take (note that A and B are predicates that just take values of true or false). If
we take expectations of the last of these formula we obtain a useful identity for
the probability of either event A or event B occurring

P(AVB)=P(A)+P(B)—P(AB).

This example shows how we can use expectations over indicator functions to
obtain useful results. We can, of course, obtain this result directly from set theory.
The event A N B occurs both in A and in B so we have to subtract P (A, B) to
prevent over-counting.

In Question 1.3 on page 22 we ask you to repeat the proof of the unconscious
statistician theorem using indicator functions.

1.5.2 Statistics

Distributions of random variables are often rather complicated objects and we
would like to get simple numerical results capturing their main features. That is,
we want to know some statistics of the random variable. By far the most useful
statistic is its mean. We will often denote means by u (mu),

u=Ex[X].

Although the mean is by far the most useful average, there are a couple of
other averages that you might meet. The median is the centre value. That is, it is
the value of x such that P (X < x) < 1/2and P (X > x) > 1/2. The median is
often useful when dealing with random variables whose distributions have long
tails. This happens when there are rare events which have unusually large (or
small) values. In this case, the mean can be quite misleading about what happens
typically. The median tells you more about what you can expect typically. Because
medians are not distorted by rare events or outliers, they are sometime used as a
robust statistic in engineering frameworks that have to make decisions based on
noisy data. The other average that is occasionally used is the mode which is the
value x for which fx (x) is a maximum. That is, it is the most commonly occurring
value of the random variable. The median and mode do not generally have very
nice mathematical properties (they are not even necessarily uniquely defined) so
are more rarely used than the means.

Variance. The next most important statistic after the mean in describing a
random variable is the variance, which measures the variation or the size of the
fluctuations. The variance is defined as

var[x] =B [x*] ~B [x]". (1.9)
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This is an example where we want to distinguish between a random variable X
and the value it takes x. For any scalar (normal number), ¢, Var M = 0, while
for any random variable, X, that has fluctuations, Var[X] # 0. Thus, it is useful
to distinguish between random variables and numbers — hence the convention
of using capital letters to denote random variables and small letters to denote
numbers. The dimensions of the variance is the square of the dimension of the
mean and thus the two are not directly comparable. To get an idea of the size of
the fluctuations it is usual to consider the standard deviation defined as the square
root of the variance. Just as the mean is often denoted by u, the standard devia-
tion is commonly denoted by o (sigma) and the variance is often written as o-2.
We will return to discussions of the mean and variance many times in this book.

As discussed, we call random variables independent if for any two random
variables X and Y

fxy(x,y) = fx(x) fr(y).

An important property that follows from this is that for two independent random
variables X and Y

if X and Y are independent = Var[X +Y| = Var[X] + Var[Y]. (1.10)

We will use this property extensively throughout this text. This property is also
true for a family of statistics known as cumulants. The mean is equal to the
first cumulant, the variances are equal to the second cumulant. Higher order
cumulants involve the expectation of X" for n > 2. We will look cumulants in
more detail in later chapters.

When we have more than one random variable we are often interested in how
they vary with respect to each other. The crudest measure of the interdependence
of two variables is the covariance. The covariance between X and Y is defined as

Cov[X,Y] =E[XY]| -E[X] E[Y].
In general
Var[X + Y] = Var[X] + Var[Y] + 2Cov[X,Y].

If X and Y are independent then their covariance will be zero (having zero
covariance does not, however, guarantee that X and Y are independent). The
variance and covariance are sometimes called second-order statistics as they
involve terms that are quadratic in the random variables. We will consider even
higher order statistics in Chapter 4. When X and Y are vectors of random
variables then we can define the covariance matrix

Cov[X,Y] =E[XY'] -E[X] E[Y]

so that the matrix C = Cov [X, Y| has components C;; = Cov [X;,Y;]. In a slight
abuse of notation we will sometimes use Cov [X ] to denote the covariance matrix

Cov[X] =Cov[X,X] =E[XX'| -E[X]| E[X"]
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so that the matrix C = Cov[X| has components C;; = Cov [X;, X;| (the diagonal
components are then the variances C;; = Var [X,] ). This notation is useful when
the random vector X takes a lot of space to express.

The statistical correlation (also called the Pearson’s correlation) between two
random variables X and Y is defined as

Cov[X,Y]
p(X,Y) = :
Var[x] Var([y]

It is a number between —1 and 1. If X = aY + b then the correlation between
X and Y will either be equal to 1 if ¢ > O orequal to —1if a < 0. If X and Y
are independent the correlation will be zero, although zero correlation does not
guarantee statistical independence.

1.6 Probabilistic Inference

One of the major applications of probability in engineering and science is to learn
from empirical (experimental) data in order to construct a model of the system.
This is then often used to make future predictions. A common method to achieve
this within a probabilistic framework is to consider an empirical observation,
X, to be a random variable from some distribution function fx(x|6), where 6
is a parameter to be inferred. Both x and 6 may be multidimensional vectors
(that is, we might have multiple quantities we observe, X = (X1, Xo, ..., X;)
and/or a probability distribution that depends on multiple parameters 8 =
(01, 03, ..., Bm)). The distribution function is part of the model that we have to
supply. It should capture our understanding of the physical mechanism which
generates the data. In Chapter 2 we discuss some of the classic distribution
functions that are used when the data is generated by a simple mechanism.

The inference problem is to estimate the parameter(s) 6 of the distribution
fx(x|8) from random samples drawn from that distribution. Any estimate of
these parameters is called an estimator — there are lots of different estimators as
we will discover. We follow the convention of denoting an estimator using a hat,
6. An estimator will be a function of the empirical data X — the exact functional
form will depend on the distribution f(x|6). The distribution f(x|6) is referred to
as the likelihood of the data, given the parameters 6. One of the most commonly
used estimators is the maximum likelihood estimator — that is the value of 4 that
maximises the likelihood of the data (see Section 6.4 on page 123 for examples of
computing maximum likelihood estimators). A more sophisticated approach is
to treat the unknown parameter as a random variable and seek the distribution
of the parameters given the data f(6|x). Using Bayes’ rule, Equation (1.4), we
can write this probability as

f(x10) £(6)

f(x)
which allows us to determine f(6|x) in terms of the likelihood f(x|@) and a
‘prior’ probability distribution f(6) coding our belief about 8 before making the

f(6lx) =
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measurement. (The denominator, f(x), is just a normalisation constant which we
can compute from the likelihood and prior.) This approach is known as Bayesian
inference and is discussed at length in Chapter 8.

Frequently in collecting data we make a series of observations D =
(X1, X2, X3, ....Xn). A common assumption is that these observations are
independent of each other. Independence requires that the value of the i'"
observation does not influence the value of any other observation, X; (j # i).
This is often a very natural assumption which usually holds with reasonable
accuracy. In the case when the observations are independent, the likelihood of
the observations factorise

f(010) =[] f(xile).
i=1

(This assumption is so common that occasionally researchers forget that it relies
on an assumption about the data, and regrettably it gets applied in situations
where it is not justified.) When we are given a collection of independent data
points the maximum likelihood estimator is that value § which maximises f(D|6).

For those people who like being awkward (or deep) it is possible to question
whether any set of observation can be considered independent. After all, the
observations are all about the same phenomena so are not independent of the
test being carried out. At best we can hope they are conditionally independent.
One attempt to make this idea of independent observations more rigorous was
made by Bruno de Finetti in his representation theorem. He showed that if the
probability density for an infinite series of observations was symmetric under any
permutation then the observations would be conditionally independent of each
other given some parameters describing the probability distribution. Thus, if the
observations are exchangeable then they can be treated as conditionally indepen-
dent given the parameter(s) describing their underlying probability distribution.
Some people find it is easier to reason in terms of exchangeability than to decide
if the observed data could affect each other.

Although it’s tempting to dismiss the debate about independence of obser-
vations as paranoia, there are times where caution is required. If we built a
machine to toss a coin that was so precise that it always provided exactly the
same force for each toss so that the coin spun exactly the same number of times
before landing, then the outcome would depend on the initial conditions. If
we used the result of the previous toss as the initial condition of the next toss
then the results of each experiment would be far from independent. That is, if
the machine rotated the coin an even number of times we would get either the
outcome HHHHHHHH ... or TTTTTTTT ... depending on the initial set-up.
Even without such a machine we can question whether, in doing a series of coin
tosses, we should consider each trial as independent. Most of us are trusting
enough to believe that the outcome of a coin toss is barely influenced by which
side the coin starts, but that may need testing. When carrying out a series of
(often expensive) experiments, statisticians, rightly, go to considerable lengths to
ensure the experiments are as independent as possible.
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Marginalisation. In complex situations it is often useful to model the likeli-
hood with a large number of parameters @ = (0}, O,, ..., ©,,) (here we take
the Bayesian viewpoint of considering these parameters as random variables).
‘We may be uninterested in some of parameters as they are never observed. These
parameters arise because we build into our model some hidden variables that
we believe capture reality, but whose value we are not able to observe. Such
parameters are sometimes referred to as nuisance parameters or latent variables.
If we have a probability distribution over all the parameters fg(0) then we will
often want to average over all possible values of the nuisance parameters. For
example, we might be interested in the distribution of ®; alone, which is given by

fo,(61) = Z f o(0
62,03...
or we might be interested in the first two random parameters
fo0,(01,02) = > fol(®
63,0

(If the parameters were continuous we would replace the sums with integrals.)
This process of averaging over parameters we are not interested in is known as
marginalisation.

The material covered here forms the foundation of probability as a mathematical
subject. Conceptually there is nothing too hard, but there are some terms (e.g.
random variables, independence, expectations, etc.) with precise mathematical
meanings that any practical engineer or scientist should know. In formulating
probabilistic models it is quite easy to get horribly confused. As with all mathe-
matics the trick to avoid confusion is to identify and name the key components of
the model (often random variables) and to be able to break down sophisticated
manipulations to simple rules such as the additive and multiplicative laws of
probabilities. A quick way to identify errors is to check for consistency (do all
probabilities sum to one, are they all positive, etc.).

Additional Reading

There is a huge number of books devoted to probability and its many extensions.
A classic treatment of the subject is given in the two-volume epic by Feller
(1968a,b). A modern text that provides a background to probability and random
processes is Grimmett and Stirzaker (2001a).

Exercise for Chapter 1

Exercises are provided for readers who learn through doing. If life is too short or you just
want to get on with the plot, feel free to skip them altogether or to jump to the solutions
provided. Much of what we covered in this chapter were definitions. In consequence this
section is short.
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Exercise 1.1 (answer on page 392)
Consider an honest dice and the two events L = {1,2,3} and M = {3,4}.

Compute the joint probabilities P (L, M), P (—|L, M), P (L, —|M), and the con-
ditional probabilities P (L|M) ,P (M|L) ,P (ﬂM|L), and P (M|—|L) . Compute (i)
P (L, M) +P (L, ﬂM), (ii) P (M\L) +P (ﬁM|L), and (iii) P (M\L) +P (M|ﬁL).

Exercise 1.2 (answer on page 392)
Let Dy and D, denote the number rolled by two independent and honest dice.
Enumerate all the values of S = D) + D, and compute their probabilities. Compute
E [S}, E [S2], and Var [S] Also compute E [Dl} = E [Dg] and Var [Dl] =

Var [Dz] and verify that E [S] =E [Dl] +E [Dz] and Var [S] = Var [Dl] +
Var [Dz].

Exercise 1.3 (answer on page 393)
Repeat the proof given on page 15 of the unconscious statistician theorem

Bx[s(X)] = Y 8(X) fx(X)

XeXx

starting from Ey [Y} , but this time using indicator functions.

Exercise 1.4 (answer on page 394)

A classic result in machine learning is known as the bias-variance dilemma, where it
is shown that the expected generalisation error can be viewed as the sum of a bias
term and a variance term. The derivation is an interesting exercise in simplifying
expectations. We consider a regression problem where we have a feature vector x and
we wish to predict some underlying function g(x). The function, g(x), is unknown,
although we are given a finite training set D = ((xi,yi)|i =1,2,..., n), where
yi = g(x;). We use D to train a learning machine g(x|W), where W is a set of
weights that depend on the training set. The generalisation error is given by

EW) = B | (2(x) - sxiw) |

That is, it is the mean squared difference between the true result, g(x), and the
prediction of learning machine, g(x|W). The expectation is with respect to some
underlying probability of the data. The generalisation error depends on the set of
weights, W, which in turn depends on the training set, D. We are interested in the
expected error averaged over all data sets of size n,

E=Ep|EW)]| =Ep [E [ (8(x) - g(x|W))2H .

In the bias-variance dilemma, we consider the response of the mean machine,
Ep [g(x|W)} In particular, we show that the expected error, E, is the sum of a
bias term,

e (a0 - B [sxw)]) .
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that measures the different between the true function and the response of the mean
machine (i.e. the response we get by averaging the responses of an ensemble of
learning machines trained on every possible training set of size n), plus a variance
term,

= oo () - 5o o]

that measures the expected variance in the responses of the machines. Hint: add
and subtract the response of the mean machine in the definition of the expected
generalisation.

Appendix 1.A Measure for Measure

This appendix provides a brief account of the use of measure theory in proba-
bilities and explains why complete ignorance of the subject is unlikely to set you
back.

Part of the legacy of Andrei Kolmogorov’s foundational work on probability
is that a huge number of books and articles on probability start with the
incantation ‘Consider the triple (Q, F, ) ...”. For non-mathematicians this is
quite intimidating, but it is rarely important to follow this. In some ways it’s
not that difficult. Q is the space of elementary events. This might be the set of
outcomes, {heads, tails} or it might be some continuous interval. It can even be
something more complex like the set of functions, as we will see in Chapter 12
on stochastic processes. The next part F has the very posh name of a o-algebra
or sometimes filtration. It is usually just the set of events that you are interested
in. It is a complete set in the sense that it includes the intersection and union of
all other events. The elements of F are just subsets of Q, but the o-algebra name
says it should be a reasonably well-behaved set — we will come back to this later in
this section. Finally, u is the probability measure, but for almost all problems you
are likely to meet (though not all problems that a mathematician can dream up)
this really just means there is something like a probability density or probability
mass assigned to the elementary events.

So what’s the big deal? The problem is that if you try hard you can cook up
examples where weird things happen. Because one of the duties of mathemati-
cians is to lay solid foundations they go to some lengths to prevent weird things.
One weird thing that can happen is that, if we are unlucky, taking expectations

can give us apparently inconsistent answers. The cause of this is how we perform ~ The Riemann Tntegral
integration. What Kolmogorov did was borrow an idea from integration theory | /()a:

due to Henri Lebesgue (pronounced ‘Luhbeg’) known as measure theory. To f‘m]yng/;xu, )
understand why this is necessary we consider the classical interpretation of  ; _ () for s € [sn0001]

integration due to Riemann. According to Riemann, we can think of an integral
as a limit process where we add up the area of small strips, where we take the
area of the strips to be their width times the function value at some point in the
interval of the strip. The value of the integral is the limit where the strip sizes go
to zero. This will work for all the integrals you are every likely to meet in practice.
But for mathematicians that’s not enough.

a= T, Ty Ti Tisy Ty =10
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Suppose we had a function that was equal to 1 at every rational number and
0 at each irrational number (a function first proposed by Dirichlet). Consider
integrating such a function from 0 to 1. Now mathematicians have long known
that rational numbers are not dense. That is, if you choose a randomly selected
real number between 0 and 1, with overwhelming probability it will be irrational.
Thus, it is reasonable to think that this integral should be equal to 0. However, let
us consider applying Riemann’s method for computing an integral. We can split
the interval into strips of size 27" and take the mid-point as the representative
value of the function. However, this representative value will be a rational value
so equal 1. This remains true in the limit # — oo so this algorithm for computing
integrals gives the answer 1. Of course, if we had chosen a random point in the
interval or a point at distance v/1/2 along the interval we would have got the
answer 0. This is a problem for probability theory, as well as integration theory,
because if 1T wanted to be difficult then I could assign different probabilities
to points depending on whether they are rational or irrational. To overcome
this problem for integrals, Lebesgue founded measure theory where he devised
a different interpretation of the integral which is consistent with Riemann’s
integral whenever Riemann’s integral is well defined, but is able to handle
pathological functions such as the one proposed by Dirichlet. One important
benefit of measure theory is that it provides consistent rules for deciding when it
is valid to interchange the order of performing integrals or of exchanging limits.
Kolmogorov borrowed the ideas of measure theory in providing an axiomatic
basis for probabilities.

This is very worthy and fulfils the responsibility of mathematicians to make
the foundations of their subject secure. But it is not really relevant if you want
to solve real-world problems, at least, in my experience. The challenge from the
real world does not come from pathological functions, but from the need to
evaluate quite tricky formulae. What most scientists and engineers are interested
in, and the topic of this book, are practical applications, very often computing
numerical quantities. These tasks are both fascinating and challenging, but aren’t
helped by measure theory. Perhaps for highly sophisticated mathematicians the
language of measure theory may help them think about their problem is a more
general way — I am afraid I am not in a position to judge. For the rest of us
measure theory tends to obscure rather than elucidate. In my experience most
mathematical books on probability quietly drop the measure theory after the
first chapter, leaving the reader wondering why they bothered introducing it in
the first place. The fact that measure theory is not necessary for most real-world
applications should in no way diminish Kolmogorov, who solved the important
open problem of laying the axiomatic foundations of probability. Kolmogorov
also took great interest in solving many practical problems and made a large
number of important contributions to applied probability and science in general.
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In this chapter we give a survey of some of the most frequently encountered
distributions. In Chapters 4 and 5 we will cover some of these in more detail.
Many of the common distributions belong to the exponential family of distri-
butions. We present this family and some of its properties in Section 2.4. We
conclude the chapter by two appendices covering the gamma and beta functions;
both functions that arise in some of the common distributions.

If probability is the language for discussing uncertainties, then Chapter 1 could
be viewed as learning the basic grammar and simple verbs, while this chapter is
more like learning the important nouns or objects. With these in place, we will
be in a position in subsequent chapters to use our language to convey ideas.
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Figure 2.1 Example
of binomial mass
function for n = 10,
and p = 0.2 (dotted),
p = 0.5 (solid line)
and p = 0.7
(dashed).
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2.1 Discrete Distributions

It is easy to be put off by the seemingly endless number of probability distribu-
tions, but there are only a handful of distributions that keep on cropping up. The
sooner you make friends with them the easier your life is going to be. We start
with discrete distributions, which are those that involve random variables which
take values that lie in a countable set.

2.1.1 Binomial Distribution

One of the frequently met probability distributions that pops up in a huge
number of applications is the binomial distribution. It arises when we sample n
objects that belong to two classes, A and B say. We assume that the probability
of choosing an object of class A is p. This does not change over time. We can
think of randomly choosing red and blue balls from a bag where the ratio of red
to blue balls is p. Each time we choose a ball we put it back and mix up the balls
before drawing the next sample. The probability of choosing m objects of class A
in n trials is given by

P (X =mhn.p) =BinGnlnp) = (1) (1= @)
where (1) = Wlm), is the binomial coefficient (often referred to as ‘n choose

m’). Figure 2.1 shows examples of the binomial distribution.
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The mean of a binomial distribution is n p and the variance is np (1 — p).
We return to the binomial distribution in Chapter 4. A large number of distri-
butions are in some way related to the binomial distribution: the hypergeometric
distribution describes the situation of sampling without replacement; the Poisson
distribution corresponds to a limit of the binomial as p — 0 and n — oo, but
with p/n — u, a constant; the multinomial distribution is a generalisation of the
binomial distribution to the case where there are more than two classes; finally
the Gaussian distribution is a limit of the binomial distribution as n — oc.

|
Example 2.1 Rolling Dice
What is the probability of getting three sixes in 10 rolls of an honest
dice?
This situation describes a case of repeating independent random
binary trials, which gives rise to a binomial probability. In this case,
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we have a success probability of p = 1/6 and have n = 10 trials so the
probability of three successes is

3 7
Bin(3|10,1/6) = (130) (é) (1 - é) = 0.155.

Thus we can expect this to happen around 15% of the times we
attempt it.

2.1.2 Hypergeometric Distribution

Although binomial distributions are the most common type of discrete distribu-
tion when dealing with two classes, they are not the only one. The hypergeometric
distribution describes the probability of choosing k samples of class A out of n
attempts, given that there is a total of N objects, m of which are of class A. For
example, if you have a bag of N balls of which m are red and the rest are blue, and
you sample n balls from the bag without replacement, then the hypergeometric
distribution

(0) Ci=it)
()
tells you the probability that k of the drawn balls are red. (N is the total number
of balls and is not a random variable — we use a capital to follow a commonly used
convention for describing this distribution.) This probability is just the number
of different ways of choosing k red balls from the m red balls, times the number
of ways of choosing n — k blue balls from the N — m blue balls, divided by the
total number of ways of choosing n balls from N balls. There are a number of
surprising symmetries, for example, Hyp(k|N,m,n) = Hyp(k|N,n,m) (that is,
we get the same probability when we exchange the number of red balls and the
number of balls that we sample). These arise due to the many identities involving

binomial coefficients.

The mean value of K is nm/N and its variance is n(m/N)(1 — m/N)(N —
n)/(N — 1). Typical probability masses are shown in Figure 2.2. We observe that
these figures are not too dissimilar to those for the binomial distribution. Indeed,
in the limit N,m — oo such that m/N — p the hypergeometric distribution
converges to the binomial distribution (see Exercise 2.4 on page 41).

P (K = k|N,m,n) = Hyp(k|N,m,n) = (2.2)

0.4
Hyp(k|100, 20, 10)
0.3 KRN ~ Hyp(K[100,70,10)
|
Hyp(k|N,m,n) 0.2 —

01 .. Ll

1
1

0 o : ‘....
k

Figure 2.2 Examples
of hypergeometric
distributions for

N =100, n = 10,
and m = 30 (dotted),
m = 50 (solid line)
and m =70
(dashed).
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An application of this distribution is when there is a shipment of N objects,
m of which are defective. If we sample n of the objects, then the hypergeometric
distribution tells us the probability that k of the samples are defective. This is
also the distribution you need to use if you want to calculate the probability of
winning a prize in the UK National Lottery (see Exercise 2.5 on page 41). The
hypergeometric distribution is not so well known as its ubiquity deserves. Possibly
its low profile is a consequence of the fact that it is not always that easy to deal
with analytically.

Example 2.2 Bridge
In the game of bridge, each player is dealt 13 cards. What is the
probability that player 1 has three aces?

Treating a bridge hand as a random sample of 13 cards from a
pack of 52 cards where we don’t replace the cards, then we see that
this is a job for the hypergeometric distribution. The total number of
cards is N = 52, the number of aces is m = 4. A hand is a sample of
n = 13 cards so that the probability we seek is

4y (48
(3)(10)_ 858 =0.0412.

Hyp(3|52,4,13) = =

That is, a player can expect such a bridge hand around 4% of the
time.

2.1.3 Poisson Distribution

The Poisson distribution can be regarded as a limiting case of the binomial
distribution when p — 0 and n — oo, but with pn = p. In this limit, with
m < n, the binomial coefficient simplifies

(n) i) em)

m

m! m!
and

(1 _p)n—m — e(n—m) log(1—p) ~ e—p(n—m) ~e P — e H

where we have used the Taylor expansion log(1 — p) = —p + O(p?). Thus in this
limit

ma —u ma —p
lim <”)pm(1 _pyrem = 1p) C = B~ Poi(mlp). (2.3)
pl;(;’zﬂ m m: m:

This is the definition of the Poisson distribution. Its somewhat simpler form than
the binomial distribution makes it easier to use. It is also important because
it describes the distribution of independent point events that occur in space
or time (we return to this in Section 12.3). The Poisson distribution arises, for
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example, if you want to know the probability of a Geiger counter having 10
counts in a minute given that the background radiation level is six counts per
minute (answer 0.0413). Both the mean and variance of the Poisson distribution
are equal to u. Typical examples of the distribution are shown in Figure 2.3.

Example 2.3 Carbon Dating

Carbon dating is traditionally based on counting the number of beta
particle emissions associated with the radioactive decay of carbon 14.
Carbon 14 is an radioactive isotope of carbon with a relatively short
half-life of 5730 years. All carbon 14 that initially existed in the early
earth would have decayed a long time ago. However, it is constantly
being replenished through neutron capture caused by cosmic rays
creating neutrons that react with nitrogen in the atmosphere.

BN+ 1h o HC+ 1p.

where '7 is a neutron and !p a proton. As a consequence, carbon in
the atmosphere (CO,) has around one part per trillion of carbon 14.
This is equivalent to 60 billion atoms per mole of carbon. This car-
bon is then taken up by plants through photosynthesis. By measuring
the ratio of carbon 14 we are then able to deduce its age.

The probability of an atom of carbon decaying in one year is
A = 1.245x10~4, The number of carbon 14 atoms in a 1 mole sample
(i.e. approximately 12 g of carbon) is

N = Nye ™!

where Ny = 6 x 10'° is the estimated number of atoms absorbed
from the atmosphere through photosynthesis and ¢ is the age of the
sample. The expected number of decays in a time At is u = A N Ar.
Now suppose we observe n = 100 decays of carbon 14 in one hour. As
radioactive decays are well approximated by a Poisson distribution,
the probability of the decay is

#100
P (I’l = 100) = meiu

where u = A At Npe ~Y = 852.7e ~ (recall that we know A, Az, and
Ny, but we don’t know the age of the sample 7). In Figure 2.4 we show

Figure 2.3 Examples
of the Poisson
distribution for

u = 0.5 (dotted),

p =1 (solid line),
and u = 2 (dashed).
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Figure 2.4 0.05
Probability of
observing 100 decays
in a sample with 1
mole of carbon
atoms an hour versus
the age of the
sample. 0T ‘ } ‘ 1 ‘ }
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the probability of observing 100 decays in the sample versus the age
in years. We see that with high likelihood the age of the sample would
be between 15,000 and 20,000 years.

We assumed that the proportion of carbon 14 in the atmosphere
is constant over time. This is not true (it is not even true over
location), thus to obtain a more accurate estimate, the concentration
of carbon 14 is calibrated against tree samples that can be aged by
counting rings. However, as our probabilistic model shows, there is
also a natural uncertainty caused by the underlying Poisson nature of
radioactive decay. To obtain precise dates for a small sample requires
that measurements over a very long time interval be made. Modern
carbon dating tends to measure the proportion of carbon 14 directly
using a mass spectrometer to reduce the uncertainty caused by that
randomness of beta decays.

2.2 Continuous Distributions

These distributions describe random variables that take on continuous values.
By far the most important distribution in this class is the Gaussian or normal
distribution. However, there are a number of other continuous distributions that
are common enough that they are worth getting to know.

2.2.1 Normal Distribution

The normal distribution — also called the Gaussian distribution —is by far the most
frequently encountered continuous distribution. There are a number of reasons
for this. The central limit theorem (see Section 5.3 on page 81) tells us that the
distribution of the sum of many random variables (under mild conditions) will
converge to a normal distribution as the number of elements in the sum increase.
Many of the other distributions converge to the Gaussian distribution as their
parameters increase. This means that in practical situations many quantities will
be approximately normally distributed. If all you know about a random variable
is its mean and variance then there is a line of reasoning (the so-called maximum
entropy argument, see Section 9.2.2 on page 267) that says that of all possible
distributions with the observed mean and variance the normal distribution is
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overwhelmingly the most likely. Thus, assuming it is normally distributed is,
in some sense, the optimal decision. However, before you use this argument
you need to understand the small print (i.e. you’ve made a strong assumption
about your variables that ain’t necessarily so). A further reason why normal
distributions are so commonly used is simply because they are easy to manipulate
mathematically — this is a less contemptible motivation than it may at first appear.
All models are abstractions from reality, and an approximate, but an easily
solvable model is often much more useful than a more accurate but complex or
intractable model.
The probability density for the normal distribution is defined as

) =
./\/’(x\,u.a-)zmo_e wI (2.4)

which has mean u and variance o-2. Examples of the normal probability density
functions are shown in Figure 2.5. We will have much more to say about the
normal distribution in Chapter 5.

2.2.2 Gamma Distribution

When considering problems where a continuous random variable only takes
positive values, the normal distribution can provide a poor model. Often a more
appropriate model is the gamma distribution defined for X > 0 through the
probability density

baxa—le—bx

Gam(x|a, b) = T

(2.5)
where I'(a) is the gamma function defined (for real a > 0) by

[(a) = / x4 le*dx
0

(see Appendix 2.A). It can easily be verified using integration by parts that
I'(a + 1) = aT(a). For positive integers, n > 0, the gamma function is given
by I'(n) = (n — 1)! (factorial). In some texts the gamma distribution is defined
with parameters « = a and 8 = 1/b. The mean of the gamma distribution is
given by a/b (or @ B) while the variance is given by a/b* (or & 7). Examples of
the distribution are shown in Figure 2.6.

Figure 2.5 Examples
of the normal
distribution for
(u,0) =(0,1) (solid
line), (1, 07) = (1,1)
(dotted), and

(o) = (~1,2)
(dashed).

The gamma
function is actually
defined throughout
the complex plane
except where a is
equal to 0 or a
negative integer.
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Figure 2.6 Examples 1r
of the gamma 7
distribution for 081"
b=1landa=0.5 0.6 - .-'(?;mn/\l.h Gam(z[10,4)
(SOlid line), a= 1 Gam(gv\m b)o . ; . )
(dotted) and a = 2 LT /L'Aff >~~< Gam(z|2,1)
(dashed). 02/~ Tl el
0 - I I Lt o Toorarsoo
0 1 2, 3 4 5

The gamma distribution is often used to empirically fit data that are known
to always take positive values. For example, if you wish to model the intensity
of light from different stars or the sizes of different countries then the gamma
distribution is often a reasonable fit. Given an empirically measured mean i and
variance 62 a simple fitis to choose a = 4?/G% and b = j1/5-2. (Although this gives
a reasonably good fit, it is not the maximum likelihood estimator for a and b.)
Gamma distributions also arise naturally in many problems. We discuss a few
examples here.

The chi-squared (or x?) distribution is a particular form of the gamma
distribution. The distribution arises in sums such as

where X; are normally distributed variables with mean 0 and variance 1. Then
Sk 1s distributed according to

fse(s) = xx(s) = Gam(s|%, 1)

The y2-distribution arises when evaluating the expected errors in curve fitting.
In the special case of a = 1, the gamma distribution reduces to the exponential
distribution

Exp(x|b) = Gam(x|1,b) = be ~"~*. (2.6)

The exponential distribution describes the waiting times between events in a
Poisson process (see Section 12.3.1 on page 380).

The velocity of particles in an ideal gas (a model for a real gas which is often
very accurate) are normally distributed, such that the components of the velocity
Vi, Vy, and V; have distribution N(V;|0,m/(2kT)), where k is the Boltzmann
constant and T the temperature. The speed V = || V|| is consequently distributed
according to the Maxwell-Boltzmann distribution, which is related to the gamma

distribution
" mv?
P(v§V<v+dv)=fv(v)dv=47r(2ﬂn;{T) vie 2kT dv
= Gam <V2 %, 2’]:l]1> de.
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Example 2.4 Escaping Helium

Molecules can escape the atmosphere if their velocity exceeds the
escape velocity and they are pointing in the right direction. This is
known as Jeans’ escape. The gravitational escape velocity of an object
from a mass M at a radius r from the centre of the mass is given by

[2GM
Ve = .
r

For a molecule 500 km above earth this is around 10.75 km/s. The
upper level of the atmosphere is known as the exosphere, which
starts at the exobase at a height of around 500 km. In the exosphere
the mean free path of a gas molecule is sufficiently large that a
molecule can easily escape the gravitational pull of earth if it has
sufficient velocity. The temperature of atmospheric gas is surprising
large at around 1600 K. The velocity for hydrogen and helium is
given by the Maxwell-Boltzmann distribution. Figure 2.7 shows the
distribution of velocities for both molecular hydrogen and helium.
Although small, there is a sufficiently high probability of reaching
the escape velocity for the escape of hydrogen and helium to be
important. Although hydrogen is lost to space, most of it is retained
as it forms molecules with heavy atoms (e.g. water, H,O), however,
helium does not form any molecules and so will, over time, become
lost into outer space. The presence of helium in the atmosphere is the
result of radioactive alpha decays. The concentration of helium in the
atmosphere (5.2 parts per billion) is determined by an equilibrium
between its production through alpha decays and its loss from the
atmosphere through Jeans’ escape.

0.0004

0.0003
fv(v)

0.0002

0.0001

Escape velocity

- ! |

I~
T T T T T 1
0 2x10% 4x10% 6x10° 8x10° 1x10* 1.2x10% 1.4x10*
Speed, v (m/s)
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Yet another distribution obtained by making a suitable change of variable is
the Weibull distribution. If ¥ ~ Exp(1) = Gam(1, 1) then the random variable

X = /17 is distributed according to a Weibull probability density:

. k k-1 ,
Wei(x|d, k) = = (%) e (/D"

The mean of the Weibull distribution is I'(1 + 1/k) and the variance is A%(I'(1 +
2/k) — T2(1 + 1/k)). Weibull distributions can also be used to fit data involving

Figure 2.7
Distribution of
velocity of hydrogen
and helium
molecules at 1600 K.



Figure 2.8 Examples
of the beta
distribution for
(a,b) =(0.5,1)
(solid line),

(a.b) = (2,2)
(dotted), and

(a,b) = (4,2)
(dashed).
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positive real random variables. It is slightly less convenient than a gamma
distribution, although easier enough to fit numerically. It provides slightly dif-
ferently shaped density profiles to the gamma distribution. This is explored in
Exercise 2.6.

Although gamma distributions are not so well known, as these many examples
illustrate they deserve to be widely appreciated.

2.2.3 Beta Distribution

The beta distribution is a two-parameter continuous distribution that is defined
in the interval [0, 1]. It is therefore useful for modelling situations where the
random variable lies in a range. It is defined by

x“_l(l _ x)b_l

Bet(x|a, b) = B(a,b)

2.7)

where B(a, b) is the beta function (see Appendix 2.B) given by

1
B(a,b) = /0 x4 11— x)P~ldx = I“(a-l-b))'

The mean and variance of the beta distribution are a/(a+b) and a b/ ((a+b)*(a+
b+1)), respectively. Examples of the beta probability density functions are shown
in Figure 2.8.

* Bet(x]0.5,1)
Bet(z|a, b) . < N

A typical application of the beta distribution is to model an unknown prob-
ability. The uncertainty might be because you don’t know what the value of
probability is. For example, you might want to model the probability of a cell
dividing in the next hour. In this case, there is some fixed probability p, but you
don’t know it. To model your uncertainty you can treat p as a random variable
that takes some value in the interval [0, 1]. Alternatively, you might have different
types of cells with different probabilities of dividing. Here, the uncertainty arises
because you don’t know which type of cell you are looking at. In this case, you
are modelling the distribution of p in a population of cells. The beta distribution
has a limited parametric form, nevertheless it is sufficiently flexible that it can
fit many observed distributions for quantities bounded in an interval quite well,
provided the distributions are single peaked (unimodal).
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2.2.4 Cauchy Distribution

There are a large number of other continuous distributions, many of which are
rather esoteric. However, one type of distribution which you need to be aware
of are those with long tails — that is, with a significant probability of drawing
a sample which is many standard deviations away from the mean. (These are
also, perhaps more accurately called thick-tailed distributions, since they are
usually characterised by a power-law fall-off rather than an exponential fall-
off in probability.) A classic example of a distribution with very long (thick)
tails is the Cauchy distribution (aka Cauchy—Lorentz, Lorentzian, Breit-Wigner),
defined through the probability density

Cau(x) = ! (2.8)

(1+x2)
The median and mode of the Cauchy distribution is zero, but rather shockingly
the distribution has no mean or variance. That is, if X is drawn from Cau then
the improper integrals E [X| and E [X?] diverge. We will see that distributions
like this behave rather differently to the other distributions we have looked at so
far. The Probability Distribution Function (PDF) for the Cauchy distribution is
shown in Figure 2.9.

Cau(z)
0.4
[)1{ =\
/0.2 \
/ AN
pd 0.1
k—7**r’*””’fﬁﬁ | | 6 | | | B B
-5 —4 -3 —2 —1 0 1 2 3 4 5

2.3 Multivariate Distributions

So far we have considered distributions involving a single random variable. Often
we have situations where there are many correlated random variables. Distribu-
tions that describe more than one random variable are known as multivariate
distributions, in contrast to distributions of a single variable, which are known
as univariate distributions. There are multivariate extensions for most univariate
distributions, although they often become rather too complex to work with.
However, there are three well-known and useful multivariate distributions that
are relatively easy to work with: the multinomial distribution, the multivariate
normal distribution, and the Dirichlet distribution.

2.3.1 Multinomial Distribution

The multinomial distribution is the generalisation of the binomial distribution
to more than two classes. We assume that we have k classes. The probability

1t is tempting to
assume the mean
must be zero by
symmetry. Don’t be
tempted!

Figure 2.9 The
Cauchy distribution.
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of drawing a sample from class i is given by p;. Thus the model is described
by a vector of probabilities p = (p1, p2,..., px), with p; > 0 for all i and
>-;pi=1. The vector of probabilities satisfying these constraints live in the
(k — 1)-dimensional unit simplex

Ak:{P=(P1,P2,'--,Pk)

k
Vi, pi >0 and Y p; = 1}. (2.9)
i=1
Note that the simplex is a (k—1)-dimensional surface that lives in a k-dimensional
space. Suppose we draw a sample of n objects without replacement and we wish
to know what is the probability that we have drawn n; objects from class 1, n;
objects from class 2, etc. This probability, P (N = r), is given by the multinomial
distribution

kK n
Mult(n|n, p) = n! H % [[n € A’,‘l]l (2.10)
=1

where we use the notation IIpredicate]] to be the indicator function as defined in
Section 1.5.1 (note that the bold »n signifies a vector with components n; equal to
the number of samples in class i, while the italic n denotes the total number of
samples). The set Ak is the discrete simplex defined by

k
Aﬁ = {n = (ny, ny, ... ng) | Vi, n; € {0,1,2,...} and Zni = n} (2.11)
i=1

The mean of the multivariate distribution is E [N ] = np. For multivariate
distributions you not only have a variance for each variable Var [N;| = E [N?] —

2 . )
E [N;]", you also have a covariance between variables C;; = E[N;N;] —
E [N;] E [N;]. In general, the second-order statistics for a multivariate distribu-
tion are described by a covariance matrix, C, defined as

C=Cov[N]=E[NNT|-E[N]E[NT].

The covariance matrix is both symmetric and positive semi-definite. For the
multinomial distribution the covariance between N; and N; is given by

Cov[Ni,N;] = Cij =B [N; N;] =B [N:] B[N;] =n [i = j|pi = npip;
or in matrix form
C=n (diag(p) —pp").

where diag(p) is a diagonal matrix with elements p;.

The random variables N; are not independent since their sum adds up to n.
A consequence is that each row (or column) of the covariance matrix sums to
zero. The multinomial distribution for just two variables only has one degree of
freedom (i.e. given p; then p, = 1 — p;) and in this case the multinomial reduces
to the binomial distribution. With three variables, the multinomial is sometimes
referred to as the trinomial distribution.
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Multinomial distributions are fairly common. Suppose, for example, you had a
(possibly biased) dice which you rolled » times. Letting N; fori = 1,2, ..., 6 denote
the number of times the dice lands on i, then the probability of the outcome
N =n = (n,n,...,ng) is given by the multinomial P (N = n) = Mult(n|n, p),
where the components of the vector p = (p1, pa, - .., pe) describe the probability
of each possible outcome of a dice roll.

2.3.2 Multivariate Normal Distribution

The most commonly used multivariate distribution for continuous variables is
the multivariate normal distribution defined as

Mx|p, X) = #e—%(x—ﬂ)Tzfl(x—u), (2.12)

V27X

which has mean vector E [X|] = p and covariance X. A two-dimensional normal
distribution is shown in Figure 2.10. Like its univariate counterpart, the multi-
variate normal (or Gaussian) distribution can be manipulated analytically. This
can be a somewhat complicated or awkward business requiring some practice,
but it pays off handsomely. A large number of state-of-the-art algorithms from
Gaussian processes to Kalman filters rely on being able to manipulate normal
distributions analytically. We discuss the multivariate normal distribution in
more detail in Section 5.6 on page 96. Applications of multivariate normal
distribution reoccur throughout this book.

7166 2)

2.3.3 Dirichlet Distribution

Although the most common multivariate distributions by far are the multinomial
and multivariate normal distributions, there exist many others. A particularly
convenient distribution for describing a vector of random variables defined on
the unit simplex, AX, is the Dirichlet distribution, defined as

ar,-fl

k
Dir(x|@) = T(ao) [ | rf(a_>, (2.13)
i=1 !

=

Figure 2.10 A
two-dimensional
normal distribution.



Figure 2.11 A
three-dimensional
Dirichlet
distribution,

Dir(X = (x,y,z)|
a = (1,2,3)). Note
that this distribution
is defined on the
simplex.

* Warning, this is
more advanced
material than the
rest of this chapter.
It can be skipped.
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where ag = erf:] ay. The means are equal to E [Xi] = a;/a¢ and the covariance

ai(agp [[i = j]] —aj)

a/%(a/o +1)

Cij=E[X:X;] —E[X:]E [X;] =

An example of a Dirichlet distribution with three variables is shown in
Figure 2.11.

Suppose you have a dice and you are not sure whether it is biased. You could
model your uncertainty about the probability of rolling any number using a
Dirichlet distribution. The random variables X;, drawn from Dir(X, &), are not
all independent as their sum adds up to one. In the two component case there
is only one independent variable and the Dirichlet distribution reduces to a beta
distribution.

2.4 Exponential Family*

Although distributions vary considerably, they also share many properties, some-
times more so than is immediately obvious. One very important family of
distributions which share similar properties is the exponential family. These are
distributions which can be written in the form

Fx(xlm) = g(n) hix) e™ ),

where 5 are natural parameters of the distribution, g(#n) and h(x) are scalar func-
tions, and u(x) is a vector function (i.e. a function for each natural parameter).
The distribution can be either for a single random variable or for a random vector,
e.g. in the case of a multinomial distribution. The importance of the exponential
family is that many properties are known to hold true for distributions belonging
to this family. Thus, once we know a distribution belongs to this family we know
many of its properties.

It is not immediately obvious, though, which distributions are in the exponen-
tial family, because they are often written in ways that don’t appear to fit the
standard form. Examples of distributions that belong to the exponential family

(2.14)



2.4 Exponential Family 39

Distribution n u(x) h(x) g(m)

Bern(x|y) = u*(1 — )= log(%ﬂ) x 1 SnE

Nlno)= e 55 L) (D) g VEmenon

Gam(xla, b) = K2 e~ ) ) 1

Bet(x|a, b) = % (Z:}) (1;§?1(fl)> 1 m
a—1 log(x1)

Dir(xla) = T(Sy ) IT 75y | : Y o

a,—1 log(xn)

are shown in Table 2.1. A fuller discussion of the exponential family can be found
in Duda et al. (2001).

An important property of members of the exponential family is a relation
between the natural parameters and an expectation. To see this we start from
the normalisation condition

g(q)/h(x)e"T"("’)dx = 1.

Differentiating both sides with respect to the natural parameters, 7,

Vg(q)/h(x)e"T"<x>dx+g(q)/h(x)e"T"<x>u(x)dx = 0.

Rearranging and making use of the normalisation condition we find

—1

V) = () / h(x) e ) u(x) dx

or, equivalently,

—Vlog(g(n)) =E [u(x)].

Thus, the expectation of u(x) can be found by taking a derivative of log(g(1)).
Furthermore, the covariance and higher order moments can be obtained by
taking higher order derivatives of g(n).

A related property is to do with the maximum likelihood estimate of the natu-
ral parameters. Given a collection of independent data points, D = (x1, x3, ...,
X, ), the likelihood of the data is equal to

f(Dln) = (Hh Xi )

The maximum likelihood estimator for the natural parameters, 7, satisfies

'l Z, 1“("1)

V(D) =0

Table 2.1 Examples
of distributions
belonging to the
exponential family.
Bern(x|u) is a
Bernoulli
distribution, which
we discuss in
Section 4.1.
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or

N

u(xy,).
i=1

S|

~Vlog(g(h)) =

From this we can solve for the maximum likelihood estimate 7. Thus, the only
statistics needed for the maximum likelihood estimate of the natural parameters
are the components of the vector > ., u(x,). These are therefore sufficient
statistics for any member of the exponential family. We discuss maximum
likelihood estimators and sufficient statistics in more detail in Chapter 4.

Although there are a plethora of probability distributions, a few of them are so
common and important that they simply can’t be ignored. Of these the binomial
and normal (or Gaussian) distributions stand out as particularly important. In
the second rank sits the hypergeometric, Poisson, gamma, beta, multinomial,
and Dirichlet distributions. You also need to be aware that some distributions
can have very long tails and nasty properties. Although not very frequently
met in practice, the Cauchy distribution is a particularly pretty example of a
long-tailed distribution. We’ll meet other long-tailed distributions along the way.
Appendix B on page 445 provides tables showing the properties of some of the
more commonly encountered distributions.

Additional Reading

A useful table of results for different distributions can be found in the com-
pendium of mathematical formula by Abramowitz and Stegun (1964). If you
know which distribution you are interested in, then performing a Google or
Wikipedia search on the distribution is a very quick way to find most of the
common relationships that you might be interested in.

Exercise for Chapter 2

Exercise 2.1 (answer on page 396)
What distribution might you use to model the following situations:

1. the proportion of the gross national product (GDP) from different
sectors of the economy;

ii. the probability of three buses arriving in the next five minutes;

iii. the length of people’s stride;

iv. the salary of people;

v. the outcome of a roulette wheel spun many times;

vi. the number of sixes rolled in a fixed number of trials; or
vil. the odds of a particular horse winning the Grand National.

(Note that there is not necessarily a single correct answer.)
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Exercise 2.2 (answer on page 397)
Assume that one card is chosen from an ordinary pack of cards. The card is then
replaced and the pack shuffled. This is repeated 10 times. What is the chance that
an ace is drawn exactly three times?

Exercise 2.3 (answer on page 397)
Assume that a pack of cards is shuffled and 10 cards are dealt. What is the
probability that exactly three of the cards are aces?

Exercise 2.4 (answer on page 397)
Show that the hypergeometric distribution, Hyp(k|N,m, n), converges to a bino-
mial distribution, Bin(k|n, p) in the limit where N and m go to infinity in such a
way that m/N = p. Explain why this will happen in words.

Exercise 2.5 (answer on page 398)
In the UK National Lottery players choose six numbers between 1 to 59. On draw
day six numbers are chosen and the players who correctly guess two or more of the
drawn numbers win a prize. The prizes increase substantially as you guess more of
the chosen numbers. Write down the probability of guessing k balls correctly using
the hypergeometric distribution and compute the probabilities for k equal 2 to 6.

Exercise 2.6 (answer on page 398)
Show that if ¥ ~ Exp(1) then the random variable X = 1 {/¥ (or ¥ = (X/2)*) is
distributed according to the Weibull density

. _ k /x\k—1 7(x//1)l"
Wei(x|2, k) = 3 (z) e .

Plot the Weibull densities Wei(x|1, k) and the gamma distribution with the same
mean and variance

G ( (1 + 1/k) (1 +2/k) )
M+ 2/k) —T2(1 + 17k)° T(1 + 2/k) — T2(1 + 1/k)

fork=1/2,1,2, and 5.

Appendix 2.A The Gamma Function

The gamma function, I'(z), occurs frequently in probability. For R(z) > 0 (i.e.
the real part of z is positive), the gamma function is defined by the integral

I'(z) = /OOC x* e ~*dx. (2.15)

Using integration by parts (assuming z > 1) we obtain the relationship

I'(z) = [—xz_le_x]zo +(z— 1)/0 x*72e *dx

Since

’

u—vdx:[uv]z

dx

_/ab

du
v de



Gauss much more
sensibly defined the
Pi-function

o0
H(z):/ x“e Ydx
0

so that I1(n) = n.
Alas, history left us
with the gamma
Sfunction.
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we find for integer, n, that T'(n) = (n — NI'n - 1) =(n—1)(n—-2)---2-1 =
(n — 1)!. Thus, the gamma function is intimately related to factorials (although
annoyingly with an offset of 1). As the gamma function increases so fast, it
will tend to cause overflows or underflows in numerical calculations if used in
its raw form. To overcome this it is usual to work with log(T'(z)). In C-based
programming languages this function is called 1gamma. It is also useful for
computing factorials. For example, to compute the binomial coefficient (Z) we
can use

exp(lgamma(n + 1) — lgamma(k + 1) — lgamma(n — k + 1)).

The gamma distribution is very well approximated by Stirling’s approximation

ro= () (1v0()).

For factorials this is equivalent to

n n
n!~ (7) 2nn.
e

In proving theorems involving factorials it is occasionally useful to use a bound
provided by Stirling’s approximation

/2” nn+1/26—n < n! <e nn+1/2e—n'

Although the integral in Equation (2.15) is only defined for R(z) > 0, the
gamma function can be defined everywhere in the complex plane except at a =
0,—1,-2,---, where the function diverges. There are a number of relationships
between the gamma function at different values that often help to simplify
formulae. We have already seen that I'(a) = (¢ — 1)I'(a — 1). Another important
relationship is Euler’s reflection formula

g

[(1-2z)I(z)= Sn(72)

and the duplication formula
I'(z) T (z + ;) =272 /7 1(2z).

For those readers with a more mathematical background, a formula, due to
Hermann Hankel, which is occasionally useful is an integral form for the
reciprocal of the gamma function in terms of a contour integration

11 Crox
F(z)_27ri/cx e” dx,

where C is a path that starts at —oo below the branch cut, goes around 0, and
returns to —oo above the branch cut.

\Cy g
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Derivatives of the gamma function arise when computing maximum likelihood
estimates for distributions such as the gamma distribution. Rather than using the
derivative of the gamma function it is more usual (and often more convenient)
to consider the derivative of the (natural) logarithm of the gamma function
(throughout this book we use log(x) to denote the natural logarithm of x). This
is known as the digamma function which is usually written as

_dlog(I'(z)) _ 1 dI'(z)

dz I'(z) dz

Although the digamma function is not part of the standard C library, it exists
in many numerical packages. The derivative of the digamma function is known
as the trigamma function ¢'(z), while higher order derivatives are known as
polygamma functions. Like the gamma function the polygamma functions,
and particularly the digamma function, have interesting properties that are
well documented (e.g. in most tables of mathematical functions as well as in
Wikipedia, etc.).
The incomplete gamma functions are defined for R (a) > 0 by

Z o0
v(a,z) = / x4 e ¥ dx, I'a,z) = / x4 e du,
0 z

¥(z)

with y(a, z) + I'(a, z) = I'(a). The normalised incomplete gamma functions are
defined as

P(a,z) =

with P(a,z) + Q(a,z) = 1.

Appendix 2.B  The Beta Function
The beta function is defined (for R(a), ®(b) > 0) through the integral

1
B(a,b) = / x4 (1= x)b~dx.
0

Remarkably, it is related to the gamma function through

_T(a)r(p)
B(a,b) = m

To prove this we start from

I'(a) T(b) =/ ut=! e_“du/ v=le=vdy =/ / ut= b=l e =u=vdy dv.
0 0 0 0

We make the change of variablesu = z¢,v = z (1—t), withz € [0, 1] and z € [0, o0]
(in the u-v plane # determines the angle and z the magnitude). The Jacobian is
given by

z t
—z (1—1)

=z(l—-t)+zt=2z
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With this change of variables we find

1 oS
r(a)r(b)z/o/o (z0)* ' (z(1—1)P T ex =200 7 dr dz
1

= / (1 —0)bdr / 7%*t=le=2dz = B(a, b) [(a + b).
0 0

The incomplete beta function is defined as

Z
B.(a,b) = / x4 (1= x)P~1dx.
0

The normalised incomplete beta function is defined as I (a, b) = B;(a, b)/B(a, b).
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Modern computers give us the ability to simulate a probabilistic process. By
repeating the simulation many times we can calculate many of the properties of
interest. Performing multiple runs of probabilistic simulation goes by the name
of Monte Carlo, drawing on the analogy of the gambler who repeatedly plays the
same game (with the forlorn hope that their expected pay-off might be greater
than 1). In this chapter, we discuss simple Monte Carlo techniques and ways of
generating pseudo-random numbers.

Monte Carlo methods are a recurring theme throughout this book. In partic-
ular we revisit Monte Carlo techniques in Chapter 11 when we consider Markov
chains.

45



46 Monte Carlo

3.1 Random Deviates

One of the most useful concepts in probabilistic modelling is that of independent,
identically distributed random variables, know colloquially as iid variables (or
even just iids). These are assumed to be independent samples drawn from some
distribution fx. If X; and X, are iid variables then

f(X1,X2) = fx(X1) fx(X2).

The distribution we choose depends on the application. If we are modelling the
counts coming from a Geiger counter over different intervals of time, we might
model this with a Poisson distribution. If we are modelling the outcome of a
series of measurements of a continuous quantity we might choose to model this
as iids coming from some normal distribution.

To simulate a probabilistic model we would like to be able to generate iid
variables computationally. This is a very common requirement. We call such
realisations of iids either random deviates or random variates. This chapter
describes how such (random) deviates are generated in practice.

Having the ability to generate deviates allows us to simulate probabilistic mod-
els, a process known as Monte Carlo simulation. Often Monte Carlo simulations
are sufficient to solve the problem we are interested in. In some cases it can even
be the only method for solving a problem. However, we will frequently want to
know more about a system than we can find out through a simulation. We might,
for example, want to prove a theorem, or to understand how the system depends
on some parameter. Very often there is a parameter that determines the size of
the system and we want to know how the system scales with the size. An example
of this would be to understand how the fluctuations scale for a sum of random
variables as we increase the number of variables in the sum. We might want to
obtain a result in some limiting case, for example when the system size grows to
infinity (this is often a limit where the behaviour becomes simple). To obtain such
results we need mathematical tools, but even in this case simulations can help
build up an intuition and provide a sanity check for our theorem. Personally,
I often struggle with understanding extremely abstract theorems so building a
concrete model (even as a thought experiment) can help to clarify what the
theorem tells us.

Before diving into techniques for generating random deviates we consider a
couple of applications. These provide a very brief illustration of the use of Monte
Carlo methods. We will see many more examples throughout this book.

3.1.1 Estimating Expectations

One of the most common tasks in probabilistic modelling is to compute an
expectation of some function of a random variable, E [¢(X)]. The random
variable may be discrete, in which case the expectation involves a (possibly
infinite) sum, or continuous, in which case it involves an integral. Furthermore,
the random variable may be multidimensional so that the expectation would



3.1 Random Deviates 47

involve either a multiple sum or multiple integral. Except in a few special cases
these sums or integrals are intractable and we are forced to resort to numerical
estimations. The special cases attract considerable attention, as it is extremely
useful to get analytic answers, but they are nevertheless the exception rather
than the rule. If the random variables are high dimensional then even numerical
estimation of the sums or integrals can become intractable. However, the battle is
not lost, for we can approximate any expectation by a sum over random samples

E[5(X)] ~ - > e(X) G.0)
i=1

where the X;s are random deviates. Here we struggle with notation, because
once we have generated the random deviates they are no longer random vari-
ables. In any simulation the right-hand side of Equation (3.1) will give a fixed
number, although from simulation to simulation the right-hand side will vary.
Conceptually this is not difficult to understand, but using a notation that only
distinguishes random versus non-random variables leads to some ambiguity in
how to interpret Equation (3.1).

A commonly used notation to denote a random variable drawn from some
distribution of fx(x) is

X ~ fx. (3.2)

‘We use the convention of dropping the variable names in the function argument.
So, for example, a normally distributed random variable drawn from A{(x|u, o%)
would be written X ~ My, o?).

The accuracy of the approximation in Equation (3.1) depends on the probabil-
ity distribution and the function g(X). Normally the error in the approximation
falls off as 1/,/n. However, this can fail, for example, if the variance of g(X) is
infinitely large or the probability distribution has very long/thick tails. Comput-
ing expectations in this way is often referred to as Monte Carlo, signifying the
element of chance that appears in the calculation.

3.1.2 Monte Carlo Integration

Equation 3.1 very naturally replaces the expectation with a sum over random
variates. This is often how we think of an expectation — i.e. as the mean result
we obtain after very many trials. But if the random variable is continuous, then
this expectation can be expressed as an integral. Turning this argument on its
head, we can frequently perform an integral by summing over random variates,
even when the problem we are interested in has nothing to do with probabilities.
This use of probabilistic techniques for solving integrals is known as Monte
Carlo integration. 1t is frequently used to perform high-dimensional integrals
as the errors decrease because 1/+/n independently of the dimensionality of the
integral.
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Example 3.1 Pi
We give a very simple example: to compute the area of a circle of
radius 1. We can represent this area by the integral

1 1
— 2 2
A—/_l/_l[[x +y Sl]ldxdy.

(Here we are using [[x2 +y2 < 1]] to denote the indicator function
that is equal to 1 if the point (x,y) lies inside a unit circle
and 0 otherwise.) To approximate this integral we generate n
pairs of random numbers (X;,Y¥;) uniformly distributed in the
square, X;,Y; ~ U(—1,1), (where U ~ U(a, b) denotes a deviate
uniformly distributed in the range from a to b, U(x|a,b) =
I[a <x< b]l /(b—a)). We then count the number of instances such
that X? + ¥? < 1. The expected probability of landing in the circle is
equal to the ratio of the area of a circle to the area of the square. Thus
our estimate for A (the area of the unit square) is equal to four times
the number of points lying in the circle divided by n. This procedure
is illustrated in Figure 3.1. In this simulation, we know that each
random deviate either lies in the circle or outside. Thus we can treat
the event where a random deviate lies inside the circle as a true—false
event (a so-called Bernoulli trial) with a success probability p = 7 /4.
The probability that m random deviates out of n fall in the unit
circle is given by the binomial distribution Bin(m/|n, p). The expected
number of random deviates falling in the unit circle is thus »n p while
the standard deviation is y/np (1 — p). Since our estimate for A is
4m/n, the expected value for the area of the circle, A, is4 p = &, while
the expected magnitude of the error is 4/p (1 — p)/n =~ 1.642/+/n.
Increasing the number of sample points by 4 decreases the size of
the expected error by 2.

\
*—1 fee T = N

0 200 400 600 800 1000

Figure 3.1 Illustration of Monte Carlo integration to compute the area of a circle.
On the left we show 100 random points uniformly distributed in a square (points
inside the circle are light dots, while those that lie outside the circle are dark). On the
right we show our estimate of the area as a function of the number of sample points,
n. The dashed lines show the expected errors around the true solution.
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The accuracy of Monte Carlo integration is not great. You would certainly
obtain higher accuracy much more quickly in one or two dimensions using
standard integration algorithms. The disadvantage with standard techniques is
that to compute an n-dimensional integral you have to compute the integrand at
a number of points, but the computation of each integrand involves computing
an (n — 1)-dimensional integral. Thus the work increases exponentially with
the number of dimensions (halving the distance between sample points in each
dimension requires looking at 2" more points). Although Monte Carlo has a
rather poor convergence rate it is independent of the number of dimensions.
This is not to say that there isn’t a price to pay for working in higher dimensions.
You may well spend much longer generating random deviates. Nevertheless, if
you want to estimate a multidimensional integral in three dimensions or above,
Monte Carlo methods may be very competitive.

For problems such as the integral in Figure 3.1, you can do significantly better
using non-random points, so-called quasi-random numbers. These are numbers
which lie at regular lattice points. Quasi-random numbers can significantly im-
prove the accuracy of Monte Carlo integration, but considerable care is necessary
to prevent any bias caused by the underlying lattice. Details on how to use these
techniques can be found in Numerical Recipes by Press et al. (2007).

3.2 Uniform Random Deviates

To perform Monte Carlo calculations we require a generator of random deviates.
Alas, there is no algorithm which will generate truly random numbers since the
existence of such an algorithm stops these numbers from being truly random.
However, there are algorithms which generate very good pseudo-random numbers.
That is, they generate random deviates with properties very close to those you
would expect of real random numbers.

The obvious property which one would expect of a random deviate, X, is that
it has the correct distribution. Another way of looking at this is that if we have a
set of such random deviates, then a histogram (see Section 6.2) will approximate
the probability mass/density distribution and will approach the distribution ever
more closely as the data-set size increases. When working with deviates it is
always a useful sanity check to plot a histogram of the deviates you are using and
compare this with the true probability distribution you are trying to simulate.

However, this is not the only property we require of random deviates. Another
important property is that if we draw pairs of deviates X; and X, then they
are independent of each other, and more generally all deviates in a set should
be mutually independent. Subtle correlation between deviates can occur when
using some random number generators, which can cause systematic biases to
occur in simulation results. Computer scientists tend to be much more fearful of
this occurring than present-day experience justifies. In the dim and distant past
there was a notorious random number generator that had exactly this error, but
was nevertheless widely used. Most random number generators around today are
much better behaved. Nevertheless, the fast default generators are not perfect and

‘Anyone who
attempts to
generate random
numbers by
deterministic
means is, of course,
living in a state of
sin.”

—von Neumann



Figure 3.2 A simple
linear-congruential
update function,
f(Xn) = (135X, +3)
mod 64. The
left-hand graph
shows the function.
The right-hand
graph shows a series
of random numbers
generated by
iterating the update
equation starting
with Xy = 7.
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Xui1 = (13X, + 3) mod 64

=
1

w1 = (13X, + 3) mod 64
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can lead to inaccuracies. This has only happened to me once in over 30 years of
doing probabilistic simulations. In all the many other cases where I've suspected
the random number generator, the fault has been a bug in the program or an
error in my theory. It is very easy to get hold of superior pseudo-random number
generators to the default ones available in C or Java, however, you pay a price in
terms of run times. In many simulations the majority of machine time can be
spent generating random numbers. Using a simple random number generator
can significantly speed up performance.

Linear-Congruential Generators

The basic building block for generating pseudo-random numbers is a uniform
random number generator. By far the most popular generators are linear-
congruential generators which generate a series of numbers, X, X, X5, - - - using
the recursion relation

X1 = f(X,) = (aX, +¢) mod m.

Usually m is taken to be the greatest representable integer plus 1 (e.g. 2°!). An
example of the function f(X,,) is shown in Figure 3.2 for a very small m. Note that
provided we choose a, ¢, and m appropriately we should visit all integers between
0 and m — 1. As a consequence the distribution is uniform. Note also that this
recursion relation is periodic, with a period m. Usually, this is large enough for
us not to worry.

The choice of the constants a, ¢, and m is quite critical. The notoriety of
random number generators arose from a routine that was widely used on IBM
mainframes and which used a particularly poor choice of constants. Good
constants give quite good pseudo-random numbers. These form the basis of most
of the default pseudo-random number generators found in most programming
languages. Superior pseudo-random number generators exist (i.e. those whose
sequences pass much more stringent tests of randomness) and in a few appli-
cations it is necessary to resort to these. However, they tend to be considerably
slower.
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3.3 Non-Uniform Random Deviates

Often we are interested in obtaining random numbers from more complex
distributions. Algorithms for generating deviates for most of the standard
distributions are readily available. For example, they exist within Matlab or
Octave (an open source clone of Matlab). Code is available in Press et al. (2007).
A rich source of information on generating random deviates is Knuth (1997b).
The GNU scientific library (gsl) provides a very extensive set of random number
generators as does the latest version of the C++ standard library (C++11), R
and python.

3.3.1 Transformation Method

There are a number of different approaches to generating numbers from non-
uniform random distributions. The simplest and often fastest methods are the
transformation methods which transform one type of random variable to another.
These almost always start with pseudo-random numbers drawn from a uniform
distribution in the interval [0, 1]. The transformation methods use the cumulative
probability function

Fx(x)=P(X <x) =/x fx(@)dt.

These functions go from 0 to 1. To obtain a random deviate from the distribution
function fx(¢), we can generate a uniform deviate U ~ U(0, 1) and use it to
generate a new random number X = F~!(U). The probability of choosing a U
such that the value of X lies in the interval between x and x + dx is

1
P(x§X<x+6x)g/ [[xﬁF;l(u)<x+6x]]du
0

1
f—’/o [[Fx(x)§u<Fx(x+6x)]ldu

3)

1
i/o [[FX(X) <u< FX(X) +fX(x) ox +0(5X2)]] du

Fx (x)+fx (x) 6x

@) 5 Fx (x)+fx(x) 6x

N/ du 2 u]Fi(x) x 2 fx(x)ox
Fx (x)

~

(1) The probability of this event is equal to the range of u where X falls into the
required interval.

(2) Rewriting of the indicator function (since the cumulative probability Fx (x)
is monotonically increasing it is invertible).

(3) Performing a Taylor expansion of the upper limit (recall that fx(x) is the
derivative of Fx(x)).

(4) Absorbing the limits of the integral while discarding terms of order O (6x2).

(5) Performing the integral.

(6) Substituting in the limits of integration.
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Dividing through by éx and taking the limit 6x — 0 we find

. P (x <X<x+ 6x)
lim
Sx—0 ox

= fx(x)

as we would hope (note that the approximation of ignoring terms of order
(6x)? becomes exact in this limit). The proof assumes that Fx (x) is differentiable
and thus the density function exists. The method is actually more general and
works equally well for discrete distributions where Fx(x) changes in steps. This
procedure is illustrated schematically in Figure 3.3: we chose a uniform deviate
U in the interval [0, 1] and used the inverse of the cumulative probability density
to map this to a value X with the desired density.

F)((l‘)

Figure 3.3 Example of using a transformation method for generating a random variate. We show a
probability density fx (x) and the corresponding cumulative probability distribution Fx (x). Given
a random variate U from uniform distribution between 0 and 1, we can obtain a random variate of
Jfx (x) using F;l U).

Example 3.2 Exponential Deviates
As an example, consider drawing a number from the exponential
distribution defined, for x > 0, as

Exp(x|b) = be ~"*.

0.4 \ 041/
0.2 0.2 L/
0 \ T e R PN 0 | \ .
o 1 2 3 4 5 0 X 2.5 5

Figure 3.4 Exponential distribution for b = 1. The left-hand graph shows the probability density
function, while the right-hand graph shows the cumulative probability distribution. We show an
example of choosing U ~ U(0, 1) and using the inverse cumulative distribution function (CDF) to
generate a deviate X from an exponential distribution.
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The cumulative probability function is Fx (x|b) = 1 —e ~?*. Inverting
this we obtain a function Fy ' (x|b) = —b~! log(1 — x). The density

and cumulative probability distribution for the case when b = 1
are shown in Figure 3.4. To obtain an exponential deviate, X, from
a uniform deviate U ~ U(0,1), we use X = —b~!log(l — U).
(Mathematically, we could also write X = —b~!log(U), but

in a computer implementation, where U is implemented as
rand () /double (RAND MAX),you have to be wary since rand ()
can return 0 which will crash your program rather unexpectedly.
Using X = —b~! log(1 — U) avoids this as U is always strictly less
than 1.)

Example 3.3 Normal Deviates

Unfortunately, not all cumulative probability functions are easily
invertible. For example, the cumulative distribution for a zero mean
unit variance normal distribution is given by the error function

T dz 11 x
/_Ooe s 2+2er(2).

We could obtain a normal deviate by inverting the error function
(which we could do numerically using Newton’s method). However,
this is slow. Instead, we use the trick of working in two dimensions.
We start by generating two deviates, X and X5, uniformly distributed
over the circle defined by X? + X3 < 1. These can be obtained by
generating pairs, (X, X»), of uniformly distributed deviates in the
interval from —1 to 1 and rejecting all pairs with X12 + X22 > 1.
We can then construct random deviates ® = arctan(X;/X») and

S = ”X12 + Xzz, corresponding to the angle made by the vector
(X1, X>) and the x-axis, and the radius of the point from the origin.
These are clearly independent of each other as the angle does not
depend on the distance from the origin of (X, X») (see Figure 3.5).
The angle deviate ® is uniformly distributed between 0 and 2 r, while
the radius S is distributed according to

fs(s)=2s [[0 <s< l]]
(since the probability of generating a point at radius s is proportional
to the circumference of the circle, which is equal to 2  5). Define the
random variable R = 2/—log(S) (or S = e ~R’/4) 50 that

f(r) = ’dj(rr)

fs(s(r)) = %e_rz/‘l x2e "= e,

If we now define the random variables ¥; = Rcos(®) and ¥, =
Rsin(®) so that R? = ¥ + Y7, then the probability density of ¥; and

53
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Figure 3.5 o Ya
Illustration of
Box—Muller’s

algorithm for ; R =2/~ log(S)
generating normal Xoq g (S,0) —= (R.©) Ys B _e
deviates. Starting ‘ e (C I S ‘ 10y
from two uniformly -1 X, 1 Y

generated deviates
lying in the unit
circle, we rescale the -1 1
radius to obtain a

normal deviate in

two dimensions. Y, are given by
—1
. a b
Fron = reos(@), 2 = rsin@) = |22 g fo0)
a(r,0)
where
oy Oy .
OL,y2) | _|ar @0 | _ |cos(0) —rsin(6)] _ 2 2(0)) =
‘ a(r,e) |~ % % " |sin(8)  r cos(0) —r(cos (6) + sin (0)) -7
r

is the Jacobian needed to ensure the conservation of probability.
Using fr(r) = re~"/? and fo(0) = 1/2 we find

2, 2 2 2
frin (v y2) = %e_(yl *32)12 2 (\/%e _y1/2> <\/%e_y2/2) .
That is, ¥; and Y, are independent normally distributed variables.

Note that ¥ = (R/S) X; and ¥» = (R/S) X>.

This method for generating random normal deviates is known as
the Box—Muller method and is widely used. To recap, two uniform
deviates X1, X» ~ U(0, 1) are drawn. If §? = X7+ X3 > 1 the deviates
are rejected and a new pair drawn until a pair is found with §? < 1.
A constant C = R/S = /-2 log(5?%)/S? is computed (note that to
speed up the algorithm we don’t compute S, which requires taking the
square root, but rather work with §2), and then two normal deviates

are computedas ¥ = C X and ¥, = C X;.
|

£ Bin(il6.03) When using the transformation method for a discrete distribution, the CDF
consists of a number of steps and its inverse can map many values to the same
integer. When there are a small number of discrete values it is relatively efficient to
use the transformation method. In a few cases we can invert the CDF efficiently
for any number of outcomes, as we explore in Exercise 3.3.

3.3.2 Rejection Sampling

The transformation method is often very efficient, but requires that we can
compute the cumulative probability function and invert it efficiently. These are
strong restrictions which make the transformation method rather limited. A
more general technique is the rejection method. Again we consider generating
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a random deviate, X ~ fx(x), but we now perform two steps. We firstly generate
a random deviate Y ~ gy(y) from and appropriate ‘proposal’ distribution. We
require of the distribution gy (y) to be such that for all x

cgy(x) > fx(x)

for some known constant ¢ > 1. In the second step we accept the random deviate
with a probability fx(Y)/(c gv(Y)), otherwise we reject it. We illustrate this in
Figure 3.6. In this example, we want to generate a deviate from the distribution
fx(x) defined in the interval (0, 3). Since, in our example, fx(x) <2 U(x|0,3) =
2/3, we can generate a random deviate U ~ U(0, 3) and use a constant ¢ = 2.
We accept this number with a probability p = fx(U)/(c U(U|0,3)) = 3 fx(U)/2
(which we achieve by generating a second deviate U’ ~ U(0, 1) and accepting
X = U if U’ < p), otherwise we reject this number and try again.

U ~U(0,3) Figure 3.6

‘ Tllustration of
Reject fx(2) rejection method. A
uniform deviate

0.6

047 U~ U(0,3) is

!
: generated. This is
0.2 Ix(U) | Accept then accepted with a
probability

£ (U)/2UUIO.3)).
0 1 2 3 Note that in this
example

A (X) <2U(x]0,3)
for all x.

The probability density of an accepted deviate is proportional to

gr(Y) x Sx®) L(Y),
cgy(Y) c
1.e. the probability density for selecting Y times the probability of accepting Y.
The constant of proportionality is equal to ¢ which is the reciprocal of the
acceptance probability. Thus, the deviates have the correct probability density.
Furthermore, the rejection rate is equal to 1/c, so by making gy(y) as close as
possible to fx(x) (in the sense that we can choose a ¢ as close as possible to 1),
we reduce the probability of rejection.

|
Example 3.4 Normal Deviates Again

As an example of the rejection method, yet another way to gen-
erate a normal deviate is to generate a Cauchy deviate, Y ~ Cau,
and then reject it with a probability M(Y]0,1)/(1.53 Cau(Y)) — see
Exercise 3.1 to see how to generate random Cauchy deviates. We
show the rescaled Cauchy distribution and the normal density dis-
tribution in Figure 3.7. This method has a slightly higher rejection
rate than the Box—Muller method and involves slightly more mathe-
matical operations per deviate. Rejection methods are, however, com-
monly used for generating gamma, Poisson, and binomial deviates,
among many others.
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Figure 3.7 Normal 0.5
distribution and ya: \\\1 .53 Cau(x)
rescaled Cauchy
distribution for
generating a normal
deviate using the
rejection method.

Although generally applicable, the rejection method requires a proposal distri-
bution, gy (y), which accurately approximates the true function fx (x). This is not
always easy to find. In particular, in high dimensions the proposal distribution
gy (y) may be a very poor approximation to the function of interest fx (x) and we
end up with a very high rejection rate. In these situations a preferred method is the
Markov Chain Monte Carlo (MCMC) method. We discuss this in Section 11.2
on page 317.

3.3.3 Multivariate Deviates

Deviates for multivariate distributions are often generated by creating deviates
for univariate distributions and transforming them appropriately. For example,
to obtain multinomial deviates from a distribution N ~ Mult(n, p) we first
generate a binomial deviate Ny ~ Bin(n, p;), then we generate a second binomial
deviate N, ~ Bin(n — Ny, p»/(1 — p1)); this is repeated, each time generating a
binomial deviate

Nl-NBin(n—N]—sz—Ni_], b )
l—pr—p2- = pi1

We can stop either when we only have one class left or when we have assigned
all n trials available. If there are some classes with a probability of assignment
pi < 1/n then it can be worthwhile to reorder the classes so that those with low
probability occur at the end. Then it is more likely that we will have assigned all n
outcomes before we reach a class with very small p;, so we can stop the algorithm
early.

To generate n-dimensional multivariate normal deviates, X ~ Mu,X),
we firstly generate n normal deviates and then transform the deviates, usu-
ally by multiplying them by the Cholesky decomposition of the correlation
matrix X and then adding the means u. Details are given in Section 5.6 on
page 96.

Finally, to generate n-dimensional Dirichlet deviates, X ~ Dir(a), we first
generate n gamma-distributed deviates Z; ~ Gam(e;, 1) and then normalise
them
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The X;s are Dirichlet deviates. To show this we note that

n no_a;—1
fz (Z) = HGam(zi\a/i, 1) = <H ;i(ai)> C_E?:] Zi

i=1 i=1

We denote E;lzl Z; =Y so that X; = Z;/Y. As a consequence of the normal-
isation not all X;s are independent. We are free to eliminate one component,
X, =1-— Z:’;ll X;. We can then compute the probability distribution of the
random variables (Xi, ..., X,,_1, Y) using the usual rules for the change of
variable. To compute the Jacobian between Z and (X,Y) we note that

OO -

0z . 0z 1
aij:y[[”l]] = =

The Jacobian is

y 0 0 0
0y -~ 00
J—‘ a(Zl,‘u;Zn) ’_ . . . . S on—1
= =1 S
O(X1s- s Xn_1,Y) :
0 0 y 0
1 1 1 1

Then,

n X a;—1
8| e (55

n xqi71 .
- i —le—y,
Hr<a,-> Y

i=1

where @9 = Y| @;. To compute the distribution of X we marginalise out ¥

Fr(x) = /O Frr(x.y)dy
n ai—1 oo

= ]_;[ Fl(ai) /0 y®©~le ™ dy = I'(a) H Fi(ai) = Dir(a).

4

Monte Carlo techniques have become a staple of scientific computing. The
techniques used are not difficult to understand. However, there are a lot of
optimisation tricks used to generate good-quality deviates quickly. Lots of people
have dedicated a substantial amount of time to writing good generators. The rest
of us can enjoy the fruits of their labours. The exception to this is with high-
dimensional systems (i.e. those involving a large number of coupled variables)
where it is necessary to tailor the code to your specific problem. This is the area
of MCMC, which we visit in Chapter 11.
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Additional Reading

Donald Knuth provides a good description of generating random numbers in the
second volume of his epic The Art of Computer Programming (Knuth, 1997b).
If you are interested in low-level practical algorithms for generating random
deviates, a good starting place is Fishman (1996) or Devroye (1986). A nice
introduction to generating random deviates together with practical algorithms
for a wide range of distributions is given in Press et al. (2007).

Exercise for Chapter 3

Exercise 3.1 (answer on page 399)
Using the transformation method show how you could generate a Cauchy deviate.
The density of the Cauchy distribution is given by

Cau(x) = !
n

(1 +x2)
and the cumulative distribution is
F(x) = / Cau(y) dy = & 4 2etan().
oo 2 b

Exercise 3.2 (answer on page 399)
Implement a normal deviate generator:

1. using the transformation method by numerically inverting the erfc
function (see section 5.4 on page 90) using Newton—Raphson’s method
(alternatively, the third edition of numerical recipes (Press et al., 2007)
provides an inverse of the CDF for a normal distribution);

ii. using the standard Box—Muller method;
iii. using the rejection method from Cauchy deviates.

Time how long it takes each implementation to generate 10® random deviates.

Exercise 3.3 (answer on page 400)
In simulating a simple model of evolution, one is often faced with mutating each
allele in a gene with a small probability p < 1 (this task also occurs in running a
genetic algorithm). It is far quicker to generate a random deviate giving the distance
between mutations than to decide for each allele whether to mutate it. The distance
between mutations is given by the geometric distribution. Denoting by K > 0 the
distance to the next allele that is mutated then

P (K - k) = Geo(k|p) = p (1 — p)* .

Using the transformation method show how to generate a deviate K ~ Geo(p)
starting from a uniform deviate U ~ U(0, 1).
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This chapter focuses on probability distributions for discrete random variables
and in particular the binomial, Poisson, and multinomial distributions. On our
way, we will come across maximum likelihood estimators, sufficient statistics,

moments, cumulants, generating functions, and characteristic functions.

To get the ball rolling, in Chapter 2 I defined a number of distributions and
gave their properties. In this and Chapter 5, we derive those properties from first
principles, using mathematical tools that have a very wide range of applications.
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4.1 Bernoulli Trials

A random variable, X, that has two possible outcomes, {0, 1}, is known as a
Bernoulli trial, named after Jacob (Jacques) Bernoulli (1654-1705), who was
one of the first mathematicians to consider problems involving binary random
variables. The probability mass function for a binary random variable is

if X =1

if X =0. @1

Bern(X|u) = p* (1 —p)' =% = { "

l—p
The term X (1 — u)!=* looks rather intimidating, but as X € {0, 1} it really just
says that the probability of X = 1 is u while the probability of X = 0is 1 — pu.
The mean and variance are given by

Ex[X]=1xpu+0x(1—p)=pu
Vary [X] =EX[X2} —Ex[Xf: (12 X p+0%x (1 —,u)) — 1 = (1= p).

Examples of Bernoulli trials abound. For example, in tossing a coin, if we assign
1 to the event ‘heads’ and 0 to the event ‘tails’ we have a Bernoulli trial. Bernoulli
trials where there is an equal probability of either outcome and where the random
variables take values of 1 and —1 are sometimes referred to as Rademacher
variables.

Suppose we have an experiment with two possible outcomes: success or failure.
We can assign 1 to the event that the experiment was successful and 0 otherwise.
This is a Bernoulli trial. The success probability, u, provides a measure of
performance of the experiment. We often want to measure the performance, u,
assuming we are given some data D = (X, X», ..., X,) describing n independent
trials where X; € {0,1}. The collection of data is often called a ‘data set’,
although it is more properly described as a multiset (i.e. a collection where order
doesn’t matter, but where we take into account repetitions). How can we estimate
the success probability from our data? One way to answer this question is to
choose the value of u which maximises the likelihood of the data. This is known
as the maximum likelihood estimator. The likelihood of the data given u is

n

P (Dlp) = [ [ Bern(X;|u) = [T (1 — w)' =%

i=1 i=1

Here we are making the assumption that the data is independent — in most well-
designed experiments we would hope this to be a very good approximation. This
equation looks rather difficult to deal with. However, maximising this quantity is
equivalent to maximising the logarithm of this quantity, because the logarithm
is a monotonically increasing function. Taking logarithms we have

n

log(P (D|u)) = Z (X log(p) + (1 — X;) log(1 — p))

i=1

= Klog(u) + (n— K)log(1 — p)
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where K = Z?:l X; is the number of successes. To find the maximum likelihood,
we set the derivative of the log likelihood with respect to u equal to zero
dlog(P (D|u)) _K n-K

T R R i
u=ft

Solving for g, we find g = K/n. This is the intuitive answer, it is the empirical

success probability given a sample of size n. We follow a frequently used

convention of denoting an estimator of a quantity with a hat.

The maximum likelihood estimator depends only on the number of successful
trials K = )" | X;. It does not depend, for example, on the order of successful
trials (this is hardly surprising given our assumption that the trials were all
independent). This sum, K, is an example of a sufficient statistic. That is, it is
a statistic of the data that captures all the information in a data set required
to determine the maximum likelihood estimators of the parameters of the
distribution. The estimator g = K/n is said to be a consistent estimator because,
in the limit n — oo, it approaches the true value of w. It is also an unbiased
estimator because its expected value is equal to u

. 1 1
E[,u} = ZE [K} = En,u—,u.
(Note that until we make a measurements our estimators are random variables —
we are our breaking our self-imposed convention by not writing these as capitals.)
You might think that all estimators are going to be consistent and unbiased, but
that is not always true, particularly when trying to estimate non-linear functions
of a random variable (e.g. its skewness).

The maximum likelihood estimate seems to have all the properties you might
wish of an estimator, but it has one deficiency. If u is very small (or very large)
then for small samples we are likely to find K = 0 (or K = n), leading to an
estimate of 4 = 0 (or g4 = 1). In many ways this is not a bad estimate, but
sometimes there is a significant difference between an event occurring rarely and
an event not occurring at all. If we have a prior belief that the event might occur
then we can use a Bayesian approach to obtain a probability distribution for u.
We pursue this approach in Chapter 8.

4.2 Binomial Distribution

In the previous section we obtained an estimator for u based on the number
of successful Bernoulli trials. We can take another viewpoint of the experiment
and ask what is the probability of K successes in n Bernoulli trials given a
success probability of p (note that in the Bernoulli distribution, Bern(X|u), the
parameter of the distribution coincided with the mean so it makes sense to call it
1, while in the binomial distribution, Bin(k|n, p), the mean number of successes
is n p, therefore we have given the parameter a different name). Treating the
experiment as a sequence of trials, we can represent the space of all possible
events, Q, as a tree where each branch represents a possible outcome. This is
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X 1 P(1111) = p*

. P(111) = p*
X;=0 P(1110) = p*(1 - p)
P(11) = p*
: Xy =1 P(1101) = p*(1 — p)
P(110) = p*(1 —p)

X ) P(1100) = p*(1 — p)*

i

X

. P(101) = p*(1 — p)
X
B(10) = p(1 - p) <
X :
P(100) = p(1 — p)?
P(1000) = p(1 — p)*

Y= 1 P(0111) = p(1 - p)
. P(011) = p*(1 — p) <
X, =0 P(0110) = p*(1 — p)?
N\ Pml)pum<
N X, = 1 P(0101) = p*(1 - p)?
P(010) = p(1 [})2<

X; =0 P(0100) = p(1 — p)*

P(1011) = p*(1 — p)

il

P(1010) = p*(1 - p)?

P(1001) = p*(1 — p)?

J

P(0) = (1—p)
P(0011) = p2(1 — p)?
P(001) = p(1 — p)?

,A,

P(0010) = p(1 — p)*

P(00) = (1 —p)?

P(0001) = p(1 — p)*
P(000) = (1 —p)*

b
//\/

P(0000) = (1 — p)

shown in Figure 4.1 for an experiment with four binary trials. The number
of trials that end up with k successes out of n trials is given by the binomial
coefficient (2’) (‘n choose k), which gives rise to the binomial distribution

Biniin.p) = ()" (1= P

This and the normal distribution are the most frequently occurring distributions
in probability theory.

4.2.1 Statistical Properties of the Binomial Distribution

The binomial distribution appears awkward to work with. It involves both
combinatorial factors and powers. However, there is a simple way to compute
many of its statistical properties. That is, to use a generating function. We start by
considering the moment generating function. The mth moment, u,,, of a random
variable K is defined as

Hm = EK [Km] .

The first moment is therefore the mean. We define the moment generating
function

(KIP (KD

_ K7 _
M(l) =Bg[e™'] =Bk |1+ K1+ 31 5

where the last inequality we obtain from a Taylor expansion of the exponential.
The name, moment generating function, comes from the fact that we can compute
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the mth-order moment by computing the mth derivative of the moment generating
function and setting / to zero

d"m(l)

Hm = Ex [Km] T T qm

= pmm (0),
1=0

which follows from taking derivatives of the exponential. Note that the moments
are the coefficients of the Taylor expansion of M (/). This approach is powerful
because we can obtain a convenient closed form expression for the moment
generating function of the binomial distribution

M(l) =Eg[eX!] = Zn:Bin(ldn,p)ekl

£

To compute this sum we recall the binomial expansion According to
Arthur Conan
n
n_ N\ kin—k Doyle, Sherlock
(a+b)" = Z (k)a b Holmes’ arch-rival
k=0

Professor Moriarty
wrote A Treatise
on the Binomial
Theorem at the

Identifying @ = pe! and b = 1 — p, we can write the moment generating
function as

_ I n_rmn age of 21. It was,
M(D) = (1 *p(e 1)) U, (4.2) of course, Newton
where U(l) = (1 +p(el _ 1)) Now, who discovered the
binomial theorem.
M'(I) =npe'U™='(1), M'(0) = np,
M"(1)=npe'U Y1) +n(n—1)p*>Uu"2(1), M'"0)=np+n(n—1)p
where we have used U(0) = 1. Thus,
Ex[K] =
2
Varg [K] = Ex {Kz} (Ex [K]) =np(1—p)

as advertised in Section 2.1.1.
The moment generating function is intimately related to the characteristic func-
tion which is defined as the Fourier transform of the probability distribution or

#w) = Bx[¢'*¥],
where 1 = v/—1 (known to many engineers as j). For the binomial distributions,
d(w) = M(iw) = (1 +p(ei@ - 1)) .

Generally, ¢(w) = M(iw), provided the moment generating function exists. The
moment generating function is more straightforward to use simply because it
doesn’t contain the constant i (the square root of —1). However, the characteristic
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function has one important advantage. Namely, it exists for all probability
distributions. This follows trivially from the inequality

Note that

Sa|<Ylal  and ] [ s
from this it follows (since p(x) is real and non-negative) that

Ex[F(X)]] <E[lFO]-

The moment generating function exists only for functions with finite support
(i.e. defined in a finite region) or those that fall off suitably quickly (at least expo-
nentially fast). Distributions such as the Cauchy distribution (see Section 2.2.4)
don’t have a moment generating function but do have a characteristic function
(the characteristic function of the Cauchy distribution is e ~1’l, see Appendix 5.B
on page 107).

< / F()ldx,

4.2.2 Cumulants

Moments are not the most useful statistic. For example, rather than the second
moment, we are usually more interested in the variance of a random variable
defined as

Vary [X] = Ex [(X — u)z} = pp — i

where u = u; is the mean and s, is the second moment. This is an example of a
central moment defined as

Hm = Ex [(X - /")m} .
However, central moments are not the most useful statistics when considering
high-order statistics. There exists another set of statistics which have more
interesting properties: these are the cumulants. The first three cumulants are the
same as the first three central moments, but thereafter they differ. The cumulants
are most easily defined through the cumulant generating function (cumulant

generation function). For a random variable X, the cumulant generation function
is defined as

G(l) = log(M(1)) =log(Ex [e'*]) .
The cumulants are defined as the derivative of the CGF «,,, = G (0). Thus,

6/ =4 @ =G(0)=m
" / 2
6 = o) - L) 0 =G"(0) =~ 4
" ’ " / 3
G///(l) M (l) _3M(Z)M (Z) +2(M (l) K3=G”/(0)=/J3—3,ug/11+2/1?.
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The algebra gets more complicated but the fourth cumulant is equal to
k4 =E {(x - K1)4] —3K5 =y —A4pspy — 35+ 1200 117 — 6 4.

We can obtain the cumulant generation function for the binomial distribution
from its moment generating function, Equation (4.2),

G(I) =log(M(l)) = n log(1 +p(e! - 1)).

It is proportional to the number of trials n. As a consequence all the cumulants
are also proportional to n. This is not true of the high-order moments or central
moments. It is a direct consequence of the fact that a binomial random variable,
K, is the sum of n independent Bernoulli trials K = > | X;. Thus

n N
Bin(k|n, p) = Z (H Bern(x[p)> ﬂk = inﬂ;
i=1

xe{0,13n \i=1

multiply by e/* and summing over k we find

n n n N
Mk(l) = Zelk Bin(k|n, p) £ Zelk Z ( Bern(xi|p)> [[k = in]]
k=0 k=0 i=1

xe{0,1}7 = i=1
n n
2 5 ([menoin )52 T | 3 mataiet
xe{0,1}* \i=1 i=1 \x;€{0,1}
= Mx(D)"

(1) Using the definition for Bin(k|n, p) given above.

(2) Changing the order of summation and summing over k (note the power of
using the indicator function).

(3) Using the fact that 5, = [[; >_,. and exp(3_; a;) = [[;e® to reorder the
sum and product.

(4) Identifying the sum as the moment generating function of the Bernoulli
distribution.

The CGF for the binomial distribution is therefore given by
Gx (1) = log(Mk (1)) = log(Mx (1)) = nGx(1),

where

Gx(l)=log[ Y Bern(xi|p)e!™ | =log(pe’ + (1 - p))
x;€{0,1}

=log(l+p(e' = 1)).

Whenever a random variable is the sum of many independent random variables
then its cumulant generation function will be the sum of the cumulant generation
function of its component parts. One consequence of this is that the cumulants
will all be proportional to the number of component parts. This is also the basis
for the central limit theorem, which we will discuss in more detail in Chapter 5.
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Returning to the CGF for the binomial distribution, we can perform a Taylor
expansion:

Gk(l) =nlog(l+p(e' —1))

2 3
=lnp+ jnp(l —p)+37np(1 —p)(1-2p)
4
+%np(1 —p) (1 —6p+6p*) +0(P).

From this we can read off the cumulants

K =np k2 =np(l-p)
k3 =np(1—p)(1-2p) ks =np(l—p)(l—6p+6p?)

This may seem a long-winded method for calculating the mean and variance,
but it is widely applicable and often saves considerable work, particularly when
calculating higher order statistics. It is also easy to write a program in a symbolic
manipulation language such as Mathematica to do all the tedious algebra.

4.3 Beyond the Binomial Distribution
4.3.1 Large n Limit

In the large n limit, a binomial distribution ‘converges’ to a normal distribution.
This can be proved directly, for example, by using Stirling’s approximation for
factorials r! ~ 27r r"e =" (here we use ~ to denote that this is an asymptotic
expansion), and collecting together all terms of order 7/ and expanding. We will,
however, avoid the details as the calculation is rather involved. However, this
result is a special example of the central limit theorem, which states that the sum
of random variables will very often converge to a normal distribution. There is a
caveat, which is that this can fail for random variables drawn from distributions
which have long tails — although this caveat does not apply here. We have already
seen that the random variable for a binomial is equal to the sum of » Bernoulli
random variables so we would expect the central limit theorem to apply here. We
will discuss the central limit theorem in its general form in Section 5.3.

In Figure 4.2 we show different binomial distributions overlaid with a nor-
mal distribution with the same mean and variance. That is, given a binomial
Bin(k|n, p), we overlay the normal distribution NM(x|np, np (1 — p)). As we
increase n we see that the binomial distribution more closely approximates a
normal distribution.

The difference between the cumulative distribution function (CDF) for the
binomial and normal distribution is bounded by the Berry—Esseen formula. If
X ~ Bin(n,p) and Y ~ NM(np,np (1 — p)) then

x| < 4(1-2p(1-p))
— 5y/np(l=p)

In Figure 4.3 we plot P (X <x) —P (Y < x) in the case n = 50 and p = 0.5.
We see that the Berry—Esseen bound is not very tight, particularly away from
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the mean. However, it demonstrates that the difference between the cumulative
distribution functions are of order O(1/+/n). We discuss a method of obtaining
tighter bounds for the tails of the distribution in Section 7.2.4.

4.3.2 Poisson Distribution

In the previous subsection we showed that the limit of the binomial distribution
as n — oo is a normal distribution. However, there is a special case when we
simultaneously take the limits n — oo and p — 0, such that p x n — u. As we
showed in the Section 2.1.3, this limit leads to the Poisson distribution

1
Poi(k|u) = L5 e 7.

This is a very commonly occurring distribution. For example, the number of
excitations in a Geiger counter caused by background radiation or the number
of cars passing a traffic light between 12:00 and 12:01 are closely approximated
by a Poisson distribution. We return to a discussion of this in Section 12.3.1 when
we discuss Poisson processes. Poisson distributions are also a little easier to work
with than binomial distributions and so they are often used as approximations
to binomials where n is large and p is small.

Figure 4.2 Examples
of binomial
distributions with a
Gaussian having the
same mean and
variance overlaid. In
the top set of graphs
n = 10, while in the
bottom set n = 100.

Figure 4.3

P(X <x)-—

P (Y < x) versus x
for X ~ Bin(50,0.5)
and

Y ~ N(25,12.5).
Also shown are the
Berry—Esseen
bounds.
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The moment generating function for a Poisson distribution is

M(l) =Ex[e'¥] =) (e') o

k!
k=0

= e#(el - 1)

The CGF is thus
G(1) = log(M(1)) = (e’ ~ 1)

and all the cumulants are simply «, = u. In particular both the mean and
variance are equal to u.

4.3.3 Multinomial Distribution

The generalisation of the Bernoulli trial is a k-way trial where the probability
of outcome i € {I,2, ..., k} is given by p;. This probability distribution is
sometimes referred to as the categorical distribution

Cat(X|p) = Zpl [[X ]]

where p = (p1, p2, ..., px)". Sometimes, the outcome is encoded as a “one-hot
vector X of length k& with one element equal to 1 and all other elements equal
to 0.

Just as the binomial distribution describes the result of a series of n indepen-
dent Bernoulli trials, the multinomial distribution describes the result of a series
of n independent k-way trials

2

Mult(n|n, p) —an [[n € Ax] (4.3)

where

k
A’,‘l = {n = (n1, ny, ... ng) | Vi, n; € {0,1,2,...} and Zni = n}
i=1
(see Equation (2.10) on page 36) — take care to distinguish between the vector
of integers n and the total number of trials n. Note, that if we assume n € A%,
then the indicator function is not necessary in Equation (4.3). Similarly, if we
assume the variables n; are positive integers of 0 then it is sufficient to impose
the constraint that ). n; = n. As a consequence the multinomial distribution is
often expressed slightly differently in different texts.
The multinomial distribution looks rather painful to work with; however, the
moment generating function is

M(l):EN[exp (ihM)] =n' ) H p’n, (Zp, )n

i=1 neAk i=1
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where we have used the multinomial expansion

(£0) o 112

i=1 neAk i=1

It follows that the cumulant generating function is

k
G(l) =n log (Zp,'el‘) .
i=1

From this it is rather simple to obtain the cumulants. For example,

6G(l) _ piel" _
i o Mrre™ i -
GZG(l) _ pieli [[l = J]] p,-el" Pj eli _ ..
aL:dl; |y - S prek a (Zk e elk)2 . =Di I[l == J]] —Pipj

Note that, in a similar manner to the binomial, the CGF for the multinomial
is simple because the random variable N = (Nj, N, ..., Ni) can be thought of
as a sum of n random variables X (i) = (X; (i), X2(i), ..., Xx(i)) where X (i) is a
one-hot vector. Thus the cumulant generating function for the multinomial is just
equal to n times the cumulant generating function for the categorical distribution,
which is trivially given by

k
G(l) = 10g<2p,~el"> .
i=1

Obtaining moments and cumulants for the multinomial distribution is rela-
tively easy, but for many other kinds of calculations the multinomial distribution
can be awkward to work with. There are a couple of useful tricks that can
help out. They both remove the constraint that appears in the sum. The first
goes by the name of Poissonisation. Here’s the trick. Consider drawing a deviate
N from a Poisson distribution Poi(1) and then drawing a vector of integers
N = (N, Na, ..., Ni) from the multinomial Mult(N, p), where N is the integer
we draw from a Poisson distribution. Then the probability of drawing a vector
of integers N = n is

P(N=n)= i Mult(n|n, p)Poi(n|1)

n=0

0w £ i . A"

9 | Fi = L e
LTSI Dol

n=0 i=1

= i=1

k ni oo k
(125) - 2]
n=0 i=1
(Api

3)

i=1 v

ko on

4 D; K k )
@ |I L e*/l/lZi:I"i(_ﬂef’lll
L1y - n;!
i=

=1 .
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(1) Assuming we draw n from a Poisson distribution and N = n from a
multinomial distribution.

(2) Writing out the distributions.

(3) Taking terms out of the sum that don’t depend on n.

(4) Taking the sum over n and using »_, f(n IIn = a]l f(a). Inthiscase ais a
sum.

(5) Using 4227 = [I; A% and rearranging.

However, as Y. p; = 1 we can write e = =[], e %77 so that
i p

P(Nzn)zH(/l) i = HPlelp,

i=1

From this we see that the variables n; are dlstrlbuted asif they were independently
drawn from a Poisson distribution, Poi(2 p;).

Why does this help? Dealing with independent variables is easier than dealing
with variables that sum to n, but usually # is fixed, so one has to go through some
contortions to actually use Poissonisation. However, as the following example
shows, Poissonisation can help.

Example 4.1 No Empty Boxes

Consider putting n balls randomly into k& boxes. What is the prob-
ability that no box is empty? Rather than tackle this directly, we
consider the case when n = N is drawn from a Poisson distribution
Poi(1), in which case the probability of N; balls in box i is just
Poi(A p;) = Poi(4/k) (assuming all boxes are equally likely to be
visited). Then, using Poissonisation to treat N; as independent, we get

n
P (N >0,N,>0,...N¢ >0) :HP(Ni>())=(1iefﬂ/k)k

since P(N; = 0) = e~k By expanding terms and carefully
rearranging, we obtain

P(N1>O N> >0, ..,Nk>0)
= (1—e Mk

k) l 71/1/k
k
3

<k> Yig A (1=ilk) ¢ =
i=0

)

>

k
i=0
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@ g e;/lng (’lf)(_w (1 — ;)n
2 f%Poi(nw(n)
where :
=3 (v (i-1)

(1) Using the binomial expansion (1 + a)* = Y5 (¥)a* with
a=—e Yk,

(2) Taking out e ~* which we want to use later.

(3) Taylor expanding e (1=/K)

(4) Changing the order of summation.

(5) Recognising the first terms as the Poisson distribution and

naming the second summation as f(n).

Because we assumed that the number of balls was chosen according
to the distribution P (N =n) = Poi(n|1), then the probability of
there being no empty boxes given n balls is just f(n). Here we use
the Poissonisation result in reverse. Since our choice of A is arbitrary
this is the only value f(n) can take. Although the expression for
f(n) doesn’t look very pretty, it is much easier to compute than the

original sum over all n lying in the integer simplex.
|

For my taste, Poissonisation is awkward and I prefer a trick used heavily
in statistical physics where the indicator function is replaced with an integral
representation. This takes some getting used to, but it is a very general trick
(we can also use it with the Dirac delta function discussed in Chapter 5). I
won’t go into it here as I don’t want to be distracted from our main purpose
of surveying probability rather than discussing the esoterics of combinatorics.
However, for those interested, in Exercise 4.6 I repeat Example 4.1 using the
integral representation of an indicator function rather than Poissonisation.

The binomial, Poisson, and multinomial distributions arise very frequently
in modelling the world. They are not the most convenient functions to work
with directly, but their statistical properties can be readily computed through
the through the cumulative generation function (CGF). This has a simple form
because these distributions arise as a sum of iid random binary variables (in the
case of the multinomial it is a binary vector). Generating functions are widely
used in studying probabilistic models.
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Additional Reading

An outstanding book on combinatorial manipulations, working with generating
functions, and much else besides, is Concrete Mathematics by Graham et al.
(1989). A volume that explores generating functions in very great depth is
Dobrushkin (2010).

Exercise for Chapter 4

Exercise 4.1 (answer on page 401)
Consider a succession of Bernoulli trials with a success probability of p. The proba-
bility that the first success occurs after & trials is given by the geometric distribution

P (First success after k trial) = Geo(klp) =p (1 — p)k_l.

(The geometric distribution is sometimes defined to be the probability of success
after k failures so is defined as p (1 — p)* where k = 0, 1, 2,...) Compute the CGF
for the geometric distribution and from this compute the mean and variance. If the
probability of winning a lottery is 10~°, how many attempts do you have to make
on average before you win?

Exercise 4.2 (answer on page 402)
Show that the probability of k successes until r failures have occurred in a sequence
of Bernoulli trials with success probability p is given by the negative binomial
distribution

. k+r—1
NegBm(kr,p)=< & >pk(1—p)r

(note that the last trial will have been a failure, hence the combinatorial factor).
Compute the CGF for the negative binomial and compute the mean and variance.
If you are playing a game of pure chance with four friends how many times do you
expect to win before you lose nine times? (Note that NegBin(k|r, p) is a properly
normalised distribution so that

i <k tr— 1)pk 1
P k (I=p)
which is true for any p. This is exactly the sum we need to compute the CGF.)

Exercise 4.3 (answer on page 403)
Consider a series of Bernoulli trials occurring at a time interval 6¢ with a success
probability u 6t (so the expected number of successes in one second is u). Show that,
in the limit 67 — 0, the probability of the first successful event occurring at time ¢
is distributed according to the exponential distribution

F(0) = Exp(elu) = pe ",

(This is the waiting time between Poisson distributed events. It is used, for example,
in simulating chemical reactions at a molecular level — see Section 12.3.2.)

Exercise 4.4 (answer on page 403)
The cumulative probability mass function for a Poisson distribution Poi(u)
is given by
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P (number of success < k) = ’l,l—'e H
1.
i=0
Starting from the normalised incomplete gamma function (see Appendix 2.A)
defined by
OUun) = oty [t
’ (k=1 J,

obtain a relationship between Q(k, 1) and Q(k — 1, i) using integration by part and
hence prove that

P (number of success < k) = Q(k, p).

Exercise 4.5 (answer on page 404)
The probability of k& or more success in n Bernoulli trials with a success probability
of pis given by

P (number of success > k) = Z (’Z) pPl=p)" =L (k,n—k+1).

i=k

Starting from the normalised incomplete beta function (see Appendix 2.B) de-
fined by

B n! P n—k
Ip(k,ﬂ*k"’l)—m/o Z (172) dZ

obtain a relationship between I, (k, n—k+1) and I, (k—1, n—k+2) using integration
by part and hence prove

P (number of success > k) =D (k,n—k+1).

Exercise 4.6 (answer on page 405)
In Example 4.1 on page 70 we calculated the probability that there are no empty
boxes when we randomly place » balls in k boxes. This probability was

k k
DPneb = H Z Mult(n|n, p) ﬂZnJ = n]l
j=1

Jj=1n;>0

where p; = 1/k for, j = 1,2,..., k. Perform this sum using the integral
representation of the indicator function

ﬂzk:njzn]lz/oo em <%}nj—n>(21(;:. 4.4)
j=1

—00

Note that the indicator function ensures that the total number of balls equals n, so
we can treat the sums as unconstrained. Having performed the sums expand out the
expression similar to what was done in Example 4.1 and then use Equation (4.4) to
get a simplified answer? (Be warned the answer is not in an identical form to that
given in Example 4.1, although it can be made so by a change of variables.)
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The Gaussian or normal distribution is the bedrock for a huge chunk of
probability and statistics. Its popularity is due to a number of different reasons.
It arises naturally due to the central limit theorem and also through maximum
entropy arguments (although we don’t cover this until Chapter 9). The normal
distribution has nice analytic properties, which means that closed-form solutions
to many problems can often be obtained. However, working with normal distri-
bution is fiddly and non-intuitive. In this chapter we familiarise ourselves with
techniques for manipulating normal distribution. We look at its moments and
cumulants, which sets us up for understanding the central limit theorem. The
central limit theorem is discussed and we point out its limitations. In passing we
discuss the log-normal distribution. We then consider the cumulative distribution
function (CDF) for the normal distribution (aka error functions). We finish by
discussing the multivariate normal distribution and its properties.

74
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5.1 Ubiquitous Normals

Many quantities that we meet are approximately normally distributed. For exam-
ple, the distribution of people’s height or the velocity of particles in a gas. Normal
distributions arise as the limit of many other distributions. We illustrate this in
Figure 5.1, where we show how the binomial, gamma, and beta distribution come
closer to a normal distribution as we increase the parameter values. Similarly,
the multinomial and Dirichlet distributions also converge towards a multivariate
Gaussian in the limit when their parameters increase.

It is not, of course, inevitable that a distribution will tend towards a normal
distribution as the parameters increase. We have, for example, seen for a binomial
distribution that, if p — 0 as n — oo such that p n remains finite, then we tend
to a Poisson distribution rather than a normal distribution (although when the
product pn becomes large the Poisson distribution again converges towards a
normal distribution).

One reason why normal distributions arise so commonly as a limit distribution
is that many distributions can be written as

f(x) = s

where b is a parameter which typically grows with the system size and g(x)
is some, often complicated, function of x. In this case, if g(x) reaches some
maximum value around x* then Taylor expanding around this maximum we find

1
g(x) = g(x") + (x = x) g/(x") + 5(x = ¥) 2" (x) + O ((x — )’
* 1 *\2 (% *\3
= g(x) + 5 (x —x)2g"(x") + 0 ((x = 2")?)
Bin(10,0.7) Bin(100,0.7)
0 l‘l) 0 ‘l(ril)
Gam(10, 5) Gam(100,50)

Bet(4,3) Bet(8, 6)

Figure 5.1 Examples
of how the binomial,
gamma, and beta
distribution tend
towards a normal
distribution in
certain limits.
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1 n

4(x) = gla*) + 1g"(a") (@ — 2*)?

Figure 5.2 Left figure shows a typical exponent, g(x), and its quadratic approximation, g (x). Right
figure shows exp(b g(x)) and the quadratic approximation, exp(b g(x)), for the case b = 5. The
approximation becomes more accurate as b increases.

since g’(x*) = 0. Close to x* the term O ((x — x*)?) is small compared to the
(x — x*)? term so that

fx) m e xRN,

As we are at a maximum, g” (x*) < 0 (see Figure 5.2). The function f(x) therefore
resembles a normal distribution with mean x* and variance —1/(bg” (x*)). As b
increases the variance decreases so that most of the probability mass is around
x*. The same argument applies in higher dimensions. This relies on the fact that
g"(x) doesn’t vanish at x = x*, but, unless there is some special reason for both
the first and second derivative to vanish at the same point, this will very rarely
happen. One way for this argument to break down is if x* is bounded and the
maximum occurs on the boundary.

Although we have seen that many random variables naturally become nor-
mally distributed in some limit, the argument tells us nothing about how the tails
of the distribution look. Thus, although nearly normal distributions abound, it
is a common experience to find outliers occurring more frequently than would
be predicted by a normal distribution.

5.2 Basic Properties

In this section we compute the normalisation constant for the normal distri-
bution and its moments and cumulants. Becoming familiar with manipulating
normal distributions pays off handsomely, but it does require practice and often
many sheets of paper.

5.2.1 Integrating Gaussians

One of the key attractions of the normal or Gaussian distribution is that it is
relatively easy to work with analytically. It is thus surprising that the Gaussian

integral
o0 2
1() = / e ™ 12 dx
— 00

is challenging. If you haven’t been shown how to calculate this integral then it’s
tough. Although you rarely actually have to calculate it, it is such an important
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building block that it’s worth seeing how to do it. One approach is to start with

the simpler integral
° 2
I :/ xe X 2dx
0

which can be solved by a change of variables. Let u = x2/2 then du = x dx, thus

11=/ xe‘xz/zdx=/ e “du=[-e"] =1
0 0

But how does that help us with out initial integral? The answer is a bit of a trick.
We work in two dimensions, then

> 2 o 2
I&:/ e /de/ e Y2 dy.
—00 —00

Now we make a change of variables to polar coordinates so that x = r cos(8),
y = rsin(8), and x? + y? = r2(cos2(8) + sin>(8)) = r2. We note that the Jacobian
is given by

d(x,y) _ ﬁrgors(g) 6r;(;s(9) _|cos(8) —rsin(8)| ) .2 B
) (’,39) - Br;i’r}(é)) ar;ig(é)) - sin(@) r COS(@) —V(COS (0) + sin (0)) =r.

We can also understand this by considering the area swept out by making an
infinitesimal change in the coordinates (see Figure 5.3). Using this change of

variable we find
o0 o0 ) 5
Ig:/ / e~ )2 dx dy

2 ) )
:/ d@/ re 7 ?dr=2n1 =2n
0 0
orly=+2nm.

The general form of a Gaussian integral (i.e. an integral of an exponential of
a quadratic function) is

oo
Ii(a,b) = / e X /2tbx gy
—o00

When faced with an integral like this, the first step is to complete the square in the

exponent
7a7)62+b —7g 7é 2+b72
2 YT\ T d) Taa

y Figure 5.3 Change
of coordinates. The
area produced by an
infinitesimal change

dz dr rd¢ in the coordinates is
y L LY J/ dx dy in Cartesian
(z.y) //’% (r,6) coordinates and
/ v rdr dé in polar
/ coordinates.
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We then substitute this into the integral and make the change of variables y =
va(x — b/a). Noting that dy = v/a dx, we have

b2/ (2 0o
I(a,b) = © \;a) / e‘yz/2 dy = \/ﬁebz/ﬁa).
a — 0 a

5.2.2 Moments and Cumulants
The normal distribution is defined as

1 e — )220
Nxl,0?) = o~ (x— w20,
Wl o) = e
You should be able to use the integrals we have already computed to verify that
the normalisation term is correct. The moment generating function is

M(l) = Ex [elX] = /00 e!* Mx|u, o?) dx.

— 00

We can compute this by completing the square. To do this we note

2 2
a , c 1 b b c
—= ——=—= - = —— = A
5 +bx 5 2a<x a) t5. 75 (5.1)
Thus,
1 _G=w? 1 2 R
elx/\f(xm, 0-2) = me o X \/270_3 202+(l+:2) =

Identifying a = 1/02,b =1+ p/o?, and ¢ = p?/o?, then using Equation (5.1),
we can rewrite the exponent of e/* M(x|u, 0?) as

2 2 2 2 2
x H w1 202, T [ H M
gt (14 ) g =yl k= PP T (G 1) = o
1 2n2 212
:——20_2()(—;1—0'[) +;1l+—2
so that
el Nx|u, o?) = el”+‘7212/2/\/(x|,u+ o’l,0?).
Using this,

M(l) =Ex[e'*] = elnra? /2 / Nx|u+0o?1,0%)dx = elurot /2,
The cumulant generating function (CGF) is thus given by
G(l) =log(M(1)) =l u+ o I%/2.

From this we can read off the cumulants trivially: the mean is k| = y, the variance
is ko = o2, and all higher cumulants are zero.

We can interpret the higher cumulants of a distribution as a measure of how far
that distribution differs from a normal distribution. However, the absolute size
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of the cumulants of a distribution tell us little about how much the distribution
deviates from a normal distribution, as the cumulants depend on the units in
which we measure our random variables. That is, if we have a distribution fx(x)
and we rescale x by a so that Y = a X, then the cumulants of fy(y) will be k¥ =
a" kX. To obtain a scale invariant measurement of the deviation away from a
normal distribution we rescale by 1/,/k> so that we compare all distributions
with unit variance. The third cumulant of the rescaled distribution is known as
the skewness, which in terms of the cumulants of the original distribution is equal
to k3/ Kg/ 2. The skewness measures the lopsidedness of a distribution (see upper
graphs in Figure 5.4). The fourth cumulant of the rescaled distribution is known
as the kurtosis, which in terms of the cumulants for the original distribution is
given by k4/ K%. This measures whether the tails fall off faster or slower than a

normal distribution (see lower graphs in Figure 5.4).

4o -30 20 0 0 o 20 30 4o 4o -30 20 0 0 o 20 30 4o

Figure 5.4 The upper two graphs show examples of skewed distributions while the lower graphs
show examples of distributions with zero skewness but a positive and negative kurtosis. Also shown
is a Gaussian with the same mean and variance (dashed lines).

Incidentally, there is another way to compute integrals of the form
Iy(n) = / x"e_xz/zdx,
0

which is to make the change of variables u = x?/2 so that du = xdx, x = V2u,
and

Iy(n) =20~/ /OO w2 et dy = 2<"—1>/2r<” ; 1) :
0

where I'(z) is the gamma function (see Appendix 2.A on page 41). To compute
the moments we note that I'(1/2) = /7 (which is proved by noting that
14(0) = T(1/2)/V/2 = Iy/2 = v/7/2). Now the odd moments of the unit normal
distribution A0, 1) are us,,1 = 0 because the integrand, x**! M(x|0, 1), is odd.
The even moments are given by

1 * 2n 7x2/2 2
= — xTe dx = — L4(2n
_ 27"F 2n+1 .
N3 2
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Using the property I'(x) = (x — 1) I'(x — 1) we have

f(*50)-() (%)~ ()6

:2%\/71(211—1)(21173) L

Thus,
tn=02n—-1)2n-3)---1=02n- D!

The double factorial, (2rn — 1)!!, is a fairly standard notation signifying the
product of every odd integer from 2n — 1 down to 1. We can rewrite the double
factorial in terms of normal factorials

Qn—1D=02n—1)x (2n—3)x - x 1
Cn)x2n—1)x2n—=2)x2n—3) x---x2x1
(2n) x 2n—2) x --- x4 x2
(2n)! (2n)!
Txnax(n—1)x--x2x1_ 2n(nl)

Note that uy = 1, uq = 3, ug = 15, etc.
Sometimes it is easier to work with the characteristic function of the normal
distribution. The characteristic function of a normal distribution, N{x|u, o-2), is

- RO . 1 2 5
¢(w) = Mw|u, 0?) =/ el Mx|p,0?) dx =@ 27 @
—o00
where using the standard inverse Fourier transform
o0
; ~ d
Nislo?) = [ e alpo?) 32
o 2

Example 5.1 Convolution of Normals
Consider the convolution of two normal distributions

Io(y) = / Nxlur,03) My — x|, o3) dx.

We can compute this by completing the squares and performing the
integral, however, completing the square is very fiddly. Instead, we
can express the normal distributions in terms of their characteristic

function

Ié(y)=/ / / e 112079 M|y, o) Mwa|pa, 3)
da)l da)2
2r 27 O

Changing the order of integration and using the standard result

/ e—ix (w1*w2) dx = 27T 6((1)1 - (1)2);

— 00
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where §(w; — wy) is the Dirac delta function (see Appendix 5.A),

gives us
Ig(y) =2 ﬂ/oo /OO (w1 — wz) e Y Mawi|ur, o) NMwapz. 03)
dor doy
2n 2nm
= [T e Ml o) Monlus,o3) 52
But,

- - . 1 2 2 . 1 2 9
./\/(a)1|,ul,0'%) N(U)1|M2,0'%) :elﬂlwl—z o7 Wi el.uzwl—z 0 Wy

. 1
— el(#1+ﬂz)w1—§ (03+03) wi
- M 2 2
= Mwi|p1 + p2, 07 + 073)
so that

> —iwry £ 2 2, dwy
Is(y) = e Muwt|uy + p2, 07 + 073) £
—00

= NO |1 + o, 07 + 73).

That is, we have shown that
o0
/ N(x|uy, 03) My — x| 2, 03) dx = My|u1 + pa, 03 + 073),
— 00

which can be a useful result.

5.3 Central Limit Theorem

The central limit theorem concerns the distribution of a sum of independent
random variables § = ", X;. The distribution of S is given by

fs(s) = Bx, x,....x, [6 (s - le)
i=1
where 6(- - - ) is the Dirac delta function, which has the property that
[ fwot-ndx=s0).

We cover the Dirac delta function in Appendix 5.A on page 103. The moment
generating function for § is defined as
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and the cumulant generating function is given by

Gs(1) = log(Ms(1))
=) log(Mx, (1)) = Y Gx, (1)
i=1 i=1

This is an important property of cumulative generationg function (CGF). That is,

the cumulant generating function for a sum of independent vari-
ables is equal to the sum of the cumulant generating function for
each variable.

This is the same property we discussed when we examined the cumulant
generating function for the binomial and multinomial functions. Expanding both
sides of Gs(I) = >, Gx, (1) in powers of [ (recall that for cumulant generating
functions, k, = G™ (0) so that the Taylor expansion of G(1)is >, «; '/i!) we find

1? R .
lkf+§K§+~~~=lZK]X‘+EZK§‘+~-
i i

Equating coefficients in /, we find the k" cumulant is given by

n

K = Z Kfi.

i=1
Thus the cumulants of any random variable, that is, the sum of independent
random variables, are just equal to the sum of the constituent cumulants. This is
one of the important properties that makes cumulants of considerable interest.

We notice that if the X;s are normally distributed (so have «,, = 0 for n > 3)

then X will have no higher cumulants and so will also be normally distributed!
This is again sufficiently important to deserve highlighting:

the sum of independent normally distributed random variables is
itself normally distributed.

This is true even when the variables have different means and variances. A
consequence of this is that you cannot ‘deconvolve’ random Gaussian noise
into its initial components — this has important implications, for example in
independent component analysis.

|
Example 5.2 Example 5.1 Revisited

In Example 5.1 we considered the convolution of two normal distri-
butions

Io(y) = / Nxlr,03) My — x|, o3) dx.
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We can rewrite this as
)= [ [ o= - D Ml oD Ml o) drdy

where we see that we can interpret 5(y) as the density function for a
random variable Y = X+Z where X ~ Ny, 0%) and Z ~ Nz, o73).
As a consequence Y will be normally distributed with mean u; + up
and variance % + o3. A fact which we proved through a rather long-

winded chain of algebra in Example 5.1.
|

Suppose that S is the sum of independent, identically distributed random
variables — such variables are colloquially known as iids. If the X;s are iid then as
well as being independent they are also drawn from the same distribution fx (x).
The cumulants of the sum of n iids is equal to Kf = n«ky. Consider the variable

S—nK{(

/ X
n K5

then we find that ¥’ = 0, ¥} = 1 and for k > 2

Y =

b'e
K

K= 721 ( XVk/2

n (k3) /2

Asn — oo, we find for k > 2 that «} = O(n'~%/2) — 0 and so ¥ ~ M0, 1). This
result is known as the central limit theorem. This derivation of the central limit
theorem also provides the corrections (i.e. the size of the higher cumulants when
n 18 not infinite) which can be useful in practice.

To recap, the k' cumulant, ¢, for a sum of n iids is equal to n k¥, where x5 is
the k™ cumulant of each individual iid. If we rescale the distribution for the sum
so that the variance is equal to 1 then the rescaled cumulants are proportional
to n'=%/2_In the limit n» — 0, the rescaled higher cumulants vanish. Thus, the
distribution more closely resembles a normal distribution.

The central limit theorem is, in fact, more general, in that provided the higher
cumulants of the component distributions are well behaved then the sum of any
set of independent random variables will tend to a normal distribution as the
number of components increases.

It is sometimes said that normal distributions are ubiquitous because most
observables can be considered as the sum of many independent uncertainties.
This may occasionally be true, but is actually a big assumption. On the other
hand, many other people will tell you that observed quantities are rarely normally
distributed and, in particular, outliers are much more frequent than a normal
distribution predicts. In a way both these views are valid. Many random variables
have approximately bell-shaped distributions which are reasonably approximated
by normal distributions, but their tails are rarely well described by a normal dis-
tribution. This may or may not matter, depending on whether you are interested
in the great bulk of the population or in the outliers.
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The derivation of the central limit theorem given assumes that the CGF exists.
This, as we have said, is not guaranteed. After all, e/ grows exponentially with
x so its expectation will only exist if the distribution falls off sufficiently fast as
x — oo. This certainly is not the case for the Cauchy distribution

1
Cau(x) = ——~
e
for which neither the mean nor variance is defined. Although the moment
generating function is not defined, the characteristic function is. If X is Cauchy
distributed then

ox(w) = Ex [ei‘“x} =~ I«l

(see Appendix 5.B). Note that this is not differentiable at w = 0, reflecting the fact
that the Cauchy distribution has no moments. Defining Y = % >, X;, where X;
is Cauchy distributed, then

n
¢Y(w) =Ey [eti] _ EXth ..... X, {eiwzg'zlxi/n} — HEXi [eiwxi/n} _ (]5%(0.)/]’1)
i=1

= (e—\w/n|)n = C_‘w‘.

Thus Y is also Cauchy distributed! This is rather remarkable: the mean of »
Cauchy random variables, rather than becoming closer to a normal distribution
as n increases, remains Cauchy distributed. In general, the central limit theorem
only applies to variables with a finite mean and variance.

Another limitation of the central limit theorem is that it really only tells you
about the distribution a few standard deviations around the mean. It reveals very
little about the tails of the distribution. You should not assume that if S,, is the
sum of n independent variables that the tails for the distribution of S,, fall off
as fast as a normal distribution as this will generally not be true. In Chapter 7
we discuss Chernoff’s inequality, which provides a bound on the probability of
a large deviation from the mean for a sum of random variables.

Example 5.3 Log-Normal Distribution

Before leaving the central limit theorem, we consider another appli-
cation of it in a slightly different scenario: a random variable which
arises as a product of random variables

n
X = HY
i=1

An example of this would be if we dropped a rod of glass. We
assume that the rod breaks into two and then each half breaks into
two and this carries on n times. Each time it breaks, it does so at a
random point. This process is illustrated in Figure 5.5. We consider a
fragment of glass and ask how long it is. Assume that the initial rod
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Figure 5.5 An example of a process giving rise to a log-normal distribution. A glass rod breaks into
two n times. Each break happens at a random position. Notice that the final lengths vary very
considerably.

of glass had length 1. Let ¥; be the fraction along the glass that the
i break occurs. Thus, after the first break the length of the fragment
will be Y;, after the second break it will be Y; ¥>. After n breaks the
length of the fragment will be given by X defined above.

To understand how X is distributed we consider the random
variable L = log(X), then

L= Zlog(Yi),
i=1
where
1
B [1ox()] = [ log(y)dy = —1,

2
By, [log?(1)] — (By, [log(1)])” = 1.
Thus, for large n (invoking the central limit theorem)

L —(+n)?2
N~ ——e—(L+n)7/(2n)
fL( ) \/E
Making the change of variables X = e’ (see Example 1.7 on page 14
for details on the change of variables) we find the distribution of
lengths is given by

fxta) = — e~ (0B )/ 2m),

This is an example of a log-normal distribution defined by

LogNorm(x|u, o2) = #e—(log(x) N ”)2/(20—2). (5.2)
xoV2n

This has mean x| = e”*“z/z, variance k, = (e‘f2 -1 ezl‘“’z, and
skewness (e"2 +2)ve?" — 1. In our example 4 = —n and o = n,
which would give a x; = e ~’/2, with a variance «x» ~ 1 and a third
cumulant k3 ~ ¢3"/2. Thus the distribution is massively skewed to
the right. Log-normal distributions typically have a very long tail (see
Figure 5.6).

The derivation we gave of the log-normal distribution has some
minor blemishes. The obvious one is that when breaking a rod the
sizes of the pieces are not independent. We discuss this later in this
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300 7

logNorm(z| — 6, 6)
200

100

0 L . - - I ]

0 0.1 0.2
x

Figure 5.6 Illustration of a log-normal distribution LogNorm (x| — 6, 6) together with a histogram
of length from Example 5.3. Note the very long tail, with many short pieces and a few much longer
pieces. The curve for the long-normal distribution actually goes back down to zero at x = 0 —that is
it has a very high narrow peak at e —% as well as a long tail for large values of x.

section. There is a second subtle problem. The central limit theorem
tells us about convergence in distribution, which is a rather weak
form of convergence (see Section 7.1). In particular, it does not
guarantee much about the tails. The change of variables back to
X = e’ makes the tails very important. As a consequence, the mean
of X as predicted by the log-normal distribution is ¢ ="/ while the
actual mean of X is 27", which follows trivially from the fact that
we considered a unit length rod to break in two sections successively
n times. This discrepancy shows that considerable care is necessary
when invoking the central limit theorem — it tells us about the bulk

of the distribution, but not the tails.
|

Applying the central limit theorem to problems with long tails is dangerous
even when it is feasible. For example, log-normal deviates satisfy the condition
for the central limit theorem in that they have a well-defined first and second
cumulant. However, consider the random variable S = Zl]\i | Xi where the X;s are
iid log-normal deviates with o2 = 10 (not unreasonable in Example 5.3). Then
the skewness of the X; is 3.27 x 10° and the skewness of S is 3.27 x 10%/v/N.
Therefore, we need N to be very large (e.g. N ~ 10'3) before the skewness
becomes small (order 1). Even if a mathematician tells you that the central limit
theorem applies as the distribution has a well-defined mean and variance, be on
your guard.

We should finally make a few comments about another key assumption
concerning the central limit, namely that the variables are independent. When
the variables aren’t independent then the sum of many random variables can
be distributed in much more complicated ways. However, if the dependence is
‘sufficiently weak’ the central limit theorem may still apply. The problem arises
of deciding how weak is sufficiently weak? — a question which is very difficult to
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answer in general. In our example the pieces all sum to 1 so we cannot assume
the pieces to be independent. However, as shown in Figure 5.6, the length of the
pieces are well approximated by a log-normal distribution.

Long-tailed (aka thick, heavy, or fat-tailed) distributions, such as the log-
normal, occur quite frequently in the real world. In such cases, the typical
behaviour (that which is found most often) is associated with the mode of the
distribution, which can be very different from the mean. To find this typical
behaviour it is common (at least amongst physicists) to consider the mean
of the logarithm of random variables with long tails. This reduces the influ-
ence of very rare outliers compared to the samples around the mode of the
distribution.

Example 5.4 Betting to Win!
Historically one of the driving forces behind developing the theory
of probability was to understand betting. This motivation led to the
rather sterile conclusion that you aren’t going to win in any game
where the odds are against you. Youre not even going to win in a
game where the odds are even, unless you are (a) very lucky or (b)
richer than the person you’re betting against. But what if you are
betting in a game where the odds are with you? Admittedly, there
are not that many bookies who will offer you such odds, although
arguably financial investment might provide this kind of situation.
The question then is how should you bet in a series of games when
the odds are in your favour?

The surprising answer to this was supplied by John L. Kelly in
a seminal paper (Kelly, 1956). Suppose we have a series of games
with two possible outcomes. Denote the outcome of game i by the
Bernoulli random variable X;, and let the return on winning a bet of
one pound in round i be r; pounds. Let C; be your capital after round
i and f; be the fraction of the capital that you bet. Then your capital
after round % is

k

Co=[[ (1= fi+Xiri i) Co

i=1

where Cj is your initial capital. The log-gain is thus

k
10g<g§> = Zlog(l — fi + Xi ri fl) .
i=1

This is a sum of random variables, by which the central limit theorem
will be approximately normally distributed. The typical return is the
mode of this distribution and we maximise our typical winning by
maximising the expected log-gain
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E [log(?:)} = Ek:E [log(1 — fi + Xiri fi)]

=Y (pilog(l — fi +ri fi) + (1 — p;)log(1 — f))

i=1

where p; = P (X; = 1). To maximise this we set the derivative of the
log-gain with respect to f; to zero

9 o [log(ckﬂ _piln=)  lep

afi Co l—fi+rifi 1-fi

or f; = (piri — 1)/(r; — 1). Note that we are usually only allowed
to place positive bets so we require p; r; > 1 (if you want to win
in expectation, it clearly makes sense to only make a bet when the
probability of winning times the size of the reward exceeds the cost

of the bet). The expected winnings in each round are (p; r; — 1) f;, so
this will be positive only if p; r; > 1.

The surprising part of this strategy is that it does not maximise
the expected winnings. The expected winnings are

E[C|=]]pQ-fi+rif)+ 1 =p)(1-f;)) Co

i~

i=1

i~

(L+(piri — 1) fi) Co.

1

i

Provided the expected winnings in each round satisfy p;r; > 1,
then the total expected winnings are maximised when f; = 1. For
example, suppose that p; = 1/2 (you are betting on a fair coin) and
that r; = 4. In other words you are playing a game with your fairy
godmother where she tosses a fair coin 10 times. You bet on the
outcome of each toss. If you win the toss you get four times what
you bet, otherwise you lose your stake. If you want to maximise your
expected winnings then you should bet your entire capital at each
round. In this case you only win if you are right on every toss of the
coin, in which case you win 4'° Cy ~ 10° C. Assuming your initial
capital Cy = £1, then you would will win just over 1 million pounds.
Of course, the chance of winning is only 1/1024, otherwise you lose
everything. Your expected winnings would be £1024. However, if
you follow Kelly, then you would stake only one third of your capital
each round and your expected winnings would be (4/3)!° x Cy ~
17.8 Cp. In this scenario there are 10 possible outcomes (since the
amount you win does not depend on the order in which you win).
The probability of these outcomes and the log-gain in your capital
are shown in Figure 5.7. Following Kelly, if you are lucky and win
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all 10 rounds then you win £1024; on the other hand, you have over
80% chance of winning something. If you think of life as a long-
distance race rather than a sprint, then playing Kelly’s strategy is a

smart move.
0.3 w T w T w T " Figure 5.7 Log-gain,
G, in your capital
after 10 rounds of
0.2 . playing a game
s> | | biased in your
[ favour, using Kelly’s
0.11 — criterion for
choosing your bid.
0.0 L I | L 1 ' | ' I| i Il
-2 -1 0 1 2 3

— 1o Gio
G = log,q ((—“)

In this example, if you are a gambler you may well decide that it’s
worth taking the high-risk bet to become a millionaire rather than
be content with, at most, only winning £1024. However, consider
playing the same game 1000 times. In this case you have a probability
of 271000 ~ 10333 of becoming rich beyond your imagination. On
the other hand, following Kelly you have a chance of greater than
0.999 of winning over £1038. Call me risk adverse, but I would follow
Kelly in this case.

Of course, Kelly comes with its drawbacks. Firstly you need to
have an unbiased estimate of the probability of success. Because you
select good odds to bet on, they tend to be biased (you are much
more likely to bet on events whose probabilities you’ve overestimated
than events whose probabilities you’ve underestimated). Thus using
Kelly may not be optimal. The second drawback of using Kelly
to become rich is that you need to find a bookie who gives you
good odds. A nice (though somewhat irrelevant) story is that Kelly
worked with Claude Shannon (the inventor of information theory,
which we cover in Chapter 9) and the mathematics professor Ed
Thorp (a proponent of Kelly’s strategy in financial investments).
To bias the odds in their favour they developed the world’s first
wearable computer that predicted the likely outcome of roulette
by observing the state of the ball just before the roulette wheel
stopped spinning. Shannon, Thorp, and their wives tried this out in
Las Vegas. This is now illegal and was probably always dangerous
(winning too much in a casino is not necessarily healthy) so I would
not recommend this, but it certainly provides a different appreciation
of Claude Shannon than you might get from working through his
theorems.
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5.4 Cumulative Distribution Function of a Normal Distribution
The CDF for a normally distributed random variable, X ~ N{u, 02), is defined as

N [T~ -wRe?)_dy

Alas, this integral is not expressible in terms of nice well-known functions
(although, see Exercise 5.3). Instead, we have to define a function. The most
convenient such function is

X 2 d
- =y /29
D(x) [me o

for which

]P’(X §x\/,t,0'2) :q)<x—,u)'
o

Writing the CDF for a normal using the notation @ (i.e. the Greek letter capital
phi) is fairly common. The CDF, ®(x), denotes the area under the curve of
normal distribution from —oo to x, as illustrated in Figure 5.8.

For historical reasons the standard function related to the CDF of the normal
distribution is the error function, erf(x), defined as

2[R
erf(x):ﬁ ; e ' dt,

which is related to our function by

1 1 X
D(x) = 3t 2erf(ﬁ> .

The error function is available in most computer languages and mathematical
packages. In the limit x — —oo the error function approaches —1 so that ®(x)
approaches zero. However, using the definition above, ®(x) would be computed
by subtracting a number very close to a half from a half. This can make the
numerical estimate rather imprecise for large negative x. To overcome this the
complementary error function, erfc(x) = 1 — erf(x), is also available in most
computer environments. Using this we can write

D(x) = ;erfc<\_/g> .
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The top graph in Figure 5.9 shows @ (x) versus x. The probability of observing
a normally distributed random variable at least z standard deviations from the
mean is given by

P(IX —pl>z0)=20(-z]).

The function @ (x) falls very rapidly to zero as x becomes negative. The bottom
graph in Figure 5.9 shows the log-probability of being at least x standard devi-
ations away from the mean. If you have data consisting of normally distributed
variables then you expect 68% of it to lie within one standard deviation of the
mean, 95% of it to lie within two standard deviations of the mean, and 99.7%
of it to lie within three standard deviations of the mean. To find an analytic
approximation for ®@(x) for large negative x we use integration by parts

[ —1<_Ze‘*”> 0 [_le”] I L1e@l
—o 2 V2 eV | e @ V2T
e X212 X =22

Sl

The integral on the right-hand side is less than ®(x)/x? so that ®(x) =~
—eX12) (vV2m x) as x — —oo. We can sandwich ®(x) between lower and upper
bounds which are close when x is large.

D(x)

2 2

x e v e 7
T < ®(—x) < —— )
)C2+1 V2T ( ) X \/27T

To obtain more accuracy we can derive a full asymptotic expansion by applying
integration by parts iteratively, although a better approximation of ®(x) for large
negative x is given by

Figure 5.9 CDF for
the normal
distribution with
mean 0 and variance
1. Also shown is
logy (20(=x])).
which shows the
behaviour of ®(x) as
—x increases.
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(VA +x2+x)e 12

2 NoZ

For large x we note that, because M(x|0, 1) is symmetric, @(x) = 1 — ®(—x); thus
we can use the same approximations in the limit x — co.

Occasionally you have to integrate over products of Gaussians and error
functions. There are a surprising number of these integrals you can compute in
closed form (although they tend not to be that simple). These integrals are not
well known or easy to find so I list some of them below.

> 2 dx b
e ™ 2dlax+b :d)( )
/700 ( )\/27'1' \/1+612
> —x2/2+b x dx _ b2 ( ab )
e dlax)— =¢ ()
/. VT e

0
2 dx 1 1 a
e N PO(—ax) — = = + arcsin()
/700 ( )\/27'1' 2 T \/1+612

e 2 dx 2 —ab
e ™ P0(ax) O(bx) —— = = ( )
/—oo (ax)@(b-) V2n x T V1+a2+b2+a’h?
oS] 2
/ e_xz/z(l)z(a x) dx = 2 arccos —o— | .
— o0 V2 T 1+a?

At the time of writing a more comprehensive list, including many indefinite
integrals, can be found on Wikipedia under the title List of integrals of Gaussian
functions.

O(x) ~

5.5 Bestof n

Given a set of n iid continuous random variable S,, = {X|, X», ..., X, }, where
each element is drawn from a distribution fx, what is the distribution of the
largest element, L,, in S,? This question arises in many different application
areas (we give one example at the end of this section). The CDF for L, is given by

Fp,(x) =P (L, <x) = [[P (X < x) = F{(x).
i=1

If Fx(x) is differentiable then the PDF for L,, is simply

fr () = Ll AW g et

since the PDF, fx(x), is the derivative of the CDF, Fx(x).
When the iids are drawn from a normal distribution

L, (x) = nN(x|u, o) @(ﬂ;“)"l .

Examples of this are shown in Figure 5.10.
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Figure 5.10 Distributions of the largest element of the set S, = {X;, Xa, ..., X} where
X; ~ N(0,1) for n = 10, 100, 1000, and 10 000.

For discrete random variables, K; ~ fg, we still have that Fy (k) = Fg(k),
following the same logic as for continuous random variables. Assuming the
random variables take integer values, the PDF is given by

fr, (k) = Fp, (k) = Fp,, (k = 1) = Fg (k) — Fg(k = 1).

This expression, however, doesn’t simplify any further.

Extreme Value Distribution

For very large n it turns out that, for continuous variables, fr (x) converges
to a distribution known as an extreme value distribution. There are a small
number of universal extreme value distribution families that are shared by
many distributions: fx. Which extreme value distribution family we converge
to depends on the fall off of the right-hand tail of the distribution of the X;s.

Consider the case where X; ~ N(0, 1). The largest member of the set S,, will
be in the right-hand tail of the distribution when n becomes large. Furthermore,
as n increases the distribution of L, becomes narrower (we see both these effects
in Figure 5.10). Consider a point x* where f; (x*) is relatively large (i.e. close to
its mean, median, or mode). Taylor expanding x? around x* we find

= ()2 — X)X+ (x—xF) = — ()2 2x x4+ (x — x)?
so that

N(X|0, 1) = Le,)ﬁ/z = LQ(X*)Z/Z*XX*f(xfx*)Z/z'

V2 V2rm

If we consider x very close to x*, the term (x — x*)? will be small and (setting
(x—x*)=0)

Mx|0,1) = ce ™

where ¢ = e ®)%/2/\/2 1. Using this approximation, the corresponding CDF is
given by

Fx(x)=1 fP(X > x) ~ 1 7/ ce ' dx=1- %efxx*.
X

X

Thus

*
c  _..\" o nlog(l—%ci"x >
FLn(x)z(l——e ”) =e *




log(1 + x)
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(1) Using Fr, (x) = F{(x) and the approximation for Fx(x).
(2) Using a" = e" lo8(@),

(3) Using the approximation log(1 + x) &~ x when |x| < 1.
(4) Defining ¢ = e#*" or u = L log(¢).

Note that as n increases, L, will typically become larger so that Fx (x*) becomes
closer to 1. As a consequence, the approximation made in step (3) becomes
more accurate. Differentiating Fy, (x) we obtain the PDF for the extreme value
distribution

fr,(x) ~ x* e () x"—e T

This limiting distribution is known as the Gumbel distribution or the generalised
extreme value distribution type I. Often this distribution is written with x* = 1/8.
The distribution is the limit distribution for a large number of distributions,
fx(x), where the tail of fy(x) can be approximated by an exponential fall-off.
This includes the family of gamma distribution. Other families of extreme value
distributions occur when the tail of fx has different properties, such as falling
off as a power law.

We have still to determine x* (a point where fr, (x) is relatively large). This
is not as critical as it may seem (it is the point around which we approximate a
normal distribution by an exponential — this approximation does not vary greatly
in the region where f;, (x) is large). Since we are dealing with a set of normally
distributed variables

l—d)(—x)) 7n(D(fx)-

P =970 = (1 - 00y =" ~e

When n ®(—x) > 1 then Fr,(x) = 0 and when n ®(—x) < 1 then Fr,(x) ~ 1.
Thus a good place to choose x* is where ®(—x) = 1/n. Using the asymptotic
expansion for ®(—x) as x — oo given by ®(—x) ~ exp(—x2/2)/(v/2 x x), then

e— ("2

V2mxr n
There is no closed-form solution to this. We could solve it numerically (although
we might just as easily solve ®(—x*) = 1/n in that case). However, for large n it
turns out n > x* so that

e— ()2 1
V2n “n

or

x* ~ +/2log(n) — log(2 ).

With more work we can compute corrections to this of order log(log(n)), al-
though when # is very large we can get away with the even simpler approximation
x* &~ y/2log(n). The quality of the approximation is reasonable for large n, as
illustrated in Figure 5.11. However, I am yet to come across an application where
using the extreme value distribution rather than the exact distribution for L,
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Figure 5.11 Distributions of the largest element of the set S, = {X;, Xa, ..., X} where
X; ~ N(0,1) for n = 10, 100, 1000, and 10 000. We also show the approximate extreme value
distribution (dashed curve) and the point x* = /2 log(n) — log(2 7).

is worthwhile. The Gumbel distribution has a slightly cleaner functional form
(it involves elementary functions rather than ®(x)), but by the time you have
computed x* and u it doesn’t seem to save any work.

Example 5.5 Significant Sequence Alignments

A very important application in bioinformatics is sequence align-
ment. This may be aligning DNA sequences or protein sequences.
Its importance comes from the fact that different species tend to
have proteins and DNA that are clearly related both in terms of
sequence similarity and function. In sequence alignment we have two
sequences, €.g.

S1 = KKASKPKKAASKAPTKKPKATPVK
S> = KKAAKPKKAASKAPSKKPKATPVK.

In this example §; is part of the Histone H1 protein in humans,
while S, is part of the Histone H1 protein in mice. In these two
subsequences there are two sites where the sequences differ.
Sequence alignment is a classic and well-studied problem in
computer science (which refers to it as inexact string matching).
Given two sequences, there is an efficient algorithm for finding the
‘best alignment’ (in fact, there are a number of different algorithms
depending, for example, on whether you want to match the whole
string or find the best subsequences of the two strings to match).
To determine what we mean by ‘best alignment,” biologists have
empirically estimated the probability of any letter in the sequence
(amino acid in the case of proteins or bases in the case of DNA)
being substituted by another letter. In addition, elements in either
sequence can be deleted or new elements inserted, again with some
small probability. By taking the product of these probabilities (or
more conveniently the sum of the log-probabilities), we can compute
a score giving the probability of a particular alignment. The number
of possible ways of matching two sequences is exponential in the
length of the strings, and for all but the shortest strings it would be
computationally infeasible to try all possible matches. Fortunately,
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using an algorithmic method known as dynamic programming it is
nevertheless possible to find the best alignment very efficiently.

An important scientific question is whether the best alignment
that is found is biologically significant (i.e. due to an evolutionary
shared inheritance). There are an exponential number of possible
alignments and the algorithm has found the best. However, because
we have found the best of a large number of alignments, the score we
obtain will be much higher than chance. To determine whether the
alignment we have found is likely to be biologically significant we can
estimate the distribution of scores for a random alignment involving
the same number of elements as the alignment we have found. We
denote the score of a random alignment by X and its CDF by
Fx (x). The score we obtain is typically a sum of the log-probabilities
for all the elements that have been aligned so that X will typically
be approximately normally distributed. We also need to compute
the total number, N, of possible alignments of this length that we
could have found. This is a complicated combinatorial problem, but
typically N will be very large. The CDF for the best alignments that
would occur by chance is F§' (x). If we find an alignment with a score
Xpest then the probability that we could have found a score that is
as good as, or better than, Xy, given that we are aligning random
sequences, is F (Xpest)- If this is very small then we can be confident
that the alignment found is biologically significant.

5.6 Multivariate Normal Distributions

The normal distribution naturally extends to the multivariate case; furthermore,
because the exponent is quadratic it is relatively easy to compute expectations
analytically. This can be very important in high dimensions as the only other
feasible approach may be Monte Carlo, which is slow. There is a very well-
developed field of multivariate statistics which builds on the multi-dimensional
normal distribution.

Computing high-dimensional Gaussian integrals requires some knowledge of
linear algebra. You can accept these formulas on faith, but if you work constantly
with multivariate normal distributions then it is worth understanding how they
are obtained. The multivariate normal distribution is

1

V2 X|

where p is the mean (now in a multidimensional space), X is the covariance
matrix, and |27X| denotes the determinant of the matrix 2z7X. The covariance
matrix must be symmetric and, furthermore, positive definite. Symmetry just
means that X;; = X;;. Positive definite means that for all non-zero vectors u we
have u"Xu > 0, which is required to ensure that the distribution goes to zero
(rather than infinity) as we move away from the mean. An entirely equivalent

e—3x—m)TE (x—p)

Nx|p,X) =
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condition for a matrix to be positive definite is that all of its eigenvalues are
positive.

|
Example 5.6 Two-Dimensional Normal Distribution

Figure 5.12 plots the multivariate Gaussian

N((i) ' G) (_21 _11>) = %e*%(x2+2xy+2y274x76y+5).

Note that the eigenvalues of X = (2_1_11) are (3++/5)/2 and

70.85065)

(3 — V/5)/2 and the corresponding eigenvectors are (0‘52573

and(&é?%?). The determinant of X is equal to 1 and the inverse

o —1 _ (11
sx —(12).

VA2 v

To show that M(x|u,X) is normalised (i.e. to compute the integral) it is
necessary to diagonalise the covariance matrix. For any symmetric matrix X it is
possible to find an orthogonal matrix V such that

ViZV=A

where A is a diagonal matrix. The diagonal elements A;; = A; are the eigenvalues
of X while the columns of the orthogonal matrix V are the eigenvectors of X. The
eigenvectors of a symmetric matrix are orthogonal to each other, which implies
that VT V = | (the identity matrix), so that V—! = VT —a defining property of an
orthogonal matrix. Multiplying the formula above on the left by V and on the
right by VT we find

r=VAV"
Using the fact that (AB C)~! = C~'B~!A~! (which is easily verified, by showing
when you multiple by A B C you obtain the identity matrix) we find
Z_l — (VT)_I ,\—1 V—l — VA—I VT

where A~ is a diagonal matrix with elements A;;' = A;"!. Thus, the eigenvectors
of a matrix are also eigenvectors of the inverse. We can diagonalise the inverse
matrix using the same similarity transform as the original matrix

Viz-lv=pn"

Figure 5.12
Tllustration of a
two-dimensional
Gaussian with

covariance

2 -1
22(711

mean u = (1,1). It
shows the
relationship between
the eigenvalues and
eigenvectors of X
and the shape of the
distribution.

and
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To check the normalisation of the normal distribution we change variables
y =V (x — pu), which gives

Tyl “
—-yV' X Vy/2Jdei

oo 1 o0
NMax|p,X)dx = €
/foo V |27TZ| —o0 i=1

where J is the Jacobian defined by

axl 6x1 . 6x1
9 9 9
o o O
d s Dym

pe|m b
Oxn  Oxp . Oxa
Iy Iyy Oyn *

Since x = V'y + u we find J = |VT|. The determinant of an orthogonal

matrix is should be +1. A matrix can be thought of as mapping points from
one space to another space. If we map all points in some volume in the first
space to the second space, then the ratio of volumes is given by the determinant
(up to a sign describing whether that volume suffers a reflection or not). Because
an orthogonal matrix just corresponds to a rotation and a possible reflection
the determinant is £1. Returning to the integral and using the diagonalisation
formula we find

_1 n
e YN y/2 IT a»:

o0 1 o0
Nx|p,X)dx =
| M) Tnz B ]

yl /(22;) dy _

M H/ ¢ \27r
@) Ty i

V27 x|

If M is an n x n matrix then |a M| = a" |M|. Thus the factors of 27 cancel
each other out. Using the property of the determinant |A B| = |A| x |B| (which
immediately implies |[AB C| = |A| x |B| x |C]), |X| = [VAVT| = |V| x |A] x
[VT| = |A|, since the determinants of the orthogonal matrix are equal to +1.
However, the determinant of a diagonal matrix is equal to the product of its
diagonal elements so that |A| = []'_, 4;, which completes our verification of the
normalisation of the normal distribution.

It follows from this derivation that if X ~ M(u,X) where £ = VAVT
then ¥ = A~12V(X — u) will be distributed according to A0, 1). That is, the
components of ¥ are independent normally distributed variables with zero mean
and unit variance. The transformation from X to Y involves a shift by u, followed
by a rotation and a possible reflection given by V, followed by a rescaling of
each component by /li_l/ 2. These are all affine (i.e. linear) transformations of the
variables. Thus,

._.
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up to an affine transformation any multivariate normal distribution
is equivalent to distribution for n independent normal variables.

That is, given any multivariate normal distribution, by means of a translation,
rotation, and rescaling of the axes we can obtain the distribution A{0,1). You
should be able to convince yourself that this is credible for the distribution shown
in Figure 5.12.

By inverting this transformation we can obtain a multivariate normal deviate
in n dimensions starting from » independent normally distributed variables. In
practice, however, it is more efficient to compute the Cholesky decomposition of
the covariance matrix L, such that LLT = X where L is a lower triangular matrix.
Then to generate a multivariate normal deviate we first generate Y ~ A(0, 1) and
use X = LY + u. Its expectation is

E[X] =E[LY+/J} =LE[Y} +pu=p.
The covariance is given by
Cov[X,X|=E[(X —p) (X —p)7]
=E[LYY'LT]=LE[YY'|LT=LILT=LLT =%

As the components of X are sums of normally distributed variables (plus a
constant) they will be normally distributed. Thus X ~ M(u, X).

Moments and Cumulants. Fortunately, most expectations can be obtained
easily from the moment generating function

M(l):EX |:elTX:| =/ elTxN(x|ﬂ,Z)dx.
— 00
To compute this we complete the square in the exponent
1
M= S(x =) E7 (x — p)
1 1

=ﬂy+§ﬂ21—ﬂx—y—ZWt4@—y—ZU

Substituting this into the moment generating function we find
Muelitsr [

M(l)=¢" F*2 Nx|p—Z1,X)dx
— 00

_ etT,H%lT}:l_

In a similar way to the one-dimensional case we can compute the mean by taking
a partial derivative of the moment generating function and setting [ to zero

Ex [X] = VM(0) = p.
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The second moments are given by

oM (0)
Ex [Xi Xj} = W =Lij+ Hily-

The multidimensional equivalent of the variance is the covariance defined by
Cov[X;, X;] = Ex [X; X;] — Ex [Xi] Ex [X;] = Z.
This can be written in matrix form as
Cov[X] =Ex[XX']| —Ex[X]| Ex[X"| =X

where we use the notation that M = ab' is the outer-product matrix with
components M;; = a; b;. Note that we can also define a multidimensional CGF

G(l) =log(M(l)) =1" p + %IT T

where VG(0) gives us the mean and the second derivative the covariance. The
diagonal elements of the covariance matrix are just

=iy = Bx [ X7] - Bx [X,)’

which we recognise as the variance of X;. The off-diagonal elements encode the
correlation between the components. Because the covariance matrix is readily
observable, we usually try to work with the this rather than its inverse.

An important property often known as the marginalisation property of a
normal distribution is that if we marginalise a normal distribution M(x|u, X)
where

1 X Zi2 oo Zqg

7 DY TP L BRI Y, ¥
=\ . = . . :

Hn 2nl z:nZ o 2nn

with respect to x,,, then

/ Mx|p, X)dx, = Nx|pg', X

where
H1 21 2 D) |
, H2 , 201 D25 NI )
u= . Y= . . .
Hn—1 Zo—11 Zp—12 0 Zp—ln—1

Thus neglecting one dimension does not change the means and covariances in
the other directions. However, it is much harder to see if we try to compute
the integrals explicitly, as the exponent —%(x — )" (x — u) couples all the
components (see Exercise 5.4).
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Schur Complement

One of the complications of working with multivariate normal distributions is
the need to shift between the covariance matrix X and its inverse X~ !. This
is easy enough numerically, but it is tedious to do analytically. Often rather
convoluted derivations are used to avoid going backwards and forwards between
the covariance matrix and its inverse. Sometimes it is sufficient to break up the
random variables into two groups (e.g. when marginalising over some set of
nuisance variables). This often leads to inverting a partitioning of the matrix.
We can rewrite any matrix M into the product of three matrices

M U w L

D0 Dk )

where A, B, C, and D are matrices. This decomposition is easily proved by
simply multiplying out the matrix product. We denote A = A — BD!C as the
Schur complement of M. The first advantage of this form is that we can quickly
determine the determinant as |A| = |U| x |W| x |L|. But because of their structure
|U| = |L| = 1, so that |A| = [W/| = |A| x |D].

This form also allows us to compute the matrix inverse relatively easily

Mfl — Lfl Wfl Ufl
ABY' /1 0\(A' 0)/1 -BD!
C D “\-D!'Cc 1 0o D!/J\o |
A-! ~A-'BD!
“|-D'cA! D !+D!CA-'BD!/" (5.3)

The decomposition we used is not unique (in particular, A and D are treated
differently). If we swap the role of A and D then we can also define a second
Schur complement of D = D — CA~!B, such that

N 5.4
D lca-! D! ( )

M- (Al +A-'BD-!CA-! —AAIB[A)1>.
The determinant of the matrix M is also equal to [M| = |A| |D|.

Although Equations (5.3) and (5.4) look different, they must be the same,
which implies

A'=A-BD'C)"'=A"1+A'BD'CcA. (5.5)
This identity is known as the Woodbury matrix identity and has many uses. It

can be proved directly by multiplying A = A—BD~!Cby A~'+A-!BD'CA~!
and showing that you obtain the identity matrix.

The purpose of this
section is just to
point out that
identities exist.
They aren’t
beautiful, at least
not to me, but
occasionally they
are useful. You can
always look them
up when necessary.
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A B
(o o)

B (A-BC'BT)"! —(A-BC~'BT)"!BC!
“\-c'BT(A-BC!BT)"! (C—BA-'B")!
(5.6)

For a symmetric matrix

the inverse is given by
A B
—1 _
r= (BT C)

(note there are a number of other ways of writing this). Since |X| = |A| x |C| we
see that X is positive definite if and only if both C and the Schur complement,
A = A — BCBT, are positive definite.

Another non-obvious but useful set of identities is

(A'+BH'=A-AA+B)'A=B-B(A+B)"!B.

-1

This can be proved by direct multiplication, i.e.

A '+ A+ ) =a BT (A ~AA+B)"! A)
=I-(A+B) " 'A+B'(A—A(A+B)"'A)
=1-B'B(A+B) 'A+B'(A—A(A+B)'A)
=1-B'(1—(A+B)(A+B) " HA =1

The second identity (A~! + B~1)~! = B — B(A + B)~! B follows by symme-

try. These identities are useful when multivariate normal PDFs are multiplied
together. For example, we can use this identity to show

N(x|a,A) N(x|b,B) = N(x|e,C) N(a — b|0,A + B)
where C= (A~'+B~!)"landc = C(A~'a + B~ !b).

Normal distributions are tremendously useful because they are analytically
tractable. They form the basis of techniques such as multivariate statistics,
Gaussian processes (in machine learning), and Kalman filters. Working with
them is, however, fiddly. You often have to complete squares and invert matrices.
Furthermore, the CDF is sometimes awkward to work with. All that said, don’t
be put off by the algebra: normal distributions are usually much easier to work
with than the alternatives.

Exercise for Chapter 5

Exercise 5.1 (answer on page 407)
Let

=

—

Sp = 713 2 (Ui —1/2)

\S)
i
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where U; ~ U(0, 1). Thatis, S, is the sum of n uniform deviates normalised so that it
has zero mean and unit variance. Generate a histogram of deviates S5 and compare
it to the density N(x|0, 1) (see Section 6.2 on page 115 for details on generating
histograms). Repeat this for deviates Sjg.

Exercise 5.2 (answer on page 408)
Let

where C; ~ Cau are Cauchy deviates. Generate a histogram 7} and compare this
with the density Cau(x).

Exercise 5.3 (answer on page 408)
Show that the CDF for normal random variables,

O(x) = ¥ P
( ) /;oc \/27'1'

can be written in terms of an incomplete gamma function by making the change of
variables y?/2 = 1.

Exercise 5.4 (answer on page 409)
Marginalise out the variables y from the multivariate normal distribution

0= ) 9

to obtain a density for the variables x.

Exercise 5.5 (answer on page 411)
LetU =S = > Xiz where X; ~ N(0, 1), show that U is chi-squared distributed
u12=1 e —ul2

n 1
fulw) = x*(n) = Gam(”b’ 5) T YPTw2)

Appendix 5.A Dirac Delta

The Dirac delta ‘function’ is a useful device in computing probabilities. Strictly
it is not a function as it does not take a well-defined value when its argument
becomes zero. We can think of it as a limit of a family of functions, 6;(x),

such that
/ di(x)dx=1

—0o0
and which become closer to zero for x # 0 asi — oo. There are many such
families of functions. For example, the family of Gaussian

8:(x) =N(x|0,i12> .

e 2= ) A=)~ (x—p ) By —py) =3 (v —p,) Cly—p,)

Dirac’s delta
function was
immediately
criticised by
hardened
mathematicians
such as von
Neumann who
rightly pointed out
that no such
function can exist.
It took
mathematicians 20
years to catch up
and finally develop
a theory of
distributions which
put the delta
function on a
rigorous footing.
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Alternatively, we can think of the function as §(x) = lim,_,o M{x]0, €). The Dirac
delta is sometimes referred to as a generalised function or a distribution rather
than a function. Although Dirac deltas are awkward objects on their own, they
become invaluable inside integrals. Furthermore, they are very easy to use. Their
defining equation is

/ T )80 — y) dx = £().

Dirac delta functions have one rather surprising property, namely

/00 d(ax)dx = l/OO S(ax)d(ax)

a

1 oo/a
=— 6(y)d
a/oo/a (y)dy
_sign(a) _ 1
a4

The sign(a) appears because if a < 0 the order of the limits change giving an
extra —1. If we have an integral

I = /_OO () 6y — g(x)) dx

we can Taylor expand g(x) around the point x] where y — g(x}) = 0. Doing this
we get

1= [ 7 06 (v - e + - D) + 0 (- %) ) dx
=Z/_°;f(x)a((x—x3‘)g’(x?)+0 (r=77)) dx

- )
R

12

In the case where g(x) is invertible so that x* = g~!(y) is unique, we obtain
| rwot gl dx= LEL
—o0

However, we observe that g(¢~!(y)) = y, so differentiating both sides we find

—1 -1
dg(gdy(y)) =g'(s7' () dgdy(y) =1

or
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thus

e8] -1
ot - et an =[5 s,

The behaviour of the delta function should not be too surprising as it can be
viewed as a (limit of a) probability density. As we saw in Section 1.4, densities
pick up the Jacobian under changes of variables.

Dirac delta functions can also be defined in higher dimensions

/fo Fx)8(x - y)dx = £(3)

where the integral is now a multidimensional integral. We can interpret the
multidimensional Dirac delta as a product of one-dimensional Dirac deltas

S(x —y) =T o0 — ).
i-1

Given a transformation of the coordinates from x to y(x) the Dirac delta
function transforms as

6(x —x7) = [J[6(y —y7)

where y* = y(x*) and J is the Jacobian det(T) where T is a matrix with
components
8yi(x)
Tij = .
] 0x,~

Multidimensional Dirac deltas make many mathematicians go weak at the knees,
but physicists have been happily using them for years with little ill consequences.
They take some getting used to, but they often make tricky calculations trans-
parent.

The Dirac delta is often useful when treating probabilities. In particular, under
a transformation of variables ¥ = g(X), the probability distribution for Y is
given by

= | T oy — g) fr(x)dx

— 00

which we have just learnt how to compute. If g(x) is invertible we find

—1
() = \dgdy(”\ e O))

(cf. Section 1.4 on page 12).
The Heaviside function is the step function I[x > y]] (sometimes written as
O(x — y)). Note that

[z ax= [ an
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so taking derivatives with respect to y

d oo
5 Lzl ax= g [ de=—s0.

Being rather rash we could conclude (by taking the derivative inside the integral)
that

dfx>y] _do(x-y)
dy Bl dy

=—d(x —y)

or @'(x) = §(x). Of course, any self-respecting mathematician would deplore
such a derivation. The Heaviside function is non-differentiable and it is quite
incorrect to take the derivative inside the integral sign. However, we can make
this identification kosher, for example, by defining a function

0. (x) = cp(f)

€

where ®(x/¢) is the CDF of the normal distribution {0, €). In the limit € — 0
we see that

lim O¢(x) = O(x) lim @, (x) = MO, €?) = 6(x).

e—0 e—0

In this sense we can relate the Heaviside function and the Dirac delta function.
One of the more useful representations of a Dirac delta is

6(x)=[ el ;L‘:.

oo

This is not entirely obvious (as §(x) is not a well-defined mathematical object it
is not entirely true except as some limiting process). One way to understand this
identity is as a limit of the sum of discrete Fourier components

n/2

UEF

I=—n/2+1

2nrikl
n

which follows for integer & as the sum consists of roots of 1 which sum to 0, except
when k = 0, where the exponential is just equal to 1. We can consider I[k = 0]] as
a discrete impulse. To turn this into a Dirac delta function in the limit of large n,
we define x; = k/\/nand w; =2nl/\/nsothat Aw = w; — w;_| = 27/y/n and

T S B B

\/ﬁ[[\/};xkzo]]:\};l Z eT:T Z eikalAw

/4
I=—n/2+1 I=—n/2+1
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N

P T T T T T e K

—n 0 21

|

Taking the limit n — oo the sum goes over to an integral at the same time the
indicator function becomes closer to a Dirac delta function.

A more direct way to obtain this result is to define a limiting process where the
integral becomes well defined

oo d o0 . d o0 € ix x* d
w 2 w @ .. _ €, 1X\2 X w
elox == 2 Jim g €W 2giwx T2 3 jipy e 2@e) e =X
o T e—0,)_ T e—0/_ V.4
G 1.
= lim
e—=0\2me

x2
e~ 2¢ = lim M(x|0, €) = 6(x)
e—0

(1) Using lime_,ge €@’/

limit and integral).
(2) Follows from completing the square.
(3) Calculating the integral.

= 1 (we have recklessly exchanged the order of the

Appendix 5.B Characteristic Function for the Cauchy Distribution

We derive the characteristic function for the Cauchy distribution using contour
integration. It is beyond the scope of this text to explain contour integration. The
characteristic function of the Cauchy distribution is defined as

$p(w)=E [ei“’x} =/OO e

oo (14 x2)

To evaluate the integral for w > 0 we consider the contour integral
eia)z
L(R) = 74 ——-dz

where C.(R) is given by

This is provided
solely out of a wish
not to pull results
out of a hat. The
reader should feel
free to skip this
section if it is of no
interest or you are
unfamiliar with
contour
integration.
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Dividing the contour integral into two sections we find 7;(R) = L(R) + 3(R)
where

R elwx T aiwR cos(8)—w R sin(9)
L(R) = ——dx, I3(R) = - de.
2(R) /_Rn(1+x2) * 3(R) /0 7 (1 + R2e29)

In the limit R — oo we find I(R) — ¢(w) and I3(R) — 0 (since —wR sin(0) < 0
for 0 < 6 < x so the integrand goes to zero as R — o0). Thus ¢(w) =
limg_ o I1(R). To evaluate I} (R) we use the residue theorem. We note that I;(R)
is equal to

elL()Z

II(R) = ]({(R) mdz

so that it has poles at +i. By the residue theorem
L(R)=2nmi Z residues

where the residues are computed at the poles that lie within the contour C(R).
Provided R > 1, there is one simple pole at z = 1 with a residue of (denoting the
integrand of I} by fi(z) so that I;(R) = ¢ fi(z) dz):

e—(/.)

lim(z —1) f1(z) =

z—i 21’

Thus, for R > 1 we find [;(R) = e, so that ¢(w) = e« if w > 0.
If w < 0 the integral I3(R) involves an integrand that diverges as R — oo so
instead we consider a second integral

eiwz d
I4(R) = j({(R) 0+ z

where C_(R) is given by

Once again dividing the contour integral into two sections we find I4(R) = L(R)+
Is(R) where I>(R) is given above and

s eia)R cos(6)+w R sin(0)
I5(R) = . do.
s(R) /0 (1 + R%—2i6)

Again in the limit R — oo, we find I,(R) — ¢(w) and (assuming w < 0) Is(R) —
0. Thus, for w < 0, we find ¢(w) = limg_, o, I4(R). Applying the residue theorem
(noting that we get an extra factor of —1 because we are going around the pole
clockwise) we find a residue of
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lim —(z +i)fae) = S

z——i 2ri

(to obtain this we note that I4(R) = § f4(z) dz where f4(z) = f1(z) — the integral
I4(R) differs from I; (R) only in the contour being traversed). Thus, for R > 1 we
find I4(R) = e®. Combining this result with the previous result valid for w > 0
we find ¢(w) = e ~1l as announced in the text.
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Handling Experimental Data
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This chapter dips its toes into the often murky waters of statistics. The field can
on occasion cause heated passion as academics argue about the validity of a
particular statistical test. For others the field generates little or no passion. For
many researchers, the application of common sense with a passing understanding
of some of the issues involved in statistics is sufficient for a lifetime in science
or engineering. This chapter attempts to fulfil this need. For others, whose
research pivots on the correct interpretation of scarce and expensive data, a
more complete immersion into the maelstrom of statistics may be necessary. For
those readers I can only direct you towards a wealth of literature covering many
different aspects of statistics and catering for many varied tastes.

Experimental data usually comes with errors. We can treat the data points as
random variables and apply our knowledge of probability when treating them.
If you collect any data then you really need to know how big your errors are to
interpret your results properly. If you don’t do this yourself, you will find that
referees of your papers are likely to impose this on you. This chapter discusses
errors and how to treat them and discusses common methods for extracting
statistical information from raw data.

110
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6.1 Estimating the Error in the Mean

The problem of estimating quantities from empirical data is the domain of
statistics. This chapter deals with classical notions of statistics. In this context,
a statistic is some quantity that can be inferred from the observed data. Thus, if
we have random variables X ~ My, o), u and o2 are not statistics in this sense.
Estimates of x and o? from data would be considered statistics. Probability has
a wider remit, but when dealing with experimental data an understanding of
statistics is useful and sometimes essential.

When making some measurements there is usually some random component
which means that the quantity that you are measuring changes each time you
make the measurement. We can treat the quantity you are measuring as a random
variable, X. The underlying quantity of interest is often the expectation E [X ]
(assuming the errors are not systematic). To estimate the expected value accu-
rately we repeat the measurement many times to get a collection of measurements
D = (X1, X3, ..., X;,). We assume that these measurements are independent —
that is, the uncertainty we are measuring results in different errors each time we
make a measurement. An estimate of the expected value is given by the empirical
mean

1 n
i=1

Since E [X;| = u then E [a] = p, which implies that this estimator is unbiased.
However, knowledge of fiis of little use without some estimate of its uncertainty.
That is, we also want an estimate of the possible error in the mean. This is usually
written p = i+ A, but how should we estimate A? Intuitively this should have to
do with the variance in X. So how can we estimate the variance?

An unbiased estimator for the variance is

R 6.1)
i=1

n—14%

This definition of the estimator for the variance seems at first sight perplexing.
Why divide by n — 1 rather than n? The reason why dividing by »n is wrong is
because we are using the same data set to estimate both  and &, but the reason
why the correction is n/(n — 1) is harder to see. However, we can verify by direct
calculation that this estimator is unbiased

r 2

ol 1 n 1 n
Blo?] 22| ) X,-—anlXj

i=1

@ 1 E z": X.z—gX-zn:X‘+i zn:X zn:X
_n—l i n tjzl J n2 = J o k

i=1

N 1 i n 1 n n
‘zn_lE ;:X}—; ;X, (;Xk>
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1 1 - 1 &
@ SYx2-- N x
i=1 ]:ll;]}:l

1 1 1 n— 1
((1—n> n#z—nn(n—l)#?) =) =0

c

n—1

(1) From Equation (6.1).

(2) Expanding the square.

(3) Summing over i and cancelling terms.

(4) Separating out the terms k = j.

(5) Taking the expectation over each term in the sum and using the definition of
moments E [X?] = uo, E [X;] = p1, and the independence of X; and X;.

(6) Taking out the common term (n — 1).

(7) Cancelling and using the definition of the variance o2 = u — ,u%.

Dividing "7, (X; — f1)* by n would give us a consistent, but biased estimator (it is
consistent in the sense that in the limit n — oo it converges to the true variance).
Unbiased estimators for higher cumulants are even more complicated and many
books get them wrong. They are known as Fisher statistics, after Ronald Fisher,
who wrote a paper deriving the first 10. The unbiased estimator for the third and
fourth cumulants are

n

K3 = m Z(Xi - ?

i=1

N n? = . 3n—4)n 1 n ) 2
K“:(n—l)<n2—6n+6>§;(xi—ﬂ>4—,fz_6n)+6(n_l (Xi—mz).

i= i=1

I'm unaware of any unbiased estimators for the skewness or kurtosis (these are
complicated by involving ratios of powers of cumulants).

Returning to the issue of estimating the error in the estimated mean, the
estimated mean is

1 n
i=1

To calculate the variance we observe that the X;s are independent with variance
o2 so

A Xi| o g” ¢ O
Var[a] 2 var| 2|2y 22
2> ] 23 e
i=

i=1

(1) Using the definition of g and that for independent random variables
Var[ >, X;] = X, Var[X;].

(2) Using Var[aX;] = a®Var[X;] and the fact that X; are all independent,
identically distributed (iid) so that Var [X;] = 0.

(3) Using > i c=nc.
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The uncertainty in the estimated mean is the standard deviation, /Var [,&}, e S S
divided by v/n, A = o/+/n. This is known as the error in the mean. Of course,  *°f | E I ]
we don’t know o, however we have an unbiased estimate for it, namely . Thus, ook =

the estimated error in the mean is equal to A = /v/n. When plotting graphs,

the error bars show by convention the estimated errors in the mean, A, not 10—

the estimated standard deviation 6. An extremely common mistake in scientific
papers is showing the standard deviation. The error bars decrease as 1/+/n so
to reduce the error bars by two we have to use four times as much data — your Tn=ts =4
estimate of the standard deviation doesn’t change much as you increase the
sample size. In the margin figure we show some histograms of data sampled from

0.5 ! b
M0, 1) for sample sizes of 4, 16, 64, and 256. We observe that the estimated ) LLH.

standard deviation remains much the same, but the estimated error in the mean o
reduces by approximately two when we increase the sample size by four.
If a curve is drawn through a set of data points with error bars then only

around 60% of the time should it pass through the error bar. Figure 6.1 illustrates ~ ©* .!!

a graph with correctly drawn error bars and with the standard deviation used as ook
error bars. Notice that using standard deviation gives no indication of expected
errors in the mean. Occasionally, people use error bars that show 95% confidence
intervals (i.e. with 95% confidence the mean should be within the shown error
bars). In this case, rather than plotting o-/+/n, you need to plot 20-/y/n. This is
common practice, for example, in much of biology.

100 T T T T —% 100

80 - — 80 u

60 — 60 |
y oot ] y oot ]

40 1 40 = *

20 A 20 | A

0k | | | 0L e | | |
0 2 4 6 8 10 2 4 6 8 10

Figure 6.1 The eye-ball test — have you got the right error bars? We suppose we are empirically
trying to determine some function y(x), where we have some noisy measurements of y together
with estimated errors in the mean. The left-hand plot shows error bars with height equal to the
estimated error in the mean. The right-hand plot shows one standard deviation in the data — these
should NOT be drawn as error bars.

If you are really unlucky, you might be measuring a variable without a variance
or even a mean. We saw that Cauchy distributed variables don’t have a well-
defined mean or variance. This would be an unusual situation. If your estimates
for the mean and variance seem to vary wildly from sample to sample then
plotting a histogram, as described in Section 6.2, might help you see what is
happening. If you really have a random variable whose distribution appears to
have extremely large tails then you might consider looking at the statistics of its
logarithm (although this only works if the random variables are strictly positive).

‘371 256 94
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6.1.1 Computing Means with Errors

Every time you collect data you should automatically compute the errors. The
easy way to do this is to write a routine that does this for you automatically.
In object-oriented languages you can write a class to do this. The class should
become part of a library of routines which gets included automatically. You need
only keep a count of the number of data points n and an estimate for the mean
and squared difference defined as

1 n n

/jn = ; in, Sn = Z(Xl - Ian)2~

i=1 i=1

Sn = Sn—l + (1 - ) (Xn - ﬁn—])z-
n

The estimated variance in the data is 62 = S,,/(n — 1) and the estimated error
in the mean is A = ¢/4/n. If you deal with data, but don’t yet have a class that
computes this, then create one now — it will pay you many times over.

6.1.2 Bernoulli Trials

There is one situation when you don’t need to estimate the variance separately,
namely when you are dealing with Bernoulli trials (i.e. when your data falls into
two classes). We have seen that the maximum likelihood estimator for the success
rate of a Bernoulli trial is 4 = K/n, where K is the number of successes in the
sample.

Suppose you develop a new method for doing a task and you find it has an
estimated success rate of g = 0.78 compared with g = 0.75 for someone else’s
method. You want to express how confident you are that your method is really
better than theirs. One approach is to perform a statistical significance test, but
a good engineer should have a gut intuition of the significance. Fortunately, for
Bernoulli trials this is easy to do, at least approximately.

The outcomes of n independent Bernoulli trials with success probability u
is distributed according to a binomial distribution, K ~ Bin(n, u), where the
expected number of successes is 7 u and the variance is 0> = nu (1 — p). Our
estimate of u would then be i + A where

Ao rd=n
n
This is our estimated error in the mean. Of course, in practice we don’t know
u. There are several approaches to overcoming this. The worst-case error occurs
when g = 1/2, in which case oo = 1/(24/n) — this provides an upper bound on
your error in the mean. If, for example, you tested your method on 100 samples
then the size of the error is unlikely to be more than 5% while if you tested
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your method on 10,000 samples the error is unlikely to be more than 0.5% (and
in the example above a success rate of 0.78 is significantly better than 0.75 if
measured on this number of samples). The problem with this worse case is that
it substantially overestimates the size of the error when u is close to 0 or 1. An
improved error estimate is obtained by plugging in the estimated error in the
mean, which is easily found to be \/fi (1 — 4)/(n — 1). Unfortunately, this can
give you an underestimation of the uncertainty. In particular, if you have seen no
successes or failures then the uncertainty estimate is zero, which is definitely an
underestimate of the true uncertainty.

If we require a more accurate estimate of the error, we can resort to Bayes rule,
Equation (1.4), which we can write as

Flulk,n) = W

where f(u) is our prior density distribution for u and

1
P (k|n) :/0 P (k|n, p) f(p)dp.

Assuming that every value of u is equally likely (following the maximum likeli-
hood philosophy) so that f(u) = 1, then

Flulk,n) = — okl )

Jo Bin(k|n, ) dp
We can use this to obtain tight error bounds, although it is usually rather awk-
ward numerically to do this. Various researchers have proposed approximations
to this. As an example, suppose we have a 100% success rate so that k = n. In this
case Bin(k = n|n, ) = " so that f(ulk,n) = (n+ 1)y . The expected value of
uis

1
n+2

1
E [u] =/O wf(ulk,n)du =1~

while the variance is (following a similar calculation) o = 1/((n + 2) (n + 3)).
Thus the expected error is approximately 1/n, which is, of course, much smaller
than the previous bound of 1/(2+/n). Rather surprisingly, the assumption that
all values of u are equally likely is not the most uninformative prior, but we delay
a discussion of uninformative priors until Chapter 8.

6.2 Histogram

Sometimes you are not just interested in the mean of the data you have collected,
but are also interested in the distribution. To visualise this distribution you can
draw a histogram. Given a collection of data D = (X, X, ..., X,,) which lies
in some range Xmi, t0 Xmax, you divide up the range into a set of bins. You then
count the number of data points that lie in each bin. It is traditional to plot your
data so that the area under the curve sums up to 1. Thus in plotting a histogram
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you divide the count of points in each bin by the total number of data points,
but also by the width of the bin. This allows you to compare your histogram to
the probability density functions. Figure 6.2 illustrates a histogram of normal
deviates. The size of the bin affects the quality of the plot. If too small then the
uncertainty in the count will be large and the fluctuations very large. If too large
you lose resolution on the x-axis. There are ‘optimal’ strategies for choosing the
bin size, but usually trial and error is sufficient. There are lots of packages for
drawing histograms or you can write one yourself, but it’s worthwhile to have a
package at hand so you can visualise distributions easily.

I have on occasion torn my hair out trying to understand some complex process
where the mean doesn’t behave as I expected. After days of agonising, I've finally
got around to plotting a histogram of my data, which showed that the quantity I
was studying had thick tails and its typical behaviour was not well captured by the
means. Histograms have saved me from premature baldness, so I wholeheartedly
recommend them. I also use them routinely as a sanity check every time I perform
some Monte Carlo-based simulations.

6.3 Significance Tests

Is my algorithm better than hers? Suppose I want to show this empirically from
two sets of data Dx = (X1, X», ..., X,) and Dy = (11, Y, ..., ¥,,) collected on
the two algorithms, where I assume that the data has some uncertainty. From
empirical data alone it is impossible to prove one algorithm is better than the
other. There is always a (possibly very small) chance of the difference being due
to luck. What you can do though is give a probability that one result is better
than another. This is precisely what a statistical significance test does.

Before you do a statistical significance test you should have a reasonable idea of
whether the means differ significantly just by looking at the error bars (provided
you have calculated your error bars correctly). You should also be aware that a
statistically significant difference is not always the same as a significant difference.
For example, I can compute an empirical estimate of the means of my two data
sets. I might find gy > jix and doing a significance test I might prove with high
probability that the true mean of the process that generated Dy is higher than that
for Dx. They are (statistically) significantly different, but the difference might
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be very small — smaller perhaps than anyone would care about. Of course, to
determine if something is statistically significantly when the means differ by only
a small amount requires a lot of data. Conversely, if I have a little data then there
could be a large difference in the true means, but the data might not be statistically
significant. Often the need to do a significance test is a sign that the difference is
not so interesting. If my algorithm was so much better than hers then it would
be easy to see that the difference was much larger than the estimated error in
the estimator so a significance test might be superfluous. This is not to say that
significance tests shouldn’t be done, but personally, I’'m always on my guard when
I see one.

So when should you do a significance test? Firstly, if you have little data then
your intuition might be a false guide and a significance test can be helpful. If you
are tackling a very competitive problem then any improvement might be of inter-
est so you might want to show that it is significant. You might have an extremely
professional attitude and so want to present your data with as much information
as possible. These are all good reasons for performing significant tests.

What significance tests should you perform? There are quite a lot of tests out
there depending on what you want to show. However, you need to read the small
print. Many of the classical tests assume that your data is normally distributed.
If the distribution of your data has significant tails then many of these tests are
likely to give you overly confident results. You can first test whether your data is,
at least approximately, normally distributed, e.g. by using the Shapiro-Wilk or
Kolmogorov—Smirnov test (the former specifically tests for normality while the
latter provides a more general measure between two distributions; details can be
found on Wikipedia). There are also tests that make no assumption about your
data, although they might give you overly conservative estimates of significance.
You should also be aware that if you have two data sets that are tested on the same
set of examples then by examining the data in pairs you might find significant
difference in the samples that may otherwise be hidden by fluctuations between
samples. We discuss ‘paired significance tests’ after describing the classical
t-test.

T-tests

The granddaddy of all significance tests is Student’s t-test. Student was a
pseudonym of William Sealy Gosset, a statistician working for the Guinness
brewery in Dublin — he wasn’t allowed to publish under his own name. Student’s t-
test tests for the null hypothesis that the data comes from two normal distributions
with the same mean. It also make an assumption that the two distributions
have the same variance. Thus, if we perform a t-test and obtain a very small
probability for the null hypothesis we can conclude that the means are probably
distinct, provided the underlying assumptions are true. If the variances of the
two distributions are different then we can use a variation of the t-test, officially
known as Welch’s t-test.
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Independent two-sample t-test. To compute the t-test for two collections of
data Dx = (X1, X2, ..., X,) and Dy = (11, Y5, ..., Y,;) where you believe the
data has the same variance, you first compute the ¢-value
;= Ax =y
Ox+y

where 6%,y is a kind of combined estimated error in the mean given by

5o =Dk +m-1a} (1 1)

X+¥ n+m—2 nom

and fiy, fy, 6’%, and 6')2, are unbiased estimates for the mean and variance of the
two data sets. The number of degrees of freedom is taken tobe v =n+m — 2. If
the data sets have different variances then use

~2 ~2
_./9% , 9y
X =N

and take the number of degrees of freedom to be
3 (&g(/n+6')2,/m)2
(%/m)/(n = 1) + (63/m)*/(m — 1)’

In both cases the probability of the null hypothesis (the p-value) is given by the
cumulative distribution function (CDF) of the ¢-distribution

v+l

t 1 t x2 2
pi e G [ (1) e

where B(1/2, v/2) is the standard beta function. For readers who take nothing
on trust, or who just enjoy ploughing through algebra, I give a derivation of
Student’s t-test in Appendix 6.A. There are many computer packages that will
compute this. If you have written a class to automatically accumulate the mean
and estimated error in the mean you might want to add the ability to perform a
t-test between two such sets of data.

Example 6.1 T-test

As an example, we generate two sets of random deviates X ~
N(0.4,1) and Y ~ N(0.6,0.25) each of size n. In Figure 6.3 we
show the p-value as a function of n. We also show the error bars.
The p-value measures the probability that the two samples come
from normal distributions of the same mean. Thus a small p-value
of say less than 0.01 gives pretty firm evidence that the underlying

distribution has a different mean.
|

Note that t-tests use almost the same information that is shown by error bars
(the p-values depend on the number of samples, which is not shown in the error
bars); their additional contribution is that they give you the probability that
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such error bars could arise by chance if the data actually came from the same
distribution. It is very easy to obtain low p-values by being selective about your
data. Don’t take anything under a p-value of 0.01 as being significant, it is just
too easy to get p-values around 0.1 even when you think you are being honest.
If you can’t get your p-values low enough it is probably a sign that you need to
collect more data or that your samples just aren’t significantly different.

To get a feel for the t-test let us assume that two sets of data, Dx and Dy,
are drawn from a normal distribution and that empirically they have the same
observed variance 6% = 03 = 6. The size of both data sets we assume to be n.
If we measure the difference between the means of our two samples in units of
the estimated error in the mean, A = 6/+/n, then

N . ko

HX — My = %,
i.e. k is the number of error bars separating the sample means. By straightforward
substitution we find &§(+Y =262/n,s0t = (fix — py)/0x+y = k/v/2, and the
number of degrees of freedom is v = 2n — 2. Figure 6.4 shows the p-value for
k = 2 and k = 3. The dependency on #n arises because of the uncertainty in
the estimate of the variance. We notice that when the means differ by twice the
estimated error in the mean then the difference is never significant (the p-value is
around 0.045 for reasonable size n). When the difference reaches three times the
estimated error in the mean then the p-value becomes significant (i.e. below 0.01)
for n > 8. For n > 20 with |ix — py| > 3 A then p &~ 0.0027.

Paired t-test. There are times when the difference between the means of two
sets of data can be significantly masked by some other source of stochasticity.
An example of this would be if we were comparing the performance of two
random algorithms on different problem instances. For example, you might be
interested in the quality of the solution found by two random search algorithms

Figure 6.3 (a) Plot
of p-values versus
number of data
points, and (b) the
error bars in the
estimator for X
and Y.



Figure 6.4 The
p-value is plotted
against n (the
number of
observations) for
data points differing
by two times the
estimated error in
the mean and three
times the estimated
error in the mean.
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on a combinatorial optimisation problem such as graph-colouring, given a
fixed computational budget. In this case, there are two possible sources of
stochasticity. The first is from the problem instance being tested and the second
is from the algorithms. In this situation a ‘paired’ statistical test can be useful in
identifying whether the performance is significantly different. In these families of
tests we would generate our data in pairs. In our example, we would first generate
the problem instance and then test the two algorithms on that instance (thus
having a data pair). This procedure is repeated to obtain a set of pairs. Assuming
the data is normally distributed (which we should test), we could use a ‘paired t-
test’. This would remove the stochasticity due to the problem. Such a test is more
likely to show a significant difference in performance of the two algorithms, if
such a difference exists, than a non-paired t-test.
To perform a paired t-test you compute the combined variances as

N ) N
) _Gx"'O'Y_CX,Y
0'X+Y——n

where
1 n
éX,Y = m E(Xi - ﬁx) (Y;' - ﬂY)
i=

is the unbiased estimator for the covariance. The number of degrees of freedom
is taken to be v = n — 1. Note that if the data is strongly correlated then 6%,
for the paired test can be significantly smaller than that for unpaired test, giving
you much higher confidence.

Example 6.2 Paired T-test

As an illustration we consider two random variables X = Z + X
and Y = Z + Y, where Z ~ N(0,0.8), X; ~ N(0.4,0.2), and
Y1 ~ N(0.6,0.2). Thus, X ~ N(0.2,1) and Y ~ MN(0, 1), however,
X and Y are strongly correlated. As a consequence, the paired z-test
gives a much higher significance (smaller p-value) than a standard
t-test. The p-values for both the paired and unpaired ¢-test are shown
in Figure 6.5. We also show the error bars for estimated errors in
the mean for fx, gy and fy_x. Although it would be difficult to
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conclude from the error bars for fix and jiy that X and Y come from
different distributions there is quite strong evidence that gy_x has a
mean different from zero.

|

It is worth stressing the need to apply confidence tests scrupulously. If, for
example, you test 100 different systems against some baseline and then you
choose the best, then it is fairly likely that that system will have a p-value of less
than 0.01, even when all the systems were identical with the baseline system. That
is what the p-value is telling you: the chances of the null hypothesis happening (i.e.
the systems have the same expected value) is p, so in expectation you would see
a p-value of less that or equal to p in 1/p trials. To do the confidence tests fairly,
you would need to perform a z-test (assuming your data is normally distributed)
on the baseline and best system using an independent set of measurements. The
take-home message is that being honest and applying some common sense is far
more important than pushing your data into a statistics package and obtaining
some confidence value that you don’t really understand.

There are many other tests. For example Fisher’s F-test is used to determine
the equality of variances for two data sets assuming a normal distribution. We
first compute the F-ratio, which is the ratio of the empirical variance. The test
gives the probability of this F-ratio occurring by chance under the null hypothesis
that both sets of data have the same variance. The F-ratio can be used in other
contexts. For example, in regression (fitting observed data depending on some
independent variables by a line or surface) we can use the F-ratio to measure the
ratio between the variance explained by the regression model (i.e. the reduction in
variance due to the model compared with the variance without the model) to the
unexplained variance (i.e. the remaining variance in the data given the model).
Under the assumption that the noise is normal, the F-test gives a measure of
the probability that the fit happened by chance. F-ratios are sometimes used in

Figure 6.5 (a) Plot
of p-values versus
number of data
points computed
using a t-test and a
paired t-test, and (b)
error bars for X, Y,
andY — X.
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machine learning to weight the input features, so that features that better explain
the data receive a higher weighting.

There are also many tests which don’t make assumptions of normality. For
testing the equality of means for independent samples, the Mann—Whitney U-test
is used, while for related samples, either the binomial test or the Wilcoxon signed-
rank test are used. Other tests for measuring the equality of variance include
Levene’s test, Bartlett’s test, the Brown—Forsythe test, or the O’Brien test.

For more complex experiments where you want to compare more than one
distribution then performing multiple t-tests become less reliable. Consider a set
of field trials where there are k& known independent variables (external features
that can be changed). If we perform binary z-tests between every group where
some of the independent variables are set and the rest aren’t then there are
k (k — 1)/2 separate t-tests to carry out. However, this grows rapidly so there
is a reasonable chance that a significant p-value occurs in one of the binary
tests by chance. Instead of using 7-tests there is a whole body of tools known as
analysis of variance or ANOVO that provides a more robust test to see whether
different batches come from the same distribution or from different distributions.
For example, suppose you have three textbooks and you want to decide which is
the best to use in a class. If you had the grades of students who used different
books then you can ask the question: Did the textbook used make any difference?
The null hypothesis would be that the textbook was irrelevant and the difference
in scores between the different groups of students was entirely due to chance.
To test this hypothesis we see whether the variance between the three groups of
students is compatible with the variance within the groups of student — this uses
Fisher’s F-test. You can see this as a regression problem: if M; is the grade of
student i then we can fit a linear model

3
M; = Wik [[student i used book k]] +€;
k=1
where €; is the error that is not explained by the model. To find the best
parameters, w;, that fit the data we can minimise the squared error

n n 3
Z ef = Z (Ml- — Z Wik [[student i used book k]]) .
i=1 i=1 k=1
This is a standard procedure for performing regression. In this case we obtain
a very simple solution that wy is the mean grade for the students who used
book k. To determine the goodness of fit for each parameter we compute the
reduction in the variance caused by setting wy to the mean grade, compared to
the variance in the grades with no model. We can then compute the F-ratio by
dividing this reduction in variance with the remaining variance given the model.
‘We can compute the probability of obtaining this F-ratio by chance (this depends
on the number of observations, n, and the number of parameters, k). ANOVA
and its many variants have been highly developed. It is used in many disciplines
including social sciences. In complex disciplines where there are many possible
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explanations of the data, the complexity of ANOVA provides an incredibly useful
tool. In contrast, it tends to get little used in fields where the uncertainty in the
model is smaller or where we seek to make predictions (where classic machine
learning dominates) rather than try to explain the data. I will curtail any further
discussion of ANOVA as the subject fills many textbooks.

A good source of statistical algorithms is Press et al. (2007). Many of these
tests are also built into packages such as Matlab and Octave, and statistical
programming languages such as R. Packages such as SPSS allow the application
of tests like ANOVA with relatively little pain, although I dread to think of the
numerous sins of statistics that have resulted.

6.4 Maximum Likelihood Estimate

Given some iid data D = (X|, X3, ... X,) from a probability distribution f(x|0)
that depends on parameters @, then the maximum likelihood estimate of the
parameters are those parameters 6 that maximise the likelihood

P (Dl0) =[] £(X:16).
i=1

Maximum likelihood estimates can be useful for obtaining approximate pa-
rameters of a distribution from empirical measurements. This approach was
introduced by Ronald Fisher and became an established part of classical statistics
(much sooner than it took for Bayesian statistics to become respectable). For
distributions that are differentiable functions of their parameters (which include
all the common distributions), we can find the maximum likelihood distribution
by a (usually) straightforward optimisation of their parameters. Most simple
distributions are convex functions of their parameters so they have a unique
extremal value corresponding to the maximum likelihood solution — this is not
commonly true when the likelihood is a complicated function. As the likelihood
function is a product of the probability distributions it is nearly always easier to
maximise the log-likelihood (because the logarithm is a monotonically increasing
function, the parameters that maximise the log-likelihood are the same as those
that maximise the likelihood). Thus the maximum likelihood estimates are the
solution to the equations

d1og(P (DIB)) = dlog(f(X1]60))

96, - 96; -

i=1

We consider a couple of simple examples.
Consider estimating the mean and variance of normally distributed data. Now

1 i — )
log(f(Xilp, o)) = —Elog(Zﬂa'z) — %
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so that, on taking derivatives with respect to y and o, and setting them to zero,

n

Z‘Xza.zﬂ 0, Z":(_;+()(io—3;1)2>:0_

i=1 i=1

The first equation gives us an estimate of the mean

N 1 &
AmrL = ;Z;Xi
i=

while the second equation give us an estimate of the variance

n n
Fhi = oS ) = 13X .
i=1 j=

Note that to estimate the mean and variance we need only know >, X;, and
>, X?. These are known as sufficient statistics (sufficient in the sense that they
are all you need to obtain maximum likelihood statistics). We observe in passing
that the maximum likelihood estimator for the variance of a normal distribution
is a biased estimator (it equals n/(n — 1) times the unbiased estimator).

Things get more complicated for most other distributions. For example, for the
gamma distribution where

b xafl efbx

fx(x) = Gam(x|a, b) = Ia)

the log-likelihood of the data is given by
E—nalog +(a—1) Zlog —bZX log )
Taking derivatives

% = n log(b) + Zlog(Xi) —y(a)

0L na -
FT R S IS

where ¢ (a) is the diagamma function (see Section 2.A on page 41). Setting the
partial derivatives to zero we find

= %ZX,-, W(a) —log(a Zlog log(rll ZX,-) .
i=1 i=1

This can be solved numerically, for example, using Newton—Raphson’s method to
find a and then use the first equation to find b. Notice that the sufficient statistics
are > i, X; and Y1 log(X;).

With work we can also compute confidence intervals telling us that the maxi-
mum likelihood parameters fall within a given interval with some probability (say
95%). Technically this is non-trivial although far from impossible to compute.
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Confidence intervals often provide an alternative to hypothesis testings (e.g. t-
tests). When we know that two sets of random variables have non-overlapping
confident intervals for their empirical means then with overwhelming likelihood
we can say that one set has a higher value than the other. The standard error in
the mean we computed earlier are a poor man’s confidence interval in this sense.
Whereas fi + 2A = [i + 20-/+/n provides a good estimate of a 95% confidence
interval for a normally distributed random variable, when we use an estimate of
the standard deviation, &, for a small sample of data, then we may substantially
underestimate the true standard deviation. Thus, for small samples, the 95%
confidence interval is greater than 4 + 2A = i + 25/ \/n, with the size of the
confidence interval having a subtle dependence on the size of the sample. The
interested reader should consult a more general text on statistics such as Williams
(2001).

Maximum likelihood estimators are part of classical statistics, but they are not
always particularly good estimators (e.g. they are often biased and the value you
obtain, for example, depends on the representation of the probability distribu-
tion). We return to this in Chapter 8 where we consider Bayesian estimators.

Handling data usually just requires a bit of common sense. My top tip when
handling real data is to compute your estimated error in the mean of all the
quantities you are trying to estimate. Without an estimate of your error you really
have no idea what the data means. The person you’re most likely to cheat by
not understanding your errors is yourself. If you underestimate your errors you
often end up chasing phantom patterns which are just fluctuations that arise by
chance. When your data is confusing, examining its histogram can be very useful,;
sometimes the distribution of your data can have very large tails which may
throw your intuition into confusion. Significance tests are beloved by pedants
and anonymous referees. They have a role when performed carefully. However,
be wary: significance tests are frequently abused. Understanding the errors in
your data (e.g. by always showing your error bars) is the best guard against being
misled by random fluctuations.

Additional Reading

There are a huge number of books on statistics covering many different aspects
and catering for different tastes. An informal but comprehensive guide to statis-
tics is by Field et al. (2012). A comprehensive mathematical treatment of statistics
is given by Williams (2001).

Exercise for Chapter 6

Exercise 6.1 (answer on page 411)
Generate 50 deviates X; ~ N(0, 1) and 50 deviates ¥; ~ N(0,4) and compute the
empirical means and variances for the X and Y variables. From this compute the -
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value and the corresponding p-value using Welch’s t-test. Repeat this n = 10° times
recording the p-values. Sort the p-values such that the pair (¢, p,) has

H<tr <3< <t < <tn.

Note that the p-value is a monotonic function of the z-value so it is sufficient to sort
out the 7-values. Recall that the p-value is defined such that, if the null hypothesis
is true (i.e. the two sets of deviates have the same mean, which in our case is true),
then P (|T| > tr) = pr. Thus we would expect that a proportion p, of the sample
have r-values greater than ¢,. Empirically this proportion is (n — r)/n. Thus, if we
plot p, versus 1 — r/n where r is the rank of the ¢-value we should get, roughly, a
straight line. Plot this (it helps to do this on a log-log plot).

Exercise 6.2 (answer on page 412)

Siam(al3.2) Repeat the experiment described in Exercise 6.1, but for X;, ¥; ~ Gam(3,2). As our
random variables are not normally distributed we have no right to believe in the p-
value for the ¢-test. Interestingly, the p-value is not a bad estimate of the probability
of the r-value occurring. This gives some confidence that even when the data is
not exactly normal the p-values of the z-test are not always too misleading. Of
course, it is always possible to cook up examples where the p-values are significantly
underestimated, particularly for thick-tailed distributions.

Exercise 6.3 (answer on page 413)
Recall in Section 2.4 on page 38 we observed that many distributions, including the
normal and gamma distributions, could be written in the form

Fx(xln) = g(n) hx) ™)

where u(x) are some functions of our random variables and # are ‘natural parame-
ters’. We showed that the maximum likelihood estimators for the natural parameters
satisfy

~Vlog(sm) =+ > ulxa)
i=1

Compute V log(g(q)) and u(x,) for the normal and gamma distributions and

show that they are consistent with the maximum likelihood estimators we obtained
in Section 6.4.

Appendix 6.A Deriving the T-Distribution

The derivation of Student’s ¢-test takes time, but has its rewards along the way.
Recall in the t-test, we consider the random variable
T = ,U)f — Hy
OX+Y

where

n+m-—2 n o m

2 (n—l)&§+(m—1)er§(1 1)
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Now we assume that X;, ¥; ~ My, 0'2). That is, our random variables come from
the same normal distribution. This is our null hypothesis. We then ask what is the
probability that [T| > 7. If p = P (|T| > ¢) is very small where ¢ is our measured
t-value then we have a confidence of 1 — p that our data has different means
(although this is only true if our data has the same variance o> and is normally
distributed).

We first observe that T is independent of the actual value of the true mean
and variance y and o. In particular, we can make the change of variables X/ =
(Xi —p)/oand Y/ = (Y; — p)/o so that X/, ¥/ ~ N(0, 1). Under this change of
variables

T 1 ¢ . N T
,ungg XF;E ocX +u=cax +u where ,ux/zﬁg X/
i=1 i=1 i=1

and similarly gy = o ys + p. Note that fix — fiy = o (fix: — fiy’). Also we note
that

R 1 < X 1 O X
o% = nilZ(Xi—/le:ﬁZ(o'Xi/*'ﬂ—ﬂx)z
i=1 i=1

but gy — pu = o fixs, SO

n
&2 = n(’_ 1 z_l:(x — fixr)? = 025
and similarly 63 = 0>6%,. Thus, we see that 6%,y = 0> 6%/, ,, and the T value
for X;, ¥; ~ M, o?) is the same as the T value for X =(X; —p)/oand Y/ =
(Y; — p)/o where now X/, Y/ ~ N(0,1). We can thus assume without loss of
generality that X;, ¥; ~ AM(0, 1).

The next observation is that

R 1 n ) 1 n )
Ux = Z in and 0'§( = Z(Xl — /Jx)z
i=1 i=1

are independent random variables. This is far from obvious. To prove this we note
that if X ~ N/(0, 1) then so is any linear combination of the X;s that corresponds
to a simple rotation. That is, if Z = V X where V is an orthogonal matrix (i.e.
a rotation matrix with the property V=! = VT) then Z ~ N0, ). This follows
trivially from the observation that

Y zi=12P=2"Z=(X"V)(VX)=X"IX = [X’=)> Xx}. (62

L 12

Recall that
Mx)T=x"TMT
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Using the usual rule for a change of variables, the distribution of Z is given by
f(Z)=|J| f(X(Z)) where X(Z) = VTZ and J is the Jacobian, which in this case
IVT| = 1 (note the determinant of an orthogonal matrix is 1). Thus

1 2 1 2

We can see this intuitively as f(X) = MN(0,I) is spherically symmetric so any
rotation of the axes will have the same distribution. We choose

1 n
Zi=—>» X; 6.3
I \/’72 (6.3)

since Z; is a sum of normally distributed variables it will itself be normally
distributed. Now E [Z;] = 0 since E [X;] = 0. Under the assumption that X;s
are independent then

Var 21 ZV [ ] ZVar i;l:l

(where we used X; ~ N0, 1) so Var [Xl] = 1). Since Z; is normally distributed
with mean zero and variance one we have Z; ~ N(0,1). The variables Z are
distributed according to

1 2 1
= —|Z‘/2:7 _Zl/z 212 i
J2) = Gy CRE

but

Nzr=>z7-7t=> X} - - (ZX,)
i=2 i=1 i=1 i=1

where we have used Equations (6.2) and (6.3). However,

n

Sx=D (Xi—Ax)’ =) X7 -2hx ) Xi+ixy 1
i=1 i=1 i=1

i=1

n n
=D XP - 2np nix =y XP - npk

- i (o)
i=1 i=1

but this is just equal to > ;" , Z?. As an aside, observe that by subtracting the
estimator for the mean, S is equal to the sum of n — 1 normally distributed
variables rather than n. We have effectively lost a ‘degree of freedom’. This is the
reason why in the unbiased estimator for the variance we divide by n — 1 rather
than n. Returning to the derivation of the t-test, we see that fix = Z;/+/n, but
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since Z; is independent of Z; for i > 1, then fix is independent of Sy and hence
&% . We have just shown that S% can be written as

S§=§n:2i2
i=2

where Z; ~ N(0, 1) but we showed in Question 5.5 (see page 411 for the solution
to this question) that such a sum will be distributed according to the chi-squared
distribution y?(n — 1).

We are now on a downhill run. We observe that

m

n
iy => 03
i=1 i=1

is a sum of normally distributed variables so will be normally distributed with
mean 0 and variance (again using the assumption of independence)

Var [fix — fiy] =

= IE
= I[V]
M= 5
<
a |2
? —_
= +
+ o
S
M 8
§ el
=

. l o= ol 1
e LD B

(1) From the definition of fx — fy given above.

(2) Using Var[cX] = ¢*Var[X].

(3) Using the fact that X;,¥; ~ NV(0, 1), so that Var[X;] = Var[¥;] = 1.
(4) Performing the sums.

Using this result and noting that since X;, ¥; ~ AM(0, 1) the sum will be normally
distributed, so that

Hx — Ky MO, 1).
+

2=
3=

i=1 i=1

‘We have also shown that Recall that if
Zi ~ N(0,1) then
n m
2= (XF —ax)~xin—1)  S2=Y (Y2 —jy)? ~ x*(m—1). al
=Y (X i)~ =1 Sp=) (B —hy) ~ X (m 1) > 7~ ).
i=1

We know that if W; are iid random variables drawn from N(0,1) with Q| =
S WZand Q) = S W2, then Q) ~ x2(k) and Q3 ~ x2(1), but then

k+l1
0+ 03} = ZWiz ~ 2k +1).

i=1
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We see therefore that S + Sz ~ x?(n + m — 2). Defining

U= A V=52+82
e
thenT = vn+m —2U/V/V withU ~ N(0,1) and V ~ x*(n +m — 2), where U
and V are independent.
Defining the number of degrees of freedom by v = n + m — 2 then the

distribution of T is thus given by

fr(t)g/ooo /Zd(t— ) fou) fy(v) du dv

o [F [V Vit )

= - - 0,1

/0 /w\ﬁé(u \ﬁ/)./\/'(u|, ) x~(v|v) du dv
0o oo —u?2 w/2—1 o —v/2

@/ / Wé(u—ﬁt>e VV/Z © du dv
0 ) VT Vv ) Var 2T

@ 1 > —v(1+22/1)/2 | (v+1)/2—1

= e vire ylv dv
/T.Vz(wl)/Z/O

-t

o (%) r O T(tly
_\/ﬁr(%> <1+V> = T(tv).

Vru
Vv

(1) Using T = /oU/V/V.

(2) Using 6(x) = |a| 6(a x) while fy(u) = Mu|0,1) and fy(v) = x*(v|v).

(3) Writing out Mu/0,1) and x?(v|v).

(4) Performing the integral over u and using [ 6(u — x) f(u) du = f(x).

(5) From a change ov variables w = v(1 + £*/v)/2 and performing the integral
(which is equal to T' (41)).

(6) By definition of Student’s z-distribution T(¢|v).

Finally, we find

v+l

- TR G ) B A NS S L
P(T|>t)=1-P(|T|<1t) =1 WF(Z)/,<1+V) d

1 1
o vi2—1 (1 N—172
=1 73@/2’1/2) /Lx (1 —x) dx

v+t

c

1 pavs)
= v/2—1 o172 @y
B(v/2,172) /0 FEL (=) T dx = e (v/2,1/2)

>

(1) Using the definition for the density that we obtained above.

(2) Writing x = (1 + 72/v)~! so that 7 = /wx~'/? (1 — x)"/? then dr
—/vx732 (1 — x)~1/2 dx/2. We also use that /7 = T'(1/2) and B(a, b)
I'(a)T(b)/T(a + b).

(3) Using [ /271 (1 — x)~12 dx = B(/2,1/2).
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(4) Where by definition I,(a,b) is the incomplete beta function (see Ap-
pendix 2.B on page 43).

As mentioned, this took a long time to calculate. Let’s recap the argument

» The first observation was that because of the way we chose the statistic r we
would get the same result if our observation came from A0, 1) rather than
from any other normal distribution. We therefore assume that X;, ¥; ~ A(0,1).

* The derivation relies on the fact that if D = {X, X5, ..., X,,} is a data set
with X; ~ MN(0,1) then j and &2 are independent of each other. This is
far from obvious, but we could prove this by considering a rotated vector
Z = (Z1,2y,...,7Z,) = VX where V is a rotation matrix and X =
(X1, Xo, ..., X,) is a vector whose elements are the random variables that we
observe. Because X ~ N(0,1) it follows that Z ~ N(0,1). If we now choose
the rotation matrix so that Z; = Y, X;/\/n = \/nfithen 6> = >, Z2. As
every component of Z is independent this proves & and -2 are independent of
each other. Furthermore, we find that because ji = Z;/+/n then g ~ N(0, 1/n).
Similarly, because 6 = >, Z? then 6> ~ y*(n — 1). This will be true both
for our X;s and Y/'s.

* Now our T-statistic is given by T’ = (fix — fiy)/0x+y With & x.y =adx +boy
where a and b are carefully chosen so that T = /v U/+/V and where v = m+n—2
is known as the number of degrees of freedom (it is the total number of data
points in the two data sets minus 2), U ~ N(0,1) and V ~ x*(v).

* The rest is algebra. Rather remarkably we get a probability density in closed
form. When integrated we get the solution in terms of an incomplete beta
function.
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Proving results in probability requires a specialised tool set that forms the subject
of this chapter. We start with the sometimes dry and confusing subject of
convergence. We next discuss the laws of large numbers, which are convergence
results for sums of random variables. Martingales are briefly introduced. One of
their primary uses is in obtaining convergence results.

We then visit some inequalities that can be very useful for proving results
involving random variables. For example, a very common problem is to prove
that something happens (or perhaps doesn’t happen) with high probability. These
proofs are often simplified by using inequalities. We review some of the most
commonly encountered inequalities used in probability.
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7.1 Convergence

Convergence is a useful concept in mathematics. We are happy to say that 1/n
converges to zero as n goes to infinity, or that the function ®(x/€) (where @ is the
cumulative density function for a normal distribution) converges towards a unit
step function at zero as € goes to 0.

Applying the concept of convergence to random variables, however, turns out to
be non-trivial. Consider, for example, a set of coin flips and define the random
variable

1 n
X, = ;;Bi

where B; is the result of the i coin flip and is equal to 1 if the coin ends up heads
and 0 otherwise. Assuming that the coin is fair, and that flips are independent, we
would intuitively expect X,, to ‘converge’ to 0.5. But what does this mean? In real
analysis there are different notions of convergence (e.g. point-wise convergence
and uniform convergence). In probability we must be a little more careful for
even the weak condition of point-wise convergence is too strong to be of use. Let
us recall what convergence means. The classical notion of convergence is that,
given some sequence aj, dj, a3, ..., wWe say the sequence converges to a limit a
if for any € > 0 there exists an integer n such that |a,, — a| < € for all m > n.
We cannot apply this notion of convergence directly to our sequence of random
variables, X,,, as they don’t have a single value but are distributed according to
some probability distribution.

We can, however, think of a random variable as a mapping of an elementary
event, w, to a real number X(w). Thus, a good starting place is to examine
what convergence means for a sequence of mappings or functions. Point-wise
convergence of a sequence of functions f,(x) forn = 1, 2, 3,... to a function
f(x) means that, for sufficiently large n, we can make the distance between f,(x)
and f(x) as small as we like at all points x — the choice of n will depend on how
close we want f,(x) to be to f(x) and on x. For example,

. x
lim cos (x + f) = cos(x).
n—oo n

That is, for an arbitrary value of x and any € > 0 we can choose an n so that
| cos(x + x/m) — cos(x)| < € for all m > n. The stronger notion of convergence
is uniform convergence that states that for any € > 0 we can find an » such that,
for allm > n, |fm(x) — f(x)| < € at all points x. That is, we can find an » that
depends on € but is independent of x. Note, in the example above we cannot do
this. That is, for 0 < € < 2 and any fixed n, I can always choose an x which will
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give an error greater than € (e.g. by choosing x = n ). In contrast, the function
cos(x + 1/n) converges to cos(x) uniformly.

Recall that a random variable is a mapping from the set of elementary events
to a real number (X : Q — R). Thus the natural interpretation of point-wise
convergence would be to require that, for all w € Q, we have

lim X,(0) = X(w).

n—oo

However, this is not a particularly useful definition of convergence in the field
of probability. In the example given above concerning the coin tosses, the event
w=(T,T,T, T, ...)has the property that X,,(w) = 1, which is not arbitrarily
close to 1/2. Nor is this elementary event rarer than any other (for a fair coin all
elementary events — i.e. sequences of heads and tails — are equally probable). Of
course, point-wise convergence does not include any notion of probability so it is
not surprising that it is not of much interest when considering random variables.
There are four definitions of convergence commonly used in probability which
try to fill the gap.

Convergence in distribution. Often written as X, 2 xif
lim Fy,(x) = Fx(x)
n—o0o

for each point of continuity x. Thus we require that the cumulative distribution
function (CDF) converges to some function at each point x. The central limit
theorem was an example of convergence in distribution. Recall that it states that
if the ¥;s are random variable with a finite mean and variance then

n

> Yi—nE[Y]

¥ o 0=l

L=
nVarl[Y;]

will converge to N0, 1) in the limit n — oo. This, however, is a rather weak
definition of convergence. One reason for this is that it says nothing about the
ratio of Fx,(x) to Fx(x). Both quantities become small in the tails, but their
ratio may be very different from 1.

Convergence in probability. A stronger form of convergence is convergence in
probability, which is denoted by X, £ x , and defined such that for any € > 0

nlLIgOP(\Xn—X| <e) =1.

An illustration of this is shown in Figure 7.1.

If we consider the space of all elementary events, Q, then convergence in
probability requires that there exists an n such that, for m > n, all but a
proportion at most ¢ of such events must be within € of X. Both € and 6 can
be arbitrarily small (although strictly greater than 0), with » dependent on our
choice of € and §. Convergence in probability implies convergence in distribution,
but not the other way around. However, this does not say that the difference
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between X,, and X is necessarily small, but rather that the probability of the
difference being small converges to 1. That is, with overwhelming probability
(I — 6), the random variable X, differs from X by, at most, a very small
amount (€).

Almost sure convergence. A yet stronger form of convergence is convergence
almost surely, which is denoted by X,, “3° X, or sometimes as X,, — X (a.s.), and

is defined by
P <{a)

Although this looks similar to convergence in probability it is subtly stronger.
We now require all but a proportion, §, of elementary events, w, to be within e
of X for all m > n. The examples below clarify the difference between this and
convergence in probability.

lim X, () %X(w)}) = 1.

n—oo

Convergence in moments. The fourth form of convergence is convergence in

the p-moment, which is denoted by X, L x . It is defined for p > 1 by

E[|X, — X|P] -0, asn— oo.

1
The most commonly used moments are the first moment giving X, LoX,

convergence in mean, and the second moment giving X, 5 X, convergence in
mean squared. The larger the value of p the stronger the convergence condition.
Convergence in moments is a separate condition to convergence almost surely,
although it implies convergence in probability. It is not, however, implied by
convergence in probability.

Example 7.1 Converges in Mean But Not Almost Surely
Consider a sequence of independent random variables drawn from
the distribution

1
-y

Three random samples, w € Q, for the sequence defined in Equation
(7.1) are shown in Figure 7.2.

with probability n~!

with probability 1 — n=1. (7.1

Figure 7.1
Illustration of
|Xm(w) — X| fora
few different
elementary events w.
For convergence in
probability we
require for all

m > n, the
probability of having
a deviation

[Xm(w) — X| > €is
less than &.
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Figure 7.2
Illustration of three
samples of the
sequence X,, defined
by Equation (7.1) for
n up to 100.
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We see that X,, - 0, since the probability that | X, — 0] > € (for
0 < e < 1)is n~!, which converges to zero. But, for convergence
almost surely we require that there exists an n such that for all
m > n the random variable X, (w) is arbitrarily close to X. However,
for the example above this doesn’t happen. In this example, almost
sure convergence requires that for any ¢ there exists an n such that
P (X = 0 for allm > n) > 1—¢, but we can show that this is not the
case:

IP( m:Oforallmzn)

lim P

r—o0

( m:Oforallngmgr)

1

1

)(1

. 1
_rli>nc30<l_ﬁ> (1_n+1) <]_n+2
® . n—1 n n+1 r—1
_rll{go( n )(n+1)(n+2)< r )

1z

® lim (”’1> =0
r—00 r

(1) When we take the limit » — oo these are identical. It is easier to
reason about a finite product.

(2) Using P (X, =0foralln <m <r) =
P(Xn=0)=1-1/m.

(3) Putting each term over a common denominator.

(4) Cancelling the numerator of each term with the denominator of
the preceding term.

I1,,..P (X, =0) and

Thus, for this example, almost no elementary event converges. How-
ever,

1

so X, converges in mean, i.e. X, £l> 0.

Although this is a concrete example it is often difficult to gain
intuition without embedding the example in the real world. We
therefore cook up a rather silly example. Suppose we are modelling
the accidents of drivers. As the drivers become more experienced the
probability of an accident reduces (by the reciprocal of the number
of journeys they make). We may want to choose an ¢, 0.01 say,
as an accident probability which we can tolerate. Thus, if we give

1

r

)
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licences after 100 journeys we are assured (in our rather simplified
model of the world) that the probability of any licensed driver having
an accident in their next journey is less than or equal to 0.01 (due
to convergence in probability). Nevertheless, however experienced a
driver is, they will, with probability 1, have an accident some time in
the future (due to the lack of almost sure convergence). In fact, our
drivers will have accidents infinitely often in the future (the future is
a long time). If our drivers pay an insurance premium in proportion
to their risk per journey, then as they become more experienced
their insurance premium will converge to zero (due to convergence
in mean).

137

‘We now consider the reverse scenario.

Example 7.2 Almost Sure Convergence But Not in Mean
Consider an independent sequence of random variables

v - n®  with probability n—>
"1 0 with probability 1 — n~2.

A silly real-world scenario would be to think of stockbrokers trading
for a large bank. As they become more experienced the probability
of them making a mistake reduces as n~2, however, with experience
they are trusted with stock of value n?, so that each mistake becomes
considerably more expensive.

Since P (|X, — 0| > €) = n~2 goes to zero as n — 0, we have

P . .
X, — 0. In this case we have almost sure convergence since, for any
O<e<l,

=1 © 2
m=n n

which converges to 0 as n — oo so that X, 2% 0. Thus, in our
stockbroker scenario, after 201 transactions the probability of a
trader making another error is less than 1%. Furthermore, for any ¢
we can choose n = [1/6] + 1, such that the probability of making an
error any time in the future is less than 6. However, the expected value
of |X, — 0] is E [|X, — 0|] = n* x n=% = n, which actually diverges.
Thus X, does not converge in mean to 0. If you were insuring these
stockbrokers, although after a certain time most traders would never
make another error, the cost of those few who did would be so high
that it could bankrupt a nation. (Maybe this isn’t such a silly model
after all.)
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The hierarchy of convergence results is shown below.

Strong Convergence Weak Convergence

Convergence
almost surely (a.s.)
> Convergence
_, in probability (P)

Convergence

= in distribution (D)

Convergence Convergence
in mean squared (L?) in mean (L')

Although the definition allows convergence to a random variable, in most
instances convergence in probability, almost surely, and in moments is used to
describe sequences which converge to a constant value, while convergence in
distribution usually describes situations when the sequence of random variables
converges to a distribution. As Examples 7.1 and 7.2 illustrate, despite a random
variable converging in probability to a constant, this does not guarantee that
the random variable won’t be some distance away from zero some time in the
future or that the expected value of the random variable will be equal to that
constant. Whether this matters to you depends on the situation you find yourself
in — you may be a driver wondering whether to insure yourself or an insurance
company deciding whether to insure a bank. It may seem that these examples are
so pathological that they will never occur in practice, but long- (or thick-) tailed
distributions are quite common and this can lead to seemingly counter-intuitive
results precisely because the variables don’t converge in moment or almost
surely.

Convergence results are very worthy and can be important, but I must confess
that occasionally I lose patience with them. The limit n — oo is a luxury that
is often not afforded to those of us modelling real-world systems. I’ve seen a
few too many examples of convergence proofs that don’t capture the essence
of the problem that they purport to address. Of course, there are times when
finite-sized systems are close enough to the limit n — oo for the convergence
results to be entirely appropriate. But this cannot be taken for granted. For many
systems quite large n can be very different from the limit value. The important
question in these cases is the rate of convergence, and to address this issue the
inequalities discussed in Section 7.2 are often more appropriate than theorems
about convergence.

7.1.1 Laws of Large Numbers

The law of large numbers addresses the question of what happens to the sum of
n random variables in the limit of large n

Su=Y_Xi.
i=1

There are different versions of this law. One of the simplest describes what
happens when X; are independent, identically distributed random variables (7ids).
Intuitively we expect that if E [Xi} = u then S, /n will converge to u. This
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is actually the question we started this section with, where we considered the
proportion of coin flips that land on heads. The question is does this convergence
happen and how strong is it? There are many possible results concerning the laws
of large numbers depending on the assumptions we make about the random
variable. If E [Xﬂ < oo then S, will converge to u almost surely and in mean
squared. The proof of convergence in mean squared is easy. We consider

2 n
Sn 1 2 1 y 1
E [ (n - y) ] L SB[ (S —E[s.])°] & Var[s,] 2 —Var E:l X;

n

® nl—zZVar[Xﬂ 2 %Var[X] S0 asn—0
-1

(1) Using u =E [S,] /n and taking out a factor 1/n from the square.
(2) Identifying the expectation as the definition of the variance.

(3) Using S, = >0y Xi.

(4) As for independent variables Var [ ", X;] = 3", Var[X;].

(5) Because the X;s are iid then Var[X;] = Var[X].

(6) As Var|[X] is assumed finite.

Proof of almost sure convergence is trickier and we suggest the interested
reader consults a standard probability text, such as Grimmett and Stirzaker
(2001a). In fact, almost sure convergence only requires the weaker condition
that E [\XIH < oo. This is known as a strong law of large numbers as a strong
form of convergence is guaranteed. Under weaker assumptions we often still get
convergence, but only convergence in distribution or in probability. These are
known as weak laws of large numbers. The central limit theorem is an example
of a weak law of large numbers, where (S, —n u)/(o+/n) converges in distribution
to N0, 1).

The law of large numbers may seem self-evident, but we have already seen that
if S, is a sum of Cauchy distributed numbers, i.e. X; ~ Cau where

1

Cau(x) = S

then S, /n is itself Cauchy distributed. Thus, the sum S,, does not converge to a
number. Of course, both E [X?] and E [|X|] are non-existent (i.e. they diverge to
o0) for Cauchy distributed variables so this does not contradict the statements
made above.

7.1.2 Martingales

A martingale is a sequence of random variable X, X», ... such that the expected
value of X, is equal to X,,_;. For example, X, might be your winnings in a fair
casino (a mythical place known only to mathematicians). The idea of martingales
can be extended to random variables ¥, = f(X,) as follows: if E [|Y,|] < oo
and E [Y,,H |X1, Xa, ... Xn] = Y, then we can consider the sequence of ¥;s to

The name
martingale comes
from a bidding
strategy involving
doubling your bet
every time you lose
(not a strategy 1
would
recommend).
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be a martingale. This extension is useful as the process we are interested in may
not be a martingale, but we may be able to construct some function that is a
martingale.

The martingale’s tool set is a bunch of theorems that remind me of a set of
odd-shaped spanners which don’t fit any nuts. Exponents of martingales cleverly
add extra arguments so that they can put to work their martingale theorems. For
example, one of the primary theorems of martingales is known as the optimal
stopping theorem. The theorem is a ‘no free lunch’ type result. It tells you that
if you are a gambler playing a fair game you cannot come up with a stopping
strategy which will allow you to win in expectation. More precisely, it says that
if the gambler does not have infinite resources (of time or money) then she/he
isn’t going to win on average. Formally, for a particular martingale, (X;|i > 0),
we define a stopping time, 7, which is an integer that depends on the value X;
(and with P (7 < 00) = 1), then (provided E [|X;|| < oo) for some n > 0 let
7, = min(t, n) and provided lim, o E [Xr, | = E [X;] we have

E [X;] =E [Xo].

That is, irrespective of our stopping strategy the martingale property still holds.
(The optimal stopping theorem is often expressed in terms of submartingales —
sequences where E [X,H]] > X,,, but we leave this generalisation for the interested
reader to pursue independently.) There are a lot of mainly technical caveats,
although understanding these is often important in using the optimal stopping
theorem.

To see how to apply the optimal stopping theorem consider an honest game
where a gambler starts with £a and at each round she either wins £1 or loses
£1 with equal probability. The games stops when the gambler has won £b or
has lost all her money. Let S, be the wealth of the gambler after n rounds of the
game. As the game is fair, E [Sn+1] = §,,, so we have a martingale. In this case all
the small print is satisfied so we can apply the theorem. We find that

E[S:]=0xP(S;=0)+bxP (S =b) =E[S)] =a,

thus P (ST = b) = a/b. That is, the probability of reaching b rather than going
bankrupt is a/b. The optimal stopping theorem provides a simple way to get this
answer, but it is a rather devious route getting there.

Sometimes, applying the optimal stopping theorem is very subtle. Suppose we
bet on the outcome of a coin flip. At each step we bet £1. We play in phases. We
carry on the phase until we win £1 which we pocket and then start a new phase.
Often, we will be in debt, but eventually our winning streak will return and we
should reach the state when our winnings are £ 1. This is a strategy which seems to
break the optimal stopping theorem — we always win! — so somewhere we must
have violated the small print. This game is equivalent to a symmetric random
walk for which it is known that the probability of reaching the goal in less than n
steps is P (r < n) = 1 — O(1/y/n). This converges to 1 so that P (r < o) = 1.
However, in this case, the condition lim, o E [Sr,] = E[S;] (= 1) is not
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satisfied. For any finite number of steps, n, we will have reached our stopping
criterion S,, = 1 with a probability 1 —O(1/+/n), but with probability O(1/+/n) the
walker won’t have reached the state 1, and for these walkers E [Sn] = —0(y/n),
so that

B[Sh,] ~1x (1-J2) = vax & =0.

Thus, even in the limit n — oo we have that E [ST”} # 1. In other words, although
by making n sufficiently large we can ensure that we will win with a probability at
least 1 — e =1 — O(1/+/n), for those few (€) proportion of cases where we don’t
win we will have lost so much that in expectation our winnings will be 0.

The condition lim, . E [Sr, | = E [S;] is often difficult to check — sometimes
it seems to me that the theorem is applicable except where it does not work. To
apply the optimal stopping theorem we want some sufficient conditions that are
easier to verify. One such condition is that if our step size is finite and E [XO] is
finite then the optimal stopping condition holds if E [r] < oo. In the example
above, we know that the step is finite as is E [ X | so that E [r] = oo, otherwise the
optimal stopping theorem would be violated (and we are not allowed to violate
theorems). That is, the expected time to win £1 is infinite. Of course, most of
the time we will win £1 quite frequently, but with a probability of O(1/+/n) the
expected time to reach £1 will be n and in summing all these terms we end up
with an infinite expected winning time (in Exercise 10.1 we ask you to empirically
determine the distribution of times for a random walk, where the walker returns
to his/her starting position).

The optimal stopping theorem therefore gives us a short cut showing that
the expected time for a one-dimensional random walk to reach a position right
of our starting point is infinite, even though the probability of this happening
converges to 1. To me this is a long-winded way of obtaining this result, which
leaves me with little intuition of what is happening, but then I'm not a trained
mathematician.

Another property of martingales is that they satisfy a strong convergence the-
orem. That is, if the sequence (X,|n =1, 2, ...) is a martingale that also satisfies
E [X2] < M < oo for some M and all n, then there exists a random variable X
such that X,, converges to X almost surely and in mean squared. This provides
a useful short cut to proving strong convergence. As this is of great interest to
mathematicians, many books on probability (written by mathematicians) spend
a lot of time on martingales.

For my taste martingales seem a convoluted way of solving problems. They
have a certain elegance for proving theorems as all you have to do is map your
problem onto an appropriate martingale and pull the appropriate theorem out of
your toolbox (making sure that you have properly understood the small print).
They are useful for proving convergence results and laws of large numbers,
which is of great interest to mathematicians (whose job is to prove theorems).

We use ‘big-O’
notation to mean
of that order. More
formally this
should be
expressed by
‘big-®’, but we
follow the less
precise, but more
common, usage.
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However, for engineers and scientists, convergence in the limit n — oo is not
always that interesting. Often the rate of convergence is more important. That
is, we might have a finite sum of random variables and we want to know the
probability that they deviate from their expected value. To answer these kinds of
questions inequalities are often more useful than theorems about what happens
in the limit of infinitely large n. I can only give you my own experience. This is
often inadequate. I regularly discover that mathematics that I once thought of
as having academic use only, turn out to be of great practical use for solving
some real-world problem. It may well be that one day I will discover this for
martingales, but for me that day has not yet come.

7.2 Inequalities

We often need to prove some property of a random system. These proofs are
frequently accomplished by using a few standard inequalities. For example, we
can prove many properties if we know the mean or variance of a random variable
— these quantities are often much simpler to compute than the full distribution.
The inequalities are not particularly difficult to prove. We briefly cover some of
the most commonly used inequalities.

7.2.1 Cauchy—Schwarz Inequality

The most useful inequality in mathematics is due to Cauchy and is known as
either the Cauchy, Cauchy—Schwarz, or the Schwarz inequality. It applies both
to sums and integrals, but has a nice form in terms of expectations

Blxy)" <B[x’|E[r}.
There are many proofs of this — one of the most elegant being due to Schwarz.
In the context of expectation, we consider the function
f(t)=E [(rx + Y)z] -E {Xz] 2 +2E[XY] t+E [YZ} .

Since (1 X +Y)? > 0 we have that £(z) > 0. So, either f(¢) = 0 for some ¢, in which
case t X equals —Y (with probability 1). If this is the case then it is easy to see
that the equality holds. Otherwise, f(¢) > 0 for all #, which means the equation
£(t) = 0 has no solution. For a quadratic equation a > + 2 bt + ¢ = 0 to have no
real solution implies that »* < a c (in which case the equation has only imaginary
solutions). But this condition is the Cauchy—Schwarz inequality. We can sharpen
the inequality by considering E [(z |X| + |Y|)2] , which gives rise to the inequality

Bxy)]’ <B[x*| B[?]

which is stricter in the sense that B [X Y]z <E[X Y\]2 <EI[X?] E[r?.
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To get inequalities to work for you, it is often necessary that you use them
close to where the equality condition holds. (When going through a proof that
involves an inequality you can often get a lot of intuition by considering where
the inequality would be tight.) It therefore pays to be aware of when this occurs.
The equality condition for Cauchy—Schwarz is that X and Y are proportional to
each other.

|
Example 7.3 Positivity of Variances

As a simple application we can show that variances are always non-
negative. Let X be a random variableand Y = 1 (i.e. itis not a random
variable at all). Then using the Cauchy—Schwarz inequality

Bx]"=E[x1]’ <E[x’]|B[1*] =B [x?].
Thus Var[X]| = E[X?] — E [X}z > 0. Note that for the equality to

hold (i.e. E [X 1] _g [X2] E [1%]) X is required to be proportional
to 1; that is, X is a constant, c. In this case Var [c] = 0.

Example 7.4 Mean Absolute Error
The mean absolute error is defined as E [|E|| where E is an error
measurement. Using the Cauchy—-Schwarz inequality we find

B[] =E[|E x 1] < \/B[IER] B[1?] = /B [E2].

Thus the mean absolute error is always less than or equal to the root
mean squared (RMS) error.

One of the difficulties with applying inequalities is to get them the right way
around. It is useful to have a quick example in your head to remember which
way around the inequality has to be. One such example is to consider X to be
1 if a coin toss gives heads and 0 otherwise, contrariwise we can chose Y to be
1 if a coin toss is tails and 0 otherwise. Thus E [X Y] = 0, while (for an honest
coin) E [X?] = E [Y?] = 1/2 > 0. Consequently, we can have a situation were
E[XY] =0and E [X?] = E [Y?] > 0, but not the other way around.

7.2.2 Markov’s Inequality

A useful inequality when we only know the mean of a distribution is Markov’s
inequality. It states that for any random variable X

E [1]]

P(IX|>1) < — for any ¢ > 0.

Its proof is straightforward. Consider the random variables, X and Z =
t[[\X| > t]]. Z is a function of X as shown
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N /"\
N\ 7/
AN /
Z=t[|X|>1]

= X

Clearly, | X| > Z so that
X[ 2B (2] 2B [e[1x| > o] 2em[[1xX] > «]] £ P (x| > 1)

(1) Since |X| > Z.

(2) Putting in the definition for Z.

(3) Since ¢ is a constant it can be taken out of the expectation.

(4) Because the expectation of an indicator function for an event is just the
probability of that event.

Dividing both sides by r gives Markov’s inequality. If X > 0, then Markov’s
inequality becomes

P(X>1)< , (where X > 0).

Example 7.5 Tail Distributions

Markov’s inequality is often extremely conservative as it has to hold
for all distributions. In Figure 7.3 we show the tail distributions for
X ~ Poi(l), X ~ NM0,7r/2), X ~ Gam(e,e€) with € = 0.001, X ~
LogNorm(—2,4), and X ~ Cau. In the first four cases E [|X|] = 1,
so by Markov’s inequality P (| X| > ) < 1/z.

Figure 7.3 P (X > z) 1 10 100 1000
= 1 ) i A

versus ¢ plotted on a ~ o
log-log scale for a < ~

> 01— ~ J4
Poisson, normal, ) - ~
gamma (e = 0.001),
log-normal, and
Cauchy random
variable. Also shown
is Markov bound for

. 000014 -

a random variable X ~ Gam(e. ¢

with B [|X|] = 1.

0.01 4

P(X|>t)

0.001 —

To compute these we need to know the CDFs for each
distribution.

1. For the Poisson distribution we can use the result of Exercise 4.4
that the CDF P (X < k) = Q(k, 1) where Q(k, u) is the normalised
incomplete gamma function (see Appendix 2.A). In fact we want
the complement P (X > k) = 1 — Q(k, 1) = P(k, 1). However, we
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can compute the first few terms directly from the series

P(X>k)=1-¢"! <1+21!+~--+;!).

2. For a normal deviate X ~ N{u, o) the probability P (|X| > 1) =
20((u —1)/0), so in our case

P(X|>1)=2® (\;{%) = erfc (ﬁ) :

3. For a gamma deviate, X ~ Gam(a,b),
P(|X|>1) = Q(a, bt)

where Q(a, x) is the normalised incomplete gamma function (see
Appendix 2.A).

4. For a log-normal distribution, LogNorm(y,o?), the mean is
eH+a? /2 o if i = —o%/2 the mean will equal 1. The CDF is, from
a simple change of variables, P (X <) = ®((log(t) — u)/o) and

P(X>t)=1—(l)<log(t0)__'u> =erfc<bg\(go__'u).

We show the case when = —2 and o = 2. The asymptotic fall-off
of the tail decreases as we increase o.
5. Finally, for a Cauchy deviate,

P(|X|>1) = %arctan(Y).

For the Cauchy deviate, X ~ Cau, the expectation, E [|X|] = oo, and
Markov’s inequality would be trivial. However, as we can see from
Figure 7.3, P (X <) < 1/t even for Cauchy deviates.

For very many random variables Markov’s inequality is a poor
approximation. However, some log-normal distributions can have
very significant probability mass in their tails. Similarly, extreme
gamma distributions can have significant tails. We will see Chapter 8
that such gamma distributions occur when we wish to be very non-
committal about our prior belief in quantities such as the standard
deviation.

|

One common use of Markov’s inequality is with non-negative integer valued
random variables. Here we often take r = 1, so that

P(X#0)2P(X>1)<E[X], whereX €{0,1,2,3,...}

(1) Since X takes non-negative integer values.
(2) Using the Markov inequality with ¢ = 1.
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In a typical application we might want to show that X = 0 with high probability.
Since P(X =0) =1 —-P(X>1) > 1—E[X], we can show that X = 0 with
high probability by showing E [X] — 0. This is sometimes referred to as the first
moment method.

Example 7.6 Chromatic Number of Random Graphs

Consider random graphs of n vertices (nodes) where each edge
occurs with a probability p. This collection of graphs is sometimes
known as an Erd6s—Rényi ensemble and is denoted G(n, p). We wish
to colour the vertices so that no edge has its two vertices the same
colour. A question of considerable interest is how few colours are
necessary on average to cover all the vertices of a graph drawn from
G(n, p) with no colour conflicts (i.e. no edges exist whose vertices have
the same colour).

We can use the first moment method to obtain a lower bound
on the expected chromatic number. We let £ denote the number of
colours. An assignment of colours to the vertices correspond to a
partitioning of the n vertices into k partitions. We denote a partition
of the vertices as P = {V;, V,, ..., Vi }, where the number of nodes
in each partition is |V;| = n;. Now we generate a random graph from
G(n, p) by drawing a set of edges, £, where we include a possible edge,
(i, j), with a probability p. The probability of a randomly chosen

Partitioning of vertices graph, G, being coloured by a partition, P, is:
‘ - %) P (Graph G is coloured by P) 2 H P (There are no edges in ;)
‘\\~ - ,/// . Vi e/’)
N o)
() =11 II 0-»
N ViEP (i)l ev:
n= (213, 2) (3:‘ H (1 —p)n' (n;—1)/2
Example of edge set, &, VieP
giving a legal colouring k
n; (nj—1)/2
L

(1) G iscoloured if there are not edges in any partition.

(2) The probability of there being no edges between any two vertices
isl—p.

(3) There are n; (n; — 1)/2 edges in a partition with |V;| = n; vertices.

(4) There are k partitions. And [[, e/ = e2ifi,

This probability only depends on the number of vertices in a parti-
tion. We denote the set of partition sizes by n = (ny, na, ..., ng).
The set of possible values that n can take is AX (this is the integer
simplex defined in Equation (2.11) on page 36).

We call an assignment of colours to the vertices that produces no
colour conflicts a colouring of the graph. Define the random variable
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X (G) to be the number of different colourings of the graph G(V, ).
Then the expected number of colourings will be

EG[X(G)] = Y N(n) x P (G is coloured by n)

neA}
- 1
— | . nl (nt_l)/2
>, T
i
neA? i=1

where N(n) = n!/ (H _ ni!) counts the number of ways of partition-
ing vertices into groups with sizes n.

We are now in a position to use Markov’s inequality. Recall that
for non-negative random variables

EG[X(G)] .

PX(G) z1) = —

In graph colouring with k colours there exists a k!-fold permutation
symmetry of the colours. In consequence, if there exists a colouring
of a graph then there must be at least k! colourings of the graph. The
probability of a graph being colourable is therefore equal to

Eg[X(G)] .

P (G is colourable) = P (X(G) > k!) < 1

When P (G 1S Colourable) < 1/2 we know that most of the graphs
are not colourable. The value of k& when this happens provides a
lower bound on the minimum number of colours required to colour
a random graph — this is known as the chromatic number of a graph.
The reason why Markov’s inequality just gives a lower bound is that a
few graphs may have a large number of colourings while most graphs
may have no colourings.

In Figure 7.4 we show a plot of the lower bound on the chro-
matic number for random graphs for p = 1/2 obtained from this
inequality. We also show the smallest number of colours necessary
to colour some randomly chosen graphs, as found by a state-of-
the-art heuristic search algorithm. The algorithm finds an upper
bound on the chromatic number for a particular graph (this is a hard
problem where the heuristic search algorithm may fail to find the
best colourings). We see, at least, for small n that the lower bound
seems reasonably tight. We also note that for large n the quantity
Eg [X (G)] /k! falls very rapidly from a very large number to a number
much less than 1. This suggests that the chromatic number marks a
very strong phase transition from nearly all random graphs being
colourable for k > y (the chromatic number) to almost all random
graphs being uncolourable for k¥ < y. Empirically, it is found that
the k-value where a search algorithm first succeeds in finding a
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Figure 7.4
Illustration of the
lower bound on the
chromatic number of
random graphs with
edge probability

p = 1/2 (we show
where the bound
guarantees that the
probability of the
graph being
colourable is less
than 0.5). Also
shown are the
empirically obtained
chromatic number of
random graphs
found using the best
available heuristic
search algorithm.
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colouring seems to be the same for almost all randomly generated
graphs.

Although we have an exact result for Eg[X(G)] it involves a
sum over the integer simplex AX. For moderate-sized n the sum can
be efficiently evaluated using dynamic programming. For large n,
computing Eg [X (G)] is intractable. However, we can obtain a bound
for Eg [X(G)] which is reasonably close to the exact value. We start
from the identity

k ny\?2 k n ny\?2 n
;(ni_k) :l;(”?‘”fk*(k)):‘k*;”?
which we can use to show

k 2

1 1 & 2
g mln—1)=gp-5+33 (m—7)

i=1 i=1

thus

B
[S)

=
|-

EG[X(G)] = (1-p)%~% ) nl

But (1-p) (ni=2)’12 < 1, so an upper bound on the expected number
of colourings of a graph is given by

B [X(G)] < (1 - p) % > "'Hnil' Sk (1 )it

neAl =1

This example also provides an illustration of the dangers of
blindly accepting the large n limit. A famous result of Bollobas is
that the chromatic number, y, of a random graph is given by

1 1 n
X = 3 (1 +0(1)) log<1_p) M.

The term o(1) indicates a function that goes to zero as n becomes in-
finite. In many asymptotic analyses such terms are fairly innocuous,
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as, for reasonable-sized problems, the corrections are usually negli-
gible. However, Figure 7.5 shows the lower bound for the chromatic
number (defined as the number of colours when the probability of
a colouring becomes smaller than 0.5) plotted against (a) 1/n and
(b) 1/log(n). The asymptotic result is shown by a point on the y-
axis. Alas, the asymptotic result (setting o(n) to zero) provides no
guidance for the chromatic number for the typical size of graph that
most people are interested in. Even with n = 10'° the asymptotic re-
sult is less than the lower bound by approximately 20%. Asymptotic
results are often extremely useful ways of summarising the behaviour
of large systems, but beware, this is not always the case.

7.2.3 Chebyshev’s Inequality

If we know the variance of a random variable as well as the mean then we can
use Chebyshev’s inequality
Var [ X]

P(IX-E[X]|>1) < "

This follows from considering the random variable Y = (X — E [X] )> which
being a non-negative random variable satisfies Markov’s inequality P (Y > s) <
E [Y] /5. Therefore,

P(IXx —E[X]|>1) :P((X —E [X])Z > t2> < E [(X *t;E [X])z] _ Va;[x].

We show an example of Chebyshev’s inequality where we denote E [X ] = uand
Var[X] = o? in Figure 7.6.

P(X —ul > 1)< (5)°

Figure 7.5 Lower
bound for the
chromatic number
divided by
n/(2log(n)) for
random graphs
G(n, p) with

p =0.75,0.5, and
0.25 versus (a) 1/n
and (b) 1/log(n).
The asymptotic
result is shown by the
point on the y-axis.

Figure 7.6
Ilustration of
Chebyshev’s
inequality.
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Example 7.7 Tail Distributions Revisited

In Figure 7.7 we show the tail distributions for X ~ Poi(1),
X ~ MNMO,1), X ~ Gam(e,\/€) with € = 0.0001, and X ~
LogNorm(—log(2)/2,1log(2)). In each case Var [X| = 1, so accord-
ing to Chebyshev’s inequality P (|X — p| > ) < 1/>. In addition we
plot the tail distribution for a random variable X with density

3V3

fx(x) = a4

defined for x > 0. This has mean 1, but its variance diverges.
Again there is no reason for it to satisfy a Chebyshev bound with
Var[X] = 1, although it does. It has the same asymptotic behaviour
as the Chebyshev bound.

1 10 100 1000

0.1 —=
0.01 —
0.001 —

1074~

P(|X — p| > 1)

1075 —

106 —|

Figure 7.7 P ( X —p| > t) versus ¢ plotted on a log-log scale for a Poisson, normal, gamma

(e = 0.0001), and log-normal, all with variance of 1. Also shown is Chebyshev’s inequality random
variables with Var [X] = 1. We also show tail bounds for a variable X ~ fx with a heavy tail when
the variance diverges.

If we choose ¢ = |E [X] | in Chebyshev’s inequality then
. Var [Xz] '
E [X]

B(|x -E[x]] > [E [X]|

We note that if X =0 then |X — E [X]| = |E [X]| so that

P(x=0)<P(x -2[x]|> [E[x]]) <

If the mean is large compared to the standard deviation then P (X = O) is very
small. This is often referred to as the second moment method. Notice that, in
comparison with the first moment method obtained from the Markov inequality,
this inequality provides a bound in the other direction.

A tighter bound can be obtained for the case when the random variable takes
non-negative values X > 0. This is known as Shepp’s inequality
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Var[X]
E[Xx2]

P(X=0)<

This follows from the observation that for non-negative random variables
B[x] =B [0 [x=0]+x [[X>0]H2=E[X I[X>0]”2.
Applying the Cauchy-Schwarz inequality gives
Bx] =E[x [x> 0]”2 <e[x*] B[[x>0]]
=[x E[[x>0]| =& [x*] (1-P(x=0)),
rearranging we get
P(x=0)E x| <& [x’] ~B[x]" = Var[x],

which gives us Shepp’s inequality. Since E [X?] > E [X ]2 (with equality only
when Var [X| = 0) we note that

Var[X] _ Var [ X]

E[x?] ~ E[x])*

P(X=0)<
Thus Shepp’s inequality is stricter than Chebyshev’s inequality in this context
(although Chebyshev’s inequality is more widely applicable as it does not assume
the random variables are non-negative).

Example 7.8 Moment Bounds on Poisson Random Variables

As a rather trivial example of moment bounds consider P ~ Poi(1).
In this case E [P] = Var[P] = 2 and P (P > 0) = 1 — ¢ ~*. The first
moment bound gives

P(P>0)<2a

while the Chebyshev (second moment) bound gives

Var |P
P(P>0)>1- ar[z]zlfizzlfl
E[P] A A
and Shepp’s inequality gives
Var|[P] 1 1
BP0 =l - S E T T

These bounds are shown in Figure 7.8.
|

Of course, moment bounds are not generally used for simple probabilities
distributions, but are generally used in complicated situations where computing
the full probability distribution is intractable. We illustrated this for the first
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moment bound on the chromatic number for random graphs. Second moment
bounds are used in similar situations, although they can be a bit more intricate
as they involve computing the variance for a complicated quantity (so we skip a
more realistic example — for the interested reader a nice example of the use of the
second moment method is given in Arclioptas et al. (2005)).

Both Markov’s and Chebyshev’s inequalities are often conservative since
they apply to any distribution with well-defined first and second moments,
respectively. As a consequence they tend not to be very tight in many practical
situations. They can be viewed as worst-case bounds (we know we cannot do any
worse).

7.2.4 Tail Bounds and Concentration Theorems

Often when trying to model problems it is important to show that a random
variable is tightly concentrated around its mean. This is particularly true of
sums of independent random variables, which (provided all the terms have a
finite second moment) converge in distribution to a normal distribution. But,
we often want to bound the probability of being in the tail. That is, we would
like to bound the probabilities such as P (X > a). Although the Markov and
Chebyshev inequalities provide such bounds they are usually too weak to be of
much use. These tail bounds are sometimes referred to as large deviation bounds
as they concern the existence of large deviations away from the mean. If there
exists both upper and lower tail bounds then we have a concentration bound for
the random variable to lie within an interval.

The main tool for obtaining tight tail bounds is a trick due to Bernstein (1924)
and Chernoft (1952). For any A > 0,

P(X>a) 2P (e?X >etd) < EE;X] o e‘(”“—log@[e”}))

(1) Where we multiply both sides of X > a by A and exponentiate. The inequality
is unchanged provided A > 0.

(2) Using the Markov bound P (Z > ¢) <E [Z] /t with Z =e*X and 1 = e 4.

(3) Writing E [e*X] as exp(log(E [e*X])).

This inequality is true for any 2 > 0. Therefore, it is true for the value of
A > 0 that minimises the right-hand side (thus making the inequality as tight
as possible). Choosing the optimum A we have
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al A
Gx(\) , Gx(A)
S R , ’
Y(a) = a XN — Gx(\) ’
Gx(X7) ----r i Moo IV oo L
) Tu A*
B = 3 =
! () = Gx () —a X Lo i
P(X >a)<e %@ ¥(a) = max (la—G(2)) (7.2)
>

where Gx (1) = log(E [e*¥]) is the cumulant generating function for the random
variable X.

In passing we remark that y (a) is known as the (Fenchel-) Legendre transform
of the function Gx (). We note that Gx (1) is convex since its second derivative
is equal to the variance which is always non-negative (see Section 7.2.6). For a
differentiable function, Gx (1), the value of A that maximises a 1—Gx (1) satisfies
a =G () or 2* = Gy '(a) so that

Y(a)=2"a— G(A%).

This is illustrated in Figure 7.9. The left-hand plot in Figure 7.9 shows that
for a given a, A* is the value of A that maximises the gap between the line a A
and the curve Gx (1), where the size of the gap is ¥ (a). The right-hand plot
show that for a given A*, a is the gradient G% (1*) and —y (a) is the intersection
between the gradient through the point (1*, Gx(1*)) and the axis corresponding
to 4 = 0. Legendre transforms crop up rather frequently in inference problems
and statistical mechanics.

Returning to the problem of calculating tail bounds. Often we are interested in
the probability of X being at least some value greater than the mean. By a simple
change of variables

P(X-E[X]>a)< e V(@) Yla) = max (1a—G(a)) (7.3)

where G(4) is the cumulant generating function for X — E [X],

(1) = o8 [e2 2]} = 10ge—=0 2 2]
=log(E [e*X]) — AE [X] = Gx(4) — AE [X].
(The only difference between the cumulants of X and X — E [X ] is in the first

cumulant or mean, all other cumulants are identical.) Similarly, we can obtain a
tail bound for the ‘left-hand’ tail

P(X~E[X] < —a) 2P (e X EKD > 1)

o E [e _’I(X_E[X])]
P A |

e/la

[€) I 5(—
S Aa+G(—A)

Figure 7.9 Legendre
transform between
Gx () and y(a).

More precisely,
G"(Q) is a variance
with respect to a
distribution
proportional to

fX (x) € & .



Figure 7.10 Bound
on the Legendre
transform ¢ (a)
obtained from a
quadratic upper
bound on Gx ().
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(1) Multiplying through by —2A and exponentiating. Since, by assumption
—A < 0, the inequality changes direction.

(2) Using Markov’s inequality.

(3) From the definition G(—2) = log(E [e ~tX~-EXD]).

Since this is true for any 4 > 0:

B(X—E[X] < —a) e 807000,

These are variational bounds in that we vary a parameter, A, to give us as tight
a bound as possible. Variational techniques are often very effective, providing
surprisingly tight bounds.

Hoeffding’s Inequality
For many random variables we find that their cumulant generating function
satisfies an inequality of the form

Gx(1) < AB[X] + A%¢c (7.4)

(or Gx(A) < A% ¢). Variables that satisfy inequality (7.4) are often referred to as
sub-Gaussian random variables. We return to the problem of proving that certain
random variables satisfy inequality (7.4) later on. For sub-Gaussian random
variables

Y(a) = max (la—G(2)) > max (/la -2 c)

where the right-hand side is maximised when A = a/2c so that ¢(a) > a*/(4¢c);
see also Figure 7.10. Using this bound,
P(X —E[X] >a) <e /049,

This inequality is particularly useful when we consider sums of random
variables S, = >, X;. For the sum of random variables, the cumulative
generating function adds (see Section 5.3 on page 81)

Gs, (1) =Y Gx,(A).
i=1

c\?
;
/

a




7.2 Inequalities 155

If the variables are identically distributed (i.e. X; ~ X) then Gs,, (1) = nGx(2),
s0 if Gx (A1) < ¢ A% then Gs, (1) = nc A%. Thus, for a sum of 7 iid variables with
Gx, (1) < ¢ A (for all 1) then

P(Sy —E[S,] > a) <e @/,
If E[X] = psothatE [S,] = np, then (putting a = € |E [S,]])
P(Sy—E[S,] > €E[S,]) < e P4 (7.5)

but as p and ¢ don’t depend on n we find that the probability of being this far in
the tail of a distribution is exponentially unlikely (in n). We can obtain a similar
bound for the left-hand tail

P(Si < (1-@B[S,] ) Se /¢, (7.6)

This is a typical kind of concentration result that is required in many proofs.
Often you just want to show with overwhelming probability a result such as S,, <
2E [S,].

Of course, to pursue this line of proof you would need to show that Gx < ¢ A2.
This is certainly not true for all random variables and even when it is true the
value of ¢ depends on the distribution of the random variable. A particularly
useful bound of this type due to Wassily Hoeffding (1963) is for random variables
that lie in the range [a, b], for which

A2 (7.7)

or
(b—a)?
8
The proof is rather elegant. We first note that, because the exponential function
is convex (we discuss convexity in the next section, but for our purposes here we
are just interested in the fact that the exponential function between two points
lies below the line segment connecting those points), for any X between a and b

Gx(A) = log(E [e**]) < AE [X] + 2%

X < b_Xe/la X_ae/lb‘
b—a b—a

Multiplying each side by e ~X],

eAx-Ex]) o b= X apx) X =@ ap-Ex)
“ b—a b—a

Taking the expectation of both sides

B [e/l(X—]E[X])} < b—E [X}e/l(a—]E[X]) + E[X] - 4 Ab-E[X])
- b—a b—a

Lettingr = (E[X] —a)/(b—a)thenl —r = (b —E[X])/(b — a) and
E {e/l(X—E[X])} <(1- r>e—/lr(b—a) 4 re(l-nab-a)

— (1 —r +re/l(b7a))efxlr(b7u) — et]b(/l(bfu))
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where
¢(u) =log(l —r+re*) —ru.
But, ¢(u) is bounded above by u?/8, which we can show by considering its Taylor
expansion (see Appendix 7.A),
2
!/ u 1
¢(u) = $(0) +u¢’(0) + 5-¢7(6)

for some 6. Taking derivatives

re! wooy . r(l—r)e"
l—r+rew’ ¢(u)_(l—r+re”)2

¢ (u)=r+

and noting ¢(0) = ¢’(0) = 0, we have

u 1
olu) = 59" (0)
But we observe

o r(l—re? o r(l—r)e?
S (l—r+re?®)2 (1—r—re?)2+4r(1—r)e?
o 1 @ 1

= < —
4+ (1 —r—ref)2/r(1—re? — 4

¢"(6)

(1) Writing out the second derivative in functional form.

(2) Rewriting the denominator using (a + b)> = (a — b)*> + 4abwitha=1—r
and b =re?.

(3) Cancelling top and bottom by r (1 — r)e?.

(4) Because 0 < r < 1 we have that (1 — r — ee?)?/r (1 — r)e? > 0 so that the
denominator is greater than 4.

This bound does not depend on r. Using this result and the Taylor expansion

w2

d(u) =log(l —r+re") —ru< T (7.8)

and consequently,

Gx(1) < ¢(A(b—a)) <

proving Hoeffding’s lemma, Equation (7.7).

Putting this together with the tail bounds for sums of iid variables, inequali-
ties (7.5-7.6), we have Hoeffding’s inequality that if S,, is a sum of n iid variables
each bounded in the range ¢ < X < b then

22,2 22,2

P(Si>(l+e)pu)<e nt-a?,  P(S,<(l—e)u)<e =t-a’ (1.9

where 4 = np = E[S,]. Note that if the X;s are nor independent then S, =
>, X; potentially varies between n a and n b so that Gs(2) < n? (b — a)?* 12/8
and
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262 2

P(Sy>(1+€) |E[Sa]]) <e (b—a)? (when X;s are dependent).

This is weaker by a factor of n in the exponent and would often be useless.
Hoeffding, however, showed that in some special cases his inequality could
be applied to some sums of dependent variables, provided the dependency
was not too strong. For example, when sampling without replacement occurs.
As this is rather specialised and technical, we relegate a treatment of this to
Appendix 7.B.

Hoeftding’s inequality is a very useful and powerful inequality when applied to
variables whose range lives close to the middle of the interval [a, b]. For example,
for a succession of Bernoulli trials p ~ Bern(p) thena =0,b=1and u=np so
that

P(Sy > (1+e)u) <e 2w or P (Sy> p+r) <e 20

If p is sufficiently large then this is a reasonably sharp upper tail bound. But, for
p = O(1/y/n), Hoeffding’s inequality is rather poor. In these cases, far tighter
bounds exist. The most famous of these is the Chernoff bound.

7.2.5 Chernoff Bounds for Independent Bernoulli Trials

One of the most common use of tail bounds is for independent Bernoulli trials.
This was the problem considered by Chernoff. Consider bounding the probability
that §,, = Z:‘zl X; is some distance from its mean value, given that X; € {0,1}
are independent Bernoulli trials, X; ~ Bern(p;). We note that

E [e’lx"] = p,—e/' +1 — Di.

So if the X;s are independent

E[e’lsi] = (p[e/l+1—p[).
i=1

In the next section we prove the arithmetic mean—geometric mean (AM-GM)
inequality (Equation (7.17) on page 164), which states

n % 1 n
. < Z .
(H yl> Iy,
i=1 i=1
Using this inequality

n n
E [e®] < (i (pze”+1—pi)> 2(1+pet-1)"

i=1

(1) Using the AM-GM inequality in the form [, y; < (1 527, y,)".

(2) Performing the sum and using p = % >_; pi- Note that p is the mean of the
Bernoulli probabilities.
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Using Equation (7.2) on page 153, we find
P (S,, > na) < exp (—na/l + nlog(l +p(e’l — l))) .

Choosing A to minimise the left-hand side we find (putting a = p +1),

P(S) > (p+1)n) < exp (—n ((p ) 1og(pp+’> t(g—1) log(qq_t>)> .

(7.10)

This is the Chernoff bound. It is a remarkably good bound, but the result is
not particularly easy to work with. The exponent can be interpreted as a relative
entropy (see Chapter 9), but, at least speaking for myself, this doesn’t shed at lot
of light on Equation (7.10). A similar bound is available for the left-hand tail,
which is useful for when 1 — p is small.

For many proofs we don’t need a very tight bound, it suffices to show that
large deviations are suppressed. By being less insistent on obtaining the sharpest
possible bound we can show that for e < 1

P(Sizu(+e) <eTH (s, < ull-0) <e HE

where u = E [S,]. If, for example, u ~ /n, then this tells us that S, have tails that
initially fall off like a Gaussian. Deviations greater than u away from the mean
are super-exponentially unlikely to occur in this example.

Tail bounds abound. Two useful inequalities that involve the variance of the
random variables are due to Bennett and Bernstein. Bennett’s inequality applies
to independent variables, X;, such that for all variable X; — E [X;] < b then for
anyt >0

2

o bt

P (S, > E[S,] +1) <exp(—bzh<o_)> (7.11)
where h(u) = (1+u) log(1+u)—uand o = 37| Var[X;] (all random variables in
the sum must have a finite variance). We leave the proof to Exercise 7.2. Bennett’s
inequality can be a bit awkward to work with. However, it turns out that

Lt2

) 2 5577

(see Exercise 7.3); from this we obtain Bernstein’s inequality

2
P(Sy>E S| +1) < — . 7.12
(S0 > B [Sn] +1) eXp( 20'2(1+bt/(30'2))) 12
If bt < 3 o2 then the tails of S, are nearly bounded by a Gaussian. For very large
t the tails are bounded by exp(—3¢/(2 b)) (random variables that asymptotically
fall off, at least exponentially fast, are sometimes referred to as sub-Gamma

variables). For many more inequalities see the books by Boucheron et al. (2013)
or Dubhashi and Panconesi (2009).
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Example 7.9 Tail Bounds for Sums of Bernoulli Trials

We consider the random variable Sjp9 = Z}S‘f X; where X; ~
Bern(0.05). Thus Sjo0 ~ Bin(0.05,100) with 4 = E[S,] = 5.
In Figure 7.11 we show the tail bounds using Hoeffding’s (7.9),
Bernstein’s (7.12), Bennett’s (7.11), and Chernoff’s (7.10) inequal-
ities. In the inset we also show the approximate Chernoff bound
exp(—pue?/3). Note that this is a regime where Hoeffding’s inequality
is poor. Although Chernoff’s inequality is extremely good, its form

sometimes makes it cumbersome to use in proofs.
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Tail bounds are used in many theoretical analyses where we need to show that
large deviations are exponentially unlikely. These arise in many areas, such as
proving bounds on the performance of machine learning algorithms (so-called
probably approximately correct (PAC) learning) or in proofs of computational
complexity of random algorithms.

7.2.6 Jensen’s Inequality

Jensen’s inequality, like the Cauchy—Schwarz inequality, is important beyond the
realms of probability. It is one of the cornerstones of convexity theory. It is
applicable to convex functions. These are functions that satisfy the inequality

flex+ (1 =0)y) <t f(x)+(1=1)f(y) (7.13)

In other words, if we choose any two points, (x, f(x)) and (y, f(y)), and we draw
a straight line between them, then the curve, f(x), lies on or beneath the line.
This is illustrated in Figure 7.12. Notice that the region on or above the curve
(sometimes known as the epigraph or supergraph) is a convex region.

Examples of convex functions include quadratic functions with positive curva-
ture (i.e. x2 but not —x?) and exponentials. Many functions exist which satisfy the

Figure 7.11 Tails
and tail bounds for
SlOO ~ Bm(lOO,
0.05). The staircase
shows

P(Sp >u+1t).The
Chernoff bound
(Equation (7.10))
falls on top of this
probability.



Figure 7.12 Example
of a convex function.
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tf) + (=0 fly) -~

fltz+(1—1t)y)

opposite inequality (e.g. logarithms, —x?, —e*, etc.) which are known as concave

functions or convex-down functions (the region on or below the curve is convex).
Note that the inverse of a convex-up function is convex-down and vice versa, so
that exp(x) is convex-up and log(x) is convex-down, similarly x? is convex-up and
\/x is convex-down. But this is not true of reciprocals, so, for example, exp(x) and
exp(—x) are both convex-up functions. Of course, most functions (e.g. sin(x),
tanh(x), x3) are neither convex-up or convex-down everywhere, although they
may be locally convex which might be sufficient if you know x is confined in a
region.

Jensen’s inequality, in the language of probability, is that for a convex(-up)
function, f(x),

FE[X]) <B[f(X)]. (7.14)

Note that f here is some convex function not the probability distribution for X.
For any convex-up function then, at any point, m, on the curve f(x) we can draw
a line through the point (m, f(m)) such that f(x) is on or above that line. That
is, for any m, there exists a b such that

f(x) = f(m) +b(x —m).

If f(m) is differentiable at m then b = f/(x). If it is not differentiable there may
be many values of b. Taking X to be a random variable and putting m = E [X ]
then

f(X) = fE[X]) +b(x —E[X]).

Taking the expectation of both sides the last term vanishes and we are left with
inequality (7.14). For a function that is concave (convex-down function f(x)), i.e.

flx+(1—1)y) >t f(x)+ (1 —1)f(y),
then by a similar argument
JE[X]) 2 E[f(X)] (7.15)
A function is said to be strictly convex if
fax+ (A =0)y) <t f(x)+1—-1)f(y)

for all 7 in the open interval (0, 1) provided x # y. In other words, there are
no straight sections in the function f(x). For a strictly convex function, Jensen’s
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Convex(-up) function Convex-down/Concave function

FE[X])

E[X]
E.g. E[X? > (E[X])* E.g. log(E[X]) > E[log(X)]

inequality is an equality only if X does not vary; that is, when X is a constant and
not a proper random variable. Jensen’s inequality does not require the function
to be strictly convex. For example, the absolute-value function, abs(x) = |x| is
convex although not strictly convex, but Jensen’s inequality still holds {E [X ] ‘ <
E [|X|]. If the function is linear everywhere then the function is both convex and
concave and Jensen’s inequality becomes an equality. One of the hardest parts of
using Jensen’s inequality is to remember which way around the inequality works.
I remember this pictorially — see Figure 7.13.

Often the challenge in using Jensen’s inequality is to prove that the function
is convex. Sometimes, this can be done directly from the definition, Equation
(7.13). Sometimes it is easier to use the fact that for a function to be convex-
up the second derivative f”(x) must be non-negative. It will be strictly convex if
f"(x) > 0 everywhere. To show that convex functions have a non-negative second
derivative, we note that

fla+e)+flx—e)-2f(x)

3 .

f"(x) = lim

e—0 €

But, for a convex function,

PEPRILLLLY(ED

or f(x+e€)+f(x—e€) > 2f(x), with strict inequality for a strictly convex function.
From this it follows that f”(x) > 0. Proving the converse, that all functions with
a non-negative second derivative are convex takes a bit more work — for full proof
we refer the interested reader to the book by Steele (2004). However, when f(x) is
doubly differentiable then we can show that f(x) lies above a tangent line at any
point (we used this fact to prove Jensen’s inequality). The second-order Taylor
expansion of f(x) around a point m is given by

2
X —m
706) = 7o) + 1 m) (x = m) + E2 g
where 6 is some value in the interval between x and m (see Appendix 7.A on
page 177 for a discussion on the Taylor expansion). However, we know that for
a convex function, f”(6) > 0 for all 6, so the last term is always non-negative,
implying

f(x) = f(m) + f'(m) (x — m).

Figure 7.13 Getting
Jensen’s inequality
the right way
around. Consider the
probability
distribution to be
two delta peaks, then
ask if the average of
the function values
at those two peaks is
greater than the
function value taken
at the average of the
two peaks.

abs(z) = |z|
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If f(x) is not differentiable at a point, we can nevertheless find a constant b such
that f(x) > f(m) + b(x — m).In the example of the absolute-value function b
takes any value in the range [—1, 1]. Such values are sometimes referred to as
sub-gradients. If f”(x) > 0 for all x then the function will be strictly convex. To
construct more complicated convex functions from simpler ones we observe that
if f(x) and g(x) are convex and a,b > 0, then a f(x) + bg(x) and f(g(x)) will
also be convex.

Jensen’s inequality also applies to random vectors, X. That is, if f(x) is a
function mapping a vector to a real number such that for any two points x and y

flex+(1=1)y) <tf(x)+(1—1)f(y)

then the function is said to be convex(-up) and E [ f(X)] > f(E [X]). Again for a
complex funtion f(x), the (hyper)volume on or above f(x) is convex and for all
points, (x, f(x)), we can define a (hyper)plane such that all other points (y, f(y))
lies on or above that plane (we can use this to prove Jensen’s inequality in higher
dimensions).

If a convex function is restricted to a convex region then the restricted function
is also convex (since the function is defined for all points connecting any two
points). However, if the region is not convex, then beware: there will be points
z = tx + (1 — 1)y for which the function is not defined and so the inequality
above is not defined.

Although Jensen’s inequality is one of the primary properties of convex
functions, convexity theory goes well beyond probabilities. For example, strictly
convex functions are guaranteed to have a unique minimum, while for a general
convex function the minimum will be a single connected region (very often
containing only a single point). Many texts cover convexity theory, one of the
classics being Boyd and Vandenberghe (2004).

Jensen’s inequality crops up in all sorts of applications. Like the Cauchy-
Schwarz inequality it is a real gem and it is often just what you need. We give
some examples of its use below. For people with a lot to prove the irritation is
that it only gives you a one-sided bound and, frustratingly, this can be in the
wrong direction. Proving inequalities in the other direction is often much harder.
Hoeffding’s lemma (Equation (7.7)) is an example of an inequality in the other
direction. That is, provided the random variable X is bounded then

0< log(E [eA(X_E[XDD <(b—a) A2 whena < X < b.

The lower bound is a consequence of Jensen’s inequality while the upper bound
is Hoeffding’s inequality (but only applies when X is bounded). Another useful
trick to get a bound in the opposite way to Jensen is to note that when X < 1

2

e¥<l+x+x whenx<1.

Furthermore, log(z) < z — 1 (which can be proved from the second-order Taylor
expansion around 1; see Appendix 7.A on page 177). Thus, if X <1

log(E [e*X]) < B[] — 1 SE[14AX +aX°] - 1222 [x] + B [x?]
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(1) Using log(z) < z — 1 (which can be proved from the second-order Taylor
expansion around 1).

(2) Usinge® < 1+ x + x? for x < 1. We also use that if f(X) < g(X) then
B[f(X)] <E[g(X)].

(3) Using the linearity of the expectation operator and cancelling the constant
term.

Using this inequality we arrive at
10g(e’l(X_E[X])) <E {Xz} A2 when X <1.

This can, for example, be used together with Equation (7.3) to obtain tail bounds.
If X < 0, then we can sharpen the tail bound by a factor of two (since then
e* <1+ x+x%/2—see Appendix 7.A).

Example 7.10 Benefits of Price Fluctuations

In the classic economic model of prices, the cost of producing a com-
modity is assumed to increase with the number that are produced.
Clearly this does not fit commodities where there is an ‘economy of
scale’, but it is a reasonable model for goods such as raw materials.
If only a small quantity is needed then it can be obtained from the
cheapest source. However, to produce greater quantities requires us-
ing more expensive sources, thus increasing the cost per unit. This is
particularly marked, for example, in the energy supply industries. The
cost of supply is, according to this model, a (convex) monotonically
increasing curve.

Value to consumer

Unit production cost

Number of units

Consumers attach different values to purchasing the goods. As the
price drops below a customer’s valuation they would then buy the
goods. The demand curve shows the minimum price the consumers
are prepared to pay given a fixed number of goods. The price accord-
ing to this model is determined where this demand curve crosses the
supply curve.

Consider what happens when the demand fluctuates so that the
number of units sold, n, changes. The price is given by f(n) defined
by the supply curve. As the supply curve is convex-up

B [1(n)] > /(8 [n])

thus the expected price in a fluctuating market is higher than if the
demand was stable. At least for the producers, demand fluctuations
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leads to a higher price and more profit. Producers often consider
fluctuating demand as a headache they could do without, but if this
model is true, perhaps it not such a bad thing for them. Of course, for
the consumer the story is reversed! The price of domestic electricity
is a classic example of costs often being dominated by fluctuating
demands.

Example 7.11 Geometric Mean
Since the exponential is a convex-up function, Jensen’s inequality
implies

eEXl < g [eX].

Writing E [X] = Y%, pi x; then

n
eZ?:lpixi S Zpi eYi.
i=1

Making the substitution e* = y; (so that e>iPi%i = [[;e?* =
[L:(e™)Pr =TI, y;"), we find

TIor <> pivi (7.16)
i=1 i=1

A special case of this inequality occurs when p; = 1/n then

1
<Hyi> < %Z)’i- (7.17)
i=1 i=1

The left-hand side (][], yi)"l is known as the geometric mean. The
right-hand side is the standard or arithmetic mean. The geometric
mean is sometimes used to compare items described by a number of
factors which are measured on different scales. The arithmetic mean
would be dominated by the quantity measured on the largest scale,
but the geometric mean can take all scales into account. We note
that the geometric mean is always smaller than the arithmetic mean
(equality only holds if y; is the same for all items).

In the UK the official measure of inflation was swapped to
the consumer price index (CPI) from the retail price index (RPI).
Although there are a number of differences between these measures,
one difference is that the CPI uses the geometric mean to measure the
increase in price while the RPI used the arithmetic mean. Although
this allows price increases on small items to have a similar influence
as price increases of large items, the overall cost-of-living increase
would intuitively be better measured by an arithmetic mean. Some
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cynics have suggested that the fact that the geometric mean is always
smaller than the arithmetic mean might have something to do with
the choice.

Equations (7.16) and (7.17) are important inequalities in them-
selves, known as AM—-GM inequalities. They are particularly useful
for obtaining bounds involving the product of random variables.

Example 7.12 Annealed Approximation

In statistical physics of disordered systems we often have energy
functions that depend on a set of variables X and a random set of
couplings J. The typical behaviour of these systems is described by
the average free energy

f=—kTEy[log(Z(X,]))]

where k is Boltzmann’s constant, T is the temperature, and Z(X, J) is
the partition function which depends on both sets of variables. Since
the logarithm is a convex-down function Jensen’s inequality tells us

E [log(X)} < log(E [X])
so that —E [log(X)] > —log(E [X]). Thus,
f=—kTEy[log(Z(X,J))] > —kT log(Ey[Z(X.J)])

where the right-hand side is known as the annealed free energy. The
annealed free energy is sometimes used as an approximation for the
true free energy, although in many cases it is a poor approximation.
We see, however, that it is at least a lower bound on the true free
energy.

7.2.7 Union Bound

A very useful and easy bound to use is the union bound, also known as Boole’s
inequality. Given a countable set of events Aj, Ay, ..., then

() ez

where [ J; A; is the event in which at least one of the sub-events occurs. The
importance of the bound is that we do not require the events to be mutually
exclusive (obviously, when they are then the equality holds). The union bound is
very easy to prove by induction. Clearly,

P(A)) <P(A)).
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(1) UsingP (AUB) =P (A)+P (B)—P(ANB) withA = J!_, A;and B = A.,1.

(2) Since P ((U Ai) N An+1) > 0 (i.e. probabilities take non-negative values).
i=1

(3) Using the inductive hypothesis.

The main use of the union bound is that if you can bound the marginal
probabilities for a set of events then the probability of one or more events
occurring is bounded by the sum of the marginals. Note that these events don’t
have to be independent. This is particularly useful if these marginals are all
small enough, then the union bound is often sufficient to show that with high
probability none of the events will occur.

7.3 Comparing Distributions

We often want to measure the degree of similarity between probability distribu-
tions, f(x) and g(x), say. To compare distributions they need to have the same
domain (i.e. x can take the same set of values in the two functions, although there
can be times when the probability is zero for some values of x). Our discussion
will cover the case of both discrete and continuous random variables so f and
g may be either probability mass or probability density functions. One common
application will be to approximate some given probability, f(x), with a simpler
distribution g(x|@). To achieve this we choose the parameters 6 to minimise our
measure of dissimilarity. We present two measures of dissimilarity: the Kullback—
Leibler divergence (commonly known as the KL divergence) and the Wasserstein
distance.

7.3.1 Kullback—Leibler Divergence
The KL divergence between two distribution, f(x) and g(x), is defined as

g -s )] T

In this definition we take f(x) log(f(x)) to be equal to 0 when f(x) = 0. The
KL divergence has two properties in common with a distance, namely,
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« KL(flg) > 0(Gibbs’ inequality);
« KL (f | g) = 0if and only if f(x) = g(x) in all measurable regions.

These properties mean that the smaller the KL divergence the closer the two
distributions are to each other. However, the measure is not symmetric (i.e. in
general KL (f||g) # KL (g || f)). We discuss the difference between KL (f | g)
and KL (g]| f) later in this section. It also does not satisfy the triangular
inequality,

KL (f|lg) +KL (g|lh) <KL (f | h) is not generally true.

As a consequence the KL divergence should be not regarded as a distance. (In
mathematics, spaces with a proper distance measure — also known as a metric —
have well-studied and useful properties. Alas, these don’t apply the KL diverence.)
In the next section we will consider the Wasserstein distance, which is a true
distance.

We prove Gibbs’ inequality assuming that the distributions are continuous (the
generalisation to discrete variable is straightforward),

KL(719)2 - [0 0] 50) 1og(fc§’;§) dx

e B M .
2 [lrw =0 s (1-52) o
2 [[1t0)#0] (£(x) - (x) x
@ _/I[f(x) £ 0] glx) dx 20

(1) We write log<£> =— log<]§> with hindsight of the next step. As explained,

we take f(x) log(f(x)) = 0 when f(x) = 0. We make this explicit by putting
in the indicator function [[ flx) # 0]] (we will need this when we replace the
logarithm with its bound).

(2) Using the inequality —log(z) > 1 — z with z

(3) Multiply through by f(x).

(4) Using f[[f(x) # 0]] f(x) dx = [ f(x) dx = 1 (since f(x) is a probability
density).

(5) Since f[[f(x) # O]l g(x)dx < [g(x)dx =1.

When g(x) # f(x) then —log(%) is strictly greater than 1 — %. If this

happens on a measurable set (i.e. a set of points, S, where [ f(x) I[x € S]] dx > 0)

then the KL divergence will be strictly greater than 0. It is simple to see that

KL (£ f) =Ef[log(;)] _ B/ [log(1)] = 0.

Note that if g(x) = 0 when f(x) # 0 then KL (f || g) will diverge. This can be a
serious problem when using the KL divergence in some applications.

— 8x)
T fx)”
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|
Example 7.13 KL Divergence between Normal Distributions

The KL divergence between fi(x) = N(u,X;) and fo(x) =
N (p5, E5) is equal to

KL (fi [l £)

) N(x\ﬂlazl))
© [ el v ST ) o

- /N(x|ﬂ1,zl) (_%(x —m)TE ) - %log((h)n |}:1\>

1 B 1
3= ) TE e tog((2)" 521 )
3 n 1 -1 1 Te—1 1 |22|
_—5+5Tr):2 Zl+§(ﬂ1—ﬂz) ) 2% (ﬂl—ﬂ2)+510g =

(1) By definition.
(2) Taking the logarithm of the normal density function.

"™™Ma = i Mij a; . .
@ e Za s (3) Using a™Ma = TrMaa” witha = x — y; and M = X!

t.j
A=Y An together with [ A (x|p;, X;) (xT— p)(x —p)Tdx = I, aan
i SN (x|, E1) (0 —p) (6 =) T = i+ (pp —pn) (o — 1) ™
TrAB =) A Bji Finally, Tr Zl_l ¥ = Tr | = n where n is dimensional of the space.

ij
In the case of two univariate normal distributions

2 2 2
oT— o5+ — o
KL (N1, o) || M. o)) = T2 U 1) +log<2) |
2 0’2 (on]
(Note that X and X, are covariance matrices while oy and o, are
standard deviations, hence the factor of 2 in the last term.) We

show some example, of KL divergences between different normal
distributions in Figure 7.14. Note the lack of symmetry.

TrMaaT = E Mij a; aj
i.J

Figure 7.14
Examples of KL
divergences between
different normal
distributions.

KL(fillf2) = 0.097 KL(fillf2) = 0.1 KL(A|lf) =11 KL(Allf) =22

One of the main uses of KL divergence is to find a simple distribution g(x|0)
that is close to some given distribution f(x). To achieve this, we can choose



7.3 Comparing Distributions 169

©

0 to minimise the KL divergence. We can use the KL divergence either way
around, but we will get different results. To illustrate this we consider the problem
of fitting the distribution shown in Figure 7.15 by a two-dimensional normal
distribution g(x|60) = M(x|u, X).

We consider first the case of minimising

KL (g(x]0) || f(x)) = Eg[log(g(x(0))] — Eg[log(f(x))].

The first term is equal to the negative entropy of g(x|6) (we discuss entropy in
considerable detail in Chapter 9). This term is reduced when g(x|@) becomes
more widely distributed (i.e. the random variable X ~ g becomes more un-
certain). The second term is large if f(x) is small in a region where g(x|6)
has substantial probability mass. As a consequence, if g(x|@) is confined to be
unimodal (in our example, we enforce this by making it normally distributed),
then it will tend to sit on a region where f(x) has large values (so that — log (f(x))
is small). We show the best fit in Figure 7.16(a).

(@) KL(g(al®)]|(2)) OV KL(f(2)]|9(16))

The alternative is to minimise

KL (f[lg) = Ey[log(f(x))] — Ef[log(g(x]6))].

The first term is independent of g(x|@) so that
arg;nin KL (f(x)| g(x]6)) = arg;nin —Ef[log(g(x]0))] .

That is, to compute the optimum parameter values we only need to consider the
second term. In this case, we don’t want g(x|@) to be small in regions where f(x)
has substantial probability mass. That is, we want to choose the parameter 0

Figure 7.15
Probability density
f(x) that we wish to
approximate. The
left figure shows a
three-dimensional
representation where
the height represents
the probability
density. The figure
on the right shows a
contour plot of the
same density.

Figure 7.16 Fitting a
normal distribution,
2(x(0) =

N(x|p, X), to the
probability density
f(x) shown in
Figure 7.15 by
choosing the
parameters to for
figures (a)

KL (g || f) and (b)
KL (£ 8).
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so that g(x|@) covers all areas where f(x) is relatively large. We show the best
parameter fit for the density function, f(x), in Figure 7.16(b).

We can symmetrise the KL divergence. This is known as the Jensen—Shannon
(JS) divergence

JS(fllg) = KL (fo;g) +KL (g’ f;g).

This also doesn’t suffer from diverging if either f(x) = 0 or g(x) = 0 and so
is finite everywhere. Furthermore, the square root of JS(f||g) even satisfies the
triangular inequality, thus being a proper distance or metric. However, the JS
divergence is rather complicated to compute in practice and is not as commonly
used as the KL divergence.

7.3.2 Wasserstein Distance

Another measure of the dissimilarity between distributions that has recently
found a growing number of applications is the Wasserstein distance. There is
a family of such distances W,(f,g), although we will mainly concentrate on
Wi(f,g), which is known also known as the earth-mover’s distance. W, (f,g)
satisifes all the properties of a distance or metric:

* W,(f,g) > 0 (non-negativity),

* W,(f,g) =0« f = g (identity of indiscernibles),

* Wp(f.8) = Wp(g, f) (symmetry),

« W,(f,8) +Wy,(g,h) < W,(f, h) (triangular inequality).

The definition of the Wasserstein distance is rather subtle. We need to con-
sider the family, ', of joint probability distributions, y(x,y), that satisfies the
constraints

/ Y. y)dy = £(x) / yx.y)dx = g(y).

That is, the two marginal distributions of y(x, y) are the two distributions whose
distance from one another we are measuring. Let d(x, y) be a distance measure
between x and y (usually this is just taken to be the Euclidean distance), then

Wpy(f.8) =r7neipEy[d"(x,y)]~

That is, we find the joint probability distribution y*(x,y) with the correct
marginals that minimise the expected distance d(x, y) to the power p.

To get an intuition about the Wasserstein distance we restrict ourselves to the
case p = 1. In this case y(x, y) can be viewed as a transport policy that tells us how
to move probability mass/density from f(x) to transform it to g(x). We illustrate
this for two univariate probability masses in Figure 7.17.

For each pair, (x,y), we can view y(x,y) as the amount of probability mass
we move from f(x) to construct g(y). The work required to transform f(x) into
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‘Eh.:: d(z,y)

g(y) is equal to probability mass times the distance moved. That is, we can define
a transportation cost

c(y) =B, [d(x,y)].

The Wasserstein, W|(f, g), or earth-mover’s distance is equal to ¢(y*) where
the joint probability function y*(x, y) defines the optimal transport policy that
minimises the cost. We note that W (f, g) > 0, since we are taking the expectation
of a positive quantity (the distance). If g = f then y(x,y) = f(x) [[x = y]].
That is, all the probability mass will be along the diagonal, but d(x,x) = 0
so Wi(f,f) = 0. If f(x) # g(x) at any point x then some mass needs to
moved to transform f(x) into g(x), thus Wi(f,g) = 0 implies f = g. We
note that the optimal transport policy for Wi (g, f) is y*(y, x) (the transpose
of y*(x,y)) but as d(x,y) is a proper distance it is symmetric, from which it
follows that W, (f,g) = Wi(g, f). Finally, we can see that if we transform f(x)
to g(x) and then g(x) into A(x) this is going to take at least as much work as
transforming f(x) directly to A(x) (since we always choose the optimal transport
policy). Thus the Wasserstein distance satisfies all the conditions of a proper
distance.

More importantly, the Wasserstein distance behaves linearly in the sense that

Wi(f(x), f(y —¢)) =d(0,c).

In contrast, the KL depends on the relative probability. The KL divergence
between two normal distributions with the same variance but different means
will be equal to (uy — u;)?/20°2. If o2 is very small then the KL divergence can
be very large even when the two distributions are shifted by a small amount. For
sharply concentrated distributions in high dimensions the KL divergence can be
very large, even when the distributions are rather close together. We illustrate
such distributions in Figure 7.18.

Figure 7.17
Illustration of an
optimal transport
policy for finding the
Wasserstein distance.
The joint
distribution y(x, y)
shows how to move
probability mass
from f(x) to create
g(y). We also show
the corresponding
distance d(x,y).
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/[
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Figure 7.18 Example of two two-dimensional distributions (shown as a contour plot) with a
relatively small Wasserstein distance, but a large KL divergence.

Example 7.14 Wasserstein Distance between Normal Distributions
The Wasserstein distance is usually not that easy to compute in closed
form. For normal distributions we can compute the Wasserstein-2
distance, W,. For two normals fi(x) = N (g, X)) and fo(x) =
N (py, X5), this is equal to

Walfis f2) = iy = ol + Tr (21 + B2 - 2 (B}, E))12).
For univariate normal distributions
W» (N(ﬂl,o'%),/\/(ﬂz,o'g)) = (1 — w)* + 0t + 0t =20 02

If oy = o5 then the Wl(fl,fz) = |/12 — ﬂ1|, while if u; = po then
Wi(f1, f2) = V2/r |01 — 02| Otherwise, Wy is rather complicated to
compute. In Figure 7.19 we show the Wasserstein distances W; and
W, between different univariate normal distributions.

Figure 7.19
Examples of W} and
W, distances
between different
normal distributions.
Compare this with
the KL distances in
Example 7.13 on
page 168.

Wi(f1, f2) =2 Wifi, f2) =4

Wa(fi, f2) = 16

Wi(fi, f2) = 0.33 Wi(fi, f2) = 0.33 Wifi, f2) =2 Wi, f2) =2
Wa(fi, fo) = 017 Wa(fi, f2) = 0.17 Wa(fi, f2) = 4.2 Wa(fi, f2) = 4.2

Unfortunately, Wasserstein distance is not that easy to compute. For a discrete
probability distribution, the problem is a classic linear programming task. That
is, we need to optimise a linear objective

Z d(xisyi) y(xiayj)
i.J
subject to the linear constraints

Ve Y vy = fx) Y Yy =8y Vi v(xiy;) 2 0.
J i
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Note that the normalisation constraint on y(x;,y;) is guaranteed by the
marginalisation conditions. When the number of states that our random variable
can take is not too large then we can solve this problem using a standard linear
programming solver. However, this is a slow procedure and for a complex task it
can be impractical.

Fortunately, linear programs can be solved in a dual form that in this case
makes the problem more efficient. To obtain this dual form we write down the
constrained optimisation problem as an unconstrained optimisation problem
using the introduction of Lagrange multipliers (see Appendix 7.C). In our case we
can impose the marginalisation constraints by introducing Lagrange multipliers
«(x;) and B(yj) to form a Lagrangian

-3 B (Z)’ Xiy;) — y,))
;

where we still impose the constraint thaty(x;,y;) > 0. Although a(x;) and B(y;)
look rather unusual as Lagrange multipliers (smce they look like functions), they
are just numbers at the value that our random variables can take. The solution
to the constrained optimisation problem is given by the extemum value problem

L= del,y, (xiy;) = Y alx) | D vlxiy;) — f(x)
j

wWil(f, ma. min L.
ihe) =, m By, v(xnny,)

To obtain the dual problem we rearrange the Lagrangian as
L= alx) f(x)+> By, sl Zy xi,y;) (a(x) + Bly;) — d(xi,y)))-
i J

(Observe that there is a one-to-one correspondence between terms in this ex-
pression and terms in the expression above.) We can now interpret y(x;,y;) as a
Lagrange multiply that imposes the constraint

a(x;) + B(y;) <d(xi, ;).

(Note that because y(x;,y j) > 0 this turns the constraint into an inequality
constraint rather than an equality constraint.) We are left with a maximisation
problem

Wilfig) = max )Za(xi)f(xi) +> By;)ely
1) , [ j

subject to the constraint above. The constraint takes a very simple form when we
choose Y =xi, then

a(xl-) + ,B(xi) <0.
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That is, B(x;) < —a(x;) or B(x;) = —a(x;) — €(x;) where €(x;) > 0. Putting
this into the objective function

Wi(f,g) = max Za(xi) (f(xi) —g(xi)) — Zf(J’j)g(J’j)-

a(xi).€ly)) -

However, since both €(y;) > 0 and g(x;) > 0, the optimal value of €(y;) is 0 and
the dual problem simplifies to

WiF.) = max D) (£(xi) - g(x)) = max (B a(x)] ~ By [a(x)))

a(x)
subject to the constraint
a(x;) —aly;) <d(xi,y;).

Although we assumed that our probability distributions, f(x;) and g(y;),
describe discrete random variables, we can consider the limit where the random
variables become continuous (i.e. the gap between x; and x;,| goes to zero). In
this limit the dual problem becomes

Wi(f,g) = max/a(x) (f(x) —g(x)) dx = max (Ef[a(x)] — E4[a(x)])

a(x) a(x)
subject to a(x) — a(y) < d(x,y). This inequality on a(x) is called a Lipschitz-1
condition. (The Lipschitz condition on a function f(x) is that

[f () = fO)I < M lx =y

For the function a(x) we require M = 1. This condition is often imposed as a
smoothness condition on functions.)

|

Example 7.15 Wasserstein GAN

Generative adversarial networks (GANs) are one of the most exciting
developments in deep learning (Goodfellow et al., 2014). GANs
are unsupervised methods for generating images. They consist of
two networks. The first is a generator that takes a random vector,
z, and generates an image X = g(z|6). The second network is a
discriminator, D(x|¢), that has to decide whether the image, x, being
generated is a fake image (from the generator) or a true image (from
some data set of images) — it outputs a number between 0 and 1
where 1 denotes a true image and 0 a fake image. The 6 and ¢ vectors
denote parameters (weights in the neural networks) that are chosen
to optimise the objective of the networks. In traditional GANs
the discriminator is rewarded for distinguishing between the true
images and the generated images, while the generator is rewarded for
deceiving the discriminator. One reason that GANs have attracted
so much attention is that they don’t require the training set to be
labelled, yet nevertheless the discriminator and generator learn a
very high-level representation of the data set. Although this scenario
provides very impressive results, GANSs are tricky to train.
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To solve some of the difficulties involved in training traditional
GANSs a new approach has been proposed by Arjovsky et al. (2017)
based on minimising the Wasserstein distance between the probabil-
ity distribution, P(x), of images in a database and the probability
distribution, Q(g(z|@)), for images generated by the generator. The
Wasserstein distance in its dual form is

Wi(P,Q) = 151(2))(151: [a(x)] — Eg[a(x)]

where a(x) is a Lipschitz-1 function. The function a(x) acts as a
discriminator — that is, it is chosen to maximise the discrepency
between its expected response to true images (from distribution
P(x)) and images produced by the generator (with a distribution
0(g(z]@)). We choose a(x|¢) to be a neural network with parameters
¢ that are choosen to maximise Ep [@(x)] —Eg [a(x)] subject to the
constraint that it is Lipschitz-1. To enforce (or, at least, encourage)
this constraint we add a penalty term that punishes the absolute
size of gradient in the output as a function of the input when it
is greater than one (in fact, it is slightly more efficient when we
force this gradient to always be one) (Gulrajani et al., 2017). We
therefore simultanously try to learn «(x|¢) (to maximise Ep [a(x)] —
Eg[a(x)]) at the same time as choosing the parameters 6 of the
generator Q(g(z|@)). These two sets of parameters are learnt using
standard gradient descent algorithms.

Mathematical proofs involving probabilities require a dedicated tool set. Math-
ematicians worry a lot about convergences. However, in my experience these
results are not always as useful as they at first appear. Very often the interesting
phenomenon occur because n < oco. On the other hand, inequalities have very
wide-ranging uses. They are not conceptually difficult, but can lead to quick
and neat proofs. By far the most common are the Cauchy-Schwarz and Jensen’s
inequalities, which have applications far beyond probability theory. The Markov,
Chebyshev, and Chernoff inequalities are more specialised, but can be extremely
powerful. In certain domains, such as proofs of algorithmic complexity and
proofs of learning bounds, they are used very heavily. Another common task is to
measure the dissimilarity between probability distributions. There are many such
measures. One of the most widely used is the KL divergence. Another measure
that has found a growing number of applications is the Wasserstein distance.

Additional Reading

A nice introduction to inequalities is by Steele (2004), although its focus is much
broader than probability. Tail-bound inequalities are covered in great length in
the books by Boucheron et al. (2013) and Dubhashi and Panconesi (2009).
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Exercise for Chapter 7

Exercise 7.1 (answer on page 414)
Use the Cauchy—Schwarz inequality to show that Pearson’s correlation

) E[(XfE[X])(YfE[Y})] . COV[X,Y]

Var [X] Var [Y] Var [X} Var [Y}
satisfies —1 < p < 1.

Exercise 7.2 (answer on page 414)
Using the fact that g(u) = (e“ — 1 — u)/u” is monotonically increasing, show that

if X; —E [x,} < b then

Var [X,}

E [e,l(x,-—lE[X,-])] <1+ T(e“ —1-52).

Assuming X; are independent variables and defining S, = >/, X; and u = E [Sn]
and using the fact that
—y (1) - _ A(Sn—m)
P(Sn§u+t)§e , l//([)—mjix/ll‘ log(]E [e D

derive Bennett’s inequality

2
o bt
P(Sn < u+t) < exp (_ﬁh (P))

where o = Var [Sn] and h(u) = (1 +u) log(1 + u) — u.
Exercise 7.3 (answer on page 417)

Use Taylor’s expansion to second order to show that

2

u
—— >0
2(1+wu/3) = 7

hence derive Bernstein’s inequality from Bennett’s inequality.

g)=(1+u)log(l+u)—u

Exercise 7.4 (answer on page 418)
In Example 7.3 on page 143, we showed, using the Cauchy—Schwarz inequality, that
variances have to be positive. Use Jensen’s inequality to obtain the same result.

Exercise 7.5 (answer on page 418)
One way of defining the median, m, of a distribution is as the value that minimises
the mean absolute error

m = argmin E [|X - c|] .
(o}
Use Jensen’s inequality for the absolute function and for the square to show that
the median satisfies the inequality
lu—m| <o
where u = E [X } is the mean and o the standard deviation of the distribution.

Exercise 7.6 (answer on page 419)
By considering the second derivative show that the generating function G(1) =

log(E [e ’IX] ) is a convex function of A.
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Exercise 7.7 (answer on page 419)
Show that the negative logarithm of the partition function

G(B) = log(2), z=3 e PFY
X

is a convex-up function of B, where the Boltzmann probability of the random
variable, X, is given by

X e BEX)

p(X) = S

Show that for any function G(B8) (where 8 = 1/(kT) — it is common to work in a
systems of units where k = 1 so that 8 = 1/T, i.e. the inverse temperature)

2 1
O°TG(5) _ LG”(l)
aT? T3 r

and hence show that the free energy defined by

leog(Ze /kT>

is a concave (convex-down) function of 7.

Exercise 7.8 (answer on page 421)
Use Jensen’s inequality to show that the KL divergence

L(fllq) = Zfl log< )

is greater or equal to zero (the variables f; and ¢; are probabilities).

Appendix 7.A  Taylor Expansion

The Taylor series is a great source for finding bounds on functions since for
any suitably differentiable function, f(x), its expansion to order n around x is
given by

n—1 i n
-3 (X_TXO) F0 () + F=50" 4 ) (7.18)

n!
i=0

where f()(xq) is the i* derivative of f(x) at the point x, and the last term is a
reminder where 6 takes some value in the interval between x and x(. If we can
bound the last term we can obtain a bound on f(x).

For example, expanding the exponential around 0 to second order

X2

*=1+x+—ef
2

%
and since the last term is always positive e* < 1 + x. If we expand to third order ~>__.

2 3 R e E—

X X
Yo l4x+—+ef 0
T T
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Since e? > 0, the last term is positive if x > 0 and negative if x < 0,
2

eX21+x+% if x>0
X2
ex§1+x+7 if x <0.

As another example consider Taylor expanding log(x) around x = 1

(x—1)*1

2 e
Again the last term is always positive (since we consider real x for which the
logarithm is only defined if x > 0 so 6 > 0) then log(x) < x — 1.

Taylor’s expansion should be very familiar to anyone reading this book, but the
residual term, R, (essential for obtaining bounds) may be less familiar to readers
not trained as mathematicians. To prove Equation (7.18) we integrate £ (1) n
times (we use (") (z) to denote the n derivative of f(¢)) and use the fundamental
law of calculus (the integral acts as the anti-derivative). We show a few steps to
see how the terms in the Taylor series emerge

log(x)=(x—1) +

/ "y de = D () - 0D (xg)

[ [ swarar= [T - oD ar
= S ) = £ () — (¢ = x0) £ (x0)

" ’
/ +/

/t / /t @) drde di’” = fUI @) = £ (xg) = (1" = x0) £ (x0)

0 )

/x/ / FO ) dede’ ... de" ! = f(x) = fxo) — (x — x0) f (x0) — -+ -
(x = xp)"~

1
- Wf(nfl)(xo)

The left-hand side is R,,. On rearranging

—_

n—

70 =3 S 0 4 v,

i=0

X t// t/
R, =/ / / FO ) dede .. demE
X0 X0 X0

The inner integral, I = f;{: F(r)dt, is usually quite complicated, however, we
can bound it

! t !
£ (1) / dr < / FO @Y dr < £ () / dr
Xo X0 Xo

where
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or

(t/ - )C()) f(n)(tmin) <I< (t, - xO) f(n)(tmax)

where fmax and fp, are the values of 7 that maximise and minimise £ () in
the interval [xg, x] (note that x is the upper limit that 7’ can take in the multiple
integral R,). Assuming that f(")(z) is continuous in the interval from x to xo
(this is a necessary condition for the Taylor expansion of this order to be a useful
approximation), then there exists a 6 such that £(")(9) can take any value between

£ (tmin) and £ (tmay ). Thus we can bound the integral, I, as g(t)
PN 0
' 1!/( )
1—/ 7O dr = (1 = x0) £70). ;
[ottyat

(The inequality f: g(x)dx < (b — a)g(6), where 8 € [a,b], is known as the
(integral form of the) mean value theorem and holds for any continuous function
g(x).) We can now easily compute the other integrals to find

R, = (X—X()) f(n)< )

thereby completing the proof.

Appendix 7.B Hoeffding’s Bound for Negatively Correlated Random
Boolean Variables

We consider random Boolean variables, {X;|i € Z} (where Z is an index set), that
are ‘negatively correlated’ in the sense that for any subset of S C 7

Hxi < Hpi

ies ies
H 1 - i < H 1 - Pz
ieS i€S
where p; are equal to the marginal probabilities P ( 1) Negatively correlated

variables arise in situations where we sample in a way which reduces the proba-
bility of all the events being 1 or 0. As we will show later in this subsection, this
occurs when we sample without replacement. A typical result we can obtain is
that for a weighted sum of negatively correlated binary random variables
Sp = Z w; X;
i€z
where w; > 0 and n = |Z| is the number of variables, then
272 w?
P (IS — pnl >1) <e i€z with Un =Zwipi.
ieT

This is exactly the same bound as would apply to independent random Boolean
variables.
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The proof starts in a similar way to our derivation of the standard Hoeffd-
ing result for independent random variables. We use the standard Bernstein—
Chernoff result that

P (Sy — > 1) < e?®

where y(¢) is the Legendre transform of (1) = log(E [e(S»=#n)]). That is,

(1) = max log(E [e“s"‘”"f)}) — At

Expanding the exponential of 4.5, we find

i Xi

w,
eASn W ‘i STt ST+ xi (e 1))

i€ i€l

£ Y Ix )

SeP(Z)ieS

(1) Using the definition of S,,.

(2) Usinge2i% =[], e%.

(3) AsX; € {0,1} we see thate*"iXi = | when X; = 0, and e*"i Xi = e*"i when
X; = 1. Thus, e*"iXi = 1 + X;(e*™i — 1). This is a neat trick when working
with binary variables that occur in non-linear functions.

(4) Usingtheexpansion [[(1+a;) = > [] a;, where P(Z) denotes the power
i€z SeP(T)i€S

set (set of all subsets) of the variable labels, Z. We are assuming that [ [,y a; =

1. This identity requires some thought, but is another useful expansion to

have in your back pocket.

Taking expectations and using the fact that the variables are negatively correlated

s 3 [T I
sep(r) Lies lies
< 3 IIeele™ =D 2T +pi (et - 1))
SEP(T) ieS i€

(1) Using the result above and [, a; b; = (IT; a;) (I1; b:) with a; = X; and b; =
edwi 1.

(2) As we assume the X;s are negatively correlated, E { I X,} < ] pi- For the

ics i€s

inequality to hold we also require [, g(e" — 1) > 0, which is true when
/l, Wi 2 0.

(3) Using the expansion above inreverse >, [[ a; = [](1 + ;).

SeP(Z)iesS i€T

Taking logarithms we obtain

10g ’lS" Zlog 1 +p, Wi _ 1)) .
ieZ
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Using Hoeffding’s bound (Equation (7.8))

S8}

u

log(1+p(e* —1)) —pu < <

we find

22 22
log(]E [e’ls"]) < /lZpiwi — ?ZW? =Au, + §2W12

i€l i€l i€l

Absorbing the first term on the right-hand side into the logarithm we find
2
= A(Sn—pn) < — 2
() log(E [e D <3 Eezwl.

We can obtain a bound on the Legendre transform

Y(t) =max (1) — At

A>0
2 2
< 5 2t
< max — wi —At=— 3
e > w;
'€ ier

leading to the bound given for the upper tail.
To compute a bound for the lower tail we need to bound

—A Z WiX,'
E[e*/lsn} - E I:e i€T :|

which we can rewrite as

-4 w; A w; (1-X;
Ele 5] =e % E {e =" )} :

The bound follows from the assumption E [ [[;cs(1 — Xi)] < [T;es(1 — pi) in
exactly the same way as the bound on the upper tail.

The classic example of negatively correlated random variables is when we
sample without replacement. We consider a bag of N balls where m are red.
Thus the probability of any randomly chosen ball being red is p = m/N. We
choose a sample of n balls. Let X; = 1 if the i sample is a red ball and X; = 0
otherwise. The first condition of negative correlation is that, for any subset of
samples S C 7,

E Hxi

i€S

:P(\/Xi=1> < plSl

ies
where \/;. s A; implies that all events A; occur. The probability that of a subset
of variables {X;|i € S} all equal 1 is given by

SN _mm=1) - (m— |8+ 1) m\ISI
P<\/Xi_l>_N(N—l)--~(N—|S|+1)S<N> =p°

ieS

(note that if 0 < m < N then for 0 < x < m we have x/m > x/N and thus
1 —x/m < 1—x/N orequivalently (m — x)/m < (N — x)/N, then on rearranging
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(m —x)/(N — x) < m/N). An almost identical argument shows that

E [H(l ~X;)| =P (\/ X; =0> <(1-p.

ieS ieS

That is, we have shown that

E HXi <pl® =HP
ieS icS
E lH(l -X)| < -p¥=T]0-p).
ieS ies

which are the conditions that X; are negatively correlated. As a consequence, if
X ~ Hyp(N, m,n) then

P(‘X - ﬂ‘ > t) < e 20n,
N

In other words, when sampling n items without replacement, deviations of order
of n away from the expected value are exponentially unlikely.

Appendix 7.C  Constrained Optimisation

To find a local maximum or minimum of a function f(x) we look for a point,
x*, where the gradient equals zero,

af (x™)

o 0

Vfx*)= =1:
af(x™)

6;:,, 0

This provides a set of simultaneous equations. When f(x) is sufficiently simple
these can be solved in closed form. More generally they can be solved iteratively,
by moving in the direction of the gradient if we are maximising f(x) or in the
opposite direction if we are minimising. Note that V f(x*) = 0 is also satisfied
at saddle points. That is, at points where f(x) is a minimum in some directions
and a maximum in others. To determine the type of extremal point we are at, we
would have to look at the signs of the eigenvalues of the Hessian (i.e. the matrix
of second derivatives 8> f(x)/dx;0x;).

In constrained optimisation we optimise a function subject to one or more con-
straints. We consider first the case of a single constraint, g(x) = 0. The constraint
requires that the solution lies on a (hyper)surface defined by the constraint. The
standard way to solve this (assuming that the gradient is continuous) is to find
the extremal point of a Lagrangian

L(x,2) = f(x)+2g(x)

where A is known as a Lagrange multiplier. The solution we seek is always at a
saddle point. That is, if we are maximising with respect to x we must minimise
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with respect to A and vice versa (we can prove this by looking at the eigenvalues
of the Hessian for both x and ).
To find the extremal points of the Lagrangian we seek a solution, (x*, 1*), that
satisfies the constraints
IL(x*, %)

VL A7) = V() + ' Vg(x") =0, “=o 0 =g(x") = 0. (7.19)

The second condition is just the constraint. But the first condition V f(x*) =
—A*Vg(x*) looks a bit more mysterious. To understand this condition we note
that the gradient, V f(x*) at the point x* is orthogonal to the contour f(x) =
f(x*) (in two dimensions the contours are curves, in three dimensions surfaces
and in general hypersurfaces). We can see this from the Taylor expansion of f(x)
around x*
1
flx)=f(x)+(x —x*)TVf(x)+ g(x —x)TH(x —x*) +...

where H is a matrix of second derivatives (known as the Hessian). Now if we
consider the set of points 7 perpendicular to the gradient

T= {x‘(x —x)TVf(x*) = 0}

then for x € Twe have from the Taylor expansion f(x) = f(x*) + O(|x — x*|?),
that is, the function value is approximately constant. In other words, these points
are on the tangent plane to the contour surface. Now the condition V f(x*) =
—AVg(x*) occurs at a point where a contour of f(x) = ¢y touches a contour
of g(x) = cg. However the second condition in Equation (7.19) ensures that
g(x*) = 0, so the point where both conditions are satisfied corresponds to a
point, x*, where a contour of f(x) just brushes up against the surface g(x) = 0.

Example 7.16 Constraint Optimisation
We consider the problem of finding the maximum value of f(x) =

N(x|u, ) with

(04 s _ (06 02
H=1o1 )" “\02 06
subject to the constraint that g(x) = —x> — 4y —2 = 0. The

constraint implies that the solution should live on the quadratic curve
y = —x2/4 — 1/2. To solve this problem we form the Lagrangian

L=f(x)+ag(x)
and seek the extremum value where

oL

VL=0, 67_0

that is, we seek the point, (x*, 1*), where

Vi(x*)+ 2" Vg(x*) =0 g(x*) =0.

T VI(x)
\XA
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Figure 7.20
Extremum condition
of the Lagrangian.
We seek a maximum
of f(x), subject to
the constraint

g(x) =0. This
occurs at the point,
x*, where a contour
line for f(x) touches
the contour line

g(x)=0.
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We have thus replaced a two-dimensional constrained optimisation
problem by a three-dimensional unconstrained optimisation prob-
lem (as mentioned, we are actually seeking a saddle-point solution
that is a local maximum with respect to x, but a local minimum with
respect to 1). Note that we have three extremal equations and three
unknowns. For this problem there is no closed form solution, but it
is easy enough to solve these equations numerically. The extremal
solution is at xT =~ (—0.50,—0.56) and 1 ~ 0.092. Figure 7.20
shows the solution. We see that the optimal solution occurs where
the contour lines of the function f(x) kiss the constraint g(x) = 0.

1+

— AVg(xz*) -1 N

If we have more than one constraint then we can just add additional Lagrange

multipliers: one for each constraint. One of the powers of the Lagrange method
is that it works in any dimension. In some cases there can be multiple solutions
to Equation (7.19) each corresponding to a different local optimum (maximum
or minimum).

We can also use Lagrange multipliers to cope with inequality constraints.
Although this appears significantly more complicated, it turns out that we only
have to consider two outcomes; either

1. an optimum lies within the constraint, in which case we can ignore the
constraint or

2. an optimum lies on the constraint, in which case the contained optimum will
lie on the constraint. In this case we can use the Lagrange multiplier as normal.

We illustrate these two cases in Figure 7.21.

For an equality constraint we saw that in order for a point x*, that lies on the
constraint g(x) = 0, to be a (local) optimum we required that Vg(x*) must be
proportional to V f(x*). In the case of an inequality constraint the situation is
slightly more complicated. If we are maximising f(x) subject to the inequality
constraint g(x) > 0 then for a point, x*, that lies on the constraint g(x) = 0
to be a (local) optimum we required that V f(x*) be in the opposite direction
to Vg(x*). Otherwise we could find a better solution by moving in the direction
of Vg(x*) (recall that the gradient points in the direction where the function
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increases maximally so if V f(x) is in the same direction as Vg(x*) then we
can increase f(x) in a region where g(x) > 0 by moving in the directions of the
gradient). Thus, a point will be a local maximum of f(x) subject to the inequality
constraint g(x) > 0 if it satisfies

mﬁxmﬁinf(x) +Ag(x)

subject to the constraint that 2 > 0. Note that if 2 = 0 then the constraint will
be ignored. Similarly, if we are seeking a minimum value of f(x) subject to the
constraint g(x) > 0 then we need to find a solution to

n}rin max f(x)—2g(x)

again subject to the constraint that 4 > 0. These conditions are known as
Karush-Kuhn-Tucker (KKT) conditions. They trivially generalise to multiple
inequality constraints by using a different Lagrange multiplier for each con-
straint.

In general, if we wish to maximise a function, f(x), subject to some constraints
then we can write down a Lagrangian

L(x,A) = f(x)+ Zﬂigi(x)

where 4; > 0if g;(x) > 0, 0or 4; < 01if g;(x) < 0, or A; is unconstrained if
gi(x) = 0. A local maximum subject to these constraints satisfies

max min £(x, ).
x 2

In some cases we can find a maximal solution for x*(2) for arbitrary A that leaves
us with the minimisation problem

min £(x*(4), ).

This is known as the dual problem. In the special case when f(x) is a linear
function and g;(x) are linear constraints then we can swap a maximisation
problem for x with a minimisation problem for A, where the variables x act as
Lagrange multipliers.

Figure 7.21
Optimisation of a
function f(x)
subject to an
inequality constraint
g(x) > 0. These
illustrate two
possibilities as
described in the text.
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The extremal points of a Lagrangian correspond to local optima and poten-
tially we could have a large number of such points. If, however, we have a convex
function f(x) with convex constraints then we are guaranteed to have a unique
optimum, or at most a convex set of optima, whenever such a solution exists (it
may be that the constraints cannot all be satisfied or the optimum exists at some
point at infinity).
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If you are trying to infer properties about real systems where there is uncertainty
in the data and you have a good model of the data-generating process, then
Bayesian methods are likely to be the best you can do. This field is now vast
and continues to grow. In this chapter, we give an overview of the approach and
explain why it has caused both interest and controversy. We then discuss some of
the technical details including conjugate distributions, uninformative priors, and
model selection. We show some of the tools for approximating the posterior and
finish by showing some of the Bayesian-based machine learning tools.

Bayesian inference underlies a lot of modern technology. Its contribution can
range from providing a state-of-the-art machine learning tool, such as Gaussian
processes, to being the cornerstone of a field such as in statistical machine
translation where the translation problem is posed entirely in the language of
probabilistic inference. The basis of Bayesian inference is a simple mathematical
identity, but its application requires a philosophical understanding of how to use
it and a body of mathematical tools required to make the inference tractable.
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Historically the
Bayesian approach
was seen to lead to
inconsistencies as
you would get
different results by
assuming different
prior distribution.
One of the many
contributions of Ed
Jaynes was to show
that by applying
symmetry
principles it is
possible to
unambiguously
decide what is the
correct prior given
no information —
see Appendix 8. A
on Bertrand’s
paradox.
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8.1 Bayesian Statistics

Bayes’ rule provides a very simple way to perform probabilistic inference. It was
proposed by the Reverend Thomas Bayes in an article published posthumously
in 1763. It was invented independently, but slightly later by Laplace. Given its
long history and the authority of Laplace it is perhaps surprising that it was
shunned in the first half of the twentieth century as ‘subjective probability’. This
arose because it requires putting a prior probability on unseen events — this was
seen as subjective rather than objective, which no self-respecting scientist could
tolerate. During this period, being Bayesian meant being unscientific and few
people defended the Bayesian approach (the economist John Maynard Keynes
and the mathematical physicist Harold Jeffreys were notable exceptions). Only
in the latter half of the twentieth century did the Bayesian view reassert itself,
most notably through the advocacy of Ed Jaynes. Eventually though it was
computers that won the day. Inference is a significant part of machine learning,
and (computerised) Bayesian techniques beat many more traditional methods.
The more ardent Bayesians often proclaim that the only right way of doing
inference is using a Bayesian approach, although there remain grounds for being
critical of many techniques that are claimed to be Bayesian. Nevertheless, the
Bayesian approach can no longer be dismissed.

So what is Bayesian inference? Suppose we have a number of mutually
exclusive hypotheses. These might be, for example, who is the murderer in Cluedo?
or how many fish are there in the sea? We label these hypotheses H; for i =
1, 2, ..., n. We also have some data, D, pertaining to the hypotheses. Bayes’ rule
— see Equation (1.4) on page 7 — then tells us the probability of the hypotheses
given the data

P (D|H;) P (H;)

P (Hi|D) = —— o

8.1)
This is a mathematical identity so in itself it is rather uncontroversial. We call the
probability on the left-hand side, P (H;|D), the posterior (as it is the probability
after seeing the data). The probability P (H;) is known as the prior (being the
probability of the hypothesis before seeing the data). The other terms are the
likelihood, P (D|H;), and the probability of the data, P (D), which is just equal to

P (D) = i P(D,H;) = i P (D|H;) P (H:)

and guarantees that the posterior probability is normalised. We will see later in
this subsection, however, that this term — sometimes referred to as the evidence —
can play a very important role in model selection.

Bayes’ rule also passes seamlessly to continuous variables, where instead of
considering probabilities we consider probability densities. If we are trying to
infer the value of a continuous parameter, x, describing the distribution of
discrete data, Y, we can encode our uncertainty in terms of a probability density
function f(x). Then we can again use Bayes’ rule

(8.2)
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P(Y|x) P(x <X < x+6x)

Px<X<x+6x|Y) =

P(Y)
or dividing through by 6x and taking the limit
. P(x<X<x+6x]Y) . P(Y|x) P(x < X <x+0x)
lim = lim
0x—0 ox ox—0 P (Y) ox
P (Y|x) f(x)

F6I) = =

Similarly, when our data is continuous, the probability that a data-point Y is in
some ball, B¢(y) of radius € around the point y is

P (Y € Be(y)) = f(3) [Be(y)|

where |B.(y)| is the volume of the ball; the approximation becomes increasingly
accurate as € — 0. Putting this into Bayes’ rule

Y =y BB PO Fr13) Be)| ) 013) 1)

P (Y € B(y)) F()[Be(y)l fy) 7
which becomes exact (assuming the density is sufficiently smooth) in the limit
€ — 0. Similarly, if we were trying to infer a discrete parameter with continuous
data we would get

Y|ix)P(x
P (xfr) = £ |f(>Y)()

We see that the form of Bayes’ rule does not vary whether we have probability
masses or probability densities. It is easy to forget the difference between proba-
bility masses and probability densities when working in the Bayesian formalism,
but remember that f(x) and f(x|Y) are not probabilities (although positive they
can be greater than 1).

The likelihood. Before discussing the technicalities of performing a Bayesian
calculation some comments are in order. Firstly, Bayes’ rules allows us to
reverse the conditional probabilities. That is, rather than having to compute the
posterior, P (H;|D), directly we need to compute the likelihood, P (D|#;). But
the likelihood is often much easier to compute than the posterior. To understand
why this is so let us consider collecting data from some instrument. For exam-
ple, we might want to deduce the structure of a crystal from some scattering
experiment. The scattering pattern is usually related to the Fourier transform
of the crystal structure. In principle, then we could deduce the crystal structure
by taking the inverse Fourier transform. Here we are having to solve an inverse
problem.
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25K

Object —>  Observation = —> Data

\ Inverse Problem /

However, most instruments don’t collect data at all possible angles. Thus, when
you perform the inverse transform you have to invent data where there isn’t any.
Usually you do this by setting the intensities you have not measured to zero. This
often leads to spurious artefacts when you perform the inverse transform. Worse
happens when the instrument has inaccuracies or the data is noisy. Although you
can calibrate your instruments to measure its accuracy, what you need to do is
unravel all these inaccuracies in performing the inverse problem — a task that is
often intractable. However, in the Bayesian formalism these problems become sig-
nificantly less daunting because you are asked to calculate the probability of the
data given the hypothesis. Missing data is not a problem — you only need calculate
the likelihood of the data you measure — and instrument errors are also more
easily modelled as you are not solving an inverse problem. Thus, the Bayesian
approach offers some real advantages over trying to ‘invert’ the experiment.
Nevertheless, constructing a likelihood function is a non-trivial exercise. It is the
place where you model what is happening. That said, many ‘Bayesian techniques’
don’t make much attempt at constructing an accurate likelihood function. Often
a likelihood is chosen to keep the problem of computing the posterior tractable.
Even when a poor likelihood function is used these methods sometimes work
remarkably well.

It takes time to get used to the Bayesian approach as, at first, it seems
backwards. That is, you tend to construct a ‘generative model’ which generates
the data given a model, even though the data is given and actually you are
trying to infer the probability of the model or hypothesis. Once you have a
plausible generative model you then use Bayes’ rule to infer the model given the
data. When you get used to constructing models this way around it is actually
straightforward.

The prior. The prior, P (’H,-), encodes our belief about the hypotheses before
looking at the data. There are situations where we have good reasons for the
way we assign these probabilities. For example, if the hypothesis is that someone
has a particular cancer then our prior belief might be the prevalence of cancer
cases in the population. Most of the time we have some prior belief about the
values we are likely to obtain, after all we usually know whether we should use
a microscope, ruler, or telescope to perform our measurement. However, often
our prior knowledge is weak and rather than specify it precisely we prefer to
say we know nothing (hopefully avoiding any bias). It might seem very natural
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when we have no idea which hypothesis is true to assign equal probability to
all hypotheses — an approach advocated by Laplace amongst others. This leads
to a posterior that has the same functional form as the likelihood used in the
maximum likelihood approach, introduced by R. A. Fisher and accepted in the
dark days when Bayesian statistics was seen as unscientific (in fact, maximum
likelihood was initially criticised for being Bayesian, but its utility and the
naturalness of the assumption won it grudging acceptance).

Surprisingly, assuming all hypotheses are equally likely is not always the
correct assumption when we have no knowledge (we discuss so-called unin-
formative priors in Section 8.2.2). The true power of the Bayesian formalism
comes when we have very flexible models capable of modelling very complex
situations. In these cases there is a danger of ‘over-fitting’ the data. That is,
we are apt to find a very implausible model that gives a very high likeli-
hood for that particular data set. Priors are then used which make simpler
models more probable than complicated models. How to assign probabili-
ties to different hypotheses is often not easy to determine and, more often
than not, a rather ad hoc prior is used. There are a couple of approaches
to make the task of choosing a prior more principled. One is to parametrise
the prior using so-called hyperparameters; these are then determined from the
data in a Bayesian manner. A somewhat deeper approach is known as the
minimum description length approach which we discuss briefly in Chapter 9.

The evidence. The probability of the data, P (D), acts as a normalisation
term. Unlike the likelihood and prior it has not got a universally accepted
name. It is sometimes known as the marginal likelihood or the model evidence
for reasons we give below. It is useful to give it a name, so I will stick with
calling this the evidence. Often, to make our lives simpler, we content ourselves
with finding the most probable hypothesis as the solution of our problem. This
is known as the maximum a posteriori (or MAP) solution. When seeking the
MAP solution the probability of the data is irrelevant since this term doesn’t
depend on the hypotheses. This can save considerable work as computing the
probability of the data can be computationally expensive. However, there are
good reasons for doing a little (or sometimes a lot) more work. When you
compute the MAP solution you throw away the probabilistic information that
the Bayesian formalism gives. This information can be useful, for example for
computing error bars. Inference is often performed to make decisions. Including
the full probabilistic information often allows you to make better (more accurate)
decisions in terms of maximising the expectation of some utility function. There
is another reason why you might want to compute the evidence that is to do
with model selection. When performing inference we may be uncertain of part
of the process that generates our data. That is, we might be unsure either about
our prior or our likelihood function. Worse, we might have several plausible
models, M, which would explain the data. Within the probabilistic framework,
we can encode this uncertainty by writing our probabilities as dependent on our
model



Recall that

P (H:|D, M;)
denotes the
probability that the
hypothesis H; is
true, assuming
both the data D
has been observed
and that model M

is correct.

Figure 8.1
Probability of
observing 100 decays
in an hour as a
function of the age
of the sample.
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P (DHi, M;) P (Hi|M;)

O ) T

(8.3)

The evidence framework is the procedure whereby we select the model that
maximises the probability of the data given a particular model, P (D|M;). This
is just a maximum likelihood estimation of our models. We can make this
model selection Bayesian by putting a prior probability on our models. If we
have a continuum of models we can introduce a ‘hyperparameter’ or a set of
hyperparameters that parametrise the different models. The hyperparameters can
also have their own prior distribution. Given some data we can update each
hyperparameter by computing a posterior distribution. We can then marginalise
out the hyperparameter. An example of this would be when we believe some
process is noisy, but may not know how large the noise is. We can make the
magnitude of the noise a hyperparameter and put a prior on this parameter.

Example 8.1 Bayesian Carbon Dating: Example 2.3 Revisited

In Example 2.3 on page 29, we considered the problem of inferring
the age of an organic specimen based on the number of carbon
14 decays observed in one hour. Assuming the number of observed
radioactive decays is Poisson distributed then the probability of
observing n decays is

n

P (n|u) = %67“

where in our problem we found that u = 852.7¢ %/ with A = 1.245 x
10~* and 7 is the unknown age of the sample. Assuming we observed
100 decays then the likelihood of the observation given the age of the
sample, ¢, is shown in Figure 8.1 (this is a reproduction of Figure 2.4
on page 30).
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0 —— 1
0 1x10* 2x10* 3x10*
age, t (years)

There is clearly a significant likelihood that the sample is in the
range from 15000 to 20000 years old. However, there is a natural
uncertainty in our estimate due to the randomness of the radioactive
process. It seems very reasonable to ask what is the probability of the
sample having a particular age (or, at least, lying in any particular
range of ages). There are many other uncertainties in the problem,
due to natural variation in the concentration of carbon 14, how much
of the sample is carbon, etc. With great care these other uncertainties
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can be minimised, but we are always left with a residual uncertainty
due to the radioactive decay process. To turn our likelihood P (n|t)
into a probability density for ¢ given our observation n, we can exploit
Bayes’ rule

P (nlt) f(1)
P (n) .

Now a non-Bayesian (sometimes disparagingly called a frequentist
because of their presumed insistence that probabilities can only be
interpreted as the expected frequency of many independent trials,
rather than a fluffy notion of one’s ‘degree of belief”) would complain
that we cannot use Bayes’ rule as there is no unambiguous way to
specify the prior. Different researchers would assign different priors
and obtain different posteriors! Of course, in general different re-
searchers have different prior beliefs and as a result come to different
conclusions. Those with more accurate prior knowledge come up
with better conclusions (cf. the history of science — take your pick).

To think of science as a purely objective enterprise demonstrates a In a somewhat
remarkable ability to ignore all the evidence. childish protest
The frequentists used to point to examples where there seemed against the

. .. . . . . pretence that
to be equally valid ways of assigning an uninformative prior. This

. . e . . . science is purely
arises because a uniform distribution in one representation of a objective, in this

fltln) =

problem can become non-uniform in another (see Appendix §.A book I've
for an example of this). One of Ed Jaynes’ many contributions was deliberately flouted
showing that by considering natural invariances in a problem you the many

. . . . . conventions o,
can uniquely determine an uninformative prior. These days there are o f
scientific writing

not that many pure frequentists around (although a few still exist). designed o further
This may be due to the force of the Bayesians’ argument. Indeed, this misconception.
in the 1980s Bayesians would argue with a zeal which would put
many evangelical preachers to shame. They would often win the
argument, even if they did not always win friends. The demise of
the frequentist school may also be in part attributed to Max Planck’s
pithy observation ‘science advances one funeral at a time’. Of course,
this remark undoubtedly refers to us all, including Planck himself,
who, despite inventing quantum mechanics, never reconciled himself
to its later interpretations. Perhaps we should not be too depressed by
Planck’s observation for surely there would be little scientific progress
without embracing ideas which are in some ways wrong.
I’'ve digressed. The challenge remains: How do we specify a prior
in our example? Let us suppose the object was an ancient wooden
pipe, which we are trying to date. We think that it is probably old,
but perhaps it is a fake and is actually new. In that case I should
assign some probability to it being quite modern. On the other hand,
I guess it can’t be more than a million years old because our human
ancestors were not up to making pipes. But, to be honest, I don’t
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really know much about ancient homanids so perhaps I should talk
to a palaeontologist (or should that be an anthropologist?). How am
I meant to transfer all my beliefs (many of which may well be wrong)
into a prior probability distribution? Actually, I don’t have to. For our
task we have a relatively sharply concentrated likelihood. Whatever
distribution I assign to the prior outside of the range 10 000-30 000
years is largely irrelevant as the posterior distribution is virtually zero
outside of this range. All I care about is assigning a prior that is
meaningful within this range. If I have no idea about the age of my
pipe in this range, a very reasonable assumption would seem to be to
assign an equal prior probability. This would have been the advice of
Laplace. Rather surprisingly, Harold Jeffreys argued quite convinc-
ingly that a better prior to use would be f(¢) oc 1/¢. In Figure 8.2 we
show both posteriors — they are indistinguishable on this scale.
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We have finally arrived at our destination. We have a probabilistic
description of our uncertainty. Unfortunately, we have two —
maybe the frequentists are right in saying the Bayesian approach
is subjective. So who is correct, Laplace or Jeffreys? In this example,
the information obtained in the measurement dominates my prior
beliefs so the argument of Laplace versus Jeffreys seems of little
importance. However, often we work with much more flexible
models (particularly in machine learning) where the addition of
a prior makes a more significant difference to the result. When we
have a flexible model they tend to over-fit the data so introducing
a prior usually gives a dramatic improvement in performance. We
therefore need a principled method for choosing a prior. We revisit
this question in Section 8.2.2 when we discuss uninformative priors,
and in particular we revisit this example once more in Example 8.5
where we argue for using Jeffreys’ prior.

Bayes

When misused, probabilities can often lead to considerable injustice. A cool-
headed Bayesian can often bring light to bear on such problems.

Example 8.2 The Bayesian Lawyer

Consider a case where there is DNA evidence against the accused in a
criminal case. From past experience it is known that only one person
in a million will match the DNA. There are two common errors
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that occur in interpreting this evidence. The first is the prosecutor
fallacy, which states that since the accused has a one in a million
chance of having a DNA match then with overwhelming probability
the accused must be guilty. However, in a nation like the UK, with
roughly 60 million people, there would be (in expectation) 59 other
people who match the DNA. If the suspect was caught by trawling
a large database to find a DNA match then it is very likely that
the defendant is just one of the expected 59 innocent people in the
country who matches the DNA. The converse of the prosecutor
fallacy is known as the defence attorney fallacy, which asserts that
because there are 60 people in the country who match this DNA then
there is only a one in 60 chance of the defendant being guilty. Thus
this evidence is irrelevant and should be discounted.

To settle this dispute requires a Bayesian lawyer. Let us denote
the event that the accused is guilty by G and of not being guilty by
=G (not G). The event of the accused having the DNA that matched
that found at the scene of the crime we denote by E (for evidence).
Bayes’ rule tells us

P (E|-G) P (-G)
B (E)

P (E|G) ?(G)

P(GIE) = 7 (E)

., P(-GIE) =

The odds of being guilty is the ratio of the probability of being
guilty to the probability of being innocent. The odds after seeing the
evidence is

P(GIE)  P(E|G) P(G)

P(-GIE) P(E|-G) P(-G)

Now the probability of having a DNA match given the accused is
guilty is P (E|G) = 1 — € (where € encodes the small probability that
the accused is guilty but does not have a DNA match because the
investigators accidentally collected the wrong DNA). The probability
of the DNA match given that the defendant is not guilty is 10~6. So
the posterior odds of being guilty is

P (G|E)
P (-G|E)

=(1-¢€)10° #(G) .
P (-G)

In other words, the evidence increases the odds of being guilty by a
factor of approximately a million. However, the posterior odds of
being guilty are largely dependent on the prior odds of being guilty.
If the only evidence against the defendant is the DNA evidence then
the prior odds would be 1 : 60000 000 and the posterior odds would
be around 1 : 60, providing very reasonable doubt. If, on the other
hand, the accused was seen behaving suspiciously close to the scene
of the crime, so that the prior odds would be, say, 1 : 10, then the
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posterior odds would be 10° : 1, and beyond reasonable doubt for
most people.

The Bayesian lawyer provides the only rational way of inter-
preting the evidence. Interestingly, in current English law the use
of probabilities by expert witnesses in persuading juries is strictly
forbidden. Although this seems rather backwards, I have some sym-
pathy for this position, having seen rather a large number of sup-
posed numerate people stumble over Bayes’ rule. In the past, expert
witnesses have made terrible mistakes using probabilistic arguments.
In one notorious case an expert witness assumed the probability of
two cot deaths happening to the same woman was just the square
of the proportion of cot deaths in the country (thus assuming
independence where it is clearly unwarranted). Judges are rightfully
wary of having to adjudicate between opposing expert witnesses
arguing numbers. The counter argument is that people are very poor
at assessing probabilities (a fact that has been shown empirically by
psychologists), therefore it is necessary to guide jurors to make the
correct judgement. However, the poor understanding of probability
may reflect that people have a more realistic understanding of the
unpredictability of the world than most mathematical models. An
example of this is when we have a number of independent pieces of
evidence E1, E», etc. Then

P(G|E\, E, ..., Ey)
P (=G|E, Es, ..., Ep)
P(E|G) P(E|G) P (E.|G) P(G)
" P(Ei[-G) P(Ea|-G) P (E.-G) P(-G)’

Humans are poor at estimating how large or small numbers can
get by multiplying a few numbers together. However, the expert
evidence P (E;|G) /P (E;|=G) is often uncertain. As we have seen in
Example 5.3 on page 84, taking the product of random variables
leads to a log-normal distribution, which can have a huge tail. As
a consequence, the distribution of the log-odds is not tightly con-
centrated. A naive Bayesian might quote the expected log-odds and
deduce that the accused is guilty beyond reasonable doubt. However,
because of the thick tail in the log-normal distribution there may still
be a reasonable probability that the suspect is innocent. Illogical and
fallible humans might just be using their experience of the real world
to come up with better answers than a naive Bayesian lawyer.

The Bayesian detective. For me, one of the great disappointments of detective
fiction is that Sherlock Holmes was portrayed as a logician using the power
of deduction. Alas, deductive logic is a hopelessly feeble tool in a world with
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uncertainty. The only rational way to reason in the world in which we find
ourselves is using probabilities. Conan Doyle would have been more prescient if
he had portrayed the archetypal rationalist as an exponent of Bayesian inference
rather than deductive logic. Of course, Holmes would have suffered the fatal blow
of being labelled ‘a subjectivist’ throughout the first half of the twentieth century,
but in the latter half of that century he would have been exonerated and come
back from the dead. Alas, this was not to be. I digress.

Bayesian inference still rouses considerable passion, with the fundamentalists
asserting that the only rational approach is Bayesian. There is some element of
truth in this; it is the best you can do, provided that you really do it honestly.
But there’s the rub. Being really Bayesian requires that you compute the real
likelihood and use your true prior. However, when you do this you might end
up with a very awkward posterior which might be intractable to compute. Many
‘Bayesians’ cheat and use a convenient likelihood and prior, but then the posterior
is an approximation to the true posterior and any claims of optimality are bogus.
More principled souls use Monte Carlo techniques when analytic techniques
fail, but this often requires a considerable investment in time and can lose the
elegance provided by an analytic but approximate solution. Philosophical dogma
rarely serves science well. The persuasive arguments for or against the Bayesian
approach is its performance in practical application. Undoubtedly, it has had
some notable successes, but many non-Bayesian approaches also hold their own
entirely on merit.

8.2 Performing Bayesian Inference

Given two independent sets of data, D; and D,, we can either compute the pos-
terior using the combined data or else we can compute the posterior iteratively,
by using Bayes’ rule on the first set of data to compute P (’Hi|D1) and then use
this as our new prior to compute the posterior

Fipn 2y = P

This is sometimes referred to as Bayesian updating. If the data came in one data
point at a time then the posterior distribution after the last data point would
become the prior distribution for the next data point. Iterative Bayesian updating
can be useful numerically as the likelihood for many data points

P (H|D) = f[P (H|Dr)

can numerically underflow. This can also be handled by working with log-
probabilities, but in this case the normalisation term log(P (D)) is slightly more
awkward to compute.
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One major difficulty of performing Bayesian updating is representing the
posterior in a convenient form. For a finite set of hypotheses representing the
posterior is relatively straightforward, although there are cases when the number
of hypotheses is so great that representing all possible hypotheses is infeasible.
An example of this would be if we were trying to deduce a DNA sequence given
some data. Since the number of such sequences is 4" it becomes impractical to
represent the probability of all possible sequences as soon as n becomes large (i.e.
much greater than 17'). Even the shortest DNA sequence has n ~ 103 base pairs
so you will have to wait a long time before a direct Bayesian calculation of this
problem is feasible. When we are trying to infer information about a continuous
variable then the posterior will be a density and, in general, it might be extremely
hard to represent the posterior in a convenient closed form.

8.2.1 Conjugate Priors

Fortunately, there are times when Bayesian calculations become easy. For certain
likelihood functions there are so-called conjugate prior distributions, such that
the posterior distribution will have the same form as the prior. That is, if we are
interested in estimating a parameter § and we make some measurement, X, the
likelihood of the measurement is given by a distribution f(X|0) = Dist(X|0)
(this would be a probability mass if X is discrete or a probability density if X is
continuous). If we choose the prior to be of a particular form, f(6) = Conj(8|ao),
then, provided the likelihood and prior are conjugate, we obtain a posterior
which is the same form as the prior

_ F(X[6) £(6) _ Dist(X]6) Coni(tlao)
FOX0=""7xy ~ )
= Conj(6la)

where a; depends on gy and X. This makes life very simple, as performing a
Bayesian update just causes a change in the parameters. Alas, not all likelihood
distributions have a conjugate distribution so this is only possible with certain
likelihood functions. Nevertheless, many of the naturally occurring likelihood
functions have a conjugate distribution.

As an example, consider estimating the success probability, u € (0,1), of
some process (e.g. we want to calculate the probability of a star being large
enough to turn into a neutron star). The data we are given is a sequence of
independent Bernoulli variables X; € {0, 1} (that is, we observe many stars
and set X; = 1 if we believe the star is large enough to become a neutron star
otherwise we set X; = 0). If we choose as our prior distribution a beta distribution
Bet(u|ag, bo) (see Section 2.2.3 on page 34 for details of the beta distribution)
then the posterior after seeing X is given by

1 If Moore’s law continues, with computer speeds doubling every three years, you can add 1 to this
value for every six years after 2018, when this passage was written.
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Bern(X|u) x Bet(u|ao)
X =
f(ulX1) P (X,)
_ (="K o (1 — )Pt /B (ao, bo)
Jo w0 (U )X et (1 )1 Bag. bo) d
)17X1+b071

_ #X1+a071 (1 _

J7

B(ao + X,',bo +1— X,’)
If we make n observation with s successes and f = n—s failures then the posterior,
after seeing all the data, is f(u|s, f) = Bet(u|ag + s,bp + f), so that a, = ap + s
and b, = by + f.

If we have no knowledge beforehand, what is the appropriate prior distri-
bution? That is, what should ay and by be? The maximum likelihood choice is
equivalent to letting ag = by = 1, so that the prior is uniformly distributed
between 0 and 1. However, another possible choice is to let a9 = by = 0,
which is an example of an uninformative prior. It seems counter-intuitive that
this prior, which is proportional to x~'(1 —x)~!, should be less informative than
a uniformed prior, but there are coherent arguments supporting this. We will
discuss uninformative priors in the next section. It should also be pointed out
that this uninformative prior is even improper in that it is impossible to normalise.
Nevertheless, as soon as we have seen sufficient data we obtain a normalisable
posterior. Assuming an uninformative prior (ag = by = 0) then

a, b, sf

_ G _S _ _
Blu = =% = Var[ﬂ]_(an+bn)2(an+bn+l)_nz(n+1)'

We note that our uncertainty in g (i.e. the standard deviation) decreases asymp-
totically as 1/4/n if both s and f are of order n, and decreases as 1/n if either s
or f are of order 1.

= Bet(,u|a0 + X],b() +1— Xl).

|
Example 8.3 Trust Model

We illustrate Bayesian learning by considering the problem of learn-
ing the success probability, i, of a Bernoulli trial from data. An ap-
plication where this is useful is in trying to access the trustworthiness
of someone you negotiate with assuming this person has a strategy
of occasionally being dishonest for personal gain. You are trying to
work out how often the person is dishonest by monitoring your inter-
actions. Let X; = 1 if the person is honest and 0 otherwise. We can use
a Bernoulli likelihood with a beta distribution prior. Figure 8.3 shows
the posterior after 10, 20, and 30 data points — in this example we
chose X; ~ Bern(0.7). Notice that the Bayesian formalism provides
a full description of our uncertainty. We also sketch the form of the
prior distribution, Bet(u|0, 0) —the actual distribution cannot be nor-
malised so it is not possible to put a meaningful scale on the y-axis.
The prior is very strongly peaked around u = 0 and 1. This model is
used in multi-agent systems and known as the beta trust model.
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Figure 8.3 Example of Bayesian updating starting from a prior distribution Bet(u|0, 0). We show
the posterior after 10, 20, and 30 data points. We are trying to learn the success probability for a
Bernoulli trial. In this example, our data is generated according to X; ~ Bern(0.7). Notice that the
prior is unnormalisable — we show the relative proportions of the density away from 0 and 1.

Example 8.4 Expected Traffic Rate
Suppose we want to find the rate of traffic along a road between 1:00
p.m. and 2:00 p.m. on weekdays. We assume the number of cars is
given by a Poisson distribution
. uv o

P (N) = Pois(N|u) = Nre "
where u is the rate of traffic per hour that we want to infer from
observations taken on different days. This is a reasonable model
provided that the occurrence of cars are entirely independent of
each other (which is often a good approximation). Let us assume a
gamma-distributed prior

bgo 'uao—le—boy
I'(a)
The data consists of counts made on different days D =

{N1, N3, ..., Ny}. The likelihood of an observation is taken to be
Pois(N;|u). The posterior after seeing the first piece of data is

f(u) = Gam(ulag, bo) =

F(u|Ny) & Pois(Ni |1) Gam(u|ag, bo)

©) _ 1. —
cx,uNle H o Lo =bop

g yNirao—le (oD & Gam(plag + N1, by + 1)

(1) Using Bayes’ rule. We ignore the evidence P (Nl) as it is just a
constant.

(2) Keeping only terms that involve the parameter u, whose poste-
rior we are inferring.

(3) Rearranging terms.

(4) From the functional form of Gam(u|ay + Ny, b + 1). In fact,
as f(u|Np) is a probability distribution it must be equal to this
gamma distribution.

Thus, the posterior is also a gamma distribution Gam(u|a;, b) with
ay; = ag+ Ny and by = by + 1. We assume ay = by = 0, thus our prior
is f(u) o< 1/u. We show later in this section that this corresponds to
a totally uninformative prior. We simulate the situation with u = 5.
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In Figure 8.4 we show the (unnormalised) prior followed by the
posterior after seeing 1, 2, 3, 10, and 20 data points. We see that the
posterior becomes more concentrated around the true value of .

In a real situation the parameter u may vary for different days in
the week. In such a case, the posterior will not converge to a delta
spike, but rather to a distribution. Worse, the distribution may not
be stationary. That is, over time the distribution may shift slightly
as the number of cars on the roads increases (or perhaps decreases).
In all these cases our model does not perfectly capture reality (but
then models never do). We could adapt our model to make it more
accurate, but we may not be too worried about capturing everything.
For a rough estimate of the average number of cars that pass in a
weekday, our model will often be quite sufficient.

There are quite a few conjugate distributions. Table 8.1 lists some examples
of conjugate distributions. It is just a question of algebra to prove these are
conjugate and demonstrate that the update rule for the parameters are correct.

Updating normal distributions. We haven’t included the normal distribution
as it is slightly more complicated so the results don’t easily fit into a table. When
dealing with conjugate priors it is more convenient to work with the inverse
variance or precision, T = o 2. If we are trying to estimate the mean, u, of a
normal distribution with known precision, 7, where the likelihood of the data
is also normally distributed, starting from a prior N(u|uo, 7, 1Y and given data

Figure 8.4 Example
of Bayesian
inference of the rate
of a Poisson process.
The (unnormalised)
prior distribution
and the posterior
distributions after 0,
1,2, 3,10, and 20
data points are
shown. The data was
drawn from a
Poisson process with
arate of u = 5.



Table 8.1 Examples
of conjugate
distributions. In the
case of a
multinomial
likelihood the
probabilities are
confined to an
k-dimensional unit
simplex and the data
to the discrete
simplex AK. We have
omitted the normal
distribution which
we discuss below.
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Parameter Data Prior Likelihood  Posterior
0 x /() f(x]6) f(0]x)
pe(0,1) ke{0,1,....,n} Bet(p|ao, bo) Bin(k|n,p)  Bet(plap +
k, bp +n — k)
e 0,00) nef0,1,...}  Gam(u|ag, bo) Poi(n|u) Gam(u|ag +
nby+n)
p € A n € Ak Dir(p|e) Mult(n|n,p) Dir(p|a +n)

X1 ~ Mu, 1) we obtain a posterior
_ _ T T
S X1) o MX | 77" Mo, 757') o exp(—E(Xl —n) = - #0)2>

T+ T
X exp <(20)#2 +p (7 Xy + To#o))

2
O(exp<(r+1'o) (# X +To,u0> ) o Mulu, 77

2 T+ 7

where
T X1 + 719 Mo _ T X1 + 10 Mo

T =T+7, M=
T+ 7 T

Note that in this derivation we kept all terms that depended on u. All other terms
are just constant, which can be deduced at the end because we know the posterior
must be normalised. If we now repeat this exercise using N(u|ui, 7, 1) as our
prior and perform a Bayesian update with a second data point X,, we find the
posterior is equal to M{(¢|ua, 7, 1), with

TXo+ T T(X1+X32) + 7
T=T+17=27+1, o = 2rOm (X 2) 0Ho
Tz ]
Given n data points the posterior will be M u|u,, 7,), with
nT i+ 70 o

Tn =Nn7T+ 7, Mn =
Tn

where

=

X;.
i=1

fi=

S |-

Using an uninformative prior 7y = 0, we find 7, = nt and p,, = o. Thus, E [u] =
g and Var[u] = 1/1, = o?/n where o> = 1/7 is the variance of the normal
distribution whose mean we are trying to estimate.

In the calculation above we assumed that we knew the variance (or precision)
in the data even though we did not know the mean. The commoner situation is
when you try to estimate a normally distributed random variable and you know
neither the mean or variance (precision). For example, suppose we weigh a set
of n objects (e.g. one-year-old pigs) where X; is the weight we record. We assume
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that the likelihood of a data point X; is given by N(X;|u, 7) — i.e. it is normally
distributed with unknown mean and variance. A conjugate prior for u and 7 is
the normal-gamma or Gaussian-gamma distribution defined by

F (7| pos o, ag, bo) = N(p|po, (uo 7)™h Gam(7|ag, by).
Plugging this into Bayes’ rule we find the posterior is
fl7lX1) o MXi |, 71 Mulpo, (o 7)~") Gam(zlag, bo)
x ﬁe—%(xl—ﬂ)z % ﬁe—%(#—uo)z « 90—l g=bo7

o T exp(—g ((Xl — ) +uo(p — po)* + 2190))

o \ﬁeXp<—(u0+l)T (ﬂ— Ao fo +u0'u0)2>

2 u0+1

2
ag—1 _ uo(X1 — po)
X T 2exp< <b0+2(u0+1) T

= Mulu1, (u 7)1 Gam(z|ay, by) = f(u, 7|1, w1, ar, by)

where
X1+ up po
= —— = +1
M1 o+ 1 Ur = uo 5
uo (X1 — po)?
= + =, b1 =by+ ———M——
a=aTy L= g + 1)

(Although this is cumbersome it is not complicated; we just multiply our likeli-
hood (a normal) by our prior: a normal-gamma distribution. We then have to
group together terms in u and 7. The most complicated part is completing the
square in the exponent.)

If we have a collection of independent data points (X;|i = 1,2, ..., n)
with empirical mean 4 and variance 6> whose likelihoods are all normally
distributed then the posterior would be a normal-gamma distribution,
Sy, A ptny tn, an, by), where

up po +n fl

= —_ = —+
:un u0+n bl un u() na
n 1< N2 Mon(ﬂ_#0>2
=ap+ =, by, =by+ = Xi — + .
dn=doT 5 n=bo+s ) (Xi— i) 2 (uo + 1)

This can be proved by induction using the Bayesian update formula for a single
data point derived above. For an uninformative prior we require f(u, o) « 1/o
(see next section). Through the standard change of variables formula (recall that
7=1/0%)

dr=172
dr

1

d
fux (1.7) = fr () m 1P !




204 Bayes

The uninformative prior for the normal distribution is obtained by taking ay =
by = uy = 0 (ug is irrelevant). This is equivalent to a prior of f(u,0) ~ 1/o.
Then

R n 1 ~
Hn =M= ; E_l Xia Up = n, an = E, bn = E E (Xl — /,[)2
or

flu, 71Xy, Xoy .oy Xn) = Nul7, (n‘r)_l) Gam(‘r’%, %)

% n—1 nt " T
iﬁz@(n) (5) =T e T ey
Tz

where S = 37, (X; — 2)?. We explore the marginal distributions and the expected
values of the posterior in Exercise 8.4.

It seems an overly complex business to infer the mean of a normally distributed
variable using Bayesian inference, but the approach follows a very standard
pattern. When we don’t know the precision (which is very often the case) then
we are forced to infer it. We do this by assuming a distribution over the precision
(in this case a Gamma distribution). This introduces a new set of parameters
(often called hyperparameters), uy, ag, and by. We can use Bayesian update rules
to infer these (hyper)parameters.

Multivariate normal likelihood. There are multidimensional generalisations
of the conjugate distributions. Assume a d-dimensional normal distribution for
the likelihoods NM(x|u, A~!) where A=! = X is the precision matrix, then the
conjugate prior distribution for the mean p is again a normal distribution, while
the conjugate distribution for the precision is the Wishart distribution

-1
WAIW, ) = BA|-D/2-1e—Tr (W™ A)/2

where Tr(+) is the trace of the matrix and B is a normalisation constant given by

B= !
= — 7 —.
|W|V/2 ovd/2pd(d 1)/4] [i:l r(%)

The Wishart distribution can be viewed as a multidimensional generalisation of
the gamma distribution where instead of a single random variable we now have
a matrix A. The conjugate prior is given by

(1, N, uo, Wo, o) = Np|po, (g N)~") WA Wi, vp).
Substituting in the likelihood and prior we find a posterior of the form

Flu, NX) = Nplpy, (ur A~ WIAW, 1)
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where
uo o +x ‘1
= up =u ,
Hy o + 1 1 0
1
-1 _ —1 T _
W, =W, +72(u0+1)(“0X+/10)(140X+ll0) ; v =1 +d.
For n data points the posterior becomes M |p,,, (un N)~H) W(NW,,, 1)
i
n:w’ un=M0+n, yn:y0+nd’
uy+n

with fi = % > X;, and finally

0°—<u — o) (it — o).

Conjugates for the exponential family. For any likelihood distribution from
the exponential family

fxln) = h(x)g(x)e'TT"(x)

there exist, a conjugate distribution

f(nlxos vo) = f(,\/,yo)g(q)”oeVoﬂTxo

where f(y,v) is a normalisation constant. Given data D = (x;|i = 1 ...,n) the
posterior is proportional to

f@ID, xo. vo) o< g(m)"""™" exp (nT (Z u(x;)+ VOXO))

i=1
which follows from inspection. The posterior therefore has the form f(n|y,,, v»)
where

1 n
Up =g+ 0, Xn=V0+n<1/0XO+Zu(xi)>.
i=1

Conjugate distributions clearly makes Bayesian updating very simple, but in
many real applications the likelihood may not have a conjugate prior or if it does
the conjugate prior might not accurately encode our prior knowledge.

8.2.2 Uninformative Priors

The Bayes formalism requires us to specify a prior that encapsulates our prior
knowledge. If we have no prior knowledge then we should use an uninformative
prior (also called a non-informative prior). Given a likelihood distribution f(x|6),
what is an uninformative prior for 6? It may seem that weighing every value of 6
equally, so that f(0) = const, would be maximally uninformative. However, what
we regard as a constant depends on how we parametrise our distribution. For
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example, if we change variables from 6 to = A° then our uniform distribution
would change according to

fa(d) = fo(0) ‘jz = fo(A%)32% x 22

which is no longer a constant. If we are to set a prior distribution to a constant
we must be careful what parametrisation we use (see Appendix 8.A on page 256
for an example of this).

This is a subtle issue that can lead to apparent paradoxes if you don’t choose
the correct parametrisation. Ed Jaynes showed that the trick to choosing an
uninformative prior is to consider the desired invariance properties. We illus-
trate this with a number of examples. There are many likelihood distributions
where

Ix(x|p) = g(x — p)

for some function g(-). In such cases u is known as a location parameter. The
obvious example of this is where u is a mean and the likelihood is a function
of the Euclidean distance from the mean (as in the normal distribution). These
densities exhibit a translation invariance because if we make the shift x’ = x — ¢
and ¢/ = u — c then

Ix(X|W) = fx(x|p) = g(x — p).

For an uninformative prior, we would like to choose a probability density that
respects this invariance by assigning the same probability for u to be in the
interval (A, B) and in the interval (A — ¢, B — ¢). That is,

P(A<u<B)=P(A—c<u<B-c)

/BAfu(u)du = /AC fu(w)du = /:f#(ﬂ_ ¢)du,

B—c
which holds for all choices of A and B if

fu(ﬂ —c)= fﬂ(#)’

which implies f,(u) is constant. There is a complication here in that when y €
(—00, 00) (which is necessary for translational invariance) it is not possible to nor-
malise f,, (). This is an example of an improper distribution. If i represented the
unknown mean of a normally distributed random variable, then the conjugate
prior would be M| po, 03) and we obtain an uninformative prior by taking the
limit 0'5 — o0o. Although this distribution is improper, after viewing some data
we would end up with a proper posterior. Of course, in almost any conceivable
real-world problem we usually have some bound on y, so any paradoxes that
are caused by improper priors are not likely to manifest themselves in the real
world.
We get a more unexpected result if we consider a density of the form

fx(xlo) = 2 8(%)
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where o > 0. We note that provided fx(x|1) = g(x) is normalised so will
fx(x|o) be. The parameter o is known as a scale parameter. As our notation
hints, the prototypical scale parameter would control the standard deviation of
a distribution. The probability density has a scale invariance in so far as its value
remains unaltered if we make the change of variables x’ = cx and ¢’ = co.
This invariance corresponds to a change in scale, for example from kilometres
to inches. If we really have no idea about the scale of a variable then we should
assign the same probability of o lying in the interval (A, B) as in the interval
(A/c, B/c). If this wasn’t the case, and there was a higher probability of being
in the kilometre range rather than the inch range, say, then we would have some
prior knowledge of the scale. Thus, in the uninformative case we require

P(A<o <B)=P(A/c <o < BJc)
B B/c B , /
| terar= [ po@rar= [ 1h (%) ao

Alc A €

which has to hold for all A and B, implying

folo)=¢fo (%)
Differentiating both sides of ¢ f, (o) = fo-(0-/c) with respect to ¢ we find 24 2B

folo) = £ 15(2),
setting ¢ = 1 we get f-(07) = —o fL.(0). Or
folo) _ dlog(folo)) _ —1

fo (o) do o

on integrating we find f-(07) o< 1/o. We can also verify directly that f, (o) x
/o satisfies the relation ¢ f,(07) = fo(0/c). This distribution is known as the
Jeftreys’ prior after Harold Jeffreys who first proposed it. Again this is improper.

This may seem to be of entirely theoretical interest, but it has a startling real-
world manifestation. Most naturally occurring numbers are scale invariant. This
is true whether they are physical constants or they are monetary values appearing
in accounts. This shouldn’t be entirely surprising since we rarely choose the units
we measure in to suit the quantity we are measuring. Thus the occurrence of
numbers tend to be distributed, at least approximately, in inverse proportion to
their value. That is, f(x) o« 1/x. A consequence of this is that when we write
numbers in decimal notation then the probability of the most significant figure
beingn € {1, 2, ..., 9} is not uniformly distributed. If we rescale x by a suitable
factor of 10 so that it lies in the range 1 < x < 10 (which doesn’t change the
probability distribution due to its invariance property), then the probability of
the most significant figure is

f:ﬂ Ldx  log(n+1) —log(n) n+1
10 = = Og10<> .
fl ;dx log(IO) n

This is known as Benford’s law. It provides an excellent fit to data taken from
many sources. The frequency of occurrence of n as the most significant figure is

P (most s.f. of x = n) =
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Frequency of
occurrence, f(n), of
the most significant
figure, n, as predicted
by Benford’s law.
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shown in Figure 8.5. Note that it predicts that numbers beginning with 1 occur
log(2)/10g(10/9) =~ 6.6 times more often than numbers beginning with 9. Ben-
ford discovered his law by noticing the unequal use of logarithm tables — all the
pages with low numbers seemed to be more worn than those for higher numbers.
This strange behaviour of numbers is currently used to detect fraud in accounts.

If this is the first time you have seen this then your reaction is probably that
it can’t be true. Let us therefore review the argument. Consider a (non-negative)
random number, X, measured in some arbitrary units. The assertion I'm making
is that if the units are chosen independently of the variables then I cannot have
any expectation about the scale of X. In other words I should believe that X
is as likely to lie in the interval (A, B) as in the interval (10 A, 10 B). Now that
seems strange since (10 A, 10 B) is 10 times bigger than (A, B), however that is
what [ am saying. It is as likely to be in the millimetre-length scales as to be in the
centimetre-length scales as to be in the metre- or kilometre-length scales since the
unit of distance (metres in SI units) was not chosen to make our measurement to
be around 1. The only way for this scale invariance to be true is if the probability
density for X is 1/x. If you accept that the probability distribution is 1/x then
Benford’s law follows. If you still don’t believe it try it out on some real-world
data (see Exercise 8.5 for an example, although it doesn’t matter much what data
you use).

|

Example 8.5 Carbon Dating Priors: Example 8.1 Revisited (Again)
In Example 8.1 on page 192, we tried to infer a probability density for
our belief about the age of a wooden pipe based on measurements of
the number of radioactive decays of carbon 14 that occurred in one
hour. We argued that there was a smallish probability that the sample
was new and that it was surely less than 1 million years old. Two
plausible priors are shown in Figure 8.6, with a 10% chance of the
pipe being 10 years old and zero probability of it being greater than
1 million years old. We also show the uninformative prior (which
we cannot properly normalise). Using an uninformative prior clearly
does not substantially alter the computation of the posterior.

We saw in Figure 8.2 on page 194 that in practice it made almost
no difference whether we went with Laplace or Jeffreys. But to avoid
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(a) Laplace (b) Jefferys
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the accusation of being subjective we must choose. Jeffreys’ prior
very slightly decreases our estimate of the age of the pipe. It hurts
my intuition to go with Jeffreys, but I cannot see why the scale
invariance argument does not apply. I really have no idea whether
I was expecting an answer in the range of thousands of years or tens
of thousands of years. Rather reluctantly, I have to ditch my intuition
and go with Jeffreys. My nervousness in doing this is assuaged by the
fact that I’ve tested Benford’s laws on a lot of different data sets and
it always seems to match the data very well despite my intuition that
it shouldn’t be true.

We finish this section by considering the problem of assigning an uninforma-
tive prior probability to numbers that lie in the range between 0 and 1. This
might be a probability of a probability. Earlier in this chapter (Example 8.3)
we gave an example of the beta trust model where we tried to predict the
probability of being honest, f(X = 1) = u. A natural assumption is that the
prior probability for u should be uniformly distributed between 0 and 1 —indeed
this is the assumption made by the founding fathers of the subject, Bayes and
Laplace. However, there seems to be something very special about the end points.
If T wanted to encode my belief about the probability that a unicorn might
appear at the bottom of my garden, then after making 10 failed observations
I would like to conclude the probability is overwhelmingly likely to be zero
(unicorns don’t exist) — using a uniform distribution, my expectation of there
being a unicorn would be 1/12. Ed Jaynes has argued that the correct prior is not
uniform.

The argument is a bit tricky and can safely be skipped, but it has its elegance.
Jaynes asks us to imagine a population of people all with different prejudices
about the probability of success. For example, Ms Q holds the belief that
f(X = 1|Q) = po based on her prejudices. Now we provide to each member
of the population some additional piece of useless information, £ about X.
Each member of the population will update their prior belief depending on their
prejudice (that is, the new information might increase the belief that X happens,
decrease it, or leave it unaltered). The posterior probability for Ms Q is

fX=1)f(EX=10)
f(X=1)fEX=1,0)+ f(X =0) f(£]X =0,0)

H=f(X=1EQ)=

Figure 8.6 Two
plausible priors
together with the
likelihood shown on
a log-log scale. The
dotted lines show

a completely
uninformative prior
according to (a)
Laplace and (b)
Jeftreys.
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Denoting a = f(€|X =1,0)/f(€|X = 0, Q), this can be written

’ ap

K= l—pu+ap

Jaynes argues that for a totally confused (i.e. maximally uninformed) population
this new piece of information should not change the distribution of the whole
population, they are all just guessing based on different sets of prejudices. That
is, the proportion of people, f,/(6), with belief u' = 6 after seeing the additional
information should be the same as the proportion of people, f,(6), with belief
u = 6 before seeing the evidence. Now

f,,/<e>2/016(9—‘”‘) fulw) dp

l—u+au
2 (|85 (0 )
Jo |dy Ko avo—ag) /W oH
d 0
| (o =as)
y a+0—af

@ a ¥ 6
S (a+0—a0)2 "\ a+6—ab

(1) Using the Dirac delta function to express a change of variables.

(2) Solving 6 = 1—Zfa,4 for u we find 4 = ——. We also use the property
of the Dirac delta function 6(y — g(x)) = |[dg~'(y)/dy|6(x — g1 (y)) (see
Appendix 5.A on page 103).

(3) Performing the integral.

(4) Taking the derivative of u = ﬁ with respect to 6.

If we require f,/(0) = fu(6) then

1
0 —.
The easiest way to see this is to show that if f,(6) is proportional to ﬁ then
so is f,(6) (just plough through the algebra). An alternative is to differentiate
with respect to a the equation

af, (9) = (a+6—a6) £,(6),

a+0—ab

then setting a = 1 we get

0 (1—0)f(0) = (20— 1) £ (6).

Solving for f,(#) we obtain the form given above. Once again this is an improper
(i.e. non-normalisable distribution). It has the nice property that for a set
of n independent Bernoulli trials with s successes the mean of the posterior
distribution is E [,u] = s/n, in accordance with common intuition. Had we used
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a flat distribution then the mean of the posterior would be (s + 1)/(n + 2), which
is less intuitive.

Improper Priors

Interestingly, the uninformative priors for the classic continuous distributions all
appear to be improper. That is, they are not normalisable. This seems shocking as
we are plugging in distributions into our formulae which aren’t well defined. Yet
once we have some data our once undefined priors give perfectly well-defined
posteriors. All seems well. However, one needs always to be a bit cautious of
things that are undefined. A better approach is to see these priors as limits of well-
defined priors. Thus, we can think of the uninformative prior for probabilities
to be

. N (e
() = lim B = lim = ——
Fuior (1) = lim Bet(ple, €) = lim B(e,€)

where € > 0 and B(a, b) is the beta function defined in Section 2.2.3. For this
particular prior, if we see n failures then the posterior remains improper

e—1 n+e—1
: o (-
fail =1
S (u|n failures) lim Ble.)
which has mean
B(l1
B[] = lim 20 XEMTE) €
e»0 B(e,n+e) e—~0n

where we have used the fact that B(a,b) = I'(a)T'(b)/T(a + b) and T'(a + 1) =
aT'(a). We couldn’t reach this conclusion without defining the prior in terms
of a limit. This conclusion accords with the intuition that I would like to say
the probability of there being a unicorn in my garden is zero. It doesn’t seem
so logical if I wanted to conclude that football team A will always beat football
team B if the only data I have is that football team A has beaten football team B
once. However, in this case I have a lot of prior information (football often has
a large element of luck, and football teams change over time). Indeed, in most
cases if we had absolutely no prior beliefs we probably wouldn’t be able to make
an observation. For example, if we are measuring a position of an object that
really could be anywhere then we wouldn’t know where to make the observation.
Similarly, if we really didn’t know the scale of an object we were measuring, it
would be difficult to build an instrument to measure it. Thus, improper priors are
usually just helpful mathematical devices saying that our prior knowledge is so
weak that it is not worth bothering to specify them — that is, our measurements
will dominate the weak prior information we have.

8.2.3 Model Selection

When we first introduced Bayes’ rule we said that the evidence term can be used
to perform model selection. We illustrate this in the following example.
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Example 8.6 Binomial or Poisson Distribution?

We present a somewhat fabricated example where we are given a
set of data D = (K|, K>, ..., Kx) and we have to decide whether
this is best modelled by Poisson likelihood, Poi(K;|u), or a binomial
likelihood, Bin(K;|n, p). We denote these two models Mp,; and
M in, respectively. For the Poisson model the joint probability of
the data and p, given the model, is equal to

P (D, u|Mpoi) = Gam(plag, by) H Poi(K |u)
KeD

bgoﬂao—le—bop /JK e H

- ['(ap) KeD K!

Denoting S = } ;. K and letting N be the number of data points,
then the evidence is equal to

bao 1 oo
P(D N\ — 0 S+ag—1 o —(N+by) u
(DIMroi) = as <H K!>/o u e dp

KeD
_ Hi T (S + ap)
[ao) \ AL K1 | (W bg)sen

Numerically, the evidence is likely to underflow (i.e. the numbers
become so small that they are set to zero). To prevent this it is more
useful to work with the log-evidence

log(P (D|./\/lp,,l-)) =qy log(bo) - log(F(a )) —(ap+S) log(N + bo)

+log S+a0 Zlog K+1
KeD

where we have used the fact that K!=T(K + 1).

A second possible model of the data is that it comes from a
binomial likelihood, Bin(K;|n, p). We suppose we know n. How we
would know n without knowing that the data is binomial distributed
makes little sense; nevertheless, as a very simple example of using the
evidence framework let us suspend our scepticism in the rationale for
doing this test. The joint probability of the data and p is given by

P (DnP|MBin) = B(p|a09b0) H Bil’l(K|l’l,p)
KeD

_p (1= p)! n e
= Bl o) 11 <K>pK(1—p) K
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Again denoting S = )., K, then the evidence is equal to

P (D|Mpin) =

1 n
= m (J;[D <K)> B(S+ap, Nn— S+ by).

Again it is more convenient to work with the log-evidence
log(P (D|Mapin)) = — log(B(ag, by)) +log(B(S + ap, Nn — S + by))

~Nlog(n+1) = Y log(B(K +1,n—K +1))
KeD

where we use () = ((n+ 1)B(K +1,n— K + 1))_1.
To compare the two models we considered the log-odds of the

evidence
P in
log 7(D|MB ) .
P (D|Mpoi)

Although it is usually innocuous to use an improper prior, for model
comparison we can’t use an improper prior because then the evidence
diverges (the posterior is well defined, at least if we take the limit,
because the divergence from the prior and evidence cancels). To use
the evidence we choose ay = by = 0.001 in both models. This choice
will just shift the log-odds curve up or down. In Figure 8.7 we show
the log-odds for two different data sets: Dp;,, where K; ~ Bin(30,0.3)
and Dp,; where K; ~ Poi(9).

The two distributions Bin(K30,0.3) and Poi(K|9) are quite sim-
ilar so it requires a considerable amount of data before we have firm
evidence which model is preferred. However, after 1000 data points
we see that the correct model is more than 10'° more likely than the
incorrect model.
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Model selection is more frequently relevant when the underlying mechanism
generating the data is unclear. We might be making a measurement with some
piece of equipment, but are unsure how best to model the errors. In this case
we usually have a complex likelihood and computing the model evidence is non-
trivial. In such cases we often have to resort to Monte Carlo methods to compute
the evidence.

8.3 Bayes with Complex Likelihoods

So far we have considered classical Bayesian calculations where the likelihood
has a conjugate distribution. This occurs in a number of important and natural
situations. However, in many situations we gather data from rather intricate
experiments where the likelihood of the data is not a simple function. In such
cases, even if we start with a nice prior, our posterior is likely to be extremely
cumbersome.

8.3.1 Hierarchical Models

One common way in which models become more complex is when the random
variables are generated from different distributions. That is, we have a number of
separate observations X;, each of which might be generated by a distribution
with different parameters X; ~ fx,(0;), where the parameters, 6;, come
from some other distribution 8; ~ fg(0;|57). The parameters 5 are known as
hyperparameters and they may have some hyperprior f; (n).

Example 8.7 Basins of Attraction

Many optimisation problems have a huge number of local optima
(this is what usually makes optimisation difficult). It is of interest to
estimate the number of local optima at different cost levels. However,
for even medium-sized problems the number of configurations is so
large that we cannot exhaustively examine the whole search space
to count the number of optima. What we can do is choose a large
number, N, of starting points and run an optimisation algorithm
until we have reached a local optimum. If we do this many thousands
of times we can obtain a count, X;, of the number of times we visit
each local optimum, i, that we have found (of course, there may
well be many local optima we have not found). Now we can model
the probability of reaching a particular local optimum by a Poisson
distribution X; ~ Poi(4;), where A; = N p; and p; is the probability
of landing in the basin of attraction of local optimum i. Typically, p;
will be different for different local optima. A reasonable assumption
is to suppose that for a given cost the distribution of probabilities
could be approximated by a beta distribution p; ~ Bet(a, b).
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This would be a simple hierarchical model where a and b are
hyperparameters. As a, b > 0, we could impose a gamma distribution
hyperprior or use the uninformative hyperpriors f(a) « 1/a and
f(b) < 1/b. Using the Bayesian formulation we can obtain a pos-
terior for f(a,b|{X1,Xz,...}) and from that estimate the expected

number of local optima, many of which we have not observed.
|

To construct a probabilistic model it often helps to think up a mechanism that
will generate the data. This often leads to a hierarchical model in which there is
a series of processes that lead to the observed data. The source and intermediate
stages are typically not observed and their parameters have to be deduced. This
is usually done by maximising the likelihood of the observed data. We return to
the problem of constructing generative models in Section 8.4 when we consider
latent variable models.

When we have hierarchical models or complex likelihoods for some other
reason, being Bayesian is a lot more work than when we had simple conjugate
distributions to work with. There are two distinct approaches to overcoming
the problem described above. The first is to use Monte Carlo techniques and
in particular Markov Chain Monte Carlo (MCMC). We defer a discussion of
that until later (see Section 11.2 on page 317). The second approach is to perform
approximate inference. This is cheating and we lose any claim to optimality, how-
ever, it often provides a reasonably good solution with less computational effort.

8.3.2 MAP Solution

The simplest approach is to give up on a fully probabilistic treatment and instead
look for the most likely solution. That is, we seek the hypothesis that maximises
the posterior. This is the Bayesian equivalent of maximum likelihood and goes
by the name of the maximum a posteriori or MAP approach. Since the evidence
doesn’t depend on the hypothesis we only need to consider the likelihood and
prior. Furthermore, we don’t attempt to get a full description of the posterior,
but just the hypothesis that maximises the posterior. It is often easier to work
with the log-posterior. For a discrete problem,

MAP Hypothesis = argmax log(P (H;|D))
H;

= argmax (log(P (D|H,<)) + log(P (H,))) )

i

while for continuous variables
MAP(x) = argmax log(f(x|D)) = argmax (log(f(D|x)) + log(f(x))>.

(Note that argmax f(x) denotes the value of x that maximises the function f(x).)
X

The log-prior log(P (H;)) or log(f(x)) acts as ‘regulariser’, making the MAP
solution more robust when there is limited data, and we are using a flexible model.
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Example 8.8 A MAP Recommender

Recommendation systems have become ubiquitous on the web to
help with the information overload from which many of us suffer.
One common form of recommender systems are so-called collabo-
rative filtering techniques that use ratings supplied by their users to
produce personalised recommendations. The key idea is that users
who rate items similarly to you can be used to recommend items
which you have not seen.

We denote the set of users by U, and the set of items by Z. The
users have supplied ratings for some of the items R = (ry;|(u,i) € D)
where D C U x Zis the set of user-item pairs which have been rated.
Typically the ratings will be on some scale, e.g. r,,; € {1, 2, 3, 4, 5}.
In large systems it is usual for the number of ratings to be quite sparse
in the sense that |D| < |U| x |Z|, with a sparsity of less than 1%
being common. A reasonable first guess at a rating is to use either
the mean rating of the item 7; or the mean rating of the user r,,. We
can incorporate both these using a rating 7; + 7, — 7 where 7 is the
mean rating for all the items

_ 1 _ 1 1
}’1‘2727“,‘, ry = Zruia r=-—— Z Tui,
| = |Zu| ; D] <

u€eU; i€ly (u,i)eD
where U; = {u|(u,i) € D} is the set of users that have rated item i,
and Z,, = {i|(u,i) € D} is the set of items that have been rated by
user u. These mean ratings do not, however, take into account users
with similar tastes. To do that we try to infer the residue ratings

fuizrm-—fi—fu+f.

We can imagine the residues as being components of a residue ratings
matrix R. The problem of predicting the residues is thus a problem
of matrix completion. That is, we know the residual ratings 7,; at
positions (u,i) € D in the matrix R. Our task is to infer the values of
the residual ratings at the other positions (u,i) ¢ D.

One of the most effective means of solving the matrix completion
problem is to look for a low-rank approximation. There are many dif-
ferent ways of accomplishing this. Here we consider approximating
the residue ratings matrix by

R~ABT

where A is a [U| x K matrix and B is a |Z|] x K matrix (we get to
choose K). Thus R is approximated as a || x |Z| matrix of rank K. We
can determine the rank, K, empirically using a validation set. We are
finally in a position to make this inference problem probabilistic. We
now assume that the elements of A and B are normally distributed
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Aur ~ NO, %) B ~ N(0,07).

This provides a prior distribution over the elements of A and B.
The parameters o7, and o7 encode the variation in the user’s ratings
and the item’s ratings. These could either be estimated empirically
or treated as hyperparameters to be optimised by measuring the
generalisation performance on a validation set. We assume that the
likelihood of the ratings are given by

0,0 >

fRIAB) = ] N(rm Z Auk Buk
rui€R
where o~ measures the error in the rating (due to the inconsistency of
the rater and the discretisation of the rating scale). The log-posterior
is (up to a constant) equal to

2

2
- Zf:l Auk Bik)

log(f(A.BIR)) = — 3 (v
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r,”-GR
K 2
I
3
weld k=1 2(TU iz o1 291

The MAP solution cannot be computed in closed form. However,
we can solve this problem iteratively. We initialise the elements of
B (for example, by drawing the components B;; from the prior
distribution A0, o7)). We then maximise the posterior with respect
to the elements of A,j. Setting the partial derivative of the log-
posterior with respect to A, to zero

dlog(f(A,B|R)) B Z (rut >t Auk lk’) Auk 0
0 Auk ) i€Z, o oh
we find
K
Z Ayxr ( 5 Z By Bik + [[ ]]) Z Bir riu.
k=1 €Ty, i€Z,

Defining the matrix C* and vectors v* and a“, such that their
components are given by

Cl?k’ Z B;i Bix + [[k/ k]] V]L: = Z B riu, az = Aur,
i€Zy, i€y,

then a* = (C*)~!y*. That is, for each user we find a row of A by
inverting a K x K matrix. Similarly, once we have optimised the log-
posterior with respect to A, we can then optimise it with respect to
B. Following a similar calculation we find the i row of B, which
we denote by b' (with components Bjy), is given by ' = (D¥)~!

where D is a matrix and w’ a vector whose components are equal to

217



Figure 8.8 Schematic
illustration of a
sharply peaked
posterior and a
broad posterior.
Also shown is both
the MAP solution,
Om ap, and the
mean of the
posterior, 6.
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i o i )
Dkk’ = u%;{ Aurr Aur + 0’% IIk = k]l , Wy = u%;[ Auk Tiu-
To maximise the posterior we iterate between maximising A and
B. Such a procedure only guarantees that we converge to a local
optimum of the posterior. In practice, this convergence is found to
be relatively quick. For matrices where we only have data on a small
proportion of elements the whole procedure is quite efficient as it
only involves computing sums over the ratings that exist. Note that
the priors ensure that the matrices C and D are positive definite and
thus invertible. On a number of data sets where this approach was
tested excellent performance was obtained.

|

The MAP solution is just a hack. That is, it often gets us an answer much more
easily than by computing the full posterior, however it has no statistical relevance.
When the posterior is sharply peaked (i.e. we have a reasonable amount of data
or a good prior) then the MAP solution is often adequate. But when the data is
ambiguous then the posterior may not be sharply peaked and the MAP solution
may be poor. A better estimate in such cases may be the mean of the posterior
(as opposed to the mode) — see Figure 8.8. Particularly in high dimensions the
mean of the posterior distribution is very often significantly different from the
MAP solution.

fe(0D) fe(0ID)

T 0 T T 0
Orrap =0 Orapr O

It is worth observing that the MAP solution depends on the representation of
the variables. That is, if we make a change of variables § — ¢ so that

do(¢)
d¢
then the MAP solution in terms of ¢ is given by fg,(¢uar) = 0, but
dfo(¢) _ dfe(6(¢)) d*6(9)
de d¢ de?

so in general Oy,p # 0(Puar)-

fo(8) = fo(6(¢))

+ fo(6(4))

Example 8.9 MAP Solution for Normal Deviates

We saw earlier that for data D = (X, X», ..., X,,) where X; ~
M, 1) then the posterior distribution assuming an uninformative
prior is given by
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fur (1 7|D) = Nptlptn, (n 7)™ 1) Gam(7]2, )

L (S> I T

T Varr(3) \2

where 4= 157" X;and S = 31| (X; — 2)%. The log-posterior is

n— .
10g(fur (1, T|D)) = log(7) — — (1 — f1)* — TS + const.

To find the MAP solution we set the derivatives with respect to u
and 7 equal to zero. From the derivative with respect to u we find
twar = [ Setting p = g and taking derivatives with respect to T we

find
dlog(f(4.7D)) n—1 S
dr - 27 2
so that 75,4 p = 15 S0, (X; — @)% Since 7=! = o2 we might be

pleased at this answer — we have obtained the unbiased estimator of
the variance.

As an aside, note that to compute the MAP solution we need
not have computed the posterior. The likelihood of the data is

S(Dlu, 7) = [TiZ; f(Xi|p, T) where

T Ty N2
f(Xi|/l,T)=\/;e 3 (Xi—n),

the uninformative prior is

£ (.7 lim Nulpo, (7)) T(rle, €) o \E% _

so that our log-posterior is (up to a constant)

log(f (. 7|D)) = glog(r) — % Z(X, —u)? - élog(r) .
i=1

Taking derivatives we obtain the same result for the MAP solution,
but avoided the complication of writing down the posterior.

Returning to our problem of computing the MAP solution.
Suppose we considered the posterior to be a function of the mean
and variance o2, rather than the precision. Using the usual rules for
make a transformation 7 — o2 = % we find

5 _n+3 — ;)zfi
o2 (. 0?|D) 0™ 7 e 2T W T2

which gives a map solution gy = g and o2,, = >0 (X; —
[)%. Thus, our previous result showing that MAP solution leads
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to an unbiased variance was just luck. If we write the probability
distribution in terms of the mean and standard deviation

_n+2 N _»)2_L
Fucr (. oD) oc o5 & 7T A3

we find pya, = p and oy ﬁzlrf:l(&- — [1)2. Note that
Jur (17D, fuo2(ps o?|D), and f, (i, o|D) all describe the same
probability distribution; we are just measuring it using different
variables. A consequence of using different variables is that the max-
imal value shifts. The posterior mean is, of course, invariant under
a change of variables. It is in this sense a statistically meaningful
quantity.
|

The maximum likelihood solution does not suffer the indignity of shifting
when we perform a change of the parameters that we are trying to learn. This is
because the likelihood f(D|#) is not a density in the parameters being optimised.
If we make a change of variables & — ¢ the corresponding likelihood is f(D|¢) =
f(D|6(¢)). The maximum likelihood estimator is given by

a(Dl¢) _ 96 9f(DIO) _
a¢p a0

Thus 8(¢arr) = Osr- Of course, if we change the way we represent our data then
this can change the position of the maximum likelihood solution (though it won’t
change the MAP solution). We should not be too surprised by these apparent
inconsistencies; the mode of a probability density will often shift under a change
of variables. If we do full Bayes, and work with the whole distribution rather
than its maximum value, then a change of variables of either the observation
or the parameters of the distribution will not change the probability of any
measurable event. Of course, the MAP solution is often easier to obtain or, at
least, easier to estimate than the full posterior probability distribution. However,
it provides much less information than the full posterior. In particular, it provides
no guidance about the uncertainty in the estimator.

MAP techniques are often labelled as ‘Bayesian’ as they involve a prior. But
be wary, they throw away all the probabilistic information. They can often give
an improvement over maximum likelihood estimators (provide the prior we use
captures the true prior), but full Bayesian they are not.

8.3.3 Variational Approximation

The MAP approach throws out the probabilistic information which a full Bayes
calculation would give. To retain that probabilistic information but keep the
calculations tractable we can attempt to find an approximation to the poste-
rior. One approach is to replace the posterior distribution, f(x|D), with an
approximate distribution, ¢(x), which is easier to handle. To ensure that the
approximate distribution is close to the true posterior we minimise a similarity
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measure between the approximate distribution and the exact posterior. The most
commonly used similarity measure is the Kullback—Leibler (or KL) divergence
(see Section 7.3.1 on page 166), defined as

KL (¢l f) = E, [mg(j{ﬂ (8.5)

where the expectation is with respect to the probability distribution f(x). Recall
that the KL divergence is a non-negative quantity with a minimum of 0 when the
two distributions are identical.

In the standard variational formalism we approximate the posterior, f(x|D),
with a distribution g(x|@), where 6 represents a set of parameters chosen to min-
imise KL (g(x[0) || f(x|D)). We are free to use any distribution ¢(x|6) we wish
(although the quality of the approximation will depend on our choice). A com-
mon choice when inferring a high-dimensional quantity, x = (xy, x2, ..., x,), 18
to choose a factorised distribution, for example,

q(x|0) = H‘]i(xi|9i)~
i=1

In this case we are approximating the posterior, f(x|D), by a probability distri-
bution where the variables x; are independent of each other. To accomplish this
it is useful to consider the variational free energy defined as

*(0) = [ axio) 1og<;((:,|?>> &

where f(x,D) = f(D|x) f(x) is the joint probability of the parameters x we are
trying to infer and the data (i.e. the likelihood times the prior). Note, for discrete
random variables, we would just replace the integral with a sum. We can rewrite
D(0) as

. 4(x/6)
00) 2 [ q(xl0) 1og< Ty, (D)> ax

@ /q(x|0) <log(;((i||;))) - log(f(D))> dx
=KL (q(x|6) || £ (x|D)) — log(f (D))

(1) By definition of ®(#) and dividing and multiplying by f(D) in the denomi-
nator.

(2) Following from Bayes’ rule, f(x|D) = f(x,D)/f(D), and expanding the
logarithm, log(A/B) = log(A) — log(B) with A = 412} and B = f(D).

(3) Using the definition of the KL divergence and the fact that log( f(D)) does
not depend on x.

Since log( (D)) is independent of the parameters 6, minimising ®(8) is equiv-
alent to minimising the KL divergence. Because KL (¢|| f) > 0, we see that
®(0) > —log(f(D)). Thus, —®(8) provides a lower bound on the log-evidence
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log(f(D)). This can be useful in the context of model selection or in selecting
hyperparameters. In statistical mechanics, an almost identical framework is
used to approximate the free energy, which plays the role of the negative log-
evidence. By assuming a completely factorised distribution for ¢(x|6) we obtain
the mean field approximation. Using more sophisticated factorisations gives rise
to more accurate approximations, however, often this is at the cost of increased
complexity.
The variational free energy can also be written as

@(0) = _Wq(o) - Hq(o)

where
Wy(0) = [ alxl0) log(r(x. D)) dx H,(0). =~ [ a(xl6) log(a(x[0)) dx.

W, (@) is minus the expected log-joint probability of the data and parameters with
respect to the distribution g(x|6) and H,(0) is the entropy of distribution ¢(x|9)
— the entropy measures the uncertainty in a distribution (we discuss entropy in
Chapter 9). If we choose a sufficiently simple form for ¢(x|@) then computing
W, (@) and H,(0) is tractable. Taking derivatives with respect to the parameters
0, allows us to minimise ®(#) using gradient descent. This provides a method
for finding an optimal g(x|6*) which minimises the KL divergence. Note that
the variational free energy can be seen as a trade-off between two terms. The
first term W, (6) becomes smaller as g(x|6) is more sharply peaked around the
maximum of the joint probability f(x,D), while H, (@) is maximised when the
distribution ¢(x|@) is as spread out (as uncertain) as possible. It is this interplay
between fitting the data and maximising our uncertainty which leads to a reliable
estimate of the parameters, 6.

Example 8.10 Inferring Voting Habits

Consider the problem of trying to infer how people vote from a
knowledge of their network of friends. We might know how a few
people in the network vote and we assume that most (though clearly
not all) friends will vote in a similar way. We give an example of small
network in Figure 8.9. This is an example of a semi-supervised graph-
labelling problem: we have a graph (the network of friends) and we
want to infer labels (the political party) of the vertices (people). It is
semi-supervised as we know some labels (we might have done some
polling), but we also want to use the structure of the graph (vertices
sharing an edge are more likely to have the same label).

In the abstract language of graphs, we consider a weighted graph
G(V, &, w) where w(e) is the weight function applied to edges e € £
(we assume that w(e) = 0if e ¢ £). In our problem the weights might
denote the amount of contact between two people. For short, we will
denote the weight of edge (i, j) by w((i, j)) = w;;. In our scenario we
are given labels for a subset of the vertices, £L C V. We denote the
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Figure 8.9 Network
of friends with the
voting intentions
(colour coded) of a
few individuals. The
task is to infer likely
voting preferences of
the other individuals
based on the
assumption that
there is an increased
chance of friends
voting similarly.

label of vertex i by S;, which can take a value from the class set C.
Our task is to assign labels to the unobserved vertices U/ = V\ L. We
will denote the set of observed labels by §° and the set of unobserved
labels by S“.

We want to build a probabilistic model for the unobserved labels.
We believe that vertices that share a high weight are more likely to
have the same label. We model the joint probability of the observed
and unobserved labels as

e —BE(S".S%)

P (SM,SU) — W:

Z(B)= > e PES'S) (36

s*.8°

where S is a parameter which reflects the degree to which neighbour-
ing vertices have the same label and

E(Su,SO) = Z Wij IIS,‘ * Sj]]

(i,j)e€

(note that we use S; to be either an observed or unobserved label).
This problem has the structure of a statistical physics problem where
B would be interpreted as an inverse temperature, E(S”,S°) as an
energy function, and Z() is known as the partition function. This
cost or energy function penalises edges whose vertices have different
labels (in the language of combinatorial optimisation it is a min-
cut cost function). We will see in Chapter 9 that this model arises
naturally under a maximum entropy assumption (see Example 9.4
on page 270). The conditional probability P ($*|S°) (which in a
Bayesian context would be the posterior probability — the observed
labels S¢ are our data) is given by

e 7BE(S”,SO)

P ($*|S°) = 7

ZI(B) — ZefﬁE(Su,Sn)
Su
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where the sum is over the labels of the unobserved vertices, i.e.

S ieUS;eC

In this model it is unclear what the parameter 8 should be. However,
within the evidence framework one can choose B to maximise the
probability of the data. This is given by

oy _ P(8".8%) _Z'(B)
B(57) = P(S“|s°)  Z(B)’

The difficulty of applying this formalism is that to compute the
probabilities we have to sum over all possible labellings and there
are |C|! labellings. This rapidly becomes intractable. The variational
approximation allows us to obtain an approximation for these prob-
abilities which is much easier to compute. In this case we minimise
the variational free energy given by

®(6) =) Q(5“|0) 10g<Q<SM|0)>

T P (S*,S)

where Q (S “ \0) is taken as a separable probability distribution

Q(s“le) =TI> e s =u]
iehUpueC
with 6/ > 0 and for all vertices and 3,6 = 1 (note that the
superscript u in §* signifies these are unobserved labels, while the
superscript 4 € Cin ¢/ denotes the different values that the labels
can take). The parameters ¢/ can be interpreted as the marginal
probability of the label for vertex i to be in class u (in our example,
this is the probability of person i voting for party u). We have shown
that the variational free energy is equal to

®(6) = KL (Q(5“]0) ||P (5*|S°)) — log(P (5°))

where KL (Q (5"|6) |[P (5"|S?)) is the KL divergence between the
approximate distribution and the posterior. By minimising the vari-
ational free energy we make Q ($|0) as close as possible to the
posterior (as measured by the KL divergence). Furthermore, as the
KL divergence is non-negative we obtain the bound that ®(0) >
—log(P (87)). Thus, if we choose @ to minimise the variational free
energy then we can use —®(0) as an approximation for the evidence.
If we do this for different 8 values we can then choose the value of
which maximises @ (6). That is, we can use the value of the variational
free energy to select a model (in this case a 8 value) that maximises
the probability of the data.

Bayes
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To compute the variational free energy we note that it can be
rewritten

®(0) = —Hg(0) — Wg(0) = —Hg(8) + B Ug(0) +log(Z(B))

where H(Q) is the entropy of Q (5]6)

Ho(0) = — Z Q(5“|9) log(Q (5“|6))

= a(s ) Y tos| S5t =4

s ieu  \ uec
== > o log(ef)
icU pec

and

—BE(S“,8°)
Wq(6) = Eq[log(P (8*,8?))] = Eq {bg(ez(ﬁ))}
= —BUqy(6) —log(2(B))

where Ug(€) is the ‘mean energy’ with respect to the probability
distribution Q (S"|6)

0) =Y Q(s"]6) E(s",5%) = ZQ (s“18) S wi[[si = 5]

S (i.j)e€
Iy X ] Sy S el [un sy
ieujeu u,veC ieujeLl nec
+%Zzw,, [s¢ # s¢].
ieLjeL

To find the minimum of the variational free energy subject to
Z/JEC - =1 at each vertex we minimise the ‘Lagrangian’

+Zﬂi Ze’f—l

ieU puecl

where the A;s are a set of Lagrange multipliers that are chosen to en-
sure the constraints are satisfied (Appendix 7.C on page 182 provides
a self-contained explanation of the use of Lagrange multipliers to
solve constrained optimisation problems). The ‘mean field equations’
that are satisfied at the minima of the variational free energy are
given by

280)) = log (6" +1+ﬁZwU Zé) +,BZWU I[uiS ]]+/l =0.

o
aei JEU uec JjEL
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Equivalently we can write this as

o = e*ﬁ 2 jeuWii Eﬁfﬁ 07 =B > ;e wij |[ﬂ¢5}’}l*/1t*1
= :
We now choose 4; to ensure that the constraint 5 .6 = 1 is
satisfied. This gives
e —BEI'(6,5°)
Ho_
0; = S o PEF057) (8.7)
vel

where

E'(6,8) Zw1126”+2w1, [[,ui ‘-’]].

jeu vel JjeL
vEUL

Using the identities ) .67 = 1 and [[,u # SJ‘-’]] =1- [[u = SJ’-’]L,
together with the observation that the equations that determine 6;
are unchanged by adding a constant to the ‘energy’, E¥(6,8°) (it
is cancelled by the normalisation), we can use the slightly simpler
energy function

1(0.87) = = > wybf = wi [u=57].

JEU JEL

This has a very intuitive form. The energy is lower (more favourable)
when the label at site i agrees with its neighbours. The right-hand side
of Equation (8.7) is sometimes referred to as a soft-max function.

These equations cannot be solved in closed form. Furthermore,
there can be many local solutions to the mean field equations so the
quality of the solution will depend on how we solve these equations.
A simple approach is to seek a solution through an iterative proce-
dure by setting

—,312*%‘ 0(1),8°)

> e —BEY(6(1).5°)
vel

Ot +1) =

where we start from 64'(1) = 1/|C|. If we update the sites i sequen-
tially, this algorithm can be viewed as a message-passing algorithm
where the variables (64 |u € C) are updated on receiving messages
(95’ |t € C) from all of i’s neighbours. To prevent ending up in a
poor local optimum we can anneal the temperature (start from a
low value of 8 and increase it to the require value) at each iteration.
Although we have ended up with an iterative solution which is only
an approximation to our full model, it is computable for even very
large graphs. The computational complexity of each iteration is of
order |[U| x |C| x N (where N is the average number of neighbouring
vertices), which is very much smaller than the exponential complexity



8.4 Latent Variable Models 227

of the full model. We show a solution for the network introduced at
the beginning of this example in Figure 8.10.
|

Variational approaches frequently give rise to rather natural algorithms, often
with the influence of the neighbouring variables on a particular variable being
replaced by their mean value (hence the name mean field approximation). Indeed,
often as the number of neighbours grow these mean field theories can become
more accurate, or in some cases exact. However, even in the limit where all
variables are coupled so that the number of neighbours grow as n (and one
might suppose the mean field to be accurate) there can be cases where the mean
field approximation fails. One particular case where this happens is when some
proportion of the variables are finely balanced so that if a variable changes
its state it is likely to influence its neighbours, which in turn influences the
original neighbour. In this case an additional reaction term is required to make
the mean field equations more accurate. Interestingly, these corrections can
often be derived if we minimise KL (f(x|D) | g(x)) rather than minimising
KL (q(x) || f(x|D)) (recall from Section 7.3.1 on page 166 that reversing the
KL divergence can lead to a very different solution). This goes by the name
of expectation propagation and can be implemented using a message-passing
algorithm. The scheme can be seen as a extension of belief propagation in-
troduced by Pearl (1988) for computing marginal distributions in graphical
models (see Section 8.5.2 on page 245). Variational approaches rapidly become
rather complicated so that the interested reader is referred to the original paper
of Minka (2001) and more specialised texts on machine learning such as Opper
and Saad (2001); Bishop (2007), Raymond et al. (2014) and Barber (2011).

8.4 Latent Variable Models

When building a mathematical model of a process with uncertainty there are
often times when the observed outcome depends on some unobserved states
that we are uncertain about. We are often uninterested in the value of these

Figure 8.10 Inferred
voting intentions of
all members in the
network. The nodes
with a thick boarder
are the observed
labels. The other
nodes show a
pi-chart
representation of 64
The calculation was
doneatB = 1.



Figure 8.11 Example
of data that are
generated from two
different
mechanisms. In fact,
this is a histogram of
500 deviates drawn
from N(0, 1) and
200 deviates drawn
from N(3, 1).
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unobserved states. This occurs in many hierarchical models where we introduce
additional layers between the underlying model of interest and the data we
actually observe (these additional layers more faithfully capture how the data
would be generated). To build our model we can assign a random variable to these
unobserved states. These variables are known as latent variables or sometimes
nuisance variables. To compute the quantity of interest, such as a likelihood, we

Bayes

have to average over (marginalise out) the latent variable.

Example 8.11 Mixture of Gaussians

Consider the situation when we observe samples (X;|i = 1, 2, ...n)
that we believe might come from two different mechanisms. For
example, we might be measuring the half-lives of two short-lived
species of particles. The problem is that our detector cannot distin-
guish the particles. Our data might look something like that shown
in Figure 8.11. We would like to know the lengths of the half-lives of
our two species. Note that we are in the opposite position to where
we would want to apply the analysis of variance (see page 122). In
that case, we know the features associated with the data, but wish to
find which features explain the observed variance. Here, we believe
we know the underlying cause of the variation, but we have no way
of telling which data point is generated by which mechanism.

We assume that for both particles the data is normally distributed
(but with different parameters). We can therefore model this process
by including a latent variable Y¥; equal to 1 if X; is generated by
mechanism 1 and 0 otherwise. The likelihood of a data point is

F(XilY, g1, 01, 2, 03) = G N(Xi|p1, 07) + (1 — ) M(Xi g, 03)
while the joint likelihood is
f(Xi, %) =P (%) f(Xil¥, 1,01, g2, 03).

Let p; = P (¥; = 1) be the prior probability that the data point comes
from the first distribution. Our task is to infer p;, i, o-f, o, and
3. To do this in a Bayesian framework we would assign a prior to
our unknown parameters. Alternatively, we could assume a uniform
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distribution on all the priors and use maximum likelihood estimation
instead (if we have sufficient data, then the exact prior we use is not
that important). In both cases we have to average over the latent
variables ¥;. We return to this problem in Example 8.12 on page 232.

Although latent variables add accuracy to a model they also add complexity.
The resulting posteriors or likelihoods turns out to be a highly non-linear func-
tion of the parameters we are try to estimate. We can proceed by using a standard
multidimensional optimisation algorithm. These algorithms are most efficient
when we compute the gradient, then we can apply a standard algorithm such as
the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm, which will rapidly
converge to an optimum. However, there is an alternative route which often
provides an elegant solution which is easier to program. This is the expectation
maximisation or the EM algorithm. In general it can be used to maximise some
probability (or probability density)

> fre(y.0)
fo(@) =4 7
/ fro(y.0)dy

where Y are unseen nuisance parameters (latent variables) and 6 are the param-
eters of the model we are trying to infer. It is used both for finding MAP and
maximum likelihood solutions. It is an iterative algorithm proposed by Dempster
et al. (1977), which provides a way of finding a sequence of parameter values
6,9 ..., 0" each of which increases the probability fg(6). The algorithm
consists of iteratively maximising a function, Q(8|6")), which acts as a surrogate
for the logarithm of the true function, log(fe(6)). That is, at each cycle we
compute

6D = argmax 0(0]6"))
0

where Q(8|6")) is an expectation of the logarithm of the joint probability with
respect to the old parameters

0(816) = Ey g [log(f(Y.0))] = / log(f(v.0)) f(v16)dy.

The reason this is useful is that we can often solve the maximisation in closed
form, resulting in a very natural series of update equations for the parameters.
(Somewhat confusingly the EM algorithm is sometimes presented as an iterative
two-step algorithm. In the first (expectation) step the function Q(H\O(’ )) is
defined, while in the second (maximisation) step we optimise it. This, however,
does not correlate with the actual algorithm, which just involves applying a series
of updated equations.)
To understand why the EM algorithm works we first note that

f(Y.0)=7(Y|0)f(0)
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so that
log(f(8)) = log(f(Y.0)) —log(f(Y10)).
Taking expectations of both sides with respect to ¥ ~ f(¥[0®)) we get
10g(f(8)) = Ey g0 [Log(f(Y,8))] — By g0 [log(£(Y]6))]
= 0(6]6') +5(616"")

(note that the left-hand side does not depend on Y so is unaffected by the
expectation) where

S(816") = —Ey o) [log(f(Y]0))] = —/log(f(ylﬁ’)) f(y16)dy.

0(8|6") is the expectation that we maximised above. We are now in a position
to show that £(87*1) > £(8™). That is, our updated parameters are at least as
good as the current values. To see why this is, we consider

1Og(f(0(t+l))) _ 10g(f(0(’))) — Q(0(1+1)‘0(t)) _ Q(0(1)|0(1)) +KL (o(t)

where

‘0(t+1)>

KL (0<’>

‘0<z+1>) = S0V ]9M) — 59V ]9))

_ N 100f £0)
= /f(0 )1g< Ca) >0

since KL (0(’) H 0(”1)) is the KL divergence between f(6)) and f(8"*1), and,
as we have seen (Section 7.3.1 on page 166), KL divergences are non-negative.
But, as

6D = argmax 0(0|6")
0

we also have that
Q(g(Hl)‘g(t)) > Q(g(t)‘g(t));
consequently,
log(£(8*1)) ~ 10g(£(6)) > 0.

Thus, the series £(61), £(8@), ..., £(6\) is non-decreasing.

The previous discussion shows that the EM algorithm produces improving
solutions, but doesn’t give any intuition of why it is a reasonable method for
optimising f(@). To understand that we note that for all 8

log(£(8)) = 0(8]8®) + $(61)]6")) + KL (0 ’

6)) > 0(66") + 5(6)6).

We define 0(610")) = 0(0]6")) + S(0©[61), so that Q(8|6") is a lower
bound on log(f(8)). Note that Q(4|6")) differs from Q(8]6\")) by the constant
5691 so they share the same optimum value. At the point § = ")
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10g<f(g(1))) = 0(0]6") + KL (0(’) ’ gm) = 00V ]0))

so that 0(0|8") equals log(f()) at § = ). We also observe that

Vo 1og(f(0<’>)) - f(la) Vof(0)

while

memw>“vg/baﬂ»m)ﬂﬂw%d

o [[0169) o L[ fGle")
2 [ oy Verv 00 2 s [ LG Va0

(1) From the definition of Q(6]6®)).

(2) Taking the gradient inside the integral and using the chain rule
Vo log(f(.0)) = VEEG

(3) Using Bayes’rule f(y,0) = f(6) f(y]0).

At the point 8 = )

VGQ(0|0(t))

fly \ o)
/ Vof (y,0)dy

= er(z) /f(y,0<’))dy

o 1 «
" 1(69) Vo (07) 2 Volog(f(6) o0

0 o(f)

0=0(1)

(1) Using the result obtained above.

(2) Replacing 6 by 8"), cancelling terms, and taking the derivative outside the
integral.

(3) Using [ f(v.6)dy = £(6%)).

(4) From the chain rule V log(f(6)) = %g;).

Thus at the point @ = ) the functions 0(6]6")) and log(f(8)) not only
share the same function value, but also the same gradient. We leave it as an
exercise for the interested reader to compute the second-order derivative for
log(£(8)) and 0(0|6"). At 8 # ") the two quantities differ, but have a similar
structure — this is important to ensure that the step size of the improving move
is approximately correct. Thus, Q(0|8)) plays a surrogate role for log(f(0))
and finding the maximum of Q(0]")), or equivalently Q(6]|0")), provides a
reasonable approximation for the maximum of log(f(6)). In Figure 8.12 we
schematically illustrate what log(f(6)) and 0(816")) might look in a one-
dimensional problem.

One final note of caution though, the EM algorithm will converge towards
a local optimum of f(0), but this is not guaranteed to be the global optimum
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Figure 8.12
Schematic showing a
one-dimensional
example of the true
log-probability
log(f(6)) and the
surrogate function
0(6]6™)) used by
the EM algorithm.
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in the case when f(0) is multimodal. This, of course, is also true of a gradient-
based search method such as BFGS. To find a good solution it is important to
use sensible initial parameters, (1.

Example 8.12 Mixture of Gaussians Revisited

We continue our discussion of Example 8.11 on page 228. To briefly
recap we have some observations D = (X;|i = 1, 2, ...n), which we
believe comes from two different normal distributions. We introduce
latent variables ¥; equal to 1 if the data is generated by the first
distribution and 0 if it is generated by the second distribution. The
likelihood of a data point and the latent variables is thus

F(Xi, Yilp1, 1, 03, 2, 073) = Y pr N(Xi|p1, 0})
+(1 = ¥) pr M(Xi|pa, 03)

where p, = 1 — p;. Our task is to infer the unknown variables

0 = (p1, 11,07, 2, 73).

We could do this through maximising the posterior by putting priors
on the parameters or just by maximising the likelihoods. To prevent
this chapter expanding even further, we consider the slightly easier
maximum likelihood calculation. In this case, we want to maximise
the marginalised likelihood (or equivalently log-likelihood)

log(f(D]8)) Zlog (Xi16)) =ilog Z f(X;,Y:10)
i=1

Y; €{0,1}

where the marginalised likelihood is

> fXYi=1]0)

Y;€{0,1}
P N(Xil 1, o) + po N(Xi|pa, 03).

f(Xil6)

This is a non-linear equation in unknown parameters, so that it is
awkward to solve. This is where the EM algorithm comes to the
rescue. Instead of maximising the log-likelihood we maximise
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0(016) 2 By 0 [bg(ﬂf(xi, w))] = By 0 [log(f(Xi. ¥i16))]

i=1 i=1

@i > P(Yi|Xi,0(t))1og(f(Xl-,Y,-|0))

i=1 ¥;€{0,1}

< Zn: Zzzp ([[k =1] |X,»,0(’)) log(pk N(Xiluk,cfi))

i=l k=1

233 ([ = 1] .0

i=1 k=1

(log(pk) — M — log(\/ﬁ(rk)>

207

(1) From the definition Q(0|6")) = Ey o [ log(f(X.Y,6))] and
assuming the data points are independent.

(2) Usinglog([]; ai) = >, log(a;) and the linearity of expectations.

(3) Writing out the expectation explicitly.

(4) When Y; = 1 then X; comes from the first distribution while if
Y; = 0 they come from the second distribution.

(5) Putting in the explicit form for the normal distribution and
expanding the logarithm,

where

P(Xi| [k =1].0) p"
P([k=1]lx.00) ¢ ( P(X<0<f>)>
1
o NX; |u§:% (o)’ >p£‘>

N, ()2 p® + NS (03012 pS)

(1) Using Bayes’ rule where the prior probability before seeing data
X; 1s]P’<[[k 1]]|0(’)) (t)

(2) Using P (X,\ IIk = 1]],0(’)> = /\/(Xl-|,u§<’), (o-,(:)) ) and the fact
that the denominator is a normalisation condition.

To maximise Q(8|6")) with respect to u; we set the partial derivative
to zero

20( 0|0’ _ ) < ) 3
o ZP ([[k 1] x:.6 ) =) 0.
Solving for u we find the updated means are
oy _ S P ([k=1]1x:.69) xi
¢ S B ([ =1]1x:,00)

(8.8)
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To update the variances we again set the partial derivatives to zero
n

80(616") Xoo w1
=S el (M)

k

Solving for the variance (and plugging in the updated mean) we find
the updated variance is

Z:ll P ([[k = 1]] |Xi,0(t)) (X; — Hl((r+1))2

(o.(l‘+1))2 _
S ([[k =1] |X,~,9<’>)

p (8.9)

Finally, to learn the priors py, we first note that p, = 1 — p;. Taking
derivatives with respect to p; we get

90(0100) & P(ﬂk:l]]\xi,a(z)) P([[kzz]]me(t))
Tom X o e

Multiplying through by p;(l1 — p;), and using the fact that
P (|[k =1] |Xi,0<f>) +P (|[1< =] \x,-,0<’>) = 1, we find

pih ZP ([[k = 1]|x.6 ’>) (8.10)

Observe that Equations (8.8)—(8.10) are very natural update rules.
We use them on the data in Figure 8.11, starting from p(l) = pél) =
12, il = =1, (™2 = 12, 1V = 2, and (") = 0.8. The

trajectories of the EM algorithm are shown in Figure 8.13.

Figure 8.13 W o0y @ .
Trajectory of the o (), 5

. o 1 (00) (o) ;12 2
maximum likelihood (™ 017)

o @)
parameters found by 0.5 (s’ 057) 05 \(}%) )
the EM algorithm. ‘ | ‘ ‘ ‘ -l h
Grey crosses mark -1 0 1 2 3 4 0 05 1

the parameters used
to generate the data. .
As long as we start close enough to an optimum value we

converge towards the same point. However, the convergence can be
quite slow, as in this example. This is one of drawbacks of using the
EM algorithm — the convergence can be significantly slower than a
gradient-based optimiser. The final fit from the mixture of Gaussians
is shown in Figure 8.14.
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One of the nice features of the EM algorithm is that it is easily ex-

tended to multiple Gaussians and to Gaussians in higher dimensions.
|

Latent variable models are often used in cases where we do not explicitly know
the underlying mechanism generating the data, but wish to have a more flexible
model. For example, if we want to have a parameterised model for a distribution
(possible in high dimensions), then we could use a mixture of Gaussian models
with some moderate number of Gaussians (depending on the amount of data).
The hope would be to capture some unknown structure in the probability
distribution. Latent variable models come in many different forms. We next
consider one of the most commonly used such models: hidden Markov models
(HMMs).

8.4.1 Hidden Markov Models

An HMM is a popular probabilistic model for describing sequence data. It is
heavily used in speech analysis and biological sequence analysis (e.g. for DNA
and proteins). The model consists of a set of states which can emit symbols.
There are emission probabilities associated with each state. Usually there is a
special initial state which emits no symbol. There are also transition probabilities
between states. The model generates a sequence by first transitioning from the
initial state to one of the emitting states according to the transition probabilities.
Then it emits a symbol according to the emission probability of the state that it
is in. It then moves to a new state according to the transition probabilities of the
current state (there is often a transition probability back to itself so the HMM can
stay in the same state for several cycles). The HMM continues to emit a symbol
and then make a transition. This either happens until a sequence of a certain
length has been generated or until a stop state is reached (not all HMMs will
include a stop state). The HMM is acting as a probabilistic finite state machine.

Example 8.13 Switching Coins

Consider someone with two coins. One honest and one dishonest with
a probability of 0.8 of coming up heads. The person choose one coin
at random and then after every throw he either uses the same coin
with a probability 0.7 or changes coins with a probability 0.3. We

Figure 8.14
Histogram of the
data together with
the maximum
likelihood estimates
for the two-Gaussian
model. The dashed
line shows the sum
of the two models.



Figure 8.15 A
sample run of an
HMM for flipping
two different coins.
The vector ¢
represents states
(start, left, or right),
while & represents
the set of observed

events (head or tail).
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can build an HMM that models this scenario. We show a sequence

generated by the HMM in Figure 8.15.
|

The HMM can generate many different sequences, but it can also be used
to assign probabilities to sequences. That is, the probability of a sequence is
the probability that it will be generated by an HMM. Given a sequence, it is
possible to calculate the probability of it being generated even when we don’t
know which states generated the sequence (the states are hidden, hence the name).
This requires us to average over all possible paths through the states. Calculating
this efficiently is non-trivial as there are an exponential number of paths through
the states which could generate the sequence. However, because of the Markovian
property of the model we can use dynamic programming to efficiently sum over
all possible paths. The model can be viewed as a latent variable model where the
states correspond to latent variables.

In Example 8.13 we knew the parameters of the model (transition and emission
probabilities) as well as the structure of the model (number of states, which states
are connected, etc.). Often HMMs are used where we don’t know the exact model.
In this case, if we have enough sequences we can try to learn the model. Learning
the structure of the model is very difficult (we discuss this problem at the end of
this section). However, we can learn the parameters of the HMM by maximising
the likelihood of the data. This can be done efficiently using an EM algorithm
(which is known in this context as Baum—Welch). This is doubly clever as it uses
both the idea of the EM algorithm and dynamic programming.

We briefly describe the details of making inferences and training a standard
HMM. This involves a lot of details that you might find overwhelming or of
little interest, in which case just skip to the next section. We want to assign a
probability to an observed sequence of symbols, & = (&1, -, &r). Each symbol
comes from a finite alphabet A (in the example above this would be {H,T}, in
protein analysis this is the set of 20 amino acids). We denote the set of states
that make up the HMM by Q. At each step, the HMM will emit a symbol and
make a transition between states. The state of the model at time step ¢ is denoted
g:- The transition probabilities for moving from state i to state j is denoted by
a;; = P(q: = jlg:—1 = i); while emission probabilities for ‘emitting’ a symbol ¢,
given that we are in a state i, is denoted by ¢;({) = P (& = {|q; = i). We denote
the set of transition and emission probabilities by 8 — these are the parameters
of the model which we wish to learn from the data. For any given state sequence
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q = (91, ,qr), the joint probability for the HMM visiting those states and
emitting a symbol sequence £ is given by

T
P (f’ ‘1|0) = Haqt—IQt eq,(&1) = agyqy €q,(81) Ag1q, €4,(82) **+ Agr_ g7 €qr (€T).

t=1

The initial state (go) is assumed not to emit a symbol. To compute the likelihood
of a sequence & we sum over all possible paths through the hidden states

P(£16) = > P(£.q10). (8.11)
qeQ’l

Note that the actual state of the system at any time step is hidden (since the states
are marginalised over).

Naively summing over all possible state paths appears computationally expen-
sive since there are an exponential number of paths. However, all quantities of
interest can be efficiently computed from the forward and backward variables
(a; (i), B¢ (i)), which are defined as

(i) :P(fl,"' e qr = i\@)
ﬁt(i) ZP(le»"' =§T|Qt =1, 0)-

The forward variables, a, (i), can be calculated using the forward algorithm

= Zp(tht =i|‘It—l :js 0) ]P)(é:la ’é:t—l’ql—l =J|0)

JEQ
—Z fr aj; A 1 —ez fr Zazza’t 1
JjeQ Jj€Q
& & & o G & G
o o
o o
ai1(7) ° ]
o dij Q
ay(7) i
o o :
o o

starting with (i) = [[i = s]l (where state s is taken to be initial state).

Note that the computation of «, (i) is efficient because of the Markovian prop-
erty of the HMM. That is, the probability of the next emission and transition
depends only on the current state of the HMM and is conditionally independent
of all previous history. The probability of a sequence of length T is given by

‘f|0 ZQT dje
i€cQ

where e is the end state (often we don’t have end states when we replace a;. by 1).
The backward variables, B, (i), are computed from the backward algorithm

Bi—1( ZP .G = jlgi—1 =i ) (§t+1,‘" afT‘CIt:j) =Zaijej(§t)ﬁt(j)

JjEQ JjEQ
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with Br(i) = 1. In practice some care is necessary in computing these quantities
as it is easy for the variables to underflow. An example of the use of the forward
and backward variables is to determine the probability of being in a particular
state at step ¢ given the observed sequence

P(§,61z = i) _ (i) ﬁt(i).
P (£16) P (£10)

We can train an HMM (i.e. find a good set of values of the transition and
emission probabilities) if we are given a set of training sequences D = {&"|u =
1,2,...,n}. If for each training sequence we know the path through the set of
states which generated the sequence then we can count the number of transitions,
A;j, from state i to state j and, similarly, the number of times, E;({), we emit a
symbol ¢ in state i (we return to the problem posed by this assumption later). To
maximise the likelihood of the data we set the emission and transition probability
according to

P (g =il€,0) = (8.12)

ooy = _Eild) g = i
l(g)_ Z Ez(é:)’ ij Z Aik- (813)
EcA keQ

These maximum likelihood values are somewhat dangerous as we can easily end
up with transition and emission probabilities equal to zero simply because our
training data doesn’t have any examples of such transition or emission even
though they may well occur. To overcome this we can add pseudo-counts (see
Exercise 8.3), r;({) and r;;, such that

Ei(£) +ri(d) g = A T
> (Ei(€) +ri(8) YUY (A )’

£eA keQ

ei({) = (8.14)

where r;; and ;({) encode our prior belief in the existence of a transition from
state i to j and of emitting a symbol ¢ from state i, respectively. These would
often all be set to a small constant.

The problem of applying the above algorithm to calculate the emission and
transition probabilities is that we don’t know which state the HMM is in when
it emits a symbol. What state we are in is probabilistic (hidden), but, worse, it
depends on the parameters, which is what we are trying to learn. We are in a
chicken and egg situation. To overcome this we use an iterative algorithm starting
from some random emission and transition variables. We can then infer the
probability of being in a state using Equation (8.12). We then use the update
Equations (8.13) or (8.14) to increase the likelihood of the training sequences.
By iterating many times we can nudge the parameters towards a local optimum.

To be more explicit, for the training sequences the expected number of times
that symbol ¢ is emitted while in state i is given by

TH
E(0)= Y Y P(a=ilg"0) & =¢]

EHeD t=1
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where TH is the length of sequence &¥. This is just the probability that, for
sequence £, the HMM is in state i given that the observed symbol is &,, summed
over the set of sequences and over all elements of the sequence ¢. The probability
of being in state i at time ¢ for sequence & is

P (g, =i £"16) _ ak(i) B0
P (£"10) P (£"10)

where o' (i) and B¢ (i) are the forward and backward variables for sequence £-.
Thus,

P (Ql‘ = i‘§”70) =

TH

1 By ghy et —
Ei({) = Z Wzat (i) B (i) [[‘ft —(]]

EHeD t=1

Similarly, the expected number of transitions from state i to state j that occur in
our training sequences is

TH—1

Aij = Z Z P(‘]t =1, Gr+1 zj‘gﬂjg)'

EHeD =1
From Bayes’ rule

P (% =1, gr+1 = J, §ﬂ|0)
P (£"16)

P(q = i,qi1 = jIE", 0) =
but (using the Markov properties of the HMM)

P (qr =i, gre1 = j, €"10)
=P (g =i, &1, ..o, E10) P (g1 = J» Ers1lgr = 0,0)
P (1420 - os éTlgre1 = . 0)
= a’él(i) aij €j(§z+1) ﬁf+1(j)-
Thus,

TH—1
Aij = Z S — Z @) (i) aij ej(éi41) By y ()
EHED P (5#‘0) t=1

This algorithm is known as the Baum—Welch algorithm after its two inventors
(Leonard E. Baum being the driving force). The Baum—Welch algorithm can be
viewed as an EM type algorithm. As we have seen this is guaranteed to converge
to a local maximum of the likelihood (although it is not guaranteed to find the
global maximum). More details can be found in Rabiner (1989) and Durbin et al.
(1998). Baum—Welch is by far the most commonly used algorithm for training
HMMs, but HMMs can also be trained by using a gradient-based method on
the parameters. Although more complicated, this often has faster convergence.

HMDMs are used in many application areas involving sequences. For example,
they are commonly used in biological data analysis. In particular, we might want
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to detect which parts of a protein sequence will wrap up into an alpha helix or
form part of a beta sheet. For this problem there exists a large data set of training
examples. We can use this together with the Baum—Welch algorithm to train
an HMM so as to maximise the likelihood of these sequences corresponding
to an alpha helix, say. We can then use the HMM on new sequences to see
which parts are likely to form an alpha helix. The hard part is determining the
structure of the HMM. Often this is done by a domain expert, trying to represent
what they believe is important. However, for complex problems like protein
structure prediction, the domain expert is usually beaten by an automated search
algorithm (if done sensibly). In many applications, such as speech recognition,
little attempt is made to rationalise the meaning of the hidden states. The HMM
is just used as a trainable network with enough flexibility to capture information
about the sequences. The final rationale for using some number of states is that it
works — at least for many applications. However, care has to be made in choosing
the topology of the HMM (number of states and non-zero transitions between
states). This is because we are maximising the likelihood of the data which is apt
to over-fit the data and give poor generalisation on unseen data. To make HMMs
Bayesian we would need to put prior probabilities on the topology of the HMM
and the parameters. There is no easy way of doing this and it is not often done
in practice.

8.4.2 Variational Auto-Encoders

In many inference models the latent variables are of little interest, however, there
are models where the latent space (the values taken by the latent variables) take
centre stage. One such model is the variational auto-encoder (VAE) proposed
by Kingma and Welling (2013). Here we try to find an embedding from the
space of objects (typically images) to a continuous latent space. Images can be
viewed as vectors in some very high-dimensional spaces (each pixel or even each
colour channel of each pixel is a separate dimension). The set of all images
that we are interested in would correspond to a manifold (i.e. a low-dimensional
hypersurface) in this very high-dimensional space. The shape of this manifold
will be very non-trivial. For example, the mean of two image typically won’t be an
images so the manifold is not convex. The aim of VAEs s to find an embedding of
this manifold to a continuous space where most points correspond to an image.
Furthermore, we try to find an inverse mapping from the points in the latent
space back to an image. In this sense we can think of the VAE as a generative
model. We can generate a random point in the latent space and use our inverse
mapping to generate an image.

The VAE uses powerful deep networks to both perform the embedding (or
encoding) of an image into the latent space and the decoding from a point in the
latent space back to an image. To add some additional regularisation, the encoder
actually maps each image to a probability distribution in the latent space. This
ensures that if we make a small move in latent space we will end up with a similar
image. Figure 8.16 shows a schematic diagram of a VAE.
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Encoder

Decoder

(parameters ) = D(z,6)

2
02 —— 2~ )
(parameters @) (1o, 05) z~q(zlz, @)

We briefly outline how VAEs are implemented. We start with a data set, D,
of objects (typically images). This data set can be regarded as a subset of typical
examples of a much large set of objects that we are interesting in modelling. From
the data set we draw a particular object x. This is given to a feed-forward deep
neural network (the encoder) with parameters ¢, which outputs a set of means,
Mg, and a set of variances, 0'35. These outputs from the encoder network specify
a probability distribution in latent space,

alzlx.#) = N (2] ding(c)) .

where diag(o-é) denotes a diagonal matrix, X, with elements X;; = 0-1-2. That is,
each image is mapped to an axis-aligned normal distribution in the latent space.
To train the network we next introduce a decoder. We sample a vector z from
q(z|x, @) and give this as an input to a second deep neural network that generates
an image X. This new image depends on z and the parameters of the decoder
network, 6. To train a VAE we try to minimise some distance measure between
the initial image x and the image x generated by the decoder, at the same time
as minimising the KL divergence between the distribution ¢(z|x,#) and some
‘prior distribution’, p(z), usually taken to be a multivariate normal A0, I). This
KL divergence ensures that the distribution ¢(z|x, ¢) does not collapse to a point,
losing the regularisation properties provided by having a probability distribution.
If we consider generating images from x with a probability p(x|x) (where, for
example, p(x|x) = M(x|x, 1)) then we can view the objective function as

Ex~p [Ez~q [log(p(x[%))] — KL (q(z]x.9) | p(2))] -

That is, we are maximising the log-probability of generating an image x as the
output, at the same time as minimising the KL divergence. We note that if
p(x|x) = Mx|%x,0* 1) then maximising log(p(x|%)) is equivalent to minimising
the squared error between x and x. We can perform gradient descent on the
parameters ¢ and 6 to maximise this objective function. In the original paper the
authors show that this objective function can be viewed as a variational bound on
maximising the log-likelihood of generating images from the data set (Kingma
and Welling, 2013). We don’t give this derivation here, however, in Example 9.8
on page 283 we discuss another interpretation of the objective function in terms
of the minimum description length.

In Figure 8.17 we schematically illustrate the encoding and decoding carried
out by the VAE. The left figures show images (represented as points in a vector
space) from the data set. These images lie close to a low-dimensional manifold
representing the full set of images that we are interested in modelling. Clearly,

Figure 8.16
Schematic diagram
of a VAE. This is
described in the text.
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Figure 8.17 Schematic illustration of the encoding and decoding of a VAE. The left figure
represents the images from the data set D in a vector space (each axis representing a pixel value).
Also shown is a low-dimensional manifold around which most images lie. The middle figure shows
the projection of the images to normal probability distributions in latent space. The right image
shows the projection back from the latent space to a manifold of the same dimensions as the latent
space that is embedded in image space. We highlight a single image x that is projected to a
probability distribution g (z|x, ¢) and the projection of that probability distribution back to image
space. The generated images x should be close to the original image x.

real images will lie in a very large dimensional space and the ‘low-dimensional’
manifold may involve many dimensions. The centre diagram illustrates the
latent space (here shown as a two-dimensional space, but in practice this is
usually considerable larger). Each image in the database is mapped to a normal
probability distribution in latent space (shown as a series of contour lines). We
also show contours of the ‘prior’ distribution p(z) = N0, 1), which corresponds
to concentric circles around the origin. By minimising the KL divergence between
q(z|x, @) and this prior we prevent this distribution from collapsing to a point.
The right-hand figure shows the inverse mapping generated by the decoder
network. Each point, z, in the latent space is mapped to a point x = D(z, 8) in this
image point. If we consider putting a set of basis vectors around a point, z, in the
latent space these basis vectors will get mapped to a local coordinate system on
a low-dimensional manifold in the new image space. The dimensionality of the
manifold will be no greater and typically the same size as the dimensionality of
the latent space. All vectors z will be mapped to a point on this low-dimensional
manifold. Note that typically the space of images might be of the order of 10%—
10° dimensions, the latent space 10-100 dimensions, and the number of images
in the data set of order 10°-10°.

Part of the excitement about the development of VAEs is that they provide
an unsupervised method for training deep neural networks (the encoder and
decoder) in so far as the images don’t need to be labelled. This is similar to
generative adversarial networks (GANs) discussed in Example 7.15 on page 174.
This is a rapidly developing field of research, but at the time of writing GANs
are seen as generating more realistic images, while VAEs are seen as easier to
train. VAEs are also exciting in that they allow very non-linear mappings to
latent spaces. This contrasts, for example, with principle component analysis,
which similarly finds a latent variable representation, but does so by projecting
all vectors in the original space to a low-dimensional subspace. That is, it models
data that live on ‘flat’ manifolds.
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8.5 Machine Learning

Machine learning evolved separately from classical statistical inference. Its
motivation was to copy how humans solved problems. Unhindered by the
requirements for mathematical rigour, it developed as a series of heuristic
tricks. It has always been a major part of artificial intelligence. Early attempts
at building intelligent machines concentrated on building rule-based systems.
Although these seem to show early promise they suffered from a complexity
explosion as the systems became more developed. An alternative approach was
to learn simple rules from data. One of the earliest attempts at this was the
perceptron developed by Frank Rosenblatt in the late 1950s. The perceptron
performed binary classification by dividing the space of input patterns by
a simple hyperplane. This limited the perceptron to learn only very simple
rules. The field stalled until the development of the multilayer perceptron and
related neural networks in the mid-1980s. This renaissance was in part due to
the development of smart algorithms, but also because of the availability of
computers powerful enough and cheap enough to make it worthwhile. At this
stage, the discipline rebadged itself, discarding the dated name machine learning
(or sometimes cybernetics) and labelled itself neural networks. A host of other
neural networks were developed. After this rapid burst of creativity, a slow
process of re-examination took place where it became clear machine learning
was just statistical inference dressed up. Indeed, it was found that by moving
from the language of neurons to that of random variables and inference, many
techniques could be improved. Yet this historical digression through neural
networks had brought some real progress in the field. Most important was the
scale of the ambition. Whereas classical statistical inference had concentrated
on interpreting experimental data using techniques that could be carried out
with pen and paper, neural networks had built systems to undertake speech and
handwriting recognition.

As the field of neural networks developed in the 1990s and beyond, it sought to
throw off the Wild West image of the 1980s and seek mathematical respectability.
New techniques were developed that were no longer inspired by the human
brain. The field rebranded itself as machine learning (a name which a few
decades earlier carried the connotation of outmoded rule-based techniques).
The field has recently witnessed the resurgence of neural networks with the
remarkable success of deep networks. Ironically, the desire for mathematical
respectability had almost extinguished all research in traditional neural networks,
which was virtually banned from major conferences and journals. Only through
the tenacity of a few key researchers — most notably Geoff Hinton, who had
previously been central to the resurgence of neural networks in the 1980s, and
Yann LeCun, who had consistently developed convolutional neural networks
— was the flame of neural networks kept alight long enough for deep learning
to become competitive. Machine learning provides a case study in how rigorous
mathematics can both significantly push and strengthen a field, but when allowed
free reign can also stifle innovation. Currently we are back in the Wild West where
the best results are produced by cowboys who play.
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Present-day machine learning splits between generally applicable black-box
techniques such as multilayer perceptrons and support vector machines (a kind
of perceptron on steroids) and true Bayesian techniques. In terms of ease
of use, the Bayesian techniques suffer from the need to carefully model the
underlying process. They therefore tend to be bespoke to the problem being
solved. They can be very effective, but they are typically time-consuming to
create and are often analytically intractable, so require either expensive Monte
Carlo simulation or sophisticated approximation methods. There are attempts to
make Bayesian methods more deployable. Three prominent examples are naive
Bayes classification, graphical models, and Gaussian processes. We give a quick
overview of the first two of these techniques — we defer a discussion of Gaussian
processes until Section 12.1.2.

Another dichotomy in machine learning is between discriminative and gen-
erative models. In machine learning we are often given features x and wish to
infer labels y. Probabilistic discriminative models try to learn the conditional
probability P (y|x), while generative models try to learn the full joint distribu-
tion P (y,x). That is, they also model the process of generating the features.
Generative models are often much more complicated to implement and are
much more problem specific as they involve modelling the whole process, but,
when the model accurately captures reality, it can give more accurate predictions.
Generative models are also used as flexible discriminative models. For example,
HMDMs might be used effectively to classify genres of music, but they are
usually woefully disappointing when used for composing (they will capture short-
range correlations, but typically ignore high-order correlations such as repeated
motifs). So even this dichotomy is often blurred.

8.5.1 Naive Bayes Classifier

In many real-world problems doing Bayes right is just too hard. An example
of this is text classification. To correctly model the likelihood of some text
being in a particular class or to encode all possible prior knowledge would be
almost impossible with present-day algorithms (for example, we would have to
build semantic analysis into our classification algorithm). In the naive Bayes
classifier we make a ridiculous assumption that the order of words doesn’t matter
— sometimes known as a bag-of-words representation. We should therefore not
expect our classifier to perform very well, but rather surprisingly, this classifier
performs extraordinarily well on many text classification problems. It is, for
example, the method of choice for many spam filters.

|
Example 8.14 Spam Filter

Let us consider the problem of classifying whether an email is spam
or not. This is an important problem which a large number of people
care a lot about. We assume that we have a lot of examples consisting
of a list of words (wy, wy, ws,...w,). Bayes’ rule tells us

P((wi,...w,)|Spam) P(Spam)

P(Spam|(wy, ... P((Wi,...w,))

Wn)) =
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where
P({wi,...w,)) =P({wy,...w,)|Spam) P(Spam)
+P({w1,...wy)|-Spam) P(—Spam).

If we were being honest, to compute the likelihood P({w,...w,)|
Spam) would require knowing (or estimating) the likelihood of each
message given that it is spam. In naive Bayes we make a very strong
(and clearly wrong) assumption of conditional independence

n
P({wy,...w,)|Spam) = HP(wi|Spam).
i=1
Our task is now much easier. We need only estimate two types of
probabilities:

* the prior P(Spam) and
+ the likelihoods P(w;|Spam) and P(w;|—Spam) for all words w;.

The prior is easy to estimate empirically. Probably 80-90% of my

emails are spam. The likelihoods P(w;|Spam) are also easy to esti-

mate from data

#(occurrence of w; in spam messages)
#(words in spam messages)

P(w;|Spam) =

(#(- - -) denotes the number of occurrences of - --). This would be

unreliable for rare words, but we can ‘fix’ this by including some

‘pseudo-counts’

#(occurrence of w; in spam messages) + m
#(words in spam messages) + mn

P(w;|Spam) =

where m is a parameter (pseudo-count) encoding our prior belief
in that a word might be part of a spam message and » is the total
number of words (m = 1 would be a typical choice for the pseudo-

count). Similarly, we can compute P (w;|=Spam).
|

Pseudo-counts are a kludge. If we want to do a better job we could introduce
a prior distribution that a word is part of a spam message. If we choose a
Dirichlet distribution for this prior distribution and assume that the likelihood
of the words appearing in the data was given by a multinomial distribution (an
assumption compatible with our naive Bayes assumption), then we would end up
with a quantity that looks just like a pseudo-count. The advantage of doing this
properly is that we would get justifiable pseudo-counts rather than numbers that
appear to come from nowhere. See Exercise 8.2 to see this explicitly.

8.5.2 Graphical Models

We finish our discussion of Bayesian methods by discussing one of the most
explicitly Bayesian techniques for performing inferencing, namely graphical
models. One of the challenges of using Bayesian methods in a complex problem
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is managing the model. Graphical models aid this process by building a pictorial
representation of the causal dependencies between the random variables that
make up a probabilistic model. There are different ways of using graphs to rep-
resent probabilities. The mainstream graphical models, known as Bayesian belief
networks, use directed graphs to show causal relationships between variables,
while a second strand, often known as Markov random fields, use undirected
graphs. Graphical models don’t solve the problem of performing inference,
rather they provide a framework for representing problems. A lot of the current
research is aimed at developing efficient algorithms for performing (approximate)
inference for graphical models.

Bayesian Belief Networks

In Bayesian belief networks (or Bayesian networks for short) we represent
random variables as nodes or vertices in a graph and conditional dependencies
as arrows between nodes. Thus if A and C are random variables then we would
show a casual dependency between A and C as shown below.

This indicates that event A causes event C. As an example, the random variable A
might be 1 if Abi has an anniversary today and 0 otherwise, while C might be 1 if
there are cakes in the coffee room and zero otherwise. We then have to associate
probabilities with each event, e.g. P(C =1|JA=1) =08, P(C=0[A=1) = 0.2,
P(C=1/A=0) = 0.1 and P(C=0/A=0) = 0.9, while P(A=1) = 1/365
and P (A = O) = 364/365. This requires some clarification, clearly having an
anniversary is not a random event (we don’t roll a dice with 365 sides each day to
decide whether it is our anniversary), however, I personally am useless at dates
so if we take these probabilities to encode my belief about the state of the world
then this is a reasonably accurate model. Note that because we are capturing
a causal relationship, then it is relatively straightforward to assign conditional
probabilities. E.g. if it is Abi’s anniversary then there is an 80% chance she will put
cakes in the coffee room. Of course, the world is more complicated; for example,
there might be cakes because Ben has a birthday, which we can represent using
the graphical model below.

To perform probabilistic inference it is useful to rewrite a joint probability
in terms of conditional probabilities. Bayes’ rule allows us to do this in many
different ways, e.g.

P (A,B,C) =P (A|B,C) P (B|C) P (C) =P (C|A, B) P (A|B) P (B),

etc. However, the Bayesian belief network points to a particularly useful way of
disentangling the probabilities. In our example, we can write

P (A,B,C) =P (C|A,B) P (A) P (B)



8.5 Machine Learning 247

which not only involves the conditional probabilities which are easy to specify,
but simplifies the relationship in that we know that P (A|B) = P (A). That is,
in our simplistic model of the world Abi’s anniversary is not directly related to
Ben’s birthday. Although random variables A and B are not casually connected
they are dependent on each other through C. Thus, if we know there are cakes
and it is not Abi’s anniversary then there is a higher probability of it being Ben’s
birthday than if it were Abi’s anniversary.

In general, to infer questions such as what is the probability there are cakes, or
what is the probability that it’s Ben’s birthday, we have to sum over all possible
events, e.g.

P (It’s Ben’s birthday) = E [B] = Z Z Z BP (A,B,C).

Ae{0,1} B€{0,1} C€{0,1}

For a simple model this sum is straightforward, but as the number of random
variables grow this sum quickly becomes impractical to compute. That is, if we
denote our random variables by X; and their states by S; then the total number
of distinct combinations of states is

n

H |S;| = e iz los(ISil)

i=1
where |S;| denotes the cardinality (number of elements) of the set S;. The sum
over states grow ‘exponentially’ in the number of random variables. There are
situations when we can use conditional independence to reduce the number of
states we need to sum over. For example, if we don’t know whether there are cakes
in the coffee room then Y ~_,; P (C|A, B) = 1 and consequently

P (It’s Ben’s birthday) = Y BP(B) =P (B=1).
Be{0,1}

If we extend the model and consider two colleagues Dave and Eli who like
cake, then we could let D be a binary random variable set to 1 if we see Dave
eating some cake and similarly E is a random variable telling us whether we see
Eli eating cake. Our model is now as shown below.

which we decompose as
P(A,B,C.,D,E) =P (D|C) P (E|C) P(C|A,B) P(A) P(B).

In this case, if we see Dave eating cake, then we can use the model to infer the
probability that it is Ben’s birthday or whether we can expect to see Eli eating
cake. Again the inference involves summing over all unknown states. Note that
our variables D and E are dependent on each other through C. However, if we
go to the meeting room and observe that there is some cake (or there is no cake),
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then the probabilities that Dave and Eli eat cake become independent of each
other. In graphical models, if some of our random variables are observed it is
traditional to shade the nodes, for example if we observe that there is cake in the
coffee room we can show this using the following graphical representation.

Observing C makes A and B dependent, however, D and E are conditionally
independent given C. Thus, in this model, having observed there are cakes in
the coffee room, C, then the probability that Eli will eat cake is just P (E = 1|C)
(we don’t care about A, B, and D). Graphical models allow us to formalise
the conditions where random variables become conditionally independent —
the interested reader can consult any text on graphical models. One of the
major benefits of using graphical models is that they can make the dependency
relationship between random variables very explicit, which can often speed up
inference by many orders of magnitude.

Bayesian belief networks come into their own when we have to make inferences
about complex systems. Below we consider a simplified example of trying to build
an automatic fault diagnostic system for a printer.

|
Example 8.15 Printer Failure
Suppose the printer isn’t printing and I want to know the most
likely causes. There are a lot of unknowns which can be modelled as
random variables: Is the printer switched on? Is there a paper jam?,
etc. To determine if the printer has, for example, run out of ink, we
first identify what could go wrong and their causal relations, e.g.

In this case we assume we have observed the warning light. In our
simple model we will assume that all the random variables take
binary values (in general we might have more complex random
variables, for example, we might receive a warning message rather
than have a warning light). For our model we can then assign
prior probabilities to the top-level (parent) random variable, e.g.
P (paper jam) = 0.1, P (switched off) = 0.4, etc. At the lower level
(children) we can assign conditional probabilities

P (warning light = True|paper jam, —out of ink, =switched off, —=blow fuse) = 0.9

P (warning light = True|paper jam, —out of ink, switched off, —blow fuse) =0
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Often graphical models are just used to help visualise the dependency structure
in complex probabilistic models. Many probabilistic models can be represented as
a graphical model. As an example of this we consider one of the most prominent

and similarly for the other pairs of random variables. If we have
additional information (e.g. we have observed the warning light), or
we know that the printer is switched on, then we can set these random
variables to their observed state. To find the most likely cause of the
fault we can sum over all possible states of the system that have not
been observed. Using the causal structure of the model we can often
reduce the computation considerably.

probabilistic models of recent years: latent Dirichlet allocation (LDA).

Example 8.16 Latent Dirichlet Allocation
LDA was proposed in Blei et al. (2003). Although it can and has been
used in many different application areas, its prototypical application
is in topic models. That is, in grouping a collection of documents into
topics, where each document belongs predominantly to one or a few
topics. LDA is a means for automatically finding the topics.

More specifically, we consider a set of documents or corpus C =

{d;li =1, 2, ...|C|}. Each document is composed of a list of words
d= (wid), ng)’ e w](\zl)) .

We make the assumption that the ordering of words is irrelevant.
Clearly, this is not true of real documents. It is a useful simplifying
assumption as it allows us to ignore grammar, which is difficult to
understand. For identifying topics, however, the word ordering is
perhaps less important. Our aim is to infer a set of topics 7 =
{t1, t2, ..., tj7r} such that the words in each document are ‘ex-
plained’ by only a few topics (see Figure 8.18).

dy dy d3 dic)

LDA is also an
acronym for linear
discriminant
analysis—a quite
different algorithm.

Figure 8.18 Each
document has a few
topics assoicated
with it which are
responsible for
generating the words.
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For each document, d, we associate a probability vector, 04 =
(Gt(d) |t € T), which tells us the probability that a word in document d
is generated by topic ¢ € 7. We want this to be sparse, in the sense
that most of the probability mass is associated with only a few topics.
In addition we associate a relatively small proportion of words in the
vocabulary, V, to each topic (see Figure 8.19).

Figure 8.19 For each

topic we associate a V — w wo, W3, ..., W
relatively few words Ly 2, W3 |V|

from the vocabulary. % // \

Again we associate a probability vector, ¢(*) = (¢5\€) |w € V), with
each topic, where ¢5vt) is the probability of word, w € V), being gen-
erated by that topic, 7. Again we want to choose a sparse probability
vector. Here we describe a version of LDA known as smoothed LDA
as the probability vector, ¢), are Dirichlet distributed; although
sparse in the sense that ¢$) is large for only a relatively few words,
nevertheless, it is non-zero for all words.

To obtain sparse vectors, 0% and ¢(’), we draw them from a
Dirichlet prior distribution

69 ~ Dir(a 1) ¢\ ~ Dir(g1)

where 1 is the vector of all ones (note that for 0D the vector is of
length |7], while for ¢*) the vector is of length |V]). By choosing
a,B < 1 we put a strong bias towards sparse vectors (see Fig-
ure 8.20).

Figure 8.20 A Ps3 A

three-dimensional 1
Dirichlet

distribution,

Dir (pla = §(1,1,1)).

P1

LDA can be viewed as a generative model for documents. That
is, for each topic we can generate a probability vector ¢*) from
Dir(B1). Then for each document we draw a probability vector
69 from Dir(a 1). Finally, to generate the document for each word
position, i, we first draw a topic, ‘rl-(d), from 09 and then draw a

(d)
word, wl(d), from ¢(T"d ),
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In general, if we have a set of items Z where p = (p;|i € Z) is a
probability vector such that p; is the probability of drawing item i,
then we often refer to the probability distribution for the items being
drawn as the categorical distribution

Cat(i|p;) = pi = Mult(6;[1, p)

where §; is a vector with a 1 at position 1 and 0 elsewhere (this is
often referred to as a one-hot vector). Note, that this is a multivariate
generalisation of the Bernoulli distribution discussed in Section 4.3.3
on page 68. It is a very simple distribution (we are just choosing a
single sample with probabilities p;) so even though the categorical
distribution is often used it does not always get given a name. It is,
however, useful in clarifying the model underlying LDA. Thus, in
LDA we choose

vdec 6“9 ~ Dir(al)

vieT ¢ ~Dir(p1)

VdeC Avie{l,2,....N} @ ~cCat(0?®), w? ~ Cat(p™")).

Note that this way of viewing LDA is as a generative model for
documents. That is, we view each document as being primarily about
a few topics, which we encode in 8@, Each topic has a relatively
few words associated with it, which we encode in ¢*). To generate a

document for each word we select a topic, Ti(d), according to 0(‘1), and

then we choose a word according to ¢(Ti(d)). Although, this is clearly
not how documents are generated, nevertheless, we have an intuitive
feeling that this might capture some aspect of the distribution of
words in a real set of documents. Thinking in terms of generative
models is often a very useful way of coming up with natural models.
Of course, the last thing we want to do with our model is to
actually generate documents. In most applications we are given the
documents and want to infer topics. It is typical of many generative
models (e.g. HMMs) that they are rarely used as generative models.
Thinking of them as generative models is just a useful intellectual
crutch to come up with a plausible probabilistic model.

As we are not going to use LDA as a generative model, we want a
description of the model in terms of a probability distribution rather
than as an algorithm for drawing samples from that distribution. To
succinctly express LDA as a probability distribution it is useful to
denote the set of random variables in the model by

w=wDdec) with w@ =@ wi® w{). and W@ eV
T=DNdecnie{l,2,...,Ns}) with 7D eT

0=094decc) with 09D = D)reT) el

®=(p"eT) with ¢ = (e |weV) e



Figure 8.21
Graphical
representation of
smoothed LDA
showing all the
random variables
and their
dependencies. The
words depends on
both the topic Tl-(d)
and on the word
vector ¢(Trd)) for

that particular topic.
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where A is the (k — 1)-dimensional unit simplex. The joint
probability distribution for the random variables is then given by

P(W,T,0,0|a, ) = (H Dir (¢<f>|/31)>

teT
Na
; (d) (d)|g(@)
x(E}Dn’(G |a1>i1}Cat(Tl |0 )

Cat (wf? |¢<T§‘f>>)> |

Typically we are given the set of words W in each topic and wish to
infer plausible topics. To do this it is convenient to marginalise out
the Dirichlet variables () and q)sv’). As the Dirichlet distribution
is conjugate to the multinomial (and categorical) distribution this
marginalisation can be computed in closed form. It is still necessary
to sum over all possible allocations of topics Ti(d), which can be
done using a variational approximation or using MCMC. There is
a large literature discussing different strategies for performing this
inference.

We now return to the graphical representation of LDA.
Figure 8.21 shows a traditional graphical representation of LDA
showing all the dependencies between random variables. This figure
is rather large and inelegant.

Bayes
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Graphical models have invented a notation known as the
plate representation where sets of causally independent variables
are shown in boxes. Thus, to show that all the vectors (%) are
independently generated given o we would use the diagram below.

D

deC

Some authors would write Dir above the arrow to show that (%) was
generated by a distribution Dir(8®|a1). LDA involves several levels
of random variables so needs to be modelled as a more complex plate
diagram as shown in Figure 8.22. I have to confess, I find such plate
diagrams hard to digest. They compact a lot of information, but
require a lot of staring at to comprehend. Clearly, they are only
visual aids. Although in LDA, w§d) depends on both Tl-(d) and ¢,
the graphical model fails to convey the type of dependency.

oDn‘ .Cat @ wgd) Cat S0 Dir e

ie{l,2, ..., Ng} teT
deC

I like visual representations. It fits in with the way I think. As
such, I should be a great fan of Bayesian nets. However, sometimes |
find the mechanics of setting up a graphical model and the rules for
applying them take centre stage and for my taste they can sometimes
obscure what the model really means. They certainly deserve study
and have a significant number of advocates, although it is always
important to step back and ask what the model really means and is
the graphical model really useful.

Algorithms have also been developed to learn the structure of the Bayesian
network (i.e. to determine which pairs of variables are conditionally inde-
pendent of each other and what are the conditional probabilities). We leave
the interested reader to study the relevant literature (see Additional Reading
section).

It is worth pointing out that many probabilistic models can be represented as
graphical models. This includes classic models such as HMMs (see Section 8.4.1)
and Kalman filters (see Section 11.3.1). However, these models tend to have a
rather simple structure, allowing faster algorithms to be used than those used for
general Bayesian networks.

Figure 8.22 Plate
diagram showing
smoothed LDA.
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Markov Random Fields

The Bayesian belief networks imposed an idea of causality with parent nodes
influencing child nodes. For many situations this is perfectly appropriate, but
not always. Probability is blind to causality and we can define the conditional
probability P (A|B) as easily as the conditional probability P (B|A) whatever
the causal relationship between A and B. In some situations we would want
to represent the dependency in a symmetric manner. To do this we can use an
undirected graph. A classic application of this type of graphical modelis in image
processing. For example, we may believe that neighbouring pixels are likely to be
correlated with each other, while two non-neighbouring pixels are conditionally
independent given the pixels in between (at least, to a first approximation). We
can represent the dependency structure by a lattice.

Suppose we have a noisy image and wish to smooth it to remove as much
noise as possible. To do this we can build a probabilistic model for the pixel
values of the true image. The likelihood function depends on the neighbours (as
represented by our graph) of the current pixel and on how close its value is to that
of the corrupted image. We can then find the image that maximises our likelihood
(we can even put a prior over the pixel values and find the MAP solutions). The
problem is often set up in a statistical physics language such that maximising the
likelihood or posterior is equivalent to minimising an energy.

Bayesian techniques have become some of the most important methods in
analysis of, and learning from, uncertain data. In complex applications such
techniques nearly always outperform traditional methods such as maximum
likelihood. The reason for this is that maximum likelihood is liable to over-fit
the data, while Bayesian methods, done right, won’t. In a few cases, applying
Bayesian methods is straightforward, however, it becomes technically challenging
very quickly. A few frameworks have been developed to help cope with the
technical challenges, for example graphical models and Gaussian processes.
Compared with other learning methods such as neural networks and support
vector machines, probabilistic techniques tend to require considerable work
(modelling) before they can be applied. However, they are well grounded so that
when executed properly they often give extremely good results.

Additional Reading

There are a huge number of books on Bayesian methods. A good introduction to
Bayesian methods in statistics is by Lee (2003). A more advanced text is Gelman
et al. (2003). If you are interested in the historical development and philosophical
arguments then Jaynes (2003) is a good read. There are an enormous number of
books on Bayesian approaches to machine learning. Up-to-date books in this
category (that also cover graphical models) include Bishop (2007) and Barber
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(2011). The modern development of graphical models can be found in the book
by Pearl (1988). Markov random fields were introduced in the classic paper by
Geman and Geman (1984). A nice text on HMMs is Durbin et al. (1998).

Exercise for Chapter 8

Exercise 8.1 (answer on page 421)
Harry the Axe is one of ten suspects found at the murder scene. On searching Harry
a rare watch was found on him identical to that owned by the victim. The victim’s
watch is missing. Harry claimed it was his, but only 0.1% of the population has
a similar watch. What is the probability that Harry is the murderer given the new
evidence?

Exercise 8.2 (answer on page 421)
Show that the Dirichlet distribution is a conjugate prior for a multinomial likeli-
hood and derive the update equations.

Exercise 8.3 (answer on page 424)

Suppose we have an experiment with k possible outcomes. Consider performing
n independent experiments. What is the likelihood of the n experiments having
outcomes N = (Nj, Na, -+, Ni) if the probability of a single outcome is given
by p = (p1, p2, -+, pi)?

Suppose we want to estimate p from our observations N. What are the maximum
likelihood probabilities? Show how using a conjugate prior to encode our prior
beliefs about p will modify the expected value of p given our observation (the
answer to Question 8.2 will be of use).

Exercise 8.4 (answer on page 425)
Equation (8.4) gives the posterior probability for the mean and variance given a set
of data D = (X, X, ..., Xn) and assuming an uninformative prior. Show that the
marginal created by averaging over the variance is distributed according to Student’s
t-distribution

1o = [~ sturpyar = (ME B
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1< " 1 -4t
N N2 t 2
p=-5S"%. $=S"(Xi—p)% Tp)= —" (1 + 7) .
"2 2 NI A

Exercise 8.5 (answer on page 426)
Obtain some data, e.g. the area of different countries, their population, physical
constants, etc., and plot the frequency of the most significant figure. Compare this
with Benford’s law.
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Exercise 8.6 (answer on page 426)
Show that a scale parameter, o, of the form fx(x|o) = %gx(ﬁ) turns into a
location parameter under the change of variables X =e?.

Exercise 8.7 (answer on page 427)
Show that the uninformative prior for a probability, P, transforms to a uniform
prior for the log-odds (logit) parameter ¥ = log(%).

Appendix 8.A Bertrand’s Paradox

In 1889 Bertrand published a probabilistic problem which caused confusion
for almost a century. The problem can be viewed as follows. We throw long
(knitting) needles into an area with a circle drawn on the floor. We then ask, of
the needles that cross the circle, what is the probability that the chord formed
by the portion of the needle within the circle is longer than the sides of an
inscribed equilateral triangle? The problem takes a bit of time to absorb. But
an equivalent formulation is to ask whether a needle that crosses the circle also
crosses a concentric circle of half the width (see dashed circle in margin figure).
Bertrand presented three possible solutions to the problem.

(a) If we assume that the distance from the centre of the circle to the midpoint
of the line within the circle is uniformly distributed then we come up with an
answer of p = 1/2, since the inner circle is half the radius of the outer circle.

(b) If we assume the angle between needle and the circle edge is uniformly
distributed we come up with an answer of p = 1/3. To see this consider a
needle that lies on the vertex of the equilateral triangle. It will have a chord
longer than the edge of the equilateral triangle if it lies between the two edges
of the triangle. That is, for 60 of a possible 180 degrees it will have a chord
greater than the length of the equilateral triangle.

(c) Finally, we could assume the midpoint of the chord is uniformly distributed
throughout the whole circle. As the inner circle has a quarter of the area of
the outer circle we would conclude p = 1/4.

What is the correct answer? There seems to be an ambiguity in assigning a
uninformative prior for this problem. Is assigning priors really subjective? Of
course, in one sense the answer is all solutions are correct. Needles can be placed
at random assuming any one of the three priors — see Figure 8.23.

You could conclude that the problem is not well posed. I haven’t told you
enough about the problem for you to decide. But that seems a bit of a cop out.
Surely I can imagine doing the experiment where I rather inaccurately throw long
knitting needle at a circle. What would be the result? Ed Jaynes, in a typically
well-written and combative paper, argued the problem is sufficiently well posed
to have a unique solution (Jaynes, 1973). The basic argument is that we should
expect the same probability distribution if we where to rotate the room, change
the size of the circle, and shift the circle slightly. That is, we require the probability
distribution to be rotation, scale, and translation invariant. In fact, it is the
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(a)

Figure 8.23 Example of samples of 20 needles for Bertrand’s problem where we assume a uniform
distribution with respect to (a) the distance from the centre of circle to the midpoint of the chord,
(b) the angle between the chord and the circumference of the circle, and (c) the position of the
midpoint of the chord. The needles represented by solid lines have a chord longer than the
equilateral triangle while the needles represented by dashed lines have a shorter chord.

translation invariance that is most important. Here is a very informal argument.
Consider standing east of the circle and rolling the needles so they lie in a north—
south direction (obviously to achieve rotational invariance we would have to
choose the starting angle at random). See Figure 8.24.
Figure 8.24

Throwing a needle
from point x

/\ towards a circle (and
KJ a translated circle).

We assume we are rather unskilled so we apply very different forces. Now
suppose that we translated the circle slightly, then we would expect to have the
same distribution of needles. This is only true if the horizontal positions of the
needles are evenly distributed. As a consequence, we would expect the distance
from the midpoint of the chord made by the needles to the centre of the circle
to be evenly distributed. This would be true whichever angle we started from.
This is case (a), which corresponds to p = 1/2. Those who prefer a rigorous and
mathematical proof can read Ed Jaynes’ paper. Note that in any real situation
we would only expect this translation symmetry to be approximately correct (the
universe is finite and we can’t throw infinitely hard), nevertheless, these symmetry
arguments are very effective at describing what is observed in the real world
to a high degree of accuracy. Of course, you can argue that by assuming these
symmetries Jaynes is providing the extra information to make the problem well
posed. We can set up physical situations where these symmetries don’t hold and
then we get a different outcome. What is worthwhile to take from this though
is that there are always grounds for selecting between priors provided that the
problem is properly posed. Bayesian inference is not as subjective as, at first, it
may appear.

—
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9.1 Shannon Entropy

Probability is used in situations of uncertainty, but how uncertain is an event? Is
the outcome of the Grand National more uncertain than the score of a football
match? These seem difficult to compare. In the first instance we have the name
of winning horse (or possibly the race was cancelled), while in the second case
we have the number of goals scored. Interestingly, however, we can measure
uncertainty for these events in quite a precise and useful way (at least if we
can attach probabilities to every possible outcome). The key idea allowing us
to do this comes from information theory — that is, the theory of communicating
information as efficiently as possible. More precisely we associate the uncertainty
of an event with the expected minimum amount of information that has to be
communicated for person A to tell person B about the event. It is important here
to recognise that it is the minimum possible amount of information that needs to
be communicated. The uncertainty of a discrete random variable X that takes
values x; is given by the Shannon entropy defined as

Hy =-) P(X =ux)log, (P(X =x)) 9.1)
i=1

which is measured in bits. Note that Hx is not a function of X, but rather a
function (or functional) of the distribution P (X). If X can take two values, 0
or 1 say, with equal probability then Hx = 1 bit. Working with logarithms to
the base 2 (log,) is often awkward. We can instead use the natural logarithm, in
which case entropy is measured in nats with 1 bit = log(2)nats.

Entropy has a much older pedigree than information theory, going back to
Rudolf Clausius, Ludwig Boltzmann, Willard Gibbs, and James Clerk Maxwell,
but it was Claude Shannon in 1948 who made the important connection to
information. Ed Jaynes, whom we met in Chapter 8, argued that entropy in
statistical mechanics can be viewed as an application of Shannon entropy — that
is, statistical physicists are actually undertaking statistical inference.

9.1.1 Information Theory

What then is the connection between entropy and communication? A simple way
to see this connection is to consider the problem of communicating information
about a set of mutually exclusive events. Let p; be the probability of event i. This
might be the racing results from Chepstow or the text of the Queen’s speech. Our
goal is to send this information using the least number of bits possible. In other
words, we want to minimise the expected length of the message —note that we only
consider communicating information related to uncertain events (at least for the
receiver), otherwise our message carries no information content. The way to do
this is to devise a code so that the most likely outcome has a very short message.
Of course, there is a limited amount of information you can encode using only
short words so you will have to use longer codes for less probable events. How
short can you make the expected message length? Interestingly there is a lower
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bound that is known to be tight (we can get arbitrarily close to the bound). That
lower bound is the entropy.

When coding a text in English the problem arises as to what should be
considered independent. For example, if we treat letters independently we could
devise a code which gives very short bit strings to common letters such as ‘e’, ‘t’,
‘a’, and ‘o’, while letters such as j’, ‘q’, x’, and ‘2’ should be coded with longer
bit strings. This wouldn’t lead to a very compact code as letters are far from
independent. We would do better to use a coding which works on pairs of letters
or some larger collection of letters. We might do even better by coding words
rather than combinations of letters, or even whole sentences. Shannon made the
first estimate of the entropy of English, which is estimated to be around 1 to 1.5
bits per letter (i.e. it can be compressed by a factor of between 3 to 5). Clearly, the
entropy of English will depends on the speaker so an exact figure doesn’t exist.

Information theory is about theoretical bounds on the length of codes (as
opposed to coding theory which is about finding practical coding schemes).
Shannon considered the problem of communicating through a noisy channel.
This clearly has practical applications for telephone communications or com-
municating with space probes or even storing information on disk drives. In all
these applications one wants to retrieve information despite the fact that some
information might be corrupted by errors. We can correct these errors by building
redundancy into the code. An interesting question is, given some error rate, how
much redundancy is required to guarantee that you can correct your code up to
an error rate €. The common assumption before Shannon’s work was that the
amount of redundancy would have to grow infinitely as ¢ — 0. That is, you
would need infinite redundancy to correct the code perfectly. In fact, Shannon
showed this wasn’t the case and you only need finite redundancy. Shannon’s result
provided a tight lower bound on the amount of information you would need
to send, but it does not provide a mechanism for constructing such codes. The
problem of devising optimally efficient error-correcting codes is unsolved and
most practical codes don’t get near to the bound, although a few more recently
developed codes are getting closer to the Shannon bound.

Shannon formulated the problem of communication in terms of sending a
message represented by a random variable, X. The message received at the end
of the channel is another random variable Y. The probability of the two messages
is represented by a joint probability P (X ,Y ) We can define the joint entropy

Hxy=— Z Pxy(x,y)log(Pxy(x,y)) 9.2)
x.y

where Px y(x,y) = P (X = x, Y = y) and the sum is over the set of values taken
by X and Y. If X and Y are independent so that P (X,Y) = P(X) P (Y) then
Hxy = Hx + Hy (the so-called additive property of entropy, which states the
uncertainty of a set of independent events is equal to the sum of the uncertainties
of the events on their own).

For communication, we are interested in the case when the signal received,
Y, isn’t independent of the message sent, X. In this case it is useful to consider
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the conditional entropy of X given ¥ = y (i.e. Y takes a particular value)
defined as

Hy|y-y = — Z Pxy (x]y) log(Pxy (x]y)) 9.3)

and the expected conditional entropy or uncertainty in the message sent, X, given
the signal received, Y,

Hx)y = Z Py(y) Hx|y=y = Z Px.y(x,y)log(Px)y(x]y)) - 94
y

X,y

Substituting the expressions
P(X.Y)=P(Y|X)P(X)=P(X|Y)P(Y).

into Equation (9.2) and using the property of logarithms, log(A B) = log(A) +
log(B), we obtain the identity

HX,Y = Hx + HY\X = Hy + HX\Y- (95)
Shannon defined the mutual information between X and Y as
Ixyy = Hx — Hxy 9.6)

which measures the expected information gained (or uncertainty lost) about X
by observing Y. If we had a noise-free channel we could deduce X from Y then
Hyxy = 0, so that the gain in information would be Hx (the uncertainty in X). On
the other hand, if ¥ was independent of X (i.e. the channel completely corrupted
the signal) then P(X|Y) = P(X) so that Hxy = Hx and Ixy = 0. In other words,
Y would convey no information about X.

We note that

Ix,y = Hx — Hx)y
= Hx — (Hxy — Hy)
= Hy — (Hxy — Hx)

= Hy — Hyx = Iyx.

We can visualise the relation between the mutual information and various
entropies as shown in Figure 9.1, which is worth contemplating. Hx y is the total
(expected) uncertainty about random variables X and Y. Hy is the uncertainty
we have about X if we don’t know Y, while Hy is the uncertainty we have about Y
if we don’t know X. The mutual information Ix.y is the information we get about
X by knowing Y or the reduction in uncertainty in X once we have observed Y.
We note that since Ix,y = Iy.x, we gain the same amount of information about
X by knowing Y as we do about Y from knowing X.

Now we return to Shannon’s formulation of information theory. He char-
acterised a noisy channel by P (Y|X). That is, given an input message X the
probability of an output message ¥ is P (Y|X). To maximise the information rate
we want to choose the input distribution P (X = x) = Px(x) to maximise the
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Relationship
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mutual information. Shannon defined this maximised mutual information as the
capacity of the channel

C = max Ix;y.
Px

Shannon’s remarkable theorem is that provided we send information down the
channel at a rate below the capacity, then, if we use sufficiently long code words,
there exists an error-correcting code whose expected error is less than e for any
€ > 0. In other words, if we have a sufficiently large amount of information to
transmit, there exists a code which will allow us to reach an information flow rate
arbitrarily close to C. The proof of this is non-trivial, but can be found in most
books on information theory. We give an outline of the key ideas in the proof
after the following example showing Shannon’s theorem in action.

Example 9.1 Communicating Down a Noisy Channel

To illustrate the meaning of this theorem we consider a binary
channel (that is, the channel sending messages consisting of strings of
1 and 0) with an error rate of f = 0.1, where the error is independent
on each bit. That is, P(X = 1]y =0) = P(X=0Y=1) = 0.1.
Assuming P (Y =1) = p, the conditional entropy of the signal
received is

Hyy 2 — Y P(X.Y)log(P(X|Y))
X,Ye{0,1}

2

= — P(1,1) log(P(1
— P(1,0) log(P(1

1)) — P(0,0) log(P(0]0))
|O)) P(0,1) log(P(O\l))
— (1= f)plog(1— f)— (1= £) (1 - p) log(1 — /)
— f(1=p)log(f) — fplog(f)
= —(1— 1) log(l — f) — f log(f) = 0.325 nats = 0.469 bits

0,
P(0,

1=

(1) By the definition of conditional entropy.

(2) Expanding out the summation with P (X = x,Y = y) = P(x,y)
and P (X = x[Y = y) = P(x]y).

(3) Using P(x,y) = P(x|y) P(y) with P(1]1) = P(0|0)
P(110) = P(0]1) = f, P(1) = p,and P(0) = 1 — p.

(4) Combining terms.

-7
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In this particular example, because the error is the same for both
X =0 and 1, the conditional entropy does not depend on p. Recall
the mutual information is defined as

Ix,y = Hx — Hx|y.

The capacity of the channel is found by maximising the mutual
information with respect to p. Since Hx)y is independent of p, we
need only choose P (X ) to maximise Hy. This is maximised when
P(X=0) = P(X=1) = 1/2, giving Hy = 1 (the amount of
uncertainty in a single bit with equal probability is 1 bit). Thus the
capacity of such a channel is

max Hyx — Hx|y = 1 —0.469 ~ 0.53bits.
X

Therefore, Shannon’s noisy channel theorem tells us that even with
a 10% error rate we should be able to construct an error-correcting
code so that, if we send sufficiently large words down the channel,
we can send information at a rate slightly above half the maximum
sending rate and still lose no information. Alternatively, if we wanted
to store information on a hard drive with an appalling 10% error rate
then there exists an error-correcting code which allows us to retrieve
the original information with arbitrarily small error probability that

uses only twice the memory.
|

To understand Shannon’s theorem we consider a binary channel with error rate
f where we use code words of length n. Due to the channel noise, the typical code
word will be corrupted at f n bits. Some code words will be corrupted by more
than this, but, by making n large enough, we can make the probability of more
than (f + €)n bits being corrupted arbitrarily small. (Recall in Section 7.2.4 we
showed, using a Chernoff bound, that the probability of an error being greater
than (f + €)n is strictly less than e =/ nel/ 3, for € < f). Thus, to construct an
error-correcting code, each word of our code has to differ from any other by at
least 2 (f + €) n bits. We can think of our code words as points in the space of
binary strings of length n surrounded by a ball of radius ( f +€) n. To prevent any
confusion these balls must not intersect. We show this schematically in Figure 9.2
— the actual space of message is not, of course, two-dimensional.

The number of strings which differ from some string x by at mostr = (f +€)n

bits is
r n n n n n
00+ (2)- (1))
However, (,"|) = —=(").If r = fnand, n > 1 then (,",) =~ lf—f(f)

2
and, by a similar argument, (,",) ~ (%) (). (We cheat here slightly by
setting € to zero. But we can make e as small as we like and still have an

In information
theory one
commonly meets
the entropy for a
Bernoulli variable
X ~ Bern(f) given

by H(f) = —
log, (f) — (1 = f)
log, (1 — f).




Figure 9.2 Schematic
diagram showing
error-correcting code
words in the space of
binary strings of
length n. Each code
word x is
surrounded by a ball
of radius

r = (f + €) n. After
transmission of the
message down a
noisy channel all
error messages will
land up in this ball
with a probability
e~/ € /3 (assuming

€ < f).

Stirling’s

approximation
(dashed curve)
plotted against

log(n!).
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arbitrary small probability of having more than n (f + €) errors provided we
ensure 7 is sufficiently large. Thus, setting € = 0 gives a lower bound.) Using this
approximation we have

N(f)wc) <1+1ff+<1ff>2+'”> %C)ll__z];

where we used the fact that the sum of a geometric progression 1 + x + x
1/(1 — x). Finally, if we use Stirling’s approximation for factorials

nl~V2rnn'e ™"
with r = fn we get, after a little rearrangement,

VT P A—

f\2rnf(l—f)
This is the total number of strings that are within a Hamming distance of f n of
any code word (the Hamming distance between two strings x and y is equal to
the number of elements in the strings where x; # y;). Now the total number of
strings of length n is 2" so the maximum number of balls of radius r = fn that
could fit in the space of all strings of length n is

2" RS =2F) niog@)en(s 10()+(1-F) log(1=1)
N(f) 1—f

where we have written 2" = exp(nlog(2)) and g(f) is a polynomial in f. Using
the identity log(x) = log(2) x log,(x) we note that

2" ~ 2ranf(l—2f) 11082 (14 logy (F)+(1—£) loga (1-1))
N(f) 1—-f

= c/neos@ Ixy — C\/ﬁzn Ixy

2. .=

log(n!) = nlog(n) —n+ ! log(2 7 n)

— 3

o —n1(f log(f)+(1-1) log(1-1))

where ¢ is a constant depending on f and Ix.y is our channel capacity. In other
words, the maximum number of error-correctable code words we can send in a
string of length n is approximately 2" /x| That is, we cannot transmit informa-
tion at a rate faster than the channel capacity. Figure 9.2 is somewhat misleading
in that our space of binary codes is actually a n-dimensional hypercube (not
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a nice two-dimensional space), so that partitioning the space is non-trivial.
Nevertheless, Shannon showed that there exists a code that achieves the channel
capacity. That is, it packs these ‘balls’ of radius r = (f + €) n into the space of
strings of length n tightly. In fact, he showed that most codes where the code
words are random chosen strings would be close to satisfying the bound. The
proof does not, however, tell us how to construct the code. Shannon’s theorem is
more general than our discussion as it does not assume that the signals are binary
or that the errors are simple.

There are a few caveats that one needs to keep in mind. Firstly, Shannon’s
theorem doesn’t tell us what these error-correcting codes look like. Most error-
correcting codes are far less efficient than Shannon’s bound. A very efficient code
may be exceedingly computationally costly to decode. For example, if we were to
choose random code words, then to decode a message we may have to compute
the distance between the signal we receive and all the code words. As there are
an exponential number of code words this strategy is too slow to be practical.
Secondly, there is a relationship between the size of block you need to code and
the error rate you can tolerate. A code that requires you to transfer a terabyte of
information in a single block might not be the solution you are looking for. You
might prefer to have a slightly less efficient code or accept a higher error after
decoding in order to have practical packet sizes. Finally, in the example, I made
the assumption that the noise was independent on each byte. In most real systems
noise is often much more correlated, so that several consecutive bits may all be
corrupted. This can be overcome to some extent by shuffling information in the
coded message and unshuffling the information before decoding. However, this
again adds to the complexity of the coder.

9.1.2 Properties of Entropy

Entropy is a strictly convex-down (concave) function of p; which is easily verified
since the second derivative of —p; log(p;) is —1/p;, which is always negative. The
normalisation constraint for probabilities restricts the entropy to a convex region.
One consequence of this is that the entropy can have only one maximum value.

The entropy of a discrete random variable is greater than or equal to zero
(which follows from the fact that log(Px(x)) < 0) and is maximised when all
probabilities are equally probable. That is, if p; is the probability that X = x; for
i=1,2...,m, then

n n
1 1
Hx == pilogo(pi) < =Y p logz(n> = logy(n).
i1

i=1
To prove this we can maximise Hx with respect to the p;’s subject to the
constraint that the probabilities sum to 1. This can be achieved by maximising
the Lagrangian (see Appendix 7.C)

L==> pilog(pi)+ A (1 - ZPi)
i=1 i=1

—p log,(p)

0.6
0.4
0.2

0
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to obtain the conditions

oL 1 oL X
RN _1 i = _—= — i: .
3p = “Tog) ~logpi) + A =0 a1 =1-2_r=0

(The 1/1log(2) arises because we are differentiating log,(p;) = log(p;)/log(2).)
The first equation implies p; = e1~1/1°8(2) where we have to choose the Lagrange
multiplier A so that Z?:l pi = L. This gives us p; = 1/n, as advertised.

The entropy associated with two independent random variables Hx y is equal
to the sum of the entropies of the two variables

i=1

Hxy = Hx + Hy (trueif X and Y are independent).

This additive property clearly makes intuitive sense if we think of the entropy as a
measure of uncertainty. A well-known argument is that if we require the entropy
to have this additive property then it must have the form given in Equation (9.1).
Alas, although well known, it isn’t true. We will see that the Fisher information
also satisfies this additive condition.

Entropy for continuous random variables. Entropy makes perfect sense when
discussing discrete random variables. We know after all how to communicate
information about a discrete set of events. When working with continuous
random variables things get more complicated. An obvious definition of entropy
would be

Hy = —/fx(x) log(fx(x)) dx

but caution is necessary. For one thing, fx(x) is not guaranteed to be less than
1, so you can have a negative entropy (see Exercise 9.3). Also this entropy is not
invariant to a change in variables. That is, if we make the change in variables
X — Y, such that X = g(Y), then we get

Hx = —/fx(g(y)) log(fx(g(y))) &'(y)dy

but fx(g(y))g’(y) = fr(y) by the normal transformation law for probability

densities, so
fY(y)>
=— 1 d
Hx /fy(y) og< ) y # Hy

unless g’(y) = 1. So the degree of uncertainty changes depending on how we
measure the random variable! This isn’t nice. We can use entropy for continuous
random variables, but we have to be careful.

The awkwardness of using continuous random variables in information theory
should not be so surprising. It takes an infinite amount of information to com-
municate a continuous variable to arbitrary accuracy. To develop an information
theory for continuous variables we have to introduce some discretisation or
coarse graining of the message space (sometimes this is known as regularisation).
If we change variables our discretisation differs and our entropy will also change.
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If we transform both the variable and the discretisation in the same way then the
information will remain unaltered.

9.2 Applications

Entropy or measures of information have numerous practical applications.
Obvious applications are in data compression and coding, although we do not
discuss these topics here — the interested readers should consult a more specialist
book. Instead we consider an application of direct use in performing probabilistic
inference.

9.2.1 Mutual Information

Recall the mutual information between two random variables X and Y is given by
Ix,y = Hx — Hx)y = Hy — Hyx.

This measures the amount of information you can infer about one random
variable given the second one. Sometimes, we consider the information ratio

Ixy Hx — Hxy

Hx Hx

which is equal to 1 if you can infer X from Y perfectly and 0 if they are indepen-
dent of each other. Mutual information or the information ratio is often used as
a measure to compare different signals, as illustrated in the following example.

|
Example 9.2 Image Registration
Suppose we have two images (e.g. MRI brain scans) and we want
to align them. That is, we want to transform one (e.g. by shifting,
rotating, scaling, etc.) so that it is as well aligned as possible with
the second, reference, image. A difficulty is that the images may not
have been taken under the same conditions, so what is grey in the
first image may be black in the reference image. Furthermore, this
discrepancy may not be linear due to saturation, automatic contrast
enhancement, etc. Thus it is difficult to find a mapping between the
intensities in the two images. One way around this is to consider
each pixel as a bit of information and seek the transformation that
maximises the mutual information between the two images. This way
you can learn the mapping between images.

9.2.2 Maximum Entropy

One of the problems faced by the Bayesian approach to inferencing is to encode
our prior knowledge, or in many cases our complete lack of knowledge. As
entropy is a measure of the uncertainty, by maximising the entropy we maximise
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the uncertainty and in so doing remove any prejudices we might have. This is
a commonly used approach for defining priors. It is applicable in a very broad
setting. Imagine that we have a system depending on a discrete random variable
X (this may be multidimensional). We assume that we measured some average
properties of our system. We impose these measurements as constraints of the
form

= pifilxi) = fi

where p; is the probability that X = x;,and [ = 1, 2, ..., mlabels the constraints.
We suppose we can measure f;, but we don’t know p;. Is there some way to infer the
‘most likely’ values of p;? Maximum entropy provides an answer. That is, we can
maximise the entropy subject to the constraints by writing down a Lagrangian
(see Appendix 7.C)

= pilog(pi) + Ao (1 - ZPi) +y A (El’i Ji(xi) _fl> :
i i I=1 i

This has three terms. The first is the entropy (we use log(p;) rather than log, (p;)
because it is more convenient, however, it only introduces a multiplicative
constant which can be absorbed into the Lagrange multipliers). The 1y term
ensures that . p; = 1, while the last term ensures all the observed constraints
are satisfied. Since the entropy is concave and the constraints linear in p; the
Lagrangian will have a unique maximum which we can find by setting the partial
derivatives to zero

oL
dpi

= —1—log(p:) /10+Z/11f1 xi) =
1=1

Solving for p; we find

i = AU (5 b Ao o (5) ©.7)

VA
where the Lagrangian multipliers, 4;, must be chosen so that all the constraints
are satisfied and

7 = Z e A (i )+ fo (i )+ A fon (X)) 9.8)
i
is a normalisation constant (related to Ay). This normalisation constant is known
as the partition function and has the property that

dlog 10z .
aa(l = o= Y fil) e ROttt = $ p fix) = .

i i

This formulation lies at the heart of equilibrium statistical physics (see
Exercise 9.4). Equation 9.7 can be seen as a generalised Boltzmann distribution.
However, maximum entropy can be used in many other areas.
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Example 9.3 Normal Distribution
Consider a continuous random variable, X, with a known mean and
second moment

]E[X]:,u, E{Xz} =/,t2=,uz+0'2.

To compute its maximum entropy distribution we maximise the
entropy subject to the above constraints. This can be achieved by
maximising the Lagrangian

L(f) = —/fx(x) log(fx(x)) dx + Ag (/fx(x) dx — 1>

o (/fx(X)xdx—ﬂ> 4y (/fx(X)x2dx—ﬂz>-

Note that the term proportional to 4( ensures that the probability
density is properly normalised. The Lagrangian is a functional (i.e. a
function of a function) of f. We can solve the maximisation problem
by setting the functional derivative to 0 (see Appendix 9.A)

SL(f)
6 fx(x)

=-1 —log(fx(x)) FA+ A x+x2=0

or

fX (x> —e —14+p+2; x+2» x2
where we have to choose Ag, 41 and A, so that

2
/e—1+/10+/11x+/12x dx =1
2
/e—l+/lo+/11x+/12x xdx = u

2
/e—1+/lo+/11 X+ x x2 dx = U = 112 +0_2.

It is a rather tedious exercise to compute all the integrals and solve
for the Lagrange multipliers but if you do so you find

2
K 1 ( 2) H 1
o=1———=1 2 = — Ay = ——
0 202 2 B\ 4 o2 2722
so that
Fe(x) = e —(x-mQ)

V2no

That is, the normal distribution is the maximum entropy distribution

given knowledge of the mean and variance.
|

Returning to an example from Chapter 8, we can use maximum entropy to
provide a likelihood and prior function.
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Example 9.4 Inferring Voting Habits: Example 8.10 Revisited

In Example 8.10 on page 222 we considered a set of voters who
interact with each other. We encode the degree of interactions by
w;;. These could be a set of your Facebook friends where w;; = 1if i
and j are friends with each other and w;; = 0 otherwise. The voting
intentions of individual i we denote by S;. In this case, we can define
an ‘energy’ function

E(S) = Z Wij I[Sl * Sj]]
(i.))e€

that just counts the number of friends (i.e. pair of individuals with
w;; > 0) who would vote differently. If we expect that the probability
of two friends voting differently is p, then in expectation

E[ES) = ) p=rl. (9:9)
(i.j)e&
Under a maximum entropy assumption we would then have a prob-
ability distribution
o —BE(S)
P(S)=—5——, Z(B)=) e PES)
)= »=3

where B is to be chosen so that Equation (9.9) is satisfied. This is
in accordance with Equation (8.6), which appeared from nowhere in
Example 8.10 — in that example it was helpful to distinguish between
the observed labels (voting intentions), $°, and unobserved labels,
S*. We might not know the probability, p, of two friends voting
differently, in which case we may have to choose g8 through model
selection as suggested in the original example.

Maximum entropy is used in many different areas of inference. For example,
it has been used for image enhancement and in estimating the distribution of
bubble sizes.

Is the maximum entropy distribution correct? Recall the rationale behind
the maximum entropy method is that by maximising our uncertainty subject to
the known constraints, we are choosing the least biased distribution, which in
some sense is the ‘most likely’. To make this more concrete, suppose we have a
large set of bins lined up on the x-axis and we put N balls in the bins at random.
We illustrate this in Figure 9.3. We will treat the balls as probability masses and
the position of the bin as the value of the random variable. If we consider all
arrangements of the balls in bins that have the right statistical properties (e.g. if
we know the mean and variance then we consider only those arrangements of
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the balls that have the correct statistics) then the probability of an arrangement
of the balls is given by

P (n) X Mult(n|N,1/N) Hl[z%fz(xi) = ﬁﬂ

1

&N'H% HZn =Nﬂ1:[|[2%fz(xi) :ﬁu

(1) Here we consider placing N balls in K boxes where n = (ny, na, ..., ng)
denotes the placement of the balls in the box so that there are n; balls are
in box i. The probability of such an assignment is given by the multinomial
distribution Mult(r|N,1/N) (each box is assumed to be equally likely). We
only consider placements that are consistent with our observations f; (hence
the indicator functions).

(2) We write out the multinomial distribution and explicitly put in the constraint
that ). n; = N (i.e. there are N balls in total).

Now, using Stirling’s approximation,
1
nl=V2ann"e ™ < log(n!)=nlog(n) —n+ 3 log(2 7 n),

we obtain

P(n) ~C

-N Z i log(ﬂ>
— N N n; n; o
S DR 1V M
In the limit of large N, where we treat n;/N as the probability of being in
state x;, the exponent is proportional to the entropy. Thus, the most likely
configuration of balls in bins is that which maximises the entropy subject to the
known constraints. As N — oo, this distribution becomes overwhelmingly more
probable than any other distributions.
The argument above suggests that the maximum entropy distribution is over-
whelmingly more likely than any other distributions. However, be wary of
these kinds of arguments. The uncertainty for most random variables doesn’t

Figure 9.3 An
example of putting
balls into bins.
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arise from putting balls into boxes. So there are times when maximum entropy
distributions provide poor approximations. Often if we are more careful we might
discover some other statistical quantity which, for some particular reason, has a
specific value, and when we add in this quantity the whole story changes. At times
maximum entropy can give excellent results for very little work, but it can also
let you down.

9.2.3 The Second Law of Thermodynamics

The laws of thermodynamics read more like a grim morality tale than a series of
scientific principles. Thus, the first law states that energy is conserved so that you
cannot build a perpetual motion machine that extracts any energy. The second
law tells us that you cannot extract internal energy from a system without a
temperature gradient that itself requires energy to maintain. Furthermore, even
when there is a temperature gradient the efficiency with which you can extract
useful work depends on the temperature you are working at. An engine would
only be 100% efficient when it is run at absolute zero temperature (0° Kelvin).
The third law tells us that we cannot ever reach absolute zero! Another statement
of the second law is that entropy must always increase. Thus, the universe slowly
slides to every greater uncertainty and chaos.

Statistical mechanics (i.e. the description of physical systems that obey ther-
modynamics) can be seen as an application of the maximum entropy principle.
It involves a set of macroscopic observables (e.g. pressure, volume, temperature,
etc.), which we have learnt through careful observation are sufficient to describe
the subsequent macroscopic behaviour of the system. That is, if we run repeated
experiments using the same set of macroscopic variables we obtain the same
results up to the accuracy of the experiment. Statistical mechanics describes what
happens to an ensemble of systems that have the same macroscopic properties.
There are an astronomically huge number of microstates (atomic configurations)
with the same macrostate (macroscopic variables). Different microstates can give
you totally different future behaviours. In statistical mechanics we assume that
the microstate that we are actually in is one that maximises the entropy of
the system. The rationale for this is that such microstates are overwhelmingly
more probable than other microstates. Thus, statistical mechanics is derived
by maximising the entropy of the microstates given the observed macroscopic
variables. It provides a statistical prediction of the evolution of the system in the
sense that it tells us what will happen with overwhelming probability; it does not
tell us what necessarily will happen (we could be in a very weird microstate which
although compatible with the macroscopic variables leads to an entirely different
future to that predicted for the maximum entropy microstates — although this is
overwhelmingly unlikely).

There are many definitions of entropy used in physics (some of which are
inconsistent). The most useful definition of entropy is due to Josiah Willard
Gibbs, who defined the entropy in terms of the probability distribution in the
phase space of the microstates. Classically the phase space, I', describes the set of
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all possible positions and momenta of the atoms making up the system. Letting
z represent a point in phase space (note that for a system with N particles this
would be a 6 N-dimensional vector describing the positions and momenta of all
the particles) and defining p(z) to be the probability distribution for the system
being in a microstate state z then the Gibbs entropy is given by

Se =— / p(z)log(p(z)) dz.
zel

(Although this is an entirely classical description, using a quantum mechanical
definition does not substantially change this discussion so we will stay in the
world of classical physics.) We will denote the set of microstates that are
consistent with the macrostate, E, by W(E). Assuming that we are equally likely
to be in any of the microstates, then

I[z S W(E)]]
IW(E)]

(where |S| denotes the size of the set S). In this case the Gibbs’ entropy is equal to
S =log(IW(E)]|), where |W(E)| is the volume of phase space consistent with the
macrostate E. Interestingly, under classical laws of physics (i.e. Newton’s law) the
volume of phase space does not change under the time evolution of the particles.
This is a famous result known as Liouville’s theorem, which follows because of
the reversibility of the microscopic laws of physics. The same holds for quantum
mechanics. Thus, Gibbs’ entropy never changes!

What about the second law of thermodynamics? This is a subtle point. Let us
consider what happens when we remove a partition from a box with gas molecules
on one side (Figure 9.4). We denote the macroscopic variables before removing
the partition by E, and the variables after removing the partition (and having
let the system settle down) by Z’. We do not know the exact microstate of the
system, however, we know that we started in one of the microstates in W(E)
(shown as a circle inside the set of all possible microstates I" in Figure 9.4). After

p(z) =

Figure 9.4 Removing a partition from a box with gas molecules on one side. The lower diagram
shows a schematic of the phase space. The set W(E) represents the set of microstates compatible
with the observed macroscopic variables E (e.g. temperature and pressure). When the partition is
removed those states will equilibrate to a new set of microstates W () with a different set of
macroscopic variables Z’. These will be experimentally indistinguishable from the complete set of
microstates W(E') compatible with Z’.
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removing the partition we are in one of the microstates W (E) which comes from
one of the initial possible microstates in W(E). However, there are many other
microstates that are also consistent with the final macrostate Z’. That is, it is not
necessary to have started with the partitioned system. We could have just adjusted
the temperature and pressure and gas density to reach the same macrostate, Z/,
without introducing a partition. Now we note that W (E) c W(E'), since one
way of achieving the macrostate E' is by starting from a microstate W(E) and
removing the partition. Because phase-space volume is conserved this implies
that [W(E")| > [W(E)| = [W(E)|. As the entropy is a monotonically increasing
function of the phase-space volume the experimental entropy increases! That is,
experimental entropy increases because it considers only the current macroscopic
variables and forgets the past history of the particles. The atoms actually always
retain a ‘memory’ of their past history. Those microstates W (Z) will never
coincide with those other microstates in WW(Z') which don’t originate from W(E).
To see this we just recall that the laws of physics are time reversible. Consequently,
if we could somehow reverse all the momenta of the atoms at time ¢ after
removing the partition, those microstates in W (Z) would evolve in such a way
that the particles at time 2t would all end up in the left half of the box, while this
would not be true for all the other microstates in W(Z').

We have seen that experimental entropy always increases, which is a conse-
quence of the fact that the phase-space volume is invariant (so that the Gibbs’
entropy does not change). The argument requires only that there exist observable
macroscopic variables which describe the behaviour of the system as accurately
as we can measure it. We are not forced to assume microscopic chaos or what
physicists have called ergodicity, meaning that taking an average over time is
equivalent to taking an average over the set of microstates consistent with the
observed macroscopic variables. However, notions such as microscopic chaos
may be necessary to explain why a small number of macroscopic variables are
sufficient to describe the evolution of a system. In our example, illustrated in
Figure 9.4, the microstates W (E) will not form a tight ball in the phase space,
but will be thoroughly mixed up with the other microstates in W(Z') so that
they are effectively indistinguishable from these other microstates. If this wasn’t
the case then we could experimentally distinguish these microstates; this would
tell us that there is another macroscopic variable which controls the expected
evolution. The fact that we know of no such macroscopic variable shows that at a
macroscopic level the past history of the microstates is lost. This is a consequence
of the fact that a system of many interacting particles is in a state of microscopic
chaos. That is, two microstates that differ minutely will diverge exponentially.
It is easy to imagine that if we took two boxes of gas where the atoms were in
identical positions and had identical momenta except for one atom being slightly
displaced, the discrepancy would alter the first collision involving the perturbed
particle so that now two particles would have slightly different trajectories. These
two particles could then interact with two more particles, causing an exponential
divergence of the two systems. A consequence of this is that W (E) would be
dispersed throughout W(E').
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The great success of statistical mechanics is a consequence of the fact that there
are a small number of macroscopic variables which are sufficient to determine the
future evolution of the system with overwhelming probability. The reason why
this situation arises is a consequence of microscopic chaos effectively erasing
the past history by mixing microstates coming from very different histories.
Maximum entropy can perfectly logically be applied to other systems that do
not experience microscopic chaos. However, in these cases there are rarely a small
number of macroscopic variables which sufficiently describe the system. We can
still apply maximum entropy to some sets of observables that we have measured,
however, in such cases we are likely to find that the predicted maximum entropy
state differs from the true state. The maximum entropy prediction is then often
incorrect although it frequently gives a reasonable approximation.

Maxwell’s Demon

The great physicist James Clerk Maxwell proposed the following thought ex-
periment to break the second law of thermodynamics. He considered a box
containing gas with a partition down the middle (see Figure 9.5). The box has
a small trapdoor in the partition controlled by a demon. The demon looks at
the atoms bouncing around and opens the door if a fast particle is moving from
left to right or if a slow-moving particle is moving from right to left. This way,
eventually the right container will contain fast high-energy particles while the
left container will contain slow low-energy particles. The demon has created a
temperature gradient which can then be used to extract thermal energy. The
demon has therefore broken the second law of thermodynamics.

Maxwell’s demon caused a great deal of confusion until it was fully resolved
by Charles Bennett, who showed that, alas, Maxwell’s demon cannot break the
second law of thermodynamics. The problem for the demon is that he needs
energy to store information — information he needs to decide when to open the
trapdoor. In fact, to store a bit of information (or more correctly to erase a bit
of information) requires an energy of k7 where k is Boltzmann’s constant and T
is the thermal temperature. The argument is rather intricate, but to store one bit
of information requires reducing the degree of freedom of a state by two, which
requires work. In the best case, this is the same energy that Maxwell’s demon
could extract by opening the trapdoor. You might think that Maxwell’s demon
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Figure 9.5 Maxwell’s
demon at work.
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could win by living at a lower temperature than the gas, but in this case he would
be just like a Carnot engine, extracting useful work from a temperature gradient
(the temperature difference between himself and the gas). However, maintaining
that temperature gradient would use up any energy gained by the demon.
Maxwell’s demon illustrates a deep connection between information entropy and
thermodynamic entropy. A connection which you would not easily anticipate.

9.3 Beyond Information Theory

Shannon entropy is not the only measure of uncertainty. We briefly introduce
two others which have some prominence: namely Kolmogorov complexity and
Fisher information.

9.3.1 Kolmogorov Complexity

Information theory doesn’t address the question of how much information is there
in a string? That is something external to the theory. Kolmogorov complexity
addresses precisely that question. It defines the complexity of a string to be
the size of the shortest program which can generate that string. This sounds
straightforward, but there are some complications. Firstly, this will depend
slightly on the language we are using to describe the program. This, however,
is a superficial difficulty because the difference in the lengths of strings when
we change our computer language will always be small (a consequence of the
universal nature of computation). The harder problem is that the length of the
shortest program to compute a string is incomputable — that is, it is one of
those questions which is impossible to answer in general. This may seem to make
Kolmogorov complexity rather uninteresting, but despite this drawback there are
some interesting inferences that can be made.

The most important idea is that there exists strings for which the shortest
program to generate the string will be the same length as the string. Clearly the
program print (string) can print any string, but it is not shorter than the
string itself. These strings are said to be incompressible and are truly random
strings. Now a simple counting argument between possible programs and strings
shows that nearly all string are incompressible. Unfortunately, determining
whether a string is incompressible is incomputable. The proof of this is extremely
easy. Consider the question: What is

the least natural number that cannot be described in less than fourteen words?

If we could compute this number then we could describe it in less than 14 words
(i.e. the 13 words in the sentence above). This produces a contradiction showing
that compression is incomputable. However, we know from Gdédel that in any
powerful formal system there will be true statements that cannot be proved and
this is one such question. We can, of course, compress many strings that we
encounter in the real world and there is a host of algorithms for doing this (jpeg,
zip, gzip, ...). However, these only work by exploiting obvious redundancies. Give
a compression algorithm a sequence generated from a pseudo-random number
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generator, it is unlikely to give you any compression, even though pseudo-random
number generators tend to be short programs so the strings generated by them
have low Kolmogorov complexity. Although we cannot determine which strings
are compressible we can ask questions about the compressibility of sets of strings.

Kolmogorov complexity may appear rather abstract and theoretical, but it has
inspired some practical applications. One of these is a similarity measure com-
puted by concatenating two strings (or documents) and then compressing them
using a standard compression algorithm (e.g. gzip). To measure the similarity,
we compare the length after compressing the two strings concatenated together
with the lengths when compressing the strings separately. If the strings are similar
then a good compression routine will exploit their similarity to highly compress
the concatenated string.

This similarity measure has the nice feature that it picks up similarities which
might be quite complex. However, compression algorithms only provide a crude
approximation to the true Kolmogorov complexity, so this algorithm really has to
be viewed as a neat idea inspired by Kolmogorov complexity. Had this algorithm
been thought of by someone not in the Kolmogorov complexity field, 'm not
sure that it would be viewed as an application of Kolmogorov complexity at all.

On a more philosophical note, the scientific method is often portrayed purely
in terms of refutation. That is, in science we build theories that can be refuted
and then undertake experiments to test the predictions of the theory to their
limits. Although this captures one aspect of science, it misses the question of what
makes a good theory and, if we cannot immediately test a theory, how plausible
should we consider it? Kolmogorov complexity fills this gap. If we have a theory
that drastically compresses data obtained from a huge amount of observations,
then with overwhelming probability the theory must capture something about
reality. This is a judgement we can make without attempting to falsify the theory.
Of course, the theory might not quite be correct: Newton’s laws summarise a huge
number of observations, but isn’t quite right (although it is sufficiently useful that
we still teach it to children and use it in innumerable applications). By attempting
to refute the theory we can check its domain of applicability, but it is the ability
to compress information that makes Newton’s law worthy of consideration. This
compression might be sheer coincidence. Given any short sequence (the sunny
days last year) it is reasonably likely one can find a formula to compress the
data (in fact there is likely to be considerable structure so we would be able to
compress the data using a compression algorithm). However, the vast majority
of strings are incompressible, so unless there is real structure it is astronomically
improbable that we are going to find a way of substantially compressing large
amounts of data by chance.

9.3.2 Minimum Description Length

Another inspiration from Kolmogorov complexity is the minimum description
length (MDL) method for performing inference (Rissanen, 1983). Its adherents
claim that it is more consistent than Bayesian inference. The idea is that the
best model for a collection of data would be the one requiring the shortest
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program that generates the data. We should therefore seek a model that allows
us to communicate the data as efficiently as possible. The rationale behind this
is that compressible data is much more likely (can be generated by far more
mechanisms) than less compressible data. For example, if we could generate the
data with a program 50 bits long then there are likely to be billions of programs
100 bits long that will also generate the data. Turning this idea into a workable

Entropy

method requires some effort.

Example 9.5 Curve Fitting

Given a set of data D = {(x4,yo)|le = 1,...,n}, where each data
point corresponds to a set of feature x, and a target y,, then a
very common problem in data analysis is to find a function f(x)
such that f(x,) & y,. This is useful if we want to make some
prediction where we know the features x but not the target value.
Determining such a function is known as regression and is a major
task in machine learning. In the case when the function we are fitting
takes a one-dimensional input this problem is known as curve fitting.
Curve fitting is nice to illustrate as we can easily visualise it, however,
it is only a small part of regression. We concentrate here on curve
fitting, although much of what we say is applicable to more general
forms of regression. A typical problem would be to fit a polynomial
to all the data points (x4, yo ). That is, we fit an m order polynomial

m
flxlw) = Zw,-xi =W X+ w1 X wy x +wg
i=0
as close as possible to the data points. The classical solution (going
back to the great mathematical genius Carl Friedrich GauB) is to
choose the set of weights, w = (wg, wi, ..., wy,), to minimise the
squared error
n

Ew) =Y (f(xalw) = ya)

a=1

2

This is known as the least squares problem. For polynomials, f(x|w)
is a linear function of the weights so this is known as linear regression,
whose solution is obtained by solving a set of linear equations. Linear
regression appears very natural, but raises the question what degree
polynomial should we fit? The higher the degree of the polynomial we
use the more closely we can fit the data points. If we use as many free
parameters as we have data points then we can fit all the data points
perfectly. See Figure 9.6 for an example. But, what is the best fit?

In the example shown in Figure 9.6 the third-order polynomial
appears, at least to me, the more reasonable fit, but can we justify this?
Here MDL has an elegant answer. Suppose we want to communicate
the data to some degree of accuracy, €. For concreteness, let us



9.3 Beyond Information Theory

b Y

oW e

4
3
2

assume we want to communicate the data to two decimal places
where the y values range from —1 to 1. We could just send each data
point as it is (i.e. unencoded). This would take 2 log,(10) + 1 = 7.6
bits of information per data point (the extra bit is to determine the
sign) or around 84 bits of information for the 11 data points in our
example. However, we could compress the message by sending the
parameters of our fitting models and the residual errors between the
model and our data points. The message would then consists of two
pieces: the message to describe the model (basically the parameters
of the model), and a message describing the residual errors. The
preferred model is the one with the shortest code.

How does transmitting a model help? In Figure 9.7 we show
the residual errors between the data points and the third-order
polynomial fit. As the model is a reasonably good fit the standard
deviation in the residual error is o= &~ 0.1. We also show a number of
bins of size € = 0.01. To communicate a data-point value y; given the
model and the x; value we just have to communicate which bin the
residual error falls into. We can compress this information using the
fact that some bins are more likely to be occupied than others. If we
assume that the probability of the residual error, A;, falling into a bin
is approximately given by € N{A;]0, o2), then Shannon’s bound tells
us that we need at least — log(e M(A; |0, o)) bits to communicate this
information. Using this bound it would take approximately 41 bits
of information to transmit the residual errors for this data set. As
the curve we are fitting is approximately odd, the only significantly
non-zero coefficients are w; and ws, which would take around 15
bits of information to transmit. We would also have to transmit the

—+0.2 0.1 0 01 0.2
Residual errors, A; = y; — f(x;|w)
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Figure 9.6 Fitting a
curve to 11 data
points using (a) a
line, (b) a third-order
polynomial, and (c)
a tenth-order
polynomial.

We are being
slightly cavalier
about assigning
probabilities to
bins, but doing this
properly will only
result in a
negligible
correction.

Figure 9.7
Histogram of
residual errors
between the data
points and the
third-order
polynomial fit shown
in Figure 9.6(b).
Also shown are bins
of size € = 0.01 and
a (discretised)
normal distribution
with standard
deviation of o = 0.1.
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variance in the residual errors, which would take another 6.6 bits, and
finally we would have to transmit a 4-bit mask showing which weights
are non-zero. In total we would need at least 67 bits of information
(saving 17 bits compared with communicating the raw data). We can
repeat this analysis for the linear fit. As this is not so accurate it would
take 57 bits of information to communicate the residual errors. (We
don’t show the residual errors. The histogram is not too dissimilar to
that shown in Figure 9.7 except now the standard deviation is close
to 0.5 rather than 0.1.) We only have to transmit a single parameter, a
2-bit mask showing which parameters are non-zero, and the variance,
which would take a total of 73 bits. This is an improvement over
sending the raw data, but is worse than the third-order polynomial.

To communicate the exact model (i.e. the tenth-order polynomial)
we have to transmit all 11 parameters, which gives us no reduction is
code length. Indeed, the situation is worse in that the fit is extremely
sensitive to the parameters of the model. We would therefore have
to transmit the leading weights, wyg, wog, etc. to many more decimal
places, so that the description length for this model is worse than
that if we transmitted the raw data. (We were possibly being rather
generous to the third-order fit in that we may have had to transmit
ws to higher accuracy or pay a price in having slightly larger residual
errors.) If we decided to consider other regression functions such
as Fourier series then MDL provides a means for deciding whether
these are better or worse than polynomial-fitting functions.

In practice MDL usually leaves us with two terms, the information to transmit
the parameters of our model and the information to transmit the data given the
model. This is rather similar to the maximum a posteriori (MAP) formalism
where we balance the log-prior and the log-likelihood. The information to
transmit the parameters acts something like a log-prior while the information
to transmit the residual errors acts like a log-likelihood.

Shannon’s bounds give asymptotic results, but they are often very good
estimates to the code length achieved in practice, as the following example shows.

Example 9.6 Entropy of Normally Distributed Random Variables
Although the entropy for the distribution of continuous variables
can lead to bizarre results such as negative entropy (see Exercise 9.3)
we can always make sense of them by discretising space. If we
assume our data, X, is normally distributed, i.e. X ~ Mg, 0'2), then
information theory tells us the length of message required to transmit
the information that X lies in the interval x to x + € is bounded by

x+0x
—logz< NO|u, Uz)dy> ~ —log, (EN(X\/J, 02))

bits.
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Now, to encode an alphabet of symbols with different proba-
bilities of occurrence an optimally efficient code is the Huffman
code, which constructs a binary tree where the frequently occurring
characters in the alphabet live at the top of the tree and the less
frequently occurring characters live lower down the tree. The details
of constructing Huffman trees goes beyond the scope of this book.
However, in Figure 9.8 we show a Huffman tree for different bins
from a normal distribution.
Note that the corresponding code is obtained by following the
links (0 for a left link, 1 for a right link) until the leaf node is
reached. Not only are the codes all unique, but the Huffman tree
provides a means for uniquely decoding any sequence of letters in the
alphabet. Notice that the most commonly occurring bins have much
shorter codes. In Figure 9.9 we show the length of Huffman code
for different bins. We see that the bins corresponding to rare events
have significantly larger code lengths. We also see that the Shannon
bound provides a remarkably good approximation to the length of
the Huffman code.
Huffman code length — —log, (M (2|1, o) Az) Figure 9.9 Length of

Huffman code versus
the bin position
(measured in
deviation from the
mean divided by
standard deviation)
for different bin
sizes. Also shown is
the Shannon bound
as the dashed line.

25




Figure 9.10 Three
clusters found using
the K-means

clustering algorithm.

The data points are
shown by dots and
the centres by X.
The points are
assigned to the
closest centre.
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Note that although Huffman’s code achieves the Shannon entropy bound, it
is used in the case where we have no noise. The challenge for coding theory is to
find efficient error-correcting codes, close to their Shannon bound.

In machine learning it is reasonably common to add regularisation terms
(regularisers) to the squared error term. The squared error is interpreted as a
log-likelihood (so the likelihood of the residual errors are normally distributed)
and the regulariser acts like a log-prior. However, the priors often seems rather ad
hoc. For example, in curve fitting a typical regulariser term added to the squared
error might be —v||w/||? (often called a weight decay term) where v is a coefficient
that is chosen to get a good generalisation behaviour (which we would have to
determine using additional data). Such terms would penalise large weights in the
model. We could interpret the regulariser as a log-prior, but does it really encode
our prior knowledge? However, by penalising large weights we make the weights
lie in a tighter interval, which reduces their description length (the model is also
less sensitive to the exact value of the parameters so they can be communicated to
a lower accuracy). More recently, sparsity regularisers have become fashionable,
where we try to find a fit using as few terms as possible. In practice, we often
use a regularisation term —uv||w||; which penalises small terms as well as large
terms. A whole new field of compressed sensing is based around finding sparse
representations of data. MDL provides a coherent rationale behind finding
sparse representations — they allow us to communicate the model more efficiently.
Other regularisation terms directly punish the number of parameters in a model,
examples of these are the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC). These are usually used as rules of thumb to favour
simple models, but they find a natural justification in terms of MDL.

Example 9.7 Clustering

MDL can be used in contexts other than regression. One classic
problem when handling data is to cluster the data. That is, we are
given data D = {x,|a = 1,...,n}, where we treat the feature sets,
X o, as vectors in an m-dimensional vector space. In clustering we try
to find some centres, u,;, which capture some natural clustering in
the data set. In Figure 9.10 we show an example of three clusters
found by the classic K-means clustering algorithm for some two-
dimensional data.
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The difficulty with clustering algorithms is that they tend to
find clusters whether or not the data is actually clustered. This is
particularly true in high dimensions. Even determining how many
clusters there should be is difficult. For many applications this does
not really matter, but in some cases we really want to know if the
clustering we have found represents a true clustering (e.g. can we
really split some disease into separate categories). One principled way
of answering this is to measure the minimum message length required
to communicate the data. If data is truly clustered we would expect
that we could compress the data by communicating the centre of
clusters and then, for each data point, transmitting its closest centre
and its position relative to that centre. If the data points are clustered
then once the centre is known it should require less information to
communicate a data point. In practice though, it’s often too much
work to even think about using MDL and most people fall back on

simple heuristics for choosing the number of centres.
|

The MDL formalism often provides a new and useful perspective on a machine
learning technique that was initially derived using a different set of arguments.
We provide an example of this below.

|
Example 9.8 Variational Auto-Encoder
We introduced variational auto-encoders (VAEs) in Section 8.4.2 on
page 240. Recall that a VAE takes an input, x, (usually an image)
that is passed to an encoder network that outputs the parameters
(K> 0'3,) of a probability distribution

9(zlx,8) = N(z|ug, diag(c3) ) .

Vectors, z, can be viewed as points in a latent space. We can then
generate an image close to the input x by sampling a vector in latent
space, z ~ ¢(z|x,¢), and feeding this to a decoder network with
output x = D(z,0). Finally, from x we can generate another image,
x’, with a probability p(x’|x). In their original paper, Kingma and
Welling (2013) obtained a variational bound on the log-likelihood of
generating an output x, given x as an input. This variational bound
is equal to

Ez~q|log(p(x]%))] — KL (q(z]x.4) [ p(z)) - (9.10)

This is maximised for images coming from a particular data set, D,
which is representative of the images we want to generate.

It was quickly realised that this objective function has a very
natural MDL interpretation. In this interpretation, z ~ g(z|x, ) is
viewed as a message for efficiently communicating the input x. The
first term in the objective function can be seen as the information
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(in nats) needed to communicate the error, € = x — x, where X is
obtained by decoding a message z. (Interestingly, empirically this
probability function often appears to be close to a two-sided or
double exponential distribution, i.e.

1

p(x[x) = 5—e

—cllx=%||
2¢

In this case, the first term in the objective function is proportional to
the absolute error ||x — x||.) The more intriguing term in Equation
(9.10) is the Kullback—Leibler (KL) divergence. This term can be
interpreted as the amount of information required to transmit a
message with probability distribution ¢(z|x, ¢) using the distribution
p(z). The KL divergence is also known as the relative entropy between
distributions g and p. Note that if the entropy, H,, of ¢(z|x,¢) is
large then we can transmit z with less accuracy (requiring a small
code word) than if H, is small (i.e. ¢(z|x, ¢) is highly concentrated
around its mean). In choosing parameters, ¢ and 6, for the encoder
and decoder that minimise this objective function for all images from
the data set, D, we are minimising the expected message length for
communicating a randomly sampled image by transmitting a code
message, z, and a correction term € = x — X.

Generally in the MDL formalism we have to determine the accu-
racy to which we transmit the error term € = x — x and the accuracy
of the code message z. To a first approximation the accuracy of the
error term isn’t important in model selection. To see this, note that
the message length for transmitting the error term to an accuracy
J€ is

log(p(€) [|d€]|) = log(p(e)) +log(||d€])

where p(€) is the probability density of the errors. However, the last
term, log(||0€||), is common to all models so is not important for
deciding between models. On the other hand, the accuracy to which
we transmit z can be highly model dependent. To use the MDL
criteria properly we would typically have to explore different accu-
racy levels for transmitting the model (in many models each different
parameter of the model may have a different optimal accuracy level).
An elegant property of Equation (9.10) is that it incorporates the
accuracy to which each code message, z;, needs to be communicated
through the variance 0'35!_ that is outputted by the encoder. Thus,
by minimising Equation (9.10), the VAE learns how accurately it
needs to transmit the code, z. By choosing a distributions ¢(z|x, ¢)
with a large entropy it allows us to communicate the message with
less bits (if ¢(z|x,¢) = p(z) then we can communicate the message
for free), however, when we choose H, too large then the expected
reconstruction error, B4 [log(p(x|%))], is also likely to be very
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large. The optimisation procedure finds a trade-off that ensures the
encoder extracts the salient information that allows us to maximally
compress the data set D. Without the KL divergence term in the
objective function we could find distributions that reduced the errors,
but at the cost of requiring more information to transmit the latent
variables than the gain we get from reducing the error. That is, we

would be apt to over-fit the training data.
|

The advantage of the MDL formalism is that it provides a principled way of
choosing between different models. In Bayesian inference we can use the evidence
to choose between models. However, to do this in a fully Bayesian way we would
want to put priors on our models. Doing so goes beyond the usual Bayesian
framework, but MDL provides a rational method for doing this. Furthermore,
if we are only using a MAP method then we cannot compute the evidence and
the MAP formalism provides no way of doing model selection. Here MDL has
a significant advantage over MAP. In fact, if we do MDL carefully, then we
have to consider the sensitivity of the model to determine how accurately we
need to communicate its parameters. This begins to look a bit more like a full
Bayesian approach. As a general philosophy, MDL has applications, for example
to clustering, which are harder to motivate from a purely Bayesian perspective.
Of course, the true MDL of the data would require finding the shortest program
which generates the data and this task is incomputable. In practice, this difficulty
is finessed by using some model and assuming there is no additional hidden
structure in the data. To obtain a code length we can either use Shannon’s bound
or some explicit coding scheme. This can be technically difficult to accomplish
and is not for the faint-hearted. If you have a philosophical bent you can spend
many hours arguing the case for or against MDL. However, for the rest of us we
can just take the pragmatic view does it work? The jury is out. There seems to be
some cases where MDL helps, but it has failed to take the world by storm so far.
On the other hand, a lot of apparently ad hoc methods that work well in practice,
such as sparsity regularisation, AIC, and BIC, etc. find a natural explanation
using MDL.

9.3.3 Fisher Information

Shannon entropy plays a pivotal role in information theory, but it is not the only
measure of uncertainty and information. Another measure is Fisher information
proposed by Ronald A. Fisher. Fisher information arises when we consider
estimating a quantity from some measurements.

Consider a situation where we want to estimate a parameter 6 (this might be a
success probability or the mean of some quantity). The estimate will depend on
the data collected. We denote the data collected by a random variable X (if we
collect multiple measurements this would be a multidimensional vector). Now
let us assume that we use an unbiased estimator 6(X) to estimate the quantity of
interest. The unbiased estimator has the property that
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E [é(x)] —E [0] =/fx(x\0) (é(x)—e) dx=0

where fx(x|6) is a probability density function describing the likelihood of the
data given the parameter 6. Differentiating this equation with respect to 6 we find

/ <(é(x) a 0) 6f;;(9x|0) - fx(x|9)> dx=0.

Using the identities
D110) _ (1 PlFx(x10) | ]
50— /x(x6) 50 , and fx(xl)dx =1
we find

/(é(X) —9) mog(];);(xw»fx(xmdx - 1.

Cunningly rewriting this as

[ (000~ 0) Vi) (‘W m) dx=1.

and using the Cauchy—Schwarz inequality

/f(x)g(x)dx < \/(/fz(x)dx> (/gz(x)dx)

we find
( / (W) fx(xw)dx) (/(
E [(W)zl xE[(é(x) —9)2] > 1.

The first term,
2
dlog(fx(x]9))
Ip=E || ——F———= A1
0 [ ( v : ©.11)
is known as the Fisher information. The second term

2=E { (é(x) - 9)2}

measures the mean squared error in the estimator. The inequality
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is known as the Cramér—Rao bound. Tt provides an absolute limit to the ability
to measure a quantity. That is, the expected mean error is, at best, inversely
proportional to the Fisher information, which itself measures the expected
sensitivity in the likelihood. If the likelihood of a measurement, fx(x|6), is very
sensitive to the parameter, 6, we are trying to infer then the mean squared error
will be relatively low. Conversely, if the probability of a measurement is little
affected by the parameter then we are likely to have a large error in our estimate of
the parameter. If the equality holds in the Cramér—Rao bound so that > = 1/1(6)
then the estimator is known as an efficient estimator.

Example 9.9 Fisher Information for a Normally Distributed Variable
If fx(x|@) is a normal distribution and 6 the mean then

-6 1
log(fx(x]0)) = —% ~3 10g(27r0'2)
so that
dlog(fx(x[0)) x-@
de - o2
and

2
- 1
16,:/()“029) Sx(xlo) dx = .

Thus, the mean squared error for any unbiased estimator of the mean
of a normally distributed variable given a single measurement will be
at best 0. If we make n independent measurements with normally
distributed errors then the mean squared error would be at least o2 /n.
Note that the estimator

has a mean square error of o->/n and is thus an efficient estimator. A
consequence of this is that there is no better estimator for the mean

of normally distributed variables (in the sense of giving a smaller
mean squared error).

|

We briefly outline some of the properties of Fisher information. It can also be

written
~ 1 a fx(x0)\?
16._/fx(x|9)( 5 ) dx. 9.12)

This form is occasionally more convenient. Consider two independent measure-
ments X and Y. The joint likelihood is given by

fxx(x,y00) = fx (x[6) fr(y]6).
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Taking the logarithm of both sides and differentiating

dlog(fxy(x310) _ 1 afx(xle) 1 afv(16)
96 (o) a0 T (i) o6

Squaring we get

dlog(fx.y(x,10)) 2_ 1 0 fx(x|6) : 1 d fr(y|0) ?
( a6 >_f§(XI0)( a6 >+f3(y|9)< a6 )

1 1 afx(x|6) dfy(y]6)
fx(x|6) fr(vlo) a6 90

Using the definition of Fisher information, Equation (9.11),

2
Ig(x,y) =/fx,y()€,y|9) <610g(fxéy9(x,y0))> dxdy

B 1 (9fx(x]0) ) <3fy(y|9)>2
_/fx (x|6) ( a0 d +/fY (v16) 06 dy
/3fx x|0) /3fY Y|9
dx

/% ae/fx *16)d

and using Equation (9.12) we find

Io(x,y) = Io(x) + Ig(y).

That is, just like Shannon entropy, the Fisher information for two independent
variables is the sum of the Fisher information for each variable separately.

When a distribution has multiple parameters (e.g. the normal distribution
N(x|u, o%) or the multivariate normal distribution AV{x|u, X)), then the Fisher
information will be a matrix Iy with components

dlog(fx(X10)) dlog(fx(X|0))
96; 96,

+2

But

lo;.0; = Ex

Information Geometry

A very abstract way of thinking about families of probability distributions,
f(x]@), is as a manifold parameterised by € (e.g. the space of normal distri-
butions M{(x|u, o?) is a two-dimensional manifold parameterised by the mean
and variance). If we make a change of variables in the space of parameters (e.g.
from variance, o2, to precision 7 = ¢ —2) then the geometry of the manifold
will change. However, we would hope that probability theory, if applied properly,
should not care about what parameterisation we used. This raises the question of
whether there exists a parameter-free representation of probability distributions.
The mathematical language for exploring such questions is tensor algebra and
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differential geometry. Interestingly, the Fisher information matrix I plays the
role of being an invariant metric (that is, it provides a means for measuring
a distance between distributions that is invariant under reparameterisation).
Reasoning about probability distribution in this way is known as information
geometry. It is highly technical. Many smart theorists have worked in this area
and discovered interesting connections. For example, distributions belonging to
the exponential family have a nice property of being ‘flat,” which has interesting
consequences when considering their divergence properties. For those of us with
a more practical disposition, the relevant question is does this buy you anything?
There are practitioners such as Shun’ichi Amari who have demonstrated that it
is possible to speed up learning in some machine learning applications by using a
natural gradient which respects the invariance properties of a manifold — whether
this could have been deduced without using information geometry I'm not in a
position to judge. However, it’s a field which hasn’t quite taken off. Whether this
is because we are not smart enough to know how to fully exploit these ideas or
whether it’s just some quirky mathematics which don’t really cut the mustard I
don’t think we quite know.

Fisher information is much less exploited than Shannon entropy. It is occasion-
ally used in constructing kernels in machine learning (although even there it is
often set to a constant). It has been used by Frieden (1998) to explain almost the
whole of physics, but this remains controversial. Although Fisher information
looks very different to Shannon’s entropy it shares some of its properties, such
as the additive property for independent random variables. Fisher’s information
contains a derivative of the likelihood density and so cares about the local
properties of the distribution. In contrast, Shannon’s entropy doesn’t measure
local properties and can be seen as a more global measure of the uncertainty in
a distribution. Shannon entropy and Fisher information give two different views
of uncertainty, each with its own uses.

Shannon’s entropy provides a consistent measure of uncertainty which has found
many applications in diverse disciplines. Understanding its information theory
roots is invaluable when trying to apply it to different applications. One of its
most prominent applications is the so-called maximum entropy method, where
we try to infer information about unobserved states given measurements of some
average properties. Other measures of uncertainty exist such as Kolmogorov
complexity and Fisher information. Although these are not nearly as commonly
used as Shannon’s entropy, they nevertheless have some strong proponents.

Additional Reading

A classic text on information theory is Elements of Information Theory by
Cover and Thomas (2006). A book covering many different topics all related to
information theory is Information Theory, Inference, and Learning Algorithms by
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MacKay (2003). A standard text on Kolmogorov complexity is An Introduction
to Kolmogorov Complexity and Its Applications by Li and Vitanyi (1997).

Exercise for Chapter 9

Exercise 9.1 (answer on page 427)
Which has the most uncertainty: rolling an honest dice or tossing three independent
fair coins assuming

1. you care about the order of the results;
il. you only care about the number of heads.

Exercise 9.2 (answer on page 428)
Use Stirling’s approximation, n!~ (2)" v/2 7 n, to show that

e

n on H(f)
fn)] " 2rnfd-J)
where H(f) = —flog,(f) — (1 — f)logy(1 — f) is the entropy of Bernoulli trial
with success probability f.

Exercise 9.3 (answer on page 429)
Compute the entropy for a normally distributed random variable X ~ Ny, o).
Plot the entropy versus o- and show that it can be negative.

Exercise 9.4 (answer on page 429)
Consider a system whose state, X, we represent by a discrete random variable. We
label the possible states by x; wherei € Z(Zis an index set). The system is in thermal
contact with a large system so that it can exchange energy. We observe the average
energy of the system is

E [E(X)] =Y piE(xi)=U

i€l

where p; = P (X = x,»). Find the maximum entropy probability, p;, of being in a
state x;. This is the Boltzmann distribution.

Appendix 9.A Functionals

A functional, F(f), is a function of a function. That is, given a function f(x) it
returns a number. The entropy of a continuous random variable, X ~ fx, is an
example of a functional

F(fx) = Hy = - / fe(x) log(fx(x)) dax

where the integral is over the domain of X. Finding a function which maximises
the entropy (usually subject to some constraints) is a common task which sits in
the domain of the calculus of variations. To do this properly, we consider adding
a small perturbation € v(x) to our function and expanding in €
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F(f+ev)=F(f)+€eF'(f,v)+0()

where F’'(f,v) is the first-order correction. When F(fx) is our entropy function
F(f+ev)=— /(fx(x) +ev(x)) 1og(fx(x) + eu(x)) dx
=— x)+ev(x o x o € v() X
[0+ et (tostso) +1os(1+ %)) o
=F(f)—¢€ /V(x) (log(fx(x)) +1) dx + 0(€?)

so that
F'(f,v) = —/V(x) (log(fx(x)) +1) dx.

Now the extremum condition is that

(f V)—llmF(f)_F(f+EV)

e—0 €

=0.

To maximise the entropy subject to constraints on the mean of some quantities
gi(x), we extremise the Lagrangian

£f) = Hy+ s [ Fulo) o 9.13)
i=1

which is equivalent to

D(ijy)z/u( )( logfx —1+Z/l,gl )dsz

The perturbation function v(x) was arbitrary (although it should vanish at the
boundaries), so the only way for £'(fx,v) = 0 is that

— log(fx(x —1+Zﬂ,gl = (9.14)

at all points x.
An equivalent way of obtaining this equation is to define the functional
derivative, such that

6f(x)
af(y)

where §(x — y) is the Dirac delta (see Appendix 5.A). Any other function of
x we treat as a constant. The functional derivative obeys the usual rules of
differentiation. If we take the functional derivative of the entropy F(fx) = Hx
where X ~ fx we find

SF(fx) _ e o . RLEE AN B
o~ [0 39 0wrx() + 7302530 = () ~ 1.

=06(x — )
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If we apply this to the Lagrangian defined in Equation (9.13) we get

0L(fx) -
=—1lo -1+ A; g .
5720) g(fx(»)) ; &i(y)
The maximum entropy condition becomes
OL(fx) _
5fx(y)

which gives the same result as Equation (9.14).

Entropy
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We have looked at models involving a few random variables. As we increase the
number of such variables the models quickly become intractable. However, when
the interactions are sufficiently simple, the models can become tractable again
in the limit of a large number of variables, where laws of large numbers are
working in our favour. We will see that sometimes rather surprising behaviour can
emerge. To give a flavour of these models we consider a few classic models, each
increasing in complexity. We start by considering one of the simplest systems,
the random walk — essentially just a sum of random variables. The random walk
acts as a prototypical stochastic system; we will have much more to say about this
model in later chapters. We briefly discuss the branching process, which provides
a playground for generating function techniques. We then consider percolation,
which provides a very simple example of a model with a phase transition. We
consider a simple model of a magnet, the Ising model, and discuss some of its
more striking behaviours; briefly mentioning self-organised criticality on the way.
Finally, we discuss disordered systems.

293



Figure 10.1
Illustration of two
one-dimensional
random walks. The
walker takes a step
up or down by one
unit at each time
interval.
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10.1 Random Walk

One of the most important probabilistic models is the random walk. The simplest
situations is that of the one-dimension walk where the walker can move either
forwards or backwards. Examples of two unbiased one-dimensional random
walks are shown in Figure 10.1. At each step the height x is incremented or
decremented by 1 with equal probability.

The random walk can be described by a sequence of random variables
(X1, Xo, ...). A key feature of a random walk is the Markov property that X,
depends just on X;_, or in math-speak

P(X/| X1, Xe—2s -, X1) =P (Xe|X,21)
In the example shown in Figure 10.1,
P (X/|X,_1) =1 I[Xt =X, 1+ 1]] +1 [[X, =X, | — 1]].

We will have a lot more to say about the Markov property in Chapters 11 and 12.
In a simple random walk with no bias, the expected position at any time is the
position at the previous time step (they are an example of a Martingale — see
Section 7.1.2). The variance is proportional to the number of steps. This is a
consequence of the random variables at each instance being independent. The
root mean squared (RMS) distance thus grows in proportion to v/¢. This is a
very important property. It is true whether the random steps are on a fixed lattice
or if the steps come from a continuous distribution. Since the final position is
equal to a sum of random variables we know from the central limit theorem that
the position of the walker after ¢ steps will converge to a normal distribution with
mean zero and variance r o> where o2 is the variance of a single step.

The property for the one-dimensional random walk that the expected distance
from the starting point grows as /¢ also holds in higher dimensions. Figure 10.2
illustrates a random walk in two dimensions. If the walker is confined to stepping
on a lattice (as in Figure 10.1) then in one and two dimensions the random walker
will (with probability arbitrarily close to 1 as ¢ becomes large) return to his or
her origin. The walk is said to be recurrent. For high dimensions this is no longer
true and the walk is said to be transient. Random walks are rather finely balanced
so that even in one dimension, although the walk is recurrent, nevertheless the
expected return time is infinite (see Section 7.1.2 and Exercise 10.1).

-15
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Random walks have a long history, in part because they model a diffusion
process which has many applications throughout science. The early work in this
area was carried out to understand Brownian motion — the random dance of
small particles in a liquid. Some of the fundamental work was done in 1905
by a newly qualified PhD student, A. Einstein — these works have now been
republished (see Einstein 1998). Random walks and their generalisations have
attracted considerable recent interest because of their role in financial prediction.
There are, however, other applications which, although maybe not so lucrative,
are more interesting. We will revisit random walks in Chapters 11 and 12 when
we consider Markov chains and stochastic processes.

10.2 Branching Processes

Branching processes describe how a population grows over time. This may be
a population of bacteria, neutrons in a nuclear chain reaction, or the spread
or demise of surnames. In the simplest models we consider a population of
k individuals at some time 7. At the next time step, t + 1, each individual, i,
creates K; new individuals, where K; € {0, 1, 2, ...} is a random variable from
some distribution. In the simplest example the distribution is assumed to be the
same across the population and over time. Figure 10.3 illustrates a branching
processing. Once again this is an example of a Markov process, although the
behaviour is richer than the random walk.

These processes are conveniently studied through their generating functions.
Denote the probability of an individual generating k children by p; (assumed to
be constant for all individuals and all times), and let the size of the population
at time ¢ be K (¢), then the cumulant generating function is

G,() = 1og(E {e’”{(’)b .

Figure 10.2
Random walk in
two-dimensions. A
normally distributed
step in each
dimension is made
for 500 time steps.



Figure 10.3
Illustration of an
instance of a
branching process
with
po=p1=p2=2/7
and p3 = 1/7 (the
numbers chosen for
aesthetic reasons).

296 Collective Behaviour

i l T

!
1
I%ﬁﬁ&#ﬁ?ﬁ”i i :
Starting from one individual at time 0, then

G1 (/1) = G(/l) = log<2pke“>
k=1

where G(1) is the cumulant generating function for the distribution of children
at each individual. At the second generation

0o k oo oo
Ga(A) = 10g<2pk <H2pie”>> = 10g<2pkekc(”)> = G(G(1))
k=1 k=1

i=1 i=1

and by a similar argument G, (1) is equal to the function G applied 7 times to A —
this is a consequence of the independence of the number of children produced by
each individual. The expected number of individuals at generation ¢ is given by

dG/(A)| 0 dG(G—1 ()| o dG,_1(a)
i P T MR 0 ey s N
2 G'(Gi-1(4)) G'(Gi-2(A)) -+~ G'(G(4)) G'(A) Ny = (k1)

(1) Using G;(2) = G(G;-1()).

(2) Applying the chain rule.

(3) Iteratively repeating the process of applying the chain rule.

(4) Noting that, from the definition of G(4), we have G(0) = 0 and G'(0) = «;
where k1 is the first cumulant (mean) of the distribution py.

The variance in the number of individuals is given by

d*G,(2)
daz

=K Ktl_l (Ktl_l + /<t1_2 +- K+ l)

=0

where x, = G”(0) is the second cumulant (variance) of the distribution py. This
comes from a rather awkward application of the chain rule for differentiation to
the expression in the previous equation. If «; # 1 then we can sum the geometric
progression to get

)
K1 -1

while if k1 = 1 this sum equals 7 ».
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Obtaining a closed-form solution for G,(4) is more challenging, but can
be done for some distributions, such as the geometric distribution. Branching
processes can be generalised in many ways, for instance, they can be defined in
continuous time, made age dependent, etc. For a fuller discussion of branching
processes see, for example, Grimmett and Stirzaker (2001a). Similar models have
been constructed to create graphs with different attachment preferences. Many
of the properties can again be studied using either the moment or cumulant
generating functions (in my experience working with the cumulant generating
function often leads to simpler expressions). This is an area that has received a lot
of attention from the late 1990s onwards, with small-world and scale-free graphs
attracting particular attention. Again I leave the interested reader to pursue this
independently. There are many volumes on the subject, including the popular
book by Watts (2003) and the more comprehensive book by Newman (2010).

10.3 Percolation

Consider modelling a porous rock. The rock consists of pockets that let water
through and solid parts that block the flow of the liquid. We want to know under
what conditions will water percolate through a thick layer of rock. To model this
we consider the rock as a lattice of sites, where each site can either let water
through or block the flow. At each site we choose to make the site either a pocket
where water flows (with probability p) or else solid rock where the water can’t flow
(with probability 1 — p). The water will percolate through the rock if there is a
connected chain of pockets which reaches from the top to the bottom. This is an
example of percolation. It has many applications besides the flow of fluids, such
as water, oil, gas, or even coffee. Similar models are used to understand when a
disease becomes a pandemic, when a forest fire spreads out of control, when a
disordered material loses conductivity, or even when a revolution takes place. A
nice introduction to percolation theory is by Stauffer and Aharony (1997).

Figure 10.4 shows two examples of site percolation in two dimensions. Here
we ‘occupy’ each site independently with a probability p. In the left-hand figure
we have p = 0.5 while in the right-hand figure we have p = 0.6. We highlight the
largest connected cluster.
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Figure 10.4 Example
of site percolation
for (a) p = 0.5 and
(b) p =0.6. We
highlight the largest
cluster.
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As we increase p, the probability of there being a connected chain of sites that
percolates from the bottom to the top of the sample increases. We can define a
phase transition in p, below which most configurations don’t percolate and above
which they do. We illustrate this in Figure 10.5, where we show the proportion of
lattices that have a cluster that reaches from the bottom of the lattice to the top,
plotted against the proportion of filled sites. In the limit of very large networks
this percolation transition would happen with overwhelming probability at a
particular value of p — the percolation threshold. This is an example of a phase
transition. The critical threshold for this problem is around p = 0.5928. The
existence of the sharp change in the macroscopic behaviour at a particular critical
value occurs frequently and is a consequence of having large numbers. There
are, of course, a lot of lattice configurations which percolate with p much less
than the percolation threshold (all you need is a line of sites connecting the top
to the bottom) and also many lattices which do not percolate even when p is
much larger than the percolation threshold (all you need is a line of unoccupied
sites going across the lattice). However, for a lattice with N sites of which n are
occupied there are (IZ ) ~ exp(N H(n/N)) lattices (where H(n/N) is the entropy
of a Bernoulli variable with success probability n/N). Of these astronomical
number of graphs, the probability of generating a graph (assuming that they
are generated at random) with an unusual cluster configuration is exponentially
small.

Phase transitions occur in many situations. In constraint satisfaction problems
there is often a phase transition between the case where the optimisation problem
can be solved perfectly and the case where it can’t. An example of this is graph
colouring, where the task is to shade the graph with a given set of colours so that
no two vertices that share an edge have the same colour. For random graphs, as
we increase the number of edges in the graph there is a transition from graphs
being colourable to uncolourable, which, with overwhelming probability, occurs
when a particular proportion of edges exist in the graph. Interestingly, around
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the phase transition, determining whether all the constraints can be satisfied is
often found to be computationally extremely challenging.

10.4 Ising Model

One of the most famous and well-studied models in statistical physics is the
Ising model. It has influenced many generations of physicists and statisticians. It
provides a slightly more complex model than we have seen so far, in that, although
the components are identical, they interact. Here, we get quite surprising emer-
gent behaviour at the macroscopic scale that is difficult to see at the component
level.

The Ising model can be viewed as a simple model of a magnet consisting
of spins confined to a lattice. It is a special magnet in which the magnetic
moments (usually called spins) can point either up or down. It is assumed to
be energetically favourable for neighbouring spins to point in the same direction.
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In real magnetic systems the magnetic spins would usually point in any direction
in three-dimensional space, however, there are some systems where the spins will
point only in two directions. It is easy to think of the spins aligning because of
the magnetic field of one spin encouraging its neighbour to align with it. This,
however, is not the case for real magnets at normal temperatures as the magnetic
fields are simply too weak. The reason for the alignment of spins is a consequence
of Pauli’s exclusion principle, which says that no two particles can be in the same
state at the same time. Spins tend to align or sometimes to anti-align so that they
can live in lower-energy states. This coupling is known as an exchange interaction.

After this brief interlude of reality let us return to our abstract world. The
energy for the Ising model is assumed to have the form

S)=—=J > S5 (10.1)
(i.j)e€

where S; = +1, J is a coupling constant and the sum is over all neighbours (if
we think of the spins as living on a graph then £ would be the set of edges —
usually the graph is taken to be a regular lattice). The minus sign is a convention
which simply means that the energetically favoured solutions are those with the
lowest energies. Assuming our system is in thermal contact with a ‘heat bath’
(i.e. a large system such as the outside world) then we know from Section 9.2.2
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that the maximum entropy probability distribution is given by the Boltzmann
distribution (see Exercise 9.4)

1 J

P(S)=—exp| = Z Si S (10.2)
(i.j)e€

where Z is a normalisation constant, called the partition function, which is

equal to

Z = Z exp % Z SiSj

Se{-1,1}» (i,j)e€

and n is the total number of spins. Very frequently physicists will write 8 =
J/(k T), which they call the inverse temperature (ignoring the constants J and k).

It might look like we know everything we want to about the system; after all we
know the probability of every possible configuration. However, there is a twist.
Physicists are interested in the case when the system becomes large, n — oo —
this is known as the thermodynamic limit. For small n we can compute all the
properties exactly, but this becomes intractable pretty rapidly (even for 10 x 10
two-dimensional lattice with 100 variables we are unable to average over all the
2190 ~ 10% spin configurations).

Although the model is defined through a maximum entropy distribution,
we can get the same distribution through a dynamic process. This dynamics is
an example of Markov Chain Monte Carlo (MCMC), which we will study in
Section 11.2. This allows us to study the properties of this model for larger
systems. However, great care is needed in extrapolating results to the case of
very large systems. In two dimensions an exact solution to the Ising model
at the critical point was found by Lars Onsager in 1944. The thermodynamic
properties of the two-dimensional Ising model are shown in Figure 10.6. This
was one of the outstanding achievements in theoretical physics. The solution to
the three-dimensional Ising model is one of the most sought-after open problems
in statistical mechanics.

The most startling property of the Ising model (true in two and more dimen-
sions) is that at low temperatures it experiences a spontaneous magnetisation (see
Figure 10.6(d)). That is, below a critical temperature the system prefers to be
in a state with the majority of its spins either pointing up (S; = 1) or with the
majority pointing down (S; = —1). In many ways this should not be so surprising
as spin alignment is energetically favoured. At high temperatures the system will
maximise its entropy so that all the spins act almost independently of each other.
As the temperature is lowered, the spins tend to cluster in groups that either
predominantly point up or predominantly point down. As the temperature is
lowered further the clusters grow until the critical temperature is reached when a
cluster has spread through the system. At lower temperatures the system enters
either a phase where the spins all tend to point up or a phase where they all
tend to point down. This is an example of a spontaneous symmetry breaking —
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it breaks the symmetry of the energy function, Equation (10.1). The maximum
entropy distribution incorrectly describes the dynamics because it doesn’t predict
this spontaneous symmetry breaking. Actually, in finite systems the symmetry
is retained because with a very small but finite probability the system will
change from most of the spins pointing up to most of the spins pointing down.
However, this probability is exponentially small in the system size, so that in the
thermodynamic limit, n — oo, the probability of this switch around is negligible.
Figure 10.7 shows typical configurations of the two-dimensional Ising model as
we lower the temperature (increase the inverse temperature).

The second remarkable feature of the model is that right at the temperature
where the spontaneous magnetisation occurs the system is in a critical state.
This happens at a temperature 7, ~ 2.269 (in units where J/k = 1). At
this temperature the gradient in the internal energy becomes infinite, and as a
consequence its variance diverges. The specific heat is the amount of energy
required to change the temperature. It is equal to the variance in the energy
divided by kT? and so also diverges at T.. Similarly, the fluctuations in the
magnetisation also diverge at the critical temperature. In the critical state, there
are clusters of up spins within clusters of down spins within clusters of up spins
and so on. A consequence of this is that there is effectively an infinite correlation
length. That is, the correlation between spins falls off as a power law of the
distance between them (rather than falling off exponentially fast, as happens
at temperatures away from the critical point). The system has a statistical scale
invariance in the sense that it looks very similar at different length scales. What
makes this remarkable is that at the critical point the fine details of the system

Figure 10.6 The
thermodynamics of
the two-dimensional
Ising model. We
show (a) the average
energy,
U(T)=E[E],

(b) the entropy
(measured in bits),
H(T), (c) the
variance in the
energy, Var [E],
and (d) the
magnetisation,

M (T) per spin.
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(d)T =25

become irrelevant and many very different types of system display the same
properties. Thus, for a typical compound there is a liquid phase, which at the
right pressure will go through a phase transition and become a gas. However,
as we increase the pressure we reach a state where there is no longer a phase
transition between gas and liquid (the two fluid phases are indistinguishable) —
see Figure 10.8. At this point the liquid is at its critical point and many of the
macroscopic features obey exactly the same power-law scaling behaviour as that
found in the three-dimensional Ising model. This surprising and profound result
is known as universality. One of the features of this is that at its critical point the
density of a fluid varies on all scales so the fluid scatters all wavelengths of light
and becomes opaque.

10.5 Self-Organised Criticality

In the systems we have discussed so far criticality only occurs at a carefully tuned
point in the parameter space. There are, however, systems where it is believed they
evolve toward a critical state and then show power-law behaviour thereafter.
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Example 10.1 Forms Office

An amusing if fanciful example of self-organised criticality, due to
Peter Grassberger, is an office of workers tasked with processing
forms. The workers sit in rows of desks. Every so often the post
boy arrives and places some new forms rather randomly on people’s
desks. When a worker feels overwhelmed, he or she will turn to one
of their neighbours at random and, if the neighbour has fewer forms,
they will deposit some of their forms on their neighbour’s desk. To
prevent the piles of forms growing for ever, the people at the edge of
the room, rather then pass on the forms to a neighbour, might throw
them out of the window — see Figure 10.9.

Figure 10.9 The
form sorting office.

Figure 10.10 shows a simulation of this situtation with 64 x 64
desks where at each time step the postman simultaneously deposits
Poi(1) (i.e. a Poisson deviate) new forms on each desk. The figure
shows a histogram of the number of forms thrown out the window
at each time step. Note that this is plotted on a log-log scale. For most
time steps a passer-by will observe perhaps a couple of forms being
thrown out of each window. But, there are times when tens, hundreds,
and even many thousands of forms will be thrown out of each
window in a single time step. The straight-line behaviour for large
avalanches of forms is characteristic of a power-law behaviour, where
if n is the number of forms thrown out of the window, then, for large
n, the probability distribution behaves as P(n) o n~?. The constant y
is the exponent that measures the decay of the tail; for this problem
empirically y ~ 1. What makes this interesting is that despite the
process being driven by a large number of random actions (those of
the workers), P(n) is very far from being normally distributed. Being
a passer-by of this office could be rather dangerous. Fortunately, real

bureaucrats would never work like this.
|

There are a lot of phenomena where the distributions of events have power-law
tails. Perhaps the most prominent of these are earthquakes, which occur with a
power-law frequency. This is reflected in the Richter scale, which is a logarithmic
scale, such that the amplitude of the waves measured by a seismograph for a
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magnitude 8.0 earthquake are 10 times larger than those for a magnitude 7.0 (the
actual energy is about 30 times greater). It is important to use a logarithmic scale
as, although large earthquakes are much rarer than medium-sized earthquakes,
they are nevertheless of great magnitude.

10.6 Disordered Systems

We finish this survey of collective phenomena by briefly discussing disordered
systems. The prototypical disordered system is the simple spin glass, which is
similar to the Ising model except the interactions between spins are taken to be
random. The energy is given by

ES.J)== > J;SS;

(i,))eE

where, for example, J;; ~ N(0, 1). £is the set of edges connecting the spins, often
taken to be a regular lattice. If we have four edges which are connected in a loop
and one or three of the couplings, J;;, are negative then we cannot choose the spin
variables around the loop to satisfy all the edges — a situation that physicists term
Sfrustration. As a result of this there are typically very many local energy minima.
For these problems, understanding the low-energy behaviour of the system is
extremely challenging.

A few real alloys behave as spin glasses, but disorder systems abound in
physical systems, for example, when there are impurities in some conductors.
Disordered systems also appear in very different settings such as in combinatorial
optimisation problems, models of the brain, and even in sociology. They differ
from classical models that appear in statistical physics in that they also have some
fixed (quenched) noise. Thus, one instance of a disordered system is very different
at a microscopic level from another. Despite this, for large systems there are many
properties which seem to be shared by almost all instances. These quantities
physicists sometimes call self-averaging, which means that the distribution of
these quantities are sufficiently sharply concentrated that the average behaviour is
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equal to the typical behaviour. In the case of the spin glass the partition function

2(p0)= Y e FESD

Se{-1,1}N

is non-self-averaging, while the free energy F = —p log(Z(,B,J)) is self-
averaging.

|
Example 10.2 Non-Self-Averaging Quantities
Non-self-averaging quantities typically occur with long- (thick-)
tailed distributions. The classical example is the log-normal
distribution, which we have considered previously in Example 5.3 on
page 84. We construct a slightly simpler example where we focus on
the non-self-averaging behaviour.

We consider a random variable

n
i=1

where X ~ N(0,1). The random variable L, = log(Il,) is just
the sum of n normally distributed random variables so that L, =
MO, n) and TI, ~ LogNorm(0, n). We show this distribution in
Figure 10.11. The mean, E [I1,] = ¢™/2, is very far from the mode of
the distribution (which is at e ="), and the median at 1. In contrast,
exp(E [log(I,)]) = 1 is at the median of the distribution. Note
that the probability of II, being greater than or equal to its mean
is given by

P (H,, > e"/2) =P (log(I,) > 1) = i N(¢[0, n) d¢

\/ﬁ e —n/2
-o(-F)~ TV

which is exponentially small in n. Thus, for large n we are exceedingly
unlikely to ever see a samples even close to its mean value. As L, =
log(I1,,) ~ N0, n), most sample will be in the interval -3 \/n < L,, <
3 /n and a good approximation to the typical value of II,, is around
its median of exp(E [L,]) = 1.

(Note that the mode is in a very narrow peak and so the prob-
ability close to the mode is also exponentially small. The median

&

oE(log(115))

Figure 10.11
Distribution of

I, ~ LogNorm(0, n).
We show both the
median and mean.

The mode is very

close to 0.
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gives a much better estimate of the typical behaviour than both
the mean or mode. In Example 5.4 on page 87 we showed the
importance of maximising the expectation of our log-gain rather
than the expectation of our gain if we want to maximise our typical
long-term winnings when performing sequential bets. This is because
our log-gain is a self-averaging quantity while our gain is not.)

Returning to our spin-glass example the free energy is a self-averaging quantity
so its typical value is close to its mean value. We can therefore obtain an
understanding of the typical behaviour of a spin-glass system by considering
the behaviour of the expected free energy

Ftypica](ﬁ) = _BEJ [IOg(Z(Bs J))]

where we take the expectation with respect to the distribution of J. The advan-
tage of taking this expectation is that the behaviour we compute does not depend
on the particular instances (i.e. the particular coupling, J). Technically averaging
a logarithm is challenging and a huge amount of effort has gone into developing
tricks for accomplishing this. This, however, goes beyond the scope of this book.
The interested reader is referred to the specialised literature, e.g. Ziman (1979);
Mézard et al. (1987); Fischer and Hertz (1991).

There are many probabilistic models where the random variables are extended
throughout space. These include most of the classical models from statistical
mechanics. Solving these models is technically challenging and often requires
the development of a set of tools well beyond those covered in this book.
These models often reveal some emergent or collective behaviour caused by
the interactions of the variables. An example of this is the phase transition
which occurs, for example, in models of percolation and the Ising model. Some
of the most interesting developments since the late 1990s have come in our
understanding of disordered systems.

A good way to gain an understanding of the collective phenomena is to
simulate the systems. If you want to find the percolation point then a useful data
structure to know about goes by the name of disjoint or union-find sets — in this
context it is a very efficient algorithm for finding clusters. The Ising model is best
simulated using MCMC techniques, which we cover in Chapter 11.

Exercise for Chapter 10

Exercise 10.1 (answer on page 430)
Compute a histogram of the time for a random walk, with the walker taking steps
of +1 to return to his/her starting position. If 7 is the return time show that
P (T = t/2) ~ 17%2/£(3/2), where the normalisation constant £(3/2) ~ 2.61 is
the Riemann zeta function. Use this fact to show that a random walker will return
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to his/her starting position with probability arbitrarily close to 1, but the expected
return time is infinite.

Exercise 10.2 (answer on page 431)
Simulate the branching process for some distribution and measure the mean number
of particles and the variance after five iterations. Compare this with the theoretical
results Kf and KZK‘I‘(Kf —1)/(x; — 1), where «; and «, are the mean and variance of
the distribution of children for a single individual.



11

Markov Chains

Contents
11.1 Markov Chains 309
11.1.1 Markov Chains and Stochastic Matrices 310
11.1.2 Properties of Stochastic Matrices 313
11.1.3 Ergodic Stochastic Matrices 316
11.2 Markov Chain Monte Carlo 317
11.2.1 Detailed Balance 318
11.2.2 Bayes and MCMC 323
11.2.3 Convergence of MCMC 326
11.2.4 Hybrid Monte Carlo 329
11.3 Kalman and Particle Filtering 330
11.3.1 The Kalman Filter 332
11.3.2 Particle Filtering 338
11.3.3 Approximate Bayesian Computation 344
11.A Eigenvalues and Eigenvectors of General Square Matrices 347

Markov chains are probabilistic systems that evolve in discrete time steps where
the probability of the next step depends only on the current state of the system.
This is such a commonly occurring situation that it pays handsomely to study and
understand the properties of these systems. Markov chains also provide another
means of sampling (Monte Carlo). Markov Chain Monte Carlo (MCMC) is
so useful that it probably accounts for burning up more central processing unit
(CPU) time than any other form of scientific computing.

We finish the chapter by considering the problem of inferring the states of a
Markov chain from noisy observations. This is known as filtering. We describe the
Kalman filter and particle filtering (sequential MCMC) as methods for solving
this problem.

308
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11.1 Markov Chains

A Markov chain describes a probabilistic system evolving in time, (X (r) ]t EN)
such that

P(X(1)|X(t—1),X(1t—2),....X(1)) =P (X(1)|X(t—1)).

In other words, the state of the system at time 7 only depends on the state of
the system at time ¢ — 1 and is conditionally independent of the state at earlier
times. This applies to a huge number of systems. For example, the random walk
described in Chapter 10 is an example of a Markov chain. Here X (r) would
represent the position of the particle at time 7. To determine the probability of
the particle at the next time step we only need to know the position at the current
time step.

Example 11.1 Population Genetics

A slightly more complex system which can be modelled by a Markov
chain would be a population of genes evolving under selection and
mutation (admittedly this is a rather crude abstraction of a real
biological system). We let X, () denote the number of individuals
in the population with genotype g. If G denotes the set of all possible
genotypes, then we can describe the whole population at time ¢
by a vector X(r) = (Xg(r)]g¢ € G). The population at the next
generation, X (¢ + 1) depends on the current population X(z) as
well as the mutation rate and the fitness of the genotypes (i.e. the
probability of them having a given number of offspring). These
kinds of models, although crude, have been much studied both by
population geneticists and by researchers studying the properties of
genetic algorithms.

|

It is possible to generalise the notion of Markov chains to n’"-order Markov
chains where the probability of being in a state X (z) at time # depends on the state
at the n previous time steps

P(X(0)|X(t—1), X(t—2),...,X(1))
=P(X(@)[X(t—1), X(t—2),....X(t—n)).

In this generalised notion, normal Markov chains are first-order Markov chains.
Although this generalisation can be useful, by far the most frequently encoun-
tered Markov chains are those of first order (higher-order Markov chains can
be modelled as first-order Markov chains acting on vectors). First-order Markov
chains are also the models where the tools of analysis are most developed. In the
rest of this chapter we will focus exclusively on first-order Markov chains.

In the definition of Markov chains we saw that X(¢z) was conditionally inde-
pendent of X(r — 7) for r > 1 given X(¢# — 1). This does not mean that X () is
uncorrelated or independent of these states. Usually X (¢) will be highly correlated
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with X (¢ — 2). What conditional independence tells us is simply that if we know
X(t — 1) then the states at previous times are irrelevant to determining the
probability that X(z) takes a particular value. Markov chains describe systems
with no ‘memory’ of their past.

11.1.1 Markov Chains and Stochastic Matrices

The dynamics of (first-order) Markov chains can be described by a simple matrix
equation. Denoting the probability of a discrete Markov chain being in state i at
time ¢ by p;(¢), then we can describe the probability distribution of being in a
particular state by a vector p(r) = (p;(¢)|i € S), where S is the set of possible
states. Here we assume that the set of states is discrete. We can write update
equations for a Markov chain as

pit+1)=P(X(t+1)=i)=> P(X(t+1)=i,X(r) = j)

JES

=N P(X(+ 1) =iX() = j)B(X(0) = j) = 3 Mij(e) p (1)

JES JjES

where M;j (1) =P (X (t + 1) = i|X(¢) = j) is a transition matrix. We can write this
a bit more elegantly as a (linear) matrix equation

p(t+1)=M() p(s). (11.1)

Here I have used the (traditional) convention of denoting column vector in bold
(e.g. v) and row vector as their transposes (e.g. v"). In the literature on Markov
chains the dynamics is sometimes written as p" (t+ 1) = p"(¢) T(¢) where T(¢) =
MT (¢). We can visualise a Markov chain in terms of a directed graph. An example
of this is shown in Figure 11.1.

Since we are guaranteed that starting from some state j we will end up in some
state then, for all j and all 7,

> My(n)=> P(Xt+1)=iX(t)=j)=1 or 1'M(r)=1"

ieS ieS
where 1 is the vector whose elements are all equal to 1. We also note that since
the elements M;; (r) are transition probabilities they are non-negative (i.e. positive
or zero). Matrices with non-negative elements whose columns (or rows) sum
to 1 are known as stochastic matrices. Markov chains for discrete state spaces
are therefore characterised by stochastic matrices. If the transition probabilities
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between states don’t change over time (i.e. M(¢) = M for all ¢) then the system is
said to be a time-homogeneous or a stationary Markov chain. In this case,

pt+1)=Mp(t)=M’*p(r—1)=--- =M p(1).

Markov chains are ubiquitous. We have seen in Chapter 10 that random walks
and branching processes are Markov chains. We will see in the next section that
we can impose a dynamics on the Ising model which allows us to view them as
Markov chains. We can use Markov chains to model any game where the next
move only depends on the current state and ignores how we got there. Of course,
some games might depend on the past history. Thus, in some variants of poker
the likelihood of an unrevealed card might just depend on the current state of
the game, but whether you judge a player to be bluffing is likely to depend on
your past memory of how the player acted in the past.

Example 11.2 Population Genetics Revisited
Consider a population of organisms undergoing selection and mu-
tation. For simplicity we assume the organisms are haploids (i.e.
they carry only one copy of genes — the generalisation to diploids
is easy, but unnecessary for this example). We also assume that the
organisms undergo crossover, keeping the genes randomly shuffled
(what population biologists call linkage equilibrium). This allows us
to consider each gene in isolation from all the others. Further, it
is assumed that the gene takes two forms (alleles), A and B. The
probability of a mutation from A to B is denoted by u while the
probability of a reverse mutation from B to A we denote by v. Finally,
we assume that individuals with allele B produce on average 1 + s
offspring for every offspring produced by individuals with allele A.
This advantage is called by population biologists the fitness.

Assuming that there is a fixed population size, P, then the dy-
namics can be modelled by a Markov chain. It is helpful to consider
mutation and selection taking place to create a large (effectively
infinite) population of seeds — we will eventually sample from this
seed population to obtain a new generation of organisms. If # is the
number of individuals with the fitter allele B, then the proportion of
the seed population in state B is given by

(1+s)n (1+s)n

s = =

(I+s)n+P—n P+sn’

After mutation the proportion, ps,,, of the seed population in allele
Bis

(I=v)(1 +s)n+u(P—n)'

Psm = (1 =v)ps +u(l — pg) = P+sn
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If we assume an infinite population then this would be equal to the
proportion of individuals at the next generation
(1= v)(1 +8)p(t) + u(1 = p(r))

1+ sp(t)

where p(f) = n/P. If the effect of selection and mutation is small then
we can approximate the dynamics by a differential equation

plt+1) =

(w—(u+v—s+us)p(t)+ spz(t))

1+ sp(t) '
Figure 11.2(a) shows the solution to this differential equation to-
gether with the exact solution to the difference equations.

dp 3
D mplir 1)~ pl0) =

Figure 11.2 1000
Illustration of the
evolution of (a) an
infinite population
(the solid curve
shows solution of
approximate
differential equation,
while the dotted
curve ShOW exact . . ot 0 - 50 100 150 200
Solution of 50 100 150 200 time, t

difference equation) (a) (b)

and (b) three runs of
a population of size
1000 under selection

800

600

400

Number of B, n

200

In finite populations (the situation we are trying to model) there

and mutation with will be random fluctuations resulting from sampling a new popula-
s =01, tion of size P from the seed population. The probability of drawing
u=v =0.001.

n’ mutants given a proportion pg,, of mutants in the seed population
is given by a binomial distribution, n’ ~ Bin(P, psm ),

P ’ —n’
My = B (i'|n) = (n> P (=)™ (12)

Using this probability distribution we can simulate the behaviour of
a finite population. Figure 11.2(b) shows three realisations of the
time evolution of the population using different streams of random
numbers. The selection strength and mutation rate is the same as the
infinite population solution shown in Figure 11.2(a). As discussed
earlier, the dynamics of a finite population can be described by a
Markov chain

p(t+1)=Mp(r) =M'p(1)

where p(t) is the probability vector (py(z), p1(¢), . .., pp(t)) and p,(t)
is the probability of the population having » members with allele B.
The matrix M is the transition matrix with probability M, given
by Equation (11.2). For small populations we can use the Markov
chain to solve the dynamics exactly. An example of this is shown in
Figure 11.3 for a population of size 100.
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t=10

t =100

1 1 1 T
0 200 400 600 800
Number of B mutants, n

1000

Unfortunately, the state space grows with the size of the popula-
tion and we are often interested in very large populations; far larger
than it is practical to compute a transition matrix. Fortunately, we
will see in Chapter 12 that we can obtain an excellent approximation

to this problem using the Fokker—Planck equation.
|

For systems with a small number of states, the dynamics of the system can
be simulated numerically using the above matrix equation. This is numerically
very stable and is often a very efficient means of obtaining a description of
the dynamics. (A complete description of the dynamics would require assigning
probabilities to all possible histories, (X (¢)[t = 1,...,00). The Markov chain
analysis gives the marginal distributions p(¢) at each time step. Very often this
is all we want to know.) Unfortunately, in many cases the state space is so large
that it is not possible to write down the transition matrix, nevertheless, we can
often deduce many properties about the dynamics of a system from a knowledge
of the structure of its transition matrix.

11.1.2 Properties of Stochastic Matrices

Stochastic matrices have some interesting properties which are important for
understanding the dynamics of Markov chains. These are valuable even when
it is impractical to write down the transition matrix explicitly. We restrict our
attention to the case when the search space is finite. Recall that elements of a
stochastic matrix are non-negative and every column sums to one. (These are
called column stochastic matrices. They need to be distinguished from the even
more select set of doubly stochastic matrices where both the rows and columns
sum to one.)

The important properties of stochastic matrices relate to their eigenvalues. A
short description of the properties of eigenvectors for a general matrix can be
found in Appendix 11.A. The first property of importance is that the modulus of
any eigenvalue is less than or equal to 1. To show this we consider the eigenvalue
equation of the n x n matrix, M,

n
/1\/,' = Z MijVj.
j=1

Figure 11.3 Markov
chain simulation of
the population
showing the
probability
distribution at

time steps

t =10, 20, ---, 100.
This is for the same
set of parameters as
that used in

Figure 11.2. Each
curve represents a
histogram showing
the probability of n
mutants being
present at time 7.
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Using this and the fact that M is a column stochastic matrix

n n n n n n
Q o) @
S Myl <3O ML 2D v Y IM | 2 vl
j=1 i=1 j=1

j=1 i=1 j=1

n

n
A il =)
i=1

i=1

(1) Taking the modulus of the equation above, using |[Av;| = |4||vi|, and
summing over i.

(2) Using |3 ; ail <3;lail and |M;j v;| = |Mij] |v;].

(3) Changing the order of summation and pulling out terms independent of i.

(4) Using |M;;| = M;; since the transition probabilities are non-negative so that
S My = Yo M;; = 1 which follows because M is a stochastic matrix.

Since 4] Y77, [vi| < 32; vyl it follows that [4] < 1.1
The second property of a stochastic matrix is that it has at least one eigenvector
with eigenvalue 1. It is easy to see that, because each column sums to 1, the vector
ut=1" (i.e. the row vector of all 1s) is a left eigenvector of any stochastic matrix,
M, with eigenvalue 1 since
n n
ZuiMij =ZlMij =1 =Uuj.
i=1 i=1
Any left-hand eigenvector has a corresponding right-hand eigenvector with the
same eigenvalue. A right-hand eigenvector with eigenvalue 1 will correspond to
a stationary state of a (stationary) Markov chain since it will be left unchanged
from one time step to the next.”> A stochastic matrix will have at least one
eigenvector with eigenvalue 1, but can have more, corresponding to different
stationary states.
Assuming an n X n stochastic matrix is not defective (see Appendix 11.A), we
can expand the matrix as

_NC 0,0 (0T
M lZ:l:/l v (u)

where A1) is the i eigenvector of M and v(¥) and u () are the corresponding left-
and right eigenvectors. Furthermore, due to the biorthogonality of the left- and
right-hand eigenvectors (see Appendix 11.A) we have

M2 23720y @ (@O)TY 20 ) (@) T 23730100 ((ua))T v(j)) (WD)
i=1 j=1 i,j=1

n

2§ 400y [[i = j]] @) 23 (D)2 y® (u@O)T

ij=1 i=1

N

(1) Using the eigenvector expansion of M given above.

! In fact, what we have just done is taken the I-norm of Av = My giving [A] ||v||; = [[Mv]; <
[[M|[1 |[¥|l1 (which is true for any consistent norm). Now [[M||; = 1, implying that [1] < 1.

2 This is confusing because the word ‘state’ is being used in two distinct ways. The system takes
a particular state, for example, in a random walk this would be the position of the walker.
However, the ‘stationary state’ corresponds to a probability over states given by the eigenvector
with eigenvalue equal to 1. In some cases the stationary state may be a single state, but this is not
guaranteed.
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(2) Taking the sums outside and rearranging the orders of terms.
(3) Using the biorthogonality of left and right eigenvectors (u(®))Ty() =
i=j|-
(4) Summing over j (the indicate function I[i = j]] means that we only keep the
terms where j = i).

Similarly, taking any power of M
M = Z(l(i))t v (T,
i=1
Thus, for a stationary Markov chain, starting from any initial distribution of
states p(1), the distribution at time ¢ + 1 is given by

plt+1) =M p(1) = ¢ (AW) v (11.3)
i=1

where

ci = (@) p(1).
Since [1()| < 1, the contributions of those terms in the above sum involving
eigenvalues whose absolute value is less than 1 will diminish exponentially (i.e. as
A = ¢! 1°8(D) The Markov chain will reach a stationary distribution involving
only those eigenvectors with eigenvalue 4 = 1. If there is more than one such
eigenvector then the final state will depend on the initial distribution, p(1).

The good news from Equation (11.3) is that most of the eigenvectors have only
a transient effect and vanish exponentially quickly. The bad news is that there is
nothing stopping an eigenvalue being very close to 1. If [1| = | — € for small €
then |A’| &~ e ¢’ and the characteristic time for the contribution to decay by a
factore = exp(1) is 1/€. In general the convergence of a Markov chain depends
on the gap between the eigenvalues equal to 1 and the next highest eigenvalue.
Alas, in systems with a large number of states it is not uncommon for this gap to
be very small.

In cases where it is feasible to write down the transition matrix and compute
its eigenvectors then we can use Equation (11.3) to compute the full dynamics.
However, some caution is required because the eigenvectors are not orthogonal,
therefore the matrices of eigenvectors can be poorly conditioned so that this
method of computing the evolution can be numerically unstable (in contrast to
just applying the transition matrix which is numerically stable, but slow). For
possible ways around this see the paper by Moler and Loan (2003).

Any state of a Markov chain which you cannot escape from is known as an
absorbing state. In many problems there is one or a finite number of absorbing
states. We are often interested in the expected time to reach the absorbing state
starting from some known initial condition. This time is known as the first-
passage time or first-hitting time. In Exercise 11.2 we ask you to calculate a
closed formula for computing the first-passage times from the transition matrix,
although this may be numerically difficult to compute (since it involves inverting
matrices that can be very poorly conditioned).

The notation here is

rather ugly, with T
denoting taking the
transpose, while
(AN denotes
taking the
eigenvalue, /l(i), to
the power t.

()
G@G
@

State A is an
absorbing state.
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11.1.3 Ergodic Stochastic Matrices

In general, stochastic matrices can have multiple eigenvectors with eigenvalue 1,
which means that the final state will depend on the initial conditions. However,
there are special stochastic matrices which have a unique eigenvector with
eigenvalue whose absolute value is 1. This guarantees that we will reach the same
stationary distribution irrespective of the initial conditions. (Be aware, however,
that this stationary distribution is, in general, a probability distribution over
different possible states.) Fortunately, there are easy conditions for determining
whether or not a matrix will have a unique stationary state. In fact, there are
two properties that need to be checked. Firstly, the system must not get stuck
in a different stationary state. This requires that for any state there is a finite
probability of reaching the states in the stationary distribution in a finite number
of steps. The second important condition is that the system does not go through a
periodic cycle. For example, if we consider a random walk around a closed circuit
where we take one step to the left or to the right with equal probability and there
were an even number of sites, then if we started at site 1 at time r = 1, then on
even time steps we would be at an even numbered site and at odd time steps we
would be at an odd numbered site. This periodicity would be removed if we had a
small probability of staying put, or if we had an odd number of sites around the
circuit.

A sufficient condition for a unique stationary distribution is that there is a
finite probability of moving from one state to any other state in a finite number
of steps and that the system is not periodic (that is, the return times to any
particular state does not have any fixed period). In this case, the Markov chain
is said to be ergodic. This result is formalised in the Perron—Frobenius theorem,
which states for any irreducible stochastic matrix with period d the eigenvectors
will have eigenvalues with values

A =1, A=e2d 4, = eld-Did

and all other eigenvalues satisfy |1;| < 1. For an aperiodic stochastic matrix there
is therefore one eigenvalue equal to 1 and all other eigenvalues have magnitude
strictly less than 1.

The condition that a matrix, M, is irreducible is that there does not exist a
permutation matrix P which will transform M so that

M, Mz)

T —
PMP_<0 M.

If such a matrix exist then

(o))

which implies there is a set of states which can never access a second set of states —
thus the matrix is non-ergodic. Unfortunately, this definition is not very useful
in practice. If all the elements of the transition matrix are strictly positive (i.e. all
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are greater than zero), then the matrix will be irreducible as there is a non-zero
probability to move from any state to any other state of the system. This is a
sufficient, but by no means necessary, condition for irreducibility.

Beware, though, that even for systems described by ergodic stochastic matrices,
there can be transient states that take a time that is exponential in the size of the
system to decay. Thus, even though there is a unique steady state in practice we
may never reach it. Formally, in the limit of infinite size systems the time to visit
configurations that make up the steady state may be infinite. This is a situation
which physicists sometimes refer to as ergodicity breaking.

The importance of ergodic Markov chains is that they are relatively easy to
construct and often provide an excellent model of real systems. It is not too
difficult to construct a dynamic system with a unique stationary distribution —
something that is useful for formally proving the convergence of many algorithms
and that is also used in MCMC.

11.2 Markov Chain Monte Carlo

One of the cornerstones of modern probabilistic modelling is Markov Chain
Monte Carlo, more usually referred to as MCMC. We recall from Chapter 3
that Monte Carlo procedures are ways of sampling a random variable X from
some probability mass Px(x) or probability density fx(x). This allows us to
obtain numerical approximations of expectations, which can be used to answer
many of the questions we are interested in. When X is simple (e.g. a number)
and the cumulative distribution function is easily invertible, then we can use the
transformation method to generate random deviates. Otherwise we could use
the rejection method. However, when X or its probability distribution becomes
more complex (e.g. high dimensional) then the transformation method is usually
impossible and the rejection method impractical because we cannot find a good
approximating distribution. In this case, we end up nearly always rejecting a
sample. MCMC overcomes this by visiting high probability states.

The idea is to build a Markov chain (i.e. a probabilistic dynamical system)
that has a unique steady-state distribution, which is the distribution that we are
trying to sample over. We use the heuristic that highly probable states are close
together. Thus we explore the probability distribution over states by making small
steps in the random-variable space. Although the sample points are correlated
over a short time we are guaranteed that over a long enough time period we visit
each state according to their probability (provided we have set up the dynamics
correctly). However, whenever you hear claims such as this you need to be on
your guard. The mathematical guarantee comes with the caveat that you have to
wait ‘long enough’ and sometimes long enough is much longer than anyone is
prepared to wait (it is easy to find systems where that wait could be much longer
than the age of the universe). This being said, MCMC often gives you excellent
results. We discuss the practicalities of MCMC before returning to explore its
limitations and discussing improvements.
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MCMC originated during the Second World War at Los Alamos where the
first atom bomb was designed and built. The method was devised by Stanistaw
Ulam and taken up by von Neumann amongst others. The work was made public
in a seminal paper by N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A.H. Teller, and E. Teller in 1953. It was initially regarded as a tool for computing
physical quantities. In 1970 W. K. Hastings generalised MCMC to allow a non-
symmetric function for generating candidate solutions — this is compensated for
by modifying the transition probabilities. MCMC has now become a standard
tool for Bayesian inference.

11.2.1 Detailed Balance

One apparent difficulty in using MCMC is to ensure that its stationary distri-
bution is reached, however, this is surprisingly simple to achieve. Supposing we
want a certain probability distribution, # = (x;|i € S) — where S is the set of
states — to be the stationary distribution of a Markov chain. Then a sufficient
(though not necessary) condition for this to happen is to choose the transition
probability, M;;, from state j to state i, to satisfy

Mijﬂ'j =Mjl'ﬂ'i. (114)

If we sum over j we find

ZM[jﬂ'j = ZMjiﬂ'[ =T

jes Jj€S
since } ;s Mji = 1 (i.e. M is a stochastic matrix). Thus,
Mn =7

which is the condition we require for & to be a stationary state of our Markov
chain. If M is ergodic this stationary distribution will be unique. Equation (11.4)
is known as detailed balance. Any Markov chain satisfying detailed balance is
said to be a reversible Markov chain.

The condition of detailed balance together with a stationary distribu-
tion & is not sufficient to uniquely determine the transition probability
P(X(r+1)=iX(r)=j) = M. Usually, starting from a state i we choose a
neighbouring state j uniformly at random from a set of neighbours (note if i is
a neighbour of j then j must be a neighbour of i). We then decide whether to
accept the neighbour. There are different ways to achieve this. Two commonly
used strategies are

1. Accept a move with probability min(1, ;/7;). (In practice you just draw a
uniform deviate U ~ U(0, 1) and accept the move if U < x;/n;.) To show
that this satisfies the detailed balance condition we first consider the case then
> Ty then M[j =1and Mji = 7Tj/7T[. In this case Mij T, =T while Mj[ T =
(mj/m;i) m; = mj, thus satisfying detailed balance. Similarly, if 7; < n; then
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M;; = 1 and M;; = m;/n;. This also satisfies Equation (11.4). This procedure
is often referred to as the Metropolis algorithm.
2. Accept a move from state j to state i with a probability

i

M;; = .
J Tty

Direct substitution into Equation (11.4) shows that this satisfies detailed
balance. This is called the heat-bath method, at least by physicists.

An important property of these algorithms is that they just depend on the ratio
of the probabilities 7r;. As a consequence we only need to know this quantity up
to a constant. In practice, one frequently does not know the normalising factor.
For example, in simulating physical systems we often know the energy function,
E(x), and we assume the system is in thermodynamic equilibrium with a large
heat bath so that the probability of a configuration, x, is given by the Boltzmann
distribution

—BE(x)
P(x) =" Z=) e PEW,
X

but we cannot compute the normalisation factor (known as the partition func-
tion), Z, as it is computationally infeasible to sum over all configurations of
the system. Similarly, in Bayesian inference we want to compute the posterior,
P (x|D), where we know the joint distribution P (x,D) = P (D|x) P (x), but to
compute the evidence P (D) requires marginalising out x which is again often
intractable.

There remains a choice in what neighbourhood you choose. The smaller your
neighbourhood the higher the probability of the move being accepted, but the
longer it takes to obtain an independent sample. The neighbourhood has to be
sufficiently large to ensure that there is a finite probability of visiting every part
of the search space (i.e. the Markov chain is ergodic).

One choice of neighbourhoods for sampling from multivariate distributions,

X:(X17X25-"3Xn)NfX

is to randomly choose a variable index i € {1, 2, ..., n} and then sample X; from
the marginal distribution, keeping all other components fixed. Stuart and Donald
Geman in their seminal paper (Geman and Geman, 1984) called this Gibbs’
sampling (in honour of the physicist Willard Gibbs). This is more limited than
traditional MCMC sampling, but can be much quicker when the distribution
fx (x) is such that computing the change in probabilities due to changing a single
variable is efficient.

MCMC provides a sequence of random samples (each of which may provide
a description of the state of a complex multidimensional system). The first
elements in the sequence are typically not correctly distributed and need to be
thrown away. The notion of a random variable not having the correct distribution
is rather meaningless. The correct way to think about this is to imagine an



This is a mixture of
Gaussians (or
normals). It is very
different from the
distribution of a
sum of two
normally
distributed random
variables
X=2%v+1iz
where Y ~ N(0,1)
and Z ~ N(4,9),
which is actually
normally
distributed

X ~ N(4/3,37/81).
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ensemble of MCMC simulations running the same algorithms but with different
random numbers. At some time the probability distribution of the ensemble will
converge to the probability z. The time to reach this stationary distribution is
sometimes called the burn-in time. We need to throw away the samples during
this burn-in period. Of course, in practice we don’t run an ensemble of MCMC
simulations and it is difficult to know how long the burn-in takes (there are
some heuristics for estimating this, but they are too detailed to discuss here). In
practice, people often run an MCMC for as long as is practical and throw away
some proportion of their data (e.g. the first half). Starting from a high probability
state will often reduce the burn-in period.

Having thrown away the burn-in period we are left with a set of random
deviates, but they are not independent. If we want independent deviates then
we have to select samples separated by sufficient time so that the samples are no
longer dependent of each other. Unfortunately, just as with burn-in there is no
fixed rule for determining this. Fortunately, for computing expectations we don’t
care if nearby samples are independent provided we have run long enough that
we have visited each part of space sufficiently often. One subtlety is that for the
sample to be unbiased we have to consider an iteration as the current solution
whether or not the candidate solution is accepted. That is, even when we reject a
move so that X (7 + 1) = X(¢) we should use both X(r) and X (7 + 1) in computing
the expectations empirically. If we don’t we are being prejudiced against values
of random variables that occur with high probability.

Example 11.3 One-Dimensional MCMC
We give a very simple one-dimensional example. Here we consider a
continuous space. Suppose we want to sample from

2 1

Ix(x) = gN(x|0’ 1)+ gN(x\4,9)

using MCMC. To do this we start from some initial value X (1) and
then for + = 1 up to T we generate a candidate point Y = X(z) +
N0, o) with step size o = 0.2. We accept the candidate point (set
X(t+ 1) to Y) with a probability

min1 257
otherwise we set X (¢ + 1) to X ().

Although we have not chosen the neighbours of a point uni-
formly, nevertheless our transition probability satisfies detailed bal-
ance because the probability of choosing a point Y as a candidate
point starting from X is the same as choosing X as a candidate point
starting from Y. Also our process is clearly ergodic as there is a non-

Ix(Y) >
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T = 100, acceptance rate =0.952

T = 1000, acceptance rate =0.906

T = 100 000, acceptance rate =0.901

n

T = 1000 000, acceptance rate =0.898 T =10 000 000,

acceptance rate =0.897

zero probability of making a transition from any point to any other

point.

Figure 11.4 shows a set of histograms from independent runs
with a different number of sample points. In this problem the quality
of the results depends on the step size. If the step size is too small then
we have a high acceptance rate, but a low decorrelation rate (or high
exploration time). Contrariwise if the step size is too large then we
get a high decorrelation rate, but a low acceptance rate. The step size

we have chosen (o = 0.2) provides a good compromise.

321

The example above is nice to visualise, but is an unrealistic application of
MCMC. As we pointed out in Chapter 3 the point of Monte Carlo is to compute
expectations. In low dimensions we can compute the expectations by numerical
integration with the distribution function as an added weight. We can usually
obtain very high accuracy by sampling the domain of fx(x) at relatively few
points. The difficulty comes when we have to integrate over many dimensions.
The number of points we need to obtain a fixed accuracy grows exponentially
with the number of dimensions. Thus, numerical integration simply becomes
infeasible in high dimensions. However, Monte Carlo gives errors that fall off
as 1//T where T is the number of (independent) sample points. Thus, MCMC

comes into its own in high dimensions.

Figure 11.4 Example
of MCMC where we
draw samples from
the distribution
Sx(x) =

IM(x[0,1) +
%N(x\4, 9) (shown
as a continuous
curve). The curve
consisting of a
number of steps
shows a
histogram(with
different bin sizes) of
our samples from
MCMC as we
increase the number
of samples, T'.



322 Markov Chains

Example 11.4 Ising Model

A classic high-dimensional problem in statistical physics is the Ising
model described in Section 10.4. This is a discrete problem involving
variables S = (S;|i € V) where Vis a set of vertices and S; € {—1, 1}.
The ‘energy’ of the Ising model is given by

ES)=-7] Y S5
(i.j)e&
where £ is a set of edges linking the variables and J is a coupling
constant. It is usual to consider the case where the variables live on
a regular lattice. The probability of a configuration is given by the
Boltzmann probability

E(S) J
P(S) xe” * =exp T Z N
(i,j)e€
where k& and T are the Boltzmann constant and temperature respec-
tively.

The difficulty in computing expectations is that the number of
possible values the random variables can take is 2/V!, which rapidly
becomes intractable as the number of variables increase. MCMC is
an extremely simple method for computing expectations. Starting
from some initial configuration S we obtain a candidate set of
variables, S’, by choosing a variable S; at random and ‘flip’ it (i.e.
S; < —S;) keeping all other variables constant (this is an example of
Gibbs’ sampling). We accept the update if E(S") < E(S), or else we
accept the update with a probability

p=e (ESH-E®)/T

This just depends on the difference in energy between variables " and
S. However, to compute this difference we don’t need to compute the
complete energy function, but only need to consider the spin we have
changed and its neighbours

E(S')—E(S)=2J5 Y,
JEN;

where N; = {j € V|(i,j) € &} is the set of neighbours of site i.
It is commonly the case in problems with a local energy function
that the energy difference from changing a single variable is much
faster to compute than the full energy. This makes using MCMC
much faster than it would otherwise be. We will see, however, that
we can simulate the Ising model even more effectively using a cluster
MCMC algorithm. Incidentally, the physics community tends to call
MCMC for these types of applications Monte Carlo.
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Simulated Annealing

In passing it is perhaps worth mentioning simulated annealing because of its
close connection with MCMC, even though it is not directly to do with prob-
abilities. Many optimisation problems can be represented as a cost (or energy)
function E(X) which we want to minimise. In difficult problems this function
varies quite rapidly as we change X. One common technique for solving these
problems is known as simulated annealing where we treat E(X) as an energy
function and perform MCMC while slowly lowering the temperature. The idea is
that at higher temperatures the acceptance probability of making a change to X is
relatively high, allowing the algorithms to find a good part of the solution space.
As we lower the temperature, X spends more of its time at low-cost solutions.
This is analogous to the physical process of annealing metals, where by slowly
reducing the temperature a metal solidifies into its low-energy crystalline phase
rather than a higher energy (suboptimal) glassy phase. There is even a guarantee
that if we reduce the temperature slowly enough simulated annealing will find
the global optimal solution, unfortunately, in some cases slowly enough would
be much slower than performing a random search. In practice, one reduces the
temperature much faster than needed to guarantee an optimal solution, and then
hopes for the best.

11.2.2 Bayes and MCMC

MCMC is one of the most useful tools for carrying out Bayesian calculations
when the models become too complex to be solved analytically. As we have
mentioned already, one convenient feature of MCMC is that it does not require
the probabilities to be normalised. Therefore to compute a posterior f(0|D) we
need only to compute the joint probability f(0, D) = f(D|@) f(8) (that is, we can
ignore the normalisation f(D)). To use the Metropolis algorithm we start with
some guess for a probable @ and then select a nearby value, ', according to some
local probability distribution. We compute

- min(l, f(Dle") f(0’))
f(DI6) f(6)
and move to @’ with probability r, otherwise we remain at #. The initial values of
0 are discarded, the rest are taken to be samples from the posterior distribution
which we can use, for example, to compute the posterior mean.

There is still some discretion in choosing the candidate or proposal parameters
0’. We want them to be sufficiently close to the current parameters  so that there
is a good probability of the proposal being accepted, however, this has to be
balanced against our desire to explore the full parameter space. We discuss this
issues in more detail in the next section. If we are to use the Metropolis algorithm
given above, another requirement on selecting our proposal parameters is that
the proposal distribution, p(8’|@), is symmetric. That is, we require p(6’|0) =
p(0]6") in order that detailed balance is satisfied. This can be rather too restrictive,
for example if our parameters are non-negative then some care is required to
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ensure that we have a symmetric proposal distribution. Even when it is symmetric
it might be inefficient, e.g. by making large steps unlikely when a non-negative
parameter becomes small. We can adapt the standard Metropolis algorithm to
cope with any proposal distribution. Our detailed balance equation becomes

W0 — 6)rn(8) =W (@ — 6)r(8) (11.5)

where a transition probability W(6 — ') now equals the proposal distribution,
p(0]6"), times the acceptance probability, a(8]6’),

W0 — ¢')=p(0')6)a(0')6).

(Equation (11.5) is just Equation (11.4) written for continuous rather than dis-
crete variables — note that the function W(@ — @) plays the same role as the tran-
sition elements A;;.) Our more sophisticated detailed balance requirement is that

a(6'le) _ p(6l6’) = (¢")

a(0]6') — p(0'16)x(6)

Similar to the Metropolis algorithm we compute

! ! !/
r= min(l, a(9 0,)) = min(l, pi(ﬂ\/a ) (6 ))
a(0]6") p(6'0) 7(6)
and we accept with a probability ». For computing the posterior we can use
n(0) < f(D|@) f(6) so that r becomes

— p(616") £(DI9") (8 )
p(60'10) f(D16) f(8)
This modified Metropolis algorithm is known as the Metropolis—Hastings
algorithm. It can be quite important in problems where the variables being
estimated, 6;, are constrained.

Example 11.5 Traffic Rate (Example 8.4 Revisited)

In Example 8.4 on page 200 we considered estimating the aver-
age traffic rate along a road from a series of observations, D =
(N1, N3, ..., Ny). We assumed that the likelihood of the data is given
by a Poisson distribution, N; ~ Poi(u). Our task is to estimate u.
We assume an uninformative prior fo(u) = Gam(u|0,0) < 1/u. In
Example 8.4 we showed that the posterior in this case is given by the
gamma distribution Gam(y|ay, b,) where a, = > N; and b, = n.
However, let us compute this using MCMC instead.

Our variable y has to be positive, which makes our proposal
distribution more complicated. We want it to be quite close to our
previous value. Thus we take our candidate to be ¢/ ~ Gam(a,b)
where we choose a and b such that E (/] = ¢ = . We also want
the variance to be close to the variance of our posterior (which
unfortunately we don’t know). This may take some parameter tuning,
but in this example we take Var[y/] = /% = 1. This implies that
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a = y? and b = pso that 4’ ~ Gam(u?, u). To perform an update we
compute

(. Gam(u|u, 1)5p TTI Poi(Ni|1)
r=min| 1, — -
Gam(/|p2, ) ; [T Poi(Ni|p)

K Gam (u|u?, i) . *n(ﬂ’fu)+ijl N; log(%l)
" Gam(p'| 12, )

= min

We accept the update with a probability r.

In Figure 11.5 we show a histogram of the samples of the
posterior distribution for the traffic rate u produced by MCMC. Note
that to compute the posterior histogram we used the current u value
at each step whether y had changed or not.

D ={4,4,6,4,2,2,5,9,5,4,3,2,5,4,4,11,6,2,3,11}
\

The efficiency of the MCMC depends on the proposal distribution. If we
choose a proposal distribution which is identical to the posterior then r = 1 and
we would always accept the update. Of course, as the whole point of performing
MCMC is because we don’t know the posterior we are unlikely to be able to make
our proposal distribution identical to the posterior, so the practical goal is to try
to design a proposal distribution that is not too different from the posterior and
so improve the efficiency of the MCMC sampler.

In our example MCMC was unnecessary as for this case there is a nice
conjugate prior. Also since we were estimating only a single parameter we could
have computed the distribution numerically. Where MCMC comes into its own
is for more complicated problems, particularly when we are trying to infer
multivariate parameters (such as in hierarchical models with latent variables
or even graphical models as described throughout Chapter 8). More realistic
problems are described in many books specialising on Bayesian inference, e.g. Lee
(2003); Gelman et al. (2003). In principle, using MCMC for Bayesian calculations
is extremely straightforward, but it is such an important task that it has been very
heavily developed. There are a host of books describing MCMC for Bayesian
methods. Don’t, however, become too intimidated by the sophistication of many
MCMC methods. Computers are sufficiently fast that for many problems a naive
implementation is usually good enough to get good estimates. By far the most
important part of Bayesian inference is to build a good model. This means

Figure 11.5 The
histogram for the
posterior
distribution for the
traffic rate computed
using MCMC. The
solid line shows the
exact posterior (a
gamma) distribution
for this problem. The
data is drawn from
POi( N, i ‘5) .
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understanding the problem and being very clear about what you are doing. The
actual computation is of secondary importance and efficiency only matters when
you are pushing the envelope.

11.2.3 Convergence of MCMC

The time for MCMC to converge to the stationary distribution is generally very
difficult even to estimate. Technically, the convergence speed depends on the size
of the second-highest eigenvalue of the transition matrix —see Equation (11.3) —,
but in practice if you could compute this you don’t need to use MCMC at all.
A number of different issues can affect the convergence time. In Example 11.3
on page 320, we had a multi-peaked distribution with a low probability region
in between. This clearly slows down convergence as it is difficult to transition
between the high probability regions.

This also occurs in the Ising model below its critical temperature when the
probability of making a transition between having most variables equal to +1,
to a situation where most variables equal —1, becomes exponentially small in
the number of variables. If we interpret the Ising model as a simplistic model
of a magnet where the variables represent magnetic spins which are either
pointing up or down, then below the critical temperature we have a spontaneous
magnetisation. The system has broken the symmetry of the energy function.
This is an example of ergodicity breaking where the time average of a sample
does not give the same result as averaging over all the states weighted by a
Boltzmann factor (technically, this ergodicity breaking only occurs in the limit
of infinite number of variables, but in practice the waiting time for a magnetic
system to change its magnetisation is much larger than anyone cares to wait).
MCMC provides a truer description of the physical system than performing
the expectation — ergodicity breaking is observed in real magnets where the
number of spins is around Avogadro’s number (i.e. of order 10?%). The Ising
model is fairly benign in that it only has two broken symmetry states (that is,
the energy function has two minima). In many disordered systems (including the
Ising model with random couplings) the energy function can have a very large
number of minima, many of which have energies far from the global optimum
energy. If MCMC is run at a low temperature it will, with high probability, gets
‘stuck’ in a local minima with an exponentially (in the number of variables)
small probability of escaping. These systems are extremely hard to simulate
using MCMC although there are many variants which have been developed to
overcome these problems — there exists a large literature on performing Monte
Carlo on disordered systems in the physics literature.

The Ising model also causes problems around its critical point (just where the
symmetry breaking occurs). This is because at this point the system is so finely
balanced that flipping a single variable has an effect which can ripple through
the whole system. More formally, there are long-range correlations between
variables. This again slows down convergences considerably. This is an entirely
emergent property of the model that is not at all apparent from looking at the
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energy function. The lesson is that anticipating convergence times is tricky. There
has been work to try to design MCMC with fast convergence times (this is often
referred to as rapid mixing Markov chains). However, the problem is difficult.

Cluster Algorithms

For some classes of problem such as the Ising model we can achieve rapid mixing
by carefully choosing a cluster of variables and then flipping the whole cluster.
This has to be done so as to maintain detailed balance. If the cluster is badly
chosen the probability of accepting the change (i.e. flipping all the spins) would
be extremely low. However, for some problems we can choose the cluster so the
probability of flipping it is 1! That is, we always flip the cluster. These algorithms
have become state of the art for simulating many spin systems as they rapidly
decorrelate the samples.

|
Example 11.6 Cluster Algorithm for the Ising Model
For the Ising model there is a particularly simple clustering MCMC
algorithm due to Wolff (1989) building on the ideas of Swendsen and
Wang (1987). The idea is to construct a cluster of connected spins
with the same orientation. This is done using Algorithm 11.1. The
list can be a stack — a simple data structure on which we just add
(push) sites and remove (pop) sites.

Algorithm 11.1 Cluster algorithm for the Ising model.

choose a site, i, at random
set X :=S;
set S; = —S;
addito a list of sites
do until list of sites is empty
remove a site, j, from list of sites
for all neighbours, k, of the site j
if Sx=XandU <p=1—e 2 wherelU ~ U(0,1)
set Sy = —S;
add & to list of sites

We add neighbouring sites with a probability p = 1 — e~ if the
spins at the site are the same orientation as the rest of the cluster.
Suppose we have built a cluster of spins with ng edges to neighbours
outside the cluster with the same spin and n, edges to neighbours
outside the cluster with the opposite spin configuration. Let S be
the original spin configuration and S’ be the spin configuration after
flipping all the spins in the cluster. Now the probability, p(S’[S) of
choosing the candidate configuration S’ is proportional to (1 — p)™s
(the number of edges the algorithm decided not to include in the

The clustering
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cluster). If we built the cluster starting from S’ then the probability
of choosing a candidate configuration S would be proportional to
(1—p)e.Sincel —p=e~%F,

p(S/|S) _ (1 —P)"‘Y _e—2,8(ns—no)

p(SIs’)  (L—=p)e
(this, at least, looks plausible; you have to convince yourself that all
the other terms that occur in the candidate probability cancel). The
change in the Boltzmann probability when flipping the spins in the
cluster is

I
n(s) _ e BES)-E(S)) _ 2B(no—ny)

n(S)

since n,, edges are satisfied while n, edges become unsatisfied. From
the equation for detailed balance we require the acceptance ratio
to be

_a(S's) _ p(S|s")=(S") _

~a(s|s’) - p(s'S)n(S)
Thus by carefully choosing the candidate solution we end up always
accepting the move. In Question 11.6 you are asked to simulate the
Ising model using the clustering algorithm.

The great advantage of the clustering algorithm is that it changes many vari-
ables at each step so that the samples are much less correlated. This is particularly
important close to criticality where traditional sampling methods are very slow.
Interestingly, one feature of the clustering algorithm is that at low temperature
it is quite capable of flipping most of the spins, thus transitioning between the
states with positive and negative magnetisation. That is, it restores ergodicity.
However, as we explained earlier, real systems suffer ergodicity breaking. Thus,
our clustering algorithm does not model the dynamics observed in real systems.
Fortunately, for the Ising model we can easily reinstate ergodicity breaking at low
temperature by considering the absolute magnetisation.

Exact Sampling

Having stated how difficult it is to know whether a Markov chain has reached
its stationary distribution, I now confess that it is possible to generate exact
(perfect) random samples using a modified MCMC procedure. To understand the
idea we start from an impractical algorithm and then work towards a practical
algorithm. We consider running multiple MCMC simulations starting from all
possible initial conditions, but using the same random number generator. If two
runs ever reach exactly the same state they will remain the same from then on.
This is known as coalescence. If all initial conditions coalesced then the resulting
runs would not depend on the initial states. As a result the state would be an
exact sample of the stationary distribution. Thus a simple algorithm would be
to start the system off in every possible initial state and wait for all the states to
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coalesce. After this the system has reached its stationary state and we can obtain
a perfectly random sample.

This algorithm is impractical since the number of initial conditions is huge.
We can avoid the need to simulate every single initial condition by setting up the
MCMC carefully so that it respects some (partial) ordering of the states. For
example, the number of spins in state +1 in the Ising model provides a partial
ordering of the states. If we use an update rule so that the partial ordering is
maintained then we can be sure that all the initial states will coalesce provided
that the maximum and minimum states coalesce. This provides a practical
algorithm for drawing exact samples for a number of distributions including the
Ising model. A more detailed review of exact sampling is given in MacKay (2003)
or in the original paper by Propp and Wilson (1996).

Exact sampling is very elegant, but it remains a nice idea rather than a standard
tool. It is too slow to be used regularly and is dominated by clustering algorithms.
Both clustering and exact sampling are limited to particular types of problems —
generally spin types. A much more general technique for speeding up MCMC is
hybrid Monte Carlo

11.2.4 Hybrid Monte Carlo

One of the problems with MCMC is that it takes a considerable amount of time
to obtain uncorrelated samples. If we increase the step size then neighbouring
samples are less correlated, but this happens at the expense of having a higher
rejection rate. Hybrid Monte Carlo is a technique developed in the late 1980s to
overcome this. It is the method of choice in many applications involving contin-
uous random variables. The idea grew out of simulations of molecular systems
although the technique can be generalised to other systems. The dynamics of
systems of molecules can be simulated using Newton’s law of motion. These
dynamics will move the system to an equally probable state quite different from
where we started. (Newton’s law ensures conservation of energy, which for a
Boltzmann distribution means that the probability of the states before and after
applying Newton’s law is unchanged.) The idea behind hybrid Monte Carlo is to
perform (inaccurate) molecular dynamics simulation for some time and then to
use the resulting configuration of the molecules as a candidate sample in Monte
Carlo. Using inaccurate dynamics insures that we visit states of different energy.
The idea can be generalised to problems involving continuous variables where
there are no underlying dynamics. This is done by treating the random variables
as if they were positions of particles. The log-probability distribution is then
treated as an energy potential. These particles are given a mass and a momentum
and then we simulate their ‘dynamics’ for some period of time. The position of
the particles is used as a candidate which we accept or reject using the usual
MCMC procedure. This is repeated with a new, randomly chosen, momentum
to obtain the next candidate values for the random variable. The advantage of
this over traditional MCMC is that the samples are much less correlated. The
reversibility of classical mechanics ensures that detailed balance is satisfied.
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To be more specific, supposing we wanted to draw a sample from the distribu-
tion 7(x), where x = (x1, x2, ..., x,) is a high-dimensional random variable. We
first define the potential U(x) such that exp(—U(x)) « m(x). Next we define a
Hamiltonian (potential plus kinetic energy)

no 9
Pi
Hx,p)=U(x)+
(xop) = V) + 350
=
where p = (p1, pa2, - . ., pn) 18 the fictitious momentum, with p; being the momen-

tum of variable x;. Note that the distribution we are interested in sampling from
is a marginal of exp(—H(x, p))

- dp;
n(x) = /e_H(”’)Hi.
pie V2rnm;

Rather than compute this integral we sample from it by choosing momenta p; ~
M0, m;). We then simulate Newtonian dynamics. This is equivalent to updating
the positions and momenta according to Hamilton’s equations

0x(t) _ OH(x,p) dp(r) _ OH(x.p)

ot op ot 0x

If this was performed exactly it would preserve H(x(¢),p(t)). However, the
updates are performed numerically so the Hamiltonian is not exactly preserved.
This, however, is not critical since the only purpose of following the dynamics is
to obtain a new candidate point x which has a relatively high probability, 7 (x).

Hybrid Monte Carlo (so-called because it is a hybrid between molecular
dynamics and Monte Carlo) is sometimes referred to as Hamiltonian Monte
Carlo because it is based on Hamiltonian dynamics. The technique was first
proposed by Duane et al. (1987). Because of its huge importance hybrid Monte
Carlo has seen a lot of recent advances. For example, rather than choosing
the momenta independently they can be chosen from a multivariate normal
distribution tailored to the problem so as to maximise the exploration. More
details, including detailed numerical methods for simulating the dynamics, can
be found in specialised books on MCMC.

11.3 Kalman and Particle Filtering

In Chapter 6 we showed that given a series of unbiased noisy measurements,
X;, we could obtain an estimate for the quantity of interest by taking the mean
of the noisy measurements. Provided the measurements had a well-defined
variance, the error in the estimate would reduce as 1/+/n, where n is the number
of measurements. However, what happens when the quantity we are measuring
is changing over time? Can we combine measurements taken at different times
to get a superior estimate of the quantity of interest compared with the raw
measurements? This is the aim of filtering. We are only going to get an improved
estimate if we can model the dynamics of the quantity we are interested in
reasonably accurately. This makes filtering challenging and often infeasible.
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However, when it is feasible we can get improvements in our estimate that have
very important practical applications. Thus the field of filtering is very well
studied.

Filtering has many and very varied applications. As a result, its formulation is
often rather abstract. We start by giving a concrete example. The details of the
filter we use will be given later on.

|

Example 11.7 Tracking

Let us consider tracking an object through space. This might be a
comet moving through the night sky or a tornado over the earth. We
assume the trajectory is governed by Newton’s laws and that the ob-
ject experiences some weak unknown forces which slightly perturbs
its motion from a dead straight line. We consider the position of the
object at different times ¢ = 0, A¢t, 2A¢, ... In Figure 11.6 we show
the position of the object at these time intervals (X) — the object
is moving from left to right. We also show the noisy observations
of its position (+). To estimate its position we use a Kalman filter
(described below), which uses the noisy observations plus a model
of the dynamics to obtain a more reliable prediction of the position
of the object. We show the Kalman filter estimate by a dot and the
error in the estimate by a circle. As we collect more data our estimate
in the position improves (our estimator is usually more accurate than
the noisy observation) and our error estimate shrinks.

The example given shows filtering applied to tracking an object. This is a classic
application. Kalman filters were used in the Apollo missions to the moon and are
still used for tracking the international space station. However, Kalman filters are
also used in many other applications. For example, it is the control mechanism
used in phase-locked loops which is ubiquitous in FM radio. The purpose is
to track the phase of a radio signal as it changes over time. The Kalman filter
and its many extensions are widely used in many controllers. The somewhat
confusing term filtering comes from applications in signal processing where the
estimation procedure can be viewed as a way of reducing (filtering out) noise in
the observations. Filtering is the term used when we try to predict the very next
point. Sometimes we want to improve our estimation of the parameters over the
whole signal. This is called smoothing. If we want to make predictions of the
future the task is known as prediction (filtering is prediction immediately after
making an observation).

One of the complications of filtering is that the underlying dynamical system
governing the quantity we are interested in tracking is not generally fully known.
The unknown part is modelled as independent noise. If this is a good model of

Figure 11.6 An
object (X) moving
through space. At
each time interval we
make a noisy
observation of its
position (+). We use
a Kalman filter to
estimate its position
(®) where the size
of the circle shows
our estimated error
in the position.
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the uncertainty and the modelling noise is small compared to the measurement
noise, then filtering can be beneficial. In general we consider a system which
evolves according to

X(t+Ar)=a(X(1)) +n(X(1)).

where 77(X (t)) models the noise. In addition to the dynamic equation for the
variable we have a series of noisy observations that depend on X (¢)

Y(1) = c(X(1)) + (X (1)),

Our task is to make the best predictions we can for X(¢). Finding the best
prediction for X (¢) can be extremely complicated, however, there is a case where
things simplify substantially. That is, where the dynamics is linear so that the
observations are a linear function of the quantities to be estimated, and the
noise is normally distributed. In this case, the uncertainties can be modelled by
a normal distribution. This only involves a relatively small number of variables
(essentially the means and covariances). This problem was studied by Rudolf
Kéalman in 1960.

11.3.1 The Kalman Filter

In the Kalman filter we assume that we have some set of states X (¢) that update
according to

X(r+ A1) = A(0) X (1) + (1)

where A(r) is some matrix and 5(¢) is a normally distributed noise. In the
two-dimensional tracking problem in Example 11.7, the random variable X (7)
describes the position and velocity of the object being tracked and 5(¢) describes
some uncertainties that enter due to unseen forces acting on the object. These
uncertainties are assumed to be normally distributed with mean zero and covari-
ance Q, i.e.

n(t) ~ N0, Q(1)).
The second part of the Kalman filter is the set of noisy observations Y (z) where
Y(t)=Ct)X () +€(t)
C(r) is again some matrix and €(¢) a normally distributed uncertainty
€(t) ~ N(0,R(1)).

The noise 7(r) and €(¢) are assumed to be independent of each other (a fairly
innocuous assumption), but also independent at different times steps (i.e.
E[n:(t)n;(t')] = E[e(t)e;(t')] = 0 when t # /). However, this would be
unlikely to be true if 5(#) modelled some persistent unknown systematic error.
If this is the case, then filtering is likely to give poor results. Note that we only
require that our observations, Y (¢), are some function of our states, X (¢) — we



11.3 Kalman and Particle Filtering 333

don’t need to observe all the state information. In the two-dimensional tracking
example we might observe the position, but not the velocity. Nevertheless, we can
use our series of observations to estimate both the position and velocity of the
object. Note that filtering is only going to provide a significant pay-off when the
typical errors in the model, E [|5(7)|], are small compared to our observational
errors, E [|e(T)|].

There are a number of ways of deriving the Kalman filter. We give a proba-
bilistic derivation. We assume that the initial uncertainty in the parameters, X (0),
are normally distributed. Then, in the special case of a linear model with normal
noise, the unknown state variable at all subsequent times, X (¢), will be normally
distributed, i.e. X (¢) ~ N(u(z), Z(r)). Using our updated equation we find that
X(t+At) =A(t) X(¢) + 5(¢t). Since X (¢) is normally distributed so will the linear
transform A(¢) X (¢). Furthermore, as our uncertainty in X (¢ + At) is just the sum
of two normally distributed terms, it will itself be normally distributed. The mean
of the distribution is given by

ar+ A1) =E [X(t+Ar)] = A()E [X(1)] = A1) u(2)

where the expectation is on the probabilities of X given earlier observations. The
covariance is

X(t +Ar) 2 Cov [A(r) X (1) +1(t)] 2 Cov[A(t) X(1)] + Cov[n()]
A Z()AT (1) + Q1)

(1) Where we are measuring the covariance matrix for X (r + Ar) = A(r) X (1) +
n(t).
(2) Since A(r) X (r) is independent of n(t).
(3) Since A(r) is constant
Cov[AX] =E[(AX)(AX)"] - B [AX] B [AX]"
=A(E[XXT|-E[X|E[XT])AT
=ACov[X]AT=AZAT
and Cov ()] = Q(r) by definition of the model.
The probability density for X (¢ + Az) given observation Y (¢ + Ar) is given by
Bayes’ rule as
FX@E+At)=x|Y(t+Ar) =y)
_f(Y(t+At)=y|X(t+At) =x) f(X(t+Ar) = x)
f(Y(t+Ar) =y) '
Since Y () = C(¢) X (¢) + €(¢) with €(¢) ~ N(0, R(¢)), our likelihood is given by

FY(r+ A1) =y|X(t+ At) = x) = N(y|C(r + At)x, R(2)).

We have already found our prior f(X(r + At) = x) = Nx[p(t + Ar),

3 (z + Ar)). The denominator f(Y (¢ + At) = y) is a normalisation factor which

Kalman filters are
heavily used in
control systems.
Many control
researchers seem
unduly nervous of
using probabilities,
so often derive the
Kalman filter
without explicitly
using probabilities.

Recall that we use
the notation

Cov [X] to denote
the covariance
matrix of a vector
X with components
Cov [X is X j} .
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can be computed at the end. Combining the likelihood and prior we obtain a
posterior

flx,t+ A1) = f(X(t+At) =x|Y(t + A1) = y)
x e 30—CO)TRTy—Cx)—J(x—) T (x— 1)

where we have dropped the index ¢ + At to make the equation readable. Collecting

terms proportional to x? and x; we get

f(x,t + Al‘) o e*%XT(CTR_ICH_Z_‘)x+xT(cTR—1y+i—1ﬂ)-

We we have used Finally completing the square we find

aTx = lel.

flx,t+At) e—%(x—p(t+At))TZ*1(t+At)(x—;1(t+Az))
with

ut+A) = (CRIC+x H " {CTRy+ =7 1pp)
T(r+Ar)=(CTRT'C+ )~

Clearly, f(x,t+A¢) has the form of a normal distribution M(x | (t+Ar), Z(r+Ar)),
thus the normalisation terms are those of a normal distribution.

These updated equations are not in their most convenient form. To obtain the
standard form we use the Woodbury matrix identity (note that there are many
different ways to express this identity — see Equation 5.5 on page 101). We use

- -1 - - - -1 -
(cTR—1C+z—1) -y _scCT (R+c>:cT) cs. (11.6)
Using this identity we can write the updated equations (after some algebra) as

ui+A)=p+K(y—Cu) (11.7)
=(—

(1 +Ar) KC)x (11.8)

where K is known as the optimal Kalman gain matrix defined as
K=%xC's™ !, S=R+CxXC".

S is known as the innovation or residual matrix. The advantage of this standard
form is that it only requires taking the inverse of the innovation matrix S. This
leads to a computationally cheaper algorithm than if we had used the updated
equations we initially obtained. The equivalence between the standard form and
the result we derived is not obvious. For the sceptical I show this equivalence in
the following page, although you will need pen, paper, and patience to verify all
the steps. To show that the covariances are equivalent we substitute for K and S
to obtain

T(t+A)2 X - KCX

2y _5cT (cf:cT + R)_l cs
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(1) From Equation (11.8).
(2) Using the definition of the Kalman gain matrix, K, and the innovation
matrix, S.

This then follows from the Woodbury formula, Equation (11.6). To prove the
Woodbury formula we show that if we multiply the right-hand side, R, of
Equation (11.6) by the inverse of the left-hand side, L, we obtain the identity

L'RE (CTRIC+E7") <$: ~5C" (cECT + R)71 ci:)
2C'R'CE - C"R'CECT (CECT+ R)il
CE+1-C"(CcEC+ R)_l cx
214+CTR'CE - C'R™! (CECT +R) (CECT + R)fl cx=1

N

(1) From Equation (11.6) where the left-hand side is L = (CTR”C + ):*1)
~ ~ ~ -1 .
and the right-hand side is R = (Z —-3CT (C)ZCT + R) CZ).
(2) Multiplying out the terms.
. —1

(3) Rearranging and factoring terms involving (C}:CT + R) .
(4) The factored terms simplify, leading to a cancellation.
To show that the updated equations for u(z + Ar) are equivalent we note that we
have just shown X (¢ + Ar) = (CTR!C+ X~ 1)~! = (I - KC)X, thus our updated
equation is

- -1 -
ult + A1) = (cTR—lc + ):—1) (CTR_ly + ):—1[4)

- (1-KO)E (CTR_ly + S:—lﬁ)

=YC'R !y —KCEC'R 'y + i — KCj.
But by definition K = £CTS~! or £CT = KS = K(CXCT + R). Thus, the first
two terms above are equal to

$C'R'y —KCXC'R !y =K(CZCT + R)R"'y — KCEC'R !y = Ky
so that
p(t+Ar) = p+K(y — Cpr)

as advertised above.

Provided our initial estimate was normally distributed (i.e. X(0) ~ A{u(0),
3(0))) then all remaining distributions are exact. Thus, the Kalman filter pro-
vides the true posterior probabilistic estimate for X (¢). The underlying process is
Markovian because the mean and covariance at each time step fully describe the
uncertainty of the system. Thus the entire knowledge required to estimate the
prior probability f(x,7 + At) is contained in our posterior distribution at time 7.
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Knowledge of the observations made at previous times are irrelevant. Thus, the
Kalman filter provides the best possible estimate of the state assuming that the
underlying model is correct.

Our derivation of the Kalman filter looked intimidating, but all we did was
take our current distribution f(X(r) = x) = Mx|u(t), X(r)) describing our
uncertainty in the variables of interest, X (), and update it according to our linear
updated equation to obtain a prior for X (¢ + 1). We then used the observation
Y (r + 1) to obtain a posterior distribution for X (7 + 1). The complications arose,
as they often do when working with multivariate normal distribution, because
the updated equation involves the inverse of the covariance matrix. Don’t be put
off using Kalman filters, they are extremely easy to implement in any computer
language that allows you to invert matrices easily. Let us now return to our
tracking problem.

|
Example 11.8 Tracking (Continuation of Example 11.7)

We consider tracking a two-dimensional object. We assume that the
state of the system is given by its position and velocity. The velocity
undergoes small perturbations due to hidden forces. The state up-
dated equation is thus

x(t+At)=Ax(t) + 7

x1(t + Ar) 1 0 A O x1(1) 0

x(t+A) |l [0 1 0 A x2(1) N 0

vit+A) | 0 0 1 0 v1(2) n3(t)

va(t + Ar) 00 0 1 va(t) n4(t)
That is,

xi(t + At) = x; (1) + vi (1) At, vi(t + At) = vi(t) + nie1 ().

Here we assume that the noise only affects the velocity. Clearly a
perturbation in the velocity will also produce a small change in the
position. This could be modelled and needs to be modelled if At
is large. However, to keep the model simple I’'m ignoring this. We
assume our noise is uncorrelated

Cov [n3(1),n4(1)] = (O.O(())01 0.0(())Ol) '

We also assume that we making noisy observations of the posi-
tion of our object. For simplicity we assume that these observations
are the positions plus some noise

y(t) = Cx(r) + €(t)

(1)
G =G 9o o) zfgig (a9
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where the noise is given by

Covlei(t), e2(t)] = (0'(}6 0_(;6) ’

We have simulated the model and used a Kalman filter to predict
its position and velocity. Figure 11.6 on page 331 shows the first few
observations and the estimate in the position of the object produced
by the Kalman filter. Figure 11.7 shows the root mean squared
(RMS) error in the estimated position of the object as it evolves over

time.
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We see for the example above that we rapidly achieve an error of around half
the observed error. The size of the final error depends on the modelling error.
If the modelling error Cov 5] = Q is small then the Kalman filter can provide a
substantial improvement in the predicted position compared to the observations.
If Q is around the same size as the observation error Cov [e} = R, then the
Kalman filter, or, in fact, any filter is unlikely to be of much use. Filtering relies on
having a model giving accurate predictions of the next state — usually the error
in the prediction will be proportional to the time since the last measurement,
At, thus Kalman filters are very useful in instances where there are frequent, but
noisy, measurements.

To be able to use the Kalman filter we require that our errors are normally
distributed and that the update is linear. In this way, we can always treat our
uncertainty as normally distributed. If our errors are non-normal or our model
non-linear then we can no longer model our uncertainty as a normal distribution.
If our updated equations are not too non-linear, then we can linearise our
equations

X(t+ A1) = a(X (1) + n(X (1) ~ a(u(r) + (X(1) - u(1)) " Va(X (1)) +n(X (1))
Y(r) = ¢(X(1) + €(X (1) = e(u(t) + (X(1) — (1) Ve(X(r) + (X (1))

this leads to the so-called extended Kalman filter. Extended Kalman filters can
be quite successful, but if the non-linearities are too strong, or the model itself
is inaccurate, then the prediction of the extended Kalman filter can be worse
than the noisy observation. Probability theory doesn’t provide us with any richer
sets of distributions that remain closed under non-linear operations, thus if the
Kalman filter fails we have to give up on trying to find a closed form solution to
filtering. However, we still have Monte Carlo simulation to fall back on.

Figure 11.7 The
RMS error in the
estimated position of
an object is plotted
against time. The
jagged curve shows
the actual error, the
dashed curve shows
the Kalman filter’s
estimation of its
error, while the
horizontal line shows
the typical errors in
the observations.



Figure 11.8 Example
of a signal suffering
non-linear
distortions. The
black dots show the
distorted signal while
the line shows the
original signal.

This is a
discretisation of
the equation for
simple harmonic
motion
dzx _ 2
g s T

with added noise.
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11.3.2 Particle Filtering

Sometimes we are given a noisy time series where the underlying dynamic
model is Markovian but non-linear, or the noise is far from being normal. Our
task might be to make a prediction at the next time step (discrete filtering) or
we might want to remove noise from the signal (discrete smoothing). In this
case we can perform sequential Monte Carlo, also known as particle filtering
(sometimes known as the condensation algorithm). That is, we try to estimate the
parameters of our model using the noisy observations, updating our distribution
by characterising the uncertainty at each step.

Example 11.9 Repairing Clipped Signal

Suppose we have an old recording where we know that in addition
to random noise in the signal, the signal also suffers by being
clipped when the amplitude becomes too large. We illustrate this in
Figure 11.8. A simple model of the true signal, x(1), x(2), ...would be

A N\ N \
A O O O 4
TR e B e B S B
O G R i S A S
LIS S U S U A A A A S AR R S S
\ ' | f ( Y S S R Y S WY A TX
N R RSATA YA
N A O A A Y S B AR A S S SRR U AR € S
P s | 1 1: |4 [ 1 tr 1 *J
A O N U G S R S R O R (U R F S
x(t+1)=09x() +v(t) + nx(t)
v(t+1)=09v(r) +a(t) +n,(t)
a(t+1)=09a(t) — w(t)? x(t) + na(r)
w(t+1)=w(t)+n,() (11.9)

where the ‘velocity’, v(r), ‘acceleration’, «(¢), and ‘angular
frequency’, w(¢) are introduced to model the dynamics. The ‘fudge’-
factors 0.9 are introduced so that we get approximate simple
harmonic motion — this isn’t obvious but is a consequence of
discretising a continuous time model. The errors, 7, (¢), are included
to model the relatively slow change in frequency and amplitude of
the signal. The observed (noisy) signal, D = (y(1),y(2),...,¥(T)),
is related to the true signal by

y(t) = clip(x(r) + €(t)) (11.10)
where €(r) ~ N0, ) and

0 ifz>6
clip(z)=¢ z if-6<z<9
-0 if z < —0.
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The signal restoration problem is a discrete smoothing problem,
rather than a pure filtering problem. One solution to the smoothing
problem is just to do filtering starting from the beginning of the
signal and continue until you reach the end. This, however, only
uses the Markov property moving forward in time. We can do better
by running filtering backwards as well as forwards. We return to
smoothing after discussing filtering.

The idea of particle filtering is to use Monte Carlo methods to evaluate all ex-
pectations we might be interested in (for example, the posterior mean of the signal
and its variance). The idea is very simple. We use a population of particles which
we evolve in time according to the stochastic dynamical equations. We weight the
particles according to the likelihood that the observed data is generated by that
particle. The expectations are then just weighted averages over the population
of particles. Unfortunately as time increases many of the particles are likely to
diverge from the actual process we are trying to model. We see this in the fact
the likelihood for many particles will become very small. To overcome this, every
so often we resample our population from the existing population according to
their weights. This ensures that the population is concentrated around the true
trajectory. Although it reduces the diversity of the population since the most
likely particles in the old population will be selected many times in the new
population, the population will quickly diverge again because of the stochastic
nature of the dynamics. We discuss the details of this in the rest of this section.

Importance sampling. Particle filtering uses a type of Monte Carlo called
importance sampling. This is rather like rejection sampling (see Section 3.3.2)
where we generate samples, X;, from a proposal distribution ¢(x). The proposal
distribution should have a finite probability of drawing a sample from any
interval where there is a non-zero probability of drawing a sample from the
distribution of interest f(x). In rejection sampling we would obtain a deviate
from f by accepting the sample X; = x with a probability ¢ f(x)/q(x) and
otherwise rejecting the sample. The constant ¢ has to be chosen so that ¢ f(x) >
q(x) for all x. One drawback of this method is that it requires us to know f(x)
and ¢(x) and in particular the normalisation constant (as we have already seen
we often don’t know this normalisation). In importance sampling we keep all the
samples drawn from ¢(x), but now we weight them by

o = f(X:)
(X))

To compute an expectation of some function, A(X), of our random variable, X,
we use

E [A(X)] ~ Z W? A(X;), Z= ZWJ
: P



Figure 11.9
Examples of 20
random deviates and
their weights for the
case where

(a,b) = (3,4) and
where

(a,b) = (30,40).
Also shown are the
beta distribution
Bet(x|a, b). Note
that because our
samples don’t
perfectly capture the
statistics of the
distribution, the
weights are not
properly normalised.

Figure 11.10 Errors
in estimating the
mean (left graph)
and variance (right
graph) of Bet(x|3,4)
(dashed curve) and
Bet(x|30, 40)
(continuous curve)
using importance
sampling plotted
against sample

size, n.
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where n is the number of samples. We see that the expectation is estimated by
taking the ratio of two quantities that depend on the weights. Thus, we only need
to know the weights up to a multiplicative factor. In particular we don’t need to
know the normalisation of f(X).

Example 11.10 Importance Sampling of a Beta Distribution
Suppose we wanted to compute expectations over a beta distribution

Bet(x|a, b) oc x4~ (1 — x)P~!

but we don’t know the normalisation factor. One way to approximate
such an expectation is to draw a number of samples uniformly at
random (U, Us, ..., U,) and then assign a weight

w; = Uiail (1 — Ul')b_l

to each deviate (note in this example the proposal distribution is
q(U) = U(U|0,1) so that ¢(U;) = 1). We show 20 random de-
viates and their weights together with the functions Bet(x|a, b) in
Figure 11.9 for (a,b) = (3,4) and (a, b) = (30, 40).

2 /'7;\\\ 7
nw; /41 SN\ Bet(x, 3,4) nw;
- ) \ -
Z \ 7 i \
! HH \\\\ 3.5 “\U(‘I (2, 30,40)
/ \ \
0 \/I A \Th" 1 U 0 Ui
0 02 04 06 08 1 0 02 04 06 08 1

To illustrate the accuracy of importance sampling we use it to
estimate the mean, u, and variance, o2, of the beta distribution. We
show errors between these estimates and the true value for n equal 1
to 100 samples in Figure 11.10.

We note that the accuracy of estimate depends on how closely
the proposal distribution (in our case a uniform distribution) is to
the true distribution. Using a million deviates (which took around
a second to generate) we computed the mean and variance correct
to five decimal places for Bet(x|3,4) and four decimal places for
Bet(x|30,40).

0.1 /4—p 0.005 7 6% — o2
| N
0.054 1o 0.0025 %‘ [l
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1
—0.1- —0.005

The accuracy of the estimate depends on how typical the samples are. That is,
we want the weights w; = f(X;)/q(X;) ~ 1. If f(X;) is large where ¢(X;) is small
then the estimate is likely to be inaccurate, unless we have a very large sample.
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Let us now return to our particle filtering problem where we want to predict
the next value of x(¢) given our observations y(1), y(2), ..., y(¢). We cannot use
a Kalman filter as our noise is highly non-Gaussian. Instead we use importance
sampling. Let x(7) = (x(¢), v(¢), a(t), w(t)) represent the state of the system (see
Example 11.9 on page 338). We generate n samples (particles) from an initial
distribution f(X;(1) = x) = f1(x), encoding our initial uncertainty in the state.
We can propagate these samples forward in time using the updated Equation
(11.9), where we generate the noise n;(¢) from a distribution chosen to capture
the uncertainties in the model (e.g. N0, o?) for appropriately chosen 7). We are
left with n sample trajectories 7; = (X;(1), X;(2), ..., X;(T)), drawn from the
proposal distribution

q(Ti) = Hf ()|Xi(t - 1))

where f (X;(t)|X;(t — 1)) is the probability of reaching X;(z) from X;(r — 1)
using the updated Equation (11.9). As with Kalman filter we are interested in
computing the posterior probability of our sample given the observations D,

f(DIT) £(Th)

f(D)
where the prior f(7;) is by construction equal to the proposal distribution ¢(7;),
and the likelihood of our data (in the example above the original noisy signal) is

f(TiD) =

f(DIT) = Hf

The probability of the data f(D) (the evidence term) is a normalisation term
that we don’t know, but as it is the same for all trajectories 7; we don’t need it to
perform importance sampling (it would just cancel out when we normalised the
weights). To compute the importance weights we use

oo ST FDIT) £(T)

q(Ti) q(Ti)
since the probability of generating our sample trajectories, 7;, is equal to ¢(7;) =
f(T;). Here we have been clever. Our prior (before seeing the data) is the
probability of a trajectory. Because we are generating trajectories by iterating
the stochastic dynamical Equation (11.9) our trajectories are just being drawn
from the prior distribution. Thus, the weights only depend on the likelihood of
the trajectories.

Figure 11.11 shows a schematic of the sequential importance sampling de-
scribed above for a 10-particle system. The particles are generated by a stochas-
tic updated equation. As time increases the variance of the particle position
increases, leading to a lower accuracy solution. The importance weights of the
particles depend on the whole trajectory.

Unfortunately, a naive sequential importance sampling is doomed, as the
samples will rapidly loose track of the true state. The accuracy of the sampling

= f(DIT:)
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+ 2 ] g &

Figure 11.11 Illustration of sequential importance sampling. The blue curve shows the true time
evolution, the crosses (X ) the noisy observations, and the red curves the trajectories of the particles.
The size of the particles represent their importance. The “+’ symbol shows the weighted average of
the particles at each time step.

method depends on samples being concentrated around the posterior. This
concentration typically dissipates as the number of steps made by the algorithm
increase, since in generating the trajectories we only use our model and are
unguided by the data, D. Furthermore, the likelihood of the samples is a
product of the likelihoods f(y(¢)|X;(¢)). But the variance of a product of
numbers is likely to be huge (see the discussion of the log-normal distribution
in Example 5.3) so that the vast majority of samples will have a negligible
likelihood compared with the most probable. To overcome this, we can resample
the set of particle points after a certain number of time steps. That is, we
compute the posterior probability, f(7;|D), associated with a partial trajectory
Ti = (Xi(1), Xi(2), ..., X:(z)). We then choose a new set of samples from the
current set of samples {X;(¢)} with probabilities proportional to the posterior
probabilities. Thus, we are likely to choose X; (¢) several times for those sequences
T: where f(7;|D) is relatively large, while the less likely sequences may not be
sampled at all. Because the noise associated with the updates are independent for
each sample, the sample sequences will quickly diverge again after the resampling
step. Thus, we have to resample again after a number of steps. This resampling
is characteristic of the particle filter strategy.

Resampling produces a loss in the diversity of the samples (many points are
no longer independent) so that the accuracy in the estimate from importance
sampling is reduced. On the other hand, after resampling when we carry on prop-
agating the particles the samples start to diverge and so become less correlated,
but they are now much higher probability samples so we gain accuracy. There
remains some debate about whether resampling adds bias in the estimates, but in
most instances we have no choice; it is the only way to obtain high probability
sample throughout the trajectory. In practice, one usually does not resample at
each time step as we lose diversity and thus reduce the quality of the fit (it could
also lead to over-fitting the current data — although true Bayesian methods should
never over-fit, in this case we tune the model which breaks the part of the contract
which guarantees that we cannot over-fit the data). It is common to resample
only when some significant proportion of the particles have much smaller weights
than the others (when this happens will depend on the problem and the data). In
practice, provided we use a sufficiently large population and resample sufficiently
often the estimates we obtain are usually good enough.
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Example 11.11 Repairing Clipped Signal Continued
We continue Example 11.9 on page 338 where we considered repair-
ing a clipped and noisy waveform shown in Figure 11.8.

A particle filter is used to predict the true signal. Some tuning
of the model noise was required (in the end I set that standard
deviation of n, = n, = 0 and n, = n, > 0 — its value depends
on the characteristic of the signal). The likelihood of a sample
at a particular time step when the signal is not being clipped is
taken to be to M(x(¢) — y(t),0?), where x(¢) is the position of
the particle and o2 is the typical variance in the signal. For the
clipped signal I added a weak prior, making large deviations from the
mean less likely than smaller deviations. I resampled the population
when the signal crossed zero. In Figure 11.12 we show the mean
of the posterior as predicted by the particle filter (shown by X).
The results are not a perfect restoration — the model is rather crude
and the particle filter used very primitive. Nevertheless, the resulting
waveform is considerably closer to the true signal than the distorted

signal.
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Just as with MCMC, particle filtering has been heavily developed and can
seem rather intimidating. However, the basic idea is simple, as is a basic
implementation. More sophisticated approaches are used to improve the
proposal distribution. Auxiliary particle filters use information from the data
to improve the sampling. The resample-move algorithm and block sampling are
other methods to improve the proposal distribution, while Rao—Blackwellised
particle filters combine particle filters with analytically tractable methods,
such as Kalman filters and their variants, to remove the need to sample so
densely. The clipped-signal problem was not a filtering problem (except at
its end point), but a smoothing problem. Smoothing is a more complicated
problem than filtering as we have future as well as past data. Various forward—
backward algorithms have been proposed as well as the use of a two-filter
approach. There is a very extensive literature on particle filtering and smoothing
that the interested reader can follow; see, for example, Crisan and Rozovskii
(2011).

Figure 11.12 Particle
filter prediction of
the signal shown in
Figure 11.8 on

page 338. The
reference signal is
shown by the solid
line.
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11.3.3 Approximate Bayesian Computation

A popular method for inferring unknown parameters of a dynamic system that
has some of the flavour of particle filtering goes by the name of approximate
Bayesian computation or ABC. Here a population of ‘particles’ is evolved
forward in time using different parameters of the model. Instead of using the
likelihood, trajectories that diverge too far from the data are simply rejected.
After one iteration, a new population is constructed with slightly modified
parameters to those that passed the first round. This is then repeated. Usually, the
threshold for rejecting trajectories is reduced at each iteration. This has become
a very popular for finding unknown parameters in dynamical systems. It has
been argued that the thresholding acts as a crude approximation to a likelihood
function. To me, it appears like a sensible and effective method for estimating
parameters, however, its probabilistic justification is rather lost on me.

Markov chains describe the evolution of a random variable where its probability
at the next time step depends only on the value of the random variable at the
current time step. This situation occurs extremely often in all sorts of different
fields. As a result, understanding Markov chains is often a good investment of
time.

Markov chains have a second claim to importance. They can be used to gener-
ate random deviates from a distribution — so-called MCMC. This is particularly
valuable in the case of high dimensions, for example, when we are interested in a
set of coupled variables. This has found a huge number of applications in many
different fields.

Many dynamical systems are well described using Markov chains and the prob-
lem of predicting the state of a moving object from a set of noisy observation,
has many important applications. This problem is called filtering and has a classic
closed form solution, the Kalman filter, applicable for linear systems with normal
noise. When the dynamics cannot be described by linear equations or the noise is
non-Gaussian the Kalman filter is no longer applicable. In these cases we can use
particle filters, a sequential Monte Carlo technique for estimating the true state
of a dynamical system.

Additional Reading

Markov chains are covered in most texts on probability. MacKay (2003) provides
considerable insight into MCMC as well as much else. Radford Neal, one of the
best exponents of MCMC, has produced a technical report which provides a
classic and comprehensive (although possibly dated) reviews of MCMC which
is available online (Neal, 1993). Geman and Geman (1984) is a classic paper
introducing many of the ideas of how to apply MCMC in unusual situations.
There are now a huge number of specialist books on MCMC. Many techniques
for modelling more complex data including Kalman and particle filters are
described in Cressie and Wikle (2011).
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Exercise for Chapter 11

Exercise 11.1 (answer on page 432)
The figure below shows a diagrammatic representation of a Markov model consist-
ing of six states. Write down the transition matrix and compute its eigenvalues and
the steady state. What is the characteristic relaxation time to reach the steady state?
Perform a Monte Carlo simulation to find the steady-state probabilities empirically
and compare this with those obtained from considering the eigenvectors of the
transition matrix.

Exercise 11.2 (answer on page 433)

Consider an ergodic Markov chain described by the transition matrix M starting
from an initial state p(1). To compute the expected time to reach a state i we can
consider a modified transition matrix M where Mjk = My if k # i and M]‘i =0
otherwise. That is, in this modified system the dynamics are identical to the original
until we reach state i, whereupon the walker disappears. The probability of being
in state i at time 7 is equal to 6;M’ ! p(1), where &; is the vector with zero elements
everywhere except in the i"" position where the element is equal to 1. The expected
first-passage time is thus given by

oo

Ti = Y (1= 1)8 M~ p(1).

t=1

This just sums the number of steps taken times the probability of reaching state i
in those steps. Show that we can write this as

Tipe = 6 (1= M)~ (1= M)~ p(1) — 1
where | is the identity matrix. Further show that this can be simplified to
Tipe =17 (1= M)~ p(1) ~ 1

where 1 is the vector of all 1s. Note that you have to sum a geometric series of
matrices and differentiate matrices so this exercise isn’t for the faint-hearted.

Exercise 11.3 (answer on page 435)
Compute the expected first-passage time to reach state 6 starting from state 1 for
the Markov chain described in Exercise 11.1 using the formula from Exercise 11.2,
and compare this with empirical measurements.

Exercise 11.4 (answer on page 435)
Consider a random variable that can take values in the set Z, = {0, 1,2,...,n—1}. '
At each time step the value increases or decreases by 1 modulo n. That is, the system
is performing a random walk around the ring. Construct the transition matrix and '
)

)

‘

compute the eigenvalues for n = 499. Show that if n is even there are two eigenvalues
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with modulus 1. Plot a histogram of the eigenvalues and show how the second-
largest eigenvalue grows with n.

Exercise 11.5 (answer on page 436)
Use MCMC to generate normal deviates where the candidate solution is taken by
adding U ~ U(—1/2,1/2). Compute the time it takes to generate 10° deviates.
Compare this to other methods for generating normal deviates (see Exercise 3.2).

Exercise 11.6 (answer on page 436)
Use the clustering algorithm (see Example 11.6) or, if you prefer, the Metropolis
algorithm (see Example 11.4), to simulate the two-dimensional Ising model as
described in Section 10.4. Compute the mean and variance of the energy and
magnetisation per spin. (When using the clustering algorithm you should use the
absolute magnetisation below the critical point because the clustering algorithm
restores ergodicity which is broken in real magnets and by Metropolis.)

Exercise 11.7 (answer on page 437)
Use MCMC to obtain an estimate for the posterior given a normal likelihood, X; ~
N(u, o) using an uninformative prior. (Generate n = 20 data points from a normal
distribution with u = 1/2, o = 2.) Plot a histogram of the posterior for the mean
and show that it is distributed according to a z-distribution (see Exercise 8.4 on
page 255).

Exercise 11.8 (answer on page 438)

In Example 8.11 on page 228 and Example 8.12 on page 232 we considered the
problem of estimating the parameters for a mixture of two Gaussians. Generate
data consisting of 500 deviates from M(0, 1) and 200 deviates from N(3,1). The
task is to infer the means and variances of the two distributions assuming these
distributions are unknown and we don’t know which data point was generated by
which distribution. We assume, however, that we know the likelihood of a data point
is given by a mixture of Gaussians

F(Xilu1, 01, 2,02, p) = pN(Xi| 1, 01) + (1 — p) N(Xi a2, 03).

Use MCMC to estimate the unknown parameters yp, oy, u», 02, and p, as well as
their uncertainty.

Exercise 11.9 (answer on page 439)
Consider the problem of tracking a financial time series. Assume that a stock has
a true value, X (¢). Due to market volatility, the price of the stock, Y (¢), is taken to
be equal to the ‘true value’ plus some random noise

Y(1) = X(t) + €(1)
where €(r) ~ N(0, 1). The true value X (r) varies much more slowly and we assume
Xt+1)=X@)+V() V(t+1)=V()+n(r)

where 7(t) ~ N(0,10~%). Generate some time series data from this model. The
figure below illustrates some time series data for 100 data points.
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price, Y(t)

time, ¢

Use a Kalman filter to estimate the true price and its uncertainty. Also use a particle
filter to perform the same calculation and compare the two estimates.

Appendix 11.A  Eigenvalues and Eigenvectors of
General Square Matrices

Recall that an eigenvector of a (square) matrix M is a vector, v, with the property
My = Av

where A is the corresponding eigenvalue. We note that if v is an eigenvector so is
w = cv and w will have the same eigenvalue as v.

For the special class of symmetric n x n matrices (i.e. matrices M where
M = MT) there are n real eigenvalues, 1), and n independent real eigenvectors
v If 1) £ AU) then the eigenvectors are orthogonal so that v()Ty(W) = 0,
Furthermore, if we have m eigenvectors with the same eigenvalue then any linear
combination of the eigenvectors are also eigenvectors and in consequence we
can chose a set that are orthogonal to each other. We can also normalise the
eigenvectors so that we can choose a set that form an orthonormal basis. That
is, vOTy () = IIi = j]]. This is true for symmetric matrices with real components.
The generalisation of symmetric matrices to matrices with complex components
is the class of normal matrices that satisfy M*M = MM* (where M* denotes
taking the conjugate transpose of the matrix). These all have an orthogonal set of
eigenvectors with real eigenvalues. The most prominent type of complex normal
matrices are the set of Hermitian matrices where the matrix equals the complex
conjugate of the transpose. These matrices are ubiquitous in quantum mechanics,
although, at least in my experience, don’t turn up commonly elsewhere.

The situation is a bit more complicated when we deal with non-normal (real)
matrices (i.e. asymmetric square matrices). In this case, the eigenvalues will
either be real or exist in complex conjugate pairs. The eigenvectors are real if
the eigenvalues are real and exist in complex conjugate pairs if the eigenvalues
are complex. Unlike the case for symmetric matrices, for general matrices the
eigenvectors are not generally orthogonal to each other, so that, commonly,
yOTy() £ 0. Furthermore, the left eigenvectors

u'M=2u'

are generally different to the right eigenvectors, v. However, for any right eigen-
vector, v, with eigenvalue A, there will be a corresponding left eigenvector, u, with
the same eigenvalue. Furthermore, the left eigenvectors will be orthogonal to all
right eigenvectors with different eigenvalues. This is known as biorthogonality.
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Note that if we wish we can choose a set of eigenvectors such that u(Ty() =
[[i = j]], although when we do this, we cannot generally normalise both the left
and right eigenvectors, u() and v(®).

A non-normal n X n matrix may not even have n independent eigenvectors, in
which case it is said to be defective. An example of a defective matrix is

(o)

) with an eigenvalue 1, but there are no other

which has an eigenvector (0)
independent eigenvectors. Defective matrices are fortunately rare, but they do
exist (and they include stochastic matrices). For non-defective matrices we can
decompose the matrix as a product of three matrices

M=VAV!

where V is a matrix whose columns are the right eigenvectors of M and A is a
diagonal matrix whose diagonal elements are the eigenvalues of M. The matrix
U = V! is a matrix whose rows are the left eigenvectors of the matrix M. We
can also write this decomposition as

M =57 a0y ()T

where 1) is the i*" eigenvector of M, and u() and v are the corresponding
left and right eigenvectors. A consequence of this decomposition is that M? =
V A' V! where A’ will be a diagonal matrix with diagonal elements (1)),
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We often face situations where we have random variables extended over a con-
tinuous domain such as space or time, e.g. {X(¢)|t € R}. These are modelled by
stochastic processes. We describe properties shared by the most commonly used
stochastic processes and discuss a particularly useful stochastic process, namely
Gaussian processes. We then examine one of the most important processes, the
diffusion process, also known as Wiener or Brownian process. This process comes
with a powerful set of tools which allow it to be analysed relatively easily. Finally
we consider point processes and in particular Poisson processes and their various
applications.

Stochastic processes take a significantly longer time to master than the tech-
niques we have covered in previous chapters. On the other hand, they can often
provide a remarkably quick answer to otherwise hard problems (sometimes
without the need to understand all the technical details). Being aware of these
tools can often pay off.
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12.1 Stochastic Processes

Stochastic processes generalise the idea of random variables to random func-
tions. They provide an important tool set for modelling a large number of
phenomena.

12.1.1 What Are Stochastic Processes?

In Chapter 11 we considered Markov chains which describe a stochastic system
evolving over discrete time intervals. We could describe the system by a sequence
or vector of random variables. By taking the limit where time becomes con-
tinuous we end up with a stochastic process, X(¢), which is now a function.
Process in this context has a specific technical meaning: it is to a continuous
function what a random variable is to an everyday variable. If the process has
the Markov property (i.e. the value of X(z) is conditionally independent of X (#')
given X (r— 6¢) for all #/ < t — 6t and any 6¢) then it is said to be a Markov process.
(Although we will often consider the independent variable ¢ to be time, we can, of
course, have stochastic processes defined over any set of independent variables.)

Taking the continuum time limit opens up tools from calculus which can
be used to quickly find properties of the system. However, considerable care
is needed in taking the limit. Proving rigorous results in full generality can be
challenging — although you can get a long way just considering convergence
properties of the mean squared. For engineers, scientists, and even economists,
stochastic calculus provides a fast route to getting useful results quickly.

Our approach to dealing with random variables was to consider their prob-
ability distribution. For stochastic processes the probability distribution is over
an ensemble of possible functions. These are much less convenient objects to
work with than random variables. Supposing we have a random process, X(z),
modelling a random function of time, then we can consider the probability
density for stochastic process at a particular time, 7,

1
= lim —P(x < < )
fx@)(x,1) 51;210 6xP (x < X(t) < x +6x)

This is a regular probability density function which we are very familiar with.
Similarly, we could consider the joint probability density at two times

. 1
fx(t)(xl,tl;)Q,Q) = 61;210 EP (xl <X()<x1+6xAx2<X(ts) <xp +6x).

This generalises to any number of points. The conditional probability density is
the probability density at time , given that X (#1) = x,

fx@) (X115 x2,12)
fx(x2,t2|x1,81) =
x@ | ) Ix@y(x1,t1)

Again this can be generalised to any number of points.
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12.1.2 Gaussian Processes

To get used to the idea of stochastic processes we consider a particularly simple
class of stochastic process known as a Gaussian process. Such processes are
characterised by the property that all their joint probabilities fx(x1,11),
fx@)(x1.t15x2,12), fx ) (x1,115 X2, 125 x3,13), etc. are normal distributions of
the variables xj, x», etc. Vector-valued stochastic processes, X (¢), are also
Gaussian processes if all their joint probabilities are normally distributed. The
distribution for a Gaussian process, X (¢), is fully specified by its mean and
covariance

u(t) =E [X(1)], K(t1,12) = Cov [X(11), X (12)].

The covariance, K (1, 7), is sometimes known as a kernel function — it can often
be seen as playing a similar role to kernel functions used in machine learning
techniques such as support vector machines. We can think of the functions X (7)
having a probability density

f(X(@))=GP(X(1)|u(r), K(11,12)) x e

T (X (0)—pu(n)) K~ (11.02) (X(12)—pa(12)) ity iy

Bo—

although some care is required in interpreting this ‘density’ as it is a density over
random functions. One way to make sense of this is to discretise time so that the
double integral in the exponent becomes a double sum

% /(X(tl) = u(r)) KN (11.12) (X (12) — pu(r2)) dry it
~ % Z(X(ti) — p(t:)) KNt 1) (X (1) — ().

ij=1

In this discretise case we are left with a well-defined multivariate normal distri-
bution. A Gaussian process can be seen as the limitas#; — ;| — 0.

A random sample drawn from a Gaussian process would be some continuous
function. In practice we cannot draw a random function as we would have to
specify it at an uncountable number of points. However, we can generate points
on the function. That is, we can discretise our space (or time) and generate values
at the point which satisfy the Gaussian process properties. To do this we consider
the matrix K with elements K;; = K(¢#;,1;) (our covariance or kernel function
for times #; and ¢;). The kernel matrix must be positive definite (otherwise the
Gaussian process’s distribution would not be normalisable). A consequence of
this is that we can compute a Cholesky decomposition, K = LLT where L is a
lower diagonal matrix. Once we have done this we can generate a random deviate
X =(X(t1),X(t2),...,X(ty)) = p+ LY where pu = (u(t1), u(t2), ..., u(t,)) and



Recall that we use
the notation

Cov [X] to denote
the covariance
matrix of a vector
X with components
Cov [Xi, Xj} .

Figure 12.1 Three
examples of samples
X(t) ~

QP(O, K(tl, l‘z)), for
(@) K(n,n) =
exp(—0.1 (2 — 11)?)
and (b) K(l], 1‘2) =
exp(fO.l |t2 — |)

Figure 12.2 Example
of an instance of a
two-dimensional
Gaussian process
X(x) ~

GP(0.K (x.))
where K (x,y) =
exp(—|lx —yl*).
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Y ~ M0,1) is an n-dimensional normal deviate with zero mean and covariance
I (so that, ¥; ~ N(0, 1)). Note that

E[X] = pu, Cov[X] =LE[YYT|LT =LILT =K,

or
Cov [X(li),X(l‘j)] = K(li,[j).

Since X = u + Ly is a sum of normal deviates, y, (and constants, u) it will
itself be normally distributed. Thus, the vector X (¢) will correspond to points
from a random deviate drawn from GP(X (¢)|u(t), K(t1,12)). Figure 12.1 shows
some samples of a Gaussian process for two different kernel functions, K (¢, 1;).
The kernel function defines the auto-correlation of the function being fitted. By
tuning the kernel function we can change the probability of different functions.
Note that for the kernel exp(—b|r, — #1|?), the Gaussian processes will (with
overwhelming probability) be smooth if a = 2, otherwise if 1 < a < 2 it will be
smooth, but non-analytic, or if @ < 1 it will be continuous, but no longer smooth.

(a) X(t) ~ GP(0,exp(—0.1 (t2 — t1)?))

To generate deviates in higher dimensions we just have to discretise space on a
high-dimensional lattice and use a high-dimensional kernel function. Figure 12.2
shows one particular example of a two-dimensional Gaussian process. Gaussian
processes are often used to model very high-dimensional functions.

Gaussian Processes for Inference

Gaussian processes arise naturally in some of the diffusion processes we consider
below. But they are also useful tools for modelling in their own right. For exam-
ple, we can use them to provide a prior on smooth (or not so smooth) functions.
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If we have some data points we wish to fit with a suitably smooth function
then Gaussian processes allow us one route to do this in a reasonably principled
fashion. This can be done for data with any number of independent variables.
We assume we have n independent data points D = ((xl-, i) |i =1,2,..., n) and
we want to fit a function a(x), where we take as a likelihood function

f(Dla) = HN)’1|a xi), ﬁ(yi—a(xi))z

i=1

111\/270

with a prior on the functions a(x) of GP (a(x)[0, K(x1,x,)). The posterior is
proportional to the likelihood times the prior. We are not usually interested
in generating deviates from this prior. The type of information we might be
interested in is the probability distribution of a(x*) at a particular point x*. To
compute this we marginalise over all other points. Where we have no data points
the marginalisation is trivial. After marginalising out the points where we have
data we are left with a univariate distribution for a(x*),

“)[D) = /fD|” Hda / GHdax,

x#X*

where
1 < 2 1 »
G=—55 (a(x:) — i) — 3 > a(xi) K~ (xi,x7) alx;))
i=1 i.j=1

= a(x) K N xi,x*)a(x*) - %a(x*) K~ (x;, x") a(x).

i=1

N

It is now a purely algebraic exercise to compute the posterior density for a(x*).
This direct method leads to an answer in a non-standard form; later we will
rederive the result using a less direct method, but one which gives the answer
in a more convenient form. We proceed with the direct derivation as it is a
more straightforward application of Bayesian inference. We follow the standard
technique when faced with a Gaussian integral of completing the square. To help
to do this we introduce: the matrix L with components L;; = K “(x;,x ), the
vectors I and a with elements l = K~ (x;,x*) and a@; = a(x;), and finally
the scalars ¢ = a(x*) and [ = K~'(x*,x*) (here L is a sub-matrix of K~! not
the Cholesky decomposition of a matrix). Thus,

1)

1 1
2 2
G—fizHyfaH ——a La—aa'l — za’l

—%aT (L + o-‘zl) a+a’ (o-‘zy —a l) ||yH2 - 16121
_% (a +(L+o )t (0'_2y — al))T

(L + 0'_2I> (a +(L+o )t (0'_2_)7 —a l))

oty an) (o) o at) e L

C]

c
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(1) Rewriting the equation above in matrix form.
(2) Expanding ||y — a||> and collecting together terms.
(3) Completing the square in terms of a.

The first term is now in quadratic form and by making a change of variables
a—a =a+(L+0721)7! (c72y — al) we can integrate it out. The terms left
in the exponent that involve a are

1 1 T —1
G2 ——d’l+~ (0'_2_)’ - al) (L +0'_2I) <0'_2y - al) + const

24'7 3
1 -1
2 f%az <z vy (L - a*2|) l) —ao AT (L + a*zl) y + const
2
. T -2 !
o 1 (l_lT (L_U—2|) l) a+ (Lo _yl + const
2 (-1 -e)7h)

(1) Showing the terms involving a after integrated out a’.
(2) Multiplying out the last term and keeping terms proportional to a” and a.
(3) Completing the square in terms of a.

As the remaining exponent is quadratic in a we can read off the mean and
variance, giving

fla(x")

AT (L+o2)" 1
D):N<a(x*) T( ) 7.1), ’ T -1 >
=0T (L—2) " =0T (L—o2) "
(12.1)

This result is in terms of the inverse of the correlation matrix, L = K—1, which
is inefficient to work with. We now give the more traditional derivation. In our
model

yi=a(x;) +e
where €; ~ N0, 0%). Since €; is independent of a(x;) we have E [y;] = a(x;) and
Cov[yi,y;] = Cov[a(x;),a(x;)] + Cov[ei, €] = K(x;,x;) + o* [[i = j]].

The joint distribution of the vector ( ) will therefore be distributed accord-

ing to

y
a(x*)

(o)~ (5 1))

where K is a matrix with elements K;; = K(x;, x;), | is the identity matrix, k is

a vector with elements k; = K(x;,x*) and k = K(x*,x*). Using one of those

mysterious matrix identities involving the inverse of partitioned matrices (see
Equations (5.3) and (5.4) on page 101),

-1 Kio21) 'k
D I (CETIE wca
( kT k) B KT (ko)™ .
k+kT (K+o21) 'k ktkT (K+o21) 'k
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Writing out the probability distribution for the vector (, it *)) explicitly (ignoring
terms not involving a(x*)), we find

a(x*)Z a(x*)kT(K+(TZ|)71y

"
2(k+kT(K+o-2 I)_lk) ek T (Keor2 1) "k

D) xe

fla(x")
Completing the square we find

ey (e () ™)

2

f(a(x*)|D) xe
or
f(a(x")|D) =./\/<a(x*)

Rather remarkably, this is equivalent to Equation (12.1) — see Exercise 12.1. It is
usually more convenient to work with Equation (12.2) as it involves the kernel
function K (x, x’) rather than its inverse — recall that the kernel function is equal
to the correlation function of the prior.

As all quantities are normally distributed we can compute the evidence f(D)
in closed form

f(D) = —%yT (K + o-zl)ily - %log( ‘K +0'2ID - glog(27r).

(This can also be seen as the probability of the vector or targets y given the
features X where the columns of X correspond to the feature vector x;.) The
evidence allows us to select between different models. That is, between different
mean functions, u(z), and in different covariance functions K(z,#'). This is
particularly useful, as there are often parameters in the covariance function that
are difficult to choose a priori.

KT(K+ )y, k — kT (K + azl)’lk). (12.2)

|
Example 12.1 Gaussian Process Curve Fitting

To illustrate using a Gaussian process prior in regression we consider
a one-dimensional example since this is the easiest to plot — we
considered curve fitting with polynomials previously in Example 9.5
on page 278. We have generated some data (in this case by choosing
deviates y; ~ cos(x;) + M(0,0.05%) for x; = 0,1,2,...). As our
prior we used the Gaussian process GP(0, K (x, x’)) with the kernel
function K (x,x’) = exp(—(x — x’)?/(2¢?)). Figure 12.3 shows the
mean of the posterior for the fitting curve for (a) £ = 1 and (b) £ = %
The grey area shows deviation up to one standard deviation from the
mean.

The outcome depends critically on the kernel function. From the
Bayesian point of view, the Gaussian process we choose as our prior
should encode our prior beliefs. Although we may have some vague
belief that the function we are fitting should be relatively smooth,
encoding this belief as a kernel function is non-trivial. Of course,
we could choose some of the parameters in our kernel function
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Y Y
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Figure 12.3 Fitting data using a Gaussian process prior with kernel K (x, x") =

exp(—(x — x/)?/(2€2)) with (a) € = 1, (b) £ = 1. The data points are shown as red crosses. The
data points were taken from the cosine function (shown by the blue dashed line) plus normally
distributed noise. The mean of the posterior is shown by a thick black line and predicted errors of
+1 standard deviation are shown by the grey area.

(for example, the scale parameter £) as a hyperparameter which we
learn in a hierarchical model. We could just take the more pragmatic
approach of testing a few kernels on some unseen data and choosing
the best — for example, as measured by the evidence. We lose the moral
high ground of following a truly Bayesian philosophy by doing this,
but Gaussian processes can give very good results all the same.

|

The use of Gaussian processes for machine learning has a long history. It
was used to model spatial distributions where it is known as kriging (Cressie
and Wikle, 2011). It was independently reinvented in the machine learning
community where it has been highly developed. The interested reader should
consult the specialist literature, e.g. Rasmussen and Williams (2006).

In recent years Gaussian processes have been heavily used for optimising
continuous parameters of algorithms. A Gaussian process is fitted through a
number of points where the performance of the algorithm has been evaluated.
For stochastic algorithms there is usually some uncertainty in the expected
performance of the algorithm that can be captured well by Gaussian processes.
The fit is then used to choose a point with a strong likelihood of being better
than any other point, or of providing more information about the landscape. In
very high dimensions finding optimal solutions for the Gaussian process model
can be computationally demanding in itself. However, in cases where evaluating
the model is very costly, this approach, known as Bayesian optimisation, is very
attractive.

12.1.3 Markov Processes

By far the most commonly used stochastic processes are Markov processes, where
the conditional probabilities satisfy the usual Markov property

Ix)Xnstnl Xn—15tn—15 Xp—2,tn—25 -5 X1,11) = fx)(Xns tn|Xn—1,t0—1)

assuming t; < tp < --- < t,_1 < t,. A consequence of the Markov property is
that the conditional probabilities satisfy the Chapman—Kolmogorov equation
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fx@)(x3,13]x1,11) = /fx(z)(x3,t3|x2,fz)fX(t)(xz,t2|x1,t1)dxz (12.3)

where #] < t; < t3 and the integral is over the whole domain of X (z,).

For a sufficiently smooth Markov process we can derive an equation describing
the evolution of the conditional probability density. To compute this we Taylor
expand the conditional density

0 fx ) (x2,t]x1,1
fX(,)()Cz,l‘ + At|x1,t) = fX(t)(xz,t\xl,t) + At X(Z)(at | ) +0 ((Al‘)z) .

The first term is equal to the Dirac delta function, fx ) (x2,t[x1,1) = 6(x2 — x1),
since X (¢) is a single valued function. The derivative can be written as

6fX(t)(-x29t|xlst)
ot

= Wi (xax1) — 62 — xl)/Wt(xz\xl)dxz.

The term W;(x»|x;) gives the probability of moving to x; from x; while the
second term gives the probability of leaving x;. Note that the second term is
necessary to ensure that (at order Ar)

/fX(t)(x2af+Af|x1,t)dx2 =1.

Using the Chapman—Kolmogorov Equation (12.3) together with the Taylor
expansion

Fx () (x2,1 + 61)
= /fx(,)(xz,t+At|x1,t)fx(,)(x1,t) dx

= [ (st = w0+ a0 OB 0 (a) ) o

=fx(t)(xz,f)+Af/(Wr(x2|x1)fxm(x1,l‘)

— Wi (x11X2) fx(p)(x2,1)) dx1 + O ((At)z) .
Rearranging and taking the limit At — 0

0 fx(r)(x2.1)

ot =/<W;(xz|x1)fx(t)(x1,t) — Wi (x1]x2) fX(z)(X2,t)) dx;. (12.4)

Equation (12.4) is known as the master equation. Just as for a Markov chain if
the transition probabilities don’t depend on time (i.e. W, (x;|x3) = W(x;|x2)) then
we say the process is stationary. For a system where X (7) can only take discrete
values the master equation is
dpi(t) s .
L) = 3 (WG i) — WU ).

J

Note that the term W (i|i) does not contribute to the master equation.
We can sometimes obtain the master equation directly. We illustrate this in the
next example.
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Example 12.2 Decay Process

Consider some number of radioactive particles where the probability
of any particle decaying in time 6t is equal to y 6z. Assuming that
there are j particles then the probability, in an interval ¢, of there
being i particles is

0 ifi>j
W(ilj)ot=q vyjot ifi=j—1
0 ((e61)*) ifi<j—1
We don’t need to specify W(i|i). The discrete master equation be-
comes

d[Z{t(t> = W(ili + 1) pi1(t) = W(i — 1]i) pi(2)

=i+ 1) ypisr(t) —yipi(t).

All other terms vanish. This is still an awkward equation to work
with; however, we can quickly obtain a differential equation for the
expected number of remaining radioactive particles

Zid%f”=yz (i + 1) pia (1 721 pilt
i=0 i=0
72(1*11*1)171 7211%

where we changed the dummy index in the first term (in doing this
we added the term 0 x 1 X py(¢) into the sum — fortunately this
equals 0). Now as the expected number of particles E [N (t)] is given
by Y5 i pi(r) we find

ENOL_ e v

orE [N(1)] = Noe ™.

Sometimes we have a Markov chain (e.g. a random walk) where the time is
discretised

plt+1)=Mp(1)

but we know that the change in the probabilities is rather slow. We then consider
the continuous time Markov process as an approximation to the discrete system

PO < pas1) ) =M-1)p
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This is equivalent to

dlziit(t) — Z (Mijpj(t) — Mjipi(t))

J

since, as probability is conserved, > | ; M;j; =1 (i.e. M is a stochastic matrix). This
is identical to the master Equation (12.4) with W (i|j) = M;;.

Deriving stochastic processes through the master equation is not always the
most natural route. In many situations a more natural way of deriving stochastic
processes is through a modified differential equation known as It0’s equation.
This is particularly useful for diffusion-type processes which we discuss below.
Diffusion processes tend to overshadow other stochastic processes, but there are
many stochastic processes which are not diffusion processes (e.g. in Section 12.3
we consider point processes).

12.2 Diffusion Processes

Diffusion processes are useful for describing a huge group of phenomena that
experiences small random perturbations on a short time scale. The prototypical
example is a particle diffusing through a material, where its motion is caused by
many small (molecular) collisions. The applications of diffusion processes are
vast, ranging from physical models of heat diffusion to genetics and finance.

12.2.1 Brownian Motion

In Section 10.1 we introduced random walks. Consider a one-dimensional walker
stating from the origin, X(0) = 0, that at each time interval he/she takes a step
AX ~ N(0,1). After ¢ times the position of the walker is

t
X(t) ~ Y AX(M).
t'=1

The sum of ¢ independent normally distributed random variables is itself nor-
mally distributed (we showed this when discussing the central limit theorem in
Section 5.3). Thus X(¢) ~ AN(0,7). Note that the root mean squared (RMS)
distance from the origin grows as v/z. Now, consider defining a Markov process
that has the same large 7 behaviour as the discrete random walk described here.
We can do this by introducing time intervals Ar such that a random walker makes
a step

X(t+Ar)=X(t)+AW(r)
where AW (¢) are independent at each time interval and
AW (1) ~ N0, Ar).
That is,
E[AW(1)] =0, E [AW()AW ()] = At =1].
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In the limit Az — 0, we can write
dX (1) = X(t +dr) — X(¢r) =dW(r)
where dW () is known as the Brownian or Wiener measure with the properties
E [dW(1)] =0, E [dW(r) dW ()] =dr6(t — 1)

where §(¢ — ') is the Dirac delta function. The solution of this random walk,
X(t) = W(r) (assuming X (0) = 0), has the property that

X() — X(£) = W(t') — W(t) ~ NO, ¢’ —1]).

Furthermore, W(¢')—W (¢) is independent of W(¢) since W (t')—W (¢) describes fu-
ture fluctuations. This model is known by mathematicians as ‘Brownian motion’
and by physicists as a Wiener process. Physicists use the term Brownian motion
to refer to a different process which mathematicians call an Ornstein—Uhlenbeck
process (which can be viewed as a noisy particle in a quadratic potential).

If the walker had a bias so that in expectation X (¢) increases by a after 1 second
then the walker’s dynamics can be described by

dX(¢) = adr +dW(z). (12.5)

This is an example of a stochastic differential equation. The first term is known
by physicists as the drift term as it describes the general drift of a particle. The
second term is the fluctuation term — it is equal to zero on average. (Unfortunately,
stochastic differential equations are also used in population dynamics where the
term genetic drift is used to describe the fluctuation term.)

The stochastic differential equation, dX(r) = dW(r), defines a continuous
random walk, X (¢). The walk depends on the Wiener measure dW (¢), which is
a random variable. Consequently, the stochastic differential equation describes
a family of possible walks. As the magnitude of AW(z) goes to zero as Ar — 0,
the walk is a continuous function. This is not true of the derivative. To see this,
consider the case of zero drift for the discrete random walk. The mean squared
of the discrete derivative is

AW () \?
(%57)

X(t+ A1) — X(1)\*
(5

Thus in the limit A+ — 0, the magnitude of the derivative diverges (at least, in
expectation). To understand this recall that the typical size of AW (z) is v/At. In
the limit At — oo the fluctuations diverge, but much slower than any drift term.
Conversely, when Ar — 0, the fluctuation goes to zero, but also much slower
than any drift term. In consequence our particle seems to have infinite velocity
on very short time scales. Physically we don’t have to alarmed about this because
we are only using the limiting process as a trick. In real systems the fluctuations
are usually caused by a set of small knocks to the system at finite intervals.

1 1

E = a® [(AW(;))Z} ==

=E
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Time Scales
Knocks Interest
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time, ¢

We are interested in the behaviour of the system over long time periods. For any
interval at the time scale of interest there will have been many knocks. Assuming
the knocks are independent (which is the key assumption we make about the
noise) then by the central limit theorem the sum of all the knocks will lead to a
noise which is normally distributed. This is true irrespective of the distribution of
knocks provided they satisfy the conditions of the central limit theorem (i.e. their
distribution is not so long tailed that it has infinite variance). It is this fact which
makes diffusion models so ubiquitous. As we don’t care about the distribution
of the knocks (other than its mean and variance) we can pretend that the origin
of the noise is a set of infinitely small, normally distributed knocks occurring
infinitely often — this allows us to use tricks from differential calculus.

Mathematically though, the fact that our stochastic process is non-
differentiable is more troubling, since it is unclear what we mean by Equation
(12.5) as the derivative doesn’t exist. This equation can be viewed as a shorthand
for the limiting process defined above. We discuss this in more detail in the next
section where we consider general stochastic differential equations.

12.2.2 Stochastic Differential Equations

We can generalise the stochastic differential equation for a random walk with
drift to the more complex situation

dX(¢) = a(t,X(t)) dr + b(r, X (¢)) dW(¢) (12.6)

where the drift term, a(¢, X (¢)), and the fluctuation term, b(z, X (¢)), may depend
on both the current value of X(¢) and on the time, 7. Physicists frequently write
this as

dX(r)
dr

=a(t,X(1)) + b(t, X(1)) n(1)

where 1(¢t) = dW(¢)/dz. This is often called a Langevin equation. We might like
to think of this equation as a shorthand for some limit, but be aware that that
the derivative diverges so we shouldn’t think of it as particularly meaningful. An
alternative view is to think of the stochastic differential equation as a shorthand
for the integral equation

x(r)-x(@):/o a(t’,X(t’))dt’+/0 b(r', X (') dW (¢

where the first integral is a normal well-defined integral, but the second integral
is a special stochastic integral. The stochastic integral can be interpreted in terms
of a limiting processes. However, in general the result of the expectation of this
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integral depends on how we take the limit! That is, we can approximate the
The Riemann Integral — gtochastic integral as a sum

_ / " ftyar = Jim, f FiA

A=t —t; - t n-1

fi= 0 for € [t / b, X(() AW ()~ Y by (W (tisr) = W(t2)
70 0 P

k . .
where (#;li =0, 1, ..., n) is an ordered set of times from 0 to # and b; depends on

t b(,X(t")) in the interval [t;,;,1]. For normal integrals the limit (usually) does
not depend on how we choose b; (e.g. it might be the initial point, the mid-point,
or the end point). However, in stochastic integrals the result we get does. To see
this we consider the case when b(z, X (t)) = W(t). We consider the two common
choices

to th titiy1 tn
a

It6’s stochastic integral where b; = b(t;, X (t;)), i.e. it is the first point in the time
interval. Then when b(z, X (¢)) = W (¢

n—1

I =/0 W(t)dW (1) = ZW(ti) (W(tiv1) = W(t;)) .

i=0
In expectation E [I;] = 0 since (W (t;41) — W(#;)) is a normally distributed
random variable, NV(0,7;,; — t;) that is uncorrelated with W (z;).
Stratonovich stochastic integral where b; is taken as the average of the two end-

point values

b(t;, X (1)) + b(tir1, X (ti41))

bi = > .
If we take b(r, X (1)) = W(z) then
t n—1
L —/ W(t)dw (1) 2 ~ %(W(ml) +W(t:)) (W(tie1) — W(t))
0 i=0

(1) From the definition of the Stratonovich stochastic integral we choose
W(t) =5 (W(t1) + W(n)) and dW (1) = W(t;01) — W(1:).

(2) From the difference of two squares.

(3) Follows from the cancellation of all the intermediate terms in the sum.

(4) Usingt, =t,t) = 0 and W?(0) = 0.

In expectation E [I] = B [W(1)/2] = 1/2.

This seems rather unsatisfactory, as the result depends on how we interpret the
constant b(r, X (¢))! This is a consequence of the fact that the infinitesimal noise
is large (v/dr) compared to the interval itself (df). Which interpretation should
we use? This depends on the actual process we are trying to model. Remember
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that we tend to use stochastic processes to model processes where randomness
usual occurs at discrete time points. The way that this randomness influences
the random variables in the system determines which interpretation we should
choose. It is nearly always It0’s interpretation which correctly describes the
process people try to model, and this interpretation is by far the most commonly
used.

Unfortunately, [t6’s interpretation leads to a slightly strange calculus. Note 1¢6’s calculus
that the Stratonovich interpretation of I, gave an expectation that you would appeared so weird
expect from applying the normal rules of calculus. This is generally the case: 74! it was initially

C .. . . treated with some
you can treat Stratonovich’s stochastic integrals as if they are normal integrals. degree of
However, 1t0’s interpretation nearly always gives the answer you are after. It is scepticism.
possible to map from It0’s interpretation to Stratonovich, but in practice most
people just use Itd’s calculus despite its strange rules.

1t6’s calculus lets you obtain results for simple stochastic differential equations
in terms of functions of the Wiener measure. A useful result known as I¢4’s isom-
etry tells you about the variance of an It integral. We note that in expectation

o] [tm w
= ZE (X (1) (W(tis1) —W(1))]

but W(#;41) — W(#;) is by definition independent of X(z;) and has zero mean so
the expectation of this integral is zero. The variance is

Var[/totl X (1) dW(t)}
2EF [(/ X(t

f 2
" xwaw )
o [ / X (1) dW (1) / " x() dW(r’)}

2 lim ZX W(tis1) — W(t:)) ZX(ZJ') (W(tj01) = W(t;))

)0 -

thrg HOZE 1) (W(tis1) = W(t) (W(tjn1) = W(1))]
g(tmlirtril)—w [ ] [ (tis1) W(”))z]
g(zmli%ao B X0 o -

@/IIE[ arlE {/ X2(1) ]
Iy
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(1) Since the mean is zero, the variance is the expectation of the square.

(2) Rewriting the squared integral as a double integral.

(3) Replacing the integral by the limit of the It6 summation.

(4) Simple rearranging (pulling the sums out of the expectation).

(5) Using the fact that the Wiener measures are independent on all time intervals
so that E [X(ll) X(l‘j) (W(ti+l) — W([l)) (W([j+1) — W(l]))] =0if i # J- We
are also using that (W(r;.1) — W(t;)) is independent of X (z;).

(6) UsingE {(W(l‘m) - W(fi))z} = tisl — 1

(7) Identifying the sum as a normal Riemann integral (there are no longer any

fluctuating quantities).
(8) Reversing the order of the integral and expectation.

A second basic building block of 1td’s calculus is 176’s lemma, which describes
how It6 processes transform under a change of variable. This is different to the
normal change of variable for differentials (i.e. the chain rule) because we cannot
neglect terms of order (dX(¢)). In general, consider a stochastic process, X (t),
defined by the stochastic differential equation

dX(t) = a(r) dr + b(r) dW (1)

interpreted in the sense of It6 (a(f) and b(¢) may be functions of X(r) we just
haven’t bothered to write this explicitly). Suppose we wish to make a change of
variables X (t) — Y(¢r) = g(X(¢)) where we assume g is a twice differentiable
function. Taylor expanding g(X (¢) + dX(¢)) around X (¢) we find

S(X(0) + X (1) = (X(1) + £'(X (1)) dX (1)
+ 38" (X(0) (X (1)) + 0 ((ax(1))").
But
= (a(r)dr + b(t dW(t))2
= a?(t) (de)? + 2 a(t) b(t) AW () dr + b* (1) (AW (1))?

involves the term b*(¢) (dW(¢))? which in expectation is equal to b?(r) dz (the
other two terms are all of order (d¢)*/? and (dr)? so are safe to ignore). I1td showed
that the correct behaviour is obtained by replacing (dW (¢))? by its expected value
dr. This leads to Itd’s lemma

dg(X(1)) = g(X (1) + AX()) ~ g(X(1)
= &/ (X() dX(1) + 8" (X()) P(0) .

The first term is the usual change of variable term, but now we have a new
correction to the drift coming from the fluctuations. If g(X()) is linear the
second term vanishes and the transformation of variables follows the normal
rules, but for more complex transformations we need to include the additional

term 1" (X (1)) b(¢) dt.
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Example 12.3 Stock Price
A very simple model for stock prices is to assume that the return is
equal to a long-term growth term plus a fluctuation term. The return
is the growth per stock, so that
ds(r)
—— =udt+odW(t
S~ Haire ()

dS(¢) = uS(t)de + o S(¢) dW(z)

where yp describes the long-term rise (or fall) in the values of stocks
while o is a measure of the volatility of the price. This is a somewhat
unexpected model. In a world where fluctuations were caused by
many small random events we might expect the variance to grow in
proportion to S(¢) (so that the typical fluctuations grow as \/S(z)).
For example, if the value of the company depends on the perfor-
mance of the individual employees we might expect the variance to
grow with the size of the company. However, empirically the variance
in the stock price seems to grow as S(z)?, suggesting that the fluctua-
tions are not caused by many independent random components, but
are just a fixed proportion of the company size. This might be the case
if the stock price reflected the effectiveness of the spending decisions
of the CEO. Of course, many of the fluctuations in stock price might
be caused by the stochastic behaviour of investors and have little to
do with the true value of the company. However, one hopes that at
some level the stock price provides some approximation to the true
value of the company. Let us see the consequence of our model.

We can obtain a simpler equation to analyse by making the
change of variables X (r) = g(S(z)) = log(S(¢)). Applying It6’s lemma
we find

(1) From It6’s lemma.

(2) Using ¢'(S(1)) = 1/S(r) and g"(S(1)) = —1/S(1)*.

(3) From the stochastic differential equation dS(z)/S(¢r) = wpdr +
o dW (1), cancelling S(¢)? in the second term and rearranging.

We can make a further change of variables that Y (¢) = X(¢t) — (u —
o2/2)t in this case

dy(¢) = o dW ().



366 Stochastic Processes

As this was a linear change of variables (in X (7)), we get no correction
term from It6’s lemma. We observe in passing that Y (¢) is a martin-
gale (since in expectation E [dY(r)] = 0). It is trivial to solve this
equation giving Y(t) = o W(t) + c. Thus, X(1) = ¢ + (u — 0?/2)t +
o W(t) and finally

S(l) — S(O) e(;4—0'2/2)1,‘+0' W(t)

where S(0) = e€. Note that our solution, S(¢), depends on the nor-
mally distributed stochastic variable W(r). Since log(S(¢)) is normally
distributed with mean log(S(0)) + (1 — 0?/2)t and variance o2 ¢, the
stock price, S(t), is log-normally distributed

fs@#)(8(t) = s) = LogNorm (s’ log(S(0)) + (u — 2/2)t, o t).

The mean and variance of a log-normal distribution LogNorm
(x|u, 0?) are el+o’/2 and (e"2 — 1)e?#*7, respectively. Thus
E[S(t)] = e*'S(0) as we might expect, and Var[S(r)] =

et — )E [S(t)]z. For large ¢, the standard deviation grows

approximately as e /2 E [S(r)]. That is, for stocks with identical
expected growth rates and volatility (variance) the standard deviation
grows exponentially (see Exercise 12.2). That is, some stocks do
spectacularly well, while others fail. Yet within this model this is

entirely down to luck!
|

Because the gains and losses on investments are compounded, the returns are
typically (at least, approximately) log-normally distributed and the fluctuations
can be very large. This tends to make markets inherently unstable, with bubbles,
crashes, grossly inflated bonuses, and massive inequalities. We can deplore this
unfairness at the same time as asking whether there is a way we can make a little
extra money.

|
Example 12.4 Investing to Win (Example 5.4 Revisited)
In Example 5.4 on page 87 we discussed how, when betting on
multiple outcomes it might be more rational to try to maximise
your expected log-winnings rather than your expected winnings. The
argument being that your expected winnings are dominated by the
rare event of winning every time, whereas by maximising your log-
winnings you tend to maximise what you will typically win.

For investing on a stock whose value changes according to

SE+1)=8()+uSE)At+0 S(t) AW (t) (12.7)

we can follow a strategy similar to that of Kelly as proposed by
Edward Thorp for continuous investments. Suppose we have an
initial capital of 1 pound which we can cither invest in a bank with
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fixed interest rate r or in a stock. We consider a scenario where at
each time interval Ar we rebalance our portfolio of stock and cash in
the bank so that we have a fraction f of our capital in stocks. The
fractional gain in our capital at round ¢ is

AX; = (1= f)rAt+ f (uAr+ o AW(1)).
After n rounds our capital will be worth
Ga(f) =[] (1 +AX)).
1=1

The expected log-gain is

log((;n(f)) = g E [log(l + AX,)] =nE [log(l + AX,)] log(lé-:_e) -
- e— 5+

~nE {AX - ( t)2+ ]

t 2

where we have expanded the logarithm in terms of the small frac-
tional gains. Now

E[AX,| =B [(1 - f)rAt+ f (uAt+0 AW ()]
= ((l—f)r+f,u)At
E [(Axﬂ = 20’ [(Awg)f] +0((A)? = 202 At + O((At)?)
all higher-order terms are at least of order O((At)?). Thus

f2 0.2

log(Gn(f)) ~nAt ((l —f)r+fu— ) +O((At)2).

Maximising the first-order term we find that the optimal strategy is
to choose f, such that

—r
f=t5

Let us see what this means. Suppose we played this strategy daily
for a year. We take Ar = 1/365. We assume an expected growth rate
of u = 365(1.05736 — 1) ~ 4.88% corresponding to an expected
yearly growth rate of 5% (the small difference is because the growth
is compounded daily). Let us assume that o> = 0.06. In Figure 12.4
we show two time series evolving according to Equation (12.7).

Now suppose we can invest our capital in a risk-free investment
with interest rate » = 365(1.02!/3%5 — 1) ~ 1.98%, which equates to
a yearly interest rate of 2%. Plugging this into our continuous Kelly
formula we find f ~ 0.48. In other words, each day we ensure that
just under half our capital is invested in stocks. Consider using three
strategies, we can choose the risk-free investment and increase our
capital by a 21.9% after 10 years. We can put all our money into the



Figure 12.4 Two
10-year times series
showing simulated
stock prices evolving
according to
Equation (12.7).

Figure 12.5 Capital
after 10 years’
investment for 1000
different stocks. The
dark histogram is
when you invest
completely in stocks,
the light histogram
follows Kelly
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vertical dashed line
shows the return on
the risk-free
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best return on capital
in this simulation
was 16.3. The solid
line shows the
continuous time
solution.
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stock. This gives an expected return on our capital of 62.9%, but with
very high fluctuations. Finally we can follow the Kelly criterion and
rebalance our capital daily, giving us an expected return of 40.2%,
but with less fluctuations. Figure 12.5 shows the capital after 10 years
for 1000 investors, each betting on a different stock with an expected
yearly growth rate of 5%. Using Kelly’s strategy reduces the chances
of a small return, although it also reduces the chances of making a
very large profit if you are lucky enough to invest in the right stock.

P(Cm)

I -
LA e e B ey s |

|

T
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capital after 10 years, Cyg

]

We can get an analytic approximation of our distribution of re-
turns by assume that we rebalance our portfolio continuously. In this
case our combined holdings of stock and bank evolves according to

dS(r)=S@) (1= f)r+ fu+fodW(r)).

Here we use u = log(1.05) and r = log(1.02) corresponding to
expected yearly gains of 5% and 2% per year. Following the same
change of variables that we used in Example 12.3, the distribution
of stock prices is

Is@)(S(t) =)
= LogNorm (s| 1og(S(0)) + (1 — f)r+ fu— f2o2/2), f2o? t).
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We also show the continuous time solution for Kelly’s solution
(f = (1 — r)/o?) and for investing entirely in the stock (i.e. f = 1) in
Figure 12.5.

Of course, to mitigate against bad luck, one would typically
invest in many different stocks. Kelly’s proposal to maximise the
log-gain can again help to reduce risk in this situation. However,
before using Kelly’s proposal to invest your life savings be aware of
the limitation of the model. In our simplified world we assumed that
the expected growth and volatility (variance) are fixed (stationary).
In real markets, the growth rates and volatility typically change over
time. If you could estimate these quantities accurately you could
still follow a Kelly-type strategy, but the estimation process is non-
trivial. It is also somewhat counter-intuitive. We have seen that the
price of stocks with identical growth rates and volatility diverge
exponentially, thus using the change in price over a long period is a
hopelessly poor measure of the expected growth of a stock on a short
time window. Furthermore, stock prices are not independent of each
other, thus hedging your bets by investing in many different stocks
is not guaranteed to prevent you from losing money. Investment
banks tend to use a more reliable strategy to prevent large losses.
They invest other people’s money and charge fees whether or not the
investment make money.

If you are a gambler then you might prefer to take a risk on get-
ting a high return and put all your money in stocks; however, if you
are investing your pension following Kelly would seem to have some
virtue. Rather surprisingly Kelly is not much appreciated in financial
economics. One cause of this is a vitriolic paper by two Nobel laure-
ates in economics, Robert Merton and Paul Samuelson, who ripped
to pieces Henry Latané, who independently proposed a similar strat-
egy for portfolio selection — Kelly was not even mentioned, presum-
ably because he discusses betting, which is completely different from
asset management. Merton and Samuelson’s argument is entirely the-
oretical and very difficult to follow, but seems to rest on the fact that
the central limit theorem is only valid in the large n limit so Latané’s
and Kelly’s strategy is provably suboptimal in some sense. However,
in practice the central limit theorem is usually a good approximation
for even a small number of random variables (provided the random
variables being summed don’t have very long tails), so Kelly’s crite-
rion may not be optimal, but it will be a pretty good approximation
to the optimal strategy. Nevertheless, the fear of being ridiculed by
two Nobel laureates has kept Kelly firmly outside of main stream
economics (see Ziemba, MacLean, and Thorp (2012) for a compre-
hensive set of papers covering the use of the Kelly criterion).
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We don’t pursue Itd’s calculus any further. Instead we study the distribution
of a stochastic process at a particular time. This gives rise to the Fokker—Planck
equation.

12.2.3 Fokker-Planck Equation

Stochastic processes are unfamiliar mathematical objects. To return to more
familiar territory we can ask about the distribution of a stochastic process. We
start from the identity

fﬂLO=EWX®*U]5/h@JNUf@®

where 6(y — x) is the Dirac delta function defined in Appendix 5.A on page 103.
Now consider the distribution at a slightly later time, ¢ + d¢ (we assume for the
moment d¢ is finite and take the limit d — 0 later on)

fx(x,t+dt) 2E [6(X(t +dr) — x)] ZE [6(X(r) + dX(r) — x)]
2 [6(X(t) — x) +6'(X(t) — x) dX(¢)
+ l(5”(X( 1) — x) (dX(1))* + 0((dX(1))*)]

2
2 fx(x,0) +E [6'(X(1 )—x)dX(f)]
+ %E [5”(){() 2dt] +0((

(1) Using the identity above (except at time ¢ + dt).

(2) Writing X (7 + dt) = X(¢) + dX(2).

(3) Taylor expanding the delta function to second order.
(4) Using the linearity of the expectation operator.

Where we assume our process satisfies an Itd equation
dX(r) = a(t,X(¢))dr + b(t, X (r)) AW (z).
Averaging over the noise in the next time step, dW (z), so that

Eaw (1) [dX (1)] = a(r, X (1)) dt
Baw(r |(dX(0)?] = 676, X(1)) dr + O((dr)?)

then up to corrections of order (dr)?

Ffx(x,t+dt) = fx(x,1) +E [6'(X(t) — x) a(t, X(¢))dt]

1
+2E [5”(){(;) — X)L X (1)) dt}
(we are allowed to average dW () independently of ¢'(X(¢) — x) since it cor-
responds to fluctuations from time 7 to ¢ + &r). Writing the expectation in
integral form we find
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Sx(x, ¢+ dr)
dr

—fxlon) /f(y,t) &'(y — x) a(t, y)dy
v 100860 REl 128

where we have ignored terms of order d¢ which vanish in the limit d¢ — 0. Now
we use integration by parts

/ T Oy — x)aly)dy = [F(a) 60 — ) alt,y)] ™

— 00

o 0
- [ a0 (Fonaty) dy
_ O0f(xt)alt,x)

- 0x ’
Similarly, applying integration by parts twice to the second term in Equation
(12.8) we obtain

3 3% f(x,1) (1, x)
a 0x?

/f(y,t) 8" (y — x) b(1, y)dy
Substituting these back and taking the limit dr — 0 we obtain

af(x,t)  da(t,x)f(x,t) 10°b*(t,x) f(x,1)
or ox "2 ox2 ' (12.9)

This is the Fokker—Planck equation. It is a generalised form of the diffusion
equation. Diffusion is an example of a stochastic process where a = 0 and b
is a constant (b” is sometimes known as the diffusion coefficient).

The Fokker-Planck equation is also known as Kolmogorov’s forward equa-
tion. Kolmogorov provided a mathematical foundation for stochastic processes
in terms of measure theory and an independent derivation of the Fokker—Planck
equation. He also derived a backward equation which describes the evolution of
a stochastic process going backwards in time. The backward equation is given by

df(x,1) af(x,t) 1 3% f(x,1)

_ ¥
o1 alt,x) =5 = 5 (6x) =55

This is the adjoint equation of the forward equation. The backward equation is
useful for calculating properties such as the expected probability of reaching an
absorbing state or the mean time to reach such a state.

The Fokker-Planck (Kolmogorov) equations can be generalised to multi-
component vectors. Consider the case where X(¢) is an n-component random
vector satisfying the It6 equation

dX(r) = a(t,X(¢))de + B(¢, X (¢)) dW(¢)

with a(z, X (¢)) as an n-component drift vector, dW (¢) as an m component Wiener
measure, and B(z, X (7)) as a matrix measuring the size of the fluctuations. The
corresponding Fokker—Planck equation is
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n n 5 n
+ Z Z aaxlsz (; Bix(t,X(t)) Bik(t,x(t))f(x,t)>,

i=1 j=1

Fokker—Planck equations are familiar objects (i.e. they are partial differential
equations), however, partial differential equations are often difficult to work
with. If you are lucky, you can use the method of separation of variables to obtain
a solution (often in terms of a sum of polynomials).

Example 12.5 Noisy Particle in a Quadratic Potential

Consider a particle experiencing a restoring force towards the origin
and a stochastic force in a random direction. In one dimension the
equation of motion is given by the It6 equation

dX () = —a X (¢t)dt + o dW(2).

This is known as an Ornstein—Uhlenbeck process. The corresponding
Fokker—Planck equation is

0fx(x,t) ; 9 (x fx(x,1)) . 0'72 3% fx(x,t)

ot Ox 2 0x?

Given an initial condition fx(x,7) = 6(x — x¢), the full solution is
given by

a _a(x—xoeiar)z

1) = e o2 (l—e —2at) .
fx(x,1) \/ﬂa-Z(l_eZat)

The easiest way to see this is a solution to the Fokker—Planck
equation is to substitute it into the differential equation (although
this is a slow, thankless exercise). We observe that the Ornstein—
Uhlenheck process is a Gaussian process. In the limit ¢ — oo this
becomes

fx(x,OO) =

Ornstein—Uhlenbeck processes are important models in many
realms, ranging from physical systems to fluctuations in the price
of stocks.

Kramer—Moyal’s Expansion

Rather than deriving the Fokker-Planck equation through a stochastic differen-
tial equation we can also obtain it through an expansion of the master equation.
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Recall that the master equation is a first-order equation describing the evolution
of the distribution of a random process at time ¢

0 fX (.X, t)

SO [ (Wil i (0) = Walo) Fxg (x.)
where W, (x|x") dt is the probability of moving from x’ to x at time d¢. Defining
W (x|x") = Wi (x';A) = W, (x — A; A) where A = x — x/, then we can write the
master equation as

6fx(,) X, l
ot

Although this is just a change of variables from x to A and a redefinition of the
transition probability, it is nevertheless important to get all the signs correct. We
assume that the density fx()(x — A,?) is heavily concentrated around x (that is,
large jumps are unlikely) and that fx(x,?) is a relatively smooth function of x.
These are natural conditions in many situations. Under these assumptions we
can Taylor expand the product W;(x — A;A) fx(;)(x — A, t) around x

/W, (x =N A) fxy(x — A ) dA — fxy(x,1) /Wt x;—A)dA.

1 ;0™
Wilx = 854) fxn (x = A1) = 3 5 (=) 22 Wi (658) fxoy (4:1):
i=0

Substituting this back into the master equation (and separating off the i = 0
term) we get

L /W,foX (xt)A

/Z i! Wi (x5 A) fx((x,1) dA

— fx@)(x,1) /W;(x; —A)dA.

The first and third term cancel. Taking the integral inside the derivative we get

Ixolen) s~ (100 (fx(,)(x,t) /A" Wi (x: A)dA) (12.10)
i=1

ot il oxt
—1)t o' .
=Y i!) o (fxo(x.0) MO (x,1)) (12.11)

i=1

where M®)(x, 1) is the i'" jump moment of the transition probability
MD (x,1) = /A" W, (x;A)dA = /Ai W, (x + Alx) dA

Equation (12.11) is known as the Kramer—Moyal’s expansion of the master
equation. If the transition probability is suitable local the higher-order jump
moments will be negligible and we obtain the second order Kramer—Moyal’s
expansion

an(t)(xat) _ _aM(l)(x:t) fX(t)(xat) + 162M(2)(x9t) fX(t)(xat)
o dx 2 ax?
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but this is just the familiar Fokker—Planck equation—we identify M) (x,1) =
a(t, x(t)) and M (x,1) = b(t, x). Occasionally it is more convenient to obtain the
Fokker—Planck equation through the master equation rather than a stochastic
differential equation and very occasionally (when larger jumps occur) the higher-
order terms in the Kramer-Moyal’s expansion may provide a more accurate
approximation for the dynamics of the density fx(x,1).

When analytical solutions to the Fokker—Planck equation are difficult to
obtain one can always seek numerical solutions. This loses some of the insight
that comes from having an analytical solution, nevertheless it can provide useful
results quite easily. Numerical solutions are reasonably doable in low (one or two)
dimensions, but they become increasingly time-consuming in higher dimensions
where Monte Carlo simulation often gives results more accurately and a lot more
easily. The problem simplifies considerably when seeking the stationary state
distribution.

12.2.4 Stationary Distribution of Stochastic Processes

Sometimes stochastic processes have a well-defined stationary distribution. This
is often a quantity of considerable interest as it describes the long-term behaviour
of a process. However, not all stochastic processes will have a stationary distri-
bution. This can be due to the fact that a(z, x) and b(z, x) change continuously
with ¢. However, even when there is no explicit # dependence in the stochastic
differential equation there may still be no stationary distribution. For example,
the simple random walk

dX(r) =dW(r)

has a solution X(¢t) = W(t) ~ N(0,r), which is a normal deviate with an ever-
increasing variance. If the process is non-ergodic the stationary distribution may
depend on the initial conditions.

Nevertheless, in many cases there is a well-defined and unique stationary
distribution, f(x) = lim,,~ f(x,?), which is the distribution of interest. To
obtain this distribution set

af(x1) _y
ot
in the Fokker—Planck Equation (12.9). For a one-dimensional stochastic process
we are left with an ordinary differential equation

da(x) f(x) | 1d*0(x) f(x) _
dx 2 dx2 -
Integrating, we find

2
~aft,x) £+ g I
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however, ¢; = 0 (otherwise f(x) would be unnormalisable). Dividing through by
b*(x) f(x)/2 (and rearranging)

2a) 1 dB)/() _ dlog(B(x) £()
br(x)  b3(x) f(x) dx dx '

Integrating, exponentiating, and dividing through by »?(x) we obtain

Fx) bz}x) exp (2 /; Zz((yy)) dy). (12.12)

This is a simple equation, and can provide a quick solution to problems that look
difficult to solve.

Example 12.6 Population Genetics Rides Again

In Example 11.2 (on page 311) we considered the evolution of two
possible alleles, A and a fitter mutant B, at a single site. The site
undergoes mutation and selection, such that at the next generation
the expected proportion of individuals with the mutant gene is

(I=v)1+s)X+u(P-X)

s P+sX

where P is the population size, X the number of mutants at the
previous generation, s is the fitness (selective advantage) of the
mutant, u the probability of undergoing a mutation from A to B,
and v the probability of a mutation from B to A.

For a large population, using the Markov chain description to
compute the dynamics becomes intractable (as the state space and
transition matrix becomes too large to work with). However, we can
approximate the system by a stochastic differential equation

X(t+Ar)=X(t)+a(X(t))Ar +b(X(t)) AW(z)
where on average
E[X(t+1)] =X()+a(X(r) At
while
E [Xz(t + 1)] —E[X(+1)]" = B(X(0) A
For the model we are considering
P(X(r+1)=x) =P (n' = Px) = Bin(Px|P, psm)
where we have taken Ar = 1 (generation). Taking averages
a(X(1)) = B [X(t +1)] = X(t) = pom — X (1)

(w—(u+v—s+us)X(t)+sX(t))
1+sX(t) '




It was studied
independently by
Fisher and Wright.
Each made a
mistake in their
derivation which
was corrected by
the other author.
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The variance of a binomial is given by
1 —
P(X(1)) =E [Xz(t + 1)} —E[xX(+1) = M.
Assuming s, u, and v are small, then expanding to first order

a(X) =E[AX] = —vX +u(l — X) +sX(1 - X)

_ 2] 2 X(1-X)
b(X) =E [X*| ~B[x]' » ==
This model is known as the Fisher—Wright model (predominantly in
the UK) or the Wright-Fisher model (predominantly in the USA). It
was first proposed by Ronald Fisher and Sewell Wright around 1930.
The dynamics are given by the Fokker—Planck equation

df(x,t) _6((—vx+u(1—x)+sx(l—x)) f(x,1))

a 0x
N s 0% (x (1 —x) f(x,1))
2P 0x? ’
This is a bit of a pain to solve numerically, but the stationary state
has a relatively simple form

1 pr —vy+u ()}Fly_);;y(lfy)
—e 0 d
feq('x)O(x(l_x) y

xZPu—l (1 _ x)ZPv—l eZPsx

" BQRPu,2Pv)FQRPu;2P(u+v);2P5s)
where B2 Pu,2 Pv) F(2Pu;2 P(u+v);2 P s) are normalisation con-
stants (which happen to be expressible in terms of standard special
functions — the beta function and the hypergeometric function). In
1930 it would have been impossible to solve the Markov chain even
for a small system numerically. The stochastic differential equation
provides a quick answer to a difficult problem.

In higher dimensions the stationary distribution is given by a partial differen-
tial equation. For all but the simplest stochastic processes it is not possible to
solve these equations analytically.

Example 12.7 Physical Brownian Motion
Real Brownian motion as observed in nature concerns a small
particle in a viscous liquid experiencing fluctuations in its velocity
caused by random knocks. Physicists describe this using the Langevin
equation

dv

mgz—ﬂv+0'n
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where V is a three-dimensional velocity vector, m is a mass, 3
is a resistive force, and 5 is a three-dimensional Wiener measure
describing random knocks of the particle. In the It6 form

av = —Lvar+ Taw ).
m m
The drift coefficient is B/m, and the size of the fluctuations
is o/m. The probability of the velocity being close to v is
P(V(t)—v € B(e)) ~ f(v.,t)|B(e)|, where B(e) is a small (Borel)
ball of radius € and volume |B(€)|. The density f(v,t) is governed
by the Fokker-Planck equation

ﬁfvt ,8261/1 a? 9% f(v,1)
Bvl 2m2 ovi?

This is hard to solve in complete generality but it has a stationary

distribution
5 32 ﬁm
r0)= (L5) e T

o2

(which is easily checked by substitution into the Fokker—Planck
equation). Thus the velocities of a particle in a viscous fluid under-
going random knocks are normally distributed. Note, that the form

of the equation for Brownian motion in one dimension is identical

to that of an Ornstein—Uhlenbeck process.

|

In general we can solve the equation for the stationary distribution numerically
by discretising the variable and replacing the partial derivatives by difference
equations. The boundary conditions must be defined in such a way that no
probability is lost. This is achieved by so-called reflecting boundary conditions,
which can be visualised as having an identical but reflected system living at the
boundary.

12.2.5 Pricing Options

Stochastic processes have taken on significant interest due to applications in
financial markets. For engineers and scientists with higher aspirations, such
grubby monetary applications are, no doubt, of little interest. Nevertheless, it
provides a different use of stochastic methods so may be of academic interest.
The classic application of stochastic processes is to obtain a fair price for
options. This was proposed by Fischer Black and Myron Scholes in 1973. Robert
C. Merton extended the analysis to option pricing and won the 1997 Nobel Prize
for Economics with Scholes (Black missed out as he died in 1995). We consider
here a European option, which is an agreement to have the right to buy or sell
an amount of a commodity or shares at some future date at some agreed price
(the strike price). This right does not need to be taken up. We imagine some

Reflecting boundaries
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commodity with price S(¢) at time . We assume that the value of this commodity
is governed by the stochastic differential equation

dS(z) = uS(t)de + o S(r) dW(z) (12.13)

where u is the long-term drift in the price and o measures the volatility in the
market (which is determined empirically). S(¢) is the spot price (the market price
at the current time ¢). It is an assumption of the model that the spot price has
some trend (the drift) and some fluctuations proportional to the spot price — this
implies that the dynamics of the price is independent of the units it is measured
in — we discussed this model earlier in Example 12.3 on page 365.

Now let V(S,7) be the value of an option (derivative) at time ¢. At the time
when the option matures, T, the value V(S,T) would be the difference between
the spot price and the strike price if this was positive and zero otherwise (you
would not take up the option if you lose money on it — i.e. the spot price is less
than the agreed or strike price). Assuming V(S,¢) is doubly differentiable in §
and singularly differentiable in ¢, then by 1t6’s lemma

AV (s, 1) = 6‘/6(“; 1) d4s(1) + avgf, D ar + %762‘;?}”15 [(asy’]
aV(S 1) av(s.1) 1 o2 2 A’V (S.1)
WD a5ty + D as o2 2000 a2

Black and Scholes imagined owning one option V(S,¢) and then trading in the
commodity in such a way as to remove the fluctuations in the value of V(S,t). In
particular, they imagined buying and selling the commodity so that at time ¢ you
had —dV(S,t)/dS shares of the commodity. In that way the asset of the option
plus shares would be equal to

av(s,t)
aS

T1(S,1) = V(S,1) — S()

where the last term is equal to the price of the commodity times the amount of
the commodity. The profit from time f to 7 + §¢ is

dri(S, 1) = dV (S, 1) — ava(s 1) ds(e)
2
(218, L Pas0)

which is obtained by substituting Equation (12.14) for dV (S, ¢) in the equation
above. We note that this has no fluctuations by construction, i.e. dII(S, #) does not
depend on dS(¢) (which in turn depends on dW(r)) but only on non-fluctuating
quantities. The combination of option plus stock would be risk free. Black and
Scholes argued that in an efficient market any risk-free gain should be equal to
the mean interest rate in the market r. If this were not so it would be possible to
make money in the market without taking any risk (this is known as arbitrage).
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According to classical economic theory, in an efficient market there would be no
arbitrage. (There are financial companies that make their livelihoods through
identifying and exploiting arbitrage, often across different markets, but they
correct market prices, reducing the remaining arbitrage.) If  is the mean interest
rate in the market then the profit from a risk-free asset IT(S, 7) in time dr should be
rII(S,r) dz. Putting this equal to dII(S, ) and substituting in the value of TI(S, 7)
we arrive at the Black—Scholes partial differential equation

av(s,t) 1

I 2@
Ey +20'S(t)

A’V (S,1) vV (S,t)

G SN TS V(S =0, (1215)

We can use this partial differential equation to obtain a fair price for the option.
There are options to be allowed to buy a commodity (a call option) and options
for being allowed to sell (a call option). We consider here only the call option.
We want to determine the price, V (S, ¢) of this option at time 7. To determine this
from Equation (12.15) we need to determine the boundary conditions. These are

V0.0)=0,  V(S.T)=max(ST) - K.0),  lim V(S.1) =S,
—00

where K is the spot price. The first of these equations says that the option is
valueless if the price of the commodity is zero. The second equation says that
at the time of maturity the value of the option is equal to the difference between
the spot price at that time and the agreed (strike) price of the commodity K (if
the spot price is lower than strike price then we don’t buy the commodity and the
option is worthless). The last equation says that the value of the option tends to
the value of commodity when the price goes through the roof.

Finding solutions to partial differential equations is a black art. Fortunately
Equation (12.15) is a linear equation which is closely related to the diffusion
equation. For this problem (the call option) the value of the asset (and hence
a fair price for the option) is given by

V(S,1) = S(D(m/% <log(}z> + (r + U;) (T - f)))

ckera( 1 (i £) o (- Z) )

O(x) = /x M(z|0,1)dz

where

is the familiar cumulative probability density for the zero mean, unit variance
normal distribution (the easiest way to verify that this is a solution of Equation
(12.15) is through direct substitution — a rather tedious exercise, but greatly
helped using a symbolic manipulation language such as Mathematica). A similar
formula can be obtained for a put option.



Figure 12.6 Example
of a point process in
a plane.
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Options are used by companies to try to hedge against the vagaries of future
prices. As such, they can be useful instruments. The Black—Scholes equations
mark the limits of what can be solved in closed forms. They are extremely useful
for providing a quick pricing formula for a rather complex investment. They
make a number of simplifying assumptions, for example that the price of a stock
is governed by Equation (12.13). To go beyond such assumptions usually involves
using Monte Carlo techniques. Many otherwise respectable scientists have been
siphoned off into finance to perform such calculations. Whether this is to the
greater benefit of humankind is open to some debate.

12.3 Point Processes

Although diffusion processes are very important there are many other stochastic
processes of importance. Figure 12.6 shows some points in a two-dimensional
plane. They may be users in a mobile telephone network or stars in the sky. We
assume that the points are in some way random. Sets of points drawn from some
random distribution are known as point processes. We can define point processes
in any number of dimensions. For example, in one dimension they may be events
happening at different times. These processes are important in a large number of
applications.

12.3.1 Poisson Processes

The simplest point process is the Poisson process, where we assume that the
number of points in any two non-overlapping regions are independent of each
other. In this case, the probability of k points occurring in any region will be
distributed according to a Poisson distribution. Poisson processes may not be a
perfect model. For example, it may be impossible to have two events occurring
very close to each other. If we were modelling the distribution of stars in three-
dimensional space then, due to their gravitational influence, it would be incorrect
to assume that their positions are independent of each other when they are very
close. However, in many cases the inaccuracy that occurs in assuming a point
process is a Poisson process will often not be worth worrying about.

Poisson processes have some very nice properties, making them easy to handle.
These follow from the properties of the Poisson distribution. The first important
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property is that the sum of Poisson distributed variables is also Poisson dis-
tributed. For example, let X ~ Poi(1) and Y ~ Poi(u) then

k k

. ) ) /li 'ukfi o
PX+Y=k)= ZPm(z\/l)POl(k —ilp) = Z me s
i=0 i=0 '
e H & [k P k .
=k!§(i)/l W= (1 + p)* = Poi(k|A + ).

To describe a Poisson process, I1,, we define the intensity function A (x) such that
in any region of space A, if N(A) denotes the number of points in that region A,
then

P (N(A) = k) = Poi(k’ /A/l(x)dx>

where the integral is over the region A. Note that because of the additive property
of the Poisson distribution, Poisson processes inherit a superposition property.
That is, if we have two Poisson processes with intensity functions A(x) and u(x)
then the sum of the Poisson processes is itself a Poisson process with intensity
function A(x) + u(x). This property extends to any number of Poisson processes
(which is easy to see from an induction argument).

A second nice feature of Poisson processes is that if we make a change of
variables to a Poisson process the new processes is again a Poisson process
(provided we don’t map some region to a single point, which would result in
there being a finite probability of two events occurring at the same point). This
mapping property follows since any region in the new coordinate system can be
mapped to a region in the old coordinate system, and this region will satisfy the
Poisson property.

To compute quantities of interest we consider the moment or cumulant
generating function (CGF). Suppose we are interested in

0=> g(X)

Xell

where the sum is over points in the Poisson process. The function g(X) is some
function of interest that depend on the point process. We assume that g(x) is
sufficiently smooth that if we partition the region of interest into many small
subregion, A;, then we can approximate Q by

0~> &N
i

where the sum is over the subregions, g; is a representative value of g(X) in
subregion A;, and N; = N(A;) is the number of points that fall in region A;.
Provided g(x) is sufficiently smooth we would expect this approximation to

Jo | 94 | 9s | 912
No | Ny | Ng [ Nio
g1 | 95 | 99 | 913
N1 | Ns | Ng | Ni3
92 | g6 | 1o | 914
:\7‘2 :VG :V] 0 ]\‘r[ 4
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become more accurate as the subregions shrink. We now consider the moment
generation function

Q] ~ HE [eﬁgiNi]

where the product is over the subregions. Since we are considering a Poisson
process, N; = N(A;) will be Poisson distributed with mean 1; = [, A(x)dx
so that

i

EN eﬁgz i Zeﬁg i — eAi(ePEi-1)

and thus

Z/Ii (C‘Bgifl)

Q] ~ He’li(eﬁgi’l) =e
i

Taking the limit where the size of the subregions go to zero then the sum in the
exponent can be replaced by an integral and we have

log(E [e#2]) ://l( ) ( ehs®) ) dx.

This is the CGF for the quantity Q. The integral may not always be convergent.
This can often be remedied, for example, by making 8 imaginary (i.e. using the
logarithm of the characteristic function). The mean and variance of Q is found
simply by taking the derivatives of the CGF

E (0] =//l(x)g(x)dx Var[Q] =//l(x)g2(x)dx.

Example 12.8 Gravitational Force

A typical example of using a Poisson process is to compute the
gravitational force due to a cluster of stars. The force F at the origin
produced by a mass m at position X is

GmX

F=—1n.
1X1P°

To compute the typical gravitational force for a cluster of stars we
assume that the stars are distributed in space according to a Poisson
process, IT;, with intensity A(x) describing the cluster. However, we
would expect the masses also to follow some distribution. Here the
superposition of Poisson processes comes in. We can think of our
stars as drawn from distinct Poisson processes at each mass level.
That is, we consider an intensity function A(x,m) as defining the
intensity of stars of mass m, such that the expected number of stars



12.3 Point Processes 383

of mass m in region A is [, A(x,m)dx. We can then add the Poisson
processes at different masses. The CGF for this process is

log<E [eﬁTFD = /dx/dm/l(x,m) <e W 1>

E[F] =G/dx/dm/l(x,m)ﬁ.

For a spherically symmetric intensity function the integral is zero by
symmetry. More interesting would be the covariance

with

2, . T
Cov|[F| =G2/dx/dm/l(x,m)%
x
For an infinite uniform universe the integrals will diverge. This would
be a somewhat surprising and unpleasant universe to live in (the
gravitational force would vary everywhere).

12.3.2 Poisson Processes in One Dimension

One of the most important types of point processes are one-dimensional pro-
cesses. These might, for example, be used to model the position of cars along
a road. Frequently we use one-dimensional point processes to model systems
evolving in time. That is, we consider the set of times when events occur. The
one-dimensional Poisson process inherits all the properties of general Poisson
processes, but also has some distinct properties. In particular, due to the fact
that any change of variables to a Poisson process gives a Poisson process, we
can map any one-dimensional Poisson process to a uniform Poisson process, i.e.
a Poisson process with a constant intensity function. In this case, the expected
number of events in any interval is just proportional to the length of the
interval.

One-dimensional Poisson processes also allow us to order the events. If we
have a set of events happening at times 7] < T < T3 < --- < T, then for a
Poisson process with a constant intensity function, 4, the interval between events
is exponentially distributed, 7; — T;_; ~ Exp(4). To show this, we note that the
probability of no event occurring in a time interval ¢ is given by Poi(0|2¢) =
exp(—At). The probability of at least one event occurring in time, ¢, is 1 —e =,
Thus, the probability of the time between two events, 7; — T;_| being less than ¢
is just the probability that one or more event has happened in this time, so that

P(Ti—Timy <t)=1—c¢".

Thus the probability density of the interval is equal to

d
friot (0) = 3P (T = Ticy < 1) = de ™" = Exp(t] ).
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The staircase function, defined by N(7) = max{n|T,, < t} (i.e. the number of
events that has occurred up to time ¢), is known as a renewal processes (the length
between events being random variables). It can be used to model the replacement
of light bulbs or the decay of a particle. The simplest renewal processes are Pois-
son processes where the time period between events is exponentially distributed.
A slightly more elaborate problem is that of queues. Here the arrival time of a
customer at a queue will be described by a renewal process, but now there is also
a service provider clearing the queue. We consider a very simple queuing problem

Stochastic Processes

in the following example.

Example 12.9 Queues

For a call centre, a post office, or a hospital, a reasonable (zeroth
order) approximation is to assume that the arrivals of clients are
independent of each other so that they can be modelled using a Pois-
son process. The intensity may well change depending, for example,
on the time of day. We consider here a very simple queue where
the customers arrive according to Poisson process I1; with constant
intensity A and they are dealt with in time 7 ~ Exp(u). Provided
there is a customer in the queue, the time it takes for the customer to
be served can also be modelled as a Poisson process. We can model
queues using a master equation. Let p,(¢) be the probability of there
being n customers in the queue at time ¢. Then if n > 1

Pu(t+6t) =pu(t)(1 — A6t — uédt) + Ap,_1(t) 6t
+ Uppe1 (1) 61+ 0 ((6t)2).

Subtracting p, (¢) from both sides, dividing by 6, and taking the limit
6t — 0 we obtain the master equation

dPn(t) _
dr
If n = 0 then

_(/l + /J) pn(t) + /lpn—l(t) + U PDn+1.

dpo(?)
dt

To obtain a full solution we can use generating function techniques.
A much simpler problem is to consider the steady state where
dp,(¢)/dt = 0 — note that we will only reach a steady state if u > A,
i.e. the queue-clearing rate is shorter than the customer arrival rate.
From the equation dpy(#)/dt = 0 we find that p; = (2/u) po and
from dp;(¢)/dt = 0 we find p» = (A/u)’po; repeating this we find
Pn = (/)" po (which we can also prove by induction). To find py we
note that

= —Apo(t) + up1(t).

1= Z PoZ( ) 1_3//1

n=1 n=1
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so that pg =1 — A/u and

po=(1-2) (2) = (1= p) o = Geotalo)

where p = A/u (recall that for there to be a steady-state solution
A < p)and Geo(n|p) is a geometric distribution. The expected queue
length is 1/(1 — p). The probability of the queue being empty, i.e. the
cost of the queue to the service provider is (1 — p). Figure 12.7 show
the equilibrium distribution of queue lengths for a relatively benign
queue with p = A/ = 0.5 so that the expected queue length is 2, and
a more economical queue with p = 0.9 with an expected length of 10.

0.6
0.4
0.2 Exp (n|-3)
e B S B A B e

0 1 2 3 4 5 6

Queue length, n

Queue theory has very important applications and has been much
studied. The queue which we looked at goes by the name of M/M/1
where M (Markovian) indicates exponential waiting times and the 1
denotes that there is one service provider. Queues are covered in many
advanced texts on probability, e.g. Grimmett and Stirzaker (2001a),
as well as many specialised books just on queues.

12.3.3 Chemical Reactions

An important area of mathematical modelling is in studying chemical reactions.
The starting point for modelling chemical reactions is a set of reaction equations
together with the reaction rates, e.g.

05 x x 8By 2x +v Bax x40 (12.16)

where in the first reaction () Box implies that X is spontaneously produced
and in the last equation that X spontaneously decays (or, at least, we are not
interested in what X turns into). Chemically such equations look very strange, but
in modelling the biology of the cell we often use such equations as a shorthand
for a more complex process. When there are a large number of molecules we can
model the dynamics of the concentrations of the reactants as a set of couple
differential equations
d[X]

kX kX ks XPY] - k(X S = kX -k X Y)

Figure 12.7
Equilibrium
distribution of queue
lengths for
p=A/u=0.5and
0.9.
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where [X] and [Y] denote the concentration of reactants X and Y, respectively.
As reactions are usually stochastic events there will be fluctuations, but in many
situations the number of atoms are so large that these fluctuations are negligible.
Note that the speed of a reaction depends on its reaction rate, k;, and the product
of the concentrations of the reactants on the left-hand side of the reaction
equations. This is because these reactants all have to collide at a particular
location. Thus, for example, the rate of the reactions 2X + ¥ — 3X will be
proportional to the concentration of X squared times the concentration of Y
(two X molecules and a ¥ molecule must collide — we assume that the position
of reactants are independent of each other). In this reaction an X molecule
gets transformed to a ¥ molecule increasing the number of X molecules by 1
and decreasing the number of ¥ molecules by 1 (hence the constant factors in
the terms of the differential equations — in this case £1 as each reaction either
increases or decreases the number of molecules by one). The model is often
extremely accurate in the case when we have a large number of reactants. In some
situations however (often when modelling biological systems) the number of
reactants can be quite small and differential equations provide a poor description
of the observed dynamics. In this case, we can build a more accurate model by
considering individual reactions between molecules.

The probability per unit time of a reaction occurring is known as the propen-
sity. For the system described in Equation (12.16) the propensities are given by
a) =k ay = kyny a3:k—32n§(ny ay = kg ny
where nx and ny are the number of reactants, X and Y respectively, and where
Q =V N,, V is the volume of the reaction vessel and N is Avogadro’s number.
For a reactant Z, the concentration (in moles per unit volume) is given by [Z] =
nz/Q. If the change of concentration of a reactant Z (in the limit of large nz) is
d[Z]/dt, then the expected change in the number of molecules of reactant Z in a
time interval dz is given by

d[Z]

Thus, to obtain the propensities we multiply the term in the differential equation
corresponding to a particular reaction by Q and divide by Q for each concentra-
tion — hence the factor Q=2 in the propensity 3!. (When we write ) — X we
implicitly assume that the rate of producing X is proportional to the volume of
the reaction vessel — this would be true if X was being created by some precursor
P whose concentration remains constant over time.) In what follows I am going
to assume that concentrations are measured in nano-moles per litre. In this case
Q = 1077 V Nu. I will also assume the reaction vessels has size V = 10° N/;l litres
so that Q = 1 (for some cells this is a reasonable assumption).

1 If we are being even more careful then we would write a3 = k» nx (nx —1) ny since the probability
of two molecules of species X being in the same location is proportional to nx (nx — 1). You
might think there should be a combinatorial factor of a half, but by convention all such factors are
absorbed into the definition of reaction rate — k, in this case.
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We assume the reactions occur independently with probabilities given by the
propensities, a;. We can write down a master equation for the probabilities
Pum(t) = P (nx(t) = n, ny(t) = m). We consider a small time interval 6t, so that
the probability of two reactions occurring in the time period 6z is (67), which
can be ignored in the limit 6 — 0. For the above example,

Pam(t +61) = (1 — (ky + kan + k3 n®> m + kg n) 6t)pum(t) + ki pa_i.m(t) 6t
+ ko (n+ D)pstm1 (1) 6t + k3 (n — 1)?(m + 1)pu_1 a1 (t) 6t
+ky (” + l)an,m(t) ot

subtracting p, ,(f) from both sides of the equation, dividing by 67, and taking
the limit 6 — 0 we obtain the chemical master equation

d
prgi’tn(t) = — (ki +kyn+kyn® m+kqn) pum(1)

+ ki pr_tm(t) + ko (n+ D) ppatm—1(t)
+ k3 (n— 1)2(’” + D)pn—tme1(t) + kg (n+ 1) priim(t).

Although the chemical master equation provides a full description of the system
it is often impractical to solve. The state space is often far too large to enumerate
(it grows exponentially in the number of species involved in the reactions).
Instead it is often more convenient to perform a Monte Carlo simulation.

An efficient method for performing a Monte Carlo simulation of chemical
reactions was proposed by Dan Gillespie in 1977 and is known as the Gillespie
algorithm. Under the assumption that the chemical reactions are independent of
each other then the reaction events can be treated as a Poisson process (although
the propensities change after each reaction). The probability of the i’ reaction
occurring in time ¢ is just given by the exponential distribution Exp(t|e;) where
a; is the propensity (probability per unit time) of reaction i occurring. If we have
r reactions then

,
gy = E a;
i=1

is the propensity of any of the reactions happening. The Gillespie algorithm is a
real-time Monte Carlo simulation where at each step we compute the propensities
(which depends on the number of molecules for each species and the reaction
rates). We then generate a random deviate 7 ~ Exp(ay) (recall from Example 3.2
on page 52 that to we can generate an exponential deviate from a uniform deviate
U ~ U(0,1) using the transformation 7 = —log(1 — U)/ay). Next we select a
reaction with probability «;/«(. Finally we update the species number according
to the reaction that is selected.

|
Example 12.10 Brusselator

As an example of a Gillespie simulation we take the system given by

08 x x8y x +Y H3x x50



Figure 12.8 Gillespie
simulation of
reactions described
above, run for 500
time units. We have
slightly smoothed
the curves by only
plotting the curve
after the total change
in the two species is
at least five —
otherwise the printer
goes on strike.

388 Stochastic Processes

where k) = 1, ky =2, k3 = 0.02, and k4 = 0.04 (with Q = 1). As initial
conditions we take nxy = ny = 0. In Figure 12.8 we show a Gillespie
simulation for this system. The system is highly non-linear and has a
interesting flip-flop behaviour. It was first proposed by Ilya Prigogine
and colleagues at the Free University of Brussels and is sometimes
known as a Brusselator. The flip-flop behaviour is a consequence
of the fluctuations in a finite system — they are not observed in the
solution to the differential equations.
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Stochastic processes describe a sequence of random variables that evolve in
some random manner. These might be continuous functions such as Gaussian
processes or diffusion processes or they may involve points or events such as in
Poisson processes. They have a huge number of applications. We saw the use of
Gaussian processes as providing useful priors on functions used for regression.
Diffusion processes are useful for modelling functions that experience many
small kicks. They are particularly helpful as they allow us to use many techniques
from calculus and thus often supply a short cut to obtaining useful solutions.
Provided we are interested in scales much larger than the small kicks they give
excellent approximations. Thus, they are also used to model discrete Markov
chains (which we saw in Example 12.6) as well as many continuous time problems
such as those found in finance or real diffusion. In addition to diffusion processes
there are a lot of other important stochastic processes. One that occurs in many
problem are point processes, of which the simplest type are Poisson processes.
These are particularly important in one dimension where they can be used to
model the occurrence of independent events. These have important applications
in modelling queues and simulating chemical reactions.

Additional Reading

There are so many books on stochastic processes catering for different tastes.
The book by Grimmett and Stirzaker (2001a) covers probability and random
processes and is an established text. Gardiner (2009) is one of the classic texts on
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stochastic processes with a very comprehensive and up-to-date coverage of the
field. Another classic much loved by physical scientists is by van Kampen (2001).
This is a nice read although missing some of the more recent developments.

Exercise for Chapter 12

Exercise 12.1 (answer on page 441)
We want to show that for a positive-definite matrix K’ and its inverse L’ = K

given by
! _ K k /I _ 1—1 _ L l

the Equations (12.1) on page 354, and (12.2) on page 354 are identical. That is,

—1
—I"(L+o72) y
kT(K+O_2|)71y — T( ) —
1T (L—o—2)""1
_ I
1T (L—o—2)""1

/—1

k—k'(K+a 1) 'k

This is difficult to show using matrix identities. Instead, for a randomly generated
positive-definite matrix K’ and for a particular value of o and y show, using your
favourite matrix manipulation language (e.g. MATLAB, Octave, python), that these
two expressions give the same answer (up to machine accuracy).

Exercise 12.2 (answer on page 442)
Simulate a discrete time model for the evolution of stock prices

AS(t) = uS(t) At + o S(1) VAL

where  ~ M(0, 1) with u = o = Ar = 0.1, starting from S(0) = 1 up to7 = 10 and
t = 20. Repeat this multiple times and plot histograms of S$(10), S(20). Compare
this with the theoretical result for the system

dS(¢) = uS(r)de + o S(z) dW(¢)
given by

fs(,)(S(IO) =t) = LogNorm (s‘ (,u — "72) t, 0-21)

_ 1 e7(10g(s)7(y70'2/2)t>/(20'2 0

soV2nt

Exercise 12.3 (answer on page 442)
Consider a particle experiencing normally distributed perturbations in a quartic
potential

dXx(r) = =X (1) dr + dW(r).

Compute the stationary distribution f(x) = lim;—oo fx¢(x,7) using Equation
(12.12) on page 375, and compare it with a simulation of a discrete time system.
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Exercise 12.4 (answer on page 443)
Gillespie simulations are extremely easy to code. Simulate the set of reactions

= =0. =0.0001 =0,

05" x 0y X +y 0 x x 4%
starting from the initial condition nx = ny = 0 (assuming Q = 1). Write down
approximate stochastic differential equations for dnx(r) and dny (7) assuming that
the number of reactions that occur in a short time interval are given by a Poisson
distribution.
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A.1 Answers to Chapter 1. Introduction

Exercise 1.1 (on page 22): Consider an honest dice and the two events L = {1,2,3}
and M = {3,4}. Compute the joint probabilities P (L, M), P (=L, M), P (L,~M),
and the conditional probabilities P (LIM), P (M|L), P (-~M|L), and P (M|-L).
Compute (i) P (L,M)+P (L,~M), (ii) P (M|L) +P (~M|L), and (iii) P (M|L) +
P (M|-L).

Because the dice is honest P (A) = |A|/6, where |A| is the number of elements
(cardinality) of the set A. Thus P (L) = 1/2 and P (M) = 1/3. Then the joint
probabilities are given by

P(L,M)=P({3}) =5, P(-LM)=P({4}) =5, P(L,~M)=P({1,2}) =3.

The joint probabilities are symmetric (i.e. P (A, B) = P (B, A)), but, beware,
the conditional probabilities are not necessarily symmetric. Now the conditional
probabilities are given by

—M_E_l _P(L’M)_%_l
P(L‘M)_ P(M) _1/3_2’ P(M‘L)_ P(L) —1/2—3>
_P(-M.L) 13, CP(-L.M) 13,
Pﬁ”@-w-m—ia P(Mhl‘)_w_fﬂ_i'
Finally
i P(L,M)+P(L,-M)=4+3=4%=P(L)
i. P(MIL)+P(-M|L)=1+3=1
iii. P(M|L)+P(M|-L) =5+5=5/6

While for any events A and B, P (A,B) + P(A,—B) = P(A) and P (A|B) +
P (—A|B) =1, the sum P (A|B) + P (A|=B) may take different values depending
on the events. Sometimes this might be 1 (in fact, P (L|M) + P (L|-M) = 1), but
as we have seen in part (iii) this is just chance.

(There is a choice in the singular form for dice of either ‘dice’ or ‘die’. Following
my own personal usage, I’'ve gone with the newfangled ‘dice’ rather than the more
traditional ‘die’.)

Exercise 1.2 (on page 22): Let Dy and D, denote the number rolled by two
independent and honest dice. Enumerate all the values of S = Di + D, and
compute their probabilities. Compute E [S], B [S?], and Var[S]. Also compute
E [Di] = E [D,] and Var [Dy| = Var [D,| and verify that E [S| = E [D,] +E [D>]
and Var[S| = Var [D;] + Var D).

This is a rather tedious but straightforward exercise. Its serves the purpose of
illustrating that using properties of independence can significantly speed up
calculations.
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The only non-trivial part is evaluating the probability of S. We can compute this
by listing all pairs of dice rolls that add up to S. Since each dice has 6 possible
outcomes, the total number of distinct pairs is 6> = 36. The pairs adding up to 2
are {(1, 1)}, to 3is {(1,2),(2, 1)}, to 4is {(1,3),(2,2),(3,1)}, etc.

s 234567819 1071112
52 419 116]25|36|49 |64 |81 1]100]| 121 | 144
1 2 3 4 5 6 5 4 3 4 1
P(S=s) |3 | % | 36 | % | % |3 | % |3 | 3% | 36 | %

A straightforward if boring calculation shows that E [S] = 7, while E [$?] =
1974/36 so that Var [S] = 1974/36 — 7% = 210/36 = 35/6. For an individual dice

B[Di] =3 % B[of]=3-5-=%

i=1 i=1

[SSIEN]

S}

so that Var [Dl] =9 _ (1) =35/12. Thus E [S] = E [Dy] +E [Dy] = 2E [Dy]
while Var [S] = Var[D;] + Var[D,] = 2Var[Dy].

Exercise 1.3 (on page 22): Repeat the proof given on page 15 of the unconscious
statistician theorem

Bx[¢(X)] = 3 g(X) fx(X)
XeXx

starting from By |Y) using indicator functions.
As before we start from

Ex[¢(X)] =Ey[Y] =D ¥ fy(¥)
Yey
where we have
Frv)= 3 [¥ = s0] (0.
Xex

Substituting this in, we get

Ex[g(X) => v > [r=ex)] sxx)

Yey Xex

=Y N vy =) /x(x)
Xexyey

=S 0O Y rr =] =" fx(X)8(X)
Xex Yey Xex

where we have exchanged the order of summation and used
> ov[r=¢x)]=sx)
Yey

Although this follows the same steps as the proof given on page 22, it feels more
algebriac and requires less thinking to convince yourself that each step is correct.
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Exercise 1.4 (on page 22): A classic result in machine learning is known as the
bias-variance dilemma, where it is shown that the expected generalisation error
can be viewed as the sum of a bias term and a variance term. The derivation is an
interesting exercise in simplifying expectations. We consider a regression problem
where we have a feature vector, X, and we wish to predict some underlying function,
g(X). The function, g(X), is unknown, although we are given a finite training set
D= (X.,Y%)i=1,2,...,n), where Y; = g(X;). We use D to train a learning
machine m(X, D) (often the function m will depend on a set of weights that is chosen
in order to minimise the prediction error for the training set). The (mean-squared)
generalisation error is given by

E(D) = Ex [ (s(X) — m(X,D))z} .

That is, it is the mean squared difference between the true result, g(X), and the
prediction of learning machine, m(X, D). The expectation is with respect to some
(usually unknown ) underlying probability density. The generalisation error depends
on the training set, D. We are interested in the expected error averaged over all data
sets of a given size n,

E = Ep[E(D)] = En[Bx | (s(X) - m(X.D))’]].

In the bias-variance dilemma, we consider the prediction of the mean machine,
Ep [m(X ,D)]. The task in this exercise is to show that the expected error, E, is
the sum of two terms known as the bias and the variance. The bias is given by

Ex [ (¢(X) —Ep [m(X’D)Dz}

and measures the difference between the true function and the response of the mean
machine (i.e. the response we get by averaging the responses of an ensemble of
learning machines trained on every possible training set of size n). The variance is
equal to

Ex [ED [ (m(X,D) —Ep [m(X’ D)])zﬂ

and measures the expected variance in the responses of the machines. Hint: add
and subtract the response of the mean machine in the definition of the expected
generalisation. You may assume that the expectations over X and D commute

(ie. En[Bx [ ]] = Ex[Bo[-- ]}

This follows from straightforward algebra and using the properties of expecta-
tions.

EYE,p [EX [ (g(X) — m(X, D))ZH
2 g, [EX [ (8(X) — Ep[m(X.D)] +Ep|m(X,D)] — m(X,D))2H

@ED[EX{aMzaMbZH —B+C+V
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where a = g(X) —Ep[m(X,D)|, b = Ep[m(X,D)] —m(X,D), B = Ep[Ex [a?]],
C =2Ep[Ex[ab]],and V = Ep [Ex [p*]].

(1) By the definition of the expected generalisation given in the question.
(2) Adding and subtracting Ep[m(X,D)].
(3) Expanding out the square, (a + b)> = a®> +2a b + b*.

Tackling each term
B =8n[Ex [ (%) - Bo[m(x. D))
= Ex[ (s(X) - En[m(x.D)))’]

because EX[(g(X) —Ep [m(X,D)])Z} doesn’t depend on D so we can use

Ep[c] = c (although m(X,D) does depend on D we have already taken the
expectation so it no longer depends on the data set). We note that B is equal
to the bias defined in the question. We consider next the term

V=Ep [Ex [ (Ep[m(X,D)] - m(X’D))QH
N T

where we have used (u —v)* = (v — u)? with u = Ep[m(X,D)] and v = m(X, D),
and we have exchanged the order of the expectation. Changing the order of
expectations is nearly always innocuous, but there can be times when exchanging
the order of expectations gives different answers — a careful mathematician would
check whether this is allowed. We assume our expectations are suitably well
behaved. We observe that V is equal to the variance term given in the question.
Finally we consider

C 22Ep[Ex[(¢(X) — Ep[m(X,D)]) (Ep[m(X,D)] — m(X,D))]]
2 25y [Ep| (¢(X) ~ Ep[n(X. D)) (Ep[m(X,D)] ~ m(X,D))]
22Ex [ (¢(X) —Ep[m(X,D)]) Ep[ (Ep[m(X,D)] — m(X,D))]]
22Ex[(g(X) —Ep[m(X,D)]) (Ep[m(X,D)] — Ep[m(X,D)])] 20

(1) By definition of C.

(2) Exchanging the order of taking expectations (assuming this is allowed).

(3) Noting that the term g(X) — Ep[m(X,D)] is independent of D so can be
taken out of the expectation.

(4) Using the linearity of expectations (E [ f(X) + g(X)| =E [f(X)] +E [¢(X)])
and Ep [Ep [m(X,D)]| = Ep[m(X,D)].

(5) Observing that the last terms cancel.

In consequence, E = B + V, which is what we are asked to show. The question
illustrates that using the linearity of the expectation operator and exchanging
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the order of expectations can often be very powerful in simplifying complex
expressions. We also used the fact that once we have taken an expectation of
a random variable we are left with a quantity which is then independent of the
variable and so can be treated as a constant if we take a second expectation with
respect to that random variable.

Having taken the trouble to do this rather elaborate calculation, you deserve an
explanation of why this is a ‘classic result in machine learning’. Firstly, it has to
be admitted it is of little practical use as both the bias and the variance are usually
incomputable (if we knew g(X) then there would be little point trying to estimate
it using machine learning). However, the result provides a lot of intuition about
the difficulty of machine learning. If we use a very simple learning machine then
the bias would typically be very large while the variance would be small (we would
learn a similar machine given a slightly different data set). On the other hand,
if we use a complicated machine we might be able to approximate a complex
function g(X) well (giving a low bias), but we are likely to have a large variance
(the function we learn, m(X, D), is likely to be very sensitive to the data set). This
leads to the bias-variance dilemma. Most of the very successful learning machines
find some way of finessing this dilemma.

A.2 Answers to Chapter 2. Survey of Distributions

Exercise 2.1 (on page 40): What distribution might you use to model the following
situations:

1. the proportion of the gross national product (GDP) from different sectors of
the economy
This could be modelled with a Dirichlet distribution.
il. the probability of three buses arriving in the next five minutes
The answer to this is country specific. In the UK a reasonable assumption
might be that there are a large number of buses each with a small random
probability of arriving in the next five minutes. In this case, the Poisson
distribution would be an appropriate model. In other countries where buses
run to timetables this might not require a probabilistic answer.
iil. the length of people’s stride
These kinds of measurements are often well modelled by normal distribu-
tions.
iv. the salary of people
Given these are positive with a long tail a reasonable distribution might be a
Gamma or Weibull (or even a log-normal) distribution.
V. the outcome of a roulette wheel spun many times
As there are a number of different outcomes a multinomial distribution seems
reasonable.
vi. the number of sixes rolled in a fixed number of trials
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As there are two possibilities (six or not six) a binomial distribution is rea-

sonable. A Poisson distribution would also provide a crude approximation.
vil. the odds of a particular horse winning the Grand National

A beta distribution could be used.

Exercise 2.2 (on page 41): Assume that one card is chosen from an ordinary pack
of cards. The card is then replaced and the pack shuffled. This is repeated 10 times.
What is the chance that an ace is drawn exactly three times?

Here we have 10 independent trials with a success probability of 1/13 so that the
probability of three successes is given by Bin(3]10,1/13) = 0.0312.

Exercise 2.3 (on page 41): Assume that a pack of cards is shuffled and 10 cards are
dealt. What is the probability that exactly three of the cards are aces?

In this case the trials are no longer independent. The probability is given by the
hypergeometric distribution Hyp(3|52, 4, 10) = 0.0186.

Exercise 2.4 (on page 41): Show that for the hypergeometric distribution,
Hyp(k|N,m,n), converges to a binomial distribution, Bin(k|n, p), in the limit
where N and m go to infinity in such a way that m/N = p. Explain why this will
happen in words.
Writing out the hypergeometric distribution in full
() m! (N —m)! (N — n)! n!
Hyp(k|N, m,n) = ™ T m Rk (KL (N —m—n+ k) N

n

Judiciously collecting together terms we can write this as

n! m! (N —m)! (N —n)!
(n—kNk! (m—k)! (N—m—n+k)! N!

Hyp(k|N,m,n) =

As N and m go to infinity we observe

: mo_ ok : (N —m)! _ n—k
A G- N N
—n)!
lim (N —n)! _ 1 ’
N—o0 N! N™
thus
. ) n! m* (N — m)"=*
m/N=p m/N=p
n! k —k
= 1 n
(R

which is equal to Bin(k|n, p).

This should be no surprise. If we consider the example of m red balls in a
bag of N balls, then if we sample k we would expect in the limit as N and m
become very large that, irrespective of which balls we have already sampled,
we barely change the probability of choosing a red ball. Thus sampling without
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replacement (described by the hypergeometric distribution) becomes identical to
sampling with replacement (described by the binomial distribution).

Exercise 2.5 (on page 41): In the UK National Lottery players choose six numbers
between 1 to 59. On draw day six numbers are chosen and the players who
correctly guess two or more of the drawn numbers win a prize. The prizes increase
substantially as you guess more of the chosen numbers. Write down the probability
of guessing k balls correctly using the hypergeometric distribution and compute the
probabilities for k equal 2 to 6.

The probability of choosing k& of the six drawn numbers in six attempts
is Hyp(k|59,6,6). The probability of guessing: two correct numbers is
1454 125/15019 158=0.0975, three correct numbers is 234 260/22 528 737=0.0104,
four correct numbers is 3445/7 509579 = 4.587 x 104, five correct numbers
is 53/7509579 = 7.058 x 107°, and six correct numbers is 1/45057474 =
2219 x 1078,

Exercise 2.6 (on page 41): Show that if Y ~ Exp(l) then the random variable
X =AY (orY = (X/A)X) is distributed according to the Weibull density

. k k=1
Wei(x|4, k) = 1 (%) e~ (1",

Plot the Weibull densities Wei(x|1, k) and the gamma distribution with the same
mean and variance

G (1 +1/k) (1 +2/k)
W\ T+ 2/k) —T2(1 + 1/k)’ T(1 + 2/k) — T2(1 + 1/k)

fork =1/2,1,2, and 5.

Using the formula for the change of variables (see page 13)

) 3 a(x/A)k x\k ok ox\ k-l (/)
Wei(x| 4, k) = Exp (7> 1 ‘E(E) e :
as advertised.

ox A

The densities for the Weibull distribution with 4 = 1 and £ = 1/2, 1, 2, and
5 are shown in Figure A.l, together with the gamma densities with the same
mean and variance. We observe that the curves are subtly different (except for
k = 1 where both densities are equal to Exp(x|1)). For many empirical uses there
is often insufficient data to choose which of these two distributions is a more
accurate approximation. However, there are cases where there is sufficient data.
For example, in modelling wind speeds the Weibull distribution is often preferred.
Although the differences are small, they can make a considerable difference when
trying to infer the probability of large rare events (i.e. events that occur in the tail
of the distribution).




A.3 Answers to Chapter 3. Monte Carlo 399

S =4  —
2-5J| k=0.5 2.5J k=1
i
240 ———ee- Gamma 24 mmmme- Gamma
|
1.5 1.5
i
i I
054\ 054 o
0 ~_\--_‘__T _____ e = L 0 T ‘_\‘55—-5\-_-_ T L
0 1 2 3 4 5 0 1 2 3 4 5
95 k=2 95 k=5
24 === Gamma 21 A TTTTo Gamma
\
1.5 1.5 / \
\
14 - 14 7\
7N / \
0.5 / AN 054/ 0\
0 é T \:“ T ™ Ll 0 - T S T T ™ m~
0 1 2 3 4 5 0 1 2 3 4 5

A.3 Answers to Chapter 3. Monte Carlo

Exercise 3.1 (on page 58): Using the transformation method show how you could
generate a Cauchy deviate. The density of the Cauchy distribution is given by

Cau(x) = 71'(141—)62)

and the cumulative distribution is

arctan(x)

F(x):/_x Cau(y)dy=%+

T

Writing y = F(x) and solving for x we find
F~!(y) = tan (7r (y — %)) .

To generate a Cauchy deviate we first generate a uniform deviate U ~ U(0, 1)
and then set X = tan(x(U — 1/2)).

Exercise 3.2 (on page 58): Implement a normal deviate generator:

i. using the transformation method by numerically inverting the erfc function (see
Section 5.4 on page 90) using Newton—Raphson's method (alternatively the
third edition of numerical recipes ( Press et al., 2007 ) provides an inverse of the
cumulative distribution function (CDF) for a normal distribution);

ii. using the standard Box—Muller method;
iii. using the rejection method from Cauchy deviates.

Time how long it takes each implementation to generate 10° random deviates.

Figure A.1 Curves
for the Weibull
distribution.



Figure A.2
Illustration of using
the transformation
method to obtain a
geometric deviate.
Note that i can be
arbitrarily large.
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On my laptop I got timings of:

i. 365 ms (using the inverse-CDF function in numerical recipes);
ii. 51 ms;
iii. 115 ms.

I made no attempt to optimise the code.

Exercise 3.3 (on page 58): In simulating a simple model of evolution, one is often
Sfaced with mutating each allele in a gene with a small probability p < 1 (this task
also occurs in running a genetic algorithm). It is far quicker to generate a random
deviate giving the distance between mutations than to decide for each allele whether
to mutate it. The distance between mutations is given by the geometric distribution.
Denoting by K > 0 the distance to the next allele that is mutated then

P (K = k) = Geo(k|p) = p (1 — p)* .

Using the transformation method show how to generate a deviate K ~ Geo(p)
starting from a uniform deviate U ~ U(0, 1).

The cumulative probability that K < i is given by

P(K<i)=) Geolklp)=p) (1-p)'=1-(1-p)
k=1 k=1

where we have used that the sum of a geometric series is

i .
. 1 —x'
E Kl x+.. 44 = .
1 —x

=1

In the transformation method (see Figure A.2) we generate a uniform deviate
U ~ U(0,1) and then generate a geometric deviate I € N if

P(K<I-1)<U<P(K<I)
I—(1-p'<Uu<1-(1-p)
(1-p''>1-U>1-p
(I = 1)log(1 — p) > log(1 - U) > I log(1 — p)

1 1—
;1< log1-0)

<
~ log(1 —p)

P(K<i)=1—(1-p)
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or

I= {log(l — U)J +1
log(1 —p)
where | x| denotes the floor function, i.e. the largest integer less than or equal
to x.

A.4 Answers to Chapter 4. Discrete Random Variables

Exercise 4.1 (on page 72): Consider a succession of Bernoulli trials with a success
probability of p. The probability that the first success occurs after k trials is given
by the geometric distribution

P (First success after k trial) = Geo(k|p) = p (1 — p)*~!

( The geometric distribution is sometimes defined to be the probability of success
after k failures so is defined as p (1 — p)k where k = 0, 1, 2,...) Compute the
cumulant generating function (CGF) for the geometric distribution and from this
compute the mean and variance. If the probability of winning a lottery is 1075,
how many attempts do you have to make on average before you win?

The moment generating function is

N

M(k)=E[e'*] = Xn:e”‘p (1—p " =pe! S ((1—pe)' ™
k=1

__ pe!
T 1-(1-p)e!

where we have used the sum of a geometric progression. Thus, the CGF is
G(k) = log(M(k)) =log(p) +1 — log(l -(1-p) el) .

Taking derivatives

(1-p)e!
1—(1-p)e!

(1-p)e' (1-p)*e?
1—(1-p)e! " 1)?

p (1-(1—p)el)

G'(k)y=1+

G//(k) —

and recalling ,, = G™(0) we find

K1=G'(0)=1+1_”=1
p P
l—p (1-p?* 1-p
Ky = G"(0) = + = .
? © p P? P’

To win a lottery with a probability of winning of one in a million, the expected
number of trials before a success would be 1 million, which fits with many
people’s intuition. The standard deviation is fractionally less than 1 million.
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Exercise 4.2 (on page 72): Show that the probability of k successes until r failures
have occurred in a sequence of Bernoulli trials with success probability p given by
the negative binomial distribution

NegBin(k|r, p) = <k " L 1>pk (1-p)
(note that the last trial will have been a failure, hence the combinatorial factor).
Compute the CGF for the negative binomial and compute the mean and variance.
If you are playing a game of pure chance with four friends how many times do you
expect to win before you lose nine times. ( Note that NegBin(k|r, p) is a properly
normalised distribution so that
X (k+r—1\ 4 1
Z( k )p T (-py
k=0
which is true for any p. This is exactly the sum we need to compute the CGF.)

Consider a set of Bernoulli trials with k successes and r failures. A typical
sequence of k successes before the r”* failure would be

sffssfssffsfssssfsfsffssssffss f
~~

k successes, r — 1 failures rh failure

The probability of any particular sequence of k success and r failures is p* (1 —
p)", but the number of such sequences is (k+2_1). Multiplying these together we
get the negative binomial distribution.

The moment generating function is

M(l) = Z (k+1];— 1>elkpk (1—p)

- (M e = (120

k=0

where we used the summation formula that was deduced from the normalisation
condition. The CGF is

G(1) =log(M(1)) = r log(1 — p) — r log(1 fpel) .

Thus
l
rpe rp
/(1)_171761 Kl:G/(O)_l—p’
l 2,21 1
G'(I) = rpe rp-¢ _ rpe - G"(0) = rp )
T T () A (0

In a game of chance with a probability of winning of p = 1/4 then the expected
number of wins before you lose r = 9 times is equal to «; = 3. The standard
deviation is \/k3 = 2.
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Exercise 4.3 (on page 72): Consider a series of Bernoulli trials occurring at a time
interval 8t with a success probability uét (so the expected number of successes
in one second is ). Show that, in the limit 6t — 0, the probability of the first
successful event occurring at time t is distributed according to the exponential
distribution

f(t) = Exp(t|u) = pe ™"

( This is the waiting time between Poisson distributed events. It is used, for example,
in simulating chemical reactions at a molecular level — see Section 12.3.2.)

Consider a set of Bernoulli trials with success probability p = u 6t. A sequence
where the first success occurs after k trial would be

[ITIF T f I rrrrrrrrrrrrrrrrrs,

k — 1 failures first success

The probability of a success on the k*” trial is given by the geometric distribution
P (Success at time t = k 6t) = Geo(k|u6t) = ot (1 — por) 1.
In the limit 6t — 0

lim (1 — p6r)*~! = lim e k=D lea1-130) = Jipy e —(k=D)pst+0(61%) _ o —ut
6t—0 6t—0 6t—0

where ¢ = k 6t. The probability of the event occurring in the k”* time interval is
thus

f(t) 6t =P (Success at time t = k 6t) = ue H' 5t
where f(t) is the probability density. Thus,

Fl) = ue ™" = Exp(r|u).

Exercise 4.4 (on page 72): The cumulative probability mass function for a Poisson
distribution Poi(y) is given by

k=1
P (number of success < k) = Z Koo,

Starting from the normalised incomplete gamma function (see Appendix 2.A4)
defined by

1 o0
Q(k,,u) = (k—l)'/'u Zkil e *dz

obtain a relationship between Q(k, u) and Q(k — 1, u) using integration by part and
hence prove that

P (number of success < k) = Q(k, ).
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Using integration by part we find

O(k, u) 2 "= _1 0l / Fle2dz
*Ju

o |1 k-] /OO_ N k=2 2
_(kfl)![z ¢ L k-1t J, (k=1)z e dz

k—1 .—pu 1 00 k—1 o—pn
©) € 2 _ 0 €
g / Flerd 2 _C
u

(k— 1)' +Q(k_ 1,/.1)

(1) From the definition given in the question.
(2) Using integration by parts

b b
dv . b du
/a MdZdZ—[uV}a—/a Vadz

where u = z¢~! and d; =e %,

(3) Substituting in the limits (the upper limit vanishes) and cancelling the factor
k — 1 in the second term.

(4) By definition of the normalised incomplete gamma function.

Repeating this recursion

k—1,—p k—2 o —u
_MTe u=e
k=1 a—p —H
_HTe ule
A T +0(1, 1)
but
Oty = [ e tdzme
7]
Thus
k— —u
Ok, u) =
i=0

which is what we set out to prove.

Exercise 4.5 (on page 73): The probability of k or more success in n Bernoulli trials
with a success probability of p is given by

n
P (number of success > k) = Z (’il)pi (1—p)" ' =IL,(k,n—k+1).
i=k

Starting from the normalised incomplete beta function (see Appendix 2.B) de-
fined by

n! P n—k
Ip(k,n—k'f—l):m/o Z (1_2) dZ
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obtain arelationship between I,,(k,n—k+1) and I,,(k—1, n—k+2) using integration
by part and hence prove

P (number of success > k) = I,(k,n — k +1).

Using integration by parts

L(k,n—k+1)
) n! |: Zk—l(l_z)n—k+1:|l’
(k—1)!(n— k)! n—k+1 o
n! Pk —=1) 4, kel
- R S 1—2)" +
e At L (R A
o _ntptt (1 —p)n n! /P s e
ST oDk TGk, & 9T de

Sl _<k " 1) P —p) (k= 1,n—k - 2)

(1) Using integration by parts

b b
dv b du
/6; u&dz—[uv}a—[l Vdizdz

with u = zF~! and 3—; =(1—z)" k.

(2) Substituting in the limits (the lower limit vanishes — assuming & > 1) and
simplify the constant in the second term.

(3) Using the definition of the binomial coefficient and the definition of the
normalised incomplete beta function.

Using this recursion k — 1 times we get
Ip(k,n— k+1)= — (k n 1) pk—l (1 _p)n—k+1 o

- (Y)p(l = )"+ Ip(1,m)
but
Ip(1,n) = n/op(l — )" Mz =1-(1-p)™.

Thus

Ip(k,n—k+1) =1 —kZ_l <7) prl—p)t= nk (7) pr—pn.

i= i=

]

Exercise 4.6 (on page 73): In Example 4.1 on page 70 we calculated the probability
that there are no empty boxes when we randomly place n balls in k boxes. This
probability was
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Pneb = HZ Mult(n |np“an_nH

j=1n;>0

where p; = 1/k for, j = 1,2,..., k. Perform this sum using the integral
representation of the indicator function

ﬂzk:njznﬂz/oo e <;"j_n>;l‘:’r. (A1)
Jj=1 e

Note that the indicator function ensures that the total number of balls equals n, so
we can treat the sums as unconstrained. Having performed the sums we can expand
out the expression similar to what was done in Example 4.1 and then use Equation
(A.1) to get a simplified answer. ( Be warned the answer is not in an identical form
to that given in Example 4.1, although it can be made so by a change of variables. )

The probability of no empty boxes is

k n,~ k
2 Z Mult(n|n, p) 2 H Z [[ njznl]
Jj=1

nenk Jj=1{ j>0}
Vi, n;>0

SRS | ]

j=1 {n;>0} njt

Pneb

(1) From the definition of the problem.

(2) Using the definition of the multinomial distribution and using an indicator
function to allow us to replace the sum by an unbounded sum.

(3) Using p; = % and taking all constant terms outside the summation.

Using the integral representation of the indicator function, Equation (A.1), we
can write this as

0] n' / o (an n> dw
Pneb = 7~

j= 1{n >0} njt
k
iwn; oo .

o 2 [ on ] [y S ) e [ e (e 1) 2
n n;! 2 n 2
k —oo i \mo ke j=1 d

1<) ’i > eiwn (eei‘“ _ 1)kd7“)
k" 2

(1) Replacing the indicator function by the integral representation.
(2) Using Y, _, a"/n!=exp(a) — 1 where a = e'®.
(3) Using [Tr, A= A% where A =e®'” — 1.

The integral representation has allowed us to treat the sums as decoupled from
each other. This then allows us to sum the series for each n;. We now expand the
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term we have just summed (this may look like going backwards, but we will have
reduced k sums to two sums):

1) n! o

k
Pneb = kn e '@n E
—o0 -

Jj=0

k . iw . d(i)
Jel (_1)k—i
) ¢ (=1) 2r

k

o0

2 ’i efiwn
) b

@’L’Zk: k (_1>k—j§:ﬁ T et dw
kn ' T 2n

=0 N

(1) Using the binomial expansion for (a — b)* with a = e “andb=1.
(2) Using the Taylor expansion of the exponential.
(3) Interchanging the order of integration of summation.

Using the integral

we have

et B Q)25 () o 2

Jj=0

(1) Using 3, £(1) [ = n] = £(n).

(2) Cancelling factors of n! and bringing k~" inside the sum.

To show that this is identical to the answer we obtained in Example 4.1 we make
a change of variables from j toi = k — j; using (%) = () we find

i

Pueb = Xkoj (’l‘) (—1) (1 B ;)

To my mind this is a more natural calculation than Poissonisation, although I
admittedly have a lot of familiarity with this approach. The approach also readily
generalises and can easily provide good approximate answers through saddle-
point evaluation of the integral (which is often exact in some asymptotic limit).

A.5 Answers to Chapter 5. The Normal Distribution
Exercise 5.1 (on page 102): Let

1 n
Sp = 2 ;(Ui —1/2)

where U; ~ U(0,1). That is, S, is the sum of n uniform deviates normalised so
that it has zero mean and unit variance. Generate a histogram of deviates Ss and
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Figure A.3 04
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compare it to the density N(x|0,1) (see Section 6.2 on page 115 for details on
generating histograms). Repeat this for deviates Sy.
The histogram of S5 and Sy is shown in Figure A.3. We also show the logarithm

of the distribution to show the deviation in the tails of the distribution. As we
increase n we see that S, converges to the normal distribution although the tails

clearly differ. We could use S5 or Sjo as an approximation for a normal deviate.
The time to generate 10° deviates S5 was around 55 ms while the time to generate
10° deviates S;o was around 105 ms (cf. Exercise 3.2 where we can see that Ss is

quite competitive).

Exercise 5.2 (on page 103): Let
i=1
where C; ~ Cau are Cauchy deviates. Generate a histogram Ty and compare this

with the density Cau(x).

We show a histogram of T}y in Figure A.4. We note that this is also Cauchy

distributed.
Exercise 5.3 (on page 103): Show that the CDF for normal random variables

Y 2, dy
1) - /2
(x) /—ooe \/271'
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04 ; ; T Figure A.4
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can be written in terms of an incomplete gamma function by making the change of
variables y*/2 = t.

Under this change of variables y = v/2¢ and dy = d¢/v/2¢, however, we have to
treat the case x > 0 separately from the case x < 0. For the case x > 0

1 T2y dy
Ox)==+ [ eV P—
@=5+ .

2
1 ¥ o1 4t 1 2
_§+/0 e 2f (1/2,:2/2)

where y(1/2, x2/2) is the incomplete gamma function (see Section 2.A on
page 41). ButI'(1/2) = /7 so
1 P(1/2,x%)2)
D(x) = 3 + —

where P(a, x) is the normalised incomplete gamma function. The error function
is equal to erf(x) = 20(v/2x) — 1 = P(1/2, x%). For the case x < 0 we use

Y2y dy < dr
_ /2 _ t,—1/2
d)(x)—/_ooe ’ V2r x2/2e t 2ym
1/2,x%/2

The complementary error function for (x > 0) is equal to erfc(x) = 20(—v/2 x) =
Q(1/2> xz)'

Interestingly, the incomplete gamma function is the CDF for the Poisson (see
Question 4.4), normal, and gamma distributions.

Exercise 5.4 (on page 103): Marginalise out the variables y from the multivariate
normal distribution

())& D))

—~1/2
A B

e da—p ) AG—p)—(x—p) BO—py) =5y —py) T C—ny)
to obtain a density for the variables x.
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This is an exercise in completing squares

3 ) TAG )~ (- i) TB O~ )~ 50— )TCY — ay)

= Sl ) TAG )
- %(y —py +C'BT(x — )" Cy — 1, + C'BT(x — p1,))
b5 —n)BCB(x — g
= S u)(A-BCBN)(x —u,)
1

— 50 —uy + CT'B (¥ — ) TCy — p, + C'BT(x — ).

To integrate over y, we make a change of variables z =y — p, + C'BT(x—u,)
so we are left with an integral

> T
/ e 1% Czdz:|27rC|1/2
—o00

where we have used the result for the Schur complement

A B
2”(BT c)
Then

o= [ rerenss= [ ()] () (& &) ) o

=27 (A - BC™IBT)|12¢—3(x—n) (A-BCTIBN)(x—py)

=27C|x 27 (A —-BC~!BT)|.

= N(x|ux, (A — BC*IBT)*I).

Using the formula for the inverse of a partitioned symmetric matrix, Equation

(5.6),
1 _(A B
o= <BT C
then
5 - (A-BC'BT)! —~(A-BC'BT)"'BC!
“\-c'BT(A-BC'BT)! (C-BA-'BT)! :

Thus for a distribution

rerte =) | G) (21 2)

the marginal distribution is

Fr(x) = / Frx(xy)dy = Mx|pe. Ey).
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Exercise 5.5 (on page 103): Let U = §? = S| X? where X; ~ M0, 1), show that
U is chi-squared distributed

YR n 1\ _wleui
fuu) = x“(n) —Gam<”’2> 2) T 22T (n)2)

We consider the probability of S being between s and s + ds (i.e. the probability
of having a radius from the origin between s and s + 4s)

" Lo y2 dX;
fs(s)6s =P (s <S<s+6s =6s/6 2N " x2 e X X ==L,
(s)ds =P ( ) Elj H1 e

The difficulty of making the change of variables is to compute the Jacobian.
However, this is just equal to the surface area of the n-dimensional hypersphere
of radius s times ds. The surface area of the n-dimensional hypersphere of radius
sisequal to S, s"~! where S,, is the surface area of the n-dimensional hypersphere
of radius 1. Thus,

S Sn—l e —52/2
n

fs(s)ds = TRE ds;
and making the change of variables u = s so that du = 25 ds we find
du A\

un/271 e —u/2 du.

fulu)du = fs(s)ds = fs(Vu)

We note that

2vu  2Q2m)nn

/ W le "2 du = 2" T (n/2)
0

so that for £, (u) to be normalised requires S,, = 2 7/?/T'(n/2). This is a relatively
painless way of finding the surface area of a unit hypersphere in n dimensions.

A.6 Answers to Chapter 6. Handling Experimental Data

Exercise 6.1 (on page 125): Generate 50 deviates X; ~ N(0, 1) and 50 deviates Y; ~
N0, 4) and compute the empirical means and variances for the X and Y variables.
From this compute the t-value and the corresponding p-value using Welch’s t-test.
Repeat this n = 10° times recording the p-values. Sort the p-values such that the
pair (t.,py) has

n<tH<t3< <t <<ty

Note that the p-value is a monotonic function of the t-value so it is sufficient to sort
out the t-values. Recall that the p-value is defined such that, if the null hypothesis
is true (i.e. the two sets of deviates have the same mean, which in our case is true),
then P (|T| > tr) = p,. Thus, we would expect that a proportion p, of the sample
have t-values greater than t,. Empirically this proportion is (n — r)/n. Thus, if we
plot p, versus 1 — r/n where r is the rank of the t-value we should get, roughly, a
straight line. Plot this (it helps to do this on a log-log plot ).
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Figure A.5 The 1 T T T
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Figure A.5 shows the results of the experiment described. We can see that the data
follows more or less a straight line. Note that on the right of the figure we have
a lot more data and the line is straight. On the left we only have a small amount
of data to determine the ranking. The wiggles are due to sampling errors (if we
use 10 times as much data we get a straight line down to a p-value of 1079).

It is worth taking time to understand what this graph means. We are simulating
the null hypothesis a million times and plotting the p-value versus its rank (i.e.
the frequency with which it happens). This is, as it should be, a dead straight line
(up to statistical fluctuations) — note that this is a log-log plot, but it has gradient
1 so this would also be a straight line in a linear plot. It clearly shows that low
p-values will occur by chance even if the null hypothesis is true. One paper in 100
that claims a significant result because of a p-value of 0.01 or less is going to be
wrong! This, however, is what the scientific community has agreed as acceptable.
However, as soon as you do any kind of selection (e.g. collecting just enough data
to get a required p-value) then your significance claim is invalid. It’s a good job
that never happens.

(Gam(al3, 2) Exercise 6.2 (on page 126): Repeat the experiment described in Exercise 6.1, but for
X;, ¥; ~ Gam(3, 2). As our random variables are not normally distributed we have
no right to believe in the p-value for the t-test. Interestingly, the p-value is not a bad
estimate of the probability of the t-value occurring. This gives some confidence that

01 2 3 4 5 even when the data is not exactly normal the p-values of the t-test are not always too
misleading. Of course, it is always possible to cook up examples where the p-values
are significantly underestimated, particularly for thick-tailed distributions.

0.4

0.2

Using gamma deviates and repeating the ¢-test we get the results shown in
Figure A.6. In this case we find the p-values are not too inaccurate at least when
they are large. Note that in this case the p-values are conservative in that they
predict a slightly larger p-value than the true probability P (|T| > ¢).
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1 — — —
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Frequency, 1-r/n

Exercise 6.3 (on page 126): Recall in Section 2.4 on page 38 we observed that many
distributions, including the normal and gamma distributions, could be written in the
form

Fx(xn) = g(n) h(x) e *®)

where u(x) are some functions of our random variables and i are ‘natural parame-
ters’. We showed that the maximum likelihood estimators for the natural parameters
satisfy

n

~Vlog(sm) = 1 > ulxa). (A2)

i=1

Compute V log(g(n)) and u(x,) for the normal and gamma distributions and show
that they are consistent with the maximum likelihood estimators we obtained in
Section 6.4.

The normal distribution, A{x|u, 0%), can be written in the form of the exponen-

tial family as
()= (i) ()= ()

g(m) = /=24 h(x)

Thus

Figure A.6 The
p-values are plotted
against the
proportion of
t-values greater than
the observed z-value
for gamma
distributed data.
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Using Equation (A.2)

S
=

Xi, 5’2+ﬂ2=

i=1

~to

S| -
S| -
=

=

1l
—_

in agreement with the result we obtained in Section 2.4.

The gamma distribution, I'(x|a, b), can be written in the form of an exponential
family with

(Z;) - (a_—b1>’ (Z;Eﬁi) = (log?x)) g(n) = (F_(zzl):z;)l h(x) = 1.
Thus

log(g(n)) =(m+1) log( — 771) — 10g(l"(772 + 1))

m+1 _a
V1 = m — b .
os(8(n)) <log( —m) " W2+ 1)) (log(b) - l!f(a))
Using Equation (A.2) we have

1 & I <
= in, Y(a) —log(b) = . Zlog(xi);
i=1 i=1

again in agreement with the result we obtained in Section 2.4.

Sl Qo

A.7 Answers to Chapter 7. Mathematics of Random Variables
Exercise 7.1 (on page 176): Use the Cauchy—Schwarz inequality to show that

Pearson’s correlation

E[X-E[X)(Y-E[Y])] _ Cov[x.

Var[X] Var[Y] \/Var[X] Var|Y]

satisfies —1 < p < 1.

Using the Cauchy—Schwarz inequality
cov[x,¥]" =B [(X —E[x]) (v ~E [¥])]’
<B[(X-E[x))?] E[(v - B [])*| = Var [x] Var[t].

Thus, p*> < lor —1 < p < 1. Equality holds when X is proportional to ¥ in which
case p = *1 (i.e. X is either completely correlated or completely anti-correlated
with Y).

Exercise 7.2 (on page 176): Using the fact that g(u) = (e — 1 — u)/u® is

monotonically increasing, show that if X; — E [X;| < b then

Var [X,]
b2

E{e/l()(i—E[Xi])} <1+ (ebt—1-0b2).
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Assuming X; are independent variables and defining S, = > | X; and p = E [Sn]
and using the fact that

P(Sp<pu+t) < e V), () = m/?x/lt - log(E {e’l(s”_")D

derive Bennett’s inequality

2
P(Sn S,u+t) < exp (—;h(f_;))

where o> = Var [S,| and h(u) = (1 +u) log(1 +u) — u.

To prove Bennett’s inequality we start (as usual) from the Markov inequality

E [e/l (Sn —.u)]

]P’(Sn—,uzt) =P(e/l(5,ﬁu) Ze’“) < — — oY1)
where A > 0 and
y(A,1) =2t —G(Q), G(A) = log(E [e’l(sn’”)D,

As this is true for any 1 > 0 we have that P (S, — u > 1) < exp(—y/(r)) where

1) = b(A,1).
Y (1) = maxy(4,1)
(The key to proving Bennett’s inequality is the observation that g(u) = (e* — 1 —
u)/u? is monotonically increasing. To show this we note that

e“—lize“—u—l_e“+lize“—l

1N
g'(u) = u? u3 u? u3

but

e +1 e —1

To see this we multiply both sides by u®/(2(e* + 1)) giving

u e —1 u
u ifu>0 “
27 eyl M7 2= e+l

Thus g’(u) > 0, showing that g(u) is monotonically increasing.)

Getting on with the proof we notice that as X; — E [X;] < b then by the
monotonicity of g(u)

g (Xi —E[Xi])) < g(1b)
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or

e Xi—EX:]) _ 1 _ ) (Xi—E[Xi])<e/U’—1—/lb
A2 (Xi—E[ i])2 - A2 b2

Multiplying both sides by A2 (X; — E [X;])?> and adding 1 we find

eA(Xi—E[Xi]) _ AXi—EX]) <1+ (X; —E[X ]) (eﬂb_blz_/lb)

Taking expectations with respect to X; we find

a1
B [e! 06-200) < 14 Var[X ]<eb12“’)

or

]Og(E {e/l(Xi—]E[X,'])]) < log(l + Var [Xl] (e/lb_blz—/lb)>

w1
< Var|[X;] (eblz/lb>

where we have used the fact that log(1 + x) < x. Summing both sides

ii}log( [/l(x ~E[X D ZVar (eu’—blz—/lb>

and using the independence of X; and the definition S, = >, X;
2
A(Sn— g
log(E ¢4 7)) ) = G(4) < 75 (™ — 1 - 2b)
where =37 | E[X;] and 02 = 3", Var[X;] is the variance of S,,.

The rest is simple algebra. By replacing G(1) by an upper bound, G, (1), and
choosing A to maximise

u(A,1) = At —Gy(d) = At — 1 - 2b)

w7 (e

we obtain a lower bound for ¢ (¢). Thus we set the derivative of i, (1,1) to zero

7! _ 6Gu(/l) Oj Ab
Ul(A,1) =t — -3 (et? —

=t
01

giving

/1*—110 1+2
8 o2 )’
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Thus

+
b b

—0——2 1+Q lo 1+& —E—U—zh b
T o2 & o2 b b o2

where h(u) = (1 +u) log(1 + u) — u. So,

2
P(S,, > ,u+t) < exp(;h<;g)>

which is what we set out to prove.

Exercise 7.3 (on page 176): Use Taylor’s expansion to second order to show that
2

gu)=(1+u) 10g(1+u)—u—m20,

hence derive Bernstein's inequality from Bennett’s inequality.
-1 012 3 45

To understand where this inequality comes from we note that log(1 + u) = u —
u?/2 +u?/3 — ... so that the Taylor expansion of h(u) = (1 + u) log(1 +u) — u
equals

M2 M2 M4 u2 u M2
h(u)z 57Z+E+0(u5)=? (13+6+0(M3))

Thus, we are asked to prove the term in the bracket can be lower bounded by
1/(1 + u/3). To show this we note that

/ u2/3+2u " 1 1
g(u)zlog(1+u)—m g(u>:1+u_(1+u/3)3.

Now g(0) = g’(0) = 0 and using the Taylor expansion to second order

u? u?

g(u) = 8(0) +ug'(0) + 5¢"(¢) = 58"(¢)

where ¢ lies in the interval [0, #]. But again using Taylor’s expansion to second
order

1

(I +u/33 =1+u+u’~ (1 +§>

3 3
where once again ¢ lies in the interval [0, u]. As a consequence for u > —3 (note
that h(u) is only define for u > —1) we have that (1 +u/3)* > 1+ u, which implies
that g"(u) > 0, thus g(u) > 0 or h(u) > u?>/(2(1 + u/3)). Substituting this into
Bennett’s inequality we obtain Bernstein’s inequality.

This question illustrates the power of Taylor’s expansion in proving bounds
between functions. Admittedly, the algebra is tedious and error-prone. Using a
package such as Mathematica can be a great aid if you struggle with accurately
performing algebraic manipulations.
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Exercise 7.4 (on page 176): In Example 7.3 on page 143, we showed, using the
Cauchy—Schwarz inequality, that variances have to be positive. Use Jensen's
inequality to obtain the same result.

As x? is a convex-up function, Jensen’s inequality implies that
Bx]" <E[x}.
Since the variance is given by
var[x] =E [x*] - B [x]’
it is always positive (or zero). The condition for Jensen’s inequality being an
equality is that X is a constant, which is the condition for the variance to vanish.

Exercise 7.5 (on page 176): One way of defining the median, m, of a distribution is
as the value that minimises the mean absolute error

m = argminE [|X — c[].
c
Use Jensen’s inequality for the absolute function and for the square to show that the
median satisfies the inequality
u—m| <o

where u=E [X } is the mean and o the standard deviation of the distribution.

From the definition of the mean
= ml = [E[X = m]| < B [1X - m]
where we have used Jensen’s inequality for the absolute function (which is a
convex-up function) so |E [X]| < E [|X|]. But by the definition of the median,
m, we have that for any ¢
E[X — ml] <E[1X ]
so this inequality holds when ¢ = u

E[|X —m|] <E[|X — ul].

Finally, by Jensen’s inequality E [X}z <E[X?] orE [X] < 4/E [X?] so we have

lu—m| <E[|X —ul] <\/E[(X-p? =0

In passing, it is not at all obvious (at least to me) that the median should minimise
the mean absolute error. To show that this is the case for a density fx(x), let

MAE(m) =E [|X — m|] = /OO |x — m| fx(x)dx

— 00

_ /Oo(x ) fx(x)dx — /m (x — m) fx(x) dx.

m — 00
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To find the minimum of MAE(m) we consider its derivative

%’5(’") = = [(x =m) fx ()] o — /moo Fx(x)dox = [(x = m) fx ()] oy

+ /m Sx(x)dx

= — /mngx(x) dx+/: Sfx(x)dx.

Setting AMAE(m)/dm = 0 implies

| ras= [ et

which is the defining equation for the median. As we can represent the probability
mass function for a discrete distribution as a density with a sum of Dirac deltas,
this shows that the result holds also for discrete distributions.

Exercise 7.6 (on page 176): By considering the second derivative show that the

generating function G(4) = log(E [e**]) is a convex-up function of A.

The first two derivative of G(A) are

cw- i ()

Using the Cauchy—Schwarz inequality, E [A B]2 < E [A%] E [B?], we have
B [Xeax]2 -F [Xe/lX/2 % e/lX/Z]z <E [Xzeax} E [e/zx]

Thus

2

E [X e™X] _ E[X?et]
E [eax] - E [eax] ’

from this we deduce G’’(1) > 0. This is the condition required for G(1) to be a

convex-up function.

Exercise 7.7 (on page 177): Show that the negative logarithm of the partition
Sfunction

G(B) = log(2), Z=Y e FE®
X

is a convex-up function of B, where the Boltzmann probability of the random
variable, X, is given by
efﬁE(X)

p(X)=—
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Figure A.7 Free E(T)
energy per spin of 1
the two-dimensional
Ising model (with the
Boltzmann constant
ksetto 1).

Show that for any function G(B) (where B = 1/(kT) — it is common to work in a
systems of units where k = 1 so that 8 = 1/T, i.e. the inverse temperature)

’TG(1) 1

_ 1
aT? FGH(T)

and hence show that the free energy defined by

f=—kT log(ZeE(X)/kT>
X

is a concave (convex-down) function of T.

Define G(8) = log(Z) then

dox E(X)e PEX) _

G'(B) = S o FEX ZX:E(X)P(X) = —E [E(X)]
while
n(g) - Sx EXPeFED (5 E(X)e PEON?
GB) = XZXeiﬁE(X) - ( Xer*ﬁE”‘) )

2
= Z E(X)’p(X) — (Z E(X)p(X)) = Var [E(X)] > 0.
X X

Thus, G”(B) is convex up. Taking a derivative of T G(1/T) we find

T 1 1
P o Gyere (D GE -6 - 40 ()
TG (L 1 1 1 1
5T2<T) = =G (1) + G (1) + 56" (7) = 56" (1) -

Therefore, taking f(T) = —kT G(,%T) we have

A% f 1

W = —ﬁVar [E(X)] S 0,
implying that the free energy is a concave (convex-down) function of 7. We show
the free energy for the two-dimensional Ising model discussed in Chapter 10.
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Exercise 7.8 (on page 177): Use Jensen's inequality to show that the Kullback—
Leibler (KL ) divergence

L(fllq) = Zfllog( )

is greater or equal to zero (the variables f; and q; are probabilities ).

Since the logarithm is a convex-down function, E [log(x)] < log(E [x]) or
E [ —log(x)] > —log(E [x]), thus

L(fllq) =Ef{log<f{_>} > log(Ef[ﬁD = —10g<21_:fi;1;>

:—10g<2g,>— log(1) = 0.

A.8 Answers to Chapter 8. Bayes

Exercise 8.1 (on page 255): Harry the Axe is one of ten suspects found at the
murder scene. On searching Harry a rare watch was found on him identical to that
owned by the victim. The victim’s watch is missing. Harry claimed it was his, but
only 0.1% of the population has a similar watch. What is the probability that Harry
is the murderer given the new evidence?

Assuming the prior probability of Harry the Axe being guilty is P (guilty) =
0.1, the probability of Harry having the watch given he is the murderer
is P (Watch\guilty) = 1 (you can argue about this, but it does not make
much difference what value you use here provided it’s not too small), while
P (watch|—guilty) = 0.001, then by Bayes

P (watch|guilty) P (guilty)
P (watch)
P (watch|guilty) P (guilty)

P (guilty|watch) =

P (watch|guilty) P (guilty) + P (watch|—guilty) P (—guilty)
1 x0.1
~ 1x0.1+0.001 x 0.9
That is, the evidence has increased the chance of his guilt from 10% to 91.7%.

=0.917.

Exercise 8.2 (on page 255): Show that the Dirichlet distribution is a conjugate
prior for a multinomial likelihood and derive the update equations.

We consider a likelihood Mult(N|n, p) where N = (Ny, N, ..., Ni) are our
observations, 7 is the total number of observations, and p = (p1, p2, ..., px)
is the probability of the observations happening in a particular class. Our task is
to estimate p from our observations. We use the Dirichlet prior Dir(p|a@), where
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a = (a1, @z, ..., ar) is a set of parameters encoding our prior belief. The
posterior will be

f(pIN, @) x Mult(N|n, p)Dir(p|a)

k k
S (prv') (HPE’ ) HPN *% =1 o Dir(p|N + a).
i=1 i=1

In the derivation we have ignored all terms not 1nvolv1ng pi- The update equations
are thus @’ = N + a.

The reason for ignoring the terms not involving p; is that the normalisation will
sort that all out. However, it is sometimes worthwhile seeing this explicitly. So
this is a repeat of the previous calculation where we keep all the terms. Bayes’
rule tells us

f(p,N|a)
P (N|e)
where the joint probability is the product of the likelihood and prior
f(p.Nl|a) = Mult(N|n, p)Dir(p|a)

(o115 (52 11 )

Nl+ar,-71
=n! r(zal> H 71\;' (@)

To compute the probability of the data we use the integral

k
[1T(xi)
/ pr,—l — t:lk (A3)

pENK i=1 F(Z)Cl>
i=1

where AX is the simplex representing all allowed values of p. This integral has to
be true for the Dirichlet distribution to be normalised. For readers who want to
see all the tiny details we derive the integral below. Continuing for the moment
with computing the probability of the data we observe that

P (Nla) = / f(p.Nla)d

f(pIN, @) =

pEAK
)
— ! <Z]_(: ) ﬁl"N+a,.

(S an) e M

i=1
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Thus the posterior is

f(pIN, @) /(. Nle) F(Zk: (N; + > ﬁ P = Dir(p|N + a)

)= ————— = e =
P (N|e) P o

where many of the normalisation terms cancel.

Here we use results

We return now to the integral in Equation (A.3). This can be proved directly i o
from integration in

through a rather fiddly set of multiple integrals (for the case k = 2 this is just the _
o ) . ] the complex plane.
beta function integral which we solved in Appendix 2.B on page 43). We present  r1 oy are not
a different derivation. We can rewrite the integral as Sfamiliar with this
then you have to

n 7 k k take the integral
_1 i—l ake e ntegral on
/ Hp dp = /dm ---/dpk Hp?‘ 5(21% - 1) faith.
peak =1 0 0 i=1 i=1

where 6(-) represents the Dirac delta function. We using the integral representa-
tion of the Dirac delta function (see Appendix 5.A on page 103)

6(x)=/ e—or 40

—ico 2ri

(note that the integral is along the imaginary axis). Using this representation we
can rewrite our integral as

k
o @ .Zp"_l) dw
/ ldP /dPl /dpk HP ! 1/ € (,:1 ﬁ

PEAK i= 1
100 w LL) x_] ops
[ [ e
- 2r

—ioco i=0

Use the standard integral representation for the gamma function

i (x1)

—1 — X I'(x;
/pf e “Pidp; = a)";
0

(see Appendix 2.A on page 41) so that

[ T tan= (1Tre) [ 0

peak =1

where xo = Zle x;. Finally we use the integral representation of the reciprocal

of the gamma function (see Appendix 2.A on page 41 once again) g )
1 F
= — T aX d I
o 2xif.” ¢

where C is the Hankel contour. Note that as there are no poles away from the
branch cut so we can distort the Hankel contour to C’ that runs along the
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imaginary axis. As the integrand vanishes in the limit |x| — oo this integral is
equal to

I
M@ 2xi)ae” © 0
Using this then leads to the result given in Equation (A.3).

Exercise 8.3 (on page 255): Suppose we have an experiment with k possible
outcomes. Consider performing n independent experiments. What is the likelihood
of the n experiments have outcomes N = (N1, Ny, - -+, Ni) if the probability of a
single outcome is given by p = (p1, p2, -+ , px)? Suppose we want to estimate p
from our observations N. What are the maximum likelihood probabilities? Show
how using a conjugate prior to encode our prior beliefs about p will modify the
expected value of p given our observation (the answer to Exercise 8.2 will be of
use).

We consider making » independent observations of an experiment with k possi-
ble outcomes. We denote the result of the experiments by N = (N}, Na, -+, Ny)
where N; is the number of times outcome i occurs. We assume that the probability
of the outcomes are given by p = (py, p2, -+ , px) where p; is the probability
of the outcome i occurring. Then the likelihood of N given p is given by the
multinomial distribution, Mult(N |n, p) (see Section 2.3.1 on page 35).

To compute the maximum likelihood probabilities we have to maximise the

multinomial distribution subject to the constraint Zle pi = 1. To compute this
we consider the Lagrangian

k
L =Mult(N|n,p) + 1 <Zp,- - 1)

i=1
where A is a Lagrange multiplier which has to be chosen to ensure that the
constraint is satisfied (see Appendix 7.C on page 182). The maximum likelihood
is given by

oL & P * Ny pN
= n! <12 p;i—1 =nl = 4 21=0
api Opi ,Hl j! ; ' pi jHl Nt

or

Summing both sides from i = 1 to k and using the constraint Zle pi = 1 and
the fact that there are n observations so Zle N; = n we find
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so that

N;
pi=—.
n
In other words, the maximum likelihood probability is just equal to the factions
of the samples with outcome i.

The maximum likelihood probability, although very natural, suffers from the fact
that we would infer p; = 0 if we had never seen the event occur. This is actually
a sensible answer if we really have no prior information. The probability that
if we toss a coin it turns into an elephant (or any other random outcome you
think of) should probably be given zero probability. However, we usually consider
outcomes that we have some suspicion might happen. In this case we would want
to assign a prior probability to the outcomes. The most convenient prior to use is
the Dirichlet prior Dir(p|a). For example, we might choose «; = 1 for all i. This
corresponds to the case where we consider all probabilities p € A¥ to be equally
likely. (It is not the uninformative prior «; = 0, but then we believe it is worthwhile
to consider these outcomes.) As we showed in the answer to Exercise 8.2, using a
Dirichlet prior the posterior probability for the probabilities will be Dir(p|N +a).
Thus, after making the observations, N, the expected value of p is given by
N; + a;

Epi] = —

> (Ni +ai)

4

If we compare this to the maximum likelihood values for p; we see that the counts
N; have been increased by «;, which are often referred to as pseudo-counts. In the
case when we used «; = 1 for all i then the number of times we observe event i
is increased by 1. In many algorithms using pseudo-counts this can make a very
significant difference since if n p; is small it is quite likely that N; = 0 and the
maximum likelihood estimator would give p; = 0 — this is often a much stronger
statement than we want to make. (If we have never seen a spam email containing
the word ‘banana’ we don’t necessarily want to conclude that the probability of a
new email containing the word ‘banana’ cannot be spam — something that many
models may conclude if we don’t use pseudo-counts.)

Exercise 8.4 (on page 255): Equation (8.4) gives the posterior probability for the
mean and variance given a set of data D = (X, Xo, ..., X,,) and assuming an
uninformative prior. Show that the marginal created by averaging over the variance
is distributed according to Student’s t-distribution

')

f(uD) = /000 f(w7|D)dr =T (n(ﬂ—ﬂ)

VS
with
1< n 1 -5t
/'Alz* X, §= (leﬂ)a T([|V): v 1+%
n i=1 i=1 \/DB(%’Z) ( )



Figure A.8
Frequency of
occurrence of the
most significant
figure for the
population of 238
countries. The red
dots show Benford’s
law.
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From Equation (8.4):
f(u,7|D) = Mulfs, (n7)~") Gam(7|5,

~—

n
i \/ﬁ(n) (i)z T A
V2rT(%
2

Marginalising out 7 (using /7 = I'(3))
h _Vﬁ(S)g/“” 1t e (BU3)
/0 f(#aT|D)dT—mr(%) 7 ; T 2 ¢ dr
\/ﬁr(%l) (S>’21 Soni,_ )2 _nTH
rmrn (2) (3 36-7)
L <1+"<ﬂ—ﬁ>2)_T:T(”(ﬂ—ﬂ) n)
SB(3.5) * VS

where T(X|u) is (Student’s) ¢-distribution. Note that, for small n, the ¢-
distribution has very large tails (reflecting the fact that we initially know nothing
about the variance). For larger n the ¢-distribution quite rapidly converges
towards a normal distribution.

Exercise 8.5 (on page 255): Obtain some data, e.g. the area of different countries,
their population, physical constants, etc., and plot the frequency of the most
significant figure. Compare this with Benford's law.

In Figure A.8 I have done this for the population of 238 countries. Note that it
shouldn’t really matter which set of data you have used.

030 -°

025

0.20 |-

0.15

0.05 |- ©

]

1 2 3 4 5 6 7 8 9

Exercise 8.6 (on page 256): Show that a scale parameter, o, of the form

fx(x|o) = $ gx (%) turns into a location parameter under the change of variables
X =e?.
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Use the usual change of variables
dx e” ’ —log(o —log(o
fr(y) =g xO)le) = ;gX<%) = eV los( gy (ey tos( )) =gr(y — )

where gy (y) = e gx(e”) and u = log(o).
If we have a variable X € (0, co) it is sometimes more convenient to work with
the unconstrained variable Y = log(X) € (—o0, 00).

Exercise 8.7 (on page 256): Show that the uninformative prior for a probability,
P, transforms to a uniform prior for the log-odds (logit) parameterY = log(%).

The uninformative prior for a variable, P, in the range (0,1) is fp(p)
o p~ (1 = p)~! (recall this is an improper prior). Again use the usual change of
variables

ﬁm=%n@

but invert the logit function

1 dp

owit— (v = dp _ 1 _
p=logit™ (y) = 7= d p(l—p)

so that
fr)xp(l—p)xpt(l-p)~'=1

If we have a variable P € (0, 1) it is sometimes more convenient to work with the
unconstrained variable Y = logit(P) € (—oo, c0). This possibly provides a more
succinct argument for believing that fp(p) o< p~ (1 — p)~! is an uninformative
prior for random variables confined to the interval [0, 1].

A.9 Answers to Chapter 9. Entropy

Exercise 9.1 (on page 290): Which has the most uncertainty: rolling an honest dice
or tossing three fair coins assuming

i. you care about the order of the results;
ii. you only care about the number of heads.

We use the entropy as our measure of uncertainty. For an honest dice

6 6
1 1 .
Hgice = — ZP[ log, (pi) = — Z I3 logy (6) = log,(6) = 2.585 bits.
i=0 i=0

For two coins we have
1. The outcome of each coin is 1 bit. As there are three independent coins the

total uncertainty is 3 bits.
ii. If we only care about the number of heads then



Figure A.9 Plot of

1og< (f"n)> /n, versus
f, and the logarithm
of the Stirling
approximation for

n = 10.
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Hpeads = —p3n 1og(p3n) — ch log(pan) — p1n log(pin) — pon log(por)

-—pion(5) -5 (5) (5 ()
-5 (1) ez ()) 7lon( )
o <2log2(23> +6log2<3>) = 1.8113 bits.

Thus tossing the three coins where you care about the order of the results is the
most uncertain, followed by rolling the dice. Note that (i) and (ii) have different
uncertainties because communicating the outcome of each coin requires passing
more information than just reporting the number of heads.

Exercise 9.2 (on page 290): Use Stirling’s approximation, n!~ (g)" V2nn, to

show that
(n) onH(f)
fn) "~ 2anf(l = f)

where H(f) = —flog,(f) — (1 — f)logy(1 — f) is the entropy of Bernoulli trial
with success probability f.

( fnn) - (fn)'((rll'—f)n)' By »
~ e (7)) ()

1
L om0
27Tnf(l—f)f (1—1)
b fnon()—(1—f)n log(1—f)
2anf(1—f)

which is the result we wish to show. Note that 2" H() = e"He(f) where H,(f) =
—flog(f) — (1 — f)log(l — f), where now we use natural logarithms rather

than logs to the base 2. We plot log<( )) /n, versus f, and the logarithm of the

approximation for n = 10 in Figure A.9. As can be seen the approximation is
excellent even for small n

0.1+ 1 10(.,’((\1(;)/))

T T T T T 1
0 ()1 02 ()‘3 04 0.5 0.6 0.7 0.8 0.9 1
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Exercise 9.3 (on page 290): Compute the entropy for a normally distributed random
variable X ~ N{(u, o). Plot the entropy versus o and show that it can be negative,

The entropy is given by

Hy =~ [ Nalo?) log(Malu o)) dx

oo 2
_ —(x—)2/(202) ((x — p) ) dx
= e ~ " +lo 2n 0
[m s +log(VIm ) ) o

1 1
=5%5 log(2 7r) + log(o).

We plot this in Figure A.10. We note that when o~ < e ~'/2/y/2 & the entropy goes
negative. As the entropy of a continuous variable doesn’t have an information
theory interpretation this should not be too worrying.

. 3 Figure A.10 The
sw entropy of a random
variable
2 X ~ Mu, o?)

versus the standard
deviation, o.

0
/ 1

Exercise 9.4 (on page 290): Consider a system whose state, X, we represent by
a discrete random variable. We label the possible states by x; where i € T (T is
an index set). The system is in thermal contact with a large system so that it can
exchange energy. We observe the average energy of the system is

B [E(X)] = 3 pi EG) = U

i€l

where p; = P (X = x;). Find the maximum entropy probability, p;, of being in a
state x;. This is the Boltzmann distribution.

‘We maximise the entropy subject to the constraint on the average energy and that
the probabilities sum to one. To do this we consider the Lagrangian

L==> pilog(p:) + Ao (Zpi - 1) + Ao (ZpiE(xi) - U)-

icT i€Z ieT
Setting the first derivative to zero

oL
Opi

=-1- log(p,-) + Ao + /llE(x[) =0
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or

p~ _ e*l+/10+/11E(x,j)
P = .

From the normalisation condition for the probabilities (which gives 19 = 1 +
log(Z2))

1 ) )
pi =Ee/llE(xl)’ Z:ZC/IIE(XL).
i€

Note that we could have written this down immediately using Equations (9.7)
and (9.8). This is the famous Boltzmann distribution. The Lagrange multiplier 1,
is usually written as —1/(k T') where the constant 7T is equal to the temperature
measured in Kelvin and & is known as Boltzmann constant. We note that

dlog(Z)
U=—"—""== iE Xi).
Pye ;p (x;)

It may seem strange that the temperature is a Lagrange multiplier, but it controls
the balance between entropy and energy, which is the defining property of
temperature.

The Boltzmann distribution is the basis for much of classical (i.e. not quan-
tum) statistical mechanics. It provides an extremely good description of many
physical systems (the corrections due to quantum mechanics often only play an
important role at very low temperatures).

A.10 Answers to Chapter 10. Collective Behaviour

Exercise 10.1 (on page 306): Compute a histogram of the time for a random walk,
with the walker taking steps of +1 to return to hislher starting position. If T is
the return time show that P (T = t/2) ~ t73/2/£(3/2), where the normalisation
constant {(3/2) =~ 2.61 is the Riemann zeta function. Use this fact to show that a
random walker will return to hislher starting position with probability arbitrarily
close to 1, but the expected return time is infinite.

This is an easy simulation to carry out as we just have to add +1 with equal
probability and count how many steps until the sum reaches 0. We repeat this
many times. Figure A.11 shows a histogram plot on a log-log scale of the
frequency of returning to the origin after ¢/2 steps. Note that we can only return
to the origin after an even number of steps.
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Half return time, ¢/2
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Assuming P (T =1/2) = t73/2/£(3/2) then the probability of returning in no
more than ¢/2 steps is

o ‘1 1
P(r<i2)=% %2/1 rdr=1-

(If we wanted to be more rigorous we could bound the sum by an integral.) In
the limit # — oo this probability becomes arbitrarily close to 1. The mean return
time is

= 3/2

1 =1
Zfs/z 5(3/2>§W‘°°

t'=1

since the sum diverges. We thus have the curious situation that the mean time
for a random walk to return to the origin is infinite, but it will return with
probability arbitrarily close to 1. In fact, it returns to the origin infinitely often.
To see this consider a period, 7, made up of !/# subintervals each of length r3/8.
The probability that a random walk returns to the origin in the subinterval is
approximately 1 — ¢’/r3/3 for some constant ¢’. The probability that this happens

at least r1/# times is
| ¢ t/4 . o
T A8 T AR
which is arbitrarily close to 1 as ¢t — oo.

Exercise 10.2 (on page 307): Simulate the branching process for some distribution
and measure the mean number of particles and the variance after five iterations.
Compare this with the theoretical results k3 and k2k} (k3 —1)/ (k1 — 1), where k| and
Ky are the mean and variance of the distribution of children for a single individual.

This can be tried with any distribution. We use a Poisson distribution, Poi(k|u),
which has both mean and variance equal to u. In Figure A.12 we show the
logarithm of the mean and variance of the number of particles averaged 10000
trials. The solid lines show the results obtained from the generating function
analysis.

Figure A.11
Histogram plot on a
log-log scale of the
frequency of
returning to the
origin after #/2 steps
of a one-dimensional
random walk. Also
shown is a histogram
of P (1) =
t=31271£(3/2).
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Figure A.12 (a)
Shows the logarithm
of the mean number
of particles
generated by a
Poisson branching
process versus u. The
solid line shows
5log(u). (b) Shows
the logarithm of the

variance in the 4 ] T .
number of particles 0 ! 2 u 3 4 5
generated by the (a) log-mean (b) log-variance

same branching

process. The solid

line shows

log(13 (5 — 1)/ (i — 1)). A.11 Answers to Chapter 11. Markov Chains

Log of mean number of children
2
T
Log of variance of number of children
©»
T
I

Exercise 11.1 (on page 345): The figure below shows a diagrammatic representation
of a Markov model consisting of six states. Write down the transition matrix and
compute its eigenvalues and the steady state. What is the characteristic relaxation
time to reach the steady state? Perform a Monte Carlo simulation to find the
steady-state probabilities empirically and compare this with those obtained from
considering the eigenvectors of the transition matrix.

This is easily computed in a language such as MATLAB, Octave, or python where
you can quickly write programs to manipulate matrices. The transition matrix
can be read off from the figure above. In MATLAB/Octave we can input this as

M=

~.

O O O O O o
oo oo s o
O O O O o o
ocuVowoo
O O O O o o
Moo ®o o
O O O O O o
O O O O o o
ocooomwn
O B O O O O
©oooooo

O B O O O o

To compute the eigenvalues and eigenvectors we use
[V L] = eig(M);

where the eigenvalues are given by diag (L) : these are 1, 0.608, -0.534, -0.320,
0.046, and 0. The steady state of the system is given by the eigenvector with
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eigenvalue 1. It can be found using the command v (:,1) ' /sum(V(:,1)) and
is equal to

7 = (0.053, 0.233, 0.349, 0.037, 0.264, 0.070)T.

The speed of relaxation towards the steady-state distribution is equal to 2} =
g’ log(l) = g7 108(0608) — ¢—0.507 Thyg this is a rapidly mixing Markov chain
where every two steps the components orthogonal to the steady-state distribution
decay by approximately e ! ~ 0.37.

To perform a Monte Carlo simulation of the Markov model we start in some
state, say state 1, and move to a new state according to the transition probabilities.
This is then repeated many times. To obtain a sample from the steady-state
distribution we need to run long enough to forget the initialisation — because
this is rapidly mixing this will happen to high accuracy after 20 steps. Running
for 10 million iterations (which took my computer less than a second), I obtain
agreement with the result above for the steady state to four decimal places.

Exercise 11.2 (on page 345): Consider an ergodic Markov chain described by the
transition matrix M starting from an initial state p(1). To compute the expected
time to reach a state i we can considering a modified transition matrix M where
Mjy = Mjy if k # i and Mj; = 0 otherwise. That is, in this modified system the
dynamics are identical to the original until we reach state i, whereupon the walker
disappears. The probability of being in state i at time t is equal to 6i|\7|’*1p(1),
where 8; is the vector with zero elements everywhere except in the i'" position where
the element is equal to 1. The expected first-passage time is thus given by

o

Tp= 3 (1 — 1) 670 p(1).

t=1

This just sums the number of steps taken times the probability of reaching state i
in those steps. Show that we can write this as

Tjp = 6 (1= M)~ (1= M)~ p(1) — 1
where | is the identity matrix. Further show that this can be simplified to
Tp=1"(1-M)"'p(1) — 1
where 1 is the vector of all 1s. Note that you have to sum a geometric series of

matrices and differentiate matrices so this exercise isn't for the faint-hearted.

We can split the sum as

oo

T = (= 1)§]M~'p(1) = 16/ M'p(1) =8 Y M ~p(1).
t=1 t=1

t=1
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As the original problem was ergodic eventually we reach state i from any starting
state so that

(oo}
8> MTlp(1)=1.
t=1
Then

T ) 8/ M Tp(1) = 126] > 1M~ p(1) — 1
t=0 t=0

oM’
mz T
- oM pl)

(1) Using the two equations above.
(2) Taking the vector 6/ outside the summation.
(3) Using M- =M1,

Notice that we are free to extend the sum to 0 as this does not change the sum.
(If you don’t like to take the derivative with respect to the matrix you can replace
M by a M, take derivatives with respect to a, and at the end set a = 1.) Now we
can exchange the order of the derivative and the sum, giving

o0

0 ~
Tfp[:(sijMtpa)f 1. (A.4)

t=1

To sum the geometric series we note that

<2M> (1-80) = (Mmoo oat) (1)

since the intermediate terms M, M2, ..., M"~! all cancel. As our new transition
matrix loses probability we have

lim M" p(1) =0

n— o0

so that we can neglect the matrix M" in the limit when n becomes infinite. Thus,

(iom> (1- %) =4

or
S . 1
§M’_M(|—M) .

We can also use the geometric series to rewrite the identity we found above

o0

6T S M lp(1) =67 (1= M)~ p(1) = 1.

t=1
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Since this holds for any vector p(1) for which 17 p(1) = 1, it must be the case that
67(1—M)~! =17, Another way to see this is to rewrite it as §; = 1" (1 — M) =
1" —1"M. But as the original matrix, M, is a stochastic matrix 1" is a left-handed
eigenvector (all the columns sum to one). In the modified matrix, M, all columns
sum to one except the i column where all the elements are set to zero. Thus,
1"-1"M =6/,

Returning to the mean first-passage time
9 .
T “=’6T<A - M ‘) 1) -1
ipt = 0; 6M( ) ) p(1)

267 (1=M)~ ' =M)~"p(1) -1
21T (=M p(1) - 1.

(1) From Equation (A.4) and replacing the sum of the geometric series by (I —
M)-L.

(2) Using 2-(1-M)~" = (I-M)~2.

(3) Using the identity we found that 67 (I — M)~' =1".

Thus we can compute the mean first-passage time by inverting the matrix | — M.

Be warned this matrix may be ill-conditioned in which case inverting the matrix

can be numerically unstable. This is particularly true for large transition matrices.

However, often this gives a quick method for obtaining expected first-passage

times. In fact, it does not even require the matrix to be ergodic, it holds provided

the system will eventually finish in state i. It can also be extended to multiple end

states. We just modify the transition matrix so that the walker ‘vanishes’ as soon

as it reaches any of the end states.

Exercise 11.3 (on page 345): Compute the expected first-passage time to reach
state 6 starting from state 1 for the Markov chain described in Exercise 11.1 using
the formula from Exercise 11.2, and compare this with empirical measurements.

The matrix M is identical to M except the last column has all components equal
to zero. To compute the expected first-passage time we use the command

Tfpt = sum((eye(6)-Mhat)\[1 0 0 0 0 0]')-1.

For this problem we find Tf,, = 14.333. To compute it numerically we start from
state 1 and count how many steps it takes to reach state 6. Again repeating this
10 million times I obtained agreement to four significant figures.

Exercise 11.4 (on page 345): Consider a random variable that can take values in
the set Z, = {0,1,2,...,n— 1}. At each time step the value increases or decreases
by 1 modulo n. That is, the system is performing a random walk around the ring.
Construct the transition matrix and compute the eigenvalues for n = 499. Show
that if n is even there are two eigenvalues with modulus 1. Plot a histogram of the
eigenvalues and show how the second-largest eigenvalue grows with n.

7



Figure A.13 (a)
Spectrum
(histogram) of
eigenvalues of the
transition matrix for
n =499. (b)
Relaxation time,

—log(A2), for odd n.
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The transition matrix is zero except down the two off-diagonals, M,,,_; and
M,,_1, which are both equal to 1/2. When n is even then there are eigenvalues
=+1 since the Markov chain is periodic. In Figure A.13(a) we show the spectrum
of eigenvalues for this transition matrix with n = 499. In Figure A.13(b) we show
the logarithm of the second-largest eigenvalue as a function of the ring size. We
see for this problem the second-largest eigenvalue becomes very close to 1 as we
increase n, indicating that it will take considerable time to reach the equilibrium
distribution (which is when all states are visited with equal probability).

Exercise 11.5 (on page 346): Use Markov Chain Monte Carlo (MCMC)
to generate normal deviates where the candidate solution is taken by adding
U ~ U(—=1/2,1/2). Compute the time it takes to generate 10° deviates. Compare
this to other methods for generating normal deviates (see Exercise 3.2).

This took just 32 ms per deviate compared with 51 ms for Box—Muller. However,
the deviates are not independent. In fact we have to accept the deviates even if
the proposal is rejected otherwise the sample is biased. If we want our deviates to
be (approximately) independent we would accept only every fifth deviate or every
tenth (depending on how strict we are about our deviates being independent). In
this case, this strategy is far slower that Box—Muller.

Exercise 11.6 (on page 346): Use the clustering algorithm (see Example 11.6)
or, if you prefer, the Metropolis algorithm (see Example 11.4) to simulate the
two-dimensional Ising model as described in Section 10.4. Compute the mean and
variance of the energy and magnetisation per spin. ( When using the clustering
algorithm you should use the absolute magnetisation below the critical point
because the clustering algorithm restores ergodicity which is broken in real magnets
and by Metropolis. )

I used the clustering algorithm on a 64 x 64 square lattice. In Figure A.14
I show the energy per spin, its variance, and the magnetisation of variance
in the magnetisation per spin. Comparing (a), (b), and (c) with the Onsager
solution shown in Figure 10.6 we see good agreement. Note that the variance
in the magnetisation is equal to the susceptibility, & times (k T)?, where the
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Figure A.14 Results
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susceptibility measures the response of the magnetisation to a change in the
magnetic field.

Exercise 11.7 (on page 346): Use MCMC to obtain an estimate for the posterior
given a normal likelihood, X; ~ N{(u, o) using an uninformative prior. ( Generate

= 20 data points from a normal distribution with u = 1/2, o = 2.) Plot a
histogram of the posterior for the mean and show that it is distributed according to
a t distribution (see Exercise 8.4 on page 255 ).

To perform the MCMC we need to choose a proposal distribution. I choose
/1/ NN(ﬂsl) o'~ Exp (%)

where
e o
Exp (o] 3) = —

is the exponential distribution (with mean o). Using this choice of proposal
distribution the acceptance ratio is

_ _o o o MXi|, o)
= HNX\W#)‘



Figure A.15

Histogram of the
marginal posterior
for the parameter u.
Also shown is the

true marginal
posterior.

438 Answers to Exercises

> [l

Using a million steps I found for my data g4 = 0.59 £+ 0.51 and 6 = 2.30 +
0.4. Note that these are the mean of the posterior plus or minus the variance in
the posterior. Figure A.15 shows the histogram of the marginal posterior for u
calculated using MCMC. For this problem there is a conjugate prior so we didn’t
need to perform MCMC. The marginal distribution of this prior is shown by the
solid line in Figure A.15.

Exercise 11.8 (on page 346): In Example 8.11 on page 228 and Example 8.12 on
page 232 we considered the problem of estimating the parameters for a mixture
of two Gaussians. Generate data consisting of 500 deviates from N(0, 1) and 200
deviates from N(3,1). The task is to infer the means and variances of the two
distributions assuming these distributions are unknown and we don’t know which
data point was generated by which distribution. We assume, however, that we know
the likelihood of a data point is given by a mixture of Gaussians

F(Xilur, 01, p2, 02, p) = pN(Xi|p1, 01) + (1 — p) M(Xi| 2, 073).

Use MCMC to estimate the unknown parameters uy, o1, o, 0, and p, as well as
their uncertainty.

This is again a relatively straightforward MCMC problem, although it no
longer has a conjugate prior so we cannot obtain a closed-form solution for
the posterior. In Example 8.12 we used the expectation maximisation (EM)-
algorithm to find the maximum a posteriori (MAP) solution. One advantage of
MCMC is that it gives us the uncertainty in the parameter estimates. Once again
we have to choose an appropriate proposal distribution. In this case we used

i~ N, 001)  of ~ f55 (Mo, 001))  p' ~ f3(Mp,0.01))

where f§(x) =xif 0 < x <aorx+[—x]|if x <0orx— [x]if x > a. In other
words, we reflect x off the sides of the interval [0, a]. This is a symmetric proposal
distribution (the probability of the reverse reflection is the same as the reflection
itself). In fact, because of the parameters we are using, it is very unlikely that the
reflection ever happens. For the data shown in Example 8.11 I found j; = 0.04 +
0.1,61=098+£0.08 i =2.8+£0.2,5; =1.01 £0.08 and p = 0.69 £ 0.05. Note
that unlike the MAP solution we can obtain estimates for uncertainty. As the
uncertainty due to the limited data is rather large, there is little point in running
the MCMC very long to obtain a good estimate of the posterior. A very basic
MCMC algorithm is quite sufficient to obtain good estimators for this problem.
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Exercise 11.9 (on page 346): Consider the problem of tracking a financial time
series. Assume that a stock has a true value, X (t). Due to market volatility the
price of the stock, Y (t), is taken to be equal to the ‘true value’ plus some random
noise

Y(tr)=X()+€(r)
where €(t) ~ N(0,1). The true value X (t) varies much more slowly and we assume
Xt+1)=X1)+V() Vie+1)=V()+n()

where 1(t) ~ N(0,107%). Generate some time series data from this model. The
figure below illustrates some time series data for 100 data points.

price, Y(t)
2

time, t

Use a Kalman filter to estimate the true price and its uncertainty. Also use a particle
filter to perform the same calculation and compare the two estimates.

Let X(t) = (X(1),V(t))" describe the state of the system. We model our
uncertainty in the state by

X0 =N ((0) Gonty) Sovie))

We initialise this to

wor= (")) z0- (g 1)

The update equations giving the priors at the next time step for the Kalman filter
are

pa+1)=A@) p@r) Tr+1)=A)ZAT(r)+Q(r)

Alr) = ((1) i) Q) = (8 100—4)'

The innovation matrix in this case is a 1 x 1 matrix

St+1)=Ct+DE(r+1)CT(r+1)+R(t+1)

where

where C(r + 1) and R(r + 1) are defined by Y(r + 1) =C(tr + ) X(r + 1) + (¢t + 1)
with Var [e(t + 1)] = R(z + 1). In our model

C(r+1) = (1,0), R(t+1) = (1),



Figure A.16
Example of tracking
the ‘true’ value of a
stock using a
Kalman filter (solid
curve) and particle
filter (dashed curve
overlapping the
Kalman filter). The
dots show the
current price
(observations). The
error bars show the
errors (they are only
shown for every
tenth data point).
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Price, Y(t)

\J

Time, t

so that S(r + 1) = Txx(r + 1) + 1 (thisis a 1 x 1 matrix). The optimal Kalman
gain matrix is K(z + 1) = (¢ + 1) CT (¢ + 1)S~! (¢ + 1), which for this system is

= i (i)
The mean and covariance for the posterior after seeing the observed price is
pt+)=pt+1)+Ke+1) (Y +1)=Cr+ 1) a(+1))
Tr+1)=(1-Ke+1)Cr+1)) Z(t+1)

or for our model
_(Ax(e+1)\ | Y@+ 1) —ax(1) (Exx(t+1)
e = () e Gatn)
- 1 Txx(t+1) 0) ¢
z<t+1)_7l+ixx(t+l) (iii(zu) o) T(t+1).

The particle filter is easy to write. We maintain a population of states (X;(¢)|i =
1,2, ..., n) where X;(r) = (X;(#),Vi(r)). We update them according to the
update rules and weight them according to w;(r) = w;(r — 1) x M(X;(t) = Y (2), 1)
with w;(0) = 1. After some time we resampled from the population of particles.
We used a population of 1000 and resampled after five time steps.

X(r+1)=

In Figure A.16 we show the Kalman filter predictions on the true value of a
stock as a solid curve. The error bars show the predicted error in the estimate.
We also show the result of the particle filter as a dashed curve. For this problem
(since the updates are linear and the noise normally distributed) the particle filter
should, in the limit of a large number of particles, be identical to the Kalman
filter (which we see it is to a high accuracy).

This model could be used to decide when to buy and sell shares, but a couple
of points are worth making. Here we have assumed that we know the model
perfectly (i.e. the size of the fluctuations in the ‘observation’ and the change in the
‘velocity’ of the true price). In a real problem these would have to be estimated.
Our model is highly simplified. For example, we have assumed that the noise in
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our model is independent, while in real financial data it is likely that the noise
has some auto-correlation. Modelling this is beyond the ability of the standard
Kalman filter, but it could be modelled by a particle filter. Further, as we will see
in Chapter 12, normally distributed noise is a poor model for the fluctuations
found in financial data. Finally, it is worth bearing in mind that our estimate of
the true value of a stock is based entirely on the valuation of the buyers and
sellers and may be completely unrelated to the true value of the company. One
hopes there are a few people who know what they are doing and value the stock
accords with its true worth, but history tells us this may be wishful thinking.

A.12 Answers to Chapter 12. Stochastic Processes

Exercise 12.1 (on page 389): We want to show that for a positive-definite matrix
K’ and its inverse L' = K'~1 given by

’_ K k ’_ /—l_Ll
K‘(ka L=K={m

the Equations (12.1) on page 354, and (12.2) on page 354 are identical. That is,

T (L+ou)
KT(K +021)y = T( +o?1) 7?’
[T (L—c-20)"" 1
1
i

k—k"(K+o2l) 'k = —.
I—1T(L—o-2) 1

This is difficult to show using matrix identities. Instead, for a randomly generated
positive-definite matrix K' and for a particular value of o and y show, using your
Sfavourite matrix manipulation language (e.g MATLAB, Octave, python), that
these two expressions give the same answer (up to machine accuracy ).

We provide a MATLAB/Octave program to show this. We create a positive
definite matrix by first generating a random matrix A and we then set K’ = AAT
(we call this Kp), from this we extract K (Km), k (kv), and k (ks). We compute
the variance term and mean term. We then repeat this for the inverse matrix. The
two expressions give identical answers up to machine precision.

n = 10;

A = rand(n,n) ;
y = rand(n-1,1);
sigma = 10;

Kp = A*A’;
Km = Kp(l:n-1,1:n-1);
kv = Kp(l:n-1,n);

ks = Kp(n,n);
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varK = ks - kv’ *inv(Km+sigma*eye (n-1)) *kv
meankK = kv’ *inv (Km+sigma*eye (n-1))*y

Lp = inv (Kp) ;

Im = Lp(l:n-1,1:n-1);

lv = Lp(l:n-1,n);

ls = Lp(n,n);

varL = 1.0/ (ls - 1lv’*inv(Lm+ (1.0/sigma) *eye (n-1)) *1v)
meanl, = -varL*1lv’*inv(Lm+(1.0/sigma) *eye (n-1))*y/sigma.

It is more computationally efficient using the covariance matrix K’ rather then
its inverse. By using the Cholesky decomposition of K we can efficiently find
the distribution f(a(x*) = a|D) at different values of x* (see, for example,
Rasmussen and Williams (2006)).

Exercise 12.2 (on page 389): Simulate a discrete time model for the evolution of
stock prices

AS(t) = uS(1) At + o S(t) VAr g

where 1 ~ N0, 1) with p = o = At = 0.1, starting from S(0) = 1 up to t = 10 and
t = 20. Repeat this multiple times and plot histograms of S(10), S(20). Compare
this with the theoretical result for the system

ds(t) = uS(t)de + o S(t) dW(r)
given by
fs@)(S(10) = 1) = LogNorm (s’ (ﬂ - %2) t, o_zt)
L (e —tu=c? ) 120 0)

so\V2nt

In Figure A.17 we show histograms of the stock prices S(10) and S(20), obtained
from simulating the discrete time model. We also compare these with the contin-
uous time model. Note that the fluctuations in the stock prices grow substantially
from ¢ =10 to r = 20.

Exercise 12.3 (on page 389): Consider a particle experiencing normally distributed
perturbations in a quartic potential

dX(t) = —=X3(t) dr + dw (r).

Compute the stationary distribution f(x) = lim,_ fx/(x,t) using Equation
(12.12) on page 375, and compare it with a simulation of a discrete time system.

Using Equation (12.12) we have
e 2/ ey dy 7

Je e S

oo

—x4/2

f(x) =

€

Bl Bl

)
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0.54

9)

0.44

0.34
0.24

fs10)(S(10)

0.14

0.2

9)

fs(20)(5(20)

Figure A.18 shows this distribution and a histogram of values obtained from the
simulation of

AX(t) = =X3(1) At + VAt

with n ~ A(0, 1) and Ar = 0.01. Note that with a significantly larger As it is too
easy to get large jumps taking you away from the high probability solutions and
we get noticeable deviations from the steady-state distribution of the stochastic
differential equation.

Exercise 12.4 (on page 390): Gillespie simulations are extremely easy to code.
Simulate the set of reactions

K=l =05
(I 0=

k3 =0.0001 ky=0.01
50X ’ (]

Y X+Y =S X X

starting from the initial condition nx = ny = 0 (assuming Q = 1). Write down
approximate stochastic differential equations for dnx (t) and dny (t) assuming that
the number of reactions that occur in a short time interval are given by a Poisson
distribution.

The simulation takes only a few lines of code to write. Figure A.19 shows a
Gillespie simulation of these reactions.

The two species fluctuate around a fixed point. Around the fixed point the
number of molecules are quite high so that the propensities vary rather slowly
over time. It is therefore a reasonable approximation to assume the propensities

Figure A.17
Histograms of the
stock prices S(10)
and S(20) obtained
from 10° runs. Also
shown in blue is the
theoretical result for
the continuous time
version.

Figure A.18
Histogram of the
stationary
distribution of X ()
computed from the
discrete time
simulation and from
solving the
corresponding
Fokker—Planck
equation.



Figure A.19
Gillespie simulation
of the reactions
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are fixed for a short time period. We consider the expected change in the species
number in time At

E [Anx(t)] = (ki — kanx (1)) At E [Any(1)] ~ (ko — k3 nx(t) ny (1)) At.

(Note that we are ignoring the change in nx () and ny (¢) caused by the reaction.)
As the reactions are governed by a Poisson process, the fluctuations in the number
of reactions are equal to the mean number of reactions, thus

(kz + k3 nx(l‘) ny

(Notice that we don’t care whether the reactions create or destroy a species,
the variance is still positive.) Therefore, we can approximate our system by the
stochastic differential equations

dnx(t) = (kl — ky nx([)) dr + v/ ki + kg l’lx(t) dW(l‘)
dny (t) = (ko — kanx(t) ny(t)) dt + ko + k3 nx (t) ny (1) dW ().

We could write down the corresponding Fokker—Planck equation (although
it’s not particularly easy to solve). Instead we can seek the fixed point where
E [dnx(t)] = E [dny(r)] = 0. Averaging the stochastic differential equations

E [dnx (1)] = (ki — ks B [nx(1)]) dr = 0
[ y(l‘)} (kz—k3E[ﬂx( ) (l‘)])dtZO

the first equation gives E [nx } = ki/kq = 100. The second equation only tells us

E [I’lx(l‘) I/ly(l‘)] =E [I’lx(l)] E [I/ly(l‘)] + Cov [nx(t), ny(l‘)] =ky/k;3.

If we assume that Cov [nx (¢), ny(r)] is small then E [ny (1)] ~ k»/(E [nx(t)] k3)
= 50. These numbers are close to what we see in the simulation (after the initial
transient phase).

Var [Anx(1)] = (ki + kanx(1)) At Var[Any(r)] = (1) At.
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For reference we give tables of probability distributions together with their
mean, variance, and characteristic functions. We split the distributions into
three: univariate discrete distribution, univariate continuous distributions, and
multivariate discrete and continuous distributions.
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Table B.1 Discrete univariate distributions.

Name Range Probability Mass Function Mean Variance Characteristic Function, ¢(w)
Bernoulli X €{0,1} Bern(x|p) = p*(1 — p)!=* p p(l—=p) 1+p(ew —1)
Binomial K €{0,1,...,n} Bin(k|n, p) = (Z)pk (1—p)rk np np(l1—p) (1+p(ei‘”—l))n
Geometric Ke{l1,2,...} Geo(k|p) = p (1 — p)k—1! % 1;—21’ %
Geometric* Ke{0,1,2,...} Geo*(klp) =p (1 —p)k FTP I;—zp 1_(1_%
Hypergeometric K €{0,...,min(nm)} Hyp(k|N,m,n) = (T)TIZ):’T) n "m(l{yz_(x)_(f\)’_") ('Z%’)" Sy (—n,—m;N —m—n+1;ei®)
Negative Binomial K € {0,1,2,...}  NegBin(k|r,p) = (“*;")ph (1 —p) {2 T (lj;epm)’

Poisson Ke{0,1,2,...} Poi(k|u) = %e -k u u exp (m(e* — 1))




Lyy

Table B.2 Continuous univariate distributions.

Name Range Probability Density Function Mean Variance Characteristic Function, ¢(w)
a—1 1— b—1 .
Beta 0<Xx<1 Bet(x|a, b) = % Py WZH’H) 1Fi(a;a + B iw)
Cauchy —00 < X <00 Cau(x) = m not defined not defined el
. x(k/Z)—lefx/Z . —k/2
Chi-squared 0<X<o x(x|k) = (D) k 2k (1-2iw)
7
-
Exponential 0<X<oo Exp(x|b) = Gam(x|1,b) = be b % bl—z (1 - ‘%)
a a— —b Xx . —a
Gamma 0<X<oo Gam(x|a, b) = % e s (1 - ‘%)
_ (log(x) —p)? , ,
Log-normal 0<X<oo LogNorm(x|u, %) = &~ eh+o /2 (e — 1)e2+o” No closed-form representation
x—w? .
Normal —00 < X <00 M|y, o) = \/%(r e U a? einw—10’ W’
vl —ul ) V2
Student’s T —o00 <T <0 T(tlv) = \/Zf(yﬁ()%) (1 + %) ’ Oforv>1 55 forv>2 K”/Z(‘rf(”l‘/"z‘))zf,zfﬂwl)
2 ibw iaw
Uniform a<X<h Ulxla, b) = lexztl by e S
oo . n
Weibull 0<X<oo  Weilx|a,k)=&(2) e ar(1+1)  2(r(1+2)-12(1+1)) %%r(ug)
n=|
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Table B.3 Continuous and discrete multivariate distributions. PMF/PDF shows the probability mass function or the probability density function.

Characterstic
Name Range PMF/PDF Mean Covariance C;; Functions, ¢(w)
. k ; . . iw;
Categorical X € Ak Cat(x|p) =[], 1 I[x € A’l‘]l 7l I[z = ]]I Hi — Hi [ Zle pietei
nj . n
Multinomial N € Ak Mult(n|n, p) = n! Hle [;"i! I[n € Aﬁ]] np n [[i = j]] Pi — R P;i pj (Zle Di e‘“”')
Dirichl K Di - ety o (a0 =71 -ay) .
irichlet PeA ir(x|a) =T(ao) 1, Tay: @ = ; @; s ) No closed-form solution
Normal —00 < X; <00 Nx|p, X) = —2 e~ tx—mE T x-p) u i el w-0'To
5 \/ﬁ J

-1
|V|(u—d)/2—le—Tr(W V)/2 —np2

d
|W|l//2 2ud/2n_d(d71)/4 H r(w—;fi)
i=1

nW Var[Vij} ZI’l(Wi'—Wiinj) ||—21WV|

Wishart V is positive definite W(V|W, v) =
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Benford’s law, 207, 255, 426
Bennett’s inequality, 158, 176, 414
Bernoulli distribution, 446
Bernoulli trial, 60
Bernstein’s inequality, 158, 176, 417
Berry—Esseen bound, 66
beta distribution, 34, 198, 447
beta function, 34, 43
bias-variance dilemma, 22, 394
binomial distribution, 26, 41, 61-66, 397,
446
Boltzmann distribution, 177, 290, 420, 429
Boole’s inequality, 165
Box—Muller method, 54
branching process, 295-297, 307, 431

categorical distribution, 251

Cauchy distribution, 35, 107-109, 408, 447
Cauchy-Schwarz inequality, 142, 176, 414
central limit theorem, 30, 66, 81-89, 408

454

central moment, 64
channel capacity, 262
Chapman—Kolmogorov equation, 356
characteristic function, 63, 107-109
Chebyshev’s inequality, 149
chemical reactions, 385-388

master equation, 387
Chernoff bound, 157-159
chi-squared distribution, 103, 411, 447
clustering, 282
compressed sensing, 282
concentration theorem, 152
conjugate priors, 198-205
constrained optimisation, 182-186
convergence, 133

almost sure, 135

in distribution, 134

in moments, 135

in probability, 134
correlation, see Pearson correlation
covariance, 18
covariance matrix, 36
Cramér-Rao bound, 287
cumulant, 18, 64-66

generating function, 64, 72, 176, 295,

401-402, 419

normal distribution, 78
cumulative distribution function, 144

binomial distribution, 405

normal distribution, 90-92, 103

Poisson distribution, 73, 403
curve fitting, 278

de Finetti’s representation theorem, 20
defective
matrix, 348
degrees of freedom, 128
detailed balance, 318
deviate, 46, 47
Cauchy, 58, 399
exponential, 52
linear-congruential, 50
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multinomial, 56
multivariate normal, 56, 99
normal, 53, 55, 346, 436
rejection sampling, 54
transformation method, 51
diffusion process, 359-380
digamma function, 43
Dirac delta function, 103-107
Dirichlet distribution, 37, 255, 421, 448
disordered systems, 304-306
distribution
continuous, 30-35
beta, 34, 447
Cauchy, 35, 58, 107-109, 399, 408,
447
chi-squared, 32, 103, 411, 447
exponential, 32, 52, 447
gamma, 31, 41, 146, 204, 398, 405,
447
log-normal, 85, 144, 146, 366, 389,
442, 447
normal, 30, 53, 55, 58, 75-204, 290,
399, 429, 447
Student’s T, 126, 130, 255, 426, 447
uniform, 447
Weibull, 33, 398, 447
discrete, 26-27, 60-71
Bernoulli, 60, 446
binomial, 26, 41, 61-66, 397, 446
geometric, 58, 72, 400, 401, 446
hypergeometric, 27, 41, 397-398, 446
negative binomial, 72, 402, 446
Poisson, 28, 73, 144, 202, 403, 446
long tailed, 17, 35
multivariate, 35-37
Boltzmann, 420
categorical, 68, 251
Dirichlet, 37, 255, 421, 448
multinomial, 35, 68-69, 72, 202, 255,
406, 421, 448
normal, 37,96, 103, 204448
Wishart, 204, 448
dual problem, 185

earth-mover’s distance, 170

eigenvalue, 347

eigenvector, 347

EM algorithm, 229

entropy, 258-290, 427-430
Fisher’s information, 285-289
joint, 260
Kolmogorov’s complexity, 276-285
Shannon’s entropy, 259-276

ergodic
stochastic matrix, 316

error bars, 113

error function, 90

error in the mean, 113
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estimator, 19
consistent, 61
efficient, 287
maximum likelihood, 60
unbiased, 61, 111
events, 3
expectation, 15
expectation-maximisation, 229
exponential distribution, 32, 52, 72, 403,
447
exponential family, 38, 205, 289, 413
extreme value distributions, 93-95

F-test, 121
filtering, 330-343
Kalman, 332-337, 347, 439
particle, 338-343, 347, 439
first-passage time, 345, 433
Fisher’s F-test, 121
Fisher’s information, 285-289
Fisher, R. A., 285, 376
Fokker—Planck, 370
functional, 290-292

gamma distribution, 41, 146, 202, 398,
405, 447
gamma function, 31, 41-43
Gaussian distribution, see normal
distribution
Gaussian process, 351-356, 389, 441
generating function, 62
characteristic function, 63, 107-109
cumulant, 64, 72, 295, 401-402,
419
moment, 62
generative adversarial networks, 174
generative model, 251
geometric distribution, 58, 72, 400, 401,
446
geometric mean, 164
Gillespie algorithm, 387, 390, 443
graph generation models, 297
graphical models, 245-254

Heaviside function, 105

hidden Markov model (HMM), 235

hierarchical model, 214-215

Hinton, G. E., 243

Hoeffding’s inequality, 154-157

hybrid Monte Carlo, 329

hypergeometric distribution, 27, 41,
397-398, 446

hyperparameter, 204, 214

iid, 46
improper distribution, 206
improper priors, 211
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independence, 8
conditional, 10
pairwise, 10
inequalities, 142-182
AM-GM, 165
Bennett’s, 158, 176, 414
Bernstein’s, 158, 176, 417
Cauchy-Schwarz, 142, 176, 414
Chebyshev’s, 149
Chernoff bound, 157-159
Cramér-Rao bound, 287
Gibbs, 167
Hoeffding’s, 154-157
Jensen’s, 159, 176, 177, 418
Markov’s, 143, 144, 150
Shepp’s, 150
union bound, 165
inference, 19
information geometry, 289
information theory, 259
Ising model, 299-302, 346, 420, 436
1to6
calculus, 363
isometry, 363
lemma, 364

Jacobian, 14

Jaynes, E. T., 188, 206, 209, 256, 259
Jeffreys, H., 207

Jensen’s inequality, 159, 176, 177, 418

Kalman, R. E., 332

Kalman filter, 332-337, 347, 439

Kelly’s strategy, 89

KL divergence, see Kullback—Leibler
divergence

Kolmogorov complexity, 276-285

Kolmogorov, A. N., 4, 23, 276

Kramer-Moyal’s expansion, 372-374

Kullback-Leibler divergence, 166170,
177,221, 421

kurtosis, 79

Lagrange multipliers, 182-185
Langevin equation, 361

large deviation, 152

latent Dirichlet allocation, 249-253
latent variable models, 227-242
law of large numbers, 138-139
LeCun, Y., 243

Legendre transform, 153

location parameter, 206

log-normal distribution, 15, 85, 144, 146,

305, 366, 389, 442, 447

MAP solution, 215
marginalisation, 21
multivariate normal, 100
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Markov chain, 308-347, 432-441
absorbing state, 315
ergodic, 316
higher-order, 309
rapid mixing, 327
Markov Chain Monte Carlo, 317-330,
346, 436-438
Markov chain Monte Carlo
detailed balance, 318
heat bath, 319
hybrid Monte Carlo, 329
Metropolis, 319
Markov process, 356-359
Markov random fields, 246
Markov’s inequality, 143, 144, 150
martingale, 139-142
master equation, 357, 372-374, 387
maximum entropy, 267
maximum likelihood, 60, 191
Maxwell’s demon, 275
MCMC, see Markov Chain Monte
Carlo
mean, 17
mean field approximation, 222
measure theory, 23-24
median, 17, 176, 418
minimum description length, 277-285
mode, 17
model selection, 211-214, 277
moment, 62, 63, 78
central, 64
moment generating function, 62
Monte Carlo, 45-57
integration, 47
MCMC
detailed balance, 318
heat bath, 319
hybrid Monte Carlo, 329
Metropolis, 319
Metropolis—Hastings, 324
rejection method, 54
transformation method, 51
multinomial distribution, 35, 68-69, 73,
202, 255, 406, 421, 448
multivariate normal distribution, 37,
96-103, 204-205, 409, 448

negative binomial distribution, 72, 402,
446

negatively correlated random variables,
179

networks, 297

non-informative priors, see uninformative

prior

normal distribution, 30, 58, 75-102,
144, 201-204, 290, 399, 429,
447

null hypothesis, 117
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optimal stopping theorem, 140
Ornstein—Uhlenbeck process, 360, 372
outlier, 17

particle filter, 338-343, 347, 439
partition function, 268, 300
Pearson’s correlation, 19, 176, 414
percolation, 297-299, 306
Perron—Frobenius theorem, 316
phase transition, 298
point process, 380-388
Poisson distribution, 28, 67, 73, 144, 202,
403, 446
Poisson process, 380-385
Poissonisation, 69
positive definite matrix, 97
prior
improper, 211
uninformative, 205-211
probability
conditional probability, 6
cumulative distribution function, 12
density function, 13
joint probability, 6
mass function, 12
process
diffusion, 359-380
Gaussian, 351-356, 389, 441
Markov, 356-359
Ornstein—Uhlenbeck, 360, 372
point, 380-388
Poisson, 380-385
Wiener, 360
properties
stochastic matrix, 313
pseudo-counts, 255, 424, 425

quasi-random numbers, 49
queues, 384-385

Rademacher variables, 60

random deviate, 46

random variable, 11

random walk, 294-295, 307, 359, 430
recommender system, 216

reflecting boundary conditions, 377
regression, 122, 278

regulariser, 282

robust statistic, 17

scale parameter, 207

Schur complement, 101-102

second law of thermodynamics, 272-275
second-order statistics, 18
self-averaging, 305
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self-organised criticality, 302-304
Shannon’s entropy, 259-276
Shannon, C. E., 259
simplex

discrete, 36

unit, 36
simulated annealing, 323
skewness, 79
standard deviation, 18
stationarity, 201
stationary

Markov chain, 311
statistical significance, 116
statistics, 17

central moment, 64

cumulant, 64-66

mean, 17

moment, 62

standard deviation, 18

variance, 17
Stirling’s approximation, 42
stochastic matrix, 310

ergodic, 316
stock price, 365, 389
Stratonovich’s calculus, 363
Student’s T distribution, 130, 255, 426, 447
sub-Gaussian random variables, 154
sufficient statistic, 40, 61, 124

t-test, 117-121, 126, 411
tail bound, 152-159
Taylor expansion, 177-179
topic model, 249

unbiased estimator, 61

uniform distribution, 447

uninformative prior, 205-211, 255-256,
426-427

union bound, 165

universality, 302

variance, 17

variate, 46

variational approximation, 220
variational auto-encoder, 240-242, 283
variational free energy, 221

Wasserstein distance, 170-175
Weibull distribution, 33, 398, 447
Wiener

measure, 360

process, 360
Wishart distribution, 204, 448
Woodbury matrix identity, 101, 334
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