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Consider the recent flight to Mars that put a “laboratory vehicle” on that planet.
...From first to last, the Mars shot would have been impossible without a tre-
mendous underlay of mathematics built into chips and software. It would defy
the most knowledgeable historian of mathematics to discover and describe all
the mathematics involved.

—Philip Davis, “A Letter to Christina of Denmark,”
Newsletter of the European Mathematical Society 51 (March 2004), 21-24
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Preface

Since computer science (CS) first became an academic discipline almost 50
years ago, a central question in defining the computer science curriculum has
always been, “How much, and what kind of, college-level mathematics does a
computer scientist need to know?” As with all curricular questions, the correct
answer, of course, is that everyone should know everything about everything.
Indeed, if you raise the question over lunch with computer science professors,
you will soon hear the familiar lament that the students these days don't know
Desargues’ theorem and have never heard of a p-adic number. However, in
view of the limited time available for a degree program, every additional math
course that a CS student takes is essentially one fewer CS course that he/she
has time to take. The conventional wisdom of the field has, for the most part,
therefore converged on the decision that, beyond first-semester calculus, what
CS students really need is a one-semester course in “discrete math,” a pleasant
smorgasbord of logic, set theory, graph theory, and combinatorics. More math
than that can be left as electives.

I do not wish to depart from that conventional wisdom; I think it is accu-
rate to say that a discrete math course indeed provides sufficient mathematical
background for a computer scientist working in the “core” areas of the field,
such as databases, compilers, operating systems, architecture, and networks.
Many computer scientists have had very successful careers knowing little or no
more math. Other mathematical issues no doubt arise even in these areas, but
peripherally and unsystematically; the computer scientist can learn the math
needed as it arises.

However, other areas of computer science, including artificial intelligence,
graphics, machine learning, optimization, data mining, computational finance,
computational biology, bioinformatics, computer vision, information retrieval,
and web search, require a different mathematical background. The importance
of these areas within the field of computer science has steadily increased over
the last 20 years. These fields and their subfields vary widely, of course, in
terms of exactly what areas of math they require and at what depth. Three

xiii
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mathematical subjects stand out, however, as particularly important in all or
most of these fields: linear algebra, probability, and multivariable calculus.

An undergraduate degree typically involves about 32 semester courses; it
may not be unreasonable to suggest or even to require that CS majors take the
undergraduate courses in linear algebra, multivariable calculus, and probabil-
ity given by the math department. However, the need for many CS students to
learn these subjects is particularly difficult to address in a master’s degree pro-
gram, which typically requires only 10 or 12 courses. Many students entering
a master’s program have weak mathematical backgrounds, but they are eager
to get started on CS courses that have a substantial mathematical prerequisite.
One can hardly ask them to delay their computer science work until they have
completed three or four mathematics courses. Moreover, they cannot get grad-
uate credit for undergraduate math courses, and if the math department does
offer graduate courses in these areas, the courses are almost certainly too diffi-
cult for the CS master’s student.

To fill this gap, I have created a new course entitled, vaguely, “Mathemati-
cal Techniques for Computer Science Applications,” for the master’s program
at New York University (NYU), which gives an intensive introduction to linear
algebra and probability, and is particularly addressed to students with weak
mathematical backgrounds. This course has been offered once a year, in the
fall semester, every year starting in 2009. I wrote this textbook specifically for
use in this course.

Master’s courses in the computer science department at NYU meet 14 times
in a semester, once a week, in two-hour sessions. In my class in 2010, Chapters
1 and 2 were covered together in a single lecture; Chapters 6 and 9 required two
lectures each; Chapters 3, 4, 5, 7, 8, 10, 11, 12, and 13 were each covered in a
single lecture; and Chapter 14 was omitted. About halfway through the class,
I decided it was necessary to add a recitation section for an additional hour a
week; I certainly recommend that.

Multivariable calculus remains a gap that I have not found any practical
way of closing. Obviously, it would not be possible to squeeze all three top-
ics into a single semester, but neither, probably, is it practical to suggest that
master’s students take two semesters of “mathematical techniques.”

The course as I teach it involves extensive programming in MATLAB. Corre-
spondingly, the book contains an introductory chapter on MATLAB, discussions
in each chapter of the relevant MATLAB functions and features, and many MAT-
LAB assignments.

Figure 1 illustrates the strong dependencies among chapters. (Weaker de-
pendencies also exist, in which one section of a later chapter depends on ma-
terial from an earlier chapter; these are not shown.)

There are, of course, plenty of textbooks for probability and a huge number
of textbooks for linear algebra, so why write a new one? For one thing, [ wanted
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Figure 1. Chapter dependencies.

to have both subjects in a single book; the only other book I have seen that
does this is The Mathematics of Digital Images by Stuart Hoggar (2006). More
important, this book is distinguished by being addressed to the computer sci-
entist, rather than the mathematician, physical scientist or engineer. This fo-
cus affects the background assumed, the choice of topics, the examples, and the
presentation.

Background

The textbook assumes as little mathematical background as I could manage.
Most of the book assumes only high-school mathematics. Complex numbers
are nowhere used. In the linear algebra section of the book, calculus is entirely
avoided, except in one optional short discussion of Jacobians. In the probabil-
ity section of the book, this is less feasible, but I have for the most part segre-
gated the sections of the text that do require calculus from those that do not.
A basic understanding of integrals is an unavoidable prerequisite for under-
standing continuous probability densities, and understanding multiple inte-
grals is a prerequisite for understanding the joint distribution of multiple con-
tinuous variables.

The issue of mathematical proof in a course of this kind is a difficult one.
The book includes the proofs of most, though not all, of the theorems that
are stated, including a few somewhat lengthy proofs. In Chapter 4 on vector
spaces, I have in fact split the chapter into two parts: the first contains the
minimal material needed for subsequent chapters with almost no proofs, and
the second presents more abstract material and more proofs. My own prac-
tice in teaching is that in lectures I present some of the proofs that I feel to
be enlightening. I do try to keep in mind, however, that—whatever the mathe-
matically trained instructor may imagine—a proof is not the same as an
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explanation, even for students who are mathematically inclined, and for stu-
dents who are math-averse, a proof bears no relation to an explanation. This
textbook includes a number of problems that ask the students to write proofs.
My own practice in teaching, however, is that I do not assign problems that
require proofs. My experience is that the “proofs” produced by students with
weak mathematical backgrounds tend to be random sequences of sentences,
only some of which are true. Unless an instructor is willing to invest substan-
tial effort into teaching what is and is not a valid proof and how one constructs
a valid proof, assigning proofs as homework or exam problems is merely frus-
trating and wearisome for both the student and the grader.

I have, however, assumed some familiarity with the basic concepts of com-
puter science. I assume throughout that the student is comfortable writing pro-
grams, and I discuss issues such as computational complexity, round-off error,
and programming language design (in connection with MATLAB).

Choice of Topics

In both parts of the course, the topics included are intended to be those ar-
eas that are most important to the computer scientist. These topics are some-
what different from the usual material in the corresponding introductory math
classes, where the intended audience usually comprises math and science stu-
dents. I have been guided here both by own impression and by discussions
with colleagues.

In the linear algebra section, I have restricted the discussion to finite-
dimensional vectors and matrices over the reals. Determinants are mentioned
only briefly as a measure of volume change and handedness change in geo-
metric transformations. I have almost entirely omitted discussion of eigenval-
ues and eigenvectors, both because they seem to be more important in physics
and engineering than in CS applications, and because the theory of eigenvalues
really cannot be reasonably presented without using complex eigenvalues. In-
stead, I have included a discussion of the singular value decomposition, which
has more CS applications and involves only real values. I have also included a
more extensive discussion of geometric applications and of issues of floating-
point computation than is found in many standard linear algebra textbooks.

In the probability section, I have included only a minimal discussion of
combinatorics, such as counting combinations and permutations. I have also
omitted a number of well-known distributions such as the Poisson distribu-
tion. T have, however, included the inverse power-law “Zipf” distribution, which
arises often in CS applications but is not often discussed in probability text-
books. I have also included discussions of the likelihood interpretation ver-
sus the sample space interpretation of probability, and of the basic elements
of information theory as well as a very rudimentary introduction to basic tech-
niques of statistics.
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Examples and Presentation

The examples and the programming assignments focus on computer science
applications. The applications discussed here are drawn from a wide range
of areas of computer science, including computer graphics, computer vision,
robotics, natural language processing, web search, machine learning, statisti-
cal analysis, game playing, graph theory, scientific computing, decision theory,
coding, cryptography, network analysis, data compression, and signal process-
ing. There is, no doubt, a bias toward artificial intelligence, particularly natural
language processing, and toward geometric problems, partly because of my
own interests, and partly because these areas lend themselves to simple pro-
grams that do interesting things. Likewise, the presentation is geared toward
problems that arise in programming and computer science.

Homework problems are provided at the end of each chapter. These are
divided into three categories. Exercises are problems that involve a single cal-
culation; some of these can be done by hand, and some require MATLAB. Most
exercises are short, but a few are quite demanding, such as Exercise 10.2, which
asks students to compute the Markov model and stationary distribution for the
game of Monopoly. Programming Assignments require the student to write a
MATLAB function with parameters. These vary considerably in difficulty; a few
are as short as one line of MATLAB, whereas others require some hundreds of
lines. I have not included any assignments that would qualify for a semester
project. Problems include everything else; generally, they are “thought prob-
lems,” particularly proofs.

Course Website

The website for course materials is
http://www.cs.nyu.edu/faculty/davise/MathTechniques/

In particular, MATLAB code discussed in this text can be found here.
Errors, queries, and suggestions for improvements should be emailed to
davise@cs.nyu.edu.
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Chapter 1

MATLAB

MATLAB (short for MATrix LABoratory) is a programming language, together
with a programming environment, designed to facilitate mathematical calcu-
lations and rapid prototyping of mathematical programs. It was created in the
late 1970s by Cleve Moler, and it has become very popular in the mathematical,
scientific, and engineering communities.

There are many fine handbooks for MATLAB, including those by Driscoll
(2009) and Gilat (2008). The online documentation is also good.

A number of freeware clones of MATLAB are available, including Octave and
Scilab. These should certainly be adequate for the programs discussed and as-
signed in this book. All the MATLAB examples in this book were generated by
using MATLAB 7.8.0 (R2009a).

MATLAB creates a collection of windows. These may be “docked”—that is,
all placed together within a single window—or “undocked.” The most impor-
tant is the Command window. The user types MATLAB commands into the
Command window. The MATLAB interpreter executes the command and prints
the value in the Command window. To suppress a printout (useful with a large
object), the user can type a semicolon (;) at the end of the command. The user
prompt in the Command window is >>. Comments begin with a percent sign
(%) and continue to the end of the line.

This chapter presents some basic features of the MATLAB language. More
advanced features, including operations on vectors and matrices, are discussed
in the chapters where the associated math is presented.

1.1 Desk Calculator Operations

The basic arithmetic operations in MATLAB use a standard format. The com-
mand window can be used as a convenient interactive desk calculator.

>> format compact
>> % Comment. format compact eliminates extra line spaces.
>> x=2+7
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>> x+y
ans =
27

>>) If the user types an expression, the value is assigned to variable
>> ans~(1/3)
ans =

3

ans

>> sqrt(2)
ans =
1.4142

>> format long
>> ans

ans =
1.414213562373095

>> format short

>> sin(pi/3)
ans =
0.8660

>> format rat % display in "rational format,’’ a close rational approximation

>> (1/7)+(1/5)
ans =

12/35

>> sqrt(2)
ans =

1393/985

1.2 Booleans

MATLAB uses 1 for true and 0 for false. Strictly speaking, these are not the same
as the integers 1 and 0, but MATLAB automatically casts from one to the other
as needed, so the distinction only occasionally makes a difference. (We will see
an example in Section 2.5.)
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>> a&b
ans =

>> alb
ans =

>> Ta
ans =

0

>> at+a %Casting from Boolean to integer
ans =

2

>> (2-1)%a YCasting from integer to Boolean
ans =
1

>> a==2-1
ans =

1.3 Nonstandard Numbers

MATLAB conforms to the IEEE standard for floating-point arithmetic (see Over-
ton, 2001), which mandates that a system of floating-point arithmetic support
the three nonstandard values Inf (positive infinity), -Inf (negative infinity),
and NaN (not a number). These values are considered as numbers in MATLAB.
The infinite values can generally be used numerically in any context where an
infinite value makes sense; some examples are shown next. NalN is used for
values that are completely undefined, such as 0/0 or 0*Inf. Any computa-
tion involving Nal gives NaN, and any comparison involving NaN is considered
false.

>> 1/0
ans =
Inf
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>> Inf+Inf
ans =
Inf

>> Inf*-3
ans =
-Inf

>> Inf~2
ans =
Inf

>> 5 < Inf
ans =
1

>> 0/0
ans =
NaN

>> 5 < NalN
ans =

0

>> 5 >= NalN
ans =

0

>> sin(Inf)
ans =
NaN

>> atan(Inf)

ans =
1.5708

1.4 Loops and Conditionals

MATLAB has the usual conditional and looping constructs to build complex

statements out of simple ones. Note that

¢ Loops and conditionals end with the key word end. Therefore, there is no

need for “begin ...end” or “{...}” blocks.

* Atomic statements are separated by line breaks. Once a compound state-
ment has been entered, the interpreter continues to read input until the

compound statement is ended.
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* One can continue an atomic statement past the line break by typing “...”
at the end of the line.

* The value of each atomic statement is printed out as it is executed. This
is helpful in debugging; we can trace the execution of a statement just by
deleting the semicolon at the end. To suppress printout, put a semicolon
at the end.

>> for n=1:5
s=s+n
end % End of user input

10
15

>> for n=1:3
t=a; % Note suppression of printout

a=b
b=t+b
end
a =

1
b =

2
a =

2
b =

3
a =

3
b =

5

>> % Note: Unlike many programming languages, statements are separated by line
>> % breaks

>> x=1;

>> while x < 50

X=X+X

end
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16
32
64

>> % The hailstone procedure
>> x=3;
x =
3
>> while (x ~= 1)
if (mod(x,2)==1)
x=3*x+1
else x=x/2
end
end

10

16

1.5 Script File

A script file is a plain text file with MATLAB commands. The file has the exten-
sion .m. To execute a script file that is in the working directory, just enter the
name of the file (omitting the “.m”) in the command window. The working di-
rectory can be changed in the “directory” window. An example is the file p35.m:

% p35.m computes x~35 by repeated squaring followed by multiplication

X2=X%*X
x4=x2%x2
x8=x4*x4
x16=x8%*x8

)
h
)
h

x"2
x~4
x~8
x~1

6
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x32=x16%*x16 % x~32
x35=x32*x2*x % x~35

And this is how to execute it in the command window:

>> x=2
x =

>> p35
x2 =

x4 =
16
x8 =
256
x16 =
65536
x32 =
4294967296
x35 =
34359738368

>> % Variables defined in a script are visible after the script has executed.
>> x4
x4 =

16

>> % help prints out the comments at the head of the script file.
>> help p35
p35.m computes x"35 by repeated squaring followed by multiplication

1.6 Functions

The MATLAB code for the function named foo is in the file foo.m. To call foo
in the command window, just type “foo(...)"; this both loads and executes the
code.

The main differences between functions and scripts is that variables in a
function, including the input and output parameters, are local to the function.
(It is also possible to define and access global variables.) The function declara-
tion has one of two forms:

function <output variable> = <function name>(input variables)

or

function [<output variables>] = <function name>(input variables)
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For instance, for the file fib.m:

% Recursive, very inefficient, definition of Fibonacci numbers

function x = fib(n)
if (n==0) x=1;
elseif (n==1) x=1;
else x=fib(n-1)+fib(n-2);
end
end

And its use in MATLAB is:

>> fib (5)
ans =
8

>> help fib
Recursive, very inefficient, definition of Fibonacci numbers

Functions may return multiple values. For example, for quadform.m:

% quadform(a,b,c) returns the two roots of a quadratic equation
% ax~{2} + bx + ¢ = 0

function [r1,r2] = quadform(a,b,c)
x=sqrt(b~2 - 4xax*c);
r1=(-b-x)/(2xa);
r2=(-b+x)/(2*a);

end

>> [p,ql=quadform(1,0,-1)

Function files can have subfunctions. These are placed in the file after the
main function (the one with the same name as the file). Subfunctions can be
called only by functions within this same file.

Important note: i and j are used by MATLAB as predefined symbols for the
square root of —1. However, MATLAB does not prevent us from using these as
variables and reassigning them. If we aren’t using complex numbers in our
code (none of the assignments in this book require complex numbers), this
does not usually lead to trouble but occasionally can cause confusion. The
most common case is that if our code uses i or j without initializing them, we
do not get an error, as with other variables.
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% In an environment where the user has not initialized either ’a’ or ’i’.
>> a+1
7?77 Undefined function or variable ’a’.

>> i+l
ans =
1.0000 + 1.00001i

1.7 Variable Scope and Parameter Passing

By default a variable used in a function is local to the function call; that is, if
a function calls itself recursively, then the variables in the two instances of the
functions are different. Variables declared in the command window are local
to the command window.

If a variable is declared global in a number of functions, then it is shared
among all the calls of those functions. If it is also declared global in the com-
mand window, then it is also shared with the command window environment.

Parameters are always passed call-by-value. That is, the formal parameters
of a function are local variables; the value of the actual parameter is copied into
the formal parameter when the function is called, but not copied back when
the function returns.

Here is a toy example. Suppose that we have the two functions t1 and t2
defined in the file t1.m as follows:

% t1(x) is a toy example used to illustrate global and local variables

function y = t1(x)
global k m
p=x;
x=1;
k=2;
m=3;
t2(x)
y=[p,x,k,m]
end

function t2(z)

global k
p=11;
k=12;
m=14;
z=16;

end

The variable k is a global variable shared between t1 and t2. The vari-
able m in t1 is a global variable that will be shared with the command
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window; it is not shared with t2. We now execute the following in the command

window:
>> global m

>> k=100

>> p=300
300

>> x=400
x =

400

>> t1(x)
y =
400 1 12 3

% This is the execution of the last statement of til:

y=[p,x,k,m]

% Note that k has been changed by the execution of t2, because it was
% declared global between tl and t2; the others are unchanged by the
% execution of t2.

% Now back to the command window
y =
400 1 12 3

>> [p,x,k,m]
ans =
300 400 100 3

% Note that m has been changed by the execution of tl, because it was
% declared global between the command window and tl1. The others are
% unchanged.

The use of call-by-value in MATLAB means that if function f has parameter
y and function g executes the statement £ (x), then the value of x in g must be
copied into the variable y in £ before execution of £ can begin. If x is a large ma-
trix, this can involve a significant overhead. Therefore, the programming style
that is encouraged in LISP and other similar languages—using large numbers
of small functions and using recursion for implementing loops—is ill-suited to
MATLAB. Loops should generally be implemented, if possible, by using MATLAB

operators or library functions, or else by using iteration.
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Copying also occurs at any assignment statement; if x is a large matrix, then
executing the statement y=x involves copying x into y. If we are executing a long
loop involving large arrays and are concerned with efficiency, we may need to
give some thought to reducing the number of unnecessary copies.

The truth is that if our program is largely executing our own MATLAB code
(rather than the built-in MATLAB functions, which are implemented efficiently),
if it manipulates large quantities of data, and if efficiency is a concern, then we
should probably be using some other programming language. Or at least we
should write the critical sections of the program in another language; MATLAB
has facilities for interfacing with code written in C or C++.

Problem

Problem 1.1. Can you write a function “swap(A,B)” in MATLAB that swaps the
values of its arguments? That is, the function should have the following behav-
ior:

>> i=1;
>> j=5;
>> k=1

O v w

>> swap(i,j);

>> swap(j,k);
>> j

10

Explain your answer.

Programming Assignments

Note: We have not yet defined any data structures, so the programming assign-
ments for this chapter are necessarily very numerical in flavor.

Assignment 1.1. A pair of twin primes is a pair of prime numbers that differ
by two. For example, (3,5), (5,7), (11,13), (17,19), and (29,31) are the first
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five pairs of twin primes. It has been conjectured that for large N, the number
of twin prime pairs less than N is approximately the function f(N) = 1.3203-
N/(log, N)2.

Write a MATLAB function CountTwinPrimes (N) that counts the number of
twin prime pairs less than N and compares the result to the above estimate.
That is, your function should return two values:

¢ C, the number of twin-prime pairs less than N
e |[(C— f(\N))/f(N)|, where f(N) is the expression defined above.

You may use the built-in MATLAB function isprime (X).

Assignment 1.2. Goldbach’s conjecture asserts that every even number greater
than 2 is the sum of two primes. For instance, 4 =2+2, 6 =3+3, 8 =3+5,
132 =23+ 109, and so on.

Write a function Goldbach (N) which takes as argument an even number N
and returns a pair of primes P, Q such that N=P+q.

Assignment 1.3. The four squares theorem states that every positive integer
can be written as the sum of four square integers. For example,

26 =5%+1% + 0% + 0,
56 = 6% + 4% + 2% + 0%
71=72+3%+3%+22,

Write a MATLAB function FourSquares (N) that returns four integers A,B,C,D
such that N =42 +B2 +¢2 +D2.

Assignment 1.4. Write a MATLAB function TriangleArea (4,B,C) that computes
the area of a triangle with sides of lengths A,B, C. For instance,

TriangleArea(3,4,5) should return 6;
TriangleArea(1,1,1) should return 0.4330 (= v/3/4);
TriangleArea(l,1,sqrt(2)) should return0.5.

Hint: Look up “Heron’s formula” in Wikipedia or your favorite search engine.

Assignment 1.5. The recurrence equation x4 = fol — 1 exhibits chaotic be-
havior for x between —1 and 1. That is, if you compute the series starting from a
particular starting point yp and then recompute the series starting from a start-
ing point zp = yp + €, which is very close to yp, the two series grow apart very
quickly, and soon the values in one are entirely unrelated to the values in the
other.
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For example, the two series starting at yp = 0.75 and zy = 0.76 are

y0=0.75 y=0.125, y,=-0.9688, ys;=0.8770, y;=0.5381, y5=—0.4209,
20=0.76, 2z =0.1552, zp=—09518, z3=0.8119, z4=0.3185 z5=—0.7971,

(@

(b)

(©

Write a MATLAB function CompareChaotic (Y0,Z0) that takes as arguments
two starting values yp and zp and returns the minimum value of n for
which |y, — z,| > 0.5. For instance CompareChaotic(0.75,0.76) should
return 6, since in the above series |y — zg| = 0.9164 > 0.5.

Experiment with a sequence of pairs that are increasingly close together,
such as (Y0 =.75,Z0 = 0.751), (YO = 0.75,Z0 = 0.7501), (YO = 0.75,Z0 = 0.75001),
and so on. Formulate a conjecture as to how the value of Compare-
Chaotic(Y0,Z0) increases with the value of 1/|YO —Z0|.

Double precision numbers are represented with about 16 digits (51 bits)
of precision. Suppose that you start with a value of yp in double pre-
cision and compute the series yy, y1,)2,.... Given your conjecture in (b),
how many terms of the series can you compute before the values become
completely unrelated to the true value?

V6 = —0.6457;
z6 = 0.2707.
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Chapter 2

Vectors

Linear algebra is the study of vectors, discussed in this chapter, and matrices,
discussed in Chapter 3.

2.1 Definition of Vectors

An n-dimensional vector is a n-tuple of numbers. (A more general definition
will be discussed in Section 4.3.1.) The indices 1,..., n are the dimensions of the
vector. The values of the tuple are the components of the vector.

In this text, we use angle brackets (...) to delimit vectors. We use a letter
with an arrow over it, such as 7, to denote a vector. The ith component of
vector 7 is notated 7 [i]. (In mathematical writings, it is often notated 7;, but
we use the subscript exclusively for naming different vectors.) For example,
U =0,6,—2.5) is a three-dimensional vector. U[1] =0. U [3] = -2.5.

A zero vector, denoted 0, is a vector whose components are all 0. The four-
dimensional zero-vector is {0,0,0,0). (The dimension associated with the no-
tation 0 is determined by context.)

The unit vector in the i dimension, denoted 8, is the vector with a 1 in
the ith coordinate and 0s everywhere else. For instance, in four dimensions,
82=1(0,1,0,0). The n-dimensional one vector, denoted 1, is the vector with 1s
in each dimension; for instance, in four dimensions, 1 = (1,1,1,1).

The set of all n-dimensional vectors is the n-dimensional Euclidean vector
space, denoted R".

2.2 Applications of Vectors

Vectors can be used in many different kinds of applications. A few typical ex-
amples are discussed here; many more examples are encountered in the course
of this book.
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0 \ \ \ X

Figure 2.1. Points represented as vectors.

Application 2.1 (Geometric points). Intwo-dimensional geometry, fix a coor-
dinate system % by specifying an origin, an x-axis, and a y-axis. A point p can
then represented by using the vector p = (p[x],ply]), where p[x],p[y] are the
coordinates of p in the x and y dimensions, respectively. The vector p is called
the coordinate vector for point p relative to the coordinate system %. For in-
stance, in Figure 2.1, p is associated with the vector (2,1) and q is associated
with the vector (0, 3).

Likewise, in three-dimensional geometry, point p can be associated with
the vector (p[x], ply], p[z]) of components in the x, y, z dimensions relative to a
particular coordinate system. In n-dimensional geometry, point p can be asso-
ciated with the vector (p[1],...,p[n]) where p[i] is the component along the ith
coordinate axis. Geometric coordinates are discussed at length in Chapter 6.

Application 2.2 (Time series). Avector can be used to represent a sequence of
numeric values of some quantity over time. For instance, the daily closing value
of the S&P 500 index over a particular week might be (900.1,905.2,903.7,904.8,
905.5). A patient’s hourly body temperature in degrees Farenheit over a four-
hour period might be (103.1,102.8,102.0,100.9). Here the dimensions corre-
spond to points in time; the components are the values of the quantity.

Application 2.3 (Almanac information). Numerical information about the 50
states could be recorded in 50-dimensional vectors, where the dimension cor-
responds to the states in alphabetical order: Alabama, Alaska, Arizona, Arkan-
sas, etc. We could then have a vector p =(4530000,650000,5740000, 2750000, ...)
representing the populations of the states; or d = (52400,663200,114000,
2750000, ...) representing the areas of the states in square miles; and so on.

Application 2.4 (Shopping). The dimensions correspond to a sequence of gro-
cery products: gallon of milk, loaf of bread, apple, carrot, and so on. Each store
has a price vector; for example, s[i] is the price of the ith product at the Stop
and Shop, and g[i] is the price of the ith product at Gristedes. Each customer
has a shopping list vector; for example, a vector 4, where d[i] is the number
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of item i on Amy’s shopping list, and B, where b [7] is the number of item i on
Bob’s shopping list.

Note that if the dimensions include all products standardly sold in grocery
stores, then each shopping list vector has mostly zeroes. A vector that has
mostly zeroes is called a sparsevector; these are common in many applications.

We may well ask, “How should we represent the price of an item that Stop
and Shop does not sell?" These are known as null values. In MATLAB, we can
use the special value NaN (not a number) to represent null values. In program-
ming languages that do not support NaN, we either have to use a value that is
known to be not the price of any actual groceries, such as a negative value or a
very large value, or we have a second vector of 1s and 0s that indicates whether
or not the object is sold. In either case, applications that use these vectors have
to be aware of this representation and take it into account. In fact, in some
applications it may be necessary to have more than one kind of null value; for
instance, to distinguish items that Stop and Shop does not sell from items for
which the price is unknown. We ignore all these issues here, however, and as-
sume that every store has a price for every item.

Application 2.5 (Personal database). Consider a database of personal infor-
mation for various kinds of applications, such as medical diagnosis, mortgage
evaluation, security screening, and so on. Each dimension is the result of a
numerical measurement or test. Each person has a corresponding vector; for
example, the value p[i] is the ith feature of person p. In medical applications,
we might have age, height, weight, body temperature, various kinds of blood
tests, and so on. In financial applications, we might have net worth, income,
credit score, and so on. (Note that features that are critical in one application
may be illegal to use in another.)

Alternatively, we can have a vector for each feature, indexed by person. For
instance, d could be the vector of ages, where 4 [i] is the age of person i.

Application 2.6 (Document analysis). Inalibrary of documents, one can have
one dimension corresponding to each word that appears in any document in
the collection and a vector for each document in the collection. Then, for doc-
ument d and word w, vector d denotes a document, and d [w] is the number
of times word w appears in document d.

Alternatively, we can have the dimensions correspond to documents and
the vectors correspond to words. That is, for each word w in the collection
there is a vector i, and the value of i [d] is the number of times word w ap-
pears in document d. Document vectors and word vectors are mostly sparse in
most collections.

This use of document vectors was introduced in information retrieval by
Gerard Salton (1971). In actual information retrieval systems, the definition of
document vector is a little more complex. It gives different weights to differ-
ent words, depending on their frequency; more common words are considered
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less important. Specifically, let N be the number of documents in a given col-
lection. For any word w, let m,, be the number of documents in the collection
that contain w, and let i, =log(IN/m,,), called the inverse document frequency.
Note that the fewer the documents that contain w, the larger i,,; for common
words such as “the,” which are found in all documents, i,, = 0. For any docu-
ment d, let £, ; be the number of occurrences of word w in document d. Then
we can define the document vector d, indexed by words, as dlw] = twdiw.

2.2.1 General Comments about Applications

Broadly speaking, applications of vectors come in three categories: geometric
interpretations (Application 2.1), sequential interpretations (Application 2.2),
and numeric functions of two entities or features (Applications 2.3-2.6). We
will see some other categories, but these three categories include many of the
applications of vectors. A couple of general points may be noted.

First, the geometric interpretations depend on an arbitrary choice of coor-
dinate system: how a point is modeled as a vector depends the choice of the ori-
gin and x- and y-axes. An important question, therefore, concerns how differ-
ent choices of coordinate system affect the association of vectors with points.
Other categories generally have a natural coordinate system, and the only simi-
lar arbitrary choice is the choice of unit (e.g., feet rather than meters, US dollars
rather than euros, liters instead of gallons). Even in those cases, as we see at
length in Chapter 7, it is often important to think about alternative, less natural
coordinate systems.

Second, in the first and third categories, the association of dimensions with
numerical indices is essentially arbitrary. There is no particular reason that the
states should be listed in alphabetical order; they could just as well be listed in
backward alphabetical order (Wyoming, West Virginia, Washington, ...); in or-
der of admission to the union (Delaware, Pennsylvania, New Jersey, ...); or any
other order. Any question for which the answer depends on having a particu-
lar order, such as “Are there three consecutive states with populations greater
than 7 million?” is almost certain to be meaningless. Likewise, in geometric
applications, there is no particular reason that the x, y, and z directions are
enumerated in that order; the order z, x, y is just as good.1 For time series and
other sequential vectors, by contrast, the numeric value of the index is signifi-
cant; it represents the time of the measurement.

In a programming language such as Ada, which supports enumerated types
and arrays that are indexed on enumerated types, the programmer can declare
explicitly that, for instance, the vectors in Application 2.3 are indexed on states
or that the person vectors in Application 5 are indexed on a specified list of

I There is, however, a significant distinction between left- and right-handed coordinate systems,
which is related to the order of the coordinates; see Section 7.1.2.
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features. However, MATLAB does not support the type structure needed for this.
For the vectors of Application 2.4 indexed by product type, or the vectors of
Application 2.6 indexed by document or words, where the class of indices is not
predetermined, we would want arrays indexed on open types, such as words; I
don’t know of any programming language that supports this.

This distinction is not reflected in standard mathematical notations; math-
ematicians, by and large, are not interested in issues of types in the program-
ming language sense.

2.3 Basic Operations on Vectors

There are two basic? operations on n-dimensional vectors:

* Multiplying a n-dimensional vector by a number. This is done component-
by-component and the result is a new n-dimensional vector. That is, if
i =r-Uthen Wil = r-v[i]. So, for example, 4-(3,1,10) = (4-3,4-1,4-10) =
(12,4,40).

In linear algebra, a number is often called a scalar, so multiplication by
a number is called scalar multiplication. It is conventional to write a- U
rather than - a. The value (—1)- U is written —U. As usual in mathematical
notation, we may omit the multiplicative dot symbol and just write av
when that is not confusing.

* Adding two vectors of the same dimension. This is done component-by-
component; that is, if i = U + #i then @ [i] = U[i] + @ [i]. So, for example,
(3,1,10) +(1,4,-2) =(3+1,1+4,10-2) = (4,5,8).

The difference of two vectors ¥ — i is defined as v + (—ii). Two vectors of
different dimensions may not be added or subtracted.

2.3.1 Algebraic Properties of the Operations

The following basic properties of these operators are important. They are all
easily proven from the definitions. In all the following properties, 7, i, i, and

2“Says who?” you may well ask. What's so “not basic” about operations such as finding the length
of a vector, adding a scalar to a vector, finding the largest element of a vector, or sorting a vector?
Certainly these are important, and, of course, they are built into MATLAB. There are, however, two
related reasons for emphasizing these two operations. First, as we shall see, linear algebra is essen-
tially about linear transformations; the two operations of vector addition and scalar multiplication
are linear transformations, whereas operations such as sorting are not. Second, in the more gen-
eral definition of vector discussed in Section 4.3.1, these other operations may not be pertinent.
For instance, the components of a vector may be entities that are not ordered in terms of “greater”
and “less.” In that case, sorting is not meaningful.
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0 are n-dimensional vectors, and a and b are numbers:

U+u=u+70 (commutative)
(D+u)+w=0v+(th+w) (associative)
a-(W+u)=(a-v)+(a-u) (distributive)
(a+b)-v=(a-U)+(b-v) (distributive)

a-(b-v)=(ab)-v

0-7=0

7+0="7 (0 is the additive identity)
-0=0 (=7 is the additive inverse of 7)

2.3.2  Applications of Basic Operations

Geometric. Fix a coordinate system in space with origin 0. Suppose that p
and ¢ are the coordinate vectors for points p and q, respectively. Let a be a
number. Draw arrows from o to p and from o to q.

Now make the arrow from o to p a times as long, keeping the tail of the
arrow at o and the direction the same. Then the coordinate vector of the head
of the arrow is ap.

Then copy the arrow from o to q, keeping the direction and length the same,
but put its tail at p. Then the coordinate vector of the head of the arrow is p+ g.

Figure 2.2 illustrates this geometric application with p = (2,1), § = (0,3),
a=1.5.

Nongeometric. The nongeometric interpretations of vector addition and
scalar multiplication are mostly obvious. We multiply by a scalar when we need
to multiply every component by that scalar; we add two vectors when we need
to add every component. For example, consider Application 2.4 again, where
the dimensions correspond to different kinds of groceries. If 4 is Amy’s shop-
ping list, and b is Bob’s, and they decide to shop together, then a + b is their
joint shopping list. If § is the price list for Stop and Shop and g is the price

p+q

ap

p

0 \ \ \

Figure 2.2. Points represented as vectors.
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for Gristede’s then s — g is the amount they save at Gristede’s for each item. (If
(5— 2)[i] is negative, then item i is more expensive at Gristede’s.) If Shop and
Shop announces a 20% off sale on all items in the store, then the new price vec-
tor is 0.8 - 5. To convert a price vector from dollars to euros, we multiply by the
current exchange rate. Other applications work similarly.

2.4 Dot Product

The dot product of two n-dimensional vectors is computed by multiplying cor-
responding components, and then adding all these products. That is,

vew=0[1]-w(l]l+...+7[n]-w(nl].

For example, (3,1,10) ¢ (—2,0,4) = (3-—2) + (1-0) + (10-4) = —6+0+40 = 34.
The dot product is also known as the scalar product or the inner product.
We indicate it by a large solid dot s, as above; this is not standard mathematical
notation, but a long sequence of small dots can be confusing.
The dot product is not defined for vectors of different dimensions.

2.4.1 Algebraic Properties of the Dot Product

The following basic properties of the dot product are important. They are all
easily proven from the above definition. In the following properties, U, # and
i are n-dimensional vectors, and a is a number:

Deili=ile?D (commutative)
(i+D)eiw=(lie W)+ (Ve W) (distributive)
(a-)eV=a-(leD)=1ie(a V)

Another obvious but important property is that the dot product of vector U
with the ith unit vector &' is equal to ith coordinate 7 [i]. A generalization of
this is presented in Section 4.1.3.

2.4.2  Application of the Dot Product: Weighted Sum

The simplest application of the dot product is to compute weighted sums. A
few examples follow.

In the grocery shopping application (Application 2.4), §is the vector of prices
at Stop and Shop, and @ is Amy’s shopping list. If Amy goes shopping at Stop
and Shop, she will pay d[i] - 5[i] for item i, and therefore her total bill will be
Yialil-slil=aes.
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The sum of the elements of an n-dimensional vector 7 is 1- #. The average
value of a n-dimensional vector 7 is the sum divided by #; thus, (1/n) e,

In the almanac application (Application 2.3), p is the population of each
state. Let g be the average income in each state. Then p[i]- g[i] is the total
income of all people in state i, so p e g is the total income of everyone in the
country. The average income across the country is the total income divided by
the population, (F e §)/(p e 1). Note that we are not allowed to “cancel out” the
p in the numerator and denominator; dot products don’t work that way.

Application 2.7 (Linear classifiers). Animportant category of applications in-
volves the classification problem. Suppose we are given a description of an
entity in terms of a vector U of some kind, and we want to know whether the
entity belongs to some specific category. As examples, a bank has collected in-
formation about a loan applicant and wants to decide whether the applicant is
areasonable risk; a doctor has a collection of information (symptoms, medical
history, test results, and so forth) about a patient and wants to know whether
the patient suffers from a particular disease; or a spam filter has the text of an
email message, encoded as a document vector (see Application 2.6) and wants
to know whether the message is spam.

A classifier for the category is an algorithm that takes the vector of features
as input and tries to calculate whether the entity is an instance of the category.
One of the simplest and most widely used kinds of classifier are linear classi-
fiers, which consist of a vector of weights i and a threshhold ¢. If the weighted
sum of the feature vector, i « U > t, then the classifier predicts that the entity
is in the category; otherwise, the classifier predicts that it is not.

Most machine learning programs work by constructing a classifier for a cat-
egory, based on a corpus of examples. One simple algorithm to do this, the
Naive Bayes algorithm, is discussed in Section 8.11.

2.4.3 Geometric Properties of the Dot Product

Geometrical analysis yields further interesting properties of the dot product
operation that can then be used in nongeometric applications. This takes a
little work.

Consider a fixed two-dimensional coordinate system with origin o, an x-
axis, and a y-axis. Let p and q be points and let p and g be the associated
coordinate vectors.

First, note that, by the Pythagorean theorem, the distance from o to p (in
the units of the coordinate system), which we denote as d(o, p) is

plx12+ plyl?.
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But p[x]?+ plyl>=pe jp. So d(o,p) = /P * p. This quantity, \/p e p, is called
the length of vector p and is denoted | p|. Slmllarly,

d(p,@) = /(11— pLxl)2 + (1Y) - ply))?

So
dp, @)% = (G (x]1 - pxD* + (G [yl - P Iy))?
=(G-p)e (G- D)
=Geqg-2pe r7+
=d(o,q*-2p d(o pZ.
Therefore,

_ . d(o,p)*+d(o,q°—d(p,q)?
peq= > .
This proof is for two-dimensional points, but in fact the same proof works in
Euclidean space of any dimension.
Proceeding from the formula for d(p,q), a number of important conclu-
sions can be deduced. First, by the triangle inequality,

(2.1)

|d(o,p) —d(o,q)| =d(p,q) <d(o,p) +d(o,q).
Since all these terms are nonnegative, we may square all parts of the inequality,
giving
d(o,p)* —2d(o,p)d(0,q) + d(0,q)* < d(p,q)*
< d(o,p)2 +2d(o,p)d(o,q) + d(o,q)z.
Therefore,
-2d(o,p)d(0,q) < d(o,p)* + d(0,9)* - d(p,q)* < 2d(o,p)d(o,q).

But, by Equation (2.1), the middle term here is just 2 « ¢. Substituting and
dividing through by 2 gives

~d(o,p)d(o,q) < p* G=<d(o,p)d(o,q).
Using the facts that d(o, p) = |p| and d(o,q) = |§|, and dividing through gives
< pPeq
1Bl-1g |

Equation (2.2) is known as the Cauchy-Schwarz inequality.3

(2.2)

3This may seem a little suspicious. How did we derive this nontrivial algebraic inequality from
this simple geometric argument? If it does seem suspicious, then you have good instincts; what
we've pushed under the rug here is proving that the triangle inequality holds for Euclidean distance
in n-dimensions.
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Figure 2.3. Geometric interpretation of the dot product.

Next, consider the case where p,0,q form a right angle; that is, the arrow
from o to q is at right angles to the arrow from o to p. Then, by the Pythagorean
theorem, d (p,q)2 =d (o,p)2 + d(o, q)2. Using Equation (2.1), it follows that
P » 4 =0. In this case, we say that p and 4 are orthogonal.

Equation (2.2) can be made more precise. Let 6 be the angle between the
arrow from o to q and the arrow from o to p. Recalling the law of cosines from
trigonometry class in the distant past and applying it to the triangle opq yields

d(p,q@? = d(o,p)* +d(0,q)* - 2d(0,p)d(0,q) cos(H),

SO

cos(6) = do,p)®+d(0o,Q*—d(p,q* P
- 2d(o,p)d(o,q) 1Pl

q
q

Thus, the angle 6 between the two vectors p and ¢ can be calculated as
cos™' (P * G/1plI ).

Another way to write this formula is by using unit vectors. A unit vector is a
vector of length 1. For any vector ¥ # 0, the unit vector in the same direction as
U isjust U/|V|; this is often written 0. So we can rewrite the formula for cos(f) as

|
|-

cos(0) =

(2.3)

1l
=
L]
<

=
s

We have used this geometric argumentation to derive important proper-
ties of the dot product, but we have not said what, in general, the dot product
actually means, geometrically. Sadly, there is no very intuitive or interesting
explanation. (Equations (2.1) and (2.3) are geometrical definitions but they do
not give a clear intuitive sense for the dot product.) The best, perhaps, is this:
Given p and g, let i be the vector that is perpendicular to g, in the same plane
as p and ¢, and the same length as 4. Then |p e | is the area of the parallel-
ogram with sides p and i (Figure 2.3). This is not a very helpful definition,
however; first, because the distributivity rule is not geometrically obvious; and
second, because the sign of the dot product is not easy to define in this way.
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2.4.4 Metacomment: How to Read Formula Manipulations

The derivation of the Cauchy-Schwarz inequality in Section 2.4.3 is a sterling
example of what people dislike about math and math books: “(Dull long
formula) so (series of even duller, even longer formulas) so (pretty dull but
short formula). How wonderful!”

I can’t eliminate formula manipulation from this book because that is an
important part of how math works. I can't always replace formula manipula-
tion proofs with “insightful” proofs because a lot of the time there aren’t any in-
sightful proofs. Moreover, proofs that avoid formula manipulation are not nec-
essarily more insightful. Sometimes they rely on a trick that is actually largely
beside the point. Sometimes they don't generalize as well.

The one thing that I can do is to tell you how I read this kind of thing, and
I suggest doing likewise. Trying to read a proof the way one would read the
newspaper, or even the way one would read the earlier sections of this chapter,
is (for me) a complete waste of time. (Of course, people are all different, and
there may be someone somewhere who gets something out of that; but no one
I've ever met.) I find that there are three possible approaches to reading a proof:

1. The bestis to glance through it, get kind of an idea how it works, close the
book, and try to write out the proof without looking at the book. Unless
the proofis quite short, you should write it out rather than trying to think
it through in your head. Once you've done this, you really understand
how the proof works and what it means.

2. Ifyou’re dealing with a long proof or if you're short on time, approach (1)
will probably be too difficult. In that case, the second best approach is
to go through the proof slowly. Check the simple steps of the proof by
eye, making sure that you keep track of where all the terms go and that
you understand why the author brought in another formula from before
at this point. If you can’t follow the step by eye, then copy it down and
work it out on paper. The limitation of this approach, as opposed to (1),
is that you can end up understanding each of the steps but not the overall
progress of the proof; you hear the notes but not the overall tune.

In either (1) or (2), if the book provides a picture or example, then you
should carefully look at it and make sure you understand the connection be-
tween the picture or example and the proof. If the book doesn’t provide one,
then you should draw a picture if the proof is geometric, or you should work
through some numeric examples if the proof is numeric. Manipulating the
numbers often gives a clearer sense of what is going on than looking at the
algebraic symbols.

Approaches (1) and (2) are both difficult and time-consuming, but there is
no way around that if you want to learn the math—“There is no royal road to
geometry” (Euclid). That leaves
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3. Skip the manipulation and just learn the conclusion.

Unless you are responsible for the manipulation—you are reviewing the proof
for a scientific journal, or your instructor has told you that you are required to
know the proof for the exam—this is probably safe to do. I regularly read books
and articles with proofs in them; I work through perhaps 5% of them, probably
less. Your time is valuable, and there are other things to do in life. But even
though you can do this sometimes, you can't always take approach (3) if you
want to learn how to do math.

2.4.5 Application of the Dot Product: Similarity of
Two Vectors

The geometric discussion of the previous section can be applied to nongeo-
metric vectors to give two measures of how close or similar two vectors are.

The obvious measure of the similarity between two vectors p and 4 is just
the distance between them,

|g—Pl=1/(G—P)e(G—P).

For instance, if we have a set of pricing vectors from different stores, as in Ap-
plication 2.4, and we want to determine which stores have most similar pricing
policies (perhaps with a view to detecting price fixing), this might be a reason-
able measure to use. Note that if we are just comparing greater and lesser dis-
tances, there is no need to extract the square root; we can just use the distance
squared, which is equal to (G — p) ¢ (§— P).

However, it is often more pertinent to consider a scale invariant measure of
similarity of two vectors, which concerns the difference in the direction of the
two vectors independent of their magnitude. In that case, a natural measure
is the angle between the two vectors, which can be calculated in terms of the
expression (P ¢ §)/(1p]-14). Again, if we are just comparing greater and smaller
angles, there is no need to calculate the inverse cosine function to get the actual
angle; it suffices just to calculate the cosine of the angle by using this formula.

For example, suppose we want to evaluate the similarity of two documents
in terms of the words they use—for example, to suggest “related documents” in
a search engine. We can then use the document model described in Applica-
tion 2.6. If we just use the distance between the document vectors, then long
documents will tend to be close to other long documents and far from short
documents, which is not at all what we want. Rather, we want to base the simi-
larity judgment on the relative frequency of words in the documents. This can
be done by using the angle cosine between the document vectors.

Application 2.8 (Recommender systems). A company wants to recommend
specific products to specific users. The company has available a large database
of purchases by customers.
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One way to determine the recommendations, in principle,4 is the following:
For each customer in the data base, we construct a vector indexed by product.
That is, corresponding to customer ¢, we construct an n-dimensional vector ¢,
where 7 is the number of different products and ¢[i] is equal to the quantity of
product i that customer ¢ has bought. Of course, ¢[i] is 0 for most i; thus, this
is a sparse vector. Now, in making recommendations for customer d, we find
the k customer vectors that are most similar to d in terms of the above measure
and recommend products that have been popular among these customers.

There is an alternative approach: for each product p, we construct an m-
dimensional vector p, where m is the number of different customers and 5[]
is the quantity of product p that customer j has bought. To find customers who
might like a specific product g, we look for the k product vectors most similar
to g and recommend g to customers who have bought some of these products.

Application 2.9 (Pattern comparison). Suppose we want to compare the pat-
tern of the stock market crash of fall 1929 with the stock market crash of fall
2008. Since the Dow Jones average was around 700 at the start of September
1929 and around 12,000 at the start of September 2008, there is no point in us-
ing the distance between the corresponding vectors. The angle cosine between
the two vectors might be a more reasonable measure.

Application 2.10 (Statistical correlation)?® A course instructor wishes to de-
termine how well the results on his final exam correspond to the results on the
problem sets. Suppose that there are six students in the class; the vector of
average problem set scores was p = (9.1,6.2,7.2,9.9,8.3,8.6) and the vector of
final exam scores was X = (85,73,68,95,77,100).

The first step is to shift each vector so that they are both zero-centered; oth-
erwise, the comparison will mostly just reflect the fact that students as a whole
did fairly well on both. We are interested in the performances of individual stu-
dents relative to the average, so we subtract the average value from each vector.
The average problem set score p = 8.22 and the average exam score € = 83, so
the shifted vectors are p' = p— p-1 = (0.8833,-2.0167,~1.0167,1.6833, 0.0833,
0.3833) and ' = ¥—é&-1 = (2,-10,-15,12,-6,17). The correlation is the angle
cosine between these, p' ¢ X'/|p’||1X'| = 0.7536.

In general, the correlation between two vectors p and ¢ is defined by the
algorithm

p' — p-mean(p)-I;

G'—G-mean(§)-1;
correlation— 5" g /15’11’

4Getting this method to work efficiently for a huge database is not easy.
5This example is adapted from Steven Leon, Linear Algebra with Applications.
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2.4.6 Dot Product and Linear Transformations

The fundamental significance of a dot product is that it is a linear transforma-
tion of vectors. This is stated in Theorem 2.2, which, though easily proven, is
very profound. First we need a definition.

Definition 2.1. Let f(?) be a function from n-dimensional vectors to num-
bers. Function f is a linear transformation if it satisfies the following two prop-
erties:

e For any vector U and scalar a, f(a- ) = a- f().
¢ For any vectors 7, il, f(U+ #l) = f (D) + f(iD).

The algebraic properties of the dot product listed in Section 2.4.1 show the
following: For any vector 0, the function f(¥) = i e U is a linear transforma-
tion. Theorem 2.2 establishes the converse: Any linear transformation f(7)
corresponds to the dot product with a weight vector 0.

Theorem 2.2. Let f be a linear transformation from n-dimensional vectors to
numbers. Then there exists a unique vector i such that, for all v, f (V) = il » U.

For example, imagine that Stop and Shop does not post the price of indi-
vidual items; the checkout clerk just tells you the price of an entire basket. Let
f be the function that maps a given shopping basket to the total price of that
basket. The function f is linear, assuming that Stop and Shop has no “two for
the price of one" offers, “maximum of one per customer” restrictions, or other
stipulations. Specifically,

1. If you multiply the number of each kind of item in a basket b by a, then
the total price of the basket increases by a factor of a.

2. If you combine two baskets b and ¢ into a single basket b + ¢, then the
price of the combined basket is just the sum of the prices of the individual
baskets.

Then Theorem 2.2 states that there is a price vector § such that f (E) =5eb
for any basket b. How do we find the vector §2 Couldn’t be simpler. Put a single
unit of a single item i into a basket, and ask Stop and Shop the price of that
basket. We will call that the “price of item i,” and we set 5[i] to be that price. By
property (1), a basket that contains b [i] units of item i and nothing else costs

bli]-S[i]. By property (2), a basket that contains b [1] units of item 1, b [2] units
ofitem 2, ..., and b[n] units of item n costs b[1]-5[1] + b[2]-5[2] +...+ b[n] -
S[n]=5%e b.

The general proof of Theorem 2.2 is exactly the same as the argument we

have given above for Stop and Shop prices.®

6The theorem does not hold, however, for infinite-dimensional vector spaces.
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2.5 Vectors in MATLAB: Basic Operations

In this section, we illustrate the basic vector operations and functions by exam-
ple. For the most part, these examples are self-explanatory; in a few cases, we
provide a brief explanation.

Strictly speaking, MATLAB does not have a separate category of vectors as
such; vectors are either 1 x n matrices (row vectors) or n x 1 matrices (column
vectors). Most functions that take a vector argument, such as dot, norm, and
plot, do the same thing with either kind of vector. Functions that return a vec-
tor value, such as size and randperm, have to choose, of course; these mostly
return row vectors, presumably because they print out more compactly.

2.5.1 Creating a Vector and Indexing

>> v = [2,3,2,5,11]
v

2 3 2 5 11
>> a=v(4)
a =
5
>> v(4)=8
v =
2 3 2 8 11
>> v(8)=10
v =
2 3 2 8 11 0 0 10
% If you set a positive index beyond the range of the vector, Matlab

% expands the vector to accommodate.

>> v (10)

7?7 Attempted to access v(10); index out of bounds because numel(v)=5.

% But not if you try to access beyond the range.

>> v(-2)=3

777 Attempted to access v(-2); index must be a positive integer or logical.

% or if you try to set an invalid index.

2.5.2 Creating a Vector with Elements in Arithmetic Sequence

>> u=2:10
u =
2 3 4 5 6 7 8 9 10
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>> w= 3.16 : 0.5 : 6.

3.1600 3.6600 4.1600 4.6600 5.1600 5.6600
>> ones(1,5)
ans =

1 1 1 1 1
>> zeros (1,5)
ans =

0 0 0 0 0
Boolean vectors.
>> q=[12,3,1,7,2]
q =

12 3 1 7 2
>> p=[1,3,5,7,9]
p =

1 3 5 7 9
>> p::q
ans =

0 1 0 1 0
Subvectors.
>> w
—

3.1600 3.6600 4.1600 4.6600 5.1600 5.6600
>> w(2:4)
ans =

3.6600 4,.1600 4.6600
>> w(1:2:6)
ans =

3.1600 4.1600 5.1600
>> q
q =

12 3 1 7 2
>> q([3,3,1,5])
ans =

1 1 12 2
>> q(2:4)=[4,1,6]
q =

12 4 1 6 2
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>> q<b
ans =
0 1 1 0 1
>> q(g<5)
ans =
4 1 2
>> % However , the following looks like it

>> q([0,1,1,0,1]1)
??? Subscript indices must either be real

>>
>>
>>

% Why? Because [0,1,1,0,1],
% integers, not a vector of Booleans,
% needs to do a cast. So you have to

>>
ans

q(logical([0,1,1,0,1]))

4 1 2

>> % This is why a programming language
>> % (numeric 0 vs. logical 0) that print

2.5.3 Basic Operations

entered from the keyboard,

should be the same but gives an error

positive integers or logicals.
is a vector of
and Matlab can’t figure out that it

do an explicit cast.

should not have two basic constants

in the same way.

>> u
u =

2 3 4 5 6 7 8 9 10
>> 3%u
ans =

6 9 12 15 18 21 24 27 30
>> 3+u
ans =

5 6 7 8 9 10 11 12 13
>> u+(6:14)
ans =

8 10 12 14 16 18 20 22 24
>> utw
7?7 Error using ==> plus

Matrix dimensions must agree.

2.5.4 Element-by-Element Operations

In MATLAB, the notationu * v means matrix multiplication (discussed in Chap-
ter 3). Therefore, if we want to multiply two vectors element-by-element, we

use the special notation u .* v (period asterisk).

Likewise with some other
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operations, such as exponentiation, that have a particular meaning for matri-
ces, we use a leading dot to signify an element-by-element operation.

>> u.*x(u+3)

ans =
10 18 28 40 54 70 88 108 130
>> u./(u+3)
ans =
Columns 1 through 7
0.4000 0.5000 0.5714 0.6250 0.6667 0.7000
0.7273
Columns 8 through 9
0.7500 0.7692
>> u."2
ans =
4 9 16 25 36 49 64 81 100

>> % Numerical functions with no particular matrix significance can be applied

>> % without using the . notation
>> sin(u)
ans =
Columns 1 through 7
0.9093 0.1411 -0.7568 -0.9589 -0.2794 0.6570
0.9894
Columns 8 through 9
0.4121 -0.5440

2.5.5 Useful Vector Functions

>> mean(u)
ans =

6

>> length(u) % Number of dimensions
ans =

9

>> norm([3,4]) % Euclidean length
ans =

5
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>> norm(u)
ans =
19.5959

>> ans "2
ans =
384.0000

>> max (u)
ans =

10

>> min (u)
ans =

2

>> sum(u)
ans =
54

>> sort([5,2,1,6,1,8])
ans =
1 1 2 5 6 8

>> median([5,2,1,6,1,8])
ans =
3.5000

>> dot ([1,2,3],[3,2,1])
ans =

10

2.5.6 Random Vectors

>> rand(1,5) % 1,5 because this is a random 1x5 matrix.
ans =
0.8147 0.9058 0.1270 0.9134 0.6324

>> randperm (8) ¥ random permutation of 1:8
ans =

1 6 2 3 8 4 5 7

The following is an example calculation of the correlation of exam scores
and problem sets.

>> function cor = correlation (u,v)
uprime = u - mean(u);
vprime = v - mean(v);
cor = dot(uprime/norm(uprime), vprime/norm(vprime));

end
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>> e=[85, 73, 68, 95, 77, 100]
e =
85 73 68 95 77 100
> p=[ 9.1, 6.2, 7.2, 9.9, 8.3, 8.6 1]
9.1000 6.2000 7.2000 9.9000 8.3000 8.6000

>> correlation (e,p)
ans =
0.7536

2.5.7 Strings: Arrays of Characters

>> s=’Call me Ishmael’
s =
Call me Ishmael

>> s(5:10)
ans =
me Is

2.5.8 Sparse Vectors

To create a sparse vector with all 0s of length 7, call sparse(1,n). (Again, we use
the argument “1” because this is a 1 x n matrix.) To turn an ordinary (full) vec-
tor vinto a sparse vector s, call s=sparse (v); to go the other way, call v=full(s).
Indexing, vector addition, scalar multiplication, and most vector functions work
with sparse vectors exactly or nearly the same way as with full vectors.

>> v=sparse(1,10) % 1,10 because this is a sparse 1x10 matrix.
v =
All zero sparse: 1-by-10

>> full(v)
ans =

0 0 0 0 0 0 0 0 0 0

>> v(2)=3
v =
(1,2) 3

>> u=sparse (1,10)
u =
All zero sparse: 1-by-10

>> u(7)=4
u =

(1,7 4
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>> x=u+v

x =
(1,2) 3
(1,7 4

>> dot (x,u)
ans =
(1,1) 16
>> % The dot product of two sparse vectors is a sparse vector of length 1.

>> norm(x)
ans =

5

>> w=[1:10]

w o=
1 2 3 4 5 6 7 8 9 10
>> wtv
ans =
1 5 3 4 5 6 7 8 9 10

% Note that sparse and full vectors can be combined; the result is a full
% vector

2.6 Plotting Vectors in MATLAB

One of the most useful and most complex aspects of MATLAB is its support for
two- and three-dimensional graphics. In this book, we discuss only the two-
dimensional plotting system, and only its most basic aspects.

The basic plotting function is plot. In its basic form, plot (x,y,c) takes as
arguments two k-dimensional vectors x and y and a control string c. It pro-
duces a plot of the points (x[1],y[1]},..., {x[k],y[k]) in the display format indi-
cated by control string c.

>> x=[1.23, 1.82, 2.45, 3.06, 3.91]
X =
1.2300 1.8200 2.4500 3.0600 3.9100

>> y=[100, 99.4, 123.8, 110.6, 122]
y =
100.0000 99.4000 123.8000 110.6000 122.0000

>> plot(x,y,’ro-7)
The plot is output in a MATLAB window called “Figure 1,” shown here in Fig-

ure 2.4. The figure can then be saved as a file in a variety of formats by using
the “Save” or “SaveAs” option in the GUI associated with the plot window.
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Figure 2.4. Simple plot.
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The plotting routine chooses “nice” ranges and tick frequencies for the x

“w.n

and y axes. The “1” flag in the control string specifies the color red; the “0”
flag specifies that the points are marked with circles, and the “-” flag specifies
that the points are connected with a solid line. Table 2.1 shows other values for

these specifiers.

The saveas function causes the current figure (denoted gcf) to be saved
in a format that can be reloaded into MATLAB. The print operation causes the
current figure to be exported into EPS format, suitable for use in LaTeX. MATLAB
supports exporting into a variety of formats, including GIE JPG, and so on.

Color Point Type Line Type

b | blue x| asterisk solid
c | cyan o | circle dashed
g | green x | cross dotted
k | black d | diamond dash-dot
m | magenta || . | point
r | red + | plussign
w | white s | square
y | yellow < | left triangle

> | righttriangle

~ | up triangle

v | down triangle

p | 5-pointstar

h | 6-pointstar

Table 2.1. Specifiers for plotting.
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Figure 2.5. Using the default x-coordinates.

The control parameters can be typed in any order within the control string.
If any of the control parameters is omitted, then a default value is used. The
default color is blue, the default data point indicator is none, the default line
type is no line if a data point indicator is included and a solid line if it is not.
For example:

plot(x,y) Points connected by blue line, no marker at points

plot(x,y,’*g’) Points marked by green asterisk, no line

plot(x,y,’k:?) Points connected by dotted black line, no marker at
points

plot(x,y,’--v’)  Blue points marked by downward triangle connected by
blue dashed line.

If only one vector is specified, it is taken to be the vector of y-coordinates
and is plotted against the vector 1:k. For example, plot (y, ’ro-’) gives the plot
in Figure 2.5.

The next example illustrates the following three features:

* The plotted points need not be listed in increasing order of the x-coor-
dinates. The lines connecting the points connect them in the order spec-
ified.

* The axes can be adjusted by using the axis function.
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0 1 2 3 4 5 6

Figure 2.6. Plotting multiple datasets.

* Multiple sequences of data points can be plotted on a single graph by
calling plot with additional arguments: The call plot (x1, y1, c1, x2,
y2, ¢2, ..., xn, yn, cn) plotspointsx1,y1with controlc1,x2,y2with
control c2, and so on.

>> x=[1,5,5,1,1]
x =

1 5 5 1 1

>> y=[1,1,5,5,1]
y =
1 1 5 5 1

>> a=[3,3+2*%sin(4*pi/5) ,3+2*sin(8*pi/5) ,3+2*sin(12*pi/b), 3+2*sin(16*pi/5) ,3]

3.0000 4.1756 1.0979 4.9021 1.8244 3.0000

>> b=[5,3+2%cos (4*pi/5) ,3+2*cos (8*pi/5),3+2*cos (12*xpi/b), 3+2*cos(16*pi/5),5]
b =
5.0000 1.3820 3.6180 3.6180 1.3820 5.0000
>> plot(x,y,’ro-’,a,b,’ks:?)
>> axis equal
>> axis([0,6,0,6])

The final plot is shown in Figure 2.6. The axis equal command is useful
with geometric plots to ensure equal spacing in the x- and y-dimensions.

The MATLAB graphics package has many more features, including a GUI
interface; look them up as needed.
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2.7 Vectors in Other Programming Languages

Almost every programming language supports one-dimensional and multidi-
mensional arrays as primitive data structures.” We do, of course, have to be
careful of the difference between 0-based indexing, used in such languages as
C and Java, and 1-based indexing, used in this book and in MATLAB.

Programming language support for sparse vectors is much less common.
In most languages, a sparse vector ¥ must be implemented as a set of pairs
{{m,1),...,{a,ck)}, where ci,...,c, are the nonzero components of 7 and
ai,...,a are the associated indices. For example, the vector 7 = [0,0,12,0, -8,
12,0,0,0,0,0] could be represented as the set {(3,12), (5, —8), (6, 12)}.

Sets themselves, of course, can be implemented in a number of ways in
conventional programming languages; the choice of implementation here in-
volves some trade-offs. Consider, for example, the simple operation of indexing
into a sparse vector; that is, finding 7/ [i], given the set of pairs. If the set is im-
plemented as a list, then the solution is to go through the pairs until finding a
pair {aj, cj) for which a; = i, and return c¢;. However, this requires time pro-
portional to the number of nonzero elements, which can be large (the vector
may still be sparse if the dimensionality is enormous). Alternatively, the set
may be implemented as a hash table, which would support constant expected
time indexing but would complicate other operations.

Exercises

Exercise 2.1. Compute each of the following expressions by hand. Do not use
MATLAB.

(@ 3-(1,-3,2).

(b) —2-¢(4,2,0,1).

(c) (1,-3,2)+(4,2,6).

(d) ¢0,1,5,2) +(1,-1,1,-1).
(e) (1,-3) ¢ (4,2).

() (1,-3,2) ¢ (4,2,6).

Exercise 2.2. Compute |(1,1,2)| by hand. (You may leave this in the form /x.)

7Early versions of some programming languages, such as LISP and ML, did not include arrays,
but these have mostly acquired arrays as they became increasingly used for production software.
Prolog has been resistant to arrays; there are dialects that include arrays, but most do not.
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Exercise 2.3. Byhand, find the cosine of the angle between (1,—-3,0) and (2,1, 3).
(You may leave this in the form x/ (\/7\/2).) Using MATLAB, find the actual
angle.

Exercise 2.4. Let i =(1,4,-2), v=(2,3,5), w0 =(-1,4,1).

(a) Verify by carrying out the calculation by hand that ii e (U + i) = (ii » 7) +
(The ).

(b) Compute (ii D) - iv and (i’ » D) - ii. Are they equal?
Exercise 2.5. By hand, find the correlation between:

(a) (1,5,3) and (2,10,6).

(b) (1,5,3) and (0,1, 1).

(c) (1,5,3) and (5,1, 3).

Problems

Problem 2.1. Find three two-dimensional vectors @ # 0, U, i such that ii e 7 =
tie i, but U# .

Problem 2.2. Prove the algebraic properties of the basic operations on vectors
stated in Section 2.3.1.

Problem 2.3. Prove the algebraic properties of the dot product stated in Sec-
tion 2.4.1.

Programming Assignments

Assignment 2.1 (Document vectors). Write a MATLAB function DocSimilar-
ity (D,E) that computes the “similarity” of text documents D and E by using
the vector model of documents. Specifically, the arguments D and E are each
cell arrays of strings, each string being a word of the document, normalized to
lowercase. (Cell arrays are heterogeneous arrays; see Section 3.10.5.) The func-
tion returns a number between 0 and 1, 0 meaning that the two documents
have no significant words in common, 1 meaning that they have the identical
significant words with the same frequency.

A word is considered “significant” if it has at least three letters and is not
in the list of stop words provided in the file GetStopwords.m on the textbook
website. A stop word is a very common word that should be ignored.

Your function should execute the following steps:
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* Let LargeOdd be any reasonably large odd number that is not very close
to a power of 256. The number 10,000,001 will do fine.

¢ Load in the cell array of stop words from GetStopwords.m

¢ Create three sparse vectors S, D, E of size LargeOdd as follows: for every
word W, let i=hash(W,LargeOdd). You can find a hash function in the
file hash.m on the textbook website. Then
- S[i]l = 1if W is on the list of stop words.
- DIi] = the number of occurrences of W in D, if W is significant.
- E[i] = the number of occurrences of W in E, if W is significant.
(Create S first, then use it for a quick test for whether words in the doc-

uments are significant.) D and E are the document vectors (we omit the
inverse document frequency).

e Return the quantity D e E/|D|-|E|

For instance,

> D = { ’how’, ’much’, ’wood’, ’could’, ’a’, ’woodchuck’, ’chuck?’,
>if’, ’a’, ’woodchuck’, ’could’, ’chuck’, ’wood’ };

> E = { ’all’, ’the’, ’wood’, ’that’, ’a’, ’woodchuck’, ’could’,
’if?, ’a’, ’woodchuck’, ’could’, ’chuck’, ’wood’ };

>> DocSimilarity(D,E)
ans =
0.9245

Note that the only significant words in these two texts are “chuck,” “much,”
“wood,” and “woodchuck.”

You don't have to worry about hash collisions here because they are very
infrequent, and the technique is completely imprecise in any case.

Assignment 2.2 (Plotting the harmonic series). The harmonic function H(n)
is defined as H(n) = X' | 1/n. For instance H(4) = 1/1+1/2+1/3+1/4 =
25/12 = 2.0833. For large n, H(n) is approximately equal to In(n) +y, where
In(n) is the natural logarithm and y = 0.5772, known as Euler’s constant.

Write a MATLAB function P1lotHarmonic (N) that shows both H(k) and In(k)+
yfork=1,...,N.

Assignment 2.3 (Correlation to a noisy signal). ~ Write a MATLAB function
CorrelationNoisy (V,E) as follows. The input parameters are V, a vector, and
E, a positive real. The function constructs a new vector U by adding a random
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Initialization
[2 3456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27]

L
P

First

L1

L2 =

L
P

Second

L1
L2

2

iteration

number between —E and E to each component of V (a different random choice
for each component; use the function rand.) It then returns the correlation be-
tween V and U.

Experiment with V' =1:100 and various values of E. Run each value of E
several times to get a range of correlations. What kind of values do you get for
the correlation when E = 10? When E = 100? How large do you have to make E
before you start to see examples with negative correlations?

Assignment 2.4 (Stars.). An n-pointed regular star can be constructed as fol-
lows:

¢ Choose k > 1 relatively prime to n.

* Place the ith vertex of the star at x; = cos(2nki/n), y; = sin(2nki/n) for
i =0, n. Note that (x,, y») = (X0, o), so the star closes.

Write a MATLAB function Star (NN,K) which draws this NV pointed star. Be
sure to call axis equal so that the x- and y-axes are drawn at equal scales;
otherwise, the star will be oddly squooshed.

Assignment 2.5 (Euler’s Sieve). Euler’s sieve is a souped-up version of the sieve
of Eratosthenes, which finds the prime numbers. It works as follows:

L = the list of numbers from 2 to N;
P = 2; /* The first prime x*/
while (P~{2} < N) {
L1 = the list of all X in L such that P $\leq$ X $\leq$ N/P.

L2 = Px*L1;

delete everything in L2 from L;
P = the next value after P in L;
}

return L;

For example, for N = 27, successive iterations proceed as follows:

[2 3456789 10 11 12 13]
[4 6 8 10 12 14 16 18 20 22 24 26]
[2 357 9 11 13 15 17 19 21 23 25 27]

3

iteration
[3 5 7 9]

[9 15 21

271
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L =1[235 7 11 13 17 19 23 25]
P =5

Third iteration
L1 = [5]
L2 = [25]
L =1[2357 11 13 17 19 23]

(a) Write a MATLAB function EulerSievel (N) that constructs the Euler sieve
by implementing L, L1, L2 as arrays of integers, as above.

(b) Write a MATLAB function EulerSieve2 (N) that constructs the Euler sieve
by implementing L, L1, and L2 as Boolean arrays, where L[I] = 1 if I is
currently in the set L. Thus, the final value returned in the example would
now be the array

[01101010001010001010001000 0]
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Chapter 3

Matrices

3.1 Definition of Matrices

An m x n matrix is a rectangular array of numbers with m rows, each of length
n; equivalently, n columns, each of length m. For example,

0 -15
4 2 . 21 6 .
A—[O 6 5 is a2 x 3 array; B= 10 -35 is a4 x 2 array.
1.0 22

We use capital italic letters, such as M, for matrices. The element in the ith
row, jth column in matrix M is denoted M[i, j]. In matrices Aand B, A[2,1] = 0;
All,3] =-1; B[2,1] =2.1; and BJ3,2] = -3.5.

There is no very standard notation for specifying a particular row or column
of a matrix. Following MATLAB, we use the notation M][i,:] for the ith row of M
(arow vector) and M[, j] for the jth column. (MATLAB uses parentheses rather
than square brackets, however.)

3.2 Applications of Matrices

The simplest types of m x n matrices are those whose m rows are just n-
dimensional vectors or whose n columns are m-dimensional vectors of the
types discussed in Chapter 2. In particular, an application of the third category
discussed in Section 2.2.1, in which there is a numeric function of two entities
or features, can be represented as a matrix in the obvious way: Given two sets of
entities or features {O;,...,0,,} and {Py, ..., P} and a numeric function f (O, P),
we construct the m x n matrix M such that M[i, j] = f(O;, P;).

For example, in Application 2.4, the grocery shopping application, suppose
we have a set of people { Amy, Bob, Carol } and a set of grocery items { gallon of
milk, pound of butter, apple, carrot } then we can define a 3 x 4 array, S where

47
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S[i, j] is the number of items of type j on i’s shopping list:
0 210
S=11 1 0 0
1 0 0 6

Thus, Amy is buying two pounds of butter and an apple; Bob is buying a gal-
lon of milk and a pound of butter; and Carol is buying a gallon of milk and six
carrots.

Note that each row of this matrix is the row vector corresponding to one
person p; it shows p’s shopping list indexed by item. Each column of this ma-
trix is the column vector corresponding to one item i; it shows the quantity of
that product being bought, indexed by person.

If the collection of grocery items indexed is large, then this will be a sparse
matrix, that is, a matrix in which most of the entries are 0.

In Application 2.2 (time series), r different financial measures being tracked
over m days could be recorded in an m x n matrix P, where P[i, j] is the value
of measure i on day j.

Particularly interesting are cases for which the two sets of entities, {Oy, ...,
Oy} and {Py,..., Py}, are the same. In these cases, the resulting matrixisan nxn
matrix, called a square matrix.

Application 3.1 (Distance graph). For instance, we could have a collection of
n cities, and define an n x n matrix D, where D[i, j] is the distance from i to
j- In general, a directed graph (in the data structures sense) over n vertices can
be represented as an n x n adjacency matrix, where A[i, j] = 1 if there is an arc
from i to j and 0 if there is not. A graph with numeric labels on its arcs can be
represented as an n x n matrix, where A[i, j] is the label on the arc from i to j.

Application 3.2 (Functions over a rectangular region). A different category of
matrix represents a numeric function over a planar region. This can be done by
picking out a rectangular m x n grid of points, and constructing an m x n ma-
trix M, where M[i, j] is the value of the function at point i, j. In particular an
image, either output for graphics or input for computer vision, is represented
in terms of such a grid of pixels. A gray-scale image is represented by a single
array I, where Ii, j] is the intensity of light, often encoded as an 8-bit integer
from 0 (black) to 255 (white), at the point with coordinates (i, j). A color im-
age is represented by three matrices, representing the intensity of light at three
different component frequencies.

From the standpoint of linear algebra, these kinds of arrays are actually
atypical examples of matrices, since most of the important operations on im-
ages do not correspond very closely to the standard operations of linear alge-
bra. Section 6.4.8 briefly discusses how geometric transformations are applied
to pixel arrays.
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3.3 Simple Operations on Matrices

The product of a matrix by a scalar and the sum of two matrices are computed
component-by-component, as with vectors. That is,

(a-M)i,jl=a-Mli,jl;

for example,

3-3 31 32| |9 3 6
3.0 3--1 34| [0 =3 12|
(M+N)[i, j1=Mli, jl+ NI[i, jl;

for example,

3+7 1-2 2+3
0+5 —-14+6 4+2

3 1 2
0 -1 4

7 -2 3]_
5 6 2|

10 -1 5
|5 5 6]

The transpose of matrix M, denoted M T turns the rows of M into columns
and vice versa. That is, if M is an m x n matrix, then M7 is an n x m matrix, and
MT1i, jl = M[j,i]. For instance,

4 0
2 6 1.

ifA:[g 2 _51 ],thenATz
-1 5

The following properties are immediate from the definitions (in all of the
following, M, N, and P are m x n matrices, and a and b are scalars):
M+N=N+M,
M+(N+P)=(M+N)+P,
a(M+ N)=aM + aN,
(a+b)M =aM + bM,

(ab)M = a(bM),
MHT =M,
MI+NT =M+ N7,
aM® = (amT.

3.4 Multiplying a Matrix Times a Vector

Let M be an m x n matrix and let ¥ be an n-dimensional vector. The product
M -7 is an m-dimensional vector consisting of the dot products of each row of
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M with U. Thatis, (M- 0)[i]= MJ[i,:]e U= ;’le[i,j] - U[j]. For instance,

3 1 2

0 -1 4

MU =(MI[1,:] « U, M[2,:] D)
=(3-2)+(1--1D)+2-4), 0-2)+(-1--1)+(4-4))
=(13,17).

itv- |

and 7 ={2,-1,4), then

Generally, for reasons to be discussed shortly, when we write out the prod-
uct of a matrix times a vector, both vectors (the multiplicand and the product)
are written as column vectors; thus,

HEHIEIRE!

When written this way, we can use the “two-hands" method to compute
the product: the left hand moves from left to right along each row of the matrix
while the right hand moves from top to bottom along the vector. The order is
critical here; U - M means something quite different from M- D.

The following algebraic rules on multiplication of matrices times vectors
follow immediately from the rules about dot products discussed in Section 2.4.1.
In all the following, M and N are m x n matrices, # and 7 are n-dimensional
vectors, and a is a scalar:

(M+N)U=Mv+ NV,
M(ii+ V)= Mii+ Mv,
(aM)V = a(MV) = M(av).

The product M- can also be described as the weighted sum of the columns
of M, where the weights are the components of 7:

M-v=v[1]-M[;,1]+...+ U[n]- M[:, n];

for instance,
3 .1 2 _21 _,.[3 2] [ 13
0 -1 4 4 - 0 4 |7 17 |°

The equivalence of these dual ways of describing M - v—as the dot product
of the rows of M with U or as the sum of the columns of M weighted by the
components of 7—has deep consequences, as we see in Section 4.2.8.

+4-

=

-1
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3.4.1 Applications of Multiplying a Matrix Times a Vector

The geometric applications of multiplying a matrix by a vector are very impor-
tant and interesting, but too complex for a short discussion here. These are
discussed in Chapter 6.

The simplest applications of M - U are those for which we are interested in
the dot product of each of the rows with the vector separately. For instance,
in Application 2.4 (grocery shopping), let B be a matrix of shopping baskets,
where BJi, j] is the number of item j that person i is buying, and let p be a
vector of prices, where p[j] is the price of item j. Then B p is a vector of total
cost for each person; that is, (B- p)[i] is the cost of the shopping basket for
person i.

Similarly, let P be a matrix of prices of items at stores, where P[i, j] is the
price of item j at store 7, and let b be the vector of a shopping basket, where
b [j]is the number of item j to be bought. Then P- b is the vector of the cost of
the basket by store; that is (P - b)[i] is the cost of the shopping basket at store i.

More interesting, perhaps, are the applications in which M represents a
transformation of the vector as a whole.

Application 3.3 (Transition matrix). Let ¥ represent the populations of a col-
lection of cities at a given time. Let M be an annual fransition matrix for pop-
ulations. That is, for any two cities i and j, if i # j, M[i, j] is the fraction of
the inhabitants of j who move to i. M[i, i] is the fraction of the inhabitants of
i who remain at i. Ignoring births and deaths, what is the population of city i
after a year? First, there are the people who stayed in i; there are M[i,i]- 7 [i]
of these. Then there are the people who immigrated to i; from each city j, the
number of people who have immigrated to i is M[i, j17 [j]. Therefore, the total
number of people in i is Zj Mli, j1-0[j]1 = Ml[i,:] « U, and M7 is the vector of
populations after a year.

For instance, suppose there are three cities A, B, and C, with the following
transitions:

¢ Of the population of A, 70% remain in A; 20% move to B, and 10% move
to C.

* Of the population of B, 25% move to A; 65% remain in B, and 10% move
to C.

¢ Of the population of C, 5% move to A; 5% move to B, and 90% remain
in C.
Thus, the transition matrix is
0.7 025 0.05

0.2 0.65 0.05
0.1 01 0.9



52

3. Matrices

If initially there are 400,000 people in A, 200,000 in B, and 100,000 in C, then
after a year, the population vector will be given by

0.7 0.25 0.05 400,000 335,000
0.2 0.65 0.05 |-] 200,000 | =] 215,000
01 01 09 100,000 150,000

Note that each column of the matrix adds up to 1; this corresponds to the
fact that total number of people remains constant. A matrix whose columns
add to 1 is known as a stochastic matrix; we study these in greater depth in
Chapter 10.

Application 3.4 (Smoothing a signal). Let 7 be a time sequence of a numeric
quantity, as in Application 2.2. Suppose that we wish to eliminate noise from a
signal. One standard way to do this is to estimate the true value of the signal at
each point of time by using the weighted average of the signal at nearby points;
this is known as smoothing the signal. The width of the range depends both
on the frequencies of the noise and the signal and on the signal-to-noise ratio;
ideally, we want to average over a range larger than the wavelength of the noise,
smaller than the wavelength of the signal, and over a set of points large enough
that the noise will average out to zero.

Letd (] be the data at time ¢ and let S[f] be the estimate of the signal. If
the signal frequency is very high and the noise is fairly small, then we might
estimate the signal at time ¢, §[¢] = 1/3- (d[t—11+d[t]+d[t+1]). Of course, at

1.2

Figure 3.1. Smoothing. The noisy points are the circles on the solid line. The smoothed
points are the asterisks on the dashed line.
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the beginning of the time range, where d [t—1] is not recorded, and at the end,
where d [t + 1] is not recorded, we have to do something different; what we do
is just set §[1] = d (1] and § (k] = d [K].

Each of these sums is a weighted average of the data; the entire transforma-
tion of signal to noise is thus the multiplication of the data vector by a smooth-
ing matrix. For instance, consider the following artificial data. The true signal
§ is just the quadratic function s[i] = 1 - ((i —6)/5)% fori=1,...,11; thus, § =
(0,0.36,0.64,0.84,0.96,1,0.96,0.84,0.64,0.36,0). The noise 7 is generated by the
MATLAB expression (0.2 * rand(1,11)) - 0.1. The data d = §+ 7i = (0.0941,
0.4514, 0.6371, 0.9001, 0.8884, 0.9844, 1.0431, 0.8984, 0.7319, 0.3911, —0.0929).

We smooth the data by carrying out the following multiplication (Figure 3.1):

The correlation of the data with the ideal signal is 0.9841. The correlation of the
smoothed data with the ideal signal is 0.9904.

Application 3.5 (Time-shifting a signal). Another operation on time sequences
that can be modeled as matrix multiplication is time-shifting. Suppose you
have a signal § of length n and wish to construct the same signal shifted g units
later; thatis, Z[i] = Z[i—gq]. This can be viewed as multiplication by an nx n ma-
trix M such that M[i+¢q,i]l=1fori=q+1,...,nand M[i, jl=0forall j #i+q.
For example, with n =6, g =2,

00 0 0 0 O 2 0
0 0 00 0O 8 0
1 0 0 0 0 O 51 _ |2
01 0 0 0 O 7178
0 01 0 0 O 1 5
0 001 0O 4 7

This may seem like quite an elaborate and verbose way of formulating a
very simple operation, and if all you want to do is a time-shift, it certainly would
be. But the point is that you can then combine it with other matrix operations
and apply the results of matrix theory to these combinations.

1 0 0 0 0 0 0 0 0 0 0 [ 0.0941
1/3 1/3 1/3 0 0 0 0 0 0 0 0 0.4514
0 1/3 1/3 1/3 0 0 0 0 0 0 0 0.6371
0 0 1/3 1/3 1/3 0 0 0 0 0 0 0.9001
0 0 0 1/3 1/3 1/3 0 0 0 0 0 0.8884
0 0 0 0 1/3 1/3 1/3 0 0 0 0 0.9844
0 0 0 0 0 1/3 1/3 1/3 0 0 0 1.0431
0 0 0 0 0 0 1/3 1/3 1/3 0 0 0.8984
0 0 0 0 0 0 0 1/3 1/3 1/3 0 0.7319
0 0 0 0 0 0 0 0 1/3 1/3 1/3 0.3911
0 0 0 0 0 0 0 0 0 0 1 —0.0929 |

[ 0.0941
0.3942
0.6629
0.8085
0.9243

= 0.9720

0.9753

0.8912

0.6738

0.3434

| —0.0929 |
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Application 3.6 (Jacobians). (Note: This application requires multivariable cal-
culus. It is optional.)

Suppose F(p) is a differentiable function from the plane to itself. We write
F, and F, for the x and y components of F. For example, if F({x,y)) = (x +
¥, x> —y%), then Fy((x,y)) = x+ y and F,, ((x, )) = x* — y%.

We now take a particular point a, draw tiny vectors with their tails at a, and
consider the mapping F does to those vectors. So let € > 0 be a very small dis-
tance, let i be a vector, and letb = a+e¢ii. Defining u, and u, as the coordinates
of i in the x and y directions, respectively, we have ii = u, X+ u, , where £ and
y are the unit x and y vectors. Thenb=a+eu, X +eu,J.

Now, what is F(b)? By the definition of the partial derivative,

. OF;
Fi(a+euyx)—Fy(@) =eu,- —
0x
and
. N . OF,
Fx(a+euxx+euyy)—Fx(a+euxx)zeuy-g.
Adding these together,
F,(b)—F,(@ =F,(a+ecu,x+eu,y)—F (a)~e(u 6&+u 0&)
x xl@a) = Fy X yY x@) = 5% y 3y .
Likewise,
R R OF, OF,
Fy(b)—Fy(a):Fy(a+€uxx+6uyy)—Fy(a):e(ux-a+uy-ﬁ).

Let w = (F(b) — F(a))/e so F(b) = F(a) + ¢w. Then we have

OFy  OFy
. OF, an)A ( oF, aFy)A ox oy |
W=\Ux——+Uy — | X+ Uy - ——tUy-— |}y = - U.
“ox 7V oy “ox W ey )Y OF, OF,
ox oy

The 2 x 2 matrix in this expression is known as the Jacobian of F, notated J(F).
For example, if a = (2,3), i = (5,2), and € = 0.001, then b = (2.005,3.002)
and F(a) = (5,-5). The resulting Jacobian is

OF,  OF:
0x oy 1 1
JF) = 5 5 = )
Ey Ey —
> 9y 7y

SO

F(b) ~F(@)+J(F)la-cti =

5 + 1 1 0.005 | [ 5.007
-5 2 -3 0.002 | | -4.996 |-
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We can generalize this to space of arbitrary dimension. Let F(p) be a differ-
entiable function from R” to R". Let a be a point in R”, let € > 0 be small, let #
be a vector in R”, and letb = a+¢il. Let X1,..., X, be the coordinate vectors of
R", and let Fy,...,F,, be the components of F. Then

OF, OF;
0x) ot 0xy
F(b) ~ F(a) + . . . -€id.
0F,, 0F,,
0x1 ot 0xp

Again, this array is called the Jacobian.

3.5 Linear Transformation

Just as with the dot product, the fundamental significance of matrix multipli-
cation is that it is a linear transformation.

Definition 3.1. Let f(?) be a function from R", the set of n-dimensional vec-
tors, to R, the set of m-dimensional vectors. Function f is a linear transfor-
mation if it satisfies the following two properties:

 For any vector ¥ and scalar a, f(a- V) = a- f (D).
e For any vectors U and i, f(U+ i) = f (D) + f(i).

Theorem 3.2. Let f bea linear transformation fromR" toR™. Then there exists
a unique m x n matrix F such that, for all v, f (V) = F- 0. We say that matrix F
corresponds to transformation f, and vice versa.

Note that Definition 3.1 is word-for-word identical to Definition 2.1 except
that the range of the function f has been changed from the real numbers R
to R™. Theorem 3.2 is the same as Theorem 2.2 except that the range has been
changed, and “dot product with f ” has been changed to “multiplication by ma-
trix F.”

The proofs of the theorems are also essentially identical. Now we must
imagine that we give a basket b over a space of n groceries, to a personal shop-
per, who reports back a vector f (b) of the price of this basket at m different
stores. The unit vector 8/ corresponds to the basket containing one unit of
the ith item. Then f(&) is the vector showing the price of the ith item at
all the stores. Construct an m x n matrix F so that F[i, j] = f(2/)[i]. Now let

-

b= (by,...,by) be any n-dimensional vector. We can write b = b; é 1y .+b,e"
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so, by linearity, the ith component of f (l;) is
)il =f(Ybj-8Nlil =Y b;-(f@))i)) =Y b;-Fli, jl = Fli,]] « b.
i i j

Therefore, f (b)=F-b.

The duality here between linear transformations and matrices is the key
to linear algebra. Theorem 3.2 means that we can go back and forth between
thinking about linear transformations over vector spaces and multiplying vec-
tors by matrices, and transfer results from each view to the other.

The one critical operation for which the correspondence does not work very
well is matrix transposition. Forming the transpose of a matrix is a simple op-
eration on matrices and, as we shall see, an important one; however, it does
not correspond to anything very simple in terms of the linear transformations
involved.

Note that many simple and important functions on vectors are not linear
transformations, such as the function max(¥), which returns the largest com-
ponent of vector 7; the function sort(7), which returns the components of ¥
in increasing order; and the function product(?), which returns the product of
the components of 7. The proof that none of these is a linear transformation is
requested in Problem 3.4.

3.6 Systems of Linear Equations
A system of m linear equations in n unknowns is a set of equations of the form

ajxy+aypXxe+...+ady Xy =Cr.

az1X1+dz2Xp+...+ a2 nXp = C2.

am1X1+am2X2+ ...+ AmnXn = Cm.

Here all the a; ; and c; are constants, and the x; are variables. A solution to the
system is a set of values x; that satisfies all the equations. The values a; ; are
called the coefficients of the system; the values c; are called the constant terms.

For example, the following is a system of three equations in four unknowns:

lw+l-x+1-y+1-z2=2.
22w+0-x-1-y+3-z=-1.
-lrw+2x+0-y+1-z=2.
One solution to this system is w =1,x =2,y =0,z = —1, as can be seen by

substition and checking the equations. Another solutionis w=2,x=3, y = -1,
z=-2.
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A system of linear equations can be written as a problem in matrix multi-
plication. Let

ami1 --- Amn Xn Cm

Then we can write the general system in the form A-X = C. That is, if val-
ues Xxi,..., X, satisfy the system of equations, then the vector (x,...,x,) will
satisfy the matrix equation. For example, the particular system above can be
written as

1 1 1 1 L)‘C’ 2

0 -1 3 | -1

12 0 1 Y 2
V4

In Chapter 4, we develop a mathematical theory that allows us to categorize
different types of systems of linear equations and their solutions. In particular,
we prove that a system of linear equations has either one solution, infinitely
many solutions, or no solutions. In Chapter 5, we present an algorithm for
solving systems of linear equations.

3.6.1 Applications of Systems of Linear Equations

Applications of all kinds involve solving systems of linear equations. Obviously,
we can take any of our applications of matrix multiplication and turn them
around to get a system of linear equations. For example, in the shopping appli-
cation (Application 2.4), we could ask, “Given a m x n price matrix P showing
the prices of n items at m stores, and a vector ¢ of the cost of an unknown bas-
ket at each store, find a basket X satisfying PX = ¢.” In the population transfer
(Application 3.3) we could ask, “Given a distribution of population at the end
of the year U and the transition matrix for the year M, find the distribution of
population X at the start of the year”; this is the solution to the problem MX = 7.
Further applications follow; more will arise in the course of the book.

Application 3.7 (Circuit analysis). A simple circuit of resistors and a power
source, such as shown in Figure 3.2, gives rise to a system of linear equations.
The variables are the voltages at each node and the currents through each
branch. The equations are the equations for the voltage source and for ground,
the equations corresponding to the resistor equation V = I - R (voltage differ-
ence equals current times resistance), and Kirchoff’s circuit law, which states
that the total current flowing into a node is 0. (Kirchoff’s voltage law, stating
that the sum of the voltage drops around a cycle is 0, is built into our decision
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Figure 3.2. Circuit analysis.

I

2

100 Q

to represent the voltage at each node as a variable rather than directly repre-
senting the voltage drop across each branch.) Applying these laws to the circuit
in Figure 3.2, we get the system of eight equations in seven unknowns:

Va=0,
Vi — V4 = 100,
Vg—Va=100-1,
Vg-Ve=175Is,
Ve-Va=25-1,
L-L-I=0,
I3—1,=0,
Li+L-1=0.

By moving all the variable terms to the right and converting to matrix form,

we get
1 0 0 0 0O 0 0 S
-1 1 0 0 0 0 0 ;
-1 1 0 0 =100 O 0 LF
0 1 -1 0 0 =-75 0 IC
-1 0 1 0 0 0 -25 11
000 1 -1 -1 0 f
0 0 0 0 0 1 -1 f
0 0 0 -1 1 1 4

The solution is {0,100,25,2,1,1,1).

100

(==l elelNo Nl
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Figure 3.3. Heat distribution.

Application 3.8 (Temperature distribution). The distribution of temperature
and other properties in a continuous material can be approximated by linear
equations. For example, suppose that you have a square bar of metal that is
heated on one side by a hot plate at 100°C and the other three sides border the
air at room temperature 20°C. In a steady state, the temperature at each point
is the average of the temperatures at the neighboring points. This is made pre-
cise in the partial differential equation V2T = 0, but it can be approximated by
choosing a uniform grid of points inside the metal and asserting the relation at
every point.!

Ifwe choose a grid of nine interior points, as shown in Figure 3.3, we get the
following system of nine equations in nine unknowns:

Ty =1/420+ 20+ T + Ty),
T, =1/420+ T + T3 + Ts),
T3 =1/4(20+20+ Tp + Tg),
Ty =1/420+ T + Ts + T7),
T5 =1/4(To + Ty + Tg + Tg),
Te =1/4(20+ T35 + T5 + Ty),
T7; =1/4(20+ 100+ T4 + Tg),
Tg =1/4(100+ T5 + T7 + Tg),
T9=1/4(20+ 100+ Tg + Tg).

1 This example is from Philip Davis (1960).
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These equations can be rewritten as the matrix equation

1 -1/4 0 -1/4 0 0 0 0 0 [Ty ] [ 10 )
-1/4 1 -1/4 0 -1/4 0 0 0 0 T, 5
0 -1/4 1 0 0 -1/4 0 0 0 Ts 10
-1/4 0 0 1 -1/4 0 -1/4 0 0 Ty 5
0 -1/4 o0 -1/4 1 -14 0 -1/4 o |-|T5]|=]0
0 0 -1/4 0 -1/4 1 0 0 -1/4 T 5
0 0 0 -1/4 0 0 1 -1/4 0 T 30
0 0 0 0 -1/4 0 -1/4 1 -1/4 T 25
0 0 0 0 0 -1/4 o0 -1/4 1 || Ty | 30 |

The solution is (25.71,27.85,25.71, 35,40, 35,54.29,62.14,54.29).

Application 3.9 (Curve interpolation). Suppose we have a graph of g data
points (x1, y1),{X2, y2), ..., (X4, ¥4) With independent variable x and dependent
variable y, and we want to connect these with a smooth curve. This is known
as interpolating a curve. One way to do this (not necessarily the best way) is to
find a (g — 1) degree polynomial y = tq_lxq‘1 +...+ 1 x + tp that fits the data.
Finding the coefficients #; can be viewed as solving a system of linear equa-
tions,? where the t; are the variables, the coefficients are the powers of x;, and
the constants are the y;.

For example, suppose we have the five data points, (—3,1), (—1,0), (0,5),
(2,0), (4,1). We then have the following system of equations:

(=3 +13(=3°+ (-3 + nB) + fr =1,
(- + 13-+ (-1)*+ n(1) + 4 =0,
14(0)* + 13(0)> + 1 (0)* + 11.(0) + 1 = 5,
2+ 527+ L2+ 1) + 1 =0,
1@+ 4%+ @+ @)+ =1.

In matrix form, we have

81 -27 9 -3 1 Iy 1
1 -1 1 -1 1 I3 0
0 0 0 0 1 ]| |=|25
16 8 4 2 1 h 0

256 64 16 4 1 fo 1

The solution is (13/60,-26/60,—163/60,176/60,5).

2There is also a simple closed formula for finding the coefficients of an interpolating polynomial.
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30

25

20

-5
24 -3 -2 -1 0 1 2

Figure 3.4. Polynomial interpolation (solid line) and sinusoidal interpolation (dashed
line).

This technique is not restricted to polynomials. Let fi,..., f; be any set of
n “basis” functions. (In the case of polynomials, these are the power functions
fi(x) = x'.) If you wish to interpolate n data points by the linear sum ¢, f; (x) +
...+ ty fn(x), then the weights t; can be found by solving the associated system
of linear equations y; = fi(xj)t; +...+ fu(x;)t, for j = 1,...,n. (Depending
on the functions, the system may have no solution or the solution may not be
unique.) In this system, the coefficients are the values f;(x;), the variables are
the #;, and the constant terms are the y;.

For instance, suppose that we use the five basis functions 1, sin(mx/2),
sin(rwx/4), cos(mx/2), cos(wx/6). Then the coefficients of the curve that inter-
polates the same set of data points satisfy the system

1 1 -1/vV2 o 0 L 1
1 -1 -1/v2 0 +3/2 f3 0
1 0 0 1 1 |l 6 |=]5
1 0 1 -1 05 n 0
1 0 0 1 -05 fo 1

The solution is (0.0217,1.6547,0.9566,2.3116,2.6667). These two curve inter-
polations are shown in Figure 3.4.
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3.7 Matrix Multiplication

In view of Theorem 3.2, we can now look at basic operations on linear transfor-
mations and ask how these work out in terms of the corresponding matrices.
In this section, we look at three operators: (1) multiplication of a transforma-
tion by a scalar and (2) addition of two transformations, which are easy, and (3)
the composition of two transformations, which requires some work. The final
important operator, the inverseof a transformation, is much more complicated
and is discussed in Section 5.3.

First, we present two easy definitions. If f(X) and g(X) are linear transfor-
mations from R" to R™ and a is a scalar, then we define the transformation a- f
by the equation (a- f)(X) = a- f(X) and we define the transformation f + g by
the equation (f + g)(X) = f(X) + g(X). It is easy to check that:

¢ a- f and f + g are both linear transformations.

» If we let F be the matrix corresponding to f and G be the matrix corre-
sponding to g, then a- F corresponds to a- f and F + G corresponds to

f+g

We now turn to composition, which is not so simple. Suppose that f(X) is
a linear transformation from R” to R™ and that g(X) is a linear transformation
from R to R”. Then the composition go f is the function from R” to R” de-
fined as (go f)(X) = g(f(X)). It is easy to show that go f is likewise a linear
transformation, as follows:

(gofila-X)=g(f(a-X)) (by definition)
=g(a- f(X)) (since f is linear)
=a-g(f(x)) (since g is linear)
=a-(gof)(X) (by definition)

(8o fI(X+Y)=g(f(X+7)) (by definition)
=g(fX)+ f(¥) (since f is linear)

=g(fEN+g(f(N (since g is linear)
=(go f)(X)+(go f)(¥) (bydefinition)

Therefore, by Theorem 3.2, there is a matrix M corresponding to the trans-
formation go f. The question is, how is M related to G and F, the matrices
corresponding to functions f and g?

The answer is that M is the matrix product G- F. We can determine how
this product is computed by studying how it operates on a sample vector. To
avoid too many subscripts and summation signs, we use an example here with
specific numbers, where n =3, m =2, p = 3. Let G, F, and 7 be the following
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matrices:
67 68 10
G=| 77 78 |, Fz[ii ?é ig], v=1 11 |.
87 88

Let f and g be the transformations corresponding to F and G, and let H be
the matrix corresponding to go f. Then we have

H-5=(gof)(#)=g(f(#)=G-(F-D)

67 68 31 32 33 10
=77 78 |- v 13 11
| 87 88 | 12

B g; gg ‘[31-10+32-11+33-12]
| g7 g | | 41°10+42:11443.12

[ 67-(31-10+32-11+33-12)+68-(41-10+42-11+43-12)
=| 77-(31-10+32-11+33-12)+78-(41-10+42-11+43-12)
| 87-(31-10+32-11+33-12)+88-(41-10+42-11+43-12)

=| (77-31+78-41)-10+(77-32+78-42)-11+(77-33+78-43)-12

[ (67-31+68-41)-10+(67-32+68-42)-11+ (67-33+68-43)-12
| (87-31+88-41)-10+(87-32+88-42)-11+(87-33+88-43)-12

=| 77-31+78-41 77-32+78-42 77-33+78-43
| 87-31+88-41 87-32+88-42 87-33+88-43

[ 67-31+68-41 67-32+68-42 67-33+68-43 ] [10
11

Therefore,

G-F=H=| 77-31+78-41 77-32+78-42 77-33+78-43

67-31+68-41 67-32+68-42 67-33+68-43
87-31+88-41 87-32+88-42 87-33+88-43

Each element of H, H{[i, j] corresponds to the dot product of the row G[i,:]
with the column FT:, j]. This example works in the same way for any matrices
F and G.

Definition 3.3. Let F be an m x n matrix and let G be a p x m matrix. The
product G- F is the p x n matrix defined by the rule

(G- P)li, jl=Gli, ] ZGZ k|- Flk, jl.

Remember that the matrix product G- F is defined only if the number of
columns in G is equal to the number of rows in F.
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Theorem 3.4. Let f be a linear transformation fromR™ to RF, let g be a linear
transformation from R* to R™, and let F and G be the corresponding matrices.
Then the product G- F is the matrix corresponding to the composition go f.

In manually computing the product of two matrices, G- F, again we use the
two hands method: The left hand moves left to right along the ith row G, the
right hand moves top to bottom down the jth column of F, we multiply the two
numbers and add them to a running total, and the final sum is the [i, j]th entry
inG-F.

A particular significant linear transformation is the identity on n-dimen-
sional vectors; that is, the function i defined by i(7) = v for all n-dimensional
vectors 7. It is easy to show that the corresponding matrix, known as the iden-
tity matrix and denoted I, is the n x n matrix with 1s on the diagonal from the
upper left to the lower right and 0s everywhere else. For n = 6, we then have

Is

Il
(= eleleNel
[=elelNell el
o oo~ OO
oo = O OO
o= O O O O
—_ o O O O O

Let’s look at some examples of applications of matrix multiplication.

Example 3.5. A simple application of matrix multiplication involves comput-
ing all pairs of dot products of one collection of vectors by another collection of
vectors. In the shopping application, for instance, suppose there are m stores,
p items, and n shopping baskets. Let P be the m x p matrix with price vectors
as rows; that s, P[i, k] is the price of item k in shop i. Let B be the p x n matrix
with baskets as columns; that is, Blk, j] is the number of item k in basket j.
Then the product P- B is the m x n matrix showing the price of each basket at
each store; that is, (P- B)[i, j] is the price of basket j at store i.

Example 3.6. As an example of composition of transformations, suppose that
a customer Joe is shopping for the ingredients of a number of recipes for a party.
Suppose that there are n recipes, p types of groceries, and m stores. Let d be the
“party vector,” showing the number of servings of each dish that Joe is planning
to make. Let R be the matrix of recipe ingredients; that is, R[k, j] is the amount
of ingredient k needed for one serving of recipe j. Then R- d is the basket
vector; that is, (R- J) [k] is the number of units of ingredient k that Joe needs to
buy. Thus, multiplication by R corresponds to a linear transformation mapping
a party vector to a shopping basket. Let P be the price matrix; that is, P[i, k] is
price of item k at store i. Then, for any basket b, P- b is the vector showing the
cost of basket b at each store. Thus, P is a transformation from basket vectors to
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vectors of cost by store. Therefore, the product P- R is the transformation from
party vectors to the vector showing the cost of the entire party by store. That is,
ifp=(P-R)- d =P-(R-d), then plil is the price of buying all the ingredients for
the party at store i.

Example 3.7. Combining Applications 3.4 and 3.5 (signal processing), if we
want to carry out a smoothing operation and then a time shift, the combined
operation corresponds to multiplication by the product H - M, where M is the
matrix for the smoothing and H is the matrix for the time-shift.

Example 3.8. In Application 3.3 (population transfer), suppose that A, B, and
C are the matrices of population transfer in years 1, 2, and 3, respectively, and U
is the population vector at the start of year 1. Then A7 is the population vector
atthe end of year 1; B- (A7) = (B- A) U is the population vector at the end of year
2;and C-((B-A)- V) =(C-B- A)- 7 is the population vector at the end of year 3.
Thus, B - Ais the transfer matrix for years 1 and 2 combined, and C-B- Ais the
transfer matrix for years 1, 2, and 3 combined.

Example 3.9. In Application 3.6 (partial derivatives), it is easily shown that if
F is a differentiable function from R” to R™ and G is a differentiable function
from R™ to RP, then the Jacobian of the composition J(GoF) = J(G) - J(F).

3.8 Vectors as Matrices

The operation of multiplying m x n matrix M times n-dimensional vector 7 can
be viewed as a special case of multiplying two matrices if 7 is associated with
the n x 1 matrix V, consisting of a single column. The operation of computing
the dot product of two n-dimensional vectors i U can be viewed as a special
case of multiplying two matrices if i is associated with the 1 x n matrix U, con-
sisting of a single row, and 7 is associated with the n x 1 matrix V, consisting of
a single column.

Thus, sometimes it is convenient to associate vectors with rows, and some-
times it is convenient to associate them with columns; we may even have to do
both in the same equation. In the mathematical literature, vectors are more of-
ten associated with 7 x 1 matrices (i.e., column vectors), so we write the product
of M by ¥ as M- 7, and the dot product of ii and ¥ as ii” - . (The notation i’ - ¥
is sometimes used for the dot product even in contexts where there are no ma-
trices involved; I prefer #i U in such cases.) MATLAB tries to be even-handed,
but when forced to choose, it opts for row vectors. Thus, as discussed in Sec-
tion 2.5, MATLAB functions with vector arguments such as dot (X,Y) or norm(X)
generally work with either row or column vectors; built-in functions that return
vectors such as size (4) generally return row rather than column vectors.
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If Uis alx mrowvector and M is an m x n matrix, then the product U- M
is a 1 x n vector; this fact is sometimes useful. If U is a 1 x n row vector and V is
an n x 1 column matrix, then the product V- U is an n x n matrix, consisting of
all the products of an element of V times an element of U.

3.9 Algebraic Properties of Matrix Multiplication

The following basic algebraic properties of matrix multiplication are impor-
tant. In the following discussion, A and B are m x n matrices; C and D are
n x p matrices; E is a p x g matrix; and a is a scalar. I, is the n x n identity
matrix.

A-(C-E)=(A-C)-E, (associative) (3.1)
A-(C+D)=(A-CO)+(A-D), (right distributive) (3.2)
(A+B)-C=(A-O)+(B-0), (left distributive) (3.3)

a-(A-B)=(a-A)-B=A-(a-B), (3.4)

A-I,=A, (right identity) (3.5)
I,-C=C, (left identity) (3.6)
(A-B)T =BT . AT, 3.7)

All of these rules can be proven, without difficulty but somewhat drearily,
from Definition 3.3 for matrix multiplication. For (3.1)-(3.6), however, it is even
easier, and much more enlightening, to derive them by using the correspon-
dence with linear transformation. (It is not possible to derive Rule (3.7) this
way because, as already mentioned, the transpose does not correspond to any-
thing simple in the world of linear transformations.)

For instance, to establish Rule (3.2), let ¢ and d be linear transformations
from R” to R”; and let a be a linear transformation from R” to R™. Then we
have

(ao(c+d)(V) = allc+d) (D))
=a(c(v)+d(D))
= a(c()) +ald())
=(aoc)(¥)+(acd) (D)
=((acc)+(acd))(V)

(by definition of composition)
(by definition of ¢ + d)

(by linearity of a)

(by definition of composition)
(by definition of (acc) + (ao d))

Since ao (¢ + d) corresponds to A(C + D) and (ao c) + (ao d) corresponds to

AC + AD, we have A(C+ D) = AC+ AD.

Very important: matrix multiplication is not commutative.
That is, A- B is not in general equal to B - A. To show this, we let A be an

m x n matrix and B be a p x g matrix.
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* ABisdefined only if n = p and BA is defined only if g = m.

* Suppose that n = p and g = m, so that both products are defined. Then
ABis an m x m matrix and BA is an n x n matrix, so the two products are
the same shape only if n = m.

e Even if m = n = p = g, so that both products are defined and have the
same shape, in most cases AB # BA. For example, for

A= and B =

)

6
8

5
7

2
4
1 2 5 6 19 22
AB‘[?, 4H7 8]_[43 50]
5 6 1 2 23 34
BA‘[? 8H3 4]‘[31 46]'

3.9.1 Matrix Exponentiation

but

If A is a square n x n matrix, then the product A- A is defined and is likewise
an n x n matrix. Therefore, we can continue multiplying by A repeatedly. The
product A- A-...- A (k times) is, naturally, denoted A*.

As an example, suppose that in the population transition example (Appli-
cation 3.3), the transition matrix M is constant year after year. Then after k
years, the population vector will be M* - # where 7 is the population vector at
the start.

For another example, consider the Fibonacci series, 1, 1, 2,3, 5, 8, ... defined
by the recurrence F(1) =1, F(2) =1, F(i) = F(i — 1) + F(i — 2) for n > 2. This can
be characterized in terms of matrix exponentiation as follows:® Consider the
sequence of vectors V() =(1,1), V(2) =(1,2), V(3) = (2,3), and so on, where
V (i) is the two-dimensional vector (F(i), F(i + 1)). Then the recurrence condi-
tion can be expressed in the formula V (i + 1) = M - V (i), where

0 1
M= [ - ] .

Therefore, V(i) = M"1V(1).

Application 3.10 (Paths in a directed graph). Let matrix A be the adjacency
matrix for graph G; that is, A[I,J] = 1 if there is an edge from vertex I to ver-
tex J in G and 0 otherwise. For example, the adjacency matrix for the graph

3This is not an effective way of computing Fibonacci numbers, just an interesting way.
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Figure 3.5. Directed graph.

in Figure 3.5 is
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— = e
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1 0 0 01 0

Thus we see that A[1,4] = 1 because there is an arc from vertex 1 to vertex 4.

Now, there is a path of length 2, U—V—W in G just if A[U, V] and A[V, W]
are both 1; that is, if A[U,V]: A[V,W] = 1. Therefore, the number of paths of
length 2 from U to W is equal to Y IY_, A[U,V]-A[V,W] = A*[U, W]. Thatis, the
matrix A? is the matrix such that for all U and W, A?[U, W] is the number of
paths of length 2 from U to W.

In fact, in general, for any power k, A¥[U, W] is the number of paths from
U to W of length k. The proof is by induction: Suppose this is true for k — 1.
Now consider the paths of length k from U to W where the second vertexis V.
If there is an arc from U to V then the number of such paths is equal to the
number of paths of length k—1 from V to W, which by induction is A1y, w.
If there is no arc from U to V, then the number of such paths is 0. In either case,
the number of such pathsis A[U, V] - A¥=1[v, W]. But the total number of paths
oflength k from U to W is the sum over all vertices V of the paths whose second
vertex is V; thatis, Yy A[U, V]- AK=1 [V, W] = (4- AF-Y[U, W] = Ak (U, w.

3.10 Matrices in MATLAB
3.10.1 Inputting Matrices

When inputting matrices in MATLAB, items in a row are separated by commas
or spaces, and rows are separated by semicolons or line breaks.



3.10. Matrices in MATLAB

>> a=[11,12,13; 14,15,16]
a =

11 12 13
14 15 16
>> b=[
1 2 3
4 5 6]
b =
1 2 3
4 5 6

>> % Identity matrix (square)

>> eye(5)

ans =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

>> % Rectangular identity matrix
>> eye(5,3)
ans =

O O O O K
O O O r O
O O OO

>> % Square zero matrix
>> zeros (4)
ans =

O O O o
O O O o
O O O o
O O © o

>> % Rectangular zero matrix
>> zeros (2,4)
ans =

0 0 0 0

0 0 0 0

>> % Square matrix of 1’s
>> omnes (5)
ans =

e
e
e
e
e
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>> % Diagonal matrix
>> diag([1,4,9,16])

ans =

O O O

3.10.2 Extracting Submatrices

>> a

11
14

>> a(1,2)
ans =

12

>> a(2,3)
ans =

16

O O O

12
15

>> a(2,3)=20

a =
11
14

12
15

>> a(3,5)=25

a =

11

14

0
>> a(2,:)
ans =

14
>> a(:,3)
ans =

13

20

0

>> a(2:3,2:4)

ans =
15
0

12
15
0

15

20
0

[e oo

13
16

13
20

13
20

20

[N eNeNe)
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3.10.3 Operations on Matrices

>> a=[1,1,2; 3,4,5]
a =
1 1 2
3 4 5

>> b=[1,0,-1; 2,2,1]
b =
1 0 -1
2 2 1

>> ¢=[0,1;2,2;-1,0]
c =

0 1
2 2
-1 0
>> a+b
ans =
2 1 1
5 6 6
>> axc
ans =
0 3
3 11
>> cx*a
ans =
3 4 5
8 10 14
-1 -1 -2

>> % Transpose

>> a’

ans =
1 3
1 4
2 5

>> v=[1,2,3]

v =
1 2 3
>> axv’?
ans =
9
26

>> size(a)
ans =

2 3
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>> size(v)
ans =
1 3

>> % Element by element multiplication
>> a.*b
ans =

1 0 -2

6 8 5

>> 7} Scalar operations

>> 2xa
ans =
2 2 4
6 8 10
>> a+2
ans =
3 3 4
5 6 7

>> ¥ Matrix exponentiation
>> p=a(:,1:2)

p =
1 1
3
>> p~2
ans =
4 5
15 19
>> p~5
ans =
436 551
1653 2089

>> £=[0,1;1,1]
f =

0 1

1 1

>> v=[1,1]"

v =
1
1

>> fxv

ans =
1
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>> f-2%v
ans =

2

3

>> £710*v

ans =
89
144
>> £-10
ans =
34 55
55 89

3.10.4 Sparse Matrices

Sparse matrices can be created with dimensions up to a large integer size.* The
function “sparse” with a variety of types of arguments creates a sparse matrix.
Many standard operations on full matrices can be applied to sparse matrices;
some, such as computing rank, require specialized functions. The function
full(s) converts a sparse matrix s to a full matrix.

% If A is a full matrix, then sparse(A) converts it to a sparse matrix

>> s=sparse (eye (6))

s =
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)

e

% Note that a sparse matrix prints out by printing all the nonzero
% with indices

% Indexing into a sparse matrix.

>> s(2,3) = 6

s =
(1,1)
(2,2)
(2,3)
(3,3
(4,4)
(5,5)
(6,6)

e N

4According to the documentation, the dimension can be up to the maximum integer 231_ 1, but,
at least with the version of MATLAB that I have been running, I have found that I can get errors
if the size is more than about 500,000,000. Moreover, the behavior is erratic around that value; the
call sparse (498182000) sometimes succeeds and sometimes gives an error.

values
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% Multiplying sparse matrices
>> s*s
ans =
(1,1)
(2,2)
(2,3) 1
(3,3)
(4,4)
(5,5)
(6,6)

e S

% Other operations
>> size(s)
ans =

6 6

% Converting a sparse matrix to a full matrix

>> full(s)

ans =
1 0 0 0 0 0
0 1 6 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

% Other ways to create sparse matrices
% sparse(m,n) creates an m*n sparse 0 matrix

>> s=sparse (3,5)
s =
All zero sparse: 3-by-5
>> s(1,3)=5
s =
(1,3) 5

% sparse(i,j,v,m,n,maxnz): i, j, v are vectors of equal length
% creates an m*n sparse matrix S such that S(i(k), j(k)) = v(k)
% maxnz is an upper bound on the number of nonzero elements in this call

>> s=sparse([1,2,3], [1,5,4], [3.1, 2.6, 5.0], 7, 6, 10)
s =

(1,1) 3.1000
(3,4) 5.0000
(2,5) 2.6000

% speye(n) creates the sparse n x n identity matrix

>> speye(6)

ans =
(1,1) 1
(2,2) 1
(3,3) 1
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(4,4) 1
(5,5) 1
(6,6) 1

3.10.5 Cell Arrays

Cell arrays are heterogeneous arrays; that is, unlike regular arrays, the entities
in a single cell array may vary in type and size. Cell arrays are created and in-
dexed by using curly brackets. They are useful in creating “ragged arrays” such
as collections of vectors, strings, or matrices of different kinds.

>> c¢={1, [1,2], ’Do-re-mi’, [1,2,3;4,5,6]%}
c =
[1] [1x2 double] ’Do-re-mi’ [2x3 double]

>> c{3}
ans =
Do-re-mi

>> text={’Four’, ’score’, ’and’, ’seven’, ’years’, ’ago’}
text =
’Four’ ’score’ ’and’ ’seven’ ’years’ ’ago’

>> text{5}
ans =

years

>> m={eye (1) ,eye(2),eye(3),eye(4)}

m =
[1] [2x2 doublel [3x3 double] [4x4 double]
>> m{2}
ans =
1 0
0 1
Exercises
Exercise 3.1.
-1 1 + 3 -2
1 3 1 1 2 3
Exercise 3.2.
2 -1 1 0 _;
1 3 1 -1 2
-2 1 0
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Exercise 3.3.
-1 1 0
[1 -2 1] 1 31 -1
-2 1 0 1
Exercise 3.4.
G e[
1 3 1 -1 9 _
-2 1 O 1
Exercise 3.5. Let
1 2
A=| -2, B=[3 1 2], «cC=|-1
1 2

Compute the product of these three matrices, first as (A- B) - C and second as
A- (B C). Which method involves fewer integer multiplications?

Exercise 3.6. A permutation matrix is a square matrix such that each row and
each column has one entry of 1 and the rest are 0s. For instance, the matrix

(=N eNel =]
oo~ O OO
[= Il elNe el
— o O O O O
o = O O O O
[=elelNel -]

is a 6 x 6 permutation matrix.
(@) Let V be the row vector [1,2,3,4,5,6]. Whatis V- M? Whatis M-V T?

(b) Let U be the row vector [4,5,6,3,2,1]. Construct a permutation matrix
such that V- M = U. Construct a permutation matrix such that U- M = V.
What do you notice about these two matrices?

Exercise 3.7. Refer to the graph of Figure 3.5 (Section 3.9.1).
(a) Find the number of paths of length 6 from A to E

(b) Draw a plot of the number of all paths in the graph of length K, as a func-
tion of K, for K =1,...,10.
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Problems

Problem 3.1. Refer to Rules (3.1)-(3.7) in Section 3.9.

(a) Prove each of Rules (3.1)—(3.7) directly from the numerical definition of
matrix multiplication.

(b) Prove each of Rules (3.1)—(3.6), except Rule (3.2), using an argument based
on linear transformations, analogous to the argument for Rule (3.2) given
in the text.

Problem 3.2. What is the advantage of using the function speye (N) over writ-
ing the expression sparse (eye (N))?

Problem 3.3. Let M be an n x n permutation matrix as defined in exercise 3.6.
Prove that M- MT = I,,. (Hint: What is the dot product of a row of M with a
column of MT?)

Problem 3.4. Show that none of the operations sort(7), max(¥) or product(?)
is a linear transformation.

Problem 3.5.

(a) Prove that the operation of taking the transpose of a matrix does not cor-

respond to matrix multiplication. That is, prove that there does not ex-
ist an n x n matrix M such that, for every n x n matrix A, M- A = AT,
(Hint: Use the fact that, for any two matrices U, V and any index i,
U-(VIL,iD=W-V)L,il)
Note that, if A is a pixel array, then AT is the reflection of the image across
the main diagonal; thus illustrating that geometric transformations on
pixel arrays do not correspond to matrix multiplication. This topic is dis-
cussed further in Section 6.4.8.

(b) Transpose is a linear operator, however. That is, suppose we define a
function ®(A) = A”. Then @ satisfies the equations

O(A+B)=D(A) +P(B),
D(c-A)=c-D(A).

But we proved in Theorem 3.2 that every linear operator does correspond
to matrix multiplication. Resolve the apparent contradiction with part
(a) above. (This problem is tricky.)

Problem 3.6. A square matrix A is nilpotent if AP = 0 for some power p.

(a) Prove that an adjacency matrix A for graph G is nilpotent if and only if G
is a directed acyclic graph (DAG).

(b) Consider the smallest value of p for which A” = 0. What is the signifi-
cance of p in terms of the graph G?
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Programming Assignments

Assignment 3.1 (Evaluating a linear classifier). Consider a classification prob-
lem of the following kind: given n numeric features of an entity, we want to pre-
dict whether the entity belongs to a specific category. As examples: Based on
measurable geometric features, is a given image a picture of a camel? Based on
test results, does a patient have diabetes? Based on financial data, is a prospec-
tive business a good investment?

A linear classifier consists of an n-dimensional weight vector W and a nu-
meric threshold T. The classifier predicts that a given entity X belongs to the
category just if W e X = T.

Of all the different ways of evaluating how well a given classifier fits a given
labeled dataset, the simplest is the overall accuracy, which is just the fraction of
the instances in the dataset for which the classifier gets the right answer. Over-
all accuracy, however, is often a very unhelpful measure. Suppose we are trying
to locate pictures of camels in a large collection of images collected across the
Internet. Then, since images of camels constitute only a very small fraction
of the collection, we can achieve a high degree of overall accuracy simply by
rejecting all the images. Clearly, this is not a useful retrieval engine.

In this kind of case, the most commonly used measures are precision and
recall. Suppose that we have a dataset consisting of collection D of m entities
together with the associated correct labels L. Specifically, D is an m x n matrix
in which each row is the feature vector for one entity, and vector I is an m-
dimensional column vector, where L [i] = 1 if the ith entity is in the category
and 0 otherwise.

Now let C be the set of entities that are actually in the category (i.e., labeled
so by I); let R be the set of entities that the classifier predicts are in the category;
and let Q = Cn R. Then precision is defined as |Q|/|R| and recall is defined as
lQI/1Cl.

In the camel example, the precision is the fraction of images that actually
are camels out of all the images that the classifier identifies as camels, and the
recall is the fraction of the images of camels in the collection that the classifier
accepts as camels.

(a) Write a MATLAB function evaluate (D,L,W,T) that takes as arguments D,
L, W, and T, as described above, and returns the overall accuracy, the
precision, and the recall. For example, let m =6 and n = 4; so,

W s O NN =
SO NN W o -
— N W o = O
w o~ O =
SO OO
1]
N = N =
)ﬂ
Il
©
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Then the classifications returned by the classifier are [1,0,0,1,0,1]; the
first, third, and fifth rows are correctly classified, and the rest are mis-
classified. Thus, the accuracy is 3/6 = 0.5. The precision is 1/3; of the
three instances identified by the classifier, only one is correct. The recall
is 1/2; of the two actual instances of the category, one is identified by the
classifier.

(b) Write a function evaluate2(D,L,W,T). Here the input arguments D and
L are as in part (a). W and T, however, represent a collection of g classi-
fiers. W is an n x g matrix; T is a g-dimensional vector. For j =1,...,q,
the column W{; j] and the value T'[j] are the weight vector and threshold
of a classifier. E=evaluate2(D,L,W,T) returns a 3 x g matrix, where, for
j=1,...,9,E[1,j1,E[2,j] and E[3, j] are, respectively, the accuracy, pre-
cision, and recall of the jth classifier. For example, let D and L be as in
part (a). Let g = 2 and let

1 0
2 0
W= 1 0| T=19,2].
2 1
Then evaluate2(D,L,W,T) returns
0.5 0.6667
0.3333 0.5
0.5 0.5

Assignment 3.2. Write a function TotalPaths (A) that takes as argument an
adjacency matrix A for graph G and returns the total number of different paths
of any length in G if this is finite, or Inf if there are infinitely many paths. (Note:
In the latter case, it should return Inf; it should not go into an infinite loop.
Hint: It may be useful to do Problem 3.6 first.)

Assignment 3.3. The transition matrix model discussed in Application 3.3 can
also be used to model diffusion of unevenly distributed material in space over
time. As in the discussion of temperature distribution (Application 3.8), divide
space up into a grid of points numbered 1,..., N. Let U7 [I] be the amount of
material at point I at time T. Let D[/, J] be a transition matrix that expresses
the fraction of the material at J that flows to I in each unit of time. In particular,
of course, D[], I] is the fraction of the material at I that remains at I. Then the
amount of material at [ at time T + 1 is equal to }_; D[I,]J] - Ut [J], SO U4 =
M-vr.

Consider now a case similar to Application 3.8 in which we are considering
a rectangular region, discretized into a grid of M x N interior points. Assume
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that the points are numbered left to right and top to bottom, as in Figure 3.3.
The vector v is thus an M - N dimensional vector, with one dimension for each
point, and D is then an MN x M N matrix. Let us say that the neighbors of a
point are the four points to the left, to the right, above, and below. Assume the
following values for D[I, J]. If J # I, then D[I,J] = 0.1 if J is a neighbor of I, and
0 otherwise. Matrix D[I, ] is 0.6 if I is an interior point with four neighbors; 0.7
if I is a side point with three neighbors; and 0.8 if I is a corner point with two
neighbors.

(a)

(b)

(©)

Write a MATLAB function DiffusionMat (M,N) that returns the MN x MN dif-
fusion matrix for an M x N grid of internal points.

Write a MATLAB function Diffuse (Q,K) that takes as an input argument
an M x N matrix representing the grid of mass distribution at time T = 0
and returns the M x N grid at time T =K. (Hint: Convert Q into a vector of
length MN, calculate the answer in terms of another vector of length MN,
and then convert back into an Mx N matrix. The MATLAB function reshape
will be helpful.)

Write a function EquilibriumTime (V,EPSILON) that computes the time K
that it takes for all the material to “smooth out,” that is, to reach a state
Vp such that the largest value in Vp minus the smallest value is less than
EPSILON. Use a binary search. That is, in the first stage of the algorithm,
compute in sequence the diffusion matrix D; then D?, D* = D*-D?, D® =
D*. D* until you reach a value D?" such that D" - Uy satisfies the condi-
tion. Save all the powers of D you have computed in a three-dimensional
array. The exact time P is thus greater than 2X~! and less than or equal
to 2K,

Now, in the second stage of the algorithm, use a binary search to find the
exact value of P. For instance, if K = 5, then P is somewhere between
16 = 2% and 32 = 25. Try halfway between, at (16 +32)/2 = 24. If this
satisfies the condition, search between 8 and 12; if it does not, search
between 12 and 16. Then iterate. Note that at each stage of your search
the upper bound U and the lower bound L differ by a power of 2, 27, and
that you have already computed D? in the first stage of the algorithm
and saved it, so all you have to do now to compute the intermediate point
is to multiply D’ - D%, Thus, you should be able to carry out the whole
algorithm with at most 2[log, P] matrix multiplications.
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Vector Spaces

This chapter is about vector spaces, which are certain sets of n-dimensional
vectors. The material in this chapter is theoretical—concepts, definitions, and
theorems. We discuss algorithmic issues in Chapter 5, and then return atlength
to applications in Chapters 6 and 7.

There are two objectives in this chapter. The first is to discuss the structure
of vector spaces; this framework will be useful in Chapters 5 and 6 and nec-
essary in Chapter 7. The second is to give a characterization of the space of
solutions to a system of linear equations; this follows easily from the analysis
of vector spaces.

The chapter is divided into three parts, with increasing mathematical so-
phistication. Section 4.1 presents the material on vector spaces needed for the
remainder of the book, as far as possible avoiding unnecessary abstraction and
mathematical difficulty. Many students will no doubt find this section quite ab-
stract and difficult enough, but it is important to master the material discussed
here because as it will be needed later.

Section 4.2 goes over essentially the same ground; it discusses some fur-
ther mathematical aspects and gives proofs of theorems. Students who like
abstract math will, I think, find that this material is not only interesting and
mathematically very elegant, but helpful in clarifying the basic concepts and
their relations. Students who do not care for abstract math may prefer to skip
this.

Finally, Section 4.3 (very optional) gives the most general definition of a vec-
tor space in the way that any self-respecting mathematician would give it. This
section is included so that the self-respecting mathematicians will not burn
this book in the town square.

4.1 Fundamentals of Vector Spaces

The material in this section will be needed for Chapters 5, 6, and 7.

81
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4.1.1 Subspaces

A subspace of R" is a particular type of set of n-dimensional vectors. Subspaces
of R" are a type of vector space; they are the only kind of vector space we con-
sider in this book, except in Section 4.3.1 of this chapter.

Since we are dealing extensively with sets in this chapter, we will be using
the standard set operators. SUT is the union of Sand T. SNT is the intersection
of Sand T. S\ T is the set difference S minus T’ that is, the set of all elements
in Sbutnotin T. @ is the empty set, the set with no elements. To begin with,
we need the idea of a linear sum:

Definition 4.1. Let 7 be a set of vectors in R”. A vector 7 € R" is a linear sum
over ¥ if there exist Uy,..., U, in ¥ and scalars ay,..., a,, such that ii = a; UV, +
et A U

Definition 4.2. Let.# be a set of vectors. The span of ., denoted Span(%), is
the set of linear sums over S.

Example 4.3. In R® let ¥ = {7}, Do}, where 71 = (0,2,0), and ¥ = (1,3,-1).
Then Span(7) is the set of all vectors 0 of the form i = a-(0,2,0)+b-(1,3,-1) =
(b,2a+3b,—D). For instance, Span(¥) includes the vector 37; — 27, = (—2,0,2).
It does not include the vector (4,2, —2), however, because any vector 7 in Span(¥)
must satisfy 7[3] = -V [1].

Definition 4.4. A nonempty set of n-dimensional vectors, ¥ < R" is a sub-
space of R" if & = Span(¥) for some set of vectors 7.

Theorem 4.5 gives a useful technique for proving that a set . is a subspace.

Theorem 4.5. A nonempty set of vectors ¥ < R" is a subspace if it is closed un-
der the vector operations. That is, & satisfies the following two properties:

e Ifiiand V arein¥# then i+ U arein ..
e Ifcisascalarandiiisin&, thenc-iiisin .
The proof is the same as for Theorem 4.28 in Section 4.2.1.

Example 4.6. The entire space R" is a (nonstrict) subspace of itself, called the
“complete space.”

Example 4.7. The set containing only the n-dimensional zero vector { Olisa
subspace of R” known as the “zero space.”

Example 4.8. R? has three kinds of subspaces:
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1. the complete space,
2. the zero space,
3. for any line L through the origin, the set of vectors lying on L.

In the last subspace (3), the line ax + by = 0 is equal to Span({(—b, a)}). Note
that a line that does not go through the origin is not a subspace. This is called
an “affine space”; these are studied in Chapter 6.

Example 4.9. R3 has four kinds of subspaces: the three in Example 4.8 plus
one more:

4. for any plane P through the origin, the vectors lying in P.

For instance, the line going equally in the x,y,z directions is equal to
Span({(1,1,1)}). The plane x+ y + z = 0 is equal to Span({(1,0,—1),¢0,1,-1)}).

Example 4.10. Consider a system of linear equations of m equations in n un-
knowns whose constant terms are all zero. The system can be expressed in the
form MZ = 0; this is known as a homogeneous system of equations. Let . be
the set of all solutions to this system. We can use Theorem 4.5 to show that .
is a subspace of R™:

e If # and ¥ are in ., then Mii =0 and M7 = 0. It follows that M(ii + 7) =
Mii+ M7=0+0=0,s0 i+ Jisin .Z.

e Iffiisin & and c is a scalar, then M(cD)=c-MD =c-0=0, so cii is in .

Example 4.11. Suppose that a retail store keeps a database with a record for
each item. The record for item I is a three-dimensional vector, consisting of
the price paid for I, the price at which I was sold, and the net profit or loss on
I. Then a vector 7 is a legitimate entry if it just satisfies the equation 7[3] =
U[2] — U[1] (profit is selling price minus buying price). Therefore, the set of
legitimate entries is a subspace of R.

Of course, it is not quite accurate to say that any vector that satisfies the
condition is actually a possible entry. Consider the vectors (-2,-9,-7),
(27,97, 7m), and (2-103°,9-10%°,7-10%%). Each of these vectors satisfies the con-
dition, but is likely to raise suspicions in an auditor—it is quite unusual to buy
or sell an item for a negative value, for an irrational value, or for more money
than exists in the world. It would be more accurate to say that the set of legit-
imate values is a subset of the subspace of values satisfying [3] = U[2] — U[1].
However, we ignore that inconvenient reality here.
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Example 4.12. Consider an alternative version of Example 4.11, where an in-
ternational business records price, cost, and profit in a number of different cur-
rencies; and suppose, unrealistically, that the exchange rates are constant over
time. Specifically, the database records the three amounts in dollars, euros, and
yen. Suppose that 1 dollar = 0.8 euro = 90 yen. Then a valid entry is a 9-tuple
satisfying the equations:

v8l=7[2]-v1],
7[4]1=0.8-7[1],
7[51=0.8-7[2],
7[6]=0.8-7[3],
7[7]=90- (1],
U[8]=90-71[2],
U[91 =90-7[3]

4.1.2 Coordinates, Bases, Linear Independence

Suppose we have a subspace 7 of R” and we want to construct a coordinate
system for —that is, a notation that represents all and only vectors in 7. That
way, we can be sure that all of our records are valid vectors in 7, since the no-
tation can express only vectors in 7.

The standard way to construct a coordinate system is by using a basis for 7.
A basis for 7 is a finite tuple & = (I;l,...,Em), satisfying the two conditions
delineated below. If ii is a vector in 7, then the coordinates of ii in basis %,
denoted Coords(ii, 8), is the sequence (ay, ..., ay,) such that ii = a; 7)1 +...+
ambym. Now, for this to be a legitimate coordinate system, it must satisfy these
two conditions:

* Any tuple of coordinates must represent a vector in 7, and every vector
in 7 must be representable as a tuple of coordinates over Z8—that is, as
a linear sum over 8. Therefore, we must choose 2 so that Span(%) =7.

¢ A single vector i has only one tuple of coordinates in 93; that is, any two
different sets of coordinates give different vectors. This is guaranteed by
requiring that 9 be linearly independent.

Definition 4.13. A set of vectors ¥ is linearly dependent if one of the vectors
in 7 is a linear sum of the rest. That is, for some 7 € ¥, ¥ € Span(¥ \ {7}). ¥ is
linearly independent if it is not linearly dependent.

We can now define a basis:

Definition 4.14. Let ¥ be a subspace of R". A finite subset 9 c ¥ is a basis for
v if
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e Span(%) =7, and
e % islinearly independent.

Theorem 4.15 states that a basis & for a subspace .# defines a coordinate
system with the desired properties.

Theorem 4.15. Let % = (El,...,5m> be a basis for vector space # and let U be a
vectorin . Then

(a) Forany vector U € &, there exists a unique m-tuple of coordinates (a, ...,
anm) = Coords(v, B) such thatv =a1 by +...+ ambm.

(b) For any m-tuple of coordinates{ay, ..., an) the linear sum v = a; El +...+
amby, isin .

The proof of (a) is the same as that given for Theorem 4.32 in Section 4.2.1;
(b) follows directly from the definitions.

To be able to include the zero space in our theorems about subspaces, it is
convenient to adopt the following conventions:

* The zero space is considered to be the span of the empty set: {0} = Span(@).

You get the zero vector for free, so to speak.
* The empty set is considered to be linearly independent.

* The set containing just the zero vector {0} is considered to be linearly
dependent.

Examples of bases and coordinates. Any vector space, other than the zero
space, has many different bases, including the following ones of interest:

e Abasis for all of R” is the set (¢!, €2, ..., e™"). (Recall that e’ is the vector in
which the ith component is 1 and other components are 0.)

¢ Abasis for the line ax + by = 0 is the singleton set {(b, —a)}. In fact, if U is
any nonzero vector in the line, then {7} is a basis for the line.

* Abasis for the plane x+ y+z = 0 is the pair of vectors {(1,—1,0),(1,0,-1)}.
Another basis is the pair {(1,1, -2), (-2, 1,1)}. Infact, any two noncolinear
vectors in this plane form a basis.

¢ A basis for the space described in Example 4.11 is the pair {(1,0,—1),
(0,1, 1)}. Another basis is the pair {(0,1,1),(1,1,0)}.

We leave it as an exercise to find a basis for the space described in Example 4.12.

Example 4.16. Considering the plane x + y + z = 0, we already identified two
bases for this subspace:
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s B = {El,Eg}, where 7)1 =(1,0,-1) and Eg ={0,1,-1),
e € =1{C1,C},where ¢, =(1,1,-2) and &, = (-2,1,1).

We now use each of these as coordinate systems. Taking two particular vectors

in the plane: ii = (-5,7,-2) and U = (1,8,—9), and measuring these in coordi-
nate system 98, we find the following coordinates:

e Coords(ii, B) = (—5,7) because 5- El +7- 1_52 =1,
e Coords(v,%) =(1,8) because 1- El +8- Eg =7.

In contrast, measuring them in coordinate system %, we find other coordi-
nates:

e Coords(ii,¢) = (3,4) because 3-¢1 +4-¢ = il.
e Coords(v,6€)=(17/3,7/3) because 17/3-¢, +7/3-C = 1.

It is easy to check that these are the correct coordinates by performing the
indicated sums. We discuss in Chapter 7 how to find the coordinates of a vector
relative to a given basis.

Properties of bases and coordinates. We have seen that any subspace has
many different bases. But, as the examples suggest, the different bases of a
subspace have a very important property in common: they all have the same
number of elements.

Theorem 4.17. Let ¥V be a subspace of R". Then any two bases for V have
the same number of elements. This is known as the dimension of 7, denoted
Dim(¥). By convention, the dimension of the zero space is 0.

The proof is as given for Corollary 4.34, in Section 4.2.2.

Now, suppose that 7 is an m-dimensional vector space, and 28 is a ba-
sis for 7. Then for any vector # in 7, the coordinates for ii in terms of %,
Coords(ii, %) = (ay, ..., am), is itself an m-dimensional vector. The great thing
about this coordinate notation is that you can carry out vector operations on
the actual vectors by applying the operators to their coordinates in any basis.

Theorem 4.18. LetV bea subspace of R"™ and let 9B be a basis for V. Then
e Foranyi, €V, Coords(ii + ir, ) = Coords(ii, 2B8) + Coords(it, ).
e Foranyiie€V and scalar a, Coords(a- ii, 98) = a- Coords(il, A).

* The coordinates of a linear sum is equal to the linear sum of the coordi-
nates. That is,

Coords(ay U1 +...+ay- Uy, B) = a;-Coords(vy,B) +...+a,-Coords(V,, A).
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The proof of Theorem 4.18 is left as an exercise (Problem 4.1).

For instance, let us go back to Example 4.16. Suppose that we have decided
to use the coordinate system % and we have recorded that Coords(ii, €) = (3,4)
and Coords(7,6) = (17/3,7/3). We now want to compute Coords(67 — 2ii,6).
One way would be to translate # and U back into their native form, do the com-
putation, and then translate the result back into coordinates relative to 6. But
Theorem 4.18 gives us a much simpler solution:

Coords(67 —21ii,€) = 6 Coords(v,6¢) — 2Coords(ii, €) = (28,6)

4.1.3 Orthogonal and Orthonormal Basis

An orthogonal basis is one for which every pair of elements is orthogonal. For
instance, the subspace x + y + z = 0 has the orthogonal basis ¢ = {(1,-1,0),
(1,1,-2)}.

An orthonormal basis' is an orthogonal basis in which every element has
length 1. If 98 is an orthogonal basis for space .#, then you can get an or-
thonormal basis by dividing each element in 98 by its length. For instance, in
the orthogonal basis @ for the space x + y + z = 0, the first vector has length v2
and the second has length v/6. Therefore, this turns into the orthonormal basis
N =(1IV2,-1/V2,0),(1/V6, 1/V6, -2/ V6).

The obvious drawback of using orthonormal bases is that you get involved
with irrational numbers. The advantage, however, is that if vectors in 7 are
recorded in terms of their coordinates in an orthonormal basis, then lengths
and dot products can also be computed without translating back to the stan-
dard coordinates.

Theorem 4.19. Let ¥ be a vector space and let B be an orthonormal basis
forV. Then:

e Forany i, eV, e ib=Coords(il,8) « Coords(iv, ).
e Foranyu eV, |i|=|Coords(ii,%8)|.

The proof is as given for Theorem 4.45 in Section 4.2.4.
We illustrate by using the subspace x+ y + z = 0. Again, let @i = (-5,7,-2)
and 7 =(1,8,-9). Then
Coords(ii,0) ={(-6,1) and Coords(V,0)=(-7/2,9/2), so
Coords(ii, /) = (—6V/2,V6) = (—8.4852,2.4495) and
Coords(7, 4) = (=7V2/2, 9V6/2) = (~4.9497,11.0227).

1Unhelpfully, in mathematical literature, the term “orthogonal basis” is often used to mean “or-
thonormal basis.”
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We leave it as an exercise (Exercise 4.3) to check that, as Theorem 4.19 claims,

|zi| = | Coords(ii, )| = V78,
|U| = |Coords(v, A)| = v146, and
ii « U = Coords(it, N) « Coords(7, 4) = 69.

An orthonormal basis also has the important and elegant property stated
in Theorem 4.20.

Theorem 4.20. Let 9B = {El, e Eq} be an orthonormal basis for vector spaceV .
Ifv isavectorinV, then theith coordinate of U with respect to 98, Coords(7, %) [i]
=TUeb;.

The proof is as shown for Theorem 4.46 in Section 4.2.4.

A matrix M is orthonormal if its columns are orthonormal. Square orthonor-
mal matrices have the properties given in Theorem 4.21, which are important
in Chapter 7.

Theorem 4.21. If M is an n x n orthonormal matrix, then MT is also orthonor-
maland M -MT =MT -M=1,.

We leave the proof of Theorem 4.21 as an exercise (Problem 4.2).

4.1.4 Operations on Vector Spaces

We can combine two subspaces % and 7 of R” in two important ways. First,
we can take their intersection % Nn¥7. Second, we can take their direct sum,
denoted % @7 and defined as % @7 = Span( U7). Both% NV and % &7 are
themselves vector spaces.

In two dimensions, the direct sum of two distinct lines is the entire space,
and their intersection is the zero space. In three-dimensional space, if 7 and
¥ are different lines, then % @ 7 is the plane containing them. If % is a plane
and 7 is a line outside %, then % &7 is the entire space.

Theorem 4.22 states three important properties of these operations.

Theorem 4.22. Let% andV be subspaces of R". Then

(a) Foranyvector ivin% &V, thereexistsii€ % and v € V such that v = ii+7.
If% NV = {0}, then there is only one possible choice of ii and D.

b) IfUnV = {0}, then the union of a basis for 2/ with a basis for V is a basis
forueV.

(c) Dim(% & 7) =Dim(%) + Dim(¥) - Dim(% n 7).
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The proof of part (c) is as given for Theorem 4.42 in Section 4.2.3. The proofs
of parts (a) and (b) are left as exercises (Problem 4.3).

Two vector spaces % and ¥ are complementsif % N7 = {0} and %Z @ 7 = R".
If % and 7 are complements, then any vector in R” can be written in exactly
one way as the sum of a vector in % plus a vector in 7. % and 7 are orthogonal
complements if they are complements, and any vectors ii € % and U € 7 are or-
thogonal. In fact, the orthogonal complement of % is just the set of all vectors
v such that ¢ is orthogonal to every vector in %.

Theorem 4.23. Anysubspace of R" has an orthogonal basis and an orthogonal
complement.

The proof is as shown for Theorem 4.49 in Section 4.2.4.

If % and 7 are complements, then % @ ¥ = R" so Dim(% & ¥) = n, and
U NV = {0} so Dim(% Nn'¥) = 0. By using the formulas in Theorem 4.22(c) and
Theorem 4.23, we have Dim(%/) + Dim(?) = Dim(% ¢ 7) + DIim(% Nn¥) = n. So,
for example, in two dimensions, any two distinct lines through the origin are
complements. In three dimensions a plane P through the origin and any line L
through the origin not lying in P are complements.

4.1.5 Null Space, Image Space, and Rank

We can now use the theory of vector spaces that we developed so far to partially
characterize what a linear transformation does.

Suppose that I' is a linear transformation from R” to R". Then the image of
T, Image(I') = T'(R™), is a subspace of R"™. The null space (also called the kernel)
of I is the set of vectors in R” that I maps to 0:

Null(T') = {7 € R* |T'(D) = 0}.

Now, let 7 be any subspace of R” that is complementary to Null(I'). Since
Null(T') and ¥ are complementary, any vector p € R” is equal to i + 7, where
e Nulll) and v € 7. Then I'(p) = T'(ii + v) = ['(ii) + T'(¥) = T'(¥). Thus, any
vector in Image(I') is in I'(¥). In fact, we can show that I' is a bijection between
¥ and Image(I); that is, for every vector i’ € Image(T'), there exists exactly one
vector U € V such that i =T'(9).

So we can think about what I" does in this way. We identify Null(I'), the set of
vectors that I' sends to 0. We choose some vector space 7 that is complemen-
tary to Null(T'). (Note that there are many ways to choose 7, although there is
no choice about Null(I'). If we like, we may choose 7 to be the orthogonal com-
plement to Null(I'); sometimes that is the best choice, but not always.) We can
then divide any vector p € R” into a component # € Null(T') and a component
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Uin 7, such that p = U + ti. When I is applied to p, it simply zeroes out the #
component and sets I'(p) =T'(7).

How do we describe what I' does to vectors in 7? The easiest way is to
choose a basis for 7. If El, e I;r is a basis for 7, then F(El), .. .,F(E,) is a basis
for Image(I'). Moreover, if U is any vector in 7, then the coordinates of I'(¥) with
respect to the basis {T'(b1),...,T(by)} are the same as the coordinates of ¥ with
respect to the basis {El, e Er}. The index r is the dimension both of 7 and of
Image(T'). This is known as the rank of I': Rank(I') = Dim(Image(I')).

Note that we now have fwo important uses for bases:

* to serve as the basis for a coordinate system.
* to use in characterizing linear transformations.

One further point deserves mention. Since 7 and Image(I') have bases of
the same size, we have Dim(7") = Dim(Image(I')) = Rank(I'). But since 7 and
Null(T') are complementary subspaces of R", we have Dim(?) + Dim(Null(I')) =
n, so Dim(Null(I')) = n — Rank(I').

These functions apply to matrices in the same way; that is, if M is the ma-
trix corresponding to transformation I', then Image(M) = Image(I'), Null(M) =
Null(T'), and Rank(M) = Rank(I'). Theorem 4.24 pertains to these properties of
matrices.

Theorem 4.24. For any matrix M:

* Image(M) is the space spanned by the columns of M. Therefore Rank(M) =
Dim(Image(M)) is the dimension of the space spanned by the columns
of M.

* Rank(M) is also the dimension of the space spanned by the rows of M.
Therefore Rank(M) = Rank(M 7).

The proofis as shown for Theorem 4.77 and Corollary 4.79 in Section 4.2.8.

Example 4.25. Let M be the matrix
1 2 -1
M= [ 3 6 -3 ] '
Then Null(M) is the set of vectors (x, y, z) such that x+2y—z=0and 3x+6y —
3z =0. Since any vector that satisfies the first equation also satisfies the second,
this is just the plane x +2y — z = 0. We can choose for 7 any complement of
Null(M). Since Null(M) is two-dimensional, 7 must be one-dimensional, so we
may choose as a basis any vector b that does not lie in the plane Null(M). Let

us choose b = (1,0, 0), the unit x-vector, and basis % = {13}, so ¥ = Span(%) =
{t-(1,0,0)}, the set of vectors on the x-axis.
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Now M- b = (1,3), and the image of M is given by
Image(M) ={M-U|Ve¥}={M-t-(1,0,0)} = Span(M-E) ={r-(1,3)}.

This is the line in the plane with slope 3.

Consider a vector in R3, say i = (9,2,6). We can then find vectors ii €
Null(M) and 7 € ¥ such that i = éi + U. In this case, il = (2,2,6) and U = (7,0,0).
Then M-t = M-v = (7,21). Note that Coords(7, %) = Coords(M-U, {M-I;}) ={7).

Example 4.26. Let M be the matrix

1 2 -1
M= -1 0 1.
-1 2 1

Then Null(M) is the one-dimensional line {¢- 71}, where 7 is the vector (1,0, 1).
The complementary space 7 is thus a two-dimensional plane. As a basis 28 for
the complementary space, we may take any two noncolinear vectors that do
not lie in Null(M), such as 51 ={0,1,1) and I;g =(1,1,0). Then

¥ =Span(@) = {a1- by + az - bp} = (a1, al + az, az | @y, az € R}.

We can check that these are indeed the null space and a complementary
space by checking that

(@ M-ii=0,
(b) M- El #0,and M- I;g # 0, so these are not in the null space,
(c) Bl and Eg are linearly independent.

It follows from (a) that Span({#i}) is in the null space, and from (b) and (c) that
Span(4) is in a complementary space. But since we have now used up all
three dimensions, it follows that Span({7i}) is the complete null space and that
Span(48) is a complete complement.

Now {M - by, M- bo} = {(1,1,3),(3,—1,1)}. So Image(M) = Span({M - by, M -
Eg}) ={a;-(1,1,3) + a» - (3,—1, 1)}, the plane spanned by (1,1,3) and (3,-1,1).

Consider a vector in R?, say, @ = (5,3,4). We can then find vectors ii €
Null(M) and 7 € 7 such that i = i+ U. In this case, &i = (3,0,3) and U =
(2,3,}). Thgn M-iw=M-v=(7,—-1,5). Note that Coords(7,28) = Coords(Mv,
{M-b1,M-b2}) =(1,2).

4.1.6 Systems of Linear Equations

We now apply all this theory to systems of linear equations. Let M be an m x n
matrix. First, we note that the null space of M is the set of vectors X such that
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M3x = 0; that is, it is the set of solutions to the system MX = Oof m equations in
n unknowns.

Second, let us think about the system of equations MX = €. This has a solu-
tion if € is in Image(M). Therefore, if Image(M) = R™—that is, Rank(M) = m—
then every vector ¢ in R is in Image(M), so the system of equations has a
solution for every ¢. If Rank(M) < m, then Image(M) is a proper subset of R™,
so most vectors ¢ that are in R are not in Image(M) and for those, the system
MZX = ¢ has no solution.

In contrast, now suppose ¢ satisfies MX = ¢ and suppose that some nonzero
vector 7 is in Null(M). Then M(q + ii) = M ¢ = ¢, so q + i also satisfies the sys-
tem MX = ¢. The converse is also true; if § and p are two solutions of the system
MX = ¢, then

M(p-§) =Mp-Mg=¢-¢=0.
So p — 4 is in Null(M).

The set of all solutions to the system of equations MX = ¢ therefore has the
form {l; + i1 i € Null(M)}. In general, a set of this form {p + #i | i € %}, where %
is a subspace of R”, is called an affine space.

Therefore, two critical features of a matrix M determine the characteristics
of the solutions to the system of equations MX = ¢. Each feature has two pos-
sibilities, giving four combinations.

Feature A. The image.

Case A.1. Image(M) is all of R™. This holds if Rank(M) = m. In this case, the
system MX = ¢ has at least one solution for every .

Case A.2. Image(M) is a proper subset of R™. This holds if Rank(M) < m. In
this case, the system MX = ¢ has no solution for any ¢ that is in R™
but not in Image(M).

Feature B. The null space.

Case B.1. Null(M) is just the zero space. This holds if Rank(M) = n. In this
case, the system MX = ¢ has at most one solution for any ¢.

Case B.2. Null(M) contains nonzero vectors. This holds if Rank(M) < n. In
this case, for any value ¢, if the system MX = ¢ has any solutions,
then it has infinitely many solutions.

Let us now consider systems of equations, MX = ¢, of m equations in n
unknowns (that is, M is an m x n matrix). Keeping M fixed, but allowing ¢ to
vary, there are four categories, corresponding to the combinations of the cases
above.

Category |. Tmage(M) = R™. Null(M) = {0}. n = m = Rank(M). For any ¢ there
exists exactly one solution.
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Category II. Image(M) = R™. Null(M) # {0}. Dim(Null(M)) = n—m >0. m =
Rank(M) < n. For any ¢ there exist infinitely many solutions.

Category lll. Tmage(M) # R™. Null(M) = {0}. n = Rank(M) < m. Dim(Im-
age(M)) = Rank(M) < m, so Image(M) does not include all of R™*. Null(M)
={0}. For Ce Image(M), there exists a unique solution; for ¢ ¢ Image(M),
there does not exist any solution.

Category IV. Image(M) # R™. Null(M) # {0}. Rank(M) < m, Rank(M) < n.
Dim(Image(M)) = Rank(M) < m, so Image(M) does not include all of
R™. Dim(Null(M)) = n—Rank(M) > 0. For ¢ € Image(M), there exists infi-
nitely many solutions; for ¢ ¢ Image(M), there does not exist any
solution.

4.1.7 Inverses

Let M be a Category I matrix; that is, an n x n matrix of rank 7. Then the linear
transformation I'(7) = M- ¥ is a bijection from R” to itself; that is, for every
i € R™ there exists exactly one 7 € R", such that I'(¥) = . Therefore, we can
define an inverse I'"!, where I'"1(i0) is the unique ¥ such that I'(¥) = . In
other words, I"1(I'(¥)) = o =T (T~ (9)).

Itis easy to show (see Theorem 4.69 in Section 4.2.7) that in fact I'"! must be
a linear transformation. Therefore, there exists an zn x n matrix corresponding
to I'. This is called the inverse of M and is denoted M~'. Since FoI'~! and
I'~'oT are both the identity mapping from R” to itself, it follows that M- M~ =
M~'.M = I", the n x n identity matrix.

Now, suppose we have a system of linear equations M - X = ¢. Multiplying
both sides by M~ gives you M~! M% = ¥ = M~'¢, so we have solved the system!
In practice, as we discuss in Chapter 5, this is not actually an effective way to
solve one particular system of linear equations. However, this may be a good
approach to solve systems of the form MX = ¢, with the same value of M but
different values of ¢: compute M~! once and for all and then just do the matrix
multiplication M~ for each different value of ¢.

4.1.8 Null Space and Rank in MATLAB

The MATLAB function rank(A), returns the rank of matrix A. The function
null (A) returns a matrix whose columns are an orthonormal basis for the null
space of matrix A. (These use a tolerance for closeness of the relevant quantities
to zero, which can be set by using an optional parameter.) For example,

>> a=[1,2,3,4 ; 1,1,1,1 ; 2,3,4,5; 0,1,2,3]
a =
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W=ay(by,1l1,1 +

1 2 3 4
1 1 1 1
2 3 4 5
0 1 2 3
>> rank(a)
ans =
2
>> g=null(a)
q =
0.4689 -0.2831
-0.4142 0.7270
-0.5783 -0.6046
0.5236 0.1607
>> axq
ans =
1.0e-14 =x*
0 0.0888
-0.0111 0.0444
0 0.1554
0 0.0389
>> q’*q
ans =
1.0000 -0.0000
-0.0000 1.0000

4.2 Proofs and Other Abstract Mathematics (Optional)

In this part, we give proofs for the theorems (except those whose proofs we
leave as an exercise.) We also introduce some more abstract material.

4.2.1 Vector Spaces
Lemma 4.27. IfV is a subspace of R", thenSpan(¥) =7

Proof: Since 7 is a subspace, there exists a set % of vectors in R" such that
¥V = Span(%). Let i be a vector in Span(¥?). Then i) is a linear sum over 7;
that is, there exist vectors 71,...,04 € 7 and scalars ay,..., a; such that i =
a1 U1 +...+aq0q. Since 7 = Span(%), each of the 7; is alinear sum over %; that
is, U; = b1t +...+ bi,p ﬁi,p- Thus,

"W+prﬁLp)+-n*WLﬂb¢lﬁml+W-f+bmpﬁqw)::albLlﬁLl+ﬂ-W+aqupﬁqm-

Grouping together the repeated # vectors, we have an expression of i as a lin-
ear sum over %. So w is in Span(%) =7 O
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Theorem 4.28. A setof n-dimensional vectorsV < R" is a subspace of R" ifand
only ifit is closed under vector addition and scalar multiplication.

Proof: Suppose 7 is a subspace of R”. By Lemma 4.27, ¥ = Span(¥), so any
linear sum of vectors in 7 is itself in 7. In particular, if ¥ and # are in 7 and a
is a scalar, then v+ #f and av arein 7.

Conversely, suppose that 7 is closed under addition and scalar multiplica-
tion. Then if i is a linear sum over 7, 0 = a; U1 +... + a, Uy, then each of the
products a; 7; is in 7, and then, by induction, the partial sums

a U1 + ax Uy,
ay i/'1+a2172+a3i/'3,
oy

a1171+a2ﬁ2+...+aq17q

are all in 7. So w is in 7. Since 7" contains all its linear sums, 7 = Span(¥), so
by Definition 4.4, 7 is a subspace of R”. O

Lemma 4.29. LetV be a set of n-dimensional vectors and let 0 be a vector in
Span(¥). Then Span(¥ U {i0}) = Span(¥).

Proof: It is immediate that Span(¥ u {ii}) > Span(¥), since any linear sum over
¥ is alinear sum over ¥ U {i0} with coefficient 0 on 0.

Since i € Span(¥), let i = a; V1 +...+a, Uy, Let Zbe any vector in Span(¥'U
{i0}). ThenZ=b101+...+ by Um+ciw =b1V1+...+ by Um+claiVi+...+ Ay Uy) =
(b1 +cal)) vy +...+ (by + cay) Upy,. So Zis alinear sum of vy,..., Up,. O

4.2.2  Linear Independence and Bases

Theorem 4.30. A set V' is linearly dependent if and only if there exist distinct
vectors Uy, ..., Uy, in¥ and scalars ay, ..., an, which are not all equal to 0, such
thata1 v +...+ am v, =0.

Proof: Suppose that 7 is linearly dependent. Then, by Definition 4.13, there
exists some 7 in 7 that is a linear sum over the other vectors in 7; that is, #i =
a1 D1 +...+ @y Uym. Therefore, 0 = ay D1 +...+ am Uy — ii. Note that the coefficient
of il is —1, so the coefficients in this sum are not all zero, satisfying the condition
of the theorem.

Conversely, suppose that 7 satisfies the conditions of the theorem; that
is, aj ¥y + ...+ amUm = 0, where the coefficients are not all 0. Let a; be some
nonzero coefficient. Then, we can solve for U;:

a .. ai-1 o ai+l am

UVi=——01—...— Ui_1— Uiz1—eo—— U,y
a; ai; a; a;

so U; is a linear sum of the rest of the vectors. O
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Corollary 4.31. Let V1, Vy,..., Uy be a sequence of vectors such that for all i, ¥;
is notin Span({vy,..., V;_1}). Then vy, Us,..., Uy are linearly independent.

Proof: of the contrapositive: Suppose that 7, Uy, ..., U are linearly dependent.
Then for some ay, ..., a; not all zero, a; U; +...+ ap Uy = 0. Let i be the largest
index for which a; # 0. Then 7; = (-1/a;)(a1?h +...+ a;_10;_1), s0 Up is in
Span({7y,..., Ui_1}). O

Theorem 4.32. If% = <?71, Em) is a basis for V', then any vector v in'V has a
unique tuple of coordinates relative 10 9. That is, there is a unique sequence of
coefficients ay, ..., ay, such that v = a1b1 +...+any bm

Proof: The fact that there exist such ay, ..., a,, is immediate from the fact that
U €Span(2). To prove that the coordinate vector is unique, suppose that v U=
a1b1 +...+ ambm = clbl +...+ cmbm Then (a; — cl)bl +...+(am— cm)bm
Since the Ei are linearly independent, a;—c;=0forall i.

Lemma 4.33. Let@B =1{by,...,bn} be a set of linearly independent n-dimensional
vectors. LetV = Uy,..., Uy be a set of linearly independent vectors in Span(%).
Then p < m.

Proof: Since 7; € Span(98), we can write U; = a; El +...+ ami;m, where one
of the coefficients a; is nonzero. Since the numbering on the b vectors does
not matter, we can renumber them so that the coefficient a; is nonzero. (This
renumbering is not significant, it just simplifies the wording of the proof.) Then
we can solve for 131 and write

o= Lo - Bp,_ _mp

a a ay

Thus, 131 is in Span(7, Ez,...,Em) so by Lemma 4.29 Span(7, Ez,...,Em) =
Span(2 U {71}) = Span(%).

Moving on, we have U € Span(98); so v, is in Span(ﬂl,Ez,...,Em); S0 Up =
v +c Eg +...tcm Em. Since 7, and 7; are linearly independent, it cannot be
the case that ¢ is the only nonzero coefficient; at least one of the coefficients
associated with by, ..., by, must be nonzero. By again renumbering, we can as-
sume that the nonzero coefﬁment is co. Again, we can solve for bz and show that
bz isalinear sum of vy, U, b3, bm We now have that Span(7y, U», b3, bm) =
Span(48).

We can keep doing this, replacing a vector in 28 with vector 7; while main-
taining the same span, until either we have moved all the 7 vectors into the set,
if p < m, or we have replaced all the b vectors, if p = m. Now, suppose that
p > m. At this point, we have Span(7y,..., U;;) = Span(4),so fori = m+1,..., p,
U; is in Span(?y,..., U,). But that contradicts the assumption that the vectors
U1,..., Up are linearly independent. Therefore, we must have p < m. O
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Corollary 4.34. Any two bases for the same vector space have the same number
of vectors.

Proof: Let 98 and € be bases for vector space 7. Let m be the number of vec-
tors in 8. By Lemma 4.33, since % is linearly independent, it cannot have more
than m vectors. Since neither basis can have more vectors than the other, they
must have equal numbers. O

Corollary 4.35. A set of linearly independent vectors in R has at most n vec-
tors.

Proof: Immediate from Lemma 4.33 and the fact that {!,...,8"} is a basis
for R”. O

The number of vectors in a basis for vector space 7 is called the dimension
of 7, denoted “Dim(¥).” By convention, the dimension of the zero space is
Zero.

Lemma 4.36. Let % be a linearly independent set of n-dimensional vectors. If
U is not a linear sum of B, then 2 U {V} is linearly independent.

Proof: Proof of the contrapositive. Suppose that 43 is linearly independent and
% U {1V} is not. Then there exist scalars ay,..., a;;, not all zero, such that a; I;l +

.+ ambm +ag? =0. Since bl, bm are linearly independent, ay cannot be 0.
Therefore, we can solve for 7,

so Uisalinear sum of by, ..., by,. O

Theorem 4.37. LetV be a subspace of R" and let % be a set of linearly inde-
pendent vectors in V. Then % can be extended to a basis for V; that is, there
exists a basis 9B for V' such that 2% c 3.

Proof: 1f Span(%) = V7, then choose 9 = %. Otherwise, let 7} be a vector in
¥ that is not in Span(%). Let %, = % U {V,}. By Lemma 4.36, % is linearly
independent. Clearly, Span(%;) c 7.

If Span(%,) = 7, then we are done. If not, we choose a vector 7, in 7 — (% U
{U1}) and let %» = %, U {U»}. We can keep doing this until Span(%y) = 7 for
some k. Certainly it will have to stop before %/ gets more than n vectors, since
there cannot be more than 7 linearly independent n-dimensional vectors. [

Corollary 4.38. Any subspace of R" has a basis.

Proof: By Theorem 4.37, the empty set of vectors can be extended to a basis. []
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Corollary 4.39. Let7V be a vector space of dimension m. Any set 9B of m linearly
independent vectors inV spansV and thus is a basis for V.

Proof: By Theorem 4.37, 28 can be extended to a basis for 7. By Corollary 4.34,
this extension must have m vectors; thus, it must be equal to 23. O

Theorem 4.40. LetV be a vector space of dimension m, and let B = {El, e I;p}
be a finite set of vectors that spansV . Then p = m, and there exists a subset of %8
that is a basis for V.

Proof: If 2 is linearly independent, then it is a basis for 7, so by Corollary 4.34
p = m. If 8 is not linearly independent, then let ¥ be a vector in £ that is the
linear sum of other vectors in 98. It is immediate that we can delete U; that is,
% — {1} still spans 7. If the result is still not linearly independent, we can repeat
this process. Eventually, we will reach a subset of 28 that is linearly independent
and still spans 7. This is a subset of 28 that is a basis for 7/, and so must contain
m vectors. ]

4.2.3  Sum of Vector Spaces
Throughout this section, let % and 7" be subspaces of R".

Theorem 4.41. The direct sum % ® V and the intersection % NV are vector
spaces.

Proof: Immediate from the definitions. ]
Theorem 4.42. Dim(%) ® Dim(¥) = Dim(%) + Dim(¥) - Dim(% n7V)

Proof: Let p = Dim(%), q = Dim(¥), r = Dim(% n¥). Clearly, r < p and
r<gq. Let W = {iy,..., w0} be a basis for  n7¥. Using Theorem 4.37, let
B = {El,...,Ep_r} be a set of vectors such that # U 2 is a basis for %, and let
€6 ={C1,...,Cq-r} be a set of vectors such that # U€ isabasisfor 7. (If p=r,
let B=g;ifqg=r,let€=0¢.)

Let 2 =% U2 U%. To show that £ is a basis for % & 7, show that £ spans
% &7 and that 2 is linearly independent. Since every vector in % &7 is alinear
sum over % UV, every vector in % is a linear sum over # U 28 and every vector
in 7 is a linear sum over # U %, it follows that %/ @ 7 = Span(2).

To show that 2 is linearly independent, suppose that

-

ain +...+a, iy +diby+...+dp by r+eC1+...+eq 4 =0.

Then

ain+...+a, iy +dib1+...+dp by r=-eiC1+...+—eg ;Cqr.
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The left-hand side is a vector in % and the right-hand side is a vector in Span (%¥).

Let us call this vector Z. Then Z € Span(€) N%, so Z € % NV . But the vectors in
%€ are linearly independent of those in % N 7; hence, Z = 0. Therefore, all the
coefficients a;, d;, and e; are equal to 0. [l

Theorem 4.43. Every subspaceV of R" has a complement.

Proof: Using Corollary 4.38, let 28 be a basis for 7. Using Theorem 4.37, let 2
be an extension of 28 to a basis for R”. It is easily shown that Span(2 \ 9) is a
complement for 7. O

4.2.4 Orthogonality
Recall that two vectors are orthogonal if their dot product is equal to 0.

Definition 4.44. Let % and 7 be subspaces of R". %/ and 7 are orthogonal
if, for every ii in % and v in 7, i is orthogonal to ¥. % and ¥ are orthogonal
complementsif they are orthogonal and they are complements. A finite set % =
b, bq is orthogonal if, for i # j, b; is orthogonal to b; j. An orthogonal basis
for subspace ¥ is a basis for 7 that is orthogonal.

Theorem 4.45. LetV be a vector space and let B be an orthonormal basis for V' .
e Foranyiu, eV, iieib=Coords(ii, ) » Coords(iv, ).
e Foranyiui€V,|i|=|Coords(ii,%8)|.

Proof: Let9 = {by,..., by}. Let Coords(i, %) = (uy, ..., unm) and let Coords(#, )
=(v1,...,Um). Then

-l7=(u1‘lAJl+...+um'lA9m)-(vl‘i)1+...+vm‘i)m)

<

=uy-vy-(by o b)) +uy-va-(by @ bo) + ... Uy V- (by @ by
+ uz'lll'(Bg0131)+...+u2'l/m'(i920i7m)
+ ...

+ um'vl‘(ﬁm-131)+...+um-vm'(i)m-l3m).

But since 2 is orthonormal, the dot product b; « b ;j is equal to 0 if i # j and
equal to 1 if i = j. Therefore, the above sum reduces to

U U1+ Up-Vp+...+ Up - Uy = Coords(ii, 2B8) « Coords(7,AB).

For the second part of the theorem, note that

|ii| = Vi e i = \/Coords(#i, %) » Coords(ii, ) = | Coords(ii, B)|. 0



100

4. Vector Spaces

Theorem 4.46. Let 8 = {El,...,l;q} be an orthonormal basis for vector space
V. If U is a vector in ¥, then for the ith coordinate of U with respect to %,
Coords(v,98)[i] = U e b;.

Proof: Let ¢; = Coords(v,98)[i]l. Then U = ¢; 131 +...+ chq, by definition of
Coords. So

Debi=(c1by+...+cqbg) » by = c1(by » b)) +...+ cq(by » bi) = ¢
becauseEioEizlandEioEj:Oforj¢i. U
Definition 4.47. Let # = El, s I;q be an orthogonal set of n-dimensional vec-

tors, and let U be an n-dimensional vector.
Define Project(7, 98) as

_'01_5 - I_}"E -
Project(ﬂ,,_%’):f N T -by.
bl‘bl bq‘bq

Note that Project(7, %) is in Span(48). In fact, Project(7, 28) is the point in
Span(48) that is closest to 7.

Lemma 4.48. Let & = El,...,I;q be an orthogonal set of n-dimensional vec-
tors, and let U be an n-dimensional vector that is not in Span(%). Let ii =
U — Project(7, %), and note that ui is in Span(2 U {U}). Then i is orthogonal
to bl,...,bq.

Proof: For any i,

- eb; - veb; .
e by = (0= o By —...—~ == bg) o by
bl.bl bq‘bq
- Deby - = veby; - -
=7e i—_,v _,1 bl‘ i—...—_,—_,q'bq‘bl
blobl bq'bq

Since the bs are orthogonal, b e b; =0 forall J # i,s0 all these terms disap-
pear except

b; « b; ' O
Theorem 4.49. Any vector spaceV has an orthogonal basis and an orthogonal

complement.

Proof: Carry out the following algorithm, known as Gram-Schmidt orthogonal-
ization:
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{let € = {¢y,..., C4} be any basis for 7;
extend € to a basis {¢,..., ¢} for R";

B=¢;

D = @;

for(i=1,...,q9){
let ii; = ¢; — Project(c;, A);
add i; to %;}

for(i=qg+1,...,n){
let ii; = ¢; — Project(¢;, BUD);
add #; to 2; }
}

It then follows immediately from Lemma 4.48 that 28 is an orthogonal basis
for 7 and that Span(2) is the orthogonal complement for 7. O

Example 4.50. In R?, let € be the set of two vectors (1,1,1,1) and (0,0,1,1).
Extend 2 to a basis for R* by adding the two vectors & !,&3. Then

i =¢=(1,1,1,1),

ux '62 o 2

Up =Co — — -1, =40,0,1,1) — —-(1,1,1,1) =(-1/2,-1/2,1/2,1/2),
Uy e i 4

9B ={il, Uiz},

L, UypeC3 , UpeC3

Uz =C3 — = ‘U1 — * U

u 'ﬁl ! ﬁz'ﬁz

1 -1/2
=(1,0,0,0) — Z(l,l,l,l) - T(—l/z,—1/2,1/2,1/2>
=(1/2,-1/2,0,0),

iz3eCy
.u3

L ., UypeCy _ lpeCy
Up=C—Z—— M —5—= U~ ——
uye i Uy e up us e us

1 1/2 0
=(0,0,1,0) — —(1,1,1,1) — —<(-1/2,-1/2,1/2,1/2) — —(1/2,-1/2,0,0)
4 1 1/2
=(0,0,1/2,-1/2),
@:{ﬁg,ﬁ4},

Corollary 4.51. The set of all vectors orthogonal to V is complementary to V
and is therefore the orthogonal complement of V' .

Proof: Clearly, any vector orthogonal to 7 is in the orthogonal complement of
¥, and vice versa. What is nontrivial here is that there exists an orthogonal
complement, which is guaranteed by Theorem 4.49.
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4.2.5 Functions

We now turn to linear transformations, but we begin with some simple obser-
vations about functions in general, from any domain to any range.

Definition 4.52. Let f be a function from domain D to range E. Let S be a
subset of D. Then f(S) = {f(s) | s € S}, the set of values obtained by applying
f to elements of S. We define Image(f) = f(D), the set of values obtained by
applying f to any element in the domain D.

Definition 4.53. Let f be a function from domain D to range E. Let S be a
subset of D and let T be a subset of E. We say that f is a surjection from S onto
T (or f maps S onto T) if T is a subset of f(S). We say that f is an injection over
S (or f is one-to-one on S) if f maps each element of S to a different element
of E; that is, if s1, 52 are in S and s; # sp, then f(s1) # f(s2). We say that f is a
bijectionfrom Sto T, if f(S) = T and f is an injection over S.

Definition 4.54. Let f be a function from D to E, and let g be a function from
E to D. Suppose that, for every element d of D, g(f(d)) = d. Then we say that
g is a left inverseof f and that f is a right inverse of g.

Example 4.55. Let D = {a,b,c} and let E = {1,2,3,4}. The function f: D—E
defined by f(a) =4, f(b) = 2, f(c) = 3 is an injection. The function g: D—E
defined by g(a) = 4, g(b) = 2,g(c) = 4 is not an injection because g(a) = g(c).
There obviously cannot be a surjection from D to E because there are more
elements in E than D. The function j : E—D defined by j(1) = b, j(2) = b, j(3) =
¢, j(4) = a is a surjection. The function h : E—D defined by h(1) = a,h(2) =
b,h(3) = b,h(4) = a is not a surjection because there is no value x such that
j(x) = c. There cannot be an injection from E to D because there are more
elements in E than in D; this is known as the pigeon-hole principle.

Image(f) = {2,3,4},Image(g) = {2,4},Image(j) = {a, b, ¢}, Image(h) = {a, b}.

Function j is a left inverse of f and f is a right inverse of j because j(f(a)) =
J@=a j(f(b))=j@2)=b,and j(f(c) =jB) =c.

Example 4.56. Consider functions from Z, the set of integers, to itself. The
function f(x) = 2xis aninjection—if2x = 2y, then x = y—butnot a surjection—
if z is odd, then there is no x such that f(x) = z. The function g(x) = [x/2] is
a surjection—for any z, g(2z) = z and g(2z+ 1) = z—but not an injection—for
any z, g(2z) = g(2z+1). Image(f) is the set of all even integers. Image(g) is the
set of all integers. Function g is a left inverse of f, and f is aright inverse of g.
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Example 4.57. Ofcourse, the case that actually interests us here is linear trans-
formations. Let D = R3 and let E = R?. Let f : D—F be the function

o [1 00
f(”)_[o 10

Function f is a surjection because for any vector (x, y) € E, f({x,,0)) = (x, y).
It is not an injection because f({x,y,1)) = f({x,¥,0)) = {x, y).
Let g: D—E be the function

1 0 0] .
1 0 0

gv) =

Function g is not a surjection because for any vector (x, y,z) € D, g({x,y,2)) =
(x, x), so for any y # x, the vector (x, y) is not in Image(g). Nor is g an injection.
Let h: E— D be the function
1 0
0 1 } - 7.
1 1

Function £ is a injection because, if h({w, x)) = h({y, z)), then we have h({w, x))
=(w,x,w+x)and h((y,z)) =(y,2,y+ 2), so w = y and x = z. It is not an sur-
jection because for any vector (x,y,z) € D, if z # x + y, then (x, y, z) is not in
Image(f).

] "

Let j: E—D be the function
Function j is not an injection because, h({4,2)) = h({4,5)) = (4,4,4). Itis cer-
tainly not a surjection.

Function £ is a right inverse for f, and f is a left inverse for h because for
any vector (x,y) in E,

h(v) =

1
j@=|1
1

o O O

Frx, y)) = fUx,y,x+ ) =({x, ).

Not coincidentally, the corresponding matrix product is the identity
[1001.(1)(1’_[101
01 0 11 0 1

Theorem 4.58. If g is a left inverse for f, then f is an injection over D and g is
a surjection onto D.
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Proof: Assume g is a left inverse for f; then g(f(d)) = d for all d in D. Then for
every d in D there exists r in E for which g(r) = d; namely r = f(d). Thus gisa
surjection onto D.

If f is not an injection, then there exist d and e in D such that d # e but
f(d) = f(e). Since g(f(d)) = g(f(e)) we cannot have both g(f(d)) = d and
g(fle) =e. O

Definition 4.59. If g is both a left inverse and a right inverse for f, then g is
said to be the full inverse, or simply the inverse, of f. We write g = f~1. (Note
that there can exist only one inverse.)

Theorem 4.60. Function f has an inverse if and only if f is a bijection.

Proof: By Theorem 4.58, if f has an inverse, then f is a bijection. Conversely, if
[ is abijection, then, for each r in E, there is a unique d in D for which f(d) = r;
we define the inverse g such that g(r) =d. ]

Theorem 4.61. If g is a left inverse of f and h is a right inverse of f, then g = h
andg= 1.

Proof: Let ip be the identity function over D and let i be the identity function
over E. Then g=goig=go(foh)=(gof)oh=ipoh=h. 0

If that seems so clever as to be suspicious, write it out longhand as follows.
Let e be any element of E and consider g(f(k(e))). On the one hand, since h
is the right inverse of f, f(h(e)) = e, so g(f(h(e))) = g(e). On the other hand,
since g is the left inverse of f, g(f(d)) = d forall d in D. In particular, this holds
for d = h(e). Thus, g(f(h(e))) = h(e). Since g and h have the same value for all
arguments, they are the same function.

4.2.6 Linear Transformations

We now return to linear transformations. In this section, f(?7) is a linear trans-
formation from R” to R™, and F is the corresponding matrix.

Theorem 4.62. Forany linear mapping f fromR" to R™, Image(f) and Null(f)
are vector spaces. Thus Image(f) is a subspace of R™ and Null(f) is a subspace
of R™.

Proof: We leave this as an exercise (Problem 4.4). O

Theorem 4.63. For any finite set of n-dimensional vectors 9, Span(f(9)) =
f(Span(8)).

Proof: Immediate from the fact thatf(a151+...+aqlgq) = alf(51)+...+aqf(5q).
O
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Corollary 4.64. For any subspace ¥ of R", Dim(f(¥)) < min(m,Dim(¥)). In
particular, Rank(f) < min(m, n).

Proof: Since f(¥) is a subset of R™, it follows that Dim(f(¥)) < m.

Let El,...,Bq be a basis for 7, where g = Dim(?). Then, by Theorem 4.63,
f bo),..., f (Eq) spans f(7) (they may not be linearly independent). Hence, by
Theorem 4.40, Dim(f (7)) < q.

For the second statement, we have Rank(f) = Dim(f (%)), where 7 = R", so
Rank(f) = Dim(f(R")) < Dim(R") = n. [l

Theorem 4.65. Let 9B be a linearly independent set, and let V = Span(%). If
is an injection overV, then f(98) is a linearly independent set.

Proof: Proof of the contrapositive. Suppose that f is an injection and f (%) is
linearly dependent. Let 98 = {by, ..., bg}. Then for some ay, ..., a; not all equal
t0 0,0 = alf(51)+...+ aqf(I;q) = f(alEl +...+aqEq). Since 0 = f(0) and f
is an injection, we must have a; El +...+ aqEq =0, so El,...,Bq are linearly
dependent. O

Corollary 4.66. If f has a left inverse, then m = n.

Proof: By Theorem 4.58, if f has a left inverse, then f is an injection. Let 28 be
abasis for R”. By Theorem 4.65, f(98), which is a set of vectors in R™, is linearly
independent, so by Corollary 4.35, n < m. O

Theorem 4.67. LetV be acomplementtoNull(f). Then f is a bijection between
¥V andlImage(f).

Proof: Let 7l be any vector in Image(f); thus, ii = f(i0) for some i’ in R". Since
¥ is a complement of Null(f), we have i = U + 7i for some ¥ in 7 and some 7
in Null(f). Then ii = f(i0) = f(¥+ 7)) = f(D) + f(7) = f(D) +0 = f(D) so fisa
surjection from 7 onto Image(f).

Conversely, suppose that f(7;) = f(U,) for some vy, 7, in 7. Then f(V; —
72) =0, so U1 — Dy is in Null(f). But 7} — U, is also in 7, which is a complement
of Null(f); so 1) — U = 0, or U; = ¥». Thus, f is an injection over 7. O

Corollary 4.68. Dim(Image(f)) + Dim(Null(f)) = n.

Proof: Let 7 be the complement of Null(f). By Theorems 4.67 and 4.65,
Dim(Image(f)) = Dim(¥), and by Theorem 4.42, Dim(Null(f)) + Dim(?) = n..J
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4.2.7 Inverses

Theorem 4.69. Iff isinvertible, then f~ is a linear transformation and m = n.

Proof: Since f islinear we have f(a-f~1(¥)) = a- f(f~}(¥)) = av and f(f (D) +
Y@y = f(FY@) + f(f1(@) = v+ ii. Applying f~! to both sides of both
equations, we have f~(a?) = af ' (¥) and f~1(T+ii) = f~1(D) + (@), so [}
is a linear transformation.

By Corollary 4.66, since f has a left inverse, we have m = n, but since f~!
has a left inverse, we also have n = m, so m = n. O

A matrix that has no full inverse is said to be singular. A matrix that has an
inverse is said to be nonsingular.

Theorem 4.70. If f is a linear transformation and an injection from R" to R™,
then there exists a left inverse g that is a linear transformation.

Proof: Let ¥ be a complement for Image(f) in R”. Define the function g(i0)
from R™ to R" by the following steps:

1. Let i = @i + U, where i is in Image(f) and ¥ is in 7 (this is unique, since
these spaces are complements).

2. Let X be the vector in R” such that f(¥) = # (this exists, since ii is in
Image(f), and is unique, since f is an injection).

3. Let g(i0) = X.

It is then easily shown that g is a left inverse for f and that g is a linear trans-
formation. u

Corollary 4.71. If matrix F is an injection, then F has an left inverse G such
that G-F = I,.

Theorem 4.72. If f is a linear transformation and a surjection from R" to R™,
then there exists a right inverse h that is a linear transformation.

Proof: Let ¥ be a complement for Null(f) in R”. By Theorem 4.67, f is a bijec-
tion between 7 and R, so for any X in R™, there exists a unique v in 7 such
that f(7) = X. Define h(X) = 7. It is easily shown that £ is a right inverse and a
linear transformation. ]

Corollary 4.73. Ifmatrix F is an surjection, then F has an right inverse H such
that F-H = Iy,.
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4.2.8 Systems of Linear Equations

We are now able to characterize the space of solutions to systems of linear
equations with a given matrix F of coefficients.

Theorem 4.74. The system of linear equations F - X = b has a solution only ifI;
is in Image(f).

Proof: Immediate from the meaning of Image(f) and the correspondence be-
tween f and F. O

Theorem 4.75. The system of linear equations F - X = b has a solution for every
b if and only if Rank(F) = m.

Proof: m = Rank(f) = Dim(Image(f)) if and only if Image(f) = R™. (]

Definition 4.76. Let F be an m x n matrix. The row space of F is the span of its
rows, Span(F[1,:],F[2,:],..., F[m,:]); this is a subspace of R". The column space
of F is the span of its columns, Span(F[:, 1], F[;,2],..., F[:, n]); this is a subspace
of R™,

Theorem 4.77. The image of F is the span of its columns: Image(F) = Span(F[:,
1,...,F[;, n).

Proof: Immediate from the fact that F- v =9[1]-F[;,1]1+...+ U[n]-F[;,n]. O
Theorem 4.78. Null(F) is the orthogonal complement of the row space of F.

Proof: Vector ¥ is in Null(F) if and only if F- U = 0. But F- 0 =(F[1,:]* D,...,
F[m,:] « 1), the vector consisting of the dot product of each row with 7, so this
product is 0 only if 7 is orthogonal to each of the rows in F—that is, if 7 is in the
orthogonal complement of the row space of F. O

Note that the previous two theorems come from the two different views of
matrix multiplication mentioned in Section 3.7.

Corollary 4.79. Let R be the row space of matrix F. Then Rank(F) = Dim(Im-
age(F)) = Dim(R) = n— Dim(Null(F)).

Proof: By Theorems 4.78 and 4.42, we have Dim(R) + Dim(Null(F)) = n. By
Corollary 4.68, we have Dim(Image(F)) + Dim(Null(F)) = n. (]

Putting all this together, we can amplify the description of the categories of
matrices given in Section 4.1.6.
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Category |I. Rank(F) = m = n. F is a nonsingular square matrix. The rows of F
and the columns of F are both bases for R”. F is a bijection from R” to
itself. Image(F) = R". Null(F) is the zero space. F has a full inverse. The
system F- X = b has a unique solution for all b.

Category Il. Rank(F) = m < n. The rows of F are linearly independent but do
not span R”. The columns of F span R™ but are linearly dependent. F is
a surjection from R” to R but not an injection. Image(F) = R™. Null(F)
is not the zero space. Dim(Null(F)) = n— m. F has a right inverse. The
system F-X = b has infinitely many solutions for every b. The system of
equations is underconstrained.

Category Ill. Rank(F) = n < m. The columns of F are linearly independent
but do not span R™. The rows of F span R” but are linearly dependent.
F is an injection from R” to R™ but not an surjection. Image(F) # R".
Dlm(Image(F)) = n. Null(F) is the zero space. F has a left inverse. The
system F-X = b does not have solutions for every b; for any value of b, it
has at most one solution. The system of equations is overconstrained.

Category IV. Rank(F) < m, and Rank(F) < n. The rows and the columns are
each linearly dependent; the rows do not span R” and the columns do
not span R™. F is neither an injection nor a surjection. Image(F) # R".
Dim(Image(F)) < min(m, n). Null(F) is not the zero space. Dim(Null(F))
>max(n—m,0). F has neither a left inverse nor a right inverse. The sys-
tem F-% = b does not have solutions for every b.1f F-% = b has a solution
for a particular value of b, then it has infinitely many solutions for that
value.

In principle, if we can compute a right inverse or a full inverse H for F, then
we can solve the system of linear equations FX = b as Hb since FHb = b. If we
can compute a left image G for F, and if the system FX = bhasa solution, then
by applying G to both sides of the equation, we see that X = GFX = Gb Note,
however, that Gbis not necessarily a solution to the equation, since F Gbis not
necessarily equal to b; all we can be sure of is that if a solution exists, then it
must be equal to Gb. However, as we see in Chapter 5, these are not in practice
the best way to solve systems of linear equations, even aside from the fact that
they do not apply to systems in Category IV.

4.3 Vector Spaces in General (Very Optional)

4.3.1 The General Definition of Vector Spaces

In this section we give a much more general definition of a vector space, which
is standard in the mathematical literature, and we illustrate it with a few exam-
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ples. This section is quite optional, and nothing in this section will be needed
in the remainder of this book.

First, we need to define a field. A field is a set on which we can define addi-
tion and multiplication operators that have some of the properties that we are
used to with real numbers.

Definition 4.80. A field consists of a set of elements, one of which is named 0
and another of which is named 1, and two binary functions, named + and =,
satisfying the following axioms.

1. 0#1.

2. Forallaand b,a+b=b+a.

3. Foralla,b,and ¢, (a+b)+c=a+ (b+c).

4. Foralla,a+0=a.

5. For all g, there exists an element b such that a+ b =0.

6. Forallaand b,a-b=>b-a.

7. Forall a,b,and ¢, (a-b)-c=a-(b-c).

8. Foralla,a-1=a.

9. For all a # 0, there exists an element b such thata-b =1.

10. Forall a,b,and ¢, (a+b)-c=(a-c)+(b-c).

The set of real numbers is a field. Other examples of fields include
¢ the rational numbers;

¢ the complex numbers;

« for some fixed integer r, all numbers of the form p + g+/r, where p and g
are rational;

¢ for any prime p, the numbers 0,..., p—1, where + and *, respectively, are
interpreted as addition and multiplication modulo p (all the axioms ex-
cept (9), the existence of a multiplicative inverse, are immediate; proving
(9) takes a little more work);

* the set of all rational polynomials; that is, all fractions f(x)/g(x), where
f(x) and g(x) are polynomials and g(x) # 0.

We can now give the general definition of a vector space.
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Definition 4.81. Let % be afield; the elements of & are called scalars. A vector
space over & consists of a collection of elements, called vectors, one of which
is called 0, and two operations. The first operation is named + and takes two
vectors as arguments. The second operation is named - and takes a scalar and
avector as arguments. The operations satisfy the following axioms:

e For any vectors éi and 7, i + U = U + il.

e For any vectors i, U, and 0, (i + D) + w = il + (U + D).

* For any vector ii, i+ 0 = il.

¢ For any scalars a, b, and vector U, a- (b- V) = (a-b) - U.

¢ For any vector i, 0- 7l = Oand1-i =i

e For any scalars a, b, and vector U, (a+b)-U = (a- ) + (b- V).

e For any scalar a and vectors i, U, a- (il + D) = (a- i) + (a- D).

Here are a few examples of vector spaces (in each of these, the definition of
vector sum and of scalar multiplication are obvious):

For any field & and fixed n, define a vector to be an n-tuple of elements
of #.

For any field % and any set S, define a vector to be a function from S
to Z.

¢ Define a vector f to be a differentiable function from R to R.

Define a vector f to be a function from R to R such that the integral
S22, f2(x) dx exists and is finite.

Particularly note that all discussions of vectors and vector spaces in this
book, except for this section, assume that the vectors are in R”. Therefore, it is
not safe to assume that the theorems in this book apply, or can be modified to
apply, to any other kind of vectors; nor that the definitions are correct or even
meaningful. For example, for vectors over the complex numbers, the definition
of the dot product has to be slightly changed. For continuous functions viewed
as vectors, the definition of the dot product has to be substantially changed.
For vectors over finite fields, the concept of a dot product is not useful.
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Exercises

Exercise 4.1. Which of the following sets of vectors are vector spaces? Justify
your answer in each case.

(@) RZURS.

(b) {(x,2x)|x€R}.

(©) {(k,2k)|k is an integer }.

(d) {{(x,2x+1)|xeR}.

(e {{x,00[xeR U {0, y) |y R}
(f) Span({(1,3,2),(-1,0,3)}).

Exercise 4.2. For each of the following sets of three-dimensional vectors, state
whether or not it is linearly independent. Justify your answers.

(@ «1,2,3)}.

(b) {(1,1,0),¢0,1,1)}.
(0 «1,1,0%,¢2,2,1)}.
(d) {1,1,0),42,2,0}.

(e) {(2.3,4.5,-1.2),(3.7,1.2,4.3),(0,1.4,2.5),(-2.9,-3.1,1.8)}. (Hint: It should
not be necessary to do any calculations involving the components.)

Exercise 4.3. In the example illustrating Theorem 4.19 (Section 4.1.3), verify
that, as claimed,

|ii| = | Coords(#, A)| = V78,

|U| = | Coords(v, A)| = v146, and
i » U = Coords(ui, /) « Coords(v, A) = 69.

Exercise 4.4. Let % = Span({{1,0,0,0), {0,1,0,0)}) and 7 = Span({(1,1,0,0),
(0,0,1,1)}) be subspaces of R*.

(a) GiveabasisforZe7.

(b) Give abasisforzn7.

Exercise 4.5. (Do this exercise by hand, in terms of square roots, if you can; if
not, use MATLAB.) Let % = Span({(1,0,1,0), (1,1,1,1)}) be a subspace of R*.
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(a) Find an orthonormal basis for .
(b) Extend your answer in (a) to an orthonormal basis for R*.

Exercise 4.6. What is the dimension of the space spanned by the following
four vectors? (Do this both by hand and by using MATLAB.)

(1)2)2) _1>) <0) 1)_1)())) (1)4)0) _1>) (2) 1) 1) _1>

Exercise 4.7. Let ¥ = Span({(1,1,0,3);(2,4,-3,1);(7,9,-6,5)}). Using MATLAB,
determine whether the vector (1,3,—-4,0) isin 7.
Problems

Problem 4.1. Prove Theorem 4.18. The statement of this theorem is in Sec-
tion 4.1.2, but you should master the corresponding material in Section 4.2.2
before attempting the proof.

Problem 4.2. Prove Theorem 4.21. The statement of this theorem is in Sec-
tion 4.1.3, but you should master the corresponding material in Section 4.2.4
before attempting the proof.

Problem 4.3. Prove Theorem 4.22, parts a and b. The statement of this theo-
rem is in Section 4.1.4, but you should master the corresponding material in
Sections 4.2.1 and 4.2.3 before attempting the proof.

Problem 4.4. Prove Theorem 4.62. (Hint: Consider Example 4.10.)

Problem 4.5. (Use MATLAB for this problem. Since the answer is not at all
unique, you should submit the code you used to compute it, not just the nu-
meric answer.) Let

02[ = Span({<1)2)3)4)3)2) 1)) <4) 0)2) 0) _2)0) _4>) <3) 1)2) 0) 1) _1)0>})

and
7 = Span({<2) 1)3)4) 0)3) _3>) <413Y 5!4!4Y 1! 1>! <1I 1! 1! 1! 1! 1Y2>})

be subspaces of R”.
(a) Find an orthogonal basis for Z n7'.
(b) Extend your answer in (a) to an orthogonal basis for Z & 7.
(c) Check your answer.

Problem 4.6. Asdiscussed in Problem 3.6, an nx n matrix A is nilpotent if AP =
0 for some power p. Prove that if AP =0 and A hasrank r, then p-(n—r) = n.
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Programming Assignments

Assignment 4.1 (Extracting a basis). Write a MATLAB function FindBasis (4)
that does the following. The input A is an m x n matrix, which we will view
as m n-dimensional vectors. The value returned is a p x n matrix containing a
subset (or all) of the rows of A that form a basis for the subspace spanned by
the rows of A. For instance, if

1 0 1 2
A=12 0 2 41,
1 -1 1 1
then FindBasis (A) should return either
1 0 1 2 or 0 2 4
1 -1 1 1 1 -1 1 1
If
1 0 1 2
A= 0 1 1 1/,
1 -1 0 1

then FindBasis (4) should return a 2 x 4 matrix with any two of the rows of A. If

0 1 2

1 1 1],
1

1
A=10
1 -1 1

then FindBasis (4) should return A.
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Chapter 5

Algorithms

The theory developed in Chapter 4 is very elegant. Unfortunately, it presents
almost no algorithms to compute actual answers to the questions raised. (The
only algorithm in that chapter is Gram-Schmidt orthogonalization.)

This chapter presents two algorithms. The first is Gaussian elimination,
which reduces a matrix to row-echelon form, and allows us to solve a system of
linear equations, to compute the rank of a matrix, and to compute the coordi-
nates of a given vector relative to a given basis. The second is the computation
of the inverse of a matrix.

5.1 Gaussian Elimination: Examples

We begin with two examples of solving systems of simultaneous equations by
using Gaussian elimination.

Example 5.1. Consider the following system of equations:

2x—4y+2z=-8, (5.1)
2x+2y+z=5, (5.2)
X+y—2z=5. (5.3)

Step 1. Subtract Equation (5.1) from Equation (5.2), giving 6y — z = 13.

Step 2. Subtract one half of Equation (5.1) from Equation (5.3), giving 3y —3z
=9. The system is now

2x—4y+2z=-8, (5.4)
6y—z=13, (5.5)
3y-3z=9. (5.6)

115
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Step 3. Subtract one half of Equation (5.5) from Equation (5.6), giving (-5/2)z =
5/2. The system is now

2x—4y+2z=-8, 5.7)
6y—-2z=13, (5.8)
(=5/2)z=5/2, (5.9

which is easily solved. By Equation (5.9), we have z = —1. By substituting
this into Equation (5.8), we get y = 2. Then, by substituting these two
values into Equation (5.7), we get x = 1.

Example 5.2. More complex issues arise in the following system of four equa-
tions in four unknowns:

w+x+y+z=5, (5.10)
w+x+2y+2z=7, (5.11)
X—-y+z=-2, (5.12)
w+2y="71. (5.13)

Step 1. Subtract Equation (5.10) from Equation (5.11), giving y + z = 2.

Step 2. Subtract Equation (5.10) from Equation (5.13), giving —x+y—2z = 2.
Then multiply this by —1, giving x — y + z = —2. The system is now

w+x+y+z=5, (5.14)
y+z=2, (5.15)
X—y+z=-2, (5.16)
X—y+z=-2. (5.17)

Step 3. Switch Equation (5.15) and Equation (5.16) (just a reordering). The sys-

tem is now
w+x+y+z=5, (5.18)
X—y+z=-2, (5.19)
y+z=2, (5.20)
X—y+z=-2. (5.21)

Step 4. Subtract Equation (5.19) from Equation (5.21). The system is now

w+x+y+z=5, (5.22)
X—y+z=-2, (5.23)
y+z=2, (5.24)

0=0.
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This system is now easily solved. Starting with Equation (5.24), we can
assign z to be an arbitrary value, and y to be 2 — z; we will choose z =0,
y = 2. By Equation (5.23), x = 0, and by Equation (5.22), w = 3.

5.2 Gaussian Elimination: Discussion

The procedure used to solve a system S of linear equations in Section 5.1 is
divided into two parts:

* Use the Gaussian elimination algorithm to convert the input system into
an equivalent system R in row echelon form.

¢ Use a simple procedure to find the solutions to R.

Definition 5.3. Two systems of linear equations S1 and S2 are equivalent if
they have the same solution space.

Definition 5.4. An n-dimensional vector 7 has k leading zeros if either
« ¥=0and k = n; or

e ylil=0fori=1,...,kand v[k+1] #0.

Definition 5.5. Let A be an m x n matrix. A is in row echelon form if, for each
row Ali,:], either A[i,:] = 0 or A[i,:] has more leading zeros than A[i —1,:]. A
system of linear equations AX = ¢ is in row echelon form if A is in row echelon
form.

If the system of equations AX = ¢ is in row echelon form, then a solution
can easily be found by using Algorithm 5.1, SolveRowEchelon:

It is easy to see that the value X returned by procedure SolveRowEchelon
satisfies the system of equations. The procedure fills in values of X from bottom
to top. At each iteration of the loop, the procedure deals with the ith equation.
Because the system is in row-echelon form, the variable corresponding to the
first nonzero coefficient is not yet set, and can therefore be set in a way that
satisfies the equation.

The Gaussian elimination procedure to convert a system of equations to
row-echelon form is given in Algorithm 5.2.

We can easily see that the following loop invariant holds after the ith iter-
ation of the main loop of procedure GaussianEliminate. Let j be the index of
the first nonzero component of A[i,:] (thatis, j =L(A,i)). Then,

* Ali, jl=1,

e forallp>iandall g <j, Alp,q] =0.
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function L(A, i)
return the number of leading zeros in A[i,:].

/* SolveRowEchelon(A4, ¢) takes as arguments an m x n matrix A in row
echelon form and an m-dimensional vector €. If the system of equations
AX = € has a solution, then the algorithm returns one such solution. If
the system has no such solution, then the algorithm returns false */

procedure SolveRowEchelon(A4, ¢)
if (there exists i for which A[i,:] = 0 and [i] # 0)
then return false; /* The ith equationis 0- x[1] +...+0-x[n] =c#0*/
else if A =0 then return any n-dimensional vector; /* the system is 0- % = 0 */
else let ¢ be the largest value for which A[f,:] #0
let X be an n-dimensional vector;
for (i — t downto 1)
p — L(A,)+1;
if i=m)theng—nelseq— L(A,i+1);
if(p<q
then for (g downto p +1)
X[j] < an arbitrary value;
endfor
endif
Xlpl—(cli] —Z;’:pﬂ Ali, j1-X [/ Al pl;
endfor
return X;
endif
end SolveRowEchelon

Algorithm 5.1. Solving a system of equations in row-echelon form.

Thus, when the loop exits (either because i = m or all the remaining rows
are now 0), the matrix A will be in row-echelon form.

To show that the input and output sets of equations are equivalent, we note
that the execution of the algorithm consists of a sequence of three different
kinds of operations on the system of equations:

1. Change the order of the equations.
2. Multiply an equation by a nonzero scalar.
3. For some p, i, replace the pair of equations

Ali,:]-% = €lil, (5.25)
pl (5.26)
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/* GaussianEliminate(A, ¢) takes an m x n matrix A and an m-dimensional
vector €. It converts the system of equations AX = ¢ to an equivalent sys-
tem in row-echelon form. */

procedure GaussianEliminate(A, ¢)
for (i —1to m) /* i is the row we are working on */
if (A[p,:] = 0 for all p = i) then exitloop;

q —argmax,- ;| A[p, jlI;

if (g # i) then { swap(A[i,:], Alg,:]);

swap(c[i], ¢ q)); }
¢[i] — C[il/ Ali, j1; /* Divide equation for i by A[i, j]. */
Ali,:] < Ali,:]/ Ali, jl;

to zero out the jth column. */
for(p—i+1tom)
Clpl —Elpl - Alp, jl1-€lil;
Alp,:1— Alp,:1-Alp, j1- Ali,];
endfor
endfor
return A, ¢
end GaussianEliminate

J — the smallest value such that A[p, j] # 0 for some p = i; /* j is the column we are working on. */

/* g is the index of the row p = i with the largest value (in absolute value) in the jth column. */

/* Subtract the appropriate multiple of the ith equation from each of the lower equations

Algorithm 5.2. Gaussian elimination.

by the pair of equations

(i1, (5.27)
[pl+a-clil. (5.28)

(Note that Equation (5.27) is just a repeat of Equation (5.25).)

It is trivial that operations (1) and (2) do not change the solution space.
To show that operation (3) does not change the solution space, note that, if
Equation (5.25) and (5.26) are true for a particular X, then Equation (5.28) can
be derived by multiplying Equation (5.25) by a and adding it to Equation (5.26);
and if Equation (5.27) and Equation (5.28) are true, then Equation (5.26) can be
derived by multiplying Equation (5.27) by —a and adding it to Equation (5.28).
Thus, the two pairs of equations are equivalent.

We can now put the two procedures together into a method for solving sys-
tems of linear equations (Algorithm 5.3).

Based on the discussion above, we can state several theorems.
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/* SolveLinearEqns(A, ¢) takes as arguments an m x n matrix A and an
m-dimensional vector ¢. If the system has a solution, then it returns one
solution; otherwise, it returns false */

procedure SolveLinearEqns(A4, ¢)
return SolveRowEchelon(GaussianEliminate(A4, ¢))

Algorithm 5.3. Solving a system of linear equations.

Theorem 5.6. Let A be an m x n matrix A and let ¢ be an m-dimensional vector.
Let A',¢' be the values returned by GaussianEliminate (A, ¢). Then the system
of equations A'% = ¢/ is in row-echelon form and is equivalent to the system
AX=2C.

Theorem 5.7. Let A be an m x n matrix in row-echelon form and let ¢ be an
m-dimensional vector. If the system of equations AX = ¢ has a solution, then
SolveRowEchelon(A, &) returns some solution to the system. If the system has no
solution, then SolveRowEchelon(A, ¢) returns false.

Theorem 5.8. Let AX = ¢ be a system of linear equations. If this system has
a solution, then SolveLinearEqns(A, ¢) returns a solution. If it does not, then
SolveLinearEqns (A, ¢) returns false.

The procedure SolveLinearEqns can also be used to determine whether a
vector ¢ is in the vector space spanned by a given collection of vectors %8 and
to find the coordinates of ¢ in 8.

Theorem 5.9. Let % = {El, e Ek} be a set of vectors and let ¢ be a vector. Let B
be the matrix whose columns are by, ..., I;k. Then ¢ is in Span(9) if and only if
the system BX = € has a solution; if it does, then any solution X is a coordinate
vector for ¢ in 9.

Proof: Immediate from the fact that BX is the weighted sum of the columns of
B: BX=X[11B[;,1] +... + X[n]B[:, n]. O

5.2.1 Gaussian Elimination on Matrices

The Gaussian elimination procedure can also be used to reduce a matrix A
(rather than a system of equations) to row-echelon form; one can either delete
the references to the constant vector ¢ in Algorithm 5.2 or, more simply, pass an
arbitrary value for ¢ and ignore the value returned. For this purpose, we treat
the procedure GaussianEliminate(A) as a function of one argument returning
one value. The following theorems then follow directly.
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Theorem 5.10. Let A be an m x n matrix, and let A’ = GaussianEliminate (A).
Then A’ is in row-echelon form and the row span of A’ is equal to the row span
of A.

Proof: The proofis exactly analogous to the proof of Theorem 5.6. In particular,
the proof that A’ has the same row span as A works in exactly the same way as
the proof that the system A'% = ¢ is equivalent to the system AX = . (]

Theorem 5.11. If matrix A is in row-echelon form, then the nonzero rows of A
are linearly independent.

Proof: Let Ali,:] be a nonzero row, and let g =L(A, i)+1 be the position of the
first nonzero value in A[i,:]. Since A[i,q] =1 and A[p, q] =0forall g > i, clearly

Ali,:] is not a linear sum of the vectors A[i + 1,:],..., A[m,:]. Applying Corol-
lary 4.31 to the nonzero rows in backward order, it follows that the rows are
linearly independent. ]

Corollary 5.12. Let A be any matrix. Then the nonzero rows of GaussianElim -
inate(A) are a basis for the row span of A, and Rank(A) is equal to the number of
nonzero rows of GaussianEliminate (A).

Proof: Immediate from Theorems 5.10 and 5.11, together with the definitions
of basis and rank. O

5.2.2  Maximum Element Row Interchange

There is one aspect of the Gaussian elimination algorithm that we have not yet
explained. The second step of the main for loop finds the row g that maximizes
|Alg,ill, and the third step swaps that with the ith row. Now, it is clear that to
achieve row echelon form, if A[i, i] = 0, then we have to swap it with some row
q, where A[q,i] # 0. But why particularly the row with the largest absolute
value?

In fact, if computers could do exact real-valued arithmetic—which, by the
way, is the idealization used in all the above theorems—then it wouldn’t matter
which row we chose; any row g where Alg, i] # 0 would work just as well. But
computers do not (normally) do exact real computation; they do floating-point
arithmetic, which is subject to roundoff error. The point of the “maximum el-
ement row interchange” operation is that it reduces the error due to roundoff.
We discuss the general issue of roundoff a little further in Section 5.6; for a de-
tailed discussion of the maximum element row interchange rule, see (Trefethen
and Bau, 1997).
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n | 2 | 3 | 4 | 5 | 6 | 10| 20
Successrate | 59% | 15% | 7.6% | 5.2% | 3.7% | 1.9% | 0.48%

Table 5.1. Frequency with which row-echelon reduction of a random singular matrix
produces a final row equal to zero.

5.2.3 Testing on Zero

In a number of places in the above algorithms, there is a test whether a value
is equal to zero. For instance, SolveRowEchelon includes the instruction “if
(there exists i for which A[i,:] = 0 and &[i] # 0)”; GaussianEliminate contains
“if (A[p,:] =0 for all p = i) then exitloop;” and subroutine L for SolveRowEch-
elon states, “return the number of leading zeroes.” Some numerical analysts
may object very strongly to these tests, saying that in actual computation you
never test on zero, since in actual computation you never get zeroes because of
roundoff errors and noise. (Some programming languages do not allow testing
for equality between floating-point numbers, for that very reason.) The think-
ing is that Theorems 5.6-5.12 are therefore meaningless; they refer to condi-
tions that are never met.

Thus, we should simply carry out the computations without testing on zero;
if we divide by zero at some stage, we will get Inf or Nall, but that is OK in MAT-
LAB or any other system that meets the IEEE floating-point standard (Overton,
2001). When we have computed the final answer, then we evaluate it; if it con-
tains either a very large value or Inf or NaN, then it may well not be meaningful.

The following experiment illustrates the difficulty in obtaining true zero
with floating-point arithmetic. We generate a random 7 x (n — 1) matrix A and
arandom n—1 dimensional column vector . We set the nth column of A to be
A- 7. Now we have a random matrix! of rank 7 — 1. We use the built-in MATLAB
function 1u to reduce A to row-echelon form, and test whether the last row is
actually equal to the zero vector. Table 5.1 shows the success rate of this test
for each value of n. By contrast, the MATLAB function rank (4), which uses a
nonzero threshhold, always got the correct answer of 7 — 1 in the experiments
I ran, including 50 x 50 and 100 x 100 matrices.

Nonetheless, these tests are included here for two reasons:

1. They don't do any harm. If they do not succeed, then we haven’t lost any-
thing by carrying them out. The only case for which they arguably give
a wrong result is when the true value is very small but due to roundoff is
computed as 0. In this case, including the test causes the algorithm to re-
port that the matrix is singular, whereas if the test is eliminated, the algo-
rithm returns an answer with some values being Inf or NaN. But this case
is extremely rare, and the added value given by this answer is quite small.

1Other ways of generating random singular matrices will give different distributions. There is
no unique, obviously proper, notion of a “random singular matrix.”
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2. As we discuss in Section 5.6, viewing these algorithms in terms of what
can actually be accomplished with floating-point operations is only one
of several viewpoints one might take. If we consider the algorithm from
the standpoint of pure mathematics or exact computation, then these
tests and Theorems 5.6-5.12 are valid.

5.3 Computing a Matrix Inverse

We now turn to the problem of inverting an 7 x n nonsingular matrix. (We
omit the problem of finding a left or right inverse of a nonsquare matrix; the
techniques are analogous.)

The algorithm for computing the inverse modifies the Gaussian elimination
algorithm in two ways. First, we continue carrying out the row transformation
operations to reduce the matrix row-echelon form to the identity. Second, at
the same time that we are carrying out operations to reduce the input matrix
A to the identity, we carry out the same operations on a matrix C that starts as
the identity. When we have carried out enough operations to reduce A to the
identity, then the final state of Cis A™!.

The explanation of the modified version of the Gaussian elimination algo-
rithm involves a few steps. First, we observe that, if R is in row-echelon form,
we can reduce it to the identity by repeatedly subtracting R[i, j] - R[j,:] from
R[i,:] for all j > i. Since R[j, j] =1 for all j, this operation sets R[i, j] to be 0.
When we are done with all these, we have

e for i > j, R[i, j] was set to 0 in the initial translation of A to the row-
echelon form R,

e for i = j, R[i, j] was set to 1 in the initial translation of A to the row-
echelon form R,

e for i < j, R[i, j] has been set to 0 on this second pass of operations.

So R is now the identity (see Example 5.13).

Second, we observe that each of the operations that procedure Gaussian-
Eliminate(A) carries out corresponds to multiplication on the left by a specific
matrix, as seen in the three cases presented here.

1. Switching rows p and g of matrix A corresponds to forming the product
SP4 A, where SP9 is the matrix defined by

1 ifi=j,i#pi#q,
. 1 ifi=p,j=gq,
p.q _
STIIEY 0 iti=gj=p,
0 otherwise.
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For example, with n =5, p =1, g =4, we have

0 00 10
01000
s“=l0 0 1 0 0
1 0000
0 00 0 1

2. Multiplying row p by a corresponds to forming the product 7% A, where
TP% is the matrix defined by
1 ifi=j,i#p,
TP, jl1={ a ifi=j=p,
0 otherwise.

For example, with p =2,a = 3.7, we have

1 0 0 0 0
0 37 0 0 0
>%7=10 0 1 0 0
0 0 01 0
0 0 0 0 1

3. Adding a times row p to row g corresponds to forming the product P9 A,
where PP%% is the matrix defined by
1 ifi=j,
PPOYG,j1=}X a ifi=q,j=p,
0 otherwise.

For example, with p =2, q =5, a = —4.6, we have

1 0 000
0 1 0 0 0
p>46- o 0 1 0 0
0 0 0 1 0
0 —-46 0 0 1

Therefore, the sequence of operations used to transform matrix A into its
row-echelon form R and to transform R into I corresponds to a sequence of
matrix multiplications R = M;- M;_1-...- My - M A, where M is the matrix cor-
responding to the first operation performed by the Gaussian elimination algo-
rithm, M, is the second operation, and so on. Therefore if we form the product
C=M;-M;_;...M,- M then that is a matrix such that CA= 1.
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But (third) we don’t have to actually generate these transformation matrices
atall. SinceC=C-I=M;-M;_;-...- M- M - I, where I is the identity, we can
get the effect of all these matrix multiplication just by initializing matrix C to be
the identity, and then performing the same sequence of operations on C that
we are performing on A. Thus, we are implicitly computing the above matrix
product. The resultant modified algorithm is shown in Algorithm 5.4.

(This argument may seem strange; we first replace the operations by the
matrices S, T, and P, and then go back and replace the matrices by the same
operations we started with. What is the point of that? The point is we need to
show that what the sequence of operations in the algorithm does overall in con-
verting matrix A to row-echelon form R consists of multiplying A on the left by
amatrix C. To do this, we show that each operation corresponds to multiplica-
tion by a matrix, and therefore the sequence of operations, whether applied to
A or applied to I", correspond to multiplication by the product of these. What
the matrices corresponding to the individual operations actually are ends up
not mattering.)

Algorithm 5.4 is used for computing the inverse. Note that if in the course
of the initial conversion to row-echelon form, the leading zeroes in one row
increase from the previous row by more than 1, then the algorithm can imme-
diately return with fail, signaling that the matrix is singular.

Example 5.13. We illustrate Algorithm 5.4 by computing the inverse of the
matrix
2 01
A= -1 1 1
0 1 2

We first convert to row-echelon form.

2 0 1 1 0 O
B=| -1 1 1|, C=101 0};
0o 1 2 0 0 1
B[1,:]=(1/2)-B[1,], Cl1,:1=(1/2)-C[1,:];
1 0 1/2 1/2 0 O
B=|-11 1 [, c=| 0 1 0 |[;
0 1 0 0 1
B[2,:] = B[2,:]+ B[1,:], C[2,:] =CI[2,:]+CI[1,:];
1/2 1/2

1 0 0 0
B={0 1 3/2 |, C=(12 1 0 [;
01 2 0 0 1
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/* Inverse(A) takes an n x n matrix A and returns A~1. */

procedure Inverse(A)
B = A; C=1"; /* Initialize C to be the identity.
At each stage of the algorithm, CB = A. */
for (i—1ton)
q —argmax,-;|Blq, ill;
/* q is the index of the row p from i with the largest value (in absolute value) in the ith column. */
if B[g,i] = 0 then return fail; /* A is singular */
if (g # i) then { swap(Bl[i,:], Blq,:]);
swap(Cli,:],Clg,:D; }
Cli,:] < Cli,:]/Bli,i]; /* Divide row i in both matrices by B[i, i]. */
Bli,:] — Bli,:]/Bli, il;
/* In both matrices, subtract the appropriate multiple of the ith row
from each of the lower rows to zero out the ith column of B. */
for (j—i+1ton)
Clj,:1<=Clj,:1-Blj,il-Cli,:];
Blj,:1 <= Blj,:1-Blj,il-Bli,];
endfor
endfor
/* In both matrices, subtract the appropriate multiple of the ith row
from each of the upper rows to zero out the ith column of B. */
for (i —2ton)
for(j—1toi-1)
Clj,:1—=Clj,:1-Blj,il-Cli,:;
Blj,:1—Blj,:1-Blj,il-Bli,:];
endfor
endfor
return C;
end Inverse.

Algorithm 5.4. Computing the matrix inverse.

B[3,:] = B[3,:] - B[2,1], CiB,:]=CB,:-Cl2,;
1 0 1/2 /72 0 O
B=]0 1 3/2 |, C= 1/2 1 0 |;
0 0 1/2 -1/2 -1 1
B[3,:] = BI[3,:]-2, Cl3,:1=CI3,:]-2
1 0 1/2 172 0 0
B=]0 1 3/2 |, c=(12 1 0
0 0 2
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We now continue on, converting B to the identity. We omit the steps where
the factor is 0.

BI[1,:] = B[1,:] - (1/2)B[3,:], Cl1,:]=C1,:1 - (1/2)CI3,:1;
1 0 O 1 1 -1
B=(0 1 3/2 |, cC=1]12 1 0 |;
0 0 1 -1 -2 2
B[2,:] = BI2,:] - (3/2)BI[3,1], Cl2,:]=Ci2,:] - 3/2)CI3,:1;
1 0 0 1 1 -1
B=]10 1 0|, C= 2 4 -3
0 0 1 -1 -2 2

We can now return

1 1 -1
Al=C= 4 -3
-1 -2 2

5.4 Inverse and Systems of Equations in MATLAB

The MATLAB utility for computing the inverse of matrix M could not be much
simpler; just write inv (M) or M~-1. The MATLAB utility for computing the solu-
tion to the equations MX = ¢ could not be any simpler; just write M\C. (Note that
¢ here must be a column vector). Of course, any half-decent programming en-
vironment provides a library function for solving systems of linear equations;?
but it is not every language in which it is a single character.

The value returned by M\C depends on the characteristics of the system of
equations. Let M be an m x n matrix.

Case 1. If m = n = Rank(M) (i.e., M is a nonsingular square matrix), then M\C
returns the unique solution to the system of equations MX = C.

Case 2. If m < n and Rank(M) = m, then M\C returns a solution to the equation
MX = C with the maximal number of zeroes.

Case 3. If m > n and Rank(M) = n, and the system MX = C has a solution, then
M\C returns that solution.

2Not all libraries have a very good function.
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Case 4. If m > n and Rank(M) = n, and the system MX = C does not have a solu-

tion, then M\C returns the least squares best fit to the equations; that is, it
returns the value of X such that |M - X — C| is minimal. This is discussed
further in Section 14.5.

For example, if

1 1
M=]2 1 |andC=| 1 |,
1 2 1
then in MATLAB, X=M\C returns
0.3636
X_[ 0.3636 ]

Then norm(M*X-C) has the value 0.3015; this is smaller for this value of X
than for any other value.

Case 5. If Rank(M) < min(m, n) and the system has no solution, then MATLAB

will issue a warning and return an answer full of Nalls and Infs.

Case 6. If Rank(M) < min(m, n) and the system has a solution, then the result

of M\C is difficult to predict. It may return an answer with the warning
“Rank deficient matrix,” or it may return an answer full of NaNs and Infs
with the warning “Matrix is singular.”

But why are underdetermined systems of equations treated differently in
Case 2 and Case 6?2 As the following examples of each of the cases demonstrate,
if we give MATLAB the equation “x+ y = 2,” it happily returns the answer x =
2,y =0; but if we give it the system of equations

xX+y=2,
x+y=2,

it huffily tells us that the matrix is singular, and gives the answer x = Nal,
y = NaN. The reason for this difference is that the single equation is well-
conditioned—a small change in the constant or coefficients gives a correspond-
ingly small change in the answer—whereas the system of two equations is ill-
conditioned—a small change in the coefficients or constant may make the so-
lution drastically different or may even make the system inconsistent. This is
discussed further in Section 5.5.

The MATLAB function 1u (M) returns a pair of matrices [L, U]. U is the row-
echelon reduction of M. L is the matrix corresponding to the product of the
operations used in reducing M to U. Thus, L- U = M. The pair [L, U] is known
as the LU factorization of M. We use matrix A from Example 5.4 as our matrix,
for illustration.
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>> m=[2,0,1; -1,1,1; 0,1,2]

>> m

m =
2 0 1
-1 1 1
0 1 2

ans =
1 1 -1
2 4 -3
-1 -2 2

>> m~-1

ans =
1 1 -1
2 4 -3
-1 -2 2

>> ¢=[2;5;7]
c =

2

5

7

>> m\c
ans =
0
3
2

% Cases of m\c:
% Case 1: Square, nonsingular . m=n=Rank (M)

>> [1,2;2,1]1\[4;5]
ans =

2

1

% Case 2: m=Rank(M) < n.

>> [1,1,1]\[3]
ans =

3

0

0
>> [1,1,1;1,2,3]1\[3;6]
ans =

1.5000

0
1.5000
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% Case 3: Rank(M)=n < m: System has a solution.

>> [1,1;2,1;1,2]1\[2;3;3]
ans =

1.0000

1.0000

% Case 4: Rank(M)=n < m: System has no solution, so the best least squares
) fit is returned.

>> [1,1;2,1;1,2]1\[1;1;1]
ans =

0.3636

0.3636

>> [1,1;1,1;2,1]1\[1;2;2]
ans =

0.5000

1.0000

% Case 5: Rank(M) < min(m,n), and no solution exists.
% MATLAB gives a warning and returns an answer full of NaN’s and Inf’s

>> [1,1;1,11\[1;2]
Warning: Matrix is singular to working precision.
ans =
-Inf
Inf

% Case 6: Rank(M) < min(m,n), and a solution exists.
% MATLAB will certainly give a warning; it may or may not find a solution.

>> [1,1;1,11\[2;2]
Warning: Matrix is singular to working precision.
ans =

NaN

NaN

>> [1,1,151,1,1]1\[1;1]

Warning: Rank deficient, rank = 1, tol = 9.4206e-16.
ans =
1.0000
0
0

% LU decomposition. The examples are the coefficient matrices from
% the systems at the start of the chapter. Note that in both cases the
% value of U is the row-echelon decomposition that we computed above.

>> a=[2,-4,2;2,2,1;1,1,-2]
a =
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>> [1l,ul=1u(a)

1 =
1.0000 0 0
1.0000 1.0000 0
0.5000 0.5000 1.0000

u =
2.0000 -4.0000 2.0000

0 6.0000 -1.0000
0 0 -2.5000
>> 1x*xu

ans =

2 -4 2
2 2 1
1 1 -2

>> b=[1,1,1,1;1,1,2,2;0,1,-1,1;1,0,2,0]

b =
1 1 1 1
1 1 2 2
0 1 -1 1
1 0 2 0

>> [1,u] = 1lu(b)

1 =
1 0 0 0
1 0 1 0
0 1 0 0
1 -1 0 1

u =
1 1 1 1
0 1 -1 1
0 0 1 1
0 0 0 0

>> 1xu

ans =
1 1 1 1
1 1 2 2
0 1 -1 1
1 0 2 0

5.5 1ll-Conditioned Matrices

The Gaussian elimination algorithm, although unpleasant to work through by
hand for any but very small systems, is easily understood, easily programmed,
and generally quite effective and efficient. It is one of the most frequently ex-
ecuted algorithms on computers. (The algorithm for computing the inverse is
substantially less important in practice.) The Gaussian elimination algorithm
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has been known in Western mathematics since Gauss published it in 1809 and
in Chinese mathematics since about A.D. 200 or earlier. However, in rare cases,
it gets into serious trouble.

Without going deeply into this theory, we can illustrate the problem with a
(contrived) example. Consider the following system of equations:

1+109x+y=1, (5.29)
x+(1-10%y=1. (5.30)

It is easily verified that the solution is x = 109, y = —10°. Now let’s see what
MATLAB does.

>> format long
>> d=10"-9
d =
1.0000e-09
>> a=[1+d, 1; 1, 1-4d]
a =
1.000000001000000 1.000000000000000
1.000000000000000 0.999999999000000
>> a\[1;1]
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.775558e-17.
ans =
1.0e+06 =*
-9.007198990992798
9.007199999999997
>>% Note that, as warned, the answer is nowhere near right.

Why is MATLAB freaking out here? The answer appears when we apply
Gaussian elimination. Reducing the system to row echelon form involves two
steps, with d = 1079:

Step 1. Divide Equation (5.29) by 1 + d, giving

X+ LIV
1+d) " 1+a’
x+(1-d)y=1. (5.32)

(5.31)

Step 2. Subtract Equation (5.31) from Equation (5.32), giving the system of equa-
tions

X+ —y=—— (5.33)

(l—d——)yzl——. (5.34)
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Now, note that 1 — d = 0.999999999 (exactly) but that

vk 1—d+d?+d®—...=0.999999999000000000999. ...

Therefore, if we compute the coefficient of y in Equation (5.34) in the natural
way, by first computing the fraction ﬁ and then subtracting this from 1 - d,
the calculation must be carried to 18 digits = 60 bits of precision, in order to
detect that the coefficient is not actually 0. This is more than MATLAB ordinarily
uses.

Another, related problem is that the solution of the system of equations is
extremely sensitive to the exact value of the constant terms (and equally sen-
sitive to the exact values of the coefficients, although we do not illustrate that
here.) Suppose that the constant term in Equation (5.29) is changed by 1 part
in a billion, from 1 to 1+ 1079. Then the solution is obviously x = 1,y = 0.
So changing one constant term from 1 to 1.000000001 changes the answer by
1,000,000,000!

In larger matrices, this sensitivity can turn up even with quite innocuous-
looking coefficients:

>> m=[1:7,9; 2:8,10; 3:8,10:11; 4:8,10:12; 5:8,10:13; 6:8,10:14;
8,10:16]

m =
1 2 3 4 5 6 7 9
2 3 4 5 6 7 8 10
3 4 5 6 7 8 10 11
4 5 6 7 8 10 11 12
5 6 7 8 10 11 12 13
6 7 8 10 11 12 13 14
7 8 10 11 12 13 14 15
8 10 11 12 13 14 15 16

>> b=1+(m/1000)

b =
1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.009
1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.010
1.003 1.004 1.005 1.006 1.007 1.008 1.010 1.011
1.004 1.005 1.006 1.007 1.008 1.010 1.011 1.012
1.005 1.006 1.007 1.008 1.010 1.011 1.012 1.013
1.006 1.007 1.008 1.010 1.011 1.012 1.013 1.014
1.007 1.008 1.010 1.011 1.012 1.013 1.014 1.015
1.008 1.010 1.011 1.012 1.013 1.014 1.015 1.016

>> (b\[1;151;1;1;1;1517)
ans =
-125.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 125.0000

>> % Now we change one constant by 1 part in 1000 and ask the same question.

7:8,10:15
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>> (b\[0.999;1;1;1;1;1;1;1])°

ans =
4.6250 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 2.3750

Changing the first constant term from 1 to 0.999 changes the last compo-
nent of the solution from 125 to 2.375. (We can get even more extreme results
than this with the same matrix but different constant vectors. See Chapter 7,
Exercise 7.1(b)).

Systems of equations of this kind, in which the answers are extremely sen-
sitive to the exact values of the constant terms and the coefficients, and there-
fore calculations must be carried out to extreme precision, are said to be ill-
conditioned. In principle, ill-conditioned systems of equations should be rare;
a system of equations constructed by choosing coefficients at random have a
very small probability of being ill-conditioned. Unfortunately, though, among
problems that actually arise in practice, ill-conditioned problems are quite com-
mon.

Dealing with ill-conditioned systems of equations raises two different kinds
of issues. The first is an algorithmic problem; it is important to structure an al-
gorithm so as to avoid the buildup of roundoff error. Ill-conditioning greatly
magnifies the inaccuracy due to roundoff error; in dealing with ill-conditioned
matrices, it is therefore especially important to use numerically stable algo-
rithms, which hold the roundoff error to a minimum. This is why the max-
imum element row interchange rule in row-echelon reduction is important
(Section 5.2.2).

The second issue is a modeling problem. Suppose we are trying to solve a
problem, and we formulate it as a system of linear equations. And suppose it
turns out that we get Equations (5.29) and (5.30). Then, unless we are quite sure
that the equations, the coefficients, and the constant terms are all accurate to
within a factor of better than one part in a billion, we may as well throw the
equations in the garbage. Even if we carry out the computation exactly and
get an answer of x = 109, y=- 10°, we have no reason to suppose that the true
values arenot x =1,y =0.

There is, of course, no algorithmic fix to the latter problem; there is no way
to get answers that are fundamentally better than your data. Nonetheless, it is
important to know that when dealing with a ill-conditioned problem:

¢ Know not to trust the answer.

e Itis probably a good idea to look for some alternative way to formulate
the problem.

We discuss this issue further in Section 7.7. Trefethen and Bau (1997) offer
an extensive discussion.
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5.6 Computational Complexity

We conclude the chapter with a brief discussion of the computational complex-
ity of the algorithms and problems discussed.® At the outset, there is a concep-
tual issue to address. There are actually three different ways to conceptualize
numerical computations (e.g., solving systems of linear equations), each with
its own drawbacks.

5.6.1 Viewpoints on Numerical Computation

In the first viewpoint, that of pure mathematics, the computation is idealized as
exact arithmetic over real numbers. This is, in fact, the view taken throughout
this book, and it is the usual starting point, although not the ending point, for
any discussion of numerical algorithms. (If an algorithm doesn’t make sense
in this idealized view, it is unlikely to make sense in any other view.) Compu-
tation time is viewed as the number of arithmetic operations plus the number
of other algorithmic operations, but most computations of this kind are in any
case dominated by the arithmetic operations. Theorems 5.6-5.11 and Corol-
lary 5.12 are all true in this viewpoint, and the running times discussed in Sec-
tion 5.6.2 are all valid. The problem with this viewpoint is that the machine
it runs on is imaginary; no actual computer can carry out arithmetic on real
values to arbitrary precision in unit time per operation.

The second viewpoint, that of computation theory, is that the computation
uses exact arithmetic over a class of numbers that is exactly representable in a
finite data structure. For solving linear equations, the natural class of numbers
would be the rational numbers; given any problem posed in terms of rational
numbers, the exact answer and all the intermediate values calculated are also
rational numbers. For more complex problems, such as those involving dis-
tance, it would be necessary to use an exact representation of algebraic num-
bers. Theorems 5.6-5.11 and Corollary 5.12 are valid in this viewpoint as well.
Computation time is viewed in terms of bit operations; the time to add two in-
tegers is linear in the number of bits, and the time to multiply two integers is
slightly more than linear.

However, for algorithms such as Gaussian elimination, exact arithmetic on
rational numbers is entirely impractical because the number of bits required
to maintain exactness increases exponentially with the size of the matrix. Like-
wise, then, time and space requirements increase exponentially. More sophis-
ticated algorithms are known that are polynomial in the number of bits (Yap
2000), but these involve complex techniques in algorithmic design and analysis
and are in any case impractical and not used. The computation time require-
ments given in Section 5.6.2 are not valid on this viewpoint.

3In this section, we assume familiarity with the basic concepts of algorithmic analysis.
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Pure Exact Floating
math | computation point
Realizable x vV N
Exact answers Vv Vv x
Reasonable
computation time Vv x Vv

Table 5.2. Viewpoints on numerical computation.

The third viewpoint is that of numerical analysis. Here the computation is
viewed as involving floating point operation using some particular precision.
Computation time is given in terms of number of machine instructions; one
floating point operation is one machine instruction. This is, in fact, what is
always actually done in useful numerical programs. The time requirements
given below are valid in this viewpoint.

However, floating point operations inevitably involve roundoff error, so The-
orems 5.6-5.11 and Corollary 5.12 are no longer exactly true. Indeed, the whole
standard notion of program correctness—that the answer obtained is always
the exact answer to the question—goes out the window in this viewpoint. It is
replaced by the notion of numerical stability. A floating-point algorithm A(x) is
a numerically stable algorithm for the mathematical function f(x) if, for every
x, there exists some X such that X is close to x (as compared to the precision of
the floating-point system) and A(X) is close to f(X). In an implementation with
roundoff, this is the best that one can hope for. The Gaussian elimination algo-
rithm is numerically stable in all but a small number of pathological cases; with
further improvements, it can be made numerically stable in all cases. Table 5.2
summarizes the pros and cons of the three viewpoints.

5.6.2  Running Times

We proceed now to the discussion of running times; these are valid in either
the pure mathematical viewpoint or the floating-point viewpoint. If 7 and U
are n-dimensional vectors and a is a scalar, then computing aii, ¥ + ii, and
U e 7l obviously requires time O(n).

For a sparse vector 7, we can write NZ(?) for the number of nonzero com-
ponents of ¥. Let ii and 7 be sparse vectors and a be a scalar. Then, using
the obvious algorithms, computing aii requires time N Z(#i). Computing U + i
and ¥ e 7l requires time NZ(7) + NZ(ii). As discussed in Section 2.7, the time
requirement of indexing (that is, retrieving or setting 7/[i]) depends on the de-
tails of the implementation; if a hash table is used, it requires expected constant
time.

Multiplying an m x n matrix A times an n-dimensional vector U requires
time O(mn). If Aand ¥ are sparse, then computing Av requires time O(N Z(A)+
NZ(D)).
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Let A be an m x p matrix and let B be a p x n matrix. Computing the
product A- B in the obvious way—that is, computing the dot product of each
row of A with each column of B—involves computing mn dot products of p-
dimensional vectors; thus, time O(mpn). If m = p = n (multiplying two square
matrices) the time requirement* is O(n?).

It should also be noted that the multiplication algorithm is highly paralleliz-
able; in the extreme case, if you have nd parallel processors, you can compute
the product of two n x n matrices in time O(log n).

Surprisingly, methods are actually known that are, in principle, faster for
large matrices. As of the time of this writing, the fastest known algorithm (see
Coppersmith & Winograd, 1990) for multiplying two n x n matrices requires
time O(n?37%). However, this algorithm and other algorithms that run in time
faster than O(n®) are not used for two reasons. First, the constant factor asso-
ciated with them is so large that they would pay off over the simple algorithm
only when the matrices are too large to be effectively multiplied in any case.
Second, they are numerically unstable.

A simple analysis of the algorithms presented in this chapter shows that,
for n equations in 7 variables, SolveRowEchelon runs in time O(n?), and Gaus-
sianEliminate, SolveLinearEqns, and Inverse run in time O(n3). One can prove
that, in principle, the faster of these matrix multiplication algorithms can be
used to construct algorithms for solving linear equations and for inverting a
matrix that runs in time O(n?37%); these are not used in practice for the same
reasons that the fast matrix multiplication algorithms are not used.

Exercises

Exercise 5.1. Solve the following systems of linear equations, both by hand
and in MATLAB. (Note: In solving systems of equations by hand, there is no
reason to use the “maximum element row interchange” step. If anything, one
should swap with the row that has the minimalnonzero value in the column, in
order to keep the denominators of the fractions involved as small as possible.)

(a) X+y+z=0,
2x-y-z=2,
-X+y—z=2.

4Note that there is a discrepancy here from the usual way of describing algorithmic time re-
quirements. Usually, time requirements are described as a function of the size of the input to the
algorithm; however, the size of the input in this problem is O(nz). If g is the size of the input, then
the time requirement of this algorithm is O(q3/ 2),
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(b) 2x+y+2z=3,
X—y+3z=-2,
x+3y—-3z=2.

(© w+x+y-z=4,
2w+2x-y=4,

w—x—-y—-z=-2,
X+y+z=4.

Exercise 5.2. The space of solutions to an underconstrained system of equa-
tions MX = C can be characterized in an expression of the form

(D+a1b1 +...+ apbyl,

where 7 is one solution to the system; El,...,Ek are a basis for Null(M); and
ay,..., ay are scalar variables. For example, the space of solutions to the single
equation x + y + z = 3 can be characterized as

(L,LL,)+a-(1,-1,00+b-(1,0,—-1).

By hand and by using MATLAB, characterize the space of solutions to the
following systems of linear equations.

(a) x+y—-z=1,
X+y+z=3.
(b) w+x+y+z=5,

2w—x+y—-z=0.

(c) w+x+y+z=4,
2w—-x+y-z=0,
w—x—-2y+z=-4.

Programming Assignments

Assignment 5.1 (Temperature distribution). In Section 3.6.1, Application 3.8,
we discuss finding steady-state temperature distribution inside an object by
taking a collection of evenly spaced points, and asserting that the temperature
at each point is the average of the temperature at the nearby points. It is as-
sumed that the temperature at the border is fixed by some external constraint.
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(a) Write a MATLAB function TempDist (TL,TR,TT,TB,N) that sets up and

(b)

solves this system of equations. Assume that TL is the temperature on
the left side, TR is the temperature on the right side, TT is the tempera-
ture on top, and TB is the temperature on the bottom. The function uses
an N x N array of internal points. The function should return a N x N
array T, where T[I, ] is the temperature at point I, J (I measured from
the left, ] measured from the top).

For example, for the particular example presented in Application 3.8,
the function call would be TempDist (20,20,20,100,3), and the value re-
turned would be

2571 27.86 25.71

35.00 40.00 35.00

54.29 62.14 54.29

Note that the system of equations has N? equations in N? unknowns,
and thus has a matrix of N* coefficients. Do not confuse the N x N array
of temperatures with the N? x N? array of coefficients.

Use MATLAB’s plotting routines to plot the temperature versus height over
the two-dimensional region.

Assignment 5.2 (Curve interpolation). This assignment refers to Application 3.9
in Section 3.6.1.

(@

Using the technique described in the application, write a function Poly-
Interpolate (M). The input parameter M is a 2 x n matrix, where each
column holds the x- and y-coordinates of one point. You may assume
that no two points have the same x-coordinate. The function should
return the coefficients a;_1,...,ap of the (n —1)-degree polynomial y =
an-1xX""1+...+ a1 x1 + ag. The function should also generate a plot of the
curve with the input points, as shown in Figure 3.4.

For instance, for the example in Application 3.9, the function call Poly-
Interpolate([-3,-1,0,2,4; 1,0,5,0,1]) should return the vector
[0.2167, -0.4333, -2.7167, 2.9333, 5.0000] and generate the solid
curve of Figure 3.4.

(b) Write a function SineInterpolate (M) that interpolates a curve that is the

sum of sinusoidal curves between input points. As in part (a), the input
parameter M is a 2x n, where each column holds the x- and y-coordinates
of one point. You may assume that 7 is an even number. The function
should return the vector of coefficients ag, ay, ..., ax, by, ..., bi_1 such that
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the function

y(x) = ap+ a1 sin(wx/2) + az sin(wx/4) +...
+ aysin(wx/2k)+ by cos(mx/2)
+ bycos(mx/4) +...+ by_qcos(mx/2(k—1))

interpolates the points in M. It should also plot the curve y(x).

For instance, for the example in Application 3.9, the function call Sine-
Interpolate([-3,-1,0,2,4; 1,0,5,0,1]1) should return the vector
[0.0217, 1.6547, 0.9566, 2.3116, 2.6667] and generate the dashed
curve of Figure 3.4.

Assignment 5.3 (Circuit analysis). Write a MATLAB program AnalyzeCircuit (C,
R,V) that carries out circuit analysis as described in Section 3.6.1, Applica-
tion 3.7. The program should operate as follows. Let n be the number of nodes
in the circuit, let b be the number of connections, and let g = n+ b. Assign
indices 1,...,n to the nodes, where node 1 is ground (0 volts). Assign indices
1,...,b. Then the arguments are as follows:

e Cisa2x barray. C[1,I] and C[2,I] are the indices of the node at the tail
and the head of branch I.

¢ Risarowvector oflength b, where R[I] is the resistance of a resistor along
branch I, and 0 if there is no resistor.

¢ Vis arow vector of length b, where V[I] is a voltage source along branch
I, and 0 if there is no voltage source.

You may assume that for every index I either R[I] or V[I] is nonzero, but not
both.

In the example in Figure 3.2, with nodes A, B,C associated with indices
1,2,3, respectively, and the branches numbered as in the diagram, the input
parameters are

1 2 2 3
€= [ 21 31

, R=[0 100 75 25], V=[100 0 0 O ].

The program returns a vector X of dimension g, where
e fori=1,...,n, X[i] is the voltage at node i,
e fori=1,...,q, X[n+i] is the current through branch i.

Set up a (g + 1) x g matrix M and a (g + 1)-dimensional column vector ¢
such that the system of linear equations MX = ¢ corresponds to the following
constraints:
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(a) Ground. The voltage at the ground is equal to 0.

(b) Voltage source. If S[I, J] # 0, then the voltage at ] minus the voltage at I is
equal S[I, J].

(c) Resistor. If R[I, ]] # 0, then the voltage at I minus the voltage at J is equal
to R[I, ]J] times the current from I to J.

(d) Kirchoff’s current law. For each node, the sum of the currents on branches
entering the node is equal to the sum of the currents on branches exiting
the node. One of the equations is actually redundant (any one of them is
redundant with respect to all the rest), but since the rank of the matrix is
g, that doesn’t do any harm.

Note that there is one equation of type (c); b equations of types (a) and (b)
combined; and n equations of type (d), so in total there are g + 1 equations in
g unknowns. Now solve the system M -X = C.
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Chapter 6

Geometry

Many kinds of geometric concepts can be related to vectors and linear algebra.
Therefore, linear algebra is important for computer applications that have to
negotiate with physical space, including graphics, image processing, computer-
aided design and manufacturing, robotics, scientific computation, geographic
information systems, and so on.

As we shall see, the fit between linear algebra and geometry is not perfect:
central categories in linear algebra, such as the space of all linear transforma-
tions, are only moderately important geometrically; also, central categories in
geometry, such as polygons, do not correspond to anything at all natural in
linear algebra. But where the two theories mesh together well, they can be ex-
tremely synergistic.

6.1 Arrows

The connection between geometry and linear algebra involves a somewhat ab-
stract geometric entity, which we will call an arrow.! An arrow has a specified
length and direction, but not a specified position in the plane; it floats around
without changing its length or rotating.? Here we use boldface letters, such
as p, for points, and letters with thick arrows over them, such as ?, for arrows.
Points and arrows have four geometric operations defined on them (Fig-

=
ure 6.1). Let p,q,r, and s be points; let ?i, b, and ¢ be arrows, and let ¢ and w
be numbers. Then

1An arrow is a kind of vector, under the general definition given in Section 4.3.1; but there does
not seem to be standard term for this specific geometric category.

2The problem in explaining geometric vector theory is that there is no really good way to draw
or visualize an arrow. We can draw all arrows with their tails at the origin, but then it is difficult to
explain the difference between an arrow and the point at the head of the arrow. Or we can draw
“floating” arrows, with their tails at some other points, but then it is difficult to explain that the
arrow from, say, (1,3) to (2,5) is the same as the arrow from (3,2) to (4,4), since, pictorially, it is
obviously a different thing. It is also difficult to visualize a geometric arrow as a physical arrow that
can be moved around the plane because it is difficult to imagine why we aren’t allowed to rotate it.

143
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m
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=
s a=q-p=m-s
=
? ? - q=p+a.
d =
= b=s-p
b = = 2 =
a c=m-p=b+a
=
4 d=3-a.
P

Figure 6.1. Operations on points and arrows.

Figure 6.2. The differences q —p,

=
s—r, and x—w are the same arrow v.

The difference q — p is an arrow; namely, the arrow whose head is at q
when its tail is at p.

The arrow q — p is considered the same as the arrow s —r if the ray from
r to s and the ray from p to q have the same length and are parallel (Fig-
ure 6.2).

The sum p + aofa point plus an arrow is equal to the point q satisfying
=
q-p=a.

> = BN
The sum of two arrows a + b is an arrow, equal to ((p+ a) + b) — p.

The product ¢- @ is an arrow. Let @ = q-p. Then ¢- a=r- p, where p,q,
and r are colinear; d(p,r) = |f|-d(p,q) and if > 0, then r and q are on the
same side of p; if £ <0, then r and q are on opposite sides of p.

The following geometric rules establish that arrows are vectors, in the ab-

stract sense (see Section 4.3.1):

G+b=b+a, 6.1)
(G4b)+C=a+(b+0), (6.2)
= = =
(p+a)+b=p+(a+b), 6.3)
= = = =
t-(a+b)=t-a+t-b, (6.4)
(t+w)-a=ta+w-a, (6.5)
(t-w)-a=t-(w-a. (6.6)

A point r lies on the line pq if the arrows q —p = #(r — p) for some value
of . Therefore, the set of all points on the line connecting p and q is given by

p+i-(q-plteR}
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Coords(p,¢) = (3.5,2.0)

Figure 6.3. Coordinate system.

6.2 Coordinate Systems

Suppose that we have a collection of points in the plane; think of these as rel-
atively small, fixed, physical things, such as thumbtacks in a bulletin board or
lampposts in a city. We want to record the position of these in a database or a
gazeteer. The standard solution, of course, is to use coordinates in a coordinate
system. We have already discussed this in Application 2.1 in Chapter 2, but it
will be helpful to go over it again, very carefully this time.

A coordinate system for the plane consists of a point o, the origin; a unit

= =
distance d; (e.g., a meter or a mile); and two orthogonal arrows x and y of
length d; (Figure 6.3). The coordinate vector of an arrow a with respect to this

= =
coordinate system is the pair of numbers (s, #) such that a = s- X+t y. The
coordinate vector of a point p with respect to this coordinate system is the pair

=
of numbers (s, t) such thatp=0+s-x+1¢- ? If € is a coordinate system, p is
a point, and 7isan arrow, then we write “Coords(p, ¢)” and “Coords(?, €)” to
mean the coordinates of p and 7 in system €.

The x-axis of the coordinate system is the line {o+ tx | t € R}, and the y-axis
is the line {0 + t? | t e R}.

The coordinates of p can be measured by dropping perpendiculars from p
to point a on the x-axis and to point b on the y-axis. The coordinate p[1] is

then +d(a,0)/d;, with a positive sign if a and o + X are on the same side of o
and a negative sign if they are on opposite sides. Likewise, the coordinate p[2]
is +d(b,0)/d;, with the corresponding rule for sign.

If L is any distance, then the measure of L in ¢, Coords(L,6) = L/d;. In
. . . . . = . .
three dimensions, a coordinate system includes a third arrow z, which is
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orthogonal to both X and ? The coordinates of an arrow and coordinates of a
point are defined and measured analogously.

It is then a geometric theorem, easily proven, that the operations on points
and arrows correspond, in the obvious way, to the operations of the same name
on their coordinate vectors; for example, Coords(p + ?,‘6) = Coords(p,¥) +
Coords(v,%6).

I have belabored this at such length to emphasize the distinction between,
on the one hand, the geometric domain of points and arrows and the geomet-
ric operations on them and, on the other hand, the numeric domain of coordi-
nate vectors and the arithmetic operations on them, and to emphasize that the
geometric operations do what they do on the geometric objects regardless of
how we choose to represent them as numeric vectors. The following text uses
the practice, convenient though imprecise, of conflating the geometric objects

. . . . . = =
with their coordinate system representation; for example, I write v » u where

what I really mean is Coords(?,%) . Coords(z,%). I explicitly mention the
coordinate system only in cases for which there is more than one coordinate
system under consideration, particularly in Chapter 7.

6.3 Simple Geometric Calculations

The power of the coordinate system approach to geometry is that all kinds of
geometric concepts and calculations can now be expressed in terms of the co-
ordinates in the entities involved. In this book, we confine ourselves exclusively
to those geometric concepts and operations that turn out to be closely related
to concepts and operations of linear algebra.

6.3.1 Distance and Angle

Chapter 2 already discussed two geometric formulas that use the dot product:

e The length of arrow D is \/f? . 77) = I?I. The distance between points p

andqisy/(p—q) * (p—q) = Ip—ql. As examples, the length of arrow (1, 1)
is V12 + 12 = v/2, and the distance from (0,4, 3) to (—1,2,4) is

V(=1-02+2-4)2+4-3)2=16.

= = . > > =
¢ The angle ¢ between arrows u and v satisfies cos(¢p) = v e v/|ul-|v|. In
particular, if 7is orthogonal to 3, then ¢ = /2, cos(¢p) =0, so Uev=0.
o => > =2 = =
For example, if u = (1,3) and v = (4,1), then cos(¢p) = ue v/|ul-|v| =
7/v/10v17 =0.5369, so ¢ = cos~1(0.5369) = 1.0041 radians = 57.53°.
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The set of points p that are at a distance r from a center point c is the cir-
cle, in two dimensions, or the sphere, in three dimensions, with radius r and
center c. It can be represented by the equation |p —¢| = r, or equivalently,
(p—c)e (p—c) = r’. A point p is inside this circle if (p—c) ¢ (p—c) < r?. It is
outside if (p—c¢) s (p—c) > r2.

6.3.2 Direction

A direction in two-space or three-space can be taken to be a unit arrow; that is,
an arrow of length dj. These are often written with a hat over them, such as .

The direction of nonzero arrow z, denoted Dir(z) or i, is defined as (dy/ IZI) .
3; thus, in coordinate system % with unit length dj, we have Coords(ﬁ,%) =
Coords(l?il,‘to”) -Coords(ii, ¢) (Figure 6.4).
=> => e = . . >

Arrows u and v are parallel if v = cu for some c # 0; equivalently Dir(u) =
iDir(?). For example, if U= (3,4), then, since IZI =5, we have 1 = Dir(?i) =
(3/5,4/5). If 7 = (1, 1) then, since | 7| = v/, we have # = Dir(?) = (1/v2, 1//2).
The vector (9,12) = 3% = 154 and the vector (—6,-8) = 21 = —107 are parallel
to u.

= => => => . .

If v = cu then v and u are linearly dependent, so the matrix whose rows
are ?, 7 has rank 1.

In two dimensions, let ?; be the arrow with coordinates (Vy, V},). The vector

that results from rotating v by 90° is (- V), Vi) for a counterclockwise rotation
(assuming the usual layout of the x- and y-axes) and (V}, —Vy) for a clockwise

rotation. It is trivial to check that these have the same length as 7 and are or-
thogonal to 7.

=<

Figure 6.4. Arrows and their directions.
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6.3.3 Lines in Two-Dimensional Space

As stated before, the line from p to q is the set of points {p+ - (q—p) | t €R}. In
two dimensions, another way to characterize the line from p to q is as follows.
Let v = q-p, and let w be the arrow that is orthogonal to 7. Letsbe any point

in two-space; then there exist a and b such thats =p + av + biw.
Point s is on the line pq if and only if b = 0. Note that

= = = = = = = = = = = =
sew=(p+tav+bw)ew=pew+avew+bwew=pew+bwew.

So,if b=0, thense w = pe w and conversely. Thus, a point s is on the line p,q
if and only if it satisfies s W= pe w, where w is a vector orthogonal to q —p.

Note that p » W is a constant, independent of s. Note also that if x and y are
variables representing the coordinates of s, then this is a single linear equation

. = = =
inxand y: w(ll-x+w[2]-y=pe w.

ThelineL={s|s e W= c} divides two-dimensional space into three regions:
the line itself, points on one side, and points on the other side. A point a on the

w side of L satisfiesas w > ¢; a point b on the opposite side satisfies b e w<c.

The two sides of the line are called the half-spaces defined by the line. A closed

half-space includes the line itself, whereas an open half-space excludes the line.
Note that we now have three ways to represent a line:

(a) as a pair of points p, q;
(b) in parameterized form {p + v | £ € R}, where 7= q-p;

. . . = = .
(c) asthesolutions to thelinear equation {s|s ¢ w = c}, where w is orthogonal
to v and where c is the constant pe w.

With each of these, there is a method to carry out a simple operation, such as
checking whether a point s is on the line:

¢ s is on line pq if s — p is parallel to s — q, which holds if the matrix with
these two vectors as rows has rank 1.

¢ sison theline {p + v | t € R} if the pair of linear equations

(1]t =s[1] -p[1],
(2]t =s[2] - p[2]

=
v
=
v

has asolution. (Thisis a pair oflinear equations in the single unknown t.)

. . = . =
e sisontheline{s|se w=clifse w=c.
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Figure 6.5. Representations of a line in two-space

Example 6.1. Taking Figure 6.5 for an example, we let p be the point (1,2) and
q be the point (4,3). Then 7= q-p =(3,1). So the line pq can be expressed as
the set {p+ tv |[teR}={1+3¢2+1t)|t € R}. The arrow L:[) =(-1,3) is orthogonal
to . So the line pq can also be expressed as the set {s|s ¢ W= pe w}; that is
{{x, )| —x+3y=5}.

We can check that the point s = (7,4) is on the line by checking one of these
operations:

(a) The matrix

has rank 1.
(b) The pair of equations Vt=s— p; that is,

3t=([7-1),
r=04-2)

has a solution (namely, ¢ = 2).
(c) The dot products e w= pe w. That is, (7,4) ¢ (—1,3) =(1,2) ¢ (—1,3) =5.

Note that the point (2,4) is on the w side of pq; thus, —1-2+3-4 =10>5.
The point (2,2) is on the —wside of pq; thus, —-1-2+3-2=4<5.
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6.3.4 Lines and Planes in Three-Dimensional Space

The situation in three-dimensional space is similar to that in two dimensions,
but it is a little more complicated. Some of the properties of lines in two-space
carry over to lines in three-space, some properties carry over to planes in three-
space, and some things are simply different.

Planes in three-space. Inthree-dimensions, a point s is in the plane contain-
ing points p, q, and rif s—p is alinear sum of q—p and r—p. That s, let U= q-p
=> . . => =>

and v =r - p; then the plane is the set of points {p+a-u+b-v|a,beR}.

Again, there is an alternative representation using the dot product. Let wbe
a vector that is orthogonal to both Z“and 7. Lets be any point in three-space;
then there exist a, b, and ¢ such thats =p+ au+bv+cw. Pointsisin the plane
pqr if and only if ¢ = 0. But

= = = = = = = = = = =
Sew=pew+auew+bvew+cwew=pew+cwe w.
. . = = . . =

So c=0ifand onlyifs e w =p e w. Thus, the plane is the set of points {s|s e w =
pe w}. Note that this is a single linear equation in three variables: wil]-s[1] +

wi2]-s[2]+ w(3]-s[3] = ;-p. (The values of w and p are known; the coordinates
of s are variables.)
This plane divides the rest of three-space into the two open half-spaces

{sIs-@>po@}and{s|so 5/<po 5/}.
. . = . = = . . . .
Finding a vector w perpendicular to u and v is trickier in three-space than
in two-space. A simple formula for this is the cross-productz x 7, which is com-
puted as follows. Let the coordinates of 22 and 7 be (U, Uy, uz) and (vy, vy, V).

. = .
Then the coordinates of the cross-product w are given by
ES EN
W=UxXUV=(UyV;— Uz Vy, Uz Ux — Ux Uz, Ux Uy — Uy Vx).

It is straightforward to check that wetn=0and we v =0, and that if z and v
are not parallel, then Z X ? #0.

As an example, let p=(0,1,1), q=(1,2,1), and r = (2,0,0). Then U= q-p=
(1,1,0) and V=r— p = (2,—1,-1). Therefore, any point of the form p + au+bv
is in the plane; for a = 2, b = 2, this is the point (6,1,—1), and for a =0,b = -1,
this is (-2,2,2). The cross-product W=UxD= (—1,1,-3). So a point s{x, y, z)
on the plane satisfies the equation s e W= pe w; that is, —x + y—3z=-2. The
open half-spaces are givenby —x+y—-3z>2and —-x+y—-3z<2.

Another way to determine whether point s lies in the same plane as p, q, r is
to observe that, if so, s—p, s—q, and s —r are linearly dependent. Therefore, the
matrix with these three vectors as rows has rank at most 2.
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Lines in three-space. As in two-space, the line pq is the set of points {p +
=
t?l t € R} where v = q—p. Aline in three-space is the solution space of a pair of
=
linear equations. Let w and 7 be two nonparallel arrows that are both orthog-
=
onal to v. Let s be any point in three-space; then there exist scalars a, b, and ¢
= = =
such thats=p+av + bu + cw. Now we have

= = = = = = = = =
seu=(p+av+bu+cw)eu=peu+(bu+cw)eu. (6.7)

Likewise,
= = = = =
sew=pew+(bu+cw)ew. (6.8)

Clearly, if b = ¢ = 0, then we have the pair of equations

= =
Se u:p.u (6.9)
and
= =
Sew=pew. (6.10)

Less obviously, the converse also holds. We know that Equation (6.7) and (6.8)
hold for all s. Suppose now that Equations (6.9) and (6.10) also hold for some
particular s. Then, subtracting Equation (6.9) from Equation (6.7) and Equa-

. . . . = = =
tion (6.10) from Equation (6.8), we get the pair of equations (bu + cw) e u =0
=> = = . = =, . =>
and (bu + cw) « w = 0. But since the arrow bu + cw is in the same plane as u
and w, it can be orthogonal to both 7 and w only if bu + ctw = 0; since 1 and
w are nonparallel, that means that b= c=0.
We have shown that point s is on line pq ifand only s e U= pe Zandse w=

pe . Let the coordinates of s be (x,y,z); then s is on the line from p to q only
if x, y, z satisfy the fwo linear equations

ullx + ul2ly + ullz =

|
&

.
=

willx + wi2ly + widlz

Il
g
o]

To find two nonparallel vectors % and w that are orthogonal to 7, we can
proceed as follows. Let i be an index such that ?][i] #0, and let j and k be the
other two indices. Then we can define 7 so that ﬁm = ?[j],z[j] = —?[i], and
[k] = 0; and define w so that w[i] = v[k], w[k] = — v[i], and w[j] = 0.

In some cases, it is useful to require also that % and w be perpendicular to
one another; in that case, define 7 as above and w as the cross-product 7 x 1.

As an example, let p=(1,1,1) and let q = (3,4,5). Then V= q-p=(23,4).
Choosing i =3,j =1,k = 2, we have U= (—4,0,2) and W= {0,-4,3). So the
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line pq is defined by the two equations s e U= pe U, or —4x +2z = —2; and
Se i}:p- @,or—4y+32=—1.

Again, we have three formats for representing a line, and each format has a
different associated method for checking whether the point is on the line.

¢ A line is determined by two points pq. Point s is on the line if the 2 x 3
matrix with rows s —p, s —q has rank 1.

. . . . = =
¢ Aline is expressed in parameterized form {p+ tv |t € R}, where v = q—p.

Point s is on the line if the system of three equations in one variable Vi=
s — p has a solution.

. . . . . = =
¢ Aline is expressed as a pair of linear equations se # = aand se w = b.
Point s is on the line if it satisfies the two equations.

6.3.5 Identity, Incidence, Parallelism, and Intersection

Section 6.3.4 presented the following three kinds of representations for lines in
two-space and lines and planes in three-space:

Representation in terms of points. Aline is represented in terms of two points
on the line; a plane is represented in terms of three noncolinear points in
the plane.

Parameterized representation. Aline is represented in the form p+ (0. A plane

is represented in the form p + av +bw, where v and w are nonparallel
vectors parallel to the plane.

Linear equations. Aline in two-space or a plane in three-space is represented
in terms of a single linear equation s w= pe w, where w is the normal
to the plane. A line in three-space is represented in terms of a pair of lin-
ear equations s e w= pe W, se U= pe 7, where w and u are not parallel
and are orthogonal to the line.

None of these representations is unique; that is, for any geometric object
(line or plane), and any style of representations, there are multiple ways to rep-
resent the same object. For instance, the equations x+2y =2 and 2x+4y =4
represent the same line in the plane, and similarly for the other representa-
tional styles. This is to some extent unavoidable; there is no method for repre-
senting lines or planes in terms of numerical parameters that is entirely non-
problematic. For instance, lines in the plane are often represented in the form
y = mx+ b, which does give a unique representation for lines not parallel to the
y-axis, but requires that lines that are parallel to the y-axis be given a different
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kind of representation x = a. (Also, this representation is unstable for lines that
are nearly parallel to the y-axis.)

With each kind of these objects, and with each of these representations, a
number of basic problems need to be solved:

Identity. Do two representations represent the same object?

Conversion. Convert the representation of an object in one format to another
format.

Incidence. Does a point lie on a line or plane? Does a line lie in a plane?

Generation. Generate a point that lies on a given line or plane, or a line that
lies in a given plane.

Parallelism. Are two objects parallel, or do they intersect, or (for two lines in
three-space) are they skew?

Intersection. If two objects do intersect, find their intersection.

Section 6.3.4 discussed many of the problems of the incidence of a point on
a line or plane. The remaining problems are likewise straightforward. In gen-
eral, the methods involved fall into one of four categories, in increasing order
of complexity, presented here with an example of each.

Trivial. If plane P1 is represented by equation E1 and plane P2 is represented
by equation E2 then their intersection is the line represented by the pair
of equations {E1, E2}.

Simple arithmetic. If line L is represented in terms of the coordinates of two
points p and q that lie on L, then the conversion to parameterized form

isp+t(q—-p).

Computing rank. Two planes characterized parametrically as p+ av+bwand

=> => . . . . . > = > >
q+ cu + dx are parallel or identical if the matrix with rows v, w, u, x has
rank 2.

Solving systems of linear equations (one, two, or three equations in one,
two, or three variables). Finding the intersection of two lines, or find-
ing the intersection of a line and a plane, in any representation, involves
solving a system of equations (assuming that the point answer is to be
represented in terms of coordinates).
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Figure 6.6. The line from a to Proj(a, X) is perpendicular to X.

6.3.6 Projections

The projection of a point a onto a plane or line X, denoted Proj(a, X), is the
point q in X that is closest to a. The distance from a to X is, by definition, the
distance from a to q. Point q is the only point on X such that the line from a to
q is orthogonal to X. To prove this, let b be any point on x, and draw the circle
C centered at a with radius ab (Figure 6.6). Then the following statements are
equivalent:

¢ b =Proj(a, X).

¢ b is the closest point in X to a.

b is on the boundary of C, and every other point on X is outside C.
e Xistangentto C ath.

¢ X is orthogonal to the radius of C, ab.

Suppose X is the line {p + v |teR). Let 0 = Dir(?). Then q= Proj(a, X) =
p+((@—p)e 9 - 0. The proof of this is given by the equation

(a—q)edv=(a—(p+((@a—-p)eD)-D)ed=(a—p)ed—(a—p)e D=0,

so a—qis orthogonal to X, and, by the above proof, q=Proj(a, X).
In three-space, suppose X is the plane {p + Su+tv |'s, t € R}, where Zand v
are orthogonal. Let I = Dir(x) and # = Dir(v). Then

Proj(a, X)=p+((@a—p)ed)- D+ ((a—p) e )-1.

The proof is essentially identical to the two-space proof.
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6.4 Geometric Transformations

One of the most important applications of linear algebra to geometry is the
use of linear transformation to represent some of the ways in which objects or
images can be moved around in space. Transformations have many computer
science applications, such as

* in two-dimensional graphics, moving an image in the picture plane,

* in computations involving solid objects, such as robotics or CAD/CAM,
calculating the motion of a solid object through space,

e in graphics or computer vision, determining how an object moving
through space appears in an image.

What linear algebra gives us is a language for characterizing the relation of
one particular position of an object to another particular position. Such a re-
lation is called a geometric transformation. We are not concerned here with
describing the continuous motion of an object over time, in which it moves
through a whole range of positions; that motion requires calculus or real anal-
ysis, and is beyond the scope of this book.

Geometrical transformations fall into categories such as translations, rota-
tions, rigid motions, and so on. The categories are organized in a hierarchy; for
example, the category of rigid motions includes the category of translations.

The categories of geometric transformations that we present here are (nat-
urally) those that can be expressed by simple operations on coordinate vectors,
particularly linear transformations. With many kinds of geometric transforma-
tions, doing this elegantly requires introducing a new method of representing
points as numeric vectors. So far we have used the natural representation, in
which a geometric point in two-space is represented by a two-dimensional vec-
tor, and a point in three-space is represented by a three-dimensional vector. In
the new representation, called the homogeneous representation, a point in two-
space is represented by a three-dimensional vector, and a point in three-space
is represented by a four-dimensional vector. The homogeneous representation
is introduced in Section 6.4.3.

An important—indeed, a defining—characteristic of each category of geo-
metric transformations is the class of invariants of the category, meaning geo-
metric features or relations that are left unchanged by transformations in the
category. For instance, a transformation I’ is a translation if and only if point
subtraction q—p is an invariant; that is, for all points p and q, I'(q)-I'(p) = q—p.
A transformation T’ is in the class of rigid mappings with reflection if distance
is an invariant; that is, if d(I'(p), ['(q)) = d(p, q) for all points p,q.

Figure 6.7 shows the hierarchy of categories of transformations that we con-
sider here.



156

6. Geometry

Fixed origin transformations : Transformations that move the origin
Can be represented in natural coordinates : Require homogeneous coordinates
* *
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Figure 6.7. Hierarchy of categories of transformations. A dashed arrow from any cat-
egory C to any category D means that D includes C. Any category C with an asterisk is
actually two categories: C1, the transformations in C excluding reflections; and C2, all
transformations in C, including reflections. Category C2 includes C1.

6.4.1 Translations

For any arrow V, translation by 7 is the function that moves every point in
parallel by 7; that is, I'p)=p+  for every point p. Thus, a translated figure
is moved in the two-space or three-space changing only position, and keeping
the shape and the orientation constant (Figure 6.8).

The fundamental invariant of a translation is point subtraction; if T is a
translation, then I'(q) — I'(p) = q — p for all points p,q. It follows, then, that
distances, angles, and orientations are all invariants of a translation.

Translation is a simple but important category in computer graphics; mov-
ing a window or an image in a display is (usually) a pure translation. In natural
coordinates, the coordinates of the translation of point p by vector 7 are just
the sum of the coordinates of p plus the coordinates of 7. Translations are eas-
ily composed and inverted. If p is translated first by 7 and then by 1, the result
is the same as a single translation by 7 + 1. The inverse of translating p by vis

translating it by -7.
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Figure 6.8. Translation.

6.4.2 Rotation around the Origin

In two-space, a rotation around the origin is carried out by drawing the figure
on a piece of paper and sticking a thumbtack through the paper into a fixed
board at the origin, and then turning the paper while leaving the origin fixed. In
three-space, a rotation around the origin is carried out by taking a solid object,
marking one point on the object as the origin, and then twisting the object in
space while keeping the origin fixed in place. Mechanically, this can be done
by attaching the object to a fixed frame by using a ball joint, where the center
of the joint is at the origin.

Rotations around the origin in two-space. The two-dimensional case is
easier to visualize and illustrate than the three-space. Rotations can be char-
acterized in terms of coordinate vectors as follows. For a paper rotated around
a thumbtack attached to a board at the origin, we want to know how points
drawn on the paper move. We measure this motion by using a fixed coordi-
nate system drawn on the board. Put the paper in its starting position. On the

paper, draw the unit x and y arrows, ¥ and ?, placing their tails at the origin.
Draw a dot at any point p with coordinates {(a, b). Thus p =0+ ax+ b?. Now
rotate the paper. Let F(?), F(j/}), and I'(p) be the new positions of the arrows
and the dots. Clearly, the relations on the paper among o, p, ?, and ? have not

changed, so we have I'(p) = o + ar'(x) + bl"(?). Let € be the fixed coordinate
system attached to the board, and let p = Coords(p, %), fa" = Coords(T'(p),6),
%' = Coords(I'(x),), and j/” = Coords(I'(y), ¢). Then we have i)" =ax + by B

Now let R be a matrix whose columns are %' and ¥ " Then we can write this
equation as p "=R p. In other words, the result of the rotation I' corresponds
to matrix multiplication by the matrix R.
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Figure 6.9. Rotation around the origin.

For example, Figure 6.9 shows the case for p = (3.5,2) and T’ is a rotation

by 30°. Then I'(¥) = (cos(30°),sin(30°)) = (.866,0.5) and I'() = (-sin(30°),
cos(30°)) = (-0.5,8.66) so

3.5

I(p) = )

0.5 0.866 3.48

0.866 —0.5 ]

_ [ 2.03

What can we say about the matrix R? One thing we can do is to calculate it.
If T is a positive rotation by angle 0, then, by trigonometry, the coordinates of
F(?c') are {(cos(#),sin(0)) and the coordinates of F(?) are (—sin(f),cos(0)), so R

is the matrix
cos(@) —sin(0)

sin(@) cos(60)

But that is trigonometry, not linear algebra (hence the nonlinear functions).
From the standpoint of linear algebra, we can observe that, since we are not
folding or bending the paper, the rotated arrows I'(%) and F(?) still have length
1 and are still at right angles. Since the coordinates of these two arrows are
the columns of R, that means that the columns of R have the following elegant
properties:

1. R[;, il R[;i] =1.
2. Ifi # j, then R[:,i] » R[;, j1 = 0.

Thus, R is an orthonormal matrix, so RT - R = I.

It is easy to show that, for any orthonormal matrix R and vectors 7 and i,
the length of ¥ and the angle between 7 and ii is invariant under multiplication
by R by showing that the dot product is invariant, as follows:

(Rit) o (RD)= (R Ro=a"RTRii=0"0=1ie 7.

We have shown that any rotation around the origin corresponds to multi-
plication by an orthonormal matrix. Is the converse true? Unfortunately, not
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Figure 6.10. Reflection.

quite. Consider the matrix

-1 0
=l 1)
then the product
Rl -X
y y

The effect of multiplication by R on a P shape is shown in Figure 6.10. The
left-hand P is not a rotation of the right-hand P; there is no way of turning the
paper to make the right-hand P line up with the left-hand P. The only way is to
hold the paper up to a mirror, or to draw the right-hand P on thin paper and
look at it through the paper from the other side. In short, the left-hand P is a
reflection of the right-hand P; in this case, the reflection is across the y-axis.

Areflection across a line through the origin also corresponds to an orthonor-
mal matrix. Conversely, if R is an orthonormal matrix, then multiplication by
R carries out either a rotation around the origin or a reflection across a line
through the origin.

Note that a reflection also changes the sign of the angles between direc-
tions. For instance, the signed angle from X to ? is 90° counterclockwise. The
reflection matrix R maps X to —x and maps ? to itself, and the signed angle

from —x to ? is —90° counterclockwise. However, since the dot product just
gives the cosine of the angle, and cos(—0) = cos(f), there is no way to detect
this from the dot product.

So how can we tell a matrix that carries out a reflection from one for a rota-
tion? The solution is to use the determinant.®> The determinant of a 2 x 2 matrix

3Determinants are, in general, not extremely important for the kinds of applications we are con-
sidering in this book, so we are treating them at much less length than most linear algebra texts do.
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is given by the formula,

a b

Det( d

):ad—bc.

For any orthonormal matrix R, either Det(R) = 1, in which case R is a rotation,
or Det(R) = —1, in which case R is a reflection. We discuss determinants further
in Section 6.4.7.

The invariants associated with rotations and reflections around the origin
are

¢ the position of the origin,
* the distance between any two points,
* the unsigned angle between any two directions.

If we exclude reflections, then the invariants associated purely with rota-
tions include also the signed angle between any two directions.

Rotations around the origin in three-space The linear algebra associated
with rotations around the origin in three-space is almost the same as in two-
space, but the trigonometry is considerably more difficult.

The argument that proves that a rotation around the origin corresponds
to multiplication by an orthonormal matrix works in three dimensions in ex-
actly the same way as in two dimensions. All we need to do is to add a third

coordinate vector z. In particular, we let ' be any rotation around the origin
in three-space, let p be any point, and let € be a coordinate system with ori-

gin o and unit direction arrows ?,?,:z). We then let p = Coords(p, %), ﬁ' =
Coords(I'(p),6), X = Coords(I'(x),¥),y = Coords(I'(y),¢),zZ = Coords(T'(z),
%); and let R be the 3 x 3 matrix whose columns are X , ¥ ,and Z . Then

«p =R-p,
¢ Ris an orthonormal matrix; thatis, RT -R=I.

Conversely, if R is an orthonormal matrix, then multiplication by R corre-
sponds either to a rotation around the origin or to reflection across a plane
through the origin. In three-space, a reflection transforms a left-hand glove
into a right-hand glove and vice versa, or a left-hand screw into a right-hand
screw; luckily for the manufacturers of gloves, and unluckily for those of us
who wear and lose gloves, there is no way to achieve this by using rotation. An
orthonormal matrix R is rotation without reflection if its determinant is 1; it is
areflection if its determinant is —1. The determinant of a 3 x 3 matrix is defined
in Section 6.4.7.
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The trigonometry of three-space rotations is much more complicated than
the trigonometry of two-space rotations. Just as a rotation around the origin in
two-space can be represented in terms of a single angle 6, a rotation around
the origin in three-space can be represented in terms of three angles, 8, ¢,
and y. However, the following differences introduce some complications.

* Whereas two-space has only one reasonable way to represent a rotation
as an angle, three-space has many different ways; in fact, several different
ways are used in practice.

¢ Any method of representing three-space rotations in terms of three an-
gles necessarily suffers from “topological singularities,” for which the rep-
resentation becomes severely awkward.

* In two-space, the same angle representation can be used for both direc-
tions and rotations. In three-space, directions are represented by two
angles (e.g., latitude and longitude), whereas rotations are represented
by three angles.

* Intwo-space, the composition of a rotation by 8 followed by a rotation by
¢ is just a rotation by (6 + ¢) mod 2. No representation of three-space
rotations in terms of angles has so simple a rule for composition; in fact,
to compute a composition, it is generally easiest to convert to matrix no-
tation, do matrix multiplication, and convert back.

We discuss one particular simple case of three-dimensional rotations in
Section 7.1.3.

6.4.3 Rigid Motions and the Homogeneous Representation

At this point, we know how to calculate the results of translating a figure and
of rotating a figure around the origin. But suppose that we want to move an
object freely around space, combining rotations and translations as the spirit
moves us. Or suppose that we want carry out a rotation around some point
that is not the origin? Such a transformation is called a rigid motion. A rigid
motion preserves distances and angles. Again, there is a distinction between
rigid transformations that are not reflections, which actually can be physically
carried out by turning the object around, and those that are reflections, which
cannot be achieved by any kind of turning.

One way to do combined translations and rotations is just to carry out a
sequence of vector additions and matrix multiplications on the natural coor-
dinates. We can also perform rotations around points other than the origin in
this way. Figure 6.11 shows an example of this. Let ¢ and d be the points with
coordinates (1,1) and (3, 1), and suppose we want to compute the location of
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Figure 6.11. Rotation around a point that is not the origin.

d after performing a rotation of 120° around c. This can be done as a sequence
of three transformations:

¢ T'; isatranslation by o—c, computed by adding the vector (—1,—1). Thus,
I'1(c) =¢0,0); I'1 (d) = (2,0).

¢ T, is arotation around o by 120°, computed by multiplying by the matrix

-0.5 0.866
-0.866 -0.5

Thus, I'2(I'1(€)) =(0,0); T2 (I'1(d)) = (-1.0,-1.732).

¢ I'3 is a translation by ¢ — 0, computed by adding the vector (1,1). Thus,
[3(T2(T1(e) =(1,1); T3(T2(T'1 (d)) = €0,-0.732).

The composition I's oT'; oIy is the desired transformation.

If we are doing a one-time calculation, this may actually be the easiest ap-
proach, but it becomes awkward if we want to do many such calculations, par-
ticularly if we want to compose rigid motions.

There is really no way around this awkwardness using natural coordinates.
Obviously, rotation does not correspond to any kind of vector addition. Almost
equally obviously, translation does not correspond to any kind of matrix multi-
plication because translation moves all points and matrix multiplication leaves
the zero vector unchanged.

The solution is to use a different coordinate representation, called homoge-
neous coordinates.* In homogeneous coordinates, as in natural coordinates, a

4Strictly speaking, the representation we discuss here is known as normalized homogeneous co-
ordinates. There is a more general version of homogeneous coordinates, in which a point with
natural coordinates (a, b) is represented by a vector (ra, rb,r) for any r # 0.
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coordinate system is still defined in terms of an origin o and two or three co-

ordinate arrows, ?,? in two-space, plus Z in three-space. However, a point in
two-space is represented by a three-dimensional numeric vector; the first two
coordinates are the natural coordinates, and the third coordinate is always 1.
Likewise, a point in three-space is represented by a four-dimensional numeric
vector; the first three coordinates are the natural coordinates, and the fourth
coordinate is always 1. Arrows in two-space and three-space are likewise rep-
resented by using three- and four-dimensional vectors; the first two (or three)
coordinates are the natural coordinates, and the last coordinate is 0.

We denote homogeneous coordinates of point p or arrow 7 with respect to
coordinate system ¥ as Hc(p, ¢) and Hc(?,%), respectively. For example, in
Figure 6.11, Hc(c,€) = (1,1,1); He(d,6) = (3,1,1); and Hc(d —¢,¥) = (2,0,0).
We often omit the argument € in cases where the coordinate system is fixed.

The basic arithmetical operations on points and arrows in terms of coordi-
nates still work as before; He(p + 7) = Hc(p) + Hc(?) and so on. Likewise, the
length of ? is equal to IHC(?) |, and the angle 0 between 7 and ? satisfies

Hc(z) » He(?)

cos(0) = = —.
[He(u)|-He(v)]

We can visualize this as follows, at least in the case of the three-dimensional
representation of two-space.’> We represent geometric two-space as the plane
z =1 in three-dimensional vector space (Figure 6.12). The homogeneous co-
ordinates of a point p relative to the plane are the natural coordinates of the
vector p — 03 where o3 is the origin of the embedding three-space. A two-space

arrow v is represented by the corresponding point in the plane z = 0. (Note
also that this eliminates the confusion, discussed earlier, between visualizing
points and visualizing arrows.)

The advantage of using homogeneous coordinates is that now both rotation
and translation correspond to multiplying the coordinate vector by a transfor-
mation matrix, so the composition of two transformations is just the matrix
product of the corresponding transformation matrices. Specifically, a transla-

. = . . - . .
tion by arrow v, which has natural coordinates 7, corresponds to multiplica-
tion of the homogeneous coordinates by the matrix

I |v

-

0T |1

5This also works in principle for the four-dimensional representation of three-space, but that is
more difficult to visualize.



164

6. Geometry

z z=1 plane

3

X

Figure 6.12. Homogeneous coordinates.

If rotation I" around the origin is represented in natural coordinates as matrix
R, then it is represented in homogeneous coordinates by the matrix

R |0

0" |1
This notation, with horizontal and vertical lines, describes the division of
the matrix into subrectangles. For instance,

5 1 v
ifv= 6 ],then

1 0 5
r denotes thematrix | 0 1 6
0% 1 00 1

Applying this notation to the former example of rotating point d around
point ¢, again we consider the overall transformation I" as the composition of
the three transformations I's o I'» o I'y, but since all these transformations are
now matrix multiplication, their composition corresponds to the product of
the matrices. Specifically,

1 0 -1 -05 -0.866 0 1 01
=101 -1{, I'>=1] 0866 -0.5 0, I's=10 1 1,
0 0 1 0 0 1 0 0 1
SO
-0.5 -0.866 0.6340 -1
'=I3-I'p-I'1=1] 0866 -0.5 23660 [ andI'-d=| -1.732

0 0 1 1
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Figure 6.13. Rigid motion.

In general, for any rigid transformation I', the corresponding matrix in ho-
mogeneous coordinates has the form

R |7V

where R is an orthonormal matrix. Since this matrix is equal to

I | R |0

’

0r ‘ 1 07 ‘ 1
it expresses I' as the composition of the rotation around the origin described
by R in natural coordinates, followed by a translation by .

Conversely, if R is an orthonormal matrix and 7 is a vector, then the matrix

R |7V

-

0r |1

A=

corresponds to a rigid motion (Figure 6.13) in homogeneous coordinates. A is
not a reflection if Det(R) = 1, and A is a reflection if Det(R) = —1.
The invariants of a rigid motion are

¢ the distance between two points and the length of an arrow,

e the angle between two arrows.

6.4.4 Similarity Transformations

A similarity or scale transformation expands or contracts everything by a con-
stant factor in all directions (Figure 6.14). This transformation is important in
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Figure 6.14. Scale transformation.

imaging applications; in graphics, it is often necessary to expand or contract an
image without otherwise distorting it; in vision, the image of an object expands
or contracts as the distance from the eye to the object increases or decreases.
It is not very important in physical applications since physical objects rarely
expand and contract uniformly.

The simplest form of scale transformation is the change of scale without
rotation, reflection, or translation. This corresponds to a simple scalar multi-
plication of natural coordinates:

Coords(I'(p), 6) = c- Coords(p, 6),

where ¢ > 0.

In homogeneous coordinates, this corresponds to multiplication by the ma-
trix
c-11]0
, where ¢ > 0.

0T |1

For example, if p is the point (3,5) and I' is a scale expansion by a factor of 2,
then the natural coordinates of I'(p) are 2 - (3,5) = (6,10). The homogeneous

coordinates of I'(p) are
2 00 3 6
02 0)|-|5|=[1: |.
0 01 1 1

The invariants of a pure scale transformation of this kind are the position
of the origin, directions of arrows, angles between arrows, and ratios between
distances (that is, for any points p,q,r,s, d(p,q)/d(x,s) is unchanged).
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The most general form of scale transformation combines it with a rotation,
reflection, and/or translation. In homogeneous coordinates, this corresponds
to multiplication by a matrix of the form

where ¢ # 0 and R is a orthonormal matrix.

Conversely, a matrix M corresponds to a general scale transformation if the
following conditions hold. Let A be the upper left-hand corner of such a matrix
(that is, all but the last row and column). Then

¢ the last row of M has the form (0,...,0, 1),

AT Ais a diagonal matrix with the same value (c?) all along the main di-
agonal, and 0 elsewhere.

The transformation is not areflection if Det (A) > 0. Itis areflection if Det(A) < 0.

The invariants of a general scale transformation are the angles between ar-
rows and the ratios of distances.

6.4.5 Affine Transformations

For the final class of transformations, it is easiest to go in the opposite direction,
from matrices to geometry. Let M be any matrix of the form

-

07 |1

Aﬁ]

Then multiplication by M transforms one vector of homogeneous coordinates
(i.e., the vector with final component 1) to another. What is the geometric sig-
nificance of this operation?

To answer this question, it is easiest to consider the case where # = 0, so that
the origin remains fixed. In this case, the transformation can also be viewed
as matrix multiplication of the natural coordinates of a point by the matrix A;
that is,

Coords(I'(p),¢) = A-Coords(p,¥).

In two-space, let X and ?/} be the x and y coordinate arrows. Let p be a point
with coordinates (a, b). Then we have

Coords(I'(x),%) = A [ !

0
0 1

=A[;,1] and Coords(l“(?),‘g) =A [ ] =A[,2],
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Figure 6.15. Affine transformation.

SO

Coords(I'(p), €)= A =aAl;, 1] + bA[;,2]

a
b

= a-Coords(I'(X), ) + b-Coords(T'(3), ).

In other words, what I' does is to map the coordinate directions ¥ and j/) to
two other vectors I'(X), F(?), and then to map any point with coordinates (a, b)

to the point al'(x) + bl“(?). The result is in general a rotation and a skewing
of the figure. For example, Figure 6.15 shows the affine transformation corre-
sponding to multiplication by the transformation

1/4 -1/2
M= [ 172 1 ]
Here, I'(X) =(1/4,1/2) and F(j/') =(-1/2,1).
If F(?),F(?) are not parallel, then Rank(A)=2, and T is a bijection of the
= =
plane to itself. If I'(x) and I'(y) are parallel, then Rank(A)=1, and any point p is
mapped onto a point on the line {0+ {T(X)| r € R}; that is, the plane is collapsed

down into a line. If T(X) = F(?) =0, then Rank(A)=0 and I collapses the plane
down to a point. A transformation that maps the plane to a line or a point
is said to be degenerate; a transformation that maps the plane to the plane is
invertable.
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The general affine transformation corresponds to multiplication of homo-
geneous coordinates by a matrix M of the form

A|D

-

0T |1

This is the composition of an affine transformation A around the origin fol-
lowed by a translation of .

Affine transformations in three-space are similar. Let ?, ?, Z be the coordi-
nate directions and let point p = ax+ b? +cz. Then an affine transformation
maps p to the point I'(p) = D+al(x)+ bl“(?) + cl"(?), where 7 is the translation
part of the mapping, independent of p. If Rank(A)=3, then I' maps three-space
to itself; that is, I' is invertable. If Rank(A)=2, 1, or 0, then I collapses three-
space to a plane, a line, or a point, respectively; that is, I" is degenerate.

The case of F(:xi) = a?, F(?) = bj/’ corresponds to a change in the aspect
ratio, an operation available in most image editors. Otherwise, the primary
application for geometric affine transformation is in images of objects rotating
in three-space, as described in Section 6.4.6.

The fundamental invariant of an affine transformation I' is identity of point
subtraction; thatis, ifb—a=d—-c, thenI'(b) -I'(a) =I'(d) —I'(c). It follows from
this that I" is defined over arrows and that addition of arrows to one another and
to points and scalar multiplication of arrows are likewise invariants; that is,

T(a+ ) =T(a)+T(w),
T(@+0) =T +T(D),

T(c-1) =c-T(w).

6.4.6 Image of a Distant Object

One application of linear transformations is to describe the changing image of
a distant object moving in space.

In image formation, there is a lens with focal point f that projects an image
onto a image plane I (Figure 6.16). Any point in space p is projected onto a
point I'(p), which is the intersection of the line pf with the plane I. To describe
this, we will use two coordinate systems. Let o be the projection of f onto I. In
the coordinate system € for three-space, the origin will be the focus f, the unit

distance will be d(f, 0), the z-axis z = f— o (note that this is perpendicular to I)

and the other two axes x and ? will be two other orthogonal vectors. Thus, in
the coordinate system %, I is the plane z = —1. In the coordinate system 98 for

I, the origin o is the projection of f onto I, and the two coordinate axes are X
and —? Then, for any point p in three space, if Coords(p,¥) = (x, , z), then
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Figure 6.16. Projection onto an image plane.

Coords(I'(p), #8) = (x/ z, y/ z). Note that for any fixed z, this is linear in x and y
but it is not linear in z.

Now, suppose we have a planar piece of lucite P that we can move around
in space, and we have drawn a region Q on P. We are interested in how the
image of Q in I changes as we move P. In some important cases, this is a linear
transformation or nearly so.

Case 1. (Rigid motion.) Suppose that P is parallel to I and is kept fixed. The
piece of lucite is first rotated by rotation R within P and then moved by

. = . .
translation v within P.

(This may seem counterintuitive; you might suppose that if we move P
very far up or down, the image of Q becomes small and foreshortened.
That, however, is because we are thinking of the case where we turn our
eye or head to keep Q in sight. If we are projecting onto a plane I, which
is kept constant, this doesn’'t happen because the projection is likewise
far from the point o. This is only an adequate model of ocular vision in
the case where P remains quite close to a fixed line of sight.)

Case 2. (Scale transformation.) Suppose P is kept parallel to I, P is translated
= . . = .
by arrow v, which is parallel to z; and the z-coordinate of P moves from

Zptoz; = zp+ ? . ? Then a point p in P moves from coordinates (x, y, z)
to coordinates (x, y, z1), so I'(p) moves from (x/zy, y/zp) to {(x/z1,y/z1).
That is, the image undergoes a scale transformation around the origin by
a factor of zy/ z;.

Case 3. (Affine transformation.) Let P be at any plane in space. Let q be a

point in the region Q, and let 7 and U be two orthogonal unit arrows
parallel to P. Let zj be the z-coordinate of some point in Q, and assume
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that the diameter of Q is small as compared to zy. Let p be a point in

region Q whose coordinates in & are (a, b); thus, p =q+ au+ b?, where
a and b are small compared to z;. The coordinate vector of I'(p) in 28 is
then

Coords(I'(p), ) = < glx]+atlx]+bv[x] qlyl+atlx]+bv[x] >

Pzl ’ Pzl
However, since

dlzl—(a+b)<plzl<qlzl+a+bh,
Glzl—(a+b)=zo(1-(a+ b)/zy),
glzl+(a+b)=zo(1+ (a+ b)/ zp),

we have 1/p[z] = 1/zy. So

Coords(T'(p), %) ~ < qlx] . ail[x] + b [x] ’ Gyl +aii[x] +bv[x]>

20 20 20
_[ qlx)/zo . ilxlizo Ulxllzo | [ a
| dyla ilyllzo Dlyllzo b |

Thus, the restriction of I to the region Q is approximately an affine trans-
formation. It is easy to show that if P is not perpendicular to I, then there
isaninverse A mapping I'(Q) to Q, which is also an affine transformation.

Now, suppose that Q has image I'(Q), and Q undergoes a rigid transforma-
tion @, still satisfying the condition that the distance from Q toIis much greater
than the diameter of Q. Then the image of the new position of Q is I'(®(Q)). Let
W be the firstimage and Y be the second image; then we have Y = I'(®(A(W))).
But then W and Y are related by the composition I' o @ o A; since all these are
approximately affine transformations, their composition is also approximately
an affine transformation. In short, two images of a moving planar figure are
related by a transformation that is approximately an affine transformation, as
long as the distance from the figure to the image plane is always much greater
than the diameter of the figure.

Reflections in this scenario correspond to flipping the plane P around so
that the eye is now looking at the back rather than the front. (This is why we
imagine the figure as being drawn on lucite.)

But suppose we want to move a planar figure around in space freely, with-
out restrictive assumptions, and we want an exact description of how the image
changes, not an approximation. The transformations involved then are projec-
tive transformations. Projective geometry is in many ways more interesting
than affine geometry; however, as the transformation is nonlinear, it is beyond
the scope of this book.
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6.4.7 Determinants

We have defined the determinantof a 2 x 2 matrix, and we alluded to the deter-
minants of other matrices. The determinant function is very important in more
advanced study of linear algebra; however, in the kinds of applications dis-
cussed in this book, it is not critical and rarely computed. This section briefly
defines the determinant of an 7 x n matrix and enumerates some of its proper-
ties without proof or discussion.

To define the determinant of an n x n matrix, we need the notion of the
minor to an element of a matrix. If A is an n x n matrix and i and j are indices
between 1 and n, then the minor to A[i, j], denoted C%/, is the (n—1) x (n—1)
matrix consisting of all the rows of A except the ith and all the columns of A
except the jth.

We can now define the determinant recursively as follows:

e If Aisthe 1 x 1 matrix [a] then Det(A) = a.
e If Ais an n x n matrix, with n > 1, and i is any index between 1 and n,
then

n . . P
Det(A) = )_ (-1)'*/ A[i, j]-Det(C").
j=1

That is, we go across the ith row, multiply Ali, j] by the determinant of
its minor, and add these products up, alternating signs at each step. The
answer at the end is the same whatever row we choose.

Alternatively, we can carry out the same operation by going down the jth
column:

Det(A) = Y (-1)"*/ A[i, j]-Det(C"/).
i=1

Again, we get the same answer, whichever column we choose.

As an example, let

1 2 3
A= 4 0 -1
-3 -2 -4

Then, multiplying across the first row,

Det(A):l-Det([ _(2) :}1 ])—Z-Det([ _§ :11; )*3'Det([ -;l —(2) ])

=1-(0-—4) = (-2-=1)) =2+ (4-~4) — (-1:-3)) +3-(4--2) - (0- -3))
=(1--2)-(2--19+3--8) =12,
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or multiplying down the second column,

4 -1
-3 -4

J oo

1 3
3 4 ”—(—2)-Det(

o)

Det(A)=-2- Det(

=-2-(4--49)-(-3--1)+0-2-(1--D-(3-4)
=(-2--19)+(2--13) =12.
This formula is elegant, but it leads to an O(n!) time algorithm. A more
efficient algorithm uses row-echelon reduction. To compute Det(A) more effi-

ciently, carry out the row-echelon reduction of A (Section 5.2), adding the fol-
lowing steps:

1. Atthe start, set variable D — 1.

2. Whenever you divide a row by a constant, A[i,:] — A[i,:]/c,setD — c¢-D.
3. Whenever you swap two rows, set D — — D.

4. Return D times the product of the elements in the main diagonal.

Note that D is not changed when the row-echelon operation A[j,:] — Al[j,:] —
cAli,:] is executed.

The following properties of the determinant should be noted, where A is an
n x n matrix, and I is the transformation corresponding to multiplication by A.

e Aisasingular matrix if and only if Det(A) = 0.
e IfDet(A) <0, thenT is areflection. If Det(A) > 0, then I' is not a reflection.

e Ifn=2and Risaregionin two-space, then area(I'(R)) = |Det(A)| - area(R).
If n = 3 and R is a region in three-space, then volume(I'(R)) = |Det(A)| -
volume(R). The corresponding formula holds for n > 3, where “volume”
is interpreted as n-dimensional volume. These formulas hold whether
natural or homogeneous coordinates are used.

. Det(AT) = Det(A).
Det(A™1) = 1/ Det(A).
Det(A- B) = Det(A) - Det(B).

The MATLAB function for computing the determinant of matrix M is, not
surprisingly, det (m).

>> det([1,2,3; 4,0,-1; -3,-2,-41)
ans =
12
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function B

6.4.8 Coordinate Transformation on Image Arrays

If A is an image array so that A[i, j] is the grayscale at the pixel at location
i, j, then it is often desirable to apply the geometric transformation being dis-
cussed to the image. The same formulas apply, of course, but they have to
be applied to the indices i, j rather than to the values. (Changes to the val-
ues give image operations such as brightening, changing color, or heightening
contrast.)

Suppose we have an m x n image array A of square pixels. Let us consider
the coordinate system with the origin is at the top left-hand corner, unit length
is the size of a pixel, x-coordinate is horizontal, and y-coordinate is vertically
down (top to bottom because that is the way MATLAB prints matrices). The
image consists of a nonwhite figure against a white ground. We wish to apply to
the figure a linear transformation, whose matrix in homogeneous coordinates
is M, filling in any gaps with white, and cropping any part of the figure that lies
outside the canvas. To a very crude first approximation, the following MATLAB
code will work:

= TransformImage(M,A);

white = 255; J gray level for white.
[n,m] = size(A);
for i = 1:n
for j = 1:m
B(i,j) = white;
end
end
for i = 1:n
for j = 1:m
v = floor(M*[i;j;1])
if (1 <= v(1) & v(1) <= n & 1 <= v(2) & v(2) <= m & A(i,j) "= white)
B(v(1),v(2)) = A(i,]);
end
end
end
end

The problem with this treatment, however, is that except in very specific
cases, a pixel in B does not correspond to a single pixel in A; it overlaps with
the image of several pixels in A. The only cases for which there is a one-to-
one correspondence are when M is a translation by a pair of integers, M is a
rotation by a multiple of 90°, M is a reflection around the coordinate axes, or
M is a composition of these. In any other case, the result of this simple algo-
rithm will probably look seriously wrong. The fixes to this are beyond the scope
of this book; see, for example Foley, van Dam, Feiner, & Hughes (1990, Sec-
tion 17.4).
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Exercises
Use MATLAB as needed.

Exercise 6.1. Represent the plane containing the points (2,0,1), (-1,1,1),
(1,1,0) in the form {p | p- 0 = c}.

Exercise 6.2. Find the projection from the point (3,3,3) on the plane in Exer-
cise 6.1 and find the distance from the point to the plane.

Exercise 6.3. Find an orthonormal basis for the plane in Exercise 6.1.

Exercise 6.4. Find the intersection of the plane in Exercise 6.1 with the line
<1) 1y0> +r- <2, 1, 1>.

Exercise 6.5. The intersection of the plane in Exercise 6.1 with the plane x +
y+2z =4isaline. Characterize this line in the form p + (.

Exercise 6.6. For each matrix M listed below, consider the product M-/, where
U has the homogeneous coordinates of a point in two-space. State whether
this operation carries out a translation, rigid motion, scale transformation, in-
vertable affine transformation, or degenerate affine transformation; whether it
leaves the origin fixed; and whether it is a reflection. Note that [(0.28,0.96)| = 1.
Given that fact, you should be able to do these by inspection, without putting
pencil to paper, let alone running MATLAB.
Draw a sketch of what the operations look like.

0.28 -096 0 0.28 096 1 0.96 0.28 3
0.96 0.28 0 |, -0.96 0.28 3 |, 0.28 -0.96 2 |,
0 0 1 0 o0 1 0 01
1 0 3 28 -96 O 096 028 O
o1 21, 9.6 28 0 |, 0.28 096 0 |,
00 1 0 0 1 0o 0 1
1 2 3 1 2 0
4 5 6 |, 4 8 O
0 0 1 0 0 1
Problems

Problem 6.1. Give geometric proofs of the equations for geometric rules given
at the end of Section 6.1.
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Problem 6.2. Let #i and U be two three-dimensional vectors, and let i = ii x U
be their cross-product, as defined in Section 6.3.4.

(a) Prove that @ = 0 if and only if # and 7 are parallel.

(b) Prove that i is orthogonal to both i and 7.

Problem 6.3. In Figure 6.15, assuming that the coordinate system on the left
has unit length, what is the area of the parallelogram on the right? What is the
area of the ellipse? Recall that, as stated in Section 6.4.5, the transformation
matrix is

1/4 —1/2
M_[I/Z 1 ]

Programming Assignments

Assignment 6.1 (Pappus’s theorem).

(a) Write a function QuadIntersect (4,B,C,D) that takes as arguments four
points 4,B,C,D and returns the coordinates of the intersection of the line
containing A and B with the line containing ¢ and D. Don’t worry about
checking for special cases (e.g., there is no line because A == B or the two
lines are parallel).6 For example, QuadIntersect ([0,0], [1,1], [1,0],
[0,1]1) should return [0.5,0.5], and QuadIntersect([0,0], [10,0],
[0,51, [-1,41) should return [0,-5].

(b) Pappus’s theorem states the following: Suppose that points a,b,c lie on
one line and points x,y,z lie on another. Construct the following points:

point m, the intersection of lines ay and bx; point n, the inter-
section of lines az and cx; and point p, the intersection of lines
bz and cy.

Then m,n,p lie on a line (Figure 6.17).

6Here I am encouraging utterly irresponsible behavior. Not checking for special cases is very
bad programming style; one of the hallmarks of production-quality software as opposed to im-
mature software is “failing gracefully”—that is, returning meaningful values and generating useful
error/warning messages for erroneous or otherwise improper inputs. However, in geometric pro-
gramming especially, there tend to be lots of special cases, and it can be very difficult to find them
all and to decide what should be done. The code for handling special cases can easily be several
times longer than the code for handling the standard case. The object of the assignments in this
course is to teach the mathematics and to give students practice in rapid prototyping, not to teach
high-quality software engineering.
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Figure 6.17. Pappus’s theorem.

Write a function RandomPappus with no arguments that generates a ran-
dom diagram illustrating Pappus’s theorem. That is, construct random points
a,b,x,y; construct a random point ¢ on ab and a random point z on xy; and
then construct the corresponding diagram. Note: in rare cases the calculation
may fail; more commonly, the diagram may end up so ugly as to be useless. Do
not worry about these.)

Curiously, if you use the MATLAB rank function to check whether m, n, and
p are colinear, using the default tolerance—that is, if you set up the matrix with
row p —m and n —m and check whether it has rank 1—it fails 16% of the time.
We discuss the issues involved here in Section 7.9.2.

Assignment 6.2. Write a function CircumscribeTriangle (4,B,C) that takes as
input the coordinates of three points in the plane, 4,B, C, and draws the triangle
connecting them and the circumscribing circle (the circle that goes through all
three points).

The center of the circumscribing circle is the intersection of the perpendic-
ular bisectors to the sides. Therefore, it can be computed as follows:

* Find the midpoint x of side ab.

* Find the midpoint y of side bc.

¢ Find the line L through x perpendicular to ab.
¢ Find the line M throughy perpendicular to bc.

¢ Find the intersection o of L with M. (If a, b, and c are collinear, then there
is no intersection and MATLAB will give an error at this point.)

¢ Let r be the distance from o to a. Then the circle centered at o of radius
r is the circumscribing circle.
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1.5
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Figure 6.18. CircumscribeTriangle ([0,0], [3,0], [1,2]).

To draw a circle of center o and radius r, compute the points 0+ r-(sin(2n ¢/ N),
cos(2rt/N)) for t =1,..., N for some large N (e.g., N = 100). Figure 6.18 shows
the drawing for the function call CircumscribeTriangle ([0,0]1, [3,01, [1,2]1).

Assignment 6.3 (Rotating a polyhedron).Use MATLAB to show how the appear-
ance of a three-dimensional object (a convex polyhedron) changes as a result
of rotation (assuming that the distance to the object is constant, and large com-
pared to the size of the object).

This problem is greatly simplified by restricting it to convex polyhedra. The
advantage of using a convex polyhedron is that it is easy to determine what
parts of the surface are visible; a face of a convex polyhedron is visible if the
normal to the face points toward the viewer.

The assignment is to write a function DrawRotatedPolyhedron (M,P). The
input parameters are M, a 3 x 3 rotation (orthogonal) matrix, and P, a data
structure representing a convex polyhedron. What the function does is to draw
a two-dimensional picture of P after rotation by M in a form described below.

The input data structure representing an n-face polyhedron P is a cellular
array of size n, where each cell is a face of the polyhedron. A face of the polyhe-
dron with k vertices is a 3 x k array in which each column of the array contains
the coordinates of the vertices. The columns are in counterclockwise order as
viewed by someone outside the solid and looking at the face.

For example, the unit cube is represented as a cellular array {X1,X2,Y1,Y2,Z1,
72}, where X1 is the face at the low end of the x-axis, X2 is the face at the high
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Figure 6.19.
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DrawRotatedPolyhedron (EulerRotation(pi/4,

end of the x-axis, and so on. Specifically,
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This and other shapes are defined as scripts in the file polyhedra.m. The
function EulerRotation (Psi,Phi,Theta) generates the three-dimensional ro-
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tation with Euler angles Psi, Phi, and Theta.

The picture of the shape will reflect the appearance of the rotated shape
as seen from below; thus, it will be the projection of the faces that are visible
below onto the x — y-plane. The picture will show (1) the visible vertices and
edges (2) in the center of each face, the projection of a small circle around the
center (which will project as an ellipse). Some sample outputs are shown in

Figure 6.19.

(c) DrawRotatedPolyhedron (EulerRotation (0,
(d) DrawRotatedPolyhedron (EulerRotation (0, pi, 0) , frustum).
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Constructing this picture involves the following steps:

Apply the matrix M to each of the points in P, generating a new poly-
hedron P’. (Since the absolute position of of the polyhedron does not
matter, you can use natural coordinates and a 3 x 3 rotation matrix rather
than homogeneous coordinates and a 4 x 4 matrix.)

Exclude faces that are not visible from below. To do this, compute the
outward normal to each face, and exclude any face whose normal has a
positive z-component. To find the outward normal to a face, choose any
three consecutive vertices of the face a,b,c; the cross-product (c —b) x
(a—b) is the outward normal.

Project the vertices and edges onto the x— y-plane simply by ignoring the
z-coordinate. Draw these in the picture.

Compute the central circles on each visible face as follows:
- Compute the center o of the face as the average of the vertices of
the face.

— Choose a radius r as half the distance from o to the nearest of the
edges. The distance from point p to line L is equal to the distance
from p to Proj(p,L) (Section 6.3.6).

— Find two orthonormal arrows #, v in the plane of the face. If a,b,c
are vertices in the face, then you can choose U= Dir(b — a) as one

and v = Dir(c— p) as the other, where p is the projection of ¢ on
line ab.

- Compute points on the circle in 3D as
o+rcos(2rnt/N)ii+rsin2rt/N)V

for t=0,...,N.

- Project these points onto the x—y-plane by ignoring the z-coordinate,
and connect the points to plot the ellipse.
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Change of Basis,
DFT, and SVD

7.1 Change of Coordinate System

Suppose that we have the job of creating a gazetteer that records the positions
of all the lampposts in a city. We chose a coordinate system % with origin o and

coordinate arrows ?, ?; did lots of measurements; and recorded the positions
of all the thousands of lampposts in our city gazetteer.

Now suppose the day after we finish this, the boss calls us into his office,
and tells us he wants to use a different coordinate system 2; this one will have

= =
origin q, unit length m, and coordinate arrows i and j. Is there a simple way
to convert the ¥ coordinates to 2 coordinates?

The solution is simple. All we have to do is to measure the coordinates of

o, ?, and ? in 2. Suppose that the coordinates of o are (a, b); the coordinates
of X are {(c,d), and the coordinates of?/> are (e, f). Let p be a point whose
coordinates in the o, ?,? system have been measured to be (s, t). Then

p=o+s§+t?
= => => => => =>
=(q+ai+bj)+s(ci+dj)+tei+fj)
= =
=q+(a+sc+te)i+(b+sd+tf)j.

Using homogeneous coordinates, we can write this as

Hc(p,2) = -Hc(p,6).

c
d
0

o~ ®
= S Q

That is, the conversion from homogeneous coordinates in € to 2 coordinates
is just a linear transformation.
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q

Figure 7.1. Coordinate transformation.

For example, suppose Coords(o,2) = (1,2), Coords(?,@) = (3,2), and
Coords(?,@) =(-2,3), and suppose Coords(p,¥) = (2,1) (Figure 7.1). Then

3 -2 1 2 5
Hep,2)=(2 3 2 || 1|=|9].
0 0 1 1 1

Conversely, to convert from coordinates in 2 to coordinates in ¢, we can
solve the corresponding system of linear equations. For instance, with the
above coordinate systems, if Coords(w, 2) = (4,2), we have

3 -2 1 w(x] 4
2 3 2 (-] wlyl [=] 2
0 0 1 1 1

So Coords(w,6) = (9/13,-6/13).

If the two coordinate systems have the same origin, then natural coordi-
nates can be used instead of homogeneous coordinates. The analysis is the
same.

7.1.1  Affine Coordinate Systems

We just skipped a step. In chapter 6, we required that the coordinate arrows X

and ? have the same (unit) length and be perpendicular. But in the calculation
> =

we just did, we didn't require that to hold for either ?,? orfor i, j. Whatis the

meaning of a coordinate system in which the coordinate vectors are not the
same length and are not perpendicular?
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=
X

Figure 7.2. Affine coordinates.

Such a coordinate system is known as an affine coordinate system, and can
be defined as long as the two coordinate vectors are not parallel. Let € be an

affine coordinate system with origin o and coordinate vectors X, ?/} Then the

coordinates of a point p are the pair (a, b) such thatp =0+ ax+ b?. These can
be found by using the following procedure. Let L and M be the two coordinate

axes L = {o+ t?l teR}and M = {0+ t?l t € R}. Draw the line parallel to M
through p and let q be the point where this line intersects L, and draw the line
parallel to L through p and let r be the point where this line intersects L. Then

a=(q- p)/?c> and b = (r— p)/? For instance, in Figure 7.2, a =3 and b = 2.

Note that if x and ? are orthogonal, then the line parallel to M is the perpen-
dicular to L, which is how we defined this construction in Section 6.2—but in
the general case, we use the parallels rather than the perpendiculars.

The analogous construction applies to affine coordinate systems in three-

space, except that the condition that X and ? are not parallel is replaced by the
condition that x, ?, and Z are not coplanar.
Addition of vectors in affine coordinate systems works as usual:
Coords(p + ?,%) = Coords(p,6) + Coords(?, €).
Coords(z + ?,%) = Coords(ﬁ, €) + Coords(?,%).
Coords(c-?,%) = c-Coords(?,%).

However, the dot product formulas no longer work properly for computing
lengths, distances, and angles.
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7.1.2  Duality of Transformation and Coordinate Change;
Handedness

The changes of coordinate system discussed thus far in this chapter and the
geometric transformations discussed in Section 6.4 create the same kind of
changes to coordinates in ways that are dual to one another, in the following
sense. Suppose that on Sunday, Ed records that the corners of the dining room
table are located at coordinates (2,3), (5,3), (5,4), and (2,4). On Monday, Dora
records that the corners are at (8,6), (11,6), (11,7), and (8, 7). One possibility is
that the table has undergone a translation by (6,3). Another possibility is that
Dora is using a different coordinate system, one with the same coordinate di-
rections and unit length, but with an origin whose coordinates in Ed’s system
are (—6,—3). (Or, of course, there may have been both a transformation and a
change of coordinate system; but we are interested here in comparing only the
two pure cases.)

So there is a correspondence between transformations and changes of co-
ordinate systems and between categories of transformations and categories of
coordinate system changes. In particular:

¢ Asin this example, a translation by (x, y) corresponds to moving the ori-
gin by (—x,—y). The directions and unit length of the coordinate system
remain unchanged.

¢ A pure rotation corresponds to rotating the coordinate system in the op-
posite direction. In particular, an orthonormal coordinate system is
changed to another orthonormal coordinate system.

¢ A expansion by c¢ corresponds to a contraction of the unit length of the
coordinate system by c. The origin and coordinate directions remain un-
changed.

Reflections are more interesting. A reflection corresponds to changing the
handedness of the coordinate system—changing a left-handed coordinate sys-
tem into a right-handed one, or vice versa (Figure 7.3). In the plane, a right-
handed coordinate system places the y-axis 90° counterclockwise from the x-
axis; a left-handed coordinate system places the y-axis clockwise from the x-
axis. In a right-handed coordinate system in three-space, the axes are aligned
so that if you place your right hand along the x-axis, pointing your fingers in
the positive x direction, and your palm is facing in the positive y direction, then
your thumb is pointing in the positive z-direction. In a left-handed coordinate
system, the same holds with your left hand.

Unlike other properties of bases that we have considered, the handedness
of a coordinate system depends on the order of the basis elements and not just
on the set of coordinate vectors. If (%, §) is a right-handed coordinate system,
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Right-handed systems Left-handed systems

y y
X X
z z
3D y\‘/x x\‘/y

Figure 7.3. Right- and left-handed coordinate systems.

then (J, %) is a left-handed coordinate system; it corresponds (in the above
sense) to the reflection across the line x = y. In three dimensions, if (%, y, 2)
is a right-handed coordinate system, then (7,2, %) and (%, %, y) are also right-
handed, whereas (j, %, 2), (, 2, 7), and (2, 7, X) are left-handed.

The distinction between right- and left-handed coordinate systems—or,
more precisely, between a pair of coordinate systems with the same handed-
ness and a pair with opposite handedness—carries over into higher dimen-
sions. In any dimension, any coordinate system has one of two handednesses.
Swapping the order of two vectors in the basis flips the handedness; doing a
second swap restores it. For instance, let 2 = (51,52,53, 54, Bg) be a basis in
R5. Let € = (51, 54, 53, Eg, 55) be the result of swapping the second and fourth
vector in 8. Then % has the opposite handedness to 9. Let & be the result of
swapping the second and fifth vector in €: @ = (by, bs, b3, by, by). Then 2 has
the opposite handedness to ¢, and the same handedness as 3.

7.1.3 Application: Robotic Arm

Simple robotic arms can be analyzed by using coordinate transformations. Here
we model a robotic arm as a sequence of k links, each of a fixed length, with a
pin joint between successive links that allows rotation in the plane perpendic-
ular to the pin. The first link is attached to the origin by a pin joint. The robot
directly controls the angles 04, ...,0;, where 0, is the angle in the x-y plane of
the first link, and for i > 1, 6; is the angle between the forward directions on the
(i — Dth link and the ith link (Figure 7.4). The question is, for a given sequence
of angles 61,...,0;, what is the position of the end of the last link, and what
is the direction of the last link? (The inverse problem—given a target position
and direction, find a sequence of angles that achieves it—is known as the “in-
verse kinematics” problem, and is a difficult problem, beyond the scope of this
book.)
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L1=2,Lp=3,L3=1,L4=2;
01 =45°, 0, = —60°, 03 =90°, 04 = 15°.

Figure 7.4. Two-dimensional robotic arm.

Let us consider first the two-dimensional case, in which all the pins are ver-
tical, and hence all the links rotate in the x-y plane like a folding yardstick. In
this case, we can ignore the vertical dimension altogether. We solve the prob-
lem by attaching a little coordinate system %; with origin o; and coordinate

directions x ; and ?i to the end of ith link where ?i points in the direction of
the link. %) is the external, absolute coordinate system. Let L; be the length of
the ith link. Then for i = 1,..., k, we have the following relations:

= = = =
* Xx;, y;arerotated by 0; from x;_1, y;_;,

. =
e 0;islocatedato;_; +L;- x;.

It would seem at first! that one could view this problem in terms of a se-
quence of geometric transformations from %, to 6) to ¥». But that doesn’t
work because geometric transformations are measured with respect to the ab-
solute coordinate system %), whereas here we are given the coordinate of 6> in
terms of 67, and of €63 in terms of 6>. So we have to combine coordinate trans-
formations: to find the coordinate transformation from %, to 6,-1, from 6,-;
to €p-2,..., from ¥ to 6p; and compose them to get the coordinate transfor-
mation from %6, to 6,. Since the coordinate transformation is the inverse of
the geometric transformation, this composition will give the coordinates of 6,
in cg().

1To be precise, I originally wrote this section using geometric transformations, and was sur-
prised to find that I was getting the wrong answers. It took me 15 minutes of thought to work out
what the problem was; a fine example of how the kind of confusion discussed in Section 7.3 can
arise even in very concrete, geometric applications.
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We will represent the coordinate transformation from %, to %; in homoge-
neous coordinates in terms of a matrix

The coordinate transformation from %; to %6;-; consists of two parts in se-
quence.

1. Atranslation of the origin by —Lic', relative to the coordinate system ;.
We call this intermediate coordinate system 2;. The corresponding co-

ordinate transformation matrix is

i

S O -
(=3 ]

L
0
1

2. Arotation by —0; around the origin of 2;. The corresponding coordinate
transformation matrix is

cos(@;) -—sin(@@;) 0
sin(@;) cos(6;) 0
0 0 1

Therefore, the combined transformation from %; to 6;_; is the composition of
these two matrices, or

cos(f;) —sin(0;) 1 0 L,- cos(f;) -—sin(f;) L;cos(6;)
T; = | sin(0;) cos(@ ) 0 1 = | sin(@;) cos(0;) L;sin(6;)
0 0 0 0 0 1

The coordinate transformation from %, to 6 is then the composition of all
ofthese T1- Ty -...- Ty,. The upper left 2 x 2 square gives the rotation of 6, from
%o, and the first two elements in the third column give the coordinates of o, in
terms of 6.

Actually, in the two-dimensional case, we could have done this more simply
without matrix algebra because in two dimensions, rotational angles simply
add. Define ¢p; =01, ¢p» =01+ 02, p3 =01+ 02 + 63, and so on up to ¢, =0, +

..+0;,. Then ¢; is the total rotation between %, and ;. The arrow, in absolute
coordinates, from 0;_; to 0; is (L; cos(¢p;), L; sin(¢;)), so the coordinates of o,
in 6, are

(L1 cos(¢p1)+Lzcos(Po)+...+ Ly cos(dy), Ly sin(pr)+ Ly sin(gp) +...+ Ly sin(py)).
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Figure 7.5. Three-dimensional robotic arm.

Moving on to the three-dimensional case, however, there is no alternative
to using matrix algebra. Let us consider the following model of an arm.? Again,
the arm consists of n links of length L,,..., L, connected in sequence by pin
joints. The angle at the connection between the (i — 1)th and ith links is 6;,
and when all the 0; are zero, then the links lie stretched out along the positive
x-axis. However, the direction of the pins alternates. Specifically, the pin at the
origin is always vertical, so that the first link rotates in the x-y plane. When
61 =0, the second pin is parallel to the y-axis, so the second link rotates in the
x-z plane. When all the s are 0, the third pin is again vertical, the fourth pin is
again parallel to the y-axis, the fifth is vertical, the sixth is parallel to the y-axis,
and so on (Figure 7.5).

The linear algebra for the three-dimensional case is essentially the same as
for the two-dimensional case. Again, we attach a little coordinate system %; to
the far end of the ith link, and we compute the coordinate transformation from
%), to 6y by using matrix multiplication using homogeneous coordinates. The
only difference is in the rotations.

As in the two-dimensional case, the transformation from %; to ;-1 con-
sists of two parts:

1. Translating the origin by —L;c); the corresponding matrix is

1 0 0 L
0100
0010
000 1

2. If i is even, rotating about the Z axis of 9;; the corresponding matrix is

cos(@;) -—sin(@;) 0 O
sin(@;) cos(6;) 0 0
0 0 1 0
0 0 0 1

21 do not know of any actual arm built like this, but it is a convenient model.
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If i is odd, rotating about the ? axis of 9;; the corresponding matrix is

cos(6;)
0 0

0 0

0
1

sin(@;) 0 cos(0;)
0

—sin(0;)

0
0
0
1

If i is even, then the composition of the two transformations is

[ cos(@;) -—sin(@;) 0

T = sin(@;) cos(6;) 0
1o 0 1
| 0 0 0

[ cos(@;) -—sin(@;) O

_ | sin(@;) cos(0;) 0
1o 0 1

| O 0 0

0 1 0 0 L
0 01 0 O
o[ ]o0o o010
1 0 0 0 1
L;cos(8;)
L;sin(6;)

0

1

If i is odd, then the composition of the two transformations is

[ cos(@;) 0 —sin(6;)
|0 10
7| sin@;) 0 cos(8;)
| O 0 0
[ cos(@;) 0 —sin(6;)
lo 1 0
| sin(@;) 0 cos(;)
| 0 0 0

The net transformation from 6, to 6 is the product T = Ty - T»> -...- T,. The
upper 3 x 3 block of T is the net rotation from % to 6;,. The first three elements

0 1 0 0 L;
0 01 0 0
ol o o 1 0
1 0 0 0 1
L;cos(8;)

0

L;sin(6;)

1

of the right-hand column of T are the absolute coordinates of 0,.

7.2 The Formula for Basis Change

We now move from the geometric case to the general case of n-dimensional
vectors. Suppose that we have two bases, 2 and €, for R” and we are given
the coordinates of vector ¥ in 8. How can we calculate the coordinates of 7 in
%¢? Theorem 7.2 gives the answer in the case where either 98 or ¥ is the stan-
dard basis {e', ..., e"}; Corollary 7.3 gives the answer in general. First, we prove
Lemma 7.1, which gives a general answer but not in terms that can immedi-

ately be computed.
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Lemma 7.1. LetV be an n-dimensional vector space. Let B = 7)1,...,5,1 and
€ = ¢y,...,Cn be two ordered bases for V. Define the n x n matrix M such that
ML, j1 = Coords(bj,6). Then, for any vector v inV,

Coords(¥,€) = M - Coords (v, %).
Proof: Let Coords(v, %) ={ay,...,a,). Then

ﬁ:a151+...+an79,,
=a;-(M[1,1]-& + M[2,1]1-& +...+ M[n,1]-&,)
+ay-(M[1,2]-¢; + M[2,2]-Co +...+ M[n,2] - ¢p)
+...ta, - (M(1,n]-&1 +M[2,n]-C +...+ M[n,n]-¢,)
=(M[L,1] a4y + M[1,2]-ap +...+ M[1,n]-a,) ¢
+(M(2,1]-a; + M[2,2]-ap +...+ M[2,n]-ay,) - C
+...+(M[n,1]-a1 + M[n,2)-a; +...+ M[n,n] - a,) - ¢,. O

So

Coords(V,€) = M[1,1]-a; + M[1,2]-ap +...+ M[1,n] - a,,
M[2,1]-a; + M[2,2]-ap +...+ M[2,n]-ay,,...,
Mn,1]-a1 + M[n,2]-ax +...+ M[n,n]-a, )
= M -Coords(7, ).

Theorem 7.2. Let€ = ¢i,...,¢n be a basis for R". Let il be a vector and let U =
Coords(it,6€). Let M be the n x n matrix whose columns are the vectors in €, or
ML, j1 =¢;. Then

(@) ti= MV,
M) v=Mi.

Proof: The proof of result (a) is immediate from Lemma 7.1 with 98 being the
standard basis for R", since Coords(c;, %) = ¢;. The proof of result (b) is imme-
diate from (a). |

Corollary 7.3. Let 8 = bi,....,b, and€ = ¢, ...,¢, be two bases for R". Let i
be a vector. Let B be the matrix whose columns are by, ..., by; let C be the matrix

with columns &,,...,&,. Then Coords(i,€) = C liv =C~!- B-Coords(i, BB).

Proof: Immediate from Theorem 7.2.
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7.3 Confusion and How to Avoid It

Despite the simple form of Theorem 7.2, it can be quite confusing, for several
reasons. In the first place, the whole idea of vectors can seem to be floating off
into the ether. We started with a vector 7 being an n-tuple of numbers, which
is nice and concrete. But now the same (?) vector 7 is being represented by a
n-tuple of coordinates relative to a basis. Moreover, (1) by choosing the vector
space and the basis properly, we can get U to have any coordinate vector we
want (other than the zero vector); and (2) the basis vectors themselves are just
tuples of numbers. So in what sense is this the same vector? And what is the
difference between two different vectors, if we can use any vector to represent
any other vector? Moreover, how do we even pin down what the basis vectors
mean, when they also are just tuples of numbers and likewise can turn into
anything else?

Abstract mathematics of various kinds can trigger this kind of vertigo, al-
though this particular example is an unusually severe one for math that is con-
sidered comparatively elementary and concrete. When hit by these kinds of
feelings, the best thing to do is to stop working at the abstract level and go back
to concrete instances; geometric examples are good, because we can draw pic-
tures. As we did in the previous section, we want to be sure to distinguish be-
tween the concrete things on the one hand and their coordinate vectors on the
other.

Really, there is nothing more in this indeterminacy than the fact that a per-
son’s height may be 6 when measured in feet and 72 when measured in inches,
but it seems more confusing in this abstract setting.

The second source of confusion is that we have now introduced a second
form of linear transformation. Previous to this section, a linear transformation
was an operation that turned one thing into a different thing, such as a bas-
ket vector into a price vector, or a population distribution at one time into a
different population distribution at a different time. In Theorem 7.2, by con-
trast, the “thing” remains the same; what is changing is the way we are rep-
resenting the thing. The same matrix multiplication is used for both. Again,
this is basically the same as the fact that you multiply a height measurement by
12 either when an object gets 12 times taller or when you change from feet to
inches.

The third source of confusion is that it is easy to get the direction of Corol-
lary 7.3 backward. To change a coordinate vector in 28 to a coordinate vector
in ¢, we multiply by the matrix of coordinates of 98 in ¢, and not vice versa.
Again, if we want to change from a measurement in feet to one in inches, we
multiply by 12, the measure of one foot in inches.
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7.4 Nongeometric Change of Basis

A final source of discomfort about these changes of bases, in nongeometric ap-
plications, is that it is not obvious what the point of nonstandard bases is in
the first place. In geometry, the choice of coordinate system is largely arbitrary
anyway, so it makes sense to go from one to another. But in the kinds of non-
geometric applications we have considered, it is much less clear why we would
want to do this.

Consider a specific example of shopping baskets; to make it easy, suppose
that there are three products: a gallon of milk, a loaf of bread, and a pound of
butter. The natural representation for a basket with x gallons of milk, y loaves
of bread, and z pounds of butter uses the vector (x, y,z). Of course, we could
use any three linearly independent baskets we want as a basis, say,

I;l = 2.5 gallons of milk, —4 loaves of bread, and 3 pounds of butter,
by = -3 gallons of milk, 2 loaves of bread, and 1 pound of butter,
Eg = 0 gallons of milk, —6 loaves of bread, and 7 pounds of butter.

Then we could represent a basket with 1 gallon of milk as the coordinate vector
(1,1/2,-1/2). But why is this anything other than perverse?

In fact, there are many different reasons to consider alternative bases; a
change of basis is as common in applications of linear algebra as actual change,
if not more so. We consider a number of these in the rest of this chapter.

7.5 Color Graphics

There are domains other than geometric for which there can be different equally
plausible bases for the vector space. One example is color graphics. Color is es-
sentially a three-dimensional vector space;® a single color is the sum of three
primary colors, each weighted by an intensity. However, different display sys-
tems use different sets of primary colors; for instance, a color printer uses a
set that is different from a color terminal. Each triple of primary colors can be
considered as a basis for the space of all colors; conversion of the intensity vec-
tor for a particular color from one system of primary colors to another is thus
a matter of basis change. (This is an idealization; in practice, things are more
complicated.)

3The dimension is a function of the human eye, which has three different kinds of cones. Pi-
geons are believed to have five primary colors. Stomatopods, a kind of shrimp, have twelve.
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7.6 Discrete Fourier Transform (Optional)

The discrete* Fourier transform (DFT) is a basis change that is used throughout
signal processing and in many other applications. This will require a little work,
but it is well worth the time.

A simple signal processor has an input a(#) and an output g(#), both of
which are functions of time. (In this section, we use boldface letters for func-
tions of time.) The output depends on the input, so g = F(a) for some function
F. Note that g(#) may depend on the entire signal a (or at least all of a prior to 1)
and not just on the single value a(#). Many signal processors have the following
elegant properties, or conditions:

1. Fislinear. Thatis, for any inputs a and b, F(a+b) = F(a) + F(b). For any
constant ¢, F(c-a) = c- F(a).

2. F is time-invariant. If input b is the same as a delayed by 9, then the
output for b is the same as the output for a delayed by §. Symbolically. if
b(?) =a(z - 6) then (F(b))(¢) = (F(a))(—0)

3. The output to a sinusoidal input is a sinusoid of the same frequency, pos-
sibly amplified and time-delayed. That is, if a(¢) = sin(wt), and g = F(a)
then g(#) = A(w)sin(wt + 6(w)). As shown, the quantities A(w) and 6 (w)
may depend on the frequency w but are independent of time f. The
quantities A(w) and 6 (w) are the frequency response characteristics of the
signal processor.

Condition (3) may seem rather constrained. However, if the amplifier is
characterized by a differential equation, which many physical systems are, and
if it is damped, meaning that if the input becomes zero, the output eventually
dies down to zero, and if it satisfies conditions (1) and (2), then it necessarily
satisfies condition (3).

Using the trigonometric identity sin(a + ) = sin(a) cos(f) + sin(f) cos(a),
we can rewrite the equation in condition (3) as follows:

g(1) = A(w) sin(wt + 6 (w)) = A(w) cos(6(w)) sin(wt) + A(w) sin(6 (w)) cos(wt).

Moveover, since cos(a) = sin(a + 7/2) (i.e., the cosine is just a time-advanced
sine), it follows that the response to the input cos(w?) is just

A(w) cos(6(w)) cos(wt) — A(w) sin(d (w)) sin(wt).

Now, suppose that we take an input time signal a(z) and the corresponding
output time signal g(¢) from time ¢ =0 to t = T. We choose an even number

4The continuous Fourier transform is also a basis change, but for an infinite-dimensional space
of functions.
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2K and we sample both signals at the 2K points, t = T/2K, t =2T/2K, t =
3T/2K,...,t =2KT/2K = T. This gives us two vectors, d and g, of dimension
2K. Thus, for I =1,...,2K, d[Il =a(l- T/2K) and g[I] = g(I- T/2K). In general
for any function f(#) from 0 to T, we consider the sample of 2K points to be the
vector f[I1=f(I-T/2K) for I =1,...,2K.
We are now dealing in the space of 2K-dimensional vectors. We define the
following set of vectors ¥ = {7y, ..., Uak}:
v =1,
forl,Jj=1,...,K,
Uoy 1] = cos(I-Jn/K),
forl,j=1,...,K-1,
Uoyy1 [l =sin({ - Jm/K).
That is: 7} is just the 1 vector. The Jth even-numbered vector is a sample of the
cosine function cos(Jr¢/T), and the Jth odd-numbered vector is a sample of
the sine function sin(Jz ¢/ T).
For example, with K =2, 2K =4, we have

I_jl = <1’ 1) 1) 1>)

Uy ={cos(m/2),cos(2m/2),cos(37/2),cos(4n/2)) =(0,-1,0,1),

U3 = (sin(x/2),sin(27/2),sin(37/2),sin(4x/2)) = (1,0,—1,0),

U4 = (cos(27/2),cos(4m/2),cos(6m/2),cos(8n/2)) =(-1,1,—1,1).

We would seem to be missing the final sine function, but since that would be
(sin(27/2),sin(4m/2),sin(67x/2),sin(87/2)) = (0,0,0,0),

it is useless.

With K =3, 2K =6, we have

7y =(1,1,1,1,1,1),

U =(cos(/3),cos(2m/3),cos(37/3),cos(4n/3),cos(5m/3),cos(67/3))
=(0.5,-0.5,—-1,-0.5,0.5,1),

U3 =(sin(n/3),sin(27/3),sin(37/3),sin(4x/3),sin(57/3),sin(67/3))
=(0.866,0.866,0,—0.866, —0.866,0),

U4 =(cos(27/3),cos(4x/3),cos(67m/3),cos(8m/3),cos(107/3),cos(127/3))
=(-0.5,-0.5,1,-0.5,-0.5,1),

Us =(sin(2m7/3),sin(4n/3),sin(67/3),sin(87/3),sin(107/3),sin(127/3))
=(0.866,-0.866,0,0.866, —0.866,0),

Ug =(cos(37/3),cos(67/3),cos(9/3),cos(127/3),cos(15m/3),cos(187/3))
=(-1,1,-1,1,-1,1).
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Vector 2 Vector v, Vector Vg
1 B S SRS 1 1
| | | | | | | |
0 I I I \ [ 0 I . | [ 0 I I | |
‘ : /
-1 -1 -1
0 2 4 6 0 2 4 6 0 2 4 6
Figure 7.6. Discrete Fourier vectors as samplings of sine and cosine curves: 7;, Uz, and 7i3.
Vector v, Vector Vg Vector Vg
1 1 1
| | | | | | |
0 | ! | | 0 I | | | 0 | ] | | | |
| | | | |
-1 -1 -1
0 2 4 6 0 2 4 6 0 2 4 6

Figure 7.7. Discrete Fourier vectors as samplings of sine and cosine curves: 7, U5, and 7.

These vectors are the 2K real Fourier vectors. The corresponding sinusoidal
functions are called the 2K real Fourier components. These are the functions

vi(=1,

forJj=1,...,K,
va5(t) =cos(Jnt/T),

forj=1,...,K-1,
V2]+1(t) =sin(Jxwt/T).

Thus, vector 7 is the 2K sample of function vy (#) over the interval [0, T] (see
Figures 7.6 and 7.7).

It is a fact that the 2K real Fourier vectors are linearly independent (in fact,
orthogonal) and therefore form a basis for R*X, although we will not prove this.
Therefore, the sample vectors d and g can be written as linear sums over the
Fourier vectors:

a= p1 '§1+...+p2K' 52](,
§= ql-i/’1+...+q2K‘l72K.
These coordinates are said to be in the frequency domain. The original coordi-
nates are in the time domain.
It is reasonable to suppose that if these equations hold for a dense sample

with large K, then they approximately hold for the actual continuous functions
involved. That is,

a= p;-vi+...+ prx- Vg,
g=(q1-Vi+...+q2k" VoK.
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(There is a large theory of approximation, which discusses under what circum-
stances this is valid and how accurate you can expect the approximation to be.)

We now return to the signal processing function F that we introduced at the
start of this section. It turns out that the function F does something rather sim-
ple with the Fourier vectors. Let us define the sequence of numbers dj, ..., dxx
as follows:

dy = Ay,

forJj=1,...,K,
doy=A]IT)cos(6(n]IT)),

forj=1,...,K-1,
doji1 = AJIT)sin(6 (]I T)).

Then F(vy) = dyv;.
Forj=1,...,K,

F(vejy) = F(cos(nmJt/T))
=A@JIT)cos(m]J/T)cos(mJt/T)— A ]/ T)sin(xJ/T)sin(mJt/T)

=dyjVay—dojr1Voys1.
For/j=1,...,K—-1,

F(vyy41) = F(sin(mJt/T))
=A@J/T)cos(x]/T)sin(xJt/T)+ A ]/ T)sin(z]J/ T)cos(m]jt! T)

=dpyi1Vj+ doyvys.
We can combine all of this to get the following:

GIVI+...+ QoxVog = g
=F(a)
~F(p1v1+...+ p2xvak)
= p1d1v1 + p2(dyvy — d3v3) + p3(davs + d3vo) + pa(dsvy — d5vs)
+ ps(dyvs + dsvy) +... + pag dox Vo
=d1p1v1 + (dap2 + d3p3)Va + (—ds p2 + da p3) Vs + (dy ps + ds ps5) vy
+ (=dspa+daps)Vs + ...+ dog p2xVor-
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Comparing the coefficients of v; in the first expression above and the last,
and using the fact that the v; are linearly independent, we conclude that

q1 = dip1,

G2 = dap2 + d3 p3,
qs = —d3pz + dap3,
q4 = dypy + dsps,
qs = —dspa + dyps,

Gox = A2k P2k.-

So 4 is a linear transformation of 5 with a matrix D that is nearly a diagonal:

[ d; 0 0 0 0 0
0 d, ds 0 0 0
0 -—-ds3 d 0 0 0
- 0 0 0 dy, ds 0 L
9 0 0 0 -—-ds dg 0 P
0 0 0 0 0 ... dyx

D represents the signal processing characteristics of the device. It is a sparse
matrix with 4K — 2 nonzero elements. The multiplication D - p can be carried
out in time O(K). It is also easy to invert, if you want to go from output to input.
D! is a matrix of the same structure, consisting of the inverse of each 1 x 1 or
2 x 2 square. So the inverse can be computed in time O(K); it is again a sparse
matrix, and multiplication by the inverse is carried out in time O(K).

But, of course, this simple form applies only to vectors in the frequency do-
main, whereas we actually always start from vectors in the time domain, and
generally we want to end there. That is where our theory of basis change comes
in. Let M be the matrix whose columns are the Fourier vectors. Then multi-
plication by M~! transforms vectors in the time domain to vectors in the fre-
quency domain, and multiplication by M transforms vectors in the frequency
domain back into the time domain. So §=M-D-M~!-a.

That doesn’t sound very promising; M and M~! are large, nonsparse matri-
ces. However, three facts come to our rescue here:

* The Fourier matrix of size 2K depends only on K and not on the signal
processor characteristics F and certainly not on the input p. Therefore,
M and its inverse can be computed once and for all and then reused for
all processors and inputs.
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* Since the columns of M are orthogonal, M~ is just M” with each row
divided by its length squared.

* Multiplying a vector # by M and by M~! does not require time O(K?); it
requires only time O(KlogK). The algorithm to achieve this is known as
the fast Fourier transform. In its modern form, it was discovered by Coo-
ley and Tukey, but a version was known to Gauss. The explanation of this
algorithm is beyond the scope of this book; see, for example, (Cormen et
al,, 2009, Chapter 30).

The fast Fourier transform is executed by electronic devices all over the
world millions of times every second. It is no exaggeration to say that mod-
ern electronic and communication depend critically on the fact that this basis
transformation can be computed in time O(Klog K) rather than time O(K 2,

7.6.1  Other Applications of the Fourier Transform

Many applications of the Fourier transform exist. One important category of
application is in the recognition of waveforms. For example, Figure 7.8 shows
the waveforms for a sustained middle A note as produced by a tuning fork,
a flute, a violin, and a singer, together with their Fourier transforms (see Pe-
tersen, 2004). (To be precise, the diagrams in the right column show the en-
ergy at each frequency, which is the sum of the squares of the amplitudes of
the sine and cosine wave at that frequency.) The waveforms are obviously very
different, but it is not immediately obvious how one would best distinguish

Wave Form o Spectrum
10
tuning fork 107 f f
107
0.005 0.01 0.015 10° 0 2000 4000 6000 8000
flute 1 0’2 n
10"
0.005 0.01 0.015 10° 0 2000 4000 6000 8000
violin 1072
107
0.005 0.01 0.015 10° 0 2000 4000 6000 8000
singer 1072
10
0.005 0.01 0.015 0 2000 4000 6000 8000
time, s frequency, Hz

Figure 7.8. Waveforms and energy spectra. (Petersen, 2004, Figure 3; courtesy of Mark
Petersen and the MAA.)
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them algorithmically. However, the energy spectra can be easily distinguished,
by comparing the energies at the fundamental frequencies and the harmon-
ics (the other peaks, integer multiples of the fundamental) between the differ-
ent spectra. Note that the energy spectra are drawn on a logarithmic scale, so
a small difference in height corresponds to a substantial ratio in the energy.
The perceived quality of the tones likewise reflects characteristics of the energy
spectrum:

The timbre, or sound quality of an instrument, is due to the relative strengths
of the harmonics. A pure tone, composed of the fundamental alone, is
shrill and metallic, like a tuning fork. Power in the higher harmonics add
warmth and color to the tone. Figure [7.8] shows that a flute is domi-
nated by the lower harmonics, accounting for its simple, whistle-like tim-
bre. In contrast violins have power in the higher harmonics which gives
them a warmer, more complex sound. The effect of higher harmonics is
clearly seen within the wave form, where the violin has complex oscilla-
tions within each period. (Petersen, 2004)

(Energy spectrum analysis does not by any means account for all the recog-
nizable differences in timbre between different musical instruments; another
aspect is the shape of the waveform at the beginning of the note, which is quite
different from the steady state.)

Another common application is in denoising a signal. In many situations,
it can be assumed that the low-frequency components of a waveform are the
signal and the high-frequency components are noise. A low-pass filter, which
keeps only the low-frequency components, can easily be constructed by per-
forming a DFT, deleting the high-frequency components, and then translating
back to the time domain. (Such filters can also be built out of analog compo-
nents, but software is often easier to construct, modify, and integrate.)

Innumerable other applications of the DFT exist, including image deblur-
ring, image compression, recovering signals from samples, tomography, and
finance (Marks, 2009).

7.6.2 The Complex Fourier Transform

The discrete Fourier transform is generally presented by using vectors and ma-
trices whose components are complex numbers. In particular, code for com-
puting the DFT, such as MATLAB'’s £ft function, mostly use the complex ver-
sion. The complex DFT is in many ways simpler than the real DFT presented
above; in the complex DFT, the matrix D is a pure diagonal matrix. However,
explaining the complex DFT would require a discussion of the theory of ma-
trices over complex numbers; this theory has some important differences from
matrices over the reals and it is beyond the scope of this book. Section 7.10
presents “black box” code to convert the complex £fft function provided by
MATLAB to the real DFT described previously.
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7.7 Singular Value Decomposition

In this section, we show that every linear transformation takes a particularly
simple form, with one particular choice of the basis in the domain and an-
other in the range. This is known as the singular value decomposition (SVD).
We begin by defining the SVD, and then we describe some of its properties and
applications.

Theorem 7.4. Let M be an m x n matrix. Let r = Rank(M). Then there exists an
orthonormal basis by, ..., by, forR" such that{M-b; -...M - b;} is an orthogonal
basis for Image(M).

In Theorem 7.4, the vectors 151,...,15,1 are called the right singular vectors
for M; these form an orthonormal basis for R”. The vectors Br+1,...,5n are
in Null(M) and are thus an orthonormal basis for Null(M). Fori =1,...,n, let
o;= IM-iJi |. Thevaluesoy,...,0, are called the singular valuesfor M. Note that
ifr<n,thenfori=r+1,...,n,0;=0. Fori=1,...,r,let ¢; = M-i)ilai. The
vectors ¢y, ..., Cr are the left singular vectorsfor M. By Theorem 7.4, ¢4,..., ¢, are
an orthonormal basis for Image(M). The proof of Theorem 7.4 is not difficult;
see Section 7.7.2.

The set of singular values is uniquely defined for any M, but the set of sin-
gular vectors is not quite unique. If the value o; occurs only once in the list of
singular values, then there are two choices for the associated vector, and one is
the negative of the other. If the same value occurs ¢ times in the list of singular
values, then there is a g-dimensional subspace of vectors associated with that
value, and any orthonormal basis for that subspace will serve as the associated
right singular vectors.

The SVD can be visualized as follows: Consider the n-dimensional sphere
S of unit vectors in R”. Now consider M-S ={M-§|§€ S}. M-S is an ellipsoid
within the subspace Image(M). The semiaxes of the ellipsoid are the values
of M- b;. So the lengths of the semiaxes are the singular values. The singular
vectors b; are the inverse image of the axes under M~!.

The singular values and vectors can be defined by using Algorithm 7.1.

Thus, the first singular vector i)l is the unit vector i that maximizes M i; the
second singular vector b, is the unit vector i orthogonal to b; that maximizes
Mi; the third singular vector bs is the unit vector i orthogonal to both b; and
b that maximizes M; and so on.

Alternatively, we can go from smallest to largest. That is, the last singular
vector En is the unit vector # that minimizes Mil; the second to last singular
vector IAan,l is the unit vector # orthogonal to 151 that minimizes Mii; and so on.
We end up with the same sets of singular values and singular vectors.

As an actual algorithm, this does not work very well because calculating the
maximum in step (3) of Algorithm 7.1 is difficult; it involves the maximization
of the quadratic function (M 15) o (M E) over the quadratic surface beb= 1, and
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vV —R"Y 1)
for (i—1,...,n) 2)
Ei — the unit vector b in ¥ for which |M - EI is maximal; 3)
gi — IM-b|. @)
ifo; #0then ¢ =M-b;lo;; (5)
¥V < the orthogonal complement of {E} inv”v (6)
endfor

Algorithm 7.1. SVD algorithm.

over the cross section of that surface with the linear subspace 7. The algo-
rithms that are actually used in computing the SVD are beyond the scope of
this book; see Trefethen and Bau (1997).

Example 7.5. Refer to Figure 7.9. Let

0752  1.236
M= -0.636 —0.048 |’

and let b; = (0.6,0.8), b, = (—0.8,0.6), &, = (0.96,—0.28), and & = (0.28,0.96).

It is easily checked that {Bl,f}g} and {¢;, ¢y} are orthonormal bases, and that
Mb; =1.5-¢ and Mb, = 0.5-&. Thus, the right singular values are b, and
132, the left singular values are ¢; and ¢, and the singular values are o) = 1.5
and o, = 0.5.

Example 7.6. Let

M= 1.0447 1.4777 0.9553
| 24761 -2.2261 -0.9880 |’

and let by = (2/3,2/3,1/3), by =(-2/3,1/3,2/3), by = (1/3,—2/3,2/3), é; = (0.5,
—0.866), and ¢é; = (0.866,0.5). It is easily checked that {b;, b», b3} and {¢, &} are

Figure 7.9. An example of the SVD (Example 7.5).
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orthonormal sets, and that Ml31 =4¢, Mﬁg =0.5¢;, and Ml33 =0. Thus, i)l, i)z,
and bs are the right singular vectors; ¢; and ¢, are the left singular vectors; and
01 =4, 0, =0.5, 03 =0 are the singular values.

7.7.1  Matrix Decomposition

Let M be an m x n matrix with rank r. Let 01,...,0, be the singular values
of M; let B = {by,...,b,} be the corresponding right singular vectors; and let
{¢1,..., ¢/} be the left singular vectors. If r < m, then let ¢,41,...,¢, be an or-
thonormal basis for the orthogonal complement to Image(M) in R™; thus, € =
{é1,...,E;,} is an orthonormal basis for R™.

Now let ¥ be any vector in R”. Let pj,..., pn be the coordinates of ¥ in 2.
Thus, U= pl-El +...+pnl3n. So

M'ﬁZM-(p1'51+...+pnén)
=piM-b1+...+ p,M-b,

=p101&1+...+pro.Cr.

In the last step, the terms after r are all zero, and can be dropped. Thus, the
coordinates of MU with respect to € are {(p 01, p202,...,pr0,0,0,...), filled
out at the end with (m —r) zeroes.

Therefore, we have Coords(M 7, 6) = S-Coords(7, 98), where S is the m x n
diagonal matrix with the singular values on the diagonal. Now let B be the
n x n matrix with columns 151 beees En and let L be the m x m matrix with columns
¢1,...,Cm. By Theorem 7.2 we have Coords (7, 28) = B~ '¥and M7 = L-Coords(M-
7,%). Let R = B™!; since B is an orthonormal matrix R = BT. Putting all of this
together we have Mv = (L-S-R)U. Since L, S, and R are independent of the
choice of 7, this equation holds for all 7, so we must have M = L-S- R. We have
thus proven Theorem 7.7.

Theorem 7.7. Let M be any m x n matrix. Then there exist matrices L, S, R such
that:

* Sisan mxn diagonal matrix with elements on the diagonal in descending
order,

* R isan nx n orthonormal matrix,
e L isan m x m orthonormal matrix,
e M=L-S-R.

Specifically the diagonal elements of S are the singular values of M, the rows of R
are the right singular vectors, and the columns of L are the left singular vectors.
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The expression of M as the product L- S- R is known as the singular value
decomposition of M. Strictly speaking, this is a slight misnomer because the de-
composition is not unique; in the case where the same singular value appears
multiple times in S, Theorem 7.12 applies to all the singular value decomposi-
tions of M.

For instance, in Example 7.5, we have

.0752 1.236
-0.636 —0.048

096 028 | [ 15 U 0.6 0.8
-0.28 0.96 0 0.5 -0.8 06 |’

In Example 7.6, we have

1.0447 1.4777 0.9553
-2.4761 -2.2261 -0.9880

—-0.6667 0.3333 0.6667

_[ 0.5 0.8660 ] [ 4.0 0 0
0.3333 -0.6667 0.6667

0.6667  0.6667 0.3333
—0.8660 0.5 0 05 0 ]

Now consider any n x n nonsingular matrix M. Then, Rank(M) = n, so all
the singular values o1,...,0, are nonzero. Let I;l,...,Bn be the right singular
vectors, and let ¢i,...,¢, be the left singular vectors; thus, Mb; = 0,;¢;, and
M™% = (1/0;)b;. Therefore, the left singular vectors of M are the right singu-
lar vectors of M~! and vice versa; the singular values of M~ are the reciprocals
of the singular values of M. (If we want to get the singular values in descending
order, we have to reverse all of the numberings.)

Note that if we start with the SVD decomposition equation M = LSR and
we take the transpose of both sides, we get

MT =SRT=RTSTLT. 7.1

But since L and R are orthnormal matrices, their transposes are likewise or-
thonormal; and since S is a diagonal matrix, S” is also a diagonal matrix. There-
fore, Equation (7.1) is the SVD decomposition for M’ . In particular, the singu-
lar values of M” are the same as those for M; as with most theorems about the
transpose, this is not at all obvious from the fundamental definition.

7.7.2  Proof of Theorem 7.4 (Optional)

Lemma 7.8. Let M be a matrix. Let p and § be orthogonal unit vectors. Let
U=M-pandv=M-q. Ifiie U > 0, then there exists a unit vector W that is a
linear sum of p and q such that | Mw| > |Mp|.
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Proof: We choose i to be the unit vector parallel to p + €4, where € > 0. (We
specify the value of € later.) Thus, é = p+¢g and i = é/|é|. Since p and § are
orthogonal, |é] = V1+¢€2,s0 1/ 812=1/(1+€%) >1-€2. Now,

M-w=M-((p+eq)/é]) = (li+ev)/|é],

SO

(IMW)? = (M) e (M) = (iieii+2ciie D+ Do D)/|8]°> (lieii+2ciie D+ Do D)(1—€)

= f? +2¢ii e U+ O(c?).
So aslong as € < ii » U/, we have IM-w|? > i) = IM-ﬁIZ, so|M-w|>|M-p|. O

Corollary 7.9. Let M be an m x n matrix and let V' be a subspace of R". Let p
be a unit vector in V such that |M - p| is maximal, and let Z be a unit vector in V'
orthogonal to p. Then M - Z is orthogonal to M - p.

Proof: Proof of the contrapositive: Suppose that Mz is not orthogonal to Mp;
thus, (M2) ¢ (Mp) #0. If (M%) « (MP) <0, then let § = —2; else, let § = 2. Then
(M@) » (Mp) > 0. By Lemma 7.8, there exists a unit vector & in 7 such that
|[Mw|>|Mp|. But then p is not the unit vector in 7 that maximizes |[Mp|. O

We now turn to the proof of Theorem 7.4. We prove that Theorem 7.4 is true
by proving that the SVD algorithm (Algorithm 7.1) computes sets of right and
left singular vectors and singular values that satisfy the theorem. This proof has
three parts.

1. The algorithm can always be executed. The only part of the algorithm
that is at all difficult is in regard to Step 3, the existence of a unit vector b
in 7 that maximizes | M-b|. The existence of such a maximal value follows
from a basic, general theorem of real analysis that a continuous function
over a closed, bounded set has a maximal value (this theory is beyond the
scope of this book); here, the function |M - EI is the continuous function
and the set of unit vectors in the vector space 7 is closed and bounded.
Since the dimension of 7 is reduced by 1 at each iteration of the for loop,
it works its way down from R” at the start of the algorithm to the zero
space at the end; therefore, the algorithm terminates.

2. The vectors i)l, s En are orthogonal, since at the end of the ith iteration
¥ is the orthogonal complement to by, ..., b;, and all the remaining val-
ues of b are chosen from within this space.

3. All that remains to be shown is that the vectors ¢i,..., ¢, are orthogonal.
Consider any two indices i < j. On the ith iteration of the loop, b; is
the unit vector in the current value of 7 that maximizes |M - b;|. Since
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Bj is in that value of 7, and since Bj and Bi are orthogonal, it follows
from Corollary 7.9 that Mb; and MBj are orthogonal, so ¢; and ¢; are
orthogonal.

7.8 Further Properties of the SVD

The SVD can be used to solve many other important minimization and max-
imization problems associated with a matrix or a linear transformation. We
mention, without proof, some of the most important of these. What is remark-
able is that all these different problems have such closely related solutions.

Definition 7.10. Let A and B be two m x n matrices. The Frobenius distance
between A and B, denoted d» (A, B), is defined as

d2(A,B) = [} (Ali,j]1-Bli, j1)%.
ij

The absolute distancebetween A and B, denoted d; (A, B), is defined as

d\(A,B) =)_|Ali, jl- Bli, jlI.
i,j

If we flatten A and B out to be two long, m - n dimensional vectors, then the
Frobenius distance is just the Euclidean distance between these vectors. For
example, if we let

2

2 )

5 2
2 3

= co

1 2
A‘[s 6

and B:[

then

d(AB)=vV(1-22+(5-82+(2-2)2+(8-6)2+(2—4)2 + (3-2)2
=19
=4.3589,
di(AB)=|1-2|+|5-8|+[2-2|+[8—-6]+|2—4]| +|3 -2
=9.

Definition 7.11. Let Abe an m x n matrix; let k < min(m, n); and let L, S, R be
the SVD decomposition of A. Thus, A=L-S-R. Let S* be the diagonal matrix
in which the first k diagonal elements are equal to the corresponding element
of S and the remaining elements are 0. Let L¥ be the m x m matrix in which
the first k columns are equal to L and the rest are 0. Let R* be the 7 x n matrix
in which the first k rows are equal to R and the rest are 0. Then the kth SVD
reconstruction of A is the product LS¥R = LFSkRk,
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Theorem 7.12. Let A be an m x n matrix. The matrix of rank k that is closest to
A is the kth SVD reconstruction of A when “closeness” is measured either by the
Frobenius distance or by the absolute distance.

Moreover, if the singular values that are dropped in S¥ are small compared
to those that are included, then these two distances are small compared to the
inherent size of A. For details, see Trefethen and Bau (1997). Section 7.9.3,
discusses how this theorem can be applied to data compression.

A MATLAB example follows.

>> A=[1,0,1,0; 2,4,6,7; 3,8,10,2]

A =
1 0 1 0
2 4 6 7
3 8 10 2
>> [L,S,R]=svd(A) % SVD Decomposition
L =
-0.0590 0.0532 -0.9968
-0.5878 -0.8090 -0.0084
-0.8069 0.5854 0.0790
g =
16.1103 0 0 0
0 4.8394 0 0
0 0 1.0185 0
R =
-0.2269 0.0396 -0.7626 -0.6045
-0.5466 0.2991 0.5875 -0.5163
-0.7234 0.2178 -0.2527 0.6045
-0.3556 -0.9282 0.0975 -0.0504
>> R=R?’;
>> L*S*R
ans =
1.0000 0.0000 1.0000 0.0000
2.0000 4.0000 6.0000 7.0000
3.0000 8.0000 10.0000 2.0000
>> S1=zeros (3,4);
>> 81(1,1)=8(1,1)
S1 =
16.1103 0 0 0
0 0 0 0
0 0 0 0
>> A1=L*S1%R % First SVD Approximation
Al =
0.2156 0.5194 0.6874 0.3379
2.1485 5.1762 6.8504 3.3671

2.9492 7.10562 9.4034 4.6219
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>> rank (A1)
ans =

1
>> norm(A1-4) % Frobenius distance
ans =
4.8394
>> sum(sum(abs (A1-4))) % Absolute distance
ans =
11.9264
>> S2=851;
>> 82(2,2)=5(2,2)
52 =
16.1103 0 0 0
0 4.8394 0 0
0 0 0 0
>> A2=L*S2*R % Second SVD Approximation
A2 =
0.2258 0.5964 0.7435 0.0990
1.9935 4.0050 5.9978 7.0008
3.0613 7.9527 10.0203 1.9922
>> rank (A2)
ans =
2
>> norm(A2-4) % Frobenius distance
ans =
1.0185
>> sum(sum(abs (A2-4))) % Absolute distance
ans =
1.8774

We have already seen that the first right singular vector for matrix A is the
unit vector # such that | A- 71| is maximal and that the last right singular vector is
the vector # for which |A- 7| is minimal. Theorems 7.13 and 7.15 state that this
generalizes to the first and last k singular vectors as a collection in two different
ways.

Theorem 7.13. Let A be an m x n matrix and let k < n. For any orthonormal
set{ily,..., Uy} of k n-dimensional unit vectors, consider the sum Zi.‘zl |A-0;)2.
The set of k orthonormal vectors that maximizes this sum is the set of the first k
right singular vectors of A. The set of k orthonormal vectors that minimizes this

sum is the set of the last k right singular vectors of A.

Section 14.6 discusses an application of Theorem 7.13 to statistical analysis.

Finally, Theorem 7.16 states that the space spanned by the k first right sin-
gular vectors of a linear transformation T is the k-dimensional subspace of R”
that is most expanded by I', and that the space spanned by the last k span is the
space that is least expanded.
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First, we need to define the amount that a linear transformation expands
or contracts a subspace; this is done by using the determinant, as defined in
Definition 7.14 and Theorem 7.15.

Definition 7.14. Let T be a linear transformation from R” to R™. Let k <
Rank(T'). Let 7 be any k-dimensional subspace of R” such that 7 nNull(T') = {0}
Let 8 = (iy,..., U;) be an orthonormal basis for 7, and let € = (i, ..., lix) be
an orthonormal basis for I'(¥). Let G be the matrix such that, for any vector
U eV, Coords(I'(V),¥¢) = G-Coords(U, ). Then the determinant of T restricted
to 7, denoted Dety (I), is defined as | Det(G)|.

Here the value Dety (I') does not depend on the choice of the bases 28 and
% . The geometric significance of this quantity is given in Theorem 7.15.

Theorem 7.15. LetT, k, and ¥ be as in definition 7.14. Let R be a region in
V. Then the k-dimensional measure (i.e., the k-dimensional analog of area or
volume) of T'(R) is equal to Dety (I') times the k-dimensional measure of R.

The determinant restricted to 7 is thus a measure of how much I'" expands
or contracts regions in 7.
We can now relate maximal and minimal expansion to the singular vectors.

Theorem 7.16. Let A be an m x n matrix and let T be the corresponding linear
transformation fromR" toR™. Let r = Rank(') and letk <r.

e Over all k-dimensional subspacesV such thatV nNull(I') = {0}, the maxi-
mum value of Dety (') is achieved when V' is the subspace spanned by the
k first right singular vectors of A.

* Qver all k-dimensional subspaces V such thatV is orthogonal to Null(I'),
the minimum value of Dety (') is achieved whenV is the subspace spanned
by the k last singular vectors of A with nonzero singular value; that is, the
vectors thy1—k, ..., Uy, where iy, iy, ..., i, are the right singular vectors.

7.8.1 Eigenvalues of a Symmetric Matrix

The theory of eigenvalues and eigenvectors is a very important aspect of ma-
trix theory for applications in physics and engineering as well as purely math-
ematical analysis. We have largely omitted it in this textbook—first, because
it is much less important in computer science applications; and second, be-
cause an adequate general discussion necessarily involves linear algebra over
the field of complex numbers. However, for the particular case of a symmetric
matrix, only real numbers are involved, and the theory is closely related (in fact,
identical) to the theory of singular values, so we describe eigenvalues briefly
here.
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Definition 7.17. Let A be an n x n matrix. An n-dimensional vector U is an

-

eigenvector of A with associated eigenvalue A if A-v=71-0.
Definition 7.18. A square matrix A is symmetricif AT = A.

Theorem 7.19. Let A be a symmetric matrix. Let i be a right singular vector
with corresponding singular value o and corresponding left singular vector .
Then t is an eigenvector with eigenvalue +o, and thus | = +7.

The proof is omitted. The converse—if the right singular vectors are eigen-
vectors, then the matrix is symmetric—is uncomplicated, and left as Prob-
lem 7.4.

Corollary 7.20. Let A be a symmetric n x n matrix. Then there exist n linearly
independent real eigenvectors of A, with real eigenvalues. Moreover, the eigen-
vectors are all orthogonal.

The significance of Corollary 7.20 within the general theory of eigenvalues
is that for nonsymmetric matrices, eigenvalues and eigenvectors may be com-
plex, eigenvectors may not be orthogonal, and there may not exist 7 linearly
independent eigenvectors, even if complex vectors are considered. Thus, real
symmetric matrices have eigenvectors that are strikingly well-behaved.

7.9 Applications of the SVD

This section discusses three applications of the SVD: condition number, ap-
proximate rank, and lossy compression. In Section 14.6, we discuss principal
component analysis, which is an application of the SVD to statistics.

7.9.1 Condition Number

The condition number of a function is a measure of how errors in the input
propagate to become errors in the output; specifically, it is the ratio between
the relative error in the output and the relative error in the input. For instance,
suppose that we want to calculate f(x), and we have an estimate X of x that is
accurate to within 1% of | x|; that is, |X — x| = .01x. If the condition number of f
is 4, then f(X) is within 4% of f(x). If the condition number of f is 10, then f(X)
is within 10% of f(x). If the condition number of f is 1000, then | f(X) — f(x)|
may be 10 times as large as | f (x)[; in that case, f (%) is useless as an estimate for
most purposes.
Symbolically,

Condition(f) = sup L H —/ I/ (D
X% |X—xl|/|x]|
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where x and % range over all values for which none of the denominators in-
volved are 0.

For a linear transformation, the condition number can be directly com-
puted from the singular values.

Theorem 7.21. If f is the linear transformation corresponding to matrix M,
then the condition number of f is the ratio of the largest and smallest singular
values: Condition(f) = o1(M)/c ,(M).

It is easy to show that the condition number is at least as large as o,/0,.
Let by and b, be the right singular vectors corresponding to o; and o,,. Let
x = by, and let X = by, +eb;. Then |x| = 1; |- x| = ¢, If ()| = |f(I;n)| =0, and
[fR) - f)] = f(x-x) = f(eBl) = €01. So Condition(f) = (eo1/0y,)/(€/1) =
oiloy.

Showing that the condition number is not larger than o,/0, takes a little
more work, and we omit it here.

We can use this to gain more insight into the problems in Section 5.5 that
gave MATLAB such grief. Recalling the first example in Section 5.5, let d = 1079
and let M be the matrix

M=y 1_a

1+d 1 ]

It is easily shown that the singular vectors are approximately (v/1/2, v/1/2) with
singular value 2 and (V172,-v/172) with singular value d. Hence, the condition
number is 2/d = 2-10°, so this matrix is very ill-conditioned. In solving the
linear equation M% = (1,1), note that the singular values of M~! are 10°, and
1/2, and the condition number is again 2-10°. Another example is discussed in
Exercise 7.2.

7.9.2 Computing Rank in the Presence of Roundoff

As discussed in Section 5.2, the rank of matrix M can be computed by using
Gaussian elimination to reduce M to row-echelon form and then counting the
number of nonzero rows. This works very well when the coefficients of M are
known exactly and the Gausssian elimination algorithm can be carried out pre-
cisely. However, if there is any noise in the coefficients of M, or any roundoff
error in the execution of Gaussian elimination, then Gaussian elimination does
not give any useful information about the rank. For example, it does not work
to discard any rows that are “close to” 0; Gaussian elimination normalizes the
first coefficient in each row to 1, so no nonzero row is close to 0.

In this situation, the following method works well; it is, in fact, the method
that MATLAB uses to compute rank. We set a small threshhold, compute the
singular values of M, and conjecture that singular values below the threshhold
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are actually zero and therefore the rank is equal to the number of singular val-
ues above the threshhold. This conjecture is reasonable in two senses. First,
it often does give the true rank of M; it is indeed often the case that the sin-
gular values that are computed as small are actually zero, and they appear as
nonzero only due to roundoff error. Second, even if the small singular values
are actually nonzero, the rank r computed by this procedure is “nearly” right,
in the sense that M is very close to a matrix M’ of rank r; namely, the rth SVD
reconstruction of M.

Choosing a suitable threshhold is a process of some delicacy; the right
choice depends the size of M and on how M was constructed. The comments
on Assignment 6.1 discuss a case in which MATLAB ’s default threshhold turns
out to be too small.

7.9.3 Lossy Compression

A compression algorithm @ is one that takes as input a body of data D and con-
structs a representation E = ®(D) with the following two constraints.

* The computer memory needed to record E is much less than the natural
encoding of D.

¢ There is a decompression algorithm W to reconstruct D from E. If W(E)
is exactly equal to D then @ is a lossless compression algorithm, If W (E)
is approximately equal to D, then @ is a lossy compression algorithm.

Whether a lossless compression algorithm is needed or a lossy compres-
sion algorithm will suffice depends on the application. For compressing text
or computer programs, we need lossless compression; reconstituting a text or
program with each character code off by 1 bit is not acceptable. For pictures,
sound, or video, however, lossy compression may merely result in a loss of qual-
ity but still be usable; if every pixel in an image is within 1% of its true gray level,
a human viewer will barely notice the difference.

The SVD can be used for lossy compression as follows. Suppose that your
data are encoded in an m x n matrix M. Compute the SVD decomposition M =
LSR. Choose a value k that is substantially less than m or n. Now let S’ be
the diagonal matrix with the first k singular values. Let R’ be the matrix whose
first k rows are the same as R and the rest 0. Let L' be the matrix whose first k
columns are the same as L and the rest 0. Let M’ = L'S'R’. By T heorem 7.12,
M’ closely approximates M, particularly if the singular values that have been
dropped are small compared to those that have been retained.

The compressed encoding here is to record the nonzero elements of L', S’
and R'. L' has km nonzero elements, S’ has k, and R’ has kn, for a total of
k(m+n+1); if k is small, then this is substantially smaller than the mn nonzero
elements in M.
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Figure 7.10. Using the SVD for lossy image compression. Original gray-scale image (up-
per left) and reconstructions with two singular values (upper right), five singular values
(lower left), and 30 singular values (lower right).

Figures 7.10 and 7.11 show a gray-scale image and a line drawing, respec-
tively, and a few of their approximations with different values of k.

b

l""--—-—-—-" ' S
¥ g £ Lk
Figure 7.11. Using the SVD for lossy image compression. Original line drawing of a
bear (left) and reconstructions with 4 singular values (middle), and 10 singular values

(right).
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7.10 MATLAB
7.10.1  The SVD in MATLAB

The MATLAB function svd (M) can be used in two ways. If we request one value
to be returned, then the function returns the vector of singular values; if we
request three values to be returned, then it returns the three matrices L, S, R.

% Example 7.2 in the text
>> M=[1.0447, 1.4777, 0.9553; -2.4761, -2.2261, -0.9880]
M =

1.0447 1.4777 0.9553
-2.4761 -2.2261 -0.9880
>> svd (M)
ans =
4.0000
0.5000

>> [L,S,R]=svd (M)

L =
-0.5000 0.8660
0.8660 0.5000
S =
4.0000 0 0
0 0.5000 0
R =
-0.6667 -0.6667 0.3333
-0.6667 0.3333 -0.6667
-0.3333 0.6667 0.6667

>> P=L*S%R?’

P =
1.0447 1.4777 0.9553
-2.4761 -2.2261 -0.9880

>> norm(P-M)
ans =
7.3723e-16

7.10.2 The DFT in MATLAB

MATLAB provides built-in functions ££t and ifft for carrying out the fast Fourier
transform; however, these use the complex version of the FFT.

If we want to use the real DFT, as described in Section 7.6, then we have
two choices. The conceptually easy way is to use the function trigBasis (K) to
construct the 2K x 2K matrix M of Fourier component vectors. Then M\V will
convert a vector V in the real domain to the frequency domain, and M * v will
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convert V from the frequency domain to the time domain. However, this loses
the efficiency of the FFT.

To take advantage of the efficient FFT, two “black box” routines are pro-
vided here that compute the real DFT using MATLAB’s built-in £ft as a subrou-
tine. The function dft (V) maps a column vector V from the time domain to the
frequency domain; that is, dft (V) = trigBasis(K)\V. The function idft (V)
maps a column vector V from the frequency domain to the time domain; that
is, trigBasis(K) * V = idft (V).

In using the FFT, note that the algorithm works best if the dimension is a
power of two or factorizable into small primes. It runs considerably slower if
the dimension is a large prime or has a large prime factor. Of course, depending
on the application, there may not be any choice about the dimension.

% File trigBasis.m
% Returns the matrix whose columns are the trigonometric Fourier
% of size 2K

components

% 1 cos(pi/K) sin(pi/K) cos (2 pi/K) sin(2 pi/K) ... cos(pi)
% 1 cos(2 pi/K) sin(2 pi/K) cos(4 pi/K) sin(4 pi/K) ... cos(pi)

function b = trigBasis (K)
N=2%K;
b=zeros (N,N);
b(:,1) = ones(N,1);

for j=1:K
for i=1:N
b(i,2%j) = cos(ixj*pi/K);
if (2%j "= N) b(i,2*j+1) = sin(i*j*pi/K); end
end
end
end

% Example
>> trigBasis (2)

ans =
1.0000 0.0000 1.0000 -1.0000
1.0000 -1.0000 0.0000 1.0000
1.0000 -0.0000 -1.0000 -1.0000
1.0000 1.0000 -0.0000 1.0000

>> trigBasis (3)

ans =
1.0000 0.5000 0.8660 -0.5000 0.8660 -1.0000
1.0000 -0.5000 0.8660 -0.5000 -0.8660 1.0000
1.0000 -1.0000 0.0000 1.0000 -0.0000 -1.0000
1.0000 -0.5000 -0.8660 -0.5000 0.8660 1.0000
1.0000 0.5000 -0.8660 -0.5000 -0.8660 -1.0000
1.0000 1.0000 -0.0000 1.0000 -0.0000 1.0000

% 1 cos(3 pi/K) sin(3 pi/K) cos(6 pi/K) sin(6 pi/K) ... cos(pi)
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File dft.m
Converts column vector in time domain to vector in frequency domain
using the real Fourier components discussed in the text
Let X = < x[1] ... x[n] >
Let F = dft(X)
Then X[i] = F[1] + F[2] cos(pi i/N) + F[3] sin(pi i/N) +
+ FIN-2] cos(pi (N-1)/N) +F[N-1] sin(pi i (N-1)/N)) + F[N] cos(pi i).

dft(x) is equal to trigBasis (N/2)\x but computes faster, since it uses
the FFT.

function f = dft(x)

n = size(x);
n = n(1);
y(1,1) = x(n,1);
y(2:n,1) = x(1:n-1,1);% Rotate x to change from 1-based indexing to O-based
g = ifft(y);
f(1,1)=g(1,1);
k = floor(n/2);
for j=1:k-1
f(2%j,1) = g(j+1,1) + g(n+1l-j);
£f(2xj+1,1) = (g(j+1,1) - g(n+1-j))/i;
f(n,1)=g(k+1,1);
end

end

%

Examples

>> dft ([1;2;2;1])°
ans =

1.5000 -0.5000 -0.5000 0

>> (trigBasis (2)\[1;2;2;1]1)°
ans =

1.5000 -0.5000 -0.5000 0

>> dft ([1;4;2;8;5;7]1)°

ans =

4.5000 0.6667 -2.3094 0 0 1.8333

>> (trigBasis (3)\[1;4;2;8;5;7])°
ans =

4.5000 0.6667 -2.3094 -0.0000 -0.0000 1.8333

Converts column vector in frequency domain to vector in time domain.
using the real Fourier components discussed in the text
Let X = < x[1] ... x[n] >
Let F = idft(X)
Then F[i] = X[1] + X[2] cos(pi i/N) + X[3] sin(pi i/N) +
XIN-2] cos(pi (N-1)/N) +X[N-1] sin(pi i (N-1)/N)) + X[N] cos(pi i).

idft(x) is equal to trigBasis (N/2)*x but computes faster, since it uses
the FFT.
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function f = idft(x)

n = size(x);

n = n(1);

end

k = floor(n/2);
y(1,1)=x(1,1);
for j=1:k-1

y(j+1,1)

= (x(2xj,1) + i *x x(2%j+1,1))/2;

y(n+1-j,1) = (x(2%j,1) - i * x(2%j+1,1))/2;

end ;
y(k+1,1)

x(n,1);

g = fft(y);
f(n,1) = g(1,1);

f(l:n-1,1)

% Examples

= g(2:n,1); % Rotate g to change from O based indexing to 1 based

>> idft ([1;2;2;1])°

ans

2

0

-2 4

>> (trigBasis (2)*[1;2;2;1])°

ans

2.0000

0.0000 -2.0000 4.0000

>> idft ([1;4;2;8;5;7]1)°

ans

-1.9378

-0.5981 -2.0000 4.5981 -14.0622 20.0000

>> (trigBasis (3)*[1;4;2;8;5;7])°

ans

-1.9378

-0.5981 -2.0000 4.5981 -14.0622 20.0000

>> idft(dft ([1;4;2;8;5;7]1))°

ans

1.0000

4.0000 2.0000 8.0000 5.0000 7.0000

>> dft (idft ([1;4;2;8;5;71))°

ans

1.0000

4.0000 2.0000 8.0000 5.0000 7.0000

Exercises

Exercise 7.1. Let € be the coordinate system with origin o, unit length d, and
unit coordinate arrows x and ? Let 2 be the coordinate system with origin p,

= =
unit length e, and unit coordinate arrows i and j.

=
Suppose that Coords(p, €) = (2,3), Coords(e, ¥) = 5, Coords(i,¥) = (4,3),
=
and Coords(j,€) = (-3,4).
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(a) Let q be the point with coordinates (1,2) in 8. What are the coordinates
ofqin 67?

(b) Letr be the point with coordinates (1,2) in ¢. What are the coordinates
of r in 98?

Note: You should be able to solve (a) by hand. For (b), try to solve it by hand; if
you get stuck, use MATLAB.

Exercise 7.2. Consider the 8 x8ill-conditioned matrix discussed in Section 5.5:

1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.009
1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.010
1.003 1.004 1.005 1.006 1.007 1.008 1.010 1.011
1.004 1.005 1.006 1.007 1.008 1.010 1.011 1.012
1.005 1.006 1.007 1.008 1.010 1.011 1.012 1.013
1.006 1.007 1.008 1.010 1.011 1.012 1.013 1.014
1.007 1.008 1.010 1.011 1.012 1.013 1.014 1.015
1.008 1.010 1.011 1.012 1.013 1.014 1.015 1.016

(a) What is the condition number for this matrix? (Note: Copying this from
the 8 x 8 matrix shown is error-prone; the matrix is not quite as regular
as it appears at first glance. Copy the MATLAB code used to create it in
Section 5.5.)

(b) Inthe example given on page 133, let x be the second vector of constant
terms and let X be the first vector. Then the ratio of relative error in the
answer to relative error in the constant terms is about 84,000, which is
large but much less than the condition number. Construct an example
for which this ratio is close to the condition number.

Exercise 7.3. This exercise asks you to experiment with using singular value
decomposition for image compression.

Step 1. Obtain a gray-scale image to use.

Step 2. Load the image into an m x n array Image, by using the supplied func-
tion® getimage .m.

Image = getimage (’lincoln.png’);
Step 3. Carry out the SVD decomposition on Image:

[L,S,R] = svd(Image);
R=R’;

5This function is courtesy of Pascal Getreuer, in http://www.math.ucla.edu/~getreuer/
matlabimaging.html.
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Step 4. For various small values of k, construct the kth order approximation
of Image, as described in Section 7.9.3:

* Let S1 be the k x k matrix with the first k singular values in S.
e Let L1 be the m x k matrix with the first k columns of L.

* Let R1 be the k x n matrix with the first k rows of R.

e Let Imagel =L1-S1-RI1.

Step 5. Print out the image by using the MATLAB function imwrite. It is recom-
mended that images be output in .png format.

imwrite (Imagel ,’<filename>’)

Step 6. Pick a couple of characteristics of the image, and find the smallest val-
ues of k for which these characteristics are recognizable in the recon-
structed image. For instance, for Lincoln, you might choose to find the
smallest values for which the image is recognizably a seated person, and
the smallest value for which it is recognizably Lincoln.

You should submit the images you have found in Step 6, together with a
statement of what features you were looking for.

If you want to be ambitious, use a color image instead. The function
getimage will return an m x n array, one layer for each primary color. Do SVD
decompositions on each of the layers separately, and proceed as above.

If you want to be really ambitious, do this with several images of different vi-
sual characteristics—high contrast versus low contrast, simple versus complex,
gray scale versus line drawing—and try to get a feeling for when this works well,
when badly, and so forth.

Problems

Problem 7.1. Let Abe an m x n matrix and let A = L-S- R be the singular value
decomposition of A. The Moore-Penrose pseudoinverse of A is the n x m matrix
computed as follows: Let S’ be the nx m diagonal matrix in which each nonzero
singular value o in S is replaced by 1/0 and every zero singular value is left
unchanged. Then the pseudoinverse A’ is equal to R -§'- LT

For example, let

13/9 11/9 13/9 11/9
A=| -23/18 -25/18 -23/18 -25/18
5/9 719 5/9 7/9
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Then the SVD of Ais A=L-S- R where

1/2
1/2

2/3  2/3 1/3 4 0 00 ig _ig
L=| -2/3 1/3 2/3|, S=|0 1/3 0 0|, R=
1/3 -2/3 2/3 0 0 00 vz Az
12 -1/2 -1/2
Then
1/4 0 0
| 0o 30
=l o 0o
0 00
SO
13/12  5/12  -23/24
N oRpT.g. T | ~1/12 =712 25/24

13/12 5/12  -23/24
-11/12 -=7/12 25/24

(Keep in mind that L and R are orthogonal matrices, so LT=L'andRT =R™1)
Prove that, for any matrix A (notjust the particular example above) if A’ is the
pseudoinverse, then the following properties hold:

(@ A-A-A=A.
(b) A-A-A=A
(c) If Ais a nonsingular square matrix, then A’ = A~!,

(d) A-A" and A’- A are both symmetric matrices. That is, if B = A- A" and
C=A"-AthenBT=BandCT=C.

The converse is also true: For any matrix A, the only matrix that satisfies the
properties (a), (b), and (d) is the Moore-Penrose pseudoinverse of A. However,
that is not easy to prove.

Problem 7.2. Section 6.4.7 stated that if A is a square matrix and T is the lin-
ear transformation corresponding to A, then, for a region R, Volume(I'(R)) =
| Det(A)|-Volume(R). Using this relation, show that, for any square matrix A,
| Det(A)] is equal to the product of the singular values of A.

Problem 7.3. A transformation I is a projection if, for all vectors 7, I'(I'(D)) =
I'(?). (Thisis related to the geometric notion of projection, but alittle different.)
Characterize a projection in terms of its singular values and in terms of the
relation between the right and left singular vectors.

Problem 7.4. Prove the following: If the right singular vectors of matrix A are
all eigenvectors of A, then A is a symmetric matrix.

1/2
-1/2
-1/2

1/2
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Problem 7.5. Any set % of nlinearly independent n-dimensional vectors forms
a basis for R", and therefore any n-dimensional vector can be written as a lin-

ear sum over 98. Applying this logic to the three-dimensional vector space of
colors would seem to suggest that if your palette is three somewhat different

shades of red, you can mix them to form any desired color, such as blue. That

seems implausible. Resolve this apparent paradox.

Programming Assignments

Assignment 7.1. A low-pass filteris a signal processor that removes, or lessens,
the high-frequency Fourier components of a signal while leaving the low-
frequency components unchanged. Conversely, a high-pass filter removes, or
lessens, the low-frequency, leaving the high-frequency unchanged.

Write two functions LowPass (S,F) and HighPass (S,P), using input param-
eter S as a time signal over time interval [1,2N] and P as the cut-off period in
one direction or the other. (The frequency is the reciprocal of the period.) The
algorithms should proceeds as follows:

e Let T be the discrete Fourier transform of S.

¢ For the low-pass filter, set T[k] — 0 for all k > N/P. For the high-pass
filter, set T[k] — O forall k < N/P.

¢ Return the inverse transform of the modified value of T.

Test your program on the square wave S[i] =1 fori =1,...,32, S[i] = -1 for
i =33,...,60. Plot the original signal, the Fourier coefficients, and the results of
low-pass and high-pass filters for various values of V.
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Chapter 8

Probability

Most of mathematics deals with statements that are known with certainty, or
as least as much certainty as can be attained by fallible human beings. The
statement “2+2=4" is the archetype of a statement that is known to be true. Ina
similar way, the objective in many types of computer software is to be entirely
reliable, or at least as reliable as a machine that is built of silicon and is running
a commercial operating system can be. Indeed, we don't want compilers, or
payroll databases, or control systems for nuclear reactors to give more or less
correct answers most of the time—we want them to always work correctly. To
a substantial degree, this is often an attainable goal.

The reality of life, however, is that we cannot work exclusively with infor-
mation that is known with certainty. Often we must choose our actions as best
we can on the basis of information that is partial and uncertain. Likewise, pro-
grams such as search engines, recommender systems, automatic translators,
and the like, whose results are not reliably correct, occupy an increasingly large
and important segment of the world of software.! Therefore, the mathematical
theory of dealing with uncertain information has become increasingly impor-
tant in many computer science applications. Probability theory is the funda-
mental theory of manipulating uncertainty.

8.1 The Interpretations of Probability Theory

Probability theory has to do with assigning numbers, called probabilities, to
entities of a certain kind, called events. For the remainder of this book, we use
the notation P(E) to mean the probability of event E.

Unfortunately, there are multiple, conflicting interpretations of probability
theory, each with a different idea about what kind of entity an “event” is, and

1Even with programs from which we expect and can get reliably correct answers, there may be
other aspects from which a probabilistic analysis is useful. For example, a database may introduce
a query optimization that, with high probability, speeds up the computation of the answer.
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therefore a different idea of what probability theory is fundamentally about.
(See Fine (1973) for a survey.) In this book, we look at two interpretations:

¢ The sample space or frequentist interpretation, which has a fixed universe
of entities Q, called a sample space. An event is a subset of the sample
space. The probability of event E is the fraction of Q that is in E.

» The likelihood or subjectivist interpretation, in which an event E is a sen-
tence or a proposition. P(E) is a judgment of how likely it is that E is true,
as judged by a reasoner with some particular background knowledge.

We first discuss the sample space interpretation, which is conceptually the
simpler of the two theories. We then turn to the likelihood interpretation, which
is closer to the way that probability theory is used in the kinds of applications
we later discuss. But we will see that the way that probability theory is used
in applications does not fit perfectly with the likelihood interpretation either.
There is, perhaps, yet another interpretation, the “application” interpretation,
implicit here; if so, no one has yet clearly formulated what it is.

8.2 Finite Sample Spaces

In the sample space interpretation of probability theory, all discussions of prob-
abilities are carried out relative to a probability space. Probability spaces can be
either finite or infinite; both cases are important, and there are significant dif-
ferences between them. In this chapter, we deal exclusively with finite spaces.
(We deal with the infinite case in Chapter 9.)

A finite probability space consists of two parts: a finite set Q, called the
sample space, and a real-valued function P(x) over Q, called the probability
function or distribution. The probability function has two properties:

Fl. ForallxeQ,0<P(x)<1.
F2. ¥ eq P(x) =1.

An event is a subset of Q. For any event E, the probability of E is the sum of
the probabilities of its elements: P(E) =) ycg P(x).

A set containing a single element of Q is an elementary event.

A probability function that satisfies properly F2 is said to be normalized. It
is often convenient to deal with a more general class of weight functions w(x)
that satisfy the following weaker conditions:

WI1. Forall xe Q, w(x) = 0.

W2. Forsome x€ Q, w(x)>0.
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We define the weight of any event E as the sum of the weights of the elements
of E: w(E) =Y yep W(X).

Clearly, if P(x) is a probability function satisfying F1 and F2, then the weight
function w(x) = P(x) satisfies W1 and W2. Conversely, if weight function w(x)
satisfies W1 and W2, then we can normalizeit by defining the associated proba-
bility function P(x) = w(x)/ w(Q). It is immediate that P(x) so defined satisfies
F1 and F2 and that for any event E, P(E) = w(E)/ w(Q).

The following examples are standard starting points for discussions of prob-
ability.

Example 8.1. We flip a fair coin. The sample space Q ={ H, T }. The probabil-
ity function is P(H) = 1/2; P(T) = 1/2. The weight function w(H) = w(T) =1
gives the same probability function. There are only four events in this sample
space: P(@) =0; P({H}) = 1/2; P({T}) = 1/2; P(Q) = 1. This probability function
is called the uniform or equiprobable distribution, because all the elements of
Q have the same probability.

Example 8.2. We flip a weighted coin that comes up heads 3/4 of the time. The
sample space Q ={ H, T }. The probability function is P(H) = 3/4; P(T) = 1/4.

Example 8.3. We roll a fair die. The sample space Q = {1,2,3,4,5,6}. The prob-
ability function is the equiprobable distribution P(x) = 1/6 for each x € Q.
There are 64 = 25 possible events here. Example probabilities include the fol-
lowing.

* To compute the probability of rolling an even number, we use the event
E=1{2,4,6}, and compute P(E) = P(2)+P(4)+P(6) = (1/6)+(1/6)+(1/6) =
3/6.

* To compute the probability of rolling at least a 3, we use the event E =
{3,4,5,6}, and compute P(E) = P(3) + P(4) + P(5) + P(6) = (1/6) + (1/6) +
(1/6) + (1/6) = 4/6.

When the probability is uniformly distributed, as in Example 8.3, we can equally
well use the weight function w(x) = 1 for each x € Q. Then for any event E,
w(E) = #E, the number of elements in E, so P(E) = #E/#Q.

Example 8.4. We flip a fair coin three times. The sample space here is the set
of all eight possible outcomes:

Q= {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

The probability function is the uniform distribution, so, as with the die in Ex-
ample 8.3, above, for any event E , P(E) = #E/#LQ. For instance, if we want to
know the probability of getting at least two heads, then E= { HHT, HTH, THH },
so P(E) =#E/#Q =3/8.
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8.3 Basic Combinatorial Formulas

Many probabilistic problems, such as computing the probability of getting a
full house (three cards of one number and two of another) in a five-card poker
hand, require the use of combinatorial reasoning. On the whole, combinatorics
plays a smaller role in computer science applications of probability than it does
in other kinds of applications; nonetheless, everyone who is dealing with prob-
ability should know some basic formulas.

8.3.1 Exponential

The number of sequences of k items out of a set S of size n, allowing repetition,
is n*. For example, let S = {a, b}, n = |S| = 2, k = 3. Then the set of choices
C = {aaa, aab, aba,abb,baa, bab, bba, bbb} so |C| = 8 = 23. The argument is
that each of the choices can be made in n ways independently of all the others;

hence, the total number of combinations is 7+ n-... - n (k times) = nf.

8.3.2 Permutations of n ltems

The number of sequences of all the elements, without repetition, in a set S of
size n elements is called “n factorial,” denoted n!, and computed as n-n—1-...-
2-1. Forinstance, if S = {a, b, ¢, d} and |S| = n = 4, then the set of permutations is

abcd abdc acbd acdb adbc adch
bacd badc bcad bcda bdac bdca
cabd cadb cbad cbda cdab cdba
dabc dacb dbac dbca dcab dcba

and the number of permutations is 24 =4!=4.3-2-1.

The argument is that the first item can be chosen to be any of the n items
in S. Having chosen the first, the second item can be chosen to be any of the
remaining n — 1. Having chosen the first two, the third item can be chosen to
be any of the remaining n — 2, and so on. The total number of combinations is
therefore n-(n—-1)-(n—-2)-...-2-1=nl.

The MATLAB function factorial (n) computes n!.

Stirling’s formula gives a useful approximation for n!:

n\n
| =~ =
n! Znn( e) .
Taking the natural logarithm of both sides and keeping only the two largest
terms gives In(n!) = nlnn — n. For example, 10! = 3,628,800; Stirling’s formula
gives 3,598,695.62, a relative error of 0.8%.
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8.3.3 Permutations of k Items out of n

The number of sequences of k items chosen from a set S of n items, with no
repetitions, is known as the permutations of k out of n; it is sometimes notated
P(n,k). Itiscomputed asn-(n—1)-(n—-2)-...-(n—(k—1)) = n!/(n—-k)!. The
argument is that the first item can be chosen in n ways, the second item in
n— 1 ways, all the way to the kth item in n— (k — 1) ways. Note that the formula
P(n, k) = n!/(n - k)! works for the special case k = n as well, if we posit that
0! = 1; for this and other similar reason, it is standard to define 0! = 1.

As an example, let S = {a, b, ¢, d}, so n = |S| =4, and let k = 2. Then the col-
lection of sequences of two items is equal to {ab, ac,ad, ba, bc, bd,ca,cb,cd,
da,db,cd}. The size of this set is P(4,2) = 4!/2! =4-3 = 12. (Note: In permuta-
tions, order matters; ab is not the same as ba.)

8.3.4 Combinations of k Items out of n

The number of subsets of size k out of a set of size n is known as the combina-
tions of k in n. It is often notated

n n
C(n,k) or C( k) or (k)’

and is computed as n!/k!(n — k)!. The argument is first, considering the list of
permutations of k out of n items, each subset of size k appears in that list in
each of the permutations of its elements; it therefore appears k! times. (Note:
In combinations, ab is the same as ba; order doesn't matter.) Since the list
of permutations has n!/(n — k)! elements, the total number of subsets must be
(nl/(n—-k\)/k! = nl/(n—k)'k!.

For example, let S ={a, b, c,d} so n =|S| =4, and let k = 2. Then the collec-
tion of subsets of size 2 is {a, b},{a, c},{a,d},{b,c},{b,d},{c,d}. The number of
such subsets is 4!/(2!-2!) = (4-3)/(2-1) =6.

The numbers C(n, k) are also known as the binomial coefficients because
C(n, k) is the coefficient of the term x¥ y”~¥ in the expansion of (x + y)*. These
are also the numbers in Pascal’s triangle; they satisfy the double recurrence
C(n,k)=C(n—-1,k)+ C(n—1,k—1). These numbers figure prominently in the
discussion of the binomial distribution in Section 9.6.2.

The MATLAB function nchoosek (n,k) computes C(n, k).

8.3.5 Partition into Sets

Let n = k1 + k2 +... + k. The number of ways of dividing a set S of size n
into disjoint subsets Sy, ..., Sy, where |S1] = k1,821 = ko, ..., |Sm| = km, is often
denoted C(n: ky,..., k;;) or as

n
ki ..., km
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It is computed as n!/(k!- k»!-...- k;!). The argument is as follows. First choose
subset S; of size k; out of the whole set S; there are C(n, k1) = n!/k1!(n — kp)!
possible choices. Now there are n — k; elements remaining, so the number of
ways of choosing a set S, of size k, out of those is C(n — ki, k2). Continuing on
in this way, when we come to choose S, there are n—kj; —k2—...—kp-1 elements
remaining, so the number of ways of choosing Sp, is C(n—ky —k2—...—kp-1, kp).
Multiplying all these together we get

Cn,k1)-Cn—ki,k2)-C(n—ky =k, k3)-...

B n! (n—kp)! (n—ki —k»)!

Tl (n—k)! kl-(n—ki—k2)! ksl-(n—ki—kp—k3)!
n!

Tk kol k!

For example, let S={a,b,c,d}, son=|S|=4,andletk; =2, kp =1, ks = 1.
Then the collection of partitions is

S1 S2 | S3 S1 S2 | S3
{a,b} | {c} | {d} {a,b} | {d} | {c}
{a,c} | {b} | {d} {a,c} | {d} | {b}
{a,d} | {b} | {c} {a,d} | {c} | {b}
{b,ct | {a} | {d} {b,c} | {d} | {a}
{b,d} | {a} | {c} {b,d} | {c} | {a}
{c,d} | {a} | {b} {c,d} | {b} | {a}

The number of partitions is 4!/(2!-1!-1!) = 12.

8.3.6 Approximation of Central Binomial

As discussed further in Section 9.8.2, the central term of the combinatorial
function C(n, n/2) is approximately equal to 2" - 2/ n. For example, C(20,10)
= 184,756, and this approximation gives a value of 187,078.97, a relative error
of 1.2%.

8.3.7 Examples of Combinatorics

Example 8.5. Say we deal a poker hand of five cards from a 52-card deck. Here
the sample space Q is the set of all five-card hands, and the probability function
is the uniform distribution. A five-card hand is thus a combination of 5 items
out of 52, and the size of Q, #Q, is C(52,5) = 52!/(47!-5!) = 2,598, 960.

If we want to know the probability that an unseen hand is a flush, then the
event E is the set of all hands that are flushes. Since we are using the uniform
distribution, P(E) = #E/#Q. To count the number of hands that are flushes, we
reason that the flush may be in any of the four suits. To construct a flush in
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spades, for example, we must choose 5 cards out of the 13 spades; the number
of ways of doing this is C(13,5). The total number of flushes in any suit is there-
fore #E =4-C(13,5) =4-13!/(8!-5!) =5148. Therefore P(E) = 5148/2,598,960 =
0.002.

Example 8.6. An urn contains four red balls and nine black balls. Three times
we pick a ball out of the urn, note its color, and put it back in the urn. (This is
called “sampling with replacement.”)

To construct the sample space, we will give each ball a number; we will
number the red balls 1 to 4 and we will number the black balls 5 to 13. The
sample space Q is then just all triples of balls, where a triple can include a rep-
etition:

Q={1,1,1),(1,1,2),...,(1,1,13), (1,2, 1),...,(13,13,12), (13,13, 13)}.

The probability function is again the uniform distribution. The event “ex-
actly one ball is red” is the subset of all triples containing one red ball: E =
{(1,5,5),(1,5,6),...,(13,13,4)}. The total number of draws of three balls is 133 =
2197. To count the number of draws that have exactly one red ball, we reason
that the red ball may be either the first, the second, or the third drawn. If we
consider the draws in which the first ball is red and other two are black, then
there are four ways to choose the first ball, and nine ways to choose each of
the other two black balls, for a total of 4-9-9 possibilities. Since there are three
possible positions of the red ball, the total number of draws with 1 red ball,
#E =3-4-9-9 =972. Therefore, P(E) =972/2197 = 0.442.

Example 8.7. The same urn contains four red balls and nine black balls. But
now we pick three balls out of the urn without putting them back. (This is called
“sampling without replacement.”)

We number the balls as in Example 8.6. The sample space Q is then just all
triples of balls with no repetitions in the triples:

02={1,2,3),(1,2,4),...,(1,2,13), (1,3,2),...,(13,12,10), (13,12, 11}}.

An element of Q is a permutation of 3 balls out of the 13, so #Q = P(13,3) =
13-12-11 =1716.

Let E be the event that a draw has exactly one red ball. The calculation
to compute #E is the same as in Example 8.6 except that, when we draw the
second black ball, there are only eight possible choices, not nine. Therefore,
the total number of such draws #E =3-4-9-8 =864 so P(E) = #E/#Q = 0.503.

The poker hand of Example 8.5 is also an example of sampling without re-
placement; the deck corresponds to the urn and the cards correspond to the
balls. (Each card has a different color.) If we were to deal one card at a time,
replace it in the deck, shuffle, and deal again, that would be sampling with re-
placement.
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8.4 The Axioms of Probability Theory

The theory presented in Section 8.3 takes as its starting point the function P(x)
where x € Q. However, this approach works only in the case of finite sample
spaces. A more general approach to axiomatization of probability theory is
based on events, which are the common coin of all probabilistic theories. In
this approach, there are four axioms of probability theory.

P1. Foranyevent E,0< P(E) <1.

P2. Foranyevents E and F,if ENF = ¢ then P(EUF) = P(E) + P(F).
P3. P(p)=0.

P4. P(Q)=1.

It is easy to prove that these four axioms are consequences of axioms F1 and
F2, together with the definition P(E) = }_cg P(x).

It is also possible to prove that P1 through P4 are all the axioms of probabil-
ity theory that we need. Suppose we have a collection of facts about probabil-
ities of different events and their combinations. For example, suppose we are
told the following facts:

P(A)=0.2,
P(B)=0.7,
P(AnB)=0.1,
P(CuB)=0.9,

P(C\(ANnB))=04.

If this collection of facts is consistent with axioms P1-P4 then we can construct
a sample space and a probability function and assign each event to a subset of
the sample space in a way that makes all these statements true. In the termi-
nology of mathematical logic, this set of axioms is complete for sample space
models.

One model of the above system of constraints would be:

Q={v,wxy,2, P(v)=0.1,
A= (v, w), P(w)=0.1,
B={vxy}, P(x)=0.4,
C={vy,2%; P(y)=0.2,

P(z)=0.2.
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Then

P(A=P{v,w}) =02
PB)=P{yv,x,y}) =0.7,

P(AnB) =P({v}) =0.1,
P(CuB)=P({v,x,y.2}) =0.9,
P(C\(AnB))=P({y.z}) =0.4.

The following result is simple but important; it can easily be proved either from
axioms P1-P4 or from axioms F1 and F2:

Definition 8.8. Two events E and F are mutually exclusiveif ENF = @.
A collection of events {Ej, ..., Ei} forms a frame of discernment if every ele-
ment x is in exactly one E;. Equivalently,

o fori#j,E;nE j are mutually exclusive.
° E1UE2U...UEk=Q.

Theorem 8.9. Let & = {E;...Ex} be a collection of events. If every pair of events
Ei, Ej,i # j, in& are mutually exclusive, then P(E1U...UEy) = P(E1)+...+P(Ey).
In particular, if {E;,..., Ex} forms a frame of discernment, then P(E;) + P(E») +
...+ P(Ey)=P(Q)=1.

8.5 Conditional Probability

Let E and F be events, and assume that P(F) > 0. The conditional probability
of E given F, denoted P(E| F) is the fraction of F that is also E. In other words,
we shrink the sample space from Q to F while keeping the weight function un-
changed, and we now consider the probability of E within this restricted space.
Probabilities with no conditional, such as we have been considering previously,
are called absolute probabilities.

Once we have restricted the space to be F, the part of E that is significant is
just EnF. Therefore, the probability of E within the sample space F is P(E|F) =
w(E N F)/w(F). Now, if we divide both numerator and denominator by w(Q),
we have

w(ENF)/w@) PENF)
wF)/wQ ~ PE

This is the conditional probability formula. Multiplying through gives us the
conjunction formula: P(ENF) = P(F)-P(E|F).

P(E|F) =

Example 8.10. (Example 8.3 revisited.) Let Q be the sample space of all eight
outcomes of flipping a coin three times, and let P(x) = 1/8 for each outcome x.
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Let F be the event of getting exactly two heads, and let E be the event that the
first flip is heads. Thus E= { HHH, HHT, HTH, HTT }; F = { HHT, HTH, THH };
and EnF = {HHT, HTH }. Therefore P(E|F) = P(ENF)/P(F) = (2/8)/(3/8) =2/3,
and P(F|E)=P(ENF)/P(E)=(2/8)/(4/8) =1/2.

Since conditioning probabilities on an event G is simply a change in the
sample space, it follows that any formula that holds generally for absolute prob-
abilities also holds if some event G is added as a condition across the board. For
instance, we can add G as a condition to each of the axioms P1-P4; the results
are the following axioms.

Cl. ForanyeventE,0< P(E|G) <1.
C2. Foranyevents E and F, if ENFNG = @, then P(EUF|G) = P(E|G)+P(F|G).
C3. fEnG=g,then P(E|G) =0.
C4. P(GIG) =1.
We can also add G as a condition in the conjunction formula:

P(ENFNG) _P(ENFNG) P(FNG)
P(G)  PEFENG P(G)

P(ENF|G) = =P(E|FNG)-P(F|G).

Note that this is the same as the formula P(E N F) = P(E| F) P(F) with the addi-
tional condition G added across the board.

The conjunction formula can be extended to cover the conjunction of any
number of events. For three events E, F, G, we have

P(ENFNG)=PE|FNGPFNG) =PE|IFNG)-P(F|G)-P(G).
For k events, we have

P(E UE,U...UEg) = P(E1|E2U...UEL)-P(E2|E3U...UER) ... P(Ex_1|Ex)-P(Ey).

8.6 The Likelihood Interpretation

The sample space model of probability is clear and coherent and is well suited
to many kinds of problems. However, many of the applications for which we
need to reason with uncertain information do not fit this model at all well. Con-
sider the following questions:

1. Given the text of an email message, what is the likelihood that it is spam?

2. Given a search query and the text of a web page, what is the likelihood
that the page is relevant to the query?
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3. Given the form of an image, what is the likelihood that it shows an air-
plane?

4. Given a patient’s personal history and medical record, what is the likeli-
hood that she has diabetes?

What happens if we try to analyze these kinds of examples in terms of a
sample space? Consider question 4, about a medical diagnosis. The sample
space Q is presumably the set of all people; or, better, the set of all pairs of
a person and a day, such as (Marilyn O’Reilly,4/7/2008). We want to deter-
mine P(E | F) where E is diabetes and F is the medical record. More precisely,
in the sample space model, the event E is the set (P, D) such that P had dia-
betes on day D; and the event F is the set (P, D) of people who on day D had
the specified medical record. The problem is that, if the medical record is de-
tailed enough, with, say, a long history of precise test results, and a large set of
answers to personally intrusive questions, then, in this history of the medical
profession, only one person on one day has had exactly that medical record;
namely, Marilyn O’Reilly herself, on April 7, 2008. So F is the singleton set
{{Marilyn O’Reilly,4/7/2008)} and E N F is either equal to F if Marilyn had dia-
betes on that date, or equal to the empty set if she did not. So, if Marilyn had
diabetes on that date, then E = F and P(E| F) = 1; if she didn’t, then E = ¢
and P(E|F) = 0. We don’t know which until we determine whether she had
diabetes. Clearly, this is not getting us where we want to go. The other three
questions run into similar problems. Indeed, many standard probability text-
books assert specifically that it is meaningless to speak of “the probability that
Marilyn O’Reilly has diabetes,” or even, strictly speaking, “the probability that
the next time I flip a coin it will come up heads”; probabilities, they say, are only
meaningful as applied to general categories.

In order to apply probability to examples such as the diagnosis question, we
use the likelihood interpretation of probability theory. In this theory, an event
is a proposition, such as “Marilyn O’Reilly has diabetes," “Marilyn O’Reilly has
a blood glucose level of 150 mg/dL,” “Marilyn O’Reilly does vigorous exercise
at the gym three times a week,” and so on. There is an implicit (in practice,
usually rather rich) background body of knowledge. For example, in the diag-
nosis domain, this background knowledge might include general information
about the frequency of different conditions in the population and the general
relation between diagnoses and medical test results and measurements, but no
facts about individual patients. Then P(E) is the likelihood that E is true given
only the background knowledge. P(E|F) is the likelihood that E is true if one
learns F in addition to the background knowledge. In the diabetes example,
E is the proposition “Marilyn O’Reilly has diabetes on 4/7/2008” and F is the
conjunction of all the facts in her medical record. In the spam example (ques-
tion 1), E is the proposition “Message 12472 is spam,” and F is the proposition
“The text of message 12472 is ( whatever itis ).”
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So now it is a meaningful question to ask, “What is P(E| F)?” It means,
“How likely is it that Marilyn has diabetes, if we are told her medical record in
addition to our background knowledge?” This is certainly the right question
to be asking, so we have at least made some progress over the sample space
theory in which it is a meaningless question. However the analysis does not, in
itself, provide any guidance whatever about how to calculate the answer.

It is not at all obvious that “likelihood” in this sense is a coherent enough
notion to allow mathematical treatment. However, the theory of subjective
probability posits that a mathematical analysis is indeed possible, and that,
in fact, the measurement of likelihood observes the five axioms of probability
S1-S5. A number of different kinds of arguments have been advanced to justify
the use of these axioms; see Fine (1973). For our purposes we simply accept the
probabilistic model of likelihood because (a) it is clearly a reasonable model in
the case where the likelihood judgment is based on a sample space; and (b) it
has been found to work well in practice. Before we state the axioms of proba-
bility, though, we must define some terms and symbols.

In this view, a probabilistic event is a sentence within a propositional lan-
guage. A propositional language consists of three parts:

e The two truth constants T (true) and L (false).

¢ A set of propositional atoms. We use boldface symbols, such as Q, R, for
propositional atoms.

¢ The Boolean operators EA F (E and F), EV F (E or F), E=F (E implies
F), E&F (E if and only if F), and —E (not E). These allow two simple
sentences E and F to be combined into a compound sentence.

A sentenceis a combination of propositional atoms and truth constants us-
ing the Boolean operators. The relations between sentences are defined in the
propositional calculus, also called Boolean logic. We assume the readers are
familiar with the propositional calculus.

The subjective theory of probabilities posits that the probability function
satisfies the following axioms.

S1. For any sentence E, 0 < P(E) < 1.

S2. Ifitis known that ~(E A F), then P(EV F) = P(E) + P(F).
S3. P(T)=1.

S4. P(L)=0.

S5. Ifitis known that E< F, then P(E) = P(F).
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In particular, both S2 and S5 hold in the case where the sentence in ques-
tion is known because it is a logical truth. For example, it is a theorem of propo-
sitional logic that (A v B)—1(= A A =1B); therefore, one can apply axiom S5 and
conclude that P(AvV B) = P(=(=AA—B)).

As we can see, these are largely the same as axioms P1-P4 in the frequen-
tist theory, but there are two differences. First, the set operators U and N have
been changed to the propositional operators v and A. Second, axiom S5 has
been added. This reflects the fact that set theory and propositional logic use
different conventions about equality; in set theory, two sets that contain the
same elements are equal, whereas in propositional logic, two sentences that
have the same truth conditions are considered unequal if they have different
forms.

We define conditional probability in the same way as in the frequentist the-
ory: P(E|F)=P(EAF)/P(F).

8.7 Relation between Likelihood and Sample Space
Probability

The likelihood theory and sample space theory are closely related; they end up
in much the same place, although their approaches are from different direc-
tions.

Suppose that we have a finite set ¥ = Py, ..., P} of propositional atoms in
mind. Then we can define an elementary event to be the conjunction of either
the positive or the negative of all the atoms; and we can define a sample space
to be the set of all elementary events, with the associated probability.

For example, suppose the three propositional atoms are P,Q,R. Then the
associated sample space Q is {E1,..., Eg}, where

Ei=PAQAR,
E;=PAQA-R,
Es=PA-QAR,
E,=PA-QAR,
Es=-PAQAR,
Es=-PAQA-R,
E;=-PA-QAR,
Eg=—-PA-QA-R.
There are two important points about this. First, exactly one of these ele-

mentary events must be true. That is, it is a theorem of the propositional cal-
culus that Ey v E; V E3 vV By V Es V Eg V E7 V Eg; and for each i # j, 7(Ey A Ej).
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The analog of Theorem 8.9 can be proven from axioms S1-S5, so
P(E1) + P(E2) + P(Es3) + P(E4) + P(E5) + P(Eg) + P(E7) + P(Eg) = 1.

Therefore, these probabilities are a valid probability function over the sample
space Q. This probability function is known as the joint probability distribution
over the set of propositional atoms P,Q,R.

Second, each of these elementary events corresponds to one line in a truth
table. If we know that some particular elementary event E; is true, then that
determines the truth or falsehood of any sentence F over these propositional
atoms. For example if the sentence Es = P A 7Q AR is true, then P is true, Q is
false, and R is true, so P A Q is true, =P v Q is false = (P AR) v Q is false, and so
on. Therefore, any sentence F is logically equivalent to the disjunction of some
of the elementary events; namely, all the sentences E; that would make F true.
As examples,

P/\Q = E1 VEZ, (8-1)
“PvQ=E VE,VE5VEgVE;VEg, (8.2)
("PAR)VQ=E  VE,VE5V EgVE;. (8.3)

However, since the E;s are mutually exclusive, it follows that the probability
of any disjunction of E;s is just the sum of their probabilities:

P(PAQ)=P(E1V Ep) = P(E1) + P(E),
P(-PVvQ)=P(E;VE,VE;VEgV E;V Eg)
= P(E1) + P(E) + P(Es) + P(Eg) + P(E7) + P(Eg),
P(-PAR)VQ) = P(E; VE,V EsV Eg Vv E7)
= P(E1) + P(E) + P(Es) + P(Eg) + P(E7).

So we can identify the sentence P A Q with the set {Ej, E2}; we can identify the
sentence =P v Q with the set {E}, E», Es, Eg, E7, Eg}; and so on.

Thus, for any finite likelihood theory, there is a finite sample space, and
vice versa. However, the two views develop the theory in opposite directions.
With finite sample spaces, we start with the elements and combine them into
sets to form events. With a finite propositional theory, we start with events and
combine them with conjunction and negation to form elements. As shown in
Chapter 9, in the more general setting, which includes infinite sample spaces,
the theory starts and ends with events; it never reaches elements.

8.8 Bayes’ Law

Bayes’ law is a simple but powerful rule that governs reversing the direction of
conditional probabilities.
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By the rule of conjunction P(E A F) = P(E)-P(F|E). Also P(EAF) = P(F)-
P(E|F).So P(F)-P(E|F)=P(E)-P(F| E). Dividing through by P(F) we get

P(E)-P(F|E)

PEIE) = P(F)

That is Bayes’ law.

This law is important in the cases where we want to know the number on
the left, and we do know (or can guess) the numbers on the right. In many
cases of that kind, you don't actually know P(F) directly. Rather, you know that
E is one of a frame of discernment {E = E}, E», ..., Ex} and you know P(E;) and
P(F| E;) for each E;. Then you can compute P(F) as follows. Since {Ej, ..., Ex}
is a frame of discernment, it follows that

e fori#j, FAEiand FAE j are mutually exclusive;
e F=(FANE))V(FANE)V...V(FNEy).
Therefore, P(F) = P(F A E1) +...+ P(F A Eg). So we can rewrite Bayes’ law as

P(E;)-P(F|E;)
P(E\)-P(F|E1)+...+P(Ei)-P(F|Eg)’

P(E;|F) =

As an example, a patient sees a doctor for a regular checkup, and the doctor
decides that it would be a good idea to test the patient for disease D, a disease
that affects 1 in every 10,000 people. A test T for D is 99% accurate; that is, if
the patient has D, then with 99% probability the test will come up positive; if
the patient does not have D, then with 99% probability the test will come up
negative. Sadly, the test comes up positive. What is the probability that the
patient has D?

By Bayes’ law, we have

P(D)-P(T|D)
P(D)-P(T|D)+P(~D)-P(T|=D)’

PD|T) =

We are given that P(D) = 0.0001, P(T'|D) =0.99, P(T|—=D) =0.01. Also P(—D) =
1-P(D)=0.9999. So P(D| T) = (0.99-0.0001)/((0.99-0.0001) + (0.01-0.9999)) =
0.0098, slightly less than 1 in 100.

This seems surprising at first, but it actually is reasonable. Suppose the doc-
tor tests 10,000 people. One of them has D, and the test will come up positive.
The other 9,999 don't have D, but the test will come up positive for roughly 100
of those. So there will be 101 patients with positive results, only one of whom
actually has the disease. In general, in this kind of reasoning, people tend to
give too much weight to the accuracy of the test, P(T'| D), and not nearly enough
to the base rate P(D).
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Note, however, that this applies only if the people whom the doctor is test-
ing are a random sample of the population. If the doctor has some particu-
lar reason for testing the patient—for instance, the patient is complaining of
symptoms or the patient is a member of some population who is at risk (e.g.,
age, ethnic group)—then this calculation does not apply because there is addi-
tional information that must be taken into account. In that circumstance, we
face the problem of evidence combination, which we discuss in Section 8.9.1.

8.9 Independence

A critical component of probability theory is the observation that most events
have nothing whatever to do with one another. Finding out whether it is raining
in Poughkeepsie does not at all influence our estimate of the likelihood that
the yen will gain against the dollar tomorrow. The usability of the theory of
probability, and indeed the possibility of rational thought, rests on this discon-
nection. If we had to rethink the likelihood of everything each time we learned
anew fact, then thinking would be pretty much impossible.
The mathematical notion here is independence:

Definition 8.11. Event E is independent of F if learning F does not affect the
estimate of the likelihood of E. That is, P(E | F) = P(E).

(Note that the natural definition is in terms of the likelihood interpretation of
probability. The concept of independence seems much more arbitrary when
viewed in terms of the sample space interpretation.)

The condition P(E| F) = P(E) is equivalent to P(E,F)/P(F) = P(E). This
leads to two important consequences:

1. P(E,F)=P(E)-P(F). This is a simpler version of the general rule of con-
junction. We emphasize that this applies only if E and F are independent.

2. P(F|E) = P(E,F)/P(E) = P(F). Thus, if E is independent of F, then F is
independent of E. So independence is a symmetricrelation, which is not
obvious from the original definition.

Note: Here we are using a standard notation of probability theory in which
E, F within a probability operator means E A F. Thus, P(E, F) means P(E A F);
P(E| F,G) means P(E|F A G), and so on.

Like other aspects of probability, independence can be conditionalized:

Definition 8.12. Let E, F,G be events. Event E is conditionally independent of
F given G if, after we have learned G, additionally learning F does not affect the
likelihood of E. Thatis P(E | F,G) = P(E| G).
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By the same argument as Definition 8.12, if E is conditionally independent
of F given G, then the following two statements hold:

1. P(F|E,G)=P(F|G); thatis, F is conditionally independent of E given G.
2. P(E,F|G)=P(E|G)-P(F|G).
Independence also applies to larger collections of events:

Definition 8.13. Acollection of events {E,..., Ex} is independent if finding out
the values of any subset does not affect the likelihood of the rest. That is, if S is
a subset of the events and E; ¢ S, then P(E;|S) = P(E;).

If the set {Ey,..., E} is independent, then P(Ej,...,Ex) = P(Ey) - P(Ez) -...
-P(Ep).

It is possible to have a collection of events in which every pair is indepen-
dent but the collection as a whole is not independent. An example where this
is important is shown in Section 8.9.2.

Example 8.14. (Example 8.3 revisited.) We flip a coin three times. Let Hy, H>,
Hj3 be the events that the first, second, and third flips come up heads. Then
these three are independent, so P(H;, Hy, H3) = 1/8, agreeing with our earlier
calculation from the sample space.

Example 8.15. (Example 8.6 revisited.) We have an urn with four red balls and
nine black balls, and we sample with replacement three times. Let Ry, Ry, R3 be
the events that the three samples are red. Then these three are independent,
since each time you are sampling from the same collection.

Example 8.16. (Example 8.7 revisited.) We have an urn with four red balls and
nine black balls, and now we sample without replacement three times. Let
R1, R2, R3 be the events that the three samples are red. Then these three events
are not independent. Since four out of the thirteen balls are red, and before
you start, all the balls are equally likely to be picked on the second draw, the
absolute probability P(R;) = 4/13. If R; is true, then when you pick the second
ball, there are twelve balls in the urn of which three are red, so P(R|R;) =3/12.
If R, is false, then when you pick the second ball, there are twelve balls in the
urn of which four are red, so P(R, | 7 R;) = 4/12.

8.9.1 Independent Evidence

Suppose that we want to determine the likelihood of some proposition X, and
we have two pieces of evidence, E and F. Both E and F are each quite good
evidence for the truth of X. Specifically, the absolute probability P(X) = 1/3,
the conditional probabilities P(X | E) = 0.8, and P(X | F) = 0.9, so both E and F
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very much raise the likelihood of X. What can we say about the probability of
P(X|E,F)?

The answer is that we can’t say anything at all. The probability P(X | E, F)
can have any value from 0 to 1 inclusive. The intuitive justification is that we
can construct a model in which En F is only a very small fraction of E and of
F, so it is consistent with the constraints on P(X | E) and P(X | F) either that X
covers EN F or that X is disjoint from EN F.

For example, we can satisfy the constraints P(X) = 1/3, P(X|E) = 0.8, P(X|F)
=0.9, P(X | E, F) = 0.01 by using the following probability space:

Q={a,b,c,d,e,f, g,

E={a,b,c,d},
F={a,b,e, f},
X={a,c,e},

w(@) =1, wb) =99, w(c)=799, w(d) =101, w(e) =899, w =1, w(g) =3800.

This generalizes to any number of pieces of evidence. You can have evidence
Ej,..., Ey, in which each fact individually is good evidence for X, any pair of
facts is strong evidence for X, any three facts is very strong evidence for X, all
the way to any collection of k — 1 facts is overwhelming evidence for X, and yet
P(X|E,,...,E;) =0. Theorem 8.17 states this fact.

Theorem 8.17. Let X and E,..., Ex be variables ranging over events. Let m =
2k and let S1,.--,Sm be the m subsets of {Ei,...,Ex}. Let {ci,...,cm) be any
2%_tuple of numbers strictly between 0 and 1. Then the system of equations
{P(X]81) =c1,...,P(X|Sp) = cm} is consistent. That is, there exists a sample
space Q, a probability function P, and an assignment of X and of all the E; to
events in Q) that satisfies all these equations.

The proof is left as a rather difficult exercise (Problem 8.2).

Let us return to our original problem: we have P(X) =1/3, P(X|E) = 0.8,
P(X|F) =0.9, but we can't get any direct information about P(X | E, F). What
can we do?

This is a common—in fact, almost universal—situation in applied proba-
bilistic reasoning: we have a situation involving a combination of many events,
and we can't get direct information about the statistics of the entire combina-
tion. Standard operating procedure in this situation is that we use indepen-
dence assumptions to split the large combination into smaller groups about
which we do have information. In this case, we don’t have information about
the combination X, E, F, but we do have information about each of the pairs
X,E and X, F, so we have to find a set of independence assumptions that will
allow us to analyze X, E, F in terms of X, E and X, F.



8.9. Independence 241

In this particular case, the usual independence assumption is to posit that
E and F are conditionally independent, both given X and given —X. That is,
P(E,F|X)=P(E|X)-P(F|X) and P(E,F|—X) = P(E|=X) -P(F|~X). Sec-
tion 13.6.2 presents an argument justifying the choice of this particular inde-
pendence assumption.
By Bayes’ law,
P(E,F|X)-P(X)

Likewise,
P(E,F|0X)-P(0X)
P(—X|E,F) = . (8.5)
P(E,F)

Dividing Equation (8.4) by Equation (8.5) gives

P(X|E,F)  P(EF|X)-P(X)

= . (8.6)
P(-X|E,F) P(E,F|7X)-P(—X)
Applying the independence assumptions, we get
P(X|E,F P(E|X)-P(F|X)-P(X
(X1 ) (E1X)-P(F|X)-P(X) 8.7)

P(~X|E,F) P(E|=X)-P(F|=X)-P(=X)

For any events A, B, let us define the odds on A as Odds(A) = P(A)/P(—A),
and the conditional odds on A given B, as Odds(A|B) = P(A|B)/P(—A| B).
For example, if P(A) = 3/4, then Odds(A) = (3/4)/(1/4) = 3. (These are the “3-
to-1 odds” used at the racetrack.) Note that Odds(A) = P(A)/P(—A) = P(A)/(1—-
P(A)); solving for P(A), we have P(A) = Odds(A)/(1 + Odds(A)). Likewise,
Odds(A|B) =P(A|B)/(1-P(A|B)) and P(A|B) =0dds(A|B)/(1+0dds(A|B)).
Moreover, by Bayes’ law,

P(A|B) _ P(A)-P(B|A)/P(B) — Odds(A)- P(B|A) 8.8

Odds(A|B) = =
P(-A|B) P(nA)-P(B|1A)/P(B) P(B|1A)

Let us define the “odds ratio” of A given B as OR(A|B) = Odds(A|B)/ Odds(A);
that is, the factor by which learning B affects the odds on A. For instance,
if P(A) = 1/3 and P(A|B) = 3/4, then Odds(A) = 1/2 and Odds(A| B) = 3, so
OR(A|B) = 6; learning B has increased the odds on A by a factor of 6. Then we
can rewrite Equation (8.8) in the form

P(B|A) _ Odds(A|B)
P(B|-A) 0Odds(A)

=OR(A|B). (8.9

Now, using Equation (8.9), we can rewrite Equation (8.7) in the form

Odds(X | E, F) = OR(X | E) - OR(X]F) - Odds(X). (8.10)
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Dividing through by Odds(X) gives, finally,

OR(X|E,F)=0R(X|E)-OR(X|F). (8.11)

We return again to our original problem: suppose that P(X) = 1/3, P(X|E) =
0.8, and P(X|F) = 0.9. Then Odds(X) = 1/2, Odds(X|E) = 4, and Odds(X|F) =9,
so OR(X | E) =8 and OR(X | F) = 18.

Using the independence assumption, by Equation (8.11), OR(X | E,F) =
OR(X|E)-OR(X|F) = 144. Therefore, Odds(X|E, F) = OR(X|E, F)-Odds(X) =72,
and P(X | E,F)=0dds(X | E,F)/(1+0dds(X | E, F)) = 72/73 = 0.986.

As another example, in the trial of O.J. Simpson for murdering his ex-wife
Nicole Brown and Ronald Goldman, there was evidence that Simpson had
abused his wife on earlier occasions, and the question arose as to whether
this evidence could be presented. The prosecution argued that the evidence
was relevant because most spousal murders follow earlier abuse. The defense
argued that it was irrelevant and merely prejudicial because most men who
abuse their wives do not end up murdering them. From our analysis, we can
see that both arguments are incomplete. The real question is, how much more
frequent, in terms of odds update, is spousal murder among the population of
spousal abusers than among the general population of married men? (It makes
sense to separate by gender here because the incidence of both abuse and mur-
der of men against women is hugely higher than the reverse.) X here is murder,
E is abuse, and F is all the rest of the evidence.

The details of the derivation presented are not important. What is impor-
tant is the combination of Bayes’ law and independence assumptions for com-
bining evidence; Bayes’ law is used to munge the formulas into a state where
the independence assumptions can be applied. We see this situation again,
with wide range of less lurid applications, in Section 8.11.

8.9.2 Application: Secret Sharing in Cryptography

Suppose that we have a secret text, and we want to split it among n people in
such a way that if all n get together, they can reconstruct the secret, but no
subset of n — 1 people can reconstruct the secret or any part of it. For example,
suppose the secret is the code to launch nuclear missiles, and we want to make
sure that they are not launched unless everyone who is supposed to agree to do
so does indeed agree.

Let us first consider the case for which the secret is a single bit B. Then we
carry out the following algorithm: for (i =1 to n—1) Q; — arandom bit; Q, =
(B+Q1+Q2+...+Qp-1) mod 2.
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Now tell person i the value of the bit Q;. Note that

Qi+...+Q;mod2=0Q;+...+Qp-1+(Q1+...+Qu_1+ B) mod 2

=(Q1+0Q1)+(Q2+Q2) +...+(Qu-1+Qp-1) + Bmod 2
=B.

So the n participants can reconstruct B by adding up their individual pieces
mod 2.

Let’s show that B is independent of any subset S of size n—1 of the Q;. This s
clearly true if S does not contain Qy, as Qy, ..., Q,—1 were just randomly chosen
bits. Suppose that S does contain Q, but does not contain Q;. To simplify the
notation, let us choose i = 1; the other cases are obviously the same. Now,

n=0Q2+...+Qpu_1+B)+ Q1) mod 2. (8.12)

Since Qy,...,Qp-1 are chosen randomly, if you know Qsy,...,Q,-1, then for ei-
ther value of B, Q; has a 50/50 chance of being 1 or 0. But by Equation (8.12), if
Q2+...4Qpu-1+B=1mod 2,then Q,, =1-Qy,andif Q2+...+Q,-1+B =0mod 2,
then Q, = Q;. Therefore if you have been told the values of B,Q>,...,Q;-1,
then Q, has a 50/50 chance of being 0 or 1. But before we were told any-
thing, Q, likewise had a 50/50 chance of being 0 or 1. Thus, Q, is indepen-
dent of B, Q»,...,Q,—1. By the symmetry of independence, B is independent of
Qz,...,Qn.

In short, if we have all n pieces, we can construct B, but having any set of
n— 1 pieces gives no information at all about B.

If the secret is a string of k bits, then we can do this for each bit, and hand
a bitstring of k random bits to each of the n participants. To reconstruct the
secret, add up each place in the bit string mod 2. This is known as “bitwise XOR
(exclusive or)”; exclusive OR is the same as addition modulo 2.

Note that the argument does not require any assumptions about the dis-
tribution of B. It may be that we start with some external information about
the distribution of B; what the argument shows is that we don’t learn anything
more by finding out n — 1 of the keys. For the same reason, Qy,...,Q, are not
necessarily collectively independent absolutely; if we have external informa-
tion about B, then that will create a dependency.

In older probability books, the fact that pairwise independence does not
imply overall independence is often described as a somewhat annoying anomaly
of no practical importance. The moral is that practical importance changes
over time.

8.10 Random Variables

A random variable is a variable that can have a value within some associated
domain of values. If the domain of values is finite, then each possible value for
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the random variable constitutes an event and has a probability. The different
values for a single random variable constitute a frame of discernment; that is,
exactly one of them must be true, so the sum of their probabilities is equal to 1.
A good way to think about random variables is that a random variable is a
dartboard.? The different values that the variable can take are marked on the
dartboard. Throwing a dart and seeing which area it lands in is the event.

Example 8.18. (Example 8.4 revisited.) Let’s flip a coin three times. This can
be described by using three random variables F;, F», F3, one for each flip. Each
of these takes values within the set { H, T}. So the pair of events F;=H and F;=T
form a frame of discernment; so does the pair F,=H and F»=T, and likewise for
the pair F3=H and F3=T.

If we have a finite collection of random variables, then an elementary event
is an assignment of one value to each variable. For example, F} = HA F, =
H A F3 =T is one elementary event, F} = TA F, = TA F3 =T is another ele-
mentary event, and so on. The set of elementary events again forms a frame
of discernment. An assignment of a probability to each elementary event is
called a joint distribution over the random variables. For example, one joint
distribution over {F;, F», F3} would be

P(F,=H,F, =H,F; =H) = 0.4,
P(F,=HF=HF=T) =01,
P(F,=H,F =T,F3=H)=0.07,
P(F=H,F, =T,F;=T) =0.02,
P(F=T,FL=H,F3=H)=0.1,
P(F,=T,F, =H,F;=T) =0.03,
P(F,=T,F, =T,F; =H) =0.08,
P(F =T,FL=T,F3=T) =0.2.

In these formulas, the commas between events mean conjunction; this is
standard notation in probability theory. Thus, P(F; = H, F» = H, F3 = H) means
P(FF=HAF,=HAF;=H), P(E|F,G) means P(E|F A G), and so on.

As in Section 8.7, any event E is the disjunction of elementary events, and
P(E) is the sum of the probabilities of these elementary events. For example,

(Fi=HAF;=T) = (Fi=HAFR=HAFR=T)V(Fi=HAEL=TAF;=1),
So

Ph=HFE=T=PF =HEFE=HFIE=1+PF =HFE=T,F=T).

2Thanks to Alan Siegel for this metaphor.
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Thus, absolute probability of any event can be calculated from the joint
distribution. Since P(E|F) = P(E A F)/P(F), any conditional probability can
be calculated from absolute probabilities. Therefore, the joint probability dis-
tribution determines all absolute and conditional probabilities associated with
these random variables.

Two random variables E and F are independent if, for every value u in the
domain of E and v in the domain of F, the event E = u is independent of the
event F = v. That s,

P(E=u,F=v)=P(E=u)-P(F=v). (8.13)

Note: When a relation such as this holds for all values in the domains of
the random variable involved, it is common in probabilistic writings to write
the relation purely in terms of the random variable, omitting the values. For
instance, Equation (8.13) would be written as P(E,F) = P(E) - P(F). This ab-
breviated form is certainly convenient, but it can also be quite confusing, and
takes some getting used to. It is not used in this book, but is mentioned here
because the reader may well see it elsewhere.

In general, a probabilistic model consists of

¢ a choice of random variables,
¢ aset of independence assumptions,

* numerical values for the probabilities involved in the dependency rela-
tionships, or methods for obtaining these.

Regarding independence, unless the number of random variables is small, then
the dependencies in the model had better be sparse (that is, almost everything
must be conditionally or absolutely independent of almost everything else).

8.11 Application: Naive Bayes Classification

This section discusses how Bayes’ law and independence assumptions are used
in the naive Bayes method of constructing classifiers from labeled data.

A classification problem has the following form: we have a collection of in-
stances, and for each instance, we are given some information, which can be
viewed as values of a set of predictive attributes. Our task is to assign the in-
stance to one or another categories; each category is a possible value of a clas-
sification attribute. This application has several examples:

Character recognition. An instance is an image of a printed symbol. The pre-
dictive attributes are various geometric features of the image. The clas-
sification attribute has values that are the various characters in the char-
acter sets; that is, the space of values is { A, ‘B’, ...}.
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Computer vision. Many other computer vision problems likewise can be for-
mulated as classification problems. In face recognition, the values of the
classification attribute are different people. In image labeling the set of
values of the classification attribute is some large vocabulary of cate-
gories; for example, {building, human, car, tiger, flower ...}. In pornog-
raphy filtering (don't snicker—this is a critical task for web browser sup-
port), the classification attribute has values {pornography, decent}.

Medical diagnosis. An instance is a patient. The predictive attributes are test
results and features of the medical history. For each disease, there is a
classification attribute whose values are true or false.

Finance. An instance is an applicant for a loan. The predictive attributes are
income, assets, collateral, purpose of the loan, previous credit history,
and so on. The classification attribute has values approve and disap-
prove.

Text classification. An instance is a piece of text. The predictive attributes are
the words of the text (or other information about it). The classification
attribute is some important characteristic of the text. For instance, in
email filtering, the attribute might have values {spam, ordinary, urgent}.
In information retrieval or web search, the classification attribute is set
by the query, and has values {relevant to query Q, irrelevant to query Q}.

A classifier is a program or algorithm that carries out a classification task.
Most automated classifiers use some form of machine learning from a labeled
corpus (this is known as supervised learning). A labeled corpus is a table of in-
stances for which the correct value of the classification attribute is given; for
instance, a set of images of characters labeled with the actual character, or a
set of email messages labeled “spam” or “not spam,” and so on. The machine
learning task is to use the corpus to construct a classifier that works well. The
use of corpus-based machine learning techniques to construct classifiers prob-
ably constitutes the majority of work in machine learning, both applied and
theoretical.

One way to think about the classification task is to view it probabilistically:
we want to find the most likely value of the classification attribute, given the
predictive attributes. That is, we take the predictive attributes to be random
variables Aj,..., Ax and we take the classification attribute to be a random vari-
able C. For a new instance, x, we are given the predictive attributes ay, ..., ak,
and we wish to find the value of ¢ that maximizes P(C=c|A; =a;, A2 =ay-...-
Ap = ag).

We estimate the probability of events by their frequency in T, a table of
labeled instances. For any event E, let us write #7(E) to mean the number of
instances of E in T, and Freq;(E) to be the frequency of E in T;; thus, Freqy (E) =
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#71(E)/#T. Likewise, we write Freq (E|F) = #7(E A F)/#7(F). Thus, we estimate
P(E) = Freqr(E) and P(E | F) = Freqr(E| F). However, this works only if #7(E)
and #7(E N F) are not too small. In particular, if these are zero, this estimate is
fairly useless.

Suppose, for example, there are only two predictive attributes and table T
is large, so every combination C = ¢, A = a;, A2 = ap has numerous instances
in T. Then we can estimate

P(C=cl|A1=a1,Ar=ap) =Freq(C=c| A1 = a1, Ar = ap)
T
=#r(C=c, A1 = a1, Az = a) I#7(A1 = ay, Ap = ap),
and we are done. However, for the example problems we listed, there may be
hundreds or thousands or more attributes, and each instance is unique; this

particular collection of predictive attributes has never before appeared in the
table. In that case, we cannot use the approximation

P(C=cl|lA=ay,...,Ax=ai) = Freq(C=c| A1 = ay,..., Ax = ay)
T

=#r(C=c, A1 =ay,..., A= ap)l#r(A1 = ay,..., A = ag)

because both numerator and denominator are zero.

Instead, in the naive Bayes method, we make an independence assump-
tion; as it happens, this is very similar to the one we made in Section 8.9.1. We
assume that the predictive attributes are all conditionally independent, given
the classification attribute. Having done that, we can now proceed as follows.
By Bayes’ law,

PC=clA =ay,...,Ax=a;)=P(C=c¢)P(Ai=a,..., Ay =ar|C=c)/P(A = a1,

which, by the independence assumption, equals
PC=c)-PA1=aq1|1C=¢)-...-.P(Ax =ar|C=0)/P(A = ay,..., Ax = ag).

However, since what we are looking for is the value of ¢ that maximizes this
expression, and since ¢ does not appear in the denominator, we can ignore the
denominator. The denominator is just a normalizing expression; without it,
we have an equivalent unnormalized set of weights. So our problem now is
to find the value of ¢ that maximizes P(C=c¢)-P(Ai =a1|C=¢)-...-P(Ay =
ax | C = c). But now (hopefully) all of these probabilities can be estimated from
frequencies in table T, as long as T is large enough that the pair A; = a;,C=c

v Ag = ag),



248

8. Probability

function LearnClassifier(in T:table; C: attribute): return classifier;
{ for each (value c of C)
compute Freqy(C = ¢)
for each (attribute A # Cin T)
for each (value a of A)
compute Freqr(A=a,C=c)
endfor endfor endfor
return a table of all these frequencies (this table is the classifier) }

function ApplyClassifier(in Q:classifier, X:unlabelled instance; C: attribute) return value of C;
return argmax;.yajueofc Freqr(C = ¢) - My:atribute Freqr (A= X.A|C =¢)

/* In the above expression, X.A denotes the A attribute of instance X.
IT4 means the product over all the different attributes.
argmax,E(c) means return the value of ¢ that maximizes the expression E(c) */

Algorithm 8.1. Naive Bayes algorithm.

is represented reasonably often for each value of a; and c. So we estimate

P(C=c)-P(A1=a;1|C=¢)-...-.P(Axy=ax|C=0¢)
= Freq(C=c)-Freq(A1 =a;|C=c)-...-Freq(Ax = ax|C =c).
T T T

Thus, we have two simple algorithms: one to learn the classifier Q for classifi-
cation attribute C from the table T of labeled data, and the other to apply the
classifier to a new instance X (see Algorithm 8.1).

For example, let us take the case of email classification. One way to apply
naive Bayes? is to take every word that appears in the table to be a predictive
attribute of a message: “Hi” is one attribute, “conference” is another attribute,
“OMG” is another attribute, and so on. The attributes are Boolean; attribute
W of message M is true if W appears in M and false otherwise. So the three
numbers Freqy(“conference” = true|C = spam), Freqr(“conference” = true|C =
ordinary), and Freq(“conference” = true|C = urgent) are the fractions of spam,
ordinary, and urgent messages that contain the word “conference.” Since (in
my email) the word “conference” appears much more frequently in ordinary
messages than in either spam or urgent messages, if it appears in a new mes-
sage, it will give a much stronger vote for considering this new message to be
ordinary than to be either spam or urgent.

3There are a number of different ways to apply naive Bayes to text classification; the one de-
scribed here, called the Bernoulli model, fits most neatly into our schema.
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There are two problems here, one technical and one fundamental. The
technical problem is that this application does not support the hopeful as-
sumption mentioned that every pair of a value of a predictive attribute with a
value of the classification attribute appears some reasonable number of times
in the table. We have too many predictive attributes. If an instance contains an
attribute value A; = a; that has never appeared together with some classifica-
tion value C = c in the table, then the factor Freqy(A4; = a; | C = ¢) is equal to
zero, and therefore the product will be equal to zero, whatever other evidence is
present. For example, I have never received an urgent message containing the
word “Newfoundland”; therefore, Freq; (“Newfoundland” = true| C = urgent) =
0. But if I now receive the email

URGENT: You must get me the information you promised me a month
ago ASAP This is vitally important. I need it today, because I'm going to a
funeral in Newfoundland tomorrow.

I would want the classifier to notice the words “URGENT,” “ASAP” “vitally” and
“important” and classify this as urgent, rather than saying that, because it con-
tains the word “Newfoundland” it can’'t possibly be urgent.

This is known as the sparse data problem; it is a common problem in deriv-
ing probabilistic models from data. The solution here is to replace zero values
by values that are small but nonzero; this is called smoothing. But, of course,
we can't treat a zero value as better than a very small nonzero value, so we have
to move up all small values. The usual solution, known as the Laplacian cor-
rection, is to use an estimate of the form P(A=a|C =c¢) = (Freqp(A=al|C =
¢) +€)/(1+ Ne), where N is the number of possible values of A and € > 0 is a
small parameter.

The fundamental problem is that the independence assumption bears no
relation to reality. It is not remotely true that the predictive attributes are con-
ditionally independent given the classification attribute. “Conference” is as-
sociated with “proceedings,” “paper,” “deadline,” and “hotel”; “meeting” is as-
sociated with “agenda,” “minutes,” “report”; and “late,” “husband,” “million,”
“unable,” “collect,” “account,” “number,” and names of various foreign coun-
tries go together; as do “Viagra” and—well, fill that one in for yourself.

The use of independence assumptions that have no basis in reality is char-
acteristic of applied probabilistic models generally and of naive Bayes in par-
ticular; that is why it is called “naive.” One clear consequence in naive Bayes
applications is that the computed probabilities tend to be much too one-sided;
that is to say, the classifier assigns a much higher confidence to its predictions
than its actual accuracy warrants. Essentially, the naive Bayes takes as indepen-
dent evidence what is actually just the same piece of evidence repeated a num-
ber of times. Nonetheless, in many applications, naive Bayes gives answers of
avery good quality, computed quite cheaply.

” o«
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We now look at a couple of further technical observations about the naive
Bayes algorithm. In practice, rather than multiply the frequencies, it is com-
mon to add the logs of the frequencies. Thus,

log(P(C=cl| A =ay,..., Ax = ay))
=log(Freq(C=c¢)-Freq(A1=a;|C=¢)-...-Freq(Ax = ax | C =)
T T T

=log(Freq(C = ¢)) +log(Freq(A; = a; | C = ¢)) +... +1log(Freq(Ax = ar | C = ¢)).
T T T

Using the logarithm has two advantages. First, multiplying a long list of num-
bers between 0 and 1 (often mostly rather small numbers) results in underflow
rather quickly; the use of the logarithm avoids this.

Second, this formulation demonstrates that the naive Bayes classifier has a
simple, and familiar, form; it is just a linear discriminator. Define a vector space
with one dimension for each value of each predictive attribute; that is, for each
attribute A and for each possible value v, there is a separate dimension d (A, v).
Let n be the number of such dimensions. For each value c of the classification
attribute, define @, in R” such that @ [d (A, v)] = log(Freqr (A= v|C = ¢)), and
define a real quantity ¢, = log(Freq;(C = c)). With any instance x, associate a
Boolean vector X in R” such that X[d(A,v)]=1if x.A=v, and X[d(A, v)] =0 if
x.A # v. Then, when the classifier classifies an instance X, it simply computes
the value of the expression .+ i » X for each category c, and it picks the value
of ¢ for which this expression is largest.

Finally, let’s look at running time. Generally, in machine learning, the learn-
ing part is executed separately from the actual task execution. The learning part
is said to be “offline”; it is allowed to run quite slowly. The task executor that
it creates is usually what the end user is interacting with; it is required to run
quickly, “online.” The two running times are considered separately. In the case
of naive Bayes, the learning algorithm goes through the table T and generates
the vectors i, and the quantities #; this can be implemented to run in time
O(|T|), where |T| is the size of the table. The classifier computes the value of
tc + W, - X for each value of c; this runs in time O(kc) where k is the number of
attributes and c is the number of possible values for the classification attribute.
In the case where X is sparse, as in text classification, it runs in time ¢- NZ (%),
where NZ(X) is the number of nonzero elements. So the learning algorithm
runs reasonably quickly, and the classifier runs extremely quickly.

Exercises

Exercise 8.1. Let Q be the sample space with six elements, Q = {a, b,c,d, e, f}.
Let P be the probability distribution

P(a)=0.05,P(b) =0.1,P(c) =0.05,P(d) =0.1,P(e) =0.3,P(f) = 0.4.
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Consider the events X = {a,b,c}; Y = {b,d,e}, Z = {b,e, f}. Evaluate the

following:

(@)
(b)
(©
@
(e)
®)
(8
(h)
)
0)
(S}
0]

Exercise 8.2. Let A,B,C,D,E be five Boolean random variables. Assume that

P(X).

P(Y).

P(2).

P(X,Y).

P(X|Y).

P(X|2Z2).

PY|Z).

PY|X, 2).

PX,Y|2Z).

Are X and Y absolutely independent?
Are X and Z absolutely independent?

Are X and Y conditionally independent given Z?

you are given the independence assumptions:

¢ Dis conditionally independent of both A and C, given B,

e Eis conditionally independent of A, B, and D, given C.

A and B are independent absolutely,

Assume you also are given the following probabilities:

Compute the following probabilities (you may use MATLAB):

P(A=T)=0.9,

PB=T)=0.6,
P(C=T|A=T,B=T1T)=0.9, P(C=F|A=T,B=T)=0.1,
P(C=T|A=T,B=F)=0.8, P(C=F|A=T,B=F)=0.2,
P(C=T|A=FB=T)=04, P(C=F|A=FEB=T)=0.,
P(C=T|A=FB=F)=0.1, P(C=F|A=FEB=F)=0.J9,

P(D=T|B=T)=0.5,
P(D=T|B=F)=0.2,
PE=T|C=T)=0.1,
PE=T|C=F)=08,

P(A=F)=0.1,
P(B=F)=04,

P(D=F|B=T)=0.2,
P(D=F|B=F)=0.3,
P(E=F|C=T1T)=09,
P(E=F|C=F)=0.2.
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(@
(b)
(©)
d
(e)
9]
(8
(h)

PA=T,B=T1).

P(A=Tv B=T) (either Aor B or both are T).

P(C=T1).

P(C=T|A=T1).
P(C=T,D=T1).
PA=T|C=T1).

PA=T|B=T,C=T1).

P(E=T|A=T).

Exercise 8.3.

(a)

(b)

Given that P(E) = 1/2, P(E|F) = 3/4, P(E|G) = 4/5, and assuming that
F and G are independent evidence for E (that is, they are conditionally
independent, given E and given —E), what is P(E| F,G)?

Construct a joint probability distribution over E, F, G such that P(E) =
1/2, P(E|F) =3/4, P(E| G) =4/5,but P(E|F,G) = 1/10.

Exercise 8.4. Suppose that you have a coin that comes up heads with prob-
ability 3/4, and you flip it three times. For i = 1,...,3, let F; be the Boolean
random variable which is true if the ith flip comes up heads. Let C be the ran-
dom variable with values 0,1,2,3, which indicate the total number of heads in
the three flips.

(a)

(b)
(]
(d)

What is the associated sample space 2? What is the probability distribu-
tion P over 0?2

What is the probability distribution of C?
What is the conditional probability distribution of Fj, given that C = 1?

Are F) and F, conditionally independent, given that C = 12

Exercise 8.5. Figure 8.1 shows a network with four nodes and five edges. Sup-
pose that each connection fails with probability 1/10 and that failures of con-
nections are all independent events.

(a)

What is the probability that there is an active path from B to C? Hint:
There are no active paths from B to C if all three paths B-A-C, B-C, and B-
D-C have failed; these are independent events. This is known as a series-
parallel decomposition.
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Figure 8.1. Network.

(b) What is the probability that there is a path from node A to D? Hint: In this
case, it is not possible to do a series-parallel decomposition, and it is very
easy, unless one is systematic, to miss a case or double-count. Rather,
there are 32 elementary events (i.e., assignments of “working” or “fail-
ing” to each of the five edges). You should begin by enumerating all 32,
implicitly or explicitly.

(c) What is the probability that there is an active path between all pairs of
nodes?

Exercise 8.6. (You may use MATLAB for this exercise.) In Example 8.5 (p. 229),
we computed the number of five-card poker hands, and the probability that a
random hand is a flush.

(a) How many different hands are straights (numbers in sequence; suits ar-
bitrary)? What is the probability that a random hand is a straight?

(b) How many hands are straight flushes (both a straight and a flush)? What
is the probability that a random hand is a straight flush? Are the two
events “straight” and “flush” independent?

(c) (This part is more difficult.) Suppose that two hands are dealt. Given that
the first is a flush, what is the probability that the second is also a flush?
Are the two events, “the first hand is a flush” and “the second hand is a
flush,” independent?

Problems

Problem 8.1. Prove axioms P1-P4 from axioms F1, F2.

Problem 8.2. (This is difficult.) Prove Theorem 8.17.
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Programming Assignments

Assignment 8.1. Write two MATLAB functions SplitSecret (S,N) and Recover-
Secret(Q) that implement the secret-sharing technique described in Sec-
tion 8.9.2. Specifically, SplitSecret (S,N) takes as argument a character string
S and a number N. It returns an N x 8|S| array Q of 1s and 0s, where each row
is the part of the secret given to one of the sharers. RecoverSecret (Q) takes
this matrix Q as input and computes the string S. Nofe: In MATLAB a character
string can be converted to a vector of the corresponding ASCII codes (num-
ber between 0 and 255) by applying an arithmetic operation to it. The MATLAB
function char (N) does the reverse conversion. For example,

>> format compact
>> ’cat’-0
ans =
99 97 116
>> [char (99), char(97),char (116)]
ans =
cat

Assignment 8.2. Generalize Exercise 8.5(c) as follows. Write a function
ProbConnect (P) that computes the probability that all nodes are connected in
a network, where the probability that the node from I to J is active is given by
P[I,J]. Thatis, Pis an N x N matrix, where P[I, J] is the probability that the arc
from I to J is working (connections may not be symmetric). If P[I, J1=0, then
there is no connection from I to J. Assume that each arc is independent of all
the others.

For instance, in the particular example considered in Exercise 8.5, P would

be the matrix
0 0.1 0.1 0

01 0 01 01
01 01 0 0.1
0 01 01 O

pP=

You should just implement this in the naive way; enumerate all 2F ways to
label the arcs working and nonworking (E is the number of nonzero edges), and
for each one, calculate its probability. (There are certainly more efficient algo-
rithms than this, but all known algorithms are exponential in the worst case.)

Assignment 8.3. Consider a simplified variant of the card game blackjack. Two
players are alternately dealt cards, which are random integers between 1 and
10, one at a time. (Assume that each deal is independent; the numbers are
dealt by rolling a 10-sided die, not by dealing from a finite deck.) At each stage,
a player may either request a card, or may pass and not get assigned a card. If
a player’s total is exactly 21, he immediately wins. If a player’s total exceeds 21,
he immediately loses. If a player has passed on one round, he is permitted to
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continue drawing cards on later rounds. If both players have passed, then the
player with the higher total wins. In the case of a tie, the first player to pass
wins.

For instance, consider the following sequences with two players:

Sequence 1.

Player A draws 8.
Player B draws 3.
Player A draws 7.
Player B draws 5.
Player A draws 8, and loses (exceeds 21).

Sequence 2.

Player A draws 8.

Player B draws 3.

Player A draws 9.

Player B draws 7.

Player A passes.

Player B draws 9.

Player A draws 3.

Player B draws 7 and loses (exceeds 21).

We now generalize the above in two ways. First, the number of card values
NCards may be different from 10. Second, instead of a single target value 21, we
have a target range, from LTarget to UTarget. The player who reaches a total
between LTarget and UTarget, inclusive, immediately wins. The player whose
total exceeds UTarget immediately loses.

The optimal strategy can be computed by using a dynamic programming
implementation of a probabilistic calculation. First, we note the following:

(a) Ifitis player X’s turn to play, then his optimal move is determined by
a game state consisting of three parts: whether or not player Y has just
passed, X’s total points, and Y’s total points.

(b) If Y did not pass on the previous turn, and X’s total is less than Y’s, then
X should definitely draw because if X passes, ¥ can immediately win.

(c) It will never happen that the game ends with both players passing be-
cause whichever player would lose will do better to take a chance on
drawing.

In view of these observations, the optimal strategy and the player’s chances
of winning in any given situation can be expressed in two arrays, of size
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LTarget x LTarget, indexed from 0 to LTarget — 1. The Boolean array Play [XT,
YT] gives the optimal move for player X in the case where player Y did not
pass on the previous move, where XT and YT are the current totals for X and Y:
Play[XT,¥T]=1 if X should draw, 0 if X should pass. The array Prob[XT,YT] is
the probability that X will win if he makes the recommended move.

The assignment, then, is to write a function Blackjack (NCards, LTarget,
UTarget) that returns the two arrays Play and Prob.

The two arrays are filled in together, working backward from the game’s
end to its beginning. For instance, if LTarget = 21, the algorithm computes
first Prob[20,20] and Play[20,20], then [19,20] and [20,19], then [18,20],
[19,19]1, and [20,18], and so on.

The value of the two arrays is filled in as follows:

if (rules B or C determine the winning move)
then compute the probability for that move
else compute the probabilities for both moves
and use the move with higher probability;
save the move in Play[XT,YT] and the probability in Prob[XT,YT].
endif

The probability that X will win if he draws in state X T, Y T can be computed
by considering each possible deal. If X draws a card with value CARD and nei-
ther wins nor loses, then it will be Y’s turn, and Y will be in the state (Y T, X T +
CARD). The probability that Y wins in that state is Prob [YT,XT+CARD]; hence,
the probability that X wins if Y is in that state is 1— Prob [YT,XT+CARD].

% Computing the probability that X will win if he draws in
% state XT,YT:
{ ProbWinning = 0.0
for (CARD=1:NCards) {
if (XT+CARD > UTarget) then ProbYWins = 1;
elseif (XT+CARD >= LTarget) then ProbYWins = 0;
else ProbYWins = Prob[YT,XT+CARD];
ProbWinning = ProbWinning + (1-ProbYWins)/NCards;
endfor }
return ProbWinning

The probability that X will win if he passes after Y drew on the previous
turn is

if (YT > XT) then O
else 1-Prob[YT,XT]



Chapter 9

Numerical Random
Variables

Random variables whose domain is a set of numbers are important in a wide
range of applications. Most of mathematical probability theory deals the prop-
erties of numerical random variables.

Example 9.1. (Example 8.2 revisited.) Say we roll a fair die. The random vari-
able D has domain {1,2,3,4,5,6}. It is uniformly distributed, so P(D = x) = 1/6
for each value x.

Example 9.2. On May 5, 2010, we poll 1,000 randomly chosen Americans on
their opinion of President Obama. Let us say that the question is Boolean: fa-
vorable or unfavorable. We can define a numerical random variable X whose
value is the number of people in the poll who answer “favorable.” The domain
of the random variable is {0, 1,...,1000}. (We discuss the binomial probability
function in Section 9.6.2.) Assuming that we are careful not to ask the same per-
son twice, then this is an instance of sampling without replacement, discussed
in Example 8.7.

Most numerical random variables have a domain in one of three categories.
(a) The domain is a finite set of numbers.
(b) The domain is an infinite set of integers.
(c) The domain is the real line, or an interval in the real line.

This chapter begins with category (a); Section 9.5 introduces category (b), which
is not very different from (a); and Section 9.7 discusses category (c), which is
substantially different from (a) or (b).

The fundamental concepts and properties of numerical random variables
are largely the same for all three categories, so we introduce them here in the
simplest context of random variables with finite domains. The first concept is

257
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the idea of a function of a random variable. If X is a random variable and f is a
function over the domain of X, then f(X) is also a random variable; the value
of f(X) is always f applied to the value of X. Likewise, if Xj,..., X} are ran-
dom variables, and f(x1,..., x) is a function of k arguments, then f(Xj,..., Xi)
is a random variable. Therefore, the event f(X,...,Xx) = c is the union of
the events f(X; = di,...,Xx = di) over all tuples (dj,...,dy) for which
fldy,...,dy) =c.

Example 9.3. (Example 8.2 revisited.) As in Example 9.2, let D be the result
of rolling a fair die. Then E = D + 1 is a random variable; the domain of E is
{2,3,4,5,6,7}, and it is uniformly distributed. Moreover, the value of E is tied to
the value of D. For example,

P(E=3|D=2)=1,
P(E=3|D=3)=0.

Example 9.4. We roll two fair dice. Now there are two random variables: D;
for the first roll, and D, for the second. Each is uniformly distributed, and the
two random variables are independent. Therefore, for each pair of values u, v,
P(D1=u,Dy=v)=P(D;=u)-P(D2=v) =(1/6)-(1/6) = 1/36.

Let S= D; + D,. S is arandom variable with domain {2,3,...12}. The prob-
ability that S = w is equal to the sum of P(D; = u, D, = v) over all u, v such that
u+ v = w. For instance,

2 1
P(§=3)=P(D1=1,D,=2)+P(D;=2,Dy=1)=— = —,
( ) (D1 » =2)+P(Dy b =1) 3618
3 1
P(S=4)=P(D1=1,D2=3)+P(D1=2,D2=2)+P(D1=3,D2=1)=%ZE.

Thus, S is not uniformly distributed.

Note that S is not the same as the random variable F = D; + D;. F has the
domain {2,4,6,8,10,12} and is uniformly distributed over that range. P(F = 4|
D; =2) =1, whereas P(S = 4| D; =2) =1/6. This illustrates that D; and D, are
two different random variables, even though they have identical domains and
probability distributions.

Theorem 9.5 is trivial but useful.

Theorem 9.5. If X and Y are independent random variables, f is a function
over the domain of X, and g is a function over the domain of Y, then f(X) and
g(Y) are independent.

Proof: Let u be a value of f(X) and let v be a value of g(Y). Let A= f~!(u) =
{alu = f(a)}, the set of all values a that f maps into u; and let B = g’l(v) =
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{b|v = g(b)}, the set of all values b that g maps into v. Then

P(f(X)=u,g(Y)=v)=P(Xe€ A Y€B)
= Y PX=aY=h

acA,beB
= ) PX=a)-P(Y=D
acA,beB
=|) PX=a)|- ZP(Yzb)‘
acA beB
=P(XeA)-P(Y€B)
=P(f(X)=w-PgY)=v). O

9.1 Marginal Distribution

Suppose that we have two random variables (not necessarily numeric): X with
domain {uy,..., 4} and Y with domain {v;,..., v,}. We can then construct an
m x n matrix M, where M([i, j] = P(X = u;, Y = vj). If we sum up each row, we
get a column vector of length m; this is the overall probability distribution over
X. If we sum up each row, we get a row vector of length 7; this is the overall
probability distribution over Y. These are known as the marginal distributions
over the table, because we write them in the right and bottom margins. Ta-
ble 9.1 shows an example of such a table, where X has domain {a, b,c,d} and Y
has domain {e, f, g, h}. We can see that P(X =a,Y = g) =0.10, P(X = b) = 0.30,
and P(Y = f) =0.22.

The proof that this table works is simple. We take as an example event Y =
f, which is equivalent to the disjunction (Y = fAX=a)v(Y = fAX=Db) V(Y =
fAX=0)Vv(Y=fAX=d). Therefore,

PY=f)=PY=fX=a)+PY=f,X=D+P(Y=f,X=0+P(Y=f,X=d).
The general case is exactly analogous, so we now have Theorem 9.6.

Theorem 9.6. Let X and Y be random variables and let u be a value of X.
ThenP(X=u)=) ,P(X=u,Y =v).

X\Y | e f g h P(X)
a 0.01 | 0.05 | 0.10 | 0.03 || 0.19
b 0.20 | 0.02 | 0.06 | 0.02 || 0.30
c 0.08 | 0.08 | 0.04 | 0.02 || 0.22
d 0.01 | 0.07 | 0.11 | 0.10 || 0.29

| P(Y) | 030 [ 0.22 | 0.31 | 0.17 ||

Table 9.1. Marginal distribution.
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9.2 Expected Value

The expected value of a random variable X, denoted Exp(X), also called the
mean of X, is the weighted average of possible outcomes, where each outcome
is weighted by the probability that it will occur:

Exp(X) =) v-P(X=v).

Note that Exp(X) is not a random variable; it is just a number.
For instance, if D is the random variable for the roll of a fair die, then

Exp(D)=1-P(D=1)+2-P(D=2)+3-P(D=3)+4-P(D=4)+5-P(D=5)+6-P(D =6)

=(1-1/6)+(2-1/6)+(3-1/6) + (4-1/6)+(5-1/6) + (6-1/6)
=21/6
=7/2.

Example 9.7. (Example 9.4 revisited.) Let X be the roll of an unfair coin that
comes up heads 3/4 of the time, and let us associate the value 1 with heads and
the value 0 with tails. Then Exp(X) =1-P(X=1)+0-P(X =0) =3/4.

Suppose that the possible values of X are vy, ..., v; with associated proba-
bilities py,..., px. Define the vectors ¥ = (vy,...,v) and p = (py,..., px). Then
Exp(X) = Ve p. Clearly, for any constant ¢, Exp(X + ¢) = Exp(X) + ¢, and
Exp(c- X) = c-Exp(X).

Expected value satisfies the following simple and important theorem.

Theorem 9.8. Let X and Y be random variables. Then Exp(X + Y) = Exp(X) +
Exp(Y).

What is remarkable about this theorem is that it does notrequire that X and
Y be independent. That means that it can be applied in cases where determin-
ing the distribution of X + Y and carrying out the summation is difficult.

For example, consider the problem of sampling without replacement. Sup-
pose that we have an urn with r red balls and b black balls, and we choose a
sample of s balls without replacement. Let Q be the random variable, which
is the number of red balls in the sample. What is Exp(Q)? To do this problem
directly, we would have to find the distribution of Q (which we will do in Sec-
tion 9.6.2) and then we would have to perform the summation Z;;ré’ i-P(Q=1).
It can be done, but it takes some work and some combinatorics. But we can
avoid all that just by using Theorem 9.8. Define the numerical random vari-
ables Qy,..., Qs as follows:

Q; =1l if the ith ball in the sample is red,
Q; =0 if the ith ball in the sample is black.
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A priori, each ball in the urn has an equal chance of being chosen as the ith
ball. Therefore, P(Q; =1) = r/(r + b) and P(Q; = 0) = b/(r + b), so Exp(Q;) =
1-r/(r+b)+0-b/(r+b)=r/(r+Db). Clearly, Q = Q; +...+Qs, so, by Theorem 9.8,

Exp(Q) =Exp(Qq) +... +Exp(Qs) = sr/(r + b).

This makes sense: the fraction of balls that are red is r/(r + b), so in a sam-
ple of s balls, we would expect that about (r/(r + b)) - s would be red. As dis-
cussed in Section 8.9, the variables Q; are not independent, but Theorem 9.8
can nonetheless be applied.

For example, in the case of the Obama poll (Example 9.4), suppose the total
population is z and the fraction of the population supporting Obama is f. We
represent the pro-Obama faction as red balls and the anti-Obama faction as
blackballs, so r = fzand b = z— fz. So if N is the random variable representing
the number of people who approve Obama in a poll of 1000, then Exp(N) =
1000f z/z = 1000f.

We can get the same result in a different way. Number the red balls 1,...,r,
and define the random variables Xj,..., X, as follows:

X; = 1ifball i is in the sample,

X; =0if ball i is not in the sample.
Since the sample is a random selection of s balls out of r + b total balls, each ball
i has probability P(X; = 1) = s/(r + b) of being chosen for the sample. There-
fore, Exp(X;) = s/(r + b). Clearly, Q = X +... + X;, so Exp(Q) = Exp(Xj) +... +
Exp(X;) = sr/(r+Db).

Having demonstrated the usefulness of Theorem 9.8, let us now prove it.

The proofjust involves rearranging the order of summation and using marginal

probabilities. In the formula in this proof, the summation over u ranges over
the domain of X and the summation over v ranges over the domain of Y.

Proof: Proof of Theorem 9.8:
Exp(X+Y)=) (u+v)-PX=uY =)
u,v
=Y u-PX=uY=0)+) v-PX=uY=0)
u,v u,v
=YY uPX=uY=0)+) Y v-PX=uY=v)
u v v u

Yu|Y PX=uYs= v))+Zv-(Z-P(X:u,Y: v)
u v v u

=Zu-P(X= u)+Zv‘P(Y= v) = Exp(X) + Exp(Y),

by using marginal summation. (]



262

9. Numerical Random Variables

The conditional expected value of random variable X, given event E, is the
expected value computed by using probabilities conditioned on E: Exp(X|E) =
Y, v-P(X=v|E).

Similarly, Theorem 9.9 holds for the product of X and Y, but only if X and
Y are independent.

Theorem 9.9. IfX and Y are independent, then Exp(X-Y) = Exp(X) - Exp(Y).

Proof: This is just the independence assumption combined with the distribu-
tive law:

Exp(X-Y)=) (u-v)-PX=u,Y =0)
u,v

=Y (u-v)-P(X=u)-P(Y=0)

u,v

= (Zu-P(X = u)) : (Z v-P(Y = v)) =Exp(X)-Exp(Y). O

Suppose that random variable X represents the outcome of a random pro-
cess that we can run repeatedly in independent trials, and suppose that we run
the process N times, where N is a large number. Let S = (s1,..., Sn) be the sam-
ple of output values. Then with very high probability, each value v appears
approximately N-P(X = v) times in the sample. Therefore, with high probabil-
ity, the total value of Sis }_, v- (IN- P(X = v)), so the average value of elements
in Sis Exp(X).

9.3 Decision Theory

Decision theory is the application of probability theory to the choice of ac-
tion. The fundamental premise is that an agent should choose the action, or
the strategy, that maximizes the expected value of the utility of the outcome.
(Utility in this sense is a measure of the goodness of an outcome on some kind
of numeric scale.) This is known as the maximum expected utility principle.

Let us start with a simple example. We have the opportunity to buy a lottery
ticket. The ticket costs $1. If it is the winning ticket, it will pay $100; otherwise,
it will pay nothing. The probability that the ticket will win is 1/1000.

We can analyze this as follows. We have two possible actions:

Al. Buy a ticket.

A2. Hold onto our money. (In decision theory, doing nothing is a form of
action.)
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Ifwe carry outaction Al, then there is a probability 0f 999/1000 that you will
end up $1 poorer and a probability of 1/1000 that you will end up $99 richer.
The expected gain is therefore (999/1000) - —1 + (1/1000) - $99 = —0.9. Another
way to look at this is that if we buy N tickets, where N is a large number, all of
which have these same terms and all of which are independent, then with high
probability we will end up poorer by 0.9N.

In contrast, if we carry out action A2, then with certainty our gain is zero, so
our expected gain is 0. Therefore, A2 is the preferred action.

Let’s consider another example. Suppose that a student has class in an hour,
and has two choices for spending the next hour: (a) studying for the pass/fail
quiz at the start of class; or (b) playing a video game. Let’s make the following
assumptions:

¢ The video game is worth 10 utils (the unit of utility) of enjoyment.
* The activity of studying is worth —5 utils of enjoyment.

* Passing the exam is worth 4 utils.

e Failing the exam is worth —20 utils.

e The net utility is the sum of the utility associated with the next hour’s
activity plus the utility associated with the result of the exam. (We choose
the action on the basis of the net utility. This is generally taken to be the
sum of the utility of the component parts, but there is no logical necessity
for this to hold.)

e If the student studies, the probability is 0.75 that he or she will pass.
e Ifthe student does not study, the probability is 0.5 that he or she will pass.

Putting this together, if the student studies, then there is a 0.75 probability
of anet utility of 4+ (-5) = —1 and a 0.25 probability of a net utility of 4+ (-20) =
—16; the expected net utility is therefore 0.75- -1+ 0.25- —16 = —4.75. If the
student doesn't study, then there is a 0.5 probability of a net utility of 10+4 = 14
and a 0.5 probability of a net utility of 10+ (—20) = —10; the expected net utility
is therefore 0.5-14+0.5--10 = 2. So the rational choice is to play the video
game.

9.3.1 Sequence of Actions: Decision Trees

In a more complex situation, an agent may have to carry out a sequence of
actions, and the choice of later actions may depend on the earlier actions.

For example, Joe wants to eat lunch out and get back to the office as quickly
as possible. An Indian restaurant is a 5 minute walk north of him and a Chinese
restaurant is a 10 minute walk south of him. Either restaurant is in one of two
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states, quiet or busy, throughout the lunch hour. The Chinese restaurant is
busy with probability 0.5, and the Indian restaurant is busy with probability
0.8; these two states are independent events and do not change throughout the
lunch hour. At both restaurants, if the restaurant is quiet, then lunch takes 10
minutes; if the restaurant is busy, then with probability 0.25, lunch will take
30 minutes, and with probability 0.75, lunch will take 60 minutes. Assume that
Joe’s measure of utility is the total elapsed time before he gets back to the office.
Clearly, four plans are worth considering:

1. John walks to the Indian restaurant, and stays there whether or not it is
busy. The probability is 0.2 that lunch will take 10 minutes, for a total
elapsed time of 20 minutes; the probability is 0.8-0.25 = 0.2 that lunch
will take 30 minutes, for a total elapsed time of 40 minutes; and the prob-
ability is 0.8-0.75 = 0.6 that lunch will take 60 minutes, for a total elapsed
time of 70 minutes. Thus, the expected time is 0.2:20+0.2-40+0.6-70 = 54
minutes.

2. John walks to the Indian restaurant. Ifit is busy, he then walks to the Chi-
nese restaurant. He stays there, whether or not it is busy. The expected
time is 0.2-20+0.8-0.5-40+0.8-0.5-0.25-60+0.8-0.5-0.75-90 = 53 minutes.
(Note that the total walking time to go from the office to one restaurant
to the other to the office is 30 minutes.)

3. John walks to the Chinese restaurant, and stays there whether or it is
busy. The expected time is 0.5-30+0.5-0.25-50 +0.5-0.75-80 = 51.25
minutes.

4. John walks to the Chinese restaurant. If it is busy, he walks to the Indian
restaurant. He stays there, whether or not it is busy. The expected time is
0.5-30+0.5-0.2:40+0.5-0.8-0.25-60+0.5-0.8-0.75-90 = 52 minutes.

Therefore, the optimal plan is the third choice, to walk to the Chinese restau-
rant and stay there.

The situation for this scenario can be illustrated in a decision tree. A deci-
sion tree is a tree with a root, branches (outarcs emanating from nodes), and
leaves (outcomes).

¢ The root is the starting state.

* Some internal nodes are decision nodes, represented with squares. The
outarcs from a decision node correspond to actions.

¢ The remaining internal nodes are chance nodes, represented with circles.
The outarcs from a chance node correspond to events; they are labeled
with the probability of the event.
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Quiet 0.2

40

6125 Stay

Indian 70

Go.to

3125 Chinese

60

Slow 0.75 </ 90

Go to

Indian 60

Slow 0.75 </ 90

Figure 9.1. Decision tree. Squares denote decision nodes, circles denote chance nodes,
and the bold outarcs from each decision node signify the optimal decision at that point.

* Theleaves, commonly represented as triangles, are the outcomes and are
labeled with the utility.

The value of a decision node is the value of the best of its children, and the
prescribed action to take is the outarc that leads to the best child. The value of a
chance node is the expected value of its children. For a large tree, this is a more
effective way of structuring the calculation than the enumeration of strategies
above.

Figure 9.1 shows the decision tree for the restaurant problem. Decision
trees are commonly drawn left to right because a path from the root to a leaf
moves forward in time. Figure 9.1 shows the optimal strategy highlighted with
thicker arcs. The optimal strategy is obtained by deleting every suboptimal ac-
tion and all its descendent nodes.

It should be noted that this is not the complete decision tree for this prob-
lem; that would also show actions that make no sense, such as going from one
restaurant to another even if the first is quiet. In fact, the complete decision
tree is actually infinite, since the agent can go back and forth between restau-
rants arbitrarily many times. In this case, all but the actions shown in Figure 9.1
are obviously suboptimal, so they need not be shown. (To be precise, for this
probability model, these actions are easily to be seen to be outside the optimal
strategy, no matter what their probabilities and waiting times are. Therefore,
they can be excluded without doing any numerical calculations.)
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Figure 9.2. Infinite decision tree.

In other problems, the tree of reasonable actions actually is infinite. For
a simple example, suppose that someone makes the following offer: We can
flip a coin as many times as we want, and he will pay $1 the first time the coin
comes up heads. The expected value of this offer is $1, since the probability is 1
that eventually some flip will come up heads. The decision tree for this case
is shown in Figure 9.2. Several kinds of data structures and algorithms have
been developed that are more effective than decision trees for these kinds of
problems, but they are beyond the scope of the discussion here.

To represent the probabilistic aspects of reasoning about complex strate-
gies, we use a random variable, Outcome(A), whose value is the utility of strat-
egy A.! For instance, let A be the plan “Go to the Chinese restaurant and stay
there even ifit is busy,” let B be the event, “The Chinese restaurant is busy,” and
let F be the event, “Service is reasonably fast.” Then we are given the following
information:

P(B)=0.5,
P(F|B) =0.25,
Outcome(A) = {20 if = B; 50 if BA F; 80 if B A 7 F}.

Therefore,

P(Outcome(A) =20) = P(0B) =0.5,
P(Outcome(A) =50) = P(B,F) = P(F|B)-P(B) =0.125,
P(Outcome(A) =80) = P(B,7F) = P(0F|B)-P(B) =0.375.

So Exp(Outcome(A)) =0.5-30+0.125-50+0.375-80 = 51.25.

9.3.2 Decision Theory and the Value of Information

Decision theory also allows a value to be assigned to gaining information, in
terms of the information’s usefulness in helping to make decisions with better

1The problem of systematically representing strategies and calculating their various outcomes
is the problem of plan representation and reasoning; it is beyond the scope of this book. For more
information, see Ghallab, Nau, and Traverso (2004) and Russell and Norvig (2009).
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outcomes. For example, suppose that a book manuscript has been submitted
to a publisher, with the following simplifying assumptions.

1. A book is either a success or a failure. If the book is a success, the pub-
lisher will gain $50,000. If the book is a failure, the publisher will lose
$10,000.

2. The probability that a manuscript will succeed is 0.2, and the probability
that it will fail is 0.8.

The publisher has a choice of two actions: publish the manuscript, in which
case the expected gain is 0.2 - $50,000 — 0.8 - $10,000 = $2,000; or reject the
manuscript, in which case the expected gain is $0. So the publisher’s preferred
plan is to publish the manuscript, for an expected gain of $2,000.

Now suppose the publisher has another option; namely, to consult with a
reviewer. Consider, first, the case in which the publisher knows an infallible
reviewer, who can always successfully judge whether a book will succeed or
fail. In that case, the publisher has the option of carrying out the following
strategy:

Consult with the reviewer;

if (the reviewer recommends the book)
then publish it;
else reject it;

The expected value of this strategy can be calculated as follows. With prob-
ability 0.2 the book will be a success, the reviewer will approve it, and the pub-
lisher will publish it and will gain $50,000. With probability 0.8, the book will
be a failure, the reviewer will reject it, and the publisher will reject it and will
gain $0. Therefore, the expected value of the outcome of this strategy, at the
outset, is 0.2-$50,000 + 0.8 -0 = $10,000. Therefore, the reviewer’s opinion is
worth $10,000 — $2,000 = $8,000 to the publisher; if the reviewer’s fee is less
than $8,000, then it is worthwhile to the publisher to pay for a review.

Unfortunately, reviewers are not actually infallible. The most that a pub-
lisher can realistically expect is that the reviewer’s opinion bears some relation
to the actual outcome. Let R be a Boolean random variable representing the
reviewer’s opinion; and let S be a random variable representing whether the
book would be a success if the publisher publishes it. Suppose we are given
the following additional conditional probabilities: P(R=T|S = T) = 0.7; and
P(R=T|S=F)=04.

Let Al be the strategy already discussed: Publish if R = T, reject if R = F.
Then we can evaluate Exp(Outcome(S)) as follows:

Exp(Outcome(Al)) = Exp(Outcome(Al)|R = T)-P(R = T)+Exp(Outcome(Al)|R = F)-P(R=F).
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Figure 9.3. Decision tree for a publisher consulting with one reviewer.

If R = F then the publisher does not publish; so Exp(Outcome(Al)|R=F) =
0. To evaluate the first term above we proceed as follows

Exp(Outcome(Al) |[R=T)-P(R=T)
=$50,000-P(S=T|R=T)-P(R=T)-$10,000-P(S=F|R=T)-P(R=T1)
=$50,000-P(R=T|S=T)-P(S=T)-$%$10,000-P(R=T|S=F)-P(S=F)
=$50,000-0.7-0.2—$10,000-0.4-0.8 = $3,800.

So Exp(Outcome(Al)) = $3,800. Thus, the value of the reviewer’s opinion is
$3,800 — $2,000 = $1,800; as long as the reviewer charges less than $1,800, it is
worth consulting him.

The decision tree for this problem is shown in Figure 9.3. The reviewer’s
fee is taken to be $500. Again, actions that are obviously senseless are omitted.
For instance, there is no point in consulting unless the publisher is going to
follow the reviewer’s advice, so “reject” is not an option if a favorable review
has been received, and “publish” is not an option if an unfavorable review has
been received.

More complex versions of this problem, in which the publisher has the op-
tion of hiring several reviewers, are considered in Problems 9.2-9.3 and Pro-
gramming Assignment 9.2.

As this kind of example gets more complex, the space of strategies becomes
more difficult to characterize. (A small example of this is seen in Exercise 9.3).
Likewise, the problem of determining whether a strategy is executable becomes
more complex. Consider, for example, “strategy” A2: if S = T then publish; else,
reject. Clearly, this is not actually a strategy. (The archetype of this kind of strat-
egy is the advice, “Buy low, sell high.”) But why is strategy Al executable and
A2 not executable? Or, more concretely, how does one develop a problem rep-
resentation that will allow all and only executable strategies to be considered?
Partial solutions to this question are known, and the area is one of active re-
search.
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9.4 Variance and Standard Deviation

The expected value of X characterizes the center of distribution X. The vari-
ance Var(X) and the standard deviation Std(X) characterize how broadly the
distribution is spread around the center.?

Let X be a random variable and let v be a value. We define the spread of
X around v, denoted Spread(X, v), as the expected value of (X — v)2. Note that
this number (X — v)? is always positive and gets larger the farther X is from v.

Clearly, the most reasonable value of v to use to measure the inherent spread
of X is the one that minimizes Spread (X, v). As luck would have it, that value of
v is exactly Exp(X); and the associated value of the spread is called the variance
of X, denoted Var(X).

As a measure of spread, however, the variance has the problem that it is
in the wrong units; if X is measured in feet, for example, Var(X) is in square
feet. To get a measure of the spread of X that is comparable to the values of
X, we take the square root of the variance. This is the standard deviation of X,
denoted Std(X).

Definition 9.10. Let X be a numeric random variable. Let y = Exp(X). Then

Var(X) = Exp(X - )?) =Y P(X = w)(u—p?,

Std(X) = /Var(X).

For example, let D be the roll of a single die. We calculated in Section 9.2
that Exp(D) = 7/2. Therefore,

Var(D) = (1/6)(1 - 7/2)® + (1/6)(2—7/2)> + (1/6)(3 - 7/2)?
+(1/6)(4—-7/2)% +(1/6)(5—7/2)* + (1/6)(6—7/2)*
=1/6-(25/4+9/4+1/4+1/4+9/4+25/4)
=70/24
=2.9167,

Std(D) = v/Var(D) = 1.7079.

(You may ask, why use Exp((X — v)?) rather than just Exp(|X — v|)? That
is also a useful number; the value of v that minimizes it is the median of X
(see Problem 9.5). But (X — v)? has a number of advantages. The basic one is
that it is differentiable, which simplifies many symbolic manipulations such as
minimization. Also, the variance satisfies Theorem 9.12, which is an important
theorem; there is no comparable theorem that holds for Exp(|X — v|).)

2The expected value, variance, and standard deviation of a random variable, discussed in this
chapter, should not be confused with the related concepts of the mean, variance, and standard
deviation of a dataset, discussed in Chapter 14.
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In probability theory, the symbol p is often used for the expected value and
the symbol o is used for the standard deviation, so o2 is the variance.

Clearly, for any constant ¢, Var(X + ¢) = Var(X), Std(X + ¢) = Std(X),
Var(c- X) = ¢?-Var(X), and Std(c- X) = ¢-Std(X). That is, the variance and stan-
dard deviation are invariant under translation and the standard deviation is
linear under scalar multiplication.

The significance of the standard deviation is illustrated in Theorem 9.11,
known as Tschebyscheff’s inequality (the name is also spelled Chebyshev, Cebi-
sev, and other variations).

Theorem 9.11. Let X be a random variable with mean u and standard devia-
tiono. Then forany w > o, P(|X —u| = w) < 0®/w?. Thatis, if w is substantially
greater than o, it is very unlikely that X is more than w from u, where “very
unlikely” means the probability is not more than o/ w?.

Proof: Let S be the set of all values of X, and let U be the subset of S of all

values v of X such that |v — p| = w. Then for any value u € U, (u— ,u)2 > w?, so

P(u)- (u—p)? = P(u) - w?. Therefore,

o?=Y Pw)-(v-w*= Y Pw)-(v-w?*= Y P w?=w?*) P =w?PU).
ves velU veU velU

So P(|X — |l = w) = P(U) < 0®/ w?. O

The variance of the sum of two random variables, Var(X + Y), satisfies a
theorem similar to Theorem 9.8, but it applies only if X and Y are independent:
Theorem 9.12. Let X and Y be independent random variables. Then Var(X +
Y) =Var(X) + Var(Y).

Proof: Let ux = Exp(X) and puy = Exp(Y); these are constants. Let X and Y be
the random variables X = X — ux, ¥ = Y — uy. Then Exp(X) = Exp(X — ux) =
Exp(X) — ux = 0, and likewise, Exp(Y) = 0. Also X+Y = X+ Y — ux — 4y, so
Var(X + Y) = Var(X + Y). By Theorem 9.5, X and Y are independent.

So we have

Var(X +Y) =Var(X +Y)
=Exp(X +Y)?)
=Exp(X?+2XY +V?)
= Exp(X?) + Exp(2XY) + Exp(Y?)
= Exp(X?) + 2Exp(X) - Exp(Y) + Exp(Y?).
By Theorem 9.9, since X and Y are independent, Exp(X-Y) = Exp(X)-Exp(Y) =0
so we have

Exp(X?) + Exp(Y?) = Var(X) + Var(¥) = Var(X) + Var(Y). O
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Using Theorems 9.11 and 9.12, we can derive an important consequence,
Theorem 9.13.

Theorem 9.13. Let Xi, ..., Xy be independent random variables, each with
mean p and standard deviation o; thus, Var(X;) = 0%. Let V be the average of
these: V =(Xy+...+ XnN)/N. Then

(a) Exp(V) = (Exp(X7) +... + Exp(Xn))/N =y,
(b) Var(V) =Var(X) +...+ Xy/N) = (Var(Xy) +... + Var(Xy))/N? = 6?/N,

(©) Std(V) = /Var(V) =a/VN.

The key point is statement (c); the spread, as measured by the standard
deviation, goes down proportional to the square root of the number of repeti-
tions.

For example, suppose that we flip a coin 10,000 times. Let X; be the random
variable for the ith flip, with heads=1 and tails=0. Let V' be the average of the
X;; thus, V is the fraction of heads in the flips. We have Exp(X;) = 1/2 and
Std(X;) = 1/2, so Exp(V) = 1/2 and Std(V) = 1/200. Using Theorem 9.11, we can
conclude that P(|V = 1/2| = 1/100) < ((1/200)/(1/100))2 = 1/4. Thus there is at
least a 0.75 chance that V is between 0.49 and 0.51. As we show in Section 9.8.2,
this is a substantial underestimate—the true probability is 0.9545—but we have
been able to derive it with surprising ease.

9.5 Random Variables over Infinite Sets of Integers

The second category of numerical random variables are those whose domain
is an infinite set of integers. (Note: This section requires an understanding of
infinite sequences and infinite sums.)

Example 9.14. Suppose we repeatedly flip a coin until it turns up heads; then
we stop. Let C be the random variable whose value is the number of flips we
make. As in Example 9.4, let F}, F,,... be random variables corresponding to
the successive hits; the difference is that now we need an infinite sequence of
random variables. Then

P(C=1)=P(F,=H)=1/2,
P(C=2)=P(F, =T, F, =H)=1/4,
P(C=3)=P(F =T, F,=T,F3=H)=1/8,

P(C=k =1/2%,...
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In general, we can let the sample space Q be the set of natural numbers. A
probability function over Q is a function P(i) such that Z‘i":’l P(i) = 1. An event
is a subset of Q. The probability of event E is P(E) = }_ ;¢ P(x). An unnormal-
ized weight function w(i) is any function such that the Y32, w(i) converges to
a finite value.

Almost everything that we have done with finite random variables transfers
over to this case, requiring only the change of finite sums to infinite sums. Oth-
erwise, the definitions are all the same, the theorems are all the same, and the
proofs are all the same, so we will not go through it all again. There are only
three issues to watch out for.

First, axiom P2 in the event-based axiomatization of probability (Section 8.4)
has to be extended to infinite collections of events, as follows:

P2’ Let{E1, Ez,...} be asequence of events, indexed by integers, such that, for
alli# j, E;nE;=@. Then P(EUEU...) = P(E;) +P(Ez) +....

The property described in this axiom is called countable additivity.

Second, there is no such thing as a uniform distribution over Q. If all values
in Q have the same weight w, if w > 0 then the total weight would be infinite; if
w = 0, the total weight is zero. Neither of these is an acceptable alternative.

Third, a probability distribution may have an infinite mean; or a finite mean
and an infinite variance. For example, the function distribution

P1)=1/1-2)=1/2,
P(2)=1/(2-3) =1/6,
P(3)=1/3-4=1/12,

P(k)=1/k-(k+1),...

is a legitimate probability distribution, since

PO +P2)+PB)+...+Pk)+...=1/1-2)+1/2-3)+1/3-D+... + 1/k(k+ 1D +...

=(1-1/2)+1/2-1/3)+(/3-1/4) +...+ U/ k—-1/(k+1)+...
=1

However, the expected value is

1-P(1)+2-P2)+3-PB)+...+k-P(k)+...=1/1-2)+2/(2-3)+3/(3- D +... + k/k(k+ 1) +...

=1/2+1/3+1/4+...+1/(k+1)+...,

which is a divergent series.



9.6. Three Important Discrete Distributions

273

Similarly, we can define a random variable X such that P(X = k) = 1/k? -
1/(k+1)2%fork=1,2,.... Thisis a legitimate probability distribution and has a
finite mean, but the variance is infinite.

Therefore, to extend any of the theorems about Exp(X) or Var(X) here to the
case of random variables with infinite domains, we have to add the condition
that Exp(X) or Var(X) exists and is finite.

9.6 Three Important Discrete Distributions

In the theory of probability, mathematicians have studied many different spe-
cific distributions with different kinds of applications and mathematical prop-
erties. These are generally families of distributions, each with a set of real- or
integer-valued parameters; each assignment of values to the parameters gives
a different distribution. In this book, we briefly discuss a few distributions that
are particularly important in computer science applications. In this section,
we discuss three discrete distributions: the Bernoulli distribution, the binomial
distribution, and the Zipf distribution. Continuous distributions are discussed
in Section 9.8.

9.6.1 The Bernoulli Distribution

The Bernoulli distribution is associated with a single flip of a weighted coin. It
has one parameter p, the probability that the flip comes up heads. The domain
is the set {0, 1}. The distribution is defined as

P(X=1)=p,
P(X=0)=(1-p).

The expectation Exp(X) = p. The variance Var(X) = p(1 — p). The Bernoulli
distribution is a very simple one in itself, but it is a basic component of more
complex distributions.

9.6.2 The Binomial Distribution

Suppose that we have a weighted coin that comes up heads with probability p,
and we flip it n times. Let X be the random variable whose value is the number
times the coin comes up heads in the # flips. Then the probability distribution
for X is the binomial distribution.

The binomial distribution has two parameters: n and p. It takes on values
in {0,1,...,n}. We can calculate P(X = k) as follows: Any particular sequence
with k heads and n — k tails has probability p* - (1 — p)"~*. For example, if p =
0.75, k = 2, and n =5, then the probability of the particular sequence HTTHT is

p-(l—p)-(l—p)-p-(l—p)=l92'(1—l9)3=0-0088-
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the 6,187,267 | in 1,812,609 | was 923,948 | you 695498 | on 647,344
of 2,941,444 | to 1,620,850 | to 917,579 | he 681,255 | that 628,999
and 2,682,863 | it 1,089,186 | I 884,599 | be 662,516 | by 507,317
a 2,126,369 | is 998,389 | for 833,360 | with 652,027 | at 478,162

Table 9.2. Frequencies of the 20 most common words in the BNC database.

Any sequence of k heads and n — k tails corresponds to one way of choosing
the k positions for the heads out of the n positions in the sequence; the num-
ber of such sequences is C(n, k) = n!/(k!- (n — k)!) For example, the number of
sequences with two heads and three tails is 5!/(2!-3!) = 10. The total probability
of getting k heads in a sequence of 7 flips is therefore

|
P(X=k) =Bnp(k)=C(n, k) - p*-(1-p)" k= m-p"-u— p)" k.

For example, for n =5, p = 3/4, the distribution is

P(X=0)=5!/(5!-00)-(3/4)°(1/4)° =1-1/4° =0.0098,
P(X=1)=5!/@4!-1)-3/4'(1/4)*=5-31/4° =0.0146,
P(X=2)=5!/(3!-2)-3/4)%(1/4)% =10-32/4°=0.0878,
P(X=3)=5!/(2!-3)-3/4)3(1/4)? =10-3/4°=0.2636,
P(X =4)=5!/(1!-4)-3/4*(1/4)! =5-31/45 =0.3955,
P(X =5)=5!/(0!-5) - (3/4)°(1/4)° =1-3°/4° =0.2373.
The random variable X is the sum of n independent random variables B;, each
with the Bernoulli distribution. Therefore, by Theorems 9.8 and 9.12,
Exp(X) = Exp(By) +... + Exp(By) = n-Exp(B;) = np,
Var(X) =Var(B;) +...+Var(B,) = n-Var(B;) = np(1 - p).

9.6.3 The Zipf Distribution

Take a large corpus of English text, count the frequency of every word, and list
them in decreasing order. For example, the British National Corpus (BNC; Kil-
garriff, 2010) is a collection of representative English texts. It is 100,106,029
words long and contains 938,972 different words. (An occurrence of a word is
called a “token”; different words are called “types.”) Table 9.2 shows the num-
ber of occurrences of the 20 most common words in the corpus.®

Let us consider the number of occurrences as a function of the rank of the
word; that is, f(1) = 6,187,267, f(2) = 2,941,444, and so on. It turns out that

3The BNC database separates occurrences of words by part of speech; thus, the first “to” in the
table is as a particle and the second is as a preposition. The figure for “that” is as a conjunction.
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Figure 9.4. Occurrences of 200 common words by rank on a log-log plot. The points
are shown in asterisks, and the solid line is the best fit.

the function y(n) = 13,965,000- (1+0.8948) ~ 1985 fits these data very well. This
can be seen by using a log-log plot, where x = n +0.8948; the curve becomes
the straight line log(y) = —1.0854log(x) +1log(13,965,000). Figure 9.4 shows the
first 200 data points and the line; as can be seen, the agreement is very close
except for the value n = 2.

These data can be turned into a probability distribution by normalization;
the probability of word w is the number of its occurrences in the corpus divided
by the length of the corpus.

At the other end of frequency data, let us consider the most uncommon
words in the corpus; we thus count the number of words that occur a very
small number of times. In this corpus, there are 486,507 words that occur once;
123,633 words that occur twice, and so on. (Not all of these are words in the
usual sense; this count includes numerals and some other nonword textual el-
ements.) Table 9.3 shows the data up to words that occur 20 times.

These data fit very well to the curve f(n) = 399,000 n~ 6% If we plot the
data on a log-log scale (Figure 9.5), the fit to a straight line appears so perfect
that it is not necessary to draw the line.

1 486,507 | 5 25,065 | 9 9,765 | 13 5,534 | 17 3,588
2 123,633 | 6 19,109 | 10 8,551 | 14 5,079 | 18 3,389
3 58,821 | 7 14,813 | 11 7,419 | 15 4,506 | 19 3,089
4 36,289 | 8 11,905 | 12 5,817 | 16 4,016 | 20 2,856

Table 9.3. Number of words that occur rarely in the BNC database.
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10

10° 10 10°

Figure 9.5. Number of words with very low frequency on a log-log plot. The data points
are marked with asterisks. An asterisk at coordinates (x, y) means that there are y dif-
ferent words that occur exactly x times in the corpus.

Distributions of the form a(n+ §)~7 are called Zipf distributions; they are
also known as the inverse power law, or long-tailor fat-tail distributions.* Many
diverse phenomena follow a Zipf distribution, including word frequency, city
population, company size, number of pages published by scientists, magazine
circulation, movie popularity, number of accesses to web pages, number of in-
links to web pages, number of outlinks from web pages, size of strongly con-
nected components in the web, and personal wealth and personal income (see
Sinha and Pan, 2006).°

A number of important features of the Zipf distribution should be noted.
We describe these and illustrate them by again using the BNC word distribu-
tion, but they apply generally.

First, the top elements account for a substantial proportion of the total. In
the word frequency example, the 10 most common words comprise 21% of all
tokens; the 20 most common words comprise 28% and the top 175 words com-
prise 50%.

Second, infrequent elements, collectively, also account for a substantial
proportion of the total. In the word frequency example, words that appear only
once comprise 0.5% of the total, words that appear at most 10 times comprise
1.7%, and words that appear at most 20 times comprise 2.3%. This is the long-

4This is also sometimes called Zipf’s law, but the only “law” is that many things follow the dis-
tribution.

51t is debatable whether some of these may actually be very similar distributions, such as log-
normal distributions, but for our purposes here, it hardly matters.
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tail or fat-tail effect: the probability that a random token in a corpus is a very
low-ranked word is much greater than with other common distributions.

To underline the force of the Zipf distribution, let us compare what would
happen if the words were evenly distributed; that is, if each token had equal
probability of being any of the 938,000 types. Let n = 10% be the total length
of the corpus; and let p = 107° be the frequency of each word. For each word
w, let X;, be a random variable whose value is the number of occurrences of
w in the corpus; then X follows the binomial distribution P(X = k) = By, p (k).
By using an asymptotic analysis, we can show (these are order of magnitude
calculations; that is, the exponent is within a factor of 2 or so):

e P(X =1) = 10°¢71% = 107%!. Therefore, the probability that the cor-
pus would contain any word that occurs only once is about 1073, The

probability that the corpus would contain 500,000 such words is about
1017107

e P(X=6-10%) ~ 1072410 Therefore, the probability that the corpus con-
tains any word occurring six million or more times in the corpus is like-
wise about 1072410,

Small values of the exponent y favor the second effect—the tail is long; large
values of y favor the first effect—the large elements are very large.

Third, power law distributions tend to give rise to computational problems
in which it is easy to make great strides at the start and then progressively more
difficult to make improvements. For example, consider the probability p, that,
after reading the first g words of the corpus, the next word we read is one that
we have seen already. If the words follow a power law with an exponent of
approximately —1, we can show that, for a wide range of C, p, increases loga-
rithmically as a function of g, and thus the C required to achieve a given value
of pc increases exponentially as a function of p.

Table 9.4 illustrates how this probability increases with the number of words
read, using the case of a total vocabulary of 100,000 different words and a dis-
tribution proportional to 1/k. Note that at each stage, doubling the number
of words read increases the probability by about 5.5%. In this table q is the
number of words that have been read. The value p is the probability that the
next word read will be one that you have seen, as given by a Monte Carlo sim-
ulation; these numbers are accurate to within the two digits given here. (See
Assignment 12.2 for the programming of this simulation.) The value p is the
value estimated by the approximate theoretical computation at the end of this
section.

The consequence of this is a phenomenon often encountered in artificial
intelligence research; you can easily get results that seem promising, and with a
reasonable amount of work you can get results that are fairly good, but getting
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q p P q 14 p q p P q 14 p

100 028 0.21 200 033 0.27 400 039 0.32 800 0.44 038
1600 050 0.44 | 3200 056 0.49 6,400 0.61 055 | 12,800 0.66 0.61
25600 073 0.67 | 51,200 0.78 0.72 | 102,400 0.84 0.78 | 204,800 0.89 0.84

Table 9.4. Probability that we have seen the next word.

really good results requires a lot more work, and excellent results seem to be
entirely out of reach.

For actual individual words, as we discuss here, these results don't actually
matter so much, for two reasons. First, a corpus of 1,000,000 words or even
100,000,000 words is actually reasonably easy to collect and to do basic forms
of analysis, so it’s not that daunting. Second, individual words are largely ar-
bitrary; broadly speaking, words have to be learned one at a time, so there is
no way to learn the properties of a word until we have seen it. If we want to
collect a lexicon with 500,000 different words, we will have to work through a
corpus that contains 500,000 different words; there is no choice. By contrast,
if you have an application that requires knowing the properties of one billion
different 3-grams (triples of consecutive words; see Section 10.3), it may not be
necessary to examine a text corpus that contains one billion different 3-grams,
because 3-grams are not arbitrary; there is a logic to the possible or probable
sequences of words.

Power law distributions with small exponents have anomalous behavior
with regard to the mean and the variance. A distribution p, = an~" has an in-
finite variance if y < 3; it has an infinite mean if y < 2; and it is not a probability
distribution at all if y < 1 because the sum ) 1/n" diverges for y < 1. In this last
case, we must assume that there are only a finite number of values, as we have
done in computing Table 9.4. If y is just above the critical values 3 or 2, then
the variance and the mean are anomalously large. Therefore, if we are comput-
ing mean and variance from statistical values, and one or both seem strangely
large and very unstable from one sample to another, then we should suspect
that we may be dealing with a power law distribution and that computations
based on mean and variance may not be meaningful.

Deriving the probability having previously seen the next word. Let Hy be
the harmonic sum Hj = Zle (1/7). Thenitis known that Hy =In(k)+y+O(1/k),
where y = 0.5772 is known as Euler’s constant.

Let W be the size of the vocabulary, and let wy be the kth ranked word, for
k=1,...,W. Assume that the frequency of wy in the text is proportional to 1/ k.
Then the normalization factor is Hy, so the probability that a random token is
Wy is px = 1/(k- Hy).

Suppose that we have read a random text T of g tokens, where Hyy < g <
W Hy,. Suppose that the last token we read was a word we have seen before
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in the text; then it is one of the words that occurs at least twice in the text.
Therefore, the probability that the last word we read was one we had already
seen is equal to the fraction of tokens in T whose word occurs at least twice
in T. We can roughly assume that the text contains at least two occurrences
of word wy, if gpy > 3/2; this holds if k < 2q/3Hw. Let r = 2q/3Hw. Then
the fraction of tokens in T whose word occurs at least twice in T is H,/Hy =
In(3q/2Hw)/Hy .

Table 9.4 shows the estimate p derived from this argument and the much
more accurate estimate p derived from Monte Carlo simulation, for various
values of n. Over the entire range of n, p = p —0.05; thus, when plotting p
against log(n), the argument gets the y-intercept wrong by about 0.05 but gets
the slope almost exactly correct.

9.7 Continuous Random Variables

The third category of numerical random variables are random variables that
take values over the real line. The theory here is different and more difficult
than with finite domains or integer domains. (Note: This section requires cal-
culus, and at one critical point it requires multivariable calculus.)

The sample space Q is the real line R. However, unlike the sample spaces we
have looked at earlier, the probability of an event is not derived from the prob-
abilities of individual elements; typically, each individual element has proba-
bility zero. Rather, the probability of events is a characteristic of the interval
as a whole, just as the length of an interval is not the sum of the lengths of the
points in the interval.

Specifically, we posit that there is a large® collection of subsets of R called
the measurable sets. If X is a random variable with domain R and E is a mea-
surable set, then X € E is a probabilistic event, and P(X € E) is a probabilistic
event satisfying axioms P1, P2, P3, and P4 (see Sections 8.4 and 9.5).

Notice that this is something like what we did in the likelihood interpre-
tation of probability (Section 8.6), in the sense that we took the probability of
events as a starting point. However, in that earlier analysis, we were able to
form a finite sample space of elements by combining events; here that is not
possible.

From the description so far, it sounds as though, in order to specify a proba-
bility distribution, we would have to specify P(X € E) separately for all measur-
able E, which would be alarge undertaking. Fortunately, because of the axioms
constraining probability distributions, there is a simpler approach: the proba-
bility of all events can be specified by specifying the cumulative distribution.

6The question of what subsets of R can be considered measurable is a very deep one. However,
certainly any finite union of intervals is measurable, which is all that we need.
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Definition 9.15. Let c(#) be a continuous function from R into the closed in-
terval [0,1] such that

 function c(#) is monotonically nondecreasing; thatis, if #; < #,, then c(#;) <
c(t2);

e for any v such that 0 < v < 1, there exists ¢ such that c(t) = v.

Let X be a numeric random variable. Then c is the cumulative distribution
function (cdf) for X if, forevery t, P(X < 1) = P(X < t) = c(1).

(A more general definition allows ¢ to be discontinuous from the left and
also weakens some of the other conditions; however, we do not need that level
of generality here.)

If we have specified a cumulative distribution c¢(#) for a random variable X,
then that determines the probability that X lies within any specified interval
[u, v]:

PXelu,v))=PX=vA1(X<u)=PX=v)-PX<u=c)-clu.

We can then use axiom P2’ to calculate P(X € E), where E is the union of a finite
set of intervals or of an infinite set of intervals.

Example 9.16. Let ¢(#) be the following function (Figure 9.6)

0 for <O,
c(t) = t for 0=<r=<l,
1 for t>1.
Cumulative Distribution Density
2 . 2 .
1.5 1.5

-05 -0.5

-1 -1
-1 0 1 2 -1 0 1 2

Figure 9.6. Distribution and density for function of Example 9.16.
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Clearly, c(t) satisfies the conditions of Definition 9.15. Let X be a random vari-
able X with distribution c(t). For that distribution, we have

0 if usv=<o,

v if u<0 and O=<sv=<l,
P(Xelu,v])=cv)—cu) = v—u if 0su<sv=<l,

l1-u if 0su<l and v=1,

0 if 1su<w.

If E is the union of disjoint intervals, then P(E) is the sum of their probabil-
ities. For example P(X € [-1,1/6]U[1/3,2/3]U[5/6,2]) =1/6+1/3+1/6 =2/3.

A more useful, although slightly less general, way to represent continuous
distribution is in terms of the probability density.

Definition 9.17. Let X be a random variable with cumulative distribution c(#).
If c(2) is piecewise differentiable (i.e., differentiable at all but isolated points),
then the derivative of ¢, f(t) = ¢(¢) is the probability density function (pdf)
associated with X. (The value of f at the points where c is not differentiable
does not matter.)

Another, more direct definition of f is as follows: For any point ¢,

= lim Plu<X< u+e).

u—te—0* €
So f(t) is the probability that X lies in a interval of length € near ¢, divided
by the length €. (If this does not approach a unique limit, then the value of
f (1) is arbitrary and may be assigned arbitrarily. For reasonable probability
distributions, this happens only at isolated points.)

A density function is essentially the limit of a series of histograms, with the
subdivision on the x-axis getting smaller and smaller. At each stage, the y-axis
is rescaled to be inversely proportional to the division, so that the height of
each rectangle remains roughly constant.

For example, consider the density function PX=0n=@3/410-13,-1<t
< 1. The corresponding cumulative function is the integral

3 1 3 1
C(t)=f S0-x)dx=-=53+r+-.
_14 4 4 2

Thus,
P(t—-A<X<t+A)=c(t+A)-c(t-N)=————— —+ —.

Rescaling by the width 2A, we have

P(t-A<X<t+A) 3-31°-A®
2AA - 4
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0.8 0.8
0.6
0.4
0.2
91 -0.5 0 0.5 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
91 -0.5 0 0.5 1 91 -0.5 0 0.5 1

Figure 9.7. Probability density as a limit of histograms: 4 bars (top left), 8 bars (top
right), 16 bars (bottom left), and density function (bottom right).

Note that as A goes to zero, this converges to the density (3/4)(1— ). Figure 9.7
shows a series of bar charts for P(t—A< X < t+A)/2AforA=1/4,1/8,1/16, and
the density function with -1 < ¢ <1.

We write P(X = f) for the value at  of the probability density of X. (This is
a slight abuse of notation, but should not cause confusion.) Thus, we have

Pm:n:iPmsa
dt

The probability P(X € E) is the integral of the pdf of X over E.
Theorem 9.18. Let X be a random variable over R and let E be a measurable
subset of R. Then

Pmem:f P(X =ptdt.
teE

Example 9.19. The random variable defined in Example 9.16 has the proba-
bility density f (), where

0 for <0,
f(H=4 1 for 0=<t=l],
0 for r>1.

Since the cumulative function c(#) is not differentiable at t = 0 and ¢ = 1, the
values of f at those points is not defined and may be chosen arbitrarily.
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Cumulative Density
1 0.25
0.8 0.2
0.6 0.15
0.4 0.1
0.2 0.05
0 0
-5 0 5 -5 0 5

Figure 9.8. Curves for Example 9.20. The cdf (left) is e’/ (1+e?); pdf (right) is e’/ (1+e%)?.

Example 9.20. Let X be arandom variable with cumulative distribution c(#) =
e’/(1+e"). Since e’ goes from 0 to co as ¢ goes from —oo to co, and e’ is a contin-
uous increasing function, it is easily checked that c(¢) satisfies the conditions of
Definition 9.15. Then the pdfof X is P(X = 1) = dc/dt = e'/ (1+e")? (Figure 9.8).

In many ways, the probability density function f(z) over elements ¢t € R
looks a lot like a probability function over a finite sample space Q, where sum-
mation in the finite case is replaced by integration in the continuous case. Be-
fore we discuss those parallels, however, let us emphasize that they are not the
same thing, and that there are important differences. One difference is that a
probability density function may be greater than 1, as long as the integral is 1.
Example 9.21 illustrates this difference.

Example 9.21. Function h(?) is a legitimate probability density function:

0 for <0,
h(t)=< 2 for 0=<t=<1/2,
0 for r>1/2.

Second, probability densities behave differently from probabilities on ele-
ments with regard to functions of a random variable. If X is a random vari-
able and g is an injection (invertible function), then for any value v, P(g(X) =
g(v)) = P(X = v). This is not the case for probability densities; P(g(X) = g(v)) #
P(X = v) because g changes not only the value of v but also the scale in the
neighborhood of ¢. For instance, let X be the random variable of Example 9.16.
Let g(v) = v/2. Then the random variable g(X) has the density h(¢) discussed
in Example 9.21; thus, P(g(X) = g(#)) = 2- P(X = ). The explanation is as
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Probability functions Density functions

For all v, P(v) =0 For all v, P(v) 20

1=Y,PW 1= /% Pw)dv
Exp(X)=Y,v-P(v) Exp(Y):ffgo v-P(w)dv

Var(X) = ¥, (v —Exp(X))? - P(v) | Var(Y) = [ (v-Exp(Y))?- P(v)dv

Table 9.5. Similarities between probability functions and probability density functions.

follows. Let ¢ be any value such that 0 < t < 1/2, and let € be small. Then

- 1
P(gX)=g(n)= s -P(g(t) = g(X) = g(1) +e)

An alternative derivation (essentially equivalent, but perhaps easier) in-
volves the cumulative distribution function c(t) defined in Example 9.16:

0 for <0,
c(t) = t for 0<t=<],
1 for t>1.

Let X be arandom variable whose cdfis c(t); thatis, P(X < t) = ¢(t). Then
PX=1= iP(X< n= ic(t) =h(1)
S de o dar T
Let Y = g(X). Then

P(y=u-= iP(Y <u) = iP(X <2u)= ic(2u) =2h(2u) = 2P(X =2u).
du du du
Soif t =2u, then P(Y = u) = P(g(X) = g(1)) =2P(X = 1).
Generalizing the above calculation, we can show that, for any differentiable
invertible function g(v), if X has density f (¢) then g(X) has density f(g(1))/g'(¢).
In many ways, however, probability density functions do work in the same
way as probability functions, replacing summation by integration. Let X be
a discrete numeric random variable with probability function P(x) and let Y
be a continuous random variable with pdf P(z). Table 9.5 shows the parallels
between probability functions and pdfs.
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Moreover, as with discrete probabilities, it is often convenient to use an un-
normalized weight function w(v). A function w(v) can serve as a weight func-
tion if it satisfies the conditions that w(v) = 0 for all v, and that ffgo w(v)dv
is finite but greater than 0. The pdf associated with weight function w(v) is
fw=ww/ 5 wwdv.

The theorems that combine several random variables also carry over to the
continuous case; however, to make them meaningful, we need to define the
meanings of joint probability distribution and joint density function. (Itis pos-
sible to define a joint cumulative distribution function, but it is awkward and
not very useful.)

We posit that there exists a collection of measurable subsets of R”. A prob-
ability function over the measurable subsets of R” is a function P(E) mapping
a measurable set E to a value in [0,1] satisfying axioms P1, P2/, P3, and P4.

Definition 9.22. Let (X1, X>,...,X,) be a finite sequence of continuous ran-

dom variables. Then the joint distribution of(X1,..., Xy, denoted P({Xj,..., Xp) €

E), is a probability function over the measurable sets E.

Definition 9.23. Let (X1, X>,..., X, be a finite sequence of continuous ran-
dom variables, and let P({X;,..., X,) € E) be its probability function. Let i=
(t1,..., ) be avector in R”. The probability density function of (X3, X2, ..., Xp)
satisfies the following: For any 7

PimsXisuym+en...Nup<X,<up+e)

PXi=t,...Xn=1t)= lim

)
ii—1,e—0" en

if that limit exists. That is, the probability density at 7 is the probability that
(X1,...,Xp) lies in an n-dimensional box of side € near ¢, divided by the volume
of the box, €.

If there is no unique limit at a point 7, then the value of f(7) does not matter.
If P is a “well-behaved” function, then the set of points where the limit does not
exist has measure zero.

As in the one-dimensional case, the probability can be obtained from the
density by integration, as shown in Theorem 9.24.

Theorem 9.24. Let Xi,Xo,..., X, be continuous random variables and let E be
a measurable subset of R". Then

P((Xl,...,Xn>€E)=f,...,f PXi=t..X,=t)dt,...dt,.
E

Virtually all of the theorems we have proven for discrete probabilities now
carry over to continuous probabilities, replacing summation by integration.
For simplicity, we state them here in terms of two random variables, but they
all generalize in an obvious way to n random variables. In all of the following
theorems, X and Y are continuous random variables.
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Theorem 9.25. Variable X is independent of Y if and only if for all values t and
uPX=1Y=w=PX=1)-P(Y=u.

The conditional density distribution is definedas P(X = 1|Y = v) = P(X = u,
Y =v)/P(Y =v).

Theorem 9.26 is the basic theorem about marginal probabilities, analogous
to Theorem 9.6.

Theorem 9.26. For any value t of X,

P(X:t):fooﬁ(xzt,yzu)du.

—00

Theorem 9.27. Letv bea particular value of Y such that P(Y = v) # 0. Then the
conditional density P(X = u|Y = v) = P(X = u,Y = v)/P(Y = v) is a probability
density as a function of u.

The wording of Theorems 9.8-9.13 is exactly the same in the continuous
case as in the discrete infinite case. The proofs are exactly the same as in the
finite case, replacing sums by integrals:

Theorem 9.8'. If Exp(X) and Exp(Y) are finite then Exp(X + Y) = Exp(X) +
Exp(Y).

Theorem 9.9'. If Exp(X) and Exp(Y) are finite and X and Y are independent,
then Exp(X - Y) = Exp(X) - Exp(Y).

Theorem 9.11'. Let X be a random variable with mean y and standard devia-
tiono. Then forany w>0, P(|1X —ul=z w) < o?luw?.

Theorem 9.12'. If Var(X) and Var(Y) are finite and X and Y are independent,
thenVar(X +Y) = Var(X) + Var(Y).

Theorem 9.13'. Let Xi ... Xy be independent random variables, each with mean
u and standard deviation o; thus Var(X;) = 0®. Let V be the average of
these: V=(X3+...+ Xn)/N. Then

(a) Exp(V) = (Exp(X7) +... + Exp(Xn))/N =y,
(b) Var(V) =Var(X; +...+ Xy/N) = (Var(X;) +...+Var(Xy))/N? = 6?/N,

(¢) Std(V) = /Var(V) =a/VN.
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9.8 Two Important Continuous Distributions

9.8.1 The Continuous Uniform Distribution

The uniform distribution is a generalization of Examples 9.16 and 9.21. The
uniform distribution has two parameters: a lower bound L and upper bound
U, where L < U; it has constant density 1/(U — L) at points in the interval [L, U]
and density zero outside [L, U].

Let X be a random variable with a uniform distribution between L and U.
Then X has the following features:

~ o . | 1Uw-L ifL=st=<U,
P(X_t)_{ 0 else;
0 ift<1L,
P(X<t= (t—-L)/(U-L) ifL<t<U,
1 ifU<t
U+L
Exp(X) = ;
2
(U-L7?
Var(X) = ———.
12

The uniform distribution has a natural generalization to regions in R”. Let
R be a bounded region in R whose volume is greater than zero. Then the
uniform distribution over R has density 1/volume(R), where volume is the k-
dimensional volume. If X is uniformly distributed over R, then, for any mea-
surable subset S c R, P(X € S) =measure(S)/measure(R).

The uniform distribution is the natural distribution to assume if an event
is known to lie within a given region. For instance, if it is known that a meteor
fell somewhere in the state of Michigan, but no information is available about
where, then it is reasonable to assign the event a uniform distribution over the
extent of Michigan.

The uniform distribution over [0,1] is also important computationally be-
cause it is easy to generate. To generate a 32-bit approximation of the uniform
distribution between 0 and 1, just construct the number 0.b; by ... b3y where
each bit b; has 1/2 probability of being 0 or 1. If we want to generate random
numbers corresponding to some other distribution, the usual procedure is to
generate a uniform distribution and then apply a function to turn it into a dif-
ferent distribution.

9.8.2 The Gaussian Distribution

The Gaussian or normal distribution is the most commonly used continuous
distribution. It arises in all kinds of contexts and applications.
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Figure 9.9. Gaussian density function.

The Gaussian distribution has two parameters: the mean p and the stan-
dard deviation . The density function denoted N, (%) is shown in Figure 9.9.
Itis defined as

1 2,52
Nyo(t) = ———e (17171207
e Vano

The denominator v/27 - o is just a normalizing factor. The density function is
known as the “bell curve” because of its shape. Itis symmetric around the mean
u; that is, for any x, Ny o (u+ x) = Ny o (14— x). It stays fairly flat within one stan-
dard deviation of y; then it drops off rapidly going from one to two standard
deviations; then it approaches 0 asymptotically very rapidly. Specifically,

Nyo(pu+0.50) =0.88- Ny o (1),
Nyo(p+0)=0.60-Nyg (W),

Nyo(p+1.50) =0.32- Ny g (),
Nyo(u+20)=0.135- Ny o (1),

Ny,o(p+2.50) =0.0439- Ny 5 (1),
Nyo(p+30)=0.01- Ny (W),
Nyo(u+40)=0.0003- Ny ¢ (1),
Ny (u+50) =0.000004 - Ny, & ().

Likewise, most of the distribution lies within two standard deviations of the
mean, and virtually all of it lies within three standard deviations. Specifically, if
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X follows the distribution Ny, o), then

P(u—0.50 < X < u+0.50) = 0.38,
Plu—o=X=pu+o0)=0.68,
P(u—1.50 <X < u+1.50) =0.86,
Pu-20=X=p+20)=0.95,
P(u—2.50 < X < u+2.50) =0.987,
P(u—30 < X < pu+30) =0.997,
Plu—40<X<pu+40)=1-63-10"°,
P(u-50<X<p+50)=1-57-10"".

Thus, an event three standard deviations from the mean is rare (3 in 1,000);
four standard deviations is very rare (less than one in 10,000); and five standard
deviations is almost unheard of (less than one in 10,000,000).

If X follows the Gaussian distribution with mean p and standard deviation
o, then variable aX + b follows the Gaussian distribution with mean au+ b and
standard deviation ao. In particular, the variable Y = (X — p)/o follows the
distribution Ny ;. Therefore, if we have the cumulative distribution of Ny 1,

! ! 1 —-u?/2
2= [ Noswdu= [ ——e " au,
-0 —o0 V21T

as a built-in function (or in ye olden days when I was young, as a table in a
book), we can compute P(c = X = d) = P((c—-wlo =Y = (d-wlo) =
Z(d-wlo)-Z((c—wlo).

The Gaussian distribution has the remarkable property that, if two inde-
pendent random variables each follow a Gaussian, then their sum also follows
a Gaussian.

Theorem 9.28. Let X be a random variable whose density function is Gaussian
with mean p, and variance o2, and let Y be an independent random variable

whose density function is Gaussian with mean u, and variance U?,. Then the

density function of X + Y is Gaussian with mean iy + u, and variance o2+ af,.
One of the main reasons that the Gaussian distribution is important is be-
cause of the central limit theorem (Theorem 9.29).

Theorem 9.29 (central limit theorem.). Let Xj,..., X, be n independent ran-
dom variables, each of which has mean p and standard deviation 0. Let Y =
(X1 + ...+ X))/ n be the average; thus, Y has mean p and standard deviation
olv/n. If n is large, then the cumulative distribution of Y is very nearly equal to
the cumulative distribution of the Gaussian with mean | and standard devia-
tionol\/n.
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0.35-

Figure 9.10. Gaussian density function. The dots are the binomial distribution Bs ¢ 5;
and the connected curve is the scaled Gaussian, N, 55/, where o = v/5/2. For values
of n larger than 5, the fit is even closer.

One particular and important example of a Gaussian distribution is the bi-
nomial distribution. Suppose Xj, ..., X, are independent and all have a Bernoulli
distribution with parameter p. Then their sum S = (Xj +... + X;;) has the bi-
nomial distribution B;,,. The X; have mean u = p and standard deviation
o =+/pl—p). Let Y = S/n be the average of the X;. By the central limit the-
orem, the cumulative distribution of Y is very nearly equal to the cumulative
distribution of the Gaussian with mean u and standard deviation o/+/n. There-
fore, we can approximate the probability P(c < Y < d) as the integral of N »
from c to d, and therefore, as discussed above, as Z((d —y)/0) — Z((c — w) /o),
where Z is the integral of the standard Gaussian, Z(¢) = f_too No,1(8).

Likewise, the binomial distribution By, ;, is very well approximated by the
Gaussian density N(u, o) with a scaling factor of o, where o = \/p(1 — p)n (Fig-
ure 9.10). Specifically,” for any fixed p, for all k,

M is O(l)
o n)

3/2).)

Byp(k) -

(For the unique value p = 1/2, thisis O(1/n

Note that both of these approximations state only that the difference be-
tween the two functions is small. They do not state that the ratio is small,
especially in the case where they are both close to zero. For example, in Sec-
tion 9.6.3, on the Zipf function, we mentioned estimates for the values of B, , (1)

“Thanks to Gregory Lawler for these bounds.
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and of B, ,(6-10%), where p = 107° and n = 10®. If we try to use the Gaussian as
an estimate for the binomial distribution at these extreme values, we won't get
an accurate answer.

9.9 MATLAB

The computation of the functions associated with discrete numerical random
variables presents no particular new issues, and MATLAB provides few utilities
particularly tailored to these computations. The function nchoosek (N,K) com-
putes the binomial coefficient N!/K!(N — K)!.

>> nchoosek (5,2)
ans =
10

>> nchoosek (10,5)
ans =
252

For computations with continuous distributions, there are two important
MATLAB functions: the general function for computing integrals and the spe-
cific function for the integral of the Gaussian.

A definite integral in MATLAB can be computed by using the function
quad (fn,a,b), where fn is a specification of the integrand, a is the lower bound,
and b is the upper bound. There are a number of ways to write the integrand
fn. The simplest is as follows: write a MATLAB expression «(v), where v corre-
sponds to a vector of values of ¢ (f; = a,..., t;, = b) and a(v) corresponds to the
vector (f(t1),..., f(tx)). Then put a(v) between single quotation marks. The
expression should contain only one variable, which is the variable being inte-
grated over. (The support for functional programming in MATLAB is mediocre.)

For instance, you can evaluate the integral of 1/(1+¢?) from 1 to 2 as follows:

>> quad(’1./(1+v."2)°,1,2)
ans =
0.3218

The cumulative distribution function of the standard Gaussian | _xoo No1(D)dt
is not an elementary function; that is, it is not expressible as a combination
of polynomials, logs, exponentials, and trigonometric functions. However, a
built-in MATLAB function erf (x) computes a closely related function called the
error function, defined as

fx) = = fx “ar
eri(x) = —— e .
v Jo
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Therefore the total weight of the standard Gaussian in an interval [—x, x]
symmetric around 0 can be computed as

X xIV?2 xIV?2
f LefL‘zlzdu:f Leftzdt:f ie*tzdt:erf(i).
—-x V2n —x/V2 \/ﬁ 0 \/7? \/E

The first transformation follows from substituting ¢ = u/+/2. The second
follows from the fact that the integrand is symmetric around 0.
The cumulative distribution of the standard Gaussian can be computed as

X 1 xIV?2 1 0 1 x/V2 1 1
f —e’”zlzdu:f —e’tzdt:f —e’tzdt+f e dr=—
-0 V21 —o VT —c0 VT 0 N 2

(The function erf does the right thing here for negative values of x.)
The MATLAB function erfinv (y) computes the inverse of erf. Therefore,

1+erf

)

% To compute the probability that a normal distribution is within
% 1.6 standard deviations of the mean
>> erf(1.6/sqrt(2))
ans =
0.8904

% To compute the probability that a normal distribution is less than
% mu + 1.6 sigma, where mu is the mean and sigma is the standard deviation
>> (1+erf(1.6/sqrt(2)))/2
ans =
0.9452

% To find the value of d such that X is between mu-d*sigma and mu+d*sigma
% with probability 0.8
>> erfinv (0.8)*sqrt (2)
ans =
1.2815

Exercises

Exercise 9.1. Let X be a random variable with values —1, 2, 6, such that P(X =
-1)=0.2,P(X =2) =0.5,P(X =6) = 0.3. Compute Exp(X), Var(X), Std(X).

Exercise 9.2. Let X be a random variable with values 0, 1, and 3, and let Y be
arandom variable with values —1, 1, 2, with the following joint distribution:

Y
-1 1 2
0.12 | 0.08 | 0.10
X 1020 | 004 | 0.25
0.08 | 0.10 | 0.03
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(a) Compute the marginal distributions.

(b) Are X and Y independent? Justify your an
(c) Compute Exp(X) and Exp(Y).

(d) Compute the distribution of X + Y.

(e) Compute P(X|Y =2)and P(Y|X =1).

SWer.

Exercise 9.3. Let X be a random variable with values 0, 1, and 3, and let Y be

arandom variable with values —1, 1, 2. Suppose

that P(X =1)=0.5,P(X =2) =

0.4, and P(X = 3) = 0.1, with the following values of P(Y | X):

Y
-1 |1 2
05 (03| 02
X 110210701
04 | 01| 05

(a) Compute the joint distribution of X, Y.

(b) Compute the distribution of Y.

(c) Compute the corresponding table for P(X|Y).

(d) Compute the distribution of X + Y.

(e) Compute Exp(X), Exp(Y), and Exp(X +Y).

Problems

Problem 9.1. You may use MATLAB for this problem. A patient comes into a

doctors office exhibiting two symptoms: sl an

d s2. The doctor has two pos-

sible diagnoses: disease d1 or disease d2. Assume that, given the symptoms,
the patient must have either d1 or d2, but cannot have both. The following

probabilities are given:

P(s1]dl)=0.8,
P(s1]d2) =04,
P(s2]d1)=0.2,
P(s2]d2) =0.6,
P(d1) =0.003
P(d2) =0.007

’

Assume that s1 and s2 are conditionally independent, given the disease.
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(a)
(b)

(c

(d)

1.

2.

What are P(d1]sl, s2) and P(d2| s1, s2)?

The doctor has the choice of two treatments, 71 and 2. (It is not an op-
tion to do both.) Let c be the event that the patient is cured. The following
probabilities are given:

P(cldl,t1)=0.8,
P(cld2,t1)=0.1,
P(c|dl,t2)=0.3,
P(c|d2,t2)=0.6.

Assume that event c is conditionally independent of the symptoms, given
the disease and the treatment. What is P(c| t1, s1,s2)?2 What is P(c| t2,
s1,82)?

Suppose that treatment ¢1 has a cost of $1,000 and treatment ¢2 has a
cost of $500. If the patient has disease d1, then the value of being cured
is $20,000; if the patient has disease d2, then the value of being cured is
$15,000. Given that the patient is exhibiting symptoms s1 and s2, what is
the expected value of applying £1? What is the expected value of apply-
ing r2?

The doctor also has the option of ordering a test with a Boolean outcome.
The test costs $800. Logically, tests are like symptoms, so let event s3 be
a positive result on this test. The following probabilities are given:

P(s3]d1) =0.9,
P(s3]d2) =0.1.
Assume that s3 is conditionally independent of s1 and s2, given the dis-

ease. Is it worthwhile ordering the test? What is the expected gain or cost
from ordering the test?

Problem 9.2. You may use MATLAB for this problem. Continuing the example
of the publisher and the reviewer discussed in Section 9.3.2, suppose that the
publisher also has the option of consulting with two reviewers. Assume that
the two reviewers follow the same probabilistic model, and that their reviews
are conditionally independent, given the actual success or failure. Consider the
following possible strategies:

Consult with one reviewer.

Consult with two reviewers. If both approve the manuscript, then pub-
lish, otherwise reject.
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3. Consult with two reviewers. If either approves the manuscript, then pub-
lish, otherwise reject.

Suppose that a reviewer’s fee is $500. Add these options to the decision tree
in Figure 9.3. What are the expected values of these strategies? Which is the
optimal strategy?

Problem 9.3. This problem is a continuation of Problem 9.2. If the publisher
has enough time, it may be possible to delay deciding whether to consult the
second reviewer until the opinion of the first is known. This allows two more
possible strategies:

¢ Consult reviewer A. If his opinion is favorable, consult reviewer B. If both
are favorable, publish.

¢ Consult reviewer A. If his opinion is unfavorable, consult reviewer B. If
either is favorable, publish.

(a) Add these to the decision tree in Problem 9.2. What are the expected
values of these strategies? What is the optimal strategy?

(b) (This is difficult.) Present an argument that there are only four strategies
worth considering: (1) not consulting with any reviewers, (2) consulting
with one reviewer, and (3 and 4) the two conditional strategies described
above. Your argument should be independent of the specific values of the
probabilities, costs, and benefits involved; however, you should assume
that reviewers A and B are equally accurate and equally expensive.

Problem 9.4. Let M be a matrix representing the joint distribution of two ran-
dom variables X, Y, as in Table 9.1. Prove that if X and Y are independent, then
Rank(M) =1.

Problem 9.5. Let X be a numerical random variable. A value ¢ is defined as
a median of X if P(X > q) < 1/2 and P(X < q) < 1/2. (A random variable
may have more than one median.) Show that, for any random variable X with
finitely many values, any value of v that minimizes the expression Exp(|X — v|)
is a median of X. (This is stated without proof on p. 269. The statement is true
also for numerical random variables with infinitely many values, but the proof
is more difficult.)

Hint: Consider how the value of Exp(|X — v|) changes when v is moved
slightly in one direction or the other. Some experimentation with a simple ex-
ample may be helpful.
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Programming Assignments

Assignment 9.1. Random variable X takes on integer values from 1 to 500 and
obeys an inverse power-law distribution with exponent 2.28. That is, P(X =
k) = a/k*28 for some constant a.

(@) Find a. (Hint: The probabilities must sum to 1.)
(b) Find Exp(X).
(c) Find Std(X).

(d) (This assignment is difficult; it requires some familiarity with infinite se-
ries.) Consider a variable Y that obeys the same powerlaw distribution
as X but takes on integer values from 1 to co. Estimate the accuracy of
the values you have computed in parts A, B, and C, as approximations for
the corresponding values for Y.

Assignment 9.2. This assignment is a generalization of Problems 9.2 and 9.3.
As in those problems, a publisher needs to decide whether to publish a book
and has the option of consulting with a number of reviewers. The outcome of
publishing is either Success, with a specified profit, or Fail with a specified loss.
The outcome of not publishing is 0. Consulting with a reviewer costs a spec-
ified amount. A reviewer gives a Boolean answer, For or Against. Reviewers’
opinions are conditionally independent, given the value of Success or Fail.

(a) Write a MATLAB function

PubValue (Profit ,Loss ,Fee,ProbSuc ,ProbForSuc ,ProbForFail ,N)

that takes the following arguments:

Profit = dollar profit if the book succeeds,
Loss = dollar profit if the book fails,

Fee = cost of hiring a reviewer,

ProbSuc = P(Success),

ProbForSuc = P(For | Success),

ProbForFail = P(For | Fail),

N = number of reviewers consulted; may be 0.

The function returns the expected profit to the publisher, assuming that
N reviewers are consulted.

(b) Write a MATLAB function

OptimalN (Profit ,Loss ,Fee,ProbSuc ,ProbForSuc ,ProbForFail)
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that returns a pair of values: the optimal number of reviewers to consult
and the expected value.

Assignment 9.3. Consider the following simple model for disease diagnosis,
with the following assumptions:

* There are N possible symptoms (including test results) which in this prob-

lem are taken, unrealistically, to be Boolean—that is, a patient either has
the symptoms or doesn’t; the test either succeeds or fails.

There are M diseases under consideration.
Symptoms are conditionally independent, given the disease.
Any patient has exactly one diagnosis.

There are Q different treatments. A patient can be given a single treat-
ment. Similarly, assume, unrealistically, that the effectiveness of a treat-
ment is Boolean; either a treatment entirely cures the disease or it is use-
less.

The symptom matrixis an M x N matrix S of probabilities: S[I, J] = P(J| I), the
probability that a patient exhibits symptom J, given that he has disease I.

(a)

(b)

(©

(d)

A patient record is a Boolean vector of length N indicating a patient’s
symptoms. Write a function RecProb (R, S) that takes as arguments a pa-
tient record R and a symptom matrix S and returns a vector D of length
M such that D[I] = P(R| I) for each disease I.

The frequency vector is a vector F of length M such that F[I] is the fre-
quency of disease I in the population at large. Write a function Diag-
nose (R, S,F) that returns a vector D of length M such that D[I] = P(I|R),
the probability that a patient with symptoms R has disease I. Use Bayes’
law. Include the normalizing factor.

A treatment efficacy matrix is a Q x M matrix T, where T[I, J] is the prob-
ability that treatment I will cure disease /. Assume that the event that
I cures ] is independent of the event that / manifests symptom K; that
is, given that a patient has a particular disease, the effectiveness of the
treatment is not affected by the particular symptoms he is manifesting.
Write a function Prognosis (R,S,F,T) that returns a vector W of length
Q, where W|I] is the probability that a patient with symptoms R will be
cured of his disease by treatment I.

A disease cost vector is a vector C of length M indicating the cost of leav-
ing disease I uncured. (Assume that this depends on the disease rather
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than on the symptoms.) A treatment cost vector is a vector B[I] of length
Q, indicating the cost of attempting treatment I. (Of course, for both of
these, “cost” should be interpreted broadly as including all the undesir-
able consequences.) Write a function Benefit (R,S,F,T,C,B) thatreturns
a vector A, where A[I] is the expected benefit of applying treatment I to
a patient with symptoms R. Note that the benefit of curing the disease
applies only if the disease is cured, whereas the cost of the treatment ap-
plies whether the disease is cured or not.

Assignment 9.4. This part redoes parts A and B of Assignment 9.3 on the more
realistic assumption that symptoms are numeric rather than Boolean, and the
(common but often very unrealistic) assumption that each symptom is nor-
mally distributed. Specifically, assume that all symptoms are numeric, although
diseases continue to be Boolean; that is, ignore the difference between a mild
case and a severe case of the disease. Let S now be an M x N array, such
that, for any disease I and symptom J, the measure x of symptom J given
that the patient has disease I is normally distributed with mean S[I, J] and
standard deviation 1; that is, it follows the distribution Ngz j},o (x) = exp(—(x —

S[I,JN?/2)1V2x.

(a) Write a function RecProbN (R,P) that takes as arguments a patient record
R and a symptom matrix S and returns a vector D of length M such that
D[I] = B(R|I) for each disease I.

(b) The frequency vector is a vector F of length M such that F[I] is the fre-
quency of disease I in the population at large. Write a function Diag-
nose (R, S,F) that returns a vector D of length M such that D[I] = P(I|R),
the probability that a patient with symptoms R has disease I.



Chapter 10

Markov Models

Markov models, also known as a Markov chains or Markov processes, are a type
of probabilistic model that is very useful in the analysis of strings or sequences,
such as text or time series. In a Markov process, time is viewed discretely; time
instants are numbered 0, 1, 2, .... The process has a finite! number of states;
at each instant, the process is in one particular state. Between time I and time
I+1, the process executes a transition from one state to another, and its desti-
nation is probabilistically determined.

The key property of a Markov process is that the probability of the transition
depends only on the current state and not on any of the previous states. That
is, metaphorically speaking, whenever we are in one state, we spin a wheel of
fortune that tells where to go next. Each state has its own wheel, but the wheel
at a given state remains constant over time, and the choice of where to move
next depends only on the outcome of the wheel spin and on nothing else. This
is known as the Markov condition. It is sometimes described by saying that the
system is memoryless and time-invariant; what it does next depends only on
where it is now and not on how it got there nor what the time is.

A simple example of a Markov model is the children’s board game Chutes
and Ladders (Davis and Chinn, 1985). In this game, the board has 100 squares
in sequence; there are a number of “ladders,” which take the player forward to
a more advanced square, and a number of “chutes,” which take the player back
to an earlier square. Each player rolls a die and moves forward the number of
squares shown on the roll. If he ends at the bottom of a ladder, he climbs it; if
the player ends at the top of a chute, he slides down.

For a single player, the corresponding Markov model has a state for every
possible resting square (i.e., square that is not the bottom of a ladder or the
top of a chute.) Each state has six transitions, each with probability 1/6, cor-
responding to the six possible outcomes of the die roll. Figure 10.1 shows the
Markov model corresponding to a simplified game in which there are only six
resting squares and in which the die has only two outcomes, 1 or 2. Each of the

1\We can also define Markov processes with infinitely many states; however, we will not consider
these in this book.
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Board Markov model

Figure 10.1. Markov model for Chutes and Ladders.

arcs has the label 1/2, except for the final self-loop from S6 to itself, which has
label 1.

In a game on the same board with k players taking turns, a state is a (k+1)
tuple S = (s1,..., Sk, p) where s; is the location of player i and p is an index from
1 to k indicating which player moves next. For example, if three players play
the game in Figure 10.1 then one state is (S5,S3,S3,2). This has two transitions,
each with probability 1/2: one to (S5,S2,S3,3) and the other to (S5,54,S3, 3).

We can describe a Markov model in terms of random variables. For each
time instant, ¢ =0,1,2,..., we define the random variable X; to be the state of
the system at time ¢. Thus, the domain of values for X; is the set of states of
the Markov model. The conditional probability P(X;+1 = u| X; = v) is the label
on the arc in the model from u to v. The condition that the model is mem-
oryless corresponds to the statement that X;,; is conditionally independent
of Xj...X;_1, given X;. The condition that the model is time-invariant corre-
sponds to the statement that, for all times ¢ and s,

PXii1=ulX; =0)=PXss1 = ul Xs; =v).

Let us assign indexes 1,..., k to the k states of the model. Then we can view
the probability distribution of X; as a k-dimensional vector )?t. We can also
characterize the Markov model by a k x k transition matrix M, where M[i, j] =
P(X;+1 =i| X; = j). By the axioms of probability,

k k
P(Xp1=0)= ) P(Xpr1 =i, X = j) = ) P(Xpr1 =i X¢ = P(X; = ).
=1 j=1

This can be written as a matrix multiplication: X1 =M-X;.
For example, the Markov model in Figure 10.1 has the following transition
matrix:
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0 0 0 0 0
/2 0 1/2 1/2 0
0o 1/2 0 0 1/2
1/2 1/2 1/2 0 0
0 0 0 12 0
0 0 0 0 1/2

M=

— o O O O O

If Xo =(1,0,0,0,0,0)—that is, the player definitely starts at S1 at time 0—
then

X1 =M-Xy=(0,1/2,0,1/2,0,0),
Xo=M-X; =(0,1/4,1/4,1/4,1/4,0),
Xz=M-Xo=(0,1/4,1/4,1/4,1/8,1/8),
Xy=M-X3=10,1/4,3/16,1/4,1/8,3/16).

Note a few points about this analysis. First, we have X3=M-Xo=M-M-X; =
M-M-M- Xy = M3 Xp; so, in general, we have X,, = M" - X,.

Second, each column of matrix M adds up to 1. This corresponds to the
fact that the transitions out of state j form a frame of discernment—exactly
one transition occurs—so

k k
2 Mij=) PXm=ilX,=j)=1
i=1 i=1
A matrix with this feature is called a stochastic matrix. As a consequence, the
sum of the values of M - U is equal to the sum of the values of © for any v.

Third, the analysis here is oddly similar to Application 3.3, in Section 3.4.1,
of population transfer between cities. In fact, it is exactly the same, with proba-
bility density here replacing population there. More precisely, that application
was contrived as something that resembled a Markov process but did not re-
quire a probabilistic statement.

Here, we do not explore the mathematics of Markov models in depth; rather,
we focus on two computer science applications of Markov models: the com-
putation of PageRank for web search and the tagging of natural language text.
First, we discuss the general issue of stationary distributions, which is needed
for the analysis of PageRank.

10.1  Stationary Probability Distribution

Consider a Markov process with transition matrix M. A probability distribution
P over the states of M is said to be stationaryif B= M- P. Thus, if X; = B, then
X;41 = B; if we start with this probability distribution, then we stay with this
probability distribution.
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Figure 10.2. Modified Markov model.

Theorem 10.1. Every finite Markov process has a stationary distribution. Equiv-
alently, for every stochastic matrix M, there exists a probability distribution P
such that P=M-P.

The example of the game Chutes and Ladders is, unfortunately, not a very
interesting example of this theorem; the unique stationary distribution is (0,0, 0,
0,0,1). We therefore change the example by removing the self-arc from S6 to it-
self and replacing it with an arc from S6 to S1; this means that when we finish
the game, we start at the beginning again. Figure 10.2 shows the revised Markov
model. In that case, the stationary distribution is (1/15,4/15,3/15,4/15,2/15,
1/15) which is easily checked. (For checking by hand, notice that the property
B = M- P remains true if we multiply through by a scalar, so we can ignore the
denominator 15.)

In fact, most Markov models have exactly one stationary distribution. The-
orem 10.3 gives a condition that suffices to guarantee that the stationary distri-
bution is unique. First, we must define the property strongly connected.

Definition 10.2. Let G be a directed graph. G is strongly connected, if, for any
two vertices u and v in G, there is a path from u to v through G.

Theorem 10.3. Let M be a finite Markov model. Let G be the graph whose ver-
tices are the states of M and whose arcs are the transitions with nonzero proba-
bility. If G is strongly connected, then M has exactly one stationary distribution.

Moreover, most Markov models have the property that, if we run them for a
long enough time, they converge to the stationary distribution, no matter what
the starting distribution. Theorem 10.5 gives a condition that ensures that the
distribution converges. First, we present an explanation of the terms periodic
and aperiodic.

Definition 10.4. Let G be a directed graph and let k > 1 be an integer. Vertex
v in G is periodic with period k if every cycle from v to itself through G has a
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length divisible by k. G is aperiodic if no vertex in G is periodic for any period
k>1.

Theorem 10.5. Let M be a finite Markov model. Let G be the graph whose ver-
tices are the states of M and whose arcs are the transitions with nonzero proba-
bility. If G is strongly connected and aperiodic then, for any starting distribution
Xo, the sequence Xo, MXy, M2 X, ... converges to the stationary distribution.

That is, if M is a finite Markov model, then however we start, if we run the
model long enough, it converges to the stationary distribution D. Thus, Markov
models are memoryless in a second sense as well: over time, they entirely forget
where they started from and converge to a distribution that depends only on
the transition matrix.

For example, let M be the modified model in Figure 10.2. Then, as shown,
the stationary distribution is D =(1/15,4/15,3/15,4/15,2/15,1/15) = {0.0667,
0.2667,0.2000,0.2667,0.1333,0.0667). Let Xo =(1,0,0,0,0,0) (i.e., at time 0 we
are definitely at S1). Then

X, = M*- Xy = (0.1250,0.2500,0.1875,0.2500,0.1250, 0.0625),
Xg = M®- Xy = (0.0703,0.2656,0.1992,0.2656,0.1328, 0.0664),
Xi12 = M Xy = (0.0669, 0.2666,0.2000, 0.2666,0.1333,0.0667),
|X12—D|=25-107%,

10.1.1  Computing the Stationary Distribution

Given a transition matrix M, the stationary distribution P can be computed as
follows. The vector P satisfies the equations MP = P and p. Pl =1. We
can rewrite the first equation as (M — I;) .P =0, where I,, is the identity matrix.
For a Markov model with a unique stationary distribution, M — I, is always a
matrix of rank n — 1. We can incorporate the final constraint ZIIV: 1 Pin=1 by
constructing the matrix Q whose first n rows are M — I, and whose last row is
all 1s. This is an (7 + 1) x 7 matrix of rank 7. The vector P is the solution to the
equation Q-ﬁ =0,0,...,0,1).
For example, suppose M =[1/2,2/3;1/2,1/3]:

>> m=[1/2,2/3;1/2,1/3]
o =
0.5000 0.6667
0.5000 0.3333

>> gq=m-eye (2)

q =
-0.5000 0.6667
0.5000 -0.6667
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>> q(3,:)=[1,1]

-0.5000 0.6667
0.5000 -0.6667
1.0000 1.0000

>> q\[0;0;1]

ans =
0.5714
0.4286

>> m*ans

ans =
0.5714
0.4286

If the graph is large, there are more efficient, specialized algorithms.

10.2  PageRank and Link Analysis

The great Google empire began its existence as a project of Sergey Brin and
Lawrence Page, then two graduate students at Stanford, aimed at improving the
quality of search engines.? Theiridea,® described in the now classic paper, “The
PageRank Citation Ranking” (Page, Brin, Motwani, and Winograd, 1998) was as
follows. The ranking of a webpage P to a query Q consists of two parts. First,
there is a query-specific measure of relevance—how well does this page match
the query? This is determined by the vector theory of documents or something
similar (see Assignment 2.1, Chapter 2). Second, there is a query-independent
measure of the quality of the page—how good a page is this, overall? This latter
measure, in the PageRank theory, is measured by using link analysis. Previous
to Google, it appears that search engines used primarily or exclusively a query-
specific measure, which could lead to anomalies. For example, Brin and Page
mention that, at one point, the top page returned by one of the search engines
to the query “Bill Clinton” was a page that said, simply, “Bill Clinton sucks.”

2Readers who had not been using search engines prior to Google may not realize how thor-
oughly it revolutionized the field. The earliest web search engines were introduced in 1993, and
search engines such as Infoseek (launched 1994) and AltaVista (lauched 1995) soon became widely
used and were initially quite effective. By 1998, however, the quality of results returned by these
search engines was visibly deteriorating; the ranking algorithms simply could not keep up with
the exponential growth in the web. When Google was released, the improvement in quality was
startling.

3The ranking method now used by Google, although highly secret, is clearly much more complex
than the theory presented in this text. The current ranking system certainly makes heavy use of
user logs, which were barely available when Google was first launched. However, unquestionably,
link-based measures are still an important component of the current ranking method.
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Why not? After all, two-thirds of the words on the page match words in the
query; that would be hard to beat.

The first idea is that, if a page P is good, then many people will have linked
to it. So one measure of quality would be just the number of inlinks to a page
P. The second idea, however, says some links are more important than others.
For example, consider these ideas:

1. Links from a different website, which indicate an outside interest, should
count more than links from same domain, which just indicate the struc-
ture of the website.

2. Characteristics of anchor (e.g., font, boldface, position in the linking page)
may indicate a judgment by the author of the linking page of relative im-
portance of P.

3. A link from an important page is more important than a link from an
unimportant page. This is circular, but the circularity can be resolved.

The PageRank algorithm works with idea (3). Suppose that each page P
has an importance I(P) computed as follows: First, every page has an inherent
importance E (a constant) just because it is a webpage. Second, if page P has
importance I(P), then P contributes an indirect importance F % I(P) that is
shared among the pages to which P points. (F is another constant.) That is,
let O(P) be the number of outlinks from P. Then, if there is a link from P to Q,
then P contributes F - I(P)/O(P) “units of importance" to Q.

(What happens if P has no outlinks, so that O(P) = 0? This actually turns out
to create a little trouble for our model. For the time being, we assume that every
page has at least one outlink, and we return to this problem in Section 10.2.2.)

We therefore have the following relation: for every page Q, if Q has inlinks
Py,...,P,, then
F-1(Py) F-1(Pp)

+...+ .
O(Py) O(Py,)

Thus, we have a system of n linear equations in n unknowns, where r is the
number of webpages.

We now make the following observation. Suppose we write down all the
above equations for all the different pages Q on the web. Now we add all the
equations. On the left, we have the sum of I(Q) over all Q on the web; we call
this sum S. On the right, we have N occurrences of E and, for every page P, Op
occurrences of F-I(P)/Op. Therefore, over all the equations, we have, for every
page P, atotal of F-I(P), and these add up to FS. Therefore, we have

I(Q=E+ (10.1)

S=NE+FS so F=1-(NE/S). (10.2)

Since the quantities E, F, N, and S are all positive, it follows that F < 1, E < S/N.
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Q)

Figure 10.3. Link analysis for webpages.

We can normalize this as follows: let J(Q) = 1(Q)/S and e = E/S, then Equa-
tions (10.1) and (10.2), respectively, become

J(Q) =e+F-(J(P1)/OP1) +...+ J(Pn) | O(Ppa)),
1=Ne+F.

For example, suppose we have pages U,VVWX,Y,Z linked as shown in Fig-
ure 10.3. Note that X and Y each have three inlinks, but two of these are from
the “unimportant” pages U and W. Page Z has two inlinks and V has one, but
these are from “important” pages. Let e = 0.05 and let F=0.7. We get the fol-
lowing equations (for simplicity, we write the page name rather than J(page

name)):

U= 0.05

V=20.05 + 0.7 x Z

W = 0.05

X = 0.05 + 0.7%x(U/2+V/2+W/2)
Y = 0.05 + 0.7%(U/2+V/2+W/2)
Z = 0.05 + 0.7%(X+Y)

The solution to these equations is U = 0.05, V = 0.256, W = 0.05, X = 0.175,
Y =0.175, Z =0.295.

10.2.1 The Markov Model

We can turn the above system of equations into a stochastic system of equa-
tions as follows. First, let J be the N-dimensional vector where f[Q] = J(Q);
thus, Zgzl T[Q] =1,s0]isa probability distribution. Now, let M be the N x N
matrix such that
MIPQ] = { e+ %Q) ?proints to P,.
e if Q does not point to P.
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Then, for each column Q, > p M[P,Q] = Zgzl e+Y po—pF/OQ)=Ne+F=1,
so M is a stochastic matrix.
Moreover, for each row P,

N N N N F .
M[PQIJIQI= ) eJIQl+ Y ——TJIQ]
0=1 0=1 o=p 0Q)
N F
=e- ) JIQI+ ) —JQ
e LI L 55 @
JQ -
= F-—~ =]J[P]. 10.3
e+Q;P o =P (10.3)

In other words, MJ = J, so J is the stationary distribution for M.

Matrix M then corresponds to the Markov model where there is a link from
every page Q to every page P (including self-link). The probability of the link is
e if Q does not point to P and is e + F/O(Q) if Q does point to P. We can view
this in terms of the following stochastic model: imagine that we are browsing
the web for a very long time, and each time we read a page P, we decide where
to go next by using the following procedure.

1. We flip a weighted coin that comes up heads with probability F and tails
with probability 1 - F.

2. If the coin comes up heads, we pick an outlink from P at random and
follow it. (Again, we assume that every page has at least one outlink.)

3. If the coin comes up tails, we pick a page at random in the web and go
there.

In this example, suppose F = 0.7, and e = (1 —0.7)/6 = 0.05, so the matrix is

0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05 0.75
0.05 0.05 0.05 0.05 0.05 0.05
0.40 040 0.40 0.05 0.05 0.05
0.40 040 0.40 0.05 0.05 0.05
0.05 0.05 0.05 0.75 0.75 0.05

Since the graph is fully connected, Theorem 10.3 applies, and there exists a
unique stationary distribution.

From a computational point of view, this would at first seem to be a step
in the wrong direction. We have turned an extremely sparse system of equa-
tions into an entirely dense one; moreover, with N equal to several billion, the
transition matrix cannot even be generated or stored, let alone used in calcula-
tion. However, it turns out that, because of the special form of this matrix, fast
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iterative algorithms are known for computing the stationary distribution. See
Langyville and Meyer (2006).

Also note that the connection to Markov processes is actually bogus; the
justification of the link analysis does not actually require any reference to any
kind of random event or measure of uncertainty. The reasons to present this in
terms of Markov models are first, because the mathematics of stochastic matri-
ces has largely been developed in the context of Markov models; and second,
because the stochastic model is a useful metaphor in thinking about the be-
havior of PageRank and in devising alternative measures.

In understanding the behavior of the algorithm, it is helpful to consider its
behavior for different values of the parameter F. If F = 0, then the links are
ignored, and PageRank is just the uniform distribution 1(Q) = 1/N.

If F = e for small € (specifically 1/¢ is much larger than the number of inlinks
of any page), then the all pages have PageRank closed to 1/N. In this case,

I(P):(llN)(1+€ Y 1/0(Q |+ 0E?/N).

Q—P

If F = 1, the method blows up. There still exists a stationary distribution,
but there may be more than one, and iterative algorithms may not converge to
any stationary distribution.

If F is close to 1, the system is unstable (i.e., small changes to structure may
make large changes to the solution). The iterative algorithms converge only
slowly.

The experiments used in the original PageRank paper used F = 0.85.

10.2.2  Pages with No Outlinks

Of course, in the actual web, many pages (in fact, the majority of pages—again,
a Zipf distribution) have no outlinks. In that case, the above formulas in Sec-
tion 10.2.1 break down because the denominator O(P) is equal to zero. A num-
ber of solutions have been proposed, including the following.

Solution 1. The simplest solution is to add a self-loop from each page to it-
self. Thus, every page has at least one outlink. The problem is that this
rewards a page for not having any outlinks. In our random model, if we
are randomly at a page with no outlink, we flip the coin until it comes
up tails, at which point we jump at random. With F = 0.85, this means
that once we reach a page, we will generally stay there through about six
more, so a page with no outlinks will be ranked as about seven times as
important as another page with the same real inlinks but many outlinks.
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Solution 2. The original PageRank paper proposes the following method:

Step 1. We prune all pages with no outlinks, then prune all pages that
had onlinks only to the pages we just pruned, and keep on doing
this until all pages have an outlink.

Step 2. We compute PageRank over this set;

Step 3. Wereinstate the pages we pruned and let importance propagate,
using Equation (10.1).

Solution 3. The rank computed in Solution 2 seems rather arbitrary. Langville
and Meyer (2006) propose a method with a more principled formulation.
When we randomly come to a page with no outlinks, we should simply
skip flipping the control coin, and just jump randomly to any page in the
web. That seems logical. Equation (10.1) is still satisfied; E is the prob-
ability that a nonlink-based jump from somewhere in the web reaches
page P. The stochastic matrix becomes more complicated because it
now contains three kinds of values:

e M[P,Q] =1/N if Q has no outlinks,
e M[P,Q] = (1-F)/Nif Q has some outlinks, but not to P,
e M[PRQ]=(1-F)/N+F/0O(Q)if Q links to P.

Further, more complex methods of dealing with “dangling nodes” are studied
in Langville and Meyer (2006).

10.2.3 Nonuniform Variants

It is not necessary for the “inherent" importance of all pages P to be the same
value E; we can have any distribution E(P), representing some other evaluation
of inherant importance. For example, we could have E(P) ranked higher for
pages on a .edu site, or for the Yahoo homepage, or for our own page, and so
on. We just change E to E(Q) in Equation (10.1).

Likewise, there may be a reason to think that some outlinks are better than
others (e.g., font, font size, or links to a different domain are more important
than links within a domain). We can assign W(Q, P) to be the weight of the
link from Q to P however we want; the only constraints are that the weights
are nonnegative and that the weights of the outlinks from Q add up to 1. We
replace 1/0(Q) by W(Q, P) in Equation (10.3).

10.3 Hidden Markov Models and the K-Gram Model

A number of problems in natural language analysis can be formulated in the
following terms: We are given a text, which is viewed as a string of elements. The
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problem is to assign one fag out of a collection of tags to each of the elements.
Examples of such problems are the following.

¢ The elements are words and the tags are parts of speech. In applications,
“parts of speech" here often involves finer distinctions than the usual lin-
guistic categories. For instance, the “named entity" recognition problem
involves categorizing proper nouns as personal names, organizations,
place names, and so on.

¢ The elements are words and the tags are the meanings of the words (lex-
ical disambiguation).

* The elements are phonemes, as analyzed in a recording of speech, and
the tags are words.

In the statistical, or supervised learning, approach to this problem, we are
given a large training corpus of correctly tagged text. The objective, then, is to
extract patterns from the training corpus that can be applied to label the new
text.

The same kind of analysis applies in domains other than natural language
analysis. For example, a computer system may be trying to analyze the devel-
opment over time of some kind of process, based on a sequence of observations
that partially characterize the state. Here the elements are the observations and
the tags are the underlying state.

10.3.1 The Probabilistic Model

In a probabilistic model of tagging, we formulate the problem as looking for the
most likely sequence of tags for the given sequence of elements. Formally, let n
be the number of elements in the sentence to be tagged. Let E; be the random
variable for the ith element, let T; be the random variable for the ith tag, and let
e; be the actual value of the ith element. The problem is to find the sequence
of tag values fi,...,ty such that P(Ty = 11,..., T, =ty |E1 =ey1,...,EN=ey) is as
large as possible. We will abbreviate the event T; = t; as f; and E; = e; as é;.

For instance, in tagging the sentence “I can fish” by part of speech, we
want to arrive somehow at the estimate that P(Ty=pronoun, T»=modal, Ts=verb
| E1=“1,” E; =“can,” E, =“fish )) is large; that P(T)=pronoun, 7>=verb, T3=noun
| E1=“1,” E» =“can,” E, =“fish” )) (meaning “I put fish into cans”) is small; and
that the probability for any other sequence of three tags is tiny or zero.

In principle, what we are after is, considering all the times that the sentence
“I can fish" might be written or spoken, determining what fraction of the time
the intended meaning is the one corresponding to (pronoun modal verb) and
what fraction of the time it is the one corresponding to (pronoun verb noun).
However, there is obviously no way to directly measure this for most sentences.
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So we have to estimate this probability in terms of numbers that can actually
be measured in a training corpus. As is done throughout applied probability, to
do this, we make independence assumptions that are violently and obviously
false. We proceed as follows.

We first apply Bayes’ law to derive

P(fy...tylé1...84) =P(&1...84 |11 ...Tp) - P(f1... L)/ P(&) ... &p). (10.4)

However, the denominator above P(éy,..., &) is just a normalizing factor,
which depends only on the sequence of elements, which is given. As this is the
same for all choices of tags, we can ignore it in comparing one sequence of tags
to another.

So we have re-expressed the problem as finding the sequence of tags that
maximizes the product P(f,,..., I) - P(é1,...,éx| I1,..., Iy). The first factor here
is the inherent likelihood of the sequence of tags, determined even before we
have seen what the elements are. The second is the likelihood that a particular
sequence of tags (f,..., t;) will be instantiated as the sequence of elements
(e1,...,en). For instance, in the speech understanding problem, the first term
is the probability that a speaker will speak a given sentence, sometimes called
the linguistic model; the second is the probability, given the sentence, that a
speaker would pronounce it in the way that has been heard, sometimes called
the phonetic model. (The interpretation of this product in the part-of-speech
problem is not as natural.) We now have to estimate these two terms by using
independence assumptions.

We can use the rule for the probability of a conjunction to expand the first
factor of the right-hand term in Equation (10.4) as follows:

P(ély---rénlzl)---rin)=P(éllilr---rin)'P(é2|élrilr---)in)')---r'P(énlély---rén—lyZl)---ri}'l)-

(10.5)

We now make the independence assumption that &; depends only on 7;;
specifically, that é; is conditionally independent of 7; for j # i and of é; for
J < i. We also make the “time invariance” assumption that the probability that,
for example, “pronoun” is instantiated as “he” is the same whether we are talk-
ing about the first word in the sentence or about the fifth.*

Having made this assumption, we can rewrite the right-hand side of Equa-
tion (10.5) in the form P(é; | f1) - P(é2| ) -...- P(é, | t,). We can now use Bayes’
law again, and write this in the form P(e; | ;) = P(f; | &;) P(&;)/ P(f;). But again,
the factors P(&;) do not depend on the choice of ;, so they can be ignored.

What is gained by this second turning around? After all whether we use
P(e; | t;) or P(f;|é;)/ P(£;), we will end up estimating it, for each element, in

4To express this condition mathematically would require making our notation substantially
more complicated. This is common in write-ups of complex probabilistic models such as this;
substantial parts of the theory are left either stated only in English, or left entirely implicit, to be
understood by the reader.
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terms of the fraction of instances of #; in the corpus that are also instances of
e;. The answer is that, since P(f;|¢;) is the more natural quantity, there may be
other sources of information that give good evidence about this, but not about
P(e;|t;). For instance, we may have a dictionary that shows a word has possible
parts of speech that do not appear in the training corpus. In that case, we can
assign P(f; | e;) some default estimate on the strength of the dictionary entry.)

We now turn to the factor P(f,..., f;) in Equation (10.4). Again, using the
rule for conjunctions, we can write this in the form

P(fy,...,0n) = P(0) - P(&2| 1) - P(831 1, B2) .- P(En | 11, ..., Ep-1)- (10.6)

We now make the second independence assumption, known as the k-gram
assumption, for some small integer k: the dependence of the ith tag on all the
previous tags in fact reduces to its dependence on the k—1 previous tags. More
precisely stated, T; is conditionallyindependentof T1,..., Ti_i given Tj1_, ...,
Ti—y. Thus, P(# | f,..., 5i—1) = P& | Livr—ky .- Eim1).

From this point forward in this section, to simplify the notation, we con-
sider the case k = 3, which is the most commonly used value; however, it should
be easy to see how the formulas can be modified for other values of k. The tri-
gram assumption (k = 3) states that T; is conditionally independent of T3, ...,
T;—3, given T;_p, Ti_y. Thus, P(%; | f1,..., ti—1) = P(#; | {;—2, ;—1). Again, we make
the time invariance assumption that this probability is the same for all values
ofi>k.

To get more uniform notation, we use the convention that there are two
random variables, T_; and Ty, that have the special tag *S* (start) with proba-
bility 1. We can then write Equation (10.6) in the form

P(t,...,ty) = H?ZIP(fi [ £i—2, Ei-1).
Putting all this, we can rewrite Equation (10.4) as

P(t;i1&;)-P(t; | ti—2, ti1)
P(%)

P(fy,...,tple1,...,6p) = -1}, , (10.7)

where « is a normalizing factor.

10.3.2 Hidden Markov Models

Based on these independence assumptions, we can now view sentences as the
output of the following random process. The process outputs a sequence of
(tag,element) pairs. The state is the pair (z;_, t;_1) of the last two tags that it
has output (in the general k-gram model, this is the tuple of the last k — 1 tags
it has output). If the process is in state (t;_, t;_1), then it first picks a new tag ¢;
to output, with probability distribution P(f; | f;—2, f;—1), and then, based on that
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tag, picks an element e; with probability distribution P(¢&; | #;). The new state is
(ti—1, t;). The problem we have to solve is that we are given the sequence of ele-
ments {ey, ..., e,) and we wish to find the sequence of tags (11, ..., t;) for which
the posterior probability P(#,..., fy|é1, ..., €,) is maximal. Note that finding the
sequence of states is equivalent to finding the sequence of tags; if the process
goes from state (x, y) to (y, z), then the tag output is z.

This is an instance of a hidden Markov model (HMM), which is a modified
Markov model with the following properties:

» There is a particular starting state sp.

e There may be multiple arcs between any two vertices. (For that reason,
the transition matrix representation cannot be used.)

e Each arc is labeled by an element.

e The arc A(u, e, v) from state u to state v labeled e is labeled by the prob-
ability P(A(u, e, v) | u), the probability, given that we are in state u at time
t, that we will proceed to traverse arc A(u, e, v). These probabilities on
the outarcs from u form a probability distribution.

As the process moves on a path through the model, it outputs the elements
that label the arcs it traverses. The problem is, given a sequence of output ele-
ments, what is the most probable path that outputs that sequence? The model
is called “hidden” because all we see is the sequence of elements, not the se-
quence of states.

We proceed as follows:

P(So=s0,51=52,...,5n = $n |80 = S0, €1,...,€n)
_ P(So=s0,8€1,51=51,82,52=82,,.--,Sn = Sn, €n, Sn+1 = Sn+11 S0 = So)

P(ey,...,eén)
=a M, P(A(si-1,€;,8) | 5i-1),

where « is a normalizing factor depending only on the e; and not on the s;.
In the case of the k-gram model, as we have seen in Equation (10.7),

P(ti1e;)-P(t | ti—a, ti-1)

P(A(ti—2, ti—1), e, {ti—1, t))) = P

For convenience in computation, we use the negative logarithm of the prob-
ability of the path; maximizing the probability is equivalent to minimizing the
negative logarithm. This procedure replaces maximizing a product by mini-
mizing a sum, which is a more standard formulation, and avoids the risk of
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—log,

underflow. Discarding the normalization factor @, which does not affect the
choice of maximum, our task is now to maximize the expression

m P(t;1é;) .P(i:i.| fi_o, i‘,',l)) _ i log, (P(i,- 1é) .p(i:l.'| Fo B 1)
P(t;) i=1 P(t)

(10.8)

10.3.3  The Viterbi Algorithm

In the analysis in Section 10.3.2, we have reduced the problem of finding the
most probable sequence of tags to the following graph algorithm problem. Given

1. a directed multigraph M (i.e., a graph with multiple arcs between ver-
tices), where each arc is labeled with an element and a numeric weight;

2. aparticular starting vertex SO in M;

3. astring W of N elements;

To find the path through M that traverses arcs labeled with the elements in S in
sequence such that the sum of the weights is maximal.

Since there are, in general, exponentially many such paths, we might naively
suppose that the problem is intractable. In fact, however, it is easily reduced to
the well-known single-source shortest-paths graph problem. Thus, we con-
struct a graph G with the following constraints:

¢ The vertices in G are all pairs (V, I), where V is a vertex of M and I is an
integer from 1 to N, plus a final vertex END.

e Thereis an edge from (U,I—1) to (V,I) in G only if there is an edge from
U to V in M whose label is S[I].

e There is an edge of weight 0 from every vertex (V, N) to END.

Clearly, any path through M starting in SO that outputs W corresponds to a
path through G from (S0,0) to END.

Because the graph G is “layered”—that is, all arcs go from a vertex in the
Ith layer to one in the (I + 1)th layer—the algorithm to solve this is particu-
larly simple. The cost of the shortest path ending at a vertex V in layer I + 1
is the minimum over all vertices U in layer I of the cost of the shortest path
to U plus the cost of the arc from U to V. Details of the algorithm, known as
Viterbi’s algorithm, are given in Algorithm 10.1, and an example is given in Sec-
tion 10.3.4. Some easy further optimizations can be carried out. In particular,
as we generate states at the Ith level, we can check that they have an outarc
labeled WI] and you put them on a list; that way, on the next iteration, we
can just go through the list of states that satisfy the two tests, E = W[I] and
Total[U, I — 1] # co, which may be much smaller than the set of all states. Also,
once all the values of Total at level I + 1 have been calculated, the values at level
I can be overwritten, saving some space.
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function Viterbi
(in W : string of elements of length N;
M =(SS, AA) : directed multigraph.
Each arc A in AA has the form ( tail, element, head );
C(A); numerical cost of arcs in AA;

S0: starting state in M)
return path of minimal total cost through M starting in SO and outputting W;

/* The array Total(S, I) is the total cost of the shortest path through M from S0 to S
traversing the first I elements of W.

The array Back(S, I) is the state preceding S on this path.
The graph G discussed in the text is left implicit, rather than constructed explicitly. */

{ Construct arrays Total(S, I) and Back(S, I) where Se SSand I €0...N;

Initialize Total to oo;
Total[S0,0] = 0;

for (I—1...N){
for (each arc A= (U,E,V)) in AA{
if (E = W[I] and Total[U, I —1] # oco) {

NewWeight — Total[U, I — 1] + C(A);

if NewWeight < Total(V, I) {
Total(V, I) — NewWeight;
Back(V,I) — U;

P}

/* Find the best path by tracing back pointers from the best final state. */
Best — the state S for which Total(S, N) is minimal;
Path < (Best);
for(I—N...1){
Best — Back(Best, I);
Path — Best, Path;
}

return Path;

}

Algorithm 10.1. Viterbi algorithm.

10.3.4 Part of Speech Tagging
Consider the following toy example: Fish can swim fast. Note that:
e “Fish” and “swim” can be nouns or verbs (go fishing).

¢ “Can” can be a modal, a noun, or a verb (pack stuff into cans)
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fast
72

Figure 10.4. Markov model for part of speech tagging for “Fish can swim fast.”

* “Fast” can be an adverb (“he works fast”), an adjective (“a fast horse”), a
noun (“the fast of Yom Kippur”), or a verb (“Jews fast on Yom Kippur”).
However, to simplify this example, we consider only the possibilities ad-
verb and noun for “fast.”

We use a trigram model here, and we suppose that we have the probabilities
shown in Table 10.1. Only the probabilities relevant to the sample sentence
are shown. Probabilities not shown are either zero or are irrelevant (i.e., they
appear only in terms where they are multiplied by zero).

Figure 10.4 shows the Markovmodel corresponding to Table 10.1. The weights
on an arc from state (1, f2) to {1, t3), labeled e, is equal to

P& ) P& | tiz1—k> Eic1)
P(1)

—log,

For example, the arc labeled “can” from state S1 to S4 has weight
—log,(PM | “can”)- P(M|SN)/P(M)) = —1og,(0.9-0.4/0.1) = —1.8480.

The numbers on the arcs in Figure 10.4 are negative logs of unnormalized
probabilities, and thus their interpretation is a little abstruse. If we consider the
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Relevant absolute tag probabilities:
P(N)=0.3,

P(V)=0.2,

P(M)=0.1,

P(Adv) =0.1.

Tag given element probabilities:
P(N|“fish”) =0.8,

P(V|“fish”) =0.2,

P(M|“can”) =0.9,

P(N|“can”) = 0.09,

P(V|“can”) =0.01,

P(N|“swim”) =0.2,
P(V|“swim”) = 0.8,
P(Adv|“fast”) = 0.5,

P(N|“fast”) = 0.02.

Relevant transitional probabilities:
P(N| *S*+S5%)=0.4,
P(V|*S*xS*)=0.1,
P(M|*S*N)=0.2,
P(V|*S%xN)=0.2,
P(N| *S*N)=0.1,
P(N|*S*V)=0.5,
P(N|MV)=0.35,
P(Adv|MV)=0.15,
P(VINM) =0.5,
P(M|NN) =0.2,
P(V|INN) =0.2,
P(N|NN) =0.1,
P(Adv|NN) =0.1,
P(N|NV)=0.3,
P(Adv|NV)=0.2,
P(N|VN)=0.25,
P(Adv|VN) =0.25.

Table 10.1. Example of part of speech tagging for “Fish can swim fast.”

At the start
Total(S0,0) = 0.

After 1 word
Total(S1,1) = Total(S0,0) + C(S0, “fish,” S1) = —0.1, Back(S1,1) =S0
Total(S2,1) = Total(S0,0) + C(S0, “fish,” S2) = 3.3, Back(S2,1) =S0
After 2 words
Total(S3,2) = Total(S1,1) + C(S1, “can,” S3) = 5.0, Back(S3,2) =S1
Total(S4,2) = Total(S1,1) + C(S1, “can,” S4) = -0.9, Back(S4,2) =S1
Total(S5,2) = Total(S1,1) + C(S1, “can,” S5) = 6.5, Back(S5,2) =S1
Total(S6,2) = Total(S2,1) + C(S2, “can,” S6) = 6.0, Back(S6,2) =S2
After 3 words

Total(S3,3) = min(Total(S3,2) + C(S3, “swim,” S3), Total(S6,2) + C(S6, “swim,” S3)) = 8.6,

Back(S3,3) = S6

Total(S5,3) = Total(S3,2) + C(S3, “swim,” S5) = 5.3, Back(S5,3) =S3

Total(S6,3) = Total(S5,2) + C(S5, “swim,” S6) = 8.8, Back(S6,3) =S5

Total(S7,3) = Total(S4,2) + C(S4, “swim,” S7) = -1.9, Back(S7,3) =S4
After 4 words

Total(S3,4) = min(Total(S3,3) + C(S3, “fast,” S3), Total(S6,3) + C(S6, “fast,” S3)) = 14.7, Back(S3,4) =S6

Total(S6,4) = Total(S5,3) + C(S5, fast,” S6) = 10.9, Back(S6,4) =S5

Total(S8,4) = min(Total(S3,3) + C(S3, “fast,” S8), Total(S6,3) + C(S6, “fast,” S8)) = 8.5,
Total(S9,4) = min(Total(S7,3) + C(S7, “fast,” S9), Total(S5,3) + C(S5, “fast,” S9)) =

Back(S3,4) = S6

—1.5, Back(S9,4) =S7

Table 10.2. Execution of Viterbi’s algorithm.
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probability that a given arc will be traversed, given the starting state and the
element, for two different arcs, then the ratio of those probabilities is 2L2-L1
where L1 and L2 are the two labels. For example, the arc labeled “swim” from
S4 to S7is —1.0, and the arc labeled “can” from S2 to S6 is 2.7. Therefore,

P(T3=V|T1=N,Tp = M,Es = “swim') _ 5

= =13.
P(T,=N|Typ=*S*,T1 =V, E» = “can”)

The execution of Viterbi’s algorithm proceeds as shown in Table 10.2. Infi-
nite values are not shown. The result of Table 10.2 is that S9 is the winning state
with a score of —1.5. Tracing backward from S9, the winning tagging is found
to be (N, M, V, Adv ), as we would expect.

10.3.5 The Sparse Data Problem and Smoothing

To compute the product in Equation (10.8), we need three types of probabili-
ties: P(t; | ti+1-k,---» ti—1), P(t;1€;), and P(¢;). This is where our training corpus
comes in; we estimate each of these quantities by the frequency in the corpus:

P(t; | ti—p, ti-1) = Freqc (8 | ti—2, ti—1),
P(t;| e;) =Freqc (s | e;),
P(1;) = Freqq(1;),

where Freq.(-) means the frequency in the training corpus C.

Unfortunately, there is often a problem with the first of these quantities in
particular; namely, that some possible k-tuples of tags t;.;—¢,..., f; may actu-
ally never occur in the corpus C. This is unlikely in the case where the tags are
parts of speech, but is altogether likely in the case where the tags are words.
(As discussed in Section 9.6.3, the frequency of trigrams in text follows a Zipf
distribution with a very long tail.)

We have seen this kind of problem before, with naive Bayes classifiers (Sec-
tion 8.11), and the solution we use here is a similar kind of smoothing. We
estimate the probability of the k-gram as a weighted sum of the unigram, the
bigram, the trigram, all the way to the (k— 1) gram. For example, with k = 3, we
estimate

P(t; | ti—p, ti—1) = a1Freqe (| 2, ti—1) + aoFreqc (| ti-1) + asFreqc (%),

where a1, a»,as are weights (e.g., 0.6, 0.3, 0.1). For example, suppose that in
speech understanding we encounter a sequence of phonemes that sounds like
“burnt strawberry jelly.” We do not want to reject this interpretation as hav-
ing probability zero just because we have not previously encountered the tri-
gram “burnt strawberry jelly" in our corpus. Rather, we estimate the probability
of seeing “jelly" following “burnt strawberry" as 0.7 times the frequency with
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which “burnt strawberry" is followed by “jelly" in the corpus, plus 0.2 times
the frequency with which “strawberry" is followed by “jelly" in the corpus, plus
0.1 times the frequency of “jelly" in the corpus. Thus, we give preference to
trigrams that actually occur in the corpus, while admitting the possibility of
seeing new trigrams and even new bigrams.

Exercises
Use MATLAB for all of these exercises.

Exercise 10.1. Consider the Markov model shown in Figure 10.5.

(a) What is the transition matrix for the model?

(b) Assume that at time 0 the probability of state A is 1. What is the probabil-
ity distribution at time 1? At time 2? At time 10?

(c) What is the stationary probability distribution for the model?

Exercise 10.2. (This exercise is time consuming, but possibly fun.) Construct
the Markov model for a player’s position at the end of each roll of the dice on
the standard Monopoly board, keeping in mind (a) that if you land on “Go to
jail” you go to jail; (b) that if you land on Community Chest or Chance, with
some probability you will get a card sending you somewhere else (e.g., nearest
railroad, St. Charles Place, Go). Ignore the rule that you go to jail if you roll
three doubles in a row, and assume that the player always pays to get out of jail.
Use MATLAB to compute the stationary distribution for the model. Can you
glean any useful strategic hints?

0.8

Figure 10.5. Markov model for Exercise 10.1.
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Exercise 10.3.

(a) Redo the PageRank computation related to Figure 10.3 on page 306 by
using F = 0.1, E = 0.15. How do the new results compare to the old ones?
Give an intuitive explanation.

(b) Modify the graph in Figure 10.3 by adding arcs from U to W and from W
to U. Compute the PageRank in the new graph, by using F = 0.7, e = 0.05.
How do the results compare to the PageRank in the original graph? Give
an intuitive explanation.

Exercise 10.4. Compute the absolute probabilities of all the possible taggings
of the sentence “Fish can swim fast,” by using the model in Section 10.3.4.

Problems

Problem 10.1. The one-dimensional random walk with absorption is the fol-
lowing Markov model:

e There are 2N + 1 states, labeled - N,...,-1,0,1,...,N.

e If K # —N, N then there are two transitions from K, one to K —1 and one
to K + 1, each with probability 1/2.

¢ The only transition from N and from — N is to itself, with probability 1.

Figure 10.6 illustrates this model with N = 3.

(a) Thereismore than one stationary distribution for the random walk. Char-
acterize the space of stationary distributions. (You should be able to
solve this problem without using MATLAB.)

(b) Generate the transition matrix for the case N = 50.

(c) Let N =50. Assume that at time 0 the system is in state 0 with probabil-
ity 1. Compute the distribution at time 50. Plot the distribution. What
does it look like? Explain this outcome.

12 12 12 12
@1/2@1/2@?5@1/2 TE@

Figure 10.6. Random walk with N = 3.
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(d)

Let N =50. Clearly, any random walker will either find his way to state 50
or to state —50 and then will stay there forever. We can define a function
f (D), which is the probability that a walker will end up in state 50 given
that at some earlier time he is at state I. The values f(-50),..., f(0),...,
f(50) satisfy a system of linear equations. Describe the system of linear
equations and solve them, either by using MATLAB or by inspection.

Problem 10.2. Suppose that a Markov model has two different stationary dis-
tributions p and §. Show that, for any ¢ such that0< t <1, t- p+ (1 — )4 is also
a stationary distribution. Note that there are two things you have to show: first,
that this is stationary, and second, that it is a legitimate distribution.

Problem 10.3. Construct an example of a Markov model that has only one sta-
tionary distribution, but where there are starting distributions that do not con-
verge to the stationary distribution. (Hint: There is an example with only two
states.)

Programming Assignments

Assignment 10.1.

(a)

(b)

Write a function PageRank (A4,E) that computes page rank based on links,
as described in Section 10.2. The input parameter A is an N x N adja-
cency matrix; A(I,J) =1 if page I has a link to page J. The input parame-
ter E corresponds to the probabilistic parameter e as described.

Ignore any self-loops. Treat a page with no outlinks as if it had an outlink
to every other page, as in Solution 3, Section 10.2.2.

Choose some specific collection of interlinked documents, such as the
Wikipedia pages for US presidents, or some collection of messages on a
chat board. Construct the link graph between the documents, and com-
pute the PageRank. Order the documents by PageRank. Does the order-
ing correspond well to your own sense of the relative importance of these
documents?
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Chapter 11

Confidence Intervals

11.1  The Basic Formula for Confidence Intervals

Suppose that we carry out a poll of 1,000 randomly chosen Americans, asking
each of them whether they prefer apple pie or blueberry pie. The results are
574 prefer apple, and 426 prefer blueberry. What can we say about the fraction
of the entire population that prefers apple pie? It would not be reasonable to
conclude with certainty that exactly 57.4% of the population prefers apple. It
seems safe, however, to conclude with near certainty that the true fraction is
larger than 10% and smaller than 90%. What we would like to assert, clearly, is
a statement of the form, “The fraction of the population that prefers apple pie
is probably somewhere close to 57.4%,” with some numbers attached to the
vague terms “probably” and “somewhere close.”

For example, “The probability is at least 95% that the fraction of people who
prefer apple pie is between 54% and 60%” would be more descriptive. Symboli-
cally, let f be the true fraction of the population and let f = 0.574 be the fraction
in the poll. Then the claim is P(0.54 < f < 0.60| f = 0.574) = 0.95. The interval
[0.54,0.60] is called the confidence interval for f at the 95% level. (Sometimes
it is called the confidence interval at the 5% level. Since no one is ever inter-
ested in intervals where the probability is less than 1/2, this does not give rise
to ambiguity.)

The actual calculation is quite simple, but the justification is complicated.
In fact, the same calculation can be justified in two quite different ways, one
corresponding to the likelihood theory of probability and one corresponding
to the frequentist theory. Since 99% of the time, all you need is to do the cal-
culation (and 99% of the people who do these calculations neither understand
the justification nor care about it), we will begin here how to do the calculation,
and we point out some important features of it. The justifications are discussed
in optional Sections 11.3 and 11.4.

As long as the sample size 7 is large, the sample fraction f is not close to 0
or to 1, and we are not interested in probabilities very close to 1 (that is, proba-
bilities such as 1-27"), then we can consider that the true fraction f to follow a

323
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Gaussian distribution mean f and standard deviation o = \/ f (1 - f)/n. Specif-
ically, let E(x) be the integral of the standard Gaussian: E(x) = /% Np(f)dt.
For any q that is substantially less than min(f,1— f)/o, the probability that f
lies within g-o of f is

_ _ f+qo
P(f—q-asfsf+q-a):f_

q
f,g(t)dt:f No,1 (x)dx=2E(q) - 1.
f-q0 -q

Therefore, to get a confidence interval at level p, look up E ’1((p +1)/2) in
a statistics table, or compute the MATLAB expression erfinv (p) *sqrt (2) (see
Section 9.9), and that is the value of g. The confidence interval at level p is
then[f-q-0,f+q-0l.

For example, suppose for the same American pie poll, we have n = 1000
and f = 0.574, and we want to get a confidence interval at the 95% level. We

compute o =/ f(1- f)/n=0.0156. We have (1 + p)/2 = 0.975 and we can find
outthatg=E ~1(0.975) = 1.96. Therefore the 95% confidence interval is

[0.574-1.96-0.0156, 0.574 +1.96-0.0156] = [0.5434,0.6046].

This is the “+3% margin of error” that is always reported together with political
polls.
If we want to do a back-of-the envelope estimate, and we don’t have the

inverse Gaussian integral handy, we can do the following: first, \/f(1 - f) is
usually about 1/2 for most reasonable values of f; if f is between 0.2 and 0.8,

then 1/ f(1- f) is between 0.4 and 0.5. So o is generally 1/2y/7. Second, we
really need to remember only three values of g:

* A 5% confidence interval is 2 standard deviations (q=2).
¢ A 1% confidence interval is 2.6 standard deviations (q=2.6).
¢ A 0.1% confidence interval is 3.3 standard deviations (q=3.3).

So as long as we know how to estimate /7, we're all set.

Four general points about sampling and confidence intervals should be
kept in mind. First, the standard deviation o is proportional to 1/y/n. There-
fore, to reduce the width of the confidence interval by a factor of k, it is neces-
sary to increase the sample size by k. That is the reason that every political poll
has a sample size of about 1,000 and a 3% margin of error. Reducing the margin
of error to 1% would require sampling 9,000 people, and would therefore cost
nine times as much to carry out; it’s not worthwhile, especially considering that
this is a political poll, and the numbers will be all different next week anyway.
(Self-selecting polls, such as Internet votes, can have much higher values of n,
but gauging the accuracy of such a poll is a very different question.)
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Second, the confidence interval does not at all depend on the size of the
population, as long as the population is large enough that we can validly ap-
proximate sampling without replacement by sampling with replacement. (If
we sample with replacement, then the same confidence intervals apply, even
if the actual population is smaller than the sample; that is, if we ask everyone
the same question several times.) A sample of size 1,000 has a +3% confidence
interval at the 95% level whether the population is ten thousand or ten billion.

Third, you are now in a position to be as annoyed as I always am when you
hear a TV pundit, in one sentence, state responsibly that the poll he or she has
quoted has a margin of error of 3%, and in the next sentence, speculate on the
reason it went from 55% yesterday to 54% today. For a poll with n = 1,000 and
f = 0.55, the interval [0.54,0.56] has a confidence of 0.495. So there is a better
than 50% chance that two polls of 1,000 people will differ by 1% in one direction
or the other purely by chance, even if they are conducted in the same way and
taken at the same time. There is no need to look for any other reason.

The fourth point is the most important, even though it runs the risk of
sounding like the villainous lawyers for PG&E in Erin Brockovich. If we set our
significance level at 99%, then, in one out of every 100 experiments, we will get
results that pass the test just due to chance. If we are mining medical data look-
ing for a cause of a disease, and we have records of 1,000 different possible in-
fluences, then we will probably find 10 that are significant at the 99% level and
1 that is significant at the 99.9% level, even if they are all actually independent
of the disease. If we run a statistical test on our particular city and find that the
incidence of bone cancer is above the national average with a confidence level
of 99.9%, then we have reason to suspect that there may well be an environ-
mental cause. But if someone in each of the 30,000 cities in the United States
runs such a test, then we have to expect that 30 of these will come up positive
even if there is no environmental cause anywhere. The moral is that we have to
be very careful in drawing conclusions purely from statistical evidence.!

11.2  Application: Evaluating a Classifier

One of the most common uses of confidence intervals in computer science is
to evaluate the quality of a classifier. As discussed in Section 8.11, a classifier
is a program that determines whether a given instance belongs to a given cate-
gory (e.g., whether an email message is spam). Most classifiers are constructed
at least in part by applying supervised machine learning (ML) techniques to a
corpus of labeled examples. Suppose that we have such a classifier; how do we
measure how well it works?

IThis kind of problem has recently become a serious concern in scientific research. See, for
example, the article “Why Most Published Research Findings Are False” (Ioannidis, 2005).
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First, we must decide on a measure of “goodness.” For our discussion here,
we take that to be the overall accuracy of the classifier—that is, the fraction of
instances that are correctly classified, in either direction.

Using the standard approach, we begin by randomly separating the labeled
corpus into a training set R and a test set E. We then use the training set R as
input to the ML algorithm A, which outputs a classifier Ag. We run the classi-
fier Ag on the test set E; determine the accuracy of Ag over E; and calculate a
confidence interval [L, U] at level p based on the size of E.

We can now make the following claim: Let Q be the probability space of all
instances. Assume that the corpus C is a random sample of Q; this is a large
assumption, which is generally difficult to justify but works out well enough.
In that case, the test set and the training set are nearly independent® random
samples of Q, since they were chosen randomly from the corpus. Therefore,
the event “instance [ isin E” is independent of the event “ Ag labels I correctly”
relative to the probability distribution Q. Therefore, the confidence interval we
have calculated is valid.

Why should we not run the ML algorithm on the entire corpus, and then
test it on the test set—or, for that matter, test it on the entire corpus? The an-
swer is that, if R < E or R = E, then Ap is no longer independent of E because
A has used E in computing the classifier. In the extreme case, suppose that
the classifier output by Ar consists of a pair: a general rule to be used on ex-
amples that are not in R; and a hash table with the answer recorded for all the
instances in R.3 In that case, if E < R, then the accuracy of Ag on E will be 1;
however, this is no reason to think that this is a good estimate of the accuracy of
Ap over Q.

In practice, of course, machine learning algorithms generally do better the
larger the training set, and it seems like a pity to throw away useful training
data. Therefore, what is often done in practice is that, after the classifier has
been evaluated, the learning algorithm is rerun on all the data, and one as-
sumes that the new classifier, based on more data, is at least as good as the
classifier that was evaluated. (For some learning algorithms, it is possible to
prove that, on average, they do better given more data, and for some others, it
is currently just a plausible assumption.)

One issue that requires care relates to the problem of multiple experiments
discussed at the end of Section 11.1. In general, there are many different ma-
chine learning techniques that can be used for any given application, and each
general technique can be used with a variety of options, parameter settings,
feature spaces, and so on. Suppose that we divide the corpus into a training

2They are not quite independent because they are mutually exclusive.

3This may seem like an absurd cheat, but if the distribution over examples follows a power law,
so that a large fraction of the instances encountered come from a small number of cases, it may be
perfectly reasonable (see Section 9.6.3).
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set R and a test set E of size 1,000; we run a hundred different machine learn-
ing techniques over R, we evaluate all the output classifiers using E, and we
get an accuracy for each one. Let us say that these range from 0.64 to 0.72.
We now, naturally, take the classifier that did best—call it CBest—and we pub-
lish a paper that claims that the accuracy of CBest has a confidence interval
[0.69,0.75] at the 95% confidence level. This claim, however, is not justified. It
is quite possible that the classifiers are all of equal quality; they each have a 0.68
chance of being correct on any given item. If the classifiers are independent of
one another,* then with 100 classifiers, we are likely to get one of accuracy 0.72
just by chance. (It is, however, proper to publish a paper that describes the en-
tire procedure of running 100 classifiers, and in that context, we may certainly
say that CBest had an accuracy of 0.72.)

To get a proper evaluation of the classifier, we need a new test set. This
test set has to be independent of both sets R and E because both of these have
been used in formulating CBest—R to train it and E to select it. Another way
of viewing this is that the overall procedure, “Run these 100 ML techniques
on R; test them on E; choose the best,” is itself a meta-ML procedure that
takes RU E as input and generates the classifier CBest. E cannot be used to
evaluate CBest because it was part of the input to the program that generated
CBest.

Therefore, if a scientist anticipates that he or she will be testing multiple
classifiers and choosing the best, and if there is plenty of labeled data, then a
common practice is to divide the corpus of data into three parts: the training
set R, the test set E, and the validation set V. The scientist then trains each of
the machine learning algorithms on R; tests using V; chooses the best CBest;
and then reevaluates CBest by using the test set E. This evaluation of CBest is
valid. However, if this reevaluation does not produce satisfying results, it is not
permissible to then test the second-best on V and see whether it does better on
E and then publish that, if that seems better, because now the same test set has
again been used both for selection and for evaluation.

A very common problem, and very difficult problem in evaluating classi-
fiers, is that labeled data are often limited and expensive to obtain. If we have
only 100 items of labeled data, then we cannot very well spare 30 of those for
testing purposes; in any case, a test set of size 30 has a 95% confidence interval
of £18%, which is so large as to be useless. One technique that is often used in
this case is cross-validation, as shown in Algorithm 11.1. The data are divided
ten different ways into a training set and a validation set, the classifier is trained
on the training set and evaluated on the validation set, and the average accu-
racy is returned. However, it is difficult to analyze this technique statistically
or to determine valid confidence intervals for the result because the different
iterations are anything but independent.

4They almost certainly are not, but for the sake of argument, let's say they are.
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function CrossValidate(in D: labeled data; M: classification algorithm)
return estimate of accuracy

{ Partition the data D into ten subsets Sj ... S1g;
for (i —1...10)
R+~ D\ Si;
C — M(R); /* Compute classifier */
A; — accuracy of Con S;;
endfor
return average of the A;.

}

Algorithm 11.1. Cross-validation algorithm.

11.3  Bayesian Statistical Inference (Optional)

The derivation and interpretation of confidence intervals in the likelihood
(Bayesian) interpretation of probability theory is quite straightforward. Let’s
return to the American pie poll described in Section 11.1. Let F be a random
variable whose value is the fraction of the whole population that prefers ap-
ple pie. This is “random” in the sense of likelihood judgment; we don’t know
what the likelihood is, so there is some chance of it having any value between 0
and 1. If the population count is known to be M, then the value of F must actu-
ally have the form i/ M, but for simplicity we approximate this as a continuous
probability density. Let X be a random variable, where X = f is the event that,
in a random sample of size n, the fraction that prefers apple pie is f. What
we want to know is the probability distribution of P(F = t| X = 0.574) over all
values of .
As is so often done, we start with Bayes’ law and write

P(F=1t|X=0.574) = P(X =0.574| F = ) P(F = 1)/ P(X = 0.574).

We know how to compute the first expression P(X = 0.574 | F = t), this is given
by the binomial distribution as Bjooo,;(574). The denominator is just a constant
normalizing factor, independent of ¢. But what is P(F = £)?

P(F = 1) is called the prior; it expresses our preconceptions about the rela-
tive likelihood of different values of the fraction of the population that prefers
apple pie before we see the results of the poll. In contrast, P(F = t| X = 0.574), our
judgment afterwe have seen the poll, is called the posterior probability. We first
consider the simplest approach to the prior, which is, in fact, often used, and
then we return to the question of how reasonable that is. The simplest solution
is to assume that F is uniformly distributed, and thus P(F = 1) is a constant. In
that case, P(F=t| X =0.574) = a - Bi1000,:(574), where a is a normalizing con-
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stant. This is not actually equal to the binomial distribution, which would be
B1000,0.574(1000¢), but, like the binomial distribution, it is accurately approxi-
mated by a Gaussian distribution with mean p = 0.574 and standard deviation

0 =+/0.574-(1-0.574)/1000 = 0.0156.

So, as in our previous discussion, for any g, the probability that f is between
f —qo and f + go is given by 2E(q) — 1.

The advantage of the Bayesian approach is that it answers the question that
we want answered: namely, what, probably, is the fraction of the population
that prefers apple pie? (As we see in Section 11.4, the sample space approach
refuses to answer this question.)

The weak point of the Bayesian approach is the arbitrary choice of prior.
Why should we assume that F is uniformly distributed? One answer that is of-
ten given is that once you have enough evidence, the priors don't matter. For
certain kinds of priors, that is demonstrably true. For example, suppose that,
rather than apple pie, the poll is measuring approval ratings for the president.
One might think that positing a uniform distribution on approval ratings is ig-
noring history. We know that approval ratings for the president are generally
somewhere between 35% and 65% and almost never lower than 20% or higher
than 80%. Perhaps we should use a prior that reflects that knowledge; for ex-
ample, set P(F = 1) to be 1.5 for t between 0.2 and 0.8 and 0.25 for ¢ < 0.2 and
for ¢ > 0.8. But when we have done all the computation, we find that the change
in the confidence interval is infinitesimal because the posterior probability is
tiny that the approval rating is outside the range [0.2,0.8]. (On the other hand,
if our poll does return a result of 20%, then this choice of priors will make a
difference.)

But if we instead use a radically different model for the prior, then the choice
of prior may make a difference. Returning to the pie example, suppose we
choose the following probabilistic model as a prior. We define a Boolean ran-
dom variable X; that expresses the pie preferences of person i; further, we as-
sume that each X; follows a Bernoulli distribution with its own parameter p;,
the X's are all independent, and the p;s are themselves uniformly distributed
over [0,1]. In this model, the prior on F is Gaussian, with norm 0.5 and stan-
dard deviation 3.5-107°. We will need a vast poll to get a posterior probability
that is not very close to 0.5. To put it more simply, in this model, when we poll
our 1,000 subjects, we get information about their personal values of p;, but
we get no information about anyone else’s value of p; because our model says
that these are all independent. We need to poll essentially everyone to get an
accurate view of F.

Now, one may say that on that model, the history of opinion polls in this
country is inexpressibly unlikely, which is true; and based on that fact, a sen-
sible statistician will not choose that prior. However, from a logical standpoint
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this is not altogether satisfying. After all, all the other polls are also just poste-
rior information; according to a pure Bayesian theory, the proper way to con-
sider them is to combine them with the priors that existed before ever seeing
any polls. Simply rejecting a probabilistic model that makes the posterior data
unlikely is essentially the hypothesis testing approach (see Section 11.5), which
is generally frowned on in Bayesian theories.

Moreover, in some cases, we actually do want to use a prior that is some-
thing like this last example. For instance, consider again the problem of deter-
mining whether our municipality has unusually high rates of cancer. In that
case, a reasonable prior might be that, in each municipality, there is some un-
derlying probability of getting cancer, and that all these probabilities are uni-
formly distributed and independent from one municipality to the next.

11.4  Confidence Intervals in the Frequentist
Viewpoint (Optional)

The interpretation of confidence intervals in the frequentist (sample space)
view of probability is much more roundabout. In this viewpoint, the statement,
“Based on this poll, the probability is .95 that between 54% and 60% of people
prefer apple pie” is entirely meaningless, since it does not refer to any sample
space. Instead, the meaning of confidence intervals is a statement about the
procedure used to compute them.

Definition 11.1. The confidence interval at level p for a sample of size n is
given by a pair of monotonically nondecreasing functions, L, (f) and U,(f),
with the following property. Consider any property ® whose true frequency
in the space Q is f. Let X be the random variable whose value is the num-
ber of elements with property ® in a random sample of size n from Q. Then
P(Ly(X) = f=<Un(X)) = p.

That is, if we take a random sample of size n, find the fraction f of elements
in the sample that are ®, and compute the values L,( f) and U, ( f), then, with
probability at least p, L,(f) will be less than the true frequency f and U, (f)
will be greater than f.

The value of any particular confidence interval is just the application of
this procedure to f; for example, when f = 0.574, then Ligoo(f) = 0.54 and
Uo00(f) = 0.60.

Here the sample space Q is the set of random samples of size n. Note that
this does not make any claim whatsoever about this particular poll, or even
about polls where f = 0.574. It could be that all the poll questions we ever
ask are actually lopsided by at least 80% to 20% in the population, so that the
only times we get f = 0.574 are when we have, by incredibly bad luck, chosen a



11.4. Confidence Intervals in the Frequentist Viewpoint (Optional)

331

wildly unrepresentative sample. In that case, whenever we compute the confi-
dence interval for f = 0.574, it never includes the true value of f, which is either
less than 0.2 or greater than 0.8. That would not at all affect the correctness
of the claim being made about the confidence interval. This claim does not
say that the confidence interval for f = 0.574 usually—or ever—contains the
true value. What it says is that—whatever poll is being carried out—for most
random samples, this procedure will give valid bounds on the true fraction. If
f = 0.2 then we will only very rarely get the value f = 0.574.

The condition that L(f) and U(f) are monotonically nondecreasing is
needed for the following reason. Suppose that we have come up with proce-
dures L and U that satisfy Definition 11.1. Now, suppose some troublemaker
defines procedures L' and U’ as follows:

iff #0.574, then L'(f)=L(f) and U'(f)=U(f),
iff =0.574, then L'(f)=0.1 and U'(f)=0.2.

Then L' and U’ satisfy the condition P(L'(X) < f < U'(X)) = p/, where p' is
very slightly less than p, because the odds of getting a sample fraction of ex-
actly 0.574 is small even for the case f = 0.574. The condition that L and U are
monotonically increasing excludes this kind of shenanigans.

We can go about constructing a confidence interval procedure as follows.
Suppose we can find monotonically increasing functions Q(f), R(f) such that
P(Q(f) = X = R(f)) = p for every value of f. This is not quite what we are look-
ing for because the roles of f and X are reversed. Now, we let U(X) = Q" (X)
and L(X) = R~ (X). Since Q is monotonically increasing, f < U(X) if and only
if Q(f) < Q(Q™Y(X)) = X; and likewise, f = L(X) if and only if R(f) = X. There-
fore,

PILX)< f<sUX)=PR'X)=f<Q ') =PQN=<X<RM=p,

which is what we wanted.

How can we find these functions Q and R? There is a range of acceptable
possibilities, but the simplest thing is to choose Q() such that, with probability
(1-p)/2, X is in the interval [0, Q(f)], and with probability (1 - p)/2, X is in the
interval [R(f),1]. Thus, with probability p, X is in neither of those intervals,
and thus X is in the interval [Q(f), R(f)]. Now, nX is distributed according to
the binomial distribution By, r. Let Cy, r be the cumulative distribution corre-
sponding to the binomial distribution. Then we have

(1-p)/2=PO0=X=Q(f) =Cprn-Q(f),

SO
Q) =/n)-C, (1= p)/2);
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and
(1-p)/2=PR(f)=X<1)=1-PO<X<R(f)=1-Cysn-R(f)),

SO
R(f)=W/n)-C, (1= (1= p)/2) = (1/n)-C, (1 + p)/2).

If n is large, f is not close to either 0 or 1, and p is not very close to 1,
then we can make this task much simpler by using the Gaussian distribution.
Specifically, let o = \/f(1 - f)/n, which is the standard deviation of f. Let
Nr,; (1) be the Gaussian with mean f and standard deviation o, and let E,, (x)
be the corresponding cumulative distribution. By the central limit theorem,
the cumulative distribution of the Gaussian approximates the cumulative dis-
tribution of the binomial, so for any k, as long as k is substantially less than
min(f/o,(1 - f)/0o), we have

p=P(f-ko < X< [f+ko)=Efs(f+ko)—Efq(f—ko) = Eg1(k)—Ep1(-k) =2Ep(k)-1.

so k= Ea}(l + p)/2. Using that value of f, we have Q(f) = f — ko and R(f) =
[+ ko. Finally, if n is large, so that ko < f, then Q and R are very nearly

inverses of one another, and we can approximate o as o’ = 1/ f(1— f)/n, so
LX) =R (X) = QX)) = f — ko' and U(X) = f + ko'. The method for comput-
ing the confidence interval is exactly the same as in the Bayesian approach,®
even though the interpretation is very different.

The advantage of the frequentist approach is that we no longer have to
make any assumptions about the prior distribution of f. The answer to the
frequentist question is valid whatever the prior distribution; it is valid even
if, as many frequentists would claim, the idea of the prior distribution of f is
meaningless. The disadvantage of this approach is that it no longer answers
the question in which we are interested: “What is the actual fraction of people
who prefer apple pie?”; it makes a claim about a certain statistical procedure.
It is a consequence that if we follow the procedure and treat the confidence in-
terval as if it were an actual statement about f, then most of the time we will be
all right; but that seems like a very indirect, not to say obscure, approach.

More important, for many purposes, such as computing an expected value
or to calculate another probability, it is convenient to have a probability distri-
bution over f. Now, it may be possible to rephrase these purposes as well in
the probability distribution over the sample rather than over f itself, but this is
always indirect, and generally difficult and problematic.

5The Bayesian and the frequentist confident intervals are very nearly the same for large values
of n and for f not close to 0 or 1; for small values of n or extreme probabilities, they can be quite
different.
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11.5 Hypothesis Testing and Statistical Significance

A hypothesis testing method is a method that uses statistical characteristics of
a body of data to accept or reject a particular hypothesis about the processes
that generated that data.

In this section, we discuss the traditional statistical approach to hypothesis
testing, which is commonly used in statistical data analysis. Like the frequen-
tist definition of confidence intervals, this approaches the issue from a rather
backward point of view. In this approach, the objective of a successful (e.g.,
publishable) statistical analysis is formulated as rejecting a hypothesis, known
as the null hypothesis, about the process that generated the data. Thus, the
null hypothesis is the hypothesis that we are rooting against, so to speak. To
decide whether to reject the null hypothesis, the statistician uses a statistical
test, which is a Boolean function computed from the data. The hypothesis can
be rejected if the outcome of the test would be very unlikely if the hypothesis
were true.

Some examples of datasets, hypotheses, and tests follow.

Example 11.2. The pie preferences of Americans are being tested. The dataset
consists of the results of the poll. What we want to prove is that most Ameri-
cans prefer apple pie to blueberry pie. The null hypothesis is that the dataset is
the outcome of a uniform distribution over all samples of 1,000 Americans, and
that the fraction of Americans who prefer apple pie is at most 0.5. The statisti-
cal test is the proposition, “0.53 < Freqp (Apple),” or at least 53% of the people
sampled prefer apple pie.

Example 11.3. A drug is being tested for its effectiveness against a disease.
Thirty patients who have the disease are given the drug, and 30 are given a
placebo. The dataset is the record of which patients had recovered by the end
of the week. The hypothesis we want to prove is that the drug has some effec-
tiveness. The null hypothesis is, therefore, that it is at best useless. Specifically,
the hypothesis posts that among patients who receive the drug, recovery is a
Bernoulli process with parameter a; that among the patients who receive the
placebo, recovery is a Bernoulli process with parameter b; and that a > b, which
we can write as

P(Recover | Drug) > P(Recover | Placebo).
The test T is the Boolean function

Freq(Recover | Drug) — Freq(Recover | Placebo) > 0.2.
D D

Example 11.4. We wish to show that playing Mozart to fetuses in the womb
has some effect (positive or negative) on their IQs. Dataset D records how many
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hours of Mozart the fetus was exposed to and what the child’s IQ was at the age
of 6 months. The null hypothesis is that the two variables are the outcome
of independent random variables. The statistical test is that the correlation
between hours of Mozart and IQ score is greater than 0.2.

Atest T gives good evidence for rejecting hypothesis H if positive outcomes
for T are unlikely for any process Q satisfying H. Formally, we posit the follow-
ing definition.

Definition 11.5. Let H, the null hypothesis, be a set of random processes, each
of which generates values in a set Q. For each process Q € H, let P be the
probability distribution associated with the outcome of Q. Let T, the statistical
test, be a subset of Q (the set of samples for which the test succeeds). Let D,
the dataset, be an element of Q). Then H is rejected at significance level s, where
$>0, using T as applied to Dif De T and Po(T) < sforall Qe H.

For instance, in Example 11.2, Q is the set of all samples of size 1,000 taken
from all Americans. For any sample s € Q, let A(s) be the fraction that prefer
apple pie. The null hypothesis H is the set of all binomial distributions By, 100,
where p < 0.5. The test T = {s € Q| A(s) > 0.53}. The dataset D is the particular
sample; note that A(D) = 0.574, so D € T. Clearly, over the processes Q € H,
Pq(T) reaches its maximum when p = 0.5, and for that particular Q, Po(T) =
0.0275. Therefore, the null hypothesis can be rejected at the 2.75% level.

There is an obvious problem with Definition 11.5. Nothing in the defini-
tion prevents us from choosing T so Pq(T) is unlikely, whether Q satisfies the
hypothesis or not. For instance, in the pie test, we could choose as our test
T ={se Q| A(s) =0.574}; again, D € T. This test on exact equality has a proba-
bility of no more than about 1/30 whatever the actual fraction, and therefore it
can be used to reject any hypothesis at all at the 0.03 significance level.

The problem is that there are two kinds of errors that can be made in hy-
pothesis testing. The first is to reject the null hypothesis when it is in fact true;
this is known as a type I error. The second is to fail to reject it when it is in fact
false; this is known as a type 2 error. In general, in choosing a test for a partic-
ular hypothesis, there is a trade-off between the two types of errors: to make
the probability of a type 1 error small, we must accept a large probability of a
type 2 error, and vice versa. Definition 11.5 ensures that it is unlikely that we
will make a type 1 error, but it says nothing about type 2 errors.

There is a reason for this asymmetry; guarding against type 2 errors is prob-
lematic. We need to establish that if the null hypothesis is false, then it is un-
likely that the test will succeed. But we cannot speak of the probability of the
event T on the assumption that the sample was not generated by process Q.
We could require that the probability of T is small, given any process Q outside
H, but in general, the set of processes outside H is unmanageable and useless.
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In Example 11.2, for instance, the process Q that generates D with probabil-
ity 1is certainly outside of H, since it is not a Bernoulli process of any kind, and
P(TIQ) =1

This problem can be solved as follows:

1. Consider only a fixed space of hypotheses Q. For instance, assume that
the data were generated by a binomial distribution By, ; for some value
of g.

2. Let the alternative hypothesis H, = Q\ H. Define the power of test T over
H, as the maximum over all tests Q € H, of P(=T|Q), the probability that
a type 2 failure will not occur, given that the data are generated by Q.

3. Consider only tests of a particular form; generally either f(D) = [ (a one-
sided test) or | < f(D) < u (a two-sided test) for constants / and u. (The
function f (D) is called a statistic of the data D.)

4. Require that the test T being applied satisfy the following: Of all tests T”
of the form in (3) that reject the hypothesis H at level a, T should be the
test that achieves the maximum power over H,.

Thus, the test T is very unlikely to be satisfied if the data were generated by
a process Q satisfying the null hypothesis, but it is not inherently unlikely, in
the sense that it is likely for at least some processes satisfying the alternative
hypothesis.

In the apple pie scenario (Example 11.2), if H is the set of all binomial
distributions By, such that p < 0.5, then H, is the set of all By, such that
p > 0.5. Consider again the defective test T, “Reject H on sample s if and only
if A(s) =0.574"; thus, D € T. Over Q in H, the maximum likelihood of P(T | Q)
is achieved when p = 0.5 at

B1000,0.5(0.574) = N509,15.811(574)/15.811 = Ny,1(4.6802)/15.811 = 4.42- 1077,

so a type 1 error is extremely unlikely. However, the maximum likelihood of
P(T| Q) for Q € H, is achieved when p = 0.574, and is only Bjg00,0.574(574) =
No,1(0)/15.637 = 0.0155.

By contrast, consider the test T', “Reject H on sample s if A(s) = 0.574.”
Over Q in H, the maximum likelihood of P(T’| Q) is likewise achieved when p =
0.5; its value is only very slightly larger than P(T | Q). However, the maximum
likelihood of P(T'| Q) is achieved with p =1 and is equal to 1.

Note that the restriction (1) above was implicitly imposed in the Bayesian
analysis of confidence intervals in Section 11.3. We considered a prior proba-
bility distribution over the fraction f; we did not assign any probability to the
possibility that the sample was not generated by random selection.



336

11. Confidence Intervals

11.6 Statistical Inference and ESP

The conflict between the frequentist and the likelihood interpretations of prob-
ability appeared in a front-page New York Times article on January 5, 2011. The
circumstances concerned a number of experiments performed by Prof. Daryl
Bem to detect precognition. For example, in one experiment, first subjects
were presented with a list of 48 words to study; second, they were given a mem-
ory test on these words; and third, they were given a subset of 24 of the words
and asked to categorize them. (In general, people remember a list of words
better if they have gone through the work of categorizing them than if they
have just tried to memorize them as a list.) In Bem'’s experiments, he found
that subjects did better on the memory test on words that they spent time cat-
egorizing after the test was complete. Using a standard statistical measure, he
determined that the null hypothesis—that the difference was entirely due to
chance—could be rejected at a high level of significance.

Anumber of critics (e.g., Rouder and Morey, 2011) argued that, from a Bayes-
ian point of view, it would be necessary to consider the prior probability of
the hypothesis that the subjects were benefiting from extrasensory perception
(ESP), which, they stated, was very small. On this view, even though some of
Bem’s experiments substantially raised the posterior estimate of the reality of
ESP, they did not raise it to the point where reasonable people would actually
believe it. The critics did not, however, give any guidance on the difficult ques-
tion of how one could reasonably estimate the prior probability that ESP was
possible: 1078, 10739, 1071072

Exercises

Exercise 11.1. Using pencil and paper but no computer, estimate confidence
intervals for polls over samples of sizes N = 400, N = 10,000, N = 1,000, 000;
f =0.2 and f =0.5; and confidence levels of 0.99 and 0.999. (Consider all com-
binations; thus your answer should have 12 parts.)

Exercise 11.2. Using MATLAB, compute confidence intervals for polls over sam-
ples of sizes N = 750, N = 3,500, N = 1,250,000; f = 0.28 and f = 0.65; and
confidence levels of 0.86 and 1 — 107°. (As in Exercise11.2, your answer should
have 12 parts.)

Problems

Problem 11.1. As mentioned on page 323, the simple formula for confidence
interval given in Section 11.1 breaks down if N is small, f is close to 1, or a very
high degree of confidence is required.
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(a) Consider the problem of computing a 80% confidence interval, under
the frequentist definition, for the situation in which you poll eight peo-
ple and seven respond that they prefer apple pie. Compute a confidence
interval (there is more than one possible answer). Use the exact discrete
distribution; do not approximate it by a continuous one.

(b) (This part is difficult; it can be done by using MATLAB, but it requires
some care to avoid running into overflow problems.) Compute a 99%
confidence interval for the situation in which you poll 1,000 people and
995 prefer apple pie.

Problem 11.2. Repeat Problem 11.1, but use instead the Bayesian interpreta-
tion of confidence intervals, assuming a prior that is a uniform distribution
over the true fraction f. Again, part (b) is difficult.

Problem 11.3. The Bayesian treatment of hypothesis testing is conceptually
simpler than the frequentist idea of statistical significance; one simply com-
putes the posterior probability that the hypothesis is true.

Suppose you are flipping a coin. You are considering three hypotheses:

(a) The coin is weighted so it comes up heads 1/4 of the time and tails 3/4 of
the time.

(b) The coin is fair.

(c) The coin is weighted so it comes up heads 3/4 of the time and tails 1/4 of
the time.

Assume that the prior probability of each of these hypotheses is 1/3. You
now flip the coin ten times and get seven heads. What are the probabilities of
the three hypotheses given the results of the coin flips?

Problem 11.4. Starting with the same priors as in Problem 11.3, suppose you
flip the coin 100 times and get 70 heads. Estimate the posterior probabilities of
the three hypotheses.

Problem 11.5. Suppose that, as in Problem 11.3, you are flipping a coin. Let
X be the bias of the coin (e.g., if X = 1/4, then the coin comes up heads 1/4 of
the time). Suppose that your prior on X is the uniform distribution between 0
and 1. You now flip the coin ten times and it comes up heads seven times; call
these data D. What is the posterior probability density of X; that is, P(X | D)?
Use MATLAB to plot this curve.
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Chapter 12

Monte Carlo Methods

Broadly speaking, a Monte Carlo method is one that uses random choices to
solve a problem. In this chapter, we look at a particular class of methods that
work by generating a large number of values within some probability space and
doing a simple calculation over them. In Section 12.9, we sketch some further
kinds of probabilistic algorithms and applications.

12.1  Finding Area

Suppose that you want to find the area of the region defined by the inequali-
ties 0 < x<10;0 < y <10;-0.1 < x-sin(zx) - y-sin(ry) < 0.1. It is not possible
to compute this as a closed form analytic expression, and it is difficult to use
deterministic methods of numerical integration.

There is, however, a very simple Monte Carlo method. Let R be the re-
gion satisfying the given inequalities, and let Q be the square [0,10] x [0,10].
For some large N, pick N points uniformly over Q; that is, choose x- and y-
coordinates each uniformly distributed between 0 and 10. For each such point,
calculate whether the point is in Q by checking whether the inequality —0.1 <
x-sin(mx) - y-sin(my) < 0.1 is satisfied. Let K be the number of sample points
in R, and let p = K/ N. Since R c Q, the probability that any given sample point
xisin R is just Area(R)/Area(Q). Therefore, K follows the binomial distribution
Bp,p, where p = Area(R)/Area(Q) = Area(R)/100. We can therefore estimate
Area(R) = 100p with a standard deviation of 50/p(1 — p)/N. In an experiment
with IV = 10,000, there were 566 points that satisfied the constraint, so the area
can be estimated at 5.66, with a 95% confidence interval [5.22,6.10].

As another example, Figure 12.1 shows the case where R is the unit circle
and Q is the square [—1,1] x [-1,1]. Of 100 points chosen at random in Q, 78
are inside the circle, so the estimated area is Area(Q) - 78/100 = 3.12, with the
95% confidence interval [2.64,3.44]. Since the true answer is 7 = 3.14, we were
luckier in this instance than we deserved to be. An experiment with N = 10,000
gives a value of 3.13.
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0.8r

0.6

0.4r

0.2r

Figure 12.1. Monte Carlo estimate of the area of a circle.

Why not pick points systematically rather than randomly? Actually, for esti-
mating the area of a two-dimensional region Q, systematically checking grid
points is, in fact, a reasonable alternative to Monte Carlo methods. Pick a
value of € > 0; construct a grid of € x € within the square Q (note that this has
N = Area(Q)/€? points); count the number K of grid points in R; and estimate
Area(R) by Ke?. It is easily shown that, for any fixed R, the maximal error in this
approach is O(¢) = O(1/v/ N)—thus, comparable to the error in Monte Carlo
search—and the result is guaranteed, rather than merely probabilistic.

There are two drawbacks, however. The first is that the result is asymptotic
and only order of magnitude. The error in the estimate is, in general, propor-
tional to the circumference of R, so unless we can bound that in some way,
there is no way to know how large to choose N to get a given accuracy. If R
has a sufficiently convoluted shape, it may be necessary to choose a very large
value of N to get an accurate answer. Furthermore, if we don’t know anything
about R, then there is the fear that our systematic method of picking points
may be related to the shape of R in a way that throws off the estimate.! For in-
stance in the (contrived) example at the beginning of this chapter, if we choose
as grid the points with integer coefficients in 1, ..., 10, all of them satisfy the
inequality, so we would estimate Area(R) at 100. With a Monte Carlo search,
by contrast, the accuracy of the estimate is given by the standard confidence

lUnless R is a pathological set, such as the set of all points with rational coordinates—
technically, if R is bounded and either topologically open or topologically closed—then it is always
the case that any sufficiently fine uniform grid will give an accurate estimate.
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interval, and depends on N and Area(R), but not on any other characteristic
of R.

The second drawback is that using grid points is only competitive in two
dimensions. In k-dimensions, the error in the grid estimate is still O(1/¢), but
this is now N~1/% whereas the error in the Monte Carlo estimate is O(N~1/2)
regardless of the dimension.? In large number of dimensions, the grid method
is hopeless; for example, in 100-dimensional space, a 2 x 2 x ... x 2 grid has 210
points. But the Monte Carlo method doesn't care; it has exactly the same accu-
racy even if the dimensionality of the space is much greater than the number
of sample points.

There is a catch, however: we need to be able to find an enveloping region
Q that satisfies the following conditions:

* we can compute Area(Q) accurately;

* we can generate points uniformly within Q;
* RcQ;

* Area(Q)/Area(R) is not very large.

In large dimensional space, this can be difficult, even if R is a quite rea-
sonable shape. For example, suppose that R is the 100-dimensional sphere,
and we try to estimate its volume by using the cube [-1,1]'% as Q. It worked
well in two dimensions, but in 100 dimensions, the ratio Area(R)/Area(Q) =
m%0/(2190.50!) ~ 1078, So we would have to generate 105 points at random
in the cube before finding a single one that fell in the sphere. If we want to do
Monte Carlo simulation in a large dimensional space, therefore, it is necessary
to have techniques for finding regions that fit the target closely and generating
points uniformly in these.

12.2  Generating Distributions

In Monte Carlo search, it is often important to generate a nonuniform distri-
bution. The built-in MATLAB rand function, however, is designed to generate
a uniform distribution over [0,1]. It is therefore often necessary to turn this
uniform distribution into a nonuniform distribution. To generate a uniform
distribution over the finite set {0...n — 1}, use floor (n*rand).

To generate a finite, nonuniform distribution with probabilities p;,..., pk,
partition the unit interval into subintervals of length pj,..., px. Let by = 0;
by = p1; bp = p1+ p2; bs = p1+ p2+ p3; ...; b = 1. If random variable U is uni-
formly distributed between 0 and 1, then the event b;_, < U < b; has probabil-
ity p;. Thus, to generate this distribution, we precompute the values by, ..., by;

21n one dimension, the grid estimate, with an error of O(1/N), beats Monte Carlo.
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we execute rand; and find the subinterval that contains the value returned by
rand.

To turn a uniform distribution into a continuous, nonuniform distribution,
we use the inverse of the cumulative probability. (The finite case described
in the previous paragraph is actually a special case of this.) Suppose that X
is a random variable with cumulative probability function F(#); that is P(X <
t)=F(t). Letu=F(t);thenu=F(t)=P(X < t)= P(X < F ') = P(F(X) <
u). Thus, F(X) is uniformly distributed; so X = F ~1(U), where U is uniformly
distributed.

For example, suppose we want to generate points according to the density
function f(¢) = e™*,¢ = 0. The cumulative probability function is f; e~'dt =
1-e*. Ify=1-e"%, then x = —In(1 - y). So we generate values of a random
variable Y uniformly between 0 and 1, compute X = —In(1 - Y), and then the
pdfis P(X=1)=e"".

Likewise, if we want to generate points with the distribution f(#) = 1/¢,
t = 1, then the cumulative function is 1 — 1/x. The inverse is the function x =
1/(1—y). So, if Y has a uniform distribution from 0 to 1, then X =1/(1 -Y) has
the pdf P(X = 1) = 1/12.

Computing the inverse of the cumulative function for the Gaussian is not so
simple. Luckily, MATLAB has a built-in function randn, which generates random
variables according to the standard normal distribution Ny ;.

12.3  Counting

Essentially the same technique that we have used for estimating area can be
used to estimate the size of a finite set R. To estimate R, find a set Q such that

e RcQ;

¢ |Q]is easily computed;

e it is easy to generate random elements uniformly in Q;
¢ |R|/|Q] is not very small.

In this case, we generate a sample of N points uniformly in Q; let K be the
number of points in the sample that lie in R; let p = K/N; and estimate |R| as
plQl, with a standard deviation of \/p(1 — p)/N, where p = K/N.
For instance, suppose we want to estimate the number of integer solutions
(x, ¥, z) to the constraints
Osx=W, O0=sy=sW, 0=z=W,
X+ x+ y2 +y+ Z2+z+lisa prime number,

for various values of W. This can be estimated as follows:
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* Generate N random triples (x, y, z) of integers between 0 and W, using
independent, uniform distributions for each.

« Count the number K of triples satisfying the condition that x? + x + y? +
y+2z?+ z+11is a prime number. Let p = K/N.

* Since there are (W + 1)3 triples in total, estimate the total number of
triples as p- (W +1)3, with a standard deviation of \/p(1— p)/N(W +1)3.

12.4  Counting Solutions to a DNF Formula (Optional)

Aninteresting example of a counting problem that can be solved by using Monte
Carlo methods is finding the number of solutions to a formula in disjunctive
normal form (DNF).3 A propositional formula ¢ is in DNF if it is expressed as
the disjunction of a collection of conjunctions of literals, where a literal is ei-
ther a propositional atom or its negation. For example, the following formula
is in DNF:

(ANBACA-D)V(mAAB)V (BAQ). (12.1)

Let p1,..., 1 be the conjunctions in ¢. Let m be the total number of propo-
sitional atoms in ¢. For example, in Formula (12.1), m =4 (A, B, C, and D),
k=3,and yy =AABACA-D, yp =-1AA"B, u3="BAC.

A valuation—that is, an assignment of T or F to each atoms—satisfies a
formula ¢ in DNF if it satisfies all of the literals in at least one of the u;. For
example, the valuations that satisfy Formula (12.1) are the following.

(A=T,B=T,C=FD=F) satisfies pui;
(A=T,B=FC=T,D=T) satisfies us;
(A=T,B=FC=T,D=F) satisfies pug3;
(A=EB=FC=T,D=T) satisfiesboth pu, and us;
(A=FEB=FC=T,D=F) satisfiesboth pu, and us;
(A=FB=FC=FD=T) satisfies puy;
(A=FB=FC=FD=F) satisfies u».

So there are seven valuations that satisfy Formula (12.1).

The abstract problem of counting the solutions to a DNF formula has a
number of important practical applications. For example, if we have a net-
work in which individual edges can fail with a specified probability, and we
want to know the probability that two nodes will be able to communicate, then
that problem can be expressed in terms of the number of solutions to a par-
ticular DNF formula. However, the problem is what is called “#P-complete”

3This algorithm is from Karp, Luby, and Madras (1989).
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(read “sharp P complete”). The class of #P-complete problems bears the same
relation to the space of counting problems as the relation of the class of NP-
complete problems to the space of decision problems; as far as anyone knows,
no polynomial time-exact solution exists. However, there is an efficient Monte
Carlo algorithm that gives a probabilistic, approximate solution for counting
the solutions to a DNF formula.

The obvious way to construct a Monte Carlo algorithm here would be to
take the target set R as the set of all valuations satisfying the formula, and the
enveloping set Q to be the set of all 2™ valuations over the m atoms. That does
not work, however; there are cases—moreover, cases of practical importance—
in which |R| is exponentially small compared to |Q|. We have to be more clever.

Instead, we take the enveloping set Q to be the set of all pairs (s, i) where i
is an index between 1 and k and s is a valuation satisfying p;. We then take the
set R to be the subset of S that is the set of all pairs (s, i) where s is any valuation
satisfying ¢ and i is the smallest index for which s satisfies ;.

For example, in Formula (12.1), the enveloping set Q and the target set R
are

Q={(A=T,B=T,C=ED=F),1), R={(A=T,B=T,C=ED=F),1),

((A=T,B=FC=T,D=T),3), ((A=T,B=FC=T,D=T),3),
((A=T,B=FC=T,D=F),3), ((A=T,B=FC=T,D=F),3),
((A=EB=FC=T,D=T),2), ((A=EB=FC=T,D=T),2),
((A=EB=FC=T,D=T),3), ((A=EB=FC=T,D=F),2),
(A=EB=FEC=T,D=F),2), (A=EB=FEC=ED=T1),2),
(A=EB=FEC=T,D=F),3), (A=FEB=FEC=ED=F),2)}.

(A=EB=FEC=ED=T1),2),
({(A=EB=FC=FD=F),2)};

In this case, R contains all the pairs in Q except the two pairs, ((A = F,
B=FC=T,D=T),3)and ((A=FEB=F,C=T,D = F),3), because those valu-
ations satisfy u, as well. Note the following consequences:

¢ Any valuation that satisfies ¢ appears exactly once in R; namely, asso-
ciated with the first y; that it satisfies. Therefore, |R| is the number of

valuations satisfying ¢.
¢ Any valuation appears at most k times in Q. Therefore |R|/|Q| = 1/k.

¢ If we have chosen a pair (s,i) from Q, we can check whether it is in R
by looping through the conjunctions y;,..., ;-1 and seeing whether s
satisfies any of these. This can be done in time O(|¢]).
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What remains is to come up with a method for picking elements of Q uniformly.
That is done by first choosing i, and then choosing s. We next see how these
are done in the opposite order:

Suppose we have chosen a particular conjunction p;. This has the form
Wi = A1 A...A Ay, for some value of r;. So the atoms in A4,..., A, must have the
values indicated by the As, and the other atoms can have any combination of
values. Therefore, there are 27" different valuations satisfying y;; we can pick
one of these at random just by giving all the atoms in 14, ..., A, the right value
and assigning the other atoms values T or F with probability 1/2.

For example, in Formula (12.1), if we choose i = 3, then u3 = "B AC, so
r = 2. So there are 242 = 4 valuations satisfying y3. We can select a random
valuation by choosing B = F and C = T, picking A = T or A = F randomly with
probability 1/2, and picking D = T or D = F randomly with probability 1/2.

Thus, the number of pairs in Q with index i is 27", so the total number of
pairs in Q is |Q| = Zi.‘ 2™=Ti Therefore, if we want to pick pairs in Q uniformly,
we should pick index i with probability p; =277 /|Q]|.

For example, in Formula (12.1), we have m =4,r; =4,1r, =2,13 =2, 50 |Q| =
20+22+22=9and p; =2°/|1Q| = 1/9, po = 4/9; p3 = 4/9. Thus, thereisa 1/9
probability that we will choose i = 1, and therefore a 1/9 probability that we
will choose the single valuation satisfying ;; there is a 4/9 probability that we
will choose i = 2, and, having done so, a 1/4 probability of choosing each of
the four valuations satisfying . for a total probability of 1/9 for each of these;
and likewise for i = 3. Therefore, each element of Q has a 1/9 probability of
being selected, as promised. Putting all this together, we get Algorithm 12.1,
CountDNE

12.5 Sums, Expected Values, and Integrals

If Q is a set and | is a numeric function over Q, we can estimate Y, as
(1Q1/1S)) - X xes f (x), where S is a random sample of Q.

If Q is a numerical random variable, then we can estimate Exp(Q) by taking
a sample of Q of size n and computing the average over those samples. We can
estimate Std(Q) by computing the standard deviation of the sample.

If f is an integrable function over R* and Q is a region in R, then we can
estimate fo(t)dt as Y yes f(x) - Area(Q)/|S|, where S is a random sample of
points in Q. The method of computing the area of region R in Section 12.1 is
actually a special case of this, where Q is the enveloping region and f(x) is the
characteristic function of R—that s, f(x) = 1for x€ Rand 0 for x ¢ R.

The accuracy of all these estimates is generally proportional to 1/1/n, where
n is the sample size. The constant of proportionality depends on the charac-
teristics of the example.
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function CountDNF(in ¢b: A formula in DNF; n: number of Monte Carlo iterations)
return An estimate of the number of valuations satisfying ¢

/* Preprocessing */

{ m — the number of propositional atoms in ¢;
U1...4g — the conjunctsin ¢;
for (i =1...k) rj — the number of literals in y;;
for (i=1...k) C; <27 Ti;
lQI=xk ¢
for (i=1...k) p; = C;/1Ql;

/* Monte Carlo loop */
Count <0
for(j—1...n)
pick i at random, following distribution p;;
construct a random valuation s satisfying ;
by setting all the atoms in u; as specified there
and setting all the other atoms to be T/F with probability 1/2;
SinR « true;
for (w—1...i—1)
if s satisfies ;) then { SinR — false; exitloop } endif;
endfor
if SinR then Count — Count +1 endif
endfor

return Count * |Q|/N;
}

Algorithm 12.1. Monte Carlo algorithm to count the number of solutions to a formula
in DNE

A couple of caveats should be mentioned, though. The technique does not
work in the case where there is a very small region where f is immensely larger
than everywhere else. Specifically, for computing a sum over a finite set Q,
suppose that there is a subset Z of Q such that

e 1ZI11Q1<¢€;

¢ the average value of f(x) over Z is at least on the order of 1/¢ times the
average value of f(x) over Q\ Z—therefore, the sum of f over Z is at least
comparable to the sum of f over Q\ Z.

Then if the size of the sample is O(1/¢), the sample will probably not contain
any elements of Z. The average size of elements in the sample will be about the
average sizeon Q\ Z.
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For all of these, if there is a subset B of relative size ¢ over which f is very
large (Q2(1/€)), then n has to be at least several times 1/¢ in order to be confident
that the sample contains a representative number of elements from B. If f
follows a power law distribution, where the top few elements have most of the
total f, then a random sample is likely to be very inaccurate. You can be sure
that this condition does not arise if either

(a) theratio between maxyeq f(x) and minyeq f(x) is not very large; or
(b) the space of y such that f(y) is close to maxeq f(x) is not very small.

These conditions are made precise in the literature on Monte Carlo methods
(see, e.g., Fishman 1996).

Moreover, to ensure that the estimate of Exp(Q) approaches its true value
with probability 1 as the sample size goes to infinity, Var(X) must be finite. To
assure that this holds for [, f()dt, the integral [, f 2(t)dt must be finite.

Finally, if f is a well-behaved function, then deterministic methods of nu-
merical integration give answers that are much more accurate than Monte Carlo
methods for a given amount of computation. Monte Carlo methods for integra-
tion win out for functions that, even though they are integrable, are not well-
behaved.

12.6 Probabilistic Problems

Not surprisingly, Monte Carlo methods can be very effective at solving complex
probabilistic problems. For example, suppose that we are interested in a partic-
ular form of solitaire, and we want to know how frequently we end up winning
with some specified strategy. It would almost certainly be hopeless to try to
do an exact combinatorial analysis. However, Monte Carlo testing is compara-
tively easy: program up the game and the strategy, generate 10,000 shuffles of
the deck at random, and test.

One of the nice features of this example is that you can be sure at the start
that the probability is neither very close to 0 nor very close to 1 because forms
of solitaire in which the player nearly always wins or nearly always loses usually
do not survive.

A Monte Carlo search can be applied in the same way to multiplayer card
games. Suppose that we are playing 5-card draw in poker against three other
players. We want to know what the probability is that we are holding the win-
ning hand. The Monte Carlo solution is simple: we carry out N random deals
of the remaining cards to the other players, and we check the fraction in which
we have the winning hand.

Moreover, the strategy is easy to adapt to a new game. Suppose one of the
other players calls for some ridiculous variant: two cards are visible, red jacks
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are wild, 2s can count as aces, and if the total pointcount in your hand is exactly
equal to 43, then that beats anything. We could work for a week trying to come
up with an exact analysis of the combinations. But the Monte Carlo approach
can be up and running in minutes, as long as two conditions hold:

* We can easily generate random hands that satisfy the known informa-
tion. In poker, ignoring the information from the bets, this is just a matter
of randomly dealing the invisible cards.

¢ We can easily calculate whether one hand beats another.

Likewise, bridge-playing programs work by doing a Monte Carlo search over
distributions of the unseen cards and finding the move that most often leads to
a successful outcome (Ginsberg, 1999).

The same approach applies outside the game context, in all kinds of com-
plex or dynamic probabilistic situations. In financial applications, for example,
the value of a portfolio of investments may be affected by a series of external
events with complex dependencies. In such cases, it may be much more effec-
tive to run a Monte Carlo simulation, generating a large random collection of
scenarios, than to attempt an analytic analysis.

Problems involving continuous distributions can be addressed in this way
as well. Suppose, for example, that X is a random variable with distribution
Ns,.2, and Y is a random variable uniformly distributed over [3,7]. What is
P(X-Y >20)? Another problem involves a collection of n points in the plane,
where the x-coordinate is drawn from X and the y-coordinate is drawn from
Y. If we draw an edge between every pair of points that are less than d apart,
what is the probability that the resultant graph is connected? For the first prob-
lem, with enough hard work we can probably formulate and evaluate a definite
integral. For the second, the exact analysis is certainly very difficult, and quite
possibly hopeless. In this case, or similar cases, if a high degree of accuracy is
not required, then a Monte Carlo evaluation can be quickly programmed up
and executed, and with very high probability it will give a reasonably accurate
answer.

12.7 Resampling

A method of statistical analysis that has recently become popular is called re-
sampling or nonparametric statistics. In resampling, statistical analysis is car-
ried out by doing Monte Carlo tests over subsamples of the data or other col-
lections directly derived from the data. Resampling has two advantages over
traditional statistics. First, many traditional statistical methods require strong
assumptions about the processes that generated the data (e.g., that the data
were generated by a normal distribution), but resampling methods make no
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such assumptions. Second, traditional statistical analysis often requires com-
plex mathematical analysis and the use of obscure special functions; in con-
trast, resampling techniques are much simpler to learn, to program, and to ap-
ply.

For example,* suppose that we want to determine whether a drug is more
effective than a placebo. Suppose we have measured the improvement on a
scale from 0 to 100 for a number of trials of both drugs, and the results are

Placebo: 54515844 555242 47 58 46
Drug: 5473 537073 68 52 66 65

Eyeballing these data, it certainly lookslike the drugis effective. The placebo
has numbers in the 40s and 50s; the drug has numbers in the 50s, 60s, and
70s. The average for the drug is 63.78, and the average for the placebo is 50.70;
the difference between the averages is thus 13.08. But is this actually a signifi-
cant difference? We carry out the following experiment: We take the same data
points, but we shuffle the labels placebo and drug randomly. For instance, one
reshuffling might be

54-P 51-D 58-D 44-P 55-D 52-P 42-P 47-P 58-P 46-D
54-P 73-D 53-D 70-D 73-D 68-P 52-P 66-P 65-D

Here, the average for label D is 60.44, and the average for label P is 53.7. Test-
ing 10,000 different relabelings, the difference between the average for label D
and the average for label P was 13.08 or greater in only 8 cases. That estab-
lishes with a high degree of confidence that the drug is indeed effective; if the
choice between drug and placebo were actually independent of the improve-
ment measure, then the chances of getting a difference with these data that is
as large as 13.08 seems to be less than 0.001.

Note that the structure here is rather different than in our previous exam-
ples. Roughly speaking, the target set R here is the set of labelings where the
difference in mean is at least 13.08 and the enveloping set Q is the set of all re-
labelings. But here we are not interested in an accurate measure of R; all we
want to do is to establish that it is much smaller than Q.

We next want to get a confidence interval for the magnitude of the differ-
ence between the drug and the placebo (the previous experiment established
only the existence of a difference.) The method used is called bootstrapping.
We assume that our data for the drug are a random sample of size nine out of
a large space of results for the drug. What is that large space? The simplest
assumption is that it is exactly the same as the data we have, repeated a zillion
times. A sample from this space is just a sample of size nine from the drug data

4These examples are taken from Shasha and Wilson (2008).
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with replacement; that is, some values may appear multiple times and some
values may appear zero times. So, to find a 90% confidence interval, we take
10,000 pairs of ( a sample from the drug data and a sample from the placebo
data ), we compute the difference of the means for each such pair, sort all these
differences, and find the 5% and the 95% percentile levels on all these differ-
ences. For these particular data, we find a confidence interval of [7.5, 18.1].

Be careful not to get confused about the two different kinds of samples here.
At the object level, there are the samples of drug data (size nine) and of placebo
data (size ten). At the meta-level, there are the bootstrap samples—there are
10,000 of these, each of which is a pair of a hypothetical sample of drug data and
a sample of placebo data. The samples discussed in Chapter 11 correspond to
the object-level samples here. In particular, the width of the confidence inter-
val is determined by the size of the object level samples (nine and ten) and not
by the size of the bootstrap sample. As we make the bootstrap sample larger,
the confidence interval does not shrink—we just get a better estimate.

12.8 Pseudorandom Numbers

A limitation on Monte Carlo methods is that a function such as MATLAB’s rand
is not a truly random process; it is a pseudorandom number generator. These
generally work by taking an arbitrary starting value x called the seed, and then
returning £ (x), £(£(x)), £ (£ (£(x))), ... for some carefully selected generator
function £. Therefore, after a certain point they cycle.

The use of pseudorandom numbers in a Monte Carlo search can give rise
to two kinds of problems:

1. There could be some relation between the generator function f and the
phenomenon being studied, so that the phenomenon is notindependent
of the random number stream.

2. If the Monte Carlo search involves a very large sample, then the cyclic
period of the random number generator can be reached. This problem
places alimit on the precision of results attainable through a Monte Carlo
search, particularly because we need to generate a sample whose size is
proportional to the inverse square of the desired accuracy.

Both of these problems can arise in practice. See Fishman (1996, Chapter 7) for
an extensive discussion.

Random sequences that come from hardware random number generators,
which are based on physical random processes, do not suffer from these prob-
lems.
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12.9 Other Probabilistic Algorithms

Monte Carlo methods were pioneered for solving physics problems that were
too difficult to be solved analytically; much of the subsequent development has
likewise been aimed at these kind of problems. (Indeed, the method was first
extensively used in the Manhattan Project, a program that built the first atomic
bomb.)

Many successful search techniques, such as simulated annealing, WALKSAT,
genetic algorithms, and random restart, use an element of random choice to
escape local minima or wander around local plateaus. See Russell and Norvig
(2009) for an introduction to this active area of research.

In algorithmic analysis and theory of computation, if D is a decision prob-
lem (i.e., a problem with a yes or no answer), then a probabilistic algorithm
A for D is one that makes a number of random choices and has the following
properties.

e Ifthe answer to D is true then A always returns true.

¢ If the answer to D is false, then there is at least a 50% chance that A will
return false, where the probability is over the sample space of random
choices made.

Therefore, if we run algorithm A k times and it returns false on any of those
runs, the answer must be false. Moreover, if the answer is false, then the proba-
bility is at most 2~ that A will return true every time. Therefore, if we have run
A k times and have gotten true every time, then we can be reasonably (although
never entirely) sure that the answer is indeed true.

12.10 MATLAB

The function rand with no arguments generates a random number uniformly
between 0 and 1. The function call rand (n) generates an 7 x n matrix of random
numbers, independently chosen uniformly between 0 and 1. The function call
rand (m,n) generates an m x n matrix of random numbers.

The function randn generates a random number distributed according to
the standard Gaussian distribution Np;. The function calls randn(n) and
randn(m,n) generate matrices.

>> rand
ans =
0.3816

>> rand
ans =
0.7655
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>> rand(1,7)
ans =

0.7952 0.1869 0.4898 0.4456 0.6463 0.7094
0.7547

>> rand (4)

ans =
0.2760 0.1190 0.5853 0.5060
0.6797 0.4984 0.2238 0.6991
0.6551 0.9597 0.7513 0.8909
0.1626 0.3404 0.2551 0.9593

% The function randn generates random numbers according to the normal
% distribution with mean 0 and standard deviation 1.

>> randn
ans =
0.0859

>> randn
ans =
-1.4916

>> randn(1,7)
ans =

-0.7423 -1.0616 2.3505 -0.6156 0.7481 -0.1924
0.8886

It is often useful to be able to get the same sequence of random numbers;
one example is debugging. To do this, carry out the following operations.

¢ Create a stream s of random numbers, as shown in the following code.

¢ Make this the default stream. Thus, this is the stream that functions such
as rand will consult.

¢ To restart the same sequence over again, call reset (s).

¢ To go back to an intermediate state of a random stream, save the state
by saving s . State in a variable, and restore it by assigning to s . State the
variable where you have saved it.

>> s=RandStream (’mt19937ar ’) % Create a random stream
s =
mt19937ar random stream
Seed: O
RandnAlg: Ziggurat

>> RandStream.setDefaultStream(s) % Make it the default stream

>> rand(1,7) % Generate some random numbers
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ans =
0.8147 0.9058 0.1270 0.9134 0.6324 0.0975
>> rand(1,5) % Generate more random numbers
ans =
0.5469 0.9575 0.9649 0.1576 0.9706
>> state2=s.State; % Save the current state in state2
>> rand(1,6) % Generate more random numbers
ans =
0.9572 0.4854 0.8003 0.1419 0.4218 0.9157
>> reset(s) % Go back to the beginning

>> rand(1,7)
ans =
0.8147 0.9058 0.1270 0.9134 0.6324 0.0975

>> s.State=state2; % Jump ahead to state2.

>> rand(1,6)
ans =
0.9572 0.4854 0.8003 0.1419 0.4218 0.9157

Exercises

Use MATLAB for all of these exercises.

Exercise 12.1. Use a Monte Carlo method to estimate the size of the ellipse
x%+xy+y? < 1. Note: This ellipse lies inside the rectangle [-2,2] x [-2,2]. Give
the 95% confidence interval for your answer.

Exercise 12.2. An integer is square-free if its prime factorization consists of
distinct primes. For example, 35 =5-7 is square-free; 12 =2-2-3 is not square
free. Use a Monte Carlo method to estimate what fraction of integers less than
1,000,000 are square-free. The MATLAB function factor (N) computes the prime
factorization of integer N. Give the 95% confidence interval for your answer.

Exercise 12.3. Use a Monte Carlo method to estimate the probability that a
random string of 200 integers between 0 and 9 contains a consecutive subse-
quence of five increasing values (e.g., 2,3,6,8,9). Give the 95% confidence inter-
val for your answer.

0.2785

0.2785
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Problems

Problem 12.1. (This problem refers to Assignment 12.2 at the end of this chap-
ter). In Assignment 12.2, we write the main body of the routine as version 1:

for I=1:N1
use RandomWord Q times to generate a set S of word ranks;
for I=1:N2
count = count + (RandomWord () in S);
end
end

Two other possible versions would use only one level of looping but the
same total number of iterations of the inner loop. Version 2 is

use RandomWord Q times to generate a set S of word ranks;
for I=1:(N1xN2)
count = count + (RandomWord () in S);
end
end

and version 3 is

for I=1:(N1xN2)
use RandomWord Q times to generate a set S of word ranks;
count = count + (RandomWord () in S);
end
end

(a) Discuss the pros and cons of these three versions in terms of running
time and accuracy.

(b) Suppose that it is necessary to assert a confidence interval on the answer
p that corresponds to a sample of size N1 x N2. Which of these versions
should be used? Why?

Programming Assignments

Assignment 12.1. Implement Algorithm 12.1, described in Section 12.4. That
is, write a function CountDNF(F). The input parameter F is an m x n array,
where 7 is the number of propositional atoms and m is the number of conjunc-
tions. F[i,jl=11if jis a conjunctin y;; F[i, jl=-1if —j is a conjunct in y;; and
F[i,jl=0if j does not appear in y;. Thus, the input matrix for Formula (12.1)
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would be
1 1 -1 -1
-1 -1 0 O
0 -1 1 0
The function should return an estimate of the number of valuations satisfying
the formula.

Assignment 12.2. The values for p in Table 9.4 were generated by using a Monte
Carlo simulation. Write a function AlreadySeen (Q) that carries out a compara-
ble calculation; namely, given a subfunction RandomWord () that generates ran-
dom word ranks, and the number of words already seen, Q, compute the prob-
ability that the new word you see is one you have already seen.

Step 1. Write the function RandomWord () to follow the distribution used in Ta-
ble 9.4; for I = 1,...,100,000, the probability that RandomWord returns I/
is 1/(I - H(100,000)). Here the normalizing factor H(N) is the harmonic
function ¥ ¥ | 1/1.

Hint: Use the technique described in Section 12.2 for generating finite
distributions. Note that P(RandomWord < K) = H(K)/H(100,000). A brute
force approach is simply to compute P(RandomWord < K) for K = 1,...,
100,000, save the results in an array, and then use a binary search on the
array to find the proper subinterval. A more clever way that is both more
time efficient and space efficient is to precompute these values up to K =
1,000 and then to use the fact that, for K > 1,000, to sufficient accuracy,
H(K) = In(K) +7v, where y is Euler’s constant, 0.5772 (see Assignment 2.2).
In either case, the precomputation should be done once and saved in a
global variable; it should not be done each time RandomWord is called.

Step 2. Implement the following pseudocode:

function P = AlreadySeen (Q)
count = 0;
for I=1:N1
use RandomWord Q times to generate a set S of word ranks;
for I=1:N2

count = count + (RandomWord () in S);
end
end
P=count/(N1*N2);
end

Here N1 and N2 are reasonably large parameters that govern the Monte
Carlo search.

Assignment 12.3. Aces Up Solitaire is played with a standard deck of 52 cards
and has the following rules.
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deal four cards face up on the table;
the remaining 48 cards are the deck (face down);
repeat until (the deck is empty) {
while (two or more visible cards have the same suit)
discard all but the highest card of that suit;
if (there is any empty space)
move the top card from any other pile into that space; *x*%*
else deal one card from the deck face-up onto each pile;

The player wins if, at the end, only the aces remain and the other 48 cards have
been discarded.

Note that at the step marked by three asterisks above, the player can make
a choice; hence there is some element of strategy. Consider the following four
strategies for executing this step.

1. Choose randomly among the remaining piles with at least two cards.
2. Take a card from the deepest pile.
3. Take a card from the shallowest pile with at least two cards.

4. If there are any moves that will allow you to make a discard, then choose
randomly among such moves. If not, choose randomly among the piles
with at least two cards.

Use the Monte Carlo search for each of these strategies:
(a) Compute the probability of winning.

(b) Compute the expected number of cards discarded.

Assignment 12.4. Write a program that uses a Monte Carlo search to estimate
the probability you hold a winning hand in poker, assuming that

e every player has been dealt five cards,
¢ you can see all your own cards,
¢ you can see K of each of your opponents’ cards.
That is, write a function WinningPokerHand (My, Theirs), where

e Myisa2x5 array. My[1,J] is the number value of the Jth card. My[2,J] isa
number from 1 to 4, indicating the suit of the Jth card (clubs, diamonds,
hearts, spades).
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* Theirs is a three-dimensional N x 2 x K array indicating the visible cards
of your opponents. N is the number of opponents. Theirs[I,1,J] and
Theirs[I,2,J] are the number and suit of the Jth visible card of I'th op-
ponent. The ace should be input as 1, although, of course, it can count
as either 1 or 14.

For example, suppose that you hold the three of clubs, the three of spades,
the queen of diamonds, the queen of spades, and the ten of clubs. You have two
opponents, and K = 3. The visible cards of opponent 1 are the ace of spades,
the jack of spades, and the four of spades. The visible cards of opponent 2 are
the king of diamonds, the king of spades, and the six of hearts. Then the input

parameters are
1 11 4
4 4 4

Carry out a Monte Carlo search by randomly dealing the hidden cards to
the opponents from the rest of the deck, and calculating whether you have the
winning hand. The function should return an estimate of the probability that
you have a winning hand.

3 3 12 12 10

W=l1 4 2 4 1

] , Theirs =

13 13 6
2 4 3]

Assignment 12.5. Use a Monte Carlo search to solve the following variant of
the problem discussed at the end of Section 12.6. Write a function CloselyCon-
nectedPoints (N,D) to estimate the probability that N points chosen at random
and connected with an arc of length D form a connected graph. Specifically:

(a) Choose N points randomly, with the X- and Y-coordinates generated
independently by the standard Gaussian N ;.

(b) Let G be the graph whose vertices are the points in (A) and where there is
an arc from U to Vif d(U,V) < D.

Then what is the probability that G is a connected graph?

Draw a plot of the probability versus D for N = 100, over a range of value in
which D goes from close to 0 to close to 1.

Draw a plot of the probability versus N for D = 0.1 for N = 2 to a large
enough value such that the probability is near 1.
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Chapter 13

Information and Entropy

The two central concepts in information theory are the information of an event
and the entropy of a random variable.

13.1 Information

The information of a probabilistic event E, denoted Inf(E), measures the amount
of information that we gain when we learn E, starting from scratch (i.e., from
some presumed body of background knowledge). Inf(E) is measured in num-
ber of bits. As in probabilistic notation, “E, F” represents the event that both
E and F are true; thus, Inf(E, F) is the information gained by learning both E
and F. The conditional information Inf(E | F) is the amount of information that
we gain if we learn E after we have already learned F. Therefore, Inf(E | F) =
Inf(E, F) — Inf(F).

The information of E is related to its probability: P(E) = 2~Inf(E) _ 1 /pInf(E)
or equivalently, Inf(E) = —log(P(E)) = log(1/P(E)). Likewise, Inf(E|F) =
—log(P(E| F)). (Throughout this chapter, log(x) means log,(x).) Note that,
since P(E) < 1, log(P(E)) <0, so Inf(E) = 0; finding out the outcome of an event
never constitutes a loss of information.

The intuition here is as follows. Suppose we have k independent events,
each of which has probability 1/2. Then, clearly, communicating the outcome
of all these events requires k bits; thus, the sequence of k outcomes constitutes
k bits of information. The probability of any particular sequence of outcomes
is27*. So, for a random string S of k bits, P(S) = 279 and Inf(S) = —log(P(S)).
The natural generalization is that, for any event E, Inf(E) = —log(P(E)).

That last step may seem like a leap. We can elaborate it as follows: suppose
that the information function Inf(E) satisfies the following properties.

1. If E is an event of probability 1/2, then Inf(E) = 1 bit.

2. If P(E) = P(F), then Inf(E) = Inf(F); that is, the information of an event is
purely a function of its probability.

359
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3. Inf(E| F) = Inf(E, F) — Inf(F), as discussed above.

4. If E and F are independent events, then Inf(E| F) = Inf(E). The argument
is as follows. If E and F are independent, then knowing F gives no in-
formation about E. Therefore, learning E after we know F gives you as
much new information as learning E before we learned F.

5. The entropy is a continuous function of the probability distribution.

Given these five premises, we can prove that Inf(E) = —log(P(E)).

Proof: By premises (3) and (4), if E and F are independent, then Inf(E,F) =
Inf(F) + Inf(E | F) = Inf(F) + Inf(E).

Let k be alarge number. Let Fy,..., Fx be independent events, each of prob-
ability 27V/%. Then P(Fy,...,Fy) = 1/2, so Inf(F,...,F;) = 1. But then, since
Fj,..., Fy are independent, 1 = Inf(Fy,..., Fx) = Inf(F}) + ...+ Inf(F)). Since the
Fs all have equal probability, this sum equals k- Inf(F}). So Inf(F;) = 1/ k. Now,
let E be any event and let g = |k - —log(P(E))], so log(P(E)) = —q/k. Then
P(Fy,...,Fy) =279k 5 2108P(E) = p(E),

By the continuity premise (4), Inf(P(E)) = Inf(Fy, ..., Fg) = q/k = —log(P(E)).
In the limit, as k goes to infinity, the approximation converges to an equality.[]

We give another argument at the end of Section 13.4, justifying the defini-
tion of Inf(E) as —log(P(E)).

For convenient reference, we restate the above additivity properties of in-
formation as Theorem 13.1.

Theorem 13.1.
(a) Forany two events E and F, Inf(E, F) = Inf(F) + Inf(E | F).
(b) IfE and F are independent, then Inf(E, F) = Inf(E) + Inf(F).

(¢) IfE,,..., Ex areindependent and have the same distribution, thenInf(Ey, ...,
E}) = k-Inf(E}).

Note that each of these rules is just the logarithm of the corresponding rule
for probabilities:

(@ P(E,F)=P(F)-P(E|F).
(b) If E and F are independent, then P(E,F) = P(E) - P(F).

(c) If Ey,..., Er are independent and identically distributed, then P(EL,...,
Ep) = (P(E)*.
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Ent(p,1-p)

0 0.2 0.4 0.6 0.8 1
p

Figure 13.1. Entropy function.

13.2  Entropy

The entropy of random variable X, denoted Ent(X), is the expected value of its
information: Ent(X) = Exp(Inf(X)). Thus, if X has distribution {p, p2,..., p),
then

Ent(X) = —(p1log(p1) +...+ prlog(pi))-

By convention, if p; = 0, we take p;log(p;) to be 0.

Since the entropy depends only on the probability distribution, it is com-
mon to write Ent(p; ... pr) = —(p1log(p1) +... + prlog(py)) as the entropy of a
random variable with distribution (py, ..., pg).

If X is a Boolean variable with P(X = f) = p and P(X = f) = 1 - p, then
Ent(X) =Ent(p,1 - p) = —(plog(p) + (1 — p)log(1 — p)). This is shown as a func-
tion of p in Figure 13.1. For p =0 and p = 1 we have Ent(X) = 0. (If p =0, then
the event X = ¢ has infinite information but zero chance of occurring; and the
event X = f will certainly occur, but carries zero information.) The function
reaches a maximum of 1 at p = 1/2. If p =€ or p = 1 —¢, where € is small, then
Ent(X) = —eloge.

If X isarandom variable with k values, each of probability 1/ k, then Ent(X) =
Ent(1/k...1/k) =log(k). It is a fact that if Y is any random variable with k val-
ues, then Ent(Y) < Ent(X) =log(k) (Section 13.6).
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13.3 Conditional Entropy and Mutual Information

Let E be an event and let X be a random variable. The entropy of X given E is
the entropy of X once we know E:

Ent(X|E) = —ZP(X = x| E)log(P(X = x| E)).

We can consider X | E to be a random variable over the range of X defined by
the equation P((X | E) = x) = P(X = x| E). In that case, Ent(X | E) is simply the
entropy of the random variable X | E.

Let Y be a second random variable. The conditional entropy of X given'Y,
CEnt(X | Y), is the expected value, taken over all the possible values y of Y of
[the entropy of X given Y = y], or

CEnt(X|Y) = ZP(Y =y)-Ent(X|Y =y)
y

=-) P(Y=y)-P(X=x|Y =y)log(P(X = x|Y = y)).
xy

In other words, imagine that we currently don't know the value of either X or Y,
but we are about to find out the value of Y. The conditional entropy measures
what we can expect the entropy of X will be, on average, after we find out Y.

Note that the entropy conditioned on an event Ent(X | E) is indeed an en-
tropy of the random variable X |E. The “conditional entropy” of variable X con-
ditioned on variable Y, CEnt(X | Y) is not actually the entropy of any random
variable, which is why we use a different symbol.

Theorem 13.2. For any two random variables X and Y, Ent(X,Y) = Ent(Y) +
CEnt(X|Y). If X and Y are independent, CEnt(X | Y) = Ent(X) and Ent(X,Y) =
Ent(X) + Ent(Y).

Proof: The first statement follows from Theorem 13.1 and the additivity of ex-
pected value. The second statement follows from the definition of conditional
entropy. (]

Example 13.3. Suppose that X has two values {f, t}, with P(X = f) = P(X =
t) = 1/2. Suppose also that Y is independent of X; it has values {r, w, b}, with
P(Y=r)=1/2,P(Y=w)=1/4,and P(Y = b) =1/4. Then

Ent(X) = —(1/2-log(1/2) +1/2-log(1/2)) =1,
Ent(Y)=—-(1/2-log(1/2) + 1/4-log(1/4) + 1/4-log(1/4)) = 3/2.

The joint distribution of X, Y is then

PX=fY=r=1/4, PX=f,Y=w)=1/8, P(X=fY=b)=1/8,
PX=1,Y=r=1/4, PX=6,Y=w)=1/8, P(X=1Y=b)=1/8.
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Therefore,

Ent(X,Y) = —(1/4-log(1/4) + 1/8-log(1/8) + 1/8-log(1/8) + 1/4-log(1/4)
+1/8-log(1/8) +1/8-log(1/8))
=5/2
=Ent(X) + Ent(Y).

Example 13.4. Let W and Z be random variables with the following joint dis-
tribution:

PW=fZ=r)=04, PW=f,Z=w)=005 PW=f,Z=b)=0.05,
PW=t,Z=r)=01, PW=1,Z=w)=01, PW=t2=b)=03.

Thus, W and Z are not independent: if W = f, then probably Z = r; if W = ¢,
then probably Z = b. The conditional probabilities are

P(Z=r|W=£)=08 PZ=w|W=/f)=01, PZ=b|/W=f)=01,
P(Z=rlW=0=02, P(Z=w|W=0=02, P(Z=b|/W=r1)=06.

So we have

Ent(W) =Ent(1/2,1/2) =1,
Ent(Z|W = f) = Ent(0.8,0.1,0.1) = 0.9219,
Ent(Z|W = ) =Ent(0.2,0.2,0.6) = 1.3710,
CEnt(Z|W)=P(W=f)-Ent(Z|W=f)+P(W =1)-Ent(Z|W =)
=0.5-0.9219+0.5-1.3710
=1.1464,
Ent(W, Z) = Ent(0.4,0.05,0.05,0.1,0.1,0.3) = 2.1464.

Note that Ent(W, Z) = Ent(W) + CEnt(Z | W).
It is a remarkable fact that the conditional entropy is always less than or
equal to the entropy, as stated in Theorem 13.5.

Theorem 13.5. For any two random variables X and Y, CEnt(X | Y) < Ent(X),
with equality holding if and only if X and Y are independent.

What this theorem means is that, on average, finding out Y decreases our
uncertainty about X unless the two are independent, in which case it leaves
the uncertainty unchanged. We omit the proof of Theorem 13.5.

It is certainly true, however, that finding out a particular event can increase
our uncertainty. If we see that the clock reads 2:45, then our entropy on the time
of day is low; if we then observe that the clock is stopped, though, the entropy
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goes way up again. But that can happen only because it was originally unlikely
that the clock would be stopped; had we known from the first that the clock
might well be stopped, then our original probability distribution on the time
would have been much smoother and the original entropy much higher. In
either case, finding out the reverse fact, that the clock is running, will lower our
entropy on the time; if we had originally thought it likely that the clock might
be stopped, finding out that it is running will lower the entropy by a good deal.
What Theorem 13.5 states is that, on average, finding out whether or not the
clock is running cannot increase our entropy on the time of day—it can only
fail to decrease our entropy if the random variables Status of Clock and Time of
Day are independent (which they probably are).

Theorem 13.2 has the following interesting consequence. We have that
Ent(X, Y) = Ent(Y)+CEnt(X|Y). By symmetry, it is equally true that Ent(X, Y) =
Ent(X) + CEnt(Y | X). It follows, therefore, that

Ent(Y) — CEnt(Y | X) = Ent(X) — CEnt(X | Y). (13.1)

This quantity is known as the mutual information of X and Y, denoted
MInf(X, Y). Since entropy is a measure of uncertainty, this measures how much
less uncertain we are about Y once we have learned X; in other words, how
much (in bits) we learn about Y when we find out the value of X. Equation (13.1)
states that this is equal to the amount we learn about X when we find out the
value of Y. By Theorem 13.5, this is always nonnegative, and it is zero only if X
and Y are independent.
In Example 13.4, we have

Ent(Z) = Ent(0.5,0.15,0.35) = 1.4406),

SO
MInf(W, Z) = Ent(Z) — CEnt(Z | W) = 1.4406 — 1.1464 = 0.2942.

Therefore, if we originally know the distribution of Z and then find out the
value of W, we have gained 0.2942 bits of information about the value of Z.

13.4 Coding

The entropy of a probability distribution is a critical number in calculating
how efficiently a string generated by a random process can be transmitted.
This problem and other problems relating to the transmission of information
were indeed the original motivation for the invention of information theory by
Claude Shannon in the late 1940s and early 1950s (Luenberger 2006).

We address here the problem of encoding a finite string of characters as a
string of bits. We assume that the character string is drawn from a finite alpha-
bet, denoted <.
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Definition 13.6. Let «/ be a finite alphabet. Then the set of all strings of char-
acters in «f of length exactly n is denoted «/". The set of all finite strings is
denoted «/“.

In particular, we are interested in the alphabet of bits {0, 1}, which we de-
note 2.

Definition 13.7. Let «f be an alphabet. A coding scheme for &/ is an injection
from «/“ into 98°.

That is, a coding scheme I'(s) is a function that maps every string over & in
an unambiguous way; if x, y € &« and x # y, then I'(x) #T'(y).

Suppose that we need to communicate very long strings over </, and that
these strings are generated by choosing each character in the string indepen-
dently according to a distribution given by random variable X. We want to
design a coding scheme I that encodes these strings efficiently in terms of the
lengths of the bit strings output. We measure the efficiency of I" by fixing a
large value of n, asking what is the expected number of bits in I'(s), where s is a
string oflength 7 generated by this random process, and dividing that expected
number by n. We then let n go to infinity; this is the asymptotic efficiency of
I', denoted BpC(T', X), where BpC is bits per character. (If the limit as n goes to
infinity does not exist, then BpC(T', X) is undefined.)

Definition 13.8. Let X be a random variable over <. Let Xj,..., X, be inde-
pendent random variables with the same distribution as X. Then X" will de-
note the joint distribution of X, ..., X,.

Thus, X" is a random variable over «/" corresponding to choosing each
character in the string independently according to X.

Definition 13.9. Let X be a probability distribution over < and let I be a cod-
ing scheme for X. The bit per character ratio for I over X is defined as

BpC(T, X) = nlim Exp(IT(X™/n,
s
assuming that this limit exists.

Example 13.10. Let o/ ={a, b, c,d} and let X have the distribution

P(X =a)=3/4,
P(X=Db)=1/8,
P(X=c)=1/16,

P(X=d)=1/16.
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Let I'; be defined as follows. Do a character-by-character encoding, where
a—00, b—01, c—10, and d—11. For example,

I'1 (aacaaadbaab) = 0000100000001101000001.

For readability, we henceforth add commas, which aren't actually in the bit
string; thus, the previous string will be written 00,00,10,00,00,00,11,01,00,00,01.
Then for any string s € &%, [T'1(s)| = 2|s|, where |s| denotes the length of s. In
particular, for any s € &/, |T'1(s)| = 2n. Therefore, BpC(I['1, X) = 2; this holds for
any distribution X.

Example 13.11. Let o/ and X be as in Example 13.10. Let I'; be defined as fol-
lows: Do a character-by-character encoding, where a—0, b—10, c—110d—111.
For example, I'; (aacaaadbaab) = 0,0,110,0,0,0,111,10,0,0,10.

Consider forming an n-character string in «/”, and let X7, X», ..., X;, be ran-
dom variables, where the value of X; is the ith character in the string. Then
T2(X™] = [T2X)] + ... + [T2(Xy)], so Exp(IF2(X"]) = Exp(IT2(X)) + ...+
Exp(IT2(X,)|) = n-Exp(IT2(X)I), since all the X; have the same distribution as
X. But

Exp(IT(X)]) = P(X = ‘@) - IT2(‘a)| + P(X = ‘D) - [T2(‘'D) | + P(X = ‘') - IT2(‘¢) | + P(X = ‘d’) - T2 (‘d")

=(3/4)-1+(1/8)-2+(1/16)-3+(1/16)-3 =11/8 =1.375.

Therefore, Exp(|T'2(X"|) = n-Exp(|T'2(X)|) = 1.375n, so BpC(I'2, X) = 1.375.
Note that this is substantially smaller than BpC(IT'1, X) = 2.

It is not obvious on the face of it that I'; is a coding scheme at all because
it is not obvious that there could not be two alphabetic strings with the same
encoding (once the commas are removed). However, we can prove that en-
codings are unique because this scheme is prefix-free; that is, no code for one
character is a prefix for another. That being the case, the bit string can be read
left to right, “peeling off” the code for each character at a time. For example, to
decode the string “0100111101100,” we observe that

* Thefirst ‘0’ is a code for ‘a’ and does not start the code for any other char-
acter.

e The ‘1’ atindex 2 is not in itself a code for anything.

¢ The ‘10’ at index 2-3 is a code for ‘b’ and does not start the code for any
other character.

¢ The ‘0’ atindex 4 is a code for ‘a’ and does not start the code for any other
character.

e The ‘1’ atindex 5 and the ‘11’ atindex 5-6 are not in themselves codes for
anything. The ‘111’ at indices 5-7 is the code for ‘d..
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R--->a {0}
:->*__->b {10}
:—>*--—>c {110}
:—>d {111}

R : Root.

¥ : Interior node.
Horizontal 1link: O.
Vertical elbow: 1.

Figure 13.2. Binary tree for code I'y.

Continuing on in this way, we can recover the entire string.

We can generalize this observation in Definition 13.12 and Theorem 13.15.

Definition 13.12. Aset S of bit strings is prefix-freeif no element in S is a prefix
of any other element.

A prefix-free code corresponds to a set of leaves in a binary tree (see Fig-
ures 13.2 and 13.3).

Definition 13.13. A character code over & is an injection from < to %°.
A character code I' over «f is prefix-freeif I'(«/) is a prefix-free set.
Definition 13.14. A function I from </“ is a simple code if

» T'is a character code over «/;

e for any string s = (s[1],...,s[k]), ['(s) is the concatenation of I'(s[1]),...,
T(s[kD).

Theorem 13.15. IfT is a simple code that is prefix-free over of, then T is an
unambiguous coding scheme over </ .

Proof: Using the left-to-right decoding method described in Example 13.11, it
is clear that any bit string can be decoded in at most one way. (]

Example 13.16. Let «/ and X be as in Example 13.10. Let I's(s) be defined as
follows: break s up into two-character blocks; if s is odd, there will be a final
one-character block. We then can do the following block-by-block encoding
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R--->aa {0}
:_>*___>*___>ab {100}
: :—>ba {101}
:_>*--->*--—>ac {1100}
: :—>ad {1101}
:—>*--—>ca {1110}
:_>*--->da {11110}
:_>*--->*--—>bb {1111100}
: :_>*-——>bc {11111010}
: :—>cb {11111011}
|

>¥--->%--->bd {11111100}
| |
| |->db {11111101}
|
|->*%--->*%--->cc {111111100}
| |
| |->cd {111111101}
|
|->*%--->dc {111111110}
|
|->*%--->dd {1111111110}
|
|--->*--->a Final {111111111100}
| |
| |->b Final {111111111101}
|
| ->%--->c Final {111111111110}
|
|->d Final {111111111111}
R : Root. \\
\* : Interior node. \\
Horizontal link: 0. \\
Vertical elbow: 1.

Figure 13.3. Binary tree for code I's.

(the corresponding binary tree is shown in Figure 13.3):

aa—0 ab—100 ac—1100 ad—1101
ba—101 bb—1111100 bc—11111010 bd—11111100
ca—1110 cb—11111011 cc—111111100 cd—111111101
da—11110 db—11111101 dc—111111110 dd—1111111110

Final a—111111111100 Final »—111111111101 Final c—111111111110 Final d—111111111111
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In a string of length n, there will be [n/2] blocks of length 2 and possibly
one block of length 1. We can ignore the final block, in the limit as n—oo. The
expected total length of the nonfinal blocks is

(n/2)-[P(‘aa’)-T(‘ad)|+P(‘ab)-IT(‘ab)| +...+ P(‘dd’) -IT(‘dd")]
=(n/2)[(9/16)-1+(3/32)-3+... +(1/256) -10]
=1.2129n

(if you work it out). So BpC(I'3) = 1.2129. Note that we have achieved a still
greater compression.

How efficient can we make these codes? The answer, as we shall prove next,
is that we can get codes whose BpC is arbitrarily close to the entropy, and that
we cannot do better than the entropy. In Examples 13.10-13.16, the entropy is
—((3/4)1og(3/4) +(1/8)1log(1/8) + (1/16)log(1/16) + (1/16)log(1/16) = 1.1863, so
the code in Example 13.16 is within 2.5% of optimal.

Examples 13.11 and 13.16 illustrate two techniques used to make the naive
code of Example 13.10 more efficient. First, we assign shorter codes to more
common characters and longer codes to less common ones, lowering the over-
all average. Second, we group the characters into blocks; this allows us to carry
out the first technique with more delicate discrimination.

We now prove three theorems that show the effectiveness of these tech-
niques. Theorem 13.17 states that by applying the first technique, we can get
a simple prefix-free code with a BpC that is at most the entropy plus 1. The-
orem 13.20 states that by applying both techniques, we can get a nonsimple
code with a BpC that is arbitrarily close to the entropy. Theorem 13.22 states
that no coding scheme of any kind can have a BpC that is less than the entropy.

Theorem 13.17. Let o/ be an alphabet and let X be a random variable over < .
There exists a simple codeT for «f such that BpC(T', X) < Ent(X) + 1.

Proof: We present Algorithm 13.1, which constructs such a code. As in Fig-
ures 13.2 and 13.3, we assign a leaf of a binary tree to each character in «/. The
assignments are carried out in descending order of probability. Each character
a; is placed at depth [-1log(P (X = «;))] immediately to the right of the previous
character, so the leaves of the tree slant downward to the right.

We can analyze the behavior of this algorithm in terms of how the nodes
that are assigned cover the “original” leaves; that is, the leaves of the starting
uniform tree of depth h. Note:

* N; covers a subtree with 2"~i original leaves.

* Since L; increases with i, for j < i, the number of original leaves pruned
on the jth step, 2"~/ is an integer multiple of 2%
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function ConstructCode(in: «: Alphabet; P: probability distribution)
return: code for .

{k—ld1;

(a1...ap) — & sorted in descending order of P(a).

h=T-log(P(ap)T;

Construct a binary tree of depth h. Label each left arc '0’ and each right arc '1’.

for (i—1...k){
L; —[-log(P(a)T;
N < the leftmost node of depth L; that is neither marked or pruned;
mark N as “in use”;
assign to @; the code that is the sequence of arc labels from the root to N;
prune the subtree under N;
}

return the assignment of codes to the a;;

}

Algorithm 13.1. Construct code.

» Therefore, the total number of original leaves that have been labeled or

pruned before the start of the ith iteration of the for loop is a multiple of

¢ Therefore, in the course of executing the for loop, the original leaves are
labeled or pruned in consecutive, left-to-right order.

* The fraction of original leaves that are covered on the ith step is 271i.
Since ¥";27%1 <¥; p; = 1, we do not run out of original leaves.

Let I be the code corresponding to this labeling. Note that for every i,
IT'(a;)| =[-log(pi)]1 < —log(p;) + 1. Therefore,

BpC(T, X) = Exp(IT(X)) = Y. pill(@))| < Y. pi(~log(p) + ) =Ent(X) +1. [

Example 13.18. Suppose that «f = {a, b,c,d, e}, and p; = 0.3, p2 = 0.27, p3 =
0.21, p4 = 0.17, and p5 = 0.05. Then Ly =2,Ly =2,L3 =3,L4 =3, and L5 = 5.
The corresponding tree is shown in Figure 13.4. The code I's is

I'4(a) =00,
T4(b) =01,
T'4(c) =100,
I's(d) =101,

T'4(e) = 11000.
So, BpC(T'4, X) = Exp(IT'4(X)|) = 2.53 and Ent(X) = 2.155.
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Figure 13.4. Tree for Example 13.18.

Clearly, this code isn't optimal, but it satisfies Theorem 13.17. We present
an algorithm for generating the optimal code in Section 13.4.1.

Definition 13.19. Let m = 1. Let &/ ="" be the set of all strings of «# of length at
most m. An m-block code over alphabet f is an injection from </ =" to B“—
that is, a code for every block of characters of size at most m. In particular, a
character code is a 1-block code.

CodeT is an m-simple codeif

e code T restricted to «#="" is an m-block code;

e if s is a string of length greater than m, then I'(s) is obtained by breaking
I'into blocks of length m starting at the left, leaving a final block of length
< m, and then concatenating the output of I' on each of the blocks.

An m-simple code T is prefix-freeif T'(«/=™) is a prefix-free set.

Theorem 13.20. Let </ be an alphabet and let X be a random variable over f .
Lete >0, and let m > 1/e. There exists a prefix-free m-simple coding scheme T’
for of such thatBpC(T', X) < Ent(X) +e.

Proof: Consider /™ to be a “superalphabet” of character blocks of length m,
and consider the distribution X" over /. Then, by Theorem 13.17, there exists
a simple code I for «f such that BpC([, X") < Ent(X™) + 1. (The encoding of
the final blocks does not matter, since there is only one of these per string, and
hence they add a negligible length as the length of the string goes to infinity.)
However, since the “characters” of /™ are blocks of m characters of &/, we
have BpC(T', X"") = m-BpC(T, X). By Theorem 13.1(c), Ent(X™) = m - Ent(X),
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so m-BpC(T, X) < m-Ent(X) + 1. Dividing through by m, we get BpC(T', X) <
Ent(X)+1/m <Ent(X) +e. O

We will not give a rigorous proof of Theorem 13.22, that any coding scheme
has a BpC of atleast the entropy. Rather, we will give an approximate argument,
and then wave our hands to indicate how the holes in the argument are fixed.
First, we must prove Lemma 13.21.

Lemma 13.21. Let D be a domain of size n, and let random variable X be uni-
formly distributed over D. LetT be an injection from D to 8% . Then Exp(T'(X)) =
log(n) - 3.

Note that we don't require that I is a prefix-free code, or that it will be an
unambiguous code once we string characters and codes together. The only
property we require of I is that it is one-to-one over D. Also, with a more careful
analysis, we can improve the bound in this lemma, but it is sufficient as is for
our purposes.

Proof: Clearly, the shortest average is attained when I" uses all possible short
bit strings. Note that there are two bit strings of length 1, four of length 2, eight
of length 3, and so on. Therefore, the number of strings of length at most k
is2+4+..+2k=2k1_2 To get n different strings, therefore, we must have
2kl o> p sok= log(n+2)—1>log(n)—1. Let us ignore the strings of length k.
Considering only the strings of length less than k, their total length is (Zf;ll i-
21) = (k-2) -2k + 2, so their average length is (k—2)-2%+2)/(2¥-2) > k-2 >
log(n) —3. O

Theorem 13.22 (Shannon’s theorem). Let.<f be an alphabet and let X be a ran-
dom variable over «f . LetT" be a coding scheme for «/ . Then BpC(I', X) = Ent(X).

Argument: Let a1, a,...,ak be the characters of «, and let (p1, p2,..., px) be
the distribution of X.

Let n be large, and consider the distribution X". With very high probability,
a string of n characters chosen according to X" has approximately p; - n occur-
rences of a;, pz - n occurrences of ay, ..., px - n occurrences of a. Assume, for
simplicity, that p; - n is an integer for all i.

Let us imagine, for the moment, that the only strings we have to worry
about are those that have exactly n- p; occurrences of @;. That is, we let Y be
a random variable that is uniformly distributed over those strings with exactly
n- p; occurrences of a;. All of these strings are equally probable. According to
the partition formula discussed in Section 8.3.4, the number of such strings Q
is given by the formula

n _ n!
n-pi,n-pz,...,n-pg (n-pD!-(m-p)...(n-pp)V

Q=C



13.4. Coding

373

Therefore, by Lemma 13.21, for any coding scheme I', Exp(I['(Y)]) >
log(Q) — 3. Using a little algebra, we show that log(Q) = n-Ent(py, ..., px). Each
string of Y is, of course, n characters of X. Therefore, if X gave rise to Y, then
we could say that BpC(I'(X)) = lim,— o Exp(IT'(Y)|)/n = Ent(py,..., px), since
the 3/n term becomes negligible.

Of course, the distribution over strings of length n that X actually generates
is not Y; it is the multinomial distribution. However, the differences turn out
not to matter in this calculation. To do the analysis it is convenient to divide
strings into two categories; those that are “close to” Y (i.e., within some number
of standard deviations) and those that are far from Y. We can then note the
following gaps in our argument.

¢ The product n- p; may not be an integer. That is purely of nuisance value;
one can round to an integer with negligible effect on the computation.

* Some of the strings far from Y are, individually, much more probable
than the strings in Y; an example is, the string that consists entirely of the
most probable symbol repeated 7 times. But the total probability that X
will generate any string far from Y is so small that they can be collectively
ignored.

* Lots of strings close to Y don't exactly fit with Y; in fact, since we can
vary by v/n independently in k — 1 dimensions, there are on the order of
n*=D/2 times as many strings close to Y as there are in Y. But increasing
the number of strings only makes it harder to keep the BpC small. It may
seem surprising that in the opposite direction, multiplying the number
of options by this large factor does not force an increase in the BpC, but
the point is, taking the logarithm just amounts to adding a term of the
form (k—1)log(n)/2, which is negligible compared to n.

* Some of the strings close to Y are, in fact, more probable than the strings
in Y (those that have more of the popular characters and fewer of the un-
popular characters), and the total probabilities of these is nonnegligible.
But they are actually not more probable enough to affect the calculation.

These arguments can be made rigorous, but doing so involves more calculation
than is worthwhile here.

Let us return to the problem of computing log(Q):

n!
(n-p))!-(n-p2)l...(n-pp!
=log(n!) — [log((n- p1)Y) +log((n- p2)) +log((n- p)NI. (13.2)

log(Q) =log
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By Stirling’s formula, In(n!) = nln(n) — n + O(n(n)), so log(n!) = nlog(n)-
n/In(2) + O(log(n)). So Equation (13.2) becomes

log(Q) = nlogn—n/In(2) - [(np1log(np;) —np1/In(2)) +...
+ (npilog(npy) — npx/1In(2)] + O(log(n))
=nlogn—n/In(2) - np;(logn+logp;) — (n/In(2)) p; +...
+ npi(logn+logpy) — (n/1In(2)) px + O(log(n).

By using the fact the p; add up to 1, the nlogn terms cancel, the n/In(2) terms
cancel, and what remains is

log(Q) = —n(p1log(p1) + ...+ pxlog(py)) + O(log(n)) = n-Ent(X) + O(log(n)).

The key point about this argument is that the only assumption it makes
about I is that I' maps each string of characters to a unique bit string. Beyond
that, it is just a counting argument; the argument is, essentially, that there are
so many strings of length n with the right distribution that you will need n -
Ent(py,..., px) bits just to give each of these a different encoding.

Theorems 13.17, 13.20, and 13.22 support another argument in favor of
measuring the information of E as log, P(E). If event E is one outcome of a
random process P, and we need to communicate many long strings of out-
comes of independent trials of P, then the best coding we can do will require,
on average, log, P(E) bits for each occurrence of E. So it makes sense to say
that E involves log, P(E) bits to be transmitted.

13.4.1  Huffman Coding

The Huffman coding algorithm computes the optimal simple code—that is, the
simple code with the smallest possible BpC—given a distribution over an al-
phabet. The algorithm constructs a binary tree, comparable to Figure 13.2, in
which the leaves are the alphabetic characters and the code for a letter corre-
sponds to the path to the letter from the root.

The Huffman coding algorithm builds the tree bottom up. At each iteration
of the main loop is a forest of disjoint trees. Initially, each character is in a tree
by itself; labeled with a weight equal to its probability, at the end, there is a
single tree. At each iteration, the two trees of minimum total weight become
the two children of a new parent node; thus, the number of trees is reduced by
one at each stage. The weight of the new tree is the sum of the weights of the
children.

function T = Huffman(A: alphabet; P: distribution over A)
for (each character u in A)
create a leaf node for u labeled P(u);
end
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N4--->N3---> a {00}

: :—> b {01}
:->N2———> ¢ {10}
:—>N1---> d {110}
:-> e {111}

Figure 13.5. Huffman code.

S = the set of all leaf nodes;

for I=1:size(A)-1
[P,Q] = the two nodes in S with the smallest label
create a new node N;
make P and Q the two children of N;
N.weight = P.weight + Q.weight;
Add N to S and delete P and Q from S;

end

end

By applying this algorithm to the distribution in Example 13.6, we begin
with five trees: characters, a, b, ¢, d, e, with weights 0.3, 0.27, 0.21, 0.17, 0.5, re-
spectively. The algorithm proceeds through the following steps:

1. Make d and e children of N1 with weight 0.22.
2. Make ¢ and N1 children of N2 with weight 0.43.
3. Make a and b children of N3 with weight 0.57.
4. Make N2 and N3 children of N4 with weight 1.

The resultant tree is shown in Figure 13.5. For the proof of the correctness of
the Huffman coding algorithm, see Luenberger (2006).

13.5 Entropy of Numeric and Continuous Random
Variables

The entropy of a discrete numeric random variable is defined in the same way
in Section 13.3: Ent(X) =), —P(X = v)log(P(X = v)). Note that this makes no
use of the actual value v of X, just of the various values of the probabilities. As
a consequence, it is a somewhat strange measure. For example, consider the
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following three random variables X, Y, Z, with probabilities given by

P(X=0)=1/2, PX=1)=1/2,
P(Y =-0.01) =-1/4, P(Y =0.01) =1/4, P(Y=1=1/2,
P(Z=100)=1/2, P(Z=1000) =1/2.

Intuitively, X seems much more similar to Y than to Z, and on most mea-
sures, such as expected value and standard deviation, it is. However, Ent(X) =
Ent(Z) = 1, whereas Ent(Y) = 3/2.

As expected, the formula for the entropy of a continuous variable is ob-
tained by replacing the probability by the probability density and summation
by integration. If random variable X has a pdf p(#), then

(e 9)
Ent(X) :f —-p(Hlog(p(n)dt.
—00

By working out the definite integrals, we can show that if X has the uniform
distribution from [ to [ + a, then Ent(X) = log(a), which is very satisfying. We
can also show that if X has the normal distribution N, 5, then Ent(X) = log(o) +
(1/2)log(2me), which is less elegant, although it is remarkable that it is a closed-
form expression at all.

Note that this value can be negative; for instance, if @ < 1 or o < 1/v/27e.
That seems odd; does finding out the value of this random variable constitute
a loss of information? The answer is that we are not considering finding out the
actual value, which would require infinite information. (Specifying all the digits
of a real number is an infinite amount of information.) Rather, in the discrete
case, we are considering moving from knowing that P(X = v) = p to knowing
that P(X = v) = 1; measuring the change in information; and averaging that
information change over all v weighted by P(X = v). In the continuous case,
we are considering moving from knowing that PX=v)= f) to PX=v)=1;
measuring the information change; and integrating that information change
over all v weighted by P(X = v). But if P(X = v) > 1, then indeed this consti-
tutes a loss of information at v.

In general, if X is a continuous random variable and c is a constant, then
Ent(cX) =logc+Ent(X). (The distribution of c¢X is c times wider and 1/c times
the height of X, so the distribution is a lower probability density.)

See Luenberger (2006, Chapter 21) for further discussion of the entropy of
continuous random variables.

13.6  The Principle of Maximum Entropy

The entropy of a random variable X is the expected gain in information from
finding out the value of X. However, in many cases, it is more useful to think
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of it as a measure of ignomnce;1 it measures how much we don’t know about
the value of X if all we know is the distribution of X. This, in turn, suggests the
following principle.

13.6.1  The Principle of Maximum Entropy

If we do not know the distribution of a random variable X but we have
some constraints on it, then we should assume that we are as ignorant as
possible of the value of X, and therefore the true distribution is the one
that maximizes the entropy, consistent with the constraints.

As we shall see, this principle has some pleasing consequences and some in-
teresting applications to statistical inference. Carrying out the calculations,
however, requires mathematical techniques that are beyond the scope of this
book. The problem, in general, involves maximizing a nonlinear, multivariable
function over a constraint space. The comparatively few cases where this can
be done exactly require multivariable calculus; in most cases, it requires using
techniques of numerical optimization. Therefore, we will state these conse-
quences in Section 13.6.2 and we will describe some applications, but we will
prove only one very simple case.

One very helpful feature of the entropy function, in either technique, is that
entropy is a strictly convex function.? If the constraints are likewise convex,
then (a) there is a unique local maximum, which is the true maximum; and
(b) basic optimization techniques are guaranteed to converge to the true max-
imum.

13.6.2 Consequences of the Maximum Entropy Principle

Principle of indifference. If all we know about X is that it has k different
values, then the uniform distribution P(X = v) = 1/k is the maximum entropy
distribution. By the maximum entropy principle, we should assume that P(X =
v) = 1/k. This rule, of course, long predates the principle of maximum entropy;
it is known as the principle of indifference.

We prove this here in the case k = 2; this is the only consequence of the
maximum entropy principle that we actually prove. If p is the probability of one
value, then 1 — p is the value of the other. Thus, we are looking for the value of p
that maximizes Ent(p,1-p) = —(plog(p)+(1—p)log(1— p)). By multiplying this
expression through by In(2), we get —(pIn(p) + (1 — p)In(1 — p)), which clearly

1However, the stopped clock example of Section 13.2 illustrates that this view has to be taken
with reservations. It would be strange to say that finding out that the clock is stopped makes you
more ignorant of the time; it just makes you aware that you were already ignorant of the time.

2A function f (D) is strictly convex if, for all 7, i and for all £ such that 0 < £ < 1, f(tD + (1 - £)i) >
tf (D) + (1— 1) f(ii). A constraint C(7) is convex if, for all 7, # satisfying C and for all ¢ between 0 and
1, tU+ (1 — t) i satisfies C.
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has the same maximum but is easier to manipulate. Let us call this f(p). The
function f attains its maximum when d f/dp =0. Thus, 0=df/dp = —(In(p) +
1-In(1-p)—1). Thus, In(p) —In(1 - p) =0,soIn(p) =In(1-p),or p=1-p, so
p=1/2.

Independent events. Suppose we know the probability distribution on X and
the probability distribution on Y. Then the maximum entropy distribution on
X, Y is the one for which X and Y are independent.

Specifically, suppose that we know P(X = u) = p, and P(Y = v) = q, for
all values of v and u. Let r,, = P(X = u,Y = v) be the unknown joint proba-
bility distribution over X, Y. Then we wish to maximize Ent({r,,,}) subject to
the constraints Y., r,,, = py and Y, ry,» = qp. That maximum is attained with
T'u,v = Pu - qu- (See Davis (1990 pp. 133-135) for the proof.)

This assumption can also be conditionalized: If P(E|G), P(F|G), P(E|~G)
and P(F|—G) are specified, then the maximum likelihood assumption is that E
and F are conditionally independent given G and —G. This is the assumption
used in the analysis of independent evidence, Section 8.9.1.

Note, however, that the independence assumption is a consequence of the
maximum entropy principle only in this particular state of knowledge; it does
not follow in other states of knowledge. Suppose, for example, that X and Y
are Boolean random variables, and that we know P(X = #) = 1/10 and P(X =
t,Y = t) = 1/50. We might want to conclude, absent other information, that
X can be taken to be independent of Y, and thus a random sample of Y, and
that therefore P(Y = t) = 1/5. However, the maximum entropy principle does
not at all support this. Rather, for the two unknown events, X = f,Y = ¢ and
X = f,Y = f, it simply divides up the remaining probability evenly and decides
that P(X=f,Y =1)=P(X = f,Y = f) =9/20. Therefore, P(Y = ) =47/100.

The problem is that the entropy function over X, Y treats the four events
X=tY=t {X=tY=f; {X=fY=1),;(X=fY =f) asjust four sepa-
rate, atomic values {tt, tf, ft, f f} of the joint random variable J = (X, Y). The
function loses track of the fact that these come from X and Y. Once it has done
that, it has no reason to suspect that we are particularly interested in the event
Y =t, whichis J = ttu J = ft. We might just as well be interested in the event
Q=t,defined as J = ttUJ = f f. The maximum entropy calculation has no less
reason to think that Q is independent of X than it does that Y is independent
of X. But both statements cannot be true; in fact, it makes neither assumption.

Uniform distribution. If all we know about the continuous random variable
X is that it is 0 outside the interval [L, U], then the maximum entropy density
function is the uniform distribution over [L, U].

Normal distribution. If all we know about the continuous random variable X
is that Exp(X) = ¢ and Std(X) = o, then the maximum entropy density function
is the normal distribution N, ;.
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13.7 Statistical Inference

In the maximum entropy approach to statistical inference, we posit constraints
that state that the actual probability of certain events is equal to their frequency
in the data corpus; then we maximize the entropy relative to those constraints.

For example, the following entropy-based approach for an automated ma-
chine translation technique is discussed by Berger, Della Pietra, and Della Pietra
(1996). We start with a corpus of parallel texts, such as the Canadian Hansard,
which is the proceedings of the Canadian Parliament, published in English and
French. We want to use the information in this corpus to translate a new text.

Let us suppose, for simplicity, that words in French can be matched one-
to-one with words in English, and let us further suppose that this matching has
been carried out. The problem still remains that the same word in one language
is translated into the other in different ways, depending on its meaning, its syn-
tactic function, its context, and so on. For example, the English word “run” is
translated in the Hansards as épuiser, manquer, écouler, accumular, aller, can-
didat, diriger, and others. (The most obvious translation, courir, meaning the
physical activity, does not occur much in the Hansards—the subject matter of
Parliamentary debate is somewhat specialized.)

As clues to the correct translation for word W in sentence S here, we use the
three words that precede W in S and the three words that follow W in S. Those
six words give a large measure of context, which in most cases is sufficient to
choose the correct translation. A human reader seeing only the seven word
segment of the sentence can generally pick the right translation for the word.?

Thus, for each English word e, for each possible translation f, and for each
set of six context words ¢y, ¢z, ¢3, ¢s, Cs5, Cg, We wish to calculate the probability
P(Tr(e) = f|Context = {c1,c2,C3,"Ca,C5,Ce)). For example, in translating the
word “run” in the sentence, “Harold Albeck plans to run for comptroller of New
York in 2011,” we consider

P(Tr(“run”) = flContext = (“Albeck,” “plans,” “to”-“for,” “comptroller” “of”)),

and then we choose the value of f for which this is maximal. Thus, for each
English word e we have a probabilistic model of its translation in which the
elementary events are tuples of the form (f, cy,..., cs).

However, of course, this particular sequence of seven words “Albeck plans
to run for comptroller of” almost certainly never occurs in the Hansards, so we
cannot calculate this probability directly. Instead, we take the following steps:

1. Identify a (large) number of patterns that are helpful in disambiguating

’ y»

“run,” such as “either ¢4, c5, or cg is the word “for’,” or “c3 is ‘to’.

3This has to be modified, of course, for the first three and last three words in the sentence, but
the modification is straightforward. Essentially, we view every sentence as being separated from
the next by three periods, and we take these periods as “words.”
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2. Conceptually, characterize each such pattern as the union of elementary
events.

3. Impose the constraint that the conditional probability of the translation,
given the pattern, is equal to the conditional frequency of the transla-
tion, given the pattern.

4. Find the maximum entropy solution for the elementary probabilities sub-
ject to the constraints in (3).

The wording of (4) suggests that we would have to precompute a probabil-
ity for every possible translation of every word in every possible context of six
words. Of course, such a huge distribution could not even be stored, let alone
calculated. All we need is the relative conditional probabilities for the context
that actually occurs in the sentence being translated, and this can be computed
from the relevant patterns. However, the solution is the same as if we had car-
ried out the immense calculation described above.

Exercises

Exercise 13.1. Compute the following quantities (use MATLAB )
(a) Ent(1/3,1/3,1/3).
(b) Ent(1/4,1/4,1/2).
(c) Ent(1/5,2/5,2/5).

(d) Ent(1/10,1/10,8/10).

Exercise 13.2. Let X be a random variable with values a, b, ¢,d, and let Y be
a random variable with values p, g, r with the joint distribution shown in Ta-
ble 13.1.

Using MATLAB, compute the following quantities: Ent(X), Ent(Y), Ent(X, Y),
Ent(X|Y = p), CEnt(X | Y), CEnt(Y | X), MInf(X, Y).

Exercise 13.3. Given the prefix-free code
@—-00 ‘b—-01 ‘c—100 ‘d—101 ‘€ —110 ‘f —111
decode the following string: 0110111001011101110001110.

Exercise 13.4. Suppose that P(‘@’) = 0.4; P(‘b’) = 0.15; P(‘¢’) = 0.14; P(‘d) =
0.12; P(‘¢’) =0.1; P(‘f’) = 0.09.

(a) What is the entropy of this distribution? (Use MATLAB.)
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a b c d

p |02 0.05 | 0.02 | 0.03
g | 001 | 0.04 | 0.08 | 0.07
r 0.1 0.3 0.04 | 0.06

Table 13.1. Values for Exercise 13.2.

(b) What is the BpC of the code in Exercise 13.3 relative to this distribution?
(c) Find the Huffman code for this distribution.

(d) What is the BpC of the Huffman code for this distribution?

Exercise 13.5. Section 13.6.2 claims that, given the distributions of two ran-
dom variables X and Y, the maximum entropy for the joint distribution is
achieved when the two variables are independent.

Suppose we have two three-valued random variables X and Y with the dis-
tributions

P(X =a)=0.6, P(X=b)=0.3, P(X=c¢)=0.1,
P(Y=1)=0.38, P(Y=2)=0.1, P(Y=3)=0.1.

(a) Compute the entropy of the joint distribution of X, Y on the assumption
that X and Y are independent (use MATLAB).

(b) Construct a different joint distribution for X, Y that is consistent with
these constraints, and compute its entropy (use MATLAB).

Problem

Problem 13.1. What is the entropy of the binomial distribution B, ,,(k)? Hint:
If you use Theorem 13.1, this is an easy problem. If you start to write down the
terms of the binomial distribution, you are entirely on the wrong track.
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Chapter 14

Maximum Likelihood
Estimation

Maximum likelihood estimation (MLE) is one of the basic techniques of classi-
cal statistics. In this chapter, we discuss several problems that use MLE tech-
niques. Note: Almost all the derivations of maximum likelihood estimates in
this chapter require calculus, and most require multivariable calculus. The
derivations appear at the end of each section. The results are more important
than following the derivations.

Suppose that we have a collection of data, and that we have some reason
to believe that these data were generated by a random process of some spe-
cific category, with some unknown parameters. Based on the data, we want to
estimate the value of these parameters. Let’s consider two examples.

1. The data are the result of randomly sampling k items out of a popula-
tion of size n and testing each item for a specified property. The actual
frequency of the property in the population is an unknown value p. We
want to estimate p. This type of sampling problem is discussed in Chap-
ter 11 and in Section 14.1 below.

2. The data are the result of independent samples of a normal distribution
Ny,o, where p and o are unknown. We want to estimate the values of u
and o. This problem is discussed in Section 14.4.

We need to determine the parameters of the process from the data. This
procedure can be cast in probabilistic terms as follows. Let D be the data. Let
V be a random variable that ranges over the possible values of the parameter,
in a given problem. In the first example, the domain of V is [0,1], the set of
possible values of the parameter p. In the second example, the domain of V is
(—o0,00) x (0,00), the set of possible values of (u, o).

We want to estimate the value of V given D. Casting this in probabilistic
terms, we want to say something about the distribution of P(V | D). By Bayes’
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law, for any value v, P(V = v|D) = P(D|V =v)-P(V = v)/P(D). The denomi-
nator P(D) is a fixed normalization constant, and so does not affect the choice
of v.

The term P(V = v) is the prior probability distribution for V; that is, the
evaluation of the likelihood of parameter values before you see any data. For
example, Section 11.3 discussed using the uniform distribution over [0, 1] for
parameter p in the sampling problem of the first example.

In the second example, however, a reasonable choice for a prior distribu-
tion over (u, o) is much less apparent. Since u ranges over (co,00) and o ranges
over (0,00), there does not exist a uniform distribution; and it is not at all clear
what alternative prior distribution would be “reasonable.”

Lacking any information about P(V = v), therefore, an approach that is of-
ten taken is to ignore this term altogether! and simply look for the value of v
that maximizes P(D|V = v) (or P(D|V = v), for continuous models.)

In the remainder of this chapter, we discuss the calculation and application
of MLE for a number of different kinds of random processes.

14.1  Sampling

Let D be a sequence of 7 bits containing m ones and 7 — m zeros. Suppose that
we conjecture that D was produced by 7 flips of a coin of some weight p. This
is the situation analyzed at length in Chapter 11. If all we need is the maximum
likelihood estimate, the analysis is much simpler; the maximum likelihood es-
timate of p is just m/n, which is what we would expect.

For example, suppose that n = 7,k = 5. Then the MLE for p is 5/7 = 0.714,
The probability P(D) = p5(1 - p)2 =0.0152. By contrast, if p = 1/2, then P(D) =
0.0078; and if p = 3/4 then P(D) = 0.0148.

Derivation: The derivation of the MLE in this case is simple. We have PD) =
p™-(1—p)* ™. Let us write f(p) = p- (1 - p)" ™. The function f(p) reaches
its maximum when

arf

0 — % — mPWl*l(l_ p)nfm_ (n_ m)pm(l_ p)n*n‘L*l.

Rearranging the terms and dividing through by p™ '(1 — p)" ™!, we get
(n-m)p=m(-p),sop=min.

I This approach is generally considered inconsistent with the likelihood interpretation of proba-
bility, which would require instead that the data be combined with some prior distribution over V.
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14.2 Uniform Distribution

Let D be a sequence of n real numbers. Suppose that we conjecture that D
is the output of independent samples of a uniform distribution from L to U,
where L and U are unknown. Then the MLE is L = min(D) and U = max(D).

For example, let D =(0.31,0.41,0.59,0.27,0.18). Then the maximum likeli-
hood estimate is [0.18,0.59]. For that value, P(D) = 1/(0.59 — 0.18)° = 86.31. By
contrast, if we choose L=0,U = 1, then P(D) = 1.

Derivation: Let X}' ; be the process that generates n independent samples of
the uniform distribution over [L, U]. Then

1 ap P .

- - ——— ifD[ile[L,U]fori=1,...,n,

P(X',=D)=4 W-D"
XLy=D) { 0 otherwise.

This is maximized when L = min(D) and U = max(D).

14.3 Gaussian Distribution: Known Variance

Let D be a sequence of n real numbers. Suppose that we conjecture that D is
the output of independent samples of a Gaussian distribution N, ,, where o is
a fixed value but u is unknown. The maximum likelihood estimate for p is that
it is the mean of D, denoted Exp(D): Exp(D) = ;’:1 Dlil/n.

For example, again let D =(0.31,0.41,0.59,0.27,0.18), and let ¢ = 1. Then
the maximum likelihood estimate of y is Exp(D) = (0.31 + 0.41 + 0.59 + 0.27 +
0.18)/5 = 0.352. At that value, the probability density is

exp(—(D[i] - w)?/20?)

P(X)!,=D)=TI"

Vano
_ exp(—(0.31-0.352)?/2) exp(—(0.18 —0.352)%/2)

=0.0096.

(To avoid squinting at complicated superscripts in small font, we write exp(x)
for e*. Do not confuse this with Exp, the expected value.)
By contrast, if we choose p = 0.25, then f’(X[}ﬂ = D) = 0.0094. If we choose

p=0.59, then P(X}}, = D) = 0.0084.

Derivation: Let X,f}'l7 be the process that generates n independent samples of
the normal distribution. Then

exp(~(D[i] - w?/20%) _exp(=XL (DIil-p?/20?)
V2o - V2mo)" '

P(X)!,=D)=1
(14.1)
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Obviously, for any fixed value of o, Equation (14.1) is a decreasing func-
tion on;‘zl (DIi] - ,u)z. Call this f(u). Thus, IS(X;]ﬁ = D) reaches its maximum

when f(u) reaches a minimum. The minimum is attained when the derivative
df/du=0. Thus,

0=dfldu=2) (Dli]-w=2nu-2Y DIil.
i=1 i=1

Sou=Y" Dlil/n=Exp(D).

All of the remaining MLE computations we discuss in this chapter are based
on Gaussian distributions of one kind or another, so they all involve minimiz-
ing sums of squares of some kind. Such minimizations are called least squares
techniques. In fact, one of the major motivations that leads scientists and
statisticians to assume Gaussian distributions is precisely that the assumption
leads to these elegant least squares problems.

14.4 Gaussian Distribution: Unknown Variance

As in Section 14.3, let D be a sequence of n real numbers, and let us conjec-
ture that D is the output of independent samples of a normal distribution Nyo-
However, this time let us suppose that both ¢ and o are unknown. The max-
imum likelihood estimate of y is again Exp(D). The maximum likelihood es-
timate of ¢ is calculated as follows. We define the variance and the standard
deviation of D as Var(D) = rr, (D - p)?/n, and Std(D) = v/Var(D), respectively.
The maximum likelihood estimate of o is Std(D).

The mean, variance, and standard deviation of a data collection are closely
related to the expected value, variance, and standard deviation of a random
variable discussed in Chapter 9, and we use the same symbols in both cases,
but the distinction should be kept in mind.

For example, we again let D= (0.31,0.41,0.59,0.27,0.18). The MLE for u is
0.352 and the MLE for o is 0.1401. For these values, ﬁ(Xlng = D) = 15.39. This
may be contrasted with the value obtained in Section 14.3 of IS(X;ZVU =D)=
0.0096 for u =0.352,0 = 1.

It is meaningful also to compare this with the pdf of 86.31 computed in Sec-
tion 14.2 for this same dataset with a uniform distribution over [0.18,0.59]. The
significance of the comparison is that if we consider a heterogeneous space of
models containing both normal and uniform distributions, then the MLE is the
uniform distribution over [0.18,0.59].

For some other statistical purposes, not discussed in this book,? the vari-
ance of a data collection is calculated as Y7, (Di] - w)?/(n—1). In particular,

2This alternative calculation gives an unbiased estimate.
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in MATLAB, the function calls std(D) and var (D) use the denominator n — 1.
To get the variance and standard deviation computed with denominator n, we
have to use the function calls std(D,1) and var(D,1). We have to be careful
with this.

Derivation: The derivation of the MLE for p is the same as that in Section 14.3.
The derivation of o takes a little more work. We again start with the expression

_ . exp(—(D[i] - w?/20?%)
P =D = =

Note that if o is close to 0, the pdf P(X = D) is very small because the ex-
ponent -} | (D[i] - w?/20?) is very large and negative; and if o is very large,
then again P(X = D) is small because the exponent is about 0, the exponen-
tial is therefore about 1, so the overall expression has size proportional to 1/0.
Thus, the maximum is reached at some value in between.

Let

g(0) =In(P(X}, = D))

n

Y —(Dlil-w?/20% - In(0)
i=1

- ln(\/ﬁ)

n
Y —(D; - w*/20*
i=1

—nln(o) —ln(\/ﬁ).

The maximum is attained when 0 =dg/d0 = [, (D [i] - w?/0°] - nlo, so
0?=3" (Dlil - w?/n=Var(D), and o = Std(D).

Note that in doing this MLE calculation, it is not correct to ignore the nor-
malization factor 1/v/27o because it changes from one distribution to another.
Normalization factors can be ignored in comparing two probabilities or prob-
ability densities from the same distribution, but not, generally, in comparing
probabilities or densities from two different distributions.

14.5 Least Squares Estimates

Let D = {{x1,1),...,{Xn, Yn)} be a collection of n two-dimensional vectors. Let
us conjecture that the y-coordinate is a linear function of the x-coordinate
f(x) = ax + b plus some noise that follows a normal distribution around f(x)
with some fixed standard deviation o. We take the x-coordinates to be given;
we are not concerned with how they have been generated. We wish to find the
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Geometric distance

Distance in Y Distance in X

Figure 14.1. Least squares approximations.

best values of @ and b. Let X Z b be the associated distribution. Then

exp(—(y; — (ax; + b)?%/202

V2no
_exp(-(X, (yi - (ax; + b)*/20°

=1
(V2mo)n

For fixed o, Equation (14.2) is maximized for the values of a and b where
Y i—(ax;i + b))? is minimized. The line y = ax + b is the least squares ap-
proximation of the data. This is the line L that comes “closest” to the points in
D, where distance is measured in terms of the sum of the squares of the differ-
ence in y-coordinates. That is, if we draw a vertical line from each point in D to
L, and you compute the sum of the squares of the lengths of the lines, we find
the line L that minimizes that sum.

Note that the line L does not minimize the sum of the squares of the geo-
metric distance from the points to the line; that would correspond to normal
noise in both the x- and y-coordinates. (Section 14.6 shows how to solve that
problem.) Nor does it minimize the sum of the squares of the distance from the
points to the line along the x-coordinate, which would correspond to viewing
x as a function of y with noise. Each of these possibilities gives a different line
(Figure 14.1).

For example, consider the dataset D = {(0,1),(1,1),(1,0)}. Viewing y as a
function of x, the least squares line is y(x) = 1 —0.5x. The mean square error is
[(1-y(0))%+(1-y(1)2+(0-y(1))?]/3 = 1/6. Viewing x as a function of y, the least
squares line is y(x) = 1 —0.5x. The mean square error is again 1/6 (the equality
of the two mean square errors is an artifact of the symmetry of the point set and
does not hold in general). The geometrically closest fit is the line x + y = 4/3.
The mean squared distance from the points to the line is 1/9.

A drawback of the least squares approximation is that it tends to do badly
in the presence of outliers, rare erroneous or anomalous cases that lie far away

P(X},=D) =T},

(14.2)
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from the general pattern. Since the least squares technique “charges” a cost
that is quadratic in the distance, it tends to work hard to try to reduce the dis-
tance to the outliers; if the outliers are anomalies or garbage, that is probably
misdirected effort. A better estimation function in these cases may be the me-
dian approximation, which minimizes the cost function )_; |y; — (ax; + b)|. This
corresponds to the maximum likelihood estimate for the random process Y =
aX + b+ N, where the distribution of the noise is given as P(N = d) = e™19/2.
However, the calculation of the MLE for this case is more difficult.

Derivation: Let f(a,b) =X | (y; — (ax; + b))?. We wish to compute the values
of a and b where f is minimal. These can be computed by finding the values of
a and b where the partial derivatives of f(a, b) are 0:

n
= % =i2212xi-(yi—(a-xi+b)),

n
——]; Y =2(yi—(a-x; +b)).
i=1

Collecting common terms in a and b, we get the pair of equations, linear in
aand b,

n n
(Z xi) a+nb=)y.
i=1 i=1

For example, with the sample set D = {{0,1),(1,1),(1,0)}, we get the system
of equations

2a+2b=1,
2a+3b=2.

The solutionis a = -0.5,b = 1.

The least squares approximation for a function of an n-dimensional vector.
is similar. Let D be a sequence of pairs (Di, ¥i), where D is an n-dimensional
vector. Suppose we conjecture that y is a linear function of D plus normal
noise; thatis, y; = d e D; + b+ n;, where n; is normally distributed. We wish to
find the maximum likelihood estimate of d. The analysis is exactly analogous
to the analysis above of the case where y is a function of the single variable x.
The MLE for 4 is the value that minimizes 1" | (y; —d D; — b)?%; setting each of
the partial derivatives to zero gives a set of linear equations satisfied by d, b.
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14.5.1 Least Squares in MATLAB

As discussed in Section 5.4, the MATLAB back-slash operator returns the least-
squares solution to an overconstrained system of equations. Let Q be an m x n
matrix such that Rank(A) = n < m, and let ¢ be an m-dimensional vector. The
system of equations QX = ¢ has m equations in n unknowns; in general, it is
overconstrained and has no solutions. The MATLAB expression Q \ c returns
the m-dimensional vector x such that |¢ — Q- X| is minimal.

We can use this operator to solve the least-squares problem as follows. Let
{51,...,5,,1} be a set of m n-dimensional vectors, and let ¥ = (Y1,.--»¥Ym) be
a vector of values. We are looking for the values of d and b such that }_;(y; —
(@ » D;+b))? is minimal. Therefore, we construct the m x (n+1) matrix Q whose
ith rowis D followed by 1, and call @ \ Y. The result is an (n + 1)-dimensional
vector X such that X[1,...,nl=dand X[n+1] = b.

For example, the least squares calculation in Figure 14.1 is carried out as
follows:

>> Q = [0,1;1,1;1,1];
>> Y = [1;1;0];
>> X=Q\Y;
>> A=X(1)
A =
-0.5000
>> B=X(2)
B =
1.0000

As another example, consider the following points:

D1 =(0,0,0),y1 = 1;
Dy =(0,1,1),y, =6;
D3 =(1,2,2),y3 = 12.05;
Dy =(2,1,0), y4 = 5.03;
D5 =(2,2,2),y5 = 13.08.
(These points are generated by the function y = 1+ D[1]+2D[2] +3D[3] +

0.01D[1]12-0.01D[2]2 +0.01D [3]3.) Then we can find the least squares approx-
imation as follows:

> Q = [0,0,0,1; O,1,1,1; 1,2,2,1; 2,1,0,1; 2,2,2,1];
>> Y = [1; 6; 12.05; 5.03; 13.08];

>> X=Q\Y;

>> A = X(1:3)
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A =
1.0360
1.9600
3.0460

>> B=X(4)

B =
0.9980

As can be seen, the linear part of the function is recovered quite accurately.
The accuracy of the approximation can be quantified by computing C = D-d+b
and evaluating [C - Y:

>> €= Q(:,1:3)*%A +B

0.9980
6.0040
12.0460
5.0300
13.0820

>> norm(C-Y)
ans =
0.0063

14.6  Principal Component Analysis

Principal component analysis (PCA) is a further variant of the least squares es-
timate described in Section 14.5. Let @ = {131,...,13,,} be a collection of m-
dimensional vectors. We conjecture that the vectors are generated by taking
points in some k-dimensional affine space . and adding a noise vector é. The
direction of the noise ¢ is uniformly distributed over the space of vectors or-
thogonal to .%; its length is normally distributed, with variance . Which sub-
space ¥ is the maximum likelihood estimate?

This problem can be solved by using the theory of the singular value de-
composition (SVD) discussed in Section 7.7. Let i be the mean of the vectors
in 2. Let M be the matrix such that M[i,:] = 5,- —l. Let i, ..., g be the first k
right singular vectors of M. Then the space {fi + Zle t;i; | t; € R} is the maxi-
mum likelihood estimate.

The right singular vectors #y,...,1,, are called the principal components
of the data set 2, and the process of computing them is principal component
analysis. Historically, singular value decomposition was developed for use in
differential geometry by Beltrami and Jordan, independently, in the 1870s, and
PCA was developed for use in statistics by Pearson in 1901.
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Another way of viewing PCA is as follows. Define the mean and variance
of the collection 2 analogously to the mean and variance of a set of num-
bers: that is, the mean of 2 is i = Exp(2) = 2?21 D/n, and the variance of 2
is Var(9) = Z?:l ID,- - ﬁlz/ n. (Note that the mean is an m-dimensional vector
and the variance is a scalar quantity whose dimension is distance squared.)

Lemma 14.1 is easily proven (Problem 14.1).

Lemma 14.1. Let D be a collection of m-dimensional vectors. Let % andV be
orthogonal complements inR™. ThenVar(D) = Var(Proj(D,%))+Var(Proj(D, 7).

Therefore, the k dimensional subspace %/ that maximizes the value of
Var (Proj(D, %)) is the orthogonal complement of the (m — k)-dimensional sub-
space 7 that minimizes the value of Var(Proj(D, 7)). We say that the subspace
U accounts for a fraction f of the variance of D where f = Var(Proj(D, %)/ Var(D).
The k-dimensional subspace that accounts for the maximal fraction of the vari-
ance is thus the subspace spanned by the k first singular vectors; the m — k di-
mensional subspace that accounts for the minimal fraction of the variance is
the subspace spanned by the m — k last singular vectors.

For instance, consider the previous dataset: D = {a,b,c}, where a = (1,0),
and b = (1,1), and ¢ = (0,1). The mean of this set is m = (2/3,2/3). The total
variance is Var(D) = (d(a,m)?+d(b,m)?+d(c,m)?)/3 = (5/9+2/9+5/9)/3 = 4/9.

The first principal component is @ = (v/2/2,—v/2/2) and the second prin-
cipal component is I = (V212,v/212). The principal axes L;, L, are the lines
parallel to these through m = (2/3,2/3). L, is the line x + y = 4/3 and L, is the
line x = y. Let a; = Proj(a, L;) = (1/6,7/6), by = Proj(b, L;) = (2/3,2/3), and ¢; =
Proj(c, L) = (7/6,1/6). Therefore, Var(Proj(D, L)) = (d(a;,m)? + d(b;,m)? +
d(c;,m?)/3=(1/2+0+1/2)/3=1/3.

Likewise, let ay = Proj(a, L) = (1/2,1/2), by = Proj(b, L,) = (1,1), and ¢, =
Proj(c, Lp) = (1/2,1/2). Therefore, Var(Proj(D, L)) = (d(az, m)? + d(bz,m)? +
d(co,m)?)/3=(1/18+2/9+1/18)/3 = 1/9.

Thus, L; accounts for (1/3)/(4/9) = 3/4 of the variance and L, accounts for
1/4 of the variance. Note that, as stated in Lemma 14.1, Var(D) = Var(Proj(D), L;)
+ Var(Proj(D), Lp)

Derivation: We wish to find the MLE for the following family of models: There
exists a k-dimensional affine space . ¢ R™ and n points py,..., p, in . The
data point D= i = Pi+qiD;, where the distance g; follows the normal distribution
No,1 and ?; is uniformly distributed over the space of unit vectors orthogonal
to #. The problem is to find the MLE for ., given Dl, ,D

There are two parts to this derivation. First, we need to show that the MLE
is the one that minimizes the sum of the squares of the distances from the
points to the subspace .. This is exactly analogous to the argument for the
least squares estimate in Section 14.5.
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Second, we need to show that the sum of the squares of the distances is
minimized when . is the affine space through the mean parallel to the first
k singular vectors. Let p be a point in .%#. Let % be the k-dimensional sub-
space of R parallel to #; that is, % = {§— p|§ € &}. Let 7 be the orthogonal
complement of %, and let 74, ..., D,;,— be an orthogonal basis for 7.

For any data point D, d?(D, &) = Z;.":‘lk((lj —-p)e f/j)z. Therefore,

n . n m—k . m—k n .
Y d*D, A=Y, Y (Di-predp*=Y. Y. ((Di—p)e 0>
i=1 j=1

=1 j=1i=1

For any fixed ?; and D;, the value of r( (Di—p)eD j)z is minimized when the
coordinate of p in the D; direction is equal to the mean of the coordinates of D;
in the ?; direction. Therefore, for any fixed choice of % and 7, the minimum
is achieved when .# contains the mean Exp(D).

We can therefore recast the problem as follows: Let 72 = Exp(D). For i =
1,...,n, and let E = f)i — m. We wish to find an orthonormal set of vectors
D1,..., Dy for which X7 Z;.":‘lk(l:"i . f/j)z is minimal. Let F be the n x m ma-
trix whose rows are the F;. For any unit vector %, F - & is the column vector
(151 . 5(...1:“,, e %) so|F-%%is equal to (ﬁl o)+ .+ (ﬁn e %)2. Thus, we are look-
ing for a set of orthonormal vectors 7,..., ¥, that minimizes Z;’Sk |F o D;]2.
But, as we have stated in Theorem 7.13, these are the m—k smallest left singular
vectors of F.

14.7  Applications of Principal Component Analysis

We discuss here five applications of PCA: visualization, data analysis, to find
bounding boxes for graphics and other geometric applications, to find surface
normals, and to cluster related words by their appearance in documents.

14.7.1 Visualization

Suppose that you have a collection of n-dimensional data points that you want
to display in a picture that reveals as much as possible of the structure. That
is you want to find the best possible two-dimensional mapping of the data.
Assuming that the mapping is a projection onto a plane in R", then the “best”
plane to choose, under the least-squares measure of “bestness,” is the plane
whose basis is the first two principal components.

14.7.2 Data Analysis

Suppose that we have a data collection D of vectors in R”. We conjecture that
the points in D fundamentally lie on an affine space .# within R”, and that they
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are slightly perturbed in the dimensions orthogonal to . by some small noise.
The noise may be due to small random processes, or to errors in the process
of measurement, or even to floating-point roundoff in the processing of the
points of D. Assume that the signal-to-noise ratio is large; specifically, assume
that the variance in each of the dimensions within .# is much larger than the
variance in any of the noise dimensions. Then . can be recovered by using the
following procedure:

1. Let i =Exp(D).
2. Let M be the matrix whose rows are Ji — [, where Ji eD.

3. Let (01,...,0,) be the singular values of M, and let (#i,...,,) be the
right singular vectors of M.

4. Look for a sudden dropoff in the sequence of singular values—that is, an
index g for which o441 is much less than o ;.

5. Conjecture that . is the g-dimensional space . = {fi+ 1ty +...+ t5l4}.
Once . is recovered, it can be used for a variety of purposes:

Prediction. Given g — 1 coordinates of a vector ¥, predict that the remaining
coordinates are those that will place it in the space .%.

Denoising. If the dimensions orthogonal to . are indeed noise, then project-
ing the data onto . may improve the quality of the data.

Data compression. Approximate each vector d; e D by its projection in ..
This is a generalization of the lossy data compression technique discussed
in Section 7.9.3.

Another use of the principal components is to posit that they correspond
to separate causal factors that combine to generate the data values. The first
principal component is the most important determinant of the value, the sec-
ond is the second most important, and so on. The fact that these principal
components are orthogonal guarantees that these causes are independent. In
fact, PCA was first invented for this kind of analysis of the results of intelligence
tests. This kind of causal inference, however, lies on shaky ground; for an exten-
sive discussion and critique, see Stephen Jay Gould’s The Mismeasure of Man,
(Gould, 1981).

14.7.3 Bounding Box

In three-dimensional geometric applications, such as graphics, robotics, and
computer-aided design, detailed models of three-dimensional objects are gen-
erally given in terms of surface models with thousands or tens of thousands of
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Figure 14.2. Bounding box.

surface points. A critical operation with these models is to determine whether
two objects intersect. The complete algorithm that gives an accurate answer
when the objects are close together is very time-consuming for complex mod-
els. Since most pairs of objects are nowhere near intersecting, it is important to
have a quick way to determine that two objects do not intersect when they are
actually not close to intersecting. A standard approach is to compute a bound-
ing box for each object—that is, a rectangular box that contains the entire ob-
ject. If the bounding boxes do not intersect, then the objects certainly do not
intersect. It then becomes a problem to choose the directions of the axes of the
bounding box. Ideally, we would want to choose the axes that give the box of
minimal volume; but that is a difficult problem. A good approximation for this
is to use the principal components as the axes.

Figure 14.2 shows a collection of points together with the bounding boxes
along the x, y-axes and along the principal component axes.

14.7.4 Surface Normals

Another problem that arises with three-dimensional surface models is to find
the normal at a point. This can be done as follows. Given a surface point qq
on the surface, find a collection of nearby surface points qj,...,qx. Compute
the PCA of the points (qq,...,qk). Since these points all lie close to the tangent
plane at qp, the tangent plane is approximately given by the first two right sin-
gular vectors, so the normal is given by the third right singular vector.
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14.7.5 Latent Semantic Analysis

The following technique, called latent semantic analysis, is used for automati-
cally grouping together words of related meaning by using their co-occurrence
in documents.

Suppose we have an online library of documents, and we want to study
the occurrence of words in the documents. Section 2.2 considered the vector
model of documents, in which a document was considered a vector in a vector
space whose dimensions corresponded to words. Here we take the dual ap-
proach. Let us consider a high-dimensional vector space, where each dimen-
sion corresponds to one document. A word can then be considered as a vector
in this space, where the component of word i’ in document d is some measure
of the importance of word 0. A cluster of words in document space is thus a
collection of words that tend to appear in the same documents and therefore
are presumably related. We can find these clusters as follows: (a) normalize
all the word vectors to unit length; (b) carry out a PCA of the word vectors; (c)
take the top n right singular vectors; (d) for each right singular vector #;, form
a group G; of all the words that are nearly parallel to ;. (Principal component
analysis is not an effective way to do clustering in general; it works in this case
because the sets of documents corresponding to two different word clusters are
substantially disjoint and therefore orthogonal.)

Exercises

Use MATLAB for all of these exercises.

Exercise 14.1. Suppose that you have sampled 100 items from a large popula-
tion and found that 75 have a specified property. The formula in Section 14.1
states that the MLE for the true fraction in the population is 75/100 = 3/4. What
is the probability of this outcome if the true probability is the MLE 0.75? What
is it if the true fraction is 0.72 0.52 0.2?

Exercise 14.2.

(a) Using the MATLAB function randn, generate a vector D of ten numbers
following the normal distribution Ny ;. What is the probability density
P(D) of D given the distribution Ny ;?

(b) Compute the MLE for the mean p on the assumption that D follows the
distribution N,,;. What is the probability density P(D) under this distri-
bution?

(c) Compute the MLE for the mean p and standard deviation o on the as-
sumption that D follows the distribution N, ,. What is the probability
density P (D) under this distribution?
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(d) Compute the MLE, assuming that D was generated by a uniform distri-
bution over the interval [L, U]. What is the probability density P(D) for
this estimate?

Exercise 14.3.

(a) Using the MATLAB function rand, generate a vector D of ten numbers fol-
lowing the uniform distribution over [0,1]. What is the probability den-
sity P(D) for this distribution?

(b)-(d) Repeat Exercise 14.2, parts (b)—(d) for this new dataset.
Exercise 14.4. Consider the following set of three-dimensional points:
{€0,2,1),(0,4,3),(1,4,5),(1,8,6),(1,8,10), (4,8,14),(5,9,13)}.
(a) Find the least squares estimate for z taken as a function of x and y.
(b) Find the least squares estimate for x taken as a function of y and z.

(c) Find the best-fit plane, in terms of principal component analysis.

Problems
Problem 14.1. Prove Lemma 14.1.

Problem 14.2. Prove that the bounding box for a set of points along the prin-
cipal component axes is not always equal to the bounding box of minimal vol-
ume. Hint: Consider what happens to the two rectangles “the bounding box
along the principal component axes” and “the bounding box of minimal vol-
ume” if you move interior points around.

Programming Assignments

Assignment 14.1. Write a function InvPowerLawMLE (R,EPS) that computes the
MLE among inverse power laws for a frequency distribution R, to accuracy
EPS > 0. Specifically, R is an n-dimensional vector, where R[I] is the number
of occurrences of the Ith most common element in a sample. Therefore, R[I]
is a nonincreasing function of I. Assume that this sample is generated by an
inverse power law P(Xj) = y/I% for I = 1,...,N, where a > 1 and y are con-
stants. Here y is a normalization factor, whose value depends on a. The func-
tion InvPowerLawMLE (R) uses a numerical binary search to compute the MLE
of the parameter «, given a datasetR.
You should proceed as follows:
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¢ Write a function InvPowerNormalize (ALPHA,N), which returns the correct
normalization factor for given values of a and n.

¢ Write a function InvPowerLawProb (ALPHA,F), which computes the prob-
ability of F for a given value of a.

¢ Write the function InvPowerLawMLE (F) by doing a binary search on values
of a. The binary search algorithm for finding a maximum of a continuous
function f(x) works as follows. In the first stage, we expand outward from
a starting value until we find three values a, b, ¢ such that f(a) < f(b) >
f(c). At that point, we can be sure that f has a local maximum between a
and c. In the second stage, we work our way inward, testing points either
between a and b or between b and ¢ to narrow the range of search for the
maximum.

In particular, since the maximum for « is certainly not less than 0, you can
execute the following pseudocode.

function m = FindMax (f,eps)
if (£(0) > £(1))
b = 1/2
while (f(b) < £(0) && b > eps)
b = b/2
end
c = 2%b
else
b =1
c =2
while (£f(b) < f(c))
b = c;
c = 2%c;
end
end
m = BinarySearchForMax(f,eps,a,b,c)
end

function m = BinarySearchForMax(f,eps,a,b,c)
while (c-a > eps)
if (b-a > c-b)
d = (a+b)/2
if (£(d) > £(b))

c =D
b =d
else
a =d
end
else
d=(b+c)/2

if (£(d) > £(b))
a =>
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b =4d
else
c =d
end
end
m = b

Note: In many applications, it would be more reasonable to consider that
the distribution holds for I =1,...,corather than I = 1,..., N. The latter is valid
only when you can assume that the sample includes all possible values. The
computation is more difficult, however, particularly in efficiently computing
an accurate value for y when « is only slightly greater than 1.

Assignment 14.2. This assignment experiments with latent semantic analysis
and dimensionality reduction for data visualization.

Step 1. Choose five or six related topics, such as { math, physics, chemistry,
biology, electrical engineering, astronomy } or { presidents, actors, scien-
tists, writers, composers, athletes }. For each topic, download 20 Wikipe-
dia articles.

Step 2. Do datacleaning: delete stop words (see Assignment 2.1); delete HTML
markup, delete words specific to Wikipedia, delete any words that occur
in only one article.

Step 3. For each remaining word W, the associated document vector i is the
vector whose ith component is the number of occurrences of w in the
ith document. Write a program to construct the matrix whose rows are
the document vectors for all the remaining words in the corpus.

Step 4. Carry out a principal component analysis of the document vectors.

Step 5. Project the word vectors onto the plane of the first two principal com-
ponents. Plot the points (or as many of them as you can put in a readable
plot) onto an image.

Does this process put closely related words together? Can you attribute any
semantic meaning to the two principal components (are these two directions
recognizably “about” anything in particular)?
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Notation

Mathematical Notation

The page references here are to the page where the notation is described or
defined; therefore standard mathematical notations that are used in the text
without explanation have no page reference.

Many of the basic operators are polymorphic; that is, multiplication can be
an operator on two scalars, on a scalar and a vector, and so on. This list does
not enumerate the different possibilities or provide page references for them.
Some notations that are used in only a single section are omitted.

Special Notations

Notation

<

R

BN wl — o

S
3

(xl;---;xn>

e=2.71828...
m=3.14159...

| x|
|7

Definition

Vector

Unit vector

Unit vector in the ith dimension
Zero vector

Vector (1,1, ..., 1)

Arrow

Set of vectors

The real line

Space of n-dimensional vectors

n-dimensional vector with components xi, ...

Set

Constant

Constant

Absolute value of x
Length of vector U
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Page
17

17
17
17
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Notation Definition Page

Z le) ; Matrix 47
I n x n identity matrix 64
@ Empty set
T True
1 False
Q Sample space
Operators
Notation Definition Page
xX+y Addition
xX—y Subtraction
X Y, X%y Multiplication
xly Division
X=),X#£Y Equality, inequality
X<Yx>Y, Order relations: less than, greater than, less than or
X<yx=y equal to, more than or equal to
x=y x is approximately equal to y
xY Exponentiation
Vx Square root
n! Factorial 226
[1, ul Closed interval from [ to u
uli] ith component of vector ¥ 17
te? Dot product 23
Mli, jl Element i, j of matrix M 47
Mli,:] ith row of matrix M 47
ML, j] jth column of matrix M 47
Mt Matrix inverse 93
e Matrix transpose 49
mxn m by n (matrix dimension)
fog Composition of functions f and g.

(fog)x) = f(g(x)

! Inverse of function f
xelU x is an element of set U
vuuVv Set union
Uu\v Set difference
unv Set intersection
UV Direct sum of vector spaces 88
ap Not p
pAq pand g
pvq porqg
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p=4q
peq
E,F

X, Y
#1(E)
b

IT

J
dx/dt
0x/ot
lim
O(f(n)
Lx]

[x]

Functions

Notation
By,p(K)
BpC(I', X)

C(n, k)
CEnt(X|Y)
Coords(v, B)
Coords(p, %)

cos(0)
dp,q
Det(M)

Dim(%)
Dir(?)
Ent(X)
exp(x), e*
Exp(X)
Exp(D)
Freqr(E)
Hc(p,6),
Hc(X,€)
Inf(E)
Image(M),
Image(I)

Definition

p implies g

pif and only if g

Joint event of E and F

Joint random variable of X and Y
The number of elements in T satisfying E
Summation

Product

Integral

Derivative

Partial derivative

Limit

Order of magnitude growth
Round x to lower integer

Round x to upper integer

Definition

Binomial distribution with parameters n, p
Bits per character of coding scheme I'. X isa
probability distribution over an alphabet.
Number of combinations of k out of n
Conditional entropy of random variable X given Y
Coordinates of vector 7 relative to basis %
Coordinates of point p relative to coordinate
system €

Trigonometric cosine

Distance between points p and q
Determinant of matrix M

Dimension of vector space ¥
Direction of vector U

Entropy of random variable X
Exponent

Expected value of random variable X
Mean of dataset D

Frequency ofevent Ein T

Homogeneous coordinates of point p or arrow Xin
coordinate system €

Information of event E

Image space of matrix M or linear transformation I

Page

Page
273
365

227
362
84

145

24
159,
172
86
147
361

260
386

163

359
89
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Notation Definition Page
log(x) Logarithm of x to base 2
In(x) Natural logarithm of x (base e)
max(S) Maximal element of set S
min(S) Minimal element of set S
MInf(X,Y) Mutual information of variables X and Y 364
Ny,o (x) Normal distribution with mean ¢ and standard 287

deviation o
Null(M), Null(I') Null space of matrix M or linear transformation I' 89
Odds(E) Odds on event E = P(E)/(1 — P(E)) 241
P(E) Probability of event E 224
P(E|F) Conditional probability of event E given event F 231
P(X=x) Probability density of random variable X at value x 282
Proj(a, X) Projection of point a onto affine space X 154
Rank(M), Rank of matrix M or linear transformation I’ 90
Rank(I)
sin(0) Trigonometric sine
Span(7) Span of the set of vectors ¥ 82
Std(X) Standard deviation of random variable X 260
Std(D) Standard deviation of dataset D 386
Var(X) Variance of random variable X 260
Var(D) Variance of dataset D 386

MATLAB Notation

The list of MATLAB functions and operators includes just those that are men-
tioned in the text plus a few additional standard functions. Many of these have
several uses other than those mentioned in this index or in the text. The plot-
ting functions are omitted. References are given to the page where the notation
is defined or discussed.

MATLAB Operators

Notation Definition Page
x=y Assignment 1
x+y, X-y, Arithmetic

x*y, x/y

x°y Exponentiation

x==y Equality

x~=y Inequality

x<y, x>y, Comparators

Xx <=y, x>y
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x&yxly ~
Inf

NaN

v(i)

[x,y,z]

[a,b,c;d,e,f]

I:J
I:J:K

{a, b, c}
c{i}

m\c

Definition

Boolean operators

Infinity

Indeterminate numerical value (not a number)
Index into vector v

Construct the vector (x, y, z)

a b c

d e f ]

Construct the arithmetic sequence from I to J

Construct the matrix

Construct the arithmetic sequence from I to J with

step size K

Construct the cellular array with elements a, b, c

ith element of celluar array c
Find the solution to the system of equations mx=c

MATLAB Functions

Notation

Definition

asin(x),acos(x), Inverse trigonometric functions

atan (x)
det (m)
diag(v)

dot (u,v)

erf (x)
erfinv(x)
eye(n)
factorial (n)
full (m)
length (u)
lu(m)

max (u)

mean (u)
median (u)
min (u)
nchoosek (n,k)

norm(u)
null (m)
quad (f,a,b)
rand

rand (m,n)

Determinant of matrix m

Construct the diagonal matrix with the elements in

vector v

Dot product of vectors u, v

Error function

Inverse error function

n x n identity matrix

n!

Convert sparse matrix m into a full array
Length of vector u

LU factorization of matrix m

Maximum of vector u

Mean of vector u

Median of vector u

Minimum of vector u

Number of combinations of k items out of n;
n/ (k! (n-l)NH!

Euclidean length of vector u

Null space of matrixm

Integral of £ fromatob

Random number uniformly distributed between 0

and 1

mxn matrix of random numbers

Page

31
31

68

31

75
75
127

Page

173
68

34
292
292
68
226
36,73
34
128
34
34
34
34
291

34
93
93
352

35
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Notation Definition Page
randn Random number distributed according to the

standard Gaussian Ny
randperm(n) Random permutation of the numbers 1 ton 35
RandStream Create a reusable stream of random numbers 352
rank (m) Rank of matrixm 93
sin(x), cos(x), Trigonometric functions
tan(x)
sort (u) Vector u in sorted order 34
sparse (m,n) Create an empty mxn sparse array 36,73
sparse (m) Convert full matrix ¥ into a sparse array 36,73
sqrt (x) Square root
sum (u) Sum of elements of vector u 34
svd (m) Singular value decomposition of matrixm 213
Other MATLAB Command and Control Structures
Notation Definition Page
ans Last value computed
else Condition branch 4
for For loop 4
format compact Eliminates line space 1
format long Display 15 digits of precision 1
format short Display 4 digits of precision 1
format rat Display in rational format 1
function Function definition 7
if Conditional 4
while While loop 4
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