Creatlng T/\

ChatGPT
Apps with

JavaScript

A Hands-on Guide for Al
Applications with OpenAl APIs

3ruce Hopkins Jr.
3ruce Hopkins Sr.

Apress*

Creating ChatGPT
Apps with JavaScript

Bruce Hopkins Jr.
Bruce Hopkins Sr.

Apress’

Creating ChatGPT Apps with JavaScript: A Hands-on Guide for AI
Applications with OpenAl APIs

Bruce Hopkins Jr. Bruce Hopkins Sr.
Brandon, FL, USA Beaverton, OR, USA
ISBN-13 (pbk): 979-8-8688-1220-0 ISBN-13 (electronic): 979-8-8688-1221-7

https://doi.org/10.1007/979-8-8688-1221-7

Copyright © 2025 by Bruce Hopkins Jr., Bruce Hopkins Sr.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Dufty

Development Editor: James Markham

Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

Table of Contents

About the AUthOrS.........cuccemmssmnmsssnnsssssssssssnsssssnsssssnsssssnsssssnsssssnnsnssnnnnss xi
About the Technical REVIEWETcuscesssssnssssansssssnsssssnsssssasssssanssssnnss xiii
Chapter 1: Introducing ChatGPT for JavaScript Developers..........cccuuus 1
WhO IS ThiS BOOK FOI?......cccovieieiiccririsssseese s sesnssssssssssens 1
CRAPIET DVEIVIBW....ccveiveerereerreseesererseseesesessessesasessessesaessssessesaessssensessesessensensenaes 2
Download the Code NOW! ... 2
So, What Exactly Is ChatGPT and Why Do | Need to Use the OpenAl APIs?............ 3
Regex vs. ChatGPT — Fight!.........ccccorivierrrcsneser e 6
Analysis Question #1: Who Didn’t Get Any Ice Cream and Why?ccc....... 7
Analysis Question #2: Which Kid Was Probably Left Sad?...........cccccviviernenns 9

Let’s Unlearn Some Words in Order to Learn More About the ChatGPT API......... 10
Models. Models? MOdEIS!!! ... 10
When We Talk About Tokens, Don’t Think About Access Tokens............cueens 15
Temperature Is All About Creativity........c.ccovvvrrininnsnsniene s sessenaens 16
Getting Started with the OpenAl Playgroundccccocevvververererensessesesessessenens 17
1. SYSIEM MESSAQGEvveerverrereriererresessererse e s e sse e e s e sse s sse e s e saesaesassesaesaes 19
U N 20

3. Assistant (Optional)..........ccveerrevererrerierinnnserresese e sse s sessese e 20

(0] 11T 1) S 21

LT a0 Lo (0] 01 10T - 1 S 21

6. Model (OPtIONAI)coveereierierererrrrerere e s s s e e saesresessessesaens 21

iii

TABLE OF CONTENTS

7. Temperature (Optional)c.ccvveveeverrerierienersererers s s ssesessessessens 22
8. Max TOKENS (OPLioNa)cceeerreveereriereressnsereressesessersessessssessessessssessessessens 22
Try It Now! Experimenting with the “System” Role..........ccccoovverrierrinscrnccnenienens 22
[0 0 e 11 0 S 23
Chapter 2: Using ChatGPT As Your JavaScript Pair-Programmer....... 25
Chapter OVEIVIBW........cccvcrirrr et 25
You Have Node.js Already Installed, Right?........c.cccovvenniinnnnnnesnesessseseneens 26
Installing (or Updating) the OpenAl Node.js Library with npmccccevvvvvniennene 26
Three Ways 10 Set YOUr AP KEYcovvevverierenennensenerssssssesessesssssssessessesssssssessees 27
Option #1: Setting a System-Wide Environment Variable.........c.ccocevvveriernene 27
Option #2: Creating @ .env File.........cccoviiinnnnnnsssssssse s 30
Option #3: Hard Coding the API Key Directly in Your Application
(Take With CAULION).....cceerereriersererersereserseses e ssessessssese s sassessessessessssensessees 31
Creating Your First JavaScript ChatGPT App: list-modelsccccovverrreccrrnccnne 32
Using openai.models.list() to Get a List of Available Modelsc.ccocevviriernene 32
Handling the RESPONSE.......c.cccorerrerr e 33
Using Your API Key to Get a List of Available Models with the OpenAl API.......... 34
Wait, How Many Tokens Are in My Prompt?.......ccccovvnnennnnnnenennnsesnsessssenens 36
Using ChatGPT As a Pair-Programmer to Build a Weather Application 38
Setting Up the Prompt ... sesse s sessessessessssessesse s 38
Creating a Weather App with the AccuWeather API..........cccccvvrverrerrieniennen 42
Refining Our Prompt with Prompt ENgineeringcccvevvevvrenverienesenseniennns 46
Using ChatGPT As a Pair-Programmer to Build an Application That
Estimates Distance and Arrival TIMe.........ccovoerrerrnncrerenerese e 51
Creating a Project with Google Maps Platform API...........c.ccccooevrnienrrescrnnne. 52
Approach #1: Using ChatGPT to Take a cURL Command and Convert It to
JAVASCHIPL ..o e 59
Approach #2: Using ChatGPT to Avoid Reading a Lot of Documentation........ 65
[0 0 e 11 0 69

iv

TABLE OF CONTENTS

Chapter 3: Creating a Basic ChatGPT Client in JavaScript

Creating Our ChatGPT Client Application in JavaScript.........cccocvvienniinrniennn
Resist the Urge to Put Your API Key in a Web Application!ccccoevvinicnnne
Using OpenAl.chat.completions.create() to Send Messages to ChatGPT
Examining the Method Parametersccoovevvnennsnennsesnnesesesesnsesesseens
There Are Four Types Of MESSAQGESccvvrerruserrmsesersesessssessssessssssessssesessessssenens
System MeSSAge (AITAY).......cvverrreserrnsmssssessssesessssessssessssssesssssssssessssasessanes
USEr MESSAQE (AITAY) ..coveeveererserresensesessesssssssessessesssssssesssssssssssssessssssssnsesses
Assistant MeSSage (Array)......coureeereserrmsesssssssssssesssssssssssesssssssssesssssssssssessnns
TOOI MESSAQE (AITAY)vecererrerrererserersessessssessessessssessessesssssssessessessssssssnsessens
Running Our Basic ChatGPT Client...........ccccererrrnveriernnensensese s sesessesessessessens
Handling the Response (ChatCompletion)ccccvvvrvrierennsncenesenseniennens
ChatCompletioNMESSAQE.......ccverererreriererie s saesnes
{0 T 11T (0] o O

Chapter 4: Using Al in the Enterprise! Creating a Text

Summarizer for SIack MeSSageS......cccurrmssssnnmrsssssnnnssssssnnnsssssnnnsssssnnns

So, What Is Prompt ENgineering?........coccevererenmrnsssesesessnessssesessesessssesessesenns
ChatGPT Is Here to Take Away Everyone’s Jobs (Not Really)cccoeeeerrnennne.

Examining a Real-World Problem: Customer Support for a
SOftWare COMPANY.......ccvverierrrrerrereressssersesessesssse e ssessssessessesssssssessesssssssessessens

Prompt Engineering 101: Text Summarizationccccoevvvnieinincrinncnenescnnnne,
o (01101 2 I | 0 |
Prompt #2: “Explain This in 3 Sentences or Less”ccccvvvevrenernserenenens
Prompt #3: “I’'m a Manager. Explain to Me What Happened”c........
Prompt #4: “Give Me Suggestions on Next Steps”......ccccvvievnncerinienenenens
Let’s Talk About Real Prompt Engineering..........cccoevvvvriennsnnsenesesnnsensennes

.13

.92

TABLE OF CONTENTS

Registering @ SIACK BOt APP.....ccvvrerierrererrererersssessessessssessessessessssessessessssessessenes 106
Specifying What Your Bot Can (and Can’t) Do by Setting the Scope............ 109
Confirming YOUr SEHNGSccvcvvervrrrrere s se e sse e e saeenes 110
Viewing the OAuth & Permissions PAgecccvvvrverierenessensessessesessessensens 111
Installing Your Slack Bot App to Your WOrkSpacecceeevevversersereesersersenses 112
Getting Your Slack Bot (ACCESS) TOKENccevvererrerersersersessnsensessessssessessenses 114
Inviting Your Bot to Your Channel..........c.ccevvververiernnennensesesessensessessssessessenees 114

Finding the Channel ID of Your Channel...........ccccoeorevrninnennsscrneseseseneenes 115

Using Your Slack Bot App to Automatically Grab Messages from a Channel116
Programmatically Reading Messages from Slack...........ccocveeererrnicrerienens 116

Exercises Left for the Readerccvovervnernsesnssenese s sesennes 119

CONCIUSION ...t e 120

Chapter 5: Multimodal Al: Creating a Podcast Visualizer

with Whisper and DALL:E 3............ccccnnmmmmmmmmmnnnnnssssssssssnnnmssssssssssssnns 121
Introducing the Whisper Model by OpenAl..........cccocvevnvnrnennsnsenese s 124
Features and Limitations of the Whisper Model............ccccvrinnsnininncniennenn, 126
Using OpenAl.audio.transcriptions.create() to Transcribe Audiococveeeee. 130

Examining the Method Parametersccovevvnennenersscsnsesesesesssesenneens 130
Creating a Utility App to Split Audio FileS........ccovrnvennrennnsrnsesnesese e 132
Creating the Audio Transcriber with WRIiSPErc.ccocvvvvrvrennsenienieneressenennens 136
Having a Little Fun and Trying Things Out with a Podcast...........ccccveevvieriernene 138
Going Meta: Prompt Engineering gpt-40-mini to Write a Prompt for DALL-E.... 140
Using OpenAl.openai.images.generate() to Create Images.......c.cccoveerercnernnnes 141

Create IMage (JSON) ... 142

Handling the RESPONSE.......cccioreerrcerere e 144

04 Vo< 144

TABLE OF CONTENTS

Creating the Images with the DALL-E MOdEl........c.cccoererrrveriernsensersesesessenseneens 144
Visualizing the POdCast ... 146
DALL-E Prompt Engineering and Best PractiCesccuerrrerrencrnscrescnennnnes 147
DALL-E Golden Rule #1: Get Familiar with the Types of Images
That DALL-E Can Generate..........cccvrrrinnsnneniesnsinsessessssssessessesssssssessessens 148
DALL-E Golden Rule #2: Be Descriptive with What You Want in the
Foreground and Background.............cccvnnnnnnnssssnsssse s 149
CONCIUSION ...t bbb s p e e b e e nne s 150
Exercises Left for the Reader........cccoovvvvrvrenninsnsnnsr s 151

Chapter 6: Creating an Automated Community Manager Bot

with Discord and JavaScriptcccucemmmnmsmmnnmmsssnnmsmssssssessssssnnssnn 153
Choosing Discord as Your Community Platform..........ccccoceevvncnniecncccnnccnnn 154
Creating a More Advanced Bot Than Our Slack Botcccvvmniiincnnnennan 155
Creating a More Advanced Bot Than Any Typical Discord Bot...........c.cccvveenene. 155
Understanding the Roles for the Bots.........ccouceneenicnncennnesencse e 156
Our Example Bank: Crook’s BanK...........cccceceverrvnienenensensenesssessessessesessessensens 157
First Things First: Create Your Own DiSCOrd SEIVercccverivverrervereressensersenns 158
Create the Q&A Channel...........cooeerrrnesecr s 159
Registering a New Discord Bot App with DiSCOrdcocoenrererencrnscrerenerennes 161
Specifying General Info for the Bot.........cccvoeerenrnsesnenenesers s 162
Specifying OAuth2 Parameters for the Botccovcevevrivcnncnnccenese e 163
Invite Your Bot 10 YOUTr SEIVET ..o 165
Getting the Discord ID Token for Your Bot and Setting the Gateway Intents 167
Creating a Q&A Bot App in JavaScript to Answer Questions from a Channel ...170

Creating the Discord Client.............ccccorvrnienrnnrnce e 173
Listening for New Messages in Our Preferred Discord Channel.................. 173
Success! Running Your First Discord Botcccceveevecvnicnncsensserenenens 174

vii

TABLE OF CONTENTS

Streamlining the Process of Registering Our Next Discord Bot Appccveevvene 175
Registering a New Discord Bot App with Discord...........cccevirinveninneniennen, 175
Specifying General Info for the Bot............cccvrrevnnninne v 176
Specifying OAuth2 Parameters for the Bot............ccccvvvrvvvnvniennenensensenens 176
Invite Your Bot t0 YOUF SEIVEr ... 177
Getting the Discord ID Token for Your Bot and Setting the
GateWaAY INTENTS......ccvverere e nen 177

Creating the Next Discord Bot, the Content Moderatorcccccoveevrevcrencnne. 177
Handling Messages Sent to the DiSCOrd SErverccevvverrerreriereesersersens 179
Success Again! Running Your Second Discord Bot, the
Content MOUErator...........ccovevrenerecernserr e 179

CONCIUSION ...t b s s r e e s ae s r e nne s 180

Exercises Left for the Reader........c.ccovvvrvrinnvnvninsnsnen s 181

Chapter 7: Adding Intelligence to Our Discord Bots,
Part 1: Improving Our Q&A Bot...........ccscmmmrnssennmmnsssssnnnnssssssnsssssnnnns 183

Making Our Tech Support Bot More Intelligentcoccocvvvverievnnnieniennsensenenns 184
Important Changes to Note from the Previous Version of the Tech
SUPPOME BOL ...t e 188
Updates to the Newly Named Function, discordClient.on()c.c.ccoevvrerenee. 189
Analyzing Our ChatGPT Client, chatGPTCIient.jsccccrverernnnmsmsessnssssssisenens 190
Running Our Intelligent Q&A BOt..........cccovvmeenenerenneseseseresssse e sessssenenes 192
We Have a Monumental Achievement... with One Slight Flawc.ccccveuene 195
Update the System Message to ChatGPT and Let’s Try Again.........cccceveeviernene 196
{0 T 11T (0] o O 198

viii

TABLE OF CONTENTS

Chapter 8: Adding Intelligence to Our Discord Bots,

Part 2: Improving Our Moderator Botcccccemmrrrinsssssssnnnnnnnesssssnns 199
Using OpenAl.moderations.create() to Invoke a Moderation Model.................. 201
Create Moderation (JSON).......ccccorermrnsmnensenesese s s s e sennes 202
Handling the JSON RESPONSE........ccoveererrermrnsmsenesessse s sessesessenens 202
Moderation (JSON)ccoourererenmrnnmressesesese s s sessesessesessssesessssssssnens 203
Creating Our Client for Content Moderation.........c.ccccovvevnesrnsnnnesennesesensenens 207
Making Our Content Moderator Bot More Intelligentcccoovvvnvninncniennene 210
Important Changes to Note from the Previous Version of the Content
MOAErator BOtcccouiererierce e s 212
Updates to the discordClient.on() FUNCLioNcccccovvevninirinsvnscsenesennnne, 214
Running Our Intelligent Content Moderator Bot..........cccccvvnevnsncnicnnsnniennen, 215
L] e 110 o SR 217
Exercises Left for the Reader..........ccvveevecrnsesnnnesnnnse s 217
INA@X . iiiiisssnnnnnnnnnnnssssssssnnnnnnnnnsssssssssnnnnnnnnsssssssssnnnnnnnnsssssssnnnnnnnnnnnsssssnnn 219

ix

About the Authors

Bruce Hopkins Jr. works as a senior software
developer and consultant for a fast-growing
startup specializing in creating cutting-

edge B2B and B2C applications based in
Dallas, Texas. With years of experience as a
full-stack developer, Bruce Jr. is passionate
about building robust, user-friendly software
applications and services using his favorite

languages, JavaScript and TypeScript. He has
hands-on experience with Al toolsets like OpenAI ChatGPT and Meta
Llama and has used them in both research and professional Al-powered
solutions. Beyond his professional expertise, Bruce actively contributes
to the open source community, dedicating countless hours to fixing bugs,
enhancing projects, and improving tools like the very popular Microsoft
VS Code. When he's not coding, you might find him mentoring junior
developers, attending tech meetups, or staying up to date with the latest
trends in artificial intelligence and software development.

ABOUT THE AUTHORS

Bruce Hopkins Sr. has been an author and
technical writer with more than 20 years of
experience writing articles and blogs for some
of the world’s leading technology companies,
including Intel, IBM, Oracle, and the official
Linux Magazine. Beyond technical writing,
Bruce Sr. has been at the forefront of research
in natural language processing (NLP) and

artificial intelligence (AI), with a particular
focus on speech recognition and chatbot
technologies. His innovative contributions in these fields have earned him
the prestigious title of Intel Innovator for Al and IoT. Bruce’s passion for
technology extends beyond writing - he actively explores emerging trends
in Al, bridging the gap between complex technical concepts and practical,
real-world applications. His work not only informs but also inspires the
next generation of tech professionals and innovators. With a commitment
to advancing the understanding and adoption of Al, Bruce remains a
thought leader in this rapidly evolving industry.

xii

About the Technical Reviewer

Satej Kumar Sahu works in the role of
Principal Data Engineer at Zalando SE, with
14 years of experience in the industry. He is
passionate about technology, people, and
nature. He has worked with organizations
such as Boeing, Adidas, and Honeywell,
specializing in software, architecture, big
data, and machine learning use cases. With
a strong track record of architecting scalable

and efficient systems, Satej has successfully
delivered software, data-driven, and ML
applied solutions. He believes that through technology and conscientious
decision-making, each of us has the power to make this world a better
place. In his free time, he can be found reading books, playing basketball,
and having fun with friends and family.

xiii

CHAPTER 1

Introducing ChatGPT
for JavaScript
Developers

Who Is This Book For?

First of all, this book is for JavaScript developers who don’t have any
training or experience in artificial intelligence, natural language
processing, machine learning, or deep learning. You may have heard of the
term “language model,” but I'm going to assume that it’s NOT a term that
you use every day.

Secondly, you might be familiar with (or have tried) ChatGPT, but
you don’t quite understand how everything works “under the hood” and
you're not sure how to get started in order to use JavaScript and ChatGPT
programmatically together to “Al enable” your own applications and

services.

© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025 1
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_1

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Note Although ChatGPT is a household name, OpenAl, the company
behind it, lacks broad recognition and isn’t as widely recognized. So,
although this book is about how to use ChatGPT programmatically
within your JavaScript apps, the APIs that we will be using are
officially the OpenAl REST APIs. Therefore, we’ll be using the term
“ChatGPT API” and “OpenAl API” synonymously.

Chapter Overview

In this chapter, we're going to dive right in and explain a few terms that
you might not be familiar with, and then go straight to the ChatGPT
Playground. The Playground is essentially a web interface for developers
that’s built on top of ChatGPT REST API. So, once you're familiar with the
Playground, the calls and responses from the ChatGPT API will feel like

second nature to you.

Download the Code Now!

This book is filled with tons of examples and example code, so why bother
typing everything yourself? Below is the URL to the GitHub repo to access
the source code.

https://github.com/JavaScriptChatGPT/

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

So, What Exactly Is ChatGPT and Why Do
| Need to Use the OpenAl APIs?

Simply stated, ChatGPT is a group of language models (which are the
result of training deep learning algorithms) developed by OpenAl that is
capable of generating human-like text responses based on given prompts.
So what’s a prompt? A prompt is simply the input text that you give to
ChatGPT. So let’s kick things off by giving ChatGPT a prompt to ask how
well it’s familiar with JavaScript design patterns. Head over to the chatgpt.
com website, and enter the following prompt from Listing 1-1.

Listing 1-1. PROMPT. A Simple Prompt with ChatGPT About
JavaScript Design Patterns

Describe 3 commonly used design patterns used by JavaScript
developers and why those patterns are important

If you've had the opportunity to work at a company using JavaScript
professionally, then you've probably received a question very similar to the
prompt above in an interview. Listing 1-2 is ChatGPT’s response.

Listing 1-2. RESPONSE. ChatGPT’s Response to the Prompt in
Listing 1-1

G

JavaScript developers commonly use design patterns to manage
code complexity and enhance code maintainability, readability,
and scalability. Here are three widely used design patterns in
JavaScript:

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

1. Module Pattern

The Module pattern is used to encapsulate a group of related
methods or variables into a single unit or module, shielding
parts from the global scope. This pattern helps in:

. Reducing Namespace Pollution: By minimizing the use of
global variables, this pattern helps avoid namespace
pollution.

. Encapsulation: It enables better encapsulation and

protects the module's states and behaviors from outside
interference.

. Code Organization: It promotes organizational and
structural clarity by dividing responsibilities across
distinct modules.

2. Observer Pattern

The Observer pattern is a software design pattern in which an
object, called the subject, maintains a list of its dependents,
called observers, and notifies them automatically of any state
changes, usually by calling one of their methods. This pattern
is crucial for

. Decoupling: It decouples the objects that invoke the
behavior from the objects that perform the behavior,
leading to a cleaner and more flexible architecture.

. Event Handling: It's widely used in the handling of user
interface events and other scenarios where certain objects
need to be notified of changes occurring in other objects.

. Reactive Programming: Facilitates a reactive programming
approach where changes propagate through the system in
response to events.

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

3. Singleton Pattern

The Singleton pattern ensures that a class has only one
instance and provides a global point of access to it. This
pattern is widely used for

. Controlled Access: It provides controlled access to a
single instance, which can be useful for managing shared
resources or configurations.

. Initialization Guarantee: Ensures that a class is
instantiated once and only once, which can be critical for
many shared resources.

. Lazy Initialization: Often implemented with lazy
initialization, saving system resources by postponing the
creation of the instance until it's needed.

Not bad, huh? ChatGPT was not only able to provide a list of common
design patterns used by JavaScript developers, but also explain valid
reasons on why they are important - all done in Natural Language.

So, at the end of the day, what does this mean for JavaScript
developers? Well, it’s actually a big deal. That’s because developers
are now able to create applications that can have some type of
“understanding” of text in Natural Language. Before the advent of Al tools
like ChatGPT, developers typically had to create regular expressions (also
called “regex”) in order to perform rudimentary character and String
pattern matching within a body of text. However, pattern matching and
Natural Language Understanding are two totally different things.

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Regex vs. ChatGPT - Fight!

Note If you already know that a regular expression can’t perform
Natural Language Understanding or sentiment analysis, then feel free
to skip this section.

I'm thoroughly convinced that every programmer somewhere in their
lifetime has met somebody who happens to be an expert in writing regular
expressions. Regular expressions are great because they serve the purpose
of being able to parse large amounts of text in order to find patterns within
the text programmatically.

However, one of the biggest downsides to regular expressions is that
once they have been written, they are extremely difficult to read (in my
opinion, even by the developer who originally wrote it).

So let’s see how regex holds up against ChatGPT, which has Natural
Language Processing (NLP) and Natural Language Understanding (NLU)
capabilities.

Listing 1-3 is a story of an impractically sad situation. However, it
drives home the point that although regular expressions can be used to
find words and phrases within a body of text, it can’t be used to provide
any type of NLU.

Listing 1-3. Sadstory.txt - A Sad Story About a Kid Who Didn’t Eat
Ice Cream

In the city of Buttersville, United States, on Milkmaid street,
there's a group of three friends: Marion Yogurt, Janelle de
Queso, and Steve Cheeseworth III. On a hot summer's day, they
heard the music from an ice cream truck and decided to buy
something to eat.

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Marion likes strawberries, Janelle prefers chocolate, and Steve
is lactose intolerant. That day, only two kids ate ice cream,
and one of them bought a bottle of room-temperature water. The
ice cream truck was fully stocked with the typical flavors of
ice cream.

Analysis Question #1: Who Didn’t Get Any Ice
Cream and Why?

Now let’s analyze this for a bit and ask some questions among ourselves.
First of all, who didn’t get any ice cream and why? The obvious answer
is that Steve did not get any ice cream because of his lactose intolerance.
However, since the story did not directly say that Steve did not buy ice
cream, there’s no way for a regular expression to match a text pattern in
the story.

The regular expression could look for keywords such as “didn’t have,”
“no ice cream,” or the names of the kids. However, it would only be able to
provide a response based on the presence of these patterns. For example,
if the regular expression matches the pattern “didn’t have” or “no ice
cream” with Steve’s name, it could show you the result of the text pattern.
However, it certainly wouldn’t be able to explain why Steve was the one
who didn’t have ice cream or provide any context-specific reasoning.

Now, let’s provide the same story to ChatGPT, and ask the question,
“Who didn’t get any ice cream?” Listing 1-4, located below, takes our
question and the story above and puts both together as a prompt.

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Listing 1-4. PROMPT. The Sad Story Put Into a Prompt

Using the information in the story below, who didn't get any
ice cream and why?

Hit#

In the city of Buttersville, United States, on Milkmaid street,
there's a group of three friends: Marion Yogurt, Janelle de
Queso, and Steve Cheeseworth III. On a hot summer's day, they
heard the music from an ice cream truck, and decided to buy
something to eat.

Marion likes strawberries, Janelle prefers chocolate, and Steve
is lactose intolerant. That day, only two kids ate ice cream,
and one of them bought a bottle of room-temperature water. The
ice cream truck was fully stocked with the typical flavors of
ice cream.

Notice how it is a best practice to provide some type of separation, in
this case, “###’, when creating a prompt (like the one above) where you have
both instructions and data together. Later on, when we start using either
the Playground or JavaScript to programmatically invoke the ChatGPT API,
you'll see that there’s a much better way to provide that separation.

So, after sending the prompt, ChatGPT will provide you an answer like
shown in Listing 1-5:

Listing 1-5. RESPONSE. ChatGPT’s Answer to Analysis Question #1

G

Based on the given information, Steve is lactose intolerant and
therefore cannot eat ice cream. Therefore, Steve is the one who
didn't get any ice cream.

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

As you can see, ChatGPT can utilize NLP and NLU, and therefore it can
understand (artificially intelligently, that is) the context of the scenario.
It can interpret the relationships between the kids, their preferences, and
Steve’s lactose intolerance. It is able to understand that the last names of
the children, the street name, and the city name are the names of dairy
products, but are obviously irrelevant to the question at hand.

Analysis Question #2: Which Kid Was Probably
Left Sad?

Now to further prove the point that a regular expression is unable to
provide any type of NLP or NLU, now let’s use a new term called sentiment
analysis. Therefore, after the ice cream truck drove away, which kid was
left sad?

Since the story had no mention of any of the children’s feelings or
emotions, there is no text pattern that would allow any regular expression
to return a match.

However, if you posed the same question to ChatGPT, it will return a
response like shown in Listing 1-6:

Listing 1-6. RESPONSE. ChatGPT’s Answer to Analysis Question #2

Since Steve is lactose intolerant and cannot eat ice cream, he
would be the kid left sad because he couldn't enjoy the ice
cream like Marion and Janelle.

Therefore, ChatGPT is able to comprehend the scenario, reason
through the information, and provide a correct answer along with an

explanation for that answer.

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Let’s Unlearn Some Words in Order to Learn
More About the ChatGPT API

First of all, before you get started working with the ChatGPT and OpenAl
APIs, there are few words and terms that you should be familiar with first;
otherwise, things won'’t exactly make sense. So let’s make sure that we're
all clear on the definition of Models, Prompts, Tokens, and Temperature
when using ChatGPT programmatically.

Models. Models? Models!!!

As a JavaScript developer, when you hear the term “model,” you may
immediately think of the representation of real-world entities in your
JavaScript app, right? For example, think of the term, “object model”
Additionally, if you're ever worked with any type of database before,
then the term “model” may ALSO conjure into your mind the idea of
the representation of data and their relationships in your database. For
example, think of the term, “data model.”

However, when working with the ChatGPT APIs (and artificial
intelligence in general, for that matter) you need to forget both of those
definitions, because they don’t apply. In the realm of artificial intelligence,
a “model” is a pre-trained neural network.

Remember, as I mentioned earlier, you won’t need a PhD in Machine
Learning in order to read this book. So what’s a neural network? Simply
stated, a neural network is a fundamental component of artificial
intelligence systems, because they are designed to simulate the way the
human brain works by using interconnected layers of artificial neurons to
process and analyze data. These networks can be trained on vast amounts
of data to learn patterns, relationships, and to make predictions.

10

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

J

~
""" . —~

.....

.....

.....

.... —

it
o

various data sources ChatGPT model

Figure 1-1. An Al Model Is Trained on Vast Amounts of Data

In the context of A, a “pre-trained model” refers to a neural network
that has been trained on a specific task or dataset before being made
available for use by developers. This training process involves exposing
the model to large amounts of labeled and categorized (also called,
“annotated”) data and adjusting its internal parameters to optimize its
performance on the given task.

Let’s look at some of the models provided by OpenAl for developers to
use to Al-enable their applications.

o1 The o1 series of large language models is trained through
reinforcement learning to handle complex reasoning tasks. o1
models engage in deep thought before answering, generating a
lengthy internal chain of reasoning prior to responding to the user.
These models take a significantly longer time to generate a response
than other models.

Some o1 available models are
* 01
® 01-mini

(continued)

11

CHAPTER 1

INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

GPT-4

GPT-3.5

DALL-E

GPT-4 is one of the latest generation of OpenAl’s GPT set of models.
GPT stands for Generative Pre-trained Transformer, and these models
have been trained to understand natural language as well as multiple
programming languages. The GPT-4 models take text and images as
inputs as the prompt and provide text as the output.

Some of the GPT-4 models available are

e gpt-4o

e gpt-40-mini

¢ gpt-4o-realtime

sanet.st

e gpt-40-audio
GPT-3.x is the previous generation of OpenAl’s GPT set of models.
The original ChatGPT released to the public in November 2022 used
GPT 3.
Some of the GPT-3 models available are

e gpt-3.5-turbo

e gpt-3.5-turbo-16k
The DALL-E model can generate and edit images given a natural
language prompt.
Later in this book in Chapter 5, we’re going to have some fun with
the DALL-E model to visualize the conversation of what is being
discussed in your favorite podcast episode.
Some of the DALL-E models available are

e dall-e-3

e dall-e-2

12

(continued)

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

TTS

Whisper

Embeddings

The TTS model takes text and converts it to audio with surprisingly
good results. In most cases, the audio is almost indistinguishable
from a human voice.

Some of the TTS models available are
o tis-1
e tts-1-hd

Simply stated, the Whisper model converts audio into text.

In this book, we’re going to use the Whisper model to search for text
in a podcast episode.

The Embeddings model can convert large amounts of text into a
numerical representation of how the Strings in the text are related.
So how is that useful? Embeddings allows developers to do specific
tasks using custom datasets. Yes, this means that you can train

the embeddings model on specific data that is relevant to your
application. This allows you to do operations such as

e Searching within your own body of text

¢ C(lustering data so that strings of text are grouped by their
similarity

e (etting recommendations (where items with related text
strings are recommended)

¢ Detecting anomalies (where outliers with little relatedness are
identified)

e Measuring diversity (where similarity distributions are
analyzed)

e (lassifying data (where text strings are classified by their most
similar label)

(continued)

13

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Moderation ~ The moderation models are fine-tuned models that can detect
whether text may be sensitive or unsafe. These models can analyze
text content and classify it according to the following categories:

e Hate

e Hate/threatening

¢ Harassment

e Harassment/threatening
e Self-harm

e Self-harm/intent

e Self-harm/instructions
e Sexual

e Sexual/minors

¢ \iolence

¢ \Violence/graphic

The moderation models available are

o text-moderation-latest
¢ text-moderation-stable

Legacy and Since the debut of ChatGPT, OpenAl has continued to support their older

Deprecated Al models, but they have been labeled as “legacy” or “deprecated”
models. These models continue to exist; however, they have released
other models that are more accurate, faster, and cheaper to use.

Note This is by no means an exhaustive list of models available for
developers provided by OpenAl! As newer models are released, the
older models will be marked as legacy or deprecated. Therefore, it’s
important to stay up to date by checking the list of available models
on the OpenAl documentation list of models:

https://platform.openai.com/docs/models

14

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

When We Talk About Tokens, Don’t Think About
Access Tokens

When using a third-party API, such as an external REST service, you might
think of a “token” in the same sense as an access token, which is typically
a UUID that allows you to identify yourself and maintain a session with
the service. Well, forget that definition for now. Instead, when using the
OpenAl APIs, a token is a chunk of a text that is approximately 4 characters
long. That's it - nothing else special.

So if a token is approximately a 4-character chunk of text, then why do
we care about it?

When working with the OpenAl textual models, developers need to be
aware of token limitations, because they impact the cost and performance
of API calls. For example, the gpt-40 and o1 models both support 128,000
tokens (which is approximately the size of a 300-page novel) that can go
in your prompt. These input tokens are also called the context window.
In contrast, the maximum output tokens for gpt-4o0 is 16,384, while the
maximum output tokens for the 01 model is 32,768.

As aresult, developers need to take into account the length of the
prompts as inputs and outputs to the models, ensuring that they fit within
the model’s token constraints.

Table 1-1 provides a list of some of the most current models with the
token limitations and their pricing.

15

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Table 1-1. List of Models with Their Token Limitations and the Cost
per Token

Model Context Window Cost of Token Input Cost of Token Output
gpt-4o0 128,000 $2.50 / 1M tokens $10.00 / 1M tokens
gpt-40-mini 128,000 $0.15/ 1M tokens $0.60 / 1M tokens

o1 128,000 $15.00/ 1M tokens ~ $60.00 / 1M tokens
o1-mini 128,000 $3.00 / 1M tokens $12.00 / 1M tokens

Temperature Is All About Creativity

Of course, ChatGPT isn’t sentient, so it’s incapable of thinking as we
humans do. However, by adjusting the temperature setting in your
prompts to the ChatGPT API, you can enable the responses to be more
creative. Being aware of what it understands is crucial if you want to make
best use of its potential.

) .
Very creative, very random

Not creative, very predictable

©

Figure 1-2. Modify the Temperature in Order to Get More (or Less)
Creative Responses

Now it’s time to take the concepts that we've learned so far and start
to put them to good use! However, we need to do first things first, and
therefore you will need to have a developer account with OpenAl and
create an API key.

16

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Head over to the following URL to create your dev account and
API key:

https://platform.openai.com/account/api-keys

As you can see from the image below, you can name your API key
anything that you want.

Getting Started with the OpenAl Playground

Now it’s time to take the concepts that we've learned so far and start to put
them to good use! However, we need to do first things first, and therefore
you will need to have a developer account with OpenAl and create an
API key.

Head over to the following URL to create your dev account and
API key:

https://platform.openai.com/account/api-keys

As you can see from Figure 1-3, you can name your API key anything
that you want.

17

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Create new secret key

ization or project, this key will be disabled.

developer key for JS apps

Project

Default project

Permissions

Al Restricted Read Only

Figure 1-3. Before You Can Access the Playground or Make API Calls,
You Need to Have an API Key

You should be aware that as a requirement to create an API key, you
will need to provide to OpenAl a credit card so that you can be billed for
usage of their models.

Now that you've got your API key, let’s go straight to the Chat
Playground at the following URL:

https://platform.openai.com/playground

Figure 1-4 depicts the Chat Playground, with certain parts numbered
so that they can be easily identified.

18

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

@ Fersonal ¢/ Detautt project Playground Dashboard Docs APlreference {83 e
[PLAYGROUND Chat & C@ &> Code % Compare O History B Your presets
@ St Model t-40 T
System message ‘4 Generate A ode) gpiRg
4l Realtime
You are a JavaScript developer Response format text ¢
@ Assistants
Q TS Functions + Add
= Complet

Model configuration

o Temperature 1.00
0 Max tokens 2048

Stop sequences

TopP 1.00
Frequency penalty 0.00
Presence penalty 0.00

<> Cookbook QWhat are the most common packages used by developers’?'

283 Forum - P 0 s
Save as preset
@ Help 9

Figure 1-4. The Chat Playground Can Be a Little Daunting at
First Glance

1. System Message

Asyou can see, the user interface for the Chat Playground is vastly more
complex than the ChatGPT website that everyone else uses. So let’s talk
about the System Message field (see Figure 1-4, item 1).

In our opinion, ChatGPT can be described as, “a vastly powerful form
of artificial intelligence... with amnesia.” Therefore, when you're using
ChatGPT programmatically, you need to inform the system who it is in the
conversation!

Figure 1-5, shown below, gives you a glimpse of the thousands of
different roles that ChatGPT can play in a conversation.

19

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

’

System: “You are a...’

H ra

|
Gl & —
“economist” ‘blogger” “15th century “Chef”
poet”

Figure 1-5. The System Message Field in the Chat Playground Allows
You to Set the Role That ChatGPT Will Play in the Conversation

2. User

The User field (Figure 1-4, item 2) in the Chat Playground is where you
type your prompt to ChatGPT, which can be anything that you want, for
example, “What are the most common packages used by developers?”

3. Assistant (Optional)

When you initially load the Chat Playground, the Assistant field
(Figure 1-4, item 3) is not visible. In order to make it appear, you need to do
the following:

o Typein a User message.

e Click the “+” button to add the message to the
conversation.

o Click the User button, to toggle the message type from
“User” to “Assistant.”

Now, you may be asking yourself, “Why is this field needed at all?”
Well, that’s a fine question. If you want ChatGPT to remember something
that it has already told you in a previous conversation, then you need to

20

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

type into the Assistant field anything that it has already told you that you
think is relevant in order to continue with the conversation. Remember, it
is a vastly powerful Al, but it has amnesia!

4. + (Optional)

The “+” button (Figure 1-4, item 4) is where you'd click in order to add
either an Assistant message to the conversation or another User message.
Now, you may ask, “What’s the point of adding yet another User message
to the conversation, when I can type what I want in the original User field
above?” Good question.

If you wanted to separate your commands from your data, then you
would use a separate User message for that.

Do you remember in Listing 1-4 earlier in this chapter, where we had
to use the “###” to separate the command to ChatGPT from the data that
we wanted it to analyze? Well, this is now no longer needed because the
command would be the first User message, and the data would be the
second User message.

5. Code (Optional)

After you have submitted your prompt using the Playground, you can click
the Code button (Figure 1-4, item 5) in order to see the code necessary to
send the same prompt using any of the languages that they support.

6. Model (Optional)

Earlier in this chapter, we talked about the various models that are
available for developers. Click the model field in order to see a list of
models that are available.

21

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

You may also see that some models have a month and day
associated with their name, which is simply a snapshot of that model.
Programmatically selecting a snapshot enables developers to have some
sort of predictability in the responses that they will receive from ChatGPT,
because the current models are always updated.

7. Temperature (Optional)

As noted earlier in this chapter, the temperature selector ranges between 0
and 2 and allows you to select the “randomness” of the response.

8. Max Tokens (Optional)

Do you remember the discussion earlier in this chapter about tokens? By
selecting anything in the range for this item, you can adjust the number of
tokens (which directly affects the number of words) in the response.

Try It Now! Experimenting

M 1] ”»
with the “System” Role
Now that we're familiar with several of the features of the Chat Playground,
let’s send our first prompt using the settings discussed above. Listings 1-7
and 1-8 below use the same prompt asking ChatGPT to give a few

paragraphs on telemedicine, but the role of the system is vastly different
from each other.

Listing 1-7. PROMPT. The Pros and Cons of Telemedicine as a
Researcher

System: You are a strictly factual researcher
User: Write 3 paragraphs on pros and cons of telemedicine

22

CHAPTER 1 INTRODUCING CHATGPT FOR JAVASCRIPT DEVELOPERS

Listing 1-8. PROMPT. The Pros and Cons of Telemedicine as an
Opinionated Health Blogger

System: You are a highly opinionated health blogger who always
has stories with first hand experience
User: Write 3 paragraphs on pros and cons of telemedicine

You are encouraged to try these two prompts yourself and see what the
responses are. Adjust the settings for the temperature and token length to
get familiar with how those parameters affect the outcome.

Conclusion

You just learned more about how ChatGPT can be used by developers.
We covered some of the basics of the Chat Playground, which is a web
interface for developers to interact with the ChatGPT API.

We talked about how to set the system, user, and assistant roles in the
Chat Playground and how to adjust settings such as the temperature and
maximum length of output.

You learned about some of the parameters and terminology necessary
to use the Chat Playground, such as the model, the temperature, and
tokens. Getting familiar with the parameters of the Chat Playground is
essential to knowing how to use the REST API since the Playground is a
subset of capabilities offered by the REST API.

In the next chapter, we’ll see how to use ChatGPT as your “pair
programmer” and create a productivity app that gives us weather and
arrival time to work.

23

CHAPTER 2

Using ChatGPT
As Your JavaScript
Pair-Programmer

I'm a big fan of some of the practices of XP (eXtreme Programming) and,
especially, pair-programming. No matter what flavor of pair-programming
that you prefer, it involves two engineers sitting down at the same screen
and solving the same problem together. One of the biggest benefits that
you get is a fresh set of eyes on a problem, and of course, you now have two
engineers who have “touched” the codebase instead of one. Sometimes
you can have one engineer write the code, and the other write the tests and
the comments. No matter how yous slice it, it’s all good stuff.

Chapter Overview

This chapter will walk you through obtaining and testing out your API

key, get you comfortable making calls to the OpenAl JavaScript API for
ChatGPT, and introduce you to how to get things done using other models
as well. Furthermore, we’ll be using ChatGPT as a pair-programmer to
create an application that will allow us to input the name of a city and

the time you'd like to arrive to work, then give you the weather and an
estimated arrival time based on current traffic conditions! Sound exciting?
Then let’s jump right in.

© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025 25

B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_2

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

You Have Node.js Already Installed, Right?

For obvious reasons, you can’t do much in this book without having Node.
js installed on your computer. Therefore, in order to check the version of
Node that you have, just open a terminal window and execute:

node - v

If the output of the command shows you a version number, then you're
all set!

Now, after executing the command above, if you see an error message,
then you need to install Node.js for your specific operating system. If that’s
the case, then use ChatGPT or Google in order to get the instructions
depending on your OS, and then open a new terminal window and execute
the command above in order to see the version that you have.

Installing (or Updating) the OpenAl Node.js
Library with npm

In order to use the OpenAl library with JavaScript, the minimum
supported version of Node compatible is version 18, although the

code examples were tested with version 20. Now that you have all the
prerequisites, it’s time to install the OpenAlI Node.js library itself. Go back

to your terminal window, and execute the following command:
npm install openai

The command above will install the OpenAl library for you if it doesn’t
already exist and will update the library to the most recent version it’s
already there.

26

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Three Ways to Set Your API Key

When setting up your API key for the OpenAI AP], there are different
methods to choose from, each designed for specific project needs and
security concerns.

Option #1: Setting a System-Wide
Environment Variable

The environment variable approach establishes a system-wide
environment variable for API key storage. This provides a centralized point
for key management, simplifying deployment across diverse projects.

Let’s look at the steps on how we’d go about doing it.

For Mac 0S

First off, open Terminal. You can find it in the applications folder or use
spotlight (Command + Space) to search for it.

Next, edit your bash profile. For older MacOS versions, you'd use the
command nano ~/.bash_profile. Users of newer MacOS versions will need
to use nano ~/.zshrc. This will open the profile file in a text editor.

Now let’s add your environment variable. In the editor, add the line
below, replacing “your-api-key-here” with your actual API key without the
single quotation marks.

export OPENAI API KEY='your-api-key-here'

Let’s save and exit by pressing Ctrl+O to write the changes, then
pressing Ctrl+X to close the editor.

Now you're going to load your profile by using source ~/.bash _
profile for older Mac OS versions and source ~/.zshrc for the newer
Mac OS versions. This will load the updated profile.

27

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Finally, we’re going to verify that we've done everything correctly. In
the terminal, type echo $OPENAI_API KEY.If everything went well, you
should see the value of your API key.

echo $OPENAI_API_KEY

For Windows

Start by opening the command prompt. You can find it by searching “cmd”
in the Start/Windows menu.

Now we’re going to set the environment variable in the current session
by using the command below, replacing “your-api-key-here” with your
actual APT key. This command sets the OPENAI_API_KEY for the current

session.
setx OPENAI_API KEY 'your-api-key-here'

You can make the setup permanent by adding the variable through
system properties:

e Right-click “This PC” or “My Computer” and select
“Properties.”

e Click “Advanced system settings.”
¢ Click the “Environment Variables” button.

e Inthe “System variables” section, click “New...” and
enter OPENAI_API_KEY as the variable name and your
API key as the variable value.

To make sure everything is working properly, reopen the command
prompt and type the command below to verify the setup. It should display
your API key.

echo %OPENAI_API_KEV%

28

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

For Linux

To set the environment variable for the current session, open a terminal
window and use the export command. Replace “your-api-key-here” with
your actual API key.

Listing 2-1. Adding an Environment Variable on Your Hard Drive
on Linux

export OPENAI API KEY='your-api-key-here'

To make the environment variable persistent across sessions, you can
add it to your shell’s configuration file, such as ~/.bashrc for Bash. Here’s
how you can do it:

Open the configuration file in a text editor. For example:

nano ~/.bashrc
Add the following line at the end of the file:
export OPENAI API KEY='your-api-key-here'

Save the file and exit the text editor.
To apply the changes immediately, you can either close and reopen the
terminal or run:

source ~/.bashrc

To verify that the environment variable is set correctly, you can echo its
value in the terminal. This command should display your API key:

echo $OPENAI API_KEY

29

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Option #2: Creating a .env File

Using a system-wide environment variable is great for making the API
key accessible by any application or script running on the machine.
However, if your use case is a little more simplistic, we can simply create
alocal variable accessible within just the scope of a particular program or
script. It’s also useful for situations in which different projects necessitate
different keys, so you can prevent conflicts in key usage. Let’s dive right in!
We're going to start by creating a local . env file. This file will hold your
API key, ensuring it’s only utilized by the designated project. Navigate to
the project folder where you intend to create the .env file.

Note To prevent your .env file from being unintentionally shared via
version control, create a .gitignore file in your project’s root directory.
Add a line with .env to ensure the confidentiality of your API key and
other sensitive information.

Next, use the terminal or an IDE to create both the .gitignore and .env
files. Copy your API key and replace “your-api-key-here” with your actual
API key without the single quotation marks.

At this point, your .env file should look like this:

OPENAI_API KEY='your-api-key-here'

Finally, you can import the API key into your Node.js code using the
following snippet:

Listing 2-2. Importing Your .env File Into Your Node.js Application

import OpenAI from "openai';
import "dotenv/config";

// Create a new open ai client

30

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

const openai = new OpenAI({
apiKey: process.env["OPENAI API KEY"],

};

Of course, you'll need to install the dotenv package if you don’t have it
already. Just execute:

npm install dotenv

Option #3: Hard Coding the API Key Directly
in Your Application (Take with Caution)

This last method isn’t recommended for long-term use because of security
reasons. But, for the sake of knowing how things work, we’re going to cover
how you can hard code your API key into your application if you want to
quickly test out your API key to make sure it’s working.

To begin, you’ll assign the API key to a variable within the JavaScript
code. Replace “YOUR_API_KEY” with the actual API key you received from
OpenAl. Ensure that this API key is kept secure and not shared publicly.

Next, you'll initialize the OpenAl client within your Node.js script. This
is done by instantiating the OpenAl class with the api_key parameter set to
the API key. By providing the API key during initialization, you enable the
OpenAl client to access the services offered by the OpenAl API. This step
ensures that your Node.js script can communicate with the OpenAI API
using the specified API key.

Listing 2-3. Coding Your API Key Directly into Your Application

import OpenAI from "openai';
import "dotenv/config";

const API _KEY = "YOUR _API KEY";

31

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

const openai = new OpenAI({
apiKey: API_KEY,
1);

Now let’s make our first application with the OpenAI API and test out
the key at the same time by getting a list of models available within the
OpenAlI API.

Note From this point on, the code examples will be accessing our
APl key with a local .env file.

Creating Your First JavaScript ChatGPT App:
list-models

We're actually going to accomplish two tasks at once here. We're going to
create a basic Node.js script using the OpenAl APIs, and in the process, we're
going to verify that we’ve properly obtained an API key. So, needless to say,
in case you haven’t done so already, follow the instructions in Chapter 1

to create your OpenAl developer account and obtain your API key. Going
forward, all the code samples in this book require a valid API key.

Using openai.models.list() to Get a List
of Available Models

One of the most basic (but also essential) capabilities that we can get a list
of available models. Why, you may ask? The ChatGPT website only exposes
a handful of models available, and the Playground adds a few more that
you can use. However, by invoking openai.models.list(), you get a list that
specifies the name of every model, and there’s a lot to choose from!

32

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Handling the Response

Note Since objects can contain Arrays (which can be hard to
represent in a table), we’re using the following notation “,” to
indicate the elements of the Array. As you can see from Table 2-1,
“id,” “object,” “created,” and “owned_by” are all elements of the
“data” Array in the response.

Table 2-1. The Structure of the Model Object

Field Type Description
object String This always returns the literal, “list”
data Array An Array of Al models offered by OpenAl
l, id String The unique ID of the Al model, which is essentially the
full name of the model
, object String This always returns the literal, “model”
, created integer The creation date for the model

l, owned_by String The name of the organization that owns the model

Now that we have the details of the Model object, let’s talk about how
we can test our API key we obtained in the first chapter. There are actually
a few ways to do this.

33

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Using Your API Key to Get a List of Available
Models with the OpenAl API

With our API key set up in a local .env file, we’re going to use the following
code to get a list of models available within the OpenAI API, which will
then be printed into our terminal.

Listing 2-4. Getting a List of Models Available with the OpenAI API
by Calling the models.list() Function

import OpenAI from "openai";
import "dotenv/config";

// Create openai client
const openai = new OpenAI({
apiKey: process.env["OPENAI API KEY"],

B;

async function main() {
// Get the model list from the openai client
const model 1list = await openai.models.list();

// Save the model names to a variable
const model names list = model list.data.map((model) =>
model.id);

// Loop through the names and log them.
for (const name of model names list) {
console.log(name);

}
}

main();

34

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

After running the code in Listing 2-4, Listing 2-5 shows all the models
that are available for us to use:

Listing 2-5. The List of Available Models

ol

ol-mini

dall-e-3

gpt-4o0-mini
text-embedding-3-large
text-embedding-3-small
gpt-4-0125-preview
text-embedding-ada-002
dall-e-2

tts-1

tts-1-hd-1106
tts-1-1106

tts-1-hd

gpt-4

babbage-002
gpt-4-turbo-preview
gpt-40-2024-08-06
gpt-3.5-turbo

gpt-4o0
gpt-3.5-turbo-1106
whisper-1
gpt-3.5-turbo-16k
gpt-3.5-turbo-instruct-0914
gpt-3.5-turbo-0125
gpt-4-0613
gpt-3.5-turbo-instruct
gpt-4-1106-preview

35

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

chatgpt-4o0-latest
gpt-4-turbo-2024-04-09
davinci-002
gpt-4-turbo
gpt-40-2024-05-13
gpt-40-mini-2024-07-18

As you can see in the list above, as a developer, we have more Al
models available to us that are not even exposed to anyone who's using the
Chat Playground!

So now, we're at the point where we can programmatically invoke the
Open AI APIs using our API key. In the rest of this chapter, we’re going to
see what it’s like to use ChatGPT as a pair-programmer in order to allow us
to quickly build JavaScript applications.

However, we first need to put some thought into the prompts that we
need to give to ChatGPT.

Wait, How Many Tokens Are in My Prompt?

At a certain point, you're going to start thinking about the prompts that
you plan to send to ChatGPT and give considerable thought to the token
limitations (and the costs) regarding the model that you want to use. In
case you forgot, be sure to refer back to Table 1-1 for a list of models and
the price of the tokens. Additionally, OpenAl created a simple-to-use
website that allows you to see how many tokens are in your prompt, as
shown in Figure 2-1.

36

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Tokenizer

Learn about language model tokenization

OpenAl's large language models (sometimes referred to as GPT's) process text using tokens,
which are common sequences of characters found in a set of text. The models learn to
understand the statistical relationships between these tokens, and excel at producing the next
token in a sequence of tokens.

You can use the tool below to understand how a piece of text might be tokenized by a language
model, and the total count of tokens in that piece of text.

It's important to note that the exact tokenization process varies between models. Newer models
like GPT-3.5 and GPT-4 use a different tokenizer than our legacy GPT-3 and Codex models, and
will produce different tokens for the same input text.

GPT-35&GPT-4 GPT-3(Legacy)

How many tokens are in this line of text?

Clear Show example

Tokens Characters

10 4

How many tokens are in this line of text?

Figure 2-1. The ChatGPT Tokenizer Can Give You a Quick Count of
the Tokens in Your Prompt

ChatGPT Token Counter
https://platform.openai.com/tokenizer

37

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Using ChatGPT As a Pair-Programmer
to Build a Weather Application

Now that we've made sure that our API key works, it’s time to start writing
our first project with ChatGPT. This is the exciting part! We're going to use
ChatGPT to help us create an application in JavaScript that will give us the
weather and the time it'll take us to get to work from the location of our
home to work. Sounds impressive, doesn’t it?

sanet.st

Setting Up the Prompt

Let’s ask ChatGPT how we should get started. Now is a good time to
practice Prompt Engineering. We're going to explain to ChatGPT what we
want and see what it comes up with. Listing 2-6 shows the prompt we used.

Listing 2-6. PROMPT. Asking ChatGPT to Help Us Make a Weather
App for Productivity

I need a simple node.js application that will allow me to type
my city into the console and use Accuweather API to give me the
weather for the city

This is the code we got in the response (Listing 2-7):

Listing 2-7. Response. The Code and Instructions How to Create a
Basic Weather App

G

Certainly! Below is a step-by-step guide to creating a simple
Node.js application that fetches weather data from the

38

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER
AccuWeather API for a given city.
Step 1: Set Up Your Node.js Project
1. **Initialize a new Node.js project:**

" “bash

mkdir weather-app
cd weather-app
npm init -y

ENRNEN

2. **Install necessary packages:**
" “bash
npm install axios readline-sync dotenv

ENRNEN

Step 2: Set Up AccuWeather API

1. **Sign up for an AcculWeather API key:**
Go to [AccuWeather Developer Portal](https://developer.
accuweather.com/) and sign up for an API key.

2. **Create a ".env’ file in your project root to store your
API key:**

" plaintext

ACCUWEATHER_API KEY=your api key here

ENRNEN

Step 3: Write the Application Code

Create a file named "index.js in the project root and add the
following code:

T javascript
const axios = require("axios");

39

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

const readlineSync = require("readline-sync");
require("dotenv").config();

const apiKey = process.env.ACCUNEATHER API KEY;
const baseUrl = "http://dataservice.accuweather.com";

async function getCityKey(city) {
const url = “${baseUrl}/locations/vi/cities/search’;
try {
const response = await axios.get(url, {
params: {
apikey: apikKey,
q: city,
1
D;
if (response.data 88 response.data.length > 0) {
return response.data[0].Key;
} else {
console.log("City not found.");
process.exit(1);
}
} catch (error) {
console.error("Error fetching city key:", error);
process.exit(1);
}
}

async function getWeather(cityKey) {
const url = “${baseUrl}/currentconditions/v1/${cityKey}";
try {
const response = await axios.get(url, {
params: {
apikey: apiKey,
b

40

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

};

if (response.data && response.data.length > 0) {
return response.data[0];
} else {
console.log("Weather data not found.");
process.exit(1);
}
} catch (error) {
console.error("Error fetching weather data:", error);
process.exit(1);
}
}

async function main() {
const city = readlineSync.question("Enter your city: ");
const cityKey = await getCityKey(city);
const weather = await getWeather(cityKey);

console.log(Weather in ${city}:");
console.log(
“Temperature: ${weather.Temperature.Metric.
Value}°${weather.Temperature.Metric.Unit}"

);
console.log(Weather Text: ${weather.WeatherText}");

}

main();

Step 4: Run the Application

1. **Run your application:**

41

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

" “bash
node index.js

2. **Enter your city when prompted:**
" plaintext
Enter your city: [Your City Name]

You should see the current weather conditions for the city you
entered.

Summary

This simple Node.js application uses the AccuWeather API to
fetch and display the current weather for a specified city.

It uses "axios" to make HTTP requests, "readline-sync" to get
user input from the console, and "dotenv" to manage environment
variables securely.

That’s fantastic, and also quite thorough! So let’s follow the steps
provided in the response, and later we can continue the conversation to

make some changes to the code.

Creating a Weather App
with the AccuWeather API

As the instructions stated, we first need to set up an account with
Accuweather. Go to https://developer.accuweather.com/ and click the
Register link to sign up (Figure 2-2).

42

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

@ AccuWeather ’ r
APl v

- .
BUILD THE) »
: | WEATHER |
E EXPERIENCE

LIKE NEVER
BEFORE.

Recently Added APIs About AccuWeather APIs

Tryit

Figure 2-2. Accuweather Homepage for Developers

After signing in, navigate over to My Apps (Figure 2-3).

#® AccuWeather

APIs

API REFERENCE GENERAL INFO ~ MY APPS FAQS PACKAGES & PRICING

‘w?§’:,’»-:>.'_ 3 :
g o S RS

Figure 2-3. Navigating to the My Apps Tab on the Accuweather
Developer Portal

Once you're on the My Apps tab, you're going to want to Add a new
App in order to get an API key to use in our application (Figure 2-4).

43

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

CELESTEHARTE@GMA, LoGouT

@ /épf:cuWeather

AP| REFERENCE GENERAL INFO ~ MY APPS FAQS PACKAGES & PRICING Q

My Apps

<+ Add a new App

These are your apps!

COMPANY SUBSCRIPTION SERVICES APPS AND DOWNLOADS

Figure 2-4. Creating a New App with Accuweather

As you set things up, you'll need to name your app and answer benign
questions like where the API will be used and what you want to do with

the API. As you can see in Figure 2-5, we've called our AccuWeather app
“Weather Tracker”

44

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Figure 2-5. Adding Specifications for Our Accuweather App

The most important configuration to enable here is where you're being
asked to specify the product you're intending to use. Be sure to enable the
Core Weather Limited Trial.

It may take some time for your application to be approved, but
usually this is a very quick process. When it’s done, you'll see your new
application on the My Apps page, which will include your API key! Mission
accomplished (Figure 2-6).

45

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

API REFERENCE GENERAL INFO + MY APPS FAQS PACKAGES & PRICING

My Apps

+ Add a new App

These are your apps!

Weather Tracker =3

Figure 2-6. Seeing Your Newly Created App on the Accuweather
Developer Portal

Refining Our Prompt with Prompt Engineering

Now, with everything all together, when you run the code, the application
will ask you to input the name of a city.

Enter your city:

Once you provide a valid city name, you should find that everything
runs smoothly, and you'll get a response that looks something like this
(obviously, the forecast will change depending on what city you decide to
enter and, well, what the weather is like the day you run it).

Listing 2-8. Using ChatGPT As Our Pair-Programmer, We Built a
Fully Functioning Weather App in Only a Few Minutes

Weather in New York:
Temperature: 23.3°C
Weather Text: Cloudy

46

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

We get a nice, basic description of the weather in New York City from
running the code, but there are a couple of things we can improve on.

AccuWeather has icons for various weather conditions. Right now, we
can see that the weather in New York is currently cloudy, but we could also
get alonger description that describes the weather for the rest of the day.
Additionally, for those of us who live in the United States, it makes sense
to see the temperature in Fahrenheit. So let’s get ChatGPT to help us make
those changes for us.

Since ChatGPT can retain the context, we’re going to prompt ChatGPT
in the same Chat conversation as in Listing 2-9:

Listing 2-9. Prompting ChatGPT to Change the Code to Get a More
Detailed Response from the AccuWeather API

Thank you. I would like to make a few changes to this code.

. Instead of using Celcius retrieve the temperature in
Fahrenheit

. Make an API call to get an icon number and an icon url to
print in the response

. Make an API call to get a weather description in the
response

This is the answer we got from ChatGPT (Listing 2-10).

Listing 2-10. Response from ChatGPT to Modify the Code in Our
Weather Application

G

Sure! Let's modify the code to include the following changes:

47

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

1. Retrieve the temperature in Fahrenheit instead of Celsius.
2. Get an icon number and an icon URL to print in the response.
3. Include a weather description in the response.

Updated Code
Here is the updated "index.js:

T javascript

const axios = require("axios");

const readlineSync = require("readline-sync");
require("dotenv").config();

const apiKey = process.env.ACCUNEATHER API KEY;

const baseUrl = "http://dataservice.accuweather.com";

const iconBaseUrl = "https://developer.accuweather.com/sites/
default/files";

async function getCityKey(city) {
const url = “${baseUrl}/locations/vi/cities/search’;

try {
const response = await axios.get(url, {
params: {
apikey: apikKey,
q: city,
b
D;

if (response.data 88 response.data.length > 0) {
return response.data[0].Key;

} else {
console.log("City not found.");
process.exit(1);

}
} catch (error) {

48

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

console.error("Error fetching city key:", error);
process.exit(1);

}
}

async function getWeather(cityKey) {
const url = “${baseUrl}/currentconditions/v1/${cityKey}";
try {
const response = await axios.get(url, {
params: {
apikey: apiKey,
b

D;
if (response.data 88 response.data.length > 0) {

return response.data[o0];

} else {
console.log("Weather data not found.");
process.exit(1);

}

} catch (error) {
console.error("Error fetching weather data:", error);
process.exit(1);

}
}

function getIconUrl(iconNumber) {
const iconNumberString = iconNumber.toString().
padStart(2, "0");
return "${iconBaseUrl}/${iconNumberString}-s.png";

}

async function main() {
const city = readlineSync.question("Enter your city: ");

49

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

const cityKey
const weather

await getCityKey(city);
await getWeather(cityKey);

const temperatureF = weather.Temperature.Imperial.Value;
const weatherText = weather.WeatherText;
const iconNumber = weather.WeatherIcon;
const iconUrl = getIconUrl(iconNumber);

console.log(Weather in ${city}:");

console.log(Temperature: ${temperatureF}°F");
console.log(Weather Description: ${weatherText});
console.log(Icon URL: ${iconUrl}");

}

main();

Explanation of Changes

1. **Fahrenheit Temperature**: The Temperature.Imperial.Value®
is used to get the temperature in Fahrenheit.

2. **Icon Number and URL**: A helper function "getIconUrl" is
created to format the icon number and construct the URL for the
icon image.

3. **Weather Description**: The “WeatherText® field is used to
include a weather description.

Running the Application

After making these changes, run your application with the same
command:

" “bash
node index.js

50

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Enter your city when prompted, and you will get the current
weather conditions, temperature in Fahrenheit, weather
description, and an icon URL.

This updated code ensures that you have all the required
information displayed in the console, including the weather
icon URL.

When we run this code, we get exactly what we were looking for. We'll
enter a valid city name again (New York City, in our case), and this is the
response we got (Listing 2-11):

Listing 2-11. Response from the AccuWeather API After Running
the Modified Code

Enter your city: New York

Weather in New York:

Temperature: 63°F

Weather Description: Mostly cloudy

Icon URL: https://developer.accuweather.com/sites/default/
files/38-s.png

Now that our code works exactly the way we want it to, let’s try another

example.

Using ChatGPT As a Pair-Programmer
to Build an Application That Estimates
Distance and Arrival Time

The next thing we’re going to want to do is start making an application
that can give us an estimated arrival time and distance from one place to
another, for example, from the house to the office. Let’s use the Google
Maps API to get this done.

51

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Creating a Project with Google Maps
Platform API

Most people already have a Gmail account, but on the off chance that you
don’t, be sure to create one before proceeding.

Google has a mountain of APIs for almost everything you can think of.
However, since we're trying to accomplish tasks that require geolocation
data, we're going to need to go directly to the APIs for Google Maps (as
shown in Figure 2-7) which is located at https://developers.google.
com/maps/documentation.

® Google Maps Platform Overview Products Pricing Documentation v Blog Community v Q @ english ~

Build awesome apps with Google’s knowledge
of the real world

test Maps, Routes, and Places features from Google Maps Platform. Built by

Explore top topics

N\

Figure 2-7. The Google Maps Platform Homepage

On the Google Maps Platform page, click Getting Started to set up
your account for using the APIs. After following the steps Google presents
you with, you'll be taken to the page shown in Figure 2-7, where you can
see the different APIs available with the Google Maps Platform. But what'll
probably catch your attention first is the fact that you still have to Finish
Account Setup.

52

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Finishing your account set up (see Figure 2-8) will compose of entering
credit card information so you can start the free trial that will allow you
$200 worth of credit, which is more than enough for the purposes of our

= GoogleCloud | 2 MyMapsProject ~ Q search BEe(o
Discover what you can do with Google Maps Platform
- Customize and launch location-based experiences in minutes. Finish account setup to get your API key and add them to your site.
]
o = Hide fier =
= Display the ideal business location 2
% <> LowCode <> Code Sample
Simply address entry 2 123 Main!
o Show nearby places and their details 3 "
e © 123 Main St Sprin;
(] Single trip planning and directions 5 © 123 Mainline Ave
S Let users explore an area in 3D 1 © 123 Maine St
Visualize data on map 4
Customize map 6 Locator Plus Add autocomplete for addresses
Drve d customize alocator taddress by suga
Add ransaction context 1 business.
Get curent location info 3 . SRR
Y L |
<> Low Code . e . <> Code Sample

% 123 Main|
@On(ﬂMainSt” fi @ . Q @
© 123 Mainline Ave ol @
9 123 Maine St Frank L]
0 e o

Figure 2-8. Finishing Your Google Maps Platform Account SetUp

After properly setting up your account, you'll be greeted by a welcome
page. On the left, you'll find a menu icon you can click to reveal a list of
services you have access to. You want to navigate to Apps & Services, and
then click Library (as shown in Figures 2-9 and 2-10).

53

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

= Google Cloud ls-uymummv] lmnps x|qs~m] B E A :

5! Cloud overview >

a8 Products & solutions

PINNED PRODUCTS

RPI APIs & Services

Billing

1AM & Admin
Marketplace
Compute Engine

Kubernetes Engine

BigQuery

VPC network

ViIomnmoesesmso

Cloud Run

saL

IS
'y
'y
L)
Ll
'y
Cloud Storage L I
Ll
'y
L)
'y
@D secuity Ll
1y

@ Google Maps Platfor...

MORE PRODUCTS Vv

Figure 2-9. Navigating to the APIs & Services Tab on the Google
Maps Platform

54

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

®
H

= Google Cloud
& APl Library

*

SFiter Type 1o
Visibility ~
Public (449
Private

Category ~

Analytics

Figure 2-10.

20 My Maps Project v

Welcome to the API Library.
The API Library has links, and a smart h
Q
Maps
- 9s &
Maps SDK for Android Maps SDK for i0S Maps JavaScript AP
Rocoh Google
Android Maps fo 3 Maps for your website

Machine learning

Dialogflow AP Cloud Vision API

The API Library Page

Cloud Natural Language API

[V START FREE

QB HE QOO

VIEW ALL (23)

Q

Places AP

VIEW ALL (13)

Cloud Speech-to-Text API

You're going to want to click Maps JavaScript API and then Enable it,

as shown in Figure 2-11.

55

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

=

= Google Cloud 3 MyMaps Project ~ QB ELO

< Product details

—— Maps JavaScript AP|
oot

Maps for your website

OVERVIEW DOCUMENTATION SUPPORT RELATED PRODUCTS

Overview

Add a map to your website, providing imagery and local data from the same Additional details
ource I Style the map to suit your needs. Visualize your own

Type: SaaS & APls

geocoding and d

Last product update: 9/28/22
Category: Maps
About Google Servic

ssion is to organize the world's informat
le and useful. Through d platforms like
roid, Google Play, Chrome and YouTube, Google
role in the daily lives of billions of people.

and make it

plays a meaningful

Tutorials and documentation

Figure 2-11. Enabling the JavaScript API

After enabling the JavaScript API, go back twice and open the menu
again, and then click the Google Maps Platform to see the dashboard for
Google Maps.

From here, we're going to be looking at another side menu that looks
similar to the one from before, but here we’re going to click Apps &
Services again to see a different page this time. From here, you can click
Routes to enable it, as shown in Figure 2-12.

56

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Google Cloud | 3+ Python Map Project + arch () fo ; roucts, and Mo Qs | B @ 0 O

@ Google Maps Platform

01 MopManagement
@ MapStyles

® Dowsess

Figure 2-12.

APls & Services & LEARN

Find the right map products

Discover what tools you need t

e soieones: tisposebebti @9 G

FLTER MAPS PLACES ROUTES ENVIRONMENT | ENABLED DISABLED

o O, ” a2
0 * Air Quality API ENABLE Cyyo Pollen API ENABLE

for 2 specfic locstion with a resolution of 500 Provides pollen data for a specific location with 3 resokution of Tx1km

(% Solar API ENABLE 12 Aerial View API NABLE
Advancedimagen Ga30a o of places

% Map Tiles API ENABLE [&5] Maps Datasets AP ENABLE
20,30 9nd Stroet View tse fo buiding irmorave viswolzations Use your o geosptial data with Google Maps Pltiors APl

Maps Elevation APl DISABLE [7] Maps Embed API DISABLE
levaton daa for oy poit n the workd, Make places casdy decoverable with micactive Google Mops.

Enabling the Routes API

2 Tutorial
Recommended for you

© Maps Console Quick Tour

Once you've enabled the API we need, navigate to the Keys &
Credentials tab and Create a new API key (Figure 2-13).

0]

X

57

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Eann
® Totorn @ x
Recommended for you

© Meps Console Quick Tour
Tutorisl

An overview of the different pages of the
Maps Console.

© Restrict Your API Key

© Introduction to Cloud-based Maps.
Styling

API key created Tutoral - ®10 min
Loarn how 1o creste customized map

Use this key in your apalication by passing it with the key=APT_KEY parameter. experiences for your users without
updating your code.

&l Maps documentation &

Figure 2-13. The Keys and Credentials Page on the Google Maps
Platform

Now that we have our Google Maps API key, we can make use of
ChatGPT to be our pair-programmer again. Our end goal is to have an
app that tells us how far away is the destination and how long will it take
to get there. By the way, here’s a fun fact - the Google Maps Routes API
factors in real-time traffic congestion data on the roads when you ask
for the estimated travel time, so this makes our application perfect for
productivity!

Now, in order to show the flexibility of ChatGPT as a pair-programmer,
let’s take two different approaches to achieve the same goal.

58

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Approach #1: Using ChatGPT to Take a cURL
Command and Convert It to JavaScript

In this first approach, instead of reading the Google Maps Platform
documentation, we’re actually going to cut to the chase and give ChatGPT
the cURL command to invoke the API. you need and show you how to use
ChatGPT to convert it to JavaScript for you. You're welcome.

Listing 2-12 is the cURL command from the Google Maps Platform
documentation:

Listing 2-12. cURL Command for Using the Google Maps
Routes API

curl -X POST -d '{
"origin":{
"location":{
"latlng":{
"latitude": 37.419734,
"longitude": -122.0827784

}
}
}J
"destination":{
"location":{
"latlng":{
"latitude": 37.417670,
"longitude": -122.079595
}
}
})

"travelMode": "DRIVE",
"routingPreference": "TRAFFIC_AWARE",

59

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

"departureTime": "2023-10-15T15:01:23.045123456Z",
"computeAlternativeRoutes": false,
"routeModifiers": {
"avoidTolls": false,
"avoidHighways": false,
"avoidFerries": false
})
"languageCode": "en-US",
"units": "IMPERIAL"
A
-H 'Content-Type: application/json' -H 'X-Goog-Api-Key: YOUR
API KEY' \
-H 'X-Goog-FieldMask: routes.duration,routes.
distanceMeters,routes.polyline.encodedPolyline’ \
"https://routes.googleapis.com/directions/v2:computeRoutes’

Remember, the best practice is to separate the instructions from the
content with three hashes (###) to get the best results. Listing 2-13 has the
full prompt we gave to ChatGPT:

Listing 2-13. PROMPT. Asking ChatGPT to Convert cURL to
JavaScript

I'm coding in JavaScript and trying to build an application
that makes a request to the Google Maps API and pull down the
amount of time it'll take to get from one location to the
other. This is the cURL code that would accomplish that goal.
Help me convert this to something I can use in JavaScript:

it

curl -X POST -d '{ "origin":{ "location":{ "latLng":{
"latitude": 37.419734, "longitude": -122.0827784 } } },
"destination":{ "location":{ "latLng":{ "latitude": 37.417670,
"longitude": -122.079595 } } }, "travelMode": "DRIVE",

60

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

"routingPreference": "TRAFFIC AWARE", "departureTime":
"2023-10-15T15:01:23.045123456Z", "computeAlternativeRoutes":
false, "routeModifiers": { "avoidTolls": false,
"avoidHighways": false, "avoidFerries": false },
"languageCode": "en-US", "units": "IMPERIAL" }'

-H 'Content-Type: application/json' -H 'X-Goog-Api-Key: YOUR
API_KEY'

-H 'X-Goog-FieldMask: routes.duration,routes.
distanceMeters,routes.polyline.encodedPolyline’
"https://routes.googleapis.com/directions/v2:computeRoutes

This is the code we got in the response from ChatGPT (Listing 2-14):

Listing 2-14. Response. Getting a Response Back from ChatGPT
with Useable Javascript Code

G

To convert the provided cURL command to JavaScript, you can use
the "fetch® API. Here is how you can do it:

7T javascript

const apiKey = "YOUR API KEY"; // Replace with your
actual API key

const url = "https://routes.googleapis.com/directions/

v2:computeRoutes";

const requestBody = {
origin: {
location: {
latlng: {

61

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

latitude: 37.419734,
longitude: -122.0827784,

}s
1
1

destination: {
location: {
latlng: {
latitude: 37.41767,
longitude: -122.079595,
b
})

}
travelMode: "DRIVE",

routingPreference: "TRAFFIC_AWARE",
departureTime: "2023-10-15T15:01:23.045123456Z",
computeAlternativeRoutes: false,
routeModifiers: {
avoidTolls: false,
avoidHighways: false,
avoidFerries: false,
})
languageCode: "en-US",
units: "IMPERIAL",

};

const requestOptions = {
method: "POST",
headers: {
"Content-Type": "application/json",
"X-Goog-Api-Key": apiKey,
"X-Goog-FieldMask":

62

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

"routes.duration,routes.distanceMeters,routes.polyline.
encodedPolyline",

}s
body: JSON.stringify(requestBody),

};

fetch(url, requestOptions)

.then((response) => response.json())

.then((data) => {
// Process the data here
console.log(data);

1))

.catch((error) => {
console.error("Error:", error);

};

Explanation:

1. **API Key:** Ensure you replace " 'YOUR _API KEY'" with your
actual Google Maps API key.
2. **URL:** The URL for the Google Maps Directions API endpoint
remains the same.
3. **Request Body:** The request body is defined as a
JavaScript object and then converted to a JSON string using
“JSON.stringify()".
4. **Request Options:**
- "method: 'POST'" indicates that we are making a POST
request.
- "headers” includes the content type, API key, and the
field mask.
- "body" is the JSON string of the request body.

63

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

5. **fetch:** This makes the HTTP request and returns a
promise.
- "“.then(response => response.json())" processes the
response as JSON.
- “.then(data => { ... }) processes the returned data.
- “.catch(error => { ... })" handles any errors that occur
during the fetch.

This code will send a POST request to the Google Maps API and
log the response data to the console. Adjust the processing
logic within the “.then(data => { ... })" block to fit the
needs of your application.

Note In order for this code to run, you must set a date and time in
the “DEPARTURE-TIME” parameter that is beyond the time at which
you run the code. In other words, the departure time cannot be set in
the past. In this example, the date is set to a specific time in 2023,
because that was the timestamp in the original request. Therefore,
you need to adjust the code in the “DEPARTURE-TIME” parameter in
order for your code to run as expected.

After adjusting the timestamp and running the code, you should get a
response similar to Listing 2-15:

Listing 2-15. The Successful Response After Running the Code
from ChatGPT

{'routes': [{'distanceMeters': 773, ‘'duration': '158s’,
‘polyline': {'encodedPolyline': 'ipkcFjichVzQ@d@gU{E?'}}]}

64

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Approach #2: Using ChatGPT to Avoid Reading
a Lot of Documentation

As mentioned before, there is a lot of documentation to go through in the
Google Maps Platform. If you take a cursory glance at the other capabilities
available in the Routes API, you would see features to request various types
of information such as air quality, pollen count, aerial views (like you'd

see when you use Google Maps), and many other features of Google Maps
you may normally take for granted. Do you know what geocoding is? Well,
you’d have to find out the hard way if you went through the documentation
on your own.

Reading through documentation is annoying, especially when we
only want a few features in any given API or service. In a perfect world, we
wouldn’t even need to know what geocoding is in order to get our code
working in different scenarios other than what'’s provided in the example
code from Google.

We may not live in a perfect world, but we don’t have to know what
geocoding is, at least not anymore. We can simply use ChatGPT to get
through the documentation we don’t want to read.

Listing 2-16 shows the prompt to ChatGPT so you don’t have to read
any of the Google Maps Route API to get working code:

Listing 2-16. PROMPT. Asking ChatGPT to Avoid Reading
Documentation

I need to use the Google Maps Platform's Routes API to pull
down information pertaining to how much time it'll take to get
from one destination to the other, as well as how much distance
is between the two points. How can I make an HTTP request in
JavaScript to get the information I'm looking for?

65

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Listing 2-17 shows the response from ChatGPT:

Listing 2-17. Getting a Response Back from ChatGPT to Avoid
Reading Documentation

G

To use the Google Maps Platform's Routes API in Node.js to get
the travel time and distance between two points, you'll need to
make an HTTP request to the API endpoint. Below are the steps
and an example code snippet to help you get started:

1. **Get an API Key**: Ensure you have an API key from the
Google Cloud Console with access to the Google Maps Platform.

2. **Install Axios**: We'll use the “axios™ library to make
HTTP requests. If you haven't already installed it, you can do
so by running:

“eh
npm install axios

3. **Make the HTTP Request**: Create a Node.js script to make
the HTTP request to the Routes API endpoint.

Here's an example script to achieve this:

7T javascript
const axios = require("axios");

// Replace with your API key
const apiKey = "YOUR_GOOGLE_MAPS API KEY";

66

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

// Function to get travel time and distance between two points
async function getTravelInfo(origin, destination) {
const url = “https://maps.googleapis.com/maps/api/directions/
json?origin=${encodeURIComponent (
origin
) }&destination=${encodeURIComponent(destination)}
8key=${apikey}";

try {
const response = await axios.get(url);

const data = response.data;

if (data.status === "0K") {
const route = data.routes[0];
const leg = route.legs[0];
const travelTime = leg.duration.text;
const distance = leg.distance.text;

console.log(Travel time: ${travelTime}");
console.log(Distance: ${distance}");
} else {
console.error("Error: ${data.status}’);
}
} catch (error) {
console.error("Error making request”, error);
}
}

// Replace with your origin and destination
const origin = "New York, NY";
const destination = "Los Angeles, CA";

// Call the function
getTravelInfo(origin, destination);

67

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER
Explanation

- **API Endpoint**: The URL for the Directions API endpoint is
“https://maps.googleapis.com/maps/api/directions/json".
- **Parameters**:

- “origin : The starting point for the route.

- “destination’: The endpoint for the route.

- "key : Your API key.
- **Axios**: Used to make the HTTP GET request.
- **Response Handling**: The response contains a "status’ field
and a “routes’ array. The first route's first leg contains the
“duration® and “distance’.

Replace " 'YOUR_GOOGLE _MAPS API KEY'® with your actual API key,
and update the “origin® and "destination” with the desired
locations.

Running the Script

1. Save the script to a file, e.g., “getTravellnfo.js .
2. Run the script using Node.js:

e

node getTravelInfo.js

This will print the travel time and distance between the
specified origin and destination to the console.

If you run this code, you should get this very clean, very simple

response:

Distance: 2,789 mi, Duration: 1 day 17 hours

68

CHAPTER 2 USING CHATGPT AS YOUR JAVASCRIPT PAIR-PROGRAMMER

Conclusion

Let’s debunk a common myth and set the record straight: ChatGPT isn’t
some mind-reading wizard! As an Al tool, it can’t replace the expertise of
developers and architects. It can, however, complement the programming
skills of developers and save you some time and effort when coding.

As you can see, one of the biggest benefits of using ChatGPT as a
pair-programmer is that it can translate your natural language requests
into runnable code. However, let’s not forget the crucial role of human
judgment whenever Al (not just ChatGPT) is put into practice. Ultimately,
it’s up to humans to decide whether to use, tweak, or toss out the result
altogether.

69

CHAPTER 3

Creating a Basic
ChatGPT Client
in JavaScript

The purpose of this chapter is plain and simple. We're going to build the
most powerful ChatGPT client available using only a few lines of code in
JavaScript. This client will do a lot more than what you're able to do using
the ChatGPT website and will provide you more options than what is
available using the Chat Playground that we saw in Chapter 1.

Creating Our ChatGPT Client Application
in JavaScript

Listing 3-1 is the code for our ChatGPT client in JavaScript. It’s a simple
client that allows us to use JSON to create system and user messages. We
can also specify the desired model and configuration parameters such as
the number of tokens to use.

© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025 71
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_3

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT
Listing 3-1. The Javascript ChatGPT Client

import OpenAI from "openai';
import "dotenv/config";

// Create a new open ai client
const openai = new OpenAI({
apiKey: process.env["OPENAI API KEY"],

D

async function main() {
const chatCompletion = await openai.chat.completions.create({
messages: [
{
role: "system",
content: "You are a JavaScript developer”,

1
{

role: "user",
content: "Why is JavaScript use for web development?",

b
])
model: "gpt-40",
temperature: 0.85,
top p: 1,
max_tokens: 1921,
frequency penalty: 0,
presence_penalty: 0,
D;
const result = chatCompletion.choices[0].message.content;
console.log(result);

}

main();

72

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

As you analyze the code in Listing 3-1, you're going to see several
things that are quite familiar from the Chat Playground such as the model,
messages, temperature, and tokens.

Resist the Urge to Put Your API Key
in a Web Application!

As you can see from the code in Listing 3-1, it only takes a few lines of code
to make a fully functional ChatGPT client app in JavaScript. Later on in this
chapter, we'll invoke the script and see the results.

Of course, we're all aware that one of the major benefits of JavaScript is
that it can run both on the server side and within the browser on the client
side. So, does this mean that it’s a good idea to use this code in your React,
Angular, or Vue projects to create an amazing experience for the visitors of
your website?

Oh my dear sweet summer child. No, no, no, absolutely not.
Remember that any and all code within your web applications is 100%
visible to the world. In order for this code to work in the web browser, you
need to provide your OpenAl API key to the code that will run in the web
browser. Any competent developer can use a plethora of tools available to
view the source code of your web application and discover your OpenAl
API key. This means that they can easily rack up a massive bill for you and
potentially use your API key in ways that will violate the terms of service
of OpenAl.

Therefore, the best practice to make Al-enabled web applications is to
make all your calls to the OpenAl APIs using Node.js on your server side.
This way, there’s no possibility of your API key to be exposed.

73

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Using OpenAI.chat.completions.
create() to Send Messages to ChatGPT

The OpenAI.chat.completions.create() method is a method that’s
basically a 1-to-1 representation of what you can do in the Chat
Playground; therefore, this method should feel like second nature to you.
Table 3-1 describes the format of the parameters necessary to call
the OpenAI.chat.completions.create() method. Although the table
is lengthy, after a quick glance, you should see that only a few fields are
actually required in order to successfully invoke the method.
The response to the method is called a ChatCompletion.

Examining the Method Parameters

Table 3-1. The Structure of the Create ChatCompletion Object

Field Type Required? Description
model String Required The ID of the model you want to use for the
ChatCompletion.

Compatible models include
° gpt-4

® gpt-4-0613

° gpt-4-32k

® gpt-40

* gpt-40-mini

° 01

® 01-mini

(continued)

74

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Table 3-1. (continued)

Field Type Required? Description

messages Array Required There are four types of messages, each with
their own requirements:
* System Message (see Table 3-2)
¢ User Message (see Table 3-3)
¢ Assistant Message (see Table 3-4)
¢ Tool Message (see Table 3-5)

frequency_ Number Optional A number between -2.0 and 2.0.

penalty or null Positive values penalize tokens based on

default: 0 their existing frequency in the conversation

history, reducing the likelihood of repeating
the same lines verbatim

logit_bias JSON Optional Allows you to modify the likelihood of

Map
default:
null

specific tokens appearing in the completion.

You provide a JSON object that maps tokens
(specified by their token ID in the tokenizer)
1o associated bias values from -100 to 100.

This bias is added to the model's logits
before sampling

(continued)

75

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Table 3-1. (continued)

Field Type Required? Description

logprobs boolean Optional, This parameter enables you to decide if the
or null defaults to log probabilities of the output tokens should

false be returned.
When set to true, it provides the log
probabilities for each output token included
in the message content.
However, this feature is presently not
supported by the gpt-4-vision-preview
model.

max_tokens integer or Optional This parameter sets the maximum
null number of tokens that the generated Chat

Completion can have.

n integer or Optional Specifies how many ChatCompletion choices
null the model should generate for each input
default: 1 message

presence_ Number Optional A number between -2.0 and 2.0.

penalty or null

default: 0

Positive values penalize new tokens based
on whether they appear in the conversation
history, encouraging the model to talk about
new topics

76

(continued)

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Table 3-1. (continued)

Field Type Required? Description
response_ JSON Optional You have two options:
format object

{ “type”: “json_object” } for a JSON object
response

or
{ “type”: “text” } for a text response
Note:

It's crucial to remember that while operating
in JSON mode, you need to explicitly
command the model to generate JSON,
either through a system or user directive.

Failing to do so can cause the model to
endlessly output whitespace until it hits the
token cap, leading to a request that appears
to be frozen.

Additionally, be aware that if the
finish_reason is “length”, it suggests the
generation went beyond the max tokens or
the conversation exceeded the maximum
allowable context length, which might result
in the message being truncated.

(continued)

77

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT
Table 3-1. (continued)
Field Type Required? Description
seed integer or Optional By specifying a seed, the system will make
null an attempt to generate repeatable results.
In theory, this means that if you make
repeated requests with the same seed and
parameters, you should expect to receive the
same result.
In order to get the seed value to put in the
subsequent request, copy the system_
fingerprint from your last response
stop String/ Optional You can provide up to four sequences where
list / null the API should stop generating further
default: tokens.
nul This can be useful for controlling the length
or content of responses.
stream Boolean Optional If “stream” is set to “true,” partial message
or null updates will be sent as server-sent events.
default: This means tokens will be sent as data-
false only events as they become available, and
the stream will end with a “data: [DONE]”
message
temperature Number Optional Valid values range between 0 and 2.

or null
default: 1

Controls the randomness of the model's output.

The best practice is to adjust the top_p or
temperature, but not both.

78

(continued)

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Table 3-1. (continued)

Field

Type

Required? Description

tool_choice String

tools

or JSON
object

Array

Optional

Optional

This parameter controls which (if any)
function is called by the model. You have two
options: “none” or “auto”

Use “none” if you don’t want the model to
call a function.

Use “auto” if you want the model to pick
between generating a message or calling a
function.

Specifying a particular function via {“type”:
“function”, “function”: {*name”: “my_
function”}} forces the model to call that
function.

Please note that “none” is the default when
no functions are present, and “auto” is the
default if functions are present.

Optionally, you can specify a list of tools the
model may call.

Currently, only functions are supported as a
tool.

Use this to provide a list of functions the
model may generate JSON inputs for.

(continued)

79

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Table 3-1. (continued)

Field Type Required? Description

top_ integer or Optional This can be any integer from 0 to 5.

logprobs null It’s used to determine the count of the most

probable tokens to return at each token
position, accompanied by their respective
log probabilities.

For this parameter to be applicable, logprobs
must be enabled by setting it to true.

top_p Number Optional Valid values range between 0 and 1.
or null Indicates whether to consider few
default: 1 — —
possibilities (0) or all possibilities (1).
The best practice is to adjust the top_p or
temperature, but not both.
user String Optional This is a unique ID that you can optionally

generate to represent your end user.

This will help OpenAl monitor and detect
abuse

OK, Table 3-1 appears to be a little daunting! However as mentioned
earlier, only the model and messages are required parameters.

Additionally, we also have the code in Listing 3-1 above in order to
show how the parameters are actually used within a real application.

So, as you can see, as a JavaScript developer, we have several options
and parameters available to use that ordinary people can’t do using the
ChatGPT website or using the Chat Playground.

Now, the one parameter that needs the most detailed explanation is
the messages parameter so let’s analyze that further.

80

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

There Are Four Types of Messages

When invoking the ChatGPT API programmatically, there are four types of
messages that you can provide to the API:

¢ System message

o User message

o Assistant message
o Tool message

The good news is that if you refer back to Chapter 1 where we
explained how to use the Chat Playground, you can see that we've already
have encountered the first three message types! The only new message
type that we're not currently familiar with is the “tool message.”

System Message (Array)

Table 3-2. The Structure of the System Message

Field Type Required? Description

role String Required This must be set to the String, “system”

content String Required These are the instructions that you want the
system to perform in the conversation

name String Optional This is an optional name that you can provide the
system

81

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Listing 3-2 is a snippet from Listing 3-1 that shows how the system message

is formatted:

Listing 3-2. Formatting the System Message

messages=|[

{
"role": "system",
"content": "You are a JavaScript developer"

b

User Message (Array)
Table 3-3. The Structure of the User Message

Field Type Required? Description

role String Required This must be set to the String, “user”

content String Required This String contains the actual message or question
that you want to send to ChatGPT

name String Optional This is an optional name that you can provide for
yourself in the conversation

Listing 3-3 is a snippet from Listing 3-1 that shows how the user message is

formatted:

Listing 3-3. Formatting the User Message

messages=[

"role": "user",

82

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

"content": "Why is JavaScript typically used for
data science?”

Assistant Message (Array)

Note In case you forgot, the Assistant Message is used to “remind”
ChatGPT what it told you in a previous response. Ideally, this can
allow you to continue a conversation that you had with it weeks or

months in the past.

Table 3-4. The Structure of the Assistant Message

Field Type Required? Description

role String Required

content String Required

name String Optional

tool_calls Array Optional

l, id String Required
, type String Required

, function Object Required

This must be set to the String, “assistant”

This String contains the response from ChatGPT
from a previous conversation

This is an optional name that you can provide for
ChatGPT in the conversation

If ChatGPT used a tool in a previous response, then
include the tool that it specified here

This is the ID of the tool called by ChatGPT

This is the type of the tool called by ChatGPT. Only
the literal, “function,” is a valid tool

This is the function that the model called

83

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Listing 3-4 is a snippet from Listing 3-1 that shows how the user
message is formatted:

Listing 3-4. Formatting the ASSISTANT Message

messages=|[

"role": "assistant",
"content”: "JavaScript is typically used for data
science for several reasons...”

Tool Message (Array)

A Tool Message is an advanced type of message for a very specific use case.
You can’t use them on the ChatGPT website nor in the Chat Playground.
Using a Tool Message and the tool parameter from Table 3-1, you can
enable ChatGPT to “call a function” for you.

At first glance, you may be thinking, “Wow! ChatGPT will load my code
and execute it for me in the Cloud? That’s awesome!” Unfortunately, that’s
not the case.

By providing a function name and the parameters necessary to invoke
it, ChatGPT will let you know whether to invoke the function and the
parameters to put in the function. You will then need to call the function
YOURSELF within your JavaScript code.

84

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Table 3-5. The Structure of the Tool Message

Field Type Required? Description

role String Required This must be set to the String, “tool”

content String Required This String contains the content of the tool
message

tool_call_id Array Optional Thisis the id of the tool call

Note Due to the fact that Tool messages and function calling are
advanced topics, we’re not going to explain them further in this book.
However, it’s good to be aware of all the four types of messages that
exist. This book will focus on System, User, and Assistant messages.

Running Our Basic ChatGPT Client

So, after running the code we created in Listing 3-1, we can expect a
response that will look something like this in Listing 3-5.

Listing 3-5. ChatGPT Explains Why JavaScript Is So Awesome

@JavaScript is used for web development for several

reasons:

1. Interactivity: JavaScript allows developers to create
interactive elements on a website, such as forms, animations,
and other interactive content. This enhances user experience
and makes a website more dynamic.

85

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

2. (Client-side processing: JavaScript is a client-side
language, which means it runs on the user's web browser instead
of the server. This results in faster load times and less
strain on the server, especially for complex tasks.

3. Browser compatibility: JavaScript is supported by all modern
web browsers without the need for plugins, making it accessible
for almost all internet users.

4. Versatility: JavaScript can be used for both front-end and
back-end development. This versatility makes it a valuable
skill for full-stack developers.

5. Frameworks and Libraries: JavaScript has numerous libraries
(like jQuery, React) and frameworks (like Angular, Vue) which
facilitate easier and faster development.

6. JSON: JavaScript Object Notation (JSON) is a light-weight
data interchange format that is easy for humans to read

and write. It is easy for machines to parse and generate.
This makes JavaScript particularly useful for APIs and
configurations.

7. Community and resources: JavaScript has a large and active
developer community, which means there are plenty of resources,
tutorials, and third-party plugins available. This can make
problem-solving and learning easier.

8. Real-time feedback: JavaScript allows for real-time feedback on
websites. This is critical for tasks like form validation where
you want to give feedback immediately, not after a page reload.

9. It's evolving: JavaScript is constantly evolving and new
features are added regularly, making it an exciting language to
work with.

86

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

So, as we take a brieflook at Listing 3-5, we see that the response
(called a ChatCompletion) is the answer to our question that we posed
to ChatGPT in Listing 3-1 at the very beginning of the chapter. However,
there’s a lot of metadata around our response, and let’s analyze the
ChatCompletion object in more detail.

Handling the Response (ChatCompletion)

Table 3-6. The Structure of the ChatCompletion Object Response

Field Type Description
id String A distinct identifier for the ChatCompletion
choices Array A list of ChatCompletion options. There can be

multiple options in the response if “n” is greater
than 1 in Table 3-1

|, finish_reason String Every response will include a finish_reason. The
possible values for finish_reason are:

stop: The API returned complete message, or a
message terminated by one of the stop sequences
provided via the stop parameter

length: The model output was incomplete due to
the max_tokens parameter in the request or token
limit of the model itself

tool_call: The model called a tool, such as a function

content_filter: The response was terminated due to
a violation of the content filters

null: The API response still in progress or incomplete

(continued)

87

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

Table 3-6. (continued)

Field Type Description
l, index Integer The index of the choice in the list of choices
l, message Object A ChatCompletionMessage generated by the
model. This is explained in further detail in
Table 3-6
, logprobs Objector Log probability information for the choice
Null
model String The model used for the ChatCompletion
system_ String Use this parameter as the “seed” in a subsequent
fingerprint request if you want to reproducible results in from
a previous conversation
object String This always returns the literal, “chat.completion”
usage Object Usage statistics for the completion request
l, completion_ Integer Number of tokens in the generated completion
tokens
l, prompt_ Integer Number of tokens in the prompt
tokens
, total_tokens Integer The total count of tokens utilized in the request,

including both the prompt and the completion

The most important item in the ChatCompletion object is the
ChatCompletionMessage which is explained in more detail in Table 3-7.

88

CHAPTER 3 CREATING A BASIC CHATGPT CLIENT IN JAVASCRIPT

ChatCompletionMessage

Table 3-7. The Structure of the ChatCompletionMessage

Field Type Description

role String This will always be the literal, “assistant”

content String or null This is a String that contains the response from ChatGPT
to our request

tool_calls Array If you indicated in Table 3-1 that you want ChatGPT to
call a tool (which is currently a function), then this list
will exist in the ChatCompletionMessage

l, id String This is the ID of the tool called by ChatGPT
, type String This is the type of the tool called by ChatGPT. Only the
literal, “function,” is a valid tool
, function Object This is the function and the parameters that the model
called
Conclusion

In this chapter, we took our experiences from Chapters 1 and 2 and
created a fully functioning ChatGPT client in JavaScript. In the code for
our ChatGPT client, we saw some terms that we were already introduced
to from the Chat Playground such as the model, messages, temperature,
and tokens.

We also saw that, as JavaScript developers, OpenAlI gives us a TON
OF ADDITIONAL OPTIONS to invoke ChatGPT that aren’t available to
average everyday users or even to technical people who use the Chat
Playground. In this chapter we took the time to explain these options, with
a focus on the messages that we can send.

Now that we have a working ChatGPT client in JavaScript, let’s see how
to leverage it for the rest of the examples in the book!

89

CHAPTER 4

Using Al in the
Enterprise! Creating
a Text Summarizer
for Slack Messages

In today’s corporate world, it’s extremely common for companies to have
an instance of Slack (or Microsoft Teams) to organize themselves and use
it as a central place of communication to everyone in the company. Now,
ifyou've ever used Slack before, I think you know how easily a channel can
become flooded with a ton of messages because SOME important thing
happened SOMEWHERE in the company or the world.

Of course, the more responsibility that you have within the company
(i.e., manager, team leader, architect, etc.), the more channels you're
expected to participate in. In my opinion, Slack is a double-edged sword.
You need to use it to do your job, but as a developer, you definitely can’t
attend a daily standup meeting and say, “Yesterday, uh, I spent all day
reading Slack. No roadblocks.”

Additionally, if you work for a company with clients in various time
zones (which is quite common nowadays), it’s pretty daunting to open
Slack in the morning and see a ton of messages that were posted while you
were away from the keyboard.

© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025 91
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_4

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
So, in this chapter, we're going to apply Al in the enterprise to make

Slack more useful. We'll leverage the code in the previous chapter

and create a Slack bot in JavaScript that will summarize the important
conversations in a Slack channel. We're going to be utilizing ChatGPT’s
capabilities for text summarization and focus a bit more on Prompt
Engineering.

So, What Is Prompt Engineering?

Simply stated, Prompt Engineering is the process of carefully crafting and
refining prompts and input parameters to instruct and guide the behavior
of ChatGPT and other Al models. It’s basically the industry-wide term for
creating the right input in order to get the result that you're looking for.

ChatGPT Is Here to Take Away Everyone’s
Johs (Not Really)

It is our humble opinion that every company in the world is sitting on a
gold mine of untapped information. If you are using any system that keeps
alog of exchanges between employees, a database of support requests
from your customers, or any large repository of text (yes this includes your
email, Microsoft Exchange, and corporate Gmail), then, you have a large
repository of unstructured text that is waiting to be utilized.

Therefore, the best use of ChatGPT is not to eliminate anyone’s jobs.
It should be used in order to augment and extend what team members
in your company are already doing. As we saw in Chapter 2, as a software
developer, ChatGPT can work as a very effective Pair-Programmer. It is
also very good at performing certain difficult tasks very efficiently and
quickly. Therefore, the project of this chapter involves tackling a practical
example of what can be done in order to make use of a large source of
unstructured text.

92

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK

MESSAGES

You can use the ChatGPT client you created in Chapter 3 for the

prompt engineering examples listed further on in this chapter, or you can

use the playground mode feature we talked about in Chapter 1. Either way,

let’s dive right in.

Examining a Real-World Problem: Customer
Support for a Software Company

Let’s look at one of the most grueling tasks in software development:

providing tech support. Imagine the joys of fielding calls and messages

all day from people who might be frustrated, confused, or just in need

of a solution while using your software. Here’s some of the reasons why

customer support is a tough nut to crack:

Your end users and your customers are notoriously bad
at explaining problems with your software.

Level 1 technicians, often the first line of defense,
typically handle the most basic issues or user errors.
But when problems get more complex, users are
escalated to Level 2.

The mid-tier is a tricky place, because they have more
knowledge and experience than the tech support staff
at Level 1; however, they don’t have the opportunity to
directly get answers from the end user.

Really bad problems get escalated to Level 3; however,
these are the most expensive tech support staff because
they have the most knowledge and experience. They
have hands-on experience with the code as well as the
servers and the infrastructure.

93

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
So let’s work with a real-world example of a typical conversation within

a typical tech support channel within Slack. Below is a list of the team
members and their roles within a fictional company:

o Fatima (Customer Service Representative)
o John (Software Engineer)

e Dave (PM)

« Keith (CTO)

Listing 4-1 provides an example of a conversation between the
team members at a software startup. Fatima, the customer service
representative, lets the team know that their app is crashing immediately
after launching (not a good problem to have). Keith, the CTO, steps in
immediately to escalate the issue.

Listing 4-1. Team Members Within a Slack Channel Trying to
Analyze a Customer’s Problem

Fatima [16:00 | 02/08/2019]: Hey everyone, I have an urgent
issue to discuss. I just got off a call with a client who's
experiencing app crashes as soon as they load it. They're
really frustrated. Can we get this sorted ASAP? @

Keith [16:01 | 02/08/2019]: Thanks for bringing this to our
attention, Fatima. Let's jump on this right away. @John,
can you take the lead in investigating the issue since our
architect is out sick today?

John [16:02 | 02/08/2019]: Sure thing, Keith. I'll dive into the
codebase and see if I can find any potential culprits for the
crashes.

94

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
John [16:02 | 02/08/2019]: Fatima, could you gather some

additional information from the client? Ask them about the
specific device, operating system, and any recent updates they
might have installed.

Fatima [16:03 | 02/08/2019]: Absolutely, John. I'll reach out
to the client immediately and gather those details. Will update
you all once I have them.

Dave [16:04 | 02/08/2019]: I understand the urgency here. Let's
make sure we keep the client informed about our progress 190
Fatima. We don't want them feeling left in the dark during this
troubleshooting process.

Fatima [16:04 | 02/08/2019]: Definitely, Dave. w I'll keep the
client updated at regular intervals, providing them with any
relevant information we uncover.

John [16:20 | 02/08/2019]: I've checked the codebase, and so
far, I haven't found any obvious issues. It's strange that the
app is crashing on load. Could it be a memory-related issue?
Keith, do we have any recent reports of memory leaks or high
memory usage?

Keith [16:22 | 02/08/2019]: I'11 pull up the monitoring logs,
John, and check if there have been any memory-related anomalies
in recent releases. Let me get back to you on that.

Fatima [17:01 | 02/08/2019]: Quick update, everyone. The client
is using an iPhone X running i0S 15.1. They mentioned that the
issue started after updating their app a few days ago

Keith [17:05 | 02/08/2019]: Thanks for the update, Fatima.
That's helpful information. John, let's focus on testing the
latest app update on an iPhone X simulator with i0S 15.1 to see
if we can replicate the issue.

95

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
John [17:06 | 02/08/2019]: Good idea, Keith. I'll set up the

emulator and run some tests right away.

Keith [17:30 | 02/08/2019]: John, any progress on replicating
the issue on the emulator?

John [17:32 | 02/08/2019]: Yes, Keith. I managed to reproduce
the crash on the emulator. It seems to be related to a
compatibility issue with i0OS 15.1 ®. 1 suspect it's due to a
deprecated method call. I'll fix it and run more tests to
confirm.

John [18:03 | 02/08/2019]: Fixed the deprecated method issue,
and the app is no longer crashing on load. It looks like we've
identified and resolved the problem. I'll prepare a patch and
send it to you, Keith, for review and deployment.

Keith [18:04 | 02/08/2019]: W Thank you, please provide me
with the patch as soon as possible. Once I review it, we'll
deploy the fix to the app store.

Dave [18:06 | 02/08/2019]: Great job, team! “% John, please keep
the client informed about the progress and let them know we
have a fix ready for them on the next app update. Can someone
make sure the release notes reflect this?

John [18:07 | 02/08/2019]: Will do, Dave. I'll update the client
and ensure they're aware of the upcoming fix.

Keith [18:27 | 02/08/2019]: Patch reviewed and approved, John.
Please proceed with updating the app in the store. Let's aim to
have it done within the next hour.

John [18:26 | 02/08/2019]: Understood, Keith. I'm in the process
of uploading it now.

96

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
Fatima [18:38 | 02/08/2019]: I just informed the client about

the fix. They're relieved and grateful for our prompt response.
Thanks, everyone, for your collaboration and quick action. It's
a pleasure working with such a competent team!

Dave [18:40 | 02/08/2019]: Well done, team! Your efforts are
greatly appreciated. We managed to turn this urgent problem
around in record time. Let's keep up the good work! w

Prompt Engineering 101: Text
Summarization

So, needless to say, no one wants to spend their day constantly scrolling
through Slack channels reading about issues and problems that are on fire.
We're going to utilize the capabilities of ChatGPT for text summarization.
To keep things simple, let’s try a few prompts to send the entire listing of
the chat messages to ChatGPT in order for it to give us a usable summary
of all the events that have happened.

Note Please be aware the ChatGPT is nondeterministic. This simply
means that even if you executed the same prompt with the same
settings multiple times, you won’t necessarily get a word-for-word
response as shown in the listings in this chapter. However, they
should be quite similar.

97

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Prompt #1: “tl;dr”

This prompt is short, sweet, and to the point. In case you're not familiar
with it, it’s a term used online frequently to briefly summarize a long
article. It literally stands for “Too Long; Didn’t Read,” which is how I feel
about a lot of conversations on Slack when I'm swamped with work.
Conveniently, ChatGPT can understand this simple term (I wouldn’t
necessarily call it a word) as a prompt, and the results are pretty
impressive.

Listing 4-2. PROMPT. Asking for a Summarized Version of a Longer
Conversation

System: You are a helpful assistant

User: Fatima [16:00 | 02/08/2019]: Hey everyone, I have an
urgent ...

User: Tl;dr

Model: gpt-4o

Temperature: 1

Maximum length: 360

Top P: 1

Frequency penalty: 0

Presence penalty: 0

Notice how the number of tokens is kept small, at 360, which will
ultimately help ChatGPT to create a short response. Also see that the
temperature is left at 1 (the default value), but the Top P is increased all the
way to its maximum (which is 1). Therefore, it's important to play around
with temperature and other settings to control the tone and variety of
ChatGPT’s responses.

Listing 4-3 shows ChatGPT’s summarization of the conversation from
Listing 4-1.

98

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Listing 4-3. RESPONSE. Getting a Summarized Version of a Very
Long Conversation

G

The team quickly responds to a client's app crashing issue.
John investigates the codebase while Fatima gathers information
from the client. They discover a compatibility issue with iOS
15.1 and John fixes it. The patch is reviewed and approved,

and the app is updated in the store. The client is informed

and grateful for the quick resolution. The team is praised for
their collaboration and prompt action.

That'’s fantastic! It reduced that extremely long conversation down to
a simple and brief summary of only 68 words. As you can see, ChatGPT is
not replacing a job here; however, it will definitely make someone more
productive. Now, let’s try a few more prompts, shall we?

Prompt #2: “Explain This in 3 Sentences or Less”

So, if “tl;dr” doesn’t provide a brief enough explanation for you, then we
can tell ChatGPT to make things even simpler. ChatGPT does well with
parameters, so let’s specify that the explanation shouldn’t be any longer
than three sentences (Listing 4-4).

Listing 4-4. PROMPT. Asking for a Shorter Version of a Longer
Conversation

System: You are a helpful assistant

User: Fatima [16:00 | 02/08/2019]: Hey everyone, I have an
urgent ...

User: Explain this in 3 sentences or less.

99

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
Model: gpt-4o

Temperature: 1
Maximum length: 250
Top P: O

Frequency penalty: 0
Presence penalty: 0

As you may have noticed, the temperature is set to 0.82 in this example.
We really want ChatGPT to give us a concise answer here, so the “drier”
the better.

Listing 4-5. RESPONSE. Getting a 3-Sentence Summary

G

A customer reported an urgent issue of app crashes to the

team. John investigates the issue and asks Fatima to gather
additional information from the client. They discover that the
issue is related to a compatibility problem with iOS 15.1. John
fixes the problem and Keith approves the deployment of the fix
to the client's production environment.

Prompt #3: “I’m a Manager. Explain to Me
What Happened”

When you don’t want to sound like the one person that doesn’t
understand, ChatGPT has the capability to rephrase what has been said
and break it down until it’s very simple.

100

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Listing 4-6. PROMPT. Asking for a Simplified Version of a More
Complex Conversation

System: You are a helpful assistant

User: Fatima [16:00 | 02/08/2019]: Hey everyone, I have an
urgent ...

User: Summarize this conversation and explain it to me like I'm
a manager with little technical experience.

Model: gpt-4o0

Temperature: 0.82

Maximum length: 750

Top P: 1

Frequency penalty: 0

Presence penalty: 0

Again, the temperature is set below 1.0 so that ChatGPT can keep the
answer brief and easy to understand. We increased the token length so that
ChatGPT can take the time to explain some potentially technical concepts.

Listing 4-7. RESPONSE. Getting a Simplified Version of a More
Complex Conversation

G

In this conversation, Fatima brings up an urgent issue with a
client who is experiencing app crashes as soon as they load
it. Keith assigns John to investigate the issue since their
architect is out sick. John asks Fatima to gather additional
information from the client about their device, operating

101

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
system, and recent updates. Dave emphasizes the importance of

keeping the client informed throughout the troubleshooting
process.

John checks the codebase but doesn't find any obvious issues,
so he suspects it could be a memory-related problem. Keith
agrees to check for memory-related anomalies in recent
releases. Fatima provides an update that the client is using an
iPhone X running i0S 15.1 and mentioned that the issue started
after updating the app. Keith suggests testing the latest app
update on an iPhone X simulator with iOS 15.1 to replicate

the issue.

John successfully reproduces the crash on the emulator and
identifies a compatibility issue with iOS 15.1, possibly due
to a deprecated method call. He fixes the issue and prepares a
patch for review and deployment. Keith approves the patch and
asks John to update the app in the store. Dave requests that
the client be kept informed and that the release notes reflect
the upcoming fix.

John uploads the patch and informs the client about the fix.
Keith reviews and approves the patch, and John proceeds with
updating the app in the store. Fatima informs the client about
the fix, and they express relief and gratitude for the prompt
response. Dave commends the team for their collaboration

and quick action, emphasizing the importance of maintaining
good work.

In summary, the team quickly addressed an urgent issue where
a client's app was crashing on load. They investigated the
issue, identified a compatibility problem with i0S 15.1, fixed

102

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
it, and prepared a patch for deployment. The client was kept

informed throughout the process, and the fix was successfully
implemented, resulting in a relieved and grateful client.

Prompt #4: “Give Me Suggestions on Next Steps”

In addition to making a summary that’s easier to understand, ChatGPT can
explain in different styles and “tones.” We're going to increase the top P to
0.75 because we want ChatGPT to think of more possibilities than what

is the default. We are also going to increase the presence penalty to 0.5
because we want to encourage a versatile response.

Listing 4-8. PROMPT. Asking to ChatGPT for Advice on the Best
Next Steps

System: You are a helpful assistant

User: Fatima [16:00 | 02/08/2019]: Hey everyone, I have an
urgent ...

User: I’m a QA engineer at the company. Give me suggestions on
next steps.

Model: gpt-4o

Temperature: 1

Maximum length: 1200

Top P: 0.75

Frequency penalty: 0

Presence penalty: 0.5

103

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Listing 4-9. RESPONSE. Suggestions from ChatGPT on Possible
Next Steps

G

As a QA engineer, here are some suggestions for next steps:

1. Test the patch: Once the patch has been deployed to the app
store, thoroughly test it on various devices and operating
systems to ensure that the issue has been resolved and there
are no new bugs or regressions introduced.

2. Conduct regression testing: In addition to testing the
specific issue, perform a comprehensive regression test to
ensure that the fix does not have any unintended side effects
on other functionalities of the app.

3. Communicate the fix to the client: Keep the client updated

on the progress and let them know that the fix is available in
the latest app update. Provide them with clear instructions on
how to update their app and encourage them to test it on their
end as well.

4. Monitor user feedback: Keep an eye on user feedback after
the fix has been deployed. Encourage users to report any issues
they encounter, and be proactive in addressing them promptly.

5. Document the issue and resolution: Create a detailed report
documenting the issue, the steps taken to reproduce and resolve
it, and any other relevant information. This will serve as

a reference for future troubleshooting and help improve the
development process.

104

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
6. Conduct a post-mortem analysis: After the issue has been

resolved and the fix has been deployed, schedule a post-mortem
meeting with the team to discuss the root cause, lessons
learned, and any process improvements that can be implemented
to prevent similar issues in the future.

7. Continuous improvement: Use this incident as an opportunity
to identify areas of improvement in the development and testing
processes. Evaluate if there are any changes that can be made
to prevent similar issues from occurring in the future.

Remember, open communication, collaboration, and continuous
learning are key to ensuring the highest quality of your app
and maintaining a strong relationship with your clients.

Now, of course, ChatGPT (like every other form of artificial intelligence
on the planet) is not entirely perfect. For instance, recommendation
number 3 is a valid item to do, except for the fact that it’s not usually the
responsibility of a QA person to communicate anything directly to the
client or customer. That communication can be done either through
tech support or with a product manager who has those communication
channels (especially if they are a significant customer). So, the suggestion
is fine, but it’s not appropriate for a person with that role within a

company.

Let’s Talk About Real Prompt Engineering

If you Google the term “prompt engineering,” you'll find a ton of examples,
blogs, and even full websites with subscription plans that will try to
convince you that the perfect prompts can be created by simply only using
text. As you have seen from the examples above, prompt engineering
cannot be accomplished solely by merely crafting textual inputs.

105

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
In reality, the process is quite similar to cooking a sophisticated meal.

Imagine trying to cook, for example, beef bourguignon using only salt as
the seasoning, and neglecting all other ingredients and spices! Honestly,
the result would pale in comparison to the actual dish.

Similarly, try assembling an entire orchestra but only use one
instrument and one musician. That’s an embarrassing “one man band.”
Therefore, simply adjusting the text to the prompt isn’t enough in order
to truly perform prompt engineering. The parameters such as the model’s
temperature, which controls randomness; the top-p, impacting token
probability; the specific model used; the number of tokens, and the other
parameters all play highly pivotal roles in getting a great response.

This book is not about prompt engineering, since (as you can see from
the explanation above) it truly involves several factors that don’t have
anything to do with JavaScript. However, you are highly encouraged to
experiment with ALL the parameters to the models provided by OpenAl to
find what works best for your use case.

Registering a Slack Bot App

Now that we know the various ways for ChatGPT to summarize a large
body of text for us, let’s see what’s necessary in order to create a simple
bot in JavaScript that will programmatically grab all the messages from a
channel within a Slack instance.

Note In order to accomplish these steps, you will need to have
administrative access to a Slack workspace. Most developers will
NOT have these levels of permissions; therefore, in order to fully
experiment, | recommend that you create your own personal Slack
workspace for testing purposes. This way, you will have all the rights
and privileges to install your Slack bot.

106

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
But, one step at a time. First, we're going to make our Slack bot app, so

head over to the Slack API website:
https://api.slack.com/

'.il. slack ODI Docs Tutorials Your apps

&5 Manage your apps

Unlock your product s
potential with Slack Platform

Connect, simplify, and automate work.

Get Started Explore samples

Save time with Slack's new modular automation tools

With our new modular foundation, automation is grounded in building blocks. They're remixable, reusable, and hook into everything flowing
in and out of Slack.

re
vi \
«¥
S ®
Functions Workflows Triggers

Create modular functions that automate workin Workflows let you create complex and adaptable Add triggers to customize how and when to kick
Slack and connect with your services. automations by building chains of functions. off a workflow.

Figure 4-1. In Order to Create a Slack Bot, Go To the Slack
API Website

Of course, you'll need to have a Slack account in order for this to work,
so if you don’t have one, then you need to create one first.

After you have logged in, go to the top-right of the page and navigate
to “Your apps » Create your first app,” as shown in Figure 4-1 above. In
Slack terminology, a “bot” is an “app,” and bots are not allowed to run on a
Slack instance unless they have been registered with Slack first.

107

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Create anapp X

Choose how you'd like to configure your app's scopes and settings.

From scratch
Use our configuration Ul to manually add basic info, scopes, >
settings, & features to your app.

From an app manifest
Use a manifest file to add your app’s basic info, scopes,
settings & features to your app.

Need help? Check our documentation, or see an example

Figure 4-2. Creating a New Bot App for Slack

As shown in Figure 4-2, above, you'll be taken to the Your Apps page
where you can manage your Slack apps. Immediately, you'll see a popup to
Create an App button in the middle of the screen.

Select the option to create your app from scratch. This is because we
want to be able to manipulate all of the details of the application ourselves
without overcomplicating things with a bunch of default settings.

Afterward, you'll be prompted to specify a name for your bot and to
select the workspace that you want your bot to have access to, as shown in
Figure 4-3.

Click the Create App button to proceed.

108

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Name app & choose workspace

App Name

Don't worry - you'll be able to change this later

Pick a workspace to develop your app in:

Select a workspace

By creating a Web API Application, you agree to the Slack API Terms of Service.

Cancel Create App

Figure 4-3. Creating a New Bot App for Slack

Specifying What Your Bot Can (and Can’t) Do by
Setting the Scope

Now, you'll be presented with a screen that has a ton of options for bots
for Slack workspaces. The first thing you need to do, however, is from the
sidebar on the left, click OAuth & Permissions.

Our bot is going to be pretty simple; all it needs to do is read the
messages from a channel in order to give us a summary of what was
said. In addition to reading the messages, we also need to know the
names of the people in the Slack workspace; otherwise, we'll get a
UUID representation of the person instead of their name, which is
meaningless to us.

109

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

So, scroll down and be sure to add the following OAuth Scope to your
Slack Bot, as shown in Figure 4-4.

e channels:history
e channels:read

e users:read

_.;l. Sluck Op\ Q Documentation Tutorials ~ Your Apps

Scopes

A Slack app's capabilities and permissions are governed by the scopes it
requests

Bot Token Scopes v
Scopes that govern what your app can access.

OAuth Scope Description

channels:history View messages and other content
in public channels that Tester Bot

Ep

has been added to

channels:read View basic information about

=D
EP

public channels in a workspace

users:read View people in a workspace

Add an OAuth Scope

User Token Scopes 2.4
Scopes that access user data and act on behalf of users that authorize
them.

OAuth Seane

Figure 4-4. Adding Scopes for the Slack Bot App

Confirming Your Settings

After you've added the appropriate scopes for your bot, scroll back up and
click Basic Information from the left side bar.

On the page that follows, you'll see that there’s now a green checkmark
beside “Add features and functionality,” which confirms that you've added
your scopes correctly, as shown in Figure 4-5.

110

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

ﬁl. Sluck Op| Q Documentation Tutorials ~ Your Apps
W bo ~ Basic Information
Settings
Building Apps for Slack

Collaborators
Create an app that's just for your workspace (or build one that can be used

Socket Mode 4
by any workspace) by following the steps below.

Install App

Manage Distribution

Features Add features and functionality @ »
App Home

Org Level Apps Install your app v

Incoming Webhooks)
Install your app to your Slack workspace to test it and generate the tokens

Interactivity & Shortc... you need to interact with the Slack API. You will be asked to authorize this

Slash Commands app after clicking an install option.

Workflow Steps

OAuth & Permissions Install to Workspace

Event Subscriptions

User ID Translation

App Manifest New Manage distribution 4

Beta Features

Submit to App
Directory

Discard Changes Save Changes

Figure 4-5. Confirm Your Settings

Viewing the OAuth & Permissions Page

As shown in Figure 4-6, navigate to the OAuth & Permissions page, and
click the “Install to Workspace” button.

111

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

;;il. Sldck Op| Q | Documentation Tutorials Your Apps

® Novbot v OAuth & Permissions

Settings

Basic Information Advanced token security via token rotation
Collaborators Recommended for developers building on or for security-minded
Socket Mode organizations - opting into token rotation allows app tokens to
Install App automatically expire after they're issued within your app code. View

Manage Distribution documeritatian.
Features /\ At least one redirect URL needs to be set below before this app
App Home can be opted into token rotation
Org Level Apps
Incoming Webhooks Opt In
Interactivity & Shortc...
Slash Commands
Workflow Steps
Event Subscriptions These OAuth Tokens will be automatically generated when you finish

connecting the app to your workspace. You'll use these tokens to

authenticate your app.

OAuth Tokens for Your Workspace

User ID Translation

App Manifest New

Beta Features Install to Workspace

Submit to App

Directory Org-Wide Installation

Only an org admin has the option to install org-wide. When your app is

Figure 4-6. The OAuth & Permission Screen

Installing Your Slack Bot App to Your Workspace

Now that all the permissions have been requested, it’s time to install your
bot to your workspace. During the installation process, you should see a
screen as shown in Figure 4-7.

112

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

a3 slack

This app was created by a member of your workspace, Apress Book Testing.

w =

Tester Bot is requesting permission to access the
Apress Book Testing Slack workspace

What will Tester Bot be able to view?
Content and info about channels & conversations

Content and info about your workspace

Cancel m

Figure 4-7. “Installing” a New Slack Bot App

Click the Allow button to authorize the bot and allow the permissions

you allotted in the previous step.

Note It’s important to understand what “installing” means here.
In a traditional JavaScript sense, installing an app means to copy
your code and dependencies over to another machine and have it to

execute. That’s not what’s happening here.

Here, when you “install” a bot app, you're enabling your Slack
workspace to allow an app to join the workspace - that’s all. The code for

your bot will run on your own machine, and not on Slack’s servers.

113

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Getting Your Slack Bot (Access) Token

This time, “token” actually means access token! In order to connect to the
Slack API and access messages and user information programmatically,
you need a specific OAuth token generated for your Slack bot.

:il. Sluck Gpl Q Documentation Tutorials ~ Your Apps

W Testersot ~ OAuth & Permissions

Settings

Basic Information Advanced token security via token rotation
Collaborators Recommended for developers building on or for security-minded
Socket Mode organizations - opting into token rotation allows app tokens to
Install App automatically expire after they're issued within your app code. View

Manage Distribution documentation

Features £\ Atleast one redirect URL needs to be set below before this app
App Home can be opted into token rotation

Org Level Apps

Incoming Webhooks Optin

Interactivity & Shortc...

Slash Commands

Workflow Steps

OAuth & Permissions

Event Subscriptions These tokens were automatically generated when you installed the app to

OAuth Tokens for Your Workspace

User ID Translation your team. You can use these to authenticate your app. Learn more.

App Manifest, (588 Bot User OAuth Token

Beta Features -
Submit to App A Level: Workspa

Directory

Reinstall to Workspace
Review & Submit

Figure 4-8. Copy Your OAuth Token for Your Slack Bot App

Back on the OAuth & Permissions page, be sure to copy the bot
token (which usually starts with “xoxb-") from the page here, as shown in
Figure 4-8.

Inviting Your Bot to Your Channel

Next, you're going to go to the channel you'd like to use to test your bot and
type in the following command in the channel itself.

/invite

114

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
Select the option “Add apps to this channel,” and then select the

name of the Slack Bot that you specified earlier when you registered the
bot with Slack.

2_,_ Invite someone to this channel
Slack

= Invite someone new to join this workspace
Slack

-'.. Add apps to this channel
Slack

/invite

+ Aa® @ O 9

Figure 4-9. Adding Your Slack Bot to a Channel

Congratulations! You now have successfully registered a Slack Bot App
with Slack, enabled it to read messages in your workspace, and added the
Slack Bot to a channel. Before we can write the JavaScript code to access
the channel in our workspace, we need to know what is the internal ID that
Slack uses for our channel.

Finding the Channel ID of Your Channel

Ok, this is an easy step to do. In Slack, right-click the name of your channel
and select the option “View Channel details.” At the bottom of the popup
window is the ID of your channel. Copy that number and save it for later.
Your JavaScript app will need this in order to join the right channel in your
Slack workspace.

115

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Using Your Slack Bot App to Automatically
Grab Messages from a Channel

Alright, now that we have done all the prerequisites and we know the
ID of our channel, let’s get to the code in JavaScript that accesses all the
messages from a particular Slack channel.

Programmatically Reading Messages from Slack

First things first, you need to install the official JavaScript Slack library.
Below is the npm command to install all the necessary dependencies:

npm install @slack/web-api @slack/events-api dotenv

Listing 4-10 is a simple JavaScript Slack Bot that obtains the user
name, timestamp, and message content of each posting in the designated
channel.

Listing 4-10. Our JavaScript Slack Bot

import { WebClient } from "@slack/web-api”;
import "dotenv/config";

const token = process.env.SLACK API TOKEN;
const channel id = process.env.SLACK_CHANNEL ID;

async function main() {
const web = new WebClient(token);
// Store conversation history
let conversationHistory;
// ID of channel you watch to fetch the history for

try {
// Call the conversations.history method using WebClient

const result = await web.conversations.history({

116

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK

MESSAGES
channel: channel id,
limit: 50,

};

// Get the messages in the order they were sent.
conversationHistory = result.messages.reverse();

// Print results

for (const message of conversationHistory) {
const userInfo = await web.users.info({ user: message.
user });

// Convert the timestamp into a date
const timestamp = new Date(parseFloat(message.ts)
* 1000);

if (userInfo.ok) {
console.log(userInfo.user.name + "[" + timestamp + "]"
+ message.text);
console.log("\n");

}

}
} catch (error) {
console.error(error);

}
}

main();

Let’s walk through this code together.
First, we import essential dependencies required for interfacing with
the Slack API and loading environment variables.

117

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
Next, we define two crucial variables: the token, which is fetched

from the environment variable SLACK_API_TOKEN, and the channel_id,
obtained from SLACK_CHANNEL_ID. These variables are necessary

for authenticating with the Slack API and specifying the Slack channel’s
history we want to retrieve.

We then define an asynchronous main function where the core logic
of our script resides. Within this function, we initialize the WebClient
using our Slack API token to enable API calls. We also declare a variable
conversationHistory to store the messages retrieved from the channel.

The premise of the script is simple; it retrieves the last 50 messages
from the Slack channel by calling the conversations.history() method of
the Slack APIL.

After successfully fetching the messages, the script reverses their order
using .reverse() to ensure they are processed from oldest to newest, and
then prints each message.

Listing 4-11 shows the result of running the Slack Bot script.

Listing 4-11. The Output from Executing Our Channel Reader
Slack Bot

Fatima [2023-08-11T09:04:20] : Hey everyone, I have an urgent
issue to discuss. I just got off a call with a client who's
experiencing app crashes as soon as they load it. They're
really frustrated. Can we get this sorted ASAP? :tired face:

Keith [2023-08-11T09:04:35] : Thanks for bringing this to our
attention, Fatima. Let's jump on this right away. John, can you
take the lead in investigating the issue since our architect is
out sick today?

John [2023-08-11T09:04:52] : Sure thing, Keith. I’1l dive into
the codebase and see if I can find any potential culprits for
the crashes.

118

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES
John [2023-08-11T09:05:30] : Fatima, could you gather some

additional information from the client? Ask them about the
specific device, operating system, and any recent updates they
might have installed.

Exercises Left for the Reader

So, there are obviously a few additional things we can do here, and these
steps will be left for you (the reader) to accomplish, for example:

o Connecting the code that reads the messages from
Slack to the our ChatGPT client in the previous chapter
so that grabbing the messages and getting a summary is
a single step process.

« Adding more capabilities to the Slack bot itself such as
adding commands so that anyone in the channel can
request a summary. In its current state, the bot doesn’t
post anything in the channel. However, the “user
interface” to the bot is the channel itself; therefore,
someone should be able to interact with the Slack bot
by typing a command (such as requesting a summary).

e Making sure that the bot doesn’t make a bad situation
worse. Whenever the bot provides a summary, it should
not post in the channel itself because that could add
a lot of noise to an already noisy situation. The best
practice is to have the bot send a private message to
the person asking for a summary (or whatever new
command that you create).

119

CHAPTER 4 USING Al IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

Conclusion

In this chapter, we talked about one of the various ways artificial
intelligence can be put to practical use within the enterprise today. We
discussed what is truly “prompt engineering,” by discussing that prompt
engineering cannot be accomplished by simply textual input to ChatGPT
alone. You definitely need to understand the ramifications of all the input
parameters to the ChatGPT AP], in order to properly, and effectively,
perform prompt engineering.

Using what we learned about prompt engineering, we were able to
successfully obtain summarizations of any large body of text provided to
us. Finally, we saw the code necessary in order to run an automated bot
that will grab messages from any Slack channel programmatically.

In this chapter (as well as the previous chapter), we were working
exclusively with the Chat Completions Endpoint of the OpenAI APIs. In
the next chapter, we’re going to push the boundaries of what’s possible by
experimenting with the Whisper and DALL-E Endpoints.

120

CHAPTER 5

Multimodal Al:
Creating a Podcast
Visualizer

with Whisper

and DALL-E 3

In this chapter, we're going to see the benefits of combining multiple
models together in order to create some fascinating results. As an avid
podcast listener, I've often wondered what the scenery, the imagery, the
characters, the subject, or the background looked like while listening to a
very immersive story in audio format.

Let’s introduce a new term: multimodal Al. In the most simplest of
terms, generative Al models can create content in one of four formats:

o Text
e Audio
o Images
e Video
© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025 121

B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_5

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Each of those formats is a mode. Multimodal Al is the process of using
multiple Al models together to generate (or to understand) content where
the input is one type of mode, and the output is a different type of mode.

Take, for example, OpenAl’s Whisper model. If you provide it audio,
itis able to create a transcription of everything said into text. The same
thing applies to DALL-E. If you supply it with a textual prompt, then it can
generate an image of what you described.

So we're going to create a Podcast Visualizer using multiple models
from OpenAl. There are a few steps involved, but the final results are
stunning. While listening to a podcast about a guy cooking some amazing
things with tofu (don’t knock it until you try it), the Podcast Visualizer
came up with the image in Figure 5-1.

Figure 5-1. Al-Generated Image. The Result of Visualizing a Podcast
About Tofu Using the GPT-4, Whisper, and DALL-E Models
122

CHAPTER 5

MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

In order to make the code for the Podcast Visualizer easy to follow

along, we’ll do things separately in the following three steps:

Step-1: Take a podcast episode and use the Whisper
model to get a transcript.

Step-2: Take the resulting transcript and use the GTP-4
model to describe the visual aspects of what’s being
discussed in the podcast episode.

Step-3: Take the resulting description and use the
DALL-E model to generate an image.

The code presented here in this chapter has tons of practical uses, for

example:

If you're just curious about what the things in a podcast
episode could look like (which is always the case for
me), you can get a simple representative visual image
to associate with what you're listening to.

For people who are hearing impaired, you can easily
turn a podcast or radio program into a slide-show of
images. This greatly enhances the accessibility of the

content.

For podcasters, you can now have a simple way to add
avisual/hero image to each of your episodes. This is
useful since podcast players such as Apple Podcasts
and Spotify allow podcasters to display a single image
to associate with an individual episode. This can help
with engagement for your listeners.

123

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Introducing the Whisper Model by OpenAl

Now let’s introduce another new term: Automatic Speech Recognition
(ASR). The average everyday consumer is very familiar with this
technology due to its integration into mobile phones (e.g., Siri for the
iPhone) and smart speakers (e.g., any Alexa device). At its core, ASR
technology converts spoken language into text.

Whisper is OpenAl’s model for speech recognition, and the accuracy
is astonishingly high. The listing below is a transcript of an episode of
the very popular DuoLingo Spanish podcast, which makes the Spanish
language easy to be understood by English listeners by combining both
English and Spanish together in a woven narrative story. The transcript
was generated using the Whisper model.

Listing 5-1. The Whisper Model Performs Speech Recognition to
Convert Audio into Text

...I'm Martina Castro. Every episode we bring you fascinating,
true stories to help you improve your Spanish listening and
gain new perspectives on the world. The storyteller will be
using intermediate Spanish and I'll be chiming in for context
in English. If you miss something, you can always skip back
and listen again. We also offer full transcripts at podcast.
duolingo.com.

Growing up, Linda was fascinated with her grandmother, Erlinda.
Erlinda was a healer or curandera, someone who administers
remedies for mental, emotional, physical, or spiritual
illnesses.

In Guatemala, this is a practice passed down orally through
generations in the same family. Mal de ojo, or the evil eye, is
considered an illness by many Guatemalans who believe humans
have the power to transfer bad energy to others. Neighbors

124

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

would bring their babies to Linda's grandmother when they
suspected an energy imbalance. Su madre lo llevaba a nuestra
casa para curarlo...

If you've ever worked with a speech recognition system before (even

with sophisticated technologies like Siri and Alexa), you will know that it

has problems, for instance:

e Speechrecognition has problems with punctuation.

Have you noticed that nobody speaks with
punctuation? For the English language, we use
changes in tone or volume to ask a question or give
an exclamation. We also use short and long pauses
for commas and periods.

e Speechrecognition has problems with foreign words

and accents.

Depending on who you ask, there are at least

170k words in the English language. However, in
conversational English, we are always using foreign
words like:

e Tsunami (Japanese origin): A large sea wave
often caused by an earthquake

e Hors d'oeuvre (French origin): An appetizer

o Lingerie (French origin): Women’s underwear

or nightclothes

e Aficionado (Spanish origin): Someone who
is very passionate about a specific activity
or subject

o Pinata (Spanish origin): A brightly colored box
of candy for kids to beat relentlessly

125

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

¢ Speechrecognition has problems with names.

¢ (Certain names of people, businesses, and websites
can often be hard to spell and understand.

¢ Speechrecognition has problems with homophones.

e Do youremember those words that sound the same
but have different spellings and meanings? The
fantastic editor of this book knows all of them!

e Would / Wood

o Flour / Flower

e Two/Too/To

o They're / There / Their
o Pair/ Pare / Pear

e Break/Brake

e Allowed / Aloud

As you can see from Listing 5-1, Whisper was able to understand all
the punctuation in the audio, identify all the foreign words (of which
there were several), understand the names, as well as the company
name ("Duolingo”) within a URL! Of course, if you noticed, it could also
understand the difference between “wood” and “would.”

Features and Limitations of the
Whisper Model

The Whisper model is able to convert spoken audio from the following
languages into text:

126

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

e Afrikaans

e Arabic

e Armenian

e Azerbaijani
e Belarusian
e Bosnian

e Bulgarian

e Catalan

e Chinese

¢ Croatian

e Czech
¢ Danish
e Dutch

o English (of course!)
o Estonian

e Finnish

e French

e Galician

¢ German

e Greek
e Hebrew
° H1nd1

e Hungarian

127

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

e Icelandic

e Indonesian
o Italian

e Japanese

¢ Kannada

o Kazakh
¢ Korean
¢ Latvian

¢ Lithuanian

¢ Macedonian

e Malay
e Marathi
e Maori
e Nepali

o Norwegian
o Persian

e Polish

¢ Portuguese

¢ Romanian

¢ Russian
e Serbian
e Slovak

¢ Slovenian

128

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

e Spanish
e Swahili
o Swedish
e Tagalog
e Tamil

e Thai

e Turkish

e Ukrainian

e Urdu

e Vietnamese
e Welsh

So, at the end of the day, it will be able to understand audio spoken by
yourself and probably any language spoken by your friends and colleagues.

Developers are limited to send no more than 50 requests per minute to
the API, so this constraint needs to be taken into consideration if you want
to transcribe vast amounts of audio.

Whisper supports audio in flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav,
or webm formats. Regardless of the format that you use, the maximum file
size to send to the API is 25MB.

Now, if you haven’t worked extensively with audio files, please be
aware that some formats create REALLY HUGE files (e.g., wav format) and
others create really small files (e.g., m4a format). So, converting your file to
a different format can help you with the 25MB limitation. However, later in
this chapter, we’ll see the code for a tool that takes a single large audio file
and splits it into multiple, smaller files.

129

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Using OpenAl.audio.transcriptions.create()
to Transcribe Audio

The OpenAl.audio.transcriptions.create() method converts audio into
text and is only compatible with the Whisper model. Let’s take a look at
what parameters need to be in the method in order to make a successful
API call.

Examining the Method Parameters

Table 5-1. The Request Body for Whisper

Field Type Required? Description
file file Required The entire audio file that you want to
be transcribed.

Accepted formats are
e flac

e mp3

e mp4

* mpeg

* mpga

e m4a

* 099

* wav

e webm

(continued)

130

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Table 5-1. (continued)

Field Type Required? Description
model String Required The ID of the model that you want to
use for transcription.

Compatible models include
e whisper-1

prompt String Optional This is any text that can be provided to
change the model's transcription style
or to provide it with more context from
a previous segment of audio.

Be sure that the prompt is in the same
language as the audio for best results.

Additionally, this field can be used to
change the spelling or capitalization of
any words that Whisper is not familiar

with.
response_ String Optional This is the format of the output of
format default: json transcription.

Accepted formats are
e json

e text

* srt

e verbose_json

o vit

(continued)

131

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Table 5-1. (continued)

Field Type Required? Description
temperature Number Optional This is the sampling temperature,
default: 0 ranging from 0 to 1.

A higher value increases the
randomness of the output, whereas
a lower value ensures a more
deterministic output.

language String Optional This is the language of the input audio.
It’s optional, but providing the value
can improve the accuracy and latency
for the transcription

Creating a Utility App to Split Audio Files

So, we're almost at the point where we are able to programmatically invoke
the Whisper model using the Transcriptions Endpoint. However, the
Whisper Model has a limitation of 25MB per file.

Now, this is not a problem if you're listening to, for example, the
StarDate podcast from the University of Texas at Austin. This podcast
gives you a great glimpse of what to look for in the nighttime sky in about
2 minutes of audio. However, that’s not the case for other audio programs
which tend to last for up to an hour (or even more). In cases like that,
you're going to definitely exceed the 25MB file limitation.

Therefore, let’s pair-program with ChatGPT and use our human
intelligence to create our own utility that will take a single audio file and
split it into multiple smaller files.

132

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Note In this section, I'm presenting one of the many possibilities
available on how to segment a large audio file into smaller pieces.
For instance, you can use popular audio editing apps (such as the

Open Source tool, Audacity, or the licensed tool, Adobe Audition) to
manually cut up a large file into smaller files.

FFmpeg is one of the most reliable tools to programmatically
manipulate media files, and since it’s open source, it's make sense to use it
for our needs.

Listing 5-2 is the prompt sums up what we need to get done.

Listing 5-2. PROMPT. Using ChatGPT to Create the
AudioSplitter App

System: You are a JavaScript developer

User: Write an application that takes as input a single MP3
file and splits the file into contiguous segments no longer
than 10 minutes using the ffmpeg library.

After a little back and forth, I was able to create (as shown in
Listing 5-3) the audiosplitter application that includes my edits to what
was generated by ChatGPT.

Listing 5-3. RESPONSE. Audio-splitter.js

G

const ffmpeg = require("fluent-ffmpeg");
const ffmpegPath = require("ffmpeg-static");
const path = require("path");

const fs = require("fs");

133

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

// Configure ffmpeg to use the static binary
ffmpeg. setFfmpegPath(ffmpegPath);

// Function to split MP3 file
function splitMP3(inputFile, duration) {
ffmpeg.ffprobe(inputFile, (err, metadata) => {
if (err) {
console.error(Error occurred: ${err.message});
return;

}

const totalDuration = metadata.format.duration;
const numberOfChunks = Math.ceil(totalDuration / duration);
const outputDir = path.join(__dirname, "output");

if (!fs.existsSync(outputDir)) {
fs.mkdirSync(outputDir);

}

for (let i = 0; i < numberOfChunks; i++) {
const startTime = i * duration;
const outputFile = path.join(outputDir, “output ${i +
1}.mp3°);

ffmpeg(inputFile)
.setStartTime(startTime)
.duration(duration)
.output(outputFile)
.on("end", () => {
console.log(Created ${outputFile}");
)
.on("error", (err) => {
console.error(Error occurred: ${err.message});

1

134

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

.run();

}
};
}

// Usage example

const inputFilePath = path.join(__dirname, "input.mp3"); //
Path to your input MP3 file

const maxDuration = 600; // 10 minutes in seconds

splitMP3(inputFilePath, maxDuration);

Our goal is quite simple: split an MP3 file into segments of a specified
duration using JavaScript and FFmpeg. Each segment should be no longer
than 10 minutes (which is 600 seconds). The entire process is managed
using the fluent-ffmpeg library, which acts as a Node.js wrapper for
FFmpeg, allowing us to handle audio and video processing efficiently.

Of course, one of the first steps required is to ensure that you have
FFmpeg installed and correctly configured. Our script uses ffmpeg-static to
ensure the FFmpeg binary is packaged with the code. This avoids system-
specific dependency issues. You can install your dependencies with the
following command:

npm install fluent-ffmpeg ffmpeg-static

The main logic resides in the splitMP3() function, which takes two
arguments: the path to the input MP3 file and the desired segment
duration (in seconds).

First, we use the ffmpeg.ffprobe() function to extract metadata from the
input MP3 file, specifically its total duration. This is necessary because it
lets us determine how many segments we need to create.

If the output directory does not exist, we create it using Node.js’s fs
module. This ensures that our segmented audio files have a dedicated
destination folder.

135

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

After running the script, the output folder will be populated with MP3
files, each no longer than 10 minutes in duration. If the input file is less
than 10 minutes, only one segment will be generated.

Creating the Audio Transcriber
with Whisper

Now, let’s build our next JavaScript app, which will use the Whisper model
to create transcriptions of audio. Again, we’re going to pair-program with
ChatGPT to get a basis to work with.

Listing 5-4 is the prompt to put in the Chat Playground to get things
started. Be sure to note that I'm asking for a 60-sec HTTP request timeout
since Whisper may take a little while to generate the transcript.

Listing 5-4. PROMPT: Asking ChatGPT to Use OpenAl’s JavaScript
Library and Send MP3 Files to Whisper’s API

System: You are a JavaScript developer.

User: Using JavaScript, write a script that iterates over all
of the mp3 files in a single folder on my local computer and
send all the files in the folder to the webservice provided by
OpenAl's Whisper model, using the OpenAI's node.js library.

Model: gpt-4
Temperature: 1
Maximum Length: 1150

After some back and forth, here’s the response ChatGPT gave us that
worked (Listing 5-5):

136

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Listing 5-5. RESPONSE: WhispeR TRANSCRIBER Script

G

const fs = require("fs");
const path = require("path");
const { OpenAI } = require("openain);

// Set up the OpenAl client with your API key
const openai = new OpenAI({
apiKey: process.env.OPENAI_API KEY,

B;

// Function to read and transcribe .mp3 files in a directory
async function transcribeMP3Files(directory) {

try {
// Read the directory
const files = fs.readdirSync(directory);

// Filter out .mp3 files
const mp3Files = files.filter((file) => path.extname(file)
J— ".mp3");

// Process each .mp3 file
for (const file of mp3Files) {
const filePath = path.join(directory, file);

// Read the .mp3 file
const fileData = fs.readFileSync(filePath);

// Send the file to OpenAl's Whisper
const response = await openai.transcriptions.create({
file: fileData,

137

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

model: "whisper-1",

};

// Output the transcription
console.log(Transcription for ${file}:");
console.log(response.data.text);
}
} catch (error) {
console.error("Error processing files:", error);

}
}

// Set the directory to read from
const directoryPath = "./mp3-files";

// Run the transcription function
transcribeMP3Files(directoryPath);

Having a Little Fun and Trying Things Out
with a Podcast

Ok, so let’s run a test using the code that we have presented so far. “This
American Life” is a weekly public radio program (and also a podcast) that’s
hosted by Ira Glass and produced in collaboration with WBEZ Chicago.

Each episode weaves together a series of stories centered around a
specific theme or topic. Some stories are investigative journalism, and
others are simply interviews with ordinary people with captivating stories.
Episode 811 is entitled, “The one place I can’t go,” and the file is 56 MB in
MP3 format. Since we already know that 56 MB is way too big to send to
Whisper to get transcribed, let’s run our tools to break up the audio file and
transcribe the individual segments.

Listing 5-6 shows an excerpt from the full transcript of the episode.

138

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Listing 5-6. The Partial Transcript of Episode 811 of This

American Life

"...My younger cousin Camille is not really a dog person,
but there is one dog she adored. Her name was Foxy, because
she looked exactly like a fox, except she was black. She was
the neighbor's dog, but she and Camille seemed to have a real
kinship, maybe because they both weren't very far from the
ground. Camille was around four or five years old back then,
and she had a little lisp, so Foxy came out as Fozzie. I
thought it was one of the cutest things I'd ever heard.

The way Camille remembers Foxy, it's almost like a movie. Her
memories feel like endless summer, hazy and perfect, like a
scene shot on crackly film. I just remembered like the feeling
of being excited to go and see Foxy. I have an image in my head
of like coming to the house, and I could see Foxy was like
outside. I can see Foxy through the door that leads to the
garden. There's a story about Camille and Foxy that I think
about fairly often. I've talked about it with my sister for
years, but never with Camille. And it's this. Once when they
were playing..."

For brevity, we're only showing an excerpt of the transcript. The full
transcript itself is over 8000 words due to the fact that the episode is nearly
1 hr in length.

139

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Going Meta: Prompt Engineering
gpt-40-mini to Write a Prompt for DALL-E

Since the full text transcript of the podcast episode that we want to
visualize is thousands of words, we’re going to use gpt-40-mini to
automatically create the prompt needed for the DALL-E model. DALL-E is
able to take a textual description in a prompt and create an image, but it’s
best to keep the prompt as short as possible. Listing 5-7 is the prompt for
gpt-40-mini to generate a prompt for DALL-E.

Listing 5-7. The Prompt for GPT-4 to Create a Prompt for DALL-E
System: You are a service that helps to visualize podcasts.

User: Read the following transcript from a podcast. Describe
for a visually impaired person the background and subject that
best represents the overall theme of the episode. Start with
any of the following phrases:

- "A photo of"

- "A painting of"

"A macro 35mm photo of"

"Digital art of "

User: Support for This American Life comes from Squarespace...
Model: gpt-40-mini

Temperature: 1.47

Maximum length: 150

Top P: O

Frequency penalty: 0.33

Presence penalty: 0

140

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

As you can see in the prompt, the model used is the gpt-40-mini
which allows us to process REALLY LONG text transcripts of 128k tokens.
DALL-E needs to know the type of image to generate so that’s why we need
to specify that the image should be a photo, painting, digital art, etc. We
need to ensure that the resulting text generated by the model is short, so
we want to have a maximum length of 150 tokens. Also, in order to prevent
ChatGPT from repeating some phrases multiple times, we introduced a
frequency penalty of 0.33.

Listing 5-8 shows the results from ChatGPT after reading the transcript
of Episode 811 of This American Life.

Listing 5-8. The Prompt for DALL-E Created by GPT-40-mini

Digital art of a young girl sitting in a garden with a black
dog that looks like a fox. The girl is smiling and the dog is
wagging its tail. The image has a hazy, dream-like quality,
with crackly film effects to evoke nostalgia.

Using OpenAl.openai.images.generate()
to Create Images

The OpenAl.images.generate() method allows you to use the DALL-E
model to dynamically create an image from a text prompt.

Table 5-2 describes the format of the JSON object necessary to
create images. For obvious reasons, the prompt itself is the only required

parameter in order to successfully invoke the service.

141

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Create Image (JSON)

Table 5-2. Request Body for the Create Image Endpoint

Field Type Required? Description
prompt String Required This is where you describe the image
that you want to be created.
The maximum length is 1000 characters
for dall-e-2 and 4000 characters for
dall-e-3.
model String Optional The model name to generate the image.
Default; Compatible models include
“da"'e'z ° uda"_e_zll
e “dall-e-3”
n integer or null Optional This is the requested number of images
Default: 1 that you want created.
Must be between 1 and 10.
Note: Due to the complexity required for
dall-e-3, OpenAl may limit your request
to a single image
quality String Optional This allows you to specify the quality

Default:
“standard”

of the image to be generated. This
parameter is only valid for dall-e-3.

Accepted values are
e “standard”

° th”

142

(continued)

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Table 5-2. (continued)

Field Type Required? Description
size String or null Optional The size of the generated images.
Default: Image sizes available for dall-e-2 are
“1024x1024”
® “256x256”
* “512x512”
e “1024x1024”
Image sizes available for dall-e-3 are
e “1024x1024”
e “1792x1024” (landscape)
e “1024x1792” (portrait)
style String Optional This allows you to specify how natural
Default: “vivid” looking the generated image should be.

This parameter is only valid for dall-e-3.

Accepted values are

e “natural” (good for photos)

¢ “vivid” (good for artistic looks)
response_ String or null Optional This is the format of the generated image.
format Default: “url” Accepted values are

e “url”

* “b64_json”

user String Optional This is a unique identifier representing
your end-user, which can help OpenAl to
monitor and detect abuse.

143

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Handling the Response

After successfully invoking the method, the API will respond with an Image
JSON object. Here’s a breakdown of the Image object, which only has one
parameter (Table 5-3).

Image
Table 5-3. The Structure of the Image Object
Field Type Description
url (or) String This is a url to your generated image if the response_
b64_json format is “url” in the request.
(or)

This is a base64-encoded JSON image if the response_
format is “b64_json” in the request.

Creating the Images with the DALL-E Model

As you can see from Tables 5-2 and 5-3, the creating an image with the
DALL-E model is a very straightforward process. Therefore, our code in
Listing 5-9 shows how to create images programmatically in JavaScript.

Listing 5-9. Using the DALL-E Model to Create Images with
JavaScript

COﬂSt { OpenAI } = require("openain);
require("dotenv").config();

async function main() {
// Set up the OpenAIl client with your API key
const openai = new OpenAI({

144

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

apiKey: process.env.OPENAI API KEY,
s

const response = await openai.images.generate({
model: "dall-e-3",
n: 1,
// The prompt and for the image
prompt:
"a 35mm macro photo of 3 cute Rottweiler puppies with no
collars laying down in a field",
size: "1024x1024",
1;
image url = response.data[0].url;
console.log(image url);

}
main();

Alright, let’s break down what’s happening in this code example.
We're using the openai.images.generate() function from OpenAl’s API to
generate an image based on our prompt.

e Apromptis defined. In this case, the prompt describes
the desired image: “a 35mm macro photo of 3 cute
Rottweiler puppies with no collars laying down in
afield”

e The desired size of the generated image is specified as
“1024x1024".

e The openai.images.generate() function is called with
the provided prompt, size, and model parameters.
This function generates an image based on the input
prompt using the specified model (“dall-e-3").

145

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

e The response object (called an ImageResponse)
contains information about the generated image,
including its URL.

o Finally, the code prints out the URL of the
generated image.

In summary, this code generates an image of three cute Rottweiler
puppies laying down in a field based on the provided prompt using the
DALL-E model, and then it prints out the URL where the generated image
can be accessed.

Visualizing the Podcast

Now that we have the code necessary to create images with the DALL-E
model, Figure 5-2 shows the images generated from the text prompt in
Listing 5-8 shown earlier.

146

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Figure 5-2. Al-Generated Image. The DALL-E Generated Image of a
Girl and Her Dog from Episode 811 of “This American Life” Podcast

DALL-E Prompt Engineering
and Best Practices

Now, creating images with DALL-E takes prompt engineering in order to
get consistent, desired results, and it’s a good idea to play around with
different prompts to get some practice to see what works for you and your
use case. Maybe you prefer paintings instead of 3D looking images? Maybe
you need photos instead of digital art? Maybe you want the image to be a
close-up shot instead of a portrait? There’s a lot of possibilities to consider.

147

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Regardless of your use case, here are two golden rules in order to get
the most out of your DALL-E prompts.

DALL-E Golden Rule #1: Get Familiar
with the Types of Images That DALL-E
Can Generate

First and foremost, one of the most important things that DALL-E needs to
understand is the type of image that needs to be generated. Here’s a list of
several of the most common types of images that DALL-E is able to create:

e 3-Drender

e Painting

e Abstract painting

o Expressive oil painting
e QOil painting (in the style of any deceased artist)
e Qil pastel

o Digital art

e Photo

o Photorealistic

o Hyperrealistic

e Neon photo

e 35-mm macro photo

o High-quality photo

o Silhouette

¢ Vaporware

148

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

e Cartoon

e Plush object

e Marble sculpture

e Hand sketch

o Poster

e Pencil and watercolor
o Synth wave

e Comic book style

¢ Hand drawn

DALL-E Golden Rule #2: Be Descriptive with What
You Want in the Foreground and Background

I cannot emphasize enough that you need to be descriptive with DALL-E
in order to get consistent, desirable results. It may sound weird, but the
best way to describe your image to DALL-E is to act like you're describing a
dream to another person.

So, as a mental exercise between us, try to describe your last dream.
As you describe the people, places, and things in your dream, you have in
your mind the most important things that you remember, as well as the
experience that you felt. As you describe things to another person, tiny
details start to emerge such as

e How many people were present (if any)?

e What position were the people or animals in? Standing,
sitting, or laying down?

e What things were in the scenery and the background?

149

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

e What items stood out to you? Sounds? Smells? Colors?
o How did you feel? Happy, eerie, excited?

e What was the perceived time of day? Morning,
midday, night?

If you can describe a dream to another person, then you should have
no problem describing what you want to DALL-E.

Conclusion

In this chapter, we accomplished a lot! With a few scripts, we created a
Podcast Visualizer.

e We created and used the audio-splitter script, which
works as a utility for us. If you have an audio file that’s
larger than the limitations of the Whisper model, this
script will give you a folder of smaller audio files to
send to Whisper.

e We created a script to use the audio-splitter and send
the folder of files to Whisper for transcription. Your
only limitation is the number of requests that you can
send to the Whisper model.

e We did alittle prompt engineering in order to get a
descriptive prompt of the imagery in a podcast based
upon the transcript.

o Finally, we created and used the DALLE-model to take
the prompt generated from calling the gpt-4-o-mini
model and getting an image that represents the podcast
episode visually.

150

CHAPTER5 MULTIMODAL Al: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL-E 3

Exercises Left for the Reader

So, there are obviously a few additional things we can do here, and these
steps will be left for you (the reader) to accomplish, for example:

e The audio-splitter script our JavaScript interface to
FFmpeg. FFmpeg can not only split audio files, but
can also do a lot more with media files, such as format
conversion and reencoding. Experiment to see which
of the supported media formats by Whisper are the
smallest audio files. Hint: It’s definitely not WAV format.

If you're planning to create an app or a service

that automatically generates images based upon

a textual prompt from your end users, then you
definitely would want to update the DALL-E script
in order to ensure that you're tracking and providing
in your request the user parameter. This is due to the
fact that your end user has the potential to generate
harmful images through your API key. Remember,
you have an API account with Open Al, and they
don’t! As a result, you need to be aware if you need
to terminate your business relationship with a user
who is violating Open Al content rules through your
service.

151

CHAPTER 6

Creating an
Automated
Community Manager
Bot with Discord
and JavaScript

When you're launching an app or a service, it’s important to build and
maintain your own community. Below are the telltale signs of a healthy
user community:

e Members engage in meaningful discussions, sharing
insights, feedback, and support.

o Disagreements or debates occur, but they are
approached constructively without resorting to
personal attacks or derogatory language.

e There’s an atmosphere of respect, where members
listen to each other and acknowledge differing
opinions.

© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_6

153

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
e A mix of old and new members actively participate,

ensuring the community remains vibrant and doesn’t
stagnate.

o Users contribute diverse content, from answering
questions to sharing resources, which enriches the
community’s knowledge base.

e There’s a balance between giving and taking; members
who seek help or information also offer it to others.

e New members frequently join, often referred by
existing members, indicating that the community is

seen positively and worth recommending.

e Users often become advocates for the community or
platform, promoting it outside of the direct community
space, such as on social media or other forums.

e The community helps to shape the app or service by
providing new ideas for features and functionality.

No matter what type of app or service that we create, we would love for
our user community to exemplify the items listed above!

Choosing Discord as Your
Community Platform

Over the past few years, Discord has surged in popularity as a useful tool
for community management for people who are passionate about their
communities. This is partially due to its cross-platform compatibility,
allowing members to stay connected whether they're on a desktop,

mobile device, or web browser. However, one of its standout features is the
invitation-based community system, which helps community managers to

154

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
control growth and prevents spam. This model not only ensures a tailored

experience for members but also enhances security, since community
managers have the discretion to grant or deny access.

Discord not only supports text messaging but also supports voice chats
and streaming video. Very similar to Slack, Discord allows community
managers to separate content into channels to organize discussions,
streamline information flow, and to help users see the content that they're
interested in.

Creating a More Advanced Bot Than Our
Slack Bot

Now, If you successfully went through the steps in Chapter 4 where we
worked with a Slack bot, then the steps in this chapter will feel familiar to
you. In Chapter 4, we created a Slack bot to read a single channel during
a time period and get a summary of the content discussed. The Slack bot
was not a community manager, but was more like a helpful assistant.

For the remainder of this book, we're going to perform all the steps
necessary to make powerful bots for Discord that will use Al to help
actually manage the community.

Creating a More Advanced Bot Than Any
Typical Discord Bot

If you've ever had any experience using a Discord bot, then you're
probably aware that the most common way in order to interact with them
is with what’s called a “/command”. This enables typical bots (read: non-
intelligent bots) to essentially work only when they have received a very
specific operation or command. If the “/command” is not provided, then
the bot will be silent and not do anything. Essentially, it exemplifies the
phrase, “speak only when you are spoken to.”

155

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
However, we are creating a Discord bot that will be artificially

intelligent, and therefore it will be much more advanced than any typical
Discord bot. We're going to create bots that will be able to read and see
all messages in the Discord server and be intelligent enough to respond
correctly.

Understanding the Roles for the Bots

So let’s explore a scenario in order to make things real. We're creating a
public Discord server to interact with the users of a mobile banking app.
Our end goal is to have bots written in JavaScript to handle the following
scenarios:

¢ Q&A: Monitor a specific channel and automatically
answer questions from users about how to use the
banking app. For this to work, the bot will need to be
trained on how the app works.

e No Solicitations: For any business community, it’s
important that the participants of the community are
not being targeted by unscrupulous individuals. For
example, if you're creating a banking app, do you want
your customers contacted by anyone whose username
is “B4nk Admin”?

e No Harmful Content: For any community, it’s
important for the members to be protected from
harmful content such as hate language.

156

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Our Example Bank: Crook’s Bank

For the purposes of this example, we decided upon a fictional name of a
fictional bank that would have an extremely low likelihood of coinciding
with the name of a real bank. Therefore, for this example, “Crook’s Bank”

is launching a new mobile app for customers of their bank. They want to
have a channel that will be monitored by a bot to answer questions from
users of the app, and they also want to ensure that no one is soliciting users
of their app, or posting hurtful or harmful content in their Discord servers.

Crooks -
. Bank! .-

Figure 6-1. This fake App from a Fake Bank has real problems

157

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

First Things First: Create Your Own
Discord Server

Before we can make an Al Discord Bot, we're obviously going to need a
Discord server already in place for the bot to interact with. Use either the
Discord App or go to the Discord website (login first of course) and start
the process to Add/Create a new server.

After you have started the process, select the option labeled, “Create
My Own” as shown in Figure 6-2.

Create your first Discord server

s and your friends
u " ‘:1A'l‘.\xk'\‘
P} Create MyOwn

START FROM A TEMPLATE
d " Gaming

b
* School Club

Figure 6-2. Creating Your Own Discord Server

Next, you'll be prompted to specify additional information about
your server. Continue to proceed through the creation process until you
are prompted to provide a name and icon for your server, as shown in
Figure 6-3.

158

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Customize your server

SERVER NAME

Crooks Bank

Figure 6-3. Providing a Name for Your Own Discord Server

Specify the name of your server and provide an optional server icon (if
you have one).

Create the Q&A Channel

By default, every Discord server has a “general” channel, but we want a
dedicated channel especially for questions and answers. Depending upon
how you created your server, Figures 6-4 and 6-5 will be presented to you

to create your new channel.

159

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Crooks Bank
Start a conversation

Let's get you ready to talk. What's a topic your group likes?

TOPIC

g-and-a

Figure 6-4. Creating a Channel Using the Web Interface

Create Channel
in Text Channels

CHANNEL TYPE

= Text ®

Send messages, images, GIFs, emoji, opinions, and puns

. Voice

" Hang out together wi

CHANNEL NAME

g-and-a

8 Private Channel

Only selected members and roles will be able to view this channel

Cancel Create Channel

Figure 6-5. Creating a Channel Using the discord App

160

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Registering a New Discord Bot App
with Discord

Now that we have our Discord server with the appropriate channels
created, it’s time to register the bot itself - or rather, in our case, the
bots themselves. In order to keep the code clean and manageable, we’ll
actually have multiple bots for our Discord server. The first bot will be used
exclusively to answer questions in the “q-and-a” channel. The second bot
will monitor all channels for unwanted content, such as harmful content
or solicitations.

In order to create our bot, head over to the Discord Developers
website:

https://discord.com/developers

At the top-right of the page, click the button “New Application,” as

shown in Figure 6-6.

@@ DEVELOPER PORTAL

Applications New Application @)

Find the perfect feature set for your game in our Game SDK, and sign up for Server Commerce
to start selling directly in your server. Get started by creating a new application. We can't wait
to see what you make!

Applications
Te:
us

SortBy: Date Created v i3 smal BB Large

My Applications

You don't have any applications yet, sad face.

Figure 6-6. In Order to Create a Discord Bot, Go to the Discord
Developer Website

161

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
In both Discord and Slack terminology, a “bot” is an “app,” and bots

are not allowed to run on Discord servers unless they have been registered
with Discord first.

Specify a name for the bot and click the “Create” button, as shown in
Figure 6-7.

CREATE AN APPLICATION
NAME

Qand A Bot

By clicking Create, you agree to the Discord
and

Cancel

Figure 6-7. Creating/Registering a Bot for Discord

Specifying General Info for the Bot

Afterward, you will be taken to a page where you can specify general
information about your bot, as shown in Figure 6-8.

Be sure to familiarize yourself with the navigation menu on the left
side of the page. As you can see, we have several categories of settings
to configure for our bot. By default, we have landed on the “General
Information” page, where we specify basic info about our bot. If you have
an icon ready for your bot, you can upload it here.

162

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

& Back to Applications
General Information
SELECTED APP
reation? What amazing | on should repres!
& QandABot

SETTINGS

) General Information

LF Inst

APPLICATION ID
1159081867568492606

Copy
PUBLICKEY
054466864101 £5733745155144050861684ce0ac6002503420430¢9b626038

Copy

Figure 6-8. We Decided to Give Our Bot a Cute Little Robot Icon

Specifying OAuth2 Parameters for the Bot

Now it’s time to specify the scopes and permissions for our bot. If you
followed the steps in creating a Slack bot in Chapter 4, then (as stated
before) this procedure will feel familiar to you. Bots cannot and should
not have the ability to do anything and everything - they should be only
allowed to perform a list of operations that they were designed to perform.

On the settings navigation menu on the left, navigate to “OAuth2 »
URL Generator” to continue.

Below are the scopes that we want:

e Scopes

¢ Bot

163

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
This is reflected in Figure 6-9.

support, and define the scopes and permissions you want to request
& Back to Applications
sl Authorization Methods

@ Tech Support Bot Select the authorization methods your app supports. Apps can be installed to both users and guilds

SELECT METHODS
SETTINGS

A Ge

£F Installation

User Install = Guild Install

@ OAuthe Install Link
Use our provided install link or register a custom one. If you choose a custom link, users who add your app will be redirected to
your URL instead of the Add App flow in Discord.

Discord Provided Link

om/oauth2/authoriz: ent_id=1159081867568492606

MONETIZATION
Default Install Settings

ACTIVITIES Choose the default set of scopes and permissions your app will request

© Getting

Guild Install

SCOPES
applications.commands ~ bot
PERMISSIONS

Read Message History - Read Messages/View Channels - Send Messages

Figure 6-9. Selecting the Scopes

After we select the bot’s scope, we get to see all the permissions that
are only applicable to bots, listed in alphabetical order.

Bots can be pretty powerful depending on the permissions you give it.
There are permissions that allow the bot to act in the capacity of a normal
human moderator, such as managing the server, roles, and channels. Bots
with these permissions can also kick and ban members.

What we're going to enable for our bot right now are the ones that
allow the bot to send and receive messages in text channels. This is what
we need. Although we’re not doing anything special right now with audio,
we could enable voice permissions to allow the bot to participate in voice
channels. Simple enough, right?

164

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
Select the following permissions for the bot:

o BotPermissions
e Read Message History
o Read Messages/View Channels
e Send Messages

Although you haven’t written any JavaScript code yet, now it’s time to

invite your bot to your server.

Invite Your Bot to Your Server

As shown in Figure 6-9, after you have selected the appropriate
permissions, Discord will give you a dynamically generated URL that will
enable you to invite your bot to your server.

Copy the URL and paste it into a web browser where you're already
authenticated into Discord. The result is shown in Figure 6-10.

165

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

@ piscora

P @®

o
4=
A

n external application

Qand A Bot ot

want

THIS WILL ALLOW THE DEVELOPER OF Q AND A BOT TO:
) Add abot to a server
~ Create commands

® Buy you a nice seafood dinner

ADD TO SERVER:

Crook:

Figure 6-10. If You Read the Screen Carefully Here, You Can See That
Discord Has a Sense of Humor

Click the “Continue” button to add the bot to your server.

Next, you will see a page that looks quite similar to the previous
one, but the main difference is that it will give you a summary of all the
permissions and capabilities of the bot. Typically this is quite useful if you
are adding a bot to a server that you DID NOT CREATE. However, since we
created this bot ourselves, this is just a confirmation of the settings that we
have already specified earlier (Figure 6-11).

166

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

An external application

Qand A Bot

¥) Read Message History

Figure 6-11. Confirming the capabilities of the bot

Click the “Authorize” button to give the bot the permission to run on
your server.

If everything went smoothly, then you should see an automated
message in the General channel of your server that indicates that the
process has been successful.

Getting the Discord ID Token for Your Bot
and Setting the Gateway Intents

Now it’s time to get the Discord ID token for your bot, which you'll use in
your code to authenticate your bot programmatically.

167

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Note For obvious reasons, using the word “token” here makes me
nervous because this word has two distinct meanings in this book
due to the context, but here’s a quick refresher on the meanings:

e When using Discord and Slack APIs, a “token” is an
authentication token.

e When using OpenAl APIs, a “token” is a part
of a word.

Go back to the Discord developer’s website and click the “Bot”
category in the settings navigation menu to continue.

Although you haven’t seen your token yet, you need to click on the
“Reset Token” button, as shown in Figure 6-12.

Be sure to copy and save the ID token to someplace safe. You will need
this token in the JavaScript code that’s presented later in this chapter.

Build-A-Bot
r app to life by adding

Authorization Flow

These settings control how OAuth2 authorizations are restricted for your bot (who can add your bot and how it is added)

Figure 6-12. Click the “reset Token” button to see your ID Token

168

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
Scroll down the page to the section named, “Privileged Gateway

Intents,” and enable the option named, “MESSAGE CONTENT INTENT.”

Note So let's slow things down a bit and talk about intents. What
exactly is an “intent” and why is it needed? For the purposes of the
Discord API, you need to specify explicitly every type of information
that you want to be notified by Discord programmatically. Otherwise,
Discord will constantly bombard you with events that are not relevant
to you or your bot. For example, for our purposes, we don’t care
when people join or leave the server. However, if you want to send a
list of server rules to anyone who joins your server for the first time,
then you definitely would want to enable the “SERVER MEMBERS
INTENT.” When we deep dive into the code, you'll see more
information about intents.

Be sure to click the green button, “Save Changes,” to save your
changes. The result is shown in Figure 6-13.

169

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Reset Token

& Back to Applications

Authorization Flow
SELECTED APF T tings control how OAuth2 authorizations are restricted for your bot (who can add your bot and how it is added)
@ Tech Support Bot

PUBLIC BOT

SETTINGS Public bots can be added by anyone. When unchecked, only you can join this bot to servers. ®

REQUIRES OAUTH2 CODE GRANT

If your application requires multiple scopes then you may need the full OAuth2 flow to ensure a bot doesn't join before your ®
application is granted a token.

Privileged Gateway Intents

Some require approval if your bot is verified. If your bot is not verified, you can toggle those intents below to access
them

PRESENCE INTENT
MONETIZATION Required for your bot to receive events.
P NOTE: Once your bot reaches 100 or more servers, this will require verification and approval.

ACTIVITIES
'SERVER MEMBERS INTENT

[+l e o for your bot to receive events listed under
ce your bot reaches 100 or more servers, this will require verification and approval.

MESSAGE CONTENT INTENT

Required for your bot to receive in most messages o
NOTE: Once your bot reaches 100 or more servers, this will require verification and approval.

Careful — you have unsaved changes! Reset | SaveChanges

Figure 6-13. Enable the option named, “MEESSAGE CONTENT
INTENT”

Creating a Q&A Bot App in JavaScript
to Answer Questions from a Channel

Of course, now that we've done all the prerequisites necessary and we
know the name of the channel that we want to monitor for questions
from our users, let’s get to the code in JavaScript that joins our server and
accesses all the messages from a specific Discord channel.

This is the first of two Discord bots that we're creating in this chapter.
This bot will be responsible for watching the messages in the “q-and-a”
channel in our Discord server.

Later on in this chapter, we'll create another bot that will be
responsible for moderating ALL CONTENT in the Discord server for
unwanted content, including the “q-and-a” channel. The goal here is

170

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
follow the architectural pattern of “separation of concerns.” Rather than

creating a gigantic JavaScript Discord bot that performs all the moderation
needs for the Discord server, we're going to separate the functionality into
two different apps.

We're also going to take things step by step and focus this chapter on
getting past the learning curve for the Discord capabilities in JavaScript.
In the final chapters of this book, we’ll enhance both bots and make them
artificially intelligent using the Open AI APIs.

Listing 6-1 is the code that we need to create a basic Discord bot
that watches all the messages posted in a single channel and provides
an answer.

Listing 6-1. Our Simplified Tech Support Bot

// Require the necessary discord.js classes
const { Client, Events, GatewayIntentBits } =
require("discord.js");
require("dotenv").config();

// Configuration variables
const CHANNEL NAME = "g-and-a";
const CUSTOM STATUS = "Ready to answer your questions";

// Create a new client instance
const client = new Client({
intents: [
GatewayIntentBits.MessageContent,
GatewayIntentBits.GuildMessages,
GatewayIntentBits.Guilds,

1,
D

client.once(Events.ClientReady, (readyClient) => {
console.log(Ready! Logged in as ${readyClient.user.tag});

171

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
// Set the custom status

client.user.setActivity(CUSTOM STATUS);

Ds
client.on(Events.MessageCreate, async (message) => {
if (client.user.username === message.author.username) return;

if (message.channel.name !== CHANNEL NAME) return;

console.log("User is:", message.author.globalName Il message.
author.username);
console.log("Message is:", message.content);

const reply = “${mention(message.author)}, I can help you
with that!";
await message.channel.send(reply);

};

function mention(author) {
return “<@${author.id}>";

}

// Log in to Discord with your client's token
client.login(process.env.DISCORD BOT API TOKEN);

Now let’s delve into the code in Listing 6-1 to understand how our
simplified tech support bot works. This bot is designed to monitor
messages in the “q-and-a” channel of your Discord server and provide
responses to the users’ questions.

Note For some reason, Discord’s own terminology sometimes
refers to Discord servers as “guilds.” However, from our perspective,
a guild is simply a Discord server.

172

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Creating the Discord Client

It’s pretty easy to create a Discord client using a few lines of code:

// Create a new client instance
const client = new Client({
intents: [
GatewayIntentBits.MessageContent,
GatewayIntentBits.GuildMessages,
GatewayIntentBits.Guilds,
])
1);
Here, we instantiate a new Discord client and provide an intents array
to tell Discord which events we want our bot to receive, namely:

e MessageContent: Allows the bot to read the content of
messages

e GuildMessages: Enables the bot to receive messages
from the Discord server.

¢ Guilds: Allows the bot to receive updates about Discord
server it’s a part of

Listening for New Messages in Our Preferred
Discord Channel
Obviously, the most important function here in our bot is the client.on()

event listener, which we use to monitor every new message posted in the

Discord server.

client.on(Events.MessageCreate, async (message) => {
if (client.user.username === message.author.username) return;
if (message.channel.name !== CHANNEL NAME) return;

173

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
console.log("User is:", message.author.globalName Il message.

author.username);
console.log("Message is:", message.content);

const reply = “${mention(message.author)}, I can help you
with that!’;
await message.channel.send(reply);

};

If a message comes from the “q-and-a” channel, our bot will send a
friendly (albeit, non-helpful at the moment) response to the sender. As a
nice little touch, the author is tagged in the reply so they can be notified
when the response is posted.

Success! Running Your First Discord Bot

Now let’s run our JavaScript Discord bot. After executing the script, be
sure to return back to your Discord server and try to type a question in the
channel that you setup for Q&A. Figure 6-14 shows the response to the
question, “Is this bot going to answer my questions about the app?”

@ Ceo s v # qanda O 8 D samh a9
) onme—2
.{:‘, e Q PythonChatGPT &
+ L % Qand A Bot GZ3
o Fuown . Welcome to #q-and-a!

Edit Channel

PythonChatGPT Today at 137 PM
s this bot 3

‘ ‘é" Qand ABot &

hi @PythonChatGPT, | can help you with that!

Qo gon O soee

Figure 6-14. Success running the Q&A Bot in discord

174

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
Asyou carefully inspect Figure 6-14, you'll see some key

features such as

e On the right side, you'll see that the bot is online with a
green status indicator.

e The botalso has a custom status to let you know what it
will do in the channel.

o After asking a question in the channel, the bot will tag
you directly.

Streamlining the Process of Registering Our
Next Discord Bot App

Now that we have successfully performed all the steps in order to get a
functioning Discord bot, creating the second bot will be a piece of cake!

So, let’s briefly reiterate all the steps from above in order to create our
second Discord bot. We'll be sure to point out the items that need to be
changed or enhanced due to the fact that this second bot will work as a
moderator, instead of providing answers to questions from the users of our
Discord server.

Registering a New Discord Bot App with Discord

Perform the same steps as above; however, it would be wise to give the
bot a different name. For our purposes, this second bot will be named,
“Content Mod Bot.”

175

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Specifying General Info for the Bot

We decided to have a different icon for the Content Moderator bot, so we
specified it here (Figure 6-15).

€ Back to Applications -
General Information

@ Mod Bot

SETTINGS

A General Information
NAME

¥ installatior
Mod Bot

DESCRIPTION (MAXIMUM 400 CH

APPLICATION 1D
1161274954600419339

Copy

PUBLIC KEY
5dbBb5a5958474cF684b94078b622F741048b0508343409104d63F 1679539

Copy

SERVER COUNT

Figure 6-15. Providing a Name and Icon for the Second Bot

Specifying OAuth2 Parameters for the Bot

This second bot needs more permissions in order to perform more tasks.
Below are the scopes that we want:

« Bot
e Kick Members
e Ban Members
e Send Messages
¢ Manage Messages

e Read Message History

176

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Invite Your Bot to Your Server

Repeat the same steps as above for the first bot.

Getting the Discord ID Token for Your Bot
and Setting the Gateway Intents

Again, follow the steps above in order to get the Discord ID Token. Then
scroll down the page to the section named, “Privileged Gateway Intents”
and enable the options named, “SERVER MEMBERS INTENT” and
“MESSAGE CONTENT INTENT.

Creating the Next Discord Bot,
the Content Moderator

The role of the content moderator is to make sure that unwanted content is
not posted in the Discord server. Just like the previous bot that we created
earlier in this chapter, this bot will not (yet) be artificially intelligent. In
its current state, the bot will indiscriminately delete any message posted
anywhere in the server that contains the word, “puppies.”

It’s not because puppies are inherently evil. However, they do have
a tendency to destroy your favorite pair of shoes when left alone. In all
honesty, we simply need something to test our code in Discord when we
run our bot.

Listing 6-2 is the code for this simplified Content Moderator.

177

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Listing 6-2. Our Simplified Content Moderator Bot

// Require the necessary discord.js classes
const { Client, Events, GatewayIntentBits } =
require("discord.js");
require("dotenv").config();

// Create a new client instance
const client = new Client({
intents: [
GatewayIntentBits.MessageContent,
GatewayIntentBits.GuildMessages,
GatewayIntentBits.Guilds,
])
D;
const BANNED_WORD = "puppies";

client.once(Events.ClientReady, (readyClient) => {

console.log(Ready! Logged in as ${readyClient.user.tag}");

D;

client.on(Events.MessageCreate, async (message) => {

if (client.user.username === message.author.username) return;

if (message.content.includes(BANNED WORD)) {
if (!(await message.delete())) {
console.log("Failed to delete message");
} else {

const authorMention = “${mention(message.author)};
const reply = “${authorMention} This comment was deemed

inappropriate for this channel.\nIf you believe this
to be in error, please contact one of the human server

moderators. " ;

178

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT
await message.channel.send(reply);

}
}
D

function mention(author) {
return “<@${author.id}>";

}
client.login(process.env.DISCORD BOT API TOKEN);

Handling Messages Sent to the Discord Server

Again, let’s focus our attention on the client.on() event listener function,
since it’s called asynchronously every time a message is posted to the
Discord server. As you can see, if the message posted to the server contains
the banned word, then we delete the message, and warn the sender with

a @mention message in the same channel where the offending message

was posted.

Success Again! Running Your Second Discord
Bot, the Content Moderator

Now let’s run our second JavaScript Discord bot. After executing the app,
be sure to return back to your Discord server and type a message in any
channel that contains the offending word. Figure 6-16 shows the bot

in action.

179

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH

DISCORD AND JAVASCRIPT
o Crooks' Bank v 4 general O 8 A sach a U e
o B Events s ot startad. Fof cork. cHocd: o ouf Gkt Stacagd gikda ONLINE—2
(;‘w ‘ﬁ. Mod Bot €
TEXT CHANNELS +
+ S reneal) e s St Q Q PythonChatGPT w
q-and-a
) et @ =
¥
an | Sendyour first message >
O Download the Discord App >
Add your first app Q

@ ModBot B Today at 1:41PM
«®» @PythonChatGPT This com
be in error, please contact ol

d inappropriate for this channel. If you believe this to
ver moderators.

) zoee
Q- 7 Q8

Figure 6-16. This Bot Has a Strict Rule About Discussing “Puppies”;
However, Discussing “Kittens” Is Perfectly Fine

Conclusion

We just went through all the steps necessary to create two functioning
Discord bots in JavaScript. For those who are unfamiliar with the process
of creating a Discord server, we showed the process on how to set up a
server to manage our community.

As you can see, we took a much different approach compared to our
Slack bot that we did in Chapter 4! The Slack bot that we created was pretty
much focused on user productivity within the workplace. The two Discord
bots, on the other hand, are truly focused on community management. We
have everything in place for these bots to be artificially intelligent with the
help of OpenAlI’s APIs. This is all accomplished in the final two chapters.

180

CHAPTER 6 CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

Exercises Left for the Reader

In the next chapters, we're going to make our “dumb” bots to be intelligent,
but there’s at least one thing we can do right now. Rather than using the
command line to report status messages, it’s better for the bots to have
their own channel that’s exclusively used for status reports. This way, when
the bot starts up, shuts down, or has anything important to inform the
administrators, it’s all logged and recorded in a central location.

181

CHAPTER 7

Adding Intelligence
to Our Discord Bots,
Part 1: Improving Our

Q&A Bot

At this point, we have all the structure in place to make both our Discord
bots that we created in the previous chapter to be fully functional and
artificially intelligent. In these final two chapters of this book, we’re going
to follow all the steps necessary in order to make both bots to be artificially
intelligent. In this chapter, we'll get started with our Tech Support Bot.
Below are the two major changes that we're going to make:

e Improve our script that calls the OpenAI APIs and make
a class that can be instantiated by the Discord bot. This
way, the Discord bot class can ask questions about
specific information that we provide to it. This class will
be used for Q&A purposes in this chapter but will be
used in the final chapter of the book as well.

© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025 183
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_7

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

e Modify our Tech Support Discord bot so that it can
load an external text file that contains frequently
asked questions with the answers. This script will
then provide the contents of the text file to the
ChatGPTClient class who is responsible for creating the
prompt and of course invoking ChatGPT.

Making Our Tech Support Bot
More Intelligent

Listing 7-1 contains the full contents of the frequently asked questions
that the fictional customer support team has created based upon support
tickets from users of the newly launched mobile banking application.

Listing 7-1. FAQ.txt

1. What is the Crooks Bank Mobile App?

The Crooks Bank Mobile App is a cutting-edge mobile banking app
that allows you to manage your finances, make transactions, and
access a wide range of banking services conveniently from your
mobile device.

2. How can I download the Crooks Bank Mobile App?

You can download the Crooks Bank Mobile App from the App
Store for iOS devices and Google Play for Android devices.
Simply search for the "Crooks Bank Mobile App" and click the
"Install" button.

3. Is the Crooks Bank Mobile App safe and secure?

Yes, the Crooks Bank Mobile App prioritizes your security.
We use state-of-the-art encryption and security protocols to
protect your data and transactions. Your information is safe
with us.

184

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

4. What features does the Crooks Bank Mobile App offer?

The Crooks Bank Mobile App provides a variety of features,

including:

e Account Management: View account balances, transaction
history, and more.

e Transfer Funds: Easily transfer money between your accounts
or to other bank accounts.

e Bill Payments: Pay bills and manage recurring payments.

e Deposit Checks: Snap photos of checks for remote deposit.

e ATM Locator: Find nearby ATMs and branches.

e Notifications: Receive alerts for account activity and
important updates.

5. Can I link external accounts to the Crooks Bank Mobile App?
Yes, the Crooks Bank Mobile App supports linking external
accounts from other financial institutions. You can monitor and
manage your accounts from different banks in one place.

6. How can I reset my password if I forget it?

If you forget your password, simply click the "Forgot Password"
option on the login screen. You'll receive instructions on how
to reset your password.

7. What are the fees associated with the Crooks Bank Mobile App?
The Crooks Bank Mobile App aims to be transparent with its
fees. You can find information on account fees, transaction
charges, and other costs in the "Fees" section within the app
or on our website.

8. Can I get customer support through the Crooks Bank
Mobile App?

Absolutely! We offer customer support through our in-app
messaging feature. You can also find our customer service
contact information on our website.

185

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

9. Is the Crooks Bank Mobile App available for business
accounts?

The Crooks Bank Mobile App primarily caters to personal banking
needs. However, we have plans to introduce business banking
services in the future.

10. How can I provide feedback or suggestions for the Crooks
Bank Mobile App?

We welcome your feedback! You can submit suggestions and
feedback through the "Contact Us" section in the app or on our
website.

Asyou can see in the Frequently Asked Questions text file in Listing 7-1,
there’s no magic involved here. It’s simply a list of questions and the
answers. Now, let’s see the modified Tech Support Discord bot. This is
represented in Listing 7-2.

Listing 7-2. Our Smarter Tech Support Discord Bot

// Require the necessary discord.js classes

const { Client, Events, GatewayIntentBits } =
require("discord.js");

const { ChatGPTClient } = require("./chatGPTClient");
const fs = require("node:fs");
require("dotenv").config();

const systemMessage =

"You are a virtual assistant that provides support for the
Crooks Bank banking app.";
const faqContents = fs.readFileSync("./FAQ.txt", "utf8");
const chatGPTClient = new ChatGPTClient(systemMessage,
fagContents);

186

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

// Configuration variables
const CHANNEL NAME = “g-and-a";
const CUSTOM STATUS = "Ready to answer your questions”;

// Create a new Discord client instance

const discordClient = new Client({
intents: [
GatewayIntentBits.MessageContent,
GatewayIntentBits.GuildMessages,
GatewayIntentBits.Guilds,

])

D;

discordClient.once(Events.ClientReady, (readyClient) => {
console.log(Ready! Logged in as ${readyClient.user.tag}");
// Set the custom status
discordClient.user.setActivity(CUSTOM_STATUS);

1;
discordClient.on(Events.MessageCreate, async (message) => {
if (discordClient.user.username === message.author.

username) return;
if (message.channel.name != CHANNEL NAME) return;

console.log("User is:", message.author.globalName);
console.log("Message is:", message.content);

await message.channel.sendTyping();
const chatGPTResponse = await chatGPTClient.
sendMessageFromDiscord(

message.content

)5

187

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

const reply = “${mention(message.author)}
${chatGPTResponse}";
await message.channel.send(reply);

D

function mention(author) {
return “<@${author.id}>";

}

// Log in to Discord with your client's token
discordClient.login(process.env.DISCORD BOT API TOKEN);

Important Changes to Note from the
Previous Version of the Tech Support Bot

Let’s briefly analyze our updated Tech Support Bot and discuss the
changes that were made. As you can see, we're doing a few things at once.

First of all, this script will function as a client to both Discord and
ChatGPT, so having a single constant named “client” will be somewhat
confusing. Therefore, the client that will be used for any Al operations with
ChatGPT is a constant named chatGPTClient:

const systemMessage =
"You are a virtual assistant that provides support for the
Crooks Bank banking app.";
const faqContents = fs.readFileSync("./FAQ.txt", "utf8");
const chatGPTClient = new ChatGPTClient(systemMessage,
faqContents);

Remember from the previous chapters in the book that you can
dramatically set the tone of the conversation with ChatGPT by providing
a specific message to the system itself in your prompt. Therefore, we
made a constant to hold the system message. Additionally, we defined

188

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

a constant that holds the contents of the frequently asked questions file.

With the system message and the contents of the FAQ defined, we're able

to instantiate our ChatGPTClient class (more details about that later).
The whole purpose of this bot is to send any message from a

Discord user to ChatGPT and display the response. Therefore, let’s

look at the changes made to client.on(), which has been renamed to

discordClient.on().

Updates to the Newly Named Function,
discordClient.on()

The discordClient.on() function is asynchronously called every time
a message is posted into the discord server. For obvious performance
reasons, the code needed to instantiate the chatGPTClient class (which
also includes the process of loading the contents from the FAQ.txt file) is
not in this function. We already performed those steps earlier in this script
seeing that they only need to be done once.

When a message is received into the channel that were observing, be
sure to notice the following lines of code:

await message.channel.sendTyping();
const chatGPTResponse = await chatGPTClient.
sendMessageFromDiscord(

message.content

);

const reply = “${mention(message.author)}
${chatGPTResponse}";
await message.channel.send(reply);

B

189

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

Here, we provide a nice user experience and show the user that
the bot is “typing,” while the user’s question is actually being sent to
ChatGPT. When the response comes back, we provide the reply back to
the user.

Now let’s take a look at our helper class that handles all of our ChatGPT
capabilities: chatGPTClient.js.

Analyzing Our ChatGPT Client,
chatGPTClient.js

So, we have our own class called chatGPTClient.js, which is very similar
to ones we've used before. The complete source for chatGPTClient.js is
shown in Listing 7-3.

Listing 7-3. chatGPTClient.js

const { OpenAI } = reqUire("Openai");
require("dotenv").config();

class ChatGPTClient {

constructor(systemMessage, initialInstructionsToChatGPT) {
this.systemMessage = systemMessage;
this.initialInstructionsToChatGPT =
initialInstructionsToChatGPT;
this.client = new OpenAI({

apiKey: process.env["OPENAI API KEY"],

D;

}

async sendMessageFromDiscord(userMessage) {
const chatCompletion = await this.client.chat.completions.
create({

190

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

messages: [
{
role: "system",
content: this.systemMessage,

b
{

role: "user",
content: this.initialInstructionsToChatGPT,

}J
{
role: "user",
content: userMessage,
}J
1,
model: "gpt-4",
temperature: 0.85,
top p: 1,

max_tokens: 1921,
frequency penalty: 0,
presence_penalty: 0,

};

const result = chatCompletion.choices[0].message.content;

return result;

}
}

module.exports = { ChatGPTClient };

One of the most important things to note is that in the constructor, we
are sending the full String of the contents of the frequently asked questions
as well as the message that we're going to be providing to the system itself.

191

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

This way, after we have constructed the ChatGPTClient class, we
can reuse the object already constructed in order to ask the individual

questions from our users.
Every time a question has been posted on our Discord channel, our

bot will call sendMessageFromDiscord() from chatGPTClient.js. In this
method, we will perform all of the usual things necessary in order to

invoke ChatGPT programmatically.

Running Our Intelligent Q&A Bot

Now let’s run our new and improved Q&A Discord bot. After executing
the app, be sure to return back to your Discord server and start asking

questions. Figure 7-1 shows the bot in action.

o Crooks' Bank v # qand-a » 8 R N search a U e
g @ Events ONLINE—2
e
S () PT
&) PythonChatGPT &
T # genenal Welcome to #q-and-a! G curinccd
g-and-a &% Thisis the start of the #g-and-a channel.
(o] oFFLINE -1
VOICE CHANNELS + # Edit Channel
v) General April 18, 2024
PythonChatGPT Today at 155 PM
Hi, I'm new to this channel. What kind of questions can | ask?
Qand ABot E& Today at 155 PM

@PythonChatGPT Hello! Welcome to the Crooks Bank Mobile App support channel. Here, you can
ask any questions regarding our banking app. For example, you can ask about

How to install and use the app.

Features and services within the app.

Troubleshooting any issues you might encounter.

Security measures to protect your data and transactions.
Instructions for resetting your password.

Costs and fees associated with using the app.

How to link external bank accounts.

Customer support availability.

Feedback and suggestions for improving the app.

O®NOo M A WN R

Feel free to ask any other questions you might have related to the Crooks Bank Mobile App. We're

here to assist!

o -
Qe % O % o 2oT®e

Figure 7-1. Having a Discussion with Our Intelligent DISCORD
Bot for Q&A

Listing 7-4 shows the conversation between us and the Discord Bot.

192

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

Listing 7-4. Our First Conversation with the Intelligent Q&A
Discord Bot

Me: Hi, I'm new to this channel. What kind of questions
can I ask?

Q and A Bot: Hello! Welcome to the Crooks Bank Mobile App
support channel. Here, you can ask any questions regarding our
banking app. For example, you can ask about:

1. How to install and use the app.
2. Features and services within the app.

3. Troubleshooting any issues you might
encounter.

4. Security measures to protect your data and
transactions.

5. Instructions for resetting your password.

6. Costs and fees associated with using
the app.

7. How to link external bank accounts.
8. Customer support availability.

9. Feedback and suggestions for improving
the app.

Feel free to ask any other questions you might have related to
the Crooks Bank Mobile App. We're here to assist!

Me: I have an old Blackberry phone, is the app supported on
my device?

193

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

Q and A Bot: I'm sorry for the inconvenience, but at the

moment, the Crooks Bank Mobile App is currently only available
for i0S and Android devices. It is not supported on Blackberry
or any other operating systems. You may still manage your bank
accounts by accessing our website through your phone's browser.

Me: I'm an iPhone user. Can I sign into the app with face or
touch ID?

Q and A Bot: Sure, here's how you can set up the Crooks Bank
Mobile App on your iPhone:

1. Open the App Store on your iPhone.

2. In the search bar at the top, type in "Crooks Bank Mobile
App" and tap "Search".

3. Once you can see the app in the search results, simply tap
on the "Get" button to download it.

4. After the app downloads, tap "Open".

5. You’ll have to agree to our Terms and Conditions upon the
first launch.

6. If you're an existing Crooks Bank member, you can log in
using your online banking user ID and password. If you're a new
member, you'll need to register for an account.

7. Once you're logged in, you can set up Touch ID or Face ID
for quicker, secure login in the future.

8. Now you can start using your Crooks Bank Mobile App to
manage your finances, pay bills, make transactions, and more!

Please make sure you update the app regularly to access new
features and improvements. If you have any challenges during
setup, please reach out to us through the app's support feature
or call our customer service.

194

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

We Have a Monumental Achievement...
with One Slight Flaw

OK, if you step back and examine what we have achieved so far, you
should realize that we're looking at what is nothing short of a monumental
achievement. We have the following:

o Asystem made up of a few scripts that allows users to
type in questions and get answers about how to use our
mobile application.

e Using a simple text file, we can teach our bot how
to answer the questions from our users. This can be
edited by anyone in the company and can be used as a
knowledge base to help improve the intelligence of the
bot day by day. This is amazing stuff.

e The system allows customers to type their questions
using natural language, and the bot provides an
intelligent answer back to them. Guess what?
Customers don'’t like reading FAQs - especially really
long ones. However, using this system, they don’t need
to! All they have to do is ask the question that is relevant
to them.

So, with all this that we have accomplished, there’s one GIGANTIC flaw
that we can’tignore. In Listing 7-4, the bot said to the user:

Once you're logged in, you can set up Touch ID or Face ID for
quicker, secure login in the future.

No, no, no! Bad bot! In case you didn’t read the frequently asked
questions file completely, please allow me to explain what went
wrong here:

195

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

1. The FAQ.txt file in Listing 7-1 clearly states that the
Crooks Bank mobile app is a mobile app. Currently,
Touch ID can only be used on Apple desktop and
laptop computers. So this doesn’t even make sense.

2. The FAQ.txt file has no mention of Face ID for
authentication to the mobile app at all.

So unfortunately, ChatGPT is making up things that are simply not true
and is assuming that certain features exist that are not present. So, for the
purposes of true tech support, this is absolutely unacceptable.

So, how do we solve this? Think about how you could solve this
problem for a second before reading the next section.

Update the System Message to ChatGPT
and Let’s Try Again

Have you come up with a solution yet? One way to resolve this issue is to
update the System message. Refer to the following line in Listing 7-2 above:

const systemMessage =
"You are a virtual assistant that provides support for the
Crooks Bank banking app.";

Remember that the System Message indicates to ChatGPT what it’s
role is in the chat conversation. Right now it is told to be a helpful assistant,
and therefore it has taken the liberty in order to guess that certain features
exist within the mobile application. Now, let’s ensure that ChatGPT
does not provide any assumptions. Update the System Message to be as
shown below:

const systemMessage = "You are a virtual assistant that
provides support for the Crooks Bank banking app. You will be
provided Information about the application, and users will ask

196

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

you questions about the application. Your role is to answer
questions explicitly from the training information. If you were
not given an answer to a question, then provide an apologetic
message to the user explaining that you do not know the
answer.";

And that’s it. The FAQ.txt file remains exactly the same as before, and
all we needed to do is to update the System Message to let ChatGPT know
it'’s role in the conversation. Listing 7-5 has the new conversation between
us and the Discord bot.

Listing 7-5. Our Second and Better Conversation with the
Intelligent Q&A Discord Bot

Me: How are you today?

Q and A Bot: As a virtual assistant, I don't have feelings or
emotions, but I'm here and ready to assist you. How may I help
you with the Crooks Bank Mobile App today?

Me: I have an old Blackberry phone, is the app supported on

my device?

Q and A Bot: I'm sorry, but from the information provided, the
Crooks Bank Mobile App can only be downloaded from the App
Store for iOS devices and Google Play for Android devices.
BlackBerry devices are not mentioned, therefore I cannot
confirm that it would be compatible.

Me: So, if I use an iPhone, how do I setup the app?

Q and A Bot: To set up the Crooks Bank Mobile App on your
iPhone, you can download it from the App Store. Simply search
for "Crooks Bank Mobile App" and click the "Install" button.
After the installation is finished, open the app and follow the
prompts to set up your account. If you already have an account,
use your login information to access your account through

the app.

197

CHAPTER7 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 1: IMPROVING OUR Q&A BOT

Now that’s a lot better! Our Tech Support bot is “sticking to the script”
and is not allowed to makeup or assume anything.

Conclusion

In this chapter, we've accomplished a lot! We have a fully functioning
Discord bot that can be trained by anyone without any experience in
Al NLP, or Machine Learning using a simple text file. We learned that a
“helpful assistant” may at times become TOO HELPFUL and assume facts
that are not true. However, we also reiterated the concept and the value of
the System Message, which is an important part of Prompt Engineering.
Now that we have made our Q&A Discord bot to be intelligent, now
let’s find out how to make out Content Moderator bot to be intelligent

as well!

198

CHAPTER 8

Adding Intelligence
to Our Discord Bots,

Part 2: Improving Our
Moderator Bot

In this chapter, we're going to take the steps necessary in order to make our

Content Moderator Discord bot artificially intelligent. Here’s the kind of

changes that we're going to make.

First of all, we’re going to create a new script to invoke one of the

Moderations models. The Moderations models are a special category of

models that allow us to be aware when any textual content fits any of the

following categories:

Hate

Hate/threatening
Harassment
Harassment/threatening
Self-harm

Self-harm/intent

© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025

B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,

https://doi.org/10.1007/979-8-8688-1221-7_8

199

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:

IMPROVING OUR MODERATOR BOT
Self-harm/instructions

Sexual
Sexual/minors
Violence

Violence/graphic

Next, we're going to reuse our chatGPTClient.js script from the
previous chapter. In Chapter 7, it was used to invoke a Chat model using
the client.chat.completions.create() method for Q&A purposes from our
users. In this chapter, it will be used to invoke a Chat model again, but this

time for moderation purposes.
Of course, we're going to update our chatGPTClient.js script so that it

can invoke a Moderation model.

And finally, we’re going to modify our Content Moderator Discord bot
so that it can invoke both a Chat and Moderation model in chatGPTClient.
js. If either models indicate that the content typed in the Discord
channel is objectionable, then delete the message from that Discord
channel. Remember, this bot watches all content in all channels of the

Discord server!

Note

Now, it this point, you may be asking yourself, if the

Moderation models already know how to flag any harmful content,
then why do we need to use any of the Chat models as well? Good

question.
Yes, the Moderation models will allow us to know about harmful

content, but it DOES NOT inform us about any other types of
unwanted content for our scenario, such as when unscrupulous

200

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

individuals try to lure our users into a scam. Remember, this is a
Discord server for a banking app, so scammers would definitely love
to target all the members of this Discord server since it’s a central
location full of bank users!

Therefore, in this final chapter, we’re going to invoke both Chat and
Moderation models in chatGPTClient.js.

Using OpenAl.moderations.create()
to Invoke a Moderation Model

Any of the Moderation models allows developers to submit a String of text
and to subsequently know if it’s violent, hateful, threatening, or contains
any form of harassment.

Table 8-1 describes the format of the parameters necessary to call the
body for the OpenAl.moderations.create() method. The method is very
simple to use, since only one parameter is required to properly invoke the

service.

201

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

Create Moderation (JSON)

Table 8-1. The Request Body for the Moderation Method

Field Type Required? Description

input String or Array Required

model String Optional
default: “omni-
moderation-
latest”

The text that needs to be classified

There are multiple content moderation
models available for use, for example:

e “omni-moderation-latest”
e “text-moderation-stable”
e “text-moderation-latest”

By default, this is set to “omni-moderation-
latest.” It will be automatically upgraded
over time, which ensures you’re always
using the most accurate model.

If you decide to use any of the text based
moderation models, then you are only able
to submit text to be evaluated.

The omni moderation models, however, are
able to evaluate content as text and images.
Therefore choose the model that works best
for your use case.

Handling the JSON Response

After successfully invoking a Moderation model, the API will provide a

JSON response with the structure shown in Table 8-2.

202

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:

Moderation (JSON)

Table 8-2. The Structure of the Moderation JSON Object

IMPROVING OUR MODERATOR BOT

Field Type Description

id String A unique identifier for the moderation request

model String The model used to perform the moderation request

results Array A list of moderation objects

, flagged Boolean Flags if the content violates OpenAl's usage policies

l, categories Array A list of the categories and whether they’re being
flagged or not

L, hate Boolean This indicates whether or not the text given
expresses, incites, or promotes hate based on race,
gender, religion, ethnicity, nationality, disability
status, sexual orientation, or caste

Ll hate/ Boolean This indicates whether or not the text given

threatening contains hateful content that also threatens
violence or serious harm toward the targeted group
based on biases expressed above

L, harassment Boolean This indicates whether or not the text given
contains content that expresses, incites, or
promotes harassing language toward any target

L, harassment/ Boolean This indicates whether or not the text given

threatening contains harassment content that also threatens
violence or serious harm toward any target.

L, self-harm Boolean This indicates whether or not the text given

contains content that promotes, encourages, or
depicts acts of self-harm, for example, suicide,
cutting, and eating disorders.

(continued)

203

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

Table 8-2. (continued)

Field Type Description

L, self-harm/ Boolean This indicates whether or not the text given

intent contains content in which the speaker expresses
that they are engaging or intend to engage in acts
of self-harm, such as suicide, cutting, and eating
disorders.

L, self-harm/ Boolean This indicates whether or not the text given

instructions contains content that encourages the performing
acts of self-harm, such as suicide, cutting, and
eating disorders. This includes content that gives
instructions or advice on how to commit such acts

L, sexual Boolean This indicates whether or not the text given
contains content meant to arouse sexual
excitement, such as the description of sexual
activity.

This includes content that promotes sexual
services; however, this excludes topics such as
sex education and wellness.

L, sexual/ Boolean This indicates whether or not the text given

minors contains content that includes an individual under
the age of 18

L, violence Boolean This indicates whether or not the text given

contains content depicting death, violence, or
physical injury
L,L, violence/ Boolean This indicates whether or not the text given
graphic contains content depicting death, violence, or
physical injury in graphic detail.

(continued)

204

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

Table 8-2. (continued)

Field Type Description

l, category_ Array A list of the categories along with the scores given
scores by the model

LI, hate Number Score for the category “hate”

LI, hate/ Number Score for the category “hate/threatening”

threatening
Ll harassment Number Score for the category “harassment”

Ll harassment/ Number Score for the category “harassment/threatening”
threatening

LI, self-harm Number Score for the category “self-harm”

L, self-harm/ Number Score for the category “self-harm/intent”
intent

L, self-harm/ Number Score for the category “self-harm/instructions”
instructions

L, sexual Number Score for the category “sexual”

L, violence Number Score for the category “violence”

L, violence/ Number Score for the category “violence/graphic”
graphic

The listing below is an example of the JSON response after invoking a
Moderation model. Table 8-2 looks a little complex, but as you can see, if
any of the categories is labeled as “true,” then the results.flagged node is
labeled as “true.”

205

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:

IMPROVING OUR MODERATOR BOT

Take a look at Listing 8-1 for a practical example of the

Moderation object.

Listing 8-1. The Moderation Object Response

G

{

"id": "modr-XXXXX",
"model”: "text-moderation-005",
"results": [

206

{
"flagged": true,

"categories": {
"sexual": false,
"hate": false,
"harassment": false,
"self-harm": false,
"sexual/minors": false,
"hate/threatening": false,
"violence/graphic": false,
"self-harm/intent": false,
"self-harm/instructions": false,
"harassment/threatening": true,
"violence": true,

b

"category scores": {
"sexual": 1.2282071e-06,
"hate": 0.010696256,
"harassment": 0.29842457,

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT
"self-harm": 1.5236925e-08,

"sexual/minors": 5.7246268e-08,
"hate/threatening": 0.0060676364,
"violence/graphic": 4.435014e-06,
"self-harm/intent": 8.098441e-10,
"self-harm/instructions": 2.8498655e-11,
"harassment/threatening": 0.63055265,
"violence": 0.99011886,

Creating Our Client for Content Moderation

Listing 8-2 is our updated chatGPTClient.js script that’s been updated from
the previous chapter to allow us to use it for invoking both a Chat model
and a Moderation model. Take a look at it, and then we’ll discuss the
important parts afterward.

Listing 8-2. The Updated chatgptclient.js

const { OpenAI } = require("openai");
require("dotenv").config();

class ChatGPTClient {
constructor(systemMessage, initialInstructionsToChatGPT) {
this.systemMessage = systemMessage;
this.initialInstructionsToChatGPT =
initialInstructionsToChatGPT;

207

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

this.client = new OpenAI({
apiKey: process.env["OPENAI API KEY"],

};
}

async sendMessageFromDiscord(userMessage) {
const chatCompletion = await this.client.chat.completions.
create({
messages: [
{
role: "system",
content: this.systemMessage,

b
{

role: "user",
content: this.initialInstructionsToChatGPT,

b
{

role: "user",
content: userMessage,

}J
1,
model: "gpt-4",
temperature: 0.85,
top p: 1,
max_tokens: 1000,
frequency penalty: 0,
presence_penalty: 0,

};

const result = chatCompletion.choices[0].message.content;

return result;

}

208

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

async isFlagged(message) {
const response = await this.client.moderations.create({
input: message,
1;
return response.results[0].flagged;
}
}

module.exports = { ChatGPTClient };

If you recall how this script worked from the previous chapter, we
defined a class with a constructor for the operations that should only
be done once, namely, specifying the system message and the initial
instruction to ChatGPT. None of this has changed from the previous
chapter.

The same thing applies to the sendMessageFromDiscord() function.
We use this to invoke the Chat model of our choice using the text of what
was typed in the Discord channel. As you'll see later in this chapter, the
initial instructions will be different from the previous chapter, but the code
still works the same.

However, let’s analyze the following asynchronous function that was
added to the script:

async isFlagged(message) {
const response = await this.client.moderations.create({
input: message,
D;

return response.results[0].flagged;

}

As you can see, using these few lines of code, this is how we are able to
invoke a Moderations model by calling OpenAl.moderations.create() and
determine if the content has been flagged as being inappropriate.

209

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

Making Our Content Moderator Bot
More Intelligent

Now that we have an improved chatGPTClient.js script that is capable
of moderating content using both a Chat and a Moderation model, let’s
examine the changes made to our Discord Bot for Content Moderation.

Listing 8-3 is the full source code for our intelligent Discord
Moderator Bot.

Listing 8-3. Our Improved Content Moderator Bot

// Require the necessary discord.js classes

const { Client, Events, GatewayIntentBits } =
require("discord.js");

const { ChatGPTClient } = require("./chatGPTClient");
const fs = require("node:fs");
require("dotenv").config();

const systemMessage = °

You are the automated moderator assistant for a Discord server.
Review each message for the following rule violations:

1. Sensitive information

2. Abuse

3. Inappropriate comments

4. Spam, for example; a message in all capital letters, the
same phrase or word being repeated over and over, more than 3
exclamation marks or question marks.

5. Advertisement

6. External links

7. Political messages or debate

8. Religious messages or debate

210

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

If any of these violations are detected, respond with "FLAG"
(in uppercase without quotation marks). If the message adheres
to the rules, respond with "SAFE" (in uppercase without
quotation marks).

¥

const instructions = "Analyze the following message for rule
violations:";

const chatGPTClient = new ChatGPTClient(systemMessage,
instructions);

// Create a new client instance

const discordClient = new Client({
intents: [
GatewayIntentBits.MessageContent,
GatewayIntentBits.GuildMessages,
GatewayIntentBits.Guilds,

])

1;

discordClient.once(Events.ClientReady, (readyClient) => {
console.log(Ready! Logged in as ${readyClient.user.tag}");

};

discordClient.on(Events.MessageCreate, async (message) => {
if (discordClient.user.username === message.author.
username) return;

console.log("User is:", message.author.globalName);
console.log("Message is:", message.content);

const chatGPTResponse = await chatGPTClient.
sendMessageFromDiscord(
message.content

)5

211

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT
const isFlagged = await chatGPTClient.isFlagged(message.

content);

if (chatGPTResponse === "FLAG" Il isFlagged) {
if (!(await message.delete())) {
console.log("Failed to delete message");
} else {
const authorMention = “${mention(message.author)}";
const reply = “${authorMention} This comment was deemed
inappropriate for this channel.\nIf you believe this
to be in error, please contact one of the human server
moderators.”;
await message.channel.send(reply);
}
}
;s

function mention(author) {
return “<@${author.id}>";

}

// Log in to Discord with your client's token
discordClient.login(process.env.DISCORD BOT API TOKEN);

Important Changes to Note from the
Previous Version of the Content
Moderator Bot

Let’s briefly take a look at Content Moderator Discord Bot from Listing 8-3
and discuss the changes that were made. The code snippet below contains

a portion of the class definition section.

212

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

const systemMessage = °

You are the automated moderator assistant for a Discord server.
Review each message for the following rule violations:

1. Sensitive information

2. Abuse

3. Inappropriate comments

4. Spam, for example; a message in all capital letters, the
same phrase or word being repeated over and over, more than 3
exclamation marks or question marks.

5. Advertisement

6. External links

7. Political messages or debate

8. Religious messages or debate

If any of these violations are detected, respond with "FLAG"
(in uppercase without quotation marks). If the message adheres
to the rules, respond with "SAFE" (in uppercase without
quotation marks).

¥

const instructions = "Analyze the following message for rule
violations:";

const chatGPTClient = new ChatGPTClient(systemMessage,
instructions);

So, as we stated previously in this book, proper prompt engineering
requires you to use multiple parameters, including the “system message”
to the system itself. Here, we're telling the Chat model all the types of
information that we don’t want posted in our Discord server.

We hope you can understand the reason why our Discord Moderator
Bot needs to use both a Chat model as well as a Moderation model from
OpenAl. The Moderation models work fine "out of the box" for basic

213

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT
content moderation; however, since our use case is for a bank, we want

to take extra precautions in order to prevent our customers from being
targeted by unscrupulous individuals through our Discord server.

Updates to the discordClient.on() Function

After a message is received in any channel of the Discord server, the
discordClient.on() function is invoked. Here’s the most important change
to be aware of:

discordClient.on(Events.MessageCreate, async (message) => {

const chatGPTResponse = await chatGPTClient.
sendMessageFromDiscord(

message.content
);
const isFlagged = await chatGPTClient.isFlagged(message.
content);

if (chatGPTResponse === "FLAG" Il isFlagged) {

if (!(await message.delete())) {
console.log("Failed to delete message");

} else {
const authorMention = “${mention(message.author)}";
const reply = “${authorMention} This comment was deemed
inappropriate for this channel.\nIf you believe this
to be in error, please contact one of the human server
moderators. " ;
await message.channel.send(reply);

D

214

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT
Here, we take each message that was posted in the Discord server and

check it with both Chat and Moderation models. If either model informs us
that the message is flagged, then we delete the message in the channel and
inform the user that their message violated the rules.

Now that our Content Moderator Discord bot is intelligent, let’s give

itatry!

Running Our Intelligent Content
Moderator Bot

Now let’s run our new and improved Content Moderator Discord bot. After
executing the app, be sure to return back to your Discord server and start
asking questions. Figure 8-1 shows the bot in action.

o Crooks' Bank v 4f general » 8 R S seach a U e
n @ Events ONLINE —1
& Welcome to Q) PrthonChatGPT &
+ Crooks' Bank
general FX. OFFLINE—2
Thi {ere are sot
o # g-and-a you
v VOICE CHANNELS +
o it youe inds)
P lize y ith °
Send your first message 0
0 Download the Discord App >
88 Addyour first app Q

o PythonChatGPT Today at 310 PM
Hi everyone, | love the Crooks Bank app!

This app is awesome! &,

Q?lhf}nch.. I OH ° " saoe e

Figure 8-1. Having a Discussion with Our Intelligent DISCORD
Content Moderator Bot

215

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT
Listing 8-4 shows a conversation between us and the Discord Bot in

order to test to see what it can do.

Listing 8-4. Our Offensive Conversation with the Intelligent
Moderator Discord Bot

Me: Hi everyone, I love the Crooks Bank app!

Me: This app is awesome! &)

Me: Come to my website! http://www.google.com

Content Mod Bot: @JSChatGPT This comment was deemed
inappropriate for this channel. If you believe this to be in
error, please contact one of the human server moderators.

Me: I'm sorry for breaking the rules. I'm a different
person now

Me: But I have some sad news for you
Me: I want to &2 everyone

Content Mod Bot: @JSChatGPT This comment was deemed
inappropriate for this channel. If you believe this to be in
error, please contact one of the human server moderators.

In both cases when unwanted content was posted in any channel of
the Discord server, not only was the offending user called out, but the bad
message was deleted. Good bot!

Did you notice that the Moderation and Chat models are able to read
emojis as well?

216

CHAPTER 8 ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:

IMPROVING OUR MODERATOR BOT
Conclusion

In this chapter, we created a fully functioning content moderator for our
entire Discord server! We leveraged both the Moderation and Chat models
from OpenAl to create a custom content moderator that not only flags
unsafe content like hateful and threatening messages but also prevents the
users of the Discord server to be subject to unwanted solicitations.

Exercises Left for the Reader

Although we accomplished a lot in this chapter (as well as in this book!),
there’s still one more thing that we can do to improve the code.

For example, the individual Discord bots that we created are aware
to not respond to messages that they send themselves. However, the
bots are not yet aware that they shouldn’t respond to messages sent by
OTHER BOTS.

This means that if you run both bots at the same time, and someone
posts something bad in the “q-and-a” channel, then the Content
Moderator will (of course) delete the message and inform everyone that
the message was deleted. However, since the Tech Support Bot doesn’t
know that it shouldn’t respond to other bots, it will try to create a response.
Of course, bots should not talk to other bots.

217

Index

A, B
Accuweather
adding specifications, 45
create, 44
homepage, 43
navigating, 43
new app, 46
Annotated data, 11
ASR, see Automatic Speech
Recognition (ASR)
Assistant Message
formatting, 84
structure, 83
Audiosplitte r application, 133
Automatic Speech
Recognition (ASR), 124

C

ChatCompletion

structure, 74, 80

types of messages, 81
ChatCompletionMessage, 89
ChatCompletion Object

Response, 87

ChatGPT

prompting, 48, 50

setting up prompt, 38

© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025

ChatGPT APIs

data, 11
temperature setting, 16
token, 15

ChatGPT client

JavaScript, 71, 73, 85
web applications, 73

ChatGPT, pair-programmer

Accuweather, 43-46 (see also
Accuweather)

cURL command, 59, 60, 64

documentation, 65, 67, 68

Google Maps, 52-58

prompting, 47, 51

setting up prompt, 39, 42

Chat model, 200, 207, 209, 213,

216, 217

Chat Playground, 18

Assistant field, 20, 21
Code button, 21
features, 22

list of models, 21

max tokens, 22

System Message, 19, 20
temperature, 22

User field, 20

User message, 21

Content moderator, 177, 179, 217

219

B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,

https://doi.org/10.1007/979-8-8688-1221-7

INDEX

Content Moderator bot,
176, 198, 210
Content Moderator Discord Bot
in action, 215
change, 214
code, 212
intelligent, 215, 216
Context window, 15
conversations.history()
method, 118
Crooks Bank Mobile App
business banking services, 186
customer support, 185
definition, 184
download, 184
external accounts, 185
features, 185
feedback, 186
fees, 185
iPhone, 194
reset password, 185
security, 184

D

DALL-E models
create images, 144, 146
create prompt, 140
describe a dream, 149
GPT-40-mini, 141
image types, 148, 149
podcast, 147

Discord
artificially intelligent, 156

220

capabilities of bot, 167
client, 173
community management, 154
content moderator, 177, 179
create channel, 160
create user, 158
creating/registering, 162
Crook’s Bank, 157
developer website, 161
general information, 162, 163
ID token, 167, 168, 170, 177
invite bot to server, 165, 177
JavaScript, 156
naming, 159
new message, 173, 174
powerful bots, 155
provide general info, 176
Q&A bot app, 170, 172
registering, 175
register the bot, 161
running, 174
run second JavaScript, 179, 180
selecting permissions, 165
selecting scopes, 164
sense of humor, 166
streamlining, 175
text messaging, 155

discordClient.on() function,

189, 214
Discord Moderator Bot, 210, 213

E

eXtreme Programming (XP), 25

F

FFmpeg, 133, 135, 151
ffmpeg.ffprobe() function, 135

G

Generative Al models, 121
Google Maps
account setup, 53
homepage, 52
JavaScript AP], 56, 57
keys and credentials, 58
navigate API, 54, 55

H

Human intelligence, 132

Investigative journalism, 138

J, K

JavaScript
browser compatibility, 86
client-side processing, 86
community/resources, 86
evolving, 86
frameworks, 86
interactivity, 85
JSON, 86
libraries, 86
real-time feedback, 86

INDEX

versatility, 86
JavaScript developers
Module pattern, 4
Observer pattern, 4
Singleton pattern, 5
JavaScript Object Notation
(JSON), 86
JSON, see JavaScript Object
Notation (JSON)

L

Language models, 3

Memory-related anomalies, 102
models.list() function, 34
Moderation models

asynchronous function, 209

chatgptclient.js, 207

create, 202

definition, 199

JSON object, 203

JSON response, 202

object response, 206
Module pattern, 4

N

Natural Language
Processing (NLP), 6
Natural Language
Understanding (NLU), 6

221

INDEX

Neural network, 10, 11

NLP, see Natural Language
Processing (NLP)

NLU, see Natural Language
Understanding (NLU)

O

OAuth Scope, 110
Observer pattern, 4
OpenAl API
ChatGPT, 36
.env file
dotenv package, 31
Node.js application, 30
environment variable, 27
Linux, 29
MacOS versions, 27, 28
Windows, 28
hard code, 31
list of models available, 34
Node.js script, 32
openai.models.list(), 32
prompt, 36, 37
OpenAl.audio.transcriptions.
create() method, 130
OpenAl.chat.completions.create()
method, 74
OpenAlimages.generate() method
create image endpoint, 142
Image JSON object, 144
openai.models.list(), 32
OpenAl.moderations.create()
method, 201, 209

222

OpenAl textual models, 15
Output tokens, 15, 76

P,Q

Pair-Programmer, 92
Podcast Visualizer, steps, 123
Pre-trained model, 11
Prompt Engineering
ChatGPT, 92
customer support, 93
fictional company, 94
issue esculation, 94, 97
next steps, 103, 105
shorter version, 99, 100
simplified version, 101
software development, 93
tl;dr, 98
websites with subscription
plans, 105

R

Regular expressions, 5, 6
results.flagged node, 205

S

sendMessageFromDiscord()
function, 192, 209
Sentiment analysis, 9
Singleton pattern, 5
Slack
time zones, 91

use, 91
Slack bot app
API website, 107
channel ID, 115
confirming settings, 110, 111
conversationHistory, 118
create, 108, 109
environment variables, 117
getting token, 114
install, 112,113
invite to channel, 114, 115
JavaScript code, 115
message content, 116
npm command, 116
OAuth & Permissions page,
111,112
OAuth Scope, 110
output, 118
Speech recognition, 124
accents, 125
homophones, 126
names, 126
punctuation, 125
splitMP3() function, 135
System Message, 196
formatting, 82
structure, 81

T

Tech Support Discord bot
chatGPTClient, 188, 189

INDEX

chatGPTClient.js, 190, 192
FAQ, 184
message is posted, 189
modified, 186, 188
monumental
achievement, 195
Q&A, 192,193
reply back to user, 190
Text pattern, 7, 9
Text summarization, 92, 97
Token limitations, 15, 16, 36
Tool Message
definition, 84
structure, 85

uv
User community, 153, 154
User Message
formatting, 82
structure, 82

W, XY,Z

Whisper model, 122, 123, 136, 150
convert audio to text, 124
create audio transcriptions, 136
MP3 files, 136, 138
partial transcript, 139
request body, 130
spoken audio to text, 126, 129
Transcriptions Endpoint, 132

223

