

Creating ChatGPT
Apps with JavaScript

A Hands-on Guide for AI
Applications with OpenAI APIs

Bruce Hopkins Jr.
Bruce Hopkins Sr.

Creating ChatGPT Apps with JavaScript: A Hands-on Guide for AI

Applications with OpenAI APIs

ISBN-13 (pbk): 979-8-8688-1220-0		 ISBN-13 (electronic): 979-8-8688-1221-7
https://doi.org/10.1007/979-8-8688-1221-7

Copyright © 2025 by Bruce Hopkins Jr., Bruce Hopkins Sr.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: James Markham
Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

Bruce Hopkins Jr.
Brandon, FL, USA

Bruce Hopkins Sr.
Beaverton, OR, USA

iii

About the Authors���xi

About the Technical Reviewer��xiii

Chapter 1: ��Introducing ChatGPT for JavaScript Developers������������������1

Who Is This Book For?��1

Chapter Overview���2

Download the Code Now!���2

So, What Exactly Is ChatGPT and Why Do I Need to Use the OpenAI APIs?������������3

Regex vs. ChatGPT – Fight!��6

Analysis Question #1: Who Didn’t Get Any Ice Cream and Why?����������������������7

Analysis Question #2: Which Kid Was Probably Left Sad?��������������������������������9

Let’s Unlearn Some Words in Order to Learn More About the ChatGPT API���������10

Models. Models? Models!!!��10

When We Talk About Tokens, Don’t Think About Access Tokens���������������������15

Temperature Is All About Creativity���16

Getting Started with the OpenAI Playground���17

1. �System Message��19

2. �User��20

3. �Assistant (Optional)���20

4. �+ (Optional)���21

5. �Code (Optional)���21

6. �Model (Optional)���21

Table of Contents

iv

7. �Temperature (Optional)���22

8. �Max Tokens (Optional)��22

Try It Now! Experimenting with the “System” Role���22

Conclusion���23

Chapter 2: ��Using ChatGPT As Your JavaScript Pair-Programmer��������25

Chapter Overview���25

You Have Node.js Already Installed, Right?��26

Installing (or Updating) the OpenAI Node.js Library with npm�����������������������������26

Three Ways to Set Your API Key���27

Option #1: Setting a System-Wide Environment Variable�������������������������������27

Option #2: Creating a .env File���30

Option #3: Hard Coding the API Key Directly in Your Application
(Take with Caution)���31

Creating Your First JavaScript ChatGPT App: list-models������������������������������������32

Using openai.models.list( ) to Get a List of Available Models�������������������������������32

Handling the Response���33

Using Your API Key to Get a List of Available Models with the OpenAI API�����������34

Wait, How Many Tokens Are in My Prompt?���36

Using ChatGPT As a Pair-Programmer to Build a Weather Application����������������38

Setting Up the Prompt��38

Creating a Weather App with the AccuWeather API��42

Refining Our Prompt with Prompt Engineering��46

Using ChatGPT As a Pair-Programmer to Build an Application That
Estimates Distance and Arrival Time��51

Creating a Project with Google Maps Platform API���52

Approach #1: Using ChatGPT to Take a cURL Command and Convert It to
JavaScript���59

Approach #2: Using ChatGPT to Avoid Reading a Lot of Documentation��������65

Conclusion���69

Table of Contents

v

Chapter 3: ��Creating a Basic ChatGPT Client in JavaScript������������������71

Creating Our ChatGPT Client Application in JavaScript��71

Resist the Urge to Put Your API Key in a Web Application!�����������������������������������73

Using OpenAI.chat.completions.create() to Send Messages to ChatGPT�������������74

Examining the Method Parameters��74

There Are Four Types of Messages��81

System Message (Array)���81

User Message (Array)���82

Assistant Message (Array)��83

Tool Message (Array)��84

Running Our Basic ChatGPT Client���85

Handling the Response (ChatCompletion)��87

ChatCompletionMessage��89

Conclusion���89

Chapter 4: Using AI in the Enterprise! Creating a Text
Summarizer for Slack Messages���91

So, What Is Prompt Engineering?���92

ChatGPT Is Here to Take Away Everyone’s Jobs (Not Really)�������������������������������92

Examining a Real-World Problem: Customer Support for a
Software Company���93

Prompt Engineering 101: Text Summarization���97

Prompt #1: “tl;dr”���98

Prompt #2: “Explain This in 3 Sentences or Less”���99

Prompt #3: “I’m a Manager. Explain to Me What Happened”�����������������������100

Prompt #4: “Give Me Suggestions on Next Steps”���������������������������������������103

Let’s Talk About Real Prompt Engineering��105

Table of Contents

vi

Registering a Slack Bot App���106

Specifying What Your Bot Can (and Can’t) Do by Setting the Scope�������������109

Confirming Your Settings��110

Viewing the OAuth & Permissions Page���111

Installing Your Slack Bot App to Your Workspace���112

Getting Your Slack Bot (Access) Token���114

Inviting Your Bot to Your Channel��114

Finding the Channel ID of Your Channel���115

Using Your Slack Bot App to Automatically Grab Messages from a Channel�����116

Programmatically Reading Messages from Slack��116

Exercises Left for the Reader���119

Conclusion���120

Chapter 5: Multimodal AI: Creating a Podcast Visualizer
with Whisper and DALL·E 3��121

Introducing the Whisper Model by OpenAI���124

Features and Limitations of the Whisper Model��126

Using OpenAI.audio.transcriptions.create() to Transcribe Audio������������������������130

Examining the Method Parameters��130

Creating a Utility App to Split Audio Files���132

Creating the Audio Transcriber with Whisper���136

Having a Little Fun and Trying Things Out with a Podcast���������������������������������138

Going Meta: Prompt Engineering gpt-4o-mini to Write a Prompt for DALL·E�����140

Using OpenAI.openai.images.generate() to Create Images��������������������������������141

Create Image (JSON)��142

Handling the Response���144

Image��144

Table of Contents

vii

Creating the Images with the DALL·E Model��144

Visualizing the Podcast��146

DALL·E Prompt Engineering and Best Practices��147

DALL·E Golden Rule #1: Get Familiar with the Types of Images
That DALL·E Can Generate��148

DALL·E Golden Rule #2: Be Descriptive with What You Want in the
Foreground and Background��149

Conclusion���150

Exercises Left for the Reader���151

Chapter 6: Creating an Automated Community Manager Bot
with Discord and JavaScript���153

Choosing Discord as Your Community Platform���154

Creating a More Advanced Bot Than Our Slack Bot���155

Creating a More Advanced Bot Than Any Typical Discord Bot����������������������������155

Understanding the Roles for the Bots��156

Our Example Bank: Crook’s Bank���157

First Things First: Create Your Own Discord Server���158

Create the Q&A Channel���159

Registering a New Discord Bot App with Discord��161

Specifying General Info for the Bot��162

Specifying OAuth2 Parameters for the Bot��163

Invite Your Bot to Your Server���165

Getting the Discord ID Token for Your Bot and Setting the Gateway Intents������167

Creating a Q&A Bot App in JavaScript to Answer Questions from a Channel����170

Creating the Discord Client���173

Listening for New Messages in Our Preferred Discord Channel�������������������173

Success! Running Your First Discord Bot���174

Table of Contents

viii

Streamlining the Process of Registering Our Next Discord Bot App������������������175

Registering a New Discord Bot App with Discord���175

Specifying General Info for the Bot���176

Specifying OAuth2 Parameters for the Bot���176

Invite Your Bot to Your Server���177

Getting the Discord ID Token for Your Bot and Setting the
Gateway Intents��177

Creating the Next Discord Bot, the Content Moderator��������������������������������������177

Handling Messages Sent to the Discord Server���179

Success Again! Running Your Second Discord Bot, the
Content Moderator��179

Conclusion���180

Exercises Left for the Reader���181

Chapter 7: Adding Intelligence to Our Discord Bots,
Part 1: Improving Our Q&A Bot��183

Making Our Tech Support Bot More Intelligent��184

Important Changes to Note from the Previous Version of the Tech
Support Bot��188

Updates to the Newly Named Function, discordClient.on()��������������������������189

Analyzing Our ChatGPT Client, chatGPTClient.js��190

Running Our Intelligent Q&A Bot���192

We Have a Monumental Achievement… with One Slight Flaw�������������������������195

Update the System Message to ChatGPT and Let’s Try Again����������������������������196

Conclusion���198

Table of Contents

ix

Chapter 8: Adding Intelligence to Our Discord Bots,
Part 2: Improving Our Moderator Bot��199

Using OpenAI.moderations.create() to Invoke a Moderation Model�������������������201

Create Moderation (JSON)��202

Handling the JSON Response���202

Moderation (JSON)���203

Creating Our Client for Content Moderation���207

Making Our Content Moderator Bot More Intelligent���210

Important Changes to Note from the Previous Version of the Content
Moderator Bot��212

Updates to the discordClient.on() Function��214

Running Our Intelligent Content Moderator Bot���215

Conclusion���217

Exercises Left for the Reader���217

�Index��219

Table of Contents

xi

About the Authors

Bruce Hopkins Jr. works as a senior software

developer and consultant for a fast-growing

startup specializing in creating cutting-

edge B2B and B2C applications based in

Dallas, Texas. With years of experience as a

full-stack developer, Bruce Jr. is passionate

about building robust, user-friendly software

applications and services using his favorite

languages, JavaScript and TypeScript. He has

hands-on experience with AI toolsets like OpenAI ChatGPT and Meta

Llama and has used them in both research and professional AI-powered

solutions. Beyond his professional expertise, Bruce actively contributes

to the open source community, dedicating countless hours to fixing bugs,

enhancing projects, and improving tools like the very popular Microsoft

VS Code. When he's not coding, you might find him mentoring junior

developers, attending tech meetups, or staying up to date with the latest

trends in artificial intelligence and software development. 

xii

Bruce Hopkins Sr. has been an author and

technical writer with more than 20 years of

experience writing articles and blogs for some

of the world’s leading technology companies,

including Intel, IBM, Oracle, and the official

Linux Magazine. Beyond technical writing,

Bruce Sr. has been at the forefront of research

in natural language processing (NLP) and

artificial intelligence (AI), with a particular

focus on speech recognition and chatbot

technologies. His innovative contributions in these fields have earned him

the prestigious title of Intel Innovator for AI and IoT. Bruce’s passion for

technology extends beyond writing – he actively explores emerging trends

in AI, bridging the gap between complex technical concepts and practical,

real-world applications. His work not only informs but also inspires the

next generation of tech professionals and innovators. With a commitment

to advancing the understanding and adoption of AI, Bruce remains a

thought leader in this rapidly evolving industry. 

About the Authors

xiii

Satej Kumar Sahu works in the role of

Principal Data Engineer at Zalando SE, with

14 years of experience in the industry. He is

passionate about technology, people, and

nature. He has worked with organizations

such as Boeing, Adidas, and Honeywell,

specializing in software, architecture, big

data, and machine learning use cases. With

a strong track record of architecting scalable

and efficient systems, Satej has successfully

delivered software, data-driven, and ML

applied solutions. He believes that through technology and conscientious

decision-making, each of us has the power to make this world a better

place. In his free time, he can be found reading books, playing basketball,

and having fun with friends and family.  

About the Technical Reviewer

1© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_1

CHAPTER 1

Introducing ChatGPT
for JavaScript
Developers

�Who Is This Book For?
First of all, this book is for JavaScript developers who don’t have any

training or experience in artificial intelligence, natural language

processing, machine learning, or deep learning. You may have heard of the

term “language model,” but I’m going to assume that it’s NOT a term that

you use every day.

Secondly, you might be familiar with (or have tried) ChatGPT, but

you don’t quite understand how everything works “under the hood” and

you’re not sure how to get started in order to use JavaScript and ChatGPT

programmatically together to “AI enable” your own applications and

services.

2

Note  Although ChatGPT is a household name, OpenAI, the company
behind it, lacks broad recognition and isn’t as widely recognized. So,
although this book is about how to use ChatGPT programmatically
within your JavaScript apps, the APIs that we will be using are
officially the OpenAI REST APIs. Therefore, we’ll be using the term
“ChatGPT API” and “OpenAI API” synonymously.

�Chapter Overview
In this chapter, we’re going to dive right in and explain a few terms that

you might not be familiar with, and then go straight to the ChatGPT

Playground. The Playground is essentially a web interface for developers

that’s built on top of ChatGPT REST API. So, once you’re familiar with the

Playground, the calls and responses from the ChatGPT API will feel like

second nature to you.

�Download the Code Now!

This book is filled with tons of examples and example code, so why bother

typing everything yourself? Below is the URL to the GitHub repo to access

the source code.

https://github.com/JavaScriptChatGPT/

Chapter 1 Introducing ChatGPT for JavaScript Developers

3

�So, What Exactly Is ChatGPT and Why Do
I Need to Use the OpenAI APIs?
Simply stated, ChatGPT is a group of language models (which are the

result of training deep learning algorithms) developed by OpenAI that is

capable of generating human-like text responses based on given prompts.

So what’s a prompt? A prompt is simply the input text that you give to

ChatGPT. So let’s kick things off by giving ChatGPT a prompt to ask how

well it’s familiar with JavaScript design patterns. Head over to the chatgpt.

com website, and enter the following prompt from Listing 1-1.

Listing 1-1.  PROMPT. A Simple Prompt with ChatGPT About

JavaScript Design Patterns

Describe 3 commonly used design patterns used by JavaScript
developers and why those patterns are important

If you’ve had the opportunity to work at a company using JavaScript

professionally, then you’ve probably received a question very similar to the

prompt above in an interview. Listing 1-2 is ChatGPT’s response.

Listing 1-2.  RESPONSE. ChatGPT’s Response to the Prompt in

Listing 1-1

JavaScript developers commonly use design patterns to manage
code complexity and enhance code maintainability, readability,
and scalability. Here are three widely used design patterns in
JavaScript:

Chapter 1 Introducing ChatGPT for JavaScript Developers

4

1. Module Pattern
The Module pattern is used to encapsulate a group of related
methods or variables into a single unit or module, shielding
parts from the global scope. This pattern helps in:

• �Reducing Namespace Pollution: By minimizing the use of
global variables, this pattern helps avoid namespace
pollution.

• �Encapsulation: It enables better encapsulation and
protects the module's states and behaviors from outside
interference.

• �Code Organization: It promotes organizational and
structural clarity by dividing responsibilities across
distinct modules.

2. Observer Pattern
The Observer pattern is a software design pattern in which an
object, called the subject, maintains a list of its dependents,
called observers, and notifies them automatically of any state
changes, usually by calling one of their methods. This pattern
is crucial for

• �Decoupling: It decouples the objects that invoke the
behavior from the objects that perform the behavior,
leading to a cleaner and more flexible architecture.

• �Event Handling: It's widely used in the handling of user
interface events and other scenarios where certain objects
need to be notified of changes occurring in other objects.

• �Reactive Programming: Facilitates a reactive programming
approach where changes propagate through the system in
response to events.

Chapter 1 Introducing ChatGPT for JavaScript Developers

5

3. Singleton Pattern
The Singleton pattern ensures that a class has only one
instance and provides a global point of access to it. This
pattern is widely used for

• �Controlled Access: It provides controlled access to a
single instance, which can be useful for managing shared
resources or configurations.

• �Initialization Guarantee: Ensures that a class is
instantiated once and only once, which can be critical for
many shared resources.

• �Lazy Initialization: Often implemented with lazy
initialization, saving system resources by postponing the
creation of the instance until it's needed.

Not bad, huh? ChatGPT was not only able to provide a list of common

design patterns used by JavaScript developers, but also explain valid

reasons on why they are important – all done in Natural Language.

So, at the end of the day, what does this mean for JavaScript

developers? Well, it’s actually a big deal. That’s because developers

are now able to create applications that can have some type of

“understanding” of text in Natural Language. Before the advent of AI tools

like ChatGPT, developers typically had to create regular expressions (also

called “regex”) in order to perform rudimentary character and String

pattern matching within a body of text. However, pattern matching and

Natural Language Understanding are two totally different things.

Chapter 1 Introducing ChatGPT for JavaScript Developers

6

�Regex vs. ChatGPT – Fight!

Note  If you already know that a regular expression can’t perform
Natural Language Understanding or sentiment analysis, then feel free
to skip this section.

I’m thoroughly convinced that every programmer somewhere in their

lifetime has met somebody who happens to be an expert in writing regular

expressions. Regular expressions are great because they serve the purpose

of being able to parse large amounts of text in order to find patterns within

the text programmatically.

However, one of the biggest downsides to regular expressions is that

once they have been written, they are extremely difficult to read (in my

opinion, even by the developer who originally wrote it).

So let’s see how regex holds up against ChatGPT, which has Natural

Language Processing (NLP) and Natural Language Understanding (NLU)

capabilities.

Listing 1-3 is a story of an impractically sad situation. However, it

drives home the point that although regular expressions can be used to

find words and phrases within a body of text, it can’t be used to provide

any type of NLU.

Listing 1-3.  Sadstory.txt – A Sad Story About a Kid Who Didn’t Eat

Ice Cream

In the city of Buttersville, United States, on Milkmaid street,
there's a group of three friends: Marion Yogurt, Janelle de
Queso, and Steve Cheeseworth III. On a hot summer's day, they
heard the music from an ice cream truck and decided to buy
something to eat.

Chapter 1 Introducing ChatGPT for JavaScript Developers

7

Marion likes strawberries, Janelle prefers chocolate, and Steve
is lactose intolerant. That day, only two kids ate ice cream,
and one of them bought a bottle of room-temperature water. The
ice cream truck was fully stocked with the typical flavors of
ice cream.

�Analysis Question #1: Who Didn’t Get Any Ice
Cream and Why?
Now let’s analyze this for a bit and ask some questions among ourselves.

First of all, who didn’t get any ice cream and why? The obvious answer

is that Steve did not get any ice cream because of his lactose intolerance.

However, since the story did not directly say that Steve did not buy ice

cream, there’s no way for a regular expression to match a text pattern in

the story.

The regular expression could look for keywords such as “didn’t have,”

“no ice cream,” or the names of the kids. However, it would only be able to

provide a response based on the presence of these patterns. For example,

if the regular expression matches the pattern “didn’t have” or “no ice

cream” with Steve’s name, it could show you the result of the text pattern.

However, it certainly wouldn’t be able to explain why Steve was the one

who didn’t have ice cream or provide any context-specific reasoning.

Now, let’s provide the same story to ChatGPT, and ask the question,

“Who didn’t get any ice cream?” Listing 1-4, located below, takes our

question and the story above and puts both together as a prompt.

Chapter 1 Introducing ChatGPT for JavaScript Developers

8

Listing 1-4.  PROMPT. The Sad Story Put Into a Prompt

Using the information in the story below, who didn't get any
ice cream and why?
###
In the city of Buttersville, United States, on Milkmaid street,
there's a group of three friends: Marion Yogurt, Janelle de
Queso, and Steve Cheeseworth III. On a hot summer's day, they
heard the music from an ice cream truck, and decided to buy
something to eat.

Marion likes strawberries, Janelle prefers chocolate, and Steve
is lactose intolerant. That day, only two kids ate ice cream,
and one of them bought a bottle of room-temperature water. The
ice cream truck was fully stocked with the typical flavors of
ice cream.

Notice how it is a best practice to provide some type of separation, in

this case, “###”, when creating a prompt (like the one above) where you have

both instructions and data together. Later on, when we start using either

the Playground or JavaScript to programmatically invoke the ChatGPT API,

you’ll see that there’s a much better way to provide that separation.

So, after sending the prompt, ChatGPT will provide you an answer like

shown in Listing 1-5:

Listing 1-5.  RESPONSE. ChatGPT’s Answer to Analysis Question #1

Based on the given information, Steve is lactose intolerant and
therefore cannot eat ice cream. Therefore, Steve is the one who
didn't get any ice cream.

Chapter 1 Introducing ChatGPT for JavaScript Developers

9

As you can see, ChatGPT can utilize NLP and NLU, and therefore it can

understand (artificially intelligently, that is) the context of the scenario.

It can interpret the relationships between the kids, their preferences, and

Steve’s lactose intolerance. It is able to understand that the last names of

the children, the street name, and the city name are the names of dairy

products, but are obviously irrelevant to the question at hand.

�Analysis Question #2: Which Kid Was Probably
Left Sad?
Now to further prove the point that a regular expression is unable to

provide any type of NLP or NLU, now let’s use a new term called sentiment
analysis. Therefore, after the ice cream truck drove away, which kid was

left sad?

Since the story had no mention of any of the children’s feelings or

emotions, there is no text pattern that would allow any regular expression

to return a match.

However, if you posed the same question to ChatGPT, it will return a

response like shown in Listing 1-6:

Listing 1-6.  RESPONSE. ChatGPT’s Answer to Analysis Question #2

Since Steve is lactose intolerant and cannot eat ice cream, he
would be the kid left sad because he couldn't enjoy the ice
cream like Marion and Janelle.

Therefore, ChatGPT is able to comprehend the scenario, reason

through the information, and provide a correct answer along with an

explanation for that answer.

Chapter 1 Introducing ChatGPT for JavaScript Developers

10

�Let’s Unlearn Some Words in Order to Learn
More About the ChatGPT API
First of all, before you get started working with the ChatGPT and OpenAI

APIs, there are few words and terms that you should be familiar with first;

otherwise, things won’t exactly make sense. So let’s make sure that we’re

all clear on the definition of Models, Prompts, Tokens, and Temperature

when using ChatGPT programmatically.

�Models. Models? Models!!!
As a JavaScript developer, when you hear the term “model,” you may

immediately think of the representation of real-world entities in your

JavaScript app, right? For example, think of the term, “object model.”

Additionally, if you’re ever worked with any type of database before,

then the term “model” may ALSO conjure into your mind the idea of

the representation of data and their relationships in your database. For

example, think of the term, “data model.”

However, when working with the ChatGPT APIs (and artificial

intelligence in general, for that matter) you need to forget both of those

definitions, because they don’t apply. In the realm of artificial intelligence,

a “model” is a pre-trained neural network.

Remember, as I mentioned earlier, you won’t need a PhD in Machine

Learning in order to read this book. So what’s a neural network? Simply

stated, a neural network is a fundamental component of artificial

intelligence systems, because they are designed to simulate the way the

human brain works by using interconnected layers of artificial neurons to

process and analyze data. These networks can be trained on vast amounts

of data to learn patterns, relationships, and to make predictions.

Chapter 1 Introducing ChatGPT for JavaScript Developers

11

(continued)

Figure 1-1.  An AI Model Is Trained on Vast Amounts of Data

In the context of AI, a “pre-trained model” refers to a neural network

that has been trained on a specific task or dataset before being made

available for use by developers. This training process involves exposing

the model to large amounts of labeled and categorized (also called,

“annotated”) data and adjusting its internal parameters to optimize its

performance on the given task.

Let’s look at some of the models provided by OpenAI for developers to

use to AI-enable their applications.

o1 The o1 series of large language models is trained through

reinforcement learning to handle complex reasoning tasks. o1

models engage in deep thought before answering, generating a

lengthy internal chain of reasoning prior to responding to the user.

These models take a significantly longer time to generate a response

than other models.

Some o1 available models are

•	 o1

•	 o1-mini

Chapter 1 Introducing ChatGPT for JavaScript Developers

12

(continued)

GPT-4 GPT-4 is one of the latest generation of OpenAI’s GPT set of models.

GPT stands for Generative Pre-trained Transformer, and these models

have been trained to understand natural language as well as multiple

programming languages. The GPT-4 models take text and images as

inputs as the prompt and provide text as the output.

Some of the GPT-4 models available are

•	 gpt-4o

•	 gpt-4o-mini

•	 gpt-4o-realtime

•	 gpt-4o-audio

GPT-3.5 GPT-3.x is the previous generation of OpenAI’s GPT set of models.

The original ChatGPT released to the public in November 2022 used

GPT 3.

Some of the GPT-3 models available are

•	 gpt-3.5-turbo

•	 gpt-3.5-turbo-16k

DALL·E The DALL·E model can generate and edit images given a natural

language prompt.

Later in this book in Chapter 5, we’re going to have some fun with

the DALL·E model to visualize the conversation of what is being

discussed in your favorite podcast episode.

Some of the DALL·E models available are

•	 dall-e-3

•	 dall-e-2

Chapter 1 Introducing ChatGPT for JavaScript Developers

13

(continued)

TTS The TTS model takes text and converts it to audio with surprisingly

good results. In most cases, the audio is almost indistinguishable

from a human voice.

Some of the TTS models available are

•	 tts-1

•	 tts-1-hd

Whisper Simply stated, the Whisper model converts audio into text.

In this book, we’re going to use the Whisper model to search for text

in a podcast episode.

Embeddings The Embeddings model can convert large amounts of text into a

numerical representation of how the Strings in the text are related.

So how is that useful? Embeddings allows developers to do specific

tasks using custom datasets. Yes, this means that you can train

the embeddings model on specific data that is relevant to your

application. This allows you to do operations such as

•	 Searching within your own body of text

•	 Clustering data so that strings of text are grouped by their

similarity

•	 Getting recommendations (where items with related text

strings are recommended)

•	 Detecting anomalies (where outliers with little relatedness are

identified)

•	 Measuring diversity (where similarity distributions are

analyzed)

•	 Classifying data (where text strings are classified by their most

similar label)

Chapter 1 Introducing ChatGPT for JavaScript Developers

14

Moderation The moderation models are fine-tuned models that can detect

whether text may be sensitive or unsafe. These models can analyze

text content and classify it according to the following categories:

•	 Hate

•	 Hate/threatening

•	 Harassment

•	 Harassment/threatening

•	 Self-harm

•	 Self-harm/intent

•	 Self-harm/instructions

•	 Sexual

•	 Sexual/minors

•	 Violence

•	 Violence/graphic

The moderation models available are

•	 text-moderation-latest

•	 text-moderation-stable

Legacy and

Deprecated

Since the debut of ChatGPT, OpenAI has continued to support their older

AI models, but they have been labeled as “legacy” or “deprecated”

models. These models continue to exist; however, they have released

other models that are more accurate, faster, and cheaper to use.

Note  This is by no means an exhaustive list of models available for
developers provided by OpenAI! As newer models are released, the
older models will be marked as legacy or deprecated. Therefore, it’s
important to stay up to date by checking the list of available models
on the OpenAI documentation list of models:

https://platform.openai.com/docs/models

Chapter 1 Introducing ChatGPT for JavaScript Developers

15

�When We Talk About Tokens, Don’t Think About
Access Tokens
When using a third-party API, such as an external REST service, you might

think of a “token” in the same sense as an access token, which is typically

a UUID that allows you to identify yourself and maintain a session with

the service. Well, forget that definition for now. Instead, when using the

OpenAI APIs, a token is a chunk of a text that is approximately 4 characters

long. That’s it – nothing else special.

So if a token is approximately a 4-character chunk of text, then why do

we care about it?

When working with the OpenAI textual models, developers need to be

aware of token limitations, because they impact the cost and performance

of API calls. For example, the gpt-4o and o1 models both support 128,000

tokens (which is approximately the size of a 300-page novel) that can go

in your prompt. These input tokens are also called the context window.

In contrast, the maximum output tokens for gpt-4o is 16,384, while the

maximum output tokens for the o1 model is 32,768.

As a result, developers need to take into account the length of the

prompts as inputs and outputs to the models, ensuring that they fit within

the model’s token constraints.

Table 1-1 provides a list of some of the most current models with the

token limitations and their pricing.

Chapter 1 Introducing ChatGPT for JavaScript Developers

16

Table 1-1.  List of Models with Their Token Limitations and the Cost

per Token

Model Context Window Cost of Token Input Cost of Token Output

gpt-4o 128,000 $2.50 / 1M tokens $10.00 / 1M tokens

gpt-4o-mini 128,000 $0.15 / 1M tokens $0.60 / 1M tokens

o1 128,000 $15.00 / 1M tokens $60.00 / 1M tokens

o1-mini 128,000 $3.00 / 1M tokens $12.00 / 1M tokens

�Temperature Is All About Creativity
Of course, ChatGPT isn’t sentient, so it’s incapable of thinking as we

humans do. However, by adjusting the temperature setting in your

prompts to the ChatGPT API, you can enable the responses to be more

creative. Being aware of what it understands is crucial if you want to make

best use of its potential.

Figure 1-2.  Modify the Temperature in Order to Get More (or Less)
Creative Responses

Now it’s time to take the concepts that we’ve learned so far and start

to put them to good use! However, we need to do first things first, and

therefore you will need to have a developer account with OpenAI and

create an API key.

Chapter 1 Introducing ChatGPT for JavaScript Developers

17

Head over to the following URL to create your dev account and

API key:

https://platform.openai.com/account/api-keys

As you can see from the image below, you can name your API key

anything that you want.

�Getting Started with the OpenAI Playground
Now it’s time to take the concepts that we’ve learned so far and start to put

them to good use! However, we need to do first things first, and therefore

you will need to have a developer account with OpenAI and create an

API key.

Head over to the following URL to create your dev account and

API key:

https://platform.openai.com/account/api-keys

As you can see from Figure 1-3, you can name your API key anything

that you want.

Chapter 1 Introducing ChatGPT for JavaScript Developers

18

Figure 1-3.  Before You Can Access the Playground or Make API Calls,
You Need to Have an API Key

You should be aware that as a requirement to create an API key, you

will need to provide to OpenAI a credit card so that you can be billed for

usage of their models.

Now that you’ve got your API key, let’s go straight to the Chat

Playground at the following URL:

https://platform.openai.com/playground

Figure 1-4 depicts the Chat Playground, with certain parts numbered

so that they can be easily identified.

Chapter 1 Introducing ChatGPT for JavaScript Developers

19

Figure 1-4.  The Chat Playground Can Be a Little Daunting at
First Glance

�1. System Message
As you can see, the user interface for the Chat Playground is vastly more

complex than the ChatGPT website that everyone else uses. So let’s talk

about the System Message field (see Figure 1-4, item 1).

In our opinion, ChatGPT can be described as, “a vastly powerful form

of artificial intelligence… with amnesia.” Therefore, when you’re using

ChatGPT programmatically, you need to inform the system who it is in the

conversation!

Figure 1-5, shown below, gives you a glimpse of the thousands of

different roles that ChatGPT can play in a conversation.

Chapter 1 Introducing ChatGPT for JavaScript Developers

20

Figure 1-5.  The System Message Field in the Chat Playground Allows
You to Set the Role That ChatGPT Will Play in the Conversation

�2. User
The User field (Figure 1-4, item 2) in the Chat Playground is where you

type your prompt to ChatGPT, which can be anything that you want, for

example, “What are the most common packages used by developers?”

�3. Assistant (Optional)
When you initially load the Chat Playground, the Assistant field

(Figure 1-4, item 3) is not visible. In order to make it appear, you need to do

the following:

•	 Type in a User message.

•	 Click the “+” button to add the message to the

conversation.

•	 Click the User button, to toggle the message type from

“User” to “Assistant.”

Now, you may be asking yourself, “Why is this field needed at all?”

Well, that’s a fine question. If you want ChatGPT to remember something

that it has already told you in a previous conversation, then you need to

Chapter 1 Introducing ChatGPT for JavaScript Developers

21

type into the Assistant field anything that it has already told you that you

think is relevant in order to continue with the conversation. Remember, it

is a vastly powerful AI, but it has amnesia!

�4. + (Optional)
The “+” button (Figure 1-4, item 4) is where you’d click in order to add

either an Assistant message to the conversation or another User message.

Now, you may ask, “What’s the point of adding yet another User message

to the conversation, when I can type what I want in the original User field

above?” Good question.

If you wanted to separate your commands from your data, then you

would use a separate User message for that.

Do you remember in Listing 1-4 earlier in this chapter, where we had

to use the “###” to separate the command to ChatGPT from the data that

we wanted it to analyze? Well, this is now no longer needed because the

command would be the first User message, and the data would be the

second User message.

�5. Code (Optional)
After you have submitted your prompt using the Playground, you can click

the Code button (Figure 1-4, item 5) in order to see the code necessary to

send the same prompt using any of the languages that they support.

�6. Model (Optional)
Earlier in this chapter, we talked about the various models that are

available for developers. Click the model field in order to see a list of

models that are available.

Chapter 1 Introducing ChatGPT for JavaScript Developers

22

You may also see that some models have a month and day

associated with their name, which is simply a snapshot of that model.

Programmatically selecting a snapshot enables developers to have some

sort of predictability in the responses that they will receive from ChatGPT,

because the current models are always updated.

�7. Temperature (Optional)
As noted earlier in this chapter, the temperature selector ranges between 0

and 2 and allows you to select the “randomness” of the response.

�8. Max Tokens (Optional)
Do you remember the discussion earlier in this chapter about tokens? By

selecting anything in the range for this item, you can adjust the number of

tokens (which directly affects the number of words) in the response.

�Try It Now! Experimenting
with the “System” Role
Now that we’re familiar with several of the features of the Chat Playground,

let’s send our first prompt using the settings discussed above. Listings 1-7

and 1-8 below use the same prompt asking ChatGPT to give a few

paragraphs on telemedicine, but the role of the system is vastly different

from each other.

Listing 1-7.  PROMPT. The Pros and Cons of Telemedicine as a

Researcher

System: You are a strictly factual researcher
User: Write 3 paragraphs on pros and cons of telemedicine

Chapter 1 Introducing ChatGPT for JavaScript Developers

23

Listing 1-8.  PROMPT. The Pros and Cons of Telemedicine as an

Opinionated Health Blogger

System: You are a highly opinionated health blogger who always
has stories with first hand experience
User: Write 3 paragraphs on pros and cons of telemedicine

You are encouraged to try these two prompts yourself and see what the

responses are. Adjust the settings for the temperature and token length to

get familiar with how those parameters affect the outcome.

�Conclusion
You just learned more about how ChatGPT can be used by developers.

We covered some of the basics of the Chat Playground, which is a web

interface for developers to interact with the ChatGPT API.

We talked about how to set the system, user, and assistant roles in the

Chat Playground and how to adjust settings such as the temperature and

maximum length of output.

You learned about some of the parameters and terminology necessary

to use the Chat Playground, such as the model, the temperature, and

tokens. Getting familiar with the parameters of the Chat Playground is

essential to knowing how to use the REST API since the Playground is a

subset of capabilities offered by the REST API.

In the next chapter, we’ll see how to use ChatGPT as your “pair

programmer” and create a productivity app that gives us weather and

arrival time to work.

Chapter 1 Introducing ChatGPT for JavaScript Developers

25© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_2

CHAPTER 2

Using ChatGPT
As Your JavaScript
Pair-Programmer
I’m a big fan of some of the practices of XP (eXtreme Programming) and,

especially, pair-programming. No matter what flavor of pair-programming

that you prefer, it involves two engineers sitting down at the same screen

and solving the same problem together. One of the biggest benefits that

you get is a fresh set of eyes on a problem, and of course, you now have two

engineers who have “touched” the codebase instead of one. Sometimes

you can have one engineer write the code, and the other write the tests and

the comments. No matter how you slice it, it’s all good stuff.

�Chapter Overview
This chapter will walk you through obtaining and testing out your API

key, get you comfortable making calls to the OpenAI JavaScript API for

ChatGPT, and introduce you to how to get things done using other models

as well. Furthermore, we’ll be using ChatGPT as a pair-programmer to

create an application that will allow us to input the name of a city and

the time you’d like to arrive to work, then give you the weather and an

estimated arrival time based on current traffic conditions! Sound exciting?

Then let’s jump right in.

26

�You Have Node.js Already Installed, Right?
For obvious reasons, you can’t do much in this book without having Node.

js installed on your computer. Therefore, in order to check the version of

Node that you have, just open a terminal window and execute:

node - v

If the output of the command shows you a version number, then you’re

all set!

Now, after executing the command above, if you see an error message,

then you need to install Node.js for your specific operating system. If that’s

the case, then use ChatGPT or Google in order to get the instructions

depending on your OS, and then open a new terminal window and execute

the command above in order to see the version that you have.

�Installing (or Updating) the OpenAI Node.js
Library with npm
In order to use the OpenAI library with JavaScript, the minimum

supported version of Node compatible is version 18, although the

code examples were tested with version 20. Now that you have all the

prerequisites, it’s time to install the OpenAI Node.js library itself. Go back

to your terminal window, and execute the following command:

npm install openai

The command above will install the OpenAI library for you if it doesn’t

already exist and will update the library to the most recent version it’s

already there.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

27

�Three Ways to Set Your API Key
When setting up your API key for the OpenAI API, there are different

methods to choose from, each designed for specific project needs and

security concerns.

�Option #1: Setting a System-Wide
Environment Variable
The environment variable approach establishes a system-wide

environment variable for API key storage. This provides a centralized point

for key management, simplifying deployment across diverse projects.

Let’s look at the steps on how we’d go about doing it.

�For Mac OS

First off, open Terminal. You can find it in the applications folder or use

spotlight (Command + Space) to search for it.

Next, edit your bash profile. For older MacOS versions, you’d use the

command nano ~/.bash_profile. Users of newer MacOS versions will need

to use nano ~/.zshrc. This will open the profile file in a text editor.

Now let’s add your environment variable. In the editor, add the line

below, replacing “your-api-key-here” with your actual API key without the

single quotation marks.

export OPENAI_API_KEY='your-api-key-here'

Let’s save and exit by pressing Ctrl+O to write the changes, then

pressing Ctrl+X to close the editor.

Now you’re going to load your profile by using source ~/.bash_
profile for older Mac OS versions and source ~/.zshrc for the newer

Mac OS versions. This will load the updated profile.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

28

Finally, we’re going to verify that we’ve done everything correctly. In

the terminal, type echo $OPENAI_API_KEY. If everything went well, you

should see the value of your API key.

echo $OPENAI_API_KEY

�For Windows

Start by opening the command prompt. You can find it by searching “cmd”

in the Start/Windows menu.

Now we’re going to set the environment variable in the current session

by using the command below, replacing “your-api-key-here” with your

actual API key. This command sets the OPENAI_API_KEY for the current

session.

setx OPENAI_API_KEY 'your-api-key-here'

You can make the setup permanent by adding the variable through

system properties:

•	 Right-click “This PC” or “My Computer” and select

“Properties.”

•	 Click “Advanced system settings.”

•	 Click the “Environment Variables” button.

•	 In the “System variables” section, click “New...” and

enter OPENAI_API_KEY as the variable name and your

API key as the variable value.

To make sure everything is working properly, reopen the command

prompt and type the command below to verify the setup. It should display

your API key.

echo %OPENAI_API_KEY%

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

29

�For Linux

To set the environment variable for the current session, open a terminal

window and use the export command. Replace “your-api-key-here” with

your actual API key.

Listing 2-1.  Adding an Environment Variable on Your Hard Drive

on Linux

export OPENAI_API_KEY='your-api-key-here'

To make the environment variable persistent across sessions, you can

add it to your shell’s configuration file, such as ~/.bashrc for Bash. Here’s

how you can do it:

Open the configuration file in a text editor. For example:

nano ~/.bashrc

Add the following line at the end of the file:

export OPENAI_API_KEY='your-api-key-here'

Save the file and exit the text editor.

To apply the changes immediately, you can either close and reopen the

terminal or run:

source ~/.bashrc

To verify that the environment variable is set correctly, you can echo its

value in the terminal. This command should display your API key:

echo $OPENAI_API_KEY

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

30

�Option #2: Creating a .env File
Using a system-wide environment variable is great for making the API

key accessible by any application or script running on the machine.

However, if your use case is a little more simplistic, we can simply create

a local variable accessible within just the scope of a particular program or

script. It’s also useful for situations in which different projects necessitate

different keys, so you can prevent conflicts in key usage. Let’s dive right in!

We’re going to start by creating a local .env file. This file will hold your

API key, ensuring it’s only utilized by the designated project. Navigate to

the project folder where you intend to create the .env file.

Note T o prevent your .env file from being unintentionally shared via
version control, create a .gitignore file in your project’s root directory.
Add a line with .env to ensure the confidentiality of your API key and
other sensitive information.

Next, use the terminal or an IDE to create both the .gitignore and .env

files. Copy your API key and replace “your-api-key-here” with your actual

API key without the single quotation marks.

At this point, your .env file should look like this:

OPENAI_API_KEY='your-api-key-here'

Finally, you can import the API key into your Node.js code using the

following snippet:

Listing 2-2.  Importing Your .env File Into Your Node.js Application

import OpenAI from "openai";
import "dotenv/config";

// Create a new open ai client

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

31

const openai = new OpenAI({
 apiKey: process.env["OPENAI_API_KEY"],
 });

Of course, you’ll need to install the dotenv package if you don’t have it

already. Just execute:

npm install dotenv

�Option #3: Hard Coding the API Key Directly
in Your Application (Take with Caution)
This last method isn’t recommended for long-term use because of security

reasons. But, for the sake of knowing how things work, we’re going to cover

how you can hard code your API key into your application if you want to

quickly test out your API key to make sure it’s working.

To begin, you’ll assign the API key to a variable within the JavaScript

code. Replace “YOUR_API_KEY” with the actual API key you received from

OpenAI. Ensure that this API key is kept secure and not shared publicly.

Next, you’ll initialize the OpenAI client within your Node.js script. This

is done by instantiating the OpenAI class with the api_key parameter set to

the API key. By providing the API key during initialization, you enable the

OpenAI client to access the services offered by the OpenAI API. This step

ensures that your Node.js script can communicate with the OpenAI API

using the specified API key.

Listing 2-3.  Coding Your API Key Directly into Your Application

import OpenAI from "openai";
import "dotenv/config";

const API_KEY = "YOUR_API_KEY";

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

32

const openai = new OpenAI({
 apiKey: API_KEY,
});

Now let’s make our first application with the OpenAI API and test out

the key at the same time by getting a list of models available within the

OpenAI API.

Note  From this point on, the code examples will be accessing our
API key with a local .env file.

�Creating Your First JavaScript ChatGPT App:
list-models
We’re actually going to accomplish two tasks at once here. We’re going to

create a basic Node.js script using the OpenAI APIs, and in the process, we’re

going to verify that we’ve properly obtained an API key. So, needless to say,

in case you haven’t done so already, follow the instructions in Chapter 1

to create your OpenAI developer account and obtain your API key. Going

forward, all the code samples in this book require a valid API key.

�Using openai.models.list( ) to Get a List
of Available Models
One of the most basic (but also essential) capabilities that we can get a list

of available models. Why, you may ask? The ChatGPT website only exposes

a handful of models available, and the Playground adds a few more that

you can use. However, by invoking openai.models.list(), you get a list that

specifies the name of every model, and there’s a lot to choose from!

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

33

�Handling the Response

Note S ince objects can contain Arrays (which can be hard to
represent in a table), we’re using the following notation “↳” to
indicate the elements of the Array. As you can see from Table 2-1,
“id,” “object,” “created,” and “owned_by” are all elements of the
“data” Array in the response.

Table 2-1.  The Structure of the Model Object

Field Type Description

object String This always returns the literal, “list”

data Array An Array of AI models offered by OpenAI

 ↳ id String The unique ID of the AI model, which is essentially the

full name of the model

 ↳ object String This always returns the literal, “model”

 ↳ created integer The creation date for the model

 ↳ owned_by String The name of the organization that owns the model

Now that we have the details of the Model object, let’s talk about how

we can test our API key we obtained in the first chapter. There are actually

a few ways to do this.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

34

�Using Your API Key to Get a List of Available
Models with the OpenAI API
With our API key set up in a local .env file, we’re going to use the following

code to get a list of models available within the OpenAI API, which will

then be printed into our terminal.

Listing 2-4.  Getting a List of Models Available with the OpenAI API

by Calling the models.list() Function

import OpenAI from "openai";
import "dotenv/config";

// Create openai client
const openai = new OpenAI({
 apiKey: process.env["OPENAI_API_KEY"],
});

async function main() {
 // Get the model list from the openai client
 const model_list = await openai.models.list();

 // Save the model names to a variable
 �const model_names_list = model_list.data.map((model) =>
model.id);

 // Loop through the names and log them.
 for (const name of model_names_list) {
 console.log(name);
 }
}

main();

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

35

After running the code in Listing 2-4, Listing 2-5 shows all the models

that are available for us to use:

Listing 2-5.  The List of Available Models

o1
o1-mini
dall-e-3
gpt-4o-mini
text-embedding-3-large
text-embedding-3-small
gpt-4-0125-preview
text-embedding-ada-002
dall-e-2
tts-1
tts-1-hd-1106
tts-1-1106
tts-1-hd
gpt-4
babbage-002
gpt-4-turbo-preview
gpt-4o-2024-08-06
gpt-3.5-turbo
gpt-4o
gpt-3.5-turbo-1106
whisper-1
gpt-3.5-turbo-16k
gpt-3.5-turbo-instruct-0914
gpt-3.5-turbo-0125
gpt-4-0613
gpt-3.5-turbo-instruct
gpt-4-1106-preview

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

36

chatgpt-4o-latest
gpt-4-turbo-2024-04-09
davinci-002
gpt-4-turbo
gpt-4o-2024-05-13
gpt-4o-mini-2024-07-18

As you can see in the list above, as a developer, we have more AI

models available to us that are not even exposed to anyone who’s using the

Chat Playground!

So now, we’re at the point where we can programmatically invoke the

Open AI APIs using our API key. In the rest of this chapter, we’re going to

see what it’s like to use ChatGPT as a pair-programmer in order to allow us

to quickly build JavaScript applications.

However, we first need to put some thought into the prompts that we

need to give to ChatGPT.

�Wait, How Many Tokens Are in My Prompt?
At a certain point, you’re going to start thinking about the prompts that

you plan to send to ChatGPT and give considerable thought to the token

limitations (and the costs) regarding the model that you want to use. In

case you forgot, be sure to refer back to Table 1-1 for a list of models and

the price of the tokens. Additionally, OpenAI created a simple-to-use

website that allows you to see how many tokens are in your prompt, as

shown in Figure 2-1.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

37

Figure 2-1.  The ChatGPT Tokenizer Can Give You a Quick Count of
the Tokens in Your Prompt

ChatGPT Token Counter

https://platform.openai.com/tokenizer

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

38

�Using ChatGPT As a Pair-Programmer
to Build a Weather Application
Now that we’ve made sure that our API key works, it’s time to start writing

our first project with ChatGPT. This is the exciting part! We’re going to use

ChatGPT to help us create an application in JavaScript that will give us the

weather and the time it’ll take us to get to work from the location of our

home to work. Sounds impressive, doesn’t it?

�Setting Up the Prompt
Let’s ask ChatGPT how we should get started. Now is a good time to

practice Prompt Engineering. We’re going to explain to ChatGPT what we

want and see what it comes up with. Listing 2-6 shows the prompt we used.

Listing 2-6.  PROMPT. Asking ChatGPT to Help Us Make a Weather

App for Productivity

I need a simple node.js application that will allow me to type
my city into the console and use Accuweather API to give me the
weather for the city

This is the code we got in the response (Listing 2-7):

Listing 2-7.  Response. The Code and Instructions How to Create a

Basic Weather App

Certainly! Below is a step-by-step guide to creating a simple
Node.js application that fetches weather data from the

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

39

AccuWeather API for a given city.

Step 1: Set Up Your Node.js Project

1. **Initialize a new Node.js project:**

   ```bash
   mkdir weather-app
   cd weather-app
   npm init -y
   ```

2. **Install necessary packages:**
   ```bash
   npm install axios readline-sync dotenv
   ```

Step 2: Set Up AccuWeather API

1. **Sign up for an AccuWeather API key:**
 �Go to [AccuWeather Developer Portal](https://developer.

accuweather.com/) and sign up for an API key.

2. **Create a `.env` file in your project root to store your
API key:**
   ```plaintext
   ACCUWEATHER_API_KEY=your_api_key_here
   ```

Step 3: Write the Application Code

Create a file named `index.js` in the project root and add the
following code:

```javascript
const axios = require("axios");

Chapter 2  Using ChatGPT As Your JavaScript Pair-Programmer



40

const readlineSync = require("readline-sync");
require("dotenv").config();

const apiKey = process.env.ACCUWEATHER_API_KEY;
const baseUrl = "http://dataservice.accuweather.com";

async function getCityKey(city) {
  const url = `${baseUrl}/locations/v1/cities/search`;
  try {
    const response = await axios.get(url, {
      params: {
        apikey: apiKey,
        q: city,
      },
    });
    if (response.data && response.data.length > 0) {
      return response.data[0].Key;
    } else {
      console.log("City not found.");
      process.exit(1);
    }
  } catch (error) {
    console.error("Error fetching city key:", error);
    process.exit(1);
  }
}

async function getWeather(cityKey) {
  const url = `${baseUrl}/currentconditions/v1/${cityKey}`;
  try {
    const response = await axios.get(url, {
      params: {
        apikey: apiKey,
      },

Chapter 2  Using ChatGPT As Your JavaScript Pair-Programmer



41

    });
    if (response.data && response.data.length > 0) {
      return response.data[0];
    } else {
      console.log("Weather data not found.");
      process.exit(1);
    }
  } catch (error) {
    console.error("Error fetching weather data:", error);
    process.exit(1);
  }
}

async function main() {
  const city = readlineSync.question("Enter your city: ");
  const cityKey = await getCityKey(city);
  const weather = await getWeather(cityKey);

  console.log(`Weather in ${city}:`);
  console.log(
    �Temperature: ${weather.Temperature.Metric.

Value}°${weather.Temperature.Metric.Unit}`
  );
  console.log(`Weather Text: ${weather.WeatherText}`);
}

main();
```

Step 4: Run the Application

1. **Run your application:**

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

42

   ```bash
   node index.js
   ```

2. **Enter your city when prompted:**
   ```plaintext
   Enter your city: [Your City Name]
   ```

You should see the current weather conditions for the city you
entered.

Summary

This simple Node.js application uses the AccuWeather API to
fetch and display the current weather for a specified city.
It uses "axios" to make HTTP requests, "readline-sync" to get
user input from the console, and "dotenv" to manage environment
variables securely.

That’s fantastic, and also quite thorough! So let’s follow the steps

provided in the response, and later we can continue the conversation to

make some changes to the code.

�Creating a Weather App
with the AccuWeather API
As the instructions stated, we first need to set up an account with

Accuweather. Go to https://developer.accuweather.com/ and click the

Register link to sign up (Figure 2-2).

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

43

Figure 2-2.  Accuweather Homepage for Developers

After signing in, navigate over to My Apps (Figure 2-3).

Figure 2-3.  Navigating to the My Apps Tab on the Accuweather
Developer Portal

Once you’re on the My Apps tab, you’re going to want to Add a new
App in order to get an API key to use in our application (Figure 2-4).

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

44

Figure 2-4.  Creating a New App with Accuweather

As you set things up, you’ll need to name your app and answer benign

questions like where the API will be used and what you want to do with

the API. As you can see in Figure 2-5, we’ve called our AccuWeather app

“Weather Tracker.”

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

45

Figure 2-5.  Adding Specifications for Our Accuweather App

The most important configuration to enable here is where you’re being

asked to specify the product you’re intending to use. Be sure to enable the
Core Weather Limited Trial.

It may take some time for your application to be approved, but

usually this is a very quick process. When it’s done, you’ll see your new

application on the My Apps page, which will include your API key! Mission

accomplished (Figure 2-6).

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

46

Figure 2-6.  Seeing Your Newly Created App on the Accuweather
Developer Portal

�Refining Our Prompt with Prompt Engineering
Now, with everything all together, when you run the code, the application

will ask you to input the name of a city.

Enter your city:

Once you provide a valid city name, you should find that everything

runs smoothly, and you’ll get a response that looks something like this

(obviously, the forecast will change depending on what city you decide to

enter and, well, what the weather is like the day you run it).

Listing 2-8.  Using ChatGPT As Our Pair-Programmer, We Built a

Fully Functioning Weather App in Only a Few Minutes

Weather in New York:
Temperature: 23.3°C
Weather Text: Cloudy

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

47

We get a nice, basic description of the weather in New York City from

running the code, but there are a couple of things we can improve on.

AccuWeather has icons for various weather conditions. Right now, we

can see that the weather in New York is currently cloudy, but we could also

get a longer description that describes the weather for the rest of the day.

Additionally, for those of us who live in the United States, it makes sense

to see the temperature in Fahrenheit. So let’s get ChatGPT to help us make

those changes for us.

Since ChatGPT can retain the context, we’re going to prompt ChatGPT

in the same Chat conversation as in Listing 2-9:

Listing 2-9.  Prompting ChatGPT to Change the Code to Get a More

Detailed Response from the AccuWeather API

Thank you. I would like to make a few changes to this code.
• �Instead of using Celcius retrieve the temperature in

Fahrenheit
• �Make an API call to get an icon number and an icon url to

print in the response
• �Make an API call to get a weather description in the

response

This is the answer we got from ChatGPT (Listing 2-10).

Listing 2-10.  Response from ChatGPT to Modify the Code in Our

Weather Application

Sure! Let's modify the code to include the following changes:

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

48

1. Retrieve the temperature in Fahrenheit instead of Celsius.
2. Get an icon number and an icon URL to print in the response.
3. Include a weather description in the response.

Updated Code

Here is the updated `index.js`:

```javascript
const axios = require("axios");
const readlineSync = require("readline-sync");
require("dotenv").config();

const apiKey = process.env.ACCUWEATHER_API_KEY;
const baseUrl = "http://dataservice.accuweather.com";
const iconBaseUrl = "https://developer.accuweather.com/sites/
default/files";

async function getCityKey(city) {
  const url = `${baseUrl}/locations/v1/cities/search`;
  try {
    const response = await axios.get(url, {
      params: {
        apikey: apiKey,
        q: city,
      },
    });
    if (response.data && response.data.length > 0) {
      return response.data[0].Key;
    } else {
      console.log("City not found.");
      process.exit(1);
    }
  } catch (error) {

Chapter 2  Using ChatGPT As Your JavaScript Pair-Programmer



49

    console.error("Error fetching city key:", error);
    process.exit(1);
  }
}

async function getWeather(cityKey) {
  const url = `${baseUrl}/currentconditions/v1/${cityKey}`;
  try {
    const response = await axios.get(url, {
      params: {
        apikey: apiKey,
      },
    });
    if (response.data && response.data.length > 0) {
      return response.data[0];
    } else {
      console.log("Weather data not found.");
      process.exit(1);
    }
  } catch (error) {
    console.error("Error fetching weather data:", error);
    process.exit(1);
  }
}

function getIconUrl(iconNumber) {
  �const iconNumberString = iconNumber.toString().
padStart(2, "0");

  return `${iconBaseUrl}/${iconNumberString}-s.png`;
}

async function main() {
  const city = readlineSync.question("Enter your city: ");

Chapter 2  Using ChatGPT As Your JavaScript Pair-Programmer



50

  const cityKey = await getCityKey(city);
  const weather = await getWeather(cityKey);

  const temperatureF = weather.Temperature.Imperial.Value;
  const weatherText = weather.WeatherText;
  const iconNumber = weather.WeatherIcon;
  const iconUrl = getIconUrl(iconNumber);

  console.log(`Weather in ${city}:`);
  console.log(`Temperature: ${temperatureF}°F`);
  console.log(`Weather Description: ${weatherText}`);
  console.log(`Icon URL: ${iconUrl}`);
}

main();
```

Explanation of Changes

1. **Fahrenheit Temperature**: The `Temperature.Imperial.Value`
is used to get the temperature in Fahrenheit.
2. **Icon Number and URL**: A helper function `getIconUrl` is
created to format the icon number and construct the URL for the
icon image.
3. **Weather Description**: The `WeatherText` field is used to
include a weather description.

Running the Application

After making these changes, run your application with the same
command:

```bash
node index.js
```

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

51

Enter your city when prompted, and you will get the current
weather conditions, temperature in Fahrenheit, weather
description, and an icon URL.

This updated code ensures that you have all the required
information displayed in the console, including the weather
icon URL.

When we run this code, we get exactly what we were looking for. We’ll

enter a valid city name again (New York City, in our case), and this is the

response we got (Listing 2-11):

Listing 2-11.  Response from the AccuWeather API After Running

the Modified Code

Enter your city: New York
Weather in New York:
Temperature: 63°F
Weather Description: Mostly cloudy
Icon URL: https://developer.accuweather.com/sites/default/
files/38-s.png

Now that our code works exactly the way we want it to, let’s try another

example.

�Using ChatGPT As a Pair-Programmer
to Build an Application That Estimates
Distance and Arrival Time
The next thing we’re going to want to do is start making an application

that can give us an estimated arrival time and distance from one place to

another, for example, from the house to the office. Let’s use the Google

Maps API to get this done.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

52

�Creating a Project with Google Maps
Platform API
Most people already have a Gmail account, but on the off chance that you

don’t, be sure to create one before proceeding.

Google has a mountain of APIs for almost everything you can think of.

However, since we’re trying to accomplish tasks that require geolocation

data, we’re going to need to go directly to the APIs for Google Maps (as

shown in Figure 2-7) which is located at https://developers.google.
com/maps/documentation.

Figure 2-7.  The Google Maps Platform Homepage

On the Google Maps Platform page, click Getting Started to set up

your account for using the APIs. After following the steps Google presents

you with, you’ll be taken to the page shown in Figure 2-7, where you can

see the different APIs available with the Google Maps Platform. But what’ll

probably catch your attention first is the fact that you still have to Finish
Account Setup.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

53

Finishing your account set up (see Figure 2-8) will compose of entering

credit card information so you can start the free trial that will allow you

$200 worth of credit, which is more than enough for the purposes of our

testing.

Figure 2-8.  Finishing Your Google Maps Platform Account SetUp

After properly setting up your account, you’ll be greeted by a welcome

page. On the left, you’ll find a menu icon you can click to reveal a list of

services you have access to. You want to navigate to Apps & Services, and

then click Library (as shown in Figures 2-9 and 2-10).

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

54

Figure 2-9.  Navigating to the APIs & Services Tab on the Google
Maps Platform

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

55

Figure 2-10.  The API Library Page

You’re going to want to click Maps JavaScript API and then Enable it,

as shown in Figure 2-11.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

56

Figure 2-11.  Enabling the JavaScript API

After enabling the JavaScript API, go back twice and open the menu

again, and then click the Google Maps Platform to see the dashboard for

Google Maps.

From here, we’re going to be looking at another side menu that looks

similar to the one from before, but here we’re going to click Apps &
Services again to see a different page this time. From here, you can click

Routes to enable it, as shown in Figure 2-12.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

57

Figure 2-12.  Enabling the Routes API

Once you’ve enabled the API we need, navigate to the Keys &
Credentials tab and Create a new API key (Figure 2-13).

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

58

Figure 2-13.  The Keys and Credentials Page on the Google Maps
Platform

Now that we have our Google Maps API key, we can make use of

ChatGPT to be our pair-programmer again. Our end goal is to have an

app that tells us how far away is the destination and how long will it take

to get there. By the way, here’s a fun fact – the Google Maps Routes API

factors in real-time traffic congestion data on the roads when you ask

for the estimated travel time, so this makes our application perfect for

productivity!

Now, in order to show the flexibility of ChatGPT as a pair-programmer,

let’s take two different approaches to achieve the same goal.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

59

�Approach #1: Using ChatGPT to Take a cURL
Command and Convert It to JavaScript
In this first approach, instead of reading the Google Maps Platform

documentation, we’re actually going to cut to the chase and give ChatGPT

the cURL command to invoke the API. you need and show you how to use

ChatGPT to convert it to JavaScript for you. You’re welcome.

Listing 2-12 is the cURL command from the Google Maps Platform

documentation:

Listing 2-12.  cURL Command for Using the Google Maps

Routes API

curl -X POST -d '{
 "origin":{
 "location":{
 "latLng":{
 "latitude": 37.419734,
 "longitude": -122.0827784
 }
 }
 },
 "destination":{
 "location":{
 "latLng":{
 "latitude": 37.417670,
 "longitude": -122.079595
 }
 }
 },
 "travelMode": "DRIVE",
 "routingPreference": "TRAFFIC_AWARE",

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

60

 "departureTime": "2023-10-15T15:01:23.045123456Z",
 "computeAlternativeRoutes": false,
 "routeModifiers": {
 "avoidTolls": false,
 "avoidHighways": false,
 "avoidFerries": false
 },
 "languageCode": "en-US",
 "units": "IMPERIAL"
}' \
-H 'Content-Type: application/json' -H 'X-Goog-Api-Key: YOUR_
API_KEY' \
-H 'X-Goog-FieldMask: routes.duration,routes.
distanceMeters,routes.polyline.encodedPolyline' \
'https://routes.googleapis.com/directions/v2:computeRoutes'

Remember, the best practice is to separate the instructions from the

content with three hashes (###) to get the best results. Listing 2-13 has the

full prompt we gave to ChatGPT:

Listing 2-13.  PROMPT. Asking ChatGPT to Convert cURL to

JavaScript

I'm coding in JavaScript and trying to build an application
that makes a request to the Google Maps API and pull down the
amount of time it'll take to get from one location to the
other. This is the cURL code that would accomplish that goal.
Help me convert this to something I can use in JavaScript:
###
curl -X POST -d '{ "origin":{ "location":{ "latLng":{
"latitude": 37.419734, "longitude": -122.0827784 } } },
"destination":{ "location":{ "latLng":{ "latitude": 37.417670,
"longitude": -122.079595 } } }, "travelMode": "DRIVE",

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

61

"routingPreference": "TRAFFIC_AWARE", "departureTime":
"2023-10-15T15:01:23.045123456Z", "computeAlternativeRoutes":
false, "routeModifiers": { "avoidTolls": false,
"avoidHighways": false, "avoidFerries": false },
"languageCode": "en-US", "units": "IMPERIAL" }'
-H 'Content-Type: application/json' -H 'X-Goog-Api-Key: YOUR_
API_KEY'
-H 'X-Goog-FieldMask: routes.duration,routes.
distanceMeters,routes.polyline.encodedPolyline'
'https://routes.googleapis.com/directions/v2:computeRoutes

This is the code we got in the response from ChatGPT (Listing 2-14):

Listing 2-14.  Response. Getting a Response Back from ChatGPT

with Useable Javascript Code

To convert the provided cURL command to JavaScript, you can use
the `fetch` API. Here is how you can do it:

```javascript
const apiKey = "YOUR_API_KEY"; �// Replace with your 

actual API key
const url = "https://routes.googleapis.com/directions/
v2:computeRoutes";

const requestBody = {
  origin: {
    location: {
      latLng: {

Chapter 2  Using ChatGPT As Your JavaScript Pair-Programmer



62

        latitude: 37.419734,
        longitude: -122.0827784,
      },
    },
  },
  destination: {
    location: {
      latLng: {
        latitude: 37.41767,
        longitude: -122.079595,
      },
    },
  },
  travelMode: "DRIVE",
  routingPreference: "TRAFFIC_AWARE",
  departureTime: "2023-10-15T15:01:23.045123456Z",
  computeAlternativeRoutes: false,
  routeModifiers: {
    avoidTolls: false,
    avoidHighways: false,
    avoidFerries: false,
  },
  languageCode: "en-US",
  units: "IMPERIAL",
};

const requestOptions = {
  method: "POST",
  headers: {
    "Content-Type": "application/json",
    "X-Goog-Api-Key": apiKey,
    "X-Goog-FieldMask":

Chapter 2  Using ChatGPT As Your JavaScript Pair-Programmer



63

      �"routes.duration,routes.distanceMeters,routes.polyline.
encodedPolyline",

  },
  body: JSON.stringify(requestBody),
};

fetch(url, requestOptions)
  .then((response) => response.json())
  .then((data) => {
    // Process the data here
    console.log(data);
  })
  .catch((error) => {
    console.error("Error:", error);
  });
```

Explanation:

1. **API Key:** Ensure you replace `'YOUR_API_KEY'` with your
actual Google Maps API key.
2. **URL:** The URL for the Google Maps Directions API endpoint
remains the same.
3. **Request Body:** The request body is defined as a
JavaScript object and then converted to a JSON string using
`JSON.stringify()`.
4. **Request Options:**
 �- `method: 'POST'` indicates that we are making a POST

request.
 �- `headers` includes the content type, API key, and the

field mask.
 - `body` is the JSON string of the request body.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

64

5. �**fetch:** This makes the HTTP request and returns a
promise.

 �- `.then(response => response.json())` processes the
response as JSON.

 - `.then(data => { ... })` processes the returned data.
 �- `.catch(error => { ... })` handles any errors that occur

during the fetch.

This code will send a POST request to the Google Maps API and
log the response data to the console. Adjust the processing
logic within the `.then(data => { ... })` block to fit the
needs of your application.

Note I n order for this code to run, you must set a date and time in
the “DEPARTURE-TIME” parameter that is beyond the time at which
you run the code. In other words, the departure time cannot be set in
the past. In this example, the date is set to a specific time in 2023,
because that was the timestamp in the original request. Therefore,
you need to adjust the code in the “DEPARTURE-TIME” parameter in
order for your code to run as expected.

After adjusting the timestamp and running the code, you should get a

response similar to Listing 2-15:

Listing 2-15.  The Successful Response After Running the Code

from ChatGPT

{'routes': [{'distanceMeters': 773, 'duration': '158s',
'polyline': {'encodedPolyline': 'ipkcFjichVzQ@d@gU{E?'}}]}

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

65

�Approach #2: Using ChatGPT to Avoid Reading
a Lot of Documentation
As mentioned before, there is a lot of documentation to go through in the

Google Maps Platform. If you take a cursory glance at the other capabilities

available in the Routes API, you would see features to request various types

of information such as air quality, pollen count, aerial views (like you’d

see when you use Google Maps), and many other features of Google Maps

you may normally take for granted. Do you know what geocoding is? Well,

you’d have to find out the hard way if you went through the documentation

on your own.

Reading through documentation is annoying, especially when we

only want a few features in any given API or service. In a perfect world, we

wouldn’t even need to know what geocoding is in order to get our code

working in different scenarios other than what’s provided in the example

code from Google.

We may not live in a perfect world, but we don’t have to know what

geocoding is, at least not anymore. We can simply use ChatGPT to get

through the documentation we don’t want to read.

Listing 2-16 shows the prompt to ChatGPT so you don’t have to read

any of the Google Maps Route API to get working code:

Listing 2-16.  PROMPT. Asking ChatGPT to Avoid Reading

Documentation

I need to use the Google Maps Platform's Routes API to pull
down information pertaining to how much time it'll take to get
from one destination to the other, as well as how much distance
is between the two points. How can I make an HTTP request in
JavaScript to get the information I'm looking for?

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

66

Listing 2-17 shows the response from ChatGPT:

Listing 2-17.  Getting a Response Back from ChatGPT to Avoid

Reading Documentation

To use the Google Maps Platform's Routes API in Node.js to get
the travel time and distance between two points, you'll need to
make an HTTP request to the API endpoint. Below are the steps
and an example code snippet to help you get started:

1. **Get an API Key**: Ensure you have an API key from the
Google Cloud Console with access to the Google Maps Platform.

2. **Install Axios**: We'll use the `axios` library to make
HTTP requests. If you haven't already installed it, you can do
so by running:

   ```sh
   npm install axios
   ```

3. **Make the HTTP Request**: Create a Node.js script to make
the HTTP request to the Routes API endpoint.

Here's an example script to achieve this:

```javascript
const axios = require("axios");

// Replace with your API key
const apiKey = "YOUR_GOOGLE_MAPS_API_KEY";

Chapter 2  Using ChatGPT As Your JavaScript Pair-Programmer



67

// Function to get travel time and distance between two points
async function getTravelInfo(origin, destination) {
  �const url = `https://maps.googleapis.com/maps/api/directions/ 
json?origin=${encodeURIComponent(

    origin
  �)}&destination=${encodeURIComponent(destination)} 
&key=${apiKey}`;

  try {
    const response = await axios.get(url);
    const data = response.data;

    if (data.status === "OK") {
      const route = data.routes[0];
      const leg = route.legs[0];
      const travelTime = leg.duration.text;
      const distance = leg.distance.text;

      console.log(`Travel time: ${travelTime}`);
      console.log(`Distance: ${distance}`);
    } else {
      console.error(`Error: ${data.status}`);
    }
  } catch (error) {
    console.error("Error making request", error);
  }
}

// Replace with your origin and destination
const origin = "New York, NY";
const destination = "Los Angeles, CA";

// Call the function
getTravelInfo(origin, destination);
```

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

68

Explanation

- **API Endpoint**: The URL for the Directions API endpoint is
`https://maps.googleapis.com/maps/api/directions/json`.
- **Parameters**:
 - `origin`: The starting point for the route.
 - `destination`: The endpoint for the route.
 - `key`: Your API key.
- **Axios**: Used to make the HTTP GET request.
- **Response Handling**: The response contains a `status` field
and a `routes` array. The first route's first leg contains the
`duration` and `distance`.

Replace `'YOUR_GOOGLE_MAPS_API_KEY'` with your actual API key,
and update the `origin` and `destination` with the desired
locations.

Running the Script

1. Save the script to a file, e.g., `getTravelInfo.js`.
2. Run the script using Node.js:
   ```sh
   node getTravelInfo.js
   ```

This will print the travel time and distance between the
specified origin and destination to the console.

If you run this code, you should get this very clean, very simple

response:

Distance: 2,789 mi, Duration: 1 day 17 hours

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

69

�Conclusion
Let’s debunk a common myth and set the record straight: ChatGPT isn’t

some mind-reading wizard! As an AI tool, it can’t replace the expertise of

developers and architects. It can, however, complement the programming

skills of developers and save you some time and effort when coding.

As you can see, one of the biggest benefits of using ChatGPT as a

pair-programmer is that it can translate your natural language requests

into runnable code. However, let’s not forget the crucial role of human

judgment whenever AI (not just ChatGPT) is put into practice. Ultimately,

it’s up to humans to decide whether to use, tweak, or toss out the result

altogether.

Chapter 2 Using ChatGPT As Your JavaScript Pair-Programmer

71© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_3

CHAPTER 3

Creating a Basic
ChatGPT Client
in JavaScript
The purpose of this chapter is plain and simple. We’re going to build the

most powerful ChatGPT client available using only a few lines of code in

JavaScript. This client will do a lot more than what you’re able to do using

the ChatGPT website and will provide you more options than what is

available using the Chat Playground that we saw in Chapter 1.

�Creating Our ChatGPT Client Application
in JavaScript
Listing 3-1 is the code for our ChatGPT client in JavaScript. It’s a simple

client that allows us to use JSON to create system and user messages. We

can also specify the desired model and configuration parameters such as

the number of tokens to use.

72

Listing 3-1.  The Javascript ChatGPT Client

import OpenAI from "openai";
import "dotenv/config";

// Create a new open ai client
const openai = new OpenAI({
 apiKey: process.env["OPENAI_API_KEY"],
});

async function main() {
 const chatCompletion = await openai.chat.completions.create({
 messages: [
 {
 role: "system",
 content: "You are a JavaScript developer",
 },
 {
 role: "user",
 content: "Why is JavaScript use for web development?",
 },
],
 model: "gpt-4o",
 temperature: 0.85,
 top_p: 1,
 max_tokens: 1921,
 frequency_penalty: 0,
 presence_penalty: 0,
 });
 const result = chatCompletion.choices[0].message.content;
 console.log(result);
}

main();

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

73

As you analyze the code in Listing 3-1, you’re going to see several

things that are quite familiar from the Chat Playground such as the model,

messages, temperature, and tokens.

�Resist the Urge to Put Your API Key
in a Web Application!
As you can see from the code in Listing 3-1, it only takes a few lines of code

to make a fully functional ChatGPT client app in JavaScript. Later on in this

chapter, we’ll invoke the script and see the results.

Of course, we’re all aware that one of the major benefits of JavaScript is

that it can run both on the server side and within the browser on the client

side. So, does this mean that it’s a good idea to use this code in your React,

Angular, or Vue projects to create an amazing experience for the visitors of

your website?

Oh my dear sweet summer child. No, no, no, absolutely not.

Remember that any and all code within your web applications is 100%

visible to the world. In order for this code to work in the web browser, you

need to provide your OpenAI API key to the code that will run in the web

browser. Any competent developer can use a plethora of tools available to

view the source code of your web application and discover your OpenAI

API key. This means that they can easily rack up a massive bill for you and

potentially use your API key in ways that will violate the terms of service

of OpenAI.

Therefore, the best practice to make AI-enabled web applications is to

make all your calls to the OpenAI APIs using Node.js on your server side.

This way, there’s no possibility of your API key to be exposed.

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

74

�Using OpenAI.chat.completions.
create() to Send Messages to ChatGPT
The OpenAI.chat.completions.create() method is a method that’s

basically a 1-to-1 representation of what you can do in the Chat

Playground; therefore, this method should feel like second nature to you.

Table 3-1 describes the format of the parameters necessary to call

the OpenAI.chat.completions.create() method. Although the table

is lengthy, after a quick glance, you should see that only a few fields are

actually required in order to successfully invoke the method.

The response to the method is called a ChatCompletion.

�Examining the Method Parameters
Table 3-1.  The Structure of the Create ChatCompletion Object

Field Type Required? Description

model String Required The ID of the model you want to use for the

ChatCompletion.

Compatible models include

• gpt-4

• gpt-4-0613

• gpt-4-32k

• gpt-4o

• gpt-4o-mini

• o1

• o1-mini

(continued)

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

75

(continued)

Table 3-1.  (continued)

Field Type Required? Description

messages Array Required There are four types of messages, each with

their own requirements:

• System Message (see Table 3-2)

• User Message (see Table 3-3)

• Assistant Message (see Table 3-4)

• Tool Message (see Table 3-5)

frequency_

penalty

Number

or null

default: 0

Optional A number between -2.0 and 2.0.

Positive values penalize tokens based on

their existing frequency in the conversation

history, reducing the likelihood of repeating

the same lines verbatim

logit_bias JSON

Map

default:

null

Optional Allows you to modify the likelihood of

specific tokens appearing in the completion.

You provide a JSON object that maps tokens

(specified by their token ID in the tokenizer)

to associated bias values from -100 to 100.

This bias is added to the model's logits

before sampling

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

76

Table 3-1.  (continued)

Field Type Required? Description

logprobs boolean

or null

Optional,

defaults to

false

This parameter enables you to decide if the

log probabilities of the output tokens should

be returned.

When set to true, it provides the log

probabilities for each output token included

in the message content.

However, this feature is presently not

supported by the gpt-4-vision-preview

model.

max_tokens integer or

null

Optional This parameter sets the maximum

number of tokens that the generated Chat

Completion can have.

n integer or

null

default: 1

Optional Specifies how many ChatCompletion choices

the model should generate for each input

message

presence_

penalty

Number

or null

default: 0

Optional A number between -2.0 and 2.0.

Positive values penalize new tokens based

on whether they appear in the conversation

history, encouraging the model to talk about

new topics

(continued)

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

77

Field Type Required? Description

response_

format

JSON

object

Optional You have two options:

{ “type”: “json_object” } for a JSON object

response

or

{ “type”: “text” } for a text response

Note:

It's crucial to remember that while operating

in JSON mode, you need to explicitly

command the model to generate JSON,

either through a system or user directive.

Failing to do so can cause the model to

endlessly output whitespace until it hits the

token cap, leading to a request that appears

to be frozen.

Additionally, be aware that if the

finish_reason is “length”, it suggests the

generation went beyond the max tokens or

the conversation exceeded the maximum

allowable context length, which might result

in the message being truncated.

(continued)

Table 3-1.  (continued)

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

78

Field Type Required? Description

seed integer or

null

Optional By specifying a seed, the system will make

an attempt to generate repeatable results.

In theory, this means that if you make

repeated requests with the same seed and

parameters, you should expect to receive the

same result.

In order to get the seed value to put in the

subsequent request, copy the system_

fingerprint from your last response

stop String /

list / null

default:

null

Optional You can provide up to four sequences where

the API should stop generating further

tokens.

This can be useful for controlling the length

or content of responses.

stream Boolean

or null

default:

false

Optional If “stream” is set to “true,” partial message

updates will be sent as server-sent events.

This means tokens will be sent as data-

only events as they become available, and

the stream will end with a “data: [DONE]”

message

temperature Number

or null

default: 1

Optional Valid values range between 0 and 2.

Controls the randomness of the model's output.

The best practice is to adjust the top_p or

temperature, but not both.

Table 3-1.  (continued)

(continued)

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

79

Field Type Required? Description

tool_choice String

or JSON

object

Optional This parameter controls which (if any)

function is called by the model. You have two

options: “none” or “auto”

Use “none” if you don’t want the model to

call a function.

Use “auto” if you want the model to pick

between generating a message or calling a

function.

Specifying a particular function via {“type”:

“function”, “function”: {“name”: “my_

function”}} forces the model to call that

function.

Please note that “none” is the default when

no functions are present, and “auto” is the

default if functions are present.

tools Array Optional Optionally, you can specify a list of tools the

model may call.

Currently, only functions are supported as a

tool.

Use this to provide a list of functions the

model may generate JSON inputs for.

Table 3-1.  (continued)

(continued)

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

80

Field Type Required? Description

top_

logprobs

integer or

null

Optional This can be any integer from 0 to 5.

It’s used to determine the count of the most

probable tokens to return at each token

position, accompanied by their respective

log probabilities.

For this parameter to be applicable, logprobs

must be enabled by setting it to true.

top_p Number

or null

default: 1

Optional Valid values range between 0 and 1.

Indicates whether to consider few

possibilities (0) or all possibilities (1).

The best practice is to adjust the top_p or

temperature, but not both.

user String Optional This is a unique ID that you can optionally

generate to represent your end user.

This will help OpenAI monitor and detect

abuse

Table 3-1.  (continued)

OK, Table 3-1 appears to be a little daunting! However as mentioned

earlier, only the model and messages are required parameters.

Additionally, we also have the code in Listing 3-1 above in order to

show how the parameters are actually used within a real application.

So, as you can see, as a JavaScript developer, we have several options

and parameters available to use that ordinary people can’t do using the

ChatGPT website or using the Chat Playground.

Now, the one parameter that needs the most detailed explanation is

the messages parameter so let’s analyze that further.

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

81

�There Are Four Types of Messages
When invoking the ChatGPT API programmatically, there are four types of

messages that you can provide to the API:

•	 System message

•	 User message

•	 Assistant message

•	 Tool message

The good news is that if you refer back to Chapter 1 where we

explained how to use the Chat Playground, you can see that we’ve already

have encountered the first three message types! The only new message

type that we’re not currently familiar with is the “tool message.”

�System Message (Array)

Table 3-2.  The Structure of the System Message

Field Type Required? Description

role String Required This must be set to the String, “system”

content String Required These are the instructions that you want the

system to perform in the conversation

name String Optional This is an optional name that you can provide the

system

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

82

Listing 3-2 is a snippet from Listing 3-1 that shows how the system message

is formatted:

Listing 3-2.  Formatting the System Message

 messages=[
 {
 "role": "system",
 "content": "You are a JavaScript developer"
 },
 ...

�User Message (Array)

Listing 3-3 is a snippet from Listing 3-1 that shows how the user message is

formatted:

Listing 3-3.  Formatting the User Message

 messages=[
 ...
 {
 "role": "user",

Table 3-3.  The Structure of the User Message

Field Type Required? Description

role String Required This must be set to the String, “user”

content String Required This String contains the actual message or question

that you want to send to ChatGPT

name String Optional This is an optional name that you can provide for

yourself in the conversation

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

83

 �"content": "Why is JavaScript typically used for
data science?"

 }
 ...

�Assistant Message (Array)

Note I n case you forgot, the Assistant Message is used to “remind”
ChatGPT what it told you in a previous response. Ideally, this can
allow you to continue a conversation that you had with it weeks or
months in the past.

Table 3-4.  The Structure of the Assistant Message

Field Type Required? Description

role String Required This must be set to the String, “assistant”

content String Required This String contains the response from ChatGPT

from a previous conversation

name String Optional This is an optional name that you can provide for

ChatGPT in the conversation

tool_calls Array Optional If ChatGPT used a tool in a previous response, then

include the tool that it specified here

 ↳ id String Required This is the ID of the tool called by ChatGPT

 ↳ type String Required This is the type of the tool called by ChatGPT. Only

the literal, “function,” is a valid tool

 ↳ function Object Required This is the function that the model called

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

84

Listing 3-4 is a snippet from Listing 3-1 that shows how the user

message is formatted:

Listing 3-4.  Formatting the ASSISTANT Message

 messages=[
 ...
 {
 "role": "assistant",
 �"content": "JavaScript is typically used for data

science for several reasons...”
 }
 ...

�Tool Message (Array)
A Tool Message is an advanced type of message for a very specific use case.

You can’t use them on the ChatGPT website nor in the Chat Playground.

Using a Tool Message and the tool parameter from Table 3-1, you can

enable ChatGPT to “call a function” for you.

At first glance, you may be thinking, “Wow! ChatGPT will load my code

and execute it for me in the Cloud? That’s awesome!” Unfortunately, that’s

not the case.

By providing a function name and the parameters necessary to invoke

it, ChatGPT will let you know whether to invoke the function and the

parameters to put in the function. You will then need to call the function

YOURSELF within your JavaScript code.

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

85

Table 3-5.  The Structure of the Tool Message

Field Type Required? Description

role String Required This must be set to the String, “tool”

content String Required This String contains the content of the tool

message

tool_call_id Array Optional This is the id of the tool call

Note  Due to the fact that Tool messages and function calling are
advanced topics, we’re not going to explain them further in this book.
However, it’s good to be aware of all the four types of messages that
exist. This book will focus on System, User, and Assistant messages.

�Running Our Basic ChatGPT Client
So, after running the code we created in Listing 3-1, we can expect a

response that will look something like this in Listing 3-5.

Listing 3-5.  ChatGPT Explains Why JavaScript Is So Awesome

JavaScript is used for web development for several
reasons:

1. Interactivity: JavaScript allows developers to create
interactive elements on a website, such as forms, animations,
and other interactive content. This enhances user experience
and makes a website more dynamic.

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

86

2. Client-side processing: JavaScript is a client-side
language, which means it runs on the user's web browser instead
of the server. This results in faster load times and less
strain on the server, especially for complex tasks.

3. Browser compatibility: JavaScript is supported by all modern
web browsers without the need for plugins, making it accessible
for almost all internet users.

4. Versatility: JavaScript can be used for both front-end and
back-end development. This versatility makes it a valuable
skill for full-stack developers.

5. Frameworks and Libraries: JavaScript has numerous libraries
(like jQuery, React) and frameworks (like Angular, Vue) which
facilitate easier and faster development.

6. JSON: JavaScript Object Notation (JSON) is a light-weight
data interchange format that is easy for humans to read
and write. It is easy for machines to parse and generate.
This makes JavaScript particularly useful for APIs and
configurations.

7. Community and resources: JavaScript has a large and active
developer community, which means there are plenty of resources,
tutorials, and third-party plugins available. This can make
problem-solving and learning easier.

8. Real-time feedback: JavaScript allows for real-time feedback on
websites. This is critical for tasks like form validation where
you want to give feedback immediately, not after a page reload.

9. It's evolving: JavaScript is constantly evolving and new
features are added regularly, making it an exciting language to
work with.

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

87

So, as we take a brief look at Listing 3-5, we see that the response

(called a ChatCompletion) is the answer to our question that we posed

to ChatGPT in Listing 3-1 at the very beginning of the chapter. However,

there’s a lot of metadata around our response, and let’s analyze the

ChatCompletion object in more detail.

�Handling the Response (ChatCompletion)

Table 3-6.  The Structure of the ChatCompletion Object Response

Field Type Description

id String A distinct identifier for the ChatCompletion

choices Array A list of ChatCompletion options. There can be

multiple options in the response if “n” is greater

than 1 in Table 3-1

 ↳ finish_reason String Every response will include a finish_reason. The

possible values for finish_reason are:

stop: The API returned complete message, or a

message terminated by one of the stop sequences

provided via the stop parameter

length: The model output was incomplete due to

the max_tokens parameter in the request or token

limit of the model itself

tool_call: The model called a tool, such as a function

content_filter: The response was terminated due to

a violation of the content filters

null: The API response still in progress or incomplete

(continued)

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

88

Field Type Description

 ↳ index Integer The index of the choice in the list of choices

 ↳ message Object A ChatCompletionMessage generated by the

model. This is explained in further detail in

Table 3-6

 ↳ logprobs Object or

Null

Log probability information for the choice

model String The model used for the ChatCompletion

system_

fingerprint

String Use this parameter as the “seed” in a subsequent

request if you want to reproducible results in from

a previous conversation

object String This always returns the literal, “chat.completion”

usage Object Usage statistics for the completion request

 ↳ completion_

tokens

Integer Number of tokens in the generated completion

 ↳ prompt_

tokens

Integer Number of tokens in the prompt

 ↳ total_tokens Integer The total count of tokens utilized in the request,

including both the prompt and the completion

Table 3-6.  (continued)

The most important item in the ChatCompletion object is the

ChatCompletionMessage which is explained in more detail in Table 3-7.

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

89

�ChatCompletionMessage

�Conclusion
In this chapter, we took our experiences from Chapters 1 and 2 and

created a fully functioning ChatGPT client in JavaScript. In the code for

our ChatGPT client, we saw some terms that we were already introduced

to from the Chat Playground such as the model, messages, temperature,

and tokens.

We also saw that, as JavaScript developers, OpenAI gives us a TON
OF ADDITIONAL OPTIONS to invoke ChatGPT that aren’t available to

average everyday users or even to technical people who use the Chat

Playground. In this chapter we took the time to explain these options, with

a focus on the messages that we can send.

Now that we have a working ChatGPT client in JavaScript, let’s see how

to leverage it for the rest of the examples in the book!

Table 3-7.  The Structure of the ChatCompletionMessage

Field Type Description

role String This will always be the literal, “assistant”

content String or null This is a String that contains the response from ChatGPT

to our request

tool_calls Array If you indicated in Table 3-1 that you want ChatGPT to

call a tool (which is currently a function), then this list

will exist in the ChatCompletionMessage

 ↳ id String This is the ID of the tool called by ChatGPT

 ↳ type String This is the type of the tool called by ChatGPT. Only the

literal, “function,” is a valid tool

 ↳ function Object This is the function and the parameters that the model

called

Chapter 3 Creating a Basic ChatGPT Client in JavaScript

91© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_4

CHAPTER 4

Using AI in the
Enterprise! Creating
a Text Summarizer
for Slack Messages
In today’s corporate world, it’s extremely common for companies to have

an instance of Slack (or Microsoft Teams) to organize themselves and use

it as a central place of communication to everyone in the company. Now,

if you’ve ever used Slack before, I think you know how easily a channel can

become flooded with a ton of messages because SOME important thing

happened SOMEWHERE in the company or the world.

Of course, the more responsibility that you have within the company

(i.e., manager, team leader, architect, etc.), the more channels you’re

expected to participate in. In my opinion, Slack is a double-edged sword.

You need to use it to do your job, but as a developer, you definitely can’t

attend a daily standup meeting and say, “Yesterday, uh, I spent all day

reading Slack. No roadblocks.”

Additionally, if you work for a company with clients in various time

zones (which is quite common nowadays), it’s pretty daunting to open

Slack in the morning and see a ton of messages that were posted while you

were away from the keyboard.

92

So, in this chapter, we’re going to apply AI in the enterprise to make

Slack more useful. We’ll leverage the code in the previous chapter

and create a Slack bot in JavaScript that will summarize the important

conversations in a Slack channel. We’re going to be utilizing ChatGPT’s

capabilities for text summarization and focus a bit more on Prompt
Engineering.

�So, What Is Prompt Engineering?
Simply stated, Prompt Engineering is the process of carefully crafting and

refining prompts and input parameters to instruct and guide the behavior

of ChatGPT and other AI models. It’s basically the industry-wide term for

creating the right input in order to get the result that you’re looking for.

�ChatGPT Is Here to Take Away Everyone’s
Jobs (Not Really)
It is our humble opinion that every company in the world is sitting on a

gold mine of untapped information. If you are using any system that keeps

a log of exchanges between employees, a database of support requests

from your customers, or any large repository of text (yes this includes your

email, Microsoft Exchange, and corporate Gmail), then, you have a large

repository of unstructured text that is waiting to be utilized.

Therefore, the best use of ChatGPT is not to eliminate anyone’s jobs.

It should be used in order to augment and extend what team members

in your company are already doing. As we saw in Chapter 2, as a software

developer, ChatGPT can work as a very effective Pair-Programmer. It is

also very good at performing certain difficult tasks very efficiently and

quickly. Therefore, the project of this chapter involves tackling a practical

example of what can be done in order to make use of a large source of

unstructured text.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

93

You can use the ChatGPT client you created in Chapter 3 for the

prompt engineering examples listed further on in this chapter, or you can

use the playground mode feature we talked about in Chapter 1. Either way,

let’s dive right in.

�Examining a Real-World Problem: Customer
Support for a Software Company
Let’s look at one of the most grueling tasks in software development:

providing tech support. Imagine the joys of fielding calls and messages

all day from people who might be frustrated, confused, or just in need

of a solution while using your software. Here’s some of the reasons why

customer support is a tough nut to crack:

•	 Your end users and your customers are notoriously bad

at explaining problems with your software.

•	 Level 1 technicians, often the first line of defense,

typically handle the most basic issues or user errors.

But when problems get more complex, users are

escalated to Level 2.

•	 The mid-tier is a tricky place, because they have more

knowledge and experience than the tech support staff

at Level 1; however, they don’t have the opportunity to

directly get answers from the end user.

•	 Really bad problems get escalated to Level 3; however,

these are the most expensive tech support staff because

they have the most knowledge and experience. They

have hands-on experience with the code as well as the

servers and the infrastructure.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

94

So let’s work with a real-world example of a typical conversation within

a typical tech support channel within Slack. Below is a list of the team

members and their roles within a fictional company:

•	 Fatima (Customer Service Representative)

•	 John (Software Engineer)

•	 Dave (PM)

•	 Keith (CTO)

Listing 4-1 provides an example of a conversation between the

team members at a software startup. Fatima, the customer service

representative, lets the team know that their app is crashing immediately

after launching (not a good problem to have). Keith, the CTO, steps in

immediately to escalate the issue.

Listing 4-1.  Team Members Within a Slack Channel Trying to

Analyze a Customer’s Problem

Fatima [16:00 | 02/08/2019]: Hey everyone, I have an urgent
issue to discuss. I just got off a call with a client who's
experiencing app crashes as soon as they load it. They're
really frustrated. Can we get this sorted ASAP?

Keith [16:01 | 02/08/2019]: Thanks for bringing this to our
attention, Fatima. Let's jump on this right away. @John,
can you take the lead in investigating the issue since our
architect is out sick today?

John [16:02 | 02/08/2019]: Sure thing, Keith. I'll dive into the
codebase and see if I can find any potential culprits for the
crashes.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

95

John [16:02 | 02/08/2019]: Fatima, could you gather some
additional information from the client? Ask them about the
specific device, operating system, and any recent updates they
might have installed.

Fatima [16:03 | 02/08/2019]: Absolutely, John. I'll reach out
to the client immediately and gather those details. Will update
you all once I have them.

Dave [16:04 | 02/08/2019]: I understand the urgency here. Let's
make sure we keep the client informed about our progress
Fatima. We don't want them feeling left in the dark during this
troubleshooting process.

Fatima [16:04 | 02/08/2019]: Definitely, Dave. I'll keep the
client updated at regular intervals, providing them with any
relevant information we uncover.

John [16:20 | 02/08/2019]: I've checked the codebase, and so
far, I haven't found any obvious issues. It's strange that the
app is crashing on load. Could it be a memory-related issue?
Keith, do we have any recent reports of memory leaks or high
memory usage?

Keith [16:22 | 02/08/2019]: I'll pull up the monitoring logs,
John, and check if there have been any memory-related anomalies
in recent releases. Let me get back to you on that.

Fatima [17:01 | 02/08/2019]: Quick update, everyone. The client
is using an iPhone X running iOS 15.1. They mentioned that the
issue started after updating their app a few days ago

Keith [17:05 | 02/08/2019]: Thanks for the update, Fatima.
That's helpful information. John, let's focus on testing the
latest app update on an iPhone X simulator with iOS 15.1 to see
if we can replicate the issue.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

96

John [17:06 | 02/08/2019]: Good idea, Keith. I'll set up the
emulator and run some tests right away.

Keith [17:30 | 02/08/2019]: John, any progress on replicating
the issue on the emulator?

John [17:32 | 02/08/2019]: Yes, Keith. I managed to reproduce
the crash on the emulator. It seems to be related to a
compatibility issue with iOS 15.1 . I suspect it's due to a
deprecated method call. I'll fix it and run more tests to
confirm.

John [18:03 | 02/08/2019]: Fixed the deprecated method issue,
and the app is no longer crashing on load. It looks like we've
identified and resolved the problem. I'll prepare a patch and
send it to you, Keith, for review and deployment.

Keith [18:04 | 02/08/2019]: Thank you, please provide me
with the patch as soon as possible. Once I review it, we'll
deploy the fix to the app store.

Dave [18:06 | 02/08/2019]: Great job, team! John, please keep
the client informed about the progress and let them know we
have a fix ready for them on the next app update. Can someone
make sure the release notes reflect this?

John [18:07 | 02/08/2019]: Will do, Dave. I'll update the client
and ensure they're aware of the upcoming fix.

Keith [18:27 | 02/08/2019]: Patch reviewed and approved, John.
Please proceed with updating the app in the store. Let's aim to
have it done within the next hour.

John [18:26 | 02/08/2019]: Understood, Keith. I'm in the process
of uploading it now.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

97

Fatima [18:38 | 02/08/2019]: I just informed the client about
the fix. They're relieved and grateful for our prompt response.
Thanks, everyone, for your collaboration and quick action. It's
a pleasure working with such a competent team!

Dave [18:40 | 02/08/2019]: Well done, team! Your efforts are
greatly appreciated. We managed to turn this urgent problem
around in record time. Let's keep up the good work!

�Prompt Engineering 101: Text
Summarization
So, needless to say, no one wants to spend their day constantly scrolling

through Slack channels reading about issues and problems that are on fire.

We’re going to utilize the capabilities of ChatGPT for text summarization.

To keep things simple, let’s try a few prompts to send the entire listing of

the chat messages to ChatGPT in order for it to give us a usable summary

of all the events that have happened.

Note  Please be aware the ChatGPT is nondeterministic. This simply
means that even if you executed the same prompt with the same
settings multiple times, you won’t necessarily get a word-for-word
response as shown in the listings in this chapter. However, they
should be quite similar.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

98

�Prompt #1: “tl;dr”
This prompt is short, sweet, and to the point. In case you’re not familiar

with it, it’s a term used online frequently to briefly summarize a long

article. It literally stands for “Too Long; Didn’t Read,” which is how I feel

about a lot of conversations on Slack when I’m swamped with work.

Conveniently, ChatGPT can understand this simple term (I wouldn’t

necessarily call it a word) as a prompt, and the results are pretty

impressive.

Listing 4-2.  PROMPT. Asking for a Summarized Version of a Longer

Conversation

System: You are a helpful assistant
User: Fatima [16:00 | 02/08/2019]: Hey everyone, I have an
urgent ...
User: Tl;dr
Model: gpt-4o
Temperature: 1
Maximum length: 360
Top P: 1
Frequency penalty: 0
Presence penalty: 0

Notice how the number of tokens is kept small, at 360, which will

ultimately help ChatGPT to create a short response. Also see that the

temperature is left at 1 (the default value), but the Top P is increased all the

way to its maximum (which is 1). Therefore, it’s important to play around

with temperature and other settings to control the tone and variety of

ChatGPT’s responses.

Listing 4-3 shows ChatGPT’s summarization of the conversation from

Listing 4-1.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

99

Listing 4-3.  RESPONSE. Getting a Summarized Version of a Very

Long Conversation

The team quickly responds to a client's app crashing issue.
John investigates the codebase while Fatima gathers information
from the client. They discover a compatibility issue with iOS
15.1 and John fixes it. The patch is reviewed and approved,
and the app is updated in the store. The client is informed
and grateful for the quick resolution. The team is praised for
their collaboration and prompt action.

That’s fantastic! It reduced that extremely long conversation down to

a simple and brief summary of only 68 words. As you can see, ChatGPT is

not replacing a job here; however, it will definitely make someone more

productive. Now, let’s try a few more prompts, shall we?

�Prompt #2: “Explain This in 3 Sentences or Less”
So, if “tl;dr” doesn’t provide a brief enough explanation for you, then we

can tell ChatGPT to make things even simpler. ChatGPT does well with

parameters, so let’s specify that the explanation shouldn’t be any longer

than three sentences (Listing 4-4).

Listing 4-4.  PROMPT. Asking for a Shorter Version of a Longer

Conversation

System: You are a helpful assistant
User: Fatima [16:00 | 02/08/2019]: Hey everyone, I have an
urgent ...
User: Explain this in 3 sentences or less.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

100

Model: gpt-4o
Temperature: 1
Maximum length: 250
Top P: 0
Frequency penalty: 0
Presence penalty: 0

As you may have noticed, the temperature is set to 0.82 in this example.

We really want ChatGPT to give us a concise answer here, so the “drier”

the better.

Listing 4-5.  RESPONSE. Getting a 3-Sentence Summary

A customer reported an urgent issue of app crashes to the
team. John investigates the issue and asks Fatima to gather
additional information from the client. They discover that the
issue is related to a compatibility problem with iOS 15.1. John
fixes the problem and Keith approves the deployment of the fix
to the client's production environment.

�Prompt #3: “I’m a Manager. Explain to Me
What Happened”
When you don’t want to sound like the one person that doesn’t

understand, ChatGPT has the capability to rephrase what has been said

and break it down until it’s very simple.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

101

Listing 4-6.  PROMPT. Asking for a Simplified Version of a More

Complex Conversation

System: You are a helpful assistant
User: Fatima [16:00 | 02/08/2019]: Hey everyone, I have an
urgent ...
User: Summarize this conversation and explain it to me like I'm
a manager with little technical experience.
Model: gpt-4o
Temperature: 0.82
Maximum length: 750
Top P: 1
Frequency penalty: 0
Presence penalty: 0

Again, the temperature is set below 1.0 so that ChatGPT can keep the

answer brief and easy to understand. We increased the token length so that

ChatGPT can take the time to explain some potentially technical concepts.

Listing 4-7.  RESPONSE. Getting a Simplified Version of a More

Complex Conversation

In this conversation, Fatima brings up an urgent issue with a
client who is experiencing app crashes as soon as they load
it. Keith assigns John to investigate the issue since their
architect is out sick. John asks Fatima to gather additional
information from the client about their device, operating

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

102

system, and recent updates. Dave emphasizes the importance of
keeping the client informed throughout the troubleshooting
process.

John checks the codebase but doesn't find any obvious issues,
so he suspects it could be a memory-related problem. Keith
agrees to check for memory-related anomalies in recent
releases. Fatima provides an update that the client is using an
iPhone X running iOS 15.1 and mentioned that the issue started
after updating the app. Keith suggests testing the latest app
update on an iPhone X simulator with iOS 15.1 to replicate
the issue.

John successfully reproduces the crash on the emulator and
identifies a compatibility issue with iOS 15.1, possibly due
to a deprecated method call. He fixes the issue and prepares a
patch for review and deployment. Keith approves the patch and
asks John to update the app in the store. Dave requests that
the client be kept informed and that the release notes reflect
the upcoming fix.

John uploads the patch and informs the client about the fix.
Keith reviews and approves the patch, and John proceeds with
updating the app in the store. Fatima informs the client about
the fix, and they express relief and gratitude for the prompt
response. Dave commends the team for their collaboration
and quick action, emphasizing the importance of maintaining
good work.

In summary, the team quickly addressed an urgent issue where
a client's app was crashing on load. They investigated the
issue, identified a compatibility problem with iOS 15.1, fixed

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

103

it, and prepared a patch for deployment. The client was kept
informed throughout the process, and the fix was successfully
implemented, resulting in a relieved and grateful client.

�Prompt #4: “Give Me Suggestions on Next Steps”
In addition to making a summary that’s easier to understand, ChatGPT can

explain in different styles and “tones.” We’re going to increase the top P to

0.75 because we want ChatGPT to think of more possibilities than what

is the default. We are also going to increase the presence penalty to 0.5

because we want to encourage a versatile response.

Listing 4-8.  PROMPT. Asking to ChatGPT for Advice on the Best

Next Steps

System: You are a helpful assistant
User: Fatima [16:00 | 02/08/2019]: Hey everyone, I have an
urgent ...
User: I’m a QA engineer at the company. Give me suggestions on
next steps.
Model: gpt-4o
Temperature: 1
Maximum length: 1200
Top P: 0.75
Frequency penalty: 0
Presence penalty: 0.5

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

104

Listing 4-9.  RESPONSE. Suggestions from ChatGPT on Possible

Next Steps

As a QA engineer, here are some suggestions for next steps:

1. Test the patch: Once the patch has been deployed to the app
store, thoroughly test it on various devices and operating
systems to ensure that the issue has been resolved and there
are no new bugs or regressions introduced.

2. Conduct regression testing: In addition to testing the
specific issue, perform a comprehensive regression test to
ensure that the fix does not have any unintended side effects
on other functionalities of the app.

3. Communicate the fix to the client: Keep the client updated
on the progress and let them know that the fix is available in
the latest app update. Provide them with clear instructions on
how to update their app and encourage them to test it on their
end as well.

4. Monitor user feedback: Keep an eye on user feedback after
the fix has been deployed. Encourage users to report any issues
they encounter, and be proactive in addressing them promptly.

5. Document the issue and resolution: Create a detailed report
documenting the issue, the steps taken to reproduce and resolve
it, and any other relevant information. This will serve as
a reference for future troubleshooting and help improve the
development process.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

105

6. Conduct a post-mortem analysis: After the issue has been
resolved and the fix has been deployed, schedule a post-mortem
meeting with the team to discuss the root cause, lessons
learned, and any process improvements that can be implemented
to prevent similar issues in the future.

7. Continuous improvement: Use this incident as an opportunity
to identify areas of improvement in the development and testing
processes. Evaluate if there are any changes that can be made
to prevent similar issues from occurring in the future.

Remember, open communication, collaboration, and continuous
learning are key to ensuring the highest quality of your app
and maintaining a strong relationship with your clients.

Now, of course, ChatGPT (like every other form of artificial intelligence

on the planet) is not entirely perfect. For instance, recommendation

number 3 is a valid item to do, except for the fact that it’s not usually the

responsibility of a QA person to communicate anything directly to the

client or customer. That communication can be done either through

tech support or with a product manager who has those communication

channels (especially if they are a significant customer). So, the suggestion

is fine, but it’s not appropriate for a person with that role within a

company.

�Let’s Talk About Real Prompt Engineering
If you Google the term “prompt engineering,” you’ll find a ton of examples,

blogs, and even full websites with subscription plans that will try to

convince you that the perfect prompts can be created by simply only using

text. As you have seen from the examples above, prompt engineering

cannot be accomplished solely by merely crafting textual inputs.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

106

In reality, the process is quite similar to cooking a sophisticated meal.

Imagine trying to cook, for example, beef bourguignon using only salt as

the seasoning, and neglecting all other ingredients and spices! Honestly,

the result would pale in comparison to the actual dish.

Similarly, try assembling an entire orchestra but only use one

instrument and one musician. That’s an embarrassing “one man band.”

Therefore, simply adjusting the text to the prompt isn’t enough in order

to truly perform prompt engineering. The parameters such as the model’s

temperature, which controls randomness; the top-p, impacting token

probability; the specific model used; the number of tokens, and the other

parameters all play highly pivotal roles in getting a great response.

This book is not about prompt engineering, since (as you can see from

the explanation above) it truly involves several factors that don’t have

anything to do with JavaScript. However, you are highly encouraged to

experiment with ALL the parameters to the models provided by OpenAI to

find what works best for your use case.

�Registering a Slack Bot App
Now that we know the various ways for ChatGPT to summarize a large

body of text for us, let’s see what’s necessary in order to create a simple

bot in JavaScript that will programmatically grab all the messages from a

channel within a Slack instance.

Note  In order to accomplish these steps, you will need to have
administrative access to a Slack workspace. Most developers will
NOT have these levels of permissions; therefore, in order to fully
experiment, I recommend that you create your own personal Slack
workspace for testing purposes. This way, you will have all the rights
and privileges to install your Slack bot.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

107

But, one step at a time. First, we’re going to make our Slack bot app, so

head over to the Slack API website:

https://api.slack.com/

Figure 4-1.  In Order to Create a Slack Bot, Go To the Slack
API Website

Of course, you’ll need to have a Slack account in order for this to work,

so if you don’t have one, then you need to create one first.

After you have logged in, go to the top-right of the page and navigate

to “Your apps ➤ Create your first app,” as shown in Figure 4-1 above. In

Slack terminology, a “bot” is an “app,” and bots are not allowed to run on a

Slack instance unless they have been registered with Slack first.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

108

Figure 4-2.  Creating a New Bot App for Slack

As shown in Figure 4-2, above, you’ll be taken to the Your Apps page

where you can manage your Slack apps. Immediately, you’ll see a popup to

Create an App button in the middle of the screen.

Select the option to create your app from scratch. This is because we

want to be able to manipulate all of the details of the application ourselves

without overcomplicating things with a bunch of default settings.

Afterward, you’ll be prompted to specify a name for your bot and to

select the workspace that you want your bot to have access to, as shown in

Figure 4-3.

Click the Create App button to proceed.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

109

Figure 4-3.  Creating a New Bot App for Slack

�Specifying What Your Bot Can (and Can’t) Do by
Setting the Scope
Now, you’ll be presented with a screen that has a ton of options for bots

for Slack workspaces. The first thing you need to do, however, is from the

sidebar on the left, click OAuth & Permissions.

Our bot is going to be pretty simple; all it needs to do is read the

messages from a channel in order to give us a summary of what was

said. In addition to reading the messages, we also need to know the

names of the people in the Slack workspace; otherwise, we’ll get a

UUID representation of the person instead of their name, which is

meaningless to us.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

110

So, scroll down and be sure to add the following OAuth Scope to your

Slack Bot, as shown in Figure 4-4.

•	 channels:history

•	 channels:read

•	 users:read

Figure 4-4.  Adding Scopes for the Slack Bot App

�Confirming Your Settings
After you’ve added the appropriate scopes for your bot, scroll back up and

click Basic Information from the left side bar.

On the page that follows, you’ll see that there’s now a green checkmark

beside “Add features and functionality,” which confirms that you’ve added

your scopes correctly, as shown in Figure 4-5.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

111

Figure 4-5.  Confirm Your Settings

�Viewing the OAuth & Permissions Page
As shown in Figure 4-6, navigate to the OAuth & Permissions page, and

click the “Install to Workspace” button.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

112

Figure 4-6.  The OAuth & Permission Screen

�Installing Your Slack Bot App to Your Workspace
Now that all the permissions have been requested, it’s time to install your

bot to your workspace. During the installation process, you should see a

screen as shown in Figure 4-7.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

113

Figure 4-7.  “Installing” a New Slack Bot App

Click the Allow button to authorize the bot and allow the permissions

you allotted in the previous step.

Note  It’s important to understand what “installing” means here.
In a traditional JavaScript sense, installing an app means to copy
your code and dependencies over to another machine and have it to
execute. That’s not what’s happening here.

Here, when you “install” a bot app, you’re enabling your Slack

workspace to allow an app to join the workspace – that’s all. The code for

your bot will run on your own machine, and not on Slack’s servers.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

114

�Getting Your Slack Bot (Access) Token
This time, “token” actually means access token! In order to connect to the

Slack API and access messages and user information programmatically,

you need a specific OAuth token generated for your Slack bot.

Figure 4-8.  Copy Your OAuth Token for Your Slack Bot App

Back on the OAuth & Permissions page, be sure to copy the bot

token (which usually starts with “xoxb-”) from the page here, as shown in

Figure 4-8.

�Inviting Your Bot to Your Channel
Next, you’re going to go to the channel you’d like to use to test your bot and

type in the following command in the channel itself.

 /invite

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

115

Select the option “Add apps to this channel,” and then select the

name of the Slack Bot that you specified earlier when you registered the

bot with Slack.

Figure 4-9.  Adding Your Slack Bot to a Channel

Congratulations! You now have successfully registered a Slack Bot App

with Slack, enabled it to read messages in your workspace, and added the

Slack Bot to a channel. Before we can write the JavaScript code to access

the channel in our workspace, we need to know what is the internal ID that

Slack uses for our channel.

�Finding the Channel ID of Your Channel
Ok, this is an easy step to do. In Slack, right-click the name of your channel

and select the option “View Channel details.” At the bottom of the popup

window is the ID of your channel. Copy that number and save it for later.

Your JavaScript app will need this in order to join the right channel in your

Slack workspace.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

116

�Using Your Slack Bot App to Automatically
Grab Messages from a Channel
Alright, now that we have done all the prerequisites and we know the

ID of our channel, let’s get to the code in JavaScript that accesses all the

messages from a particular Slack channel.

�Programmatically Reading Messages from Slack
First things first, you need to install the official JavaScript Slack library.

Below is the npm command to install all the necessary dependencies:

npm install @slack/web-api @slack/events-api dotenv

Listing 4-10 is a simple JavaScript Slack Bot that obtains the user

name, timestamp, and message content of each posting in the designated

channel.

Listing 4-10.  Our JavaScript Slack Bot

import { WebClient } from "@slack/web-api";
import "dotenv/config";

const token = process.env.SLACK_API_TOKEN;
const channel_id = process.env.SLACK_CHANNEL_ID;

async function main() {
 const web = new WebClient(token);
 // Store conversation history
 let conversationHistory;
 // ID of channel you watch to fetch the history for

 try {
 // Call the conversations.history method using WebClient
 const result = await web.conversations.history({

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

117

 channel: channel_id,
 limit: 50,
 });

 // Get the messages in the order they were sent.
 conversationHistory = result.messages.reverse();

 // Print results
 for (const message of conversationHistory) {
 �const userInfo = await web.users.info({ user: message.

user });

 // Convert the timestamp into a date
 �const timestamp = new Date(parseFloat(message.ts)

* 1000);

 if (userInfo.ok) {
 �console.log(userInfo.user.name + "[" + timestamp + "]"

+ message.text);
 console.log("\n");
 }
 }
 } catch (error) {
 console.error(error);
 }
}

main();

Let’s walk through this code together.

First, we import essential dependencies required for interfacing with

the Slack API and loading environment variables.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

118

Next, we define two crucial variables: the token, which is fetched

from the environment variable SLACK_API_TOKEN, and the channel_id,

obtained from SLACK_CHANNEL_ID. These variables are necessary

for authenticating with the Slack API and specifying the Slack channel’s

history we want to retrieve.

We then define an asynchronous main function where the core logic

of our script resides. Within this function, we initialize the WebClient

using our Slack API token to enable API calls. We also declare a variable

conversationHistory to store the messages retrieved from the channel.

The premise of the script is simple; it retrieves the last 50 messages

from the Slack channel by calling the conversations.history() method of

the Slack API.

After successfully fetching the messages, the script reverses their order

using .reverse() to ensure they are processed from oldest to newest, and

then prints each message.

Listing 4-11 shows the result of running the Slack Bot script.

Listing 4-11.  The Output from Executing Our Channel Reader

Slack Bot

Fatima [2023-08-11T09:04:20] : Hey everyone, I have an urgent
issue to discuss. I just got off a call with a client who's
experiencing app crashes as soon as they load it. They're
really frustrated. Can we get this sorted ASAP? :tired_face:

Keith [2023-08-11T09:04:35] : Thanks for bringing this to our
attention, Fatima. Let's jump on this right away. John, can you
take the lead in investigating the issue since our architect is
out sick today?

John [2023-08-11T09:04:52] : Sure thing, Keith. I’ll dive into
the codebase and see if I can find any potential culprits for
the crashes.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

119

John [2023-08-11T09:05:30] : Fatima, could you gather some
additional information from the client? Ask them about the
specific device, operating system, and any recent updates they
might have installed.

...

�Exercises Left for the Reader
So, there are obviously a few additional things we can do here, and these

steps will be left for you (the reader) to accomplish, for example:

•	 Connecting the code that reads the messages from

Slack to the our ChatGPT client in the previous chapter

so that grabbing the messages and getting a summary is

a single step process.

•	 Adding more capabilities to the Slack bot itself such as

adding commands so that anyone in the channel can

request a summary. In its current state, the bot doesn’t

post anything in the channel. However, the “user

interface” to the bot is the channel itself; therefore,

someone should be able to interact with the Slack bot

by typing a command (such as requesting a summary).

•	 Making sure that the bot doesn’t make a bad situation

worse. Whenever the bot provides a summary, it should

not post in the channel itself because that could add

a lot of noise to an already noisy situation. The best

practice is to have the bot send a private message to

the person asking for a summary (or whatever new

command that you create).

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

120

�Conclusion
In this chapter, we talked about one of the various ways artificial

intelligence can be put to practical use within the enterprise today. We

discussed what is truly “prompt engineering,” by discussing that prompt

engineering cannot be accomplished by simply textual input to ChatGPT

alone. You definitely need to understand the ramifications of all the input

parameters to the ChatGPT API, in order to properly, and effectively,

perform prompt engineering.

Using what we learned about prompt engineering, we were able to

successfully obtain summarizations of any large body of text provided to

us. Finally, we saw the code necessary in order to run an automated bot

that will grab messages from any Slack channel programmatically.

In this chapter (as well as the previous chapter), we were working

exclusively with the Chat Completions Endpoint of the OpenAI APIs. In

the next chapter, we’re going to push the boundaries of what’s possible by

experimenting with the Whisper and DALL-E Endpoints.

CHAPTER 4 �USING AI IN THE ENTERPRISE! CREATING A TEXT SUMMARIZER FOR SLACK
MESSAGES

121© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_5

CHAPTER 5

Multimodal AI:
Creating a Podcast
Visualizer
with Whisper
and DALL·E 3
In this chapter, we’re going to see the benefits of combining multiple

models together in order to create some fascinating results. As an avid

podcast listener, I’ve often wondered what the scenery, the imagery, the

characters, the subject, or the background looked like while listening to a

very immersive story in audio format.

Let’s introduce a new term: multimodal AI. In the most simplest of

terms, generative AI models can create content in one of four formats:

•	 Text

•	 Audio

•	 Images

•	 Video

122

Each of those formats is a mode. Multimodal AI is the process of using

multiple AI models together to generate (or to understand) content where

the input is one type of mode, and the output is a different type of mode.

Take, for example, OpenAI’s Whisper model. If you provide it audio,

it is able to create a transcription of everything said into text. The same

thing applies to DALL⋅E. If you supply it with a textual prompt, then it can

generate an image of what you described.

So we’re going to create a Podcast Visualizer using multiple models

from OpenAI. There are a few steps involved, but the final results are

stunning. While listening to a podcast about a guy cooking some amazing

things with tofu (don’t knock it until you try it), the Podcast Visualizer

came up with the image in Figure 5-1.

Figure 5-1.  AI-Generated Image. The Result of Visualizing a Podcast
About Tofu Using the GPT-4, Whisper, and DALL⋅E Models

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

123

In order to make the code for the Podcast Visualizer easy to follow

along, we’ll do things separately in the following three steps:

•	 Step-1: Take a podcast episode and use the Whisper

model to get a transcript.

•	 Step-2: Take the resulting transcript and use the GTP-4

model to describe the visual aspects of what’s being

discussed in the podcast episode.

•	 Step-3: Take the resulting description and use the

DALL⋅E model to generate an image.

The code presented here in this chapter has tons of practical uses, for

example:

•	 If you’re just curious about what the things in a podcast

episode could look like (which is always the case for

me), you can get a simple representative visual image

to associate with what you’re listening to.

•	 For people who are hearing impaired, you can easily

turn a podcast or radio program into a slide-show of

images. This greatly enhances the accessibility of the

content.

•	 For podcasters, you can now have a simple way to add

a visual/hero image to each of your episodes. This is

useful since podcast players such as Apple Podcasts

and Spotify allow podcasters to display a single image

to associate with an individual episode. This can help

with engagement for your listeners.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

124

�Introducing the Whisper Model by OpenAI
Now let’s introduce another new term: Automatic Speech Recognition

(ASR). The average everyday consumer is very familiar with this

technology due to its integration into mobile phones (e.g., Siri for the

iPhone) and smart speakers (e.g., any Alexa device). At its core, ASR

technology converts spoken language into text.

Whisper is OpenAI’s model for speech recognition, and the accuracy

is astonishingly high. The listing below is a transcript of an episode of

the very popular DuoLingo Spanish podcast, which makes the Spanish

language easy to be understood by English listeners by combining both

English and Spanish together in a woven narrative story. The transcript

was generated using the Whisper model.

Listing 5-1.  The Whisper Model Performs Speech Recognition to

Convert Audio into Text

...I'm Martina Castro. Every episode we bring you fascinating,
true stories to help you improve your Spanish listening and
gain new perspectives on the world. The storyteller will be
using intermediate Spanish and I'll be chiming in for context
in English. If you miss something, you can always skip back
and listen again. We also offer full transcripts at podcast.
duolingo.com.

Growing up, Linda was fascinated with her grandmother, Erlinda.
Erlinda was a healer or curandera, someone who administers
remedies for mental, emotional, physical, or spiritual
illnesses.

In Guatemala, this is a practice passed down orally through
generations in the same family. Mal de ojo, or the evil eye, is
considered an illness by many Guatemalans who believe humans
have the power to transfer bad energy to others. Neighbors

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

125

would bring their babies to Linda's grandmother when they
suspected an energy imbalance. Su madre lo llevaba a nuestra
casa para curarlo...

If you’ve ever worked with a speech recognition system before (even

with sophisticated technologies like Siri and Alexa), you will know that it

has problems, for instance:

•	 Speech recognition has problems with punctuation.

•	 Have you noticed that nobody speaks with

punctuation? For the English language, we use

changes in tone or volume to ask a question or give

an exclamation. We also use short and long pauses

for commas and periods.

•	 Speech recognition has problems with foreign words
and accents.

•	 Depending on who you ask, there are at least

170k words in the English language. However, in

conversational English, we are always using foreign

words like:

•	 Tsunami (Japanese origin): A large sea wave

often caused by an earthquake

•	 Hors d’oeuvre (French origin): An appetizer

•	 Lingerie (French origin): Women’s underwear

or nightclothes

•	 Aficionado (Spanish origin): Someone who

is very passionate about a specific activity

or subject

•	 Piñata (Spanish origin): A brightly colored box

of candy for kids to beat relentlessly

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

126

•	 Speech recognition has problems with names.

•	 Certain names of people, businesses, and websites

can often be hard to spell and understand.

•	 Speech recognition has problems with homophones.

•	 Do you remember those words that sound the same

but have different spellings and meanings? The

fantastic editor of this book knows all of them!

•	 Would / Wood

•	 Flour / Flower

•	 Two / Too / To

•	 They’re / There / Their

•	 Pair / Pare / Pear

•	 Break / Brake

•	 Allowed / Aloud

As you can see from Listing 5-1, Whisper was able to understand all

the punctuation in the audio, identify all the foreign words (of which

there were several), understand the names, as well as the company

name (”Duolingo”) within a URL! Of course, if you noticed, it could also

understand the difference between “wood” and “would.”

�Features and Limitations of the
Whisper Model
The Whisper model is able to convert spoken audio from the following

languages into text:

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

127

•	 Afrikaans

•	 Arabic

•	 Armenian

•	 Azerbaijani

•	 Belarusian

•	 Bosnian

•	 Bulgarian

•	 Catalan

•	 Chinese

•	 Croatian

•	 Czech

•	 Danish

•	 Dutch

•	 English (of course!)

•	 Estonian

•	 Finnish

•	 French

•	 Galician

•	 German

•	 Greek

•	 Hebrew

•	 Hindi

•	 Hungarian

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

128

•	 Icelandic

•	 Indonesian

•	 Italian

•	 Japanese

•	 Kannada

•	 Kazakh

•	 Korean

•	 Latvian

•	 Lithuanian

•	 Macedonian

•	 Malay

•	 Marathi

•	 Maori

•	 Nepali

•	 Norwegian

•	 Persian

•	 Polish

•	 Portuguese

•	 Romanian

•	 Russian

•	 Serbian

•	 Slovak

•	 Slovenian

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

129

•	 Spanish

•	 Swahili

•	 Swedish

•	 Tagalog

•	 Tamil

•	 Thai

•	 Turkish

•	 Ukrainian

•	 Urdu

•	 Vietnamese

•	 Welsh

So, at the end of the day, it will be able to understand audio spoken by

yourself and probably any language spoken by your friends and colleagues.

Developers are limited to send no more than 50 requests per minute to

the API, so this constraint needs to be taken into consideration if you want

to transcribe vast amounts of audio.

Whisper supports audio in flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav,

or webm formats. Regardless of the format that you use, the maximum file

size to send to the API is 25MB.

Now, if you haven’t worked extensively with audio files, please be

aware that some formats create REALLY HUGE files (e.g., wav format) and

others create really small files (e.g., m4a format). So, converting your file to

a different format can help you with the 25MB limitation. However, later in

this chapter, we’ll see the code for a tool that takes a single large audio file

and splits it into multiple, smaller files.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

130

�Using OpenAI.audio.transcriptions.create()
to Transcribe Audio
The OpenAI.audio.transcriptions.create() method converts audio into

text and is only compatible with the Whisper model. Let’s take a look at

what parameters need to be in the method in order to make a successful

API call.

�Examining the Method Parameters

Table 5-1.  The Request Body for Whisper

Field Type Required? Description

file file Required The entire audio file that you want to

be transcribed.

Accepted formats are

•  flac

•  mp3

•  mp4

•  mpeg

•  mpga

•  m4a

•  ogg

•  wav

•  webm

(continued)

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

131

Field Type Required? Description

model String Required The ID of the model that you want to

use for transcription.

Compatible models include

• whisper-1

prompt String Optional This is any text that can be provided to

change the model's transcription style

or to provide it with more context from

a previous segment of audio.

Be sure that the prompt is in the same

language as the audio for best results.

Additionally, this field can be used to

change the spelling or capitalization of

any words that Whisper is not familiar

with.

response_

format

String

default: json

Optional This is the format of the output of

transcription.

Accepted formats are

•  json

•  text

•  srt

•  verbose_json

•  vtt

(continued)

Table 5-1.  (continued)

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

132

Field Type Required? Description

temperature Number

default: 0

Optional This is the sampling temperature,

ranging from 0 to 1.

A higher value increases the

randomness of the output, whereas

a lower value ensures a more

deterministic output.

language String Optional This is the language of the input audio.

It’s optional, but providing the value

can improve the accuracy and latency

for the transcription

Table 5-1.  (continued)

�Creating a Utility App to Split Audio Files
So, we’re almost at the point where we are able to programmatically invoke

the Whisper model using the Transcriptions Endpoint. However, the

Whisper Model has a limitation of 25MB per file.

Now, this is not a problem if you’re listening to, for example, the

StarDate podcast from the University of Texas at Austin. This podcast

gives you a great glimpse of what to look for in the nighttime sky in about

2 minutes of audio. However, that’s not the case for other audio programs

which tend to last for up to an hour (or even more). In cases like that,

you’re going to definitely exceed the 25MB file limitation.

Therefore, let’s pair-program with ChatGPT and use our human

intelligence to create our own utility that will take a single audio file and

split it into multiple smaller files.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

133

Note  In this section, I'm presenting one of the many possibilities
available on how to segment a large audio file into smaller pieces.
For instance, you can use popular audio editing apps (such as the
Open Source tool, Audacity, or the licensed tool, Adobe Audition) to
manually cut up a large file into smaller files.

FFmpeg is one of the most reliable tools to programmatically

manipulate media files, and since it’s open source, it’s make sense to use it

for our needs.

Listing 5-2 is the prompt sums up what we need to get done.

Listing 5-2.  PROMPT. Using ChatGPT to Create the

AudioSplitter App

System: You are a JavaScript developer

User: Write an application that takes as input a single MP3
file and splits the file into contiguous segments no longer
than 10 minutes using the ffmpeg library.

After a little back and forth, I was able to create (as shown in

Listing 5-3) the audiosplitter application that includes my edits to what

was generated by ChatGPT.

Listing 5-3.  RESPONSE. Audio-splitter.js

const ffmpeg = require("fluent-ffmpeg");
const ffmpegPath = require("ffmpeg-static");
const path = require("path");
const fs = require("fs");

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

134

// Configure ffmpeg to use the static binary
ffmpeg.setFfmpegPath(ffmpegPath);

// Function to split MP3 file
function splitMP3(inputFile, duration) {
 ffmpeg.ffprobe(inputFile, (err, metadata) => {
 if (err) {
 console.error(`Error occurred: ${err.message}`);
 return;
 }

 const totalDuration = metadata.format.duration;
 const numberOfChunks = Math.ceil(totalDuration / duration);
 const outputDir = path.join(__dirname, "output");

 if (!fs.existsSync(outputDir)) {
 fs.mkdirSync(outputDir);
 }

 for (let i = 0; i < numberOfChunks; i++) {
 const startTime = i * duration;
 �const outputFile = path.join(outputDir, `output_${i +

1}.mp3`);

 ffmpeg(inputFile)
 .setStartTime(startTime)
 .duration(duration)
 .output(outputFile)
 .on("end", () => {
 console.log(`Created ${outputFile}`);
 })
 .on("error", (err) => {
 console.error(`Error occurred: ${err.message}`);
 })

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

135

 .run();
 }
 });
}

// Usage example
const inputFilePath = path.join(__dirname, "input.mp3"); //
Path to your input MP3 file
const maxDuration = 600; // 10 minutes in seconds

splitMP3(inputFilePath, maxDuration);

Our goal is quite simple: split an MP3 file into segments of a specified

duration using JavaScript and FFmpeg. Each segment should be no longer

than 10 minutes (which is 600 seconds). The entire process is managed

using the fluent-ffmpeg library, which acts as a Node.js wrapper for

FFmpeg, allowing us to handle audio and video processing efficiently.

Of course, one of the first steps required is to ensure that you have

FFmpeg installed and correctly configured. Our script uses ffmpeg-static to

ensure the FFmpeg binary is packaged with the code. This avoids system-

specific dependency issues. You can install your dependencies with the

following command:

npm install fluent-ffmpeg ffmpeg-static

The main logic resides in the splitMP3() function, which takes two

arguments: the path to the input MP3 file and the desired segment

duration (in seconds).

First, we use the ffmpeg.ffprobe() function to extract metadata from the

input MP3 file, specifically its total duration. This is necessary because it

lets us determine how many segments we need to create.

If the output directory does not exist, we create it using Node.js’s fs

module. This ensures that our segmented audio files have a dedicated

destination folder.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

136

After running the script, the output folder will be populated with MP3

files, each no longer than 10 minutes in duration. If the input file is less

than 10 minutes, only one segment will be generated.

�Creating the Audio Transcriber
with Whisper
Now, let’s build our next JavaScript app, which will use the Whisper model

to create transcriptions of audio. Again, we’re going to pair-program with

ChatGPT to get a basis to work with.

Listing 5-4 is the prompt to put in the Chat Playground to get things

started. Be sure to note that I’m asking for a 60-sec HTTP request timeout

since Whisper may take a little while to generate the transcript.

Listing 5-4.  PROMPT: Asking ChatGPT to Use OpenAI’s JavaScript

Library and Send MP3 Files to Whisper’s API

System: You are a JavaScript developer.

User: Using JavaScript, write a script that iterates over all
of the mp3 files in a single folder on my local computer and
send all the files in the folder to the webservice provided by
OpenAI's Whisper model, using the OpenAI's node.js library.

Model: gpt-4

Temperature: 1

Maximum Length: 1150

After some back and forth, here’s the response ChatGPT gave us that

worked (Listing 5-5):

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

137

Listing 5-5.  RESPONSE: WhispeR TRANSCRIBER Script

const fs = require("fs");
const path = require("path");
const { OpenAI } = require("openai");

// Set up the OpenAI client with your API key
const openai = new OpenAI({
 apiKey: process.env.OPENAI_API_KEY,
});

// Function to read and transcribe .mp3 files in a directory
async function transcribeMP3Files(directory) {
 try {
 // Read the directory
 const files = fs.readdirSync(directory);

 // Filter out .mp3 files
 �const mp3Files = files.filter((file) => path.extname(file)

=== ".mp3");

 // Process each .mp3 file
 for (const file of mp3Files) {
 const filePath = path.join(directory, file);

 // Read the .mp3 file
 const fileData = fs.readFileSync(filePath);

 // Send the file to OpenAI's Whisper
 const response = await openai.transcriptions.create({
 file: fileData,

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

138

 model: "whisper-1",
 });

 // Output the transcription
 console.log(`Transcription for ${file}:`);
 console.log(response.data.text);
 }
 } catch (error) {
 console.error("Error processing files:", error);
 }
}

// Set the directory to read from
const directoryPath = "./mp3-files";

// Run the transcription function
transcribeMP3Files(directoryPath);

�Having a Little Fun and Trying Things Out
with a Podcast
Ok, so let’s run a test using the code that we have presented so far. “This

American Life” is a weekly public radio program (and also a podcast) that’s

hosted by Ira Glass and produced in collaboration with WBEZ Chicago.

Each episode weaves together a series of stories centered around a

specific theme or topic. Some stories are investigative journalism, and

others are simply interviews with ordinary people with captivating stories.

Episode 811 is entitled, “The one place I can’t go,” and the file is 56MB in

MP3 format. Since we already know that 56MB is way too big to send to

Whisper to get transcribed, let’s run our tools to break up the audio file and

transcribe the individual segments.

Listing 5-6 shows an excerpt from the full transcript of the episode.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

139

Listing 5-6.  The Partial Transcript of Episode 811 of This

American Life

 "...My younger cousin Camille is not really a dog person,
but there is one dog she adored. Her name was Foxy, because
she looked exactly like a fox, except she was black. She was
the neighbor's dog, but she and Camille seemed to have a real
kinship, maybe because they both weren't very far from the
ground. Camille was around four or five years old back then,
and she had a little lisp, so Foxy came out as Fozzie. I
thought it was one of the cutest things I'd ever heard.

The way Camille remembers Foxy, it's almost like a movie. Her
memories feel like endless summer, hazy and perfect, like a
scene shot on crackly film. I just remembered like the feeling
of being excited to go and see Foxy. I have an image in my head
of like coming to the house, and I could see Foxy was like
outside. I can see Foxy through the door that leads to the
garden. There's a story about Camille and Foxy that I think
about fairly often. I've talked about it with my sister for
years, but never with Camille. And it's this. Once when they
were playing..."

For brevity, we’re only showing an excerpt of the transcript. The full

transcript itself is over 8000 words due to the fact that the episode is nearly

1 hr in length.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

140

�Going Meta: Prompt Engineering
gpt-4o-mini to Write a Prompt for DALL·E
Since the full text transcript of the podcast episode that we want to

visualize is thousands of words, we’re going to use gpt-4o-mini to

automatically create the prompt needed for the DALL⋅E model. DALL⋅E is

able to take a textual description in a prompt and create an image, but it’s

best to keep the prompt as short as possible. Listing 5-7 is the prompt for

gpt-4o-mini to generate a prompt for DALL⋅E.

Listing 5-7.  The Prompt for GPT-4 to Create a Prompt for DALL⋅E

System: You are a service that helps to visualize podcasts.

User: Read the following transcript from a podcast. Describe
for a visually impaired person the background and subject that
best represents the overall theme of the episode. Start with
any of the following phrases:
- "A photo of"
- "A painting of"
 "A macro 35mm photo of"
 "Digital art of "

User: Support for This American Life comes from Squarespace...

Model: gpt-4o-mini

Temperature: 1.47

Maximum length: 150

Top P: 0

Frequency penalty: 0.33

Presence penalty: 0

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

141

As you can see in the prompt, the model used is the gpt-4o-mini

which allows us to process REALLY LONG text transcripts of 128k tokens.

DALL⋅E needs to know the type of image to generate so that’s why we need

to specify that the image should be a photo, painting, digital art, etc. We

need to ensure that the resulting text generated by the model is short, so

we want to have a maximum length of 150 tokens. Also, in order to prevent

ChatGPT from repeating some phrases multiple times, we introduced a

frequency penalty of 0.33.

Listing 5-8 shows the results from ChatGPT after reading the transcript

of Episode 811 of This American Life.

Listing 5-8.  The Prompt for DALL⋅E Created by GPT-4o-mini

Digital art of a young girl sitting in a garden with a black
dog that looks like a fox. The girl is smiling and the dog is
wagging its tail. The image has a hazy, dream-like quality,
with crackly film effects to evoke nostalgia.

�Using OpenAI.openai.images.generate()
to Create Images
The OpenAI.images.generate() method allows you to use the DALL⋅E

model to dynamically create an image from a text prompt.

Table 5-2 describes the format of the JSON object necessary to

create images. For obvious reasons, the prompt itself is the only required

parameter in order to successfully invoke the service.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

142

�Create Image (JSON)

Table 5-2.  Request Body for the Create Image Endpoint

Field Type Required? Description

prompt String Required This is where you describe the image

that you want to be created.

The maximum length is 1000 characters

for dall-e-2 and 4000 characters for

dall-e-3.

model String

Default:

“dall-e-2”

Optional The model name to generate the image.

Compatible models include

•  “dall-e-2”

•  “dall-e-3”

n integer or null

Default: 1

Optional This is the requested number of images

that you want created.

Must be between 1 and 10.

Note: Due to the complexity required for

dall-e-3, OpenAI may limit your request

to a single image

quality String

Default:

“standard”

Optional This allows you to specify the quality

of the image to be generated. This

parameter is only valid for dall-e-3.

Accepted values are

•  “standard”

•  “hd”

(continued)

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

143

Table 5-2.  (continued)

Field Type Required? Description

size String or null

Default:

“1024x1024”

Optional The size of the generated images.

Image sizes available for dall-e-2 are

•  “256x256”

•  “512x512”

•  “1024x1024”

Image sizes available for dall-e-3 are

•  “1024x1024”

•  “1792x1024” (landscape)

•  “1024x1792” (portrait)

style String

Default: “vivid”

Optional This allows you to specify how natural

looking the generated image should be.

This parameter is only valid for dall-e-3.

Accepted values are

•  “natural” (good for photos)

•  “vivid” (good for artistic looks)

response_

format

String or null

Default: “url”

Optional This is the format of the generated image.

Accepted values are

•  “url”

•  “b64_json”

user String Optional This is a unique identifier representing

your end-user, which can help OpenAI to

monitor and detect abuse.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

144

�Handling the Response
After successfully invoking the method, the API will respond with an Image

JSON object. Here’s a breakdown of the Image object, which only has one

parameter (Table 5-3).

�Image
Table 5-3.  The Structure of the Image Object

Field Type Description

url (or)

b64_json

String This is a url to your generated image if the response_

format is “url” in the request.

(or)

This is a base64-encoded JSON image if the response_

format is “b64_json” in the request.

�Creating the Images with the DALL·E Model
As you can see from Tables 5-2 and 5-3, the creating an image with the

DALL⋅E model is a very straightforward process. Therefore, our code in

Listing 5-9 shows how to create images programmatically in JavaScript.

Listing 5-9.  Using the DALL⋅E Model to Create Images with

JavaScript

const { OpenAI } = require("openai");
require("dotenv").config();

async function main() {
 // Set up the OpenAI client with your API key
 const openai = new OpenAI({

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

145

 apiKey: process.env.OPENAI_API_KEY,
 });

 const response = await openai.images.generate({
 model: "dall-e-3",
 n: 1,
 // The prompt and for the image
 prompt:
 �"a 35mm macro photo of 3 cute Rottweiler puppies with no

collars laying down in a field",
 size: "1024x1024",
 });
 image_url = response.data[0].url;
 console.log(image_url);
}

main();

Alright, let’s break down what’s happening in this code example.

We’re using the openai.images.generate() function from OpenAI’s API to

generate an image based on our prompt.

•	 A prompt is defined. In this case, the prompt describes

the desired image: “a 35mm macro photo of 3 cute

Rottweiler puppies with no collars laying down in

a field.”

•	 The desired size of the generated image is specified as

“1024x1024”.

•	 The openai.images.generate() function is called with

the provided prompt, size, and model parameters.

This function generates an image based on the input

prompt using the specified model (“dall-e-3”).

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

146

•	 The response object (called an ImageResponse)

contains information about the generated image,

including its URL.

•	 Finally, the code prints out the URL of the

generated image.

In summary, this code generates an image of three cute Rottweiler

puppies laying down in a field based on the provided prompt using the

DALL⋅E model, and then it prints out the URL where the generated image

can be accessed.

�Visualizing the Podcast
Now that we have the code necessary to create images with the DALL⋅E

model, Figure 5-2 shows the images generated from the text prompt in

Listing 5-8 shown earlier.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

147

Figure 5-2.  AI-Generated Image. The DALL·E Generated Image of a
Girl and Her Dog from Episode 811 of “This American Life” Podcast

�DALL·E Prompt Engineering
and Best Practices
Now, creating images with DALL⋅E takes prompt engineering in order to

get consistent, desired results, and it’s a good idea to play around with

different prompts to get some practice to see what works for you and your

use case. Maybe you prefer paintings instead of 3D looking images? Maybe

you need photos instead of digital art? Maybe you want the image to be a

close-up shot instead of a portrait? There’s a lot of possibilities to consider.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

148

Regardless of your use case, here are two golden rules in order to get

the most out of your DALL⋅E prompts.

�DALL·E Golden Rule #1: Get Familiar
with the Types of Images That DALL·E
Can Generate
First and foremost, one of the most important things that DALL⋅E needs to

understand is the type of image that needs to be generated. Here’s a list of

several of the most common types of images that DALL⋅E is able to create:

•	 3-D render

•	 Painting

•	 Abstract painting

•	 Expressive oil painting

•	 Oil painting (in the style of any deceased artist)

•	 Oil pastel

•	 Digital art

•	 Photo

•	 Photorealistic

•	 Hyperrealistic

•	 Neon photo

•	 35-mm macro photo

•	 High-quality photo

•	 Silhouette

•	 Vaporware

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

149

•	 Cartoon

•	 Plush object

•	 Marble sculpture

•	 Hand sketch

•	 Poster

•	 Pencil and watercolor

•	 Synth wave

•	 Comic book style

•	 Hand drawn

�DALL·E Golden Rule #2: Be Descriptive with What
You Want in the Foreground and Background
I cannot emphasize enough that you need to be descriptive with DALL⋅E

in order to get consistent, desirable results. It may sound weird, but the

best way to describe your image to DALL⋅E is to act like you’re describing a

dream to another person.

So, as a mental exercise between us, try to describe your last dream.

As you describe the people, places, and things in your dream, you have in

your mind the most important things that you remember, as well as the

experience that you felt. As you describe things to another person, tiny

details start to emerge such as

•	 How many people were present (if any)?

•	 What position were the people or animals in? Standing,

sitting, or laying down?

•	 What things were in the scenery and the background?

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

150

•	 What items stood out to you? Sounds? Smells? Colors?

•	 How did you feel? Happy, eerie, excited?

•	 What was the perceived time of day? Morning,

midday, night?

If you can describe a dream to another person, then you should have

no problem describing what you want to DALL⋅E.

�Conclusion
In this chapter, we accomplished a lot! With a few scripts, we created a

Podcast Visualizer.

•	 We created and used the audio-splitter script, which

works as a utility for us. If you have an audio file that’s

larger than the limitations of the Whisper model, this

script will give you a folder of smaller audio files to

send to Whisper.

•	 We created a script to use the audio-splitter and send

the folder of files to Whisper for transcription. Your

only limitation is the number of requests that you can

send to the Whisper model.

•	 We did a little prompt engineering in order to get a

descriptive prompt of the imagery in a podcast based

upon the transcript.

•	 Finally, we created and used the DALLE-model to take

the prompt generated from calling the gpt-4-o-mini

model and getting an image that represents the podcast

episode visually.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

151

�Exercises Left for the Reader
So, there are obviously a few additional things we can do here, and these

steps will be left for you (the reader) to accomplish, for example:

•	 The audio-splitter script our JavaScript interface to

FFmpeg. FFmpeg can not only split audio files, but

can also do a lot more with media files, such as format

conversion and reencoding. Experiment to see which

of the supported media formats by Whisper are the

smallest audio files. Hint: It’s definitely not WAV format.

If you’re planning to create an app or a service

that automatically generates images based upon

a textual prompt from your end users, then you

definitely would want to update the DALL-E script

in order to ensure that you’re tracking and providing

in your request the user parameter. This is due to the

fact that your end user has the potential to generate

harmful images through your API key. Remember,

you have an API account with Open AI, and they

don’t! As a result, you need to be aware if you need

to terminate your business relationship with a user

who is violating Open AI content rules through your

service.

Chapter 5 MULTIMODAL AI: CREATING A PODCAST VISUALIZER WITH WHISPER AND DALL∙E 3

153© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_6

CHAPTER 6

Creating an
Automated
Community Manager
Bot with Discord
and JavaScript
When you’re launching an app or a service, it’s important to build and

maintain your own community. Below are the telltale signs of a healthy

user community:

•	 Members engage in meaningful discussions, sharing

insights, feedback, and support.

•	 Disagreements or debates occur, but they are

approached constructively without resorting to

personal attacks or derogatory language.

•	 There’s an atmosphere of respect, where members

listen to each other and acknowledge differing

opinions.

154

•	 A mix of old and new members actively participate,

ensuring the community remains vibrant and doesn’t

stagnate.

•	 Users contribute diverse content, from answering

questions to sharing resources, which enriches the

community’s knowledge base.

•	 There’s a balance between giving and taking; members

who seek help or information also offer it to others.

•	 New members frequently join, often referred by

existing members, indicating that the community is

seen positively and worth recommending.

•	 Users often become advocates for the community or

platform, promoting it outside of the direct community

space, such as on social media or other forums.

•	 The community helps to shape the app or service by

providing new ideas for features and functionality.

No matter what type of app or service that we create, we would love for

our user community to exemplify the items listed above!

�Choosing Discord as Your
Community Platform
Over the past few years, Discord has surged in popularity as a useful tool

for community management for people who are passionate about their

communities. This is partially due to its cross-platform compatibility,

allowing members to stay connected whether they’re on a desktop,

mobile device, or web browser. However, one of its standout features is the

invitation-based community system, which helps community managers to

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

155

control growth and prevents spam. This model not only ensures a tailored

experience for members but also enhances security, since community

managers have the discretion to grant or deny access.

Discord not only supports text messaging but also supports voice chats

and streaming video. Very similar to Slack, Discord allows community

managers to separate content into channels to organize discussions,

streamline information flow, and to help users see the content that they’re

interested in.

�Creating a More Advanced Bot Than Our
Slack Bot
Now, If you successfully went through the steps in Chapter 4 where we

worked with a Slack bot, then the steps in this chapter will feel familiar to

you. In Chapter 4, we created a Slack bot to read a single channel during

a time period and get a summary of the content discussed. The Slack bot

was not a community manager, but was more like a helpful assistant.

For the remainder of this book, we’re going to perform all the steps

necessary to make powerful bots for Discord that will use AI to help

actually manage the community.

�Creating a More Advanced Bot Than Any
Typical Discord Bot
If you’ve ever had any experience using a Discord bot, then you’re

probably aware that the most common way in order to interact with them

is with what’s called a “/command”. This enables typical bots (read: non-

intelligent bots) to essentially work only when they have received a very

specific operation or command. If the “/command” is not provided, then

the bot will be silent and not do anything. Essentially, it exemplifies the

phrase, “speak only when you are spoken to.”

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

156

However, we are creating a Discord bot that will be artificially

intelligent, and therefore it will be much more advanced than any typical

Discord bot. We’re going to create bots that will be able to read and see

all messages in the Discord server and be intelligent enough to respond

correctly.

�Understanding the Roles for the Bots
So let’s explore a scenario in order to make things real. We’re creating a

public Discord server to interact with the users of a mobile banking app.

Our end goal is to have bots written in JavaScript to handle the following

scenarios:

•	 Q&A: Monitor a specific channel and automatically

answer questions from users about how to use the

banking app. For this to work, the bot will need to be

trained on how the app works.

•	 No Solicitations: For any business community, it’s

important that the participants of the community are

not being targeted by unscrupulous individuals. For

example, if you’re creating a banking app, do you want

your customers contacted by anyone whose username

is “B4nk Admin”?

•	 No Harmful Content: For any community, it’s

important for the members to be protected from

harmful content such as hate language.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

157

�Our Example Bank: Crook’s Bank
For the purposes of this example, we decided upon a fictional name of a

fictional bank that would have an extremely low likelihood of coinciding

with the name of a real bank. Therefore, for this example, “Crook’s Bank”

is launching a new mobile app for customers of their bank. They want to

have a channel that will be monitored by a bot to answer questions from

users of the app, and they also want to ensure that no one is soliciting users

of their app, or posting hurtful or harmful content in their Discord servers.

Figure 6-1.  This fake App from a Fake Bank has real problems

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

158

�First Things First: Create Your Own
Discord Server
Before we can make an AI Discord Bot, we’re obviously going to need a

Discord server already in place for the bot to interact with. Use either the

Discord App or go to the Discord website (login first of course) and start

the process to Add/Create a new server.

After you have started the process, select the option labeled, “Create
My Own” as shown in Figure 6-2.

Figure 6-2.  Creating Your Own Discord Server

Next, you’ll be prompted to specify additional information about

your server. Continue to proceed through the creation process until you

are prompted to provide a name and icon for your server, as shown in

Figure 6-3.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

159

Figure 6-3.  Providing a Name for Your Own Discord Server

Specify the name of your server and provide an optional server icon (if

you have one).

�Create the Q&A Channel
By default, every Discord server has a “general” channel, but we want a

dedicated channel especially for questions and answers. Depending upon

how you created your server, Figures 6-4 and 6-5 will be presented to you

to create your new channel.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

160

Figure 6-4.  Creating a Channel Using the Web Interface

Figure 6-5.  Creating a Channel Using the discord App

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

161

�Registering a New Discord Bot App
with Discord
Now that we have our Discord server with the appropriate channels

created, it’s time to register the bot itself – or rather, in our case, the

bots themselves. In order to keep the code clean and manageable, we’ll

actually have multiple bots for our Discord server. The first bot will be used

exclusively to answer questions in the “q-and-a” channel. The second bot

will monitor all channels for unwanted content, such as harmful content

or solicitations.

In order to create our bot, head over to the Discord Developers

website:

https://discord.com/developers
At the top-right of the page, click the button “New Application,” as

shown in Figure 6-6.

Figure 6-6.  In Order to Create a Discord Bot, Go to the Discord
Developer Website

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

162

In both Discord and Slack terminology, a “bot” is an “app,” and bots

are not allowed to run on Discord servers unless they have been registered

with Discord first.

Specify a name for the bot and click the “Create” button, as shown in

Figure 6-7.

Figure 6-7.  Creating/Registering a Bot for Discord

�Specifying General Info for the Bot
Afterward, you will be taken to a page where you can specify general

information about your bot, as shown in Figure 6-8.

Be sure to familiarize yourself with the navigation menu on the left

side of the page. As you can see, we have several categories of settings

to configure for our bot. By default, we have landed on the “General
Information” page, where we specify basic info about our bot. If you have

an icon ready for your bot, you can upload it here.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

163

Figure 6-8.  We Decided to Give Our Bot a Cute Little Robot Icon

�Specifying OAuth2 Parameters for the Bot
Now it’s time to specify the scopes and permissions for our bot. If you

followed the steps in creating a Slack bot in Chapter 4, then (as stated

before) this procedure will feel familiar to you. Bots cannot and should
not have the ability to do anything and everything – they should be only

allowed to perform a list of operations that they were designed to perform.

On the settings navigation menu on the left, navigate to “OAuth2 ➤
URL Generator” to continue.

Below are the scopes that we want:

•	 Scopes

•	 Bot

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

164

This is reflected in Figure 6-9.

Figure 6-9.  Selecting the Scopes

After we select the bot’s scope, we get to see all the permissions that

are only applicable to bots, listed in alphabetical order.

Bots can be pretty powerful depending on the permissions you give it.

There are permissions that allow the bot to act in the capacity of a normal

human moderator, such as managing the server, roles, and channels. Bots

with these permissions can also kick and ban members.

What we’re going to enable for our bot right now are the ones that

allow the bot to send and receive messages in text channels. This is what

we need. Although we’re not doing anything special right now with audio,

we could enable voice permissions to allow the bot to participate in voice

channels. Simple enough, right?

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

165

Select the following permissions for the bot:

•	 Bot Permissions

•	 Read Message History

•	 Read Messages/View Channels

•	 Send Messages

Although you haven’t written any JavaScript code yet, now it’s time to

invite your bot to your server.

�Invite Your Bot to Your Server
As shown in Figure 6-9, after you have selected the appropriate

permissions, Discord will give you a dynamically generated URL that will

enable you to invite your bot to your server.

Copy the URL and paste it into a web browser where you’re already

authenticated into Discord. The result is shown in Figure 6-10.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

166

Figure 6-10.  If You Read the Screen Carefully Here, You Can See That
Discord Has a Sense of Humor

Click the “Continue” button to add the bot to your server.

Next, you will see a page that looks quite similar to the previous

one, but the main difference is that it will give you a summary of all the

permissions and capabilities of the bot. Typically this is quite useful if you

are adding a bot to a server that you DID NOT CREATE. However, since we

created this bot ourselves, this is just a confirmation of the settings that we

have already specified earlier (Figure 6-11).

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

167

Figure 6-11.  Confirming the capabilities of the bot

Click the “Authorize” button to give the bot the permission to run on

your server.

If everything went smoothly, then you should see an automated

message in the General channel of your server that indicates that the

process has been successful.

�Getting the Discord ID Token for Your Bot
and Setting the Gateway Intents
Now it’s time to get the Discord ID token for your bot, which you’ll use in

your code to authenticate your bot programmatically.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

168

Note  For obvious reasons, using the word “token” here makes me
nervous because this word has two distinct meanings in this book
due to the context, but here’s a quick refresher on the meanings:

•	 When using Discord and Slack APIs, a “token” is an
authentication token.

•	 When using OpenAI APIs, a “token” is a part
of a word.

Go back to the Discord developer’s website and click the “Bot”

category in the settings navigation menu to continue.

Although you haven’t seen your token yet, you need to click on the

“Reset Token” button, as shown in Figure 6-12.

Be sure to copy and save the ID token to someplace safe. You will need

this token in the JavaScript code that’s presented later in this chapter.

Figure 6-12.  Click the “reset Token” button to see your ID Token

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

169

Scroll down the page to the section named, “Privileged Gateway
Intents,” and enable the option named, “MESSAGE CONTENT INTENT.”

Note  So let's slow things down a bit and talk about intents. What
exactly is an “intent” and why is it needed? For the purposes of the
Discord API, you need to specify explicitly every type of information
that you want to be notified by Discord programmatically. Otherwise,
Discord will constantly bombard you with events that are not relevant
to you or your bot. For example, for our purposes, we don’t care
when people join or leave the server. However, if you want to send a
list of server rules to anyone who joins your server for the first time,
then you definitely would want to enable the “SERVER MEMBERS
INTENT.” When we deep dive into the code, you'll see more
information about intents.

Be sure to click the green button, “Save Changes,” to save your

changes. The result is shown in Figure 6-13.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

170

Figure 6-13.  Enable the option named, “MESSAGE CONTENT
INTENT”

�Creating a Q&A Bot App in JavaScript
to Answer Questions from a Channel
Of course, now that we’ve done all the prerequisites necessary and we

know the name of the channel that we want to monitor for questions

from our users, let’s get to the code in JavaScript that joins our server and

accesses all the messages from a specific Discord channel.

This is the first of two Discord bots that we’re creating in this chapter.

This bot will be responsible for watching the messages in the “q-and-a”

channel in our Discord server.

Later on in this chapter, we’ll create another bot that will be

responsible for moderating ALL CONTENT in the Discord server for

unwanted content, including the “q-and-a” channel. The goal here is

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

171

follow the architectural pattern of “separation of concerns.” Rather than

creating a gigantic JavaScript Discord bot that performs all the moderation

needs for the Discord server, we’re going to separate the functionality into

two different apps.

We’re also going to take things step by step and focus this chapter on

getting past the learning curve for the Discord capabilities in JavaScript.

In the final chapters of this book, we’ll enhance both bots and make them

artificially intelligent using the Open AI APIs.

Listing 6-1 is the code that we need to create a basic Discord bot

that watches all the messages posted in a single channel and provides

an answer.

Listing 6-1.  Our Simplified Tech Support Bot

// Require the necessary discord.js classes
const { Client, Events, GatewayIntentBits } =
require("discord.js");
require("dotenv").config();

// Configuration variables
const CHANNEL_NAME = "q-and-a";
const CUSTOM_STATUS = "Ready to answer your questions";

// Create a new client instance
const client = new Client({
 intents: [
 GatewayIntentBits.MessageContent,
 GatewayIntentBits.GuildMessages,
 GatewayIntentBits.Guilds,
],
});

client.once(Events.ClientReady, (readyClient) => {
 console.log(`Ready! Logged in as ${readyClient.user.tag}`);

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

172

 // Set the custom status
 client.user.setActivity(CUSTOM_STATUS);
});

client.on(Events.MessageCreate, async (message) => {
 if (client.user.username === message.author.username) return;
 if (message.channel.name !== CHANNEL_NAME) return;

 �console.log("User is:", message.author.globalName || message.
author.username);

 console.log("Message is:", message.content);

 �const reply = `${mention(message.author)}, I can help you
with that!`;

 await message.channel.send(reply);
});

function mention(author) {
 return `<@${author.id}>`;
}

// Log in to Discord with your client's token
client.login(process.env.DISCORD_BOT_API_TOKEN);

Now let’s delve into the code in Listing 6-1 to understand how our

simplified tech support bot works. This bot is designed to monitor

messages in the “q-and-a” channel of your Discord server and provide

responses to the users’ questions.

Note  For some reason, Discord’s own terminology sometimes
refers to Discord servers as “guilds.” However, from our perspective,
a guild is simply a Discord server.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

173

�Creating the Discord Client
It’s pretty easy to create a Discord client using a few lines of code:

// Create a new client instance
const client = new Client({
 intents: [
 GatewayIntentBits.MessageContent,
 GatewayIntentBits.GuildMessages,
 GatewayIntentBits.Guilds,
],
});

Here, we instantiate a new Discord client and provide an intents array

to tell Discord which events we want our bot to receive, namely:

•	 MessageContent: Allows the bot to read the content of

messages

•	 GuildMessages: Enables the bot to receive messages

from the Discord server.

•	 Guilds: Allows the bot to receive updates about Discord

server it’s a part of

�Listening for New Messages in Our Preferred
Discord Channel
Obviously, the most important function here in our bot is the client.on()

event listener, which we use to monitor every new message posted in the

Discord server.

client.on(Events.MessageCreate, async (message) => {
 if (client.user.username === message.author.username) return;
 if (message.channel.name !== CHANNEL_NAME) return;

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

174

 �console.log("User is:", message.author.globalName || message.
author.username);

 console.log("Message is:", message.content);

 �const reply = `${mention(message.author)}, I can help you
with that!`;

 await message.channel.send(reply);
});

If a message comes from the “q-and-a” channel, our bot will send a

friendly (albeit, non-helpful at the moment) response to the sender. As a

nice little touch, the author is tagged in the reply so they can be notified

when the response is posted.

�Success! Running Your First Discord Bot
Now let’s run our JavaScript Discord bot. After executing the script, be

sure to return back to your Discord server and try to type a question in the

channel that you setup for Q&A. Figure 6-14 shows the response to the

question, “Is this bot going to answer my questions about the app?”

Figure 6-14.  Success running the Q&A Bot in discord

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

175

As you carefully inspect Figure 6-14, you’ll see some key

features such as

•	 On the right side, you’ll see that the bot is online with a

green status indicator.

•	 The bot also has a custom status to let you know what it

will do in the channel.

•	 After asking a question in the channel, the bot will tag

you directly.

�Streamlining the Process of Registering Our
Next Discord Bot App
Now that we have successfully performed all the steps in order to get a

functioning Discord bot, creating the second bot will be a piece of cake!

So, let’s briefly reiterate all the steps from above in order to create our

second Discord bot. We’ll be sure to point out the items that need to be

changed or enhanced due to the fact that this second bot will work as a

moderator, instead of providing answers to questions from the users of our

Discord server.

�Registering a New Discord Bot App with Discord
Perform the same steps as above; however, it would be wise to give the

bot a different name. For our purposes, this second bot will be named,

“Content Mod Bot.”

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

176

�Specifying General Info for the Bot
We decided to have a different icon for the Content Moderator bot, so we

specified it here (Figure 6-15).

Figure 6-15.  Providing a Name and Icon for the Second Bot

�Specifying OAuth2 Parameters for the Bot
This second bot needs more permissions in order to perform more tasks.

Below are the scopes that we want:

•	 Bot

•	 Kick Members

•	 Ban Members

•	 Send Messages

•	 Manage Messages

•	 Read Message History

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

177

�Invite Your Bot to Your Server
Repeat the same steps as above for the first bot.

�Getting the Discord ID Token for Your Bot
and Setting the Gateway Intents
Again, follow the steps above in order to get the Discord ID Token. Then

scroll down the page to the section named, “Privileged Gateway Intents”

and enable the options named, “SERVER MEMBERS INTENT” and

“MESSAGE CONTENT INTENT.”

�Creating the Next Discord Bot,
the Content Moderator
The role of the content moderator is to make sure that unwanted content is

not posted in the Discord server. Just like the previous bot that we created

earlier in this chapter, this bot will not (yet) be artificially intelligent. In

its current state, the bot will indiscriminately delete any message posted

anywhere in the server that contains the word, “puppies.”

It’s not because puppies are inherently evil. However, they do have

a tendency to destroy your favorite pair of shoes when left alone. In all

honesty, we simply need something to test our code in Discord when we

run our bot.

Listing 6-2 is the code for this simplified Content Moderator.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

178

Listing 6-2.  Our Simplified Content Moderator Bot

// Require the necessary discord.js classes
const { Client, Events, GatewayIntentBits } =
require("discord.js");
require("dotenv").config();

// Create a new client instance
const client = new Client({
 intents: [
 GatewayIntentBits.MessageContent,
 GatewayIntentBits.GuildMessages,
 GatewayIntentBits.Guilds,
],
});

const BANNED_WORD = "puppies";

client.once(Events.ClientReady, (readyClient) => {
 console.log(`Ready! Logged in as ${readyClient.user.tag}`);
});

client.on(Events.MessageCreate, async (message) => {
 if (client.user.username === message.author.username) return;

 if (message.content.includes(BANNED_WORD)) {
 if (!(await message.delete())) {
 console.log("Failed to delete message");
 } else {
 const authorMention = `${mention(message.author)}`;
 �const reply = `${authorMention} This comment was deemed

inappropriate for this channel.\nIf you believe this
to be in error, please contact one of the human server
moderators.`;

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

179

 await message.channel.send(reply);
 }
 }
});

function mention(author) {
 return `<@${author.id}>`;
}

client.login(process.env.DISCORD_BOT_API_TOKEN);

�Handling Messages Sent to the Discord Server
Again, let’s focus our attention on the client.on() event listener function,

since it’s called asynchronously every time a message is posted to the

Discord server. As you can see, if the message posted to the server contains

the banned word, then we delete the message, and warn the sender with

a @mention message in the same channel where the offending message

was posted.

�Success Again! Running Your Second Discord
Bot, the Content Moderator
Now let’s run our second JavaScript Discord bot. After executing the app,

be sure to return back to your Discord server and type a message in any

channel that contains the offending word. Figure 6-16 shows the bot

in action.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

180

Figure 6-16.  This Bot Has a Strict Rule About Discussing “Puppies”;
However, Discussing “Kittens” Is Perfectly Fine

�Conclusion
We just went through all the steps necessary to create two functioning

Discord bots in JavaScript. For those who are unfamiliar with the process

of creating a Discord server, we showed the process on how to set up a

server to manage our community.

As you can see, we took a much different approach compared to our

Slack bot that we did in Chapter 4! The Slack bot that we created was pretty

much focused on user productivity within the workplace. The two Discord

bots, on the other hand, are truly focused on community management. We

have everything in place for these bots to be artificially intelligent with the

help of OpenAI’s APIs. This is all accomplished in the final two chapters.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

181

�Exercises Left for the Reader
In the next chapters, we’re going to make our “dumb” bots to be intelligent,

but there’s at least one thing we can do right now. Rather than using the

command line to report status messages, it’s better for the bots to have

their own channel that’s exclusively used for status reports. This way, when

the bot starts up, shuts down, or has anything important to inform the

administrators, it’s all logged and recorded in a central location.

CHAPTER 6 �CREATING AN AUTOMATED COMMUNITY MANAGER BOT WITH
DISCORD AND JAVASCRIPT

183© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_7

CHAPTER 7

Adding Intelligence
to Our Discord Bots,
Part 1: Improving Our
Q&A Bot
At this point, we have all the structure in place to make both our Discord

bots that we created in the previous chapter to be fully functional and

artificially intelligent. In these final two chapters of this book, we’re going

to follow all the steps necessary in order to make both bots to be artificially

intelligent. In this chapter, we’ll get started with our Tech Support Bot.

Below are the two major changes that we’re going to make:

•	 Improve our script that calls the OpenAI APIs and make

a class that can be instantiated by the Discord bot. This

way, the Discord bot class can ask questions about

specific information that we provide to it. This class will

be used for Q&A purposes in this chapter but will be

used in the final chapter of the book as well.

184

•	 Modify our Tech Support Discord bot so that it can

load an external text file that contains frequently

asked questions with the answers. This script will

then provide the contents of the text file to the

ChatGPTClient class who is responsible for creating the

prompt and of course invoking ChatGPT.

�Making Our Tech Support Bot
More Intelligent
Listing 7-1 contains the full contents of the frequently asked questions

that the fictional customer support team has created based upon support

tickets from users of the newly launched mobile banking application.

Listing 7-1.  FAQ.txt

1. What is the Crooks Bank Mobile App?
The Crooks Bank Mobile App is a cutting-edge mobile banking app
that allows you to manage your finances, make transactions, and
access a wide range of banking services conveniently from your
mobile device.

2. How can I download the Crooks Bank Mobile App?
You can download the Crooks Bank Mobile App from the App
Store for iOS devices and Google Play for Android devices.
Simply search for the "Crooks Bank Mobile App" and click the
"Install" button.

3. Is the Crooks Bank Mobile App safe and secure?
Yes, the Crooks Bank Mobile App prioritizes your security.
We use state-of-the-art encryption and security protocols to
protect your data and transactions. Your information is safe
with us.

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

185

4. What features does the Crooks Bank Mobile App offer?
 The Crooks Bank Mobile App provides a variety of features,
including:
• �Account Management: View account balances, transaction

history, and more.
• �Transfer Funds: Easily transfer money between your accounts

or to other bank accounts.
• �Bill Payments: Pay bills and manage recurring payments.
• Deposit Checks: Snap photos of checks for remote deposit.
• ATM Locator: Find nearby ATMs and branches.
• �Notifications: Receive alerts for account activity and

important updates.

5. Can I link external accounts to the Crooks Bank Mobile App?
Yes, the Crooks Bank Mobile App supports linking external
accounts from other financial institutions. You can monitor and
manage your accounts from different banks in one place.

6. How can I reset my password if I forget it?
If you forget your password, simply click the "Forgot Password"
option on the login screen. You'll receive instructions on how
to reset your password.

7. What are the fees associated with the Crooks Bank Mobile App?
The Crooks Bank Mobile App aims to be transparent with its
fees. You can find information on account fees, transaction
charges, and other costs in the "Fees" section within the app
or on our website.

8. Can I get customer support through the Crooks Bank
Mobile App?
Absolutely! We offer customer support through our in-app
messaging feature. You can also find our customer service
contact information on our website.

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

186

9. Is the Crooks Bank Mobile App available for business
accounts?
The Crooks Bank Mobile App primarily caters to personal banking
needs. However, we have plans to introduce business banking
services in the future.

10. How can I provide feedback or suggestions for the Crooks
Bank Mobile App?
We welcome your feedback! You can submit suggestions and
feedback through the "Contact Us" section in the app or on our
website.

As you can see in the Frequently Asked Questions text file in Listing 7–1,

there’s no magic involved here. It’s simply a list of questions and the

answers. Now, let’s see the modified Tech Support Discord bot. This is

represented in Listing 7-2.

Listing 7-2.  Our Smarter Tech Support Discord Bot

// Require the necessary discord.js classes
const { Client, Events, GatewayIntentBits } =
require("discord.js");
const { ChatGPTClient } = require("./chatGPTClient");
const fs = require("node:fs");
require("dotenv").config();

const systemMessage =
 "You are a virtual assistant that provides support for the
Crooks Bank banking app.";
const faqContents = fs.readFileSync("./FAQ.txt", "utf8");
const chatGPTClient = new ChatGPTClient(systemMessage,
faqContents);

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

187

// Configuration variables
const CHANNEL_NAME = “q-and-a";
const CUSTOM_STATUS = "Ready to answer your questions”;

// Create a new Discord client instance
const discordClient = new Client({
 intents: [
 GatewayIntentBits.MessageContent,
 GatewayIntentBits.GuildMessages,
 GatewayIntentBits.Guilds,
],
});

discordClient.once(Events.ClientReady, (readyClient) => {
 console.log(`Ready! Logged in as ${readyClient.user.tag}`);
 // Set the custom status
 discordClient.user.setActivity(CUSTOM_STATUS);
});

discordClient.on(Events.MessageCreate, async (message) => {
 �if (discordClient.user.username === message.author.
username) return;

 if (message.channel.name != CHANNEL_NAME) return;

 console.log("User is:", message.author.globalName);
 console.log("Message is:", message.content);

 await message.channel.sendTyping();
 �const chatGPTResponse = await chatGPTClient.
sendMessageFromDiscord(

 message.content
);

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

188

 �const reply = `${mention(message.author)}
${chatGPTResponse}`;

 await message.channel.send(reply);
});

function mention(author) {
 return `<@${author.id}>`;
}

// Log in to Discord with your client's token
discordClient.login(process.env.DISCORD_BOT_API_TOKEN);

�Important Changes to Note from the
Previous Version of the Tech Support Bot
Let’s briefly analyze our updated Tech Support Bot and discuss the

changes that were made. As you can see, we’re doing a few things at once.

First of all, this script will function as a client to both Discord and

ChatGPT, so having a single constant named “client” will be somewhat

confusing. Therefore, the client that will be used for any AI operations with

ChatGPT is a constant named chatGPTClient:

const systemMessage =
 �"You are a virtual assistant that provides support for the
Crooks Bank banking app.";

const faqContents = fs.readFileSync("./FAQ.txt", "utf8");
const chatGPTClient = new ChatGPTClient(systemMessage,
faqContents);

Remember from the previous chapters in the book that you can

dramatically set the tone of the conversation with ChatGPT by providing

a specific message to the system itself in your prompt. Therefore, we

made a constant to hold the system message. Additionally, we defined

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

189

a constant that holds the contents of the frequently asked questions file.

With the system message and the contents of the FAQ defined, we’re able

to instantiate our ChatGPTClient class (more details about that later).

The whole purpose of this bot is to send any message from a

Discord user to ChatGPT and display the response. Therefore, let’s

look at the changes made to client.on(), which has been renamed to

discordClient.on().

�Updates to the Newly Named Function,
discordClient.on()
The discordClient.on() function is asynchronously called every time

a message is posted into the discord server. For obvious performance

reasons, the code needed to instantiate the chatGPTClient class (which

also includes the process of loading the contents from the FAQ.txt file) is

not in this function. We already performed those steps earlier in this script

seeing that they only need to be done once.

When a message is received into the channel that were observing, be

sure to notice the following lines of code:

 await message.channel.sendTyping();
 �const chatGPTResponse = await chatGPTClient.
sendMessageFromDiscord(

 message.content
);

 �const reply = `${mention(message.author)}
${chatGPTResponse}`;

 await message.channel.send(reply);
});

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

190

Here, we provide a nice user experience and show the user that

the bot is “typing,” while the user’s question is actually being sent to

ChatGPT. When the response comes back, we provide the reply back to

the user.

Now let’s take a look at our helper class that handles all of our ChatGPT

capabilities: chatGPTClient.js.

�Analyzing Our ChatGPT Client,
chatGPTClient.js
So, we have our own class called chatGPTClient.js, which is very similar

to ones we’ve used before. The complete source for chatGPTClient.js is

shown in Listing 7-3.

Listing 7-3.  chatGPTClient.js

const { OpenAI } = require("openai");
require("dotenv").config();

class ChatGPTClient {
 constructor(systemMessage, initialInstructionsToChatGPT) {
 this.systemMessage = systemMessage;
 �this.initialInstructionsToChatGPT =

initialInstructionsToChatGPT;
 this.client = new OpenAI({
 apiKey: process.env["OPENAI_API_KEY"],
 });
 }

 async sendMessageFromDiscord(userMessage) {
 �const chatCompletion = await this.client.chat.completions.

create({

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

191

 messages: [
 {
 role: "system",
 content: this.systemMessage,
 },
 {
 role: "user",
 content: this.initialInstructionsToChatGPT,
 },
 {
 role: "user",
 content: userMessage,
 },
],
 model: "gpt-4",
 temperature: 0.85,
 top_p: 1,
 max_tokens: 1921,
 frequency_penalty: 0,
 presence_penalty: 0,
 });
 const result = chatCompletion.choices[0].message.content;
 return result;
 }
}

module.exports = { ChatGPTClient };

One of the most important things to note is that in the constructor, we

are sending the full String of the contents of the frequently asked questions

as well as the message that we’re going to be providing to the system itself.

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

192

This way, after we have constructed the ChatGPTClient class, we

can reuse the object already constructed in order to ask the individual

questions from our users.

Every time a question has been posted on our Discord channel, our

bot will call sendMessageFromDiscord() from chatGPTClient.js. In this

method, we will perform all of the usual things necessary in order to

invoke ChatGPT programmatically.

�Running Our Intelligent Q&A Bot
Now let’s run our new and improved Q&A Discord bot. After executing

the app, be sure to return back to your Discord server and start asking

questions. Figure 7-1 shows the bot in action.

Figure 7-1.  Having a Discussion with Our Intelligent DISCORD
Bot for Q&A

Listing 7-4 shows the conversation between us and the Discord Bot.

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

193

Listing 7-4.  Our First Conversation with the Intelligent Q&A

Discord Bot

Me: Hi, I'm new to this channel. What kind of questions
can I ask?

Q and A Bot: Hello! Welcome to the Crooks Bank Mobile App
support channel. Here, you can ask any questions regarding our
banking app. For example, you can ask about:

	 1.	 How to install and use the app.

	 2.	 Features and services within the app.

	 3.	 Troubleshooting any issues you might
encounter.

	 4.	 Security measures to protect your data and
transactions.

	 5.	 Instructions for resetting your password.

	 6.	 Costs and fees associated with using
the app.

	 7.	 How to link external bank accounts.

	 8.	 Customer support availability.

	 9.	 Feedback and suggestions for improving
the app.

Feel free to ask any other questions you might have related to
the Crooks Bank Mobile App. We're here to assist!

Me: I have an old Blackberry phone, is the app supported on
my device?

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

194

Q and A Bot: I'm sorry for the inconvenience, but at the
moment, the Crooks Bank Mobile App is currently only available
for iOS and Android devices. It is not supported on Blackberry
or any other operating systems. You may still manage your bank
accounts by accessing our website through your phone's browser.

Me: I'm an iPhone user. Can I sign into the app with face or
touch ID?

Q and A Bot: Sure, here's how you can set up the Crooks Bank
Mobile App on your iPhone:

1. Open the App Store on your iPhone.
2. In the search bar at the top, type in "Crooks Bank Mobile
App" and tap "Search".
3. Once you can see the app in the search results, simply tap
on the "Get" button to download it.
4. After the app downloads, tap "Open".
5. You’ll have to agree to our Terms and Conditions upon the
first launch.
6. If you're an existing Crooks Bank member, you can log in
using your online banking user ID and password. If you're a new
member, you'll need to register for an account.
7. Once you're logged in, you can set up Touch ID or Face ID
for quicker, secure login in the future.
8. Now you can start using your Crooks Bank Mobile App to
manage your finances, pay bills, make transactions, and more!

Please make sure you update the app regularly to access new
features and improvements. If you have any challenges during
setup, please reach out to us through the app's support feature
or call our customer service.

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

195

�We Have a Monumental Achievement…
with One Slight Flaw
OK, if you step back and examine what we have achieved so far, you

should realize that we’re looking at what is nothing short of a monumental

achievement. We have the following:

•	 A system made up of a few scripts that allows users to

type in questions and get answers about how to use our

mobile application.

•	 Using a simple text file, we can teach our bot how

to answer the questions from our users. This can be

edited by anyone in the company and can be used as a

knowledge base to help improve the intelligence of the

bot day by day. This is amazing stuff.

•	 The system allows customers to type their questions

using natural language, and the bot provides an

intelligent answer back to them. Guess what?

Customers don’t like reading FAQs – especially really

long ones. However, using this system, they don’t need

to! All they have to do is ask the question that is relevant

to them.

So, with all this that we have accomplished, there’s one GIGANTIC flaw

that we can’t ignore. In Listing 7-4, the bot said to the user:

Once you're logged in, you can set up Touch ID or Face ID for
quicker, secure login in the future.

No, no, no! Bad bot! In case you didn’t read the frequently asked

questions file completely, please allow me to explain what went

wrong here:

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

196

	 1.	 The FAQ.txt file in Listing 7-1 clearly states that the

Crooks Bank mobile app is a mobile app. Currently,

Touch ID can only be used on Apple desktop and

laptop computers. So this doesn’t even make sense.

	 2.	 The FAQ.txt file has no mention of Face ID for

authentication to the mobile app at all.

So unfortunately, ChatGPT is making up things that are simply not true

and is assuming that certain features exist that are not present. So, for the

purposes of true tech support, this is absolutely unacceptable.

So, how do we solve this? Think about how you could solve this

problem for a second before reading the next section.

�Update the System Message to ChatGPT
and Let’s Try Again
Have you come up with a solution yet? One way to resolve this issue is to

update the System message. Refer to the following line in Listing 7-2 above:

const systemMessage =
 "You are a virtual assistant that provides support for the
Crooks Bank banking app.";

Remember that the System Message indicates to ChatGPT what it’s

role is in the chat conversation. Right now it is told to be a helpful assistant,

and therefore it has taken the liberty in order to guess that certain features

exist within the mobile application. Now, let’s ensure that ChatGPT

does not provide any assumptions. Update the System Message to be as

shown below:

const systemMessage = "You are a virtual assistant that
provides support for the Crooks Bank banking app. You will be
provided Information about the application, and users will ask

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

197

you questions about the application. Your role is to answer
questions explicitly from the training information. If you were
not given an answer to a question, then provide an apologetic
message to the user explaining that you do not know the
answer.";

And that’s it. The FAQ.txt file remains exactly the same as before, and

all we needed to do is to update the System Message to let ChatGPT know

it’s role in the conversation. Listing 7-5 has the new conversation between

us and the Discord bot.

Listing 7-5.  Our Second and Better Conversation with the

Intelligent Q&A Discord Bot

Me: How are you today?
Q and A Bot: As a virtual assistant, I don't have feelings or
emotions, but I'm here and ready to assist you. How may I help
you with the Crooks Bank Mobile App today?
Me: I have an old Blackberry phone, is the app supported on
my device?
Q and A Bot: I'm sorry, but from the information provided, the
Crooks Bank Mobile App can only be downloaded from the App
Store for iOS devices and Google Play for Android devices.
BlackBerry devices are not mentioned, therefore I cannot
confirm that it would be compatible.
Me: So, if I use an iPhone, how do I setup the app?
Q and A Bot: To set up the Crooks Bank Mobile App on your
iPhone, you can download it from the App Store. Simply search
for "Crooks Bank Mobile App" and click the "Install" button.
After the installation is finished, open the app and follow the
prompts to set up your account. If you already have an account,
use your login information to access your account through
the app.

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

198

Now that’s a lot better! Our Tech Support bot is “sticking to the script”

and is not allowed to makeup or assume anything.

�Conclusion
In this chapter, we’ve accomplished a lot! We have a fully functioning

Discord bot that can be trained by anyone without any experience in

AI, NLP, or Machine Learning using a simple text file. We learned that a

“helpful assistant” may at times become TOO HELPFUL and assume facts

that are not true. However, we also reiterated the concept and the value of

the System Message, which is an important part of Prompt Engineering.

Now that we have made our Q&A Discord bot to be intelligent, now

let’s find out how to make out Content Moderator bot to be intelligent

as well!

Chapter 7 Adding Intelligence to Our Discord Bots, Part 1: Improving Our Q&A Bot

199© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7_8

CHAPTER 8

Adding Intelligence
to Our Discord Bots,
Part 2: Improving Our
Moderator Bot
In this chapter, we’re going to take the steps necessary in order to make our

Content Moderator Discord bot artificially intelligent. Here’s the kind of

changes that we’re going to make.

First of all, we’re going to create a new script to invoke one of the

Moderations models. The Moderations models are a special category of

models that allow us to be aware when any textual content fits any of the

following categories:

•	 Hate

•	 Hate/threatening

•	 Harassment

•	 Harassment/threatening

•	 Self-harm

•	 Self-harm/intent

200

•	 Self-harm/instructions

•	 Sexual

•	 Sexual/minors

•	 Violence

•	 Violence/graphic

Next, we’re going to reuse our chatGPTClient.js script from the

previous chapter. In Chapter 7, it was used to invoke a Chat model using

the client.chat.completions.create() method for Q&A purposes from our

users. In this chapter, it will be used to invoke a Chat model again, but this

time for moderation purposes.

Of course, we’re going to update our chatGPTClient.js script so that it

can invoke a Moderation model.

And finally, we’re going to modify our Content Moderator Discord bot

so that it can invoke both a Chat and Moderation model in chatGPTClient.

js. If either models indicate that the content typed in the Discord

channel is objectionable, then delete the message from that Discord

channel. Remember, this bot watches all content in all channels of the

Discord server!

Note  Now, it this point, you may be asking yourself, if the
Moderation models already know how to flag any harmful content,
then why do we need to use any of the Chat models as well? Good
question.

Yes, the Moderation models will allow us to know about harmful
content, but it DOES NOT inform us about any other types of
unwanted content for our scenario, such as when unscrupulous

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

201

individuals try to lure our users into a scam. Remember, this is a
Discord server for a banking app, so scammers would definitely love
to target all the members of this Discord server since it’s a central
location full of bank users!

Therefore, in this final chapter, we’re going to invoke both Chat and
Moderation models in chatGPTClient.js.

�Using OpenAI.moderations.create()
to Invoke a Moderation Model
Any of the Moderation models allows developers to submit a String of text

and to subsequently know if it’s violent, hateful, threatening, or contains

any form of harassment.

Table 8-1 describes the format of the parameters necessary to call the

body for the OpenAI.moderations.create() method. The method is very

simple to use, since only one parameter is required to properly invoke the

service.

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

202

�Create Moderation (JSON)

�Handling the JSON Response
After successfully invoking a Moderation model, the API will provide a

JSON response with the structure shown in Table 8-2.

Table 8-1.  The Request Body for the Moderation Method

Field Type Required? Description

input String or Array Required The text that needs to be classified

model String

default: “omni-

moderation-

latest”

Optional There are multiple content moderation

models available for use, for example:

•  “omni-moderation-latest”

•  “text-moderation-stable”

•  “text-moderation-latest”

By default, this is set to “omni-moderation-

latest.” It will be automatically upgraded

over time, which ensures you’re always

using the most accurate model.

If you decide to use any of the text based

moderation models, then you are only able

to submit text to be evaluated.

The omni moderation models, however, are

able to evaluate content as text and images.

Therefore choose the model that works best

for your use case.

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

203

�Moderation (JSON)
Table 8-2.  The Structure of the Moderation JSON Object

Field Type Description

id String A unique identifier for the moderation request

model String The model used to perform the moderation request

results Array A list of moderation objects

↳ flagged Boolean Flags if the content violates OpenAI's usage policies

↳ categories Array A list of the categories and whether they’re being

flagged or not

 ↳↳ hate Boolean This indicates whether or not the text given

expresses, incites, or promotes hate based on race,

gender, religion, ethnicity, nationality, disability

status, sexual orientation, or caste

 ↳↳ hate/

threatening

Boolean This indicates whether or not the text given

contains hateful content that also threatens

violence or serious harm toward the targeted group

based on biases expressed above

 ↳↳ harassment Boolean This indicates whether or not the text given

contains content that expresses, incites, or

promotes harassing language toward any target

 ↳↳ harassment/

threatening

Boolean This indicates whether or not the text given

contains harassment content that also threatens

violence or serious harm toward any target.

 ↳↳ self-harm Boolean This indicates whether or not the text given

contains content that promotes, encourages, or

depicts acts of self-harm, for example, suicide,

cutting, and eating disorders.

(continued)

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

204

Table 8-2.  (continued)

Field Type Description

 ↳↳ self-harm/

intent

Boolean This indicates whether or not the text given

contains content in which the speaker expresses

that they are engaging or intend to engage in acts

of self-harm, such as suicide, cutting, and eating

disorders.

 ↳↳ self-harm/

instructions

Boolean This indicates whether or not the text given

contains content that encourages the performing

acts of self-harm, such as suicide, cutting, and

eating disorders. This includes content that gives

instructions or advice on how to commit such acts

 ↳↳ sexual Boolean This indicates whether or not the text given

contains content meant to arouse sexual

excitement, such as the description of sexual

activity.

This includes content that promotes sexual

services; however, this excludes topics such as

sex education and wellness.

 ↳↳ sexual/

minors

Boolean This indicates whether or not the text given

contains content that includes an individual under

the age of 18

 ↳↳ violence Boolean This indicates whether or not the text given

contains content depicting death, violence, or

physical injury

 ↳↳ violence/

graphic

Boolean This indicates whether or not the text given

contains content depicting death, violence, or

physical injury in graphic detail.

(continued)

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

205

Table 8-2.  (continued)

Field Type Description

↳ category_

scores

Array A list of the categories along with the scores given

by the model

 ↳↳ hate Number Score for the category “hate”

 ↳↳ hate/

threatening

Number Score for the category “hate/threatening”

 ↳↳ harassment Number Score for the category “harassment”

 ↳↳ harassment/

threatening

Number Score for the category “harassment/threatening”

 ↳↳ self-harm Number Score for the category “self-harm”

 ↳↳ self-harm/

intent

Number Score for the category “self-harm/intent”

 ↳↳ self-harm/

instructions

Number Score for the category “self-harm/instructions”

 ↳↳ sexual Number Score for the category “sexual”

 ↳↳ violence Number Score for the category “violence”

 ↳↳ violence/

graphic

Number Score for the category “violence/graphic”

The listing below is an example of the JSON response after invoking a

Moderation model. Table 8-2 looks a little complex, but as you can see, if

any of the categories is labeled as “true,” then the results.flagged node is

labeled as “true.”

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

206

Take a look at Listing 8-1 for a practical example of the

Moderation object.

Listing 8-1.  The Moderation Object Response

{
 "id": "modr-XXXXX",
 "model": "text-moderation-005",
 "results": [
 {
 "flagged": true,
 "categories": {
 "sexual": false,
 "hate": false,
 "harassment": false,
 "self-harm": false,
 "sexual/minors": false,
 "hate/threatening": false,
 "violence/graphic": false,
 "self-harm/intent": false,
 "self-harm/instructions": false,
 "harassment/threatening": true,
 "violence": true,
 },
 "category_scores": {
 "sexual": 1.2282071e-06,
 "hate": 0.010696256,
 "harassment": 0.29842457,

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

207

 "self-harm": 1.5236925e-08,
 "sexual/minors": 5.7246268e-08,
 "hate/threatening": 0.0060676364,
 "violence/graphic": 4.435014e-06,
 "self-harm/intent": 8.098441e-10,
 "self-harm/instructions": 2.8498655e-11,
 "harassment/threatening": 0.63055265,
 "violence": 0.99011886,
 }
 }
]
}

�Creating Our Client for Content Moderation
Listing 8-2 is our updated chatGPTClient.js script that’s been updated from

the previous chapter to allow us to use it for invoking both a Chat model

and a Moderation model. Take a look at it, and then we’ll discuss the

important parts afterward.

Listing 8-2.  The Updated chatgptclient.js

const { OpenAI } = require("openai");
require("dotenv").config();

class ChatGPTClient {
 constructor(systemMessage, initialInstructionsToChatGPT) {
 this.systemMessage = systemMessage;
 �this.initialInstructionsToChatGPT =

initialInstructionsToChatGPT;

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

208

 this.client = new OpenAI({
 apiKey: process.env["OPENAI_API_KEY"],
 });
 }

 async sendMessageFromDiscord(userMessage) {
 �const chatCompletion = await this.client.chat.completions.

create({
 messages: [
 {
 role: "system",
 content: this.systemMessage,
 },
 {
 role: "user",
 content: this.initialInstructionsToChatGPT,
 },
 {
 role: "user",
 content: userMessage,
 },
],
 model: "gpt-4",
 temperature: 0.85,
 top_p: 1,
 max_tokens: 1000,
 frequency_penalty: 0,
 presence_penalty: 0,
 });
 const result = chatCompletion.choices[0].message.content;
 return result;
 }

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

209

 async isFlagged(message) {
 const response = await this.client.moderations.create({
 input: message,
 });
 return response.results[0].flagged;
 }
}

module.exports = { ChatGPTClient };

If you recall how this script worked from the previous chapter, we

defined a class with a constructor for the operations that should only

be done once, namely, specifying the system message and the initial

instruction to ChatGPT. None of this has changed from the previous

chapter.

The same thing applies to the sendMessageFromDiscord() function.

We use this to invoke the Chat model of our choice using the text of what

was typed in the Discord channel. As you’ll see later in this chapter, the

initial instructions will be different from the previous chapter, but the code

still works the same.

However, let’s analyze the following asynchronous function that was

added to the script:

 async isFlagged(message) {
 const response = await this.client.moderations.create({
 input: message,
 });
 return response.results[0].flagged;
 }

As you can see, using these few lines of code, this is how we are able to

invoke a Moderations model by calling OpenAI.moderations.create() and

determine if the content has been flagged as being inappropriate.

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

210

�Making Our Content Moderator Bot
More Intelligent
Now that we have an improved chatGPTClient.js script that is capable

of moderating content using both a Chat and a Moderation model, let’s

examine the changes made to our Discord Bot for Content Moderation.

Listing 8-3 is the full source code for our intelligent Discord

Moderator Bot.

Listing 8-3.  Our Improved Content Moderator Bot

// Require the necessary discord.js classes
const { Client, Events, GatewayIntentBits } =
require("discord.js");
const { ChatGPTClient } = require("./chatGPTClient");
const fs = require("node:fs");
require("dotenv").config();

const systemMessage = `
You are the automated moderator assistant for a Discord server.
Review each message for the following rule violations:
1. Sensitive information
2. Abuse
3. Inappropriate comments
4. Spam, for example; a message in all capital letters, the
same phrase or word being repeated over and over, more than 3
exclamation marks or question marks.
5. Advertisement
6. External links
7. Political messages or debate
8. Religious messages or debate

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

211

If any of these violations are detected, respond with "FLAG"
(in uppercase without quotation marks). If the message adheres
to the rules, respond with "SAFE" (in uppercase without
quotation marks).
`;
const instructions = "Analyze the following message for rule
violations:";
const chatGPTClient = new ChatGPTClient(systemMessage,
instructions);

// Create a new client instance
const discordClient = new Client({
 intents: [
 GatewayIntentBits.MessageContent,
 GatewayIntentBits.GuildMessages,
 GatewayIntentBits.Guilds,
],
});

discordClient.once(Events.ClientReady, (readyClient) => {
 console.log(`Ready! Logged in as ${readyClient.user.tag}`);
});

discordClient.on(Events.MessageCreate, async (message) => {
 �if (discordClient.user.username === message.author.
username) return;

 console.log("User is:", message.author.globalName);
 console.log("Message is:", message.content);

 �const chatGPTResponse = await chatGPTClient.
sendMessageFromDiscord(

 message.content
);

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

212

 �const isFlagged = await chatGPTClient.isFlagged(message.
content);

 if (chatGPTResponse === "FLAG" || isFlagged) {
 if (!(await message.delete())) {
 console.log("Failed to delete message");
 } else {
 const authorMention = `${mention(message.author)}`;
 �const reply = `${authorMention} This comment was deemed

inappropriate for this channel.\nIf you believe this
to be in error, please contact one of the human server
moderators.`;

 await message.channel.send(reply);
 }
 }
});

function mention(author) {
 return `<@${author.id}>`;
}

// Log in to Discord with your client's token
discordClient.login(process.env.DISCORD_BOT_API_TOKEN);

�Important Changes to Note from the
Previous Version of the Content
Moderator Bot
Let’s briefly take a look at Content Moderator Discord Bot from Listing 8-3

and discuss the changes that were made. The code snippet below contains

a portion of the class definition section.

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

213

const systemMessage = `
You are the automated moderator assistant for a Discord server.
Review each message for the following rule violations:
1. Sensitive information
2. Abuse
3. Inappropriate comments
4. Spam, for example; a message in all capital letters, the
same phrase or word being repeated over and over, more than 3
exclamation marks or question marks.
5. Advertisement
6. External links
7. Political messages or debate
8. Religious messages or debate

If any of these violations are detected, respond with "FLAG"
(in uppercase without quotation marks). If the message adheres
to the rules, respond with "SAFE" (in uppercase without
quotation marks).
`;
const instructions = "Analyze the following message for rule
violations:";
const chatGPTClient = new ChatGPTClient(systemMessage,
instructions);

So, as we stated previously in this book, proper prompt engineering

requires you to use multiple parameters, including the “system message”

to the system itself. Here, we’re telling the Chat model all the types of

information that we don’t want posted in our Discord server.

We hope you can understand the reason why our Discord Moderator

Bot needs to use both a Chat model as well as a Moderation model from

OpenAI. The Moderation models work fine "out of the box" for basic

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

214

content moderation; however, since our use case is for a bank, we want

to take extra precautions in order to prevent our customers from being

targeted by unscrupulous individuals through our Discord server.

�Updates to the discordClient.on() Function
After a message is received in any channel of the Discord server, the

discordClient.on() function is invoked. Here’s the most important change

to be aware of:

discordClient.on(Events.MessageCreate, async (message) => {

 ...

 �const chatGPTResponse = await chatGPTClient.
sendMessageFromDiscord(

 message.content
);
 �const isFlagged = await chatGPTClient.isFlagged(message.
content);

 if (chatGPTResponse === "FLAG" || isFlagged) {
 if (!(await message.delete())) {
 console.log("Failed to delete message");
 } else {
 const authorMention = `${mention(message.author)}`;
 �const reply = `${authorMention} This comment was deemed

inappropriate for this channel.\nIf you believe this
to be in error, please contact one of the human server
moderators.`;

 await message.channel.send(reply);
 }
 }
});

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

215

Here, we take each message that was posted in the Discord server and

check it with both Chat and Moderation models. If either model informs us

that the message is flagged, then we delete the message in the channel and

inform the user that their message violated the rules.

Now that our Content Moderator Discord bot is intelligent, let’s give

it a try!

�Running Our Intelligent Content
Moderator Bot
Now let’s run our new and improved Content Moderator Discord bot. After

executing the app, be sure to return back to your Discord server and start

asking questions. Figure 8-1 shows the bot in action.

Figure 8-1.  Having a Discussion with Our Intelligent DISCORD
Content Moderator Bot

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

216

Listing 8-4 shows a conversation between us and the Discord Bot in

order to test to see what it can do.

Listing 8-4.  Our Offensive Conversation with the Intelligent

Moderator Discord Bot

Me: Hi everyone, I love the Crooks Bank app!

Me: This app is awesome!

Me: Come to my website! http://www.google.com

Content Mod Bot: @JSChatGPT This comment was deemed
inappropriate for this channel. If you believe this to be in
error, please contact one of the human server moderators.

Me: I'm sorry for breaking the rules. I'm a different
person now

Me: But I have some sad news for you

Me: I want to everyone

Content Mod Bot: @JSChatGPT This comment was deemed
inappropriate for this channel. If you believe this to be in
error, please contact one of the human server moderators.

In both cases when unwanted content was posted in any channel of

the Discord server, not only was the offending user called out, but the bad

message was deleted. Good bot!

Did you notice that the Moderation and Chat models are able to read

emojis as well?

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

217

�Conclusion
In this chapter, we created a fully functioning content moderator for our

entire Discord server! We leveraged both the Moderation and Chat models

from OpenAI to create a custom content moderator that not only flags

unsafe content like hateful and threatening messages but also prevents the

users of the Discord server to be subject to unwanted solicitations.

�Exercises Left for the Reader
Although we accomplished a lot in this chapter (as well as in this book!),

there’s still one more thing that we can do to improve the code.

For example, the individual Discord bots that we created are aware

to not respond to messages that they send themselves. However, the

bots are not yet aware that they shouldn’t respond to messages sent by

OTHER BOTS.

This means that if you run both bots at the same time, and someone

posts something bad in the “q-and-a” channel, then the Content

Moderator will (of course) delete the message and inform everyone that

the message was deleted. However, since the Tech Support Bot doesn’t

know that it shouldn’t respond to other bots, it will try to create a response.

Of course, bots should not talk to other bots.

CHAPTER 8 �ADDING INTELLIGENCE TO OUR DISCORD BOTS, PART 2:
IMPROVING OUR MODERATOR BOT

219© Bruce Hopkins Jr., Bruce Hopkins Sr. 2025
B. Hopkins Jr. and B. Hopkins Sr., Creating ChatGPT Apps with JavaScript,
https://doi.org/10.1007/979-8-8688-1221-7

Index

A, B
Accuweather

adding specifications, 45
create, 44
homepage, 43
navigating, 43
new app, 46

Annotated data, 11
ASR, see Automatic Speech

Recognition (ASR)
Assistant Message

formatting, 84
structure, 83

Audiosplitte r application, 133
Automatic Speech

Recognition (ASR), 124

C
ChatCompletion

structure, 74, 80
types of messages, 81

ChatCompletionMessage, 89
ChatCompletion Object

Response, 87
ChatGPT

prompting, 48, 50
setting up prompt, 38

ChatGPT APIs
data, 11
temperature setting, 16
token, 15

ChatGPT client
JavaScript, 71, 73, 85
web applications, 73

ChatGPT, pair-programmer
Accuweather, 43–46 (see also

Accuweather)
cURL command, 59, 60, 64
documentation, 65, 67, 68
Google Maps, 52–58
prompting, 47, 51
setting up prompt, 39, 42

Chat model, 200, 207, 209, 213,
216, 217

Chat Playground, 18
Assistant field, 20, 21
Code button, 21
features, 22
list of models, 21
max tokens, 22
System Message, 19, 20
temperature, 22
User field, 20
User message, 21

Content moderator, 177, 179, 217

220

Content Moderator bot,
176, 198, 210

Content Moderator Discord Bot
in action, 215
change, 214
code, 212
intelligent, 215, 216

Context window, 15
conversations.history()

method, 118
Crooks Bank Mobile App

business banking services, 186
customer support, 185
definition, 184
download, 184
external accounts, 185
features, 185
feedback, 186
fees, 185
iPhone, 194
reset password, 185
security, 184

D
DALL⋅E models

create images, 144, 146
create prompt, 140
describe a dream, 149
GPT-4o-mini, 141
image types, 148, 149
podcast, 147

Discord
artificially intelligent, 156

capabilities of bot, 167
client, 173
community management, 154
content moderator, 177, 179
create channel, 160
create user, 158
creating/registering, 162
Crook’s Bank, 157
developer website, 161
general information, 162, 163
ID token, 167, 168, 170, 177
invite bot to server, 165, 177
JavaScript, 156
naming, 159
new message, 173, 174
powerful bots, 155
provide general info, 176
Q&A bot app, 170, 172
registering, 175
register the bot, 161
running, 174
run second JavaScript, 179, 180
selecting permissions, 165
selecting scopes, 164
sense of humor, 166
streamlining, 175
text messaging, 155

discordClient.on() function,
189, 214

Discord Moderator Bot, 210, 213

E
eXtreme Programming (XP), 25

INDEX

221

F
FFmpeg, 133, 135, 151
ffmpeg.ffprobe() function, 135

G
Generative AI models, 121
Google Maps

account setup, 53
homepage, 52
JavaScript API, 56, 57
keys and credentials, 58
navigate API, 54, 55

H
Human intelligence, 132

I
Investigative journalism, 138

J, K
JavaScript

browser compatibility, 86
client-side processing, 86
community/resources, 86
evolving, 86
frameworks, 86
interactivity, 85
JSON, 86
libraries, 86
real-time feedback, 86

versatility, 86
JavaScript developers

Module pattern, 4
Observer pattern, 4
Singleton pattern, 5

JavaScript Object Notation
(JSON), 86

JSON, see JavaScript Object
Notation (JSON)

L
Language models, 3

M
Memory-related anomalies, 102
models.list() function, 34
Moderation models

asynchronous function, 209
chatgptclient.js, 207
create, 202
definition, 199
JSON object, 203
JSON response, 202
object response, 206

Module pattern, 4

N
Natural Language

Processing (NLP), 6
Natural Language

Understanding (NLU), 6

INDEX

222

Neural network, 10, 11
NLP, see Natural Language

Processing (NLP)
NLU, see Natural Language

Understanding (NLU)

O
OAuth Scope, 110
Observer pattern, 4
OpenAI API

ChatGPT, 36
.env file

dotenv package, 31
Node.js application, 30

environment variable, 27
Linux, 29
MacOS versions, 27, 28
Windows, 28

hard code, 31
list of models available, 34
Node.js script, 32
openai.models.list(), 32
prompt, 36, 37

OpenAI.audio.transcriptions.
create() method, 130

OpenAI.chat.completions.create()
method, 74

OpenAI.images.generate() method
create image endpoint, 142
Image JSON object, 144

openai.models.list(), 32
OpenAI.moderations.create()

method, 201, 209

OpenAI textual models, 15
Output tokens, 15, 76

P, Q
Pair-Programmer, 92
Podcast Visualizer, steps, 123
Pre-trained model, 11
Prompt Engineering

ChatGPT, 92
customer support, 93
fictional company, 94
issue esculation, 94, 97
next steps, 103, 105
shorter version, 99, 100
simplified version, 101
software development, 93
tl;dr, 98
websites with subscription

plans, 105

R
Regular expressions, 5, 6
results.flagged node, 205

S
sendMessageFromDiscord()

function, 192, 209
Sentiment analysis, 9
Singleton pattern, 5
Slack

time zones, 91

INDEX

223

use, 91
Slack bot app

API website, 107
channel ID, 115
confirming settings, 110, 111
conversationHistory, 118
create, 108, 109
environment variables, 117
getting token, 114
install, 112, 113
invite to channel, 114, 115
JavaScript code, 115
message content, 116
npm command, 116
OAuth & Permissions page,

111, 112
OAuth Scope, 110
output, 118

Speech recognition, 124
accents, 125
homophones, 126
names, 126
punctuation, 125

splitMP3() function, 135
System Message, 196

formatting, 82
structure, 81

T
Tech Support Discord bot

chatGPTClient, 188, 189

chatGPTClient.js, 190, 192
FAQ, 184
message is posted, 189
modified, 186, 188
monumental

achievement, 195
Q&A, 192, 193
reply back to user, 190

Text pattern, 7, 9
Text summarization, 92, 97
Token limitations, 15, 16, 36
Tool Message

definition, 84
structure, 85

U, V
User community, 153, 154
User Message

formatting, 82
structure, 82

W, X, Y, Z
Whisper model, 122, 123, 136, 150

convert audio to text, 124
create audio transcriptions, 136
MP3 files, 136, 138
partial transcript, 139
request body, 130
spoken audio to text, 126, 129
Transcriptions Endpoint, 132

INDEX

