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Preface
This book contains nine peer‑reviewed research articles organized and formatted as 
chapters. These chapters have been written by prominent researchers in the interdisci‑
plinary field of AI advances in energy systems. Chapter 1 introduces the fundamentals 
of AI models, which explains the core tool for the rest of the chapters. Chapter 2 pres‑
ents some of the salient AI applications in power systems. Chapter 3 explains the intelli‑
gent techniques in hybrid renewable energy systems. The smart grid applications of AI 
have been reported in Chapter 4. Chapter 5 reviews algae‑based carbon sequestration 
through optimizing renewable energy and climate strategies. Chapter 6 demonstrates 
the effect of the Black‑Widow Optimizer for improving the load‑frequency control of 
interconnected power systems penetrated by real‑life wind power signals. Chapter 7 
explains the state‑of‑the‑art advances in biofuel production. Chapter 8 reports machine 
learning techniques for hierarchical robust optimization of chemical processes, empha‑
sizing energy systems. Finally, Chapter 9 explores the applications of machine learning 
techniques in developing smart cities, mainly the 5G‑enabled Smart Cities and Energy 
Grid Cyber‑Defense. The book can be used for research and education purposes, spe‑
cifically for senior undergraduate and postgraduate students to upgrade their knowl‑
edge and insights toward meaningful and useful applications of AI.

Qasem Abu-Al-Haija

Omar Mohamed

Wejdan Abu Elhaija
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1 Fundamentals of Machine 
Learning Models

Rahmeh Ibrahim and Qasem Abu Al‑Haija

1.1 INTRODUCTION TO MACHINE LEARNING (ML)

ML is a subset of artificial intelligence through which computers are modeled to 
carry out several tasks without necessarily being programmed. They learn from pat‑
terns and inferences from the data. The element key to this process is the assertion 
that systems can automatically improve from experience, thus enabling the creation 
of adaptive models that will predict the outcome or show any pattern from the large 
dataset [1]. ML is generally defined as a computer’s ability to mimic cognitive func‑
tions like learning and problem‑solving.

The importance of ML cannot be overemphasized. It disrupted many spheres with 
advances that used to be incomprehensible. For example, ML models were made 
possible in health care for outcome prediction, early disease diagnosis, and treatment 
personalization through data on individual patients. ML within the financial industry 
is also used to detect fraud, predict market trends, and automate trading strategies. 
ML has also transformed marketing by making personalized advertising, customer 
segmentation, and sentiment analysis possible, enabling greater customer engage‑
ment and satisfaction.

ML has several types that are unique in their methodologies and applications. The 
standard type of ML includes supervised learning, where a model is trained using a 
labeled dataset with an input–output pair whose response is known [2,3]. This kind of 
supervised learning is appropriate when solving classification and regression problems. 
Some supervised learning algorithms frequently used include Linear Regression (LR), 
Logistic Regression (GR), Decision Trees (DT) and Neural Networks (NNs). In appli‑
cation, for example, supervised learning can be carried out to classify emails as either 
spam or non‑spam, to predict the price of a house, or in medical imaging to diagnose 
diseases. On the other hand, unsupervised learning deals with unlabeled data.

Unsupervised learning aims to extract hidden patterns or inherent structures 
within the data. The most important techniques within unsupervised learning are 
clustering and dimensionality reduction.

Well‑known algorithms in this subfield include K‑means clustering and PCA. 
These group similar data points or reduce the dimensionality to plot the points 
for easier visualization and analysis. For instance, unsupervised learning can seg‑
ment customers based on purchase behavior and simplify the complexity of data in 
genomic studies [4]. Semi‑supervised learning falls between labeled and unlabeled 
data training. This comes in handy, as sometimes acquiring a fully labeled dataset 
can prove to be very expensive or consuming in terms of time. Utilizing massive 
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unlabeled data will boost the performance level of the model. It is widespread in 
tasks requiring a large amount of labeled data to develop a highly accurate model, for 
example, in natural language processing or image recognition tasks. Reinforcement 
learning is another form of distinct ML [5], where an agent learns to make decisions 
by acting in an environment to maximize cumulative rewards. In contrast to super‑
vised and unsupervised learning, reinforcement learning is dynamic and interactive; 
it implies trial and error directed toward obtaining the best results possible. Its appli‑
cation can be seen in various fields, from robotics and game playing to autonomous 
vehicles, where the agent is concerned with changing environments and learning 
optimal strategies through time [6]. Figure 1.1 shows the difference between super‑
vised and unsupervised learning.

1.2 SUPERVISED LEARNING

Supervised learning is the most basic form of ML; it learns a model to fit data 
described by labeled examples. There is a training dataset where one has pairs of 
input–output, and this correct output is known and given. The critical goal of super‑
vised learning is developing the general rule, a mapping of inputs into outputs, which 
will work on new, unobserved data. This type of learning is relevant when there 
is historical data with known outcomes, and the information is used to predict the 
future events that a model will cover. Supervised learning can be classified into one 
of two categories: classification or regression [1].

1.2.1 Types of supervised Learning

1.2.1.1 Classification
Classification, a supervised learning method, groups the outcome variable into cat‑
egories. It’s about categorizing input data into already defined classes or categories. 
For example, an email can be classified either as ‘spam’ or ‘not spam,’ a tumor can 
be classified as either ‘benign’ or ‘malignant,’ and an image can be classified into 
different objects like ‘cat,’ ‘dog,’ or ‘car.’ In essence, classification models learn 
how to distinguish between various classes based on the features of the input data.  

FIGURE 1.1 The supervised and unsupervised learning.



3Fundamentals of Machine Learning Models

According to Goodfellow et  al. [2], DT, GR, and SVM are popular classification 
techniques. Figure 1.2 shows the differences between classification and clustering.

1.2.1.2 Regression
On the other hand, regression is applied to work on continuous output variables. 
Prediction of a numerical value based on input data is the main task in regression. 
Examples of regression tasks are the prediction of house prices, stock price predic‑
tions, and estimation of the amount of rainfall. In regression tasks, a model learns 
relationships between input features and the continuous output variable so that new 
data allows for accurate predictions. Some standard regression algorithms are LR, 
ridge regression, and polynomial regression [3].

1.2.2 Common aLgoriThms

1.2.2.1 Linear Regression (LR)
LR is one of the simplest and most widely used algorithms in supervised learning. 
It is, in fact, a model that attempts to fit the relationship between input features and 
the output variable as an equation of a straight line. It tries to find a line of best fit, 
thereby implying minimization of the difference between the predicted and actual 
values. It relates an LR function between the independent variable x and dependent 
variable y as follows: y = β0 + β1·x1 + β2·x2 + ⋯ + βn·xn + ϵ where y is the predicted 
output, xi are input features, βi are coefficients, and ϵ is the error term [8]. Although 
simple, this approach to LR is quite powerful in many regression tasks and works 
as a baseline for other complex models. It would be best used when the relationship 
between input variables and output is roughly linear.

1.2.2.2 Logistic Regression (GR)
GR is a misnomer; it should classify tasks. It works on modeling the probability that 
a given input belongs to a particular class. GR is an output: a value between 0 and 1, 

FIGURE 1.2 Classification vs clustering [7].
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interpreted as the probability of this input belonging to the positive class. The logistic 
function (also called the sigmoid function) is defined as the mapping of the linear com‑
bination of input features to the probability: P(y = 1|x) = 1/(1 + e−(β0 + β1·x1 + β2·x2 + ⋯ + βn·xn)). 
This algorithm is particularly effective for binary classification problems, such as deter‑
mining whether a piece of email is spam. GR can be extended in that line to multiclass 
classification with techniques such as one‑vs‑all and softmax regression [9].

1.2.2.3 Decision Trees (DT)
DT is a general‑purpose, versatile algorithm used mainly for classification and 
regression problems. They work by recursively partitioning the input data into sub‑
sets based on values of input features [10]. Each internal node in the tree represents 
a decision that would be made based on some feature, and each leaf node gives the 
final output or class. The general procedure in creating a decision tree is choosing the 
best feature to split the data at each node. Classification usually employs measures 
like Gini impurity and information gain; regression typically uses mean squared 
error. An essential strength of DT is that they are easy to interpret and visualize. 
Consequently, they are trendy for exploratory data analysis. However, they tend to 
overfit considerably, especially with complicated data sets.

1.2.2.4 Support Vector Machines (SVM)
SVM is one of the practical algorithms used mainly for classification, as shown in 
Figure 1.3. These hyperplanes separate the data so that the margin between points 
from two different classes, also called support vectors, is maximized. This aids in 
the generalization of new data. The optimal hyperplane is mathematically found by: 
min 1/2 ‖w‖2 subject to yi(w·xi + b) ≥ 1 ∀i, where w is the weight vector, b is the bias 
term, xi are the input features, and yi are the class labels. SVMs are very good in 
high‑dimensional spaces and flexible with different kernel functions, so they can 
treat non‑linear classification problems by implicitly mapping input features into the 
higher‑dimensional space than that of input features originally [11].

FIGURE 1.3 Support vector machines (SVM) [7].
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1.2.2.5 K‑Nearest Neighbors (KNN)
KNN is a very intuitive and straightforward algorithm used in classification and regres‑
sion. This algorithm obtains the ‘k’ data points closest to the input in the training set, 
and its predictions are based on the majority class or average value in case of regression 
from these neighbors. The distance between data points is usually computed through 
Euclidean distance, although other distance metrics may be applied equally. Despite its 
simplicity, KNN can be very effective, especially for small datasets. Its performance 
can degrade when handling a large dataset because of the high computational costs, as 
all training samples must be calculated for the distance of a particular prediction [12].

1.2.2.6 Neural Networks (NNs)
An NN is a set of algorithms modeled around pattern recognition with the workings 
of the human brain. It has great potential for complex and non‑linear relations between 
input and output. NNs are a class of interconnected nodes arranged in layers, where 
each node, or neuron, connects to another and influences it, like synaptic links. All 
of these involve networks trained to learn hierarchy‑aware representations of the data, 
making them suitable for an extensive range of tasks, from image and speech recog‑
nition to natural language processing. Arguably, deep learning—as a subfield of ML 
in general—through many hidden layers has enabled state‑of‑the‑art performance on 
many complex problems. The basic building block of a neural network is the perceptron. 
Mathematically, it can be represented as y = f(∑i = 1n wi·xi + b), where y is the output, xi is 
the input features, wi represents the weights for the feature vectors, b is the intercept term, 
and f is an activation function—commonly a sigmoid or ReLU function. The weights 
and biases in a trained neural network are adjusted to minimize the mismatch between 
predicted and actual outputs, usually employing gradient descent and backpropagation 
algorithms [13]. This overview of supervised learning and standard algorithms is very 
detailed because it underpins how machines can be taught from labeled data to pro‑
duce accurate predictions and classifications. Mastering these concepts and techniques 
enables the practitioner to effectively deal with ML and solve real‑life problems.

1.3 UNSUPERVISED LEARNING

Unsupervised learning is a category of ML where data with no labeled responses are 
dealt with. In supervised learning, our task is to predict an output based on input–
output pairs; in unsupervised learning, the task is to deduce underlying structures 
and patterns from the data. This is particularly important when working with data‑
sets that could be impossible or too expensive to label. The main objective of unsu‑
pervised learning is to learn the data structure. It broadly applies to exploratory data 
analysis, pattern recognition, and compression. The two primary flavors of unsuper‑
vised learning are clustering and dimensionality reduction [14].

1.3.1 Types of unsupervised Learning

1.3.1.1 Clustering
Clustering is a process where all data are grouped according to a similar trend. The 
primary objective of clustering is to partition a data set into different clusters, each 
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being different, such that the points belonging to a similar group are much closer 
to one another than those in another group. Clustering is commonly applicable in 
customer segmentation, image segmentation, anomaly detection, and social network 
analysis. Distance metrics include Euclidean distance, Manhattan distance, or cosine 
similarity [14]. The most popular algorithm for clustering can uncover natural group‑
ings in the data. For instance, using a customer segmentation approach, one can 
enable the business to create distinctive customer clusters based on their purchase 
behavior. This information can be implemented for market targeting and for improv‑
ing customer satisfaction. In image segmentation, clustering can also be applied to 
break down an image into meaningful regions that can be analyzed further, as in 
object identification in an image.

Clustering algorithms can be broadly categorized into partitioning, hierarchical, 
density‑based, and grid‑based methods. Each category has its specific algorithms 
and techniques, among which many others have different strengths and weaknesses. 
For instance, in the category of partitioning methods, we find K‑means clustering, 
which is quite simple and fast but requires users to pre‑define the number of clusters. 
Agglomerative and divisive clustering belong to the hierarchical methods. They don’t 
have to specify the number of clusters a priori, which is pretty helpful in finding 
the nested data structures. Density‑based methods, such as DBSCAN, can discover 
clusters with arbitrary shapes and are highly robust to noise, making them useful in 
complex datasets. Grid‑based methods such as STING decompose the data space 
into a grid structure and perform clustering on the grid cells to balance computa‑
tional efficiency and clustering quality.

1.3.1.2 Dimensionality Reduction
Dimensionality reduction reduces the number of random variables under consider‑
ation by obtaining a set of principal variables. This is an essential technique because 
high‑dimensional data requires some form of dimensionality reduction. It helps 
reduce computational costs and avoids the curse of dimensionality [15]. Increased 
dimensions for high‑dimensional data create increased sparsity and complexity, 
making this kind of data visual and analytical challenging. Dimensionality reduction 
techniques help simplify the data to be easy to work with and comprehend. Feature 
selection and feature extraction facilitate this process of dimensionality reduction. 
Feature selection is the process of selecting a subset of relevant features. At the same 
time, feature extraction is considered a data projection into subspace. Some popular 
approaches to dimensionality reduction include PCA and ICA.

PCA finds the directions of maximal data variance, extracting its most dominant 
features from the data. On the other hand, ICA deals with finding independent com‑
ponents in the data. It has so far been applied to problems like source separation and 
source coding. These techniques alleviate the problem of overfitting, help improve 
model performance, and reduce computational resources. Dimensionality reduction 
also improves the interpretability of the data by focusing on important variables and 
relationships.
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1.3.2 Common aLgoriThms

1.3.2.1 K‑Means Clustering
One of the most popular and commonly used clustering algorithms is the K‑means 
clustering algorithm, which groups a dataset into K clusters in which a point belongs 
to the cluster with the closest mean. The algorithm works in the following manner: 
it initializes randomly K centroids; then, iteratively, the data point is assigned to the 
nearest centroid, followed by updating the centroids with the mean of the points 
assigned to them. This process goes on until the centroids change very little [16].

Here is an overview of the general steps of the K‑means algorithm:

 1. Randomly initialize K centroids.
 2. Then, assign each data point to the centroid to which it is closest.
 3. Update the centroids by computing the mean of the assigned points.
 4. Repeating steps 2 and 3 to convergence of centroids.

Since K‑means is computationally effective and very simple to implement, it is suit‑
able for huge datasets. The main drawbacks include the fact that the number of clus‑
ters (k) must be predecided, and initialization significantly influences the algorithm. 
Here, the choice of the value for K is sensitive and determinant as to how well the 
algorithm will perform; techniques have been developed for this, including the elbow 
method and silhouette analysis.

While K‑means is simple, it comes with its significant drawbacks. One such is that 
it assumes the spherical shape of clusters and that the clusters are equally sized. This 
is a deviance from actual data observations. Moreover, K‑means will be sensitive to 
outliers and noise, as points with these attributes will cause the mean calculation to 
shift significantly, influencing the cluster formation. Therefore, these have resulted 
in various forms and extensions of K‑means, for example, K‑medoids using medoids, 
actual data points, not centroids, and K‑means++ for better initialization by picking 
more informative starting points.

1.3.2.2 Hierarchical Clustering
Hierarchical clustering is a cluster analysis technique used to create a sequence of 
hierarchical clusters. It is an agglomerative (bottom‑up) method where the algorithm 
initially considers all data points to be individual clusters. The two nearest neigh‑
boring clusters are consolidated into a new cluster at each subsequent merging step. 
Divisive clustering, on the other hand, starts with all data points in one cluster and 
recursively splits them into smaller clusters [17].

The overall result of hierarchical clustering is a tree structure, a dendrogram, 
representing the nested grouping of data points and the ordering in which clusters 
are merged or split. This kind of tree‑based visualization represents the formation of 
the cluster graphically. It can be utilized to determine the ideal number of clusters by 
cutting the tree at the desired level.

Hierarchical clustering outperforms partitioning methods such as K‑means in 
numerous ways. No specification of the number of groups is required, unlike what 
happens in partitioning; hence, it is more flexible in exploratory data analysis.  
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This feature also helps hierarchical clustering be sensitive to nested data structures 
and provide more detailed insight into data organization.

However, hierarchical clustering does have its drawbacks. It can be computation‑
ally expensive: agglomerative clustering has a time complexity of O(n3), and divisive 
clustering is O(2n), thus unsuitable for large datasets. Furthermore, minor modifica‑
tions in the data may significantly influence the obtained dendrogram, so the pro‑
cess is sensitive to outliers and noise. This way, several linkage criteria, such as 
single, complete, and average linkage, can determine the distance between clusters 
to smooth out the process, making the results more reliable.

1.3.2.3 Principal Component Analysis (PCA)
PCA is a widely used technique for dimensionality reduction. This method works by 
calculating the eigenvalues and eigenvectors of the data covariance matrix [18]. The 
eigenvectors determine the directions of the principal components, while the eigen‑
values represent the magnitude of variance in these directions.

PCA technique reduces the dimensionality of a dataset while retaining as much 
variability as possible. This makes it highly useful for visualizing high‑dimensional 
data. PCA is commonly applied in image compression, gene expression analysis, and 
finance. By reducing the number of dimensions, PCA helps improve the performance 
of ML algorithms by decreasing overfitting and computational complexity.

 1. Standardize the data.
 2. Compute the covariance matrix from the standardized data.
 3. Calculate the eigenvalues and eigenvectors of this covariance matrix.
 4. Sort eigenvalues and their corresponding eigenvectors in decreasing order.
 5. Pick k eigenvectors corresponding to the k largest eigenvalues to obtain the 

principal components.
 6. Map the data into this new coordinate system founded by these principal 

components.

However, despite the capability of PCA, it has a few limitations that make it assume 
linearity in data and often not work well with non‑linear distributions in data. 
Moreover, PCA can be sensitive to scaling; therefore, the data should always be stan‑
dardized before applying the PCA algorithm.

1.3.2.4 Independent Component Analysis (ICA)
ICA is another powerful method for dimensionality reduction. It has far‑reaching 
applications in separating a multivariate signal into additive, independent compo‑
nents. Much like PCA, this method is similar. Still, it differs from the latter since 
ICA tries to maximize statistical independence among the components, unlike the 
former, which maximizes variance. ICA has been applied to many problems, includ‑
ing blind source separation, for example, the famous ‘cocktail party problem,’ where 
mixed audio signals are separated, and more recently, even brain imaging data from 
neuroscience.

ICA assumes that the observed data is a linear mixture of independent source 
signals, and its goal is to unmix the data into sources. This can be expressed math‑
ematically as follows: X = AS
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X is the measured data matrix, A is the mixing matrix, and S is the source matrix. 
One of the key objectives of ICA is to estimate the mixing matrix A and the source 
matrix S so that the components in S are as statistically independent as possible.

ICA especially works fine in applications where the underlying sources are 
assumed to be non‑Gaussian and independent. This aspect is achieved by using 
higher‑order statistical properties of the data, like kurtosis or mutual information, 
which makes evidence for independent components. The ICA can be used with sev‑
eral kinds of data, from simple image and audio signals to large financial time series.

The main ICA process is as follows:

 1. Centering and whitening the data to remove correlations and standardize 
the variance.

 2. Running an optimization algorithm, like the FastICA algorithm, where the 
maximization of non‑Gaussianity gives an estimate of the mixing matrix 
and independent components.

 3. Projection of data in this new coordinate system using the estimated mixing 
matrix.

ICA has more advantages over PCA, especially when dealing with data that is 
non‑Gaussian and independent sources exist in it. However, ICA also has some limi‑
tations. This approach requires the number of independent components to be fixed 
in advance. It can also be sensitive to initialization and convergence criteria. In addi‑
tion, ICA assumes that the source signals are mixed linearly, although this may not 
be true in real data. Proposals for some extensions or even modifications of ICA have 
been put forward in trying to deal with some of these challenges, such as non‑linear 
ICA and robust ICA.

1.3.3 appLiCaTions of unsupervised Learning

Unsupervised learning has been applied to domains [14,19]. Notable applications 
include:

1.3.3.1 Customer Segmentation
Customer segmentation in marketing makes broad use of unsupervised learning. 
Businesses can cluster customers buying behavior, demographics, and other fea‑
tures, establishing, in turn, distinct groups of customers to whom appropriate mar‑
keting strategies are built. This aids in improving customer satisfaction, increasing 
sales, and enhancing customer retention. Clustering algorithms that are mostly used 
include K‑means and hierarchical clustering.

1.3.3.2 Anomaly Detection
Another application of unsupervised learning is anomaly detection, wherein unusual 
or abnormal data points in a dataset must be identified. This will have a high utility 
value in fraud detection, network security, and industrial monitoring applications. 
Identifying anomalies enables a business to take preventive measures against risks 
and improve operational efficiency. One common anomaly detection technique is 



10 Advances in AI for Simulation and Optimization of Energy Systems

density‑based clustering algorithms like DBSCAN, which can identify clusters of 
arbitrary shapes and densities.

1.3.3.3 Image Segmentation
The task of computer vision that uses unsupervised learning is image segmentation, 
which involves partitioning an image into meaningful regions. It finds many applica‑
tions in object detection, medical imaging, and image compression. Clustering algo‑
rithms like K‑means and hierarchical clustering can be applied to group together 
similar pixels, and dimensionality reduction techniques like PCA can help simplify 
the image data.

1.3.3.4 Topic Modeling
Topic modeling belongs to such applications of unsupervised learning in natural lan‑
guage processing that aim at identifying the underlying topics within a collection of 
documents. It enables the organization and summarization of huge text corpora by 
grouping similar documents and identifying common themes. Techniques such as 
latent Dirichlet allocation (LDA) and non‑negative matrix factorization (NMF) are 
commonly used for topic modeling.

1.3.3.5 Gene Expression Analysis
In bioinformatics, unsupervised learning finds its application in gene expression 
analysis for detecting patterns and correlations in gene expression data. Clustering 
based on similar gene expression profiles should allow inference about gene func‑
tion, mechanisms of diseases, and even the identification of potential therapeutic 
targets. Dimensionality reduction techniques like PCA and ICA are normally used to 
lower the complexity of gene expression data and further analyze them.

1.4 SEMI‑SUPERVISED LEARNING

Semi‑supervised learning combines both, as shown in Figure 1.4, where supervised 
and unsupervised techniques are combined. The central concept in this strategy is 
the application of available labeled data in combination with much larger unlabeled 
data to improve learning so that it’s quite effective in producing results accurately. 
The basic idea that revolves around using these semi‑supervised learning techniques 
is the rigorous nature of acquiring labeled large datasets. This process, once entered, 
can be very time‑consuming, expensive, and sometimes very labor‑intensive [20].

Semi‑supervised learning uses labeled and unlabeled data to improve learning, 
especially when the labeled data is insufficient. One of the most important underly‑
ing principles of semi‑supervised learning is that the unlabeled data can prevent 
the learning algorithm from getting stuck in a less effective generalization mode. 
This is achieved through various methods, such as self‑training, co‑training, and 
graph‑based approaches. The model first goes through training using labeled data 
before making predictions on the labels of the unlabeled data, some of which are 
added to the training set for retraining. Co‑training involves training two or more 
models on different views with the ability to teach each other, usually by exchanging 
labels for the unlabeled data. Graph‑based methods create a graph in which nodes are 
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the data points, the edges represent the similarity, and the labels propagate from the 
labeled to the unlabeled nodes based on their connections [21].

Semi‑supervised learning has diverse applications in domains characterized by 
an absence of labeled data. Natural language processing, for instance, is used to 
enhance the performance of tasks like text classification or sentiment analysis by 
using large corpora of unlabeled text. In computer vision, semi‑supervised learn‑
ing has found application in object detection and image segmentation, where anno‑
tating images can be extremely expensive. In healthcare, semi‑supervised learning 
allows medical diagnosis and treatment planning through labeled medical records 
and an enormous volume of unlabeled patient data. Semi‑supervised learning helps 
implicitly bridge the gap between supervised and unsupervised learning methods in 
handling real‑world challenges posed by ML, realizing an approach concerning the 
ability of labeled and unlabeled data combined [22].

1.5 REINFORCEMENT LEARNING

Reinforcement learning is an ML technique where an agent learns how to make 
decisions over time from selections made in an environment it interacts with, driven 
by the desire to maximize overall rewards. This contrasts with supervised and unsu‑
pervised learning, in which the learning algorithm is non‑interactive with the data or 
the environment and deals with time and improvisation to achieve the best outcomes. 
The agent learns to interact within the environment, receives feedback through 
rewards or penalties, and uses this feedback to adapt its behavior during successive 
interactions in the future. In RL, the goal is to devise a policy describing the best 
action to take in each state to maximize long‑term rewards [23].

FIGURE 1.4 Semi‑supervised learning.
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So, in reinforcement learning, we pretty much have the same setting: a Markov 
decision process (MDP), which includes a set of states, a set of actions, a transition 
function, and a reward function. The agent must learn a policy to maximize the 
expectation of the cumulative reward over time. Important concepts in reinforce‑
ment learning are state, action, reward, policy, value function, and Q‑function. The 
state represents the current situation of an agent, the action is the choice taken by the 
agent, and the reward is the feedback from the environment. The policy determines 
the agent’s behavior, the value function predicts the expected reward for being in a 
state, and the Q‑function predicts the expected return for taking a particular action 
for a state.

1.5.1 Common aLgoriThms

1.5.1.1 Q‑Learning (QL)
QL is a relatively elementary and popular algorithm within reinforcement learning. 
It learns off‑policy learning estimation directly through the value of the policy real‑
ization, not under the available policy. The basic idea of QL is to learn a Q‑function, 
Q(s, a), which estimates the expected cumulative reward of acting (a) in the state (s) 
and following the optimal policy after that.

1.5.1.2 Deep Q‑Networks (DQN)
DQNs extend QL to handle high‑dimensional state spaces using deep NNs. Traditional 
QL has performance issues in the face of large or continuous state spaces because 
it needs to compute a Q‑value for every state‑action pair. In DQN, the Q‑function 
is approximated using a neural network that can generalize over some notion of 
state‑action space [24].

Q‑values are approximated using a neural network with the DQN algorithm, 
and the network parameters are updated using gradient descent. Techniques that 
involve experience replay and target networks are applied to stabilize training. This 
will record an agent’s experience into a replay buffer and sample from it in random 
batches, thus breaking the correlation between consecutive updates and benefiting 
from learning stability. Target networks, which are periodically updated with the 
weights of the Q‑network, are used to generate stable targets for the Q‑value updates.

1.6  PRACTICAL IMPLICATIONS OF AI AND ML 
IN ENERGY AND POWER SYSTEMS

Artificial intelligence and ML can potentially lead to significant changes in the 
energy and power systems sector. Their applications cover transformational aspects 
of energy production, transmission, and consumption stages, opening opportunities 
to ensure better effectiveness, reliability, and sustainability.

1.6.1 improving energy effiCienCy

AI and ML hold huge promise for improving efficiency in the functioning of energy 
systems. For example, smart grids use various algorithms from ML to analyze the 
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available consumption patterns and forecast demand. Forecast demand will allow 
utilities to plan accordingly, thus avoiding energy wastage through streamlining 
energy distribution. Artificial intelligence predictive maintenance can detect equip‑
ment failure in advance, cutting downtime and maintenance costs [25]. Moreover, 
ML optimizes renewable energy sources, such as solar and wind farms, by weather 
forecasting and adjusting the mode of operations to obtain maximum output in terms 
of energy, as indicated by [26].

1.6.2 inTegraTing renewabLe energy

Integrating renewable energy sources into the power grid brings several challenges 
relating to variability and unpredictability. AI and ML combat the variables asso‑
ciated with renewable energy by enhancing the forecasting of renewable energy 
sources. For instance, ML algorithms can consider long‑term weather data besides 
meteorological information in real‑time, enabling highly accurate solar and wind 
energy production predictions. This appropriately balances supply and demand; in 
return, this ensures grid stability and minimizes the dependency on fossil fuels, 
which is explained [26].

1.6.3 smarT grid managemenT

Smart grids are AI and ML power systems that improve the reliability and resilience 
of the grids. AI, through its real‑time monitoring and analysis data, can detect anom‑
alies, identify fault conditions, and trigger corrective actions autonomously. Finally, 
deploying ML algorithms also enables advanced load forecasting, demand response, 
and energy storage management; hence, it optimizes operational costs attached to 
grid operations. For example, AI can dynamically adjust power flows to ensure no 
load conditions are reached, and energy storage management is carried out to keep 
the power state stable [27].

1.6.4 Consumer energy managemenT

AI and ML applications are further associated with empowering consumer energy 
management. AI‑embedded smart home systems learn user preferences and habits 
and optimize energy use for heating, cooling, lighting, and appliances. Such sys‑
tems could even communicate with a grid, enabling a demand response, meaning 
low‑usage energy at peak periods, thus adding to home and grid stability. Moreover, 
ML algorithms can help visualize energy consumption patterns so consumers know 
how to use and conserve energy through their decisions [26].

1.6.5 energy Trading enhanCemenT

Artificial intelligence and ML are revolutionizing energy trading. This is through the 
utilities essential in generating comprehensive market insights for decision‑making. 
For instance, ML algorithms analyze broad market data to detect trends and price 
movements, which help offer predictive ability that inevitably allows traders to make 
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an informed decision. AI‑based trading platforms can automate several trading strat‑
egies, thereby providing optimized buy and sell orders with profit. Furthermore, AI, 
alongside blockchain, will assist peer‑to‑peer energy trading that allows consumers 
to buy and sell any surplus of energy to one another. Therefore, this will make the 
market efficient [26,27].

1.7  FUTURE DIRECTIONS AND ETHICAL CONSIDERATIONS 
IN AI APPLICATIONS IN POWER SYSTEMS

Growing deployment of AI and ML in power systems to ensure they are applied 
responsibly and are of good use.

1.7.1 daTa privaCy and seCuriTy

AI and ML depend extensively on data; thus, ensuring this feature is put in place 
becomes essential in ensuring data privacy and security. Power systems collect vast 
volumes of data from the consumers, which in some cases may contain sensitive 
information on the habits and behaviors of the consumers. This is sensitive, substan‑
tive data that must be protected from leaks and other abuse. Strong encryption pro‑
tocols and systems for storing data must be packaged with stringent access controls 
over consumer data. Finally, regulatory frameworks must be implemented regarding 
how data is collected, harnessed, and shared across the energy industry.

1.7.2 TransparenCy and aCCounTabiLiTy

Stakeholders need to trust AI and ML systems, which call for transparency in the sys‑
tems. AI algorithms should be explainable, enabling the stakeholders to understand 
how decisions are made. This becomes too critical in such critical infrastructures as 
power systems, where the ramifications might be huge. Cleanliness of accountability 
can be ensured by setting up well‑engineered protocols of human oversight and inter‑
vention, with particular emphasis placed on instances in which AI decisions could 
result in adverse effects.

1.7.3 bias and fairness

The AI and ML systems can unknowingly pick up or accentuate biases in the train‑
ing data sets within the power system without the system designer’s knowledge. For 
example, inappropriately lower or higher tariffs could be charged for a certain cat‑
egory of consumers or region. Developers and implementers must ensure that algo‑
rithms are fair and unbiased while their performance is monitored and evaluated to 
identify and reduce biases. This is enabled through, first, the use of diverse and repre‑
sentative datasets during training in addition to the use of fairness‑aware algorithms 
and evaluation metrics [28,29].
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1.7.4 environmenTaL impaCT

AI and ML can improve the efficiency and sustainability of the power system; they, in 
an initiative, impact the environment, specifically on power consumption during data 
processing and storage. There is a need to develop energy‑efficient AI algorithms and 
such corresponding hardware while factoring in the impact such AI deployments 
have on the environment. One such optimistic direction for the future is green AI, 
which reduces the environmental impact of AI technologies [28].

1.8 CONCLUSION

In conclusion, inside ML, many techniques and approaches are oriented to some 
data and problem domains. Supervised learning techniques act on labeled data and 
can provide good predictions because, for most day‑to‑day strategies, historical data 
with known outcomes are used. On the other hand, unsupervised learning is quite 
effective in finding hidden patterns and structures, which usually come in handy in 
unlabeled datasets. While supervised learning deals with labeled data and unsuper‑
vised deals with unlabeled data, semi‑supervised learning deals with labeled/anno‑
tated and unlabeled/unannotated data to create a system with better quality learning 
and learning performance. Reinforcement learning differs in the main dynamic and 
interactive approach in which agents learn to decide through the trial and error of 
these decisions, optimizing their decisions given the cumulative effect of rewards 
perceived. Smaller explorations, such as the play of algorithms like QL, DQNs, and 
PG Methods in Reinforcement Learning, show the great adaptability of the various 
ML techniques within these learning paradigms and their application domains. Each 
has strengths and applications with major contributions to research areas varying 
from natural language processing and computer vision to robotics and healthcare. 
The continued evolution of ML will finally be reflected by the further development 
and refinement of these algorithms to meet the more sophisticated and differentiated 
challenges. Integrating advanced ML models in real‑world applications promises to 
drive innovations and increase efficiencies in various industries. ML can enable the 
unlocking of new opportunities to get closer to understanding truly deep volumes of 
data generated in the Information Age.
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2 Applications of Artificial 
Intelligence Techniques 
in Power Systems

Mostaan Khakpoor

2.1 INTRODUCTION

2.1.1 baCkgrounds

As a demanding technology, AI has demonstrated various applications in many fields 
including medicine, finance, marketing, customer service, transportation, cyberse‑
curity, and power systems. Whether we admit it or not, AI will permeate our daily 
lives in many ways and will have a significant impact on addressing societal needs. 
In today’s society, AI is developing in many ways, targeting all ranges of audiences. 
It can range from our daily Google searches, which recommend lovely jackets, to 
suggesting food recipes. All have been made possible with the advent of science 
and research in hardware and software engineering. The introduction of open source 
code and libraries also effectively helped in shifting fast toward more intelligent and 
smarter tools.

With advancements in AI and machine learning (ML) algorithms, it becomes cru‑
cial to understand how AI works, its impacts, how it contrasts with other technolo‑
gies, and the opportunities it may foster in the future. In addition, the advances in 
AI‑powered techniques in recent years have attracted great attention in industry and 
academia. Our industry has been revolutionized several times over the years, start‑
ing back from the agricultural revolution in 1760, which introduced mechanization, 
water power, and steam‑powered machinery by 1840. This led to mass production 
and long assembly lines and evolved to the more recent emergence of computers 
and automation. Throughout history, humans have embraced new technologies that 
change the world, making life easier and more pleasant by providing various services 
and comforts.

Artificial intelligence (AI) is a powerful tool that can revolutionize various ser‑
vices in our daily lives. AI is also recognized as the driving force behind the fourth 
industrial revolution. It has the potential to redefine future objects from our cell‑
phones to large power plants and propel the digitalization of our society. Although 
AI applications are considered controversial by some industry magnets, they have 
demonstrated strong potential for making a difference.

The rapid changes are caused by two main reasons. On one hand, the advance‑
ments of high‑performance hardware like GPU processors have increased computa‑
tional power, consequently, computers can perform complex and sophisticated tasks 
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in a more effective and efficient fashion. On the other hand, the abundance of data 
shared on the internet, YouTube, cellphone applications, etc. has paved the way for 
using them as AI inputs. These achievements have allowed AI to excel progressively 
in recent years. AI has demonstrated potential and strong impacts in areas such as 
healthcare [1–4], finance and marketing [5,6], customer services [7–9], transportation 
[10,11], cybersecurity [12–14], and beyond.

2.1.2 inTroduCTion of ai and power sysTems

Witnessing promising solutions powered by AI in worldwide applications has attracted 
the attention of researchers and engineers working in various areas. One of the focal 
points in investigating AI applications is within the domain of power systems. Power 
systems are always receptive to positive changes, such as restructuring their environ‑
ment and reducing air pollution by utilizing renewable energy sources. They con‑
sistently welcome new technology, making them ever‑evolving infrastructures. In 
addition, many sensors have been installed in the different sectors of power systems, 
preparing the potential for integrating with AI‑powered techniques. Nowadays, power 
systems are equipped with smart meters, phasor measurement units, and supervisory 
control and data acquisition (SCADA) which provide abundant data for AI usage. 
Additionally, being exposed to various uncertainties and ever‑evolving challenges in 
our electricity networks, AI can bring considerable benefits to the system and tremen‑
dously ease the so‑called hard decision‑making within it. Current technologies may 
not be adequate for the complex and ever‑changing future power systems. As we move 
toward a greener world, mindful of air pollution and limited fossil fuels, we deal with 
a large influx of unpredicted renewable energies penetrations and their role in meeting 
demands and maintaining power balance equation [15].

AI models have provided a new era of efficiency, innovation, and reliability. AI 
will inevitably become pervasive in our power systems over the next few decades. 
Therefore, it is necessary first to identify the potential applications on power systems 
and then to use AI accordingly while appropriate. AI has the potential to be applied 
in both traditional power systems and smart grids. Therefore, AI applications can be 
investigated and accordingly applied to different power grids’ issues. AI algorithms 
are usually better adapted to power system uncertainties, are robust against various 
system models, and are less dependent on complete system information for their 
implementation. Therefore, AI is a valuable asset for power system engineers and 
operators in addressing power system issues.

2.1.3 ChapTer’s ConTribuTion

AI may be utilized in numerous applications in power systems such as uncertainty 
management, anomaly detection, forecasting and predictions, cybersecurity, and 
optimizations. AI has effectively demonstrated capabilities in topics that are also 
central to discussions in the power systems area. Having this in mind, a comprehen‑
sive review of AI applications in power systems, ranging from smart grids to tradi‑
tional grids, is paramount for researchers and engineers. A survey that investigates 
the impacts of AI on power systems and explores the current and future trends in 
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AI‑powered algorithms in this field is yet scarce in the technical literature. Therefore, 
this chapter tries to fill this gap and shed light on the extensive impacts that AI can 
have on our power systems. The main contributions of this chapter are as follows:

• The chapter provides a comprehensive overview of the state‑of‑the‑art AI 
applications within power systems, examining both the current landscape 
and future potential. It delves into various application areas where AI and 
ML can make a significant impact, exploring several primary applications 
of AI in detail.

• A range of ML algorithms is discussed, highlighting different techniques 
and the potential each holds for specific power system applications. The 
chapter also addresses concerns and challenges associated with the full 
deployment of AI in power systems, offering insights that can assist in mak‑
ing informed decisions and strategies for integrating AI into power grid 
enhancements.

• Furthermore, the chapter explores potential future developments and iden‑
tifies research gaps in AI‑powered techniques. This forward‑looking per‑
spective directs scholars and practitioners toward areas needing further 
action to expand AI applications, particularly for safety‑critical power sys‑
tem problems.

2.1.4 ChapTer’s organizaTion

The chapter is organized as follows. Section 2.2 provides a preliminary discussion 
on electric power systems. Section 2.3 provides fundamental information about 
traditional power systems and smart grids, stating their principles and differences. 
Section 2.4 delves into showing and comprehension of AI opportunities in power 
systems. Additionally, the opportunities that AI can take part in will be introduced. 
Section 2.5 discusses the most prevalent inputs and parameters in power systems, 
used by AI‑powered algorithms as data sets for training purposes. Section 2.6 pres‑
ents several AI applications in power systems and explores them in detail. In Section 
2.7, the challenges and limitations of using AI in power systems are highlighted. 
Section 2.8 provides a discussion of the research opportunities in AI and possible 
avenues for developing and exploiting its benefits within the power sector. Section 
2.9 draws the conclusions.

2.2 PRINCIPLES OF ELECTRIC POWER SYSTEMS

Before exploring AI applications, it is essential to understand the fundamental com‑
ponents of electric power systems. These systems are interconnected and complex 
networks comprising various sectors and equipment. The following are the main 
components [16]:

• Generation sector: This is where electricity is created. This sector encom‑
passes all the power plants, including those powered by gas, coal, wind 
turbines, photovoltaic cells, and hydropower, where electricity is produced. 
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Therefore, the goal of this sector is to generate electricity while considering 
cost and reliability.

• Transmission sector: The transmission system is considered the backbone 
of power systems, facilitating the delivery of electricity over long distances. 
This sector includes high‑voltage transmission lines and high‑voltage sub‑
stitutions and transformers.

• Distribution sector: This is the final part of the electricity journey. The 
distribution system manages the final step of delivering electricity to 
residential, commercial, and industrial customers. The low‑voltage lines, 
step‑down transformers, and low‑voltage substations belong to this sector.

• Control and monitoring sector: This sector is responsible for controlling 
power systems so that the operation of the network is done in a reliable and 
secure manner. Smart meters, phasor measurement units and SCADA, and 
energy management systems are among the facilities in this sector.

The power system structure is depicted in Figure 2.1. The ultimate goal of power 
systems is to generate, transmit, distribute, and deliver electricity to end‑users while 
maintaining reliability, security, and efficiency with the optimal operational cost.

2.3  FUNDAMENTALS OF TRADITIONAL POWER 
SYSTEMS AND SMART GRIDS

Power systems can be subject to different regulations and rules throughout the 
world. Based on their policies and structure, they may be classified as traditional 
power systems or as modern power systems, commonly referred to as smart 
grids. Traditional power systems are generally known as centralized electricity 
networks where electricity produced by power plants is distributed to end‑users 
through transmission and distribution lines [17]. These systems are character‑
ized by a so‑called vertical structure with typically unidirectional power flows. 
On the other hand, modern power systems or smart grids revolutionize traditional 

FIGURE 2.1 Power system structure.
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power systems, bringing different benefits such as increased efficiency, reliabil‑
ity, and environmental‑friendly technology, combined with a greater integration of 
Distributed Energy Resources. Furthermore, smart grids authorize consumers to 
participate in energy production, thereby advancing them to “prosumers”. Unlike 
traditional power systems, smart girds deploy a large number of sensors and smart 
meters. Table 2.1 shows the main differences between traditional power systems 
and smart grids [18].

Despite these differences between traditional power systems and smart grids, 
they still share many features and services. As such, AI can be applied to both 
systems to enhance customer satisfaction and improve the services they provide. 
For the sake of generality, we use the term “power systems” throughout this chap‑
ter as a general term to refer to both traditional power systems and smart grids. 
Note that certain services or problems may pertain specifically to one of these 
two structures. Nonetheless, AI applications are broad and can be implemented in 
numerous areas within both traditional power systems and smart grids. In the fol‑
lowing sections, we will discuss various applications that AI either can be a part of 
or currently are being used.

2.4 REALIZING AI OPPORTUNITIES IN POWER SYSTEMS

The initial use of AI can be dated back to 1950 when Alan Turing created the “Turing 
Test” [19]. Afterwards, many researchers and computer scientists worked on develop‑
ing AI‑powered platforms for different purposes. Therefore, ML and deep learning 
(DL) algorithms have emerged. Although AI and ML are interconnected and used 
interchangeably in the literature, it should be noted that they are not the same [20]. 
Indeed, ML is a subset of AI. In other words, all ML and deep learning algorithms 
are an example of AI, but not all AI is ML or DL [21], see Figure 2.2. AI represents a 
broader spectrum of technologies including planning, robotics, and rule‑based algo‑
rithms which may not necessarily involve learning from data.

Furthermore, the advent of large language models (LLMs) (e.g., ChatGPT [22] 
and Gemini [23]) has reformatted the field of natural language processing. ChatGPT, 
introduced by OpenAI, has received great attention and interest from engineers 
and researchers around the world. It has shown the ability to generate coherent and 

TABLE 2.1
Comparison between Traditional Power Systems and 
Smart Grids

Characteristics Traditional Grids Smart Grids

Electricity production Centralized Distributed

Power flow Unidirectional Bidirectional

Consumer participation Passive Active

Environmental pollution Higher Lower

Sensors’ deployment Lower Higher
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contextually relevant responses. This feature underscores the prowess of LLMs 
which makes them valuable tools for numerous applications.

ML involves the algorithms’ development that can learn, predict, and make deci‑
sions based on data. ML allows systems to learn and improve from data or experi‑
ence without being explicitly programmed. Given the power grids’ nature, ML and 
DL algorithms are a perfect fit when trying to leverage the benefits of AI. Generally, 
ML algorithms can be categorized into three main groups: supervised, unsupervised, 
and reinforcement learning. In the following, each group is defined.

• Supervised learning: Supervised learning is a type of ML algorithms, pro‑
vided with a specific set of input‑output pairs and a collection of labeled 
training data. The algorithm employs machine inference to develop a func‑
tion that can replicate the mapping process for new data. Supervised learn‑
ing is a branch of ML in which the system learns from pre‑classified or 
pre‑labeled existing data. A classic example of a supervised learning task is 
the classification problem, where the goal is to automatically classify objects 
based on certain known input features after it has been properly trained.

• Unsupervised learning: Unsupervised learning is another type of ML 
algorithm. It requires very little prior information about the model. This 
type is often referred to as clustering algorithms. The primary clustering 
approaches can be categorized as partitioning, density‑based, grid‑based, 
and hierarchical, although different researchers may use slightly different 

FIGURE  2.2 The Venn diagram of artificial intelligence, machine learning, and deep 
learning.
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terms. No single approach has been shown, either theoretically or experi‑
mentally, to be applicable to all problems. Instead, different clustering 
approaches have their own advantages and limitations, making them suit‑
able for different types of problems.

• Reinforcement learning: The reinforcement learning approach is 
well‑known for tackling problems where information is incomplete or hid‑
den. RL focuses on making a sequence of optimal decisions over time within 
an uncertain environment. This is achieved through ongoing interactions 
between the decision‑maker (known as the “agent”) and the environment. 
Throughout this learning process, the agent improves its performance by 
continuously learning from the environment and taking actions that influ‑
ence the environment to achieve its goals.

This is an introductory description for each group. Diving deep into each group is 
beyond the scope of this chapter. Interested readers may refer to Sarker [24] for more 
information.

Power systems, which are among the largest infrastructures, frequently deal with 
uncertainties stemming from various sources including renewable energy resources 
(RES), load forecasting, generation and consumption volatility, demand‑side man‑
agement, price incentives programs, and more. The manifold stochastic nature of 
participants and facilities in the electricity networks combined with unpredicted 
equipment failures and weather conditions, render power systems highly complex 
and intermittently unpredictable. Thus, reliable and efficient operation by network 
operators is a challenging task.

Power systems have utilized various methods to meet customers’ demand [25,26]. 
Figure 2.3 illustrates a range of generic uncertainties with regards to different time hori‑
zons [27]. It should be noted that uncertainties in a typical power grid can span from 
millisecond scale for transient studies to several years for expansion planning [28].

In exploring AI opportunities within power systems, addressing uncertainties is 
critical yet worthy avenue of research since decision‑making under uncertainties is 
always a desideratum across many engineering disciplines including power system 
problems. Table 2.2 provides an overview of various opportunities of AI‑powered 
models in power systems. It should be noted that based on the specific characteristics 
of the topic, these models may be utilized in one or more types of techniques.

2.5 INPUTS OF AI IN POWER SYSTEMS

It is obvious that data is very important when working with AI‑based algorithms. 
A lack of data or an abundance of it can significantly impact ML performance. In 
power systems, a variety of measurements and parameters can be utilized as the 
required inputs for AI‑powered techniques and ML algorithms. Some of the most 
frequently used inputs and parameters are as follows:

• Customer demand: It can indicate the required power to be produced 
and delivered. It can also aid in load forecasting and predicting future load 
growth.
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• Generation capacity: This input is useful for both short‑term operational 
scheduling and long‑term planning. For renewable energy sources like wind 
turbines and solar cells, the generated amount can also help predict system 
behavior and the expected amount of green energy participation.

• Current and voltage measurements: These are frequently used as inputs 
for ML algorithms to train models that detect anomalies or faults in differ‑
ent parts of the system and project power loss during operation.

• Equipment data: Analyzing operational data of different equipment in the 
power system can predict the likelihood of failure and suggest routine main‑
tenance to prevent unexpected breakdowns.

• Seasonal changes and weather data: These datasets are important for 
determining variations in load, generation, and power system stress. They 
can also inform predictions about power system management and opera‑
tional consequences. Additionally, weather data are crucial in forecasting 
the next hour’s electricity generated by renewable sources.

• Transmission capacity: As an input for AI‑powered techniques, it can help 
predict congested lines during specific hours and assist in unit commitment 
scheduling and power loss reduction.

FIGURE 2.3 Levels of uncertainties with respect to the time horizon.
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TABLE 2.2
Opportunities for AI‑Powered Techniques in Power Systems

AI‑Powered Technique Opportunities in Power Systems

Supervised learning • Security assessment in power system
• Asset class failure prediction
• Electric vehicle charging profile
• Optimal power management of microgrids
• Trade‑off between operation cost and security risk
• Collusion detection in electricity markets
• Forecast the operational modes of photovoltaic cells
• Forecast battery systems
• Harmonic management in distribution system
• Anomaly detection in smart meters in distribution systems
• Making smart grids more transparent
• Non‑intrusive load monitoring
• Automated residential appliance annotation
• Optimal demand response of HVAC systems
• Dynamic security assessment
• Screening power system contingencies
• Short‑term (i.e., next hour/day) load forecasting in power systems
• Substations sitting and sizing problem
• Detection of unobservable false data injection attacks
• Application of micro‑phasor measurements in network event type 

identification
• Electricity consumers’ characterization
• Wind speed forecasting
• Demand‑side management

Unsupervised learning • Harmonic management in distribution system
• Non‑intrusive load monitoring
• Screening of system disturbances
• Detecting the correct direction of Photovoltaic array
• Optimal grid reconfiguration problem
• Forecast of the plug‑in electric vehicles (PEV) travel behavior
• Detecting types of events in micro‑PMU measurements
• Data anomaly detection
• Assessments of voltage fluctuations in the power systems
• Detecting and classifying faults in the transmission lines
• Disturbance event identifier
• Short‑term load forecasting in a day‑ahead load profile
• Electricity consumers characterization
• Estimate the missing data from PMU
• Impedance and topology estimation of distribution networks
• Dynamic security assessment
• Detecting non‑technical losses
• Operational risk assessment
• Preventive dynamic security control
• Congestion status identification

(Continued)
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• Charging and discharging data: This information can be utilized in ML 
algorithms to predict total demand at electric vehicle (EV) charging sta‑
tions, the required energy purchase, the net revenue for station operators, 
and more. Optimal charging and discharging schedules can also be recom‑
mended to EV owners to help reduce system peak load.

• Network traffic data: ML algorithms can analyze these data sets, acquired 
by SCADA systems, for abnormalities which can indicate cyberattacks. 
Compromised data may also be used to train models to recognize such 
attacks.

It should be noted that the above‑mentioned data are among the most 
prevalently used inputs for ML algorithms in power systems. However, 
there are also other data sets that can serve as additional inputs for various 
applications, such as special events data, phasor measurement unit data, 
and so on.

TABLE 2.2 (Continued)
Opportunities for AI‑Powered Techniques in Power Systems

AI‑Powered Technique Opportunities in Power Systems

Reinforcement learning • Cascade failure damage control
• Estimation of the system voltage status
• Load frequency control
• Demand‑side energy management
• Intelligent power system flow
• Increasing profits of a market investor
• Scheduling of electric vehicles charging
• Minimizing system operator cost
• Demand response control
• Operational efficiency of energy system storage
• Maximizing power extraction from PV array
• AC optimal power flow
• Alleviation of battery energy system storage systems capacity
• Maintaining security and resiliency in power grid
• Residential building energy management
• Day‑ahead scheduling to charge an EV fleet
• Volt‑VAR control of power distribution system
• Tap setting of load tap changers

LLM (ChatGPT, Gemini, 
Llama, …)

• Co‑planner in planning study
• Tool for power utility companies
• Designing Chatbots for engineers and practitioners
• Creation of workshops and learning platform for electricity employees
• Support for inquiries about information technology and staff‑related 

issues
• Customer services and customer awareness programs
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2.6 AI APPLICATIONS IN POWER SYSTEMS

The utilization of AI‑based algorithms in power systems traces back to the last three 
decades [29]. While the concept of AI did not make significant strides forward in 
power systems for a long time, it has experienced a surge of investigation over the 
last decade. These models are equipped to deal with sophisticated problems with 
non‑linear mathematical characteristics. The deployment of AI in power systems is 
aligned with the challenges inherent in their environment. In general, ML algorithms 
can predict, classify, and optimize data based on the problem’s requirement. In this 
context, each algorithm can play an important role in resolving current issues in 
power systems.

The applications of AI in power systems can be broadly classified into two critical 
areas: operation and planning. Power system operation refers to the tasks involved 
in meeting demands reliably and securely during real‑time power generation. Power 
system operation can range from power plants, transmission lines to local distri‑
bution systems. The problem encompasses unit commitment, optimal power flow, 
generation scheduling, reactive power dispatch, charging and discharging of EVs 
from/to main grid, voltage and frequency control, security assessments, and so on. 
Therefore, power system operation represents a large domain with challenges. In the 
following sections, some major power system issues are explored in detail where AI 
algorithms have been effectively employed.

2.6.1 power sysTem expansion pLanning

A typical power system is a large and complex infrastructure. It consists of power 
plants, transmission lines, AC and DC distribution lines, residential and commer‑
cial demands, FACTS devices, wind farms, etc. The primary goal of power system 
expansion planning is to optimally determine where, when, and what size for new 
equipment should be installed while considering planning indices [30].

In power system expansion planning, a variety of factors may be optimized includ‑
ing investment cost, congestion cost, reliability index, social welfare, etc. Types of 
power system planning encompass generation expansion planning, transmission 
expansion planning, and reactive power planning. Since the expansion planning 
problem seeks an optimal plan within a given case study, reinforcement learning 
algorithms are well suited to this problem and have been used [31,32].

2.6.2 fauLT proTeCTion

The main objective of fault protection is to detect, and potentially locate, faulty sec‑
tions and isolate them from healthy sections so that the rest of the system contin‑
ues operating normally. Fast fault detection is crucial because the fault currents can 
exceed several times of rated conditions within a second.

Failure to detect faults promptly may interfere with the healthy parts of the sys‑
tem and therefore propagate throughout the system and even collapse the whole sys‑
tem or cause blackouts. Therefore, fault protection is a critical task that should be 
done quickly and accurately. Additionally, faults can have different types and each 
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presents different behaviors and impacts on the system. Generally, designing a ver‑
satile fault detection scheme that can work with different types is a complex task 
that requires solid electrical engineering knowledge and system modeling. Due to 
the inherent nature of the fault protection problem, one of the supervised learning 
algorithms, semi‑supervised or unsupervised algorithms are suitable for addressing 
this problem [33–35].

2.6.3 demand foreCasTing

Demand forecasting is a key predictor of future electricity needs for both consumers 
and industrial entities. It takes two primary shapes: short‑term, which looks hours to 
days ahead, and long‑term, which projects months to years into the future. Achieving 
precision in demand forecasting is critical since it guides real‑time decision‑making 
on the amount of power generation that must be deployed. Therefore, everything 
from operational efficiency to the stability and reliability of power grids depends on 
accurate forecasting.

AI/ML algorithms can analyze historical demand data considering influencing 
factors such as weather conditions, economic indices, social events, and behavioral 
trends of consumers, among others [36,37]. ML algorithms can enhance their fore‑
casting accuracy by adjusting to new patterns over time.

2.6.4 renewabLe energy inTegraTion

Integrating RES into the power system can be challenging due to their variable and 
intermittent nature [38]. This integration requires a careful balance between power 
production and power consumption.

ML can predict renewable energy output power by analyzing weather data and 
historical patterns of production (i.e., wind farms or solar panels.) [39]. Thus, it can 
optimize the operation of conventional power plants and manage energy storage sys‑
tems in order to relieve renewable energy fluctuations inherent in RES.

2.6.5 prosumer risk managemenT

Prosumers generally refer to consumers, or end users, who also contribute to electric‑
ity production through their installed rooftop photovoltaic cells or small‑scale wind 
turbines. Therefore, prosumers engage in both buying and selling electricity with 
utilities or smart grids. Due to price volatility and changing regulatory, prosumers 
must manage their risks when participating in the market. ML can build models for 
predicting market prices and optimizing bidding strategies [40].

2.6.6 prediCTive mainTenanCe

Predictive maintenance means routinely inspecting and repairing power system 
equipment to prevent any failures before they occur. This is a crucial practice to 
avoid unplanned outages and to extend the lifespan of assets. Moreover, it also aids 
in properly addressing unexpected power outages in the power systems.
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The use of ML algorithms can improve predictive maintenance by analyzing data. 
It detects anomalies that could indicate impending equipment failures. Thus, ML 
enables the early identification of required maintenance for specific assets [41,42]. AI 
algorithms can learn to identify and detect deviations from normal operation patterns 
as an indicator of potential issues.

2.6.7 eLeCTriC vehiCLes inTegraTion

EVs are becoming increasingly prevalent in the automobile industry. Many compa‑
nies now offer their EV models to consumers. EVs can potentially add a significant 
load to the power grid and change the load duration curve. Hence, integrating this 
new load in a manageable way is crucial.

AI algorithms have shown effectiveness in managing when and how EVs are 
charged optimally [43,44]. Consequently, they help smooth out potential peak points 
on the load duration curve. They have also demonstrated their ability to optimize the 
use of EV batteries as distributed storage resources within the power grid [43].

2.6.8 sTabiLiTy moniToring

Monitoring the power system stability involves continuously assessing the status of 
the power system to maintain stable operating conditions under various situations. 
This process is critical to ensure that the system can reliably withstand disturbances 
like faults, demand changes, or fluctuating generation levels [45].

Utilizing AI‑powered models to analyze data enables the early detection of signs 
indicative of instability, prediction of potential threats, and execution of preventive 
course of corrective actions to mitigate the risk of cascading blackouts or other fail‑
ures. ML algorithms have contributed significantly to improving the overall stability 
of power systems [46,47].

2.6.9 CyberseCuriTy

The shifting toward digitized power systems increases the vulnerability of the system 
to cyberattacks. Therefore, this may disrupt normal operations and compromise data. 
AI can monitor network activity and detect any unusual pattern that may indicate a 
security breach. Consequently, it allows rapid response and mitigation of threats. 
Deep learning methods because of their enhanced algorithm structure have shown 
well suited to deal with these cybersecurity challenges [48,49].

2.6.10 residenTiaL buiLding energy managemenT

Residential building energy management is the process of monitoring and control‑
ling energy use in homes or apartments. Activities include turning off unnecessary 
lights and managing internal temperatures and more. Therefore, the goal is to opti‑
mize energy efficiency and consumption in the building.

AI algorithms can analyze consumption patterns and accordingly recommend 
energy‑saving strategies, tailored to the usage profiles of a household. Furthermore, 
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these systems can dynamically control Heating, Ventilation, and Air Conditioning 
(HVAC) systems and adjust thermostats based on the occupancy or external weather 
conditions. With real‑time monitoring and controlling of the system, AI algorithms 
can guide to make more energy‑efficient decisions [50,51].

Note that the topics mentioned represent some of the most prevalent applications 
of AI in power systems. It is evident that AI has the potential to be adopted across 
various aspects of the power system. These algorithms are continuously improving, 
enabling them to handle increasingly large‑scale and complex power systems. Such 
enhancements accommodate the growing number of participants and uncertainties 
in both traditional power systems and smart grids.

2.7 AI CHALLENGES IN POWER SYSTEMS

With AI becoming more pervasive in our daily lives, understanding, and preparing 
for all the risks associated with this technology is crucial. Despite all the remarkable 
merits of AI, it still should not be considered as a panacea for problems in power sys‑
tems. The full applicability of AI‑powered algorithms in power systems has encoun‑
tered certain considerations and challenges. These challenges can be categorized 
into four main areas which can also be considered as future works in improving and 
developing AI applications in power systems issues.

 1. Training issue: AI applications are dependent on the availability of data for 
the problem under study. The training phase often requires a large number 
of samples and high‑quality training data sets to ensure the performance is 
reliable enough to be adopted. Traditional power systems still use the old 
measurement sensors with partially observable data. Although smart grids 
offer a better environment with more sensors and therefore more real‑time 
data, training data can still be scarce and costly to collect in many situations 
and operational scenarios.

 2. Lack of explainability: The use of AI is frequently identified with the 
black‑box characteristics of its algorithms. Indeed, the absence of the‑
oretical analysis and clear formulations can make electrical engineers 
skeptical and doubtful about AI performance. This is particularly true 
when the applications are related to safety‑critical applications concern‑
ing the safety and security of power systems. In such cases, the black‑box 
nature of the AI models may cast doubts on the reliability of results. 
Therefore, still more research is needed to enhance the transparency and 
trustworthiness of the AI models in power systems. The ability to elu‑
cidate the reasoning behind decisions is necessary to gain the trust of 
power system engineers when applying such an algorithm in safety‑criti‑
cal applications.

 3. Infeasible results: AI models can produce infeasible results in power sys‑
tems issues. Many AI models work solely with the data they receive regard‑
less of underlying problems they aim to solve. Hence, in physics‑based 
problems, common in the field of power system engineering, AI mod‑
els may generate entirely infeasible solutions. A carefully crafted design 



32 Advances in AI for Simulation and Optimization of Energy Systems

requires domain‑specific knowledge. Therefore, this should be considered 
while choosing an algorithm in the first stage of modeling.

 4. Security concerns: As power systems become more reliant on AI mod‑
els, they are increasingly susceptible to the risk of system failures due to 
malicious attacks. AI‑powered power systems are vulnerable to adversarial 
attacks and various forms of manipulation. Unauthorized parties may infil‑
trate the power system to cause intentional black‑outs or provide deceptive 
inputs for the systems. They may also steal the data related to producers 
and customers. Furthermore, it can pose a significant threat to privacy and 
security issues for all power systems participants.

It is important to note that the challenges discussed here relate to tech‑
nical aspects. There are also other challenges from a different perspective 
including economic, sociopolitical, and regulatory challenges which may 
also need to be considered when integrating AI in power systems.

2.8 FUTURE DIRECTIONS

Each of the aforementioned challenges represents a significant gap that avoids the 
full integration of AI in power systems. Future research can be built upon address‑
ing these challenges. The future works and research can be considered in one of the 
following main directories:

• Increasing interpretability: Enhancing the interpretability of AI methods 
can support the trust of the power system engineers and encourage them 
to adopt these methods for various issues. Research aimed at better under‑
standing the decision‑making behavior of AI models can boost confidence 
in their utility and, consequently, expand their applicability within power 
systems. Therefore, this area requires further investigation.

• Physics-aware algorithms: physics‑informed AI (PI‑AI) is an emerging 
paradigm that has demonstrated impressive performance by aligning with 
the underlying physics of problems [52]. Despite this, PI‑AI algorithms 
have not been widely applied in power system contexts, where issues are 
often characterized by complex formulations and governed by mathemati‑
cal equations. Utilizing PI‑AI can potentially yield improved results and 
therefore expand its applications among researchers, engineers, and indus‑
try practitioners. Future studies in the power systems field should consider 
adopting more PI‑AI models.

• Deep learning algorithms: While DL algorithms have shown promis‑
ing results in image and video analysis, their application in power systems 
remains limited. Future research may explore converting power system 
measurements into image or video formats to capitalize on the sophisticated 
capabilities of DL methods to overcome power systems issues.
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2.9 CONCLUSIONS

AI models have been employed across various industries and services. Power 
systems stand out as one of the largest infrastructures that can significantly 
reap the benefit of AI applications in operation, planning, and monitoring. This 
chapter explored numerous AI applications and opportunities in power systems. 
Additionally, some of the most prevalent uses of AI‑powered applications have 
been addressed. It has been demonstrated that integration of AI‑powered methods 
into the power grids is yet to come and many potential applications are under devel‑
opment. This chapter also addressed some of the main challenges and limitations 
associated with full exploitation of AI models in the power sector. Furthermore, 
it has been discussed that the application of AI models in power systems may not 
be feasible for all power system problems considering the inherent challenges of 
the methods themselves. Accordingly, new paradigms are necessary to establish 
a secure, explainable, and trustworthy framework that encourages policymakers, 
practitioners, and engineers to adopt AI‑powered algorithms for policy‑related and 
market‑based issues. Consequently, the development of reliable and interpretable 
AI models is a crucial area for future research. By employing such algorithms, 
AI’s application scope could broaden to encompass more power system issues, 
particularly privacy‑sensitive and financially incentivized programs. Despite these 
hurdles, as discussed in this chapter, AI holds great promise to leave a meaningful 
impact on power system issues. The learning capabilities of AI models offer sig‑
nificant improvements in addressing a variety of issues within power systems, and 
consequently, it is likely to lead to increased adoption by power system engineers 
in the future.
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3.1 INTRODUCTION

3.1.1  arTifiCiaL inTeLLigenCe in hybrid power sysTems 
inTegraTing renewabLe and TradiTionaL energy

As a hybrid system in renewable energy systems relies on more than one energy 
source, one of which is renewable, it is considered an integrated system for sup‑
plying electricity to facilities. It may be possible for the hybrid system to contain a 
method of storing energy [1], which makes it flexible and highly reliable, enhancing 
the idea. In remote areas and rural areas, especially places outside of the electrical 
grid, these systems have been used for a long time to meet energy needs [2]. It is 
proven that integrating multiple types of renewable energy and enhancing them with 
a storage system confirms the comprehensive nature of utilizing renewable energy 
continuously which in turn results in overcoming restrictions and increasing confi‑
dence in these systems, especially in areas with difficulty delivering electricity and 
relying mostly on fossil fuels and traditional energy sources. In addition to wind/
PV systems, PV/Battery/Wind systems, PV/Diesel/Wind systems, and PV/battery/
Diesel systems, PV/Hydrogen/Wind systems are also examples of hybrid systems. 
As more than one source of energy is needed to ensure that the energy supply is not 
interrupted in different weather conditions, hybrid systems for renewable energy are 
becoming increasingly popular in places outside of the grid. A sustainable energy 
supply can be ensured, for instance, by using wind energy and solar energy together 
[3]. In addition, you should have a backup generator, such as a diesel generator, or an 
energy storage system, such as batteries and fuel cells. The fact that some communi‑
ties are located a long distance from energy supply centers and that it is difficult to 
deliver electricity to them from a technical standpoint makes the need for a hybrid 
system in energy supply essential. As they provide energy sources through diesel 

37DOI: 10.1201/9781003520498-3

https://doi.org/10.1201/9781003520498-3


38 Advances in AI for Simulation and Optimization of Energy Systems

generators, which are considered highly expensive, and require long distances of 
transportation, it is very costly. Additionally, because fuel prices are on the rise, it 
has a high operational cost, and it also contributes to global warming by emitting 
greenhouse gases and emissions such as carbon dioxide that are harmful to the 
environment. As a result, hybrid systems provide sustainable energy and continuity 
of supply to these communities [4].

When conventional and unconventional systems are combined, there are benefits, 
such as adding a diesel generator to operate if the renewable system is not working 
or if there are circuit shortages in the battery system, and the system has several 
advantages, such as: reducing fuel use and protecting the environment; eliminating 
disconnections from the electrical system; and treating hybrid problems directly [5]. 
Increasing petroleum prices have led to hybrid renewable energy systems becoming 
more prevalent. Essentially, a hybrid system is composed of two or more sources 
of energy that work together to provide uninterrupted electricity at high efficiency. 
Natural resources such as the sun, wind, and water are used to power hybrid renew‑
able systems. Additionally, batteries can be used to store this energy, and diesel 
generators can be used to support the system when needed. In rural areas far from 
city centers, hybrid renewable energy systems are common since they meet the 
energy needs of these areas efficiently and at a low cost. It relies on diesel genera‑
tors, which are considered environmentally unfriendly and high‑cost. Because of 
the significance as well as the upswing performance of AI in hybrid power systems, 
this chapter makes knowledge addition by reviewing leading approaches used so far 
with an emphasis on targeting the preliminary and prominent researchers in this 
area of research to thereby provide a wider readership with a brief educational guide 
for advanced and novel concepts in this specialism.

3.2 HYBRID ENERGY RESOURCES SYSTEMS

Solar and wind energy sources are the most widely available sources of renewable 
energy in the world, and they have a wide range of applications that can be tapped 
into. Special devices and special maps can be used to study the availability of energy 
sources, for example, to predict the suitability of an area to apply these systems: 
Anemometers and Wind Rose maps are used to measure the wind speed of an area 
and ensure that wind energy is efficient throughout the year. In addition, to measure 
solar radiation, pyranometers are used, as well as atlas maps that use satellites to 
provide real‑time solar radiation information.

3.2.1 hybrid sysTem ComponenTs

Solar panels: In hybrid systems, solar panels are considered one of the most impor‑
tant renewable energy systems. In comparison with their cost, they produce an 
appropriate amount of electrical energy due to their high efficiency. Due to their 
availability in most countries, they have been widely used for a long time. Here is an 
equation that can be used to calculate the power of solar panels [6].
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Where, PN‑PV: the power with ideal conditions, Gref: 1 kW/m2, G: solar radiation, Kt: 
constant, −3.7 × 10−3 (1/°C), Tamp: ambient temperature, and Tref: Standard tempera‑
ture 25°C.

Wind turbine: The wind turbine has a high efficiency because it rotates using the 
kinetic energy of the air, which moves the blades, making them rotate. In contrast 
to solar energy systems, this system can operate at any time of day or night, and the 
energy output of the turbine can be calculated. This relationship can be explained as 
follows [7]:

   =
1

2
WT 

3P Aaρ ν η× × × ×  (3.2)

Where, aρ : air density (kg/m3), A: wind turbine blades swept area (m2), ν: wind speed 
(m/s), and η is the efficiency of wind turbine.

Fuel cell: In a fuel cell, hydrogen is combined with oxygen to produce water and 
heat, instead of generating electricity. The components of a fuel cell are an anode 
(−), a cathode (+), an electrolyte, and a catalyst [8]. Anode (−): This is the negative 
post of the fuel cell that conducts the electrons that are released from the hydrogen 
molecules. Cathode (+): Oxygen is distributed to the surface of the catalyst by the 
positive post of the fuel cell and etched channels, electrons are conducted back from 
the external circuit to the catalyst, and water is formed by recombined hydrogen ions 
and oxygen. Electrolyte: proton exchange membrane and specially treated material 
that conducts only positively charged ions. As a result, electrons cannot pass through 
the membrane. Catalyst: A material that facilitates the reaction between oxygen and 
hydrogen. Using platinum‑coated carbon paper or cloth. As shown below, hydrogen 
consumption is related to electrical energy production:

 *2FC 2 FCH H PC=  (3.3)

Where, 2FCH : fuel cell consumption of hydrogen, 2H C : constant of hydrogen con‑
sumption, FCP : fuel cell output power.

Diesel generator: A diesel generator is one of the most important components 
of a hybrid system since it provides energy when a shortage or defect occurs in the 
network. The hybrid system operates automatically according to its design method. 
Through the equation, you can calculate how much diesel is consumed based on the 
generator’s capacity [9]:

 = + ratedq t aP t bP( ) ( )  (3.4)

q(t): diesel generator fuel consumption, a and b: are the fuel consumption coeffi‑
cients, and P(t): energy produced (kWh).
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3.2.2 hybrid energy sTorage ComponenTs

Batteries: In hybrid systems, especially those located outside the grid, batteries are 
the most important component, since they store energy until needed and also store 
surplus energy. As they provide the hybrid system with energy, they also increase its 
reliability. These batteries come in a variety of types, including those that contain 
lithium ions, nickel ions, and others. The following equation shows the battery capac‑
ity [10]:
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Batt,Cη : Efficiency storage, t∆ : Period time (hour), K: Storage constant (hour−1), Q: first 
available energy (kWh), Q1: Energy available in battery (kWh), C: ratio of battery 
capacity, Qmax: Total storage of the battery, NBatt: the number of batteries, Imax: highest 
current in the battery (A), and Vnom: battery voltage (V).

Hydrogen tank: During periods of excess electrical energy, hydrogen is pro‑
duced through the fuel cell through electrolysis through the fuel cell. It is believed 
that this method is effective for exploiting excess energy and storing it in pressurized 
tanks as hydrogen.

Technology development, especially artificial intelligence, has become a key 
component of predicting the future of hybrid renewable energy. Scientists are con‑
ducting a great deal of research in this field and in what artificial intelligence can 
offer to renewable energy in the future. As part of the application of artificial intel‑
ligence to hybrid energy systems, artificial neural networks (ANN) are widely used 
to improve the response of hybrid renewable energy systems and to activate their 
roles intelligently [11].

A summary of all previous components of hybrid renewable energy systems is 
shown in Figure 3.1.

Many countries are working on introducing artificial intelligence systems into 
most technological applications, especially in managing energy files, because they 
require extensive effort to develop. It is here that artificial intelligence can be used to 
develop and improve energy management programs through its various algorithms. 
By developing smart grids and by providing citizens with support for building their 
future projects, developed countries have made laws and enacted legislation that 
facilitate the development of energy systems and connecting them to the grid.
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Hybrid renewable energy systems can be improved by artificial intelligence 
through its various strategies, such as design and forecasting algorithms that are 
established. Based on stored memory and approximate values for each region, it 
builds probabilities based on stored information and weather conditions throughout 
the day and year; see Figure 3.2 [12].

Artificial intelligence is responsible for arranging the energy systems in terms of 
working time and using their appropriate capability. As part of the storage and sup‑
port system, diesel generators are also integrated. In response to changing conditions,  
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it directs the components of the hybrid system to act intelligently and flexibly based 
on machine learning. The system is therefore able to accomplish ideal results by act‑
ing intelligently and professionally. In a hybrid system, artificial intelligence assists 
the machine in programming the components to be more intelligent and interactive, 
so they can perform their tasks as efficiently as possible. Artificial intelligence is 
used to track solar radiation on solar panels. Allowing solar panels to receive sunlight 
at the right angle. Atmosphere sensors are connected to this control system, which 
gives readings to it and provides information on weather conditions and the move‑
ment of the sun, and the movement devices are informed accordingly by directing 
these solar cells in the direction of the most efficient solar radiation. The develop‑
ment of smart dust sensing systems has been linked to a computer, which sends 
signals to dust cleaning machines if those panels are dusty [13].

Artificial intelligence also works through several strategies to develop the opera‑
tion of wind turbines used in hybrid systems. In the beginning, it will assist in select‑
ing the best location for installing these turbines by linking them to interactive and 
aerial maps, and by providing real‑time and future information for the region. Thus, 
wind turbines will be made more intelligent by interacting with wind speed and 
direction to attract and transfer kinetic energy. As a result, weather monitoring and 
humidity measurement systems are linked to the part of the turbine that controls its 
direction, where they operate efficiently and reliably to deliver the best results. By 
using special equations and algorithms, artificial intelligence works to harmonize 
the components as a whole, not only at the level of the component that makes up the 
hybrid system, but also as a whole, arranging orders and systems both at the level of 
the individual components and at the level of the elements as a whole. An intelligent 
storage system is designed to meet the hybrid system’s capacity and quality needs. A 
surplus of energy can be stored until needed by the system if production is abundant. 
Artificial intelligence selects the best storage system based on the information it 
possesses, whether it be batteries, fuel cells, or others, and controls charging, sup‑
ply, energy supply times, optimal charging, and optimal discharging of the storage 
unit. It is possible to sustainably supply the hybrid system without interruption to the 
energy sources by using technical algorithms that allow the storage system to interact 
with the state of the system. It is therefore possible to integrate hybrid systems. The 
purpose of this is to provide a viable alternative to energy and artificial intelligence 
since these components can be controlled and given orders to achieve unbelievable 
and practical results [14].

3.3 METHODOLOGIES/THEORY

3.3.1 arTifiCiaL inTeLLigenCe in energy managemenT

The concept of artificial intelligence was developed by humans to help machines 
comprehend human thinking and solve problems and find ideas and solutions with a 
high level of efficiency so that humans would not have to exert physical effort or cal‑
culate as much [15]. Most aspects of life are affected by artificial intelligence, such 
as industry, medicine, information technology, education, etc., since it has improved 
quality and reduced time to accomplish tasks. As is the case in other fields, artificial 
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intelligence has entered renewable energy applications, where it has been used to 
maximize the use of energy resources and improve their performance, as we can see 
in Figure 3.3. In addition, hybrid renewable energy systems can be managed better 
and at a lower cost, as well as providing better outputs. Several engineering fields 
have used artificial intelligence algorithms in recent years, especially in the energy 
sector, as the best design is determined by artificial intelligence algorithms. Through 
these techniques, practical and scientific solutions have been found to predict energy 
production and probabilities of system success or failure. In order to achieve full 
sustainability, these techniques allow smart applications to reduce costs, improve 
systems, and integrate them with hybrid methods [16].

It is possible, for example, to forecast wind speed, weather conditions, and solar 
radiation using artificial intelligence, but this requires data for that region in addition to 
advanced sensor technology [17]. A machine learning algorithm is applied to the sys‑
tem to provide optimal solutions to these variables. In this task, the design of the energy 
system based on the algorithms used in artificial intelligence plays a large role, as it 
can provide data and readings to the energy system before it is implemented and before 
it produces energy. Additionally, artificial intelligence has been applied to climate 
forecasting, which is the most significant global issue. By monitoring future drought 
rates, some pre‑disaster measures can be taken, such as storing additional energy 
or integrating renewable systems with hybrid systems to guarantee sustainability.  
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Massive population growth will inevitably lead to increased energy demand, since 
fossil fuels cannot satisfy this demand [18]. There are many fields in which machine 
learning is applied, such as programming systems, artificial intelligence, and data 
improvement. Machine learning aims to reach appropriate and ideal solutions by 
finding relationships between inputs and outputs. In machine learning, equations and 
mathematical forms can be used to train various systems to predict, influence deci‑
sions, and influence results directly. Deep learning, a part of machine learning, has 
gained importance as technology continues to advance rapidly. It is the responsibility 
of machine learning systems to work with their own data. It selects and verifies the 
appropriate systems, processes, manages, and makes predictions to provide intel‑
ligent outputs. In many fields, deep learning contributes to realistic and satisfactory 
performance as machine learning systems predict renewable energy system perfor‑
mance indicators. In order to forecast renewable energy, hybrid systems have been 
developed with clear indicators and results. As renewable energy sources are wide‑
spread and environmentally friendly, the demand for renewable energy has increased 
enormously. The use and development of them in the future have been studied, there‑
fore attention has been paid to them. In the future, renewable energy will depend 
on whether fossil fuel‑based systems can replace this new form of energy. We need 
to ensure the continuous supply of this energy and ensure its reliability. Therefore, 
these volatile sources must be managed and dealt with in a way that maximizes their 
benefits. Technology plays a significant role in forecasting and managing renewable 
energy, storing energy, and developing efficient systems and tools. Thus, machine 
learning has been applied to forecasting and managing renewable and hybrid energy 
systems by integrating data and inputs from high‑precision systems to find possible 
solutions and to manage and build renewable hybrid systems. Off‑grid and on‑grid 
hybrid renewable energy systems can be managed efficiently with the machine learn‑
ing system. It is also capable of analyzing and organizing renewable energy resources 
and conventional energy sources to link them, as machine learning manages hybrid 
energy systems by:

• There is a predictable outcome to renewable energy. In energy production, 
it is important to predict these results and outputs, so machine learning 
has been used to predict solar incidences and wind energy information, for 
example, based on previous data. This process has some problems, however, 
because the reading of energy sources changes with the environment [19].

• An abundance of energy sources and a good location on the map. As with 
any project, hybrid energy plants are built based on the conditions in the 
area where they will be established, including conditions such as geogra‑
phy, weather, temperature, humidity, etc. Additionally, there are general 
expenses and costs associated with the area. As a result of machine learn‑
ing, the best option can be filtered based on the inputs provided for the area.

• Intelligent and integrated operating and managing the system. As soon as 
the energy source is received, it works to improve all parts of the system, 
from the point where the energy source is received to the point where the 
energy is produced and stored. In order to build a smart and highly efficient 
network, artificial intelligence and advanced systems are needed to manage 



45Applications of AI Techniques in Hybrid Renewable Energy Systems

these complex and overlapping processes. Through this smart technology, 
solutions are found, networks are managed, and networks are controlled 
professionally.

• Forecasting the energy future. This is challenging because it depends on 
estimates so machine learning assists in estimating the amounts of energy 
needed at a particular stage or for a particular system. It is also useful for 
smart grids to know how much energy is consumed and how much is needed 
for a specific period of time, which increases their reliability and efficiency 
to boost production in the future [20].

3.3.2  arTifiCiaL inTeLLigenCe sTraTegies To improve 
hybrid renewabLe energy sysTem

This section will comprehensively describe the most common artificial intelligence 
(AI) strategies used in optimization within hybrid energy systems. It is essential to 
optimize such a system for energy efficiency, reliability, and sustainability because 
these systems combine quite several sources like solar, wind, and conventional fossil 
fuels. For clarity’s sake, the strategies used have been grouped under the following 
subheadings:

3.3.2.1 Genetic Algorithms (GA)
A single‑objective optimization and management algorithm as well as a  multi‑ objective 
optimization algorithm work to find the best solutions within the existing data.  
A single‑objective optimization gives one result for the upper and lower bounds of 
the problem, whereas a multi‑objective optimization manages and develops many 
functions and tasks within the problem space. It provides a set of smart solutions 
that are reasonable and controlled. As a first step, we enter the population number, 
and the children are linked with their parents by the intersection of mutations, since 
mutations result in characteristics that are different from those of the parents. In 
this way, this mutation may provide a good set of possibilities for the same source. 
Consequently, the process continues until a reliable and accurate solution has been 
obtained. The algorithm searches and analyses the required pattern through orders 
within a specific time frame and stops when it reaches the desired result [21]. In 
the field of hybrid renewable energy, artificial intelligence was integrated into this 
strategy, where it was used to determine how much wind energy is needed and link 
it with solar power, for example, and calculate how much energy is needed and how 
much it will cost. Additionally, GA was used in forecasting to design hybrid renew‑
able systems combining fossil fuels, batteries, and energy. By analyzing size, costs, 
and choosing the best options, GA contributed to generating the best hybrid renew‑
able systems. A common strategy used in hybrid systems that use diesel generators 
and serve areas outside the grid is the GA strategy, which works by organizing the 
interconnections between the components of renewable energy systems and their 
storage in a way that considers cost and environmental impacts. A large number of 
traditional possibilities are examined until the maximum limit is reached to achieve 
the best results.
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3.3.2.2 Particle Swarm Optimization
Swarm systems are used by birds and fish and are based on particle swarm optimiza‑
tion (PSO). An optimization system based on stochastic processes is called stochastic 
optimization. Whenever we are not able to achieve a satisfactory and ideal solution, 
this method is used. Based on a set of random options and data, it represents find‑
ing the most logical and optimal solution [22]. Cost, sustainability, and reliability 
are factors considered when determining the optimal design. This strategy can out‑
put optimal results more quickly and easily than GA in independent and networked 
hybrid systems. PSO is an effective way to deal with random targets and find the 
most appropriate ones when it comes to increasing energy consumption and provid‑
ing power to remote networks. PSO was developed by Eberhart and Kennedy and is 
based on the movement of fish and birds. Controlled by a number of algorithms with 
overlap in locations, it can be controlled in various ways. Compared with GA, the 
PSO finds solutions faster with fewer possibilities.

3.3.2.3 Artificial Neural Network (ANN)
An artificial neural network links a large number of input elements with their inherent 
data without requiring complex algorithms and mathematical equations that require 
extensive analysis. There is a great deal of cells in this system, which are linked to 
each other to represent elements, like neurons in the human brain. To reduce error 
rates and obtain accurate prediction results, these inputs are subjected to training 
and follow‑up. It is possible to enter large amounts of data into the input layer, and 
then to link these elements together using a number of mathematical possibilities and 
simplified mathematical relationships into hidden layers, until a final, ideal system 
is chosen based on the previous processes. As ANNs reduce expected errors and 
make output selection more precise, they work to implement tasks and applications 
specified for them. Additionally, it can learn self‑learning like brain cells, so it does 
not require complete knowledge. Thus, it is used for network management and moni‑
toring. A controller is considered to be the main controller for renewable and hybrid 
systems [23].

3.3.2.4 Fuzzy Logic (FL)
A fuzzy logic system deals with many ranges of inputs and elements, which makes 
prediction values more accurate. Ranges of data are entered, and inputs are grouped 
into groups. In fuzzy logic engines, probabilities are managed based on pre‑set rules, 
and the results are displayed after the fuzziness is removed from input elements and 
the elements are sorted. Show the outputs that are required. Based on certain itera‑
tions within specific periods, this basic model will work with this system [24,25].

Table 3.1 shows the advantages and disadvantages AI with different strategies.

3.4 RECENT STUDIES AND OUTCOMES

The following section presents the synthesis of the prospects for coupling artificial 
intelligence in hybrid renewable energy systems with smart grids. Reliability and effi‑
ciency will be improved with AI through a reduction in costs that may be incurred dur‑
ing mismatching between interfacing renewable power demand and the primary grid.  
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Therefore, integration of this kind can lead to minimized electricity energy costs, 
increased sustainability, and wider user adoption of renewable technologies.

3.4.1 ai in hybrid renewabLe energy sysTems and smarT grids

As a result of interactive and smart grids, the system can accommodate renewable 
energy sources as well as the main current, thus increasing reliability. Smart grid 
reliability has increased reliance on renewable energy sources, and users are more 
willing to implement their renewable energy systems due to the reduction in energy 
costs and the possibility of storage in some cases [26]. As one of the most developed 
renewable energy sources in the world, wind energy plays a significant role in mak‑
ing the electrical grid smart by contributing a variety of sources such as solar energy 
and wind energy. It has also gained popularity due to its high efficiency. Renewable 
energy sources must be integrated into the smart grid so that they can communicate 
with it. There is a need for smart electrical grids to be flexible when it comes to 

TABLE 3.1
Advantages and Disadvantages AI Strategies

AI Strategies Advantages Disadvantages

GA • Easy to dealing with
• Ease of completion
• Uncomplicated working mechanism
• It handles the output in the form of a 

string

• Long time to make calculations
• Complex problems are more 

complex
• The possibility of convergence 

between the results

ANN • The possibility of self‑learning 
without follow‑up

• Ability to work in the event of a 
network connection interruption

• Nonlinear elastic simulation
• Uncomplicated system
• Dealing with noise

• Complexity in trends and reduction 
of necessary input data during the 
entry process

• The ability to train for a given 
volume of data, focusing on the 
necessary ones

• The optimization process takes a 
long time

PSO • Faster data convergence and rate
• It takes relatively less time than GA
• The ability to solve multiple 

non‑linear coefficients
• Ability to work effectively in 

improved versions

• The possibility of convergence in 
distant space

• It needs constant adjustment 
compared to GA

• Presentation and marketing

FL • Use archived and dated data
• Work successfully in complex and 

irregular situations
• Easier interpretation of outputs and 

models
• The possibility of building rules 

from failure and self‑learning 
processes

• Lack of accuracy in timing
• Having trouble with complex 

elements
• Failure to autophagy
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adjusting energy fluctuations caused by renewable energy, since a large amount of 
reserve energy is sometimes present, and sometimes a storage system is required to 
compensate for weather‑related fluctuations. Thus, this network should be interactive 
according to user requirements and energy regulation. In the provision of electrical 
services, the smart grid is considered an interactive network that allows the integration 
of multiple energy sources in a sustainable, economical, and reliable manner. A coor‑
dinated and planned energy supply between the energy consumers and the devices 
and systems supplied is important for ensuring an optimal supply of energy, as well 
as dealing with variations in energy loads [27]. Smart grids have become an urgent 
necessity due to their benefits. The following are some of the most important benefits 
of renewable energy systems that help this network achieve satisfactory results:

• Enhance and enable renewable energy sources and increase reliability.
• Consumers can be integrated effectively into the grid energy supply system.
• Maintaining a healthy environment by reducing harmful carbon emissions 

and greenhouse gases.
• Using renewable energy sources to reduce electricity production costs.

It also focuses seriously on AI developing or introducing HRES into smart grids 
that are to be sustainable energies, among other targeted solutions. The application 
of AI tools creates significant potential for such systems to be optimized in terms of 
their design and operation, therefore lowering total life cycle costs and increasing 
sustainability as well as reliability [28]. In addition, their research indicates that the 
application of AI methodologies in energy prediction and distribution is bound to 
experience improved overall system performance while reducing both implementa‑
tion barriers and costs in the process of making HRES more viable and practical. 
Further, into engagement with AI, Al‑Othman et al. go on to explore its application 
in hybrid systems incorporating fuel cells and improvements in performance and 
efficiency. They do show that the adequacy of better prediction models supported 
by real‑time monitoring and adaptive control strategies will make AI necessary for 
accurate and practical progress to be reached in terms of improved reliability with 
low costs and better scaling, particularly in the context of hydrogen and associated 
fuel cell technologies [29]. Furthermore, Shenglin Su et al. have analyzed how AI 
techniques can be applied in a hydrogen‑based HRES and developed case studies to 
underline the development and implementation of these techniques for optimization 
techniques in performance, storage, and distribution systems [30]. It is necessary to 
review the optimization methods—both the classical techniques and AI or hybrid 
algorithms—whenever the powerfulness of AI implementation into optimization as 
well as the implications toward the efficiency and viability enhancement for HRES 
and intelligent grids. These two studies explain another workable option of imple‑
menting AI technology for changing the energy scenario to be sustainable [31].

The transition to alternative energy requires the use of renewable energy and 
hybrid energy to reduce costs. This will facilitate rapid and efficient transformation 
and develop the process of switching to alternative energy. In all cases, sustainable 
development in renewable energy and its integration into the smart grid are success‑
ful investments, as energy reliability is guaranteed and the user’s support for the 
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grid increases, directly impacting the environment. Several factors contribute to the 
development of smart grid systems and their connection to renewable energy:

• It is considered a practical solution to this problem given the rise in global 
fuel prices, since the smart grid offers lower electricity prices than the tra‑
ditional grid.

• As global industries, especially in developing countries, grow, the energy 
gap between supply and demand needs to be filled, and it is a major problem.

• Government support and motivation are key, as this reduces the cost of capi‑
tal, which increases the number of systems supporting the network.

• As opposed to fossil fuel‑based energy, smart systems contribute to reduc‑
ing emissions, reducing pollution and environmental problems.

• The use of smart and hybrid systems can provide energy to distant and 
remote locations as long as renewable energy sources are available, both 
inside and outside the grid. Thus, they can be implemented in a variety of 
locations.

• The combination of renewable energy and smart grid provides continuity of 
supply by addressing the issue of intermittent and irregularity of renewable 
energy.

• Future energy systems will be based on developing energy technology and 
electrical connections.

The use of AI improves the efficiency and accuracy of the smart grid’s work. Since 
smart grid management is complex, it requires many processes and commands 
to maintain the network’s performance. Figure 3.4 explains the behavior of AI in 
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energy management, smart programs work effectively in networks to monitor and 
follow up on network disturbances to mitigate them and control them using artificial 
intelligence. Furthermore, algorithms are used to predict errors and the totality of 
data added to the network. The use of renewable energy sources results in unstable 
loads in the network, while demand exceeds the network’s capacity, resulting in dis‑
turbances [32].

Additionally, it contributes to enhanced integration and speed of decision‑making 
by exchanging information and communications between systems. The benefit of 
this feature is that it enhances an efficient and homogeneous working mechanism 
in renewable energy systems, especially hybrid ones. As compared to the traditional 
grid, the smart grid collects and processes a great deal of data.

It is therefore necessary to use an intelligent system to handle these data and 
determine consumption quantities. Afterward, it links them to prices, calculates 
peak demand for energy, and solves all energy problems. Artificial intelligence has 
a challenging task ahead of it to produce ideal results and conclusions in the shortest 
amount of time and with as little effort as possible.

A smart grid, on the other hand, coordinates hybrid renewable energy systems 
like wind turbines, solar cells, and storage units. Integrating energy system informa‑
tion with a control system, FL and ANN algorithms are used in the process of man‑
aging and distributing tasks between those systems. Whenever a smart network is 
controlled, it works much like a human brain since the number of system components 
and how they are provided to the network make it more complex than a traditional 
network.

3.4.2  a CLeaner environmenT wiTh arTifiCiaL 
inTeLLigenCe and renewabLe energy

As the demand for energy increases at a high rate, coincident with the climate change 
that the world is currently experiencing, the sustainability and continuity of energy 
in the future are crucial. Thus, it is crucial to consider the future of energy, both 
renewable and non‑renewable, and find solutions to the impacts and restrictions that 
will affect energy in the future [33]. In terms of sustainability, sustainable energy 
is defined as energy that meets the need for energy naturally and without interrup‑
tion without harming the environment or causing harmful emissions. Wind energy, 
solar energy, and other renewable sources are the most common. They summarized 
the idea of energy sustainability to meet daily energy needs without affecting or 
compromising energy reserves for future generations. In addition to protecting their 
futures from interruptions of energy sources, sustainable energy is also an essential 
part of reducing climate change, since its extensive use protects them from harmful 
emissions and prevents interruptions of energy sources.

Renewable energy sources enable energy independence by enabling the process of 
relying on energy as a sustainable source. A renewable energy source differs from a 
nonrenewable energy source in terms of sustainability, continuity, and environmental 
impact. Because fossil fuels emit harmful carbon dioxide as a result of their use as 
energy sources, non‑renewable energy sources, like fossil fuels, have a significant 
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impact on the issue of climate change. A renewable energy source, on the other hand, 
does not emit harmful emissions and has a minimal impact on the environment. AI 
and renewable energies will make sustainability and energy saving a new space. 
Machine‑learning algorithms, in particular, have demonstrated near‑real potential 
for optimizing energy systems in predicting energy demand and ensuring grid stabil‑
ity to increase efficiency in renewables such as wind power and solar photovoltaic 
power. AI can predict production and consumption patterns very accurately, through 
the use of vast data, and consequently enable the management of energy resources 
in a better way and waste reduction [34]. Intelligent energy systems, designed for a 
low‑carbon economic change, have emerged with the development of AI technology 
toward intelligent energy. Such AI‑based systems can optimize performance and reli‑
ability related to equipment used for energy generation from renewable sources by 
intelligent monitoring and control, ensuring a more stable and efficient energy sup‑
ply. Besides, AI applied to energy storage and smart grids would accommodate even 
larger shares of renewable energy sources into the existing infrastructure, promot‑
ing a cleaner and more sustainable energy landscape simultaneously [35]. Artificial 
intelligence has played an invaluable role in addressing the challenges of energy 
efficiency and environmental sustainability. The application of AI in the energy sec‑
tor has moved from rudimentary research and an experimental stage to very sophis‑
ticated data‑driven methods. Examples here include load forecasting, forecasting 
energy market prices, and managing distributed energy resources.

The country emphasizes the direction of AI‑driven innovation: this is in line with 
the realization of economic development of high quality and a decrease in carbon 
emissions. Together, AI and renewable energy, in particular, will represent a giant 
leap forward for a cleaner environment. It is the power of AI that will be harnessed 
to increase power system operational efficiency and support the broad penetration of 
energy sources based on renewables, hence contributing to a sustainable future [36].

Energy sources that rely on traditional sources of energy are diminishing, as 
they are no longer considered to be primary energy sources. This has resulted in 
an increase in interest in renewable energy as the only solution to the problem of 
energy decay, as it is one of the forms of energy that can be used successfully [5]. In 
places with frequent power outages, renewable energy is particularly attractive for 
use. Hybrid renewable energy is also highly reliable when integrated with a storage 
system or generator.

The most important advantages of integrating renewable energy systems into 
hybrid systems are [37]:

• Utilizing energy sources that are most environmentally friendly will result 
in a significant reduction in carbon emissions.

• The design and implementation of most systems are simple, especially 
when used at home.

• Compared to other sources of energy, its prices are considered relatively 
inexpensive.

• Due to its reliability and ability to supply energy over time, hybrid renew‑
able energy systems are the best choice for remote areas far from power 
centers.
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There are approximately one billion people in the world who do not have access to 
electricity. The importance of sustainable energy dictates that the sources of energy 
be close to the end user due to the long distances involved in energy supply [38]. 
Sustainable energy has become more important because of its ability to solve energy 
problems. As a result, it increases the cost and decreases efficiency. Recent declines 
in the price of technologies used in renewable energy have encouraged the trend 
toward renewable energy and made it more competitive than other sources of energy. 
Examples of this are solar panels and wind energy. Hybrid systems are most suc‑
cessful in a given area when they are reliable and cost‑effective. This will make the 
hybrid system a reliable source of energy if it achieves its objective.

Several factors and programs can improve hybrid renewable energy systems 
that give reliable results at reasonable costs. These factors can be applied to both 
grid‑connected and off‑grid systems. Graphical construction is one of the improve‑
ment techniques, which involves examining the design variables graphically to find 
the optimal point in the possible area. Probabilistic methods consist of collecting 
random data, where these data do not have specific values, and using such data, find‑
ing the optimal system through statistical equations aimed at finding energy rates for 
each month or for any other period. Load data can be collected at a low cost and in 
a short amount of time with this method. By using artificial intelligence strategies 
such as (FL), (ANN), (PSO), and others, the most appropriate design is selected using 
machine intelligence and specialized programs and algorithms. Through the use of 
these methods, good results can be obtained, which are not possible with traditional 
methods. As a constituent of 72% of greenhouse gases, carbon dioxide is one of the 
most significant gases contributing to global warming caused by hybrid renewable 
energy systems [39–41].

Technological advances have been made in all aspects of life thanks to artificial 
intelligence and machine learning; developments have been made in the fields of 
technology, health, industry, education, and environmental protection. As with facto‑
ries, companies, and homes, artificial intelligence systems have also been integrated 
into the production of smart and interactive devices. Artificial intelligence tools are 
being harnessed by scientists. Our lives can be made easier and more enjoyable by 
making it easier and more efficient.

The future of hybrid energy management will involve the development of artificial 
intelligence systems to address data and inputs related to the nature of the system, its 
location, and the method of its operation [42]. Due to network fluctuation and contin‑
uous updates, hybrid systems will face an array of challenges in the future that will 
require the development of advanced artificial intelligence algorithms and systems. 
A key component of artificial intelligence development in the future will be integrat‑
ing design with digital communication networks, as the Internet of Things (IoT) and 
energy connectivity fields make room for the introduction of advanced communica‑
tions technologies and modern networks. Through machine learning, artificial intel‑
ligence increases the efficiency of communication between systems. By improving 
energy quality and reducing harmful carbon emissions, artificial intelligence directly 
impacts the ecosystem and biological system and reduces diseases related to pol‑
lution. It provides opportunities and designs for a clean, free future by using arti‑
ficial intelligence for designing smart and environmentally friendly cities. Energy 
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predictions will be pollution‑free and health‑friendly through the use of algorithms 
and strategies. Figure 3.5 summarizes the energy future of artificial intelligence.

Artificial intelligence is rapidly developing, and legislation is needed to regulate 
the ethics of its use, especially in the areas of privacy and infringement on protected 
information. Therefore, programming companies must protect their systems and 
information from artificial intelligence penetration. Consequently, the use of artifi‑
cial intelligence is a two‑sided weapon, so it is important to ensure the development 
of smart systems in conjunction with the creation of ethical protocols to deal with 
developments in this field [43].

3.4.3 eConomiC and reguLaTory dynamiCs in hybrid power generaTion

As climate change and environmental problems have intensified, the need for energy 
has become increasingly urgent, and the demand for renewable energy has grown 
[44]. Information management readings show that the global trend toward hybrid 
renewable energy has increased, which is why hybrid renewable energy has become a 
prominent and effective solution. According to the Energy Information Administration 
(EIA) [45], renewable energy consumption reached 1240 terawatt‑hours in 2010 and 
2960 terawatt‑hours in 2020, indicating an increased demand for renewable energy. 
Renewable energy adoption has increased significantly due to public policies sup‑
porting sustainable energy and legislation that encourages its use. To enhance the 
concept of uninterrupted and highly reliable renewable energy, a supportive and 
adaptable environment was required for this type of environmentally friendly proj‑
ect and hybrid energy. Using more than one renewable energy source is what hybrid 
energy is all about. Solar energy, for example, operates during daylight hours when 
the sun is present. This helps to continue the supply of solar energy and reduce prob‑
lems when the supply is interrupted. This in turn helps to continue the supply and 
reduces problems. Power outages in different weather conditions, and there are also 
storage technologies that conserve energy until it is needed.

•By enriching deep learning in
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systems.

•Securing management systems.

•Privacy Protection

•Cyber protection of systems

•Creating equipment and tools to deal
with the huge amount of energy data
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FIGURE 3.5 Energy future with AI.
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What are the benefits of hybrid renewable energy? They enhance the reliability 
and effectiveness of renewable energy systems by providing the following qualitative 
additions:

• In order to increase reliability, it is necessary to combine types of renewable 
energy to ensure a stable grid and continuity of supply, which makes hybrid 
energy a stable and integrated energy source [46].

• Having multiple sources of energy supply and providing energy according 
to demand, hybrid systems increase energy abundance: Since renewable 
energy is dependent on weather conditions, hybrid systems provide reliable 
energy supply continuously [47].

• In a hybrid energy system, surplus energy can be stored in various stor‑
age units and supplied to the system when required, which contributes to 
maintaining the efficiency of renewable energy systems. This maximizes 
the efficiency of renewable energy systems by utilizing all their products.

• Off‑grid areas benefit from a hybrid system: In villages and remote areas, 
hybrid systems are a reliable source of energy since they replace expensive 
and harmful diesel generators.

• In order to access clean energy, renewable energy needs to be integrated 
with storage and support units, which are lower in carbon emissions than 
fossil fuels and their emissions, paving the way for the elimination of fossil 
fuels gradually.

3.4.4 TeChniCaL probLems

It is important to consider the degree to which the new network from renewable 
energy is compatible with the electrical grids when there is infrastructure that facili‑
tates the integration of the two grids, especially when there is a hybrid system or 
the possibility of storing energy. Additionally, network managers must be trained to 
a high level of skill in order to manage grids effectively. Hybrid renewable energy 
systems face a number of technical challenges, including:

• In this case, a hybrid system addresses the problem of intermittent renew‑
able energy resources by storing energy or supported by generators, which 
increases the system’s cost.

• Storage of electrical energy is a challenge in hybrid systems since the tech‑
nologies used for storing electrical energy are limited and lose efficiency 
over time, not to mention being costly to implement, as well as needing to 
be replaced when they reach their end of life.

• As a result of varying load, renewable and hybrid energy systems must be 
integrated into the electrical network. However, integrating those systems 
into the electrical grid requires technology that is available in the grid. For 
this reason, the network must be capable of receiving the generated loads 
and creating a balance between inputs in order to avoid interruptions in 
the electricity supply, especially in older networks that do not have modern 
technology.



55Applications of AI Techniques in Hybrid Renewable Energy Systems

• A large number of hybrid renewable energy projects are being applied in the 
form of units or relatively small projects. However, if it is applied at a larger 
scale, it will require sophisticated technology and control tools as well as 
complicated communication and control tools, which in turn raises project 
costs significantly [39].

Numerous renewable energy sources and different storage and distribution systems 
result in high costs, which present economic challenges. Because hybrid projects 
contain multiple components and storage systems, they require high investment capi‑
tal to analyze their initial costs. The cost of these projects consists of the purchase 
of land, the installation of renewable energy systems, including wind turbines, solar 
cells, and others, as well as operating costs, installation fees, and the cost of batteries 
and generators, as well as the creation of a hybrid energy control system as well as 
communication and control systems for maintaining a continuous supply of energy. 
It is predicted that renewable hybrid energy will grow and spread in the future. In 
addition to being able to expand and keep pace with rapid technological progress, it 
provides diverse and attractive opportunities to solve energy problems. Our world is 
experiencing smarter technology than ever before, which makes the hybrid system an 
appealing solution to our high energy demands. Hybrid energy production is directly 
impacted by network control, ensuring a promising future for future generations of 
energy [48]. Increasing the use of renewable energy sources is the most sustainable 
solution to energy supply problems because this energy is widely available in most 
countries and has a lower carbon footprint than fossil fuels. The use of wind and solar 
energy is widespread throughout the world and suggests the possibility of replacing 
traditional energy with clean energy. It is challenging to expand the use of renewable 
energy sources due to the fact that it affects the social and political aspects that play 
a key role in encouraging the use of clean energy sources, and the expansion process 
faces obstacles due to competition with the local industries and companies a country 
relies on for energy security.

3.5 CONCLUSION

3.5.1 The review ouTComes

There is no doubt that the future of the world is facing a transition toward a clean and 
more economical energy either by renewables or advancing conventional resources. 
Hybrid renewable energy has emerged to enhance the reliability of energy use with 
realistic expansion. The increasing growth in energy demand requires carefully 
studying the types of energy and predicting the future to provide energy security for 
generations by artificial intelligence techniques and strategies. Renewable energy 
sources can be utilized optimally and at a lower cost, as the continuous development 
of renewable energy reduces the demand for energy produced by burning fossil fuels, 
thus protecting our planet from climate change and the harmful carbon effects that 
destroy nature.

The role of artificial intelligence techniques in control, protection, optimization, 
and decision‑making is fundamental in the optimization of renewable energy systems.  
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In the renewable energy sector, AI is proving to have great potential for optimiz‑
ing energy management. Future research in renewable energy sources, especially 
in hybrid systems, will require its effective application. The application of IA in the 
different control strategies of hybrid renewable energy systems is important to opti‑
mize the performance of the system. This allows the reduction of harmonics, power 
fluctuations, efficient energy management, etc.

More studies are implementing AI models to demonstrate their effectiveness in 
forecasting the variability of renewable energy sources. This article also reviews 
existing studies on AI methods used to predict the variability of solar and wind 
energy systems.

3.5.2 fuTure sTudies on ai in energy sysTems

The opportunities are considerable in including AI for purposes of efficiency, reli‑
ability, and sustainability in energy systems. The following section presents some 
areas of further research and development operationalizing to fill the present gaps 
and offer solutions to contemporary issues.

• Making Artificial Intelligence work in SCADA systems
The application of advanced AI algorithms in SCADA systems integrates 

real‑time analytics, predictive maintenance, and automated decision‑mak‑
ing to enhance the resiliency and cybersecurity of power systems.

• AI-based smart grids
Future work will involve AI algorithms that will compensate for the 

energy dispatch, forecast the demand, and handle storage in the smart grids 
as much as possible so their adaptability to a fluctuating power supply is 
enhanced with integrated distributed energy resources.

• Energy Storage Management with AI
Develop AI algorithms that tune charge‑discharge cycling for longer life 

of storage components and higher efficiency in general.
• AI-based forecasting for renewable energy

Allow more sophisticated AI models to make reasonable forecasts of 
solar and wind energy in grid stability and proper energy planning when 
coping with their variability and intermittency.

• AI for energy-efficient buildings
Emphasize AI‑powered building management systems for optimization 

in the use of space and resources in buildings, including HVAC, lighting, 
and appliances, to minimize wastage along with energy consumption and 
greenhouse gas emissions.

• AI Integration into the Internet of Things (IoT)
Look for AI algorithms in processing sensor data with the Internet of 

Things to make energy systems more efficient, perform predictive mainte‑
nance, and detect anomalies.
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4 Applications of Artificial 
Intelligence Techniques 
in Smart Grid Systems

Abdallah A. Smadi and Amani A. Alomari

4.1 INTRODUCTION

Conventional power grid is transitioning from an electromechanically managed net‑
work to a digitized controlled system. The SG functions coordinate interoperabil‑
ity between various technological devices and equipment, such as smart sensing, 
management systems, control devices, communication infrastructure, and electronic 
devices. The planning and operation of the SGs have revolutionized the conventional 
grid in several areas: (a) Monitoring and measurement, SGs employ smart sensing 
devices and communication infrastructure to monitor and measure grid performance 
continuously; (b) Transmit information, SG communicates real‑time data among 
devices and back to operation centers; (c) Automatic response, SGs process, analyze, 
and respond automatically to changing conditions such as detecting faults and pre‑
dicting potential issues; (d) Optimization, SGs apply optimization methods to help 
control centers in situation awareness and implementing corrective actions.

The growing integration of Renewable Energy Sources (RESs), such as PV sys‑
tems and wind energy, into the power grid is a result of digitization, global warming, 
climate change, and the depletion of fossil fuels. This high penetration of stochas‑
tic and intermittent resources reduces pollution and other additional characteristics, 
as shown in Figure 4.1: (a) Flexibility to bidirectional power flow, where end users 
can contribute to energy production; (b) Power system stability, where the network 
can be divided into multiple microgrids using localized control and management, 
which can be isolated/islanded during outages to mitigate issues without affecting 
the entire grid; (c) EV and Energy Storage Systems (ESS), where they can charge 
from and discharge to the smart grid (SG), enhancing energy efficiency and storage 
capabilities; (d) Power and energy marketing, where SGs improve energy manage‑
ment efficiency and boost economic welfare by adopting dynamic pricing and energy 
trading; (e) Decision‑making, where SG equipped with advanced methods are capa‑
ble of autonomous decision‑making based on real‑time data and predictive analytics; 
(f) Self‑Healing, where SGs are able to detects different types of faults and able to 
automatically isolate and resolve without human intervention. During faults or out‑
ages, the advanced control of the SG can automatically change the grid configuration 
to isolate the affected areas and maintain healthy areas [1,2]. These characteristics 
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provide a more secure and stable power system that improves the system’s resiliency 
and sustains the power delivery.

However, the unpredictable nature of RESs has presented serious issues to the 
power system: (a) RESs are not dispatchable sources (their output power cannot be 
controlled), and RESs cannot be predicted with precision, leading to grid manage‑
ment complexity; (b) Unpredictability nature can lead to difficulties in maintain‑
ing a balanced and stable grid, especially during periods of high demand or low 
generation; (c) The incorporation of advanced communication and control technolo‑
gies increases the grid’s vulnerability to cyberattacks, necessitating robust security 
measures; (d) The high initial costs of deploying SG infrastructure and the need for 
continuous updates and maintenance can be a financial burden for utilities and con‑
sumers alike; (e) Massive information, these advanced components provide massive, 
high‑resolution, dimensional, and multivariate data about the power system opera‑
tions. However, conventional modeling, control, and optimization approaches have 
numerous limitations and restrictions in processing the huge number of datasets pro‑
vided by smart devices. Thus, the application of AI techniques in the SG has become 
more apparent [3,4].

FIGURE 4.1 A schematic of the main characteristics and features of the SGs.
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The latest Artificial Intelligence (AI) technologies have revolutionized many sec‑
tors, such as business, economy, and industries, by solving numerous complicated 
problems in autonomous driving, computer calculations, computer language process‑
ing, and other fields. Massive data sets are used in AI approaches to build intelli‑
gent machines that can perform tasks that need human intelligence. AI refers to the 
computer mimicking the cognitive functions of grid operators to attain self‑healing 
capabilities. AI methods applied in SGs enable fast and accurate decision‑making 
and help SG strict standards for stability, security, and dependability. However, AI 
techniques may not replace human intervention in the near future as there are many 
challenges prohibiting AI methods to control SG applications comprehensively.

In this chapter, we examine and summarize the definitions of SGs, advances, and 
developments that have transformed the conventional power grid into the present form 
of SG. Then, we give an overview of the state‑of‑the‑art AI techniques employed to 
improve the speed and accuracy of the SG response. This chapter also presents an 
overview of the applications of AI techniques to energy management systems (EMS), 
load forecasting (LF), SG stability analysis, fault diagnosis, and security.

4.2  TECHNOLOGICAL ADVANCEMENTS IN SMART GRID: 
FROM CONVENTIONAL TO FUTURE GRID

Significant advances have been made in the power grid driven by rapid technologi‑
cal innovation, which has led to a change in energy management. The evolution and 
trends that have led to a more resilient, adaptive, and interconnected SG infrastruc‑
ture are discussed in this section. As shown in Figure 4.2, improvements have been 
based on incremental improvements in generation and distribution, as well as the 
introduction of computing concepts.

FIGURE 4.2 A generalized schematic of the trends of evolution of the smart grid.
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4.2.1 CLassiCaL power sysTems

The power grid has experienced a substantial evolution, transitioning from its con‑
ventional hardwired to a semi‑automatic and then to a fully integrated smart net‑
work. The electric power grid was initially established as a district‑oriented wire 
grid and terminals approach, as shown in Figure 4.3. These power networks serve 
local communities clustered around fuel resources [5]. Over time, these localized 
grids expanded and interconnected, forming large and more sophisticated structures. 
Rapid industrialization and infrastructural growth in recent decades have driven the 
development of the present power grid. Power grids exist in diverse topographies 
that maintain clear distinctions between generation, transmission, and distribution 
systems. However, the existing grid operates on an absolute hierarchical architecture, 
with power plants at the top of the value chain distributing power to customers at the 
bottom, as shown in Figure 4.3. This architecture scheme has been lacking real‑time 
information exchange between generation and distribution. This hard‑wired system, 
designed to withstand maximum peak demand, has become increasingly ineffective 
due to rising electricity demand and inadequate financial support for infrastructure. 
The tolerance limits of the power grid have been reached, which makes it susceptible 
to catastrophic shutdowns in the event of unanticipated demand surges or irregulari‑
ties. Power utility corporations have proposed central controllers, such as supervi‑
sory control and data acquisition (SCADA) systems, to address these challenges to 
enable auto‑diagnosis and maintenance of upstream assets. While advances have 
primarily focused on improving generation and distribution, operational changes 
beyond the substation have only recently occurred, with the core grid computing 
concept remaining largely unchanged [6].

FIGURE 4.3 Overview schematic of the classical power grid.
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4.2.2 smarT power grid

The SG indicates the shift from the conventional electromechanically controlled 
power network to a digitally automated control grid. The advancement in infrastruc‑
ture investment led to the introduction of Automated Meter Reading (AMR) schemes 
in the distribution system. AMR allows the utilities to read the utilization data, warn‑
ings and alarms, and status remotely from customers’ premises equipment [6,7].

Various technological, social, and policy trends have stimulated the conceptualiza‑
tion of innovative grid design, operations, and management approaches. An example 
of these trends is the expanded integration of RESs. This leads to the increased use 
of smart devices and a rise in Distributed Energy Resources (DERs) such as Electric 
Vehicles (EVs), rooftop solar, and ESSs. While these practices improve system capa‑
bilities for energy producers and consumers, they also carry considerable complexity 
in power system controls and EMS [8]. This heightened complexity appears when 
the power system is expected to be more efficient, secure, reliable, adaptable, and 
resilient to keep up with the rapid growth in energy demand. Handling and regulating 
such a complex system using the existing centralized control framework has nearly 
reached its scalability limits. This highlights the need for a more efficient energy grid 
for a smarter future.

The SG incorporates various control techniques and field‑sensing devices com‑
municating information and coordinating diverse electrical functions. The introduc‑
tion of SG technologies has transformed traditional grid architecture and addressed 
operational challenges in three primary areas: Monitoring and measurement pro‑
cesses by transmitting data back and forth between the smart sensing devices and 
the energy management and control centers to make responses and necessary 
adjustments automatically. Moreover, processes involve evaluating and supporting 
operators in accessing and utilizing information generated by automated techniques 
throughout the power grid. Nevertheless, there were drawbacks to these develop‑
ments, including LF, cybersecurity, grid dependability, and fault detection and moni‑
toring. These crucial elements generate substantial volumes of high‑dimensional, 
multiclass data related to SG functionalities and operations [9]. Hence, integrating 
AI algorithms into the SGs has become increasingly adopted. Therefore, deploying 
AI approaches improve precise control, and life‑monitoring, decision‑making, and 
analysis are imperative.

4.2.3 advanCed smarT grid

The future grid has not only evolved from advancements in science and engineer‑
ing. Nevertheless, it has also been forced by investors and investment motivation to 
address critical challenges the existing SG faces. The future SG architecture inte‑
grates some advances to the current SG, such as an advanced meter reading scheme. 
However, while AMR represents considerable progress, it must fully address key 
challenges necessary for effective demand‑side management. The ability of AMR to 
read meter readings with any form of data logging is restricted due to the Simple com‑
munication exchange framework. This limitation cannot allow the power companies 
to take corrective action based on data gathered from their meters. This means that 
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AMR systems restrain the possible transition to the SG, where universal control and 
management are at all levels [10]. Consequently, power corporations shifted toward 
Advanced Metering Infrastructure (AMI).

The advancements of AMI have marked a collaborative effort by investors to 
enhance ideas surrounding the SG. As the SG paradigm continues to evolve, future 
SG will be characterized by full‑scale automation, intelligent applications, and sup‑
port from intelligent agents. Sensors for future grids are not just hard‑wired but 
intelligent; the applications are smart, and smart operators support field equipment, 
which helps with accuracy, information reporting, and monitoring. Transmission and 
distribution networks will be fully automated, with reliable outage detection and 
response and support for load balancing [3].

As shown in Figure 4.4, the future SG will be software‑driven, with smart sen‑
sors incorporating AI techniques to form the Internet‑of‑Things (IoT) foundation, 
enabling semi‑decision‑making and automated management centers. This integra‑
tion will allow programmable sensors to interface with various platforms, such 

FIGURE 4.4 Generic schematic of the advanced SG functions.
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as cloud computing and advanced communication networks. Unlike conventional 
smart meters, AI meters will make micro‑decisions, such as remotely monitoring 
consumption levels, reporting to authorities, and independently suggesting which 
appliances need to be disconnected to save energy [3,9]. Additionally, AI meters 
will offer enhanced security and data privacy to withstand hacking attempts and 
false data injections. The future grid will feature a sophisticated communication 
network that is resilient against hackers, utilizing technologies such as network 
slicing and network function virtualization. Furthermore, the future grid will be 
software‑defined or software‑driven with network slicing and network function 
virtualization capabilities, supported by cloud computing and storage. These net‑
works combine machine learning, language processing, and other cutting‑edge 
technologies to provide AI‑enabled services, guaranteeing efficiency, scalability, 
and resilience [3,10].

4.2.3.1 Power Generations
Two new and innovative cutting‑edge concepts are under discussion in energy 
generation research: Microgrids and Virtual Power Plants (VPPs). Microgrids 
can operate separately during emergencies, where the control can isolate the 
microgrid from the main grid and independently generate power to provide ser‑
vices for local loads. Conversely, VPPs are cloud‑based control distributed power 
plants that combine various energy sources to increase generation and ease trad‑
ing on the electricity market.

The microgrid control technique can autonomously isolate from the national grid 
during crises, which improves the SG’s resiliency, reliability, robustness, flexibility, 
and sustainability. Isolating or islanding a healthy grid from the affected one due to 
any outage or crises, such as natural disasters or unexpected events, can help con‑
tinue serving its customers and support other healthy neighboring grids. Microgrids 
provide different benefits to the power grid, such as affordable and clean energy, 
higher efficiency, improved resiliency, dynamic situational awareness, and enhanced 
operation and reliability [7,10].

The VPP is different than microgrids in many aspects. A VPP, as shown in 
Figure 4.5, is a cloud‑based distributed system combining various heterogeneous 
DERs energy production. The Aim is to get the maximum possible power gen‑
eration and facilitate power electricity market trading. A VPP unifies multiple 
small‑scale distributed generation units into a cohesive entity. Despite their vari‑
ous locations, these small‑scale sources can be efficiently managed and coordi‑
nated through Information and Communication Technology (ICT), allowing them 
to collectively meet and support peak power demands. This concept of a VPP 
assists large power utilities operating centralized power plants and centralized 
control systems by integrating microgrids and distributed energy sources to form 
a holistic computer‑controlled power management system. This fully controllable 
network can be managed from a central grid control center, allowing the combina‑
tion of various energy generation sources and large energy users to function as a 
single and unified supplier [11]. The main differences between the VPP and the 
microgrids are:
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 1. Microgrids can typically work off‑grid and operate independently (islanded) 
during grid outages, whereas VPPs are integrated into the power grid system.

 2. Microgrids are confined to a specific location, such as a region, while a VPP 
utilizes resources connected to part of the grid.

 3. The control, operation, and management systems of VPPs and microgrids 
differ significantly.

 4. VPPs target wholesale markets, and microgrids focus on end‑user power supply.

4.2.3.2 Smart Transmission Line
Transmission lines are current‑carrying conductors that transmit energy from the 
generating site to the substations and end at the electric grid. Transmission lines 
could be long, medium, or short transmission lines. The traditional transmission 
grid faces several challenges in conveying energy from generation to the customer. 
Aging infrastructure and transmission losses reduce efficiency, while balanc‑
ing supply and demand is difficult, especially when integrating RESs. Significant 
issues include environmental pollution from traditional power generation and the 
prohibitive costs of upgrading infrastructure. Additionally, engaging consumers in 
energy‑saving programs and adopting innovative technologies remains challenging. 
Therefore, a robust real‑time monitoring and fault detection scheme is essential for 
transmission and distribution lines. The future power grid will have intelligent, pro‑
grammable sensors with advanced smart transmission lines. As shown in Figure 4.6, 
these smart sensors will provide immediate and accurate real‑time measurements of 
the status of transmission lines [3,6,9].

Additionally, augmenting the transmission lines with smart sensors and oper‑
ated by AI techniques allows the network management control centers to oversee the 

FIGURE 4.5 Generalized conceptualization of the virtual power plants.
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entire grid. This will be the foundation of an internet‑oriented transmission network 
and help utilities monitor and detect faults and address challenges such as cable theft 
and vandalism. Overall, this technological approach enables two‑way communica‑
tion between utilities and customers, with intelligent sensing enhancing the grid’s 
efficiency and responsiveness.

4.2.3.3 Smart Distribution Networks
4.2.3.3.1 Smart Feeders
Distribution feeders transmit energy from substations or DERs to other distribu‑
tion substations or end users. Distribution automation is a comprehensive data man‑
agement network that utilizes AI and ML techniques, smart agents, a secured and 
high‑speed communication network, and smart sensors. These smart feeders improve 
system reliability, boost energy delivery, provide high‑quality services to consumers, 
and reduce operating and labor costs [2,8,12]. The distribution automation progresses 
in three stages, as illustrated in Figure 4.7

 1. Conventional distribution switching devices like reclosers lack communi‑
cation infrastructure and computerized control processes. However, smart 
switching devices such as Intelligent Electronic Devices (IEDs), reclosers, 
and sectionalizers operate collectively with IOT‑based functions. These 
advanced applications can isolate or island neighboring grids during faults 
in real time, ensuring continuous energy delivery to unaffected areas.  
AI sensors monitor and analyze failure patterns using ML algorithms for 
future reference. Additionally, smart reclosers and auto‑switch devices are 
utilized alongside other intelligent operations and supervision, eliminating 
the labor‑intensive processes currently used in existing SGs [13]

 2. Distribution smart supervisory agents can monitor the electricity distribution 
grid’s operational state in real time through this stage. Moreover, remotely 

FIGURE 4.6 Smart and programable sensors used in transmission lines.
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adjust operational parameters with SG systems and installed radio commu‑
nication networks. This enables quick fault detection, and dispatchers can 
remotely isolate impacted communities and bring other areas back online. 
The communication network transmits vital data, including telemetry and 
tele‑indication data, as well as remote control commands from primary sites 
to substations for line‑fault isolation and restoration. In an intelligent dis‑
tributed feeder, the processing logic shifts to an intelligent mode via mesh 
interactions (peer‑to‑peer communication). These automated processes 
facilitate intelligent decision‑making, fault location, islanding, and power 
supply recovery in non‑faulty areas, which reduces the possibility and dura‑
tion of power failures.

 3. Smart devices embedded with intelligent control functionalities are 
deployed, integrated, and activated. The incorporation of AI/ML algorithms 
in future SGs will add more capabilities and features to the present SGs. 
Firstly, it enables the integration of fully automated and supervised control 
systems that are smarter than the current SCADA systems used in the pres‑
ent SG networks. Secondly, it incorporates work management, dispatcher 
scheduling simulation, a defect call service system, and a power distribution 
geographic information management system. Lastly, remote meter reading, 
feeder segment switch controller, customer load controller, capacitor bank 
parameter controller, and substation automation.

FIGURE 4.7 Stages of advancements in distribution automation.
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4.2.3.3.2 Smart Programable Sensors
AI‑powered sensors represent the future of grid management due to their deci‑
sion‑making capabilities and programmability. These smart sensors will play a sig‑
nificant role by gathering raw data about grid status, such as faults and outages, and 
transmitting it to computationally capable nodes within the grid known as sensor 
hubs. These local hubs will collect and pre‑process the data, making micro‑decisions 
for local intelligence. As shown in Figure 4.8, these localized hubs will communicate 
data with one another and with the network management center to receive accurate 
real‑time feedback on the grid status. This center works as a global intelligence of 
the grid, located in the cloud, and organizes the overall management and operation 
of the grid [3,13].

4.2.3.3.3 Smart Loads
Integrate intelligent loads utilizing AI‑driven networks to enhance energy con‑
sumption efficiency and reinforce grid performance. These sophisticated loads can 
autonomously modulate their energy consumption, particularly during peak demand 
periods, thereby alleviating stress on the grid. Through real‑time communication 
with network management centers, these smart loads are continuously informed of 
and can respond to dynamic operational conditions. This bidirectional flow of infor‑
mation and control augments the grid’s adaptability and resilience to fluctuations 
and disruptions [2,14]. The intelligent loads, with their adept data processing and 
decision‑making ability, play a critical role in managing the complexity and decen‑
tralization of the power network. This, in turn, enhances the grid’s reliability, flex‑
ibility, and responsiveness to both consumer needs and utility objectives.

FIGURE 4.8 Generalized architecture of AI‑powered sensors.
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4.3 AI APPLICATIONS FOR SMART GRIDS

AI techniques have enabled the smart energy markets to facilitate market  regulations 
and policies and benefit the end users to contribute to generation/consump‑
tion  decision‑making. To efficiently manage the power systems and accurately 
make  decisions, sophisticated procedures are required for more complex systems.  
In  general, AI methods are used in SG applications to overcome many issues related 
to load and generation forecasting, power market pricing, fault diagnostics, control 
operation techniques, system optimization, decision‑making, etc. However, most of 
the grid operations are still, and field devices are still manually executed, and field 
devices are semi‑autonomous, which needs human intervention.

With the continuous adoption of new technologies, more AI techniques will be 
implemented in the field, introducing innovative directions to power system opera‑
tions, security, design, and planning. However, several challenges appear when using 
AI approaches in power system networks, including developing communication chan‑
nels between the end user and the generation sides, designing autonomous techniques 
to adapt and change their configurations under different operation and consumption 
conditions without the intervention of humans, Developing simulation software and 
prediction tools that are capable of representing the response of field devices [3,15].

4.3.1 energy managemenT sysTem

EMS is a critical component in the control operation centers of the SGs that inte‑
grates both technical and economic aspects. It is essential for optimizing grid per‑
formance and integrating power resources. EMSs can be divided into two primary 
categories: model‑based and model‑free. Model‑based EMS relies on domain exper‑
tise to develop accurate models and parameters. However, the development of this 
approach is costly because it is often non‑transferable and non‑scalable. Moreover, 
updating the design of the parameters is frequently required due to their inherent 
uncertainties, which increase the maintenance expenses [16].

On the other hand, ML algorithms are employed by model‑free or data‑driven 
EMS techniques to generate optimal control schemes straight from operational data. 
Model‑free EMS enhances scalability and reduces costs by eliminating the need 
for precise system models. This is because model‑free EMS operates by deriving 
near‑optimal control approaches from real‑time data. AI techniques are employed in 
different sectors of the EMS to improve system security, flexibility, reliability, resil‑
iency, etc. For example, Artificial Neural Networks (ANNs) are employed to model 
the power output uncertainties of the RESs. This aids in stochastic programming 
formulations for optimal energy management. ANNs are used to minimize produc‑
tion costs, maximize renewable energy utilization, and effectively address the inter‑
mittency of RESs and the stochastic nature of market prices and loads. Figure 4.9 
Summarizes the main functions of the EMS in the smart power network.

Through demand response (DR) programs, end users are encouraged to mod‑
ify their energy usage in response to feedback from markets or grid operators. DR 
increases grid stability and dependability by incentivizing users to cut back on or 
modify their electricity usage during peak demands [17]. Advances in ICTs have 
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made it possible for AI algorithms to properly estimate energy prices, facilitating the 
digitalization of demand response and supporting demand prediction and optimal 
resource usage. AI tools utilize customer and utility data to optimize grid operations, 
facilitate decision‑making, and load predictions.

4.3.2 Load foreCasTing

Future SGs will be characterized by the incorporation and management of diverse 
DERs. This includes the integration of microgrids and VPPs. However, urbaniza‑
tion and exponential growth in electricity demand are driving the complexity of grid 
operation. LF emerges as a critical component to ensure grid stability and intelli‑
gence. The LF is an EMS tool used to help in scheduling and strategic decision‑mak‑
ing. Therefore, accurate LF helps minimize energy generation costs and conserve 
electric power, particularly in scenarios of fluctuating load demand [18,19].

LF is classified into three categories, as shown in Figure  4.10: Short‑Term LF 
(STLF), which predicts load variations from seconds to hours; Mid‑Term LF (MTLF) 
predicts variations in load from hours to weeks; and Long‑Term LF (LTLF), which 
estimates load patterns from months to years. Numerous factors influence LF, includ‑
ing time, user types, weather conditions, seasons, events, and the applied algorithms. 
MTLF and LTLF predictions rely on historical power consumption data. Moreover, 
other key factors, such as customer demographics and weather conditions. STLF is 
used in applications related to power flow planning, demand response, and real‑time 
monitoring, control, and decision‑making. On the other hand, MTLF and LTLF will 
play an essential role in future SG planning and design.

FIGURE 4.9 Energy management system in the SG system.
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The design of LF models involves several steps, as shown in Figure 4.11. The 
techniques start with data preprocessing to reduce noise and isolate biased data for a 
more reliable dataset. Subsequently, AI algorithms are utilized to develop or improve 
existing algorithms. AI‑based hybrid methods, combining multiple algorithms, 
aim to enhance efficiency and performance. They often employ metaheuristic or 
trial‑and‑error approaches for parameter optimization. Another important aspect of 

FIGURE 4.10 Basic load forecasting techniques.

FIGURE 4.11 Generalized flowchart of LF techniques process.
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effective SG management and control is forecasting RESs such as wind and solar. 
Studies utilize various AI‑based techniques, including ANN and SVM, as well as 
hybrid methods, to improve forecast accuracy for these intermittent energy sources.

4.3.2.1 Short‑Term Load Forecasting
STLF methods are applied to predict the power consumption of the end‑users within 
a time period from 1 hour to several days. STLF is an essential part of the EMS, and 
it helps control center operations for appropriate load and generation scheduling. The 
main requirements of the STLF are high forecasting accuracy and speed. At the same 
time, many factors that can affect the LF have simple or complicated relationships 
with the loads, such as weather conditions, part of the year and days, and electricity 
market pricing. Various STLF approaches have been applied in the field to improve 
prediction accuracy and decision‑making efficiency. Generally, these approaches can 
be categorized as conventional or modern methods.

Conventional methods have demonstrated that predicting accuracy depends on 
the system, and by combining them with weighted multimodel techniques, more suit‑
able outcomes can be obtained in real‑world systems. However, these methods can‑
not represent the nonlinearity between the load and dynamic system change. Various 
AI/ML techniques are employed in STLFT to enhance forecasting accuracy. For 
example, AI approaches combining multiple techniques have shown promise to over‑
come the limitations of traditional methods. Ultimately, integrating AI techniques 
offers an opportunity to optimize grid operations, minimize costs, and ensure reli‑
able power delivery within SGs [20].

4.3.2.2 Mid‑Term Load Forecasting
MTLF is used for strategic planning and decision‑making processes of utilities within 
SGs. MTLF provides insights into load trends and patterns over a medium‑term hori‑
zon spanning days to weeks. Moreover, the MTLF is employed in various applica‑
tions such as managing maintenance planning, load balancing, load demand, and 
load dispatch. This longer study helps utilities make strategic resource allocation 
and demand‑side management decisions. With the increasing integration of DERs, 
accurate MTLF becomes essential for ensuring grid stability, optimizing generation, 
and meeting future energy demand [18].

Adopting AI‑enabled MTLF significantly enhances the accuracy and robust‑
ness of future SGs. AI techniques can harness vast amounts of historical load data, 
weather forecasts, economic indicators, and other relevant factors to generate precise 
forecasts. AI‑driven MTLF models can capture complex and nonlinear relationships 
within the data. This will allow operators to anticipate load variations with greater 
accuracy. Therefore, corporations can improve long‑range planning and proactively 
address challenges posed by evolving grid dynamics. Furthermore, AI facilitates 
adaptive forecasting models that can continuously learn and develop to stay ahead of 
the prediction curve [4].

4.3.2.3 Long‑Term Load Forecasting
LTLF is essential for predicting power consumption and expansion scheduling 
that spans several years to decades. LTLF facilitates substantial investment in the 
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future SG. It plays a significant role in grid planning, power consumption prediction, 
and load and generation scheduling. AI and ML algorithms are utilized in EMS to 
improve the accuracy of LTLF models and lead to more precise forecasts. Various AI 
and ML techniques have been developed to address LTLF challenges. For instance, 
the multivariate adaptive regression spline approach has shown great precision and 
consistency compared to ANN and LR models in predicting load demand and envi‑
ronmental variables [18,20]. Innovative approaches like the hybrid fuzzy‑neuro model 
and the Long Short‑Term Memory model have captured long‑term dependencies.

4.3.3 power grid sTabiLiTy assessmenT

System stability relies on the synchronous generator to maintain the system synchro‑
nized under and after fault conditions. The three main types of power system stabil‑
ity depend on the magnitude of the disturbance, as shown in Figure 4.12. The power 
grid stability is assessed based on their behavior, encompassing transient, frequency, 
and voltage stability.

Traditionally, stability assessments have relied on complex models that are based 
on real‑time dynamic models of the power system. However, the growing electricity 
demand, integration of renewable energy, and advancements in power electronics 
devices have raised critical concerns about power grid stability [21,22]. Advancements 
such as phasor measurement units (PMUs) and wide area measurement systems 
have also facilitated the application of data‑driven AI methods for stability analysis 
in SGs. Monitoring and early detection of instability are crucial for maintaining 
secure and stable grid operations. It can be divided into two stages: offline training 
and online application framework, as shown in Figure 4.13. The processing of the 
AI‑driven grid stability is done offline training while the online process takes care of 

FIGURE 4.12 A general framework of security or stability assessment using AI techniques.
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collecting the measurements and the decision‑making. AI has been applied to all of 
these areas for its effective speed, accuracy, and adaptability advantages.

4.3.3.1 Rotor Angle Stability Assessment
4.3.3.1.1 Transient Stability
Transient stability is referred to as rotor angle stability, which is achieved by main‑
taining synchronism in the synchronous generator. Transient stability represents the 
large disturbance in the rotor angle stability. Conventional techniques face many 
challenges in stabilizing the power grid. These techniques rely on detailed models 
of the power system. These methods require significant resources to simulate the 
dynamic behavior of the power system. Moreover, they are sensitive to parameter 
values and susceptible to parameter uncertainties [23]. These issues emphasize the 
need for more advanced methods, such as data‑driven approaches and AI‑based tech‑
niques. AI and ML approaches are capable of mapping between the stability status 
and the variables of the power system network. In practice, modern SGs are more 
stabilized than conventional grids due to their controllability and advanced EMS. 
Hence, unstable conditions are less likely to happen, which may significantly dete‑
riorate the performance of AI.

4.3.3.1.2 Small‑Signal Stability
Small‑signal stability refers to the ability to maintain power system synchronism 
under small disturbances. A small disturbance is considered when minor load changes 

FIGURE  4.13 A general framework of security or stability of the smart grid using AI 
techniques.
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or small variations in generation occur. The disturbance is classified as a small signal 
when the power system can return to a stable operation condition without experienc‑
ing long‑time oscillations. Conventional techniques used in assessing small‑signal 
stability have relied on linearizing the power system models around their operating 
points [24]. They usually use eigenvalues to represent the model analysis. However, 
these methods have limitations, including their need for accurate system models and 
parameters.

4.3.3.2 Frequency Stability
The frequency stability of the SG refers to the capability of the power system to 
maintain or stay at the equilibrium frequency regardless of the intensity of the system 
disturbance. The use of renewable energy sources and the use of IEDs in modern 
SGs have raised more concerns about keeping the system frequency within lim‑
its. Frequently, instability of the power system arises from a significant mismatch 
between energy generation resources and load demand. This issue often becomes 
more noticeable when a large frequency divergence occurs, causing the corporations 
to respond in a manner that ultimately affects the system’s stability. Due to their 
speed and accuracy, some interactive and dynamic measures have been proposed 
using AI and ML techniques to restrain system stability. Additionally, AI and ML 
algorithms are used for load shedding to help regulate the system frequency as a 
contribution to proactive measures [25].

4.3.3.3 Voltage Stability Assessment
Environmental constraints, the prohibitive cost of transmission line construction, and 
deregulation policies drive conventional power networks to operate under stressed 
conditions. At this point, even minor disturbances could result in a voltage break‑
down. Voltage stability analysis is therefore crucial for a safe and dependable power 
system. Both dynamic and static approaches are used to analyze the voltage stability 
of the power system. Static techniques capture system snapshots at various intervals, 
while dynamic methods need more computational time [26]. Corporations developed 
and adopted methods based on voltage stability indices to speed up the estimation.

The voltage stability indices use the power flow solution to calculate a numerical 
representation of the voltage stability. Conventionally, the Jacobian matrix is applied 
to solve the system indices. However, due to non‑linearity close to the voltage col‑
lapse point, these indices are unable to determine the voltage collapse point with any 
degree of accuracy. In response to these challenges, AI models trained on simulation 
or measured data are utilized to determine the indices under the nonlinear relation‑
ship between power system variables and voltage stability status.

4.3.4 smarT grid seCuriTy

The future SG will include various IEDs and smart devices such as smart appli‑
ances, DERs, smart meters, and energy storage systems spread across vast locations. 
The security of the physical layer of the SG is just as important as the cyber layer 
to withstand disasters. SGs are equipped with advanced control infrastructure and 
communication networks to maintain the stability and reliability of the networks. 
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However, due to the complexities of real‑world power systems, they are prone to 
diverse types of vulnerabilities to cyberattacks. These vulnerabilities include human 
behavior, regulatory and political policies, and commercial interests. Incorporating 
and implementing ICTs into the SG to collect, store, and evaluate data through vari‑
ous sensors and IEDs attracts intruders to the grid to alter its operations.

4.3.4.1 Cybersecurity Root Causes and Surface
The wide emergence of low‑cost semiconductor and microprocessor technologies in 
power systems. These devices can send and receive measurements and control func‑
tions between each other, with the control centers at low latencies over digital com‑
munication channels. While the increased use of IEDs has lowered the processing 
and decision‑making times during contingency events, they have also increased the 
cybersecurity vulnerabilities of the power system.

While there are diverse types of cyberattacks, one of the most common is the 
man‑made manipulation of power system functions by intruders and the improper 
redirection of power flow. Table 4.1 reviews modern power systems’ attack surfaces, 
including the domain and types of common attacks [27].

4.3.4.2 Cyber Vulnerabilities of the Smart Power Grid
The expansion of the power system network led to the integration of communication 
infrastructure and cyberinfrastructure, which in turn widened the cyberattack sur‑
face characterized by intensified complexity, heterogeneity, and number of resources. 
These incorporations of IEDs and smart devices have launched new cybersecurity 
vulnerabilities in the following areas [7,14].

• Communication network: The integration of IEDs into the power net‑
works increased the complexity, which makes it harder to maintain situ‑
ational awareness and faster respond to system disturbances.

• Control functions: The control vulnerabilities in the SG include a lack 
of coordination between different grids. This leads to the development of 
advanced control algorithms to manage the integration of DERs in real time.

• Cyber-physical system: Intruders might perform a coordinated attack that 
targets the physical components of the power grid, such as transmission 

TABLE 4.1
Several Types of Cyberattacks on Smart Grids

System/Device Name Attacks

SCADA DoS/FDI

HVDC Control System DoS/FDI

State Estimation FDI

Communication Media Delay/DoS/Jamming

RTUs Delay/DoS/Jamming/FDI

PMUs Delay/Jamming/FDI

IEDs Jamming/FDI
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lines or transformers, and at the same time attack the measurement data. 
These attacks can have profound consequences, as the operators do not real‑
ize that equipment is out of service.

• Supply chain: Adopting smart sensor technologies, combined with modern 
hardware and software development practices, increases the dependence on 
third‑party providers. This can create supply chain vulnerabilities, such as 
a lack of security testing, poor software development practices, and a lack 
of security in the supply chain.

Figure 4.14 shows a generalized view of the power grid cyber vulnerabilities.

4.3.4.3 Impact of Cyberattacks on Power Grid
As previously mentioned, the integration of IEDs to form ICTs has driven the power 
systems to become more vulnerable to diverse types of attacks. Moreover, faster con‑
trol algorithms and functions contributed to making the equipment operate closer to 
its thermal and stability limits. Therefore, cyberattacks can have a variety of effects 
on the SG depending on the detailed nature of the cyberattacks and the impacted 
devices [15]. Some of the main impacts that target the SG are as follows:

FIGURE 4.14 General overview of potential cyberattack vulnerabilities in smart grid paths.
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• Power outages: Cyberattacks have the potential to disrupt the operation of 
the power network, leading to blackouts of the power system.

• Equipment damage: Cyberattacks can cause damage to equipment in the 
power grid, such as generators, transformers, and substations.

• Threat: Cyberattacks on the power grid can be used as a tool of espionage 
or sabotage by nation‑states.

• Financial losses: The power grid operators, regulators, and the general 
public can face financial losses due to power outages, equipment damage, 
loss of personal and sensitive data, loss of intellectual property, and other 
impacts.

4.3.4.4 AI Techniques in Cybersecurity
Due to the complexity of the power system and the fact that sophisticated attacks 
are difficult to identify, it is impossible to include every potential hazard in the SG. 
Malicious attacks can be divided into three main types: information privacy, net‑
work availability, and data integrity. In addition to its technical difficulties, the SG 
presents regulatory challenges. These difficulties are the results of the competition 
between policymakers and stakeholders competing for dominance in the markets 
and the regulations [28].

As power systems become more interconnected and reliant on digital technolo‑
gies, they are exposed to many cyberattacks. Diverse cyberattack types can target 
power system networks, such as False Data Injection (FDI), sensor attacks, com‑
munication latency, denial of service attacks, control system attacks, etc. [27]. Due 
to their efficiency and accuracy, AI‑based techniques offer robust cyberattack detec‑
tion, prevention, and mitigation solutions. AI approaches can continuously moni‑
tor network activities, identify anomalies, and respond to threats in real time. This 
proactive approach enhances the resilience of power systems, ensuring reliable and 
secure operations against sophisticated cyberattacks [29].

4.4 CONCLUSION

The power grid has experienced a substantial evolution, transitioning from its con‑
ventional hardwired electromechanical system to a semi‑automatic and then to a 
fully integrated smart network. Huge technical innovations have driven this transi‑
tion to implement various integrated techniques in the power grid. While these inno‑
vations provide a sustainable, clean, efficient, and reliable SG, they also accompany 
new challenges and limitations in processing and analyzing massive amounts of data 
that make the power grid more complex and susceptible to various drawbacks. Under 
these circumstances, conventional power system operation control, communication, 
etc. techniques are ineffective in satisfying the needs for a stable, secure, accurate, 
resilient, and reliable SG.

With the recent advancements in AI algorithms and the incorporation of digitized 
electronic devices and communication infrastructure in the SG, AI methods provide 
powerful tools for SG applications such as EMS, LF, cybersecurity, stability, etc. 
Hence, AI techniques are being developed and used with promising outcomes in 
various SG applications.
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In this chapter, we presented an overview of the definitions of the power grid, 
advances, and developments that transitioned the classical power system into a SG. 
Moreover, it summarizes the enhancement of the present SG toward a future grid 
that includes unique functions like smart generation, smart transmission lines, smart 
feeders, smart programmable sensors, and smart loads. Then, we discussed the uti‑
lization of AI approaches to improve EMS, LF, SG stability analysis, and security. 
These improvements will enhance the power system’s reliability, robustness, perfor‑
mance, security, and resiliency.
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5 Algae-Based Carbon 
Sequestration
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Energy and Climate Strategy

Pourya Bazyar and Ehsan Sheidaee

5.1 INTRODUCTION

An expanding global population has resulted in the need for more energy. 
Consequently, more CO2 enters the air, which increases the global warming hazard. 
The CO2  makes up approximately 68% of the greenhouse gases emitted into the 
air [1]. Reaching an acceptable level will not be achieved unless there is a signifi‑
cant reduction in the level of CO2 emitted into the atmosphere. Various nations and 
organizations that are concerned about the environment have looked into alternative 
energy sources that have low carbon emissions to reduce harmful emissions.

Also, the use of technologies to capture carbon and sequestration has become a 
critical tool to reduce atmospheric carbon emissions sustainably [2]. Research must 
be done on strategies for the reduction of the amount of carbon emitted using captur‑
ing and sequestering carbon. Lowering CO2 levels in the environment and seques‑
tering CO2 can mitigate the pace of global warming. This technology allows for the 
capture and storage of carbon, as well as its use for other things. Physical and bio‑
logical methods can be broadly categorized as sequestration and capture strategies 
have become increasingly popular in final few years [1,3,4]. Physical methods of CO2 
sequestration have drawbacks and are expensive, so it is necessary to develop the 
appropriate technologies. Despite showing much promise, the method of capturing 
and sequestering carbon has several drawbacks including high operation expenses 
due to the high amount of energy consumed. Additionally, it costs a lot of money to 
capture, move, and store CO2. Physical methods can be substituted with biological 
ones for CO2 sequestration. For instance, it was discovered that the capturing carbon 
department at the Shanghai factory located in China consumed roughly 40% of the 
total energy required to run the plant [5]. In addition, carbon isolation frequently 
entails reservation, mineralization, transportation, and sending carbon thousands 
of meters below the surface of the ocean which makes this method a complicated 
process causing numerous concerns including financial, environmental, safety, and 
technical ones [6]. The technique for capturing and sequestering carbon and isola‑
tion method faces many difficulties [5]; on the other hand, the biological method 
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has been proved to be sustainable and practical for achieving these goals. Utilizing 
organisms including plants, the biological techniques to capture carbon turns CO2 
into the energy plants need to survive. In the past, this process has been carried out 
by terrestrial plants such as trees and new methods of nano‑agrochemical grows [7], 
but algae have been discovered to be more effective than such plants in capturing 
and sequestering carbon. Algae species are more effective than terrestrial plants at 
absorbing and storing carbon up to 10–50 times [4].

The reduction of CO2 and production of biofuels, and other intriguing specialized 
metabolites are among the benefits of using algae for CO2 sequestration. Algal dry 
cell weight uses approximately 1.83  kgCO2/kg while raceway ponds can sequester 
between 54.9 and 67.7 tonnes of CO2 annually that is, 30–37 tonnes (d.w.) of biomass 
are produced per hectare [8]. Biofuels and other scientifically and commercially sig‑
nificant goods, such as industrial food items, biofilters, and water quality testing 
products can be made from algae biomass [9]. When these organisms reach a certain 
size, they can be used as feedstock materials in producing biofuels. They grow faster 
than land plants and efficiently fix carbon through photosynthesis [10]. A drawback 
of an open system is it cannot be controlled for factors like temperature, pH, nutri‑
ent concentrations, pH availability, or agitation. In open systems, seasonal and daily 
temperature fluctuations and varying light availability pose significant challenges 
[8]. Additionally, because of its high susceptibility to contamination, these systems 
are less productive when used to produce commercially significant goods and have a 
lower productivity overall. In a closed system, there is a very high degree of control 
and the ability to manage key variables that affect culture [11].

This chapter primarily explores algae’s role in CO2 sequestration. It covers 
diverse mechanisms and equipment employed for CO2 sequestration and biomass 
production. Additionally, the chapter discusses algae’s life cycle, performance, eco‑
nomic  evaluation, environmental impact, and its significance in carbon capture and 
sequestration.

5.2 THE METHOD OF MICROBIOLOGY CONCERNING ALGAE

In the sequestration of carbon and photosynthesis, algae are among the most useful 
organisms and are divided into multicellular and unicellular, which differ in mor‑
phology and size [12]. Algae are primarily classified based on the life cycle cellular 
structure and color [8,13]. The photosynthetic ability due to possessing chlorophyll 
in a single algal cell, facilitating the generation of biomass, and doing effective meta‑
bolic and genetic research in another period shorter compared to conventional plants 
is what differentiates them from other microorganisms.

Algae possess key features such as chloroplasts with chlorophyll and other pig‑
ments, cell walls, starch granules concentrated on their surfaces, pyrenoids, fla‑
gella, and a stigma. Filamentous colonies of cyanobacteria (blue‑green algae) can 
be grouped into types of cells including akinetes, cells vegetative, and heterocysts. 
Resisting climate, carrying out complete oxygenic photosynthesis, and fixing nitro‑
gen are general functions of vegetative cells, heterocysts, and akinetes respectively. 
The nitrogenase enzyme complex in heterocysts converts atmospheric nitrogen into 
ammonium, a unique capability among oxygenic photosynthetic microorganisms. 
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These are the unique prokaryotes that, similar to eukaryotic algae and plants, are 
known to have oxygenic photosynthesis for CO2 fixation. These organisms are 
remarkably able to produce value‑added products and biofuels [14,15].

Algae are classified based on their environment and morphology as well. A vast 
group of photosynthetic organisms are known as cyanobacteria and green algae. 
They can be found and grow in many conditions from aquatic to terrestrial places. 
As the wide range of cellular lipids obtained from algae shows they can survive in 
various carbon‑rich surroundings.

5.2.1 aLgae speCies for Co2 sequesTraTion

A majority of species of algae can withstand high concentrations of CO2 and can 
be withstood by many species of algae as a result they can use the CO2 from the 
exhaust systems of factories [4,16]. Numerous algae are known to use carbonates 
including Na2CO3 and NaHCO3 for their growing themselves [17]. Different species 
have different oil concentrations up to 80%. Algae can therefore be used to keep CO2 
and change it into energy [18]. How high levels of CO2 affect their species has been 
analyzed in investigations that focused on the species that sustain high CO2 concen‑
trations and produce biomolecules such as triglycerides and lipids meanwhile [19]. 
Some various types of algae including green, brown, blue‑green, and yellow‑green 
from both groups of unicellular and multicellular have been investigated for biose‑
questration. Scenedesmus obliquus unicellular green algae, Arthrospira (Spirulina) 
platensis (SP) a blue‑green microalgae, and Chlorella a single‑celled green algae are 
generally used for capturing carbon [20,21]. Cheah et al. presented that cultivation 
of unicellular algae can remove 1.83 kgCO2/kg and it can create high‑ performance for 
sequestering CO2. Chlorella vulgaris (green, single‑celled microalgae) and Anabaena 
sp. [22] (a filamentous cyanobacteria) with speed of 6.24 g/L/d may remove CO2 [23]. 
For comparison, the amount of CO2 in the air changes between 0.03% (V/V) and 
0.06%; however, in the flue gas it can change between 6% (V/V) and 20% [24–26]. 
The CO2 biofixation and the algal biomass production oscillate greatly controlled 
by characteristic algae species, impacts of the cultural system, and effects of the 
physicochemical process. The cultivated process of selected species of algae is sig‑
nificant for the successful biomass production of CO2 bioconversion. CO2‑tolerant 
Scenedesmus sp. allows an increase in the amount of CO2 from 10% to 20% (V/V), 
however, the ideal concentration of CO2 is just 2% (V/V). The CO2 amount that the 
algae species is exposed to has a significant effect on the obtained biomass [27]. 
Cultivated Nannochloropsis sp. at 15% (V/V) in a day, CO2  grew faster at a rate 
of 58%, from 0.33 to 0.52 [28]. If the amount of CO2 exceeds 5%, it is fatal for the 
growth of certain types of algae.

5.2.2 differenT meTaboLisms for Co2 sequesTraTion

Algae, responsible for over half of global CO2 absorption, are primary producers of 
oxygen through photosynthesis. On the other hand, some algae species can endure 
in dim surroundings because they have heterotrophic metabolisms. Under some cir‑
cumstances, some algae strains can develop mixotrophically. Algae must be able to 
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grow in heterotrophic, auto‑phototrophic, or mixotrophic environments to absorb the 
carbon of organic matter (TOC) from waste that if not, will be emitted into the air.

Dissolved inorganic carbon (DIC) including CO2, H2CO3 and HCO3 can be taken 
up by algae. The spectrum of DIC assimilation in terrestrial plants, in contrast, is 
considerably less [29,30]. Chlorella miniata, Monodus subterraneus and Chlorella 
vulgaris are examples of algae strains that can only absorb CO2, while marine 
eustigmatophyte algae like Nannochloropsis oculata and Nannochloropsis gadi‑
tana are actively able to transport HCO3

− [31]. Contrarily, several species, includ‑
ing Chlamydomonas reinhardtii, Auxenochlorella pyrenoidosa, Scenedesmus 
obliquus, Chlorococcum littorale has an external carbonic anhydrase (CA) and can 
utilize both CO2 and HCO3

−. Some strains, like Chlorella ellipsoidea and Chlorella 
kesslerii, don’t have an external CA but can still use CO2 and HCO3

− [32–34]. 
Algal CO2 fixation requires both Nicotinamide‑adenine dinucleotide phosphate 
(NADPH) and Adenosine triphosphate (ATP), both of which are produced during 
photosynthesis abundantly. The three stages of the Calvin cycle  –  carboxylation, 
reduction, and then regeneration – describe how CO2 is absorbed. During carbox‑
ylation phase, ribulose‑1,5‑biophosphate (RuBP) is formed from ribulose‑1 and is 
absorbed by 5‑ bisphosphate carboxylase (RuBisCo). Following chemical reduction 
and 3‑ phosphoglycerate kinase action, converts 3‑phosphoglyceric acid to glyceral‑
dehyde 3‑phosphate and glyceraldehyde phosphate dehydrogenase, respectively. The 
fixation cycle moves on to the next stage as a consecutive series of chemical pro‑
cesses replenish RuBP. Yet, when some algae strains eat HCO3

−, carbonic anhydrase 
can create CO2. An abstract of the auto‑phototrophic metabolism for CO2 assimila‑
tion can be seen in Figure 5.1.

In heterotrophic metabolism, the pentose phosphate pathway (PPP) enables the 
respiration of organic molecules to produce lipids and other metabolites as they 
pass through cell walls [35]. Certain strains can display heterotrophy when exposed 
to light. Photoheterotrophy is a process that uses light as a source of power, het‑
erotrophs can grow more quickly and produce more biomass, lipids, and proteins 
while also operating more simply than autophototrophs. Also, heterotrophs avoid 
the light restrictions that occur during autophototrophic development, resulting in 
faster growth of protein, lipid, and biomass production as well as more straight‑
forward processes. However, the diversity of the high capacity of heterotrophic is 
constrained, and bacterial activities could be detrimental to the survival of the cul‑
ture. The majority of carbon used in the extension of heterotrophic algae is glucose. 
Organic molecules in wastewater represent a significant carbon sequestration target 
and a low‑cost source of carbon [36,37].

More glucose is produced by mixotrophic metabolism, which combines respira‑
tion and photosynthesis. Due to the possibility of using carbon, mixotrophic metab‑
olism can produce a lot of biomass. Mixotrophic cultures of algae yield cells per 
unit of energy input than other kinds of cultures [38]. Shorter growth cycles, greater 
growth rates, higher overall biomass output, and less biomass loss in the dark are 
some advantages that mixotrophic farming provides over photoautotrophic cultiva‑
tion [39,40]. Conversely, mixotrophic metabolisms contain some drawbacks, includ‑
ing the fact that they are relatively costly because of the high requirements for organic 
carbon as well as vulnerable to invasive heterotrophs in exposed pond settings [41].
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5.2.3 Carbon fixaTion and ConCenTraTion meChanism (CCm)

Photosynthesis is a biological mechanism that fixes carbon. The general equation for 
photosynthesis is:

 CO H O light CH O O2 2 2 2n( )+ + → +  

Although 467 kJ of energy is produced per mol of CH2O rather than the 1744 kJ 
needed to make it, photosynthesis transforms around 27% of solar energy into chem‑
ical energy [8].

Algae can use a carbon‑concentrating mechanism (CCM) to continue growing 
when there is insufficient CO2 for photosynthesis. This mechanism of concentrat‑
ing CO2 at Rubisco enables algae to improve the efficiency of photosynthesis, while 
also boosting reducing photorespiration and carbon fixation [42]. Elevated carbon 
concentrations around enzymes [43], the metabolism of C4+crassulacean acid and 
carboxysome metabolism [44] are a few of the pathways that have been identified as 
contributing to this mechanism. This method not only offers a choice for the removal 
of greenhouse gases, but it also produces valuable byproducts [45].

FIGURE 5.1 The auto‑phototrophic metabolism for assimilation of CO2.
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5.3  PROCEDURE OF ALGAE‑MEDIATED SEQUESTRATION 
BY ALGAE: PERFORMANCE AND FACTORS

Also, greenhouse gas emissions (GHGs) have been projected to be between 40.3 
and 50 Gt by the end of half century [46,47]. Due to algae’s exceptional fixation 
capacity in comparison to terrestrial plants (10–50 times greater) and the fact 1 kg 
of biomass (d.w.) uses around 1.83 kgCO2, algae‑mediated CO2 sequestration has gar‑
nered considerable interest [46,48]. The issue can be resolved by the idea known 
as the Bicarbonate‑based integrated carbon capture and algae production system 
(BICCAPS). The most promising species for both the production of biofuels and 
carbon sequestration include microalgal Nannochloropsis oculate, Botryococcus 
braunii, Scenedesmus obliquus, and Chlorella vulgaris [6]. BICCAPS offers the 
dual advantage of recycling of solvent and accumulation of value‑added bioprod‑
ucts, which lowers the operational cost of CO2 mitigation [49]. This solution serves 
as a feedstock for the algae growth [50]. Because they swiftly transform CO2 into 
bicarbonate, amine solutions like mono‑, di‑, and tri‑ethanolamine have occasionally 
been used [51,52]. Integrated algal bioenergy carbon capture and storage (Integrated 
Algal BECCS) is the other cutting‑edge sequestration technology. Combining energy 
production with capturing and long‑term storage of CO2 in geological reservoirs, as 
well as biomass gasification and ethanol production, this technology can also be used 
to treat waste incineration and flue gas streams from the paper industry [53]. In order 
to gain net negative CO2 emissions without compromising food security, BECCS can 
be combined with produce algae. This system produced as much protein as soybeans 
grown in the same area, yielded 61.5 TJ of electricity, and annually sequestered 
29,600 tonnes of CO2. A significant step toward achieving environmental sustain‑
ability is BECCS potential to produce energy while lowering carbon emissions [54].

Algae and other aquatic photosynthetic organisms are a major contributor to the 
global CO2 uptake. At least half of Earth’s annual carbon fixation is produced by 
the photosynthetic activity of marine algae [46,53]. Ocean Macroalgal Afforestation 
(OMA) is a method to increase natural populations of microalgae by the year 2085 
in order to lower the atmospheric CO2 concentrations to below 350 ppm [55]. OMA 
has additional benefits besides carbon sequestration and contaminant bioremedia‑
tion, such as the ability to reduce ocean acidification, mitigate coastal eutrophication, 
and manage the harmful spread of algal blooms. The Coastal CO2 Removal Belt con‑
sists of both naturally occurring and artificially created Ecklonia cava kelp forests in 
southern Korea with a capacity of about 10 tonnes/ha annually [56].

5.3.1 performanCe evaLuaTion of aLgae for Co2 sequesTraTion

This section provides an overview of how algae can be used to sequester CO2. 
Analyzing the data in Table 5.1, the highest CO2 capture rate is 93.7%. Through a 
process called bioconcentration during photosynthesis, CO2 is captured and stored 
through the CO2 sequestration mechanism [57]. Big amounts of carbon fixation occur 
in the Calvin‑Benson cycle, and the majority of CO2 capture occurs through photo‑
autotrophic metabolism, which uses light to convert inorganic carbons into carbohy‑
drates [58].
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Algae biomass yield is higher than that of any other crop. C. vulgaris, which 
has a 40% removal efficiency, produced a yield of up to 2.12 g/L of algae during 
CO2 sequestration. The biomass yield of a continuous reactor using C. pyrenoidosa 
was 90.25 g a day with a 92% efficiency of removal [59–61]. Numerous valuable 
compounds found in biomass produced from algae can be used to create pharma‑
ceuticals, renewable energy, and food products [62]. The amount of protein in algae 
is used to make pharmaceuticals and food, while the lipids in them can be used 
to make biodiesel or other oil‑based biofuels [63]. According to Jha et al., some 
personal care products contain Chlorella sp. as one of the ingredients [64]. Also, 
Prymnesium parvum and Ochromonas sp. play key roles in the production of phy‑
cotoxins used in pharmaceutical applications. Studies on C. reinhardtii have shown 
that it may be used as a supplement for fibronectin, protein, and human growth 
factor [65]. In spite of their specific uses, a number of Chlorella and Spirulina sp. 
have also been cited as being important in the food industries [66,67]. Table 5.1 
represents the produce yield and capture efficiency of several algae strains in CO2 
sequestration process.

5.3.2 faCTors affeCTing The aLgae‑based Co2 sequesTraTion proCess

The key factors in determining whether an algae strain is suitable for CO2 sequestra‑
tion include high rates of growth, resistivity to shear stress, and a wide temperature 
range. The sequestration efficiency is said to be significantly impacted by several 
factors, including CO2 concentration, light intensity, temperature, and pH. The rate 
of inorganic carbon supply to phytoplankton is influenced by many environmental 
factors, including pH, temperature, alkalinity, and others. The slower diffusion rate 
of CO2 in water can sometimes lead to CO2 deficiency, which reduces the amount of 
HCO3 that is available in the aquatic surroundings.

TABLE 5.1
Effectiveness of Various Algae Strains in CO2 Sequestration

Algal Strain
CO2 Capture 

Efficiency
Product 

Yield Biomass Yield References

Chlamydomonas reinhardtii 0.113 g/L/day 0.46–0.49 g/g 
(Bioethanol)

0.512 g/L [87]

Chlorella sp. L166 93.7% 0.0069 g/L 
(Lipid)

— [88]

Chlorella vulgaris 75% — 1.28 g/L [89]

Chlorella vulgaris UTEX 2714 0.182 g/L/day — 0.219 g/L/day [90]

Chlorella sorokiniana, Coelastrella 
sp., Chlorella pyrenoidosa

0.567 g/L/day — 1.1 g/L [91]

Chlorella sorokiniana — — 12.2 g/L/day [92]

Chlorella sp. — — 0.682 ± 0.007 g/L [70]

Anabaena sp. ATCC 33047 — — 0.31 g/L/day [93]
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5.3.2.1 CO2 Concentration
Carbon metabolism by algae is positively influenced by high CO2 concentrations, 
which leads to Chlamydomonas reinhardtii accumulating more biomass and fatty 
acids. The MDH3, FBA2, GAP1, and GLYK genes, which can adapt to changes in 
carbon flux, are responsible for this phenomenon [68]. It has also been noted that 
the acidification of the water caused by increased CO2 concentrations caused a more 
toxic effect in the algae [69]. Optimum CO2 sequestration is highly dependent on 
the strain and the amount of CO2 concentration varies from 2% to 10% depending 
on species. The dissolved CO2 concentration in an aqueous environment depends on 
the pH and temperature and is always in equilibrium with H2CO3, HCO3, and CO2. 
Consumption of any inorganic carbon has no impact on the equilibrium because of 
its rapid interconvertible reactions. Although HCO3 is a poorer source of carbon than 
CO2, microalgal cells prefer to absorb it over CO2 [11]. Also, at high CO2 concen‑
trations, the pH of a culture decreases due to the formation of bicarbonate buffer. 
Biomass productivity has an increase in the percentage of CO2 in the mixture of gas 
up to a certain value before it starts to decline. Chiu et al. [70] found that 2% of CO2 
(v/v) is ideal for Chlorella growth, while 10% (v/v) results in an insignificant specific 
growth rate. Chlorella sp. T‑1 may tolerate CO2 concentrations up to 100%, accord‑
ing to Maeda et al. report on the CO2 sequestration from flue gas by power plants, but 
its growth rate was at its highest when using 10% CO2, with no discernible decline 
occurring up to 50% CO2 concentration [71]. They concluded that cells adapted to 
higher CO2 concentrations are more tolerant due to precipitation from cells accus‑
tomed to lower CO2 concentrations.

The coefficient of volumetric mass transfer (KLa), which is a property of the biore‑
actor, establishes its capacity to maintain optimal cell growth. The different regions 
of liquid flow affect KLa behavior and cell growth rate differently. According to the 
gas velocity, the photobioreactor (PBR)’s liquid flow region can be classified as a 
transition zone, heterogeneous zone, or bubble flow. Gas hold‑up, interfacial area, 
and KLa in the bubble flow region are all inversely correlated with gas superficial 
velocity. Even though the interfacial area starts to decrease as you move from the 
heterogeneous zone to the transition zone, gas pressure holds steady and KLa reaches 
a plateau. Initially, the specific growth rate rises following an increase in KLa, but 
it begins to decline as soon as the transition zone ceases to exist. Also, shear stress 
could be the cause of the decline in specific growth rates [72]. A comparative analy‑
sis of KLa in various photobioreactors with varying CO2 percentages was conducted 
by Zhang et al. who came to the conclusion that the amount of critical KLa needed to 
satisfy the needs of the algal cells for CO2 increases as the CO2 concentration in the 
inlet gas stream decreases [73].

5.3.2.2 Light
Light‑dependent photoautotrophic metabolisms played a main role in the illumina‑
tion period of the day [74]. The main factor affecting productivity outdoors is the 
amount of light available. According to Morales‑Sánchez et  al., photoautotrophic 
and mixoautotrophic species require longer illumination periods [75]. According to 
Liang et al., the Calvin‑Benson cycle, which contains Rubisco, uses light‑dependent 
reactions to convert photons into NADPH and ATP [74].
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A reliable estimate places the range of saturation light intensity between 30 and 
45 W/m2 [76]. According to Torzillo et al., the relationship between saturation light 
intensity (Is) and incident light intensity (Io) has a significant impact on both over‑
all photosynthetic efficiency (Er) and light utilization efficiency (Es) [77]. It can be 
described mathematically in this way:

 E l l l ls s o o s/ ln / 1( )( )= +  (5.1)

This equation (equation 5.1) is valid for the value Io/Is > 1. For Io/Is ≤ 1, Er and Es 
are 0.2 and 1, respectively. While productivity maintains a maximum value when  
Io/Is ≤ 1, the equation explains the efficiency of light utilization. Thus, productivity 
is not always dependent on light utilization effectiveness. For better light utilization, 
photo bioreactors should be built to minimize (Io/Is), achieved by either lowering Io 
or raising Is. Choosing an algal strain with a high value of Is is advised. It reduces Io 
and makes use of the effect of flashing lights. According to Ugwu et al., this effect 
boosts tubular photo‑bioreactor productivity by up to 40% [78].

As a result of the incoming light overload on the photosystem’s pigments, the 
degradation and synthesis of light‑harvesting complexes are halted. According to 
Torzillo et al., this causes the production of reactive oxygen strains, which can lead to 
photoinhibition or photooxidative death [77]. Using algae strains with small antenna 
sizes allows for uniform and impartial distribution of Io to all cellular layers. In a 
typical situation, the first layer of cells receives the most light, which dramatically 
decreases as it moves through the subsequent layers of cells. Small antenna strains 
minimize light loss and shield cells from photo inhibition and light dissipation in 
non‑photochemical quenching [77]. Another approach is to lower the chlorophyll 
content. This approach can be used to increase biomass production, aerial CO2 
sequestration, and other outcomes, like hydrogen production in photo‑bioreactors. 
By using spirulina as a model microorganism, it is claimed that open ponds can have 
aerial productivity that is ten times higher.

5.3.2.2.1 Considerations Regarding Light in a Photobioreactor Design
The photobioreactor’s geometry, cell density, light penetration distance, and wave‑
length all affect how much light is attenuated. Red and blue light penetrate algae 
suspensions less than green light because they are primarily absorbed by algae. In 
the densely populated areas, this effect is more noticeable. Reactor geometry can, 
from an engineering perspective, lessen light attenuation in a suspension of algae. 
One crucial factor that affects the effectiveness of how well light is used as well as 
the overall photosynthetic efficiency is saturation light intensity (Is).

In photobioreactors having larger optical cross‑sections, light is effectively 
distributed throughout the entire culture area. Numerous photobioreactors with 
specially designed lighting systems have been tested in an effort to effectively 
capture CO2 and form biomass while utilizing intense light [79]. With the assist of 
Synechococcus sp. PCC 6301, to determine the best light dispersion for the growth 
of photosynthetic cells, Suh and Lee developed an internally lighted airlift photo‑
bioreactor [80].
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5.3.2.3 Temperature
Flue gas is heated to a temperature of around 120°C and is released from power 
sources. Installing a heat exchanger system or utilizing thermophilic strains is 
required for the CO2 sequestration from flue gas to be feasible. The algae species 
significantly influence the optimal temperature effect, for instance, C. vulgaris has 
a 30°C optimum temperature [81], Scenedesmus sp. at 25°C [82], N. oculata at 20°C 
[81], and S. obliquus at 30°C [83]. There are a few species that can endure tempera‑
tures up to 60°C. The overall CO2 removal is impacted by the temperature’s antago‑
nistic relationship with the CO2 dissolution in the aqueous solution [43,48].

Temperature has an impact on algae’s ability to sequester CO2 by affecting 
the activity of the enzymes Rubisco and carboxylase. Since an enzyme is a unit 
of protein, changes to the structures of amino occur at low temperatures, whereas 
the polypeptide chain is stretched and broken at high temperatures [84], disrupt‑
ing the process of the sequestration of CO2. When the unicellular cyanobacterium 
Synechococcus elongatus was exposed to different CO2 concentrations and tempera‑
tures, a pH decrease at 52°C with 60% CO2 was similar to that at 25°C with 20% 
CO2. A significant amount of oxygen is fixed by RuBisCO’s oxygenase activity as the 
ratio of solubility of O2 to CO2 rises with temperature. Additionally, the affinity of 
RuBisCO for CO2 decreases with rising temperature [85].

5.3.2.4 pH
For the best algae growth a neutral pH (6.5–8) is advised. Dissolving SOx and CO2 of 
flue gas can change the medium’s pH. pH decreases to pH 5 at higher CO2 concentra‑
tions and reports have been made of pH 2.6 at higher SOx concentrations [86].

The pH change brought on by CO2 has a negligible impact on growing algae, but 
the change in pH brought on by SOx will completely prevent any growth [48]. There 
were essentially no variations in growth rates as ompared to lower amounts of SOx 
when utilizing a buffered medium, which prevented the pH drop [71]. Accordingly, 
it can be concluded that the effect of SOx is, within certain bounds, primarily caused 
changes in pH value rather than sulfate medium’s concentrations, avoided by buff‑
ering [48]. Chlorella sp. AT1 [94] and C. sorokiniana str. SLA‑04 are examples of 
alkaline‑tolerant and high‑CO2 species that will benefit from an increase in CO2 
solubility due to an alkaline pH [43,95]. Furthermore, as free CO2 becomes more 
concentrated at acidic pH levels, acid‑tolerant species such as Scenedesmus sp. and 
C. sorokiniana benefit [96]. Along with high temperature and CO2 levels, NOx and 
SOx also have an impact on the growth of algae. There is many strains with tolerance 
to NOx and SOx. For example, Nannchloris can grow in conditions as low as 100 NOx 
ppm [97], and Tetraselmis sp. can flourish when exposed to a mixture of 185 SOx 
ppm and 125 SOx ppm [98].

5.3.2.5 Culture Density and Strain
Selecting the appropriate culture strain is the most critical factor for effective 
CO2 mitigation. Dunaliella is a very delicate species in terms of cellular fragility 
because it lacks cell walls. The cell cycle affects how sensitive Haematococcus is 
to secondary metabolites like the carotenoid astaxanthin. From the green to the red 
phase, shear stress resistance increases significantly.
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Due to deflagellation, Haematococcus is sensitive in the green phase, whereas the 
presence of immobile aplanospores in the red phase confers resistance. Scenedesmus sp. 
is better for C‑fixation [83]. The capacity of algae for the growth of a cell and their capac‑
ity for CO2 metabolism, among other physiological factors, influences the efficiency of 
CO2 removal [83]. According to López et al., strains that are good for CO2 sequestration 
should produce high‑quality products with little chance of contamination [93]. In order 
to effectively sequester CO2, the best cell configuration must be chosen. Not all light 
can be absorbed by cells below the optimal concentration, and because of self‑shading, 
a greater percentage of cells are in the dark above the optimal cell concentration [99]. 
Vertical flat plate and inclined modular and photobioreactors both exhibit a bell‑shaped 
relationship between cell concentration and the productivity of biomass [100].

5.4 DIFFERENT TECHNOLOGIES OF PHOTOBIOREACTORS

The flexibility of CO2‑rich gas allows bioreactors designed for CO2 sequestration 
to be used for mixing and supplying nutrients for the growth of algae. Typically, 
non‑mechanical agitation methods including flat panels, airlifts, bubble columns, 
tubular reactors, etc. are used in this type of reactor. Few bioreactors also allow 
for mechanical agitation in addition to bubbling through CO2‑rich intake gas such 
as found with a stirred tank reactor. The requirement for the bioreactors created 
specifically for CO2 sequestration is high mass transfer. Photobioreactors operate 
differently in the CO2 sequestration process depending on their geometric properties.

5.4.1 verTiCaL TubuLar phoTobioreaCTors

Vertical tubular photobioreactors are made of transparent vertical tubing to allow 
light penetration. The sparger, attached to the reactor’s bottom, converts the sparged 
gas into tiny bubbles. In addition to removing the O2 created during photosynthesis, 
sparging with gas mixtures enables the general mass transfer of CO2. Depending on 
how the flows of liquids through vertical tubular photobioreactors, they can be clas‑
sified as bubble column or airlift reactors [48]. The bubble column reactors’ height 
is larger than double their diameter. It benefits from low initial cost, the absence of 
moving components, good heat and mass transfer, a high surface‑to‑volume ratio, 
and effective residual gas mixture and O2 release. To disperse and break up collected 
bubbles in scale‑up, long bubble columns are covered with perforated plates [101]. 
Because there is no back mixing when the flow rate of gas is below 60.01 m/s, there 
is no circulation flow pattern [102]. Shorter light and dark cycles can be achieved by 
increasing the gas flow rate (≥0.05 m/s), which will considerably boost photosyn‑
thetic efficiency (blue article reference). The vessel known as an airlift reactor has 
two interconnected zones. The gas mixture gets sparged in the section of one of the 
tubes known as the riser. There are two kinds of airlift reactors: internal loop and 
external loop. In an internal loop reactor, a split cylinder divides the regions, while 
in an external loop reactor, the downcomer and riser are physically separated by two 
different tubes. The gas is simply bubbling through the sparger in the riser tube to 
mix. The sparged gas moves up the riser similar to how it moves up a bubble column. 
The riser’s gas hold‑up helps to support this upward movement [48].
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An airlift reactor’s advantage lies in its ability to create a circular mixing pattern, 
allowing the liquid culture to cycle through dark and light phases, resembling flash‑
ing lights for algal cells [103]. Another option is the rectangular airlift photobioreac‑
tor, which has higher photosynthetic efficiency [102]. Loubière et al., also, developed 
an airlift photobioreactor that has an external loop and stirs the fluid [9].

5.4.2 horizonTaL TubuLar phoTobioreaCTors

As a result of their orientation toward the sun and high light conversion efficiency, the 
shape of the horizontal tubular reactor is advantageous in outdoor cultures. A disad‑
vantage is the efficiency of photosynthesis is decreased by photo bleaching, which is 
brought on by oxygen buildup during photosynthesis [104]. The temperature is con‑
trolled automatically by an evaporative cooling system. Also, the light‑weight‑har‑
vesting unit has been placed inside a pool of water with controlled temperature, tubes 
have been overlapped, water is sprayed on the surface of the tubes to cool the system, 
and the feed or recirculation stream’s temperature is adjusted. Another significant 
disadvantage is the photobioreactor’s high energy consumption, which is around 
2000 W/m3 as opposed to 50 W/m3 for the flat plate and bubble column photobiore‑
actors [105]. The near horizontal tubular reactor despite having a slight inclination 
toward the sun is nearly similar to horizontal tubular reactors. This tendency aids in 
the more effective use of solar energy [106].

5.4.3 fLaT paneL phoTobioreaCTors

A cuboidal shape with a short light path characterizes the flat panel reactor which is 
made of materials transparent enough to allow visibility. This includes glass, plexi‑
glass, and polycarbonate. Air bubbles are introduced into one side of the flat panel 
reactor via a perforated tube.

When Chlorella sorokiniana was continuously cultured on a flat panel with a short 
path length and high irradiance conditions volumetric productivity was 12.2 g/L/d. 
By placing several plates on a surface, the flat panel’s size can be increased. The 
solution for scaling up does not involve lengthening the reactor; rather, it involves 
increasing the liquid’s height and widening the light path [73]. The airlift mode of 
circulation was used in the flat panel [107]. It contains two air‑injection zones: a siz‑
able riser zone and a smaller downcomer zone. Baffles were also one of their reac‑
tor’s additional features and they were alternately attached to the panel’s larger faces 
on the front and back. The reactor’s front illuminated side also has a transparent 
cooling jacket attached. Comparable bubble column reactors had volumetric produc‑
tivity of biomass that was 1.7 times higher.

5.4.4 heLiCaL‑Type phoTobioreaCTors

The culture in a helical photobioreactor is conveyed to the degassing unit via a 
lengthy tube and a centrifugal pump. This system consists of a coiled, flexible tube 
with a small diameter, either separate from or integrated into the degassing unit. 
Two advantages of this type of photobioreactor are the long tubes are mounted on 
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a low rise and this type unit takes up little ground space [108]. Moreover, enhanced 
CO2 transfer from gas to liquid occurs due to a larger CO2‑absorption surface area. 
However, the energy requirements of the centrifugal pump for recirculating the cul‑
ture and the resulting shear stress have hindered widespread industrial adoption, 
despite the potential scalability by integrating a light‑harvesting unit. Another draw‑
back of this system is fouling on the interior of the reactor.

Conical helical systems (60° cone angle), created by Morita et al. [109], have very 
specific height and angle requirements. This system also has a heat exchanger and a 
degassing system attached. The amount of light that is received increases by a factor 
of two at an angle of 60°, as does the productivity of photosynthetic processes. The 
highest photosynthetic efficiency measured for this kind of reactor was 6.84%, which 
was higher than all other cone angles [109]. The primary benefit of a cone shape is its 
ability to harvest light with a similar basal area [110]. When balancing energy input 
and photosynthetic efficiency, photobioreactors have an advantage. Other benefits of 
this reactor include less mechanical stress placed on algal cells and a lower energy 
requirement for operation. Due to its defined angle and size, scaling up requires more 
light harvesting units, but this also causes more energy to be lost in the intricate 
branches of the flow networks [48].

5.4.5 sTirred Tank phoTobioreaCTors

In a stirred tank reactor, which is the most common type of reactor, mechanical agita‑
tion is provided by variously sized and shaped impellers. To lessen vortex, baffles are 
used and to provide algae growth with a carbon source, air that has been enhanced 
with CO2 is bubbled at the bottom. This bioreactor can be converted into a photo‑
bioreactor through external illumination using fluorescent lights or optical fibers. 
However, its primary limitation lies in its low surface‑area‑to‑volume ratio, which 
reduces its effectiveness in harvesting light. It has also been tried using optical fibers, 
but this has drawbacks because it interferes with the mixing pattern, which makes it 
unsuitable for illumination [111]. Commercially available fermentors with external 
light systems include the New Brunswick Bioflo 115 and Bioengineering models. The 
oxygen produced during photosynthesis is separated from the used sparged gas and 
gassed liquid phase by a sizable disengagement zone [48].

5.4.6 hybrid‑Type phoTobioreaCTors

The hybrid photobioreactor, which integrates advantageous features from two dis‑
tinct reactor types while mitigating their respective disadvantages, is highly interest‑
ing. As it regulates the culture’s temperature and also provides a high surface area 
to volume ratio, the external loop functions somewhat like a light‑harvesting device. 
On the contrary, the airlift system serves not only as a degassing mechanism but 
can also incorporate probes to control other variables within the culture. The hydro‑
dynamics of the airlift section of the reactor were additionally utilized to regulate 
flow velocity through the solar receiver [48]. Its benefits can be better control over 
cultural variables, increased productivity, and decreased power consumption [112]. 
Similar integrated systems were developed by Richmond et al. and Grima et al., but 
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the latter’s external light‑harvesting unit is a loop‑like structure while the former’s 
is a horizontal parallel tube [113,114]. The external light‑harvesting unit’s tempera‑
ture is controlled using a water spray. Horizontal tubes have the benefit of being 
inexpensive and highly effective at photosynthetic activity. The main drawbacks are 
the limited light‑harvesting area and the size of the occupied land area. Because of 
the expense of the necessary land area and a bundle of tubes, it is not economically 
feasible. Another type of hybrid system created by Lee et  al. is the alpha‑shaped 
reactor, which was built using principles from algal physiology and sunlight [79]. In 
this reactor, the culture is raised 5 m by air to a receiver tank, where it flows down 
a 25‑m‑long inclined PVC tube with a 2.5‑cm ID at a 25° angle to another set of air 
riser tubes. Low air flow rates can still result in a unidirectional flow of liquid at high 
rates. The high photosynthetic efficiency is also a result of the large area‑to‑volume 
ratio. Approximately 10 gdw/L was said to be present [79].

5.4.7 promising phoTobioreaCTors

The most frequent issues with this reactor are fouling within the helical reactor and 
fluctuations in the hydrodynamic stress. The airlift reactor operation is the high 
effective photobioreactor for removing CO2 from flue gas among all those currently 
on the market. This reactor’s characteristics include high gas transfer rates, uniform 
mixing, low hydrodynamic stress as well as simplicity of control. Incorporating an 
airlift photobioreactor with a tubular loop reactor will make up for the photobioreac‑
tor’s limited S/V ratio and scalability drawback [48]. Figure 5.2 shows several kinds 
of algal cultivation both open and closed systems.

FIGURE 5.2 Showing different technologies for algal cultivation; (a) annular PBR [115], 
(b) flat panel PBR [116], (c) an innovative flat‑plate PBR [117], (d) raceway pond open system 
[116], (e) vertical flat‑panel photobioreactor [117], (f) stirred tank PBR with external illumina‑
tion [118], (g) horizontal tubular PBR [116], (h) inclined‑surface system [117].
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5.5  ALGAE‑POWERED RENEWABLE ENERGY: 
SUSTAINABLE SOLUTIONS

5.5.1 environmenTaL aspeCTs of aLgae‑mediaTed Co2 sequesTraTion

Using algae to sequester CO2 is a viable solution for reducing the amount of carbon 
throughout the atmosphere and assisting in reversing the trend toward increasing 
global warming [119,120]. Yet, the process’s effects on energy and the environment 
determine its applicability and viability. The impacts of using algae for CO2 seques‑
tration on energy and the environment have been shown in several studies. From a 
mechanistic standpoint, Xu et  al. investigated the effectiveness of carbon fixation 
during photosynthetic processes in algae [5]. Such a study is intriguing because it 
demonstrates how this technology might simultaneously have a positive impact on 
the energy‑environment nexus. Algae, also, are useful as biomass but also have other 
uses, including the treatment of wastewater and CO2 capture. It is possible to use 
algae as a wastewater treatment agent because of their high capacity to absorb nitro‑
gen and phosphorus which enables them to grow quickly [61,121].

According to statistics, for every 1% increase in gross domestic product, resource 
use climbs by an average of 0.4% (GDP) [53]. Rapid urbanization, industrialization, 
and urban population increases have created concerns about food and energy insecu‑
rity, pollution, and climate change. The current industrial community is now moving 
toward a resource‑conserving bioeconomy in response to pressure from govern‑
ments and society to ameliorate these concerns. A closed‑loop system of cascading 
and recycling energy and material flows can be used in a circular bioeconomy to 
achieve sustainable production. The biorefinery concept, which involves the coor‑
dinated extraction of all biomass components to produce bioenergy and high‑value 
products with little to no waste, can help to further improve this integrating unit 
operations into the bioprocess framework can increase cost‑effectiveness, process 
efficiency, and resource recovery by creating high‑value products. Algae are photo‑
synthesis‑powered cell manufactories, converting inorganic or organic carbon into 
precious products, and are becoming more and more important in the aforemen‑
tioned problems due to their enormous potential. Algae can serve as a source of 
feedstock for biofuels, a food source for animals and humans, a source of commodity 
and fine chemicals (cosmetics, pharmaceuticals, and nutraceuticals), and a means 
of pollution treatment, remediation, and sensing Due to their ability to adapt to and 
thrive in challenging surroundings (such as greywater, brackish water, seawater, etc.), 
they can also recover nutrients and absorb CO2 from wastewater, allowing for the 
reduction of the usage of arable land and the creation of low‑carbon feedstock. These 
elements make algae promising participants in circular bioeconomy models that are 
integrated and low‑carbon. Algae have shown promise as a clean energy solution to 
these problems and can produce a wide range of biofuels [53].

Algae exhibit stronger lipid productivity and photosynthetic efficiency than ter‑
restrial plants or oleaginous crops 58,700 L/ha for maize (Zea mays L.) versus 172 
and 446 L/ha for soybean (Glycine max L.). Algae also grow more quickly and pro‑
duce more biomass and also have an advantage over maize and soybeans in that 
they don’t contain lignin, which facilitates pretreatment and enzymatic hydrolysis in 
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the production of biofuel. Algal bioenergy is currently being used on a large scale, 
but there are a number of barriers standing in the way of its widespread commer‑
cialization including costs associated with harvesting, pretreatment, operation and 
conversion, and maintenance. Algae can also convert the carbon they take in during 
photosynthesis into carbohydrates, which can then be processed into biodiesel or bio‑
ethanol [122]. Algae are the most prevalent biotics in oxidation ponds used in sewage 
treatment ponds and wastewater treatment plants [22]. Zhao and Su claim that algae 
have the potential to produce 324.33 m tonnes of biomass annually, and an average of 
0.5393 Gt CO2 can be sequestered [123]. According to Chen et al., CO2‑sequestering 
algae could produce 280 tonnes (d.w.) of biomass a year while consuming 513 tonnes 
of CO2 by capturing about 9% of solar energy through photosynthesis [124]. Cost is 
another crucial component of sustainability, even though it is not directly connected 
to the energy‑environment nexus. The results of the energy and environmental stud‑
ies, which were based on the reviewed literature, indicate that using algae for CO2 
sequestration can be an environmentally friendly as well as cost‑effective way [1].

5.5.2 eConomiC anaLysis of Co2 sequesTraTion

Attention has recently switched to third‑generation feedstock, or aquatic biomasses 
like algae and seaweeds, in an effort to reduce the likelihood of a land and fodder 
shortage for the production of biofuels [125]. Yet, there are difficulties with algae 
CO2 sequestration including (but not restricted to) algae species, CO2 supply compo‑
sition and tolerance capability as well as growing systems [6]. As a result, expanding 
algae cultivation to produce commercial amounts of biomass is difficult and neces‑
sitates a feasibility study of a lab‑scale growing procedure. In order to produce algal 
biomass, researchers have investigated a variety of growing methods and put them 
to the test on both a small and large scale [126]. In terms of capturing and storage of 
carbon, life‑cycle assessments (LCA) as well as technoeconomic analysis of BECCS 
revealed that a 2680 ha eucalyptus forest is equivalent to a 121 ha algal facility [53].

5.5.2.1 Lifecycle Analysis of Algae‑Mediated CO2 Sequestration
LCA is a helpful technique for assessing how well systems for producing algae from 
end products operate environmentally. Several LCAs of the algae‑mediated produc‑
tion of biofuels do not account for the entire “cradle‑to‑grave” cycle. This research 
overlooked water‑ and land‑use aspects, which are crucial in an algae production sys‑
tem and focused on a few environmental effect elements, primarily the potential for 
global warming. While evaluating the commercial uses of algae‑mediated biofuel, it 
is also important to take social impact (such as employment) into account. The LCA 
approach has developed into a potent tool for evaluating the entire life cycle of prod‑
ucts [29]. For instance, an LCA technique helps analyze different diverse arrange‑
ments for the characteristics of cultivation for sustainable growth when it comes to 
algae production [127]. Also, pond systems and photobioreactors have both been the 
subject of LCAs to evaluate the efficacy of algae cultivation [90]. LCA is assisted 
to resolve issues with the economics, lifecycle metrics, and commercial‑scale logis‑
tics of raceway pond systems and helical photobioreactors in another study [128]. 
Additionally, it helped compare the eco‑performance of various methods and the 
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potential effects of algae producing [127]. Moreover, LCA has been successfully 
utilized to analysis the environmental effects of the algal biofuel generation, and 
food [129,130]. The LCA used for processing of growing algae is the section’s main 
focus because algae cultivation has a big impact on downstream production and CO2 
sequestration.

We concentrate on the LCA research that examined the cultivation‑based CO2 
sequestration of algae without considering the biomass application procedure. Also, 
a cogent comparison of the methods for growing algae for use in a product was 
intended by the various LCAs. For example, a comparative LCA for farming meth‑
ods, approaches, scenarios, frameworks, CO2 sources, and system design alternatives 
was carried out. Even though algae are grown for many uses, including bioenergy, 
food, and cosmetics, the articles’ LCA focus is the same. The processes that supply 
energy and any materials and are considered the foreground processes, and the pro‑
cesses that typically influence those stages are considered the background processes 
[131]. Together, these processes make up the system boundaries. This LCA’s system 
boundaries can be applied to other LCAs for growing algae. Algal nutrients, cultiva‑
tion methods, and strains might alter, nonetheless, depending on the analysis’s scope 
and objective. It has been noted that some research that used PBR to cultivate algae 
began the process by cleaning and sterilizing the reactors. A limited comparison of 
LCA studies is thus made possible by providing all relevant information about the 
system boundaries.

The Life Cycle Inventory (LCI), as depicted in the system boundary, is made up 
of all main key inputs (energy, nutrients, water, and gases) and all output streams 
(such as gases and wastewater) generated throughout the cultivation process. The 
main system inputs, for instance, are flue gas CO2, tap water, growth nutrition, and 
electrical energy [89]. Similar to this, Peter et al. analysis of LCIs in 2022 took into 
account air input, CO2, water availability, and sources of electricity and CO2 [127]. 
By recycling nutritional medium, the amount of externally acquired nutrients that are 
needed are reduced, along with the costs and environmental effects of manufacture 
and transportation that go along with. Actual data is necessary during the cultiva‑
tion phase to effectively perform an LCA of an algal product because any assump‑
tions could affect the general process of growth. In the same way, assuming that a 
species of algae is superior in terms of growth rate may make the species appear to 
be acceptable without taking into account the conditions or nutrients necessary to 
achieve that growth rate [1].

The cultivation stage was the main hot area, having an influence of 80% or more 
across all categories that were examined [131]. An impact of at least 75% was also 
observed by another study which used the outcome of characterization of the centrum 
milieukunde lieden (CML) technique to compute subsystems, such as flue gas com‑
pression, waste treatment, and transport [89]. Also, the increased electricity needed 
per kilogram of the torrefied algal biomass in the aforementioned scenario contrib‑
uted to the elevated impact of torrefaction. Since practically every process subsystem 
uses energy and adds significantly to the environmental burden, it is imperative to 
evaluate the impact of energy use in the algae production.

For the PBR and open race pond (ORP) production systems, respectively, the 
cumulative energy demand (CED) was 17,854.7 and 37,203 MJ, taking into account 
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all the meteorological conditions [131]. Similarly, it is found that 36,943.3 MJ was 
consumed from non‑renewable fossil and nuclear energy, together accounting for 
around 85% and 10% of total CED, respectively [89]. The open raceway ponds’ 
aeration and mixing may be to blame for the close ties and higher energy consump‑
tion values in both experiments. Contrarily, the estimated average energy for PBRs 
(5323.4 MJ) suggests that energy consumption during the production of biomass in 
ORPs may exceed that of PBRs, regardless of location [132].

As algae are produced, greenhouse gasses are produced which are related to cli‑
mate change, especially when non‑renewable energy sources are used. As a result, 
the influence of the GWP can be related to the emissions of GHGs. The calculated 
average GWP impacts of biomass production per kilogram in PBRs are 1086.8 kg 
CO2eq [131], 278 kg CO2eq [133], and 331.5 kg CO2eq [132]. This value for open race‑
way ponds is reported as 2256 kg CO2eq [131] and 914.3 kg CO2eq [89]. Undoubtedly, 
CO2 is sequestered during the ORP’s period of algae development, which should 
greatly reduce the influence on global warming.

According to the information above, it would seem that producing a kilogram of 
biomass using a raceway pond as opposed to a photobioreactor will result in a greater 
environmental load for the impact categories stated. Nonetheless, given the vari‑
ances in the studies’ objectives, algal species, production levels, Life Cycle Impact 
Assessment (LCIA) methodology, and data sources, it might be an incorrect conclu‑
sion. Hence, more comparable research (in terms of objectives and methodology) is 
needed in order to make sound judgments about the likelihood of creating algae in a 
sustainably responsible way.

5.5.2.2 Cost Considerations of Algae‑Mediated CO2 Sequestration
Studying the impact of algae production and its characteristics on algae pricing is 
essential. However, due to market changes and uncertainties, a number of variables, 
including the price of raw materials and equipment, may fluctuate [127]. Interestingly, 
each subsystem’s input flows within the system boundary have a cost associated with 
them. For example, the price of the land needed for building, the price of the boro‑
silicate glass used to make PBR systems, the price of water, energy, and cleaning 
supplies, the price of water, energy, fertilizers, and pesticides used during cultivat‑
ing, and the price of energy used during drying. Additionally, the cost of a glass tube 
system represents the most investment cost for the production of 1 kg (d.w.) biomass 
(24%–31%), followed by the drying system cost (21%–24%), and finally the cultiva‑
tion construction cost, which is 18%–21% of all investment costs. When it comes to 
operational expenditures, the cost of labor accounts for 39%–42% of the whole oper‑
ating costs [134]. Researchers also noted that plant infrastructure for manufacturing 
algae biomass remained the same regardless of the process alternatives. A 14,000 L 
PBR was anticipated to cost $451,000 in capital expenses overall [127].

Based on research on algal biomass production employing open and closed sys‑
tems, open systems have higher operating costs than closed systems, but closed 
systems have higher production costs. Furthermore, the closed cultivation system 
necessitates a smaller plant capacity compared to the open system, yet achieves sig‑
nificantly higher algal productivity. According to the research, closed systems have 
higher manufacturing as well as operational costs. Also, in comparison to the open 
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culture technique, the closed cultivation system uses fewer plants and has a greater 
algal yield [135].

5.6 FUTURE PERSPECTIVES

Algal‑based technology is pivotal for advancing toward a low‑carbon bioeconomy, 
with significant environmental and socioeconomic implications. However, to estab‑
lish and expand the algal bioeconomy several significant obstacles must be removed. 
Industrial symbiosis systems, sometimes known as eco‑industrial parks, are indus‑
try clusters that include a number of different businesses and in which resources, 
technology, energy, and even knowledge can be shared and used by and/or between 
the companies of the system. Algal development and intracellular chemical accu‑
mulation can be improved with the use of cutting‑edge technologies like bioelectro‑
magnetic and ultrasonic stimulation. An algae bioeconomy’s life cycle has shown 
the potential of these ground‑breaking technologies, which calls for more investiga‑
tion and development. As an illustration, the output of one industry may be used as 
the input for another (for instance, algal biomass as an input for the production of 
biofuels, biochemicals, biomaterials, etc.), lowering costs and the carbon footprint. 
Similar to this, extra heat and power can be generated and distributed to other parts 
of the system.

5.7 CONCLUSION

In the foreseeable future, as human society evolves, the enormous potential shown by 
an algae‑based bioeconomy will be important. Algae can be used for bioproducts as 
a feedstock to meet our needs for food, energy, and chemicals. It also plays a crucial 
role in carbon capture processes, wastewater phyco‑remediation, and the conversion 
of waste into products with added value, and addressing sustainability and pollution 
issues. Many information gaps have been discovered because of the assessment of 
the energy and environmental impacts of CO2 sequestration using algae, which opens 
up more possibilities for future research in this field. Algae are an environmentally 
beneficial and CO2‑sequestering media, according to the majority of the research we 
studied. Yet, it is still unclear how well algae function at a macro level in reducing 
carbon emissions. These investigations about the suitability of different algae strains 
for CO2 sequestration are necessary. Open systems have a higher running cost than 
closed ones, although their production costs are lower. To properly explore the poten‑
tial of algae, major action needs to be taken by governments, industry, and research‑
ers. Government assistance can be used to overcome the inherent difficulties and 
constraints and create an algae‑mediated low‑carbon bioeconomy on a commercial 
scale. Algae can help decouple economic growth from greenhouse gas emissions, 
paving the way for a more sustainable future.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or per‑
sonal relationships that could have appeared to influence the work reported in this 
paper. Data will be made available on request.



102 Advances in AI for Simulation and Optimization of Energy Systems

AUTHOR CONTRIBUTION

P.B and E.S: methodology, P.B: writing —original draft preparation, E.S: writing —
review and editing. All authors have read and agreed to the published version of the 
manuscript.

REFERENCES

 1. Ighalo, J.O., et al., Progress in microalgae application for CO2 sequestration. Cleaner 
Chemical Engineering, 2022. 3: 100044.

 2. Wilberforce, T., et al., Progress in carbon capture technologies. Science of the Total 
Environment, 2021. 761: 143203.

 3. Bazyar, P., Impacts of progressive biofuels on environmental sustainability. In Hakeem, 
K.R., et al. (Eds.) Environmental sustainability of biofuels. 2023, Elsevier. pp. 313–327.

 4. Bhola, V., et  al., Overview of the potential of microalgae for CO2 sequestration. 
International Journal of Environmental Science and Technology, 2014. 11: 2103–2118.

 5. Xu, X., et al., Progress, challenges and solutions of research on photosynthetic carbon 
sequestration efficiency of microalgae. Renewable and Sustainable Energy Reviews, 
2019. 110: 65–82.

 6. Singh, U.B. and A.S. Ahluwalia, Microalgae: a promising tool for carbon sequestration. 
Mitigation and Adaptation Strategies for Global Change, 2013. 18(1): 73–95.

 7. Qarachal, J.F., E. Sheidaee, and P. Bazyar, The impact of various nanomaterials and 
nano‑agrochemicals on agricultural systems. Journal of Engineering in Industrial 
Research, 2023. 4(4): 226–243.

 8. Brennan, L. and P. Owende, Biofuels from microalgae—a review of technologies for 
production, processing, and extractions of biofuels and co‑products. Renewable and 
Sustainable Energy Reviews, 2010. 14(2): 557–577.

 9. Loubière, K., et  al., A new photobioreactor for continuous microalgal production 
in hatcheries based on external‐loop airlift and swirling flow. Biotechnology and 
Bioengineering, 2009. 102(1): 132–147.

 10. Pignolet, O., et al., Highly valuable microalgae: biochemical and topological aspects. 
Journal of Industrial Microbiology and Biotechnology, 2013. 40(8): 781–796.

 11. Carvalho, A.P., L.A. Meireles, and F.X. Malcata, Microalgal reactors: a review of 
enclosed system designs and performances. Biotechnology Progress, 2006. 22(6): 
1490–1506.

 12. Chen, P., et al., Review of biological and engineering aspects of algae to fuels approach. 
International Journal of Agricultural and Biological Engineering, 2010. 2(4): 1–30.

 13. Greenwell, H.C., et al., Placing microalgae on the biofuels priority list: a review of the 
technological challenges. Journal of the Royal Society Interface, 2010. 7(46): 703–726.

 14. Khan, S.A., et  al., Prospects of biodiesel production from microalgae in India. 
Renewable and Sustainable Energy Reviews, 2009. 13(9): 2361–2372.

 15. Del Campo, J.A., M. García‑González, and M.G. Guerrero, Outdoor cultivation 
of microalgae for carotenoid production: current state and perspectives. Applied 
Microbiology and Biotechnology, 2007. 74: 1163–1174.

 16. Farrelly, D.J., et al., Carbon sequestration and the role of biological carbon mitigation: 
a review. Renewable and Sustainable Energy Reviews, 2013. 21: 712–727.

 17. Huertas, I.E., et  al., Active transport of CO2 by three species of marine microalgae. 
Journal of Phycology, 2000. 36(2): 314–320.

 18. Arenas, F. and F. Vas‑Pinto, Marine algae as carbon sinks and allies to combat global 
warming. In Pereira, L. and J.M. Neto, (Eds.) Marine algae: biodiversity, taxonomy, 
environmental assessment, and biotechnology. 2014, CRC Press. p. 178.



103Algae-Based Carbon Sequestration

 19. Saifuddin, N., et al., Sequestration of high carbon dioxide concentration for induction of 
lipids in microalgae for biodiesel production. Journal of Applied Sciences, 2015. 15(8): 
1045.

 20. Alami, A.H., et al., Investigating various permutations of copper iodide/FeCu tandem 
materials as electrodes for dye‑sensitized solar cells with a natural dye. Nanomaterials, 
2020. 10(4): 784.

 21. Wang, S., et al., Lipid accumulation and CO2 utilization of two marine oil‑rich microal‑
gal strains in response to CO2 aeration. Acta Oceanologica Sinica, 2018. 37: 119–126.

 22. Cheah, W.Y., et al., Biosequestration of atmospheric CO2 and flue gas‑containing CO2 
by microalgae. Bioresource Technology, 2015. 184: 190–201.

 23. Ghorbani, A., et al., A review of carbon capture and sequestration in Iran: microalgal 
biofixation potential in Iran. Renewable and Sustainable Energy Reviews, 2014. 35: 
73–100.

 24. Abd Rahaman, M.S., et al., A review of carbon dioxide capture and utilization by mem‑
brane integrated microalgal cultivation processes. Renewable and Sustainable Energy 
Reviews, 2011. 15(8): 4002–4012.

 25. Brilman, D. and R. Veneman, Capturing atmospheric CO2 using supported amine sor‑
bents. Energy Procedia, 2013. 37: 6070–6078.

 26. Pires, J., et al., Carbon dioxide capture from flue gases using microalgae: engineering 
aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 2012. 
16(5): 3043–3053.

 27. Jiang, Y., et al., Utilization of simulated flue gas for cultivation of Scenedesmus dimor‑
phus. Bioresource Technology, 2013. 128: 359–364.

 28. Jiang, L., et al., Biomass and lipid production of marine microalgae using municipal 
wastewater and high concentration of CO2. Applied Energy, 2011. 88(10): 3336–3341.

 29. Li, Q. and D.T. Canvin, Energy sources for HCO3
− and CO2 transport in air‑grown cells 

of Synechococcus UTEX 625. Plant Physiology, 1998. 116(3): 1125–1132.
 30. Miller, A.G., G.S. Espie, and D.T. Canvin, Physiological aspects of CO2 and HCO3

− 
transport by cyanobacteria: a review. Canadian Journal of Botany, 1990. 68(6): 
1291–1302.

 31. Giordano, M., J. Beardall, and J.A. Raven, CO2 concentrating mechanisms in algae: 
mechanisms, environmental modulation, and evolution. Annual Review of Plant 
Biology, 2005. 56: 99–131.

 32. Miyachi, S., M. Tsuzuki, and S.T. Avramova, Utilization modes of inorganic carbon for 
photosynthesis in various species of Chlorella. Plant and Cell Physiology, 1983. 24(3): 
441–451.

 33. Satoh, A., N. Kurano, and S. Miyachi, Inhibition of photosynthesis by intracellular 
carbonic anhydrase in microalgae under excess concentrations of CO2. Photosynthesis 
Research, 2001. 68: 215–224.

 34. Calvin, M., Forty years of photosynthesis and related activities. Photosynthesis 
Research, 1989. 21: 3–16.

 35. Sharkey, T.D., Pentose phosphate pathway reactions in photosynthesizing cells. Cells, 
2021. 10(6): 1547.

 36. Zhou, W., et al., Bio‑mitigation of carbon dioxide using microalgal systems: advances 
and perspectives. Renewable and Sustainable Energy Reviews, 2017. 76: 1163–1175.

 37. Colman, B., et al., The diversity of inorganic carbon acquisition mechanisms in eukary‑
otic microalgae. Functional Plant Biology, 2002. 29(3): 261–270.

 38. Wang, J., H. Yang, and F. Wang, Mixotrophic cultivation of microalgae for biodiesel produc‑
tion: status and prospects. Applied Biochemistry and Biotechnology, 2014. 172: 3307–3329.

 39. Park, K.C., et al., Mixotrophic and photoautotrophic cultivation of 14 microalgae iso‑
lates from Saskatchewan, Canada: potential applications for wastewater remediation for 
biofuel production. Journal of Applied Phycology, 2012. 24: 339–348.



104 Advances in AI for Simulation and Optimization of Energy Systems

 40. Kong, W.‑B., et  al., Enhancement of biomass and hydrocarbon productivities of 
Botryococcus braunii by mixotrophic cultivation and its application in brewery waste‑
water treatment. African Journal of Microbiology Research, 2012. 6(7): 1489–1496.

 41. Patel, A.K., Y.Y. Choi, and S.J. Sim, Emerging prospects of mixotrophic microalgae: 
way forward to sustainable bioprocess for environmental remediation and cost‑effective 
biofuels. Bioresource Technology, 2020. 300: 122741.

 42. Wang, Y., D.J. Stessman, and M.H. Spalding, The CO2 concentrating mechanism 
and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works 
against the gradient. The Plant Journal, 2015. 82(3): 429–448.

 43. Prasad, R., et al., Role of microalgae in global CO2 sequestration: physiological mech‑
anism, recent development, challenges, and future prospective. Sustainability, 2021. 
13(23): 13061.

 44. Sun, Y., et  al., Single‑organelle quantification reveals stoichiometric and structural 
variability of carboxysomes dependent on the environment. The Plant Cell, 2019. 31(7): 
1648–1664.

 45. Daneshvar, E., et al., Performance evaluation of different harvesting methods and cul‑
tivation media on the harvesting efficiency of microalga and their fatty acids profile. 
Fuel, 2020. 280: 118592.

 46. Pires, J.C., COP21: the algae opportunity? Renewable and Sustainable Energy Reviews, 
2017. 79: 867–877.

 47. Mohan, S.V., et al., A circular bioeconomy with biobased products from CO2 sequestra‑
tion. Trends in Biotechnology, 2016. 34(6): 506–519.

 48. Kumar, K., et  al., Development of suitable photobioreactors for CO2 sequestra‑
tion addressing global warming using green algae and cyanobacteria. Bioresource 
Technology, 2011. 102(8): 4945–4953.

 49. Könst, P., et al., Integrated system for capturing CO2 as feedstock for algae production. 
Energy Procedia, 2017. 114: 7126–7132.

 50. Chi, Z., J.V. O’Fallon, and S. Chen, Bicarbonate produced from carbon capture for algae 
culture. Trends in Biotechnology, 2011. 29(11): 537–541.

 51. Cardias, B.B., M.G. de Morais, and J.A.V. Costa, CO2 conversion by the integration of 
biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine 
and potassium carbonate addition. Bioresource Technology, 2018. 267: 77–83.

 52. Kim, G., et al., Enhancement of dissolved inorganic carbon and carbon fixation by green 
alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents. Biochemical 
Engineering Journal, 2013. 78: 18–23.

 53. Moreira, D. and J.C. Pires, Atmospheric CO2 capture by algae: negative carbon dioxide 
emission path. Bioresource Technology, 2016. 215: 371–379.

 54. Leong, Y.K., et al., Reuniting the biogeochemistry of algae for a low‑carbon circular 
bioeconomy. Trends in Plant Science, 2021. 26(7): 729–740.

 55. Antoine de Ramon, N.Y., et al., Negative carbon via ocean afforestation. Process Safety 
and Environmental Protection, 2012. 90(6): 467–474.

 56. Chung, I.K., et al., Installing kelp forests/seaweed beds for mitigation and adaptation 
against global warming: Korean project overview. ICES Journal of Marine Science, 
2013. 70(5): 1038–1044.

 57. Singh, J. and D.W. Dhar, Overview of carbon capture technology: microalgal biorefin‑
ery concept and state‑of‑the‑art. Frontiers in Marine Science, 2019. 6: 417505.

 58. Matito‑Martos, I., et al., Potential of CO2 capture from flue gases by physicochemical 
and biological methods: a comparative study. Chemical Engineering Journal, 2021. 
417: 128020.

 59. Ray, A., M. Nayak, and A. Ghosh, A review on co‑culturing of microalgae: a greener 
strategy towards sustainable biofuels production. Science of the Total Environment, 
2022. 802: 149765.



105Algae-Based Carbon Sequestration

 60. Choi, O.K., et  al., Influence of activated sludge derived‑extracellular polymeric sub‑
stance (ASD‑EPS) as bio‑flocculation of microalgae for biofuel recovery. Algal 
Research, 2020. 45: 101736.

 61. Yang, Q., et al., Utilization of chemical wastewater for CO2 emission reduction: purified 
terephthalic acid (PTA) wastewater‑mediated culture of microalgae for CO2 bio‑cap‑
ture. Applied Energy, 2020. 276: 115502.

 62. Kurniawan, S.B., et al., Macrophytes as wastewater treatment agents: nutrient uptake 
and potential of produced biomass utilization toward circular economy initiatives. 
Science of the Total Environment, 2021. 790: 148219.

 63. Wang, Q., K. Oshita, and M. Takaoka, Flocculation properties of eight microalgae induced 
by aluminum chloride, chitosan, amphoteric polyacrylamide, and alkaline: life‑cycle assess‑
ment for screening species and harvesting methods. Algal Research, 2021. 54: 102226.

 64. Jha, D., et al., Microalgae‐based pharmaceuticals and nutraceuticals: an emerging field 
with immense market potential. ChemBioEng Reviews, 2017. 4(4): 257–272.

 65. Khavari, F., et  al., Microalgae: therapeutic potentials and applications. Molecular 
Biology Reports, 2021. 48(5): 4757–4765.

 66. Araújo, R., et al., Current status of the algae production industry in Europe: an emerg‑
ing sector of the blue bioeconomy. Frontiers in Marine Science, 2021. 7: 626389.

 67. Luo, S., et al., Edible fungi‑assisted harvesting system for efficient microalgae bio‑floc‑
culation. Bioresource Technology, 2019. 282: 325–330.

 68. Zhu, B., et  al., Molecular characterization of CO2 sequestration and assimilation in 
microalgae and its biotechnological applications. Bioresource Technology, 2017. 244: 
1207–1215.

 69. Solovchenko, A. and I. Khozin‑Goldberg, High‑CO2 tolerance in microalgae: possible 
mechanisms and implications for biotechnology and bioremediation. Biotechnology 
Letters, 2013. 35: 1745–1752.

 70. Chiu, S.‑Y., et al., Reduction of CO2 by a high‑density culture of Chlorella sp. in a semi‑
continuous photobioreactor. Bioresource Technology, 2008. 99(9): 3389–3396.

 71. Maeda, K., et al., CO2 fixation from the flue gas on coal‑fired thermal power plant by 
microalgae. Energy Conversion and Management, 1995. 6(36): 717–720.

 72. Contreras, A., et  al., Interaction between CO2‐mass transfer, light availability, and 
hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube 
airlift photobioreactor. Biotechnology and Bioengineering, 1998. 60(3): 317–325.

 73. Zhang, K., N. Kurano, and S. Miyachi, Optimized aeration by carbon dioxide gas for 
microalgal production and mass transfer characterization in a vertical flat‑plate photo‑
bioreactor. Bioprocess and Biosystems Engineering, 2002. 25: 97–101.

 74. Liang, F., P. Lindberg, and P. Lindblad, Engineering photoautotrophic carbon fixa‑
tion for enhanced growth and productivity. Sustainable Energy & Fuels, 2018. 2(12): 
2583–2600.

 75. Morales‑Sánchez, D., et  al., Heterotrophic growth of microalgae: metabolic aspects. 
World Journal of Microbiology and Biotechnology, 2015. 31: 1–9.

 76. Hanagata, N., et  al., Tolerance of microalgae to high CO2 and high temperature. 
Phytochemistry, 1992. 31(10): 3345–3348.

 77. Torzillo, G., et  al., Biological constraints in algal biotechnology. Biotechnology and 
Bioprocess Engineering, 2003. 8: 338–348.

 78. Ugwu, C., J. Ogbonna, and H. Tanaka, Improvement of mass transfer characteristics 
and productivities of inclined tubular photobioreactors by installation of internal static 
mixers. Applied Microbiology and Biotechnology, 2002. 58: 600–607.

 79. Lee, Y.‑K., et  al., Design and performance of an α‑type tubular photobioreactor for 
mass cultivation of microalgae. Journal of Applied Phycology, 1995. 7: 47–51.

 80. Suh, I.S. and S.B. Lee, A light distribution model for an internally radiating photobio‑
reactor. Biotechnology and Bioengineering, 2003. 82(2): 180–189.



106 Advances in AI for Simulation and Optimization of Energy Systems

 81. Ördög, V., et al., Effect of temperature and nitrogen concentration on lipid productivity 
and fatty acid composition in three Chlorella strains. Algal Research, 2016. 16: 141–149.

 82. De Morais, M.G. and J.A.V. Costa, Biofixation of carbon dioxide by Spirulina sp. 
and Scenedesmus obliquus cultivated in a three‑stage serial tubular photobioreactor. 
Journal of Biotechnology, 2007. 129(3): 439–445.

 83. Yoo, C., et al., Selection of microalgae for lipid production under high levels carbon 
dioxide. Bioresource Technology, 2010. 101(1): S71–S74.

 84. Yan, R., et al., The cold denaturation of IscU highlights structure–function dualism in 
marginally stable proteins. Communications Chemistry, 2018. 1(1): 13.

 85. Miyairi, S., CO2 assimilation in a thermophilic cyanobacterium. Energy Conversion 
and Management, 1995. 36(6–9): 763–766.

 86. Westerhoff, P., et al., Growth parameters of microalgae tolerant to high levels of car‑
bon dioxide in batch and continuous‐flow photobioreactors. Environmental Technology, 
2010. 31(5): 523–532.

 87. Banerjee, I., et al., Microalgae‑based carbon sequestration to mitigate climate change 
and application of nanomaterials in algal biorefinery. Octa Journal of Biosciences, 
2020. 8: 129–136.

 88. Song, C., et al., Combination of brewery wastewater purification and CO2 fixation with 
potential value‑added ingredients production via different microalgae strains cultiva‑
tion. Journal of Cleaner Production, 2020. 268: 122332.

 89. Yadav, G., B.K. Dubey, and R. Sen, A comparative life cycle assessment of microalgae 
production by CO2 sequestration from flue gas in outdoor raceway ponds under batch 
and semi‑continuous regime. Journal of Cleaner Production, 2020. 258: 120703.

 90. Hossain, N., J. Zaini, and T.M.I. Mahlia, Life cycle assessment, energy balance and 
sensitivity analysis of bioethanol production from microalgae in a tropical country. 
Renewable and Sustainable Energy Reviews, 2019. 115: 109371.

 91. Ding, G.T., et al., Phycoremediation of palm oil mill effluent (POME) and CO2 fixation 
by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and 
Chlorella pyrenoidosa UKM7. Journal of Water Process Engineering, 2020. 35: 101202.

 92. Cuaresma, M., et al., Productivity of Chlorella sorokiniana in a short light‐path (SLP) 
panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 2009. 
104(2): 352–359.

 93. López, C.G., et al., Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 
removal processes. Bioresource Technology, 2009. 100(23): 5904–5910.

 94. Kuo, C.‑M., et al., Ability of an alkali‑tolerant mutant strain of the microalga Chlorella 
sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency. 
Bioresource Technology, 2017. 244: 243–251.

 95. Vadlamani, A., et al., Cultivation of microalgae at extreme alkaline pH conditions: a 
novel approach for biofuel production. ACS Sustainable Chemistry & Engineering, 
2017. 5(8): 7284–7294.

 96. Abiusi, F., et al., Acid tolerant and acidophilic microalgae: an underexplored world of 
biotechnological opportunities. Frontiers in Microbiology, 2022. 13: 820907.

 97. Yoshihara, K.‑I., et al., Biological elimination of nitric oxide and carbon dioxide from 
flue gas by marine microalga NOA‑113 cultivated in a long tubular photobioreactor. 
Journal of Fermentation and Bioengineering, 1996. 82(4): 351–354.

 98. Matsumoto, H., et  al., Carbon dioxide fixation by microalgae photosynthesis using 
actual flue gas discharged from a boiler. Applied Biochemistry and Biotechnology, 
1995. 51: 681–692.

 99. Zhang, K., S. Miyachi, and N. Kurano, Evaluation of a vertical flat‑plate photobioreac‑
tor for outdoor biomass production and carbon dioxide bio‑fixation: effects of reactor 
dimensions, irradiation and cell concentration on the biomass productivity and irradia‑
tion utilization efficiency. Applied Microbiology and Biotechnology, 2001. 55: 428–433.



107Algae-Based Carbon Sequestration

 100. Hu, Q., H. Guterman, and A. Richmond, A flat inclined modular photobioreactor for 
outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering, 1996. 
51(1): 51–60.

 101. Doran, P.M., Bioprocess engineering principles. 1995, Elsevier.
 102. Janssen, M., et al., Enclosed outdoor photobioreactors: light regime, photosynthetic effi‑

ciency, scale‐up, and future prospects. Biotechnology and Bioengineering, 2003. 81(2): 
193–210.

 103. Barbosa, M.J., et al., Microalgae cultivation in air‐lift reactors: modeling biomass yield 
and growth rate as a function of mixing frequency. Biotechnology and Bioengineering, 
2003. 82(2): 170–179.

 104. Mirón, A.S., et al., Comparative evaluation of compact photobioreactors for large‑scale 
monoculture of microalgae. In Hockenhull, D.J.D. (Ed.) Progress in industrial micro‑
biology. 1999, Elsevier. pp. 249–270.

 105. Posten, C., Design principles of photo‐bioreactors for cultivation of microalgae. 
Engineering in Life Sciences, 2009. 9(3): 165–177.

 106. Tredici, M.R. and G.C. Zittelli, Efficiency of sunlight utilization: tubular versus flat 
photobioreactors. Biotechnology and Bioengineering, 1998. 57(2): 187–197.

 107. Degen, J., et al., A novel airlift photobioreactor with baffles for improved light uti‑
lization through the flashing light effect. Journal of Biotechnology, 2001. 92(2): 
89–94.

 108. Watanabe, Y., J. de la Noüe, and D.O. Hall, Photosynthetic performance of a heli‑
cal tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. 
Biotechnology and Bioengineering, 1995. 47(2): 261–269.

 109. Morita, M., Y. Watanabe, and H. Saiki, Investigation of photobioreactor design 
for enhancing the photosynthetic productivity of microalgae. Biotechnology and 
Bioengineering, 2000. 69(6): 693–698.

 110. Watanabe, Y. and D. Hall, Photosynthetic production of the filamentous cyanobac‑
terium Spirulina platensis in a cone‑shaped helical tubular photobioreactor. Applied 
Microbiology and Biotechnology, 1996. 44: 693–698.

 111. Pohl, P., M. Kohlhase, and M. Martin, Photobioreactors for the axenic mass cultiva‑
tion of microalgae. In Stadler, T., et al. (Eds.) Algal biotechnology. 1988, 1–7. Elsevier 
Applied Science.

 112. Fernández, F.A., et  al., Airlift‑driven external‑loop tubular photobioreactors for out‑
door production of microalgae: assessment of design and performance. Chemical 
Engineering Science, 2001. 56(8): 2721–2732.

 113. Grima, E.M., et  al., A mathematical model of microalgal growth in light‐limited 
chemostat culture. Journal of Chemical Technology & Biotechnology: International 
Research in Process, Environmental AND Clean Technology, 1994. 61(2): 167–173.

 114. Richmond, A., et al., A new tubular reactor for mass production of microalgae outdoors. 
Journal of Applied Phycology, 1993. 5: 327–332.

 115. Satpati, G.G. and R. Pal, Microalgae‑biomass to biodiesel: a review. Journal of Algal 
Biomass Utilization, 2018. 9(4): 11–37.

 116. De Vree, J.H., et  al., Comparison of four outdoor pilot‑scale photobioreactors. 
Biotechnology for Biofuels, 2015. 8: 1–12.

 117. Masojídek, J. and G. Torzillo, Mass cultivation of freshwater microalgae. 2014, 
Encyclopedia of Ecology, Elsevier.

 118. Benner, P., et al., Lab‑scale photobioreactor systems: principles, applications, and scal‑
ability. Bioprocess and Biosystems Engineering, 2022. 45(5): 791–813.

 119. Verma, R. and A. Srivastava, Carbon dioxide sequestration and its enhanced utilization 
by photoautotroph microalgae. Environmental Development, 2018. 27: 95–106.

 120. Morales, M., L. Sánchez, and S. Revah, The impact of environmental factors on carbon 
dioxide fixation by microalgae. FEMS Microbiology Letters, 2018. 365(3): fnx262.



108 Advances in AI for Simulation and Optimization of Energy Systems

 121. Lage, S., A. Toffolo, and F.G. Gentili, Microalgal growth, nitrogen uptake and storage, 
and dissolved oxygen production in a polyculture based‑open pond fed with municipal 
wastewater in northern Sweden. Chemosphere, 2021. 276: 130122.

 122. Lam, M.K., K.T. Lee, and A.R. Mohamed, Current status and challenges on microal‑
gae‑based carbon capture. International Journal of Greenhouse Gas Control, 2012. 10: 
456–469.

 123. Zhao, B. and Y. Su, Macro assessment of microalgae‑based CO2 sequestration: environ‑
mental and energy effects. Algal Research, 2020. 51: 102066.

 124. Chen, Y., C. Xu, and S. Vaidyanathan, Microalgae: a robust “green bio‑bridge” between 
energy and environment. Critical Reviews in Biotechnology, 2018. 38(3): 351–368.

 125. Saranya, G. and T. Ramachandra, Life cycle assessment of biodiesel from estuarine 
microalgae. Energy Conversion and Management: X, 2020. 8: 100065.

 126. Ugwu, C., H. Aoyagi, and H. Uchiyama, Photobioreactors for mass cultivation of algae. 
Bioresource Technology, 2008. 99(10): 4021–4028.

 127. Peter, A.P., et al., Environmental analysis of Chlorella vulgaris cultivation in large scale 
closed system under waste nutrient source. Chemical Engineering Journal, 2022. 433: 
134254.

 128. Somers, M.D., et  al., Techno‑economic and life‑cycle assessment of fuel production 
from mixotrophic Galdieria sulphuraria microalgae on hydrolysate. Algal Research, 
2021. 59: 102419.

 129. Ye, C., et al., Life cycle assessment of industrial scale production of spirulina tablets. 
Algal Research, 2018. 34: 154–163.

 130. Kushwaha, A., et  al., Life cycle assessment and techno‑economic analysis of 
algae‑derived biodiesel: current challenges and future prospects. In Hussain, C.M., S. 
Singh, and L. Goswami (Eds.) Waste‑to‑energy approaches towards zero waste. 2022, 
Elsevier. pp. 343–372.

 131. Abu Al‑Haija, Q., O. Mohamed, and W. Abu Elhaija, Predicting global energy 
demand for the next decade: a time‑series model using nonlinear autoregressive 
neural networks. Energy Exploration & Exploitation. 2023; 41(6): 1884–1898. 
doi:10.1177/01445987231181919

 132. Sandmann, M., et al., Comparative life cycle assessment of a mesh ultra‑thin layer pho‑
tobioreactor and a tubular glass photobioreactor for the production of bioactive algae 
extracts. Bioresource Technology, 2021. 340: 125657.

 133. Porcelli, R., et  al., Comparative life cycle assessment of microalgae cultivation for 
non‑energy purposes using different carbon dioxide sources. Science of the Total 
Environment, 2020. 721: 137714.

 134. Schade, S. and T. Meier, Techno‑economic assessment of microalgae cultivation in a 
tubular photobioreactor for food in a humid continental climate. Clean Technologies 
and Environmental Policy, 2021. 23: 1475–1492.

 135. Hoffman, J., et al., Techno‑economic assessment of open microalgae production sys‑
tems. Algal Research, 2017. 23: 51–57.

https://doi.org/10.1177/01445987231181919


6 The Use of BWO for 
Calibration of LFC of a 
Multi-Area Power System 
with Real-Life Wind 
Energy Penetration

Bana Harb, Omar Mohamed, 
and Wejdan Abu Elhaija

6.1 BACKGROUND AND AIMS

The planning for defense against frequency instabilities is subject to regular updates 
from the planning departments of electric utilities, which result from experience 
acquired by the data of system events that include disturbances or blackouts [1,2]. 
On the other hand, metaheuristic optimization algorithms are capable of solving 
many engineering problems [3]. Interdisciplinary studies on different energy sources 
have combined the two disciplines of system parameter updating and metaheuristics 
[4–7]. Despite intensive research for handling the issue of frequency disturbance 
due to wind penetration, some practical and easy‑to‑implement techniques can still 
be investigated. It is well‑known that wind power dynamics introduce additional 
influencing factors to the power system frequency fluctuations and decrease the 
equivalent inertia of the system. It has also been reported that high wind energy 
penetration causes grid failure due to misplanned or poor frequency stability and 
overvalued existing controls [8,9]. One of the most significant and least‑cost solu‑
tions is to upgrade and calibrate the parameters of existing centralized Automatic 
Generation Control (AGC) by online or offline advanced optimization algorithms. 
There is already a standard model for Load Frequency Control (LFC), augmented by 
AGC, which is published in many textbooks and articles [10–12]; this model can be 
upgraded with multiple sources (e.g., wind) to provide insight for the system under 
investigation and show the effect of wind penetration on the frequency responses. 
Then, several thoughts shall be given to reduce the effect of including wind power 
on the system frequency. The options are open for many strategies; however, retun‑
ing or calibrating the parameters of the controllers optimally on the primary and 
secondary levels of LFC can be a leading option. With the emergence of modern 
metaheuristic optimizers, any modification in the existing system or addition of new 
devices could be identified using metaheuristic optimization algorithms. In the past 
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years, the contribution of renewable energy resources (RES) has increased due to 
its clean and environmentally friendly advantages. With that increase in RES, the 
random dynamic of these sources makes a stability challenge, especially for wind 
energy sources, which need to be understood in terms of how wind energy impacts 
frequency response. Robust primary and secondary LFC ensures smooth integra‑
tion for wind energy and other RES. In multi‑area power systems, the LFC study 
helps to optimize the power flow and ensure stability between different areas. LFC 
in multi‑generation‑source and multi‑area connection power systems became more 
complex. Figure  6.1 below depicts the problem as an interconnected two‑region 
power system penetrated by intermittent wind energy.

The stochastic nature of wind affects the power system frequency, especially in 
the upper area in the figure. Therefore, system improvement emphasizing frequency 
response is mandatory for considerable wind penetration. These improvements 
include calibration of the parameters of existing controllers (PI and PID controllers 
and primary governors) or adding hierarchical controllers such as the model predic‑
tive control (MPC). As a result of these problems, the researchers are interested in 
improving the performance of the load frequency response by finding the optimal 
parameters of the governor and the LFC, like the PI/PID controller, by using a meta‑
heuristic optimization algorithm. AGC is critical to the power system’s stability by 
maintaining the balance between generated power and the load with a high level of 
automation. Metaheuristic optimization methods are algorithms used to solve prob‑
lems that conventional approaches can’t solve. Natural behaviors like biology, animal, 

FIGURE 6.1 Two‑region power system penetrated by wind power in area 1.
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and human behaviors inspire these algorithms. Metaheuristic optimization provides 
the best and most flexible optimization, helping us find the optimal parameters. Such 
integration of metaheuristic optimization with AGC for an improved automatic LFC 
optimization is shown in the schematic in Figure 6.2. Without unnecessary details 
of essential metaheuristics, the Black Widow Optimization Algorithm (BWO) is a 
salient technique proven superior to other metaheuristic algorithms [3].

The objectives of this study are as follows:

• To demonstrate the impact of wind energy penetration on a conventional 
power grid as described by a standard AGC model for a two‑area coupled 
tie‑line system.

FIGURE 6.2 Metaheuristic applications to enhance the AGC for power systems penetrated 
by wind energy.
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• To demonstrate the enhancement of power system frequency responses 
that are probable due to wind energy penetration using a workable control 
strategy.

• To evaluate the practicability of the calibrated controller through dynamic 
time‑based simulation.

The rest of the sections have been organized as follows. Section 6.2 represents the 
literature review and paper contributions Section 6.3 discusses the simplified LFC 
model of interconnected power systems with the inclusion of a wind penetration 
Section 6.4 explains the BWO algorithm, Section 6.5 shows the simulation results 
and discussion, and finally, Section 6.6 presents the conclusion of the paper.

6.2 LITERATURE REVIEW AND THE PAPER CONTRIBUTIONS

To identify the research gap in LFC, including wind penetration, a review of the most 
recent and most necessary published research is necessary. It is also more reasonable 
to confine our review to LFC, including renewable power participation, to avoid too 
much widening of the topic, including many other research objectives.

They are starting with Zhao et al. [13], who presented H_inf and Linear Matrix 
Inequalities (LMIs) controllers to improve the response of LFC with the inclu‑
sion of renewable resources. The simulation results of the proposed LFC method, 
 demonstrated by a two‑area interconnected power system, show the effectiveness 
of the proposed method and that the co‑controller effectively reduces frequency 
deviation.

Wang et al. [14] have proposed a cloud PI controller to improve the response of 
the LFC due to the randomness of the wind energy power penetration and compare 
it with conventional PI and fuzzy PI controllers. The result of the proposed control 
shows better performance in tie‑line and frequency deviation, especially in regions 
with high wind power fluctuations. The application of the suggested control method 
to networked systems that include multiple renewable power generation types will be 
the primary area of future research.

Xu et al. [15] have proposed an area‑based event‑triggered sliding mode control 
scheme for LFC in a multi‑area power system with a wind farm. They studied the 
proposed control via a three‑area power system and the IEEE 39‑bus system. The 
simulation result shows the proposed control effectiveness in restoring the nominal 
frequency and maintaining tie‑line power at its scheduled value. Given the growing 
focus on cyber‑security concerns in multi‑area power systems, future research may 
further examine the topic of robust control design and attack detection.

El‑Bahay et  al. [16] have proposed a new optimization algorithm to support 
frequency in multi‑area systems with renewable energy sources (including wind) 
penetration called the Coot Optimization Algorithm (COA). COA determines the 
optimal parameters of the fractional order proportional integral derivative (FOPID) 
controllers, droop, and auxiliary storage controllers. They compared the proposed 
Algorithm with other algorithms like particle swarm optimization, honey badger 
algorithm, atomic orbital search, and water cycle algorithm. Different scenarios, such 
as load disturbances and fluctuating weather, are tested for the controllers. Based on 
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the results, it can be concluded that the coot optimization technique minimizes fre‑
quency and tie‑line power variations the best.

Mi et al. [17] have presented a frequency control method for a multi‑area hybrid 
power system that integrates battery energy storage systems (BESS) with renewable 
energy sources. This approach divides area control error (ACE) and active power 
disturbances into their high‑frequency and low‑frequency components. A specially 
developed disturbance observer identifies and handles high‑frequency disturbances, 
which adjusts the BESS. Traditional thermal power units were designed to react to 
low‑frequency components using a sliding mode (SM) load frequency controller. The 
technique minimizes deviations and enhances frequency quality while optimizing 
the required BESS capacity, according to the results of simulations.

Gulzar et al. [18] have proposed a cascaded fractional model predictive control‑
ler coupled with a fractional‑order PID controller (CFMPC‑FOPID) for LFC in a 
multi‑area hybrid power system containing photovoltaic (PV) and wind power 
sources. Under various load conditions and uncertainties in the system parameters, 
the proposed controller reduces frequency deviations and tie‑line power fluctuations. 
They have optimized the parameters of the controller by using a sooty‑tern optimi‑
zation. The outcome shows that, in comparison to alternative controllers, the one 
proposed more effectively restores the system frequency and enhances the stability 
of the power system under various testing scenarios, including similar load variations 
and distance load variation in multi‑area, uncertainty in the power system’s parame‑
ters, nonlinearities in the power system, and sensitivity analysis. Investigating linked 
models and how well they function under different loads in the future would be 
feasible.

Gulzar et  al. [19] have reviewed various LFC strategies used in hybrid power 
systems consisting of renewable energy sources and conventional power plants. The 
review covers single‑, multi‑, and multi‑stage power system setups, among many 
more; it included the study and discussion of using PID, fuzzy logic, neural net‑
works, and other control methods in developing LFCs and optimization methods to 
boost LFC performance. The study evaluates and contrasts the performance of vari‑
ous LFC designs. Also, highlight the areas that require more investigation, such as 
improving the resilience and flexibility of LFCs for intricate hybrid power systems.

Ojha and Maddela [20] have studied an optimization technique known as the 
brown bear optimization algorithm (BOA) to tune the PID and cascade PI‑PDN con‑
troller parameters for the LFC of an interconnected power system with two areas that 
are integrated with RES like PV and wind power under normal and varying load con‑
ditions. They compared the BOA algorithm with differing optimization techniques, 
such as grey wolf optimization (GWO) and particle swarm optimization (PSO). The 
results of the simulations show that under four distinct scenarios, the implementation 
of the BOA‑tuned PID controller has better performance in terms of peak overshoot 
(+ve) values, the peak overshoot (−ve) values of system frequency deviation, and 
settling time of fluctuations in a RES integrated power system as compared to other 
optimization techniques.

Pradhan and Bhende [21] have proposed a modified version of the Jaya algorithm 
using two different techniques for the basic version of (w): one is the linear weight 
(LW)‑the based variation, and another is a fuzzy‑based variation, then they test 
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the algorithm of different benchmark functions. The simulation result shows that 
fuzzy‑based variation performed better in faster convergence and optimal value than 
different optimization methods like PSO, FA, CS, original Jaya, and LW‑based Jaya 
algorithm.

Tavakoli et al. [22] have discussed the contribution of wind farms in frequency 
control during power grid integration compared with thermal, gas, and hydro unit 
contributions. The study considered system constraints like GRC, reheat turbine, 
governor dead band, and time delay for a more practical power system. They used 
inertia and droop control for wind farms because of the lack of frequency contribu‑
tion. Under the assumption that wind energy is constant, they studied a single‑area 
power system and a two‑area power system by optimizing the parameters using the 
practical swarm optimization algorithm PSO. The outcome showed that the perfor‑
mance of LFC improved significantly in the two‑area power systems integrated with 
wind energy. Further work using more realistic wind energy data is needed.

Arya [23] has proposed a control strategy called a fuzzy‑aided integer order propor‑
tional integral derivative with filter‑fraction order integral FPIDN‑FOI controller for 
the LFC of multi‑area power systems. The study used an imperialist competitive algo‑
rithm ICA to find different optimal parameters of the proposed controller. They studied 
the controller under various scenarios like load variations, the integration of renewable 
energy sources, and different conventional power systems to test the controller. The 
result improves LFC in two‑area power systems under different challenges.

Guo [24] has presented a new approach to full‑order sliding mode control (SMC) 
in (LFC) systems. This method aims to overcome the limitations of the traditional 
SMC. The proposed method combines terminal sliding mode method (TSM) and 
linear sliding mode control (LSM). This method has proven effective in maintaining 
zero frequency deviation under load disturbances in power systems combining dif‑
ferent types of turbines. Based on the result, the proposed TSM and LSM methods 
show better response times and reduced chattering effects than traditional SMC. The 
study also extends the methods to a three‑area power system, which is mathemati‑
cally proven to be stable and effective, highlighting the method’s potential for future 
work in power electronics applications (Table 6.1).

TABLE 6.1
The Predefined Parameters of the Utilized Algorithms

Year LFC Method Optimizer Contribution

[13], 2020 H_inf and Linear Matrix 
Inequalities (LMIs)

— Improved response of LFC with 
renewable resources, reduced 
frequency deviation

[14], 2023 Cloud PI controller — Improved response of LFC due to 
randomness of wind energy power 
penetration, better performance in 
tie‑line and frequency deviation, 
especially in regions with high wind 
power fluctuations

(Continued)
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TABLE 6.1 (Continued)
The Predefined Parameters of the Utilized Algorithms

Year LFC Method Optimizer Contribution

[15], 2022 Area‑based event‑triggered 
sliding mode control 
scheme

— Effective restoration of nominal 
frequency and maintenance of 
tie‑line power at scheduled value, 
potential for robust control design, 
and attack detection in multi‑area 
power systems

[16], 2023 PID, fractional order 
proportional integral 
derivative (FOPID), 
auxiliary storage

COA Minimization of frequency and 
tie‑line power variations.

[17], 2019 Frequency control method 
for a multi‑area hybrid 
power system with battery 
energy storage systems 
(BESS)

— I am minimizing deviations, 
enhancing frequency quality, and 
optimizing required BESS capacity.

[18], 2023 A cascaded fractional model 
predictive controller 
coupled with a 
fractional‑order PID 
controller 
(CFMPC‑FOPID)

Sooty‑Tern Reduction of frequency deviations 
and tie‑line power fluctuations, 
restoration of system frequency, 
enhancement of power system 
stability

[19], 2022 Various load frequency 
control strategies reviewed

— We evaluate and contrast LFC 
designs and identify areas requiring 
more investigation to improve 
resilience and flexibility in hybrid 
power systems.

[20], 2023 PID and cascade PI‑PDN 
controller

BOA Enhanced performance in peak 
overshoot values, system frequency 
deviation, and settling time.

[21], 2019 Jaya algorithm modified 
with linear weight‑based 
and fuzzy‑based variations

— Fuzzy‑based variation showed faster 
convergence and optimal value than 
other methods.

[22], 2018 Standard AGC for multi‑area PSO Improved LFC performance in 
two‑area power systems integrated 
with wind energy

[23], 2018 Fuzzy‑aided integer order 
PID with FPIDN‑FOI

— It improved LFC in two‑area power 
systems under various scenarios and 
challenges.

[24], 2019 Full‑order SCM combining 
TSM and LSM

— Showed maintained zero frequency 
deviation, better response, and 
reduced chattering effects in power 
systems.

Proposed work Standard AGC for multi‑area BWO —
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From the above literature, it can be deduced that LFCs with a penetration of renew‑
able energy still have more opportunities for further practical improvements, such as 
including the newest metaheuristic optimizers to revisit the parameters of primary and 
secondary LFCs. The main contributions of this paper can be then stated as follows:

• Simulating the impact of wind penetration on the frequency of existing 
LFC.

• Applying BWO to the standard model of LFC with real‑life wind energy 
penetration to find the optimal parameters of primary and secondary LFCs.

A more thorough examination of the current LFCs of power systems is essential to 
enable greater wind energy penetration, as was determined by numerically compar‑
ing frequency drops with and without BWO turning.

6.3  THE STANDARD LFC IN INTERCONNECTED 
POWER SYSTEM PENETRATED BY WIND

LFC is a critical aspect of power system operation. The main objective of LFC is to 
maintain the balance between power supply and demand while keeping the system 
frequency within acceptable limits. In a two‑area power system, each area has its 
generation and loads and is connected through tie‑lines. The idea behind LFC is to 
adjust the power output of generators in response to the change of loads to keep the 
frequency system stable and power exchanges between interconnected areas. They 
can be briefly outlined as follows: Figure 6.1 shows the system components of this sys‑
tem. Each area has the following components, with wind energy penetrated in area 1. 
The first‑order transfer function is used to simplify the analysis. The transfer function 
of each block is represented as follows in addition to some equations of the system:

 1. Generator and Load Model:
A generator converts the energy from mechanical energy to electrical.

 
G s

H s Di i

1( ) =
+

Where:
• H is the inertia constant of the rotating masses.
•  D  is the frequency dependency parameter expressed as the percent 

change in load divided by the percent change in frequency.
•  i  is number of areas.

In Figure  6.1, the 1R  and 2R  represent the speed regulation of the 
governor.

 2. Governor Model:
The valve position is controlled to control the flow of steam or water 

into the turbine. This is done based on fluctuations in frequency and power 
exchanges between interconnected areas.
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Where:
•  Tg  is the governor’s time constant.
•  i  is the number of areas.

 3. Turbine Model:
Converts the kinetic energy of water to steam to mechanical energy to 

drive the generator.
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Where:
•  Tt  is the turbines’s time constant.
•  i  is the number of areas.

 4. Area Control Error (ACE):

 ACE tieP B f= ∆ + ⋅ ∆

Where:
• tieP∆  is the deviation in tie‑line power from its scheduled value.
• B is the frequency bias parameter, where 1/ .B R D= +

 5. PID Controller for LFC:
The PID controller equation for the LFC can be expressed as:

 ACE ACE
ACE

refP K K dt K
d

dt
P I D∫ ( )∆ = ⋅ + +

Where:
• refP∆  is the adjustment to the reference control.
• , K KP I and KDRe the controller’s proportional, integral, and derivative 

gains, respectively.

The main objective of LFC controlling the output power to keep the system fre‑
quency stable is accomplished through a feedback control loop that involves ACE. 
The ACE generates a control signal ( refP∆ ) combining the deviation in frequency and 
power is used to change the setpoints of the turbine by controlling the governor. This 
allows the power output to resist any disturbances.

Properly tuning the system’s primary parameters, such as the governor time con‑
stant, is critical to effectively dampen oscillations and restore balance after sudden 
changes in wind energy production. Tg, as well as secondary parameters of the PID 
controller ( , K KP I, and KD). Adding wind energy to the power system adds another 
layer of complexity to control, which needs a helpful tool such as a metaheuristic 
algorithm to tune the parameters to ensure reliable power system operation. The wind 
power signal has been publicly available [25]. It has been redrawn via MATLAB® to 
observe and ensure significant changes in wind speed and power (Figure 6.3).
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The data was then resampled to represent time scaling in seconds before being 
injected into the LFC model. Figure  6.1 in Section 6.1 indicates the location of 
wind penetration, which is sufficient to emulate the effect of wind. The next section 
explains the mechanism of BWO.

6.4 BLACK WIDOW OPTIMIZATION ALGORITHM

The Black Widow Optimization Algorithm (BWO) is an innovative meta‑heuristic 
strategy inspired by black widow spiders’ behavior and cannibalistic habits. This 
algorithm has a fresh and unique way of dealing with problems like solutions con‑
verging early and not being optimized, issues often found in other optimization 
algorithms.

The primary foundation of BWO is the mutation of the black widow spider’s life‑
style, mainly focusing on their unusual mating ritual and the cannibalistic behav‑
ior afterward. Female black widows are known for their tendency to consume their 
mates post‑mating, an act as young siblings participating in sibling cannibalism. The 
BWO algorithm improves algorithmic performance and the solution quality gener‑
ated by using these inherent behaviors of the black widow metaphors.

6.4.1 aLgoriThmiC sTruCTure

The BWO algorithm randomly creates a population, each representing a potential 
spider, then goes through processes similar to procreation, cannibalism, and muta‑
tion. The structure of the process is as follows in Figure 6.4:

FIGURE 6.3 The practical wind power signal (before resampling). (The data is publicly 
available under Attribution 4.0 (CC BY 4.0 with unique doi: see Ref. [25].)
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• Procreate: After randomly selecting the solution to pair. A new solution is 
created. This process is similar to another algorithm called crossover.

• Cannibalism: The algorithm evaluates the fitness of the new solutions. 
Solutions with lower fitness are discarded, resembling the behavior of can‑
nibalism of the black widow’s spider. This step helps focus on potentially 
superior solutions by effectively reducing the population size.

• Mutation: In this step, random alteration is made into the surviving solu‑
tions, which increases the diversity of the population and helps to explore 
new areas of the solutions.

• Convergence: The algorithm continues to iterate through the steps until the 
stopping criterion is met. This criterion could be (a) a specific number of 
iterations, (b) achieving the desired level of accuracy, or (c) there being no 
change in the fitness value of the best solution multiple iterations.

• Fitness function: Each spider, also called a widow (solution), has a fitness 
value that determines the ranking of the solutions. The fitness value is deter‑
mined by evaluating a fitness function, where the fitness function typically 
depends on the problem’s objective and constraints.

FIGURE 6.4 Basic flowcharts of the black widow optimization algorithm.
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The fitness function mathematical model is:

 Fitness widow , , ,1 2 varf f x x xN( )( )= = 

Where varN  Represents the number of variables in the solution.

6.4.2 The inTegraTion of bwo To LfC ConTroL probLem

MATLAB® is an excellent tool for testing and developing optimization algorithms. 
It provides a wide range of mathematical functions, can work with matrix operation, 
and its Simulink feature.

Fortunately, the codes necessary to execute the BWO routine are publicly avail‑
able [26]. The scripts or functions are run sequentially, as described in Figure 6.5, 
and are mentioned as initialization.m, main.m, Get_Function.m, BWOA.m, 
getPheromone.m, and getBinary.m. However, some important modifications are 
needed to make it fit the case study in this paper. The programs have been correctly 
modified. First, the number of variables is changed to match the elastic parameters 
of LFC primary and secondary control systems: the governor time constant and the 
PID control system parameters.

The parameters have been defined in a separate file named (Error.m) file, which 
is called by another file or script in the original code (named Get_Function.m). 
The dimensions are now defined, but the error function needs more elaboration. 
The error function is the frequency deviation, which can be known only if the 
SIMULINK® LFC file is run. The calling command for the SIMULINK file is added 
to the ‘Error.m’ script, and then the command for frequency deviation computation 
is added. The details of the code modification, including the ‘Error.m,’ have been 
mentioned in the appendices. Therefore, the parameters are changed, and the error is 
calculated in each iteration to obtain the optimum results progressively.

Mathematical formulation of the problem is also necessary to give the reader 
clearer insight into the optimization problem. Mathematically, the problem is for‑
mulated as:

 , ,  , ,f f K K K tg i p dτ( )∆ =

This above equation expresses the highly uncertain function to be minimized, which 
leads to the following optimization problem,

 minimize  f∆

subject to the following inequality constraints

 g0.1 0.5 secondτ≤ ≤

 min maxKi≤ ≤
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 min maxK p≤ ≤

 min maxKd≤ ≤

The constraints of the governor’s time constant (the primary LFC) have been known 
In some books, the lowest value of τ g could be 0.2 seconds, not 0.1. However, the 
cited reference is highly appreciated [27–29], which widens the governor constraints 
to include modern governors to get further improved results.

The constraints parameters of the PID controller are preferred to be set unknown 
and determined later by trial and error because there were no practical limits for 

FIGURE 6.5 Flowchart of Implementation of black widow algorithm in MATLAB®.
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them, in this case, reported in textbooks or articles. The other LFC and power system 
parameters cannot be modified because they lead to the replacement of the entire 
generation or even the power system, which is not practical. Therefore, parameters 
such as system inertia, turbines’ time constants, and D factors are left as the base 
case for fair comparison and improvement in a practical sense.

6.4.3 simuLaTion resuLT and anaLysis

This section provides the results of the LFC performance simulation illustrated by 
MATLAB/SIMULINK R2023a. The main goal is to analyze the LFC under dif‑
ferent system conditions and determine how effective the black widow optimizer 
BWO is in optimizing traditional LFC. The study is divided into two scenarios. The 
first scenario studies the system’s frequency response without the BWO optimizer, 
dividing it into two cases: changing the system inertia constant (H) for case 1 and 
changing the time constant of the governor for case 2. The frequency response is 
studied in the second scenario, where the BWO optimizer is applied to the primary 
and secondary parameters and compared with the previous scenario.

6.4.4  sCenario 1: TradiTionaL LfC performanCe 
wiThouT bwo opTimizer

6.4.4.1 Case 1: Variation of Inertia Constant (H)
This case observes how modifying the inertia constant (H) affects the system’s fre‑
quency response. The value of H is adjusted from 3 to 9 seconds in 2 seconds incre‑
ments. The system’s performance is determined using the frequency deviation and 
settling time.

Figure 6.6 shows the system’s more damped response due to the increasing iner‑
tia constant H. Stability is reached faster for higher values of (H), such as 7 and 9, 
which means they oscillate less and have a shorter settling time. Lower values of (H) 
curves, such as 3 and 5, take longer to reach steady‑state values, indicating a slower 
response before stabilizing the system after disturbances.

This graph clearly shows the important role of the inertia constant in the dynamic 
response of power systems and stability due to disturbances.

6.4.4.2 Case 2: Variation of Governor Time Constant (Tg)
In Figure 6.7, the governor’s time constant Tg As changed from 0.2 to 0.5 seconds in 
0.1 seconds intervals to study its effect on the system’s performance.

The result shows a direct relationship between the system’s damping performance 
and the governor’s time constant, as shown in Figure  6.7. The higher governor’s 
time constant reduces effectiveness in the damping performance, as shown by the 
increased oscillations in the frequency response.

The adjustment, based on new references, may increase the flexibility and speed 
of response in the LFC systems, especially in cases where they face massive variable 
generation penetration like wind requiring immediate response to power fluctuations. 
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According to recent publications, the governor time constant could be as low as 0.1 
seconds for today’s digital electrohydraulic governors[27–29].

6.4.5 sCenario 2: TradiTionaL LfC performanCe wiTh bwo opTimizer

The BWO algorithmBWO was used to optimize the parameters of traditional LFC 
systems while maintaining a fixed value for the inertia constant H. The aim was to 

FIGURE 6.6 Frequency response vs. inertia constant after wind energy changing.

FIGURE  6.7 Damping performance vs. governor time constant (Tg) after wind energy 
changes.
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improve the system’s frequency stability and response time while integrating wind 
energy. The frequency deviation was taken as the cost function for the BWO to mini‑
mize and adjust the LFC parameters. The optimization process ran for ten iterations 
to ensure convergence to the optimal solution.

Figure  6.8 shows the system’s response over 75  minutes, with multiple wind 
variations every 10 minutes with and without BMO applied. The system enhanced 
frequency stability after optimization. The frequency deviation and frequency drop 
were reduced significantly, which means the system doesn’t need a defense action 
against the disturbance of the wind energy integration. Also, the settling time showed 
a good improvement.

Figure 6.9 shows when wind generation sharply decreased. The frequency ini‑
tially drops but quickly recovers to a stable state when BWO is applied, emphasizing 
the BWO algorithm’s ability to stabilize the frequency and minimize fluctuations 
quickly. This is crucial for managing sudden decreases in wind energy input.

Figure 6.10 represents a scenario where the wind generation increases, leading to 
a noticeable spike in frequency. The BWO algorithm can handle this disturbance and 
quickly restore the frequency to the normal range.

However, a quantified analysis of the results will increase the clarity of the work. 
The frequency responses have been recorded on p.u scaling, where they should be 
in Hz to confirm the controller’s validity. Recalling Figure  6.8, the response has 
been translated to Hz quantities. Over a considerable time, the largest decrease in 
wind power penetration has been from 38% to 23% due to wind speed decrease; 
an enhancement in frequency excursion has been obtained via BWO, which can be 
changed to actual Hz quantifies through investigating the initial drops of frequen‑
cies from 49.74 Hz in existing case to 49.97 Hz in the improved case, respectively. 
On another operational time window in Figure 6.10, a sudden wind energy increase 
from 12% to 18.5% due to wind speed increase leads to an informative conclusion 

FIGURE 6.8 Wind changes within 75 minutes assumption.
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of confirming the system robustness with frequency improvement from 50.1 Hz in 
the existing case to 50.01 Hz in the BWO‑based improved case, respectively. Hence, 
metaheuristics are promising techniques for improving defense actions against fre‑
quency instabilities, which comply with the system authority’s ground rules [30].

FIGURE 6.9 Frequency response before and after BWO optimization after wind energy 
decrease.

FIGURE 6.10 Frequency response before and after BWO optimization after wind energy 
increase.
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6.4.6 ConCLusion

The findings and outcomes of this paper have been summarized as follows:

• Wind energy systems negatively affect the power system’s frequency stabil‑
ity. Consequently, the existing controller’s parameters must be revisited for 
better time domain performance.

• There are many tuning strategies for primary and secondary controller 
parameters. However, BWO was selected because of its modernity and per‑
formance superiority when compared with other algorithms.

• Form a practical signal of wind power injected to a simplified model of load 
frequency controller in a two‑area power system, the effect of inertia (H) 
and governor time constant ( gτ ) Are considered.

• Simulation results have shown improved controller performance on the fre‑
quency response, quantified and discussed in previous chapters.
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7 Advanced Biofuel 
Generations
Optimizing Sustainable 
Agriculture and Renewable 
Energy Transition

Pourya Bazyar and Ehsan Sheidaee

7.1 INTRODUCTION

Sustainable development of agriculture is the main criterion of economic expansion in 
development areas and food security in the world. The protection of natural resources 
and the value of nature are of fundamental importance to all societies. The major changes 
initiated in the 18th century, associated with the title of the Industrial Revolution, were 
caused by the efficient use of petroleum products, involving the carbon structure instead 
of human and animal labor [1]. It is the main contributor to air pollution from industrial 
development and factory expansion, caused by excessive use of natural and petroleum 
resources. Therefore, it’s important to access sustainability and protect the environment, 
it is essential to comply with the standards. The urgency to address climate change, fuel 
price volatility, food security, and global economic instability has spurred global interest 
in biofuels, particularly in developing countries where they offer potential for self‑reliant 
energy sources at national and local levels, though 42 African nations’ vulnerability as 
net oil importers underscore the need to reduce dependence on imported petroleum 
through sustainable domestic alternatives, posing questions about achieving this goal 
without compromising social and environmental considerations in a nascent renewable 
energy sector promising substantial economic, ecological, and security benefits, amidst 
varying performance of biofuels in reducing non‑renewable energy use and greenhouse 
gas emissions across their lifecycle, necessitating policies and technologies to enhance 
efficiency and sustainability in biofuel production [2].

7.2 RELATED WORK

Due to the development of industry and the growth of population in the world, it will 
increase per capita energy consumption in the next decade. Fossil resources, including 
coal, oil, and derivatives, are decreased over time, so it is important to pay attention to 
biofuel [3]. As a result, carbon dioxide emissions increase during peak consumption, 
and numerous researchers have published variant dimensions to neutralize the negative 
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environmental impact. While the constantly increasing energy consumption, it’s neces‑
sary to change fossil resources to renewable energy must be considered. In recent years, 
a sustainable revolution in agriculture with extra renewable biomass resources, equiva‑
lent to five times the world’s energy consumption, has been maintaining food security, 
energy independence, and a green economy [4,5]. The importance of food security 
and maintaining the qualitative and quantitative amount of agricultural production will 
be necessary for the usage of biofuel and renewable energy resources. The ascending 
demand for energy in recent years has led to investments in biofuels, it will be increas‑
ing more than 50% by 2050 without jeopardizing of food security around the world [6]. 
Biofuels have been developed from various chemical aspects, including alkanes [7], 
fatty acid esters [8], nano agro‑chemicals [9], hydrogen [10], hydrocarbons [11], wax 
[12], cellulosic ethanol [13], iso‑butanol [14], long‑chain alcohols [15] and electrical 
[16]. The main benefit of biofuels as a fuel for diesel engines without engine modifica‑
tions on it, so it has been decreased harmful gas emissions with the high rate of ben‑
eficial energy resources due to the renewable tools [17]. The goals will be achieved the 
maximum biofuels of biomass, the preventive indexes on the global decisions, and the 
available technologies for the transition to biofuels.

According to the past, the Plant Euphorbia Abyssinia was used as biofuel in 1830, 
then alcohol was used as fuel for lamps in 1834. The main sources of biomass are 
wheat and rice straw with Corn Stover and Sugarcane bagasse, listed in Table 7.1 
[18]. The basic component in biomass is the lignocellulose compound in whole pro‑
duction, so the volume of biomass production in the European continent is about 
950 million tons, which can cover 300 million tons of fuel, which has a high rate 
of oil consumption in Europe, the equivalent of the total production is 65% of all 
biofuels [19]. Advanced technologies are targeting the use of cellulosic biomass from 
wastes, residues, and dedicated energy crops to produce ethanol, yet sustainability 
challenges still need to be fully understood [20].

Agricultural biomass will be generated through essential chemical and physi‑
cal processes to expand the products for consumers, such as Combustible fuels [21], 
Gaseous [22], liquid [23], solid fuel [24], and generating electric power [25].

7.3  COMBUSTIBLE FUELS, GASEOUS, LIQUID, SOLID 
FUEL AND GENERATING ELECTRIC POWER

The benefits of using biomass for heating, lighting, and cooking processes are more 
than 30% globally and about 37% in China, and more than 190 million people use 
biomass gas stoves. In this Central Asian country, rice straw is one of the ingredients 

TABLE 7.1
Annual Distribution of Agricultural Waste [18]

Agricultural Waste Section Crop Amount (Million Tons)

Straw & stubble Wheat 354.3

Straw & stubble Rice 731.3

Stover Corn 128.0

Bagasse Sugarcane 180.7
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used in the production of biomass [26,27]. The energy supply for households and 
industry takes place in gaseous, liquid, and solid forms. Methane (CH4) is mainly 
used in gas consumption, so straw and stubble of different plants are abundant agri‑
cultural waste material for biogas production [28]. The trend toward increasing use 
of biogas in Europe is high and in Poland country, this amount is used more than 
1.5 billion m3 biogas [29]. By accessing biofuel in the form of a liquid state with a 
structure of cellulose and hemicellulose, it was converted into bioethanol production 
and it was decomposing wheat straw with 80% of this structure a rich source for bio‑
fuel production [30]. Developed countries, including Canada, with annual worldwide 
production of ethanol as highly numerate 5336 million L in the years between 2001 
and 2004 and it tended to increase from 30 to 94 GL (Giga Liters) [31]. Another form 
of biofuel is the use of solid fuel pellets to produce this type of fuel from tree bark, 
plant residues, and dry leaves, which have a high calorific value and are suitable 
for cooking [32,33]. This kind of bullet has an energy efficiency of 91.67% and an 
index of Torrefaction with a value of 1.379. The ever‑increasing generation ofelectri‑
cal energy from biomass is an inseparable phenomenon for electricity production. 
Therefore, straw has been used as an effective component of agricultural biomass 
with high energy capacity waste in an advance powerhouse converter to generate 
21.5 MW electric power plant in England [34]. Forecasts show that by 2030, 16.1% 
electric energy, 72.3% heat, and 11.6% biofuel can be developed from biomass [35].

In recent decades, the high rate of fossil fuel is the undeniable of human con‑
sumption, so it caused air pollution, proliferation of pollutants in the environment 
and increased amount of greenhouse gases as the excessive consumption of natural 
resources has a negative impact on the climate and agricultural production world‑
wide. Water and soil resources are deteriorating day by day as cities expand and 
factories grow, factors such as drought, rising global temperatures, and variable rain‑
fall patterns also play a role. Therefore, the increase of average global temperature 
worldwide has caused a 7% decrease in the production of cereals and legumes [36]. 
Climate change will continue to affect agricultural productivity and food production 
processes. Over time, it is important to implement computer algorithms and intel‑
ligent management to increase the annual output of future products [37]. Comparing 
available statistics on greenhouse gas emissions, biofuels are inferior to fossil fuels, 
reducing emissions of unburned hydrocarbons, aerosols, and carbon monoxide by 
30%, 25%, and 20%, respectively [3]. In addition, with the combination of ethanol, 
the amount of NOx emission decreases by 10% compared to mineral fuel. According 
to the statistics announced by the national American agriculture society (USDA), it 
was reached to the number of 79 million m3 of biofuel products, which is 11.4% of the 
agricultural lands in the southeastern U.S, including THP, is needed for the produc‑
tion of biofuel [38]. Sustainable development of agriculture using perennial plants 
is very important to increase food, biofuel, and food security. In recent decades, the 
need for energy has been increasing to use of systems from human to animal, engine 
power, liquid fuel, hydrogen, and electricity (Figure 7.1) with high efficiency for agri‑
cultural tools could be necessary [39–41].

More recently, perennials have been used for the high impact of biofuel efficiency 
on the environment and the ratio of output energy according to input (Table 7.2). 
These plants absorb sunlight effectively, have a long growing season, deep and wide 
roots, and efficiently take up water, nitrogen, and phosphate.
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In the investigation of the growth rate of the roots of various types of plants in the 
field of biofuel, the amount of perennial plants is higher than annual plants, so the length 
of root penetration into the soil depends on drought stress and the amount of fertilizer. 
Plants like large clumps of switchgrass, a tall poplar tree, high energy palm oil in cane 
plants, and reed on grass gens plant [47] and the plant willows from the species‑genus 
Virginia fanpetals Sida hermaphrodita Rusby, variant type of Miscanthus and Spartina 
pectinate, the abundant poplars from Populus L  specious are very bioenergetics.

The main feature of second‑generation biofuel refineries where non‑food  biomass 
has become important to increase food security [48]. Researchers developed  catalytic, 
pyrolysis, fragmentation, polymerization, and Fisher–Tropsch processes aimed at sus‑
tainable second‑generation biofuel products [49,50]. This generation of biofuel produc‑
tion can use crops grown in less demanding water and fertile soil, such as Jatropha, 
which requires less water and algal biomass is a type of non‑food Consumption [51].

Animals Internal combustion engine Electric motors

FIGURE 7.1 The history of main agricultural machinery tools powered by animal, fuel, and 
electricity [39–41].

TABLE 7.2
Aspects of the Perennial Crop on Environmental and Energy [42–46]

Environmental benefits

Benefits Reasons
More carbon fixation
Less water consumption
Very low soil erosion
Better biodiversity
minimum pollution of water
High resistance to abnormal climate 
changes

Less seedbed preparation
Mixed cultures

Deeper root systems

Energy benefits
Benefits Reasons
High biomass (energy) the output
Minimum input energy requirement

More sunlight intercept
Longer growing season

The ability to absorb nutrients and water in the different 
depths of the soil bed

Nearly no pesticides or herbicides
High nutrient utilization efficiency (i.e., low fertilizer inputs)

Few seeds needed
Few passes of farm machinery

Less or almost no irrigation
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7.3.1 susTainabLe agriCuLTure in differenT ConCepTs

In the significant field of natural resource development, there are two terms, “sustain‑
ability” and “sustainable development”, which are synonymous but have conceptual 
differences. In this way, sustainability means a constant rate, stagnation, and plateau. 
The terms “sustainability” and “sustainable” were developed structures in mid of the 
20th‑century, which are available in the Oxford dictionary. Therefore, this phenom‑
enon is due to the existence of different crop cultivation environmental issues such 
as land salinization, soil erosion and cut the trees over many years, which include 
sustainability problems owing to excessive agricultural activity, mining and urban 
growth, and the lack of implementation of disciplines [52]. Meeting the multifaceted 
demands on soil resources in the 21st century—such as increasing food production, 
producing bioenergy crops, restoring degraded lands, sequestering carbon, improv‑
ing water use efficiency, and creating reserves for biodiversity—requires an interdis‑
ciplinary approach involving soil scientists and experts from various fields to address 
these global challenges [53].

Sustainable development is the main section of social relationships and devel‑
opment on specific environmental and economic conditions (Figure 7.2). In the 
conditions of unlimited natural resources, the stability and transfer rate have a 
constant rate, but if the resources are limited, the speed of the process changes 
and it will be decreased during the time. Sustainable agriculture methodologies 
such as precision agriculture, integrated pest management, and soil carbon and 
nitrogen cycling are crucial for optimizing harvests while minimizing economic 
and environmental costs, contributing significantly to the potential of biofuels to 
replace fossil‑fuel‑based products and mitigate global warming [54]. Recent bio‑
technology breakthroughs in fractionation and conversion processes, along with 
the cultivation of perennial high‑biomass yield plants, highlight the potential for 
sustainable agriculture and biorefineries to address the energy−food−water nexus 
while reducing environmental impacts associated with traditional annual grain 
crops [55]. The increase in greenhouse gas emissions has spurred the search for 
renewable biofuels, with sweet sorghum emerging as a promising feedstock due to 
its low input requirements and adaptability to semi‑arid regions, and conservation 
agriculture potentially offering a sustainable production system to enhance its 
cultivation in South Africa [56].

7.3.1.1 Economic Sustainability
The economy of biofuels, which competes with fossil fuels, has been high profit‑
ability in the long term with the support of governments. However, it has a high 
efficiency and significant impact on reducing economic barriers and developing 

Social 

Environment Economic 

FIGURE 7.2 Three aspects of sustainable development [57].
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marketing and diverse products in the sustainable development of agriculture. 
The main need of humans is to provide food security and agriculture develop‑
ment, it is the basis of civilization of food production, so according to Henry 
Kissinger “control the country and people by controlling oil and food respec‑
tively” and by investing in biomass, the transfer of wealth between countries is 
reduced and food security will be provided for 7 billion people [4]. Most recently, 
due to the increase in the appeal of the raw materials of biofuels, there is an 
upward trend of several roles in the global fuel market, including the competition 
over common resources in order to produce essential food for human life or its 
use to be fuel on the industry, which increase the price of food in the world. The 
other study employs bibliometric analysis to explore the economic potential of 
biofuels and their implications for achieving a sustainable economy, revealing 
positive correlations between biofuel research and production growth, particu‑
larly in major markets like the United States, India, China, and Europe, with 
emphasis on sustainable development and various socio‑economic impacts [58]. 
Other research emphasizes how escalating global energy needs and environmen‑
tal issues propel the shift toward cleaner energy solutions, specifically highlight‑
ing solid biofuels as sustainable resources. These studies examine their attributes, 
and energy recovery techniques, contrast them with fossil fuels, and evaluate 
their sustainability and economic viability using methodologies such as LCA 
and LCSA, while also considering certification frameworks like RSB and RSPO 
[59]. Although, researchers introduce an optimization framework for designing 
a sustainable hybrid first/second‑generation ethanol supply chain, addressing 
issues like food crop use, land requirements, and biomass competition, with a 
case study on UK ethanol production [60]. The utilization of sugarcane trash 
and bagasse, derived from harvesting and processing, as fuel for electricity gen‑
eration or feedstock for second‑generation ethanol, presents an opportunity for 
revenue maximization through flexibility in diverting these materials based on 
favorable electricity or ethanol prices, demonstrating economic and environmen‑
tal benefits in an integrated first and second generation ethanol production pro‑
cess from sugarcane [61]. In this way, allocating part of the fuel income to reduce 
the price of food is necessary and ultimately requires a more detailed analysis of 
policymaking and forecasting food security in the lives of communities.

7.3.1.2 Environmental Sustainability
Environmental sustainability is one of the three elements of agricultural sus‑
tainable development, so this part indicates reducing greenhouse gases, climate 
change, soil erosion, and climate pollution. The important point of agricultural 
sustainability is to improve soil quality and renewable energy from a farm to the 
whole world. The important criterion for the sustainable development of agricul‑
ture is water management. However, with the global water crisis, it is important 
to control water use and conserve it for the security of the future agricultural 
industry. Among the important roles of biofuels in the environment, that pointed 
out the factor of reducing greenhouse gases, including CO2, methane N2O. By 
replacing petroleum products with 1 L of bio‑oil or bio‑alcohol, so the amount of 
carbon dioxide gas decreases to 2.68 for bio‑oil and 2.31 for bio‑alcohol. One of 
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the essential resources of biofuel products is the existence of forest and grassland 
with high density, which was discussed with the analysis of the life cycle (LCAs) 
description to the importance of this cycle and the amount of greenhouse gas 
emission, encompassing all phases including production, storage, transport, and 
consumption, is associated of environmental sustainability. One of the impor‑
tant factors of biofuel is the amount of energy required to cultivate and harvest 
raw materials. In agriculture, activities such as plowing, irrigation, and spreading 
fertilizers and poisons, where the necessary energy comes primarily from fossil 
fuels. Then a conversion process for production and distribution is carried out, 
which includes energy production and use of fossil energy, which is considered as 
an energy balance and indicates the need to replace biofuel instead of fossil fuel. 
This energy balance ranges from 1 to 4 for wheat and 3–10 for cellulosic ethanol 
and 0.8–0.9 for diesel and petrol. Another important criterion for the sustainable 
development of agriculture is water management. However, with the global water 
crisis, it is important to control water use and conserve it for the security of the 
future agricultural industry. However, it is an important part of preserving crop 
biodiversity because if you grow any type of crop it will result in a loss of biodi‑
versity and spread pollution from herbicides, fertilizers, and insects.

The important part of burning biomass in agricultural lands for increase soil 
fertility and reduce pests, so it causes to increase in methane and carbon dioxide 
gas in atmosphere. The main material in the production of bioethanol is lignocel‑
lulose from raw material, so this material is analyzed with the consumption cycle 
of raw material as a fuel, then the meaningful result to increase eutrophication, 
radiation of phosphorus and nitrogen gas from the plant and acidification of the 
environment. According to the existing solution in biofuel production from four 
generations of biofuel refineries, it is possible to extend the third generation of 
algae material production of materials with a combination of micro and macro 
as a stable raw material is effective in reducing environmental pollution and food 
safety problems.

7.3.1.3 Social Sustainability
Aspect of the development of biofuel, this will lead to increased rural development 
and reduced poverty in agricultural areas. The introduction of common land posses‑
sion policies and it’s necessary to generate high legal to reduction of this type of use‑
less land. One of the benefits of this energy source is the creation of jobs in various 
biofuel production processes and it is a major motivation of the agricultural employ‑
ment discussed in high awareness regions. Biofuel production across the Americas 
is shaped by diverse factors such as geographic conditions, land tenure history, 
and government policies, leading to varied roles and impacts in different nations, 
with key social issues arising from the recent expansion in Mexico, Colombia, and 
Brazil, highlighting the need for better incorporation of local needs and expertise 
in sustainability governance [62]. A comprehensive social sustainability evaluation 
of three potential aviation biofuel supply chains in Brazil—sugarcane, eucalyptus, 
and macauba—reveals that each feedstock results in distinct social impacts, with 
macauba generating the highest job creation and GDP value, eucalyptus providing 
better employment opportunities for women, and sugarcane having moderate social 
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effects [63]. The prospect of biofuels going “mainstream” has highlighted the social 
impacts of their production and use, with media reports since  2007 contrasting 
alleged negative effects such as increased food prices and land grabs with the opti‑
mistic views of some academics, suggesting that while negative social impacts are 
likely under certain conditions, positive impacts could be achieved through tailored 
social innovations and robust certification of supply chains [64]. Ultimately, politi‑
cians are discussing ways to improve the livelihoods of rural communities, including 
women and children, by providing access to power tools and water resources and 
reducing the difficulties of working on the farm.

7.3.2 anaLysis of susTainabLe deveLopmenT

In research by Wasiak, by presenting a mathematical model for economic and 
technological processes under the limited resource condition, it is a kinetic func‑
tion to describe physical, chemical, or biological processes [65]. The coefficients 
of the formula are such that a, k, n are constant which is indicated in half time 
(t1/2) period of the whole process. While the value of “a” indicates the amount of 
transfer into the substrates, “n”, and “k” are factors affecting time. The function 
x(t) the coefficient of the process in terms of time. According to the formula, the 
amount of changes in the reaction process per unit of time in this method is as 
equations (7.1) and (7.2).
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According to the above formula, the process of growth rate reached a maximum 
value at t1/2 and equals zero at the beginning to end. According to equation (7.2), a 
value of [1 − x(t)] in time represents a conversion factor of remaining in the feedstock 
fraction and a value of α in the instant time tz, being fed back to the system. Equation 
(7.3) describes the recycling source over time, and adding the raw material rate to 
the recycled material flow yields the recirculation rate represented by equation (7.4).

 =    1 expX a k t tr z
nα { }( )− − −   (7.3)

 exp +   1 exp1dx

dt
a nkt kt k t tm n n

z
nα{ }( ) ( )= − − − − 





−  (7.4)

In developing the process in the mentioned equation, the consideration of x(t) means 
the current time dependent on τ, which has two main parts, the first relates to the 
main substrate and the second to the retrieval layer affected by the criterion α, shows 
on the equation (7.5).
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The results obtained from the formula show that biofuel production through carbon 
recycling has a positive effect in terms of sustainable agricultural development.

7.3.2.1 Impact of Energy
One of the models stated by Zhang and Colosi, introduces of ERORI index to cal‑
culate effective energy in the complex system for agricultural products during the 
year [4,66]. The amount of energy was expressed by Wasiak and Orynycz of energy 
efficiency (ε) from equation (7.6) [67].

     bio

ex tr emb

E

E E E
ε =

+ +
 (7.6)

According to the formula (7.6), the factors mentioned include Ebio, Eex, Etr, and Eemb, 
which respectively represent the energy consumed by the soil, the energy used for 
tillage, the energy required for transport and the part of the existing embodied energy 
that finds a place in tillage operations.

Therefore, the direction of increased energy efficiency according to the coeffi‑
cients Ebio, Eex, and Eagr are related to the farm area, while Etr, Emik, and Emtr are not 
related to the farm area [65]. Therefore, it has more complex properties to obtain 
ε, and therefore εtot can be obtained by using many subsystems ε1 and ε2 in a large 
system of formula (7.7).

 
1

 
1

 
1

tot 1 2ε ε ε
= +  (7.7)

According to the mentioned formulas, it is aimed at achieving maximum energy 
efficiency in cultivated farms. In this method, it is important to provide hardware 
and software technologies for recycling carbon dioxide and the extent of sustainable 
agriculture in the future. However, the principle section of appropriate technology in 
the fertile lands for cultivation and conversion to biofuel and used agricultural wastes 
instead of useful products such as straw instead of corn seeds in potential processes.

7.3.3 biofueL produCTion TeChnoLogies and energy TransiTion sTraTegies

There are several methods for biofuel production in different methods such as combus‑
tion, gasification, pyrolysis, hydrothermal liquefaction, enzymatic hydrolysis, anaero‑
bic digestion, and transesterification. Combustion is one of the methods used directly 
from agricultural biomass as energy for heating and domestic use, so the consumption 
of energy isomer used from petroleum products in the world reaches more than 96% 
and the cost of generating electricity with this method is lower than with coal [68,69]. 
Researchers presented two methods of converting biomass to a gaseous state for fuel, 
including atmospheric oxidation with a lower calorific value and the carbonization 
pyrolysis gasification process to obtain a higher calorific value. This main process 
for pyrolysis, which is a thermal decomposition through the process of the extraction 
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of more bio‑oils at a high‑temperature range [70]. Process steps can produce petro‑
leum products such as kerosene oil, petrol, bio char, and diesel with high quantities of 
oxygenate that cause more alcohol, aldehydes, and ether in molecular structure [26]. 
The research on producing biofuels by this method was carried out on wheat, maize, 
and rice straw with husk products at a temperature above 400°C, the highest yield 
is achieved with a yield of 43.8% from rice straw [70]. This process was carried out 
under the temperature condition of 280°C and under catalytic and non‑catalytic con‑
ditions on products such as kind of pinewood in the jungle, wheat stubble, and kind of 
sugarcane bagasse, so the best characteristic result of sugarcane bagasse was obtained 
with the higher conversion rate of 95% [71]. This essential method in the intention 
of biomass to the decomposition process, such as fragmentation way to increase the 
contact surface of the material, biochar, enhance the enzyme process, electron beam 
radiation, and thermal decomposition [72,73]. This process has a good reputation in 
biodiesel production as having lower sulfur emissions and acceptable ignition point 
and lubrication [3]. Current biofuel refinery technologies have emphasized that the 
direct liquefaction of biomass using hydrolysis, fermentation, and thermodynamic liq‑
uefaction processes promotes higher energy efficiency and economic value [74].

7.3.4 generaTion of bio refineries of agriCuLTure produCT

Biofuels, categorized into first through fourth generations, serve as an alternative 
energy source aimed at reducing greenhouse gas emissions and addressing global 
warming, with each generation striving to meet global energy demands while 
minimizing environmental impacts [75]. Biorefineries have been developed in four 
generations (Figure 7.3) and the first generation is efficient with the raw materials 
stock in farms such as corn, wheat cassava, sorghum, and cassava to produce bio‑
fuel. First‑generation bioethanol, primarily derived from corn and sugarcane in the 
United States and Brazil, constitutes the majority of global bioethanol production 
as of early 2016, despite concerns over sustainability due to impacts on land use, 
water resources, and competition with food production [76]. The EU’s ambitious cli‑
mate change mitigation and sustainable development goals by 2030 are supported by 
the European Commission’s 2012 bioeconomy strategy, which emphasizes sustain‑
able biorefineries converting lignocellulosic biomass into bioenergy and bioproducts 
while addressing sustainability issues of first‑generation biorefineries and explor‑
ing advanced biorefining challenges and future directions [49]. Excessive optimism 
regarding crop‑based biofuels, notably first‑generation types, has impeded the future 
of biofuel development in Southeast Asia, underscoring the need for transitioning to 
second‑generation biofuels to enhance sustainability and uplift rural living standards 
[77]. The EU economy faces the forthcoming issue of ensuring the availability of 
bio‑based chemicals, materials, and energy at reasonable costs, with the European 
research and innovation strategy promoting the development of technologies utiliz‑
ing alternative resources to fossil fuels, particularly second‑generation biorefineries 
that use bio‑waste and avoid the ethical, social, environmental, and economic issues 
of first‑generation biorefineries [78]. The ethanol production process in this genera‑
tion for products such as wheat and corn requires more processing steps, and for 
products such as sugar cane and beet, the amount of sugar is extracted, then with the 
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catalytic process is decomposed of chemical and biological structure from the raw 
materials in the state of lactic and propionic acid or Fuels such as ethanol, methanol, 
and butanol are converted into biofuel [79]. Integrating second‑generation ethanol 
production from C5 sugars in bagasse and cane trash with first‑generation sugarcane 
biorefineries in Brazil could significantly increase ethanol yield by co‑fermenting C5 
sugars with cane juice and molasses, enabled by recent biotechnological advance‑
ments [80]. The universal method of this biofuel generation has been developed more 
than 20% in the American continent and that’s more popular in other countries such 
as Brazil, France, Japan, and China [81].

Second‑generation biofuel refineries use non‑edible feedstocks such as domestic 
waste, municipal solid, and factory waste to produce biofuels [83]. This type of pro‑
cess involves the gasification or pyrolysis of a feedstock to biological transformation 
for implementing the mixture of hydrogen and carbon monoxide with catalyst opera‑
tion and Fisher–Tropsch method to extract biogas [85]. Therefore, the challenges 
associated with the function of lignocellulosic materials in the biofuels generation, 
especially the second generation of biofuels consumption, feedstock organization, 
increasing economic and social capacity to use this species of biofuel, benefiting 
from energy with chemical, microbial, and biological processes with reducing envi‑
ronmental risks [86]. Products containing lignocellulosic feedstock are likely to be 
wheat straw [87], corn pile [88] and the numerous parts of rotting plants in the garden 
[89] and small fields [90], grasses [91], and leaves [92,93]. New technologies for pro‑
ducing second‑generation ethanol from sugarcane bagasse and other raw materials 
have been developed to meet global demand for renewable energy, integrating bio‑
refinery processes using Pinch analysis to significantly reduce energy consumption 
by over 50% compared to non‑integrated cases and more than 30% compared to tra‑
ditionally designed Brazilian industrial plants, thereby enhancing second generation 
ethanol production and economic viability [94].

Due to the more need for biofuels, it’s led to the use of micro algae and the kind of 
seaweed macro algae in the next generation of biofuels, and other types include cyano‑
bacteria (blue‑green algae), are highly energy‑intensive in the efficiency of biofuel from 
the previous generation. The numerate of algal along more diversity of over 72,000 
species in different water areas such as fresh, waste and exhibit high growth rates under 
conditions of temperature, acidity, and nutrient abundance. Algae can be used in the 
third‑generation biorefinery to produce various biofuel outputs. Therefore, it’s mainly 
used as fertilizer additives and chemicals for the process of biodiesel and bio‑oil extrac‑
tion [95,96]. The algae was converted into biofuels by biochemical and thermochemical 
processes and it was extracted metabolites and algal secretions for a usable bioenergy 
source. Third‑generation biorefineries use microbial cell factories to convert renewable 
energy sources and atmospheric CO2 into fuels and chemicals, offering a carbon‑neutral 
alternative to fossil fuels. To compete with the petroleum industry, these biorefineries 
must evaluate CO2 fixation pathways, utilization models, and productivity levels [97].

The fourth‑generation biofuel refinery uses transgene algae as a feedstock because 
of their high photosynthetic properties, higher light transmittance, and reduced pho‑
toinhibition in genetically engineered micro algae. According to studies, Table  7.3. 
shows different aspects of using biofuel generations. The other study presents an inte‑
grated framework that evaluates and enhances the performance of fourth‑generation 
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biorefinery departments, emphasizing macroergonomics and sustainability indicators. 
It employs methods like the best‑worst method, data envelopment analysis (DEA), and 
sensitivity analysis, while also formulating strategies through SWOT analysis [98].

7.4 CONCLUSION

The results indicate the increasing demand for energy, food, and fuel, the field of 
modern and sustainable agriculture will undergo major changes in the coming 
decades. Therefore, the cultivation and development of perennials, the cultivation of 
annual grains, the growing of algae, and the benefit of genetic modification in human 

First generation

Starch

Sugar

Cereal

Third generation

Algae biomass

Second generation

Domestic waste

Municipal,

Industrial waste

Fourth generation

Genetically modified

Crops and organisms
solid waste

FIGURE 7.3 Different bio refineries [75,82–84].

TABLE 7.3
Features of Different Biofuel Generations

Generation

Subject First Second Third Fourth References
Food security Raw materials 

with the 
structure of 
starch and 
edible oil

Without 
overlapping  
of food and 
energy product

Without overlapping  
of food and energy 
product

Without 
overlapping of 
food and 
energy product

[99]

Crop land arable ground arable and  
forest ground

Any type of land Any type of land [100]

Aspect of 
environmental

Exist of fertilizer 
and pesticides

deforestation 
phenomenon

No cost for fertilize, 
reliable water 
treatment and 
engender marine 
eutrophication cons

Water and Co2 
treatment, exist 
of GM 
organism 
phenomenon

[101]

Sustainability 
manager

Insensitivity to 
water and soil 
sources

Insensitivity to 
forest resources

There is no economic 
justification

Damage of 
diffusion GMO

[102–104]

Financial aspects Low capital 
required

Low capital 
required

High cost for large 
scale

High cost for 
large scale

[99]

Environmental 
circumstance

Control 
temperature 
and humidity 
range

Control 
temperature 
and humidity 
range

Cultivable in salty soil, 
high PH soil, and 
intensive light

Cultivable in 
salty soil, high 
PH soil, and 
intensive light

[105,106]
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diet products, biomass feedstock, the reduction of toxic pollutants, and the creation 
of new fields for many job opportunities will revolutionize agriculture. The model 
was mentioned for the energy requirements of biological applications and it was 
made possible method by the correct choice of plants, tillage, and conversion tech‑
niques. According to the present study, biodiesel fuel should be used for operational 
and thermal stability to achieve sustainable development. Improving the next genera‑
tion of biofuels, where different feedstock must be blended to achieve high‑value, 
low‑cost biofuels, use of new standards and development of fuel refineries, use of 
genetically modified biomaterials, The application of useful policies of various coun‑
tries in the aspect of thermal and bio base on chemical conversion of lignocellulosic 
materials and, ultimately, the mandatory use of biofuels, the implementation of tax 
exemptions and the granting of subsidies is of superior importance.
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8.1 INTRODUCTION

The integration of Industry 4.0 technologies, artificial intelligence (AI) and advanced 
optimisation methodologies significantly enhance the operational efficacy of con‑
temporary industrial assets. These technologies facilitate the optimisation of per‑
formance, maintenance and inventory management, thereby catalysing cost‑efficient 
solutions and fostering substantial reductions in carbon emissions and other environ‑
mental pollutants [1,2]. Industry 4.0 enables the deployment of sophisticated AI and 
machine learning (ML) algorithms for process monitoring, strategic execution of 
predictive and preventive maintenance, operational optimisation and enhancement 
of productivity and product quality [3,4]. Decarbonisation of sectors including the 
conventional power sector, large industrial complexes and maritime transport neces‑
sitates the adoption of greener technologies and optimisation of operations at vari‑
ous levels. These changes result in improved environmental metrics and enhanced 
energy performance [5]. Furthermore, the need for decarbonisation in manufactur‑
ing industries to meet emission reduction targets requires a complex optimisation of 
measures, considering individual situations and available resources during product 
development, process development and large‑scale manufacturing [6].

We are currently transitioning from the fourth industrial revolution to the fifth 
industrial revolution within the framework of human techno‑economic evolution [7]. 
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Concurrently, this transition encompasses a shift from the fourth research paradigm 
(Data‑Driven Sciences) to the fifth (The Age of Artificial Intelligence) in the sphere 
of human techno‑scientific advancement [8,9]. Research paradigms have tradition‑
ally preceded their respective industrial revolutions, yet we have witnessed signifi‑
cant lags in the translation of research findings into industrial applications across 
earlier paradigms. However, the fourth research paradigm and fourth industrial revo‑
lution have exhibited temporal overlap. The primary reason for that is the monu‑
mental developments in portable computational capabilities and information and 
communication technologies (ICT). This convergence has significantly narrowed the 
gap between industry and academia, thereby reshaping interactions between the cus‑
tomer (industry) and the supplier (academia and R&D institutions). This enhanced 
proximity is bound to revolutionise the industry’s approach to product and service 
design [10], development, process modelling and optimisation [11–13], operational 
management [14–16] and marketing strategies [17,18].

Although the impact of the fifth research paradigm on industry in the fifth industrial 
revolution is anticipated to permeate across all industries and almost all aspects of their 
operations, one particular industrial segment i.e., large process industrial complexes 
and their operational productivity and maintenance regimes are the lowest hanging 
fruits. The operational efficiencies and maintenance practices within these complexes 
are intricately linked to their carbon footprint and emissions metrics. Often, enhance‑
ments in operational efficiency directly translate into quantifiable decarbonisation and 
reductions in emissions. Recently many researchers have demonstrated successful 
applications of AI for robust modelling and optimisation of large process industry com‑
plexes yielding promising improvements in various operational efficiencies and reduc‑
tions in emissions, sometimes coupled with reductions in operational costs [19,20].

Large process industrial complexes constitute typically integrated systems com‑
prising multiple multidisciplinary subsystems. A fossil fuel‑powered combined cycle 
power plant can be taken as a typical example. This integrated electrical energy 
generation system may comprise subsystems including (a) a fossil fuel thermal com‑
bustion unit (typically a boiler), (b) a mechanical energy generation unit (an internal 
combustion engine, gas turbine or steam turbine) and (c) an electrical energy conver‑
sion unit (typically a generator). Another example could be a fertiliser plant which 
is an integrated chemical processing unit. The subsystems may include (a) a thermo 
fluid management unit (controlling temperature and mass/volume flows of reactants), 
(b) a chemical reaction or catalysis unit (to maximise reactant yield through acceler‑
ated reactions) and (c) a thermal drying or prilling unit (transforming wet reactants 
into more valuable dry granular products).

All the subsystems mentioned in the above examples belong to different disci‑
plines of engineering and hence separate bodies of knowledge, yet they are physi‑
cally very closely interfaced rather inseparably integrated in large process industrial 
complexes. This situation presents two principal challenges. First, the bodies of engi‑
neering knowledge across various disciplines consist of first‑principle mathematical 
models that do not effectively address the critical interfaces. Second, even the most 
sophisticated first‑principle mathematical models of individual engineering sub‑
systems are limited by the inclusion of only a few operationally relevant variables. 
Consequently, industrial operations management frequently encounters scenarios 
such as (a) actual yields and efficiencies of subsystems are significantly different 
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from the theoretical yields and efficiencies calculated by first‑principle mathematical 
models built on very limited dimensional input spaces, (b) variations in performance 
across geographically or climatically distinct locations and (c) reliance on empirical 
optimisation approaches by engineering managers.

In the perspective of the fifth research paradigm and fifth industrial revolution; 
our research group has reported the role of AI in transforming the engineering man‑
agement of large industrial complexes as a three‑level stack shown in Figure  8.1 
[21]. These three operating levels are unique in three ways: (a) the concerns and the 
key performance indicators (KPIs) of the concerned engineering manager (EM) are 
interested in modelling, control and optimisation, (b) the type and distribution of 
data of individual variables/parameters involved in the problem and (c) the nature 
of ML problem they pose. The explanation of the classification of the industrial sys‑
tem on the three levels as well as the KPIs associated with the operating levels, the 
nature of data and the choice of the ML algorithm are summarised in Table 8.1. It is 
conspicuous from the information presented in Table 8.1 that as we move from com‑
ponent to system and strategic levels, the nature of problem progressively transitions 
from an engineering textbook‑type continuous data, quantitative, first principal func‑
tion approximation problem to a mixed data‑type qualitative classification problem. 
However, a careful review of the literature reveals that it very rarely becomes a typi‑
cal categorical data classification problem in the case of large industrial complexes 
for mechanical, chemical, electrical and interfacial problems of these disciplines.
###R012###

We have taken three problems corresponding to component, system and strategic 
level operation of coal power plant. The #1 bearing is mounted on the shaft rotor that 
supports the steam turbine system. The vibration of the bearing serves as a compo‑
nent‑level problem [22]. The system‑level problem corresponds to the industrial process 

FIGURE 8.1 The three‑level stack of engineering management problems in large industrial 
complexes [21].
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TABLE 8.1
The Three‑Level Characterisation of the Operation of the Industrial System

Level Concerns of EM KPIs Nature of Data
Nature of ML 

Problem

Component 
level

 i. Preventive, 
predictive and 
shutdown 
maintenance 
planning

 ii. Component 
inventory levels

 iii. “Useful life” 
assessment of 
components

 iv. Process quality 
variance 
investigation

 v. Product quality 
variance 
investigations

 i. Housing/Casing 
Vibrations, stability, etc.

 ii. Shafts Vibrations, 
alignment, camber, etc.

 iii. Bearing Vibrations, 
wear, alignment etc. [1].

 iv. Impellers Vibrations, 
rpm, wear etc.

 i. Mostly 
continuous 
variables on 
the input/
control sides 
and output side

 ii. Rarely 
qualitative 
numerical 
variables on 
output/KP 
I side

 i. Mostly 
numerical 
function 
approximation 
problems,

 ii. Often extended 
equivalent of 
some 
first‑principle 
models for 
analysis

System 
level

 i. Technology 
upgradation 
investment and 
breakeven 
calculations

 ii. Operational 
recipes to 
control work in 
process 
inventory, 
rejection or 
rework from 
systems

 iii. Optimisation of 
operational 
parameters of 
the system for 
different types of 
efficiency/cost 
tradeoffs

 i. Energy outputs 
Thermal, or electrical 
[19,25]

 ii. Mass outputs Process 
yields fluid or solid

 iii. Flow outputs Liquid, 
vapour or gas flows 
from heat exchangers, 
compressors or 
boilers etc.

 iv. Emissions CO2, NOx, 
SOx, Hg, Dust etc. [23].

 v. Efficiencies Thermal or 
electrical [24]

 i. Mostly 
continuous 
variables on 
the input/
control sides 
and output side

 ii. Rarely 
qualitative 
numerical 
variables on 
out/KPI side

 i. Mostly 
numerical 
function 
approximation 
problems,

 ii. At times 
classifier 
versions of 
function 
approximators 
required for 
effective 
modelling 
(ANN/SVM for 
reg/class)

 iii. Almost no 
first‑principle 
model available 
for comparison

(Continued)
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for the removal of SO2, Hg, NOx and dust from the flue gas [23]. Whereas, thermal 
efficiency, power and turbine heat rate represent the strategic‑level performance 
parameters of the power plant [24]. The three operation‑level problems are analysed by 
data‑driven modelling and optimisation approaches. More details about the workflow 
and framework utilised to analyse the problems are provided in the following.

8.2  PROBLEM IDENTIFICATION CORRESPONDING 
TO THE POWER PLANT

A focused approach to utilising AI methodologies is often beneficial in the 
decision‑making process. This process begins with the proper identification of 
the problem, including its relationship with the main system, auxiliary systems  

TABLE 8.1 (Continued)
The Three‑Level Characterisation of the Operation of the Industrial System

Level Concerns of EM KPIs Nature of Data
Nature of ML 

Problem

Strategic 
level

 i. Emissions 
control in 
compliance of 
International 
Energy Agency 
(IEA) and Net 
Zero targets

 ii. Energy 
generation 
efficiency of a 
power plant

 iii. Material 
throughput of a 
fertiliser plant

 iv. Gasoline or 
diesel yield of  
an oil  
refinery

 i. Compliance with 
environmental 
regulations

Overall carbon footprint, 
carbon credits etc.  
[26 27]

 ii. Enhancing overall 
energy/material yields 
without inflating costs

  Costing workouts for 
financial and management 
accounts, energy 
efficiencies, energy 
management metrics

 iii. In pocket capacity/
capability margins 
while negotiating with 
tariff regulators, trade 
deals and government 
agencies 

Optimising the heat rate of 
the power systems [21]

 iv. Enhancing the 
performance of 
manufacturing 
systems

Increasing the material 
removal rate and 
reducing the 
process‑related CO2 
discharge [12,13]

 i. Mostly 
continuous 
variables on 
the input/
control sides 
and output side

 ii. Some 
qualitative 
numerical 
variables on 
out/KPI side

 i. Mostly 
numerical 
function 
approximation 
problems,

 ii. Classifier 
versions of 
function 
approximators or 
typical classifiers 
required for 
effective 
modelling

iii. No first‑principle 
model available 
for  
comparison
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and the environment. Consequently, it is challenging to identify an isolated prob‑
lem or solution that does not impact its surroundings. Therefore, problem consid‑
erations must be handled responsibly.

8.2.1 probLem CaTegorisaTion, moduLaTion and seLeCTion of variabLes

The identified problem is categorised into two stages: problem level and problem 
direction. The problem level pertains to the definition of the problem at a strate‑
gic, system, or component level. The problem direction involves the designation 
of the problem’s objective, such as optimisation, forecasting, or decision‑making. 
Selecting the correct category aids in the relevant variable selection for AI‑based 
process modelling. If necessary, the selection and categorisation of the main prob‑
lem are followed by breaking it down into a series of smaller, logical problems. 
It is impractical to model a process using a large number of variables or variable 
combinations. Therefore, variables are selected based on process understanding, 
experience and literature reviews.
###R002###

8.2.2 Type of variabLes

Numeric variables (continuous and discrete) and categorical variables (nominal and 
ordinal) are two main types in which a selected variable can be segregated. Each 
selected variable is identified with respect to the mentioned categories. The under‑
standing of variable type has a significant effect on the selection of AI modelling 
algorithms. Moreover, different statistical tests can be performed to find out the 
health of data depending upon the variable type.

Figure 8.2 presents three examples of the problems reported by our group in the 
literature whereas Figure 8.2a presents the listing of the input variables for modelling 
#1 bearing vibration mounted on the steam turbine shaft bearing (component level 
problem) [22]. Four variables namely outlet SO2 conc. (mg/Nm3), outlet NOx conc. 
(mg/Nm3), outlet Hg conc. (μg/Nm3) and outlet dust conc. (mg/Nm3) are the repre‑
sentative output variables corresponding to the flue gas desulphurisation system‑level 
modelling which are mentioned in Figure 8.2b and details are provided in Uddin 
et al. [23]. Two strategic‑level problems are considered from the coal power plant 
operation where thermal efficiency, power and turbine heat rate are modelled by the 
relevant input variables as mentioned in Figure 8.2c [24] while generator power is 
modelled on the comprehensive list of the input variables as depicted on Figure 8.2d 
[28]. However, the distribution of individual variables, the dimension compressed 
distribution of the input space and the level of problem can result in different types of 
machine learning architecture for the modelling tasks.

8.2.3 variabLe proCessing and assessing heaLTh of daTa

The list of variables selected for the AI training process requires careful preprocess‑
ing to prevent skewed results due to differing variable ranges. AI models are initially 
trained under the assumption that all factors or variables contribute equally to the 
output. Therefore, it is necessary to standardise variables with very high or very low 
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ranges to an equal scale. Training models without normalisation can adversely affect 
the performance of AI‑based algorithms. For instance, distance‑based algorithms 
such as support vector machines (SVMs) are particularly sensitive to this issue.

One widely used data‑processing technique is the min‑max approach; other 
well‑known techniques include robust normalisation, log normalisation and 

FIGURE 8.2 Input process output diagrams of (a) component level problem, (b) system‑level 
problem and (c–d) strategic level problem. The input variables are listed on the left while out‑
put variables are mentioned on the right side of the figure.
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z‑score normalisation. The selection of the most appropriate normalisation tech‑
nique depends on data characteristics, such as the presence of outliers, large‑mag‑
nitude data, or distributed data.

It is well‑established that the decision‑making capabilities of AI models depend 
heavily on the quality of the training data. Therefore, it is essential to assess data 
quality or “data health” before training AI models. This assessment can be performed 
using statistical tools, either numerically or visually. Depending on the process being 
studied, various data health issues can be identified, such as outliers, repeated data, 
delayed data, abnormal data clusters, empty or missing data etc. A particularly chal‑
lenging issue to detect is a faulty sensor that consistently produces erroneous data 
within an expected range at regular intervals, without any delays or missing data. 
The variable from such a faulty sensor will be mixed with the data stream from other 
non‑faulty sensors, making the erroneous data appear legitimate. This can lead to the 
training of an AI model that does not accurately represent the process.
###R011###

8.2.4 daTa CoLLeCTion and visuaLisaTion

After deciding on the variables’ range selection, the next critical task is the data 
collection process. Two data sampling methods are commonly used: (a) collecting a 
large chunk of data from the industrial system, or (b) sampling a representative data‑
set from the larger chunk. AI models can be trained with the full dataset or with a 
representative dataset. For example, temperature data for the whole year (full dataset) 
or features such as high, low and changing temperatures representative of the entire 
year’s temperature data. The frequency of data collection within the selected range is 
also crucial. Data can be collected at different intervals, such as every hour or every 
second, depending on the resolution window required for model‑based predictions. 
This frequency impacts the granularity and accuracy of the AI model’s predictions.

Data visualisation is one of the most powerful tools for evaluating data at both 
stages: (stage 1) raw data obtained for training (pre‑training data), and (stage 2) results 
obtained after training (post‑training data). Typically, emphasis is placed on visualising 
data distribution profiles. However, visualising the input data is crucial for assessing 
input data quality and health. This visualisation provides intuitive insights that are 
essential for evaluating modelling accuracy within the operating ranges of the variables.

8.2.5 differenT visuaLisaTion TeChniques

Various visualisation techniques can be employed to evaluate the behaviour of input 
data, such as line charts, bar graphs, scatter plots, histograms, hierarchical parallel 
coordinate systems, RadViz or PolyViz methods and self‑organising feature maps 
(SOFM). Line graphs, bar graphs and scatter plots are particularly useful for under‑
standing the behaviour of individual variables. Line and scatter plots are effective for 
identifying outliers in the input data, while bar graphs are especially helpful for identi‑
fying interdependencies between input variables. Histograms can be used to distribute 
data into sub‑ranges or classes, allowing the identification of the distribution’s shape 
or type (e.g., normal, positively skewed, negatively skewed, or discrete distribution).  
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The aforementioned techniques treat variables individually, whereas SOFM can be 
used to visualise input combination distributions in lower‑dimensional space.

Figure 8.3 presents the individual distribution of variables in the training data of 
the problem summarised in Figure 8.2. It is important to note that real‑world industrial 
data like this has distribution of critical variables biased towards either extremes or the 
mean value based on the specific process control regimes implemented in the opera‑
tions with less concentration of data in other zones. It is very important for AI process 
modelling engineers/experts to take cognisance of the high data concentration zones 
and the low data concentration zones so that they know the areas in which their models 
may be expected to be more reliable. Moreover, as a rule of thumb, a normally distrib‑
uted variable is less desirable than a uniformly distributed variable as it offers a higher 
probability of capturing linearity, nonlinearity and interaction of causation.
###R010###

8.2.6 Compressed dimensionaL spaCe

In many industries, dealing with high‑dimensional data poses a challenge for direct 
visualisation methods. However, this issue can be addressed by reducing the dimen‑
sionality of the data. Techniques such as principal component analysis (PCA), 
linear discriminant analysis (LDA) and self‑organising feature maps (SOFM) are 
commonly employed to transform high‑dimensional data into low‑dimensional 
space. Data visualisation, particularly the representation of high‑dimensional data 
in low‑dimensional space, is invaluable for qualitatively analysing the health of the 
data. Sections of high data density provide more confidence in predictions made by 
trained networks within those high‑density data ranges. This enables better under‑
standing and interpretation of complex data structures, facilitating more accurate 
decision‑making in various industrial applications.

The SOFM is a very useful data dimensionality reduction tool for data visualisa‑
tion especially when analysing data topological features. It is a neural network‑based 
competitive unsupervised learning algorithm relying on distance calculations.  
A connected rectangular or hexagonal structure is usually formed. At each connec‑
tion, a node or neuron is created initially with random weight that updates as the 
training progresses. Each time an input vector is presented to the neurons, Euclidean 
distance is calculated and the neuron with the minimum distance or closest to the 
input vector wins the competition. The process runs iteratively until the stopping con‑
ditions are met. Finally, the neurons with maximum winnings on presented input vec‑
tors show a larger data cluster compared to the other neurons. Figure 8.4 presents the 
compressed dimensions distribution of input space in the training data of component 
(Figure 8.4a) and system‑level problem (Figure 8.4b). The SOFM offers a summarised 
vision of the training data input space to the process modelling engineers/experts to 
assess the probability of capturing linearity, nonlinearity and interaction of causation.
###R009###

8.3 BASIC INTRODUCTION OF SUPERVISED LEARNING

The AI models are usually differentiated into two major categories i.e., supervised 
machine learning and unsupervised learning. The difference explained in simplest form 
between supervised and unsupervised machine learning is how data is fed to the models. 
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FIGURE 8.3 Visualising the data‑distribution space of the input and output variables taken 
from the system‑level problem of flue gas desulphurisation system. Continuous and asym‑
metric data distribution profiles of the variables are observed indicating the tendency of the 
operation engineers to maintain the operating variables in the given operating ranges of the 
variables [23].
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Training data with inputs and the corresponding output is required in supervised learn‑
ing whereas, in unsupervised learning raw data is fed to the model to deduce meaning‑
ful/useful results. In supervised learning, the architecture is made to support data that 
includes inputs with specified outputs, a data processing algorithm and an error quantify‑
ing/communicating mechanism.

8.3.1 inTroduCTion To arTifiCiaL neuraL neTwork

The artificial neural network (ANN) lies under the umbrella of both supervised 
machine learning and unsupervised machine learning (radial basis function networks 
RBFNs). It is inspired by the human brain’s neural network working. Although ANN 
is not able to fully mimic the human brain’s neural network, yet still approximates 
the information processing mechanism of the brain. The following section explains 
the working of ANN.

8.3.1.1 Architecture of ANN
The architecture of ANN needs to support all the fundamentals described earlier 
for supervised machine learning i.e., data that includes inputs with specified outputs 
(training data), a data processing algorithm (handled by input‑hidden‑output layer) 
and an error quantifying/communicating mechanism (backpropagation algorithm 
that communicates between output to hidden to input layer).

8.3.1.2 Neurons
A neuron is a node to collect data signals, process it and distribute it according to 
specified instructions. In fully connected ANN, the normalised input data arrives 
at the input neuron. Each input neuron usually collects one specified input data that 
is sent to all first hidden layer neurons. Each input data signal is multiplied with a 
weight, then the result of each input is summed up with the addition of a bias value 
(bias value includes bias multiplied by a weight). The summation of all input weights 
with bias is collected at the hidden layer. The signal collected at each hidden layer 

FIGURE 8.4 SOFM plotted for (a) component‑level [22] and (b) system‑level problems of 
the power plant [23].
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neuron is presented in a mathematical form in equation (8.1). The summed data func‑
tion is passed through an activation function. Similarly, the signal from each hidden 
layer neuron is collected at the output layer neuron, multiplied with weight, summed 
and passed through a function.

 w x w x
i

N

i i

1

0 0∑ξ = +
=

 (8.1)

8.3.1.3 Activation Function
An activation function is used to map the data behaviour of the system through the 
introduction of mathematical operation. It is vital to select a mathematical function 
that has the ability to map systems behaviour. If a system behaves linearly then a lin‑
ear mathematical function is appropriate. Similarly, non‑linear mathematical func‑
tions can be used to map complex system behaviour. Popular activation functions 
include linear, sigmoidal, tangent hyperbolic, exponential and ReLU. There is no 
special restriction on the usage of particular activation functions. Any mathematical 
expression; suitable for the solution of a problem, can be exercised. Equation (8.2) 
represents the sigmoidal activation function as one such example.

  
1

1 e
ϕ ξ( ) =

+ ξ−  (8.2)

8.3.1.4 Layers
The computational stages of ANN are distributed into three layers i.e., input layer, hid‑
den layer and output layer. Each layer has its own significance however, the  hidden 
layer is the most important layer where most of the calculations happen. A network can 
have a single hidden layer or multiple interconnected hidden layers. The number of hid‑
den layers and the neurons embedded in the hidden layer introduces the complexity to 
approximate the function space of the output variable. The ANN is described as a shal‑
low neural network for having a single hidden layer or deep neural network possessing 
multiple hidden layers in the architecture. The number of neurons in the hidden layer 
are selected by the hit and trial method and the modelling performance of the model 
is evaluated on the performance metrics as mentioned in Section 8.3.3. The graphical 
visualisation of a fully connected artificial neural network is depicted in Figure 8.5.
###R008###

8.3.1.5 Training Algorithms for Parameters Optimisation
The training algorithms refer to the over‑all steps followed to update the parameters 
(weights and biases) in the network. The backpropagation algorithm is a widely used 
training algorithm for ANN. Other examples of training algorithms include but are not 
limited to gradient descent, gradient descent with momentum, quasi‑newton method, 
scaled conjugate gradient method, Levenberg Marquardt algorithm, Hilbert‑Schmidt 
independence criterion algorithm, evolutionary algorithms including genetic algo‑
rithm, particle swarm optimisation etc. In backpropagation, the error calculation 
(difference between model‑predicted output and actual output is calculated) and how 
much weights need to be updated, is calculated using a training algorithm.
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8.3.1.6 Learning Rate
The learning rate is the step size that tells how large the jump should be in the direc‑
tion of error minima. A larger step size may lead to missing the target or global 
minimum, and very small step size leads to high computational time and cost.

8.3.2 inTroduCTion To supporT veCTor maChine

Support Vector Machine (SVM) is an advanced supervised learning algorithm exten‑
sively utilised for classification, regression and outlier detection. Based on the prin‑
ciple of structural risk minimisation as proposed by Cortes and Vapnik [29]. SVM 
aims to minimise generalisation error, thereby enhancing model robustness, particu‑
larly in high‑dimensional spaces. By constructing hyperplanes in a higher‑dimen‑
sional space, SVM effectively classifies and regresses data points. In classification 
tasks, SVM establishes a decision boundary or hyperplane that maximises the mar‑
gin between different classes, which can be represented as:

 0w x b⋅ + =  (8.3)

FIGURE 8.5 Fully connected artificial neural network example architecture.
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Soft margin classification addresses the balance between maximising the margin and 
limiting margin violations (i.e., data points that fall within the margin or are misclassi‑
fied) using a hyperparameter C. This parameter controls the penalty for margin viola‑
tions, aiming to find a balance between a large margin and minimal classification errors:

 min
1

2
2w C

i

N

i∑ζ+








  (8.4)

where iζ  are slack variables representing the degree of misclassification of the data xi.
On the other hand, in SVM regression, or support vector regression (SVR), the 

model fits ε‑tube hyperplane allowing deviations beyond the boundary of the tube. 
The objective of SVR is to minimise deviations larger than ε while keeping model 
complexity low:
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Subject to

 y wx bi i iε ζ( )− + ≤ +

 0iζ ≥

In the optimisation of SVM parameters, quadratic programming is critical as it 
involves solving a convex quadratic optimisation problem with linear constraints. 
The dual problem in SVM transforms the problem into a dual formulation, simplify‑
ing the computation using kernels based on Mercer’s theorem [30]:
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Subject to
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SVM also extends to non‑linear functions using the kernel trick, which allows the 
SVM framework to accommodate non‑linear boundaries [31]. This is achieved by 
transforming the feature space using kernel functions such as:
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 Polynomial Kernel: ,K x x x x c
dγ( )( )′ = ⋅ ′ +  

 Gaussian RBF Kernel: , exp   2K x x x xγ( )( )′ = − − ′  

where d  is the degree of the polynomial, c is a constant term and γ  controls the ker‑
nel’s width while acting as a regularisation hyperparameter. The hyperparameters 
are tuned during the training of the SVR model to avoid overfitting and ensure the 
generalisation performance of the model.

This SVR approach significantly enhances predictive accuracy, particularly 
in engineering applications where processing continuous data streams with high 
computational efficiency and robustness is vital. Utilising quadratic program‑
ming and strategic optimisation constraints, SVM exhibits remarkable versatil‑
ity, proving indispensable in specialised applications. For instance, SVR models 
are employed to optimise operations in thermal power plants and energy systems 
[19,20,32]. In the maintenance of mechanical components like bearings and gears, 
SVR contributes to the early detection of faults and system failures, thereby sub‑
stantially reducing machinery downtime and maintenance costs [22,33]. SVR’s 
adaptability to time series data and the capability for online SVM implemen‑
tation facilitate real‑time monitoring and predictive maintenance in complex 
mechanical systems, promoting continuous operational efficiency and preemptive 
troubleshooting. This strategic utilisation of SVR exemplifies its competence in 
handling, analysing and predicting intricate data patterns, thereby cementing its 
status as a critical tool for optimising system performance. The comparative dem‑
onstration of two SVR models in Figure 8.6, one employing a linear kernel and 
the other a polynomial kernel, highlights the flexibility of SVR techniques. These 
models adeptly capture complex data patterns within specified tolerance levels, 
illustrating SVR’s versatility across varied scenarios and affirming its value in 
both academic research and practical applications.

FIGURE 8.6 Visualising the curvature of the hyperplane along with the margins. The data 
points trained by the SVM model are also shown.
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8.3.3 ChoiCes of performanCe meTriCs

The AI models need to be evaluated on the basis of their performance and robust‑
ness. It is advisable to not rely on a single matrix to evaluate AI model performance 
and robustness as it may be misleading sometimes. R2 is one of the most commonly 
used AI model performance evaluation metrics. Technically, R2 tells about how much 
the variability in the system response can be accurately predicted or explained by the 
trained model. In simple words R2 is a measure of goodness of fit i.e., how well the 
model can fit the data. The R2 is calculated by equation (8.1).

 1

ˆ

 

2

2

1

2

1
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y y

y y

i i

i

N
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where, N  is the number of samples, yi represents the actual response, ŷi indicates 
model‑predicted response and yi is the mean of the actual response. 2R  measures the 
modelling accuracy and varies from zero to one. The error‑based metrics are used 
along with 2R  to evaluate the predictive performance of the AI‑based process models. 
Some of the commonly used error metrics are mentioned in Table 8.2. Mean absolute 
error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), 
root mean square error (RMSE), normalised root mean square error (NRMSE) and 
weighted mean absolute percentage error (WMAPE) are summarised in Table 8.2. 

TABLE 8.2
Error Based Model’s Performance Evaluation Metrics
No. Criteria Mathematical Form Comment

1 Mean absolute 
error (MAE) MAE

1 ˆ
1

N
y y

i

N

i i∑= −
=

MAE tells about average error between model 
predicted and actual response. It is useful when 
the error range is tight, or error distribution is 
uniform. In case of outliers (large value or very 
small value) the MAE will be misleading

2 Mean absolute 
percentage 
error (MAPE)

MAPE
1 ˆ

100%
1

N

y y

y
i

N
i i

i
∑= − ×

=

MAPE also depends upon average error. Care 
should be exercised while using MAPE when 
the actual response has few extremely low, 
high or zero values

3 Mean squared 
error (MSE) RMSE  

1 ˆ
1

2

N
y y

i

N

i i∑( )= −
=

This criterion is usually used when we want to 
penalise a larger error in model prediction 
more as compared to smaller model‑based 
predicted values

4 Root mean 
square error 
(RMSE)

RMSE
1 ˆ

1

2

N
y y

i

N

i i∑( )= −
=

RSME is used instead of MSE when the error 
in the same units as actual response is 
required. This also penalises a larger error in 
model prediction compared to smaller ones

(Continued)
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It is evident that special attention needs to be given based on the problem, expected 
error distribution and particular error significance to select model evaluation criteria.

8.3.4  Comparison of ai based modeLLing 
performanCe on The idenTified probLem

The output variables of the three problems associated with the power plant opera‑
tion are modelled by AI‑based modelling algorithms like ANN and SVM and the 
modelling performance is shown on Figure 8.7. The bearing vibration problem is 
analysed by ANN and SVM‑based algorithms and the comparison of the model‑
ling performance on the test dataset reveals the superior performance metrics 

FIGURE 8.7 The performance metrics computed for the component, system and strategic 
level problems of the power plant.

TABLE 8.2 (Continued)
Error Based Model’s Performance Evaluation Metrics
No. Criteria Mathematical Form Comment

5 Normalised root RMSE NRSME is useful for comparing prediction 
NRMSE = × 100%

mean square ymax − ymin accuracy of two or more models with different 
error ranges or scales
(NRMSE)

6 Weighted mean 
absolute ∑

N Whenever certain values or ranges are more 
(wt ŷi − yi ) important compared to others, WMAPE is 

percentage WMAPE  = i=1

∑
N implemented as a model prediction accuracy 

error ( )wt yi measure. For example a lower weight can be 
(WMAPE) i=1 associated with a large outlier value to 

diminish its effect or vice versa
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(R2 = 0.88, RMSE = 5.16 μm) of the ANN model trained for the modelling task. 
The four output variables taken from the flue gas desulphurisation system are 
modelled by ANN algorithm and it is noted that an R2 value of more than 0.8 is 
observed on the test dataset for the variables indicating the good generalisation 
of the models trained for the output variables. Similarly, an R2 value of more than 
0.70 is observed for the three strategic‑level output variables including thermal 
efficiency, power and turbine heat rate modelled by Data Information integrated 
Neural Network (DINN) model – a variant of ANN. Moreover, reasonable values 
of RMSE are computed for the three output variables in comparison with the oper‑
ating ranges of the output variables. For generator power output, both ANN and 
SVR models are trained, and the predictive performance comparison of models 
confirms the higher modelling performance capability of the SVR (RMSE = 1.52 
MVA) than those of ANN (RMSE = 2.1 MVA). The comparison of the perfor‑
mance metrics on the three operating levels of the problem suggests using ANN 
for the quantitative nature of the problem. Whereas, SVM is expected to perform 
better for the strategic level problem analysed on large number of input variables.

8.4 VARIABLE SIGNIFICANCE ANALYSIS

AI‑based process models are typically black‑box systems, making it crucial to inves‑
tigate the significance of variables influencing model‑based predictions. Variable 
significance analysis is commonly conducted in AI‑based studies to establish the 
relative order of significance among variables. Identifying and understanding critical 
variables that significantly impact the output variable corresponding to the system’s 
operating level is essential. This holds true for both forecasting and decision‑making 
problems, as they directly involve identifying significant variables or determining 
the magnitude and order of significance. Moreover, variable significance analysis 
helps focus efforts on system improvement by identifying less meaningful or insig‑
nificant variables. Additionally, starting with a large number of variables initially, the 
analysis can be reduced to studying only the most significant ones.

Several techniques are available for determining the significance of individual 
variables through trained AI models. Some of these techniques include correla‑
tion analysis, one‑factor‑at‑a‑time (OFAT) analysis, regression‑based and AI‑based 
response surfaces, game theory‑based techniques (such as SHapley Additive exPla‑
nations – SHAP) and Monte Carlo‑based techniques. A discussion of a few of these 
techniques is provided here for reference.

8.4.1 ofaT

One factor at a time (OFAT) is a fundamental technique used to identify the sig‑
nificance of independent input variables. In this method, one factor or variable is 
varied within its respective range while keeping all other factors constant at specific 
values. The response of the AI‑based system is observed under these conditions. This 
process is repeated for each remaining input factor or variable, changing one factor 
within its range while holding all others constant and observing the system response. 
The factor that creates the maximum disturbance in the system response is consid‑
ered the most significant.
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OFAT analysis is advantageous when the system is less complex, and the output is 
not influenced by combinations of input factors. It is particularly useful when main 
effects are important, rather than interactions between variables. However, the main 
disadvantage of this analysis is its inability to represent the significance of factors in 
complex interactive systems. Additionally, fixing the value of input variables except 
one can lead to critical decisions regarding which value or condition of each variable 
is most important for the analysis purpose.

8.4.2 response surfaCes TeChnique

In response surface analysis, response surfaces are constructed to analyse the rela‑
tionship between inputs and outputs. In this method, two, three, or more input fac‑
tors are systematically and simultaneously varied, while the remaining input factors 
are kept constant, and the system response is measured. The system output, varying 
with input, is then plotted as response surfaces and analysed. This type of analysis 
is particularly helpful for systems with interactive input factors concerning output. It 
allows the identification of system responses to changes in two, three, or more vari‑
ables simultaneously, enabling critical decisions for system improvement.

However, one disadvantage of this technique is the need to fix some factors at 
specified values when the number of factors is large. If values are not fixed for cer‑
tain variables, then methods are required to visualise the causal relationship between 
input and output factors in multi‑dimensional space. This can be challenging and 
may require advanced analytical techniques to accurately interpret the results.

8.4.3 monTe CarLo simuLaTion based signifiCanCe anaLysis

The Monte Carlo simulation‑based significance analysis technique provides an opportu‑
nity to assess system response and factor/variable significance from a trained AI model. 
Monte Carlo is a very powerful technique to solve various problems. Different statistical 
techniques can be used to evaluate factor/variable significance from a trained AI model. 
One such technique includes changing one factor/variable from the minimum to the 
maximum value while varying all remaining factors/variables randomly. It is important 
to note here that the variable whose significance is to be determined is kept constant at 
an operating level while the remaining input variables are changed randomly within 
their operating ranges. This provides an opportunity to investigate the variable signifi‑
cance comprehensively and mean variable significance can be computed. More details 
about the working of the Monte Carlo technique can be found in Ashraf et al. [21].

Ten‑thousand randomly distributed observations are generated corresponding to the 
100‑step changes in the variable for the variable significance analysis. The Monte Carlo 
technique‑based variable significance is computed for the three performance param‑
eters taken at the strategic‑level performance of the power plant as shown in Figure 8.8. 
Feed water temperature (FWT) is estimated to be the most significant variable having 
percentage significance of 29.6% and 54.4% for thermal efficiency and Power respec‑
tively. Whereas, air flow rate (ma) turns out to be the most significant variable for the 
turbine heat rate with a percentage significance of 32.1%. FWT is critically controlled 
by the feed water regenerative system to maintain the thermodynamic conditions of the 
FWT. The heat duty of a boiler is strongly dependent on the FWT conditions and thus, 
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fluctuation in FWT drives the unstable boiler operation impacting the thermal efficiency 
and power generation. Whereas, larger volume of ma than the optimal operating level 
corresponding to the plant operation increases the energy input to preheat the air and 
the latent load that increases the heat rate of the turbine. The variables taken for the 
modelling of three performance parameters associated with the flue gas cycle and steam 
cycle of the coal power plant allow us to compute the percentage significance of the two 
power cycles on the plant operation. It is noted that the steam cycle has comparatively 
the higher significant impact on the three performance parameters computing percent‑
age significance of 79.3%, 65.7% and 74% towards thermal efficiency, power and turbine 
heat rate respectively. The high significance of the steam cycle is explainable consider‑
ing the thermodynamic conditions of the steam being discharged in the steam turbine 
system and also complies with the working of the Rankine cycle [34].

8.5  MULTI‑OBJECTIVE ROBUST OPTIMISATION 
OF THE COAL POWER PLANT

The energy‑efficient operation of the coal power plant can be maintained by setting the 
operating levels of the input variables at the optimal conditions that maximise the thermal 
efficiency and minimise the turbine heat rate at the sustained power generation mode. 
The function space built on three performance parameters is essentially nonlinear and 
required to conduct the nonlinear programming‑based optimisation analysis to deter‑
mine the optimal solution for the multi‑objective optimisation problem. The multi‑objec‑
tive problem formulated for the operation optimisation of the coal power plant is given as:

FIGURE  8.8 Monte Carlo technique based variable significance analysis at the 
 strategic‑level problem. The percentage significance of the variable is computed for thermal 
efficiency, power and turbine heat rate of the power plant. The significance of the flue gas 
cycle and steam cycle on the three performance parameters is also computed [24].
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Here, −ve sign means that the term in the objective function is to be maximised and 
vice versa. h x( ) is the equality constraint and represents the ML‑based models and is 
also deployed to define the multi‑objective function. x is the set of input variables and 
is bounded on the lower (x L) and upper bounds (xU) that serve as the search space 
to explore the feasible solution in the face of the constraints. A sequential quadratic 
programming solver is used to solve the multi‑objective optimisation problem cor‑
responding to different initial points and the feasible solution ( *x ) is determined.

The Monte Carlo technique is used to explore the impact of operational uncer‑
tainty that is associated with the sensor‑based uncertain measurements, aleatoric and 
epistemic uncertainty associated with the industrial operation, and degradation in the 
health of the equipment. The experiments are constructed by adding the Gaussian 
noise generated on the 1% range of the input variables ( kδ ) with *x . The experiments 
(x k

* δ+ ) explore the vicinity of the solution to investigate the sharp fluctuation in 
the multi‑objective function space and are simulated by the multi‑objective function 
to numerically approximate the mean response and variance. The mean ( ( )*F x ) and 
variance ( ( )*V x ) produced in multi‑objective function around *x  are computed as:
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Here, ε  is the threshold limit as defined by the user to account for the robustness of solu‑
tion. *x  is regarded as robust if *V x ε( ) < . We have analysed the plant operation under 
three power generation scenarios i.e., 358–365 MW for scenario‑1, 495–500 MW for 
scenario‑2 and 655–660 MW for scenario‑3 and the feasible solution is determined by 
solving the multi‑objective function corresponding to different initial guesses. Monte 
Carlo experiments are constructed on 10,000 noise observations and ε  is set as 0.01.

The two‑stage robust optimisation approach is applied to estimate the robust 
optimal solutions under three power generation scenarios for thermal efficiency, 
power and turbine heat rate, and are depicted in Figure 8.9a–c. The highest ther‑
mal efficiency is estimated to be 42.12% ± 0.31% while the minimum turbine heat 
rate is found to be 7643 ± 71 kJ/kWh corresponding to scenario‑3. The estimated 
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robust solutions are verified on the plant operation and a good agreement between 
the model‑based robust optimal solutions and those of the experimental observations 
is observed under three power generation states of the power plant as mentioned 
in Figure 8.9d–f. The verification of the robust optimisation results on the plant’s 
operation demonstrates the accuracy of the model‑based analytics starting from the 
problem identification to model development and estimating the robust optimal solu‑
tion by hybridising the mathematical‑stochastic approaches.

8.6 CONCLUSION

We have presented the framework to carry out the AI‑based modelling and optimisa‑
tion analysis for the optimisation of industrial processes and systems. The problem 
definition on the selection of input‑output variables is the crucial step and requires 
consulting with domain experts and literature. The dataset collected correspond‑
ing to the selected variables should be visualised to investigate the health and qual‑
ity of the data. The AI‑based modelling algorithms should be selected considering 
the operating levels of the problem and/or quantitative or qualitative nature of the 
dataset. The models are trained on the extensive hyperparameters tuning and mod‑
elling performance is evaluated on the rigorous statistical parameters. The model‑
ling performance of the AI model is found to be around 70% minimum on the test 
dataset corresponding to component, system and strategic level problems taken from 
the coal power plant. The model‑based robust optimisation results are estimated to 
correspond to strategic‑level problems and are verified on the plant operation. The 
AI‑based process models demonstrate the potential for the optimisation of industrial 
processes and systems that can enhance the performance of the industrial systems, 
promoting energy‑efficient operation and contributing to net‑zero goal.

FIGURE 8.9 The multi‑objective robust optimisation of coal power plant on maximising (a) 
thermal efficiency, (b) power and minimising (c) turbine heat rate on three power generation 
scenarios [24]. The robust optimal solutions corresponding to the generation scenarios are 
verified on the plant operation and the experimental results are compared with those of the 
estimated robust solution for (d) thermal efficiency, (e) power and (f) turbine heat rate.
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9.1 INTRODUCTION

By 2050, 60%–70% of the global population is projected to reside in urban areas. 
This rapid urbanization will significantly impact ecology, security, and city admin‑
istration. To address these challenges, many nations are adopting the innovative city 
model to efficiently allocate resources and optimize energy consumption [1,2]. Smart 
cities aim to manage urban growth, reduce energy usage, protect the environment, 
enhance citizens’ socioeconomic status and quality of life, and effectively use modern 
information and communication technology (ICT). ICT is pivotal in policy creation, 
decision‑making, implementation, and service delivery within intelligent cities [3].

The concept of intelligent cities integrates sensors and Big Data through the 
Internet of Things (IoT), providing new opportunities for city governance and eco‑
nomic enhancement. However, it is crucial to balance technological advancements 
with sustainability and livability [4]. Smart cities strive to improve residents’ ser‑
vices, addressing social and economic needs [5]. Practical data analysis, communica‑
tion, and implementation of complex plans are essential for smart cities’ smooth and 
secure operation, and ICTs are critical to this process [6–8].

The IoT is fundamental in innovative city applications, generating vast data [9,10]. 
Managing these extensive datasets requires advanced techniques like deep reinforce‑
ment learning (DRL), machine learning (ML), and artificial intelligence (AI), which 
can analyze data and make optimal decisions considering long‑term objectives [2,9]. 
Increasing the quantity of training data can enhance the accuracy and efficiency of 
these automated decision‑making processes [11].

AI has become increasingly prevalent in intelligent city operations, replicating 
human cognitive functions through voice recognition, advanced systems, machine 
learning, and natural language processing applications. ICT in intelligent cities pro‑
motes better governance, improves human welfare, and boosts the economy. AI can 
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make cities safer and more livable by enhancing home management, traffic monitor‑
ing, and waste management [12,13].

The widespread use of ICT and related technologies, such as Cyber‑Physical 
Systems (CPS), Cloud and fog computing, and IoT, has led to rapid data generation 
and collection [14]. This data often contains sensitive information about citizens, 
raising privacy concerns. While proper data handling can mitigate risks and offer 
significant benefits, real‑world data management presents challenges. Ethical con‑
siderations and data privacy remain critical issues that must be addressed [15]. Our 
research examines the moral dimensions of intelligent cities, drawing on scholarly 
articles that focus on these issues.

Overview of Machine Learning Techniques Unmanned aerial vehicles (UAVs), 
smart cities, IoT, blockchain, and the application of AI, ML, and DRL‑based tech‑
niques are still developing but promise significant future opportunities [16]. The 
growth of smart cities and advanced data analysis methods for Big Data have pro‑
gressed simultaneously. AI, ML, and DRL methodologies significantly impact intel‑
ligent city sectors, enhancing their efficiency and adaptability [17].

Smart grids (SGs), cybersecurity, intelligent transportation, and UAV‑assisted 
fifth‑generation (5G and B5G) connectivity are critical in innovative city initiatives. 
ML and DRL techniques are crucial in developing self‑driving vehicles, ensuring 
vehicle security, and improving passenger search and travel safety within intelligent 
transportation systems (ITS) [18].

Machine learning (ML), a critical AI application, involves developing algorithms 
to recognize and interpret complex patterns from data. ML models can be analytical 
for predictions or descriptive for extracting information [19]. Initially, ML aimed 
to overcome the knowledge‑acquisition barrier in expert systems. Today, ML tech‑
niques are also tools for data analysis and information mapping, akin to traditional 
statistical methods [20,21]. ML can be divided into supervised and unsupervised 
learning based on training data. Its non‑parametric nature allows for fewer data 
assumptions but requires more computations. ML development typically involves 
training, validation, and testing phases to ensure model accuracy.

In supervised learning, an AI network is trained using input‑output data pairs 
to map inputs to outputs. This method includes regression and classification tasks. 
Examples include random forest, support vector machines, and linear regression. 
On the other hand, unsupervised learning involves discovering patterns in unla‑
beled data, with everyday tasks including clustering and association. Techniques like 
auto‑encoders and K‑means use unsupervised learning [22].

To solve problems using machine learning, algorithms must be developed, draw‑
ing on methodologies from various fields like statistics, pattern recognition, data 
mining, and signal processing. This interdisciplinary approach enables the creation 
of robust solutions by leveraging diverse knowledge domains [22].

9.2  DATA‑DRIVEN ANALYTICS AND ETHICS IN 
SMART SCIENCE AND SMART CITIES

The widespread availability of comprehensive and indexed data, combined with 
the effort to extract meaningful insights, underscores the importance of address‑
ing ethical concerns related to datafication, geo‑surveillance, dataveillance, privacy, 
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and various applications such as social sorting and anticipatory governance. While 
advancing intelligent cities and using science and technology to understand urban 
environments remains crucial, it is essential to reimagine and rethink these initia‑
tives to mitigate their negative impacts, emphasize rationality and epistemology, and 
consider alternative approaches to urban systems [23].

9.2.1 daTafiCaTion and privaCy

In democratic societies, privacy includes the right to control how much personal informa‑
tion is shared publicly. This right is recognized as fundamental and protected by national 
and international laws. However, perceptions of privacy can vary across different cultures 
and contexts. Legal discussions often focus on the standards for collecting and sharing 
sensitive personal information [24]. This sensitive information can encompass various 
aspects of an individual’s life, leading to different forms of privacy, such as [25,26]:

• Territorial privacy: Protecting one’s personal space and possessions.
• Bodily privacy: Maintaining physical integrity.
• Mobility and location privacy: Preventing the monitoring of spatial 

activities.
• Confidentiality of transactions: Preventing the surveillance of searches, 

payments, and other transactions.
• Communications privacy: Protecting conversations and correspondence 

from being monitored.

9.2.2 daTafiCaTion, daTaveiLLanCe, and geo‑surveiLLanCe

With the increasing datafication of daily life, individuals face heightened scrutiny. It 
is nearly impossible to navigate daily routines without leaving digital traces—both 
self‑generated and those left by others. The rise of unique identifiers and personally 
identifiable information (PII) for accessing services, surveillance, and digital transac‑
tions contributes to this trend. These identifiers include credit card numbers, license 
plates, intelligent card IDs, names, usernames, passwords, account numbers, addresses, 
emails, phone numbers, and facial recognition technology [27]. Data surveillance, par‑
ticularly in smart cities, and geo‑surveillance are becoming increasingly common. 
Data surveillance involves creating, sorting, and filtering datasets to detect, monitor, 
control, predict, and prescribe behaviors. Geo‑surveillance tracks the movements of 
people, vehicles, objects, and services and monitors spatial relationships [28–30].

9.2.3 inferenCing and prediCTive privaCy harms

Predictive modeling using urban big data can generate inferences about individuals 
that are not explicitly recorded in a database yet still represent personally identifi‑
able information (PII) and cause “predictive privacy harms” [31,32]. For example, 
tracking data that shows a person frequently visits gay clubs can suggest their sexual 
orientation, which many consider private and sensitive. This issue is particularly pro‑
nounced in anticipatory governance and predictive policing, where profiling based 
on poor data or models can reinforce stigmas and cause distress.
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9.2.4 The ineffeCTiveness of noTiCe and ConsenT

Innovative city technologies severely undermine privacy and data protection prin‑
ciples—notice and consent—and render data/urban science largely ineffective. 
Everyday interactions with various intelligent city technologies generate vast amounts 
of data. Given the sheer volume and variety of these interactions, it is overwhelming 
for individuals to manage their privacy across multiple entities, weigh the pros and 
cons of agreeing to terms, understand how their data might be used in the future, or 
assess the overall impact of their data when combined with other information [33].

Even when individuals attempt to control their personal information across these 
platforms, they often face lengthy, complex legal agreements that are essentially 
non‑negotiable—requiring acceptance to use the service. Consequently, consent fre‑
quently involves individuals relinquishing their rights without fully comprehending 
the extent or consequences of their actions [34].

9.2.5 daTa use, sharing, and repurposing

One of the critical characteristics of the data revolution is the total disregard for the 
principles of purpose specification and usage limitation. These principles state that 
data should be collected only for a specific task, retained only as long as necessary, and 
used solely for that purpose. However, the objectives of big data and the operation of 
data markets, which aim to collect and amass vast amounts of information to extract 
more excellent value, often conflict with these principles [35]. Many companies repack‑
age data, de‑identify it (using pseudonyms or aggregation), and apply data reduction to 
the original dataset. The repackaged data may then be shared and used in various ways 
unrelated to the original purpose for which the data was collected without informing or 
obtaining the consent of the individuals to whom the data belongs [36].

9.3  RENEWABLE AI IN POWER GRIDS—
COMMUNICATION INFRASTRUCTURE

Power grids have evolved from local to large‑scale networks spanning multiple coun‑
tries or continents [37]. Despite its crucial role in modern society, the energy sector 
has been slower to adopt digital technologies than other industries due to the high 
demand for reliability and the scale of operations. Many countries view Power grids 
as critical infrastructure from a legal perspective [37]. The need for higher efficiency 
has led to integrating digital technologies, resulting in renewable and sustainable 
energy sources (e.g., offshore wind farms and household‑based solar grids) supple‑
menting traditional power plants. This has made power generation more distributed 
and less predictable, complicating energy distribution and transmission organization.

9.3.1 managing power ConsumpTion and generaTion in smarT CiTies

Electrical power grids require a stable frequency range of 50–60 Hz, as alternat‑
ing current is used. This frequency stability is maintained when power consumption 
and generation are balanced. When generation exceeds consumption, the frequency 
increases, and vice versa. Ensuring this balance requires constant monitoring and 
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adjustment. In Europe, operational reserves are divided into primary, secondary, and 
minute reserves. Primary control involves continuous frequency regulation, with 
control distributed among various power plants. For instance, 3GW represents the 
primary reserve, equivalent to the power output of several nuclear power plants.

9.4 REQUIREMENTS OF AN ETHICAL FRAMEWORK

In the last decade, the rapid changes driven by the digital data revolution, predicted 
in the early 2010s, have transformed decision‑making systems worldwide. The inter‑
connected nature of global processes, real‑time information, and societal responses to 
events and crises has created a complex global network [38]. As humanity introduces the 
metaverse, the foundation of the Fifth Industrial Revolution (FIR), it is crucial to trans‑
late ethical principles into practice to avoid repeating past mistakes. This transformation 
requires a top‑down approach using diverse information combined with a bottom‑up 
system of interindividual consensus. By establishing a comprehensive framework appli‑
cable to various cities and identifying shared values, an evidence‑based consensus can 
determine which values should be universally recognized and promoted [39].

Digitalization and computers can serve as tools for moral reasoning within evi‑
dence‑based ethical frameworks. In environmentally conscious and smart cities, this 
includes collecting data for precise pollution measurements or utilizing self‑driving 
cars. Although data‑driven methods can gather objective data, they also pose ethical 
challenges that must be addressed to protect citizens’ privacy and sensitive informa‑
tion. Ethical frameworks must consider systemic and conceptual risks to address 
issues stemming from industrialization and automation. Digital technologies have 
proven to be unique tools for developing rights‑protecting processes and enabling 
swift recovery, essential for sustainable development [37,41,42]. To minimize dispar‑
ities caused by industrialization, it is necessary to address the significant challenges 
digitalization poses to individual rights, values, and cultural diversity. Complexity, 
climate change, and computational methods introduce new systemic risks, highlight‑
ing the need for a construct that fosters interindividual agreement through collective 
intelligence [43–45]. Unlike the current trajectory of digitalization, societal mod‑
els should be informed by the concept of humanity, using innovation and deductive 
processes to define principles. A virtual congress is an example of how digitally 
connected groups can use technology to reach conclusions and share them with 
other groups [40]. Reducing the risks of digitalization and enhancing social systems 
through digital technologies must be conducted within an ethical context, articu‑
lated as both actionable general standards and protective rights [46]. These princi‑
ples should encourage local actions to implement appropriate procedures in line with 
local traditions rather than accelerating the globalization of digitalization.

9.5 FEATURES OF THE ETHICAL FRAMEWORK

Ethics must integrate scientific terms and concepts to achieve the goal above.  
A common language and vocabulary are essential to incorporate traditional wis‑
dom into the global digitalization paradigm naturally. Given the current use of 
digital technology, it is crucial to reevaluate ethical concepts like truth, liberty, 
and solidarity and embed them into the digital core, design, and implementation 
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across the real world. Conversely, digitalization is driven by various fragmented 
ethical concepts [47] and technological and industrial principles [48]. AI and 
data improve decisions, streamline processes, personalize services, identify 
trends, and understand society. Several principles have been proposed to ease 
AI integration and address ethical issues. However, for sustainable industry and 
digital compact areas, universal moral standards found in transcendental eth‑
ics [49] must be prioritized. Understanding technology’s catalytic or hindering 
roles is vital to prevent the misuse or underuse of digital technologies [50]. 
Thus, a moral framework based on new governance principles is necessary [51].

While there is a trend toward ethical standards in AI and digitalization, a more 
comprehensive view of humans and sociotechnological models from a moral 
perspective is needed. Various strategies have been proposed, such as human 
rights‑based digitalization or systematically incorporating diverse ethical frame‑
works [43]. These strategies rely on consensus but do not ensure that actual ini‑
tiatives and actions will lead to a better and more ecological society. A universal 
human perspective is required to understand the agreement. Current initiatives in 
digital governance, such as AI audits, trustworthy AI, machine behavior, assess‑
ment algorithms, and macro tech indexes, can be supported by this vision. The 
Sustainable Development Goals (SDGs) are a step in the right direction toward 
achieving such a vision. Still, their implementation and the creation of structures 
for future ethical governance are hindered by the lack of a long‑term human vision 
and non‑ethically motivated crisis responses [51].

All SDGs, including SDG‑11, impact people (e.g., reducing hunger and poverty 
and promoting gender equality) and suggest structural changes in social norms, 
economic relationships, and societal behavior. The relationship between SDGs and 
digitalization is complex. Digital innovation has potential in various sustainability 
growth projects [52,53].

The foundation of a comprehensive framework based on the SDGs is moral prin‑
ciples. The two main tasks for this mission are: first, recognizing the moral and ethical 
implications of actions, roadmaps, and technological advancements needed to achieve 
the SDGs, and second, employing and deriving structures from principles that provide 
reassurance and enforceable standards while portraying the future as crucial compo‑
nents of policies and governance. Lovely technology is needed to shed light on facts 
and serve as the basis for accountable management in today’s society, alongside formal 
technology‑based frameworks to address vulnerabilities and individual‑level issues.

An ethical framework should encompass how society is structured, soft regu‑
lations, new forms of governance, and the application of digital technologies to 
advance public good or build powerful private platforms. These techniques and the 
ability to receive criticism are not yet fully established. To achieve future societal 
goals, especially in city science, computational socioeconomics, and city dynamics, 
cooperative initiatives, practitioner‑ and citizen‑led educational programs, and plat‑
forms and initiatives for collective intelligence are crucial [54,55].

9.6 CYBER STRATEGIES AND PLANNING FOR APPLICATIONS

Smart cities are expected to comprise a network of connected sensors, actuator 
systems, and relays to provide efficient and reliable digital services. This intercon‑
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nectivity of various devices introduces cybersecurity vulnerabilities that need to be  
addressed [56]. Much of the data in smart cities is generated by cloud‑based IoT 
devices and IIoT, which play a crucial role in numerous applications [57]. Key 
issues include maintaining data privacy and security, protecting networks from 
cyber‑attacks, fostering an ethical and accountable data‑sharing culture, and enhanc‑
ing the usability of ML, AI, and DRL methods.

From communication, privacy, and security perspectives, intelligent city design 
should be considered. This includes addressing the challenges of integrating exist‑
ing infrastructure, sensors, and actuators. The authors proposed a DRL‑based 
strategy to protect against jamming attempts on flying UAVs. This method can be 
modeled regardless of the jammer’s location, channel type, or UAV channel model.  
The approach determines the trajectory and power transmission level based on the 
UAV’s quality. Simulation results show that this method improves the quality of ser‑
vice (quality of service) for mission‑specific UAVs.

9.7 SMART GRID OPERATION

Big data revolutionizes intelligent city operations and enhances energy consump‑
tion efficiency [58]. Smart Grids (SGs) are built on large volumes of data, IoT 
devices, and modern information and communication networks [59]. SGs receive 
heterogeneous data from various sources, which can be efficiently processed to 
inform operational and management decisions. In smart cities, big data analyt‑
ics can enhance power grids’ performance, management, and efficiency. Recent 
developments show SGs successfully utilizing big data from smart meters for 
multiple purposes, including demand response, load clustering, load assessment 
and prediction, baseline estimation, and addressing malicious data deception 
attacks [55, 60–65].

9.8  APPLICATIONS OF DRL‑BASED UAVS IN 
5G AND B5G COMMUNICATION

The increasing demand for high data efficiency, reliability, and low latency has 
driven mobile wireless communication systems toward 5G and B5G communica‑
tions. AI, ML, and DRL‑based approaches are recognized as practical tools for man‑
aging complex communication challenges involving large volumes of network data 
[66–69]. While these tactics were crucial for 5G communication, we focus on UAVs’ 
role in B5G and 5G communication, which is essential for developing smart cities 
and environmental sustainability. A novel method has been developed for analyz‑
ing and detecting cyberattacks in 5G and B5G communication networks using DRL 
techniques to examine network traffic.

Despite their promising applications, UAVs face several unresolved challenges. 
For instance, LTE cellular service is not widely available, especially in the air. LTE’s 
down‑tilted, ground‑focused BS antennas primarily serve UEs. Issues with interfer‑
ence and LoS and financial limitations make achieving ubiquitous sky coverage chal‑
lenging even with 5G and B5G connectivity.
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9.9 DRL‑BASED UAVS‑ASSISTED MMWAVE COMMUNICATION

UAV‑supported WSNs can support higher data rate transmission using mmWave 
bandwidth technology for wireless network communication. The smaller wavelength 
of the mmWave spectrum facilitates the construction of efficient short antennas on 
a single chip, creating beamforming antenna arrays suitable for UAV‑aerial‑assisted 
communication. Additionally, the directed nature of the mmWave beam reduces 
interference and enhances data security [70]. Figure 9.1 [71] illustrates an aerial UAV 
providing mmWave communication‑based network coverage and how a mmWave 
link can be disrupted by human presence. Various strategies have been developed 
to address current challenges and improve mmWave communication. The follow‑
ing sections will focus on a DRL‑based strategy for creating effective UAV‑assisted 
5GmmWaves networking.

FIGURE 9.1 Ethical framework constructed for sustainable smart cities.
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9.10 SMART CITY HEALTHCARE AND MACHINE LEARNING

Health intelligence, which refers to improved healthcare procedures, has seen broader 
use of DRL, ML, and AI techniques due to enhanced sensors, cloud computing, 
high‑performance IoT devices, and increased data rates [72–74]. Recent developments 
in healthcare research and related efforts for intelligent cities are discussed here.

A comprehensive analysis of the use of DRL, ML, and AI applications in big data 
analytics in healthcare systems highlights the benefits of these methodologies for 
complex data processing, classification, diagnosis, disease risk assessment, optimal 
therapy, and patient survival predictions. However, implementing these methodolo‑
gies presents challenges, such as precise model training, addressing genuine clinical 
concerns, physicians’ understanding of data analysis tools and data, and ethical con‑
siderations that must be appropriately managed.

Accurate information related to the field would form the basis for developing an 
efficient AI‑enabled system [72]. The authors of Fallah et al. [73] examine how AI is 
perceived for achieving drug discovery objectives, potentially transforming current 
pharmaceutical research and development. Tureczek et al. [74] discuss various poten‑
tial AI, ML, and DRL protocols that could benefit the IoT‑based healthcare market.

9.11 CONCLUSION AND FUTURE OUTREACH

This chapter examined the latest advancements in smart city research, focusing on 
various complex problems and applications developed by academic and corporate sec‑
tors. The thematic concepts of Artificial Intelligence (AI), Machine Learning (ML), 
and Deep Reinforcement Learning (DRL) techniques were briefly explored. We dis‑
cussed how these methodologies have effectively contributed to developing nearly 
optimal procedures for various applications crucial for intelligent city operations.

Our chapter covered the current use of AI, ML, and DRL in designing innovative 
governance, emphasizing the need for new policy frameworks compatible with AI 
and their applications in Smart Grids (SGs), cybersecurity, sustainable energy prac‑
tices, Intelligent Transportation Systems (ITS), and UAV‑assisted 5G and Beyond 5G 
(B5G) communication networks within intelligent city contexts.

The authors also highlighted the growing importance of these techniques in 
enhancing healthcare services within intelligent cities, including their role in effi‑
cient diagnosis and health recovery processes, addressing security concerns related 
to health‑focused IoT devices, and potentially contributing to drug discovery efforts.

In conclusion, we explored current research inquiries within intelligent cities, 
identifying potential future research domains ripe for exploration and innovation.

REFERENCES

 1. O’Dwyer, E., Pan, I., Acha, S., & Shah, N. (2019). Intelligent energy systems for sustain‑
able smart cities: Current developments, trends, and future directions. Applied Energy, 
237, 581–597.

 2. Aguilera, U., Peña, O., Belmonte, O., & López‑de‑Ipiña, D. (2017). Citizen‑centric data 
services for smarter cities. Future Generation Computer Systems, 76, 234–247.



179Legal Aspects of ML in 5G Smart City & Energy Grid Cyber-Defense

 3. Ullah, Z., Al‑Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of artifi‑
cial intelligence and machine learning in smart cities. Computer Communications, 154, 
313–323.

 4. Allam, Z., & Dhunny, Z. A. (2019). On big data, artificial intelligence, and smart cities. 
Cities, 89, 80–91.

 5. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer 
Networks, 54(15), 2787–2805.

 6. Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G., & Scorrano, F. (2014). Current 
trends in Smart City initiatives: Some stylized facts. Cities, 38, 25–36.

 7. Al‑Turjman, F. (2018). Information‑centric framework for the Internet of Things (IoT): 
Traffic modeling & optimization. Future Generation Computer Systems, 80, 63–75.

 8. Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and 
risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic 
literature chapter. Energies, 13(6), 1473.

 9. Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learn‑
ing approach for Internet of Things. Future Generation Computer Systems, 82, 761–768.

 10. Alli, A. A., & Alam, M. M. (2019). SecOFF‑FCIoT: Machine learning‑based secure 
offloading in Fog‑Cloud of Things for innovative city applications. Internet of Things, 
7, 100070.

 11. Aloqaily, M., Otoum, S., Al Ridhawi, I., & Jararweh, Y. (2019). An intrusion detection 
system for connected vehicles in smart cities. Ad Hoc Networks, 90, 101842.

 12. Luckey, D., Fritz, H., Legatiuk, D., Dragos, K., & Smarsly, K. (2021). Artificial intel‑
ligence techniques for innovative city applications. In Proceedings of the 18th 
International Conference on Computing in Civil and Building Engineering: 
ICCCBE 2020 Sao Paolo, Brazil (pp. 3–15). Springer International Publishing.

 13. Batty, M. (2018). Artificial intelligence and smart cities. Environment and Planning B: 
Urban Analytics and City Science, 45(1), 3–6.

 14. Al‑Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). 
Internet of Things: A survey on enabling technologies, protocols, and applications. 
IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.

 15. Al‑Jaroodi, J., Mohamed, N., Jawhar, I., & Lazarova‑Molnar, S. (2016, May). Software 
engineering issues for cyber‑physical systems. In 2016 IEEE International 
Conference on Smart Computing (SMARTCOMP) St. Louis, MO, USA (pp. 1–6). 
IEEE.

 16. Pallonetto, F., De Rosa, M., Milano, F., & Finn, D. P. (2019). Demand response algo‑
rithms for smart‑grid‑ready residential buildings using machine learning models. 
Applied Energy, 239, 1265–1282.

 17. Cui, P., & Umphress, D. (2020, November). Towards unsupervised introspection 
of a containerized application. In 2020, the 10th International Conference on 
Communication and Network Security Tokyo, Japan (pp. 42–51).

 18. Varshney, H., Khan, R. A., Khan, U., & Verma, R. (2021). Approaches of artificial 
intelligence and machine learning in smart cities: Critical Chapter. In IOP Conference 
Series: Materials Science and Engineering Rajpura, India (Vol. 1022, No. 1, 
p. 012019). IOP Publishing.

 19. Karbhari, V. M., & Ansari, F. (Eds.). (2009). Structural health monitoring of civil infra‑
structure systems. Elsevier.

 20. Parsons, S. (2010). Introduction to machine learning, Second Editon by EthemAlpaydin, 
MIT Press, 584 pp, ISBN 978‑0‑262‑01243‑0. The Knowledge Engineering Chapter, 
25(3), 353–353.

 21. Chaabene, W. B., Flah, M., & Nehdi, M. L. (2020). Machine learning prediction of 
mechanical properties of concrete: Critical Chapter. Construction and Building 
Materials, 260, 119889.



180 Advances in AI for Simulation and Optimization of Energy Systems

 22. Kanevski, M., Timonin, V., & Pozdnukhov, A. (2009). Machine learning for spatial 
environmental data: theory, applications, and software. EPFL Press.

 23. Kitchin, R. (2020). Urban science: prospect and critique. In K. S. Willis, & A. Aurigi 
(Eds.) The Routledge companion to smart cities (pp. 42–50). Routledge.

 24. Elwood, S., & Leszczynski, A. (2011). Privacy, reconsidered: New representations, data 
practices, and the geoweb. Geoforum, 42(1), 6–15.

 25. Martínez‑Ballesté, A., Pérez‑Martínez, P. A., & Solanas, A. (2013). The pursuit of citi‑
zens’ privacy: A privacy‑aware smart city is possible. IEEE Communications Magazine, 
51(6), 136–141.

 26. Clarke, R. (1988). Information technology and dataveillance. Communications of the 
ACM, 31(5), 498–512.

 27. Dodge, M., & Kitchin, R. (2005). Codes of life: Identification codes and the machine‑read‑
able world. Environment and Planning D: Society and Space, 23(6), 851–881.

 28. Clarke, R. (1988). Information technology and dataveillance. Communications of the 
ACM, 31(5), 498–512.

 29. Gitelman, L. (Ed.). (2013). Raw data is an oxymoron. MIT Press.
 30. Crampton, J. W. (2003). Cartographic rationality and the politics of geosurveillance and 

security. Cartography and Geographic Information Science, 30(2), 135–148.
 31. Crawford, K., & Schultz, J. (2014). Big data and due process: Toward a framework to 

redress predictive privacy harms. BCL Reviews, 55, 93.
 32. Lane, J., Stodden, V., Bender, S., & Nissenbaum, H. (Eds.). (2014). Privacy, big data, 

and the public good: frameworks for engagement. Cambridge University Press.
 33. Solove, D. J. (1880). Privacy self‑management and the consent Dilemma’ (2013). 

Harvard Law Chapter, 126, 1880.
 34. Rubinstein, I. S. (2013). Big data: The end of privacy or a new beginning? International 

Data Privacy Law, 3, 74.
 35. Tene, O., & Polonetsky, J. (2012). Big data for all: Privacy and user control in the age of 

analytics. Northwestern Journal of Technology and Intellectual Property, 11, 239.
 36. Solove, D. J. (2007). I’ve got nothing to hide and have other misunderstandings about 

privacy. San Diego Law Review, 44, 745.
 37. Falliere, N., Murchu, L. O., & Chien, E. (2011). W32. Stuxnet dossier. White Paper, 

Symantec Corp., Security Response, 5(6), 29.
 38. Amini, S., Pasqualetti, F., & Mohsenian‑Rad, H. (2016). Dynamic load altering 

attacks against power system stability: Attack models and protection schemes. IEEE 
Transactions on Smart Grid, 9(4), 2862–2872.

 39. Dabrowski, A., Ullrich, J., & Weippl, E. (2017). Grid shock: Coordinated load‑change 
attacks on power grids. In Proceedings of the 33rd Annual Computer Security 
Applications Conference (ACSAC), Orlando, FL, USA.

 40. Symantec Security Response. (2014). Dragonfly: Cyberespionage attacks against 
energy suppliers. Syngress, Elsevier, pp. 1–166.

 41. Ligh, M., Adair, S., Hartstein, B., & Richard, M. (2010). Malware analyst’s cookbook 
and DVD: Tools and techniques for fighting malicious code. Wiley Publishing.

 42. Andress, J. (2014). The basics of information security: Understanding the fundamen‑
tals of InfoSec in theory and practice. Syngress, Elsevier.

 43. Petermann, T., Bradke, H., Lüllmann, A., Poetzsch, M., & Riehm, U. (2014). What hap‑
pens during a blackout: Consequences of a prolonged and wide‑ranging power outage. 
BoD.

 44. Knight, U. G. (2001). Power systems in emergencies: From contingency planning to 
crisis management. Wiley.

 45. Bundesnetzagentur. (n.d.). Security of supply. Available: https://www.bundesnet‑
zagentur.de/EN/Areas/Energy/Companies/SecurityOfSupply/QualityOfSupply/
QualityOfSupply_node.html

https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/SecurityOfSupply/QualityOfSupply/QualityOfSupply_node.html
https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/SecurityOfSupply/QualityOfSupply/QualityOfSupply_node.html
https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/SecurityOfSupply/QualityOfSupply/QualityOfSupply_node.html


181Legal Aspects of ML in 5G Smart City & Energy Grid Cyber-Defense

 46. Kitchin, R. (2016). The ethics of smart cities and urban science. Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering 
Sciences, 374(2083), 20160115.

 47. Alvarez León, L. F. (2019). How cars became mobile spatial media: A geographical politi‑
cal economy of on‑board navigation. Mobile Media & Communication, 7(3), 362–379.

 48. Barocas, S., &Nissenbaum, H. (2014). Big data’s end runs around anonymity and con‑
sent. Privacy, Big Data, and the Public Good: Frameworks for Engagement, 1, 44–75.

 49. Foth, M. (Ed.). (2008). Handbook of research on urban informatics: The practice and 
promise of the real‑time city. IGI Global.

 50. Pastor‑Escuredo, D., Treleaven, P., & Vinuesa, R. (2022). An ethical framework for 
artificial intelligence and sustainable cities. AI, 3(4), 961–974.

 51. Verhulst, S. G., Young, A., Winowatan, M., & Zahuranec, A. J. (2019). Leveraging pri‑
vate data for the public good. Govlab.

 52. Hilbert, M. (2016). Big data for development: A chapter of promises and challenges. 
Development Policy Chapter, 34(1), 135–174.

 53. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. 
Nature Machine Intelligence, 1(9), 389–399.

 54. Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science 
and human experience. MIT Press.

 55. Pulse, U. G. (2015). We are mapping the risk‑utility landscape: Mobile data for sustain‑
able development and humanitarian action—global. Pulse Project Series no 18.

 56. Bamberger, M. (2016). Integrating big data into the monitoring and evaluation of 
development programs. United Nations Global Pulse.

 57. Escuredo, D. P., Fernández‑Aller, C., Salgado, J., Izquierdo, L., & Huerta, M. A. 
(2021). Ciudades y digitalización: Construyendodesde la ética. RevistaDiecisiete: 
InvestigaciónInterdisciplinar para losObjetivos de DesarrolloSostenible, 6(4), 201–210.

 58. Luengo‑Oroz, M. (2019). Solidarity should be a core ethical principle of AI. Nature 
Machine Intelligence, 1(11), 494–494.

 59. Nikolinakos, N.T., 2023. A European Approach to Excellence and Trust: The 2020 
White Paper on Artificial Intelligence. In EU Policy and Legal Framework for 
Artificial Intelligence, Robotics and Related Technologies‑The AI Act. Cham: Springer 
International Publishing. pp. 211–280.

 60. Kant, I. (2002). Critique of practical reason. Hackett Publishing.
 61. Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., … & Fuso 

Nerini, F. (2020). The role of artificial intelligence in achieving the sustainable develop‑
ment goals. Nature Communications, 11(1), 1–10.

 62. Pastor‑Escuredo, D., & Treleaven, P. (2021). Multiscale governance. arXiv preprint 
arXiv:2104.02752.

 63. Fernández‑Aller, C., de Velasco, A. F., Manjarrés, Á., Pastor‑Escuredo, D., Pickin, S., 
Criado, J. S., & Ausín, T. (2021). An inclusive and sustainable artificial intelligence 
strategy for Europe based on human rights. IEEE Technology and Society Magazine, 
40(1), 46–54.

 64. Bamberger, M. (2016). Integrating big data into the monitoring and evaluation of 
development programs. United Nations Global Pulse.

 65. Pastor‑Escuredo, D., & Frias‑Martinez, E. (2020). Flow descriptors of human mobility 
networks. arXiv preprint arXiv:2003.07279.

 66. Rawat, D. B., & Ghafoor, K. Z. (2018). Smart cities cybersecurity and privacy. Elsevier
 67. Sengupta, N. (2018). Designing cyber security system for smart cities. In Smart Cities 

Symposium 2018, Bahrain.
 68. Bhattarai, B. P., Paudyal, S., Luo, Y., Mohanpurkar, M., Cheung, K., Tonkoski, R., 

Hovsapian, R., … & Zhang, X. (2019). Big data analytics in smart grids: state‑of‑the‑art, 
challenges, opportunities, and future directions. IET Smart Grid, 2(2), 141–154.



182 Advances in AI for Simulation and Optimization of Energy Systems

 69. Shahinzadeh, H., Moradi, J., Gharehpetian, G. B., Nafisi, H., & Abedi, M. (2019). IoT 
architecture for smart grids. In 2019 International Conference on Protection and 
Automation of Power System, IPAPS, Tehran, Iran (pp. 22–30). IEEE.

 70. Karimipour, H., Geris, S., Dehghantanha, A., & Leung, H. (2019). Intelligent anomaly 
detection for large‑scale smart grids. In 2019 IEEE Canadian Conference of Electrical 
and Computer Engineering, CCECE, Edmonton, AB, Canada (pp. 1–4). IEEE.

 71. Du, D., Chen, R., Li, X., Wu, L., Zhou, P., & Fei, M. (2019). Malicious data deception 
attacks against power systems: A new case and its detection method. Transactions of 
the Institute of Measurement and Control, 41(6), 1590–1599.

 72. Wang, Y., Chen, Q., Hong, T., & Kang, C. (2018). Chapter of smart meter data analytics: 
Applications, methodologies, and challenges. IEEE Transactions on Smart Grid, 10(3), 
3125–3148.

 73. Fallah, S. N., Deo, R. C., Shojafar, M., Conti, M., & Shamshirband, S. (2018). Computational 
intelligence approaches for energy load forecasting in intelligent energy management grids: 
State of the art, future challenges, and research directions. Energies, 11(3), 596.

 74. Tureczek, A., Nielsen, P., & Madsen, H. (2018). Electricity consumption clustering 
using smart meter data. Energies, 11(4), 859.



183

Index

academia 18, 147
agriculture 128–144
algae 83–108
artificial intelligence

algorithms 1, 3–5, 7, 12, 28, 31, 45, 56, 
109–182

applications 1–182
artificial neural network 46, 156, 158

batteries 30, 37, 38, 40, 42, 45, 55
biofuels 84–108
black widow optimizer 109–127

calibration 109
classification 2
clustering 5
customer segmentation 9
cybersecurity 18–19, 30, 78, 80,  

170–181

data analysis 146
demand

forecasting 29
response 13, 26, 27, 71–72, 176

energy
management 13, 30, 42, 49, 71
renewable 37–59, 83–145
sources 1–182
transition 128

frequency control 109–127

gene expression analysis 10
grid

cyber‑defense 170–182
stability 75

hierarchical
clustering 7
robust optimization 146

inertia constant 116
interconnected 109–127

Jacobian matrix 77

kernel functions 4, 159
K‑means clustering 7

load
forecasting 74
frequency control 109–127

machine learning 1–17, 146–182
meta‑heuristic 109
model(s) 1–17

neural network 46, 156, 158
normalized root mean square 161

optimization 1–182

PID controller 110–127
power systems 18, 109
renewable energy 37–59, 83–145
root mean square 161

solar energy 37, 39, 47, 50
smart

city 170
grids 13, 21, 47, 71, 176
sensors 65, 67–68

supervised learning 2, 23

topic modeling 10

unmanned aerial vehicles 171
unsupervised learning 5

vehicles 30, 171

wind energy 13, 38, 45, 50, 108–127



https://taylorandfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	About the Editors
	List of Contributors
	Chapter 1 Fundamentals of Machine Learning Models
	Chapter 2 Applications of Artificial Intelligence Techniques in Power Systems
	Chapter 3 Applications of Artificial Intelligence Techniques in Hybrid Renewable Energy Systems
	Chapter 4 Applications of Artificial Intelligence Techniques in Smart Grid Systems
	Chapter 5 Algae-Based Carbon Sequestration: Optimizing Renewable Energy and Climate Strategy
	Chapter 6 The Use of BWO for Calibration of LFC of a Multi-Area Power System with Real-Life Wind Energy Penetration
	Chapter 7 Advanced Biofuel Generations: Optimizing Sustainable Agriculture and Renewable Energy Transition
	Chapter 8 Hierarchical Robust Optimisation of Chemical Processes and Energy Systems through In-Depth Industrial Data Analysis and Machine Learning
	Chapter 9 Ethical and Legal Aspects of Machine Learning in 5G-Enabled Smart City and Energy Grid Cyber-Defense
	Index

