
	Quantum
Computing

	Software
Development

	Scientific
Computing

	History

AUGUST 2024 www.computer.org

This fully open access journal is

now soliciting papers for review.

IEEE Transactions on Privacy serves

as a rapid publication forum for

groundbreaking articles in the realm

of privacy and data protection. Be

one of the first to submit a paper

and benefit from publishing with the

IEEE Computer Society! With over 5

million unique monthly visitors to

the IEEE Xplore® and Computer

Society digital libraries, your research

can benefit from broad distribution

to readers in your field.

Get Published in the New
IEEE Transactions on Privacy

Submit a Paper Today!
Visit computer.org/tp to learn more.

2469-7087/24 © 2024 IEEE	 Published by the IEEE Computer Society	 August 2024� 1

Circulation: ComputingEdge (ISSN 2469-7087) is published monthly by the IEEE Computer Society. IEEE Headquarters, Three Park Avenue, 17th
Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720; voice +1 714 821 8380;
fax +1 714 821 4010; IEEE Computer Society Headquarters, 2001 L Street NW, Suite 700, Washington, DC 20036.

Postmaster: Send address changes to ComputingEdge-IEEE Membership Processing Dept., 445 Hoes Lane, Piscataway, NJ 08855. Periodicals Postage
Paid at New York, New York, and at additional mailing offices. Printed in USA.

Editorial: Unless otherwise stated, bylined articles, as well as product and service descriptions, reflect the author’s or firm’s opinion. Inclusion in
ComputingEdge does not necessarily constitute endorsement by the IEEE or the Computer Society. All submissions are subject to editing for style,
clarity, and space.

Reuse Rights and Reprint Permissions: Educational or personal use of this material is permitted without fee, provided such use: 1) is not made for
profit; 2) includes this notice and a full citation to the original work on the first page of the copy; and 3) does not imply IEEE endorsement of any third-
party products or services. Authors and their companies are permitted to post the accepted version of IEEE-copyrighted material on their own Web
servers without permission, provided that the IEEE copyright notice and a full citation to the original work appear on the first screen of the posted copy.
An accepted manuscript is a version which has been revised by the author to incorporate review suggestions, but not the published version with copy-
editing, proofreading, and formatting added by IEEE. For more information, please go to: http://www.ieee.org/publications_standards/publications
/rights/paperversionpolicy.html. Permission to reprint/republish this material for commercial, advertising, or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane,
Piscataway, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2024 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy for private use of patrons,
provided the per-copy fee indicated in the code at the bottom of the first page is paid through the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923.

Unsubscribe: If you no longer wish to receive this ComputingEdge mailing, please email IEEE Computer Society Customer Service at help@
computer.org and type “unsubscribe ComputingEdge” in your subject line.

IEEE prohibits discrimination, harassment, and bullying. For more information, visit www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

IEEE COMPUTER SOCIETY computer.org

IEEE Computer Society Magazine Editors in Chief

Computer
Jeff Voas, NIST

Computing in Science
& Engineering
İlkay Altintaş, University
of California, San Diego
(Interim EIC)

IEEE Annals of the History
of Computing
Troy Astarte,
Swansea University

IEEE Computer Graphics
and Applications
André Stork, Fraunhofer IGD
and TU Darmstadt

IEEE Intelligent Systems
San Murugesan, Western
Sydney University

IEEE Internet Computing
Weisong Shi, University of
Delaware

IEEE Micro
Hsien-Hsin Sean Lee,
Intel Corporation

IEEE MultiMedia
Balakrishnan Prabhakaran,
University of Texas at Dallas

IEEE Pervasive Computing
Fahim Kawsar, Nokia Bell Labs
and University of Glasgow

IEEE Security & Privacy
Sean Peisert, Lawrence
Berkeley National Laboratory
and University of California,
Davis

IEEE Software
Sigrid Eldh, Ericsson,
Mälardalen University,
Sweden; Carleton
University, Canada

IT Professional
Charalampos Z.
Patrikakis, University of
West Attica

STAFF

Editor
Lucy Holden

Production & Design Artist
Carmen Flores-Garvey

Periodicals Portfolio Senior Managers
Carrie Clark and Kimberly Sperka

Periodicals Operations Project Specialists
Priscilla An and Christine Shaughnessy

Director, Periodicals and Special Projects
Robin Baldwin

Senior Advertising Coordinator
Debbie Sims

14
Quantum

Computing and
High-Performance

Computing:
Compilation Stack

Similarities

38
Democratizing

Science Through
Advanced

Cyberinfrastructure

44
The Byzantine
Empire and Its

Generals: An
Ancient Empire

Back to Life in
Computer Security

AUGUST 2024 • VOLUME 10 • NUMBER 8

Quantum Computing

 8	 Monetizing Quantum Computing
NIR KSHETRI

14	 Quantum Computing and High-Performance Computing:
Compilation Stack Similarities

SONIA LOPEZ ALARCON AND ANNE C. ELSTER

Software Development

20	 Accelerating HPC With Quantum Computing:
It Is a Software Challenge Too

MARTIN SCHULZ, MARTIN RUEFENACHT, DIETER KRANZLMÜLLER, AND
LAURA BRANDON SCHULZ

26	 Low Code for Smart Software Development
JORDI CABOT AND ROBERT CLARISÓ

Scientific Computing

32	 On the Role of Computer Languages in Scientific
Computing

DORIAN LEROY, JUNE SALLOU, JOHANN BOURCIER, AND BENOIT
COMBEMALE

38	 Democratizing Science Through Advanced
Cyberinfrastructure

MANISH PARASHAR

History

44	 The Byzantine Empire and Its Generals: An Ancient
Empire Back to Life in Computer Security

PEDRO REVIRIEGO, ELENA MERINO-GÓMEZ, AND FABRIZIO LOMBARDI

52	 Mathematics, Logic, and Engineering in Computing
PETER J. DENNING AND MATTI TEDRE

Departments
4	 Magazine Roundup

 7	 Editor’s Note: Learning from the Past to Accelerate the Future

 63 Conference Calendar

Subscribe to ComputingEdge for free at
www.computer.org/computingedge

4	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-

ing from software design and computer graphics to Internet computing and security, from scientific appli-

cations and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Venture Building in the
Digital Era: Unraveling the
Past, Present, and Future of
Corporate Innovation

This May 2024 Computer article

examines the evolution of Venture

Building and its symbiotic relation-

ship with digital disruption. The

author highlights successful mod-

els, offering insights into corpo-

rate strategies for navigating dig-

ital transformation and fostering

entrepreneurial cultures, while

anticipating future trends and

stressing the importance of fur-

ther research.

Tensorlab+: A Case Study
on Reproducibility in
Tensor Research

Tensor methods emerge as an

important class of basic tech-

niques, generalizing matrix meth-

ods to multiway data and models.

The authors of this September/

October 2023 Computing in Sci-

ence & Engineering article have

recently released Tensorlab+,

which is a downloadable archive

of code and data that allows peers

to reproduce the experiments

reported in their publications on

tensor decompositions and appli-

cations. They briefly discuss the

basic tensor tools and introduce

the contents of Tensorlab+. The

authors elaborate on the steps

that were taken to ensure the

reproducibility of the experiments

and the quality of the code.

Lady Lovelace’s Objection:
The Turing–Hartree Disputes
Over the Meaning of Digital
Computers, 1946–1951

Can machines think? Or can they

do “whatever we know how to

order” them to perform? Should

machines be liberated from slav-

ery and given “fair play” to “com-

pete with men in all purely intel-

lectual fields”? Or should this be

associated with a fashion that

decries “human reason” and a path

that “leads straight to Nazism”?

In the postwar years, these ques-

tions were debated by Alan Turing

and Douglas Hartree, who differed

in their interpretations of the digi-

tal computer as a new piece of sci-

ence and technology. This Janu-

ary–March 2024 IEEE Annals of the

History of Computing article exam-

ines the Turing–Hartree disputes

and draws a parallel between their

positions and their perspectives

on postwar Britain.

Integrated Augmented and
Virtual Reality Technologies
for Realistic Fire Drill Training

The authors of this March/April

2024 IEEE Computer Graphics

and Applications article propose

a novel fire drill training system

designed specifically to integrate

augmented reality (AR) and vir-

tual reality (VR) technologies

into a single head-mounted dis-

play device to provide realistic

as well as safe and diverse expe-

riences. Applying hybrid AR/VR

technologies in fire drill training

may be beneficial because they

can overcome limitations such

as space–time constraints, risk

factors, training costs, and diffi-

culties in real environments. The

proposed system can improve

training effectiveness by trans-

forming arbitrary real spaces into

real-time, realistic virtual fire sit-

uations, and by interacting with

tangible training props.

www.computer.org/computingedge� 5

From Electroencephalogram
Data to Brain Networks:
Graph-Learning-Based Brain
Disease Diagnosis

Many studies exploit brains from

the perspective of graph learn-

ing to diagnose the nerve diseases

of brains. However, many of these

algorithms are unable to automati-

cally construct brain function topol-

ogy based on electroencephalo-

gram (EEG) and fail to capture the

global features of multichannel EEG

signals for whole-graph embed-

ding. To address these challenging

issues, the authors of this March/

April 2024 IEEE Intelligent Systems

article propose an attention-based

whole-graph learning model for the

diagnosis of brain diseases, namely,

MAINS, which can adaptively con-

struct brain functional topology

from EEG signals and effectively

embed multiple node features

and the global structural features

of brain networks into the whole-

graph representations.

Open Experimental
Measurements of
Sub-6GHz Reconfigurable
Intelligent Surfaces

In this March/April 2024 IEEE Inter-

net Computing article, the authors

present two datasets that they

make publicly available for research.

The data is collected in a testbed

comprised of a custom-made recon-

figurable intelligent surface (RIS)

prototype and two regular orthog-

onal frequency-division multiplex-

ing (OFDM) transceivers within an

anechoic chamber. The authors dis-

cuss the details of the testbed and

equipment used, including insights

about the design and implementa-

tion of their RIS prototype. They fur-

ther present the methodology they

employ to gather measurement

samples, which consists of letting

the RIS electronically steer the sig-

nal reflections from an OFDM trans-

mitter toward a specific location.

Enabling Artificial
Intelligence Supercomputers
With Domain-
Specific Networks

This article, featured in the March/

April 2024 issue of IEEE Micro,

argues how domain-specific net-

works are a critical enabling tech-

nology necessary for AI supercom-

puters. In particular, the authors

advocate for flexible, low-latency

interconnects capable of deliver-

ing high throughput across massive

scales with tens of thousands of

endpoints. Additionally, they stress

the importance of reliability and

resilience in handling long-duration

training workloads and the demand-

ing inference needs of domain-spe-

cific workloads.

Exploiting Illumination
Knowledge in the Real
World for Low-Light
Image Enhancement

To bridge the gap and benchmark

outdoor LLIE tasks, the authors of

this January–March 2024 IEEE Mul-

tiMedia article propose the first

outdoor, real-world, 2-D, low-light

dataset, dubbed RE2L. Based on

RE2L, they propose a semisuper-

vised LLIE framework to further

exploit the illumination knowledge

from both the signal fidelity con-

straint and characteristics of nor-

mal-light natural images. Experi-

mental results demonstrate that

using RE2L for training deep LLIE

schemes can improve the model

effectiveness, both quantitatively

and visually, especially on semisu-

pervised LLIE.

Unifying Threats Against
Information Integrity in
Participatory Crowd Sensing

This October–December 2023 IEEE

Pervasive Computing article pro-

poses a unified threat landscape

6	 ComputingEdge� August 2024

MAGAZINE ROUNDUP

for participatory crowd sens-

ing (P-CS) systems. Specifically,

it focuses on attacks from orga-

nized malicious actors that may

use the knowledge of P-CS plat-

form’s operations and exploit algo-

rithmic weaknesses in AI-based

methods of event trust, user rep-

utation, decision-making, or rec-

ommendation models deployed

to preserve information integrity

in P-CS. The authors emphasize

on intent driven malicious behav-

iors by advanced adversaries and

how attacks are crafted to achieve

those attack impacts.

Unleashing Malware Analysis
and Understanding with
Generative AI

Dissecting low-level malware behav-

iors into human-readable reports,

such as cyber threat intelligence, is

time-consuming and requires exper-

tise in systems and cybersecurity.

This article, featured in the May/

June 2024 issue of IEEE Security &

Privacy, combines dynamic analysis

and artificial intelligence-generative

transformation for malware report

generation, providing detailed tech-

nical insights and articulating mal-

ware intentions.

Innovating Industry
with Research: eknows
and Sysparency

The authors of this article in the

May/June 2024 issue of IEEE Soft-

ware present the multi-language

software platform eknows for

building reverse engineering tools

and documentation generators as

a concrete example of how to suc-

cessfully translate research on

software analysis into innovative

products and services. Platform

development includes domain-

specific requirements and an

architecture supporting reuse of

components.

Conceptual Framework for
Software Change

Ever since the invention of soft-

ware, change has been a desta-

bilizing factor. Although many

new software changes are being

applied, the terminologies used

to describe them are often incon-

sistent. This restricts practitio-

ners to designing and evaluating

their changes. This March/April

2024 IT Professional article aims

to develop a conceptual frame-

work of software change based

on six main dimensions regard-

ing the source, essence, and con-

sequences of software change. To

evaluate the proposed framework,

benchmarking is applied against

selected 11 previous studies.

Join the IEEE
Computer Society
computer.org/join

Create a personalized
experience

Get geo and
interest-based
recommendations

Schedule, manage,
or join meetups
virtually

Read and download
your IEEE magazines

Stay up-to-date
with the latest news

Locate IEEE members
by location, interests,
and affiliations

Stay connected by
discovering the valuable
tools and resources of IEEE:

2469-7087/24 © 2024 IEEE	 Published by the IEEE Computer Society	 August 2024� 7

Editor’s Note

Learning from the Past to
Accelerate the Future

H uman advancement can

be summarized as a series

of failures and successes. Peo-

ple test new approaches, fail, and

learn from their failures. Quan-

tum computing is a prime exam-

ple of combining failures and

learning to create something new

and extraordinary. This issue of

ComputingEdge explores how

to leverage quantum computing

to accelerate systems. The arti-

cles emphasize the importance of

learning from past approaches to

enhance future efforts, from apply-

ing lessons from ancient empires

to using AI in software develop-

ment. The issue also discusses the

importance of improving scientific

computing accessibility.

To realize the potential of

quantum computing, engineers

must determine how to integrate

it with existing systems. In “Mone-

tizing Quantum Computing,” from

IT Professional, the author maps

the quantum computing land-

scape, exploring potential growth,

investment, and value genera-

tion. The Computing in Science

& Engineering article, “Quantum

Computing and High-Performance

Computing: Compilation Stack

Similarities,” illustrates how quan-

tum computing can accelerate

HPC applications using a software

stack for integration.

AI and quantum comput-

ing can advance HPC and soft-

ware development—with the right

approach. The authors of “Accel-

erating HPC With Quantum Com-

puting: It Is a Software Challenge

Too,” from Computing in Science &

Engineering, describe their vision

for an integrated ecosystem that

combines HPC and quantum soft-

ware stacks into one system, sim-

plifying user experience. The arti-

cle, “Low Code for Smart Software

Development,” from IEEE Software,

outlines the promise and perils of

using AI enhanced low-code envi-

ronments to quickly deliver soft-

ware solutions.

To make scientific comput-

ing more accessible, engineers

must break down barriers between

researchers and intricate science

software. In the IT Professional

article, “On the Role of Computer

Languages in Scientific Comput-

ing,” the authors dissect the com-

plexity and roles of computer lan-

guages in scientific computing and

offer guidelines for choosing the

right language. Computer’s article,

“Democratizing Science Through

Advanced Cyberinfrastructure,”

identifies barriers to accessing

cyberinfrastructure in scientific

research and how to address them.

Learning from historical mis-

takes, successes, and discover-

ies is an important step in future

advancement. The authors of Com-

puter article, “Byzantine Empire and

Its Generals: An Ancient Empire

Back to Life in Computer Security”

revisit lessons from the Byzantine

Empire’s reign and apply them to

today’s problem of software sys-

tems security. In “Mathematics,

Logic, and Engineering in Comput-

ing,” from IEEE Annals of the His-

tory of Computing, the authors

trace the origins of computing

back to early approaches to logic,

mathematics, and engineering in

ancient civilizations.

8	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

EDITOR: Nir Kshetri, nbkshetr@uncg.edu

DEPARTMENT: IT ECONOMICS

Monetizing Quantum Computing
Nir Kshetri , University of North Carolina at Greensboro

Quantum computers demonstrate significant speed advantages over classical
computers in specific tasks. This article explores the current quantum computing
landscape, encompassing investment, market growth, and the potential value
generation across key industries.

The next frontier in computing, quantum com-
puters, exhibit remarkable speed advantages in
performing specific tasks when compared to

classical computers. In October 2023, China’s national
newspaper Global Times reported that Jiuzhang 3.0
quantum computer developed by University of Science
and Technology of China can solve an extremely diffi-
cult mathematical problem known as Gaussian boson
sampling 10 quadrillion (1015) times faster than the
world's fastest supercomputer “Frontier” (https://www.
globaltimes.cn/page/202310/1299679.shtml).

Increasing the computational capacity of a classi-
cal computer necessitates roughly doubling the num-
ber of transistors addressing a problem. In contrast, a
quantum computer's computational capacity has the
potential to increase twofold with the addition of a sin-
gle quantum bit (qubit), the fundamental unit of quan-
tum information, akin to the classic binary bit. (https://
tinyurl.com/yc3uvdze). It is obvious that quantum com-
puters’ remarkable speed in handling specific tasks is
likely to create significant economic and social value.1

Quantum technologies are thus viewed as a potential
solution to address global challenges such as climate
change and accelerated drug delivery.2

The technology's value creation potential is signifi-
cantly heightened when integrated with other techno-
logical advancements like machine learning and edge
computing. Machine learning typically involves numer-
ous parameters and extensive training data, but
quantum machine learning can achieve comparable
accuracy with fewer parameters. In a preliminary
study conducted with Hyundai, researchers developed
quantum machine learning algorithms capable of
distinguishing between ten road signs in controlled

laboratory experiments. Their quantummodel employed
a mere 60 parameters to achieve the same accuracy as
a classical neural network using 59,000 parameters. The
quantum algorithms also demand significantly fewer
training iterations.3 Likewise, a paradigm shift in how
data is managed and utilized can happen if quantum
computing and edge computing are combined. The
colossal volume of raw data gathered by sensors is
beyond the capabilities of today's classical computing
for real-time analysis, but quantum computing can
make it feasible (https://www.ibm.com/downloads/cas/
KOQZNQPL).

In this article, we discuss the current quantum
computing landscape including investment andmarket
growth in this industry. We also delve into quantum
computing's capacity to generate value across key
industries.

THE QUANTUM COMPUTING
LANDSCAPE: INVESTMENT AND
MARKET GROWTH
Current State and Ongoing
Developments
Current quantum computing technologies are
described to be in the noisy intermediate-scale quan-
tum (NISQ) era, which are characterized by quantum
devices with few useful qubits and high error rates
(https://thequantuminsider.com/2023/03/13/what-is-
nisq-quantum-computing/). Practical computations
are only achievable on quantum machines with a sig-
nificant number of qubits, a technology not yet
accessible due to the complex hardware develop-
ment. Data storage in quantum computers involves
qubits, created using diverse technologies such as
superconducting rings, optical traps, and light pho-
tons. Cooling requirements range from near absolute
zero to room temperature.3

1520-9202 © 2024 IEEE
Digital Object Identifier 10.1109/MITP.2024.3356111
Date of current version 4 March 2024.

10 IT Professional Published by the IEEE Computer Society January/February 2024

EDITOR: Nir Kshetri, nbkshetr@uncg.edu

DEPARTMENT: IT ECONOMICS

Monetizing Quantum Computing
Nir Kshetri , University of North Carolina at Greensboro

Quantum computers demonstrate significant speed advantages over classical
computers in specific tasks. This article explores the current quantum computing
landscape, encompassing investment, market growth, and the potential value
generation across key industries.

This article originally
appeared in

vol. 26, no. 1, 2024

www.computer.org/computingedge� 9

IT ECONOMICS

Researchers have provided mathematical evidence
demonstrating the considerable advantages of quan-
tum computers over current classical counterparts.
These advantages are most pronounced in simulating
quantum physics and chemistry and in breaking
public-key cryptosystems crucial for securing sensitive
communications, including online financial transac-
tions. Other contemplated use cases are generally
either marginal, speculative, or encompass elements of
both3 and remain in the realm of experimentation and
hypothesis.4

Despite restricted qubit quantities and elevated
error rates, NISQ computers have the capability to exe-
cute valuable computations (https://tinyurl.com/
3s7e2uwe). There is a focus among developers and
users on the realistic possibility of achieving a near-
term quantum advantage using current NISQ.5 In the
current prebreakthrough era, quantum applications
often employ hybrid algorithms, blending classical and
quantum computing capabilities, with classical pro-
cessors handling part of the computational workflow.
An alternative approach includes classical algorithms
simulating a quantum system's behavior on a classical
processor, referred to as quantum-inspired algorithms.6

In certain use cases, quantum models are already
exhibiting an edge over purely classical methods, albeit
not a significant one.6 Weather forecasts, relying on
simulations using current data, are known for their
errors. Achieving more accuracy requires assessing
numerous parameters and their interactions, a task
exceeding standard computers' capacity. Quantum
computers, with their ability to handle multiple param-
eters, hold promise for transformation. BASF, a German
chemical company, is incorporating Paris-based quan-
tum computing startup PASQAL's technology into
weather modeling to seek quantum advantages over
classical methods.6

Major players in the technology sector continue to
advance their quantum capabilities. For instance, tech-
nology giants such as Alibaba, Amazon, Google, IBM,
and Microsoft have already introduced commercial
quantum computing cloud services to the market,
known as quantum computing as a service (QCaaS).4

As early as in 2016, IBM provided access to a 5-qubit
quantum computer for researchers through the cloud
(https://www.protocol.com/manuals/quantum-comput-
ing/noisy-intermediate-scale-nisq). Some are providing
industry-specific solutions. Microsoft's Azure Quantum
Elements, unveiled in June 2023, is a new computing
service aimed at facilitating the R&D of novel materials
by chemical companies. Leveraging a blend of existing
quantum computers, artificial intelligence, and con-
ventional high-performance computing systems, this

service allows chemical firms to simulate extensive per-
mutations of atom combinations. It entails utilizing
computers to virtually explore potential new materials
and subsequently predict how these materials would
interact with the physical world (https://www.reuters.
com/technology/microsoft-says-new-computing-service-
chemicals-can-slash-rd-time-2023-06-21/).

The Quantum Computing Market
The market size of quantum computing is currently
small but experiencing rapid growth. According to the
International Data Corporation (IDC), the global quan-
tum computing market size was $1.1 billion in 2022
(https://tinyurl.com/4yuee9ws). IDC expects the global
quantum computing market to reach $7.6 billion by
20275 and $50.22 billion by 2035 (https://tinyurl.com/
4yuee9ws).

Currently, the cost of a quantum computer is
quite high, ranging from several million to tens of mil-
lions of dollars (https://ts2.space/en/how-much-
does-1-quantum-computer-cost/). Thus, in the near
term, only a few firms will develop or possess quan-
tum computers. Instead, as noted previously, a cloud-
computing-style model is emerging, where companies
lease access to quantum machines from specialized
providers, akin to the way businesses currently pro-
cure computing resources from AWS, Google Cloud,
and Microsoft Azure.7 QCaaS allows businesses to
harness quantum computing capabilities within bud-
get constraints (https://techwireasia.com/2023/03/
equinix-to-offer-quantum-computing-as-a-service/). As
noted previously, major technology companies have
introduced QCaaS.

While actual commercial use of quantum comput-
ing has not yet started, research and analyst firm
Enterprise Strategy Group’s 2023 Technology Spending
Intentions Survey found that a pilot or testing phase to
assess practical usefulness of quantum computing
was underway for about 28% of enterprises (Figure 1).
The survey also found that more than half of the firms
had not yet piloted or tested but had researched or
shown interest in this technology.

Investment in the Quantum Computing
Industry
The investment in the quantum computing industry is
witnessing a rapid increase. As reported by data analyt-
ics and consulting company GlobalData, venture capi-
tal funding for quantum computing startup reached
$1.62 billion in 2022 (https://www.investmentmonitor.ai/
news/commercial-scale-quantum-computing-unlikely-
before-2027/?cf-view). The collective annual investment

IT ECONOMICS

January/February 2024 IT Professional 11

EDITOR: Nir Kshetri, nbkshetr@uncg.edu

DEPARTMENT: IT ECONOMICS

Monetizing Quantum Computing
Nir Kshetri , University of North Carolina at Greensboro

Quantum computers demonstrate significant speed advantages over classical
computers in specific tasks. This article explores the current quantum computing
landscape, encompassing investment, market growth, and the potential value
generation across key industries.

The next frontier in computing, quantum com-
puters, exhibit remarkable speed advantages in
performing specific tasks when compared to

classical computers. In October 2023, China’s national
newspaper Global Times reported that Jiuzhang 3.0
quantum computer developed by University of Science
and Technology of China can solve an extremely diffi-
cult mathematical problem known as Gaussian boson
sampling 10 quadrillion (1015) times faster than the
world's fastest supercomputer “Frontier” (https://www.
globaltimes.cn/page/202310/1299679.shtml).

Increasing the computational capacity of a classi-
cal computer necessitates roughly doubling the num-
ber of transistors addressing a problem. In contrast, a
quantum computer's computational capacity has the
potential to increase twofold with the addition of a sin-
gle quantum bit (qubit), the fundamental unit of quan-
tum information, akin to the classic binary bit. (https://
tinyurl.com/yc3uvdze). It is obvious that quantum com-
puters’ remarkable speed in handling specific tasks is
likely to create significant economic and social value.1

Quantum technologies are thus viewed as a potential
solution to address global challenges such as climate
change and accelerated drug delivery.2

The technology's value creation potential is signifi-
cantly heightened when integrated with other techno-
logical advancements like machine learning and edge
computing. Machine learning typically involves numer-
ous parameters and extensive training data, but
quantum machine learning can achieve comparable
accuracy with fewer parameters. In a preliminary
study conducted with Hyundai, researchers developed
quantum machine learning algorithms capable of
distinguishing between ten road signs in controlled

laboratory experiments. Their quantummodel employed
a mere 60 parameters to achieve the same accuracy as
a classical neural network using 59,000 parameters. The
quantum algorithms also demand significantly fewer
training iterations.3 Likewise, a paradigm shift in how
data is managed and utilized can happen if quantum
computing and edge computing are combined. The
colossal volume of raw data gathered by sensors is
beyond the capabilities of today's classical computing
for real-time analysis, but quantum computing can
make it feasible (https://www.ibm.com/downloads/cas/
KOQZNQPL).

In this article, we discuss the current quantum
computing landscape including investment andmarket
growth in this industry. We also delve into quantum
computing's capacity to generate value across key
industries.

THE QUANTUM COMPUTING
LANDSCAPE: INVESTMENT AND
MARKET GROWTH
Current State and Ongoing
Developments
Current quantum computing technologies are
described to be in the noisy intermediate-scale quan-
tum (NISQ) era, which are characterized by quantum
devices with few useful qubits and high error rates
(https://thequantuminsider.com/2023/03/13/what-is-
nisq-quantum-computing/). Practical computations
are only achievable on quantum machines with a sig-
nificant number of qubits, a technology not yet
accessible due to the complex hardware develop-
ment. Data storage in quantum computers involves
qubits, created using diverse technologies such as
superconducting rings, optical traps, and light pho-
tons. Cooling requirements range from near absolute
zero to room temperature.3

1520-9202 © 2024 IEEE
Digital Object Identifier 10.1109/MITP.2024.3356111
Date of current version 4 March 2024.

10 IT Professional Published by the IEEE Computer Society January/February 2024

10	 ComputingEdge� August 2024

IT ECONOMICS

in quantum startups that year reached a record high of
$2.35 billion (https://tinyurl.com/aem5ctc5). IDC projects
that investments in the quantum computing market will
reach approximately $16.4 billion by 2027.5

It is worth highlighting the increasing enthusiasm
for quantum computing among government agencies
worldwide (Figure 2). As of August 2023, 14 entities
(comprising 13 countries and the European Union) had
unveiled long-term quantum initiatives expected to
fund quantum computing research with billions of
dollars.5

Such funds are also being used to facilitate collabo-
rative research in quantum computing. For instance, in
April 2023, the Japanese government announced a
plan to invest $31.7 million in a cloud-based quantum
computing expansion project led by the University of
Tokyo. Over the next five years, the Ministry of Econ-
omy, Trade, and Industry would provide funding for this
initiative. As of that time, the University used a
27-qubit IBM quantum computer. The government

allocated funds to enhance accessibility to the 127-
qubit IBM model in the cloud at the University of
Tokyo.8 The project is anticipated to facilitate the
utilization of quantum computing by corporations and
academic institutions, fostering research collabo-
rations (https://www.u-tokyo.ac.jp/focus/en/features/
z1304_00193.html).

QUANTUM COMPUTING’S VALUE
CREATION POTENTIAL ACROSS
KEY INDUSTRIES

In this section, we explore potential applications within
select industries that research indicates could experi-
ence significant short-term advantages from quantum
technology: pharmaceuticals, chemicals, automotive,
and finance. When considered collectively and conser-
vatively, these sectors could potentially unlock a value
ranging from $300 billion to $700 billion.4 Key insights
and predictions regarding the value-generating poten-
tial of quantum computing in these industries are pre-
sented in Table 1.

Pharmaceuticals and Health Care
The quantum computing in health-care market is esti-
mated to reach $1 billion by 2030.9 With the potential
to cut $35 billion in annual R&D expenses for drug dis-
covery and increase $920 billion in annual branded
pharmaceutical revenues, quantum computing is
anticipated to generate between $35 billion and $75 bil-
lion in annual operating income for end users.10

Prominent market players are adopting strategic
partnerships to address evolving end-user require-
ments in this sector. In April 2023, IBM joined forces
with Moderna, Inc. to utilize quantum computing in
mRNA research, aiding the exploration of novel thera-
peutics.9 Likewise, Google, in collaboration with Bayer
AG, is harnessing quantum computing for early-stage
drug discovery, fostering innovation in pharmaceutical
development.9

Quantum computing has the potential to transform
many domains of health care and pharmaceutical
industries. In drug design, the process revolves around
pinpointing the precise drug target, such as a protein,
DNA, or RNA associated with a specific disease, and
creating a molecule for safe and effective modification.
Despite the abundance of potential targets and mole-
cules, the current approach heavily relies on trial and
error, resulting in a time-consuming and expensive ven-
ture. Qubit Pharmaceuticals, a Paris-based startup,
employs hybrid quantum algorithms for digital twinning
of drug molecules, allowing precise simulations of
interactions and behavior prediction. This approach

FIGURE 1. Quantum computing readiness of enterprises (per-

cent at different stages). Data source: Enterprise Strategy

Group’s 2023 Technology Spending Intentions Survey (https://

tinyurl.com/mprfxb).

FIGURE 2. Public funds committed for quantum computing

investments (as of September 2022, US$, billion). Data source:

McKinsey.2

IT ECONOMICS

12 IT Professional January/February 2024

www.computer.org/computingedge� 11

IT ECONOMICS

eliminates the need for synthesis, potentially reducing
drug screening time by half and cutting required invest-
ments by 10-fold.6

Quantum computing also has a potential to bring a
dramatic improvement in conventional cancer treat-
ments, such as radiotherapy and chemotherapy. For
instance, radiotherapy employs radiation to eliminate
cancerous cells or inhibit their growth. It's essential to
create a radiation plan that minimizes damage to
healthy tissues and organs, which presents intricate
optimization challenges with multiple variables. Quan-
tum computing can aid in simulating numerous scenar-
ios in each iteration, allowing health-care experts to
run multiple simulations simultaneously and develop
an optimal radiation approach.9

Chemical
Quantum advantage holds significant implications,
particularly in the context of chemical R&D. It can also
enhance production and optimize supply chains. With
an annual production budget of $800 billion, the chemi-
cals industry stands to gain between $20 billion and
$40 billion in value by achieving a 5%–10% increase in
efficiency.4 For instance, if quantum simulation allows
researchers to accurately model material interactions
on a larger scale without relying on the imprecise heu-
ristic methods currently in use, companies could
potentially cut down or entirely eliminate costly and
time-consuming laboratory procedures, like in situ test-
ing. Some companies, such as Zapata Computing, are

already placing their bets on the notion that quantum-
advantaged molecular simulation will not only lead to
substantial cost reductions but also facilitate the
development of superior products that can reach the
market more quickly.10

Half of the production in this industry, valued at
$400 billion, relies on catalysts.4 Quantum computing
can be used in production to improve catalyst designs.
The technology can be used to create new catalysts
and improve existing catalysts. These catalysts have
the potential to achieve energy savings in current pro-
duction processes. As an example, a single catalyst
can result in efficiency gains of up to 15%, and pioneer-
ing catalysts might facilitate the transition from petro-
chemicals to more sustainable feedstock or the
conversion of carbon into usable CO2.

4

Finance
The finance industry has consistently relied on com-
puting speed as a means of gaining an advantage, with
hedge funds particularly focused on securing millisec-
ond advantages in price information acquisition.11

Quantum computing is thus likely to lead to a signifi-
cant increase in data processing speed. For instance,
TerraQuantum, a Swiss startup, works with fintech firm
Cirdan Capital to apply quantum-inspired algorithms
for pricing exotic options, achieving a 75% increase in
pricing speed over traditional methods.6

Unsurprisingly, global financial giants, including
Allianz, Barclays, Citigroup, Goldman Sachs, JPMorgan,

TABLE 1. Quantum computing’s effect on some key industries.

Industry
Some key areas likely to be

impacted Market size/sample economic impact

Pharmaceuticals and health care R&D, early-stage drug discovery Quantum computing in health-care
market: $1 billion by 2030
Drug discovery: Potential to cut $35
billion in annual R&D expenses
Expected increase in annual branded
pharmaceutical revenues: $920 billion
Expected increase in annual operating
income $35-75 billion

Chemical R&D, production, supply chain
management, catalyst design

Estimated annual gain: $20–$40 billion

Finance Portfolio, risk management,
attracting and retaining customers

Potential for reducing capital reserves
by 15%
Expected increase in operating income:
$40–70 billion.

Automotive R&D, product design, supply-chain
management, production,
optimization of mobility, and traffic
control.

Quantum computing market size: $143
million in 2026; $5.2 billion by 2035
Potential annual value generation: $10-
$25 billion

IT ECONOMICS

January/February 2024 IT Professional 13

12	 ComputingEdge� August 2024

IT ECONOMICS

and Mizuho, as well as a number of national and
regional companies are actively researching quantum
computing (https://tinyurl.com/mrzvrjua). Turning quan-
tum computing investments and endeavors into finan-
cial returns is the goal for these companies.

The creation of analytical models that can effi-
ciently and accurately sort through extensive behav-
ioral data to determine the products essential for
specific customers in near real-time is a complex
endeavor. This constraint prevents financial institu-
tions from delivering preemptive product recommen-
dations with optimal feature selection in an agile
manner (https://tinyurl.com/yc3uvdze). Likewise, due
to the high inaccuracy of fraud detection systems,
financial institutions tend to adopt an overly risk-
averse approach. The customer onboarding process,
lasting 12 weeks, is facing growing resistance from con-
sumers. Financial institutions that fail to engage with
new customers swiftly are losing them to more agile
competitors (https://tinyurl.com/yc3uvdze). The use of
quantum computing is likely to address and overcome
these challenges. The technology has the potential to
revolutionize customer targeting and prediction model-
ing by surpassing current limitations related to com-
plex data structures. Its data modeling capabilities
are anticipated to excel in pattern recognition, classi-
fication, and prediction tasks (https://tinyurl.com/
yc3uvdze).

Quantum computing is also anticipated to have an
impact on portfolio and risk management. An instance
of this is the successful quantum optimization of loan
portfolios, which could empower lenders to improve
their services, potentially decreasing interest rates and
boosting capital availability.4 Quantum computing
technology is maturing, leading to improved model
accuracy and increased resilience against extreme tail
events such as those that might arise once in every 50
years.10 Multiverse Computing, a Spanish quantum
startup, has partnered with Spanish multinational
financial services company Banco Bilbao Vizcaya
Argentaria, S.A. to improve investment portfolio optimi-
zation, addressing the common challenge of account-
ing for external factors' impact on asset performance
in finance. The experiment showcased that Multi-
verse's quantum-inspired methods sped up calcula-
tions, maximizing profitability while minimizing risk.6

The potential for reducing capital reserves, up to 15%
in certain projections, is likely to be a notable outcome
of this maturation. This reduction in capital reserves
positions quantum computing to deliver an operating
income of $40 billion to $70 billion to banks and other
financial services companies.10

Automotive
According to market research company Marketsand-
Markets, the quantum computing in automotive mar-
ket is expected to reach $143 million in 2026 and to
$5.2 billion in 2035.12 Even a modest increase in produc-
tivity (2%–5%) within an industry that spends $500 bil-
lion annually on manufacturing costs could yield an
annual value of $10 billion to $25 billion.4

In this industry, quantum computing has the poten-
tial to revolutionize R&D, product design, supply-chain
management, production, and the optimization of
mobility and traffic control. As an illustration, this tech-
nology could be utilized to reduce manufacturing costs
associated with the process and expedite production
cycles. It achieves this by optimizing aspects like path
planning within intricate multirobot operations, such
as welding, gluing, and painting.4

Quantum computing can also have other positive
effects such as reduction of defects. For instance, PAS-
QAL and BMW are partnering to use quantum algo-
rithms for simulating the formation of metallic pieces,
with the goal of identifying defects and ensuring parts
meet specifications.6

This sector will also benefit from initiatives being
taken in the manufacturing sector to improve supply
chain performance and enhance maintenance optimi-
zation. In a partnership between Multiverse and
German multinational engineering and technology
company Bosch, quantum algorithms are being utilized
to predict and detect defects in production lines,
addressing the challenge of managing extensive data
for accurate predictions. Their aim is to establish digital
twins of factory lines to predict supply chain failures
and optimize maintenance.6

CONCLUSION
The quantum computing industry is currently in the
NISQ era, marked by substantial error rates and the
constrained size of quantum processors, which signifi-
cantly hampers the effectiveness of quantum com-
puters. Despite the current infancy stage of quantum
computing, its effects are anticipated to increase with
ongoing application development. Private investment
in this innovation has seen a notable increase in recent
years, accompanied by significant allocations of public
funds aimed at propelling its growth. The substantial
financial investments dedicated to quantum computing
R&D have spurred recent progress in both quantum
computing hardware and software, along with the devel-
opment of innovative error mitigation and suppression
methods. Certainly, all this activity doesn't automatically
equate to immediate commercial success. Nonetheless,

IT ECONOMICS

14 IT Professional January/February 2024

www.computer.org/computingedge� 13

IT ECONOMICS

and Mizuho, as well as a number of national and
regional companies are actively researching quantum
computing (https://tinyurl.com/mrzvrjua). Turning quan-
tum computing investments and endeavors into finan-
cial returns is the goal for these companies.

The creation of analytical models that can effi-
ciently and accurately sort through extensive behav-
ioral data to determine the products essential for
specific customers in near real-time is a complex
endeavor. This constraint prevents financial institu-
tions from delivering preemptive product recommen-
dations with optimal feature selection in an agile
manner (https://tinyurl.com/yc3uvdze). Likewise, due
to the high inaccuracy of fraud detection systems,
financial institutions tend to adopt an overly risk-
averse approach. The customer onboarding process,
lasting 12 weeks, is facing growing resistance from con-
sumers. Financial institutions that fail to engage with
new customers swiftly are losing them to more agile
competitors (https://tinyurl.com/yc3uvdze). The use of
quantum computing is likely to address and overcome
these challenges. The technology has the potential to
revolutionize customer targeting and prediction model-
ing by surpassing current limitations related to com-
plex data structures. Its data modeling capabilities
are anticipated to excel in pattern recognition, classi-
fication, and prediction tasks (https://tinyurl.com/
yc3uvdze).

Quantum computing is also anticipated to have an
impact on portfolio and risk management. An instance
of this is the successful quantum optimization of loan
portfolios, which could empower lenders to improve
their services, potentially decreasing interest rates and
boosting capital availability.4 Quantum computing
technology is maturing, leading to improved model
accuracy and increased resilience against extreme tail
events such as those that might arise once in every 50
years.10 Multiverse Computing, a Spanish quantum
startup, has partnered with Spanish multinational
financial services company Banco Bilbao Vizcaya
Argentaria, S.A. to improve investment portfolio optimi-
zation, addressing the common challenge of account-
ing for external factors' impact on asset performance
in finance. The experiment showcased that Multi-
verse's quantum-inspired methods sped up calcula-
tions, maximizing profitability while minimizing risk.6

The potential for reducing capital reserves, up to 15%
in certain projections, is likely to be a notable outcome
of this maturation. This reduction in capital reserves
positions quantum computing to deliver an operating
income of $40 billion to $70 billion to banks and other
financial services companies.10

Automotive
According to market research company Marketsand-
Markets, the quantum computing in automotive mar-
ket is expected to reach $143 million in 2026 and to
$5.2 billion in 2035.12 Even a modest increase in produc-
tivity (2%–5%) within an industry that spends $500 bil-
lion annually on manufacturing costs could yield an
annual value of $10 billion to $25 billion.4

In this industry, quantum computing has the poten-
tial to revolutionize R&D, product design, supply-chain
management, production, and the optimization of
mobility and traffic control. As an illustration, this tech-
nology could be utilized to reduce manufacturing costs
associated with the process and expedite production
cycles. It achieves this by optimizing aspects like path
planning within intricate multirobot operations, such
as welding, gluing, and painting.4

Quantum computing can also have other positive
effects such as reduction of defects. For instance, PAS-
QAL and BMW are partnering to use quantum algo-
rithms for simulating the formation of metallic pieces,
with the goal of identifying defects and ensuring parts
meet specifications.6

This sector will also benefit from initiatives being
taken in the manufacturing sector to improve supply
chain performance and enhance maintenance optimi-
zation. In a partnership between Multiverse and
German multinational engineering and technology
company Bosch, quantum algorithms are being utilized
to predict and detect defects in production lines,
addressing the challenge of managing extensive data
for accurate predictions. Their aim is to establish digital
twins of factory lines to predict supply chain failures
and optimize maintenance.6

CONCLUSION
The quantum computing industry is currently in the
NISQ era, marked by substantial error rates and the
constrained size of quantum processors, which signifi-
cantly hampers the effectiveness of quantum com-
puters. Despite the current infancy stage of quantum
computing, its effects are anticipated to increase with
ongoing application development. Private investment
in this innovation has seen a notable increase in recent
years, accompanied by significant allocations of public
funds aimed at propelling its growth. The substantial
financial investments dedicated to quantum computing
R&D have spurred recent progress in both quantum
computing hardware and software, along with the devel-
opment of innovative error mitigation and suppression
methods. Certainly, all this activity doesn't automatically
equate to immediate commercial success. Nonetheless,

IT ECONOMICS

14 IT Professional January/February 2024

with advancements in this innovation, several pathways
for monetization are likely to become available.

The aforementioned discussion has shown that
there are numerous underlying value creation mecha-
nisms and monetization models of quantum comput-
ing. A number of trials and tests carried out so far
indicate that this innovation has the potential to
reshape various business functions, including R&D,
supply chain management, and production. Quantum
computing can also greatly improve the ability to
attract and retain customers. While most organizations
will not be in a position to buy a quantum computer in
the near term, emerging business models such as
QCaaS allow them to access and monetize this innova-
tion faster and better.

Overall, while quantum computers are not yet ready
for widespread industry use, startups are actively identi-
fying potential applications for the technology. Quantum
computing thus holds promise for delivering positive
outcomes for businesses, economies, and societies.

REFERENCES
1. F. Bova, A. Goldfarb, and R. Melko, “The business case

for quantum computing,” MIT Sloan Manage. Rev.,

Mar. 7, 2023. Accessed: Nov. 15, 2023. [Online].

Available: https://sloanreview.mit.edu/article/the-

business-case-for-quantum-computing/

2. “Betting big on quantum,” McKinsey & Company,

New York, NY, USA, Sep. 13, 2022. [Online]. Available:

https://www.mckinsey.com/featured-insights/

sustainable-inclusive-growth/chart-of-the-day/betting-

big-on-quantum

3. M. Brooks, “Quantum computers: What are they good

for? For now, absolutely nothing. but researchers and

firms are optimistic about the applications,” Nature,

May 24, 2023. Accessed: Nov. 15, 2023. [Online].

Available: https://www.nature.com/articles/d41586-

023-01692-9

4. M. Biondi et al., “Quantum computing use cases are

getting real—What you need to know,” McKinsey &

Company, New York, NY, USA, Dec. 14, 2021. [Online].

Available: https://www.mckinsey.com/capabilities/

mckinsey-digital/our-insights/quantum-computing-

use-cases-are-getting-real-what-you-need-to-know

5. M. Shirer, and H. West. “IDC forecasts worldwide

quantum computing market to grow to $7.6 billion

in 2027.” International Data Corporation. Accessed:

Nov. 15, 2023. [Online]. Available: https://www.idc.

com/getdoc.jsp?containerId=prUS51160823

6. D. Leprince-Ringue, “7 ways that quantum computing

is making an impact in the real world,” Sifted, London,

U.K., Aug. 10, 2023. [Online]. Available: https://sifted.

eu/articles/seven-applications-quantum-computing

7. J. Ruane, A. McAfee, and W. D. Oliver, “Quantum

computing for business leaders: Will the reality live up

to the hype?” Harvard Bus. Rev., Jan./Feb. 2022.

Accessed: Nov. 15, 2023. [Online]. Available: https://

hbr.org/2022/01/quantum-computing-for-business-

leaders

8. R. Nagao, “Japan to offer $30m in aid for quantum

computer sharing in industry, finance,” Nikkei, Apr. 14,

2023. Accessed: Nov. 15, 2023. [Online]. Available:

https://asia.nikkei.com/Business/Technology/Japan-

to-offer-30m-in-aid-for-quantum-computer-sharing-in-

industry-finance

9. “Quantum computing in healthcare: A billion-dollar

revolution by 2030,” GlobeNewswire, Los Angeles. CA,

USA, Sep. 7 2023. [Online]. Available: https://www.

globenewswire.com/news-release/2023/09/07/

2739043/28124/en/Quantum-Computing-in-

Healthcare-A-Billion-Dollar-Revolution-by-2030.html

10. M. Langione, C. Tillemann-Dick, A. Kumar, and V.

Taneja, “Where will quantum computers create

value—And when?” Boston Consulting Group, Boston,

MA, USA, May 13, 2019. [Online]. Available: https://

www.bcg.com/publications/2019/quantum-

computers-create-value-when

11. F. F. Bova, A. Goldfarb, and R. Melko, “Quantum

computing is coming. What can it do?” Harvard Bus.

Rev., Jul. 16, 2021. Accessed: Nov. 15, 2023. [Online].

Available: https://hbr.org/2021/07/quantum-

computing-is-coming-what-can-it-do

12. “Quantum computing in automotive market worth

$5,203 million by 2035,” GlobeNewswire, Los Angeles.

CA, USA, Sep. 26, 2023. [Online]. Available: https://

www.globenewswire.com/news-release/2023/09/26/

2749879/0/en/Quantum-Computing-in-Automotive-

Market-worth-5-203-million-by-2035-Exclusive-Report-

by-MarketsandMarkets.html

NIR KSHETRI is a professor in the Bryan School of Business

and Economics, the University of North Carolina at Greens-

boro, Greensboro, NC, 27412, USA, and IT Professional’s IT

Economics editor. Contact him at nbkshetr@uncg.edu

IT ECONOMICS

January/February 2024 IT Professional 15

14	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

EDITORS: Anne Elster, anne.elster@gmail.com
Sonia Lopez Alarc�on, slaeec@rit.edu

DEPARTMENT: NOVEL ARCHITECTURES

Quantum Computing and High-Performance
Computing: Compilation Stack Similarities
Sonia Lopez Alarcon , Rochester Institute of Technology, Rochester, NY, 14623, USA

Anne C. Elster , Norwegian University of Science and Technology, NO-7491, Trondheim, Norway

There is a great deal of focus on how quantum computing as an accelerator differs from
other traditional high-performance computing (HPC) resources, including accelerators
like GPUs and field-programmable gate arrays. In classical computing, how to design the
interfaces that connect the different layers of the software stack, from the applications
and high-level programming language description, through compilers and schedulers,
and down to the hardware and gate level, has been critical. Likewise, quantum
computing’s interfaces enable access to quantum technology as a viable accelerator.
From the ideation of the quantum application to the manipulation of the quantum chip,
each interface has its challenges. In this article, we discuss the structure of this set of
quantum interfaces, their many similarities to the traditional HPC compilation stack,
and how these interfaces impact the potential of quantum computers as HPC
accelerators.

Quantum computing will not replace classi-
cal high-performance computing (HPC) sys-
tems—at least not in the foreseeable future.

However, there is currently a lot of research focusing
on how they can be used as an accelerator for quan-
tum simulations, machine learning applications,1,2 opti-
mization and combinatorial problems,3,4 and other
computationally expensive applications.5 Quantum
computing grew from the birth of quantum information
theory in 1970 and Benioff’s four publications in
the early 1980s that showed, for the first time, how
quantum computers were theoretically possible.a The
first experimental quantum gates were implemented
shortly after. IBM, Intel, Google, IonQ, Honeywell, Xan-
adu, and many other large companies and start-ups
are now all investing in advancing this technology, to
the point that it is hard to keep up with the number of
research papers being published.

The power of quantum computing stems from
how densely it can represent information. This comes
from the quantum superposition property—the linear
combinations of two or more states, much like a com-
bination of musical tones results in a new unique
sound—and entanglement—the inexplicable correla-
tions that happen between quantum bits (qubits).
Interference is used to cancel portions of the superpo-
sition, similar to the use of noise-canceling technolo-
gies in headphones. In addition, quantum gates are
reversible, which means that the system preserves the
information at any point of the execution. The theory
says that, since information is not destroyed, applica-
tion of the operands (also known as quantum gates)
does not consume power. However, note that power is
required to generate the operands and to keep a
closed quantum state.

While traditional computing systems store zeros
and ones, a two-qubit system has been claimed by
IBMb to store the equivalent entangled state informa-
tion of 512 classical bits, 10 qubits (the equivalent of

1521-9615 © 2023 IEEE
Digital Object Identifier 10.1109/MCSE.2023.3269645
Date of current version 1 June 2023.

ahttps://www.anl.gov/article/remembering-paul-benioff-renowned-
scientist-and-quantum-computing-pioneer

bhttps://www.ibm.com/thought-leadership/institute-business-
value/report/quantum-decade

66 Computing in Science & Engineering Published by the IEEE Computer Society November/December 2022

EDITORS: Anne Elster, anne.elster@gmail.com
Sonia Lopez Alarcon, slaeec@rit.edu

DEPARTMENT: NOVEL ARCHITECTURES

Quantum Computing and
High-Performance Computing:
Compilation Stack Similarities
Sonia Lopez Alarcon , Rochester Institute of Technology, Rochester, NY, 14623, USA

Anne C. Elster , Norwegian University of Science and Technology, NO-7491, Trondheim, Norway

There is a great deal of focus on how quantum computing as an accelerator differs from
other traditional high-performance computing (HPC) resources, including accelerators
like GPUs and field-programmable gate arrays. In classical computing, how to design the
interfaces that connect the different layers of the software stack, from the applications
and high-level programming language description, through compilers and schedulers, and
down to the hardware and gate level, has been critical. Likewise, quantum computing’s
interfaces enable access to quantum technology as a viable accelerator. From the
ideation of the quantum application to the manipulation of the quantum chip, each
interface has its challenges. In this article, we discuss the structure of this set of quantum
interfaces, their many similarities to the traditional HPC compilation stack, and how
these interfaces impact the potential of quantum computers as HPC accelerators.

This article originally
appeared in

vol. 24, no. 6, 2022

www.computer.org/computingedge� 15

NOVEL ARCHITECTURES

16 kB of classical bits), and the current
large quantum computing systems with
100 and 280 qubits would need a num-
ber of bits equal to the number of atoms
on planet Earth and the universe,
respectively.

Quantum states are extremely deli-
cate, and the challenge is to keep a sys-
tem of qubits in its superposed and
entangled state andmanipulate them in
a controlled way. External interactions
in all energy forms, even at the smallest
scale, can easily make the state of the
quantum system fall out of coherence,
inducing noise as an error. This is a
major challenge for implementing con-
crete quantum computers. Supercon-
ducting qubits need to be maintained at
temperatures as cold as or colder than
outer space to not be susceptible to
such errors. Recent technologies using
photonic and diamond-defect designs
try to overcome this. In the photonic
case, the sensors still need to be super-
cooled, whereas systems based on dia-
mond defects currently are limited to
single-digit qubits.c

The current technology used in quan-
tum computing is known as the noisy
intermediate-scale quantum (NISQ) sys-
tem, a term that was coined by John
Preskill.6 Small numbers of qubits with high error rates
and limited connectivity define these systems. On these
systems, only very specific applications that are hardly
considered useful can outperform classical implementa-
tions. This is, however, a necessary step toward powerful
quantum computing, with a high enough number of
qubits to allow not only computational power but also
tolerance to error.

The progress is real, mainly and most crucially at
the technology level, but also in all of the other layers
that separate the user from the physical quantum sys-
tem: algorithms, applications, programming models,
and compilers.7 Each of these layers is an interface
that abstracts out the details of the layers below and
simplifies the development task.

An IEEE Computing in Science & Engineering
“Leadership Computing” department recently discussed
the integration of quantum computing and HPC in a sin-
gle software stack.8 This time, we take a closer look at

the software stack that bridges the gap between the
quantum application and the actual quantum systems
leveraging quantummechanical properties.

In classical computing, interfaces support the devel-
opment steps, from the high-level programming language
description of an application to controlling electrons
through semiconductor transistors. Similarly, quantum
computing relies on a set of steps and interfaces.7 The
actual computation on the quantum hardware is only the
final step, while the majority of the development and pre-
processing (D&PP) is done classically, with a quantum
mindset, as shown in Figure 1.

The challenges of this D&PP are in no way negligible.
The compiler, in particular, calls for a series of optimiza-
tions and graph problems that threaten the scalability
of quantum computers.

QUANTUM COMPUTING
INTERFACES

A quantum computer is a quantum system that evolves
according to quantum mechanical principles from an

FIGURE 1. The quantum computing software stack can also be envisioned as

this stack of interfaces.

cPublished 20 March 2023: https://www.eetimes.eu/the-
status-of-room-temperature-quantum-computers/

NOVEL ARCHITECTURES

November/December 2022 Computing in Science & Engineering 67

EDITORS: Anne Elster, anne.elster@gmail.com
Sonia Lopez Alarc�on, slaeec@rit.edu

DEPARTMENT: NOVEL ARCHITECTURES

Quantum Computing and High-Performance
Computing: Compilation Stack Similarities
Sonia Lopez Alarcon , Rochester Institute of Technology, Rochester, NY, 14623, USA

Anne C. Elster , Norwegian University of Science and Technology, NO-7491, Trondheim, Norway

There is a great deal of focus on how quantum computing as an accelerator differs from
other traditional high-performance computing (HPC) resources, including accelerators
like GPUs and field-programmable gate arrays. In classical computing, how to design the
interfaces that connect the different layers of the software stack, from the applications
and high-level programming language description, through compilers and schedulers,
and down to the hardware and gate level, has been critical. Likewise, quantum
computing’s interfaces enable access to quantum technology as a viable accelerator.
From the ideation of the quantum application to the manipulation of the quantum chip,
each interface has its challenges. In this article, we discuss the structure of this set of
quantum interfaces, their many similarities to the traditional HPC compilation stack,
and how these interfaces impact the potential of quantum computers as HPC
accelerators.

Quantum computing will not replace classi-
cal high-performance computing (HPC) sys-
tems—at least not in the foreseeable future.

However, there is currently a lot of research focusing
on how they can be used as an accelerator for quan-
tum simulations, machine learning applications,1,2 opti-
mization and combinatorial problems,3,4 and other
computationally expensive applications.5 Quantum
computing grew from the birth of quantum information
theory in 1970 and Benioff’s four publications in
the early 1980s that showed, for the first time, how
quantum computers were theoretically possible.a The
first experimental quantum gates were implemented
shortly after. IBM, Intel, Google, IonQ, Honeywell, Xan-
adu, and many other large companies and start-ups
are now all investing in advancing this technology, to
the point that it is hard to keep up with the number of
research papers being published.

The power of quantum computing stems from
how densely it can represent information. This comes
from the quantum superposition property—the linear
combinations of two or more states, much like a com-
bination of musical tones results in a new unique
sound—and entanglement—the inexplicable correla-
tions that happen between quantum bits (qubits).
Interference is used to cancel portions of the superpo-
sition, similar to the use of noise-canceling technolo-
gies in headphones. In addition, quantum gates are
reversible, which means that the system preserves the
information at any point of the execution. The theory
says that, since information is not destroyed, applica-
tion of the operands (also known as quantum gates)
does not consume power. However, note that power is
required to generate the operands and to keep a
closed quantum state.

While traditional computing systems store zeros
and ones, a two-qubit system has been claimed by
IBMb to store the equivalent entangled state informa-
tion of 512 classical bits, 10 qubits (the equivalent of

1521-9615 © 2023 IEEE
Digital Object Identifier 10.1109/MCSE.2023.3269645
Date of current version 1 June 2023.

ahttps://www.anl.gov/article/remembering-paul-benioff-renowned-
scientist-and-quantum-computing-pioneer

bhttps://www.ibm.com/thought-leadership/institute-business-
value/report/quantum-decade

66 Computing in Science & Engineering Published by the IEEE Computer Society November/December 2022

16	 ComputingEdge� August 2024

NOVEL ARCHITECTURES

initial state to a final state. If all things go well, this final
state contains the solution to a computational problem.

A stack of interfaces makes it possible to take a
quantum application from ideation to reality. The soft-
ware stack and the interfaces needed to realize the
quantum application are envisioned as a workflow in
which the compiler plays a central role, as illustrated in
Figure 2.

A potential quantum application, e.g., identifying the
maximum clique of a graph, makes use of a quantum
algorithm, e.g., Grover’s algorithm. The “only” quantum
aspect of these two interfaces is the understanding of
core and fundamental quantum properties and how
classical problems can be framed in a quantum context.
This understanding is probably the greatest gap keeping
the general scientific community from taking advantage
of quantum acceleration at this point in time, even
greater than the technology itself. It is still unclear
which applications can be efficiently accelerated by
quantummeans.

Many scientists (mainly theoretical physicists) have
described or envisioned these applications and algo-
rithms as mathematical exercises with “pencil and
paper.” However, to take these closer to an actual
quantum implementation, a description on a suitable
programming language, e.g., quantum-specific Python
extensions, should define the steps of the application
and its quantum algorithms in a way that can then be
compiled targeting a specific quantum instruction set
architecture and microarchitecture.

The quantum instruction set architectures in their
current form are far from being a set of general-
purpose instructions but, rather, are a sort of single- or
two-qubit basic operand known as gates. Figure 3
depicts a basic circuit with several single- and two-
qubit gates operating on a three-qubit register. Each
quantum computing technology has its own set of
native gates. The implementation of these quantum
gates is in the form of analog signals (microwaves,
lasers, or others, depending on the technology) that
act on the qubits and that are generated and con-
trolled by the microarchitecture. Also, the qubits’ con-
nectivity map is part of the system’s architecture since
not all qubits can interact with all other qubits.

Therefore, with a description of the quantum appli-
cation, typically as a collection of quantum gates
known as a quantum circuit, as well as the quantum
architecture and microarchitecture’s information, the
quantum compiler can generate the necessary infor-
mation to control the quantum system: its initialization
and quantum time evolution to the final quantum state
on the quantum chip (Figure 2).

Notice that the D&PP down to the classical quan-
tum interface does not involve any physical quantum
interaction. Instead, all of this is done on classical com-
puting systems.

QUANTUM COMPILATION
Compilation for a quantum computer system involves
a number of steps that take the high-level language
description all the way down to generating the control
signals. The decomposition of the high-level gates
breaks them down into the native gates of the archi-
tecture. For instance, Figure 5 represents a swap gate
and its equivalent decomposition into three controlled
NOT (CNOT) gates. Sometimes, consecutive quantum
gates cancel each other or are commutative in the
order of the execution. These optimizations are taken

FIGURE 2. Quantum compilation takes in information from

different interfaces. Through a number of steps, it generates

the fault-tolerant synthesis of the quantum applications.

FIGURE 3. An example of a basic circuit, including a three qubit

register, Hadamard (H), controlled NOT and NOT (þ) gates built

with IBM’s Quantum Composer.9 The computation proceeds

from left to right, from the initial to final quantum state of the

three-qubit register.

NOVEL ARCHITECTURES

68 Computing in Science & Engineering November/December 2022

www.computer.org/computingedge� 17

NOVEL ARCHITECTURES

care of before scheduling the order in which the oper-
ands will take place, respecting all dependencies and
exploiting parallelism when possible.

The mapping stage involves two operations: map-
ping and routing. In the quantum circuit high-level
description, gates act on quantum variables that we
call logical qubits. These have to be mapped to physi-
cal qubits on the architecture’s map. Then, as the exe-
cution evolves, the qubits that need to interact with
each other through two-qubit gates are routed to phys-
ically adjacent qubits in the architecture’s map.

For example, if logical qubit 1 (Q1) and logical qubit 2
(Q2) in Figure 5 were mapped originally to physical qubits
6 and 10 in Kolkata’s map (Figure 4), Q1 would have to be
rerouted to qubit 7, so it would be physically adjacent to
10. Qubit rerouting is done adding swap gates. Low con-
nectivity is a critical problem in the current NISQ sys-
tems,6 with high noise levels, low coherence times, and
no error-correction protocols enabled yet. In IBM’s super-
conducting systems, the necessary swap gates (three
CNOT gates each) for qubit routing do, on the other hand,
accumulate link error and increase the depth of the cir-
cuit in ways that often surpass the quantum coherence
time of the system, resulting in too noisy of an output to
be useful. Efficient routing algorithms route not only to
ensure correctness but also tominimize noise.

Once the final circuit is built with
all of its optimizations and added
swaps and the gates are scheduled,
the compiler will generate the fault-
tolerant synthesis according to the
system’smicroarchitecture.

Scheduling and mapping/routing
are well-known NP-hard problems
that can be found in a plethora of
other fields. The HPC community is
well aware of the time complexity,
memory, and hardware resources
required to solve these problems.
Inputs are large graphs, such as
dependency graphs or the connec-
tivity map. The goal usually involves
an optimization problem in which
time, hardware usage, error, or noise
need to beminimized.

Quantum Versus Classical
Compilation
Quantum and classical compilation processes have
some analogies: starting from the dependency graphs,
the scheduling of operations and allocation of resources
need to be performed. Those with experience in field-
programmable gate array (FPGA) acceleration may
notice the resemblance with the high-level synthesis

FIGURE 4. IBM Quantum’s 27-qubit Kolkata back end. The shades of color represent

the quality of the qubits and the links among them. (A darker shade means better

quality.) This quality is based on different noise and error metrics. Different back ends

have different maps and noise levels.10

FIGURE 5. SWAP gate and its decomposition in three CNOT

gates.

FIGURE 6. High-level synthesis (HLS) full compilation process:

from a high-level language description, an implementation in

a hardware description language (HDL) is generated (Verilog

or VHDL) to then be synthesized and run on the field-

programmable gate array (FPGA).

NOVEL ARCHITECTURES

November/December 2022 Computing in Science & Engineering 69

initial state to a final state. If all things go well, this final
state contains the solution to a computational problem.

A stack of interfaces makes it possible to take a
quantum application from ideation to reality. The soft-
ware stack and the interfaces needed to realize the
quantum application are envisioned as a workflow in
which the compiler plays a central role, as illustrated in
Figure 2.

A potential quantum application, e.g., identifying the
maximum clique of a graph, makes use of a quantum
algorithm, e.g., Grover’s algorithm. The “only” quantum
aspect of these two interfaces is the understanding of
core and fundamental quantum properties and how
classical problems can be framed in a quantum context.
This understanding is probably the greatest gap keeping
the general scientific community from taking advantage
of quantum acceleration at this point in time, even
greater than the technology itself. It is still unclear
which applications can be efficiently accelerated by
quantummeans.

Many scientists (mainly theoretical physicists) have
described or envisioned these applications and algo-
rithms as mathematical exercises with “pencil and
paper.” However, to take these closer to an actual
quantum implementation, a description on a suitable
programming language, e.g., quantum-specific Python
extensions, should define the steps of the application
and its quantum algorithms in a way that can then be
compiled targeting a specific quantum instruction set
architecture and microarchitecture.

The quantum instruction set architectures in their
current form are far from being a set of general-
purpose instructions but, rather, are a sort of single- or
two-qubit basic operand known as gates. Figure 3
depicts a basic circuit with several single- and two-
qubit gates operating on a three-qubit register. Each
quantum computing technology has its own set of
native gates. The implementation of these quantum
gates is in the form of analog signals (microwaves,
lasers, or others, depending on the technology) that
act on the qubits and that are generated and con-
trolled by the microarchitecture. Also, the qubits’ con-
nectivity map is part of the system’s architecture since
not all qubits can interact with all other qubits.

Therefore, with a description of the quantum appli-
cation, typically as a collection of quantum gates
known as a quantum circuit, as well as the quantum
architecture and microarchitecture’s information, the
quantum compiler can generate the necessary infor-
mation to control the quantum system: its initialization
and quantum time evolution to the final quantum state
on the quantum chip (Figure 2).

Notice that the D&PP down to the classical quan-
tum interface does not involve any physical quantum
interaction. Instead, all of this is done on classical com-
puting systems.

QUANTUM COMPILATION
Compilation for a quantum computer system involves
a number of steps that take the high-level language
description all the way down to generating the control
signals. The decomposition of the high-level gates
breaks them down into the native gates of the archi-
tecture. For instance, Figure 5 represents a swap gate
and its equivalent decomposition into three controlled
NOT (CNOT) gates. Sometimes, consecutive quantum
gates cancel each other or are commutative in the
order of the execution. These optimizations are taken

FIGURE 2. Quantum compilation takes in information from

different interfaces. Through a number of steps, it generates

the fault-tolerant synthesis of the quantum applications.

FIGURE 3. An example of a basic circuit, including a three qubit

register, Hadamard (H), controlled NOT and NOT (þ) gates built

with IBM’s Quantum Composer.9 The computation proceeds

from left to right, from the initial to final quantum state of the

three-qubit register.

NOVEL ARCHITECTURES

68 Computing in Science & Engineering November/December 2022

18	 ComputingEdge� August 2024

NOVEL ARCHITECTURES

full compilation stack. Figure 6 represents this stack,
from the high-level language description to the FPGA
execution.

Similar to the decomposition stage, allocation iden-
tifies the basic elements needed to implement the
operations described in high-level language. Then, oper-
ations are scheduled and mapped (also known as
bound) to those elements. From the hardware descrip-
tion language (HDL), the logic synthesis and necessary
optimizations generate the files of zeros and ones that
will take care of the actual implementation on an FPGA.

FPGA users may have experience with the limita-
tions of this process: compilation on the fly is prohibitive
in terms of time; the high-level language description of
the computations cannot implement recursive calls and
may have issues with pointers and memory accesses;
and, in summary, hardware design skills that are not
accessible to all users are necessary. Whether using
HDLs or high-level synthesis, the implementation’s des-
cription is hardware description, not software.

QUANTUM DESCRIPTION
LANGUAGES

Setting aside the necessary understanding of quantum
algorithms to be able to develop quantum applications,
the quantum programming paradigm is the most imme-
diate interface to the quantum computer user. The
lexicon used around the description of quantum appli-
cations seems to indicate that we are describing hard-
ware, just like VHDL or Verilog are used to describe
FPGA hardware: first of all, because we call the descrip-
tion a “quantum circuit”; second, because the operands
are referred to as “gates”; and last, because the opera-
tions are described at a qubit-by-qubit granularity.
There are no memory, no data types, and no general-
purpose flexible instructions. None of this is compatible
with software execution.

However, if we take the term hardware as its literal
translation of something that is hardwired or physically
palpable, this term does not apply either. Figure 7 gives
an example of what really happens on the execution of

a quantum application, after all of the steps in Figure 2
have been completed, and the quantum system finally
kicks in. The quantum chip contains the “hardwired”
qubits. The quantum D&PP have generated the sets of
gates as analog control signals. Groups of these con-
trol signals arrive at the quantum chip to act on the
qubits and alter the state of the quantum system. If,
like in Grover’s algorithm, the sets of gates need to be
iterated through multiple times, the corresponding
control signals can just be repeated as many times as
needed. They are not real “hardwired” gates.

The quantum programming models leverage high-
level languages, Python most commonly, to describe
these extremely fine-grained computations. The state
of the quantum system contains the information. The
quantum chip and its qubits act, actually, as a very
short-lived memory upon which we need to operate
before the system falls out of its delicate quantum
equilibrium.

Although the quantum application is described
using high-level languages, such as Python, much has
to happen at the development level to give “quantum

FIGURE 7. Quantum Hadamard (H), Phase (S) and Controlled-

NOT (CNOT) are sent to the quantum chip as control signals.

APPENDIX: RELATED
ARTICLES
A1. The Quantum Decade, 3rd ed., IBM,

Armonk, NY, USA. [Online]. Available:

https://www.ibm.com/thought-leadership/

institute-business-value/report/quantum-

decade

A2. “The status of room-temperature quantum

computers,” EE Times Europe, Mar. 2023.

[Online]. Available: https://www.eetimes.eu/

the-status-of-room-temperature-quantum-

computers/

A3. F. G. Fuchs, V. Falch, and C. Johnsen,

“Quantum Poker—A game for quantum

computers suitable for benchmarking error

mitigation techniques on NISQ devices,”

Eur. Physical J. Plus, vol. 135, no. 4,

Apr. 2020, Art. no. 353, doi: 10.1140/epjp/

s13360-020-00360-5.

A4. “Quantum computing is the future, and

schools need to catch up: Top universities

are finally bringing the excitement of the

quantum future into the classroom,”

Scientific Amer., Mar. 2023. [Online].

Available: https://www.scientificamerican.

com/article/quantum-computing-is-the-

future-and-schools-need-to-catch-up/

NOVEL ARCHITECTURES

70 Computing in Science & Engineering November/December 2022

www.computer.org/computingedge� 19

NOVEL ARCHITECTURES

full compilation stack. Figure 6 represents this stack,
from the high-level language description to the FPGA
execution.

Similar to the decomposition stage, allocation iden-
tifies the basic elements needed to implement the
operations described in high-level language. Then, oper-
ations are scheduled and mapped (also known as
bound) to those elements. From the hardware descrip-
tion language (HDL), the logic synthesis and necessary
optimizations generate the files of zeros and ones that
will take care of the actual implementation on an FPGA.

FPGA users may have experience with the limita-
tions of this process: compilation on the fly is prohibitive
in terms of time; the high-level language description of
the computations cannot implement recursive calls and
may have issues with pointers and memory accesses;
and, in summary, hardware design skills that are not
accessible to all users are necessary. Whether using
HDLs or high-level synthesis, the implementation’s des-
cription is hardware description, not software.

QUANTUM DESCRIPTION
LANGUAGES

Setting aside the necessary understanding of quantum
algorithms to be able to develop quantum applications,
the quantum programming paradigm is the most imme-
diate interface to the quantum computer user. The
lexicon used around the description of quantum appli-
cations seems to indicate that we are describing hard-
ware, just like VHDL or Verilog are used to describe
FPGA hardware: first of all, because we call the descrip-
tion a “quantum circuit”; second, because the operands
are referred to as “gates”; and last, because the opera-
tions are described at a qubit-by-qubit granularity.
There are no memory, no data types, and no general-
purpose flexible instructions. None of this is compatible
with software execution.

However, if we take the term hardware as its literal
translation of something that is hardwired or physically
palpable, this term does not apply either. Figure 7 gives
an example of what really happens on the execution of

a quantum application, after all of the steps in Figure 2
have been completed, and the quantum system finally
kicks in. The quantum chip contains the “hardwired”
qubits. The quantum D&PP have generated the sets of
gates as analog control signals. Groups of these con-
trol signals arrive at the quantum chip to act on the
qubits and alter the state of the quantum system. If,
like in Grover’s algorithm, the sets of gates need to be
iterated through multiple times, the corresponding
control signals can just be repeated as many times as
needed. They are not real “hardwired” gates.

The quantum programming models leverage high-
level languages, Python most commonly, to describe
these extremely fine-grained computations. The state
of the quantum system contains the information. The
quantum chip and its qubits act, actually, as a very
short-lived memory upon which we need to operate
before the system falls out of its delicate quantum
equilibrium.

Although the quantum application is described
using high-level languages, such as Python, much has
to happen at the development level to give “quantum

FIGURE 7. Quantum Hadamard (H), Phase (S) and Controlled-

NOT (CNOT) are sent to the quantum chip as control signals.

APPENDIX: RELATED
ARTICLES
A1. The Quantum Decade, 3rd ed., IBM,

Armonk, NY, USA. [Online]. Available:

https://www.ibm.com/thought-leadership/

institute-business-value/report/quantum-

decade

A2. “The status of room-temperature quantum

computers,” EE Times Europe, Mar. 2023.

[Online]. Available: https://www.eetimes.eu/

the-status-of-room-temperature-quantum-

computers/

A3. F. G. Fuchs, V. Falch, and C. Johnsen,

“Quantum Poker—A game for quantum

computers suitable for benchmarking error

mitigation techniques on NISQ devices,”

Eur. Physical J. Plus, vol. 135, no. 4,

Apr. 2020, Art. no. 353, doi: 10.1140/epjp/

s13360-020-00360-5.

A4. “Quantum computing is the future, and

schools need to catch up: Top universities

are finally bringing the excitement of the

quantum future into the classroom,”

Scientific Amer., Mar. 2023. [Online].

Available: https://www.scientificamerican.

com/article/quantum-computing-is-the-

future-and-schools-need-to-catch-up/

NOVEL ARCHITECTURES

70 Computing in Science & Engineering November/December 2022

description languages” a software-like feeling. This inc-
ludes the use of more generic application programming
interfaces (APIs) and libraries of computations. The
implementation of reasonably long-lasting quantum
memory is also a key piece that is missing in this picture
and that currently forces the start of every computation
to long strings of operands just to initialize the states to
the data that are going to be operated on.

CONCLUSION
Despite the many challenges, quantum computing holds
real potential for accelerating certain applications, such
as machine learning applications, combinatorial and opti-
mization problems, and quantum molecular simulation.
Proof of quantum acceleration for practical, real-world
cases will most likely have to wait until the post-NISQ era
is reached, with a higher number of qubits and the inclu-
sion of error-correction protocols. Most companies are
looking at a five-year timeline,11 primarily depending on
technology advances.

Meanwhile, a solid stack of interfaces needs to be
developed to support these future applications. In this
article, we discussed how the D&PP of quantum applica-
tions entails a series of classical steps that can quickly
become unmanageable, even more so given that the
number of qubits and quantum gates required often can
grow exponentially with the size of the problem—without
even considering error-correction mechanisms. The good
news is that these are not new problems. Scheduling,
mapping, routing, allocation, and optimization problems
are common in other fields, and heuristics can be applied
to approximately solve these problems more efficiently.
An efficient programming paradigm is yet to be defined,
but the field can leverage the decades of experience of
the HPC community at creating interfaces that bridge
knowledge gaps and that conceal the intricacies and
challenges of the physical implementation.

ACKNOWLEDGMENTS
The second author would like to thank the Center for
Geophysical Forecasting at NTNU and RCN (NFR Pro-
ject 309960) for its support during the preparation of
this article.

REFERENCES
1. S. Lopez Alarcon, C. Merkel, M. Hoffnagle, S. Ly, and

A. Pozas-Kerstjens, “Accelerating the training of

single-layer binary neural networks using the HHL

quantum algorithm,” 2022. [Online]. Available: https://

arxiv.org/abs/2210.12707

2. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum

approximate optimization algorithm,” 2014,

arXiv:1411.4028.

3. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and

M. D. Lukin, “Quantum approximate optimization

algorithm: Performance, mechanism, and

implementation on near-term devices,” Physical

Rev. X, vol. 10, no. 2, Jun. 2020, Art. no. 021067,

doi: 10.1103/PhysRevX.10.021067.

4. A. Haverly and S. Lopez Alarcon. “A comparison of

quantum algorithms for the maximum clique

problem.” Medium. Accessed: May 7, 2023. [Online].

Available: https://medium.com/xanaduai/a-

comparison-of-quantum-algorithms-for-the-maximum-

clique-problem-4cd8984cea59

5. F. G. Fuchs, K. O. Lye, H. Møll Nilsen, A. J. Stasik,

and G. Sartor, “Constraint preserving mixers for the

quantum approximate optimization algorithm,”

Algorithms, vol. 15, no. 6, Jun. 2022, Art. no. 202,

doi: 10.3390/a15060202.

6. J. Preskill, “Quantum computing in the NISQ era

and beyond,” Quantum, vol. 2, Aug. 2018, Art. no. 79,

doi: 10.22331/q-2018-08-06-79.

7. L. Riesebos et al., “Quantum accelerated computer

architectures,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), 2019, pp. 1–4, doi: 10.1109/ISCAS.2019.

8702488.

8. M. Schulz, M. Ruefenacht, D. Kranzlmuller, and

L. Schulz, “Accelerating HPC with quantum

computing: It is a software challenge too,” Comput.

Sci. Eng., vol. 24, no. 4, pp. 60–64, Jul./Aug. 2022,

doi: 10.1109/MCSE.2022.3221845.

9. “IBM quantum composer.” IBM Quantum. Accessed:

May 7, 2023. [Online]. Available: https://quantum-

computing.ibm.com/composer/docs/iqx/

10. “Compute resources.” IBM Quantum. Accessed:

May 7, 2023. [Online]. Available: https://quantum-

computing.ibm.com/services/resources

11. “IBM’s roadmap for scaling quantum technology.”

IBM. Accessed: May 7, 2023. [Online]. Available:

https://www.ibm.com/blog/

SONIA LOPEZ ALARCON is an associate professor in com-

puter engineering at Rochester Institute of Technology, Roch-

ester, NY, 14623, USA. Contact her at slaeec@rit.edu.

ANNE C. ELSTER is a professor in computer science at

the Norwegian University of Science and Technology in

Trondheim, NO-7491, Norway. Contact her at anne.elster@

gmail.com.

NOVEL ARCHITECTURES

November/December 2022 Computing in Science & Engineering 71

20	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

24mcse04-schulz-3221845.3d (Style 7) 02-01-2023 15:31

EDITORS: Kathryn Mohror, mohror1@llnl.gov
John M. Shalf, JShalf@lbl.gov

DEPARTMENT: LEADERSHIP COMPUTING

Accelerating HPCWith Quantum
Computing: It Is a Software Challenge Too
Martin Schulz , Technical University of Munich, 80333, Munich, Germany

Martin Ruefenacht , Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities,
85748, Garching near Munich, Germany

Dieter Kranzlm€uller , Ludwig–Maximilians–Universit€at M€unchen, 80538, Munich, Germany

Laura Brandon Schulz , Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities,
85748, Garching near Munich, Germany

With quantum computing (QC) maturing, high-performance computing (HPC)
centers are already preparing to host early-phase production versions of such
systems. Unlike their experimental predecessors in physics laboratories, with a very
small and dedicated user community, this next generation of systems needs to
serve a wider user community and must work in concert with existing HPC systems
and software stacks. This article describes our vision for an integrated ecosystem
that combines existing HPC and evolving quantum software stacks into a single
system to enable a common and continuous user experience. This integration
comes with several major challenges as quantum systems pose significantly
different requirements including increased need for compilation at run time, long
optimization times, statistical evaluations of results, and the need to work with few
centralized resources. To overcome these challenges, new scheduling approaches
on the HPC side and new programming approaches on the QC side are required.

MOTIVATION

Quantum computing (QC), i.e., the idea of
using quantum states and transformations
to express computation, is taking shape.

After decades of experimentation in physics laborato-
ries, many large-scale research efforts in academia,
laboratories, and industry world-wide have started to
target usable and accessible quantum computing
devices. These efforts explore a wide range of underly-
ing technologies from superconducting qubits, spin-
qubits, ion traps to neutral atoms, to name just a few.

While these developments are highly promising, it is
becoming clear that quantum computing systems will

not replace existing compute architectures; they more
likely augment them by accelerating certain suitable
tasks or kernels. The computation of other kernels and
work needed for I/O and workflow management will (at
least for the foreseeable future) remain bound to the
existing compute approaches. Additionally, quantum
computing relies on several compute-intensive tasks,
which require support from HPC systems. Consequently,
QC must seamlessly become part of HPC, enabling com-
mon user access and experience.

In order to enable the needed integration, it will be
essential to not only develop QC hardware and physi-
cally connect it to HPC systems, which is currently the
main focus for several groups with approaches ranging
from loosely coupled cloud or modular access,1,2 to near
quantum compute options,3 to actual deep integration
targeting low-latency access.4 We also need to focus on
a continuous software stack that enables a user to har-
ness the combined computational capabilities of both

1521-9615� 2023 IEEE
Digital Object Identifier 10.1109/MCSE.2022.3221845
Date of current version 4 January 2023.

Computing in Science & Engineering Published by the IEEE Computer Society July/August 202260

EDITORS: Kathryn Mohror, mohror1@llnl.gov
John M. Shalf, JShalf@lbl.gov

DEPARTMENT: LEADERSHIP COMPUTING

Accelerating HPC With
Quantum Computing: It Is a Software
Challenge Too
Martin Schulz , Technical University of Munich, 80333, Munich, Germany

Martin Ruefenacht , Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities,
85748, Garching near Munich, Germany

Dieter Kranzlmüller , Ludwig–Maximilians–Universität München, 80538, Munich, Germany

Laura Brandon Schulz , Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and
Humanities, 85748, Garching near Munich, Germany

With quantum computing (QC) maturing, high-performance computing (HPC) centers
are already preparing to host early-phase production versions of such systems. Unlike
their experimental predecessors in physics laboratories, with a very small and dedicated
user community, this next generation of systems needs to serve a wider user community
and must work in concert with existing HPC systems and software stacks. This article
describes our vision for an integrated ecosystem that combines existing HPC and evolving
quantum software stacks into a single system to enable a common and continuous user
experience. This integration comes with several major challenges as quantum systems
pose significantly different requirements including increased need for compilation at run
time, long optimization times, statistical evaluations of results, and the need to work with
few centralized resources. To overcome these challenges, new scheduling approaches
on the HPC side and new programming approaches on the QC side are required.

This article originally
appeared in

vol. 24, no. 4, 2022

www.computer.org/computingedge� 21

LEADERSHIP COMPUTING

24mcse04-schulz-3221845.3d (Style 7) 02-01-2023 15:31

system components in a seamless fashion. In this arti-
cle, we describe our efforts toward this combined soft-
ware stack: we build on novel features for the HPC
software side, particularly dynamic adaptivity and mal-
leability across all software components and modern
workflow features. On the QC side, we start with the
standard programming packages available to QC
researchers, such as Cirq5 and Qiskit,6 and link them to
the HPC resources management as well as augment
their back-ends to efficiently and transparently onload
compute intensive tasks back to the HPC system, ide-
ally using the HPC workload manager to identify other-
wise unused resources.

Combining these two worlds, however, is not trivial,
as they work on radically different assumptions. The
HPC world is trimmed for low latency and precompila-
tion; on the other hand, QC systems require a much
larger runtime component. The latter is caused by com-
piling at runtime as input arguments are likely to change
the intended quantum program (i.e., the generated cir-
cuits). Further, the computation needed to compile and
map to the final topology of theQC system is substantial.

Also, QC systems only target single-user operations
and offer limited support for multiuser operations.
Therefore, integration requires a careful redesign of the
runtime component to enable efficient overlap of QC
executions from multiple users and to mitigate idle
times caused by complex preparation tasks.

Our framework addresses these challenges by add-
ing the needed resource isolation coupled with QC
operation interleaving and integrates QC execution
scheduling with the ability to onload work needed to
drive the QC execution back to the HPC system effi-
ciently. Our approach bridges the software stacks from
the two worlds, enabling a single system abstraction
for the end user while ensuring high system efficiency.

We are implementing our vision as part of a series of
European HPC Software Stack projects and with the
Munich Quantum Valley (MQV), a large research initia-
tive driving the development of three different quan-
tum computing technologies with a common software
stack. The resulting software will ultimately drive the
usage of QC technologies at the Leibniz Supercomput-
ing Centre (LRZ) and compute centers world-wide.

THE ANATOMY OF HPC VERSUS
QC SOFTWARE STACKS

Seamless integration needs to support both the HPC
users requiring a traditional HPC software stack and
the QC users accustomed to the existing stand-alone
QC development environments, as well as emerging
user groups targeting hybrid HPCQC operations with

direct access to QC systems from within HPC sys-
tems. Consequently, we need to, at a minimum, sup-
port the existing HPC and QC software stacks while
also adding support for integrated usage.

A key challenge comes from existing software
stacks; the two types of systems are radically different
in structure, approach, and user interfaces. This disparity
is rooted in the maturity and current scale of the differ-
ent system components and the diverging requirements
stemming from the fundamentally different technolo-
gies. Consequently, simply integrating one stack into the
other is neither possible nor desirable. Instead, we will
build on state-of-the-art software stacks for HPC and
QC, respectively, and work to provide an efficient link
between the stacks offering the needed integration. This
will ensure a solution that offers the best of both worlds
while offering a cohesive, integrated view of the system
for the users and developers.

HPC Software Stacks
On the HPC side, we build on top of widely available
technology forming the software stacks as they are
now available on most HPC systems. Examples for this
are HPC enabled stacks, such as OpenHPC,a the E4S
initiative,b or the DEEP-SEA stack developed for the
European exascale systems,c as they are used in most
large-scale HPC centers. These include state-of-the-art
components for compilers, runtimes, parallel program-
ming abstractions including MPI7 and OpenMP,8 sup-
port for accelerators following the evolution of system
architectures, as well as a wide range of libraries to
support efficient application development.

HPC stacks typically target the optimization of
execution time by implementing as much work as
possible at compile time (compilation, optimization,
job preparation, etc.) and, with that, reducing runtime
overheads. The latter is then limited to scheduling
operations at the job level and actual execution over-
heads. For this reason, compiled languages such as
C, C++, or Fortran are dominant, while interpreted
languages play a minor role, e.g., only for coarse-
grained workflow orchestration. Further, HPC soft-
ware stacks typically offer system access via com-
mand-line driven batch execution, enabling users
direct and fine-grained control of their execution.

QC Software Stacks
Quantum computing stacks, on the other hand, fea-
ture a radically different approach to programming

ahtt_ps://openhpc.community/
bhtt_ps://e4s-project.github.io/
chtt_ps://www.deep-projects.eu/

July/August 2022 Computing in Science & Engineering 61

LEADERSHIP COMPUTING

24mcse04-schulz-3221845.3d (Style 7) 02-01-2023 15:31

EDITORS: Kathryn Mohror, mohror1@llnl.gov
John M. Shalf, JShalf@lbl.gov

DEPARTMENT: LEADERSHIP COMPUTING

Accelerating HPCWith Quantum
Computing: It Is a Software Challenge Too
Martin Schulz , Technical University of Munich, 80333, Munich, Germany

Martin Ruefenacht , Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities,
85748, Garching near Munich, Germany

Dieter Kranzlm€uller , Ludwig–Maximilians–Universit€at M€unchen, 80538, Munich, Germany

Laura Brandon Schulz , Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities,
85748, Garching near Munich, Germany

With quantum computing (QC) maturing, high-performance computing (HPC)
centers are already preparing to host early-phase production versions of such
systems. Unlike their experimental predecessors in physics laboratories, with a very
small and dedicated user community, this next generation of systems needs to
serve a wider user community and must work in concert with existing HPC systems
and software stacks. This article describes our vision for an integrated ecosystem
that combines existing HPC and evolving quantum software stacks into a single
system to enable a common and continuous user experience. This integration
comes with several major challenges as quantum systems pose significantly
different requirements including increased need for compilation at run time, long
optimization times, statistical evaluations of results, and the need to work with few
centralized resources. To overcome these challenges, new scheduling approaches
on the HPC side and new programming approaches on the QC side are required.

MOTIVATION

Quantum computing (QC), i.e., the idea of
using quantum states and transformations
to express computation, is taking shape.

After decades of experimentation in physics laborato-
ries, many large-scale research efforts in academia,
laboratories, and industry world-wide have started to
target usable and accessible quantum computing
devices. These efforts explore a wide range of underly-
ing technologies from superconducting qubits, spin-
qubits, ion traps to neutral atoms, to name just a few.

While these developments are highly promising, it is
becoming clear that quantum computing systems will

not replace existing compute architectures; they more
likely augment them by accelerating certain suitable
tasks or kernels. The computation of other kernels and
work needed for I/O and workflow management will (at
least for the foreseeable future) remain bound to the
existing compute approaches. Additionally, quantum
computing relies on several compute-intensive tasks,
which require support from HPC systems. Consequently,
QC must seamlessly become part of HPC, enabling com-
mon user access and experience.

In order to enable the needed integration, it will be
essential to not only develop QC hardware and physi-
cally connect it to HPC systems, which is currently the
main focus for several groups with approaches ranging
from loosely coupled cloud or modular access,1,2 to near
quantum compute options,3 to actual deep integration
targeting low-latency access.4 We also need to focus on
a continuous software stack that enables a user to har-
ness the combined computational capabilities of both

1521-9615� 2023 IEEE
Digital Object Identifier 10.1109/MCSE.2022.3221845
Date of current version 4 January 2023.

Computing in Science & Engineering Published by the IEEE Computer Society July/August 202260

22	 ComputingEdge� August 2024

LEADERSHIP COMPUTING

24mcse04-schulz-3221845.3d (Style 7) 02-01-2023 15:31

and computing. QC programs, typically in the form of
quantum circuits, are defined at runtime using inter-
preted languages, such as Python, for convenience.
Typical programming front-ends are frameworks such
as Qiskit6 or Cirq,5 which use Python as their base.
Programs are then assembled and translated into
lower level representations at runtime. The latter is
driven by the property of QC programs that changing
parameters influences the structure and composition
of the program and hence requires new compilations.

This approach works for current scenarios, where
individual users access a specific quantum system to
execute a particular circuit. As circuits are small, usage
is typically interactive and preparation time for a partic-
ular problem is ignored as it does not contribute to over-
all execution time. This, however, changes when users
intend to run larger as well as multiple QC applications
with only minor parameter changes triggering frequent
recompilation and optimization. To maximize system
utilization, the resource QC system, which is rare com-
pared to the typical abundance of HPC nodes, needs to
be time and space shared; this prohibits the currently
used single-user allocationmodel.

Gaps and Challenges
To combine these two software stacks with their radi-
cally different properties, we must include the inher-
ent runtime component of the QC stack and attempt
to hide it as much as possible during the execution.
This requires both novel scheduling techniques to
overlap QC circuit compilation and execution, to
overlap executions from multiple users, and novel
approaches to reduce the QC circuit generation and
optimization times by parallelizing and onloading this
work back to the HPC system.

Additionally, it will be important to unify the system
software environments, especially with respect to sys-
tem management, monitoring, and scheduling in order
to enable an efficient and stable operation of the joint
HPCQC system. This requires new developments to
fuse themonitoring environments available in the differ-
ent systems, an integrated scheduling approach com-
bining the coarse-grained batch scheduling with the
fine-grained scheduling of individual QC experiments,
and a joint management concept for the involved nodes
or subsystems. This will ensure that system administra-
tors can monitor and manage the overall system as one
entity and using a single set of consistent policies.

LINKING THE HPC AND QC
SOFTWARE STACKS

As discussed in the previous section, we need to build
on top of the existing software stacks for both HPC
and QC, to ensure continuity for users, but at the same
time we also need to provide an integrating bridge. This
concept is illustrated in Figure 1, showing the interac-
tions of the two software stacks for HPC and QC, and
the connection to the underlying shared system envi-
ronment. In the following, we will discuss the interac-
tions between the components in more details.

Support for Offloading
The most natural way of integration is to allow HPC
systems to push workloads to the QC system, a mech-
anism we refer to as “offloading” in congruence with
offloading mechanisms in other accelerators. This
requires the ability to specify quantum computation
from within HPC programs, which is challenging due

FIGURE 1. Integrating the HPC and QC software environments as well as the overall system environments to reach a seamless

hybrid HPCQC system with a combined workflow.

62 Computing in Science & Engineering July/August 2022

LEADERSHIP COMPUTING

www.computer.org/computingedge� 23

LEADERSHIP COMPUTING

24mcse04-schulz-3221845.3d (Style 7) 02-01-2023 15:31

and computing. QC programs, typically in the form of
quantum circuits, are defined at runtime using inter-
preted languages, such as Python, for convenience.
Typical programming front-ends are frameworks such
as Qiskit6 or Cirq,5 which use Python as their base.
Programs are then assembled and translated into
lower level representations at runtime. The latter is
driven by the property of QC programs that changing
parameters influences the structure and composition
of the program and hence requires new compilations.

This approach works for current scenarios, where
individual users access a specific quantum system to
execute a particular circuit. As circuits are small, usage
is typically interactive and preparation time for a partic-
ular problem is ignored as it does not contribute to over-
all execution time. This, however, changes when users
intend to run larger as well as multiple QC applications
with only minor parameter changes triggering frequent
recompilation and optimization. To maximize system
utilization, the resource QC system, which is rare com-
pared to the typical abundance of HPC nodes, needs to
be time and space shared; this prohibits the currently
used single-user allocationmodel.

Gaps and Challenges
To combine these two software stacks with their radi-
cally different properties, we must include the inher-
ent runtime component of the QC stack and attempt
to hide it as much as possible during the execution.
This requires both novel scheduling techniques to
overlap QC circuit compilation and execution, to
overlap executions from multiple users, and novel
approaches to reduce the QC circuit generation and
optimization times by parallelizing and onloading this
work back to the HPC system.

Additionally, it will be important to unify the system
software environments, especially with respect to sys-
tem management, monitoring, and scheduling in order
to enable an efficient and stable operation of the joint
HPCQC system. This requires new developments to
fuse themonitoring environments available in the differ-
ent systems, an integrated scheduling approach com-
bining the coarse-grained batch scheduling with the
fine-grained scheduling of individual QC experiments,
and a joint management concept for the involved nodes
or subsystems. This will ensure that system administra-
tors can monitor and manage the overall system as one
entity and using a single set of consistent policies.

LINKING THE HPC AND QC
SOFTWARE STACKS

As discussed in the previous section, we need to build
on top of the existing software stacks for both HPC
and QC, to ensure continuity for users, but at the same
time we also need to provide an integrating bridge. This
concept is illustrated in Figure 1, showing the interac-
tions of the two software stacks for HPC and QC, and
the connection to the underlying shared system envi-
ronment. In the following, we will discuss the interac-
tions between the components in more details.

Support for Offloading
The most natural way of integration is to allow HPC
systems to push workloads to the QC system, a mech-
anism we refer to as “offloading” in congruence with
offloading mechanisms in other accelerators. This
requires the ability to specify quantum computation
from within HPC programs, which is challenging due

FIGURE 1. Integrating the HPC and QC software environments as well as the overall system environments to reach a seamless

hybrid HPCQC system with a combined workflow.

62 Computing in Science & Engineering July/August 2022

LEADERSHIP COMPUTING

24mcse04-schulz-3221845.3d (Style 7) 02-01-2023 15:31

to the different programming approaches. To solve
this challenge, we are developing new techniques to
1) enable Python-driven front-ends and integrate them
into existing offload approaches such as OpenMP and
2) use noninterpreted approaches directly in C/C++,
similar to the XACC approach.9

In all cases, the quantum environments require a
compilation on the fly, i.e., at runtime, as input param-
eters will (in most cases) affect the required circuit, as
initial conditions need to be directly encoded. Such a
compilation can be trivial in the naive case. However,
in most cases, it requires intensive computations to
achieve the needed optimizations and mapping to the
underlying qubit topologies on the quantum devices.
This introduces extra latencies, which will block the
calling entity. While this is acceptable for individual
experiments through direct access from frameworks
like Qiskit, it causes substantial delays when used
from within HPC jobs. In the latter case, a large num-
ber of nodes are held until the translation and optimi-
zation is complete, causing unacceptable idle times.

Support for Onloading
In order to combat the challenges identified above, we
need to find ways to speed up compilations and optimi-
zation of quantum circuits. Using the connected HPC
resources is a promising approach but requires 1) the
ability to send optimization requests back to the HPC
system and 2) novel quantum circuit optimizers, which
are parallelized. The latter requires quantum develop-
ment environments to be implemented on compiled
platforms with the necessary parallel structures. We are
working on new compilers and optimizers that enable
such optimization. Our current targets are implementa-
tions in Rust, which combine safe coding practices and
efficient threading models for parallelization.

Common Scheduling Mechanisms
A common issue for both onloading versus offloading is
efficient scheduling: when to execute which QC compu-
tation, how to schedule compilation steps versus exe-
cuting on the actual QC system, and how to onload QC
operational considerations back to the HPC systems.
Such scheduling needs to be resource-driven, i.e., the
execution from multiple users must be interleaved and
compilation of quantum circuits must be pushed back
to the HPC system looking for idle resources, e.g., for
nodes that actually issued the quantum computation
and may be idle until the results return.

CONCLUSIONS
Quantum computing is a highly promising techno-
logy that has the potential to accelerate certain

computations substantially. However, QC must be
integrated into the context of existing HPC ecosys-
tems, and for this we need to carefully consider
requirements and changes to the respective software
stacks, too.

This article presents our vision for a combined HPC
and QC software stack. It builds on existing software
stacks from HPC and QC, and extends them to ensure
tight integration. We provide extensions to include
scheduling components for QC-enabled portions on
the HPC side. At the same time, on the QC side, we
add programming models and the ability to push oper-
ations to the HPC side to speed up operations. For
this, we leverage recent developments in the HPC
software stack for malleability to integrate the more
dynamic nature of QC computations.

The result is an efficient link between the HPC and
QC software stacks, allowing them to leverage each
other and achieve efficient hybrid execution. Ulti-
mately, this will form the needed bridge between the
two worlds and enable efficient HPCQC operations.
We are pursuing this direction both as part of several
European software stack projects and the MQV with
the goal of providing the first truly integrated HPCQC
software stack to be deployed in production.

ACKNOWLEDGMENTS
This work was supported in part by the German Federal
Ministry for Education and Research under Grant
13N15689 (DAQC), Grant 13N16063 (Q-Exa), Grant
13N16188 (MUNIQC-SC), and Grant 13N16078 (MUNIQC-
ATOMS), in part by the German Federal Ministry for
Economic Affairs and Climate Action under Grant
01MQ22004 C (QuaST), as well as the Bavarian StateMin-
istry of Science and the Arts as part of Munich Quantum
Valley (MQV).

REFERENCES
1. V. Bartsch et al., “QC | HPC: Quantum for HPC,” Oct.

2021, doi: 10.5281/zenodo.5555960.

2. D. Binosi et al., “European quantum computing &

simulation infrastructure,” 2022. [Online]. Available:

https://qt.eu//app/uploads/2022/02/20220202_HPC-

QCS-JWP-final.pdf

3. M. P. Johansson, E. Krishnasamy, N. Meyer, and

C. Piechurski, “Quantum computing–a European

perspective,” Sep. 2021, doi: 10.5281/zenodo.5547408.

4. M. Ruefenacht et al., “Bringing quantum acceleration to

supercomputers,” 2022. [Online]. Available: https://

meetiqm.com/uploads/documents/IQM_HPC-QC-

Integration-Whitepaper.pdf

July/August 2022 Computing in Science & Engineering 63

LEADERSHIP COMPUTING

24	 ComputingEdge� August 2024

LEADERSHIP COMPUTING

24mcse04-schulz-3221845.3d (Style 7) 02-01-2023 15:31

5. C. Developers, “Cirq,” Apr. 2022, See full list

of authors on Github: https://github. com/

quantumlib/Cirq/graphs/contributors, doi: 10.5281/

zenodo.6599601.

6. M. S. Anis et al., “Qiskit: An open-source framework for

quantum computing,” 2019, doi: 10.5281/zenodo.2562111.

[Online]. Available: https://zenodo.org/record/2562111#.

Y4fNnOzMLsI

7. MessagePassing InterfaceForum,MPI: A.Message-Passing

Interface StandardVersion 4.0, Jun. 2021. [Online]. Available:

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

8. OpenMP Architecture Review Board, “OpenMP

application program interface version 5.2,” Nov. 2021.

[Online]. Available: https://www.openmp.org/wp-

content/uploads/OpenMP-API-Specification-5-2.pdf

9. A. McCaskey, D. Lyakh, E. Dumitrescu, S. Powers,

and T. Humble, “Xacc: A system-level

software infrastructure for heterogeneous

quantum-classical computing,” Quantum Sci.

Technol., vol. 5, no. 2, 2020, Art. no. 024002,

doi: 10.1088/2058-9565/ab6bf6.

MARTIN SCHULZ is a full professor of computer architecture

andparallel systems in theDepartment of Computer Engineering,

Technical University of Munich, 80333, Munich, Germany, and

is on the Board of Directors at the Leibniz Supercomputing

Centre, Bavarian Academy of Sciences and Humanities, 85748,

Garching, Germany. Contact him at https://www.ce.cit.tum.de/

caps/mitarbeiter/martin-schulz/ or schulzm@cit.tum.de.

MARTIN RUEFENACHT is a researcher for HPCQC integra-

tion in the Department of Quantum Computing and Technol-

ogies, Leibniz Supercomputing Centre, Bavarian Academy of

Sciences and Humanities, 85748, Garching, Germany. Con-

tact him at Martin.Ruefenacht@lrz.de.

DIETER KRANZLM€ULLER is the chairman of the Board of Direc-

tors, Leibniz Supercomputing Centre, Bavarian Academy of Sci-

ences and Humanities, 85748, Garching, Germany, and a full

professor for Communication Systems and System Program-

ming, Institute of Informatics, Ludwig-Maximilians-Universit€at

M€unchen, 80538, Munich, Germany. Contact him at https://

www.mnm-team.org/~kranzlm/ or dieter.kranzlmueller@lrz.de.

LAURA SCHULZ is the head of strategic development and

partnerships as well as the head of the Department of Quan-

tum Computing and Technologies, Leibniz Supercomputing

Centre, Bavarian Academy of Sciences and Humanities,

85748, Garching, Germany. Contact her at schulz@lrz.de.

64 Computing in Science & Engineering July/August 2022

LEADERSHIP COMPUTING

Write for the IEEE Computer
Society’s authoritative

computing publications
and conferences.

GET PUBLISHED
www.computer.org/cfp

IEEE COMPUTER SOCIETY

Call for Papers

PURPOSE: Engaging professionals from all areas of computing,
the IEEE Computer Society sets the standard for education
and engagement that fuels global technological advancement.
Through conferences, publications, and programs, IEEE CS
empowers, guides, and shapes the future of its members, and
the greater industry, enabling new opportunities to better serve
our world.
OMBUDSMAN: Contact ombudsman@computer.org.
CHAPTERS: Regular and student chapters worldwide provide
the opportunity to interact with colleagues, hear technical
experts, and serve the local professional community.

PUBLICATIONS AND ACTIVITIES
Computer: The flagship publication of the IEEE Computer
Society, Computer, publishes peer-reviewed technical content that
covers all aspects of computer science, computer engineering,
technology, and applications.
Periodicals: The society publishes 12 magazines, 18 journals
Conference Proceedings & Books: Conference Publishing
Services publishes more than 275 titles every year.
Standards Working Groups: More than 150 groups produce
IEEE standards used throughout the world.
Technical Communities: TCs provide professional interaction
in more than 30 technical areas and directly influence computer
engineering conferences and publications.
Conferences/Education: The society holds more than 215
conferences each year and sponsors many educational activities,
including computing science accreditation.
Certifications: The society offers three software developer
credentials.

AVAILABLE INFORMATION
To check membership status, report an address change, or obtain
information, contact help@computer.org.

IEEE COMPUTER SOCIETY OFFICES

WASHINGTON, D.C.:
2001 L St., Ste. 700,
Washington, D.C. 20036-4928
Phone: +1 202 371 0101
Fax: +1 202 728 9614
Email: help@computer.org

LOS ALAMITOS:
10662 Los Vaqueros Cir.,
Los Alamitos, CA 90720
Phone: +1 714 821 8380
Email: help@computer.org

IEEE CS EXECUTIVE STAFF
Executive Director: Melissa Russell
Director, Governance & Associate Executive Director:
Anne Marie Kelly
Director, Conference Operations: Silvia Ceballos
Director, Information Technology & Services: Sumit Kacker
Director, Marketing & Sales: Michelle Tubb
Director, Membership Development: Eric Berkowitz
Director, Periodicals & Special Projects: Robin Baldwin

IEEE CS EXECUTIVE COMMITTEE
President: Jyotika Athavale
President-Elect: Hironori Washizaki
Past President: Nita Patel
First VP: Grace A. Lewis
Second VP: Nils Aschenbruck
Secretary: Mrinal Karvir
Treasurer: Darren Galpin
VP, Member & Geographic Activities: Kwabena Boateng
VP, Professional & Educational Activities: Cyril Onwubiko
VP, Publications: Jaideep Vaidya
VP, Standards Activities: Edward Au
VP, Technical & Conference Activities: Terry Benzel
2023–2024 IEEE Division VIII Director: Leila De Floriani
2024–2025 IEEE Division V Director: Christina M. Schober
2024 IEEE Division V Director-Elect: Thomas M. Conte

IEEE CS BOARD OF GOVERNORS
Term Expiring 2024:
Saurabh Bagchi, Charles (Chuck) Hansen, Carlos E. Jimenez-
Gomez, Daniel S. Katz, Shixia Liu, Cyril Onwubiko

Term Expiring 2025:
İlkay Altintaş, Mike Hinchey, Joaquim Jorge, Rick Kazman,
Carolyn McGregor, Andrew Seely

Term Expiring 2026:
Megha Ben, Terry Benzel, Mrinal Karvir, Andreas Reinhardt,
Deborah Silver, Yoshiko Yasuda

IEEE EXECUTIVE STAFF
Executive Director and COO: Sophia Muirhead
General Counsel and Chief Compliance Officer:
Anta Cisse-Green
Chief Human Resources Officer: Cheri N. Collins Wideman
Managing Director, IEEE-USA: Russell Harrison
Chief Marketing Officer: Karen L. Hawkins
Managing Director, Publications: Steven Heffner
Staff Executive, Corporate Activities: Donna Hourican
Managing Director, Member and Geographic Activities:
Cecelia Jankowski
Chief of Staff to the Executive Director: Kelly Lorne
Managing Director, Educational Activities: Jamie Moesch
IEEE Standards Association Managing Director: Alpesh Shah
Chief Financial Officer: Thomas Siegert
Chief Information Digital Officer: Jeff Strohschein
Managing Director, Conferences, Events, and Experiences:
Marie Hunter
Interim Managing Director, Technical Activities: Ken Gilbert

IEEE OFFICERS
President & CEO: Thomas M. Coughlin
President-Elect: Kathleen Kramer
Past President: Saifur Rahman
Director & Secretary: Forrest D. Wright
Director & Treasurer: Gerardo Barbosa
Director & VP, Publication Services & Products: Sergio
Benedetto
Director & VP, Educational Activities: Rabab Kreidieh Ward
Director & VP, Membership and Geographic Activities:
Deepak Mathur
Director & President, Standards Association:
James E. Matthews III
Director & VP, Technical Activities: Manfred J. Schindler
Director & President, IEEE-USA: Keith A. Moore

revised 29 May 2024

www.computer.org

26	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

EDITOR: Tim Menzies, North Carolina State University, tim@menzies.us

DEPARTMENT: SE FOR AI

Low Code for Smart
Software Development
Jordi Cabot and Robert Clarisó

To tame complexity for many applications,
including artificial intelligence (AI)-based sys-
tems, software engineers typically choose to

work at a higher abstraction level,1 where irrelevant
technical details can be ignored, at least during the
initial development phases. Low-code platforms are
the latest incarnation of this trend, promising to accel-
erate software delivery by dramatically reducing the
amount of hand coding required.

Low code can be seen as a continuation of
other model-based approaches.2 This includes the
well-known model-driven architecture by the Object
Management Group (https://www.omg.org/mda/). The
benefits of low code are varied, ranging from faster
prototyping and development to improved under-
standing, reusability, and maintenance.3,4,5 Low-code
platforms are especially promising in the current soft-
ware landscape, where many software systems embed

AI components, mostly based on ML techniques. These
benefits are widely recognized, so much that low-code
platforms are the now the basis for start-ups reaching
billion-dollar valuations (see examples in the following).

Such AI-enhanced ML-enabled systems (also
called smart software) give rise to unique software
engineering challenges;6,7,8 e.g., AI elements are hard
to specify,9 architect, test, and verify.10 Organizations
must adapt to leverage them.11,12 Additional complex-
ity arises from all the potential interactions between
the AI components and the “traditional” ones (since
we need to specify how they collaborate, test that they
behave consistently, and analyze their interdependen-
cies). Accordingly, in this article, we offer a “wish list”
that outlines what developers need to watch for in
low-code tools for smart software. Also, we present
work on an architecture (see Figure 1) that is one way
to satisfy items on that wish list.

STATE OF THE ART
Organizations trying to offer AI products and services
are constrained by the challenges in attracting skilled

Digital Object Identifier 10.1109/MS.2022.3211352

Date of current version: 23 December 2022

This article originally
appeared in

vol. 40, no. 1, 2023

FROM THE EDITOR
The more we know about patterns in code, the better we can support those patterns. In this article, Jordi
Cabot and Robert Clarisó discuss the promise and perils of low-code environments that allow program-
mers and nonprogrammers alike to quickly deliver artificial intelligence (AI)-enhanced software solutions.
They offer a “wish list” that outlines what developers need to watch for in low-code tools for smart software.

Got anything else you want to say about software engineering (SE) plus AI? For SE-plus-AI applica-
tions, do you have a surprising result or industrial experience, something that challenges decades of
conventional thinking in SE? If so, e-mail a one-paragraph synopsis to tim@menzies.us [use the subject
line “SE for AI: Idea: (Your Idea)”]. If that looks interesting, I’ll ask you to submit a 1,000–2,400-word article
(where each graph, table, and figure is worth 250 words) for review for IEEE Software. Note: heresies
are more than welcome (if supported by well-reasoned industrial experiences, case studies, and other
empirical results).—Tim Menzies

www.computer.org/computingedge� 27

SE FOR AI

talent. In a recent survey,13 83% of companies identi-
fied AI as a strategic priority but had problems enroll-
ing talent. Another survey14 reported that 40% of com-
panies claim that AI technologies and expertise are too
expensive. For instance, the U.S. Bureau of Labor Sta-
tistics15 reported that the current mean average wage
for data scientists in the United States was US$108,660.
As a result, companies are looking into tools and tech-
nologies to 1) streamline the creation and management
of AI products and services and 2) enable contributions
from professionals without a strong AI background.

Low-code tools could be the solution to this prob-
lem. The number of low-code tools keeps growing.16
Well-known examples include Mendix, OutSystems,
Appian, and GeneXus, all with a significant user base
(for example, OutSystems, Appian, and Mendix have
all disclosed surpassing $100 million in annual recur-
ring revenue), recent acquisitions (Mendix has been
acquired by Siemens and GeneXus by Globant), and
funding rounds (OutSystems raised more than half a
billion euros in the past five years, with a US$9.5 bil-
lion valuation in the last round). Moreover, all major
tech companies, including the “Big Five,” have their
own offering in this space, mostly oriented to help
clients use their own tech stack and services when
building new applications. Some vendors focus on
vertical domains (e.g., human resources and customer

relationship management automation) but most
offer a generic solution for the horizontal domain of
web-based and mobile data-intensive applications.

But, perhaps surprisingly, low-code tools have,
so far, paid little attention to the new breed of smart
software systems. Support for AI features is mostly
constrained to embed and call an external AI service
from one of the web components or back-end ser-
vices. Such AI services are not modeled as part of the
application. Instead, they are developed and deployed
outside the “main” software application and integrated
as black-box components. To minimize the amount
of glue code required for this integration, some tools
offer predefined integrations with specific providers.
For instance, for a low-code tool to be able to work
with Google’s Dialogflow, creating a chatbot for a web
application would require creating and deploying the
chatbot logic with Dialogflow and using the low-code
tool connector to provide the Dialogflow agent with
credentials to display the bot on the desired webpage.
Similarly, you could call other types of AI components
and pretrained ML models, e.g., for computer vision,
text classification, and sentiment analysis.

While, with some manual effort, developers can
make it work, this solution is far from ideal. The soft-
ware specification and code are scattered, and there
is no visibility (or traceability and explainability) of

Smart So�ware Model

Data
Domain Knowledge,

Goals, and Ethical Concerns Quality Dashboard

Model Editor Infrastructure Components

Explanations

Provides

Monitoring

Testing

Specifies Receives

Code
Generation

Cloud
Services

Local
Packages

Data Parameters

ML
Model

Monitoring and
Feedback

Code

Traditional
So�ware
Model

Smart
Back End

Smart
Front End

AI Quality
Properties

Traditional So�ware Components

Deployment Component

AI Platforms

Explainability

Training Component

FIGURE 1. The low-code architecture discussed in this article.

28	 ComputingEdge� August 2024

SE FOR AI

what happens inside the AI components, which have
their own independent monitoring and analysis tools.
Moreover, we are unable to analyze and describe
the fine-grained details of the important collabora-
tion aspects between the two and the potential side
effects of such interactions. For instance, consider
a loan approval component in a banking application

that depends on an ML-based prediction system to
decide which clients are to be trusted. A new release
of the prediction model can drastically change the
behavior of the application, but if that ML model is a
black box, it is very difficult to account and test for
this type of evolution.

Clearly, AI features are not first-class citizens in
current low-code platforms: we cannot model how
the ML models are trained and configured. We cannot
decide what concrete low-level AI platform we want to
target during deployment. And the list goes on. Smart
software development requires low-code tools with a
more native support for the specification of these sys-
tems. We have seen this type of abstraction capability
in tools targeting only data science processes, such as
the Konstanz Information Miner, Amazon SageMaker
Studio, IBM SPSS Modeler, and Azure Machine Learn-
ing Studio. Therefore, we know it is possible. We next
elaborate on this wish list for our ideal low code for
smart software solutions.

LOW CODE FOR SMART
SOFTWARE WISH LIST

We believe a developer working on smart software
would be interested in a low-code platform capable of

	› managing concerns for both AI components and
traditional software components in a consistent
and integrated way, including their interdepen-
dencies (e.g., an AI component trained using the
data entered via a regular component)

	› supporting the complete life cycle of the required
AI components (training, validation, deployment,
and monitoring) as well as tracing the decisions
behind their architecture and evolution

	› operating with a technology-independent and
platform-agnostic specification while support-
ing a transparent deployment to different AI
service providers

	› enabling the integration of AI components in
both the front end (e.g., chatbots) and back end
(e.g., prediction tasks) of a system

	› defining high-level goals and quality concerns
(e.g., fairness) that can be automatically tested
and/or monitored after deployment

	› facilitating use without intricate knowledge of the
underlying AI techniques, offering mechanisms
to automatically select a suitable method and
(hyper)parameters for a particular usage scenario

	› supporting a variety of AI tasks beyond text and
image classification.

A LOW-CODE ARCHITECTURE FOR
SMART SOFTWARE

To provide the features identified in the preceding
wish list, we envision an architecture (see Figure 1)
based around the following components:

	› Model editor: Developers provide a description
of the software system using a unified nota-
tion—a smart software model—which includes
both traditional and smart elements:
	» a description of the application domain and
the architecture of the software system, i.e.,
components and the relationships among them

	» a high-level description of the tasks to be
performed by the AI components (classifica-
tion, synthesis, and so on), target quality
metrics (e.g., a desired precision/recall value),
and concerns (e.g., ethical issues, resource
budgets for training, and deployment) that
should be considered

	» a description of the input data sources storing
the domain knowledge, with emphasis on the
identification of information relevant from the
point of view of fairness (e.g., gender, religion,
country of birth, and so on); moreover, the
developer should be able to select predefined

CLEARLY, AI FEATURES ARE NOT
FIRST-CLASS CITIZENS IN CURRENT
LOW-CODE PLATFORMS: WE CANNOT
MODEL HOW THE ML MODELS ARE
TRAINED AND CONFIGURED.

www.computer.org/computingedge� 29

SE FOR AI

policies for data preparation and cleaning
(e.g., how to deal with null values).

	› Code generator: The information provided in the
model drives the generation of code implement-
ing the different processes within the low-code
tool. The developer may either select a particu-
lar technology or service provider or delegate
this choice to the tool, which can leverage
model annotations describing nonfunctional
qualities, such as price and scalability, to make
simple tradeoff decisions.

	› Training: The code generator emits code to train
an ML model, preparing training and validation
datasets from the input data sources according
to the resource budget. After training, the target
quality metrics are measured, and any ethical
constraint is checked.

	› Deployment: The trained model is deployed on
a particular AI platform, which can be either a
cloud service from a variety of providers or a
local AI package.

	› Traditional software components: Software
modules that do not integrate AI features are
generated in the usual way. These modules
interact with AI components through a dedi-
cated application programming interface that
encapsulates the specific deployment strategy.

	› Monitoring and feedback: Finally, the AI com-
ponents should be continuously monitored and
tested after deployment to provide continuous
feedback to the developer. This feedback should
include
	» a dashboard displaying performance informa-
tion about both the target quality metrics and
resource usage

	» explanations regarding the decisions made by
the AI components, linking back to the input
data sources or tracing back to requirements
in the input model.

All components in this architecture are feasible
and already partially exist as separate elements in
other low-code, AI, and monitoring platforms. Bringing
them all together in a unified framework could be a
force multiplier and a significant next step in lowering
the barrier to entry for the next generation of smart
software developers.

REFERENCES
1.	 G. Booch, “The history of software engineering,” IEEE

Softw., vol. 35, no. 5, pp. 108–114, Sep./Oct. 2018, doi:

10.1109/MS.2018.3571234.

2.	 J. Cabot, “Positioning of the low-code movement

within the field of model-driven engineering,” in Proc.

Companion MODELS’20, ACM, 2020, pp. 76:1–76:3, doi:

10.1145/3417990.3420210.

3.	 C. Verbruggen and M. Snoeck, “Practitioners’ experi-

ences with model-driven engineering: A meta-review,”

Softw. Syst. Model., early access, Jun. 2022, doi:

10.1007/s10270-022-01020-1.

4.	 J. Sijtstra, “Quantifying the effectiveness of low-code

development platforms in the Dutch public sector,“ M.S.

thesis, LIACS, Leiden Univ., Leiden, The Netherlands, 2022.

5.	 J. Whittle, J. E. Hutchinson, and M. Rouncefield, “The

state of practice in model-driven engineering,“ IEEE

Softw., vol. 31, no. 3, pp. 79–85, May/Jun. 2014, doi:

10.1109/MS.2013.65.

6.	 J. Bosch, H. H. Olsson, and I. Crnkovic, “Engineering AI

systems: A research agenda,“ in Artificial Intelligence

Paradigms for Smart Cyber-Physical Systems, A. K.

Luhach and A. Elçi, Eds. Hershey, PA, USA: IGI Global,

Jan. 2021, pp. 1–19, doi: 10.4018/978-1-7998-5101-1.ch001.

7.	 I. Ozkaya, “What is really different in engineering

AI-enabled systems?” IEEE Softw., vol. 37, no. 4, pp. 3–6,

Jul./Aug. 2020, doi: 10.1109/MS.2020.2993662.

8.	 H. Muccini and K. Vaidhyanathan, “Software architecture

for ML-based systems: What exists and what lies ahead,”

in Proc. 2021 IEEE/ACM 1st Workshop AI Eng.- Softw. Eng.

AI (WAIN), pp. 121–128, doi: 10.1109/WAIN52551.2021.00026.

9.	 M. Rahimi, J. L. C. Guo, S. Kokaly, and M. Che-

chik, “Toward requirements specification for

machine-learned components,” in Proc. 2019 IEEE 27th

Int. Requirements Eng. Conf. Workshops (REW), pp.

241–244, doi: 10.1109/REW.2019.00049.

10.	 V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M.

Weiss, and P. Tonella, “Testing machine learning based

systems: A systematic mapping,” Empirical Softw. Eng.,

ALL COMPONENTS IN THIS
ARCHITECTURE ARE FEASIBLE AND
ALREADY PARTIALLY EXIST AS SEPARATE
ELEMENTS IN OTHER LOW-CODE, AI,
AND MONITORING PLATFORMS.

30	 ComputingEdge� August 2024

SE FOR AI

vol. 25, no. 6, pp. 5193–5254, Nov. 2020, doi: 10.1007/

s10664-020-09881-0.

11.	 D. Dahlberg, “Developer experience of a low-code

platform: An exploratory study,” M.S. thesis, Umeå

universitet, Samhällsvetenskapliga fakulteten,

Institutionen för Informatik, Umeå, Sweden, 2022.

12.	 A. Vallecillo, On the industrial adoption of model driven

engineering. Is your company ready for MDE? Int. J. Inf. Syst.

Softw. Eng. Big Companies, vol. 1, no. 1, pp. 52–68, Aug. 2015.

13.	 S. Ransbotham, D. Kiron, P. Gerbert, and M. Reeves,

“Reshaping business with artificial intelligence: Clos-

ing the gap between ambition and action,” MIT Sloan

Manage. Rev., vol. 59, no. 1, pp. 1–22, Sep. 2017.

14.	 “State of cognitive survey,” Deloitte, Aug. 2017. [Online]

Available: https://www2.deloitte.com/us/en/pages

/deloitte-analytics/articles/cognitive-technology

-adoption-survey.html

15.	 “Occupational employment and wages, May

2021—15-2051: Data scientists,” U.S. Bureau of Labor

Statistics, Washington, DC, USA, 2021. Accessed: Oct.

3, 2022. [Online.] Available: https://www.bls.gov/oes

/current/oes152051.htm

16.	 A. Bucaioni, A. Cicchetti, and F. Ciccozzi, “Modelling

in low-code development: A multi-vocal systematic

review,” Softw. Syst. Model., vol. 21, no. 5, pp. 1–23, Oct.

2022, doi: 10.1007/s10270-021-00964-0.

JORDI CABOT is an ICREA Research Professor at the Internet

Interdisciplinary Institute, Universitat Oberta de Catalunya,

Barcelona 08018, Spain, where he leads the Software and

Systems Modeling Lab. Contact him at https://jordicabot

.com or jordi.cabot@icrea.cat.

ROBERT CLARISÓ is an associate professor with the Faculty

of Computer Science, Multimedia, and Telecommunications,

Universitat Oberta de Catalunya, Barcelona 08018, Spain,

where he is also a member of the SOM Research Lab at the

Internet Interdisciplinary Institute. Contact him at https://

robertclariso.github.io or rclariso@uoc.edu.

Advertising Coordinator

Debbie Sims
Email: dsims@computer.org
Phone: +1 714-816-2138 | Fax: +1 714-821-4010

Advertising Sales Contacts

Mid-Atlantic US, Northeast, Europe, the Middle East
and Africa:
Dawn Scoda
Email: dscoda@computer.org
Phone: +1 732-772-0160
Cell: +1 732-685-6068 | Fax: +1 732-772-0164

Southwest US, California:
Mike Hughes
Email: mikehughes@computer.org
Cell: +1 805-208-5882

Central US, Northwest US, Southeast US, Asia/Pacific:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214-553-8513 | Fax: +1 888-886-8599
Cell: +1 214-673-3742

Midwest US:
Dave Jones
Email: djones@computer.org
Phone: +1 708-442-5633 | Fax: +1 888-886-8599
Cell: +1 708-624-9901

Jobs Board (West Coast and Asia), Classified Line Ads

Heather Buonadies
Email: hbuonadies@computer.org
Phone: +1 623-233-6575

Jobs Board (East Coast and Europe), SE Radio Podcast

Marie Thompson
Email: marie.thompson@computer.org
Phone: +1 714-813-5094

ADVERTISER INFORMATION

Drive Diversity
& Inclusion in
Computing

I E E E C O M P U T E R S O C I E T Y D & I F U N D

DONATE TODAY!

Supporting projects
and programs that
positively impact

diversity, equity, and
inclusion throughout

the computing
community.

32	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

00mcse00-combemale-3221672.3d (Style 7) 02-01-2023 15:46

EDITORS: Anshu Dubey, adubey@anl.gov
Konrad Hinsen, konrad.hinsen@cnrs.fr

DEPARTMENT: SCIENTIFIC PROGRAMMING

On the Role of Computer Languages in
Scientific Computing
Dorian Leroy , CEA, DAM, DIF, F-91297, Arpajon, France

June Sallou , Johann Bourcier , and Benoit Combemale , Universit�e de Rennes, F-35000, Rennes, France

Scientific codes are complex software systems. Their engineering involves various
stakeholders using various computer languages for defining artifacts at different
abstraction levels and for different purposes. In this article, we review the overall
processes leading to the development of scientific software, and discuss the role of
computer languages in the definition of the different artifacts. We provide
guidelines to make informed decisions when the time comes to choose a computer
language to develop scientific software.

Scientific computing is a cross-cutting field, its
heart and soul being the development of mathe-
matical models to understand physical systems

through their simulations. Those models can be numeri-
cal (e.g., systems of differential equations), nonnumerical
(e.g., agent-based models) or based on analytics (e.g.,
machine learningmodels), and aim to capture the behav-
ior of the modeled system. Numerical models can be fur-
ther refined as continuous or discrete. Simulations of
mathematical models correspond to the execution of
the computer programs containing thesemodels, the so-
called “simulation codes.” In this article, we refer to the
subsuming concept of scientific software, which we
define as software dedicated to scientific computing and
simulation. The development of scientific software
involves both software engineering (SE) and scientific
computing concerns. Mathematical models and scien-
tific software are tightly coupled throughout their life
cycles. The tools and methods used for their develop-
ment—in particular, computer languages—can impact
the definition of both, as well as the engineering princi-
ples that ensure the development of reliable scientific
software.

When the time comes to implement a newmodel, i.e.,
develop new simulation software, scientists and

engineers are faced with the choice of what computer
language(s) to use (e.g., MATLAB, Mathematica, Fortran,
Python, C++, or even an in-house domain-specific lan-
guage). This choice has important consequences on the
expressiveness available to implement the model and
the corresponding simulation code, but also in terms of
SE practices to develop reliable and efficient scientific
software. The more general-purpose the language is—
with low-level, computing-related, system abstractions—
the more flexibility and performance it may provide, but
also the more rigorous engineering principles and verifi-
cation & validation (V&V) activities will be required to
obtain a reliable piece of scientific software.

Most scientists and engineers are not trained in SE
and are therefore not aware of its best practices beyond
programming (e.g., version control management, com-
ponent reuse, unit testing, continuous integration),1

which has led to initiatives addressing this problem,
such as the research software engineering movement.2

Since the final goal is to build and apply the model
encoded in the simulation code, the code itself ismerely
a means to that end. Final stakeholders (e.g., citizens,
policy, and decision makers, research institutions, sys-
tem users) may even be unaware of the importance of
software for science and engineering.

In this article, we explore the overall scientific soft-
ware development process, we provide an integrated
view of the scientific computing and SE activities, arti-
facts, and roles, and we discuss the tradeoffs on the
computer languages at hand to help scientists and
engineers make informed decisions.

1521-9615 � 2023 IEEE
Digital Object Identifier 10.1109/MCSE.2022.3221672
Date of current version 4 January 2023.

July/August 2022 Published by the IEEE Computer Society Computing in Science & Engineering 55

EDITORS: Anshu Dubey, adubey@anl.gov
Konrad Hinsen, konrad.hinsen@cnrs.fr

DEPARTMENT: SCIENTIFIC PROGRAMMING

On the Role of Computer
Languages in Scientific Computing
Dorian Leroy , CEA, DAM, DIF, F-91297, Arpajon, France

June Sallou , Johann Bourcier , and Benoit Combemale , Université de Rennes, F-35000, Rennes, France

Scientific codes are complex software systems. Their engineering involves various
stakeholders using various computer languages for defining artifacts at different abstraction
levels and for different purposes. In this article, we review the overall processes leading
to the development of scientific software, and discuss the role of computer languages in
the definition of the different artifacts. We provide guidelines to make informed decisions
when the time comes to choose a computer language to develop scientific software.

This article originally
appeared in

vol. 24, no. 4, 2022

www.computer.org/computingedge� 33

SCIENTIFIC PROGRAMMING

00mcse00-combemale-3221672.3d (Style 7) 02-01-2023 15:46

SCIENTIFIC COMPUTING:
COMPUTER LANGUAGES TO THE
RESCUE

The implementation of scientific software is the result of
the successive refinement of different artifacts, starting
with observations to elaborate the mathematical model
thanks to theories, then, applying discretization methods
to obtain a numerical scheme, to finally end with the
implementation of the scientific software (cf. Figure 1).

Thus, the design of scientific software based on
mathematical models requires the involvement and
cooperation of various stakeholders, ranging from sci-
entists and engineers to experts in numerical analysis or
SE. These stakeholders play one of three roles (depend-
ing on context, one person may fulfill more than one
role): scientists as domain experts, numerical analysts
as experts on the discretization of a continuous phe-
nomenon, and software engineers as experts on soft-
ware development to deliver the expected services.
Each role is in charge of the elaboration of one of the
artifacts: scientists define the mathematical model,
numerical analysts define the numerical scheme, and
software engineers implement the computer software.

Computer languages enable the different stakehold-
ers to perform their activities at the corresponding level
of abstraction. We can thus classify computer lan-
guages according to their level of abstraction and the
support they provide to stakeholders.

Languages to Define the Mathematical
Model
Scientists can define a mathematical model and derive
the corresponding scientific software using languages

such as Mathematica,a or MATLAB.b Such languages
provide continuous mathematical constructs (e.g., alge-
braic computation and differential blocks in MATLAB’s
block diagrams) allowing scientists to directly define
their mathematical models with the language. The lan-
guage infrastructure is then able to automatically dis-
cretize the mathematical models defined with the
language, possibly in a configurable way, and to derive
the corresponding scientific software.

Languages to Specify the Numerical
Scheme
Alternatively, some languages allow deriving scientific
software directly from a numerical scheme. Languages
dedicated to the definition of numerical schemes (or
with the right abstractions to do so), such as Julia,c R,d

or NabLab,e allow automatically deriving the corre-
sponding piece of scientific software without having to
handle SE concerns. Thus, once numerical analysts
obtain a numerical scheme as a result of the application
of their chosen discretizationmethod to themathemati-
cal model, they can directly implement it using the dis-
crete mathematics constructs offered by the language.
From this encoded numerical scheme, the infrastruc-
ture of the language (e.g., model transformations, inter-
preters, compilers, code generators) derives the
corresponding piece of scientific software.

FIGURE 1. Overall scientific software development process across the scientific V-model.4

ahtt _ps://www.wolfram.com/mathematica or more specifically
the Wolfram language, htt _ps://www.wolfram.com/language
bhtt _ps://matlab.mathworks.com
chtt _ps://julialang.org/
dhtt _ps://www.r-project.org/
ehtt _ps://cea-hpc.github.io/NabLab/

56 Computing in Science & Engineering July/August 2022

SCIENTIFIC PROGRAMMING

00mcse00-combemale-3221672.3d (Style 7) 02-01-2023 15:46

EDITORS: Anshu Dubey, adubey@anl.gov
Konrad Hinsen, konrad.hinsen@cnrs.fr

DEPARTMENT: SCIENTIFIC PROGRAMMING

On the Role of Computer Languages in
Scientific Computing
Dorian Leroy , CEA, DAM, DIF, F-91297, Arpajon, France

June Sallou , Johann Bourcier , and Benoit Combemale , Universit�e de Rennes, F-35000, Rennes, France

Scientific codes are complex software systems. Their engineering involves various
stakeholders using various computer languages for defining artifacts at different
abstraction levels and for different purposes. In this article, we review the overall
processes leading to the development of scientific software, and discuss the role of
computer languages in the definition of the different artifacts. We provide
guidelines to make informed decisions when the time comes to choose a computer
language to develop scientific software.

Scientific computing is a cross-cutting field, its
heart and soul being the development of mathe-
matical models to understand physical systems

through their simulations. Those models can be numeri-
cal (e.g., systems of differential equations), nonnumerical
(e.g., agent-based models) or based on analytics (e.g.,
machine learningmodels), and aim to capture the behav-
ior of the modeled system. Numerical models can be fur-
ther refined as continuous or discrete. Simulations of
mathematical models correspond to the execution of
the computer programs containing thesemodels, the so-
called “simulation codes.” In this article, we refer to the
subsuming concept of scientific software, which we
define as software dedicated to scientific computing and
simulation. The development of scientific software
involves both software engineering (SE) and scientific
computing concerns. Mathematical models and scien-
tific software are tightly coupled throughout their life
cycles. The tools and methods used for their develop-
ment—in particular, computer languages—can impact
the definition of both, as well as the engineering princi-
ples that ensure the development of reliable scientific
software.

When the time comes to implement a newmodel, i.e.,
develop new simulation software, scientists and

engineers are faced with the choice of what computer
language(s) to use (e.g., MATLAB, Mathematica, Fortran,
Python, C++, or even an in-house domain-specific lan-
guage). This choice has important consequences on the
expressiveness available to implement the model and
the corresponding simulation code, but also in terms of
SE practices to develop reliable and efficient scientific
software. The more general-purpose the language is—
with low-level, computing-related, system abstractions—
the more flexibility and performance it may provide, but
also the more rigorous engineering principles and verifi-
cation & validation (V&V) activities will be required to
obtain a reliable piece of scientific software.

Most scientists and engineers are not trained in SE
and are therefore not aware of its best practices beyond
programming (e.g., version control management, com-
ponent reuse, unit testing, continuous integration),1

which has led to initiatives addressing this problem,
such as the research software engineering movement.2

Since the final goal is to build and apply the model
encoded in the simulation code, the code itself ismerely
a means to that end. Final stakeholders (e.g., citizens,
policy, and decision makers, research institutions, sys-
tem users) may even be unaware of the importance of
software for science and engineering.

In this article, we explore the overall scientific soft-
ware development process, we provide an integrated
view of the scientific computing and SE activities, arti-
facts, and roles, and we discuss the tradeoffs on the
computer languages at hand to help scientists and
engineers make informed decisions.

1521-9615 � 2023 IEEE
Digital Object Identifier 10.1109/MCSE.2022.3221672
Date of current version 4 January 2023.

July/August 2022 Published by the IEEE Computer Society Computing in Science & Engineering 55

34	 ComputingEdge� August 2024

SCIENTIFIC PROGRAMMING

00mcse00-combemale-3221672.3d (Style 7) 02-01-2023 15:46

Languages to Implement the Scientific
Software
Finally, when software engineers deal with execution-
related concerns (e.g., architecture, hardware, optimi-
zation, storage, etc.), system-level languages such as
C,f C++,g and Fortranh can be used, together with
frameworks like OpenMP,i and standards such as
MPI.3 Language users express the particularities of
their simulator with regard to all the concerns involved
in the development of scientific software, ranging
from the mathematical model to the encoded numeri-
cal scheme and system-level concerns such as con-
currency, memory, and data handling.

The artifacts at each level of abstraction can capture
different concerns (e.g., data curation, mesh definition,
and numerical analysis all relate to a numerical scheme,
while concurrency and memory management are both
related to the scientific software). Capturing these dif-
ferent concerns in a given artifact can be achieved with
a single general-purpose language, or with separate,
though coordinated, dedicated languages, leading to a
polyglot development of this artifact.

The successive refinement of the different artifacts
can be done automatically by the language infrastruc-
ture provided by interpreters or compilers. It can also be
done (at least partially) manually by the different stake-
holders, by specifying the handling of certain concerns
according to their specific expertise. While automatic
refinement through the language infrastructure pro-
vides a predefined way of refining a given artifact, man-
ual refinement lets different roles handle concerns on
their own and optimize their implementation for a given
context.4 For instance, a numerical scheme specified
with NabLab is usually compiled using one of the compi-
lation chains, thereby automatically taking into account
the execution flow, parallelism, and memory model. Yet,
one may want to handcraft the C++ code generated
from a NabLab specification to customize how the
related concerns are handled in a particular application.

COMPUTER LANGUAGES: V&V
TECHNIQUES TO THE RESCUE

Language choice allows selecting the level of abstrac-
tion at which one wants to work. This determines
which artifacts must be defined as part of the develop-
ment process, and which artifacts are automatically
derived through the language infrastructure. While

this language infrastructure guarantees the correct-
ness of the derived artifacts with regard to user-
defined ones, the V&V concerns corresponding to
those user-defined artifacts still need to be addressed.

For example, using a language at the discrete-
mathematics abstraction level, numerical analysts
can derive the scientific software from the numerical
scheme. This derived software is guaranteed to be
correct with regard to the provided numerical scheme,
but the correctness of both the numerical scheme and
the governing equations constituting the mathemati-
cal model still remains to be assessed.

We illustrate this on Figure 1, a V-Model for scientific
computing, or scientific V-Model, where the different
artifacts involved in scientific software development are
represented on the left, from observations tomathemat-
ical model, numerical scheme, and actual scientific soft-
ware. Facing each of these artifacts is the corresponding
V&V concern to be addressed. In addition, for each arti-
fact and V&V concern, the figure indicates the associ-
ated roles, i.e., the skills necessary to develop the
artifacts and address their corresponding V&V concerns.

The model contains a nested V-model (“SE V-
model”) representing the artifacts specific to SE that
are defined over the course of the development of the
actual scientific software, from stakeholder require-
ments to the implementation. This nested SE V-model
also contains the SE-specific V&V activities required
to address the V&V concerns corresponding to each
of these SE-specific artifacts.

The scientific V-model reads as follows. The left
descending branch of the V-Model indicates which arti-
facts must be defined, based on the level of abstraction
at which one works: artifacts above the chosen level of
abstraction have to be defined as well, as each acts as
specification for the artifact directly below. The right
ascending branchof theV-model indicates the V&Vactiv-
ities to be undertaken for each artifact defined by the
stakeholders. This includes the V&V activities corre-
sponding to the artifacts defined with the chosen lan-
guage, and every V&V activity situated above. In addition,
while languages provide guarantees over the software
they allow deriving, any V&V activity not handled by a lan-
guage is left to the developers.

For a more detailed look at the scientific V-model,
we direct the reader to our previous work.4

CLASSIFYING COMPUTER
LANGUAGES FOR SCIENTIFIC
COMPUTING

In Table 1, we propose a guide supporting decision-
making with regard to the computer language(s) to

fhtt _ps://www.iso.org/standard/74528.html
ghtt_ps://isocpp.org/
hhtt_ps://fortran-lang.org/
ihtt _ps://www.openmp.org/

July/August 2022 Computing in Science & Engineering 57

SCIENTIFIC PROGRAMMING

www.computer.org/computingedge� 35

SCIENTIFIC PROGRAMMING

00mcse00-combemale-3221672.3d (Style 7) 02-01-2023 15:46

use for scientific software developments. We evaluate
a range of computer languages commonly used in sci-
entific computing,5,6 aiming to highlight how well each
language supports the definition of the three catego-
ries of artifacts (mathematical model, numerical
scheme, and scientific software), and how they facili-
tate the required V&V activities for these artifacts.

We propose a scale assigning a score to each lan-
guage for the development of the three identified artifacts
based on their ability to accurately describe these arti-
facts and the level of expertise required for their use. The
more “+” symbols, the more detailed the language can
describe the corresponding artifact, and the more exper-
tise it requires from the designer. For example, languages
providing fine control over concurrency and memory are
better suited if one needs to directly work at the system
level to define the scientific software (e.g., for perfor-
mance or architecture reasons). In the remainder of this
section, we give a brief overviewof these languages.

The Wolfram Language, provided as part of Mathe-
matica, offers continuous mathematical constructs,
while also providing some expressivity with regard to dis-
crete mathematics.j MATLAB works similarly, but also
provides discrete numerical constructs.k R is a language
more geared toward statistics, but can also be used for
matrix computations, and provides continuous mathe-
matical abstractions as well.l For each of these lan-
guages, SE abstractions aremostly kept out of the hands
of the language user, and the associated concerns are
addressed as part of their supporting infrastructure.

NabLab is a language dedicated to numerical anal-
ysis, which provides code generators targeting an
array of C++ backends.7 The language exclusively
exposes numerical abstractions, and SE concerns are
addressed as part of the provided generators and
compilation chains.

Julia is a language gaining traction in scientific
computing. It offers numerical abstractions, while giv-
ing finer control over some system concerns as well,
such as multithreading and networking, enabling its
use in the context of high-performance computing.m

However, when such system-level abstractions are
used, the user needs to address the corresponding
V&V concerns as usual, requiring SE skills.

Python is a popular language in scientific comput-
ing, even if it does not provide native abstractions
suited to continuous or discrete mathematics. This
popularity stems from its low entry level in terms of SE
skills (e.g., dynamic typing, managed memory), its
extensive library support, such as SciPyn and NumPyo

providing the missing abstractions for scientific com-
puting, and a mature support for the definition of
wrappers for C/C++ applications.

Java does not natively provide mathematical
abstractions, but abstracts some system-level con-
cerns, such as memory management. It is also cited in
the literature as one of the frequently used languages
by the scientific community.6

C and C++ are extensively used in the scientific
computing community, despite missing numerical and
mathematical abstractions, and working at a very low
level of abstraction.8 This is due to its good perfor-
mance and the large number of libraries available for
scientific computing. However, developing scientific
software with C or C++ demands addressing numer-
ous SE V&V concerns, which come in addition to the
usual numerical and mathematical V&V concerns. For-
tran is a similar case to C and C++, except that it does
provide numerical abstractions, as it was designed for
writing scientific software.p

CONCLUSION
In this article, we presented a scientific software
development process that integrates both scientific
computing and SE activities: the scientific V-model.
This model describes how the different artifacts and
stakeholders involved in this process are related to

TABLE 1. Overview of languages commonly used in scientific

computing according to the associated levels of abstraction.

Language Mathematical
Model

Numerical
Scheme

Scientific
Software

Mathematica
(Wolfram
Language)

+++ ++

MATLAB ++ ++
R + +
NabLab +++
Julia ++ +
SciPy ++ +
Python +
Java ++
C/C++ +++
Fortran ++ +++

jhtt_ps://www.wolfram.com/language/index.php.en
khtt _ps://www.mathworks.com/products/matlab.html
lhtt_ps://www.r-project.org/

mhtt_ps://julialang.org/
nhtt _ps://scipy.org/
ohtt _ps://numpy.org/
phtt _ps://fortran-lang.org/

58 Computing in Science & Engineering July/August 2022

SCIENTIFIC PROGRAMMING

00mcse00-combemale-3221672.3d (Style 7) 02-01-2023 15:46

Languages to Implement the Scientific
Software
Finally, when software engineers deal with execution-
related concerns (e.g., architecture, hardware, optimi-
zation, storage, etc.), system-level languages such as
C,f C++,g and Fortranh can be used, together with
frameworks like OpenMP,i and standards such as
MPI.3 Language users express the particularities of
their simulator with regard to all the concerns involved
in the development of scientific software, ranging
from the mathematical model to the encoded numeri-
cal scheme and system-level concerns such as con-
currency, memory, and data handling.

The artifacts at each level of abstraction can capture
different concerns (e.g., data curation, mesh definition,
and numerical analysis all relate to a numerical scheme,
while concurrency and memory management are both
related to the scientific software). Capturing these dif-
ferent concerns in a given artifact can be achieved with
a single general-purpose language, or with separate,
though coordinated, dedicated languages, leading to a
polyglot development of this artifact.

The successive refinement of the different artifacts
can be done automatically by the language infrastruc-
ture provided by interpreters or compilers. It can also be
done (at least partially) manually by the different stake-
holders, by specifying the handling of certain concerns
according to their specific expertise. While automatic
refinement through the language infrastructure pro-
vides a predefined way of refining a given artifact, man-
ual refinement lets different roles handle concerns on
their own and optimize their implementation for a given
context.4 For instance, a numerical scheme specified
with NabLab is usually compiled using one of the compi-
lation chains, thereby automatically taking into account
the execution flow, parallelism, and memory model. Yet,
one may want to handcraft the C++ code generated
from a NabLab specification to customize how the
related concerns are handled in a particular application.

COMPUTER LANGUAGES: V&V
TECHNIQUES TO THE RESCUE

Language choice allows selecting the level of abstrac-
tion at which one wants to work. This determines
which artifacts must be defined as part of the develop-
ment process, and which artifacts are automatically
derived through the language infrastructure. While

this language infrastructure guarantees the correct-
ness of the derived artifacts with regard to user-
defined ones, the V&V concerns corresponding to
those user-defined artifacts still need to be addressed.

For example, using a language at the discrete-
mathematics abstraction level, numerical analysts
can derive the scientific software from the numerical
scheme. This derived software is guaranteed to be
correct with regard to the provided numerical scheme,
but the correctness of both the numerical scheme and
the governing equations constituting the mathemati-
cal model still remains to be assessed.

We illustrate this on Figure 1, a V-Model for scientific
computing, or scientific V-Model, where the different
artifacts involved in scientific software development are
represented on the left, from observations tomathemat-
ical model, numerical scheme, and actual scientific soft-
ware. Facing each of these artifacts is the corresponding
V&V concern to be addressed. In addition, for each arti-
fact and V&V concern, the figure indicates the associ-
ated roles, i.e., the skills necessary to develop the
artifacts and address their corresponding V&V concerns.

The model contains a nested V-model (“SE V-
model”) representing the artifacts specific to SE that
are defined over the course of the development of the
actual scientific software, from stakeholder require-
ments to the implementation. This nested SE V-model
also contains the SE-specific V&V activities required
to address the V&V concerns corresponding to each
of these SE-specific artifacts.

The scientific V-model reads as follows. The left
descending branch of the V-Model indicates which arti-
facts must be defined, based on the level of abstraction
at which one works: artifacts above the chosen level of
abstraction have to be defined as well, as each acts as
specification for the artifact directly below. The right
ascending branchof theV-model indicates the V&Vactiv-
ities to be undertaken for each artifact defined by the
stakeholders. This includes the V&V activities corre-
sponding to the artifacts defined with the chosen lan-
guage, and every V&V activity situated above. In addition,
while languages provide guarantees over the software
they allow deriving, any V&V activity not handled by a lan-
guage is left to the developers.

For a more detailed look at the scientific V-model,
we direct the reader to our previous work.4

CLASSIFYING COMPUTER
LANGUAGES FOR SCIENTIFIC
COMPUTING

In Table 1, we propose a guide supporting decision-
making with regard to the computer language(s) to

fhtt _ps://www.iso.org/standard/74528.html
ghtt_ps://isocpp.org/
hhtt_ps://fortran-lang.org/
ihtt _ps://www.openmp.org/

July/August 2022 Computing in Science & Engineering 57

SCIENTIFIC PROGRAMMING

36 ComputingEdge� August 2024

SCIENTIFIC PROGRAMMING

00mcse00-combemale-3221672.3d (Style 7) 02-01-2023 15:46

each other. We also provide a categorization of com-
puter languages according to their ability to develop
specific artifacts and discuss the impact on verifica-
tion and validation activities.

We argue that, when choosing a computer language
to implement scientific software, the researcher should
consider the level of abstraction at which they are work-
ing and keep in mind that this choice has an impact on
the V&V activities they must manage. To facilitate an
informed decision on the choice of computer languages,
we provide a guide with the most commonly used lan-
guages in scientific computing, referring to the skills
required to take full advantage of them in the definition
of artifacts and associated V&V activities.

With this article, we aim to make scientific com-
puting practitioners aware of the role of computer lan-
guages and to initiate the discussion early on with the
information necessary when faced with the choice of
computer language(s) to use in scientific computing.

ACKNOWLEDGMENTS
The author would like to thank their colleagues at the
Institut de Recherche en Informatique et Syst�emes
Al�eatoires (IRISA), Geoscience Department of the
Observatoire des Sciences de l’Univers de Rennes
(OSUR), as well as at the Commissariat �a l’�energie
atomique et aux �energies alternatives (CEA), for their
input and providing such interesting conversations
that contributed to the writing and improvement of
this article.

REFERENCES
1. G. Wilson et al., “Best practices for scientific

computing,” PLoS Biol., vol. 12, no. 1, 2014,

Art. no. e1001745, doi: 10.1371/journal.pbio.1001745.

2. J. Cohen, D. S. Katz, M. Barker, N. C. Hong, R. Haines,

and C. Jay, “The four pillars of research software

engineering,” IEEE Softw., vol. 38, no. 1, pp. 97–105, Jan./

Feb. 2021, doi: 10.1109/MS.2020.2973362.

3. W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-

performance, portable implementation of the MPI

message passing interface standard,” Parallel Comput.,

vol. 22, no. 6, pp. 789–828, 1996, doi: 10.1016/0167-8191

(96)00024-5.

4. D. Leroy, J. Sallou, J. Bourcier, and B. Combemale,

“When scientific software meets software engineering,”

Computer, vol. 54, no. 12, pp. 60–71, 2021, doi: 10.1109/

MC.2021.3102299.

5. P. Prabhu et al., “A survey of the practice of

computational science,” in Proc. Int. Conf. High Perform.

Comput., Netw., Storage Anal., 2011, pp. 1–12, doi:

10.1145/2063348.2063374.

6. E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou,

and J. C. Carver, “Software engineering practices for

scientific software development: A systematic

mapping study,” J. Syst. Softw., vol. 172, 2021,

Art. no. 110848, doi: 10.1016/j.jss.2020.110848.

7. B. Lelandais, M. P. Oudot, and B. Combemale, “Fostering

metamodels and grammars within a dedicated

environment for HPC: The NabLab environment (tool

demo),” in Proc. 11th ACM SIGPLAN Int. Conf. Softw.

Lang. Eng., 2018, pp. 200–204, doi: 10.1145/

3276604.3276620.

8. J. Pitt-Francis and J. Whiteley, Guide to Scientific

Computing in C++. New York, NY, USA: Springer, 2017,

doi: 10.1007/978-3-319-73132-2.

DORIAN LEROY is a research engineer at CEA, F-91297, Arpa-

jon, France. His research interests include field of Software Lan-

guage Engineering and include metaprogramming approaches

and V&V facilities. Contact him at dorian.leroy@cea.fr.

JUNE SALLOU is a postdoctoral researcher in software engi-

neering at University of Rennes 1, F-35000, Rennes, France.

Her research interests include scientific modeling, approxi-

mate computing, and environmental science. Contact her at

june.benvegnu-sallou@univ-rennes1.fr.

JOHANNBOURCIER is an associate professor of software engi-

neering at University of Rennes 1, F-35000, Rennes, France. His

research interests include software engineering include self-

adaptive systems, model-driven engineering, and distributed

and heterogeneous software environments. Contact him at

johann.bourcier@irisa.fr.

BENOIT COMBEMALE is a full professor of software engi-

neering at University of Rennes 1, F-35000, Rennes, France.

His research interests include software engineering include

software language engineering, model-driven engineering,

and software validation and verification. Contact him at

benoit.combemale@inria.fr.

July/August 2022 Computing in Science & Engineering 59

SCIENTIFIC PROGRAMMING

IEEE
Computer
Society Has
You Covered!
WORLD-CLASS CONFERENCES — Stay
ahead of the curve by attending one of our
195+ globally recognized conferences.

DIGITAL LIBRARY — Easily access over 900k
articles covering world-class peer-reviewed
content in the IEEE Computer Society
Digital Library.

CALLS FOR PAPERS — Discover
opportunities to write and present your
ground-breaking accomplishments.

EDUCATION — Strengthen your resume
with the IEEE Computer Society Course
Catalog and its range of offerings.

ADVANCE YOUR CAREER — Search the
new positions posted in the IEEE Computer
Society Jobs Board.

NETWORK — Make connections that count
by participating in local Region, Section,
and Chapter activities.

Explore all of the
member benefi ts
at www.computer.org
today!

38	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

EDITOR: Nir Kshetri, University of North Carolina at Greensboro, nbkshetr@uncg.edu

DEPARTMENT: COMPUTING’S ECONOMICS

Democratizing Science Through
Advanced Cyberinfrastructure
Manish Parashar, National Science Foundation

Democratizing access to cyberinfrastructure is essential to democratizing science.
This article explores knowledge, technical, and social barriers to accessing and using
cyberinfrastructure and explores approaches to addresses them. It also highlights recent
activities and investments at the National Science Foundation that implement some of
these approaches.

Science and engineering (S&E) research in the
21st century, powered by the growing avail-
ability of computation and data, continues

to explore new frontiers, generating discoveries and
innovations with the potential to transform our lives,
our environment, and our economies. Examples of
such S&E research enabled by computation and data
include fundamental discoveries about our solar sys-
tem and the universe, understanding and modeling
climate change and potential strategies for mitigat-
ing these changes, understanding the nature and
progression of diseases and how to cure illnesses,
changing the way we farm and deliver food and other
natural resources to consumers, and responding to
and managing the impacts of natural disasters, such
as hurricanes, earthquakes, and wildfires. Research-
ers today have unprecedented amounts of data from
diverse sources, including sensors, instruments,
and computational simulations, as well as an equally
unprecedented need for computing to allow them to
extract meaningful insights from the data to drive
understanding, predictions, and decision making.

The essential role of computation and data in 21st
century science has been highlighted in several recent
reports, including a 2021 National Academies of Sci-
ences, Engineering, and Medicine (NASEM) report,
“Global Change Research and Opportunities for 2022–
2031,”1 which identified the critical need for computing

research and computing resources that can advance
the nation’s understanding of and response to climate
challenges, as well as the 2021 NASEM “Decadal
Survey on Astronomy and Astrophysics,”2 which
summarized the tremendous impacts of data from
multiple observatories. It is therefore imperative, now
more than ever, that all researchers benefit from the
opportunities for scientific exploration enabled by
computation and data. As a result, ensuring broad, fair,
and equitable access to advanced cyberinfrastructure
(CI), including computing, data, networking, software,
and expertise, that is, democratizing access to CI, is
essential to democratizing science.

Recognizing this growing role of computation
and data across all areas of scientific research, there
have been significant investments around the globe in
advanced CI resources, services, and expertise. In the
United States, the National Science Foundation (NSF),
through its Office of Advanced Cyberinfrastructure
(OAC) and predecessor offices, has, over the past four
decades, funded the development and provisioning of
advanced CI resources and services toward an over-
arching vision3 of ensuring the broad availability and
innovative use of an agile, integrated, robust, trust-
worthy, and sustainable CI ecosystem that can drive
new thinking and transformative discoveries in all
areas of research and education. Investments include
acquisition, integration, coordination, and production
operations associated with shared data, secure net-
working, advanced computation, scientific software
and data services, and the design and development of
computational and data-enabled S&E.

Digital Object Identifier 10.1109/MC.2022.3174928

Date of current version: 29 August 2022

This article originally
appeared in

vol. 55, no. 9, 2022

www.computer.org/computingedge� 39

The OAC also nurtures the computational and data
skills and expertise needed for next-generation S&E
research, and it promotes innovative, robust, secure,
and interoperable CI as well as sharing and collabora-
tion among academic research infrastructure groups,
other federal agencies, international research funders,
and the private sector. A recent road map by the
National Science and Technology Council Subcom-
mittee on Future Advanced Computing Ecosystems4
highlights that these investments are complemented
by investments at the national, regional, and local
levels; by other U.S. federal agencies, academic insti-
tutions, and industry; and in other countries.

BARRIERS TO CI ACCESS AND USE
However, despite these global investments and the
growing availability of an advanced CI ecosystem, sig-
nificant barriers still limit broad and equitable access
to this ecosystem, especially for individuals and insti-
tutions that are resource constrained and for commu-
nities that have been traditionally underrepresented.
These knowledge, technical, and social barriers were
explored in a recent study,5 and they span several key
areas, as summarized in the following.

KNOWLEDGE BARRIERS
As a result of increasing national, regional, and insti-
tutional investments in the CI ecosystem, research-
ers typically have access to a range of resources and
services. However, researchers often lack a broad
awareness of this availability, and perhaps even more
importantly, even when they are aware of the available
resources, they may not understand how to use these
resources (for example, determining which resources
are relevant to a researcher’s specific needs and how
to gain access to these resources can be challeng-
ing). Effective use of advanced computing and other
CI resources requires significant support structures
to help researchers determine the most appropriate
resources, obtain allocations, train practitioners once

they have allocations, and support application migra-
tion and execution. Such support structures are often
missing at the local level, especially at underresourced
institutions that often need the most help. The lack of
access to necessary support has been noted as the
most significant barrier to broad access to the CI eco-
system.5 National and regional entities and institu-
tions do provide support structures, but scaling these
structures to meet the needs of a growing and diverse
community is challenging. Current efforts often focus
on domains and communities that have traditionally

used advanced CI resources rather than on integrat-
ing new and developing communities that are not as
able to adapt to specific needs.

A related barrier is associated with the recruit-
ment, retention, and cultivation of a highly capable,
adaptive, and agile workforce, for example, system
administrators, software developers, and data cura-
tors. Developing and sustaining such a CI workforce
presents challenges, including initiating effective
institutional and on-the-job training to keep up with
evolving software, technologies, platforms, and appli-
cation requirements. Furthermore, there remains a
lack of recognized job titles for the CI workforce, and
skilled CI workers often face career uncertainty and a
lack of recognition, as their valued services are in posi-
tions not visible to the research community and they
have titles that are neither consistent nor meaningful.

BARRIERS STILL LIMIT BROAD
AND EQUITABLE ACCESS TO THIS
ECOSYSTEM, ESPECIALLY FOR
INDIVIDUALS AND INSTITUTIONS
THAT ARE RESOURCE CONSTRAINED
AND FOR COMMUNITIES THAT
HAVE BEEN TRADITIONALLY
UNDERREPRESENTED.

40	 ComputingEdge� August 2024

COMPUTING’S ECONOMICS

Providing creative incentives, reward mechanisms,
and career paths will be essential to sustain this
workforce. Whereas the formal educational pathway
is critical, providing on-ramps for nontraditional stu-
dents (for instance, those who are older and/or seek-
ing reskilling and upskilling opportunities) requires
thoughtful educational practices, mentoring, and sup-
port to promote success and advancement.

TECHNICAL/PROCEDURAL
BARRIERS

The number and diversity of researchers using CI
resources has continued to evolve over the past few
decades. However, the mechanisms used to allocate
these resources have largely remained the same.
Most national and regional resources and many
institutional resources use proposal-based mecha-
nisms for allocating resources: once their research is
funded, researchers must submit a second proposal

requesting resources. These proposals are then peri-
odically evaluated, and if selected, the researchers
are given an allocation that they can use to access the
resources and conduct their research. This approach
works well for certain classes of users and types of
usage modes, but it can prevent broad usage of the
resources for a multitude of reasons. For example,
users often face “double jeopardy” by having to get
their proposal and resource requests through two
separate processes. Users must have a certain level
of expertise and experience to appropriately articu-
late their needs and put together a competitive pro-
posal. The latency of the proposal process presents
additional barriers. Furthermore, proposal review cri-
teria tend to be skewed toward more experienced
users, requiring prior results for performance and

scalability. Although many systems provide small
“start-up” allocations, these are limited and cannot
support extended research needs. Alternate access
models, such as on-demand and urgent access as well
as the integration of access into popular science tools,
are not typically supported.

The ability of researchers to use growing national
and regional CI capabilities is often limited by local
infrastructure, which is typically needed to allow them
to have access and effectively use these resources.
These limits include a lack of adequate local capa-
bilities for securely connecting to advanced compu-
tational resources, accessing relevant data resources,
and integrating these resources into their application
workflow. Perhaps most importantly, local resources
are not equitably available across the full range of
institution types, preventing certain segments of the
research community from accessing the on-ramps
that would pave the way toward their engagement in
computational and data-enabled S&E.

Social barriers
In addition to the technical and procedural barri-
ers noted in the preceding, there remain social barri-
ers at the institutional and regional levels that impact
how research CI is viewed, funded, and supported.
For example, the unique nature of research CI, how
it is used, the needs of its user community, and how
it differs from more typical IT infrastructure and ser-
vices are often not appreciated at an institutional
level, resulting in a lack of mechanisms and structures
needed to support researchers and, more importantly,
to expose them to the potential benefits of CI to their
research. This lack of appreciation also makes it harder
to attract and retain the necessary talent and can lead
to the deployment of CI solutions that do not match
user needs. Furthermore, these adverse impacts often
disproportionately affect underresourced institutions
and communities. The resulting lack of engagement
of underresourced institutions and communities can
further result in the downstream exclusion of certain
communities and their contributions from the scien-
tific research enterprise and the propagation of bias.
Specific efforts and incentives focused on increas-
ing awareness and access by, for example, integrating
and embedding CI, CI expertise, and CI best practices
within communities, must be a priority.

SPECIFIC EFFORTS AND INCENTIVES
FOCUSED ON INCREASING
AWARENESS AND ACCESS BY,
FOR EXAMPLE, INTEGRATING AND
EMBEDDING CI, CI EXPERTISE,
AND CI BEST PRACTICES WITHIN
COMMUNITIES, MUST BE A PRIORITY.

www.computer.org/computingedge� 41

COMPUTING’S ECONOMICS

DEMOCRATIZING ACCESS TO CI
Democratizing access to the CI ecosystem is essen-
tial to democratizing science and ensuring that
every researcher has fair and equitable access to the
resources that support his or her work. As the needs
for and opportunities from CI grow and broaden, elim-
inating the barriers listed previously is becoming crit-
ical. This approach requires strategic investment in a
broad set of CI resources, services, and expertise that
can systematically address barriers to CI access while,
at the same time, providing adequate training and sup-
port structures. Specifically, such investments should
consist of the following:

	› integrated and user-friendly portals and gate-
ways for discovering and accessing resources,
supported by flexible allocation and access
mechanisms that sustain a wide spectrum of
users and their needs

	› access to local CI resources as part of a shared
fabric of national CI resources connected and
reachable through high-speed frictionless data
networking

	› diverse and flexible allocation and access
modes (for example, on-demand, urgent, and
coordinated access) that support a diversity of
users and application needs

	› agile, easily accessible, and scalable networks of
experts that integrate embedded expertise and
user support that is responsive to local needs

	› broadly accessible training targeting the
spectrum of CI users and skills as well as sup-
port for exchanges among communities and the
dissemination of best practices.

Collectively, the preceding steps can be transfor-
mational in broadening and democratizing access to
CI and the research opportunities CI provides.

NSF investments toward
democratizing CI
The broad requirements for democratizing CI listed in
this article are fundamental to the NSF’s CI vision3 for a
national CI ecosystem and underlie many of the agen-
cy’s recent investments that implement this vision.
They are also integral to the NSF’s blueprint for future
national CI coordination services.6 For example, the

NSF recently announced7 a suite of awards through
its Advanced Cyberinfrastructure Coordination Eco-
system: Services and Support (ACCESS) program. This
program is aimed at improving the accessibility and
usability of the national CI ecosystem and increasing
its integration with systems and research communi-
ties on campuses across the nation. ACCESS services
build on the NSF’s past CI investments and activi-
ties as well as more recent explorations, such as a
high-throughput computing allocation pilot.8

Complementing the ACCESS services are the
NSF’s sustained efforts to foster and nurture a
diverse, recognized, and skilled CI professional (CIP)
workforce.9 CIP refers to the community of individuals
who provide a broad spectrum of skills and expertise
to the scientific and engineering research enterprise
by inventing, developing, deploying, and/or supporting
research CI and CI users. Examples of CIPs include
CI system administrators, CI research support staff,
CI research software engineers, data curators, and
CI facilitators, and it may also include computational
research scientists and engineers who are not in tra-
ditional academic paths. The NSF uses the broadest
definition of CIP, including researchers who use CI, CI
developers, and CI operators—all workforce catego-
ries required to effectively leverage and utilize cur-
rent, emerging, and future CI capabilities and amplify
the transformative impact of CI across S&E research
fields.10,11 These individuals and the highly valued ser-
vices they provide to S&E deserve more institutional
recognition, support as a community, and clearer
pathways for their professional/career development.
Specific NSF activities to support CIPs include the
Training-Based Workforce Development for Advanced
Cyberinfrastructure (CyberTraining) program,12 which

DEMOCRATIZING ACCESS TO THE
CI ECOSYSTEM IS ESSENTIAL TO
DEMOCRATIZING SCIENCE AND
ENSURING THAT EVERY RESEARCHER
HAS FAIR AND EQUITABLE ACCESS TO
THE RESOURCES THAT SUPPORT HIS
OR HER WORK.

42	 ComputingEdge� August 2024

COMPUTING’S ECONOMICS

supports innovative, scalable training, education, and
curriculum/instructional materials along with deeper
incorporation of CIPs into the research enterprise.

CyberTraining seeks to broaden CI access and
adoption by 1) increasing adoption of advanced CI and
computational and data-driven methods by a broader
range of S&E disciplines and institutions; 2) enhancing
the incorporation of CIPs into the research enterprise,
highlighting the value of those professionals in S&E
research; and 3) effectively utilizing the capabilities
of individuals from a diverse set of underrepresented
groups. The program includes a track for funding CIPs
at the institute and regional levels and their integration
into a national computational science support net-
work managed by one of the services that are part of
the ACCESS program. Importantly, CyberTraining and
other programs supporting CIPs require a mentoring
and/or professional development plan to encourage
research proposals to explicitly consider and support
this important but often neglected aspect of CI.

A related support activity is the Research Comput-
ing and Data Nexus Cyberinfrastructure Center of
Excellence,13,14 which aims to advance research com-
puting and data infrastructure through the strategic
development of tools, practices, and professionals.
Overall, the NSF envisions networks of connected and
coordinated hubs that recognize and connect CIPs,
support communications and training, share best
practices, and foster mobility and synergies across
projects and organizations. Finally, the NSF recog-
nizes the importance of diversity in driving scientific
innovation and discovery. The NSF is thus committed
to enabling the broadest access to its CI ecosystem
and continues to make investments to support this
commitment. For example, the recently funded
Minority-Serving Cyberinfrastructure Consortium15
envisions a transformational partnership to promote
advanced CI capabilities on the campuses of histori-
cally Black colleges and universities, Hispanic-oriented
institutions, tribal colleges and universities, and other
minority serving institutions.

To harness the full potential of research discov-
eries and the resulting impacts on science and

society, all researchers must be able to avail them-
selves of the opportunities for scientific exploration
provided by advanced CI. Ensuring broad, fair, and

equitable access to advanced CI resources, services,
and expertise will be essential for democratizing sci-
ence in the 21st century. This article described some
of the barriers to achieving this objective on the
basis of experiences at the NSF and highlighted the
NSF’s recent activities and investments to address
these barriers. However, the democratization of sci-
ence and its benefits requires not only continued
investments by the NSF but also broader and more
coordinated local, national, and global efforts and
investments. The NSF intends to continue to look at
more effective ways to reduce barriers to CI access
and explore new approaches to ensure broader par-
ticipation and equity. For example, the NSF is colead-
ing the congressionally chartered National Artificial
Intelligence (AI) Research Resource Task Force,16
which is seeking to address the “resource divide” in AI
research and has been developing a plan to democra-
tize access to AI R&D for America’s researchers and
students and providing them with critical computa-
tional, data, and training resources through a broadly
accessible shared CI.

ACKNOWLEDGMENT
The author is grateful for discussions with and thought-
ful feedback from NSF colleagues about drafts of this
article.

REFERENCES
1.	 National Academies of Sciences, Engineering, and

Medicine, “Global change research needs and oppor-

tunities for 2022-2031,” National Academies Press,

Washington, DC, USA, 2021. [Online]. Available: https://

www.nap.edu/catalog/26055/global-change

-research-needs-and-opportunities-for-2022-2031

2.	 National Academies of Sciences, Engineering, and

Medicine, “Pathways to discovery in astronomy and

astrophysics for the 2020s,” National Academies Press,

Washington, DC, USA, 2021. [Online]. Available: https://

www.nap.edu/catalog/26141/pathways-to-discovery

-in-astronomy-and-astrophysics-for-the-2020s

3.	 “Transforming science through cyberinfrastructure:

NSF’s blueprint for a national cyberinfrastructure

ecosystem for science and engineering in the 21st

century,” National Science Foundation, Alexandria, VA,

USA, 2019. [Online]. Available: https://www.nsf.gov/cise

/oac/vision/blueprint-2019/

www.computer.org/computingedge� 43

COMPUTING’S ECONOMICS

4.	 “Pioneering the future advanced computing ecosys-

tem: A strategic plan,” National Science and Technol-

ogy Council, Washington, DC, USA, 2020. [Online].

Available: https://www.nitrd.gov/pubs/Future

-Advanced-Computing-Ecosystem-Strategic-Plan-Nov

-2020.pdf

5.	 A. Blatecky et al., “The missing millions: Democratizing

computation and data to bridge digital divides and

increase access to science for underrepresented com-

munities,” National Science Foundation, Alexandria,

VA, USA, 2021. [Online]. Available: https://www.rti.org

/publication/missing-millions/fulltext.pdf

6.	 “Transforming science through cyberinfrastructure:

Coordination services: NSF’s blueprint for national

cyberinfrastructure coordination services for accel-

erating science and engineering in the 21st century,”

National Science Foundation, Alexandria, VA, USA,

2019. [Online]. Available: https://www.nsf.gov/cise/oac

/vision/blueprint-2019/nsf-aci-blueprint-services.pdf

7.	 “NSF ACCESS awardees will advance innovations in

cyberinfrastructure accessibility, user support and

integration services,” National Science Foundation,

Alexandria, VA, USA, 2022. [Online]. Available: https://

nsf.gov/news/special_reports/announcements

/042222-access.jsp

8.	 “Dear colleague letter: Pilot for the allocation of

high-throughput computing resources (HTC),” National

Science Foundation, Alexandria, VA, USA, 2022.

[Online]. Available: https://www.nsf.gov/pubs/2022

/nsf22051/nsf22051.jsp

9.	 “Transforming science through cyberinfrastructure:

NSF’s blueprint for cyberinfrastructure learning and

workforce development,” National Science Founda-

tion, Alexandria, VA, USA, 2021. [Online]. Available:

https://www.nsf.gov/cise/oac/vision/blueprint-2019

/CI-LWD.pdf

10.	 “Transforming science through cyberinfrastructure:

NSF’s blueprint for a national cyberinfrastructure

ecosystem for science and engineering in the 21st

century,” National Science Foundation, Alexandria, VA,

USA, 2021. [Online]. Available: https://www.nsf.gov

/cise/oac/vision/blueprint-2019/CI-LWD.pdf

11.	 “Dear colleague letter: Nurturing diverse, skilled,

capable, and productive communities of cyberin-

frastructure professionals (CIP),” National Science

Foundation, Alexandria, VA, USA, 2022. [Online].

Available: https://beta.nsf.gov/funding/opportunities

/nurturing-diverse-skilled-capable-and-productive

-communities

12.	 “Training-based workforce development for advanced

cyberinfrastructure (CyberTraining),“ National Science

Foundation, Alexandria, VA, USA, 2022. [Online]. Avail-

able: https://beta.nsf.gov/funding/opportunities

/training-based-workforce-development-advanced

-cyberinfrastructure

13.	 “CI CoE: Demo pilot: Advancing research computing

and data: strategic tools, practices, and professional

development,” National Science Foundation, Alexan-

dria, VA, USA, 2021. [Online]. Available: https://www

.nsf.gov/awardsearch/showAward?AWD_ID=2100003

14.	 “RCD nexus,” Campus Research Computing Consor-

tium, 2021. [Online]. Available: https://carcc.org/rcd

-nexus/

15.	 “Minority Serving - Cyberinfrastructure Consortium.”

https://www.ms-cc.org

16.	 “The National Artificial Intelligence Research Resource

Task Force,” National Artificial Intelligence Initiative

Office, 2020. [Online]. Available: https://www.ai.gov

/nairrtf/

MANISH PARASHAR is the office director of the Office of

Advanced Cyberinfrastructure, National Science Founda-

tion, Alexandria, Virginia 22314, USA. Contact him at mpara-

sha@nsf.gov.

WWW.COMPUTER.ORG/COMPUTINGEDGE

44	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

EDITOR: Phil Laplante, The Pennsylvania State University, plaplante@psu.edu

DEPARTMENT: SOFTWARE ENGINEERING

The Byzantine Empire and Its
Generals: An Ancient Empire
Back to Life in Computer Security
Pedro Reviriego , Universidad Politécnica de Madrid

Elena Merino-Gómez , Universidad de Valladolid

Fabrizio Lombardi , Northeastern University

Forty years after its initial publication, we revisit the seed contribution of Byzantine
fault tolerance, focusing on its application for the security of systems implemented
in software. We describe new environments in which it is being used.

Security and dependability are key require-
ments for most of today’s computing systems,
and their importance is poised to grow as

we increasingly rely on their pervasive use in almost
every aspect of our lives. At the same time, the com-
plexity of computing systems unabatedly continues
to grow with many different organizations providing
interdependent components that, in turn, coordinate
to implement services. In this scenario, making sure
that such a system will work reliably when some of
the components or nodes fail or are compromised by
an attacker becomes critical. For example, several
attacks, like Spectre or Meltdown, have been inves-
tigated; they exploit the advanced mechanisms of
modern processors to extract information. Similarly,
in the recent SolarWinds attack, a software tool was
compromised, and then automatic updates were
exploited to disseminate the infected version. Failures
can also disrupt the operation of computing systems
in many complex ways. For example, radiation-induced
soft errors can flip any bit stored in a memory or regis-
ter, leading to silent data corruption that can manifest
in erratic system behavior.

From a design perspective, in many cases, the same
mechanisms can be used to mitigate both attacks and
failures. In fact, many of the models commonly used

for secure and dependable system design cover both
scenarios. This is the case with the Byzantine Generals
problem formulated more than 40 years ago; this has
led to the concept of Byzantine fault tolerance (BFT),
which has found widespread adoption in many techni-
cal domains.1

In this article, we revisit BFT four decades after its
introduction, focusing on software implementations
and briefly discussing how it is now being used in new
systems, domains, and applications. We also look back
to the Byzantine empire to understand how it survived
for one millennium and how its history relates to the
Byzantine generals problem. This discussion links
computing with history and shows that the choice
made by the authors for the generals is, in an unin-
tended way, backed by facts.

An analogy with a group of generals who have to
act consistently in taking the decision to attack or
retreat has been used in Lamport et al.1 to provide a
model for secure and dependable system design. The
generals can be loyal or traitors, and there can also be
communication failures or restrictions among gener-
als. This models a computing system in which some
nodes may have been compromised and in which fail-
ures could also either disable nodes or prevent them
from communicating.

As has been the case with other famous problems
in computing, the analogy can facilitate the under-
standing of the problem and the algorithms used
to solve it. Indeed, formulating the problem with an

Digital Object Identifier 10.1109/MC.2023.3235095

Date of current version: 8 March 2023

This article originally
appeared in

vol. 56, no. 3, 2023

www.computer.org/computingedge� 45

appealing analogy was one of the objectives of the
authors of the article [see http://lamport.azureweb-
sites.net/pubs/pubs.html#byz (46. The Byzantine
Generals Problem)]. Apparently, they chose the gener-
als to be Byzantine to avoid offending any nationality,
and thus, the model became the Byzantine Generals
problem.1 From then on, systems and algorithms that
can solve this problem and work consistently in that
scenario are known as Byzantine fault tolerant (BFT).
Hence, BFT has become a key concept in dependable
and secure system design.

After presenting the initial model, different sce-
narios, for example by considering that messages
exchanged by the generals can be forged by traitors
or, conversely, that they are signed and thus cannot
be forged, are analyzed in Lamport et al.1 This has led
to a fundamental result; for the group of loyal generals
to act consistently, there can be at most m traitors
in a group of 3m + 1 generals when messages can be
manipulated by traitors. For example, when there is
a single traitor, there have to be at least three loyal
generals for them to act consistently. This illustrates
the high cost of building systems that can tolerate fail-
ures or attacks; not only are 3m + 1 generals needed,
but they must also exchange a sequence of messages
recursively to reach a consensus on the action to take.

By presenting the problem in a general manner,
considering different scenarios with signed or oral
messages and with failures or restrictions in the
communications among the generals, the article
instantiated a framework for the analysis and design
of fault-tolerant systems that has been used in a
myriad of applications and designs. Initially, the con-
cept was used for safety-critical applications such
as space systems; avionics; military equipment; or
industrial and nuclear control systems. However,
its adoption has extended to almost every domain
in computing. For example, BFT is a key element in
many blockchain-based systems, and in particular for
cryptocurrencies, to ensure that a group of completely

independent nodes can maintain a consistent state.
This has motivated a large body of research through-
out the years in this area to ensure that consensus can
be achieved reliably in systems that involve large num-
bers of nodes and transactions. These efforts have
led to the development of new consensus algorithms,
such as, for example, proof of work and proof of stake.2

The game with the nationality of the generals
seems to continue. For example, three of the main
forks in Ethereum (see Figure 1) are named Byzantium,
Constantinople, and Istanbul, which does not seem to
be a coincidence, and it is likely a play with words and a
tribute to the Byzantine generals problem.

Before discussing other areas in which BFT is
currently being used, let us go back in time and look
at the empire that gives the name to the problem and
concept. For more than one millennium, the Byzantine
empire was able to survive despite having to face
powerful enemies from the East and West. Therefore,
in a way, the empire can itself be seen as a complex
resilient system from the outset. Most of its rulers
had a solid military background; lineage was not a
sufficient condition—sometimes not even neces-
sary. For emperors and coemperors to be considered
worthy to wear the imperial purple, they had to have
demonstrated their ability as generals, which partially
explains the strategic strength the empire enjoyed for
centuries. Right from the start, the binomial formed by

FIGURE 1. The Ethereum logo.

46	 ComputingEdge� August 2024

SOFTWARE ENGINEERING

Justinian and his general Belisarius (Figure 2) paved
the way that would forever associate military power
with imperial power, often in a single person, a circum-
stance that would be essential in defensive strategies.

In addition to the skill of many of its rulers, defen-
sive resources, such as the chain of the Golden Horn
(Figure 3) or the one known as Greek fire (Figure 4),
were fundamental for the Byzantine resistance to
attacks throughout its history. It is significant that
even in the case of war tools from the past, they con-
tinue to pose enigmas in the present. The chemical
composition of Greek fire, a kind of liquid fire capable

of spreading over water and eas-
ily reaching enemy ships, has not
yet been formulated. The precise
mechanism that allowed the
closing of the Golden Horn by
means of a heavy chain that was
pulled up to the surface is even
today the subject of speculation.
In addition to the scientific chal-
lenge of unraveling how these
tools worked, their efficient
performance can be inspiring for
engineers who are currently devel-
oping cyberdefense systems.

The adoption of the term Byz-
antine to describe the problem of
the Byzantine Generals is a cau-
tious decision that contrasts with
the apparently inappropriate use
to denominate the Eastern Roman
Empire. Leslie Lamport assigned
the Byzantine nationality so as
not to offend any reader in the
certainty that an extinct empire
was a safe bet. However, the name
“Byzantine” turned out to be one
of the most controversial of the
historical empires. Curiously, the
Byzantines themselves would
surely have felt bothered with the
name attributed to them to avoid
calling them “Romans,” as they
considered themselves. The name
“Byzantine” to name the Eastern
Roman Empire is subsequent to

the disappearance of the empire itself. The origin of
the name and its connotations are still part of a scien-
tific discussion today.3

Lamport also confesses that he took the idea of
the generals from the problem in distributed comput-
ing that is sometimes called the Chinese Generals
problem, “in which two generals have to come to a
common agreement on whether to attack or retreat,
but can communicate only by sending messengers
who might never arrive.”1 The idea of going back to
the past arises intuitively at the moment in which
the figure of the messenger appears. The times when

FIGURE 2. A portrait possibly of General Belisarius and Emperor Justinian (from a

mosaic in San Vitale, Ravenna.)

FIGURE 3. The iron chain prevents the fleet of Thomas the Slav from entering the

Golden Horn. (Source: Biblioteca Nacional de España.)

www.computer.org/computingedge� 47

SOFTWARE ENGINEERING

messages could be transmitted
only through intermediaries seem
to contrast with the current situ-
ation in which the immediacy of
sending and receiving can give the
impression that the endpoints of
the communication are enough.
However, it is obvious, although
imperceptible, that the messenger,
which connects the sender and
receiver, continues to be present,
merged, or frequently confused
with the channel.

The immediacy of the trans-
mission of information, so com-
mon nowadays, can lead to a feel-
ing of false security in the minds
of communicators. It is possible
to mistakenly perceive that the
instantaneity and the apparent
absence of intermediaries guar-
antee the veracity of the message.
The speed of communication does
not seem to offer enough time to
intentionally alter the message.
In a similar way, immediacy seems
to establish a direct thread with
the addressee, without interme-
diaries. However, messages and
the channels through which they
travel can be as insecure today
as they were 500 years ago. The
messages today must go through
a myriad of hardware and software
components and systems before
reaching their destination. Not
only can the senders or recipients
of the message be malicious, but
all those complex elements can
also be manipulated to interfere with and disrupt com-
munication, opening a vast attack surface. In fact, the
security of communications has been a critical issue
since the beginning of its existence and is one of the
oldest problems in the history of communication.

The Byzantine Empire offers heroic examples
of safe message delivery. One of the most thrilling
episodes in the transmission of a message occurred

only a few days before the Fall of Constantinople
(see Figure 5). Constantine XI Palaiologos, the last
Byzantine emperor, urgently needed to know if more
reinforcements from Venice would arrive in Con-
stantinople. Without them, the city was doomed.
Twelve men trusted by Constantine embarked in a
small brigantine, with a false flag, disguised as Turks,
toward the Aegean Sea, to see if the necessary help

FIGURE 5. A large miniature depicting a view of besieged Constantinople from

Jacques Tedaldi, Recueil de textes historiques Récit de la prise de Constantinople

(1453). (Source: Bibliothèque nationale de France.)

FIGURE 4. An illustration of Greek fire, from J. Scylitzes (flourished), History of

Byzantium. (Source: Biblioteca Nacional de España.)

48	 ComputingEdge� August 2024

SOFTWARE ENGINEERING

was approaching. The 12 messengers found that there
was no help on the horizon. They were to return to
Constantinople to deliver their hopeless message.
One of the messengers proposed to the others to con-
tinue toward Christian lands to save their own lives.
Returning to Constantinople to deliver the message
to the emperor meant certain death. However, loyalty
prevailed, and they returned to the city to transfer the
information even at the cost of their lives.4 Although
the precious message arrived uncorrupted on 23 May
1453, it was already too late for everything, and just
six days later, the city would fall, and with it, the last
stronghold of the empire.

Although the error-free transmission of this last
message could do nothing to prevent the final Fall of
Constantinople, throughout the history of the Byz-
antine Empire, there are other kinds of episodes that
exemplify how the system was able to survive despite
the spread of erroneous messages. One of the ver-
sions of the events that occurred in the famous Battle

of Manzikert in 1071, between Byzantines and Seljuk
Turks, illustrates how false messages about the defeat
of Emperor Romanus IV Diogenes were spread. It is
possible that the jealous Byzantine general Androni-
kos Doukas, belonging to the family that had ruled
Byzantium in the previous generation, took advantage
of the confusion in the transmission of a message to
abandon the emperor in battle.

Romanus IV Diogenes gave the signal to bring the
pursuit against the Turks to a halt,5 fearing an ambush.
The message was misinterpreted in the rear guard.
The order to return to the camp was interpreted as a
withdrawal, and it was deduced that the emperor had
fallen in his advance against the enemies. Some argue
that the rumor was actually started by Andronikos
Doukas, who did not forgive Romanus IV for having
interrupted the succession of the house of Doukas to

the throne of Byzantium. The contaminated message
of the fall of Emperor Romanus IV Diogenes caused
the abandonment of his people and determined that,
indeed, he was finally captured by the Seljuk Sultan Alp
Arslan. Although the defeat of Manzikert, due in part
to the spread of an adulterated message, is considered
as one of the greatest disasters in the history of the
empire, the Byzantines continued to persist.

Seven decades later, the transmission of a cor-
rupted message once again put another emperor in
trouble. During the maneuvers to recapture Antioch
for the Byzantine Empire, Emperor John II Komnenos
was betrayed by two apparent allies: Raymond of
Antioch and Joscelin II, Count of Edessa. The latter
sent secret messengers to spread the false message
to the citizens of Antioch that Emperor John II Kom-
nenos wanted to harm them. The rumor that Antioch
had been sold to the Byzantine Greeks and that the
citizens should leave their homes forced one of the
greatest emperors in the history of Byzantium to leave
Antioch in 1142.6 However, the empire still had more
than three centuries to live.

The problem of the Byzantine Generals is still valid
40 years later, and its name, even if it was adopted to
avoid potentially more controversial terms, demon-
strates its relevance in the face of the many examples
that can be extracted from the long history of Byzan-
tium. It would also be interesting to consider some of
the weak points of Byzantine history to name possible
security flaws. For example, according to Doukas, a
contemporary historian of the Fall of Constantinople,
the door next to the circus, known as the kerkoporta,
was left ajar, and 50 Janissaries slipped through the
unattended door.7 The chapter of the forgotten door
could have been decisive for the final blow to the city
on 29 May 1453. This is very similar to backdoors that
are created to gain unauthorized access to computing
systems today.

However, different from the Byzantine Generals
problem, the link with the past was not made, thus
losing the opportunity to use the term “kerkoporta”
to denote security backdoors, and thus, keeping the
term for the collective memory of humanity. However,
there may be some hope as recently “kerkoporta” has
been used to name a ransomware, so in the long run,
the term may be adopted, increasing the links between
the old Byzantine empire and computer security.

AFTER 40 YEARS, SECURITY AND
DEPENDABILITY HAVE BECOME
CRITICAL DESIGN REQUIREMENTS,
AND BFT HAS BEEN USED IN A
MYRIAD OF SYSTEMS, DOMAINS, AND
APPLICATIONS.

www.computer.org/computingedge� 49

SOFTWARE ENGINEERING

After 40 years, security and dependability have
become critical design requirements, and BFT has
been used in a myriad of systems, domains, and appli-
cations. In fact, in recent years, new scenarios for
BFT have emerged. For example, due to storage and
processing limitations or privacy concerns, machine
learning is increasingly being implemented in multiple
nodes. Typically, each node stores or generates a part
of the dataset, and all nodes cooperate to implement
training or inference. For example, distributing the
dataset among several computing nodes in a data
center can provide large speedups for training, while in
Internet of Things applications, the nodes commonly
operate in a decentralized manner with limited capa-
bility to exchange data.8

The use of several nodes creates the need for the
system to operate reliably when some of the nodes
fail or are compromised. A good example is federated
learning, which is emerging as a technology that can
enable learning from many users or sensors while
preserving privacy. Basically, training is done locally
without sharing the data, and the results from many
devices are aggregated to obtain a model based on
data from all of them. The implementation of federated
learning poses challenges to developing efficient algo-
rithms to coordinate training but also to ensure that
it is robust when some of the devices fail or act mali-
ciously. Therefore, there is a strong need to implement
BFT at scale in federated learning. Different schemes
have been proposed; they try, for example, to detect
the updates from malicious nodes by comparing them
with those of the rest of the nodes or to reduce their
impact on the aggregated result.

Distributed nodes or sensors are used not only for
training but also for inference, and then again, there
is a need to make sure that the system can withstand
the failure or misbehavior of some of them. This can
be achieved by carefully analyzing the information
coming from each sensor to estimate their reliability
and use them accordingly for the inference process.9
Therefore, the trend to use distributed systems to
implement both training and inference makes BFT a
key element for future machine learning systems.

Networking is another area in which BFT is
becoming increasingly important. For example, in
software-defined networks, controllers are critical,
and thus, they are typically replicated to tolerate

failures. As security is also a major issue in networks,
providing BFT for the control plane when some of
the controllers may have been compromised is also
desirable in all cases and needed for networks used
for critical applications. Several schemes have been
proposed to reduce the overhead of implementing BFT
by first identifying the disagreement among a subset
of controllers and only then activating all the control-
lers needed to implement BFT or to detect malicious
controllers.10

Similarly, BFT is also fundamental in wireless sen-
sor networks that are by nature decentralized systems
and for which attackers can use sophisticated mecha-
nisms or direct jamming to disrupt communications.
The ability to send broadcast messages in real time is
also critical in some systems, and thus, BFT has to be
implemented.11 In summary, networks are by nature
distributed, and thus, they can suffer failures and com-
promised nodes, thus making BFT imperative when
reliable operation is needed.

Distributed optimization, similarly to distributed
machine learning, relies on different nodes to optimize
a function; this can be done locally and independently
at each node or in a coordinated way.12 In all cases,
there can again be faulty or malicious nodes, and thus,
there is a need to implement BFT. New mechanisms to
support the coordination of multiple agents to perform
a given computation with BFT are being proposed13 by
using replication; such a scheme can be used as a gen-
eral solution when the cost introduced by replication
is acceptable.

The use of quantum technologies has also been
proposed to reach an agreement between generals.14
Soon, with computing systems moving toward more
complex, distributed, and in many cases, decentral-
ized systems, the importance of BFT is poised to keep
growing. Therefore, these first 40 years seem to be
only the beginning of a new Byzantine era, but this
time in computer science rather than as an empire.

Looking forward, we think that using analogies
when presenting new algorithms and ideas can be

a powerful tool to catch the attention of the readers,
enable a formulation of problems and solutions that
is more general, and link computer science with other
fields like history. The Byzantine Generals problem is
an excellent example of how those benefits can be

50	 ComputingEdge� August 2024

SOFTWARE ENGINEERING

achieved. However, that has not always been the
case. In fact, Leslie Lamport used another analogy
to describe a consistency algorithm, relating it to
an ancient parliament formed by part-time legisla-
tors in the Greek island of Paxos, but in this case,
it seems that, at least initially, the analogy was not
well received [see http://lamport.azurewebsites.net
/pubs/pubs.html#lamport-paxos (123. The Part-Time
Parliament)]. Therefore, as with any powerful tool,
analogies should be used with caution.

REFERENCES
1.	 L. Lamport, R. Shostak, and M. Pease, “The Byz-

antine generals problem,” ACM Trans. Program.

Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982, doi:

10.1145/357172.357176.

2.	 A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F.

Pedone, “From Byzantine replication to blockchain:

Consensus is only the beginning,” in Proc. 50th Annu.

IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), 2020,

pp. 424–436, doi: 10.1109/DSN48063.2020.00057.

3.	 A. Kaldellis, “From Rome to New Rome, from Empire to

Nation-State,” in Two Romes: Rome and Constantino-

ple in Late Antiquity, L. Grig and G. Kelly, Eds. London,

U.K.: Oxford Univ. Press, 2012, pp. 387–404.

4.	 N. Barbaro, Giornale Dell’assedio di Constantinopoli.

Vienne, France: Libreria Tendler, 1856, p. 35.

5.	 M. Attaleiates, The History. (Transl.: A. Kaldellis and D.

Krallis, Dumbarton Oaks Medieval Library 16). Cam-

bridge, MA, USA: Harvard Univ. Press, 2012, p. 293.

6.	 W. of Tyre, A History of the Deeds Done Beyond the Sea,

vol. 2. New York, NY, USA: Columbia Univ. Press, 1943,

p. 97.

7.	 M. Philippides and W. K. Hanak, The Siege and the Fall

of Constantinople in 1453: Historiography, Topography,

and Military Studies. Burlington, VT, USA: Ashgate

Publishing, 2011, p. 622.

8.	 Z. Yang, A. Gang, and W. U. Bajwa, “Adversary-resilient

distributed and decentralized statistical inference and

machine learning: An overview of recent advances

under the byzantine threat model,” IEEE Signal Process.

Mag., vol. 37, no. 3, pp. 146–159, May 2020, doi: 10.1109

/MSP.2020.2973345.

9.	 J. Choi, Z. Hakimi, J. Sampson, and V. Narayanan,

“Byzantine-tolerant inference in distributed deep

intelligent system: Challenges and opportunities,” IEEE

Trans. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 3, pp.

509–519, Sep. 2019, doi: 10.1109/JETCAS.2019.2933807.

10.	 E. Sakic, N. Ðerić, and, and W. Kellerer, “MORPH:

An adaptive framework for efficient and Byzantine

fault-tolerant SDN control plane,” IEEE J. Sel. Areas

Commun., vol. 36, no. 10, pp. 2158–2174, Oct. 2018, doi:

10.1109/JSAC.2018

.2869938.

11.	 D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo,

“RT-ByzCast: Byzantine-resilient real-time reliable

broadcast,” IEEE Trans. Comput., vol. 68, no. 3, pp.

440–454, Mar. 1, 2019, doi: 10.1109/TC.2018.2871443.

12.	 L. Su and N. H. Vaidya, “Byzantine-Resilient multia-

gent optimization,” IEEE Trans. Autom. Control, vol. 66,

no. 5, pp. 2227–2233, May 2021, doi: 10.1109/TAC.2020

.3008139.

13.	 R. Guerraoui and A. Maurer, “Byzantine-resilient

multi-agent system,” IEEE Trans. Dependable Secure

Comput., vol. 19, no. 6, pp. 4032–4038, Nov./Dec. 1,

2022, doi: 10.1109/TDSC.2021.3116488.

14.	 M. Fitzi, N. Gisin, and U. Maurer, “Quantum solution to

the Byzantine agreement problem,” Phys. Rev. Lett.,

vol. 87, no. 21, Nov. 2001, Art. no. 217901, doi: 10.1103

/PhysRevLett.87.217901.

PEDRO REVIRIEGO is an associate professor at the Universi-

dad Politécnica de Madrid, 28040 Madrid, Spain. Contact him

at pedro.reviriego@upm.es.

ELENA MERINO-GÓMEZ is an assistant professor at the

Universidad de Valladolid, 47011 Valladolid, Spain. Contact

her at elena.merino.gomez@uva.es.

FABRIZIO LOMBARDI is the International Test Conference

Endowed Chair Professor at Northeastern University, Bos-

ton, MA 02215 USA. Contact him at lombardi@coe.neu.edu.

@s e cur it ypr ivac y
FOLLOW US

Submit your paper today!
Visit www.computer.org/oj to learn more.

Get Published in the New IEEE Open
Journal of the Computer Society

Submit a paper to the new
IEEE Open Journal of the
Computer Society covering
computing and informational
technology.

Your research will benefit from

the IEEE marketing launch and 5

million unique monthly users of

the IEEE Xplore® Digital Library.

Plus, this journal is fully open

and compliant with funder

mandates, including Plan S.

52	 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

43mahc04-denning-3132110.3d (Style 7) 07-02-2022 12:1

DEPARTMENT EDITOR: Colette Perold, colette.perold@colorado.edu

THINK PIECE

Mathematics, Logic, and Engineering
in Computing
Peter J. Denning , Naval Postgraduate School, Monterey, CA, USA

Matti Tedre, University of Eastern Finland, Joensuu, Finland

From its beginning in the 1950s, noncomputingaca-
demics were skeptical about computer science
because it seemed strong on technology and

weak on theory. To answer the critics and shore up their
case, computer scientists turned to a rich trove of compu-
tationalmethods from logic andmathematics. Computing
from ancient times focused on methods of manipulating
symbols that could be performed by people untrained in
mathematics. Examples include ancient Babylonian algo-
rithm-like step-by-step rules, Greek mathematical proce-
dures like the Euclidean algorithm or the sieve of
Eratosthenes, and al-Khwarizmi’s algorithmic techniques.
In the twentieth century, the mathematical logicians
Turing, G€odel, Church, Kleene, and Post provided a solid
foundational theory for the new field of computer science,
showingwhatcanandcannotbecomputed.

Much human computation is based on procedures of
many steps,many ofwhichdependon logic: decomposing
a large task into a series of smaller ones, choosing
between alternative tasks based on a condition, and
repeating tasks until some condition was achieved. Popu-
lar history texts in computing cite the development of
logic as ameans for ultimately automating these choices.
Boole’s algebra for logic formulas (1854) gave a notation
for conditions used inmaking the choices, which could be
composed from simple true–false elements connected by
AND, OR, and NOT. Shannon’s insight (1938) made Boole’s
algebra the basis for describing electronic computer cir-
cuits. Frege’s axiomatic predicate logic (1879) presented
formal rules of inference and syntax, which, in the 1950s,
came to be seen as the logical basis for programming lan-
guages. Like many others, Boole and Frege believed that
logicwas the foundation for rational human thought.

Thenotion that logicenabledcomputationopened the
reverse possibility that computation could automate the

logic of mathematical proofs. Beginning around 1900,
prominent mathematicians and logicians sought to char-
acterizetheprocessofproofsopreciselythatanautomatic
procedure could decide whether any given proposition is
provable infirst-order logic. In 1928, the famous mathema-
ticianDavid Hilbert posed this Decision Problem as one of
thefundamentalchallenges inmathematics [5].

To many, the Decision Problem looked eminently
doable: a proof system consisted of given axioms and
rules of inference, and a proof is a well-structured
sequence of statements in which each statement is
either an axiom or is constructed from previous state-
ments by a rule. Hilbert andmany others had believed for
years that an algorithm for the Decision Problem existed,
although they never could find it. Their hopes were per-
manently dashed when, in the 1930s, G€odel, Post, Turing,
and Church proved that this was impossible. Their differ-
ent systemsofmechanizationwere all shown to be equiv-
alent—any computation in one could be simulated in all
the others. The famous Church–Turing thesis stated that
all effective computations could be formalized as Turing
machines. What an irony, that logic-inspired computation
was incapable of answering the Decision Problem’s ques-
tion of whether logical proofs could be automated.

This irony supported the academic case for com-
puter science. Not only did the work of Turing and the
others provide a basic theory of computation, it led to
the surprising conclusion that many important ques-
tions cannot be answered by computational algorithms.
It made the case that a small set of logic principles gov-
erned the thought processes of designing algorithms.

For these reasons, when computing became an
academic discipline in the 1950s, the popular disciplin-
ary narratives of computing prominently featured
mathematics and logic.

COMPUTING AS A BRANCH
OF LOGIC

Many pioneers of the nascent computing field in the
1950s came from mathematics. They took it as a given

1058-6180 � 2022 IEEE
Digital Object Identifier 10.1109/MAHC.2021.3132110
Date of current version 7 February 2022.

October-December 2021 Published by the IEEE Computer Society IEEE Annals of the History of Computing 97

EDITOR: Colette Perold, colette.perold@colorado.edu

DEPARTMENT: THINK PIECE

Mathematics, Logic, and
Engineering in Computing
Peter J. Denning , Naval Postgraduate School, Monterey, CA, USA

Matti Tedre, University of Eastern Finland, Joensuu, Finland

This article originally
appeared in

vol. 43, no. 4, 2021

www.computer.org/computingedge� 53

THINK PIECE

43mahc04-denning-3132110.3d (Style 7) 07-02-2022 12:2

that electronic automatic computers are governed by
logic systems. Engineers agreed: logic was baked into
computer architecture from the beginning. In his 1938
M.Sc. thesis, Claude Shannon showed that the func-
tions of switching circuits, such as those found in tele-
phone exchanges and motor control equipment, could
be described by Boolean algebra. Through a series of
developments into practical applications, Shannon’s
insight permeated the engineering world [1] and was
eventually adopted for computer circuits. Electronic
computer circuits came to be called logic circuits, and
Boole’s algebra of logic became the standard basis for
computing. Logic’s influence on circuit design contin-
ued in the 1950s and 1960s. For instance, an early
design technique using Karnaugh maps (1953) enabled
logic circuit designers to minimize the number of logic
gates needed and avoid race hazards where a change
of state could cause an output to flicker. Logic
also influenced programming practice. The 1966
B€ohm–Jacopini theorem restated the logic basis of pro-
gramming languages: every computation could be con-
structed from simpler computations by joining them in
sequences, if-then clauses, or iteration clauses. The the-
orem was taken as a support for “structured program-
ming”—a programming practice that advocated a
limited set of constructs to build programs.

Similarly, early research programs in artificial intelli-
gence were based on an idea that human intelligence (at
least the rational part) is based on logic. This ideawas cel-
ebrated in the monumental intellectual achievements of
the early 1900s, notably Russell andWhitehead’sPrincipia
Mathematica and Wittgenstein’s Tractatus Logico-Philo-
sophicus. Logic was revered as a pinnacle of human intel-
ligence. Not surprisingly, early AI focused on getting logic
programs to perform intelligent actions. The logic theory
of intelligence received a big boost in 1956, when the
Logic TheoryMachine ofNewell, Simon, and Shawproved
38of thefirst 52 theoremsof thePrincipia. Somesaw that
machine as an improvement to human intelligence—it
produced in a few minutes proofs of several theorems
that brilliant thinkers took years to prove. Logic came to
be seen as a litmus test formachine intelligence.

This idea spawned a branch of AI devoted to logic
programming, from which expert systems emerged in
the early 1980s. The prototypes used new logic lan-
guages LISP and PROLOG. Engineers built special-pur-
pose machines to run programs in these languages very
efficiently. The Japanese Fifth Generation Project
(1980s) was aimed at turbocharging expert systems by
building supercomputers for massive logic operations,
just as a numerical supercomputer could do with mas-
sive arithmetic operations. The United States responded
with its Strategic Computing Initiative, more generally

focused on supercomputers capable of solving “grand
challenge problem” in science.

Logic pervaded other parts of computing as well. In
1970, Codd introduced the logic of relational databases,
which became a major IBM project later in that decade
and spawned a host of database companies. These sys-
tems are often queried and managed with the language
SQL, which consists of logic expressions to select, join,
and project records. Logic made the data management
systems common in business simpler andmore effective.

Inthesametime,therewasanexplosionof insights into
the complexity of computations. It was well known that
someproblemsarehardertosolvethanothers—theiralgo-
rithmstakemore timeandmemory.TheNP-completeness
theorems of Cook (1971) and Levin (1973) to characterize
theseproblemsare deeply rooted in logic.Manyharddeci-
sion problems could be simulated with gigantic logic cir-
cuits; finding the answer amounted to finding an input to
the logicnetworkthatproducesthedesiredyes–nooutput.
This is known in logic as the satisfiability (SAT) problem.
Any fast algorithm for solving the SAT problem would be
convertible to a fast algorithm for any of the numerous
hard problems that could be simulated as a SAT problem.
Ourtheoryofcomplexity restson logic.

CRACKS APPEAR
Yet, logic’s hegemony had already started to show
signs of cracking in the late 1960s. When software engi-
neering was being born to address the software crisis,
several pioneers from the logic-oriented community
proposed that much of the unreliability of software
would be eliminated if the software could be formally
proved to meet its specifications, for then there would
be no doubt that the software was error free once it
was compiled. Formal verification, however, turned out
to be a formidable challenge. It sparked heated
debates that forever shaped the computing field.

It turned out that formal logic proofs could be car-
ried out only for relatively small programs, but large
systems were beyond their reach. Even if the program
source code could be proved correct, there was the
additional difficulty of proving that the compiled
machine code as well as the hardware platform also
met their specifications. In his 1983 Turing Award lec-
ture, Ken Thompson reminded us that bugs were not a
feature of program code alone but of the total soft-
ware-hardware–human system. Logicians and engi-
neers argued endlessly about the practicality of
formal proof. Many engineers were concerned that
recovery from defects and deterioration of hard-
ware—such as a transistor failure or arrival of a signal
corrupted by noise—could not be supported in the

98 IEEE Annals of the History of Computing October-December 2021

THINK PIECE

43mahc04-denning-3132110.3d (Style 7) 07-02-2022 12:1

DEPARTMENT EDITOR: Colette Perold, colette.perold@colorado.edu

THINK PIECE

Mathematics, Logic, and Engineering
in Computing
Peter J. Denning , Naval Postgraduate School, Monterey, CA, USA

Matti Tedre, University of Eastern Finland, Joensuu, Finland

From its beginning in the 1950s, noncomputingaca-
demics were skeptical about computer science
because it seemed strong on technology and

weak on theory. To answer the critics and shore up their
case, computer scientists turned to a rich trove of compu-
tationalmethods from logic andmathematics. Computing
from ancient times focused on methods of manipulating
symbols that could be performed by people untrained in
mathematics. Examples include ancient Babylonian algo-
rithm-like step-by-step rules, Greek mathematical proce-
dures like the Euclidean algorithm or the sieve of
Eratosthenes, and al-Khwarizmi’s algorithmic techniques.
In the twentieth century, the mathematical logicians
Turing, G€odel, Church, Kleene, and Post provided a solid
foundational theory for the new field of computer science,
showingwhatcanandcannotbecomputed.

Much human computation is based on procedures of
many steps,many ofwhichdependon logic: decomposing
a large task into a series of smaller ones, choosing
between alternative tasks based on a condition, and
repeating tasks until some condition was achieved. Popu-
lar history texts in computing cite the development of
logic as ameans for ultimately automating these choices.
Boole’s algebra for logic formulas (1854) gave a notation
for conditions used inmaking the choices, which could be
composed from simple true–false elements connected by
AND, OR, and NOT. Shannon’s insight (1938) made Boole’s
algebra the basis for describing electronic computer cir-
cuits. Frege’s axiomatic predicate logic (1879) presented
formal rules of inference and syntax, which, in the 1950s,
came to be seen as the logical basis for programming lan-
guages. Like many others, Boole and Frege believed that
logicwas the foundation for rational human thought.

Thenotion that logicenabledcomputationopened the
reverse possibility that computation could automate the

logic of mathematical proofs. Beginning around 1900,
prominent mathematicians and logicians sought to char-
acterizetheprocessofproofsopreciselythatanautomatic
procedure could decide whether any given proposition is
provable infirst-order logic. In 1928, the famous mathema-
ticianDavid Hilbert posed this Decision Problem as one of
thefundamentalchallenges inmathematics [5].

To many, the Decision Problem looked eminently
doable: a proof system consisted of given axioms and
rules of inference, and a proof is a well-structured
sequence of statements in which each statement is
either an axiom or is constructed from previous state-
ments by a rule. Hilbert andmany others had believed for
years that an algorithm for the Decision Problem existed,
although they never could find it. Their hopes were per-
manently dashed when, in the 1930s, G€odel, Post, Turing,
and Church proved that this was impossible. Their differ-
ent systemsofmechanizationwere all shown to be equiv-
alent—any computation in one could be simulated in all
the others. The famous Church–Turing thesis stated that
all effective computations could be formalized as Turing
machines. What an irony, that logic-inspired computation
was incapable of answering the Decision Problem’s ques-
tion of whether logical proofs could be automated.

This irony supported the academic case for com-
puter science. Not only did the work of Turing and the
others provide a basic theory of computation, it led to
the surprising conclusion that many important ques-
tions cannot be answered by computational algorithms.
It made the case that a small set of logic principles gov-
erned the thought processes of designing algorithms.

For these reasons, when computing became an
academic discipline in the 1950s, the popular disciplin-
ary narratives of computing prominently featured
mathematics and logic.

COMPUTING AS A BRANCH
OF LOGIC

Many pioneers of the nascent computing field in the
1950s came from mathematics. They took it as a given

1058-6180 � 2022 IEEE
Digital Object Identifier 10.1109/MAHC.2021.3132110
Date of current version 7 February 2022.

October-December 2021 Published by the IEEE Computer Society IEEE Annals of the History of Computing 97

54	 ComputingEdge� August 2024

THINK PIECE

43mahc04-denning-3132110.3d (Style 7) 07-02-2022 12:2

logic formalisms. The prospects for full and complete
verification started to look very gloomy when many
agreed that developing complete specifications repre-
senting the true intentions of the human stakeholders
and users of systems could not be formalized—and
therefore not amenable to the tools of standard logic.

Other anomalies about the completeness of logic as
the basis of computing appeared. In themid-1960s, Lotfi
Zadeh argued that engineers are frequently faced with
ambiguous situations where a condition can be partially
true and partially false at the same time. He proposed
“fuzzy logic” as an extension of Boolean logic that allows
truth values to be represented by numbers between 0
and 1. Fuzzy logic proved useful in many physical devi-
ces, but did not gain much foothold in the AI and logic
community. Still another anomaly in the field of AI was
foundwith expert systems, which were expected to per-
form as a human expert by acquiring enough deductive
rules and facts. Dreyfus (1972) challenged this idea on
the grounds that much expert behavior does not follow
known rules; expert systems might become competent,
he argued, but not expert [4]. Many other anomalies
between the expectations of what AI could achieve and
what AI actually achieved arose from the presumption
that intelligence is founded in formal logic.

In 2013, Moshe Vardi lamented about the accumu-
lation of gloomy conclusions about logic two decades
before. He recalled how he and his colleagues experi-
enced a feeling that large-scale program verification
may indeed be hopeless: “First-order logic is undecid-
able, the decidable fragments are either too weak or
too intractable, even Boolean logic is intractable [6].”
Moreover, as computers invaded many new areas
such as entertainment, cyber-physical control sys-
tems, office tools, art, transportation, medicine, and
more, skillful development relied progressively less on
logic and more on design acumen, human communi-
cation, aesthetics, social savvy, and other nonformal
skills. Continuing progress in important technologies
such relational databases, Boolean reasoning, and
model checking did not stave off the growing feeling
that computing could not be reducible to logic.

NO COMPUTING WITHOUT
ENGINEERING

Over the 1980s, there was a growing consensus that the
logic view does not cover many engineering, science,
and technology aspects of computing. We were being
pulled back to the historic notion that the roots of com-
puter science are a complex mixture combining mathe-
matics, science, and engineering. Logic did not cover
everything in computing. The 1989 Computing as a

Discipline report crystallized this growing feeling among
people in the computing field [3]. Herewith a few
examples.

Start with logic circuits. The logic formulas describ-
ing circuits assume that the signals are 0 and 1. But
these are abstractions. The 0 and 1 represent states of
the circuits, such as voltage low or high. Because a
physical circuit can be in transient states that are nei-
ther 0 nor 1, the logic of the abstraction is unable to
deal with some physical behaviors. The “half signal
problem” asks what happens when one part of a cir-
cuit tries to read another part that has not settled into
a definite 0 or 1 state. The “arbitration problem” asks
what happens if a logic signal and clock signal arrive
at the input of a flip-flop circuit at the same time. This
condition can trigger the flip-flop into a metastable
state that is neither 0 nor 1 and can crash the CPU
when it persists for many clock ticks. These problems
have physical solutions that cannot be derived in
logic. Physical circuits display important stochastic
behaviors that cannot be addressed by logic alone.

Next, consider the architecture of computers. In
1945, John von Neumann published the ideas of a
team of pioneers from the early computing projects
who defined a better architecture that would be more
reliable and faster than their previous machines. What
emerged is now known as the von Neumann architec-
ture. It separated the computer into CPU, memory,
and input–output, and defined the CPU cycle that
fetches and executes programs stored as instructions
in the main memory. While this architecture has often
been held as an example of logical and analytic think-
ing in computing, it was actually the product of engi-
neering improvements for efficiency and reliability [2].

One of the innovations of that architecture was to
fetch instructions from main memory rather than
paper tapes or cards. This engineering innovation
greatly speeded up program execution. However, folk-
lore developed that the stored program idea was the
implementation of Turing’s universal machine. This is
not so. Historians find evidence to the contrary that
the architecture was not influenced by Turing’s model,
nor did Turing have in mind an architecture of the
same type. Other folklore held that the new architec-
ture would be easier to build than its predecessors. In
some ways, it surely was, but at the same time it also
created new challenges. For instance, Maurice Wilkes,
who led the EDSAC project at the University of
Cambridge, said that one of the many engineering
challenges was finding a technology that could sup-
port a main memory large enough to hold all the
instructions of the program. Wilkes found that a mer-
cury delay line did the job better than other available

October-December 2021 IEEE Annals of the History of Computing 99

THINK PIECE

www.computer.org/computingedge� 55

THINK PIECE

43mahc04-denning-3132110.3d (Style 7) 07-02-2022 12:2

logic formalisms. The prospects for full and complete
verification started to look very gloomy when many
agreed that developing complete specifications repre-
senting the true intentions of the human stakeholders
and users of systems could not be formalized—and
therefore not amenable to the tools of standard logic.

Other anomalies about the completeness of logic as
the basis of computing appeared. In themid-1960s, Lotfi
Zadeh argued that engineers are frequently faced with
ambiguous situations where a condition can be partially
true and partially false at the same time. He proposed
“fuzzy logic” as an extension of Boolean logic that allows
truth values to be represented by numbers between 0
and 1. Fuzzy logic proved useful in many physical devi-
ces, but did not gain much foothold in the AI and logic
community. Still another anomaly in the field of AI was
foundwith expert systems, which were expected to per-
form as a human expert by acquiring enough deductive
rules and facts. Dreyfus (1972) challenged this idea on
the grounds that much expert behavior does not follow
known rules; expert systems might become competent,
he argued, but not expert [4]. Many other anomalies
between the expectations of what AI could achieve and
what AI actually achieved arose from the presumption
that intelligence is founded in formal logic.

In 2013, Moshe Vardi lamented about the accumu-
lation of gloomy conclusions about logic two decades
before. He recalled how he and his colleagues experi-
enced a feeling that large-scale program verification
may indeed be hopeless: “First-order logic is undecid-
able, the decidable fragments are either too weak or
too intractable, even Boolean logic is intractable [6].”
Moreover, as computers invaded many new areas
such as entertainment, cyber-physical control sys-
tems, office tools, art, transportation, medicine, and
more, skillful development relied progressively less on
logic and more on design acumen, human communi-
cation, aesthetics, social savvy, and other nonformal
skills. Continuing progress in important technologies
such relational databases, Boolean reasoning, and
model checking did not stave off the growing feeling
that computing could not be reducible to logic.

NO COMPUTING WITHOUT
ENGINEERING

Over the 1980s, there was a growing consensus that the
logic view does not cover many engineering, science,
and technology aspects of computing. We were being
pulled back to the historic notion that the roots of com-
puter science are a complex mixture combining mathe-
matics, science, and engineering. Logic did not cover
everything in computing. The 1989 Computing as a

Discipline report crystallized this growing feeling among
people in the computing field [3]. Herewith a few
examples.

Start with logic circuits. The logic formulas describ-
ing circuits assume that the signals are 0 and 1. But
these are abstractions. The 0 and 1 represent states of
the circuits, such as voltage low or high. Because a
physical circuit can be in transient states that are nei-
ther 0 nor 1, the logic of the abstraction is unable to
deal with some physical behaviors. The “half signal
problem” asks what happens when one part of a cir-
cuit tries to read another part that has not settled into
a definite 0 or 1 state. The “arbitration problem” asks
what happens if a logic signal and clock signal arrive
at the input of a flip-flop circuit at the same time. This
condition can trigger the flip-flop into a metastable
state that is neither 0 nor 1 and can crash the CPU
when it persists for many clock ticks. These problems
have physical solutions that cannot be derived in
logic. Physical circuits display important stochastic
behaviors that cannot be addressed by logic alone.

Next, consider the architecture of computers. In
1945, John von Neumann published the ideas of a
team of pioneers from the early computing projects
who defined a better architecture that would be more
reliable and faster than their previous machines. What
emerged is now known as the von Neumann architec-
ture. It separated the computer into CPU, memory,
and input–output, and defined the CPU cycle that
fetches and executes programs stored as instructions
in the main memory. While this architecture has often
been held as an example of logical and analytic think-
ing in computing, it was actually the product of engi-
neering improvements for efficiency and reliability [2].

One of the innovations of that architecture was to
fetch instructions from main memory rather than
paper tapes or cards. This engineering innovation
greatly speeded up program execution. However, folk-
lore developed that the stored program idea was the
implementation of Turing’s universal machine. This is
not so. Historians find evidence to the contrary that
the architecture was not influenced by Turing’s model,
nor did Turing have in mind an architecture of the
same type. Other folklore held that the new architec-
ture would be easier to build than its predecessors. In
some ways, it surely was, but at the same time it also
created new challenges. For instance, Maurice Wilkes,
who led the EDSAC project at the University of
Cambridge, said that one of the many engineering
challenges was finding a technology that could sup-
port a main memory large enough to hold all the
instructions of the program. Wilkes found that a mer-
cury delay line did the job better than other available

October-December 2021 IEEE Annals of the History of Computing 99

THINK PIECE

43mahc04-denning-3132110.3d (Style 7) 07-02-2022 12:2

technologies. With this and other engineering innova-
tions, he got the EDSAC machine working a year ear-
lier than its U.S. version (EDVAC). Wilkes steadfastly
maintained that there are important aspects of com-
puting that logic cannot address.

Next, consider large multiuser networked systems.
The Multics project at MIT (1965) dreamt of a “com-
puter utility” that would dispense cheap computing
power over a network to the masses. No one knew how
to organize large operating systems that would coordi-
nate hundreds of users. The logic-inspired view at the
time was to carefully construct the operating system
as a set of modules that interacted by well-defined
interfaces. But these systems had great difficulties
with coordination and were prone to many errors and
crashes. Operating systems designers at MIT, IBM, and
elsewhere invented a new idea, the process, as the
basic entity demanding service from the system, and
they organized the system as a “society of cooperating
processes.” This led rapidly to successful operating sys-
tems and a new theory of concurrent process coordina-
tion. Although logic helped to make coordination
theories more precise, neither the gestation of the pro-
cess idea nor its development was in logic—the pro-
cess arose in the pragmatics of coordinating activities
in an operating system. Over the years, the engineering
understanding of these systems led to very small oper-
ating system kernels that could be formally verified by
the methods pioneered in the 1970s. Today the sel4
secure operating system kernel illustrates how an engi-
neered system can progress to the point of being a
commercially viable, fully verified kernel.

Computational science, which grew up in the
1980s, is based on the idea that many physical pro-
cesses can be viewed as information processes that
can be simulated on a computer. Formal logic does
not capture the simulation and modeling prevalent in
computational science.

Finally, consider the performance of computer sys-
tems. As users, we want computers to get our jobs
done as fast as possible within the constraints of pro-
cessors and memory. Complexity theory gave order-of-
magnitude estimates of running times of algorithms on
a single CPU. But it was not able to predict the response
time when multiple jobs were competing for the CPU.
The solution to this was again found by engineers who
recognized that queueing theory could answer the
question. Computer scientists plunged into the perfor-
mance analysis and prediction problem and discovered
very fast algorithms to compute throughput and
response times for operating systems (and the Inter-
net) built as networks of servers. This led eventually to

a thriving performance-evaluation industry. But queue-
ing theory is not a product of logic, and performance
evaluation is an empirical, not logical, matter.

In all these systems, engineering was oriented
toward finding what works and what does not work.
This is often accomplished with lots of trial and error,
tinkering, and experimenting. There is often no theory
or science available to understand what is going on;
understanding is developed by trying things out. For
instance, designers of early time-sharing systems
found no theory that could predict their response
time. Once time-sharing systems started to show
promise, a rich body of theory emerged to accurately
predict response time, guide the design of systems,
and evaluate their performance.

The modern computational thinking movement for
K-12 education has embraced the idea that computa-
tional thinking is founded on logical thinking. The
movement has defined curricula that teach comput-
ing principles using generic logic puzzles and games.
This has been controversial because generic logic
does not demonstrate the unique aspects of comput-
ing and because it omits study of engineering and
design in computing systems.

In truth, computer science is built on a complex
framework of understandings from logic, mathemat-
ics, science, and engineering. Combined together,
these different modes of thinking produced the amaz-
ing progress we have seen in computing. Computing
is bigger than logic, and logic is less foundational than
many people believe: designing, building, experiment-
ing, and are at least equally foundational for the field.

REFERENCES/ENDNOTES
[1] L. De Mol, M. Bullynck, and E. G. Daylight, “Less is more

in the fifties: Encounters between logical minimalism

and computer design during the 1950s,” IEEE Ann. Hist.

Comput., vol. 40, no. 1, pp. 19–45, Jan.–Mar. 2018.

[2] L. De Mol and M. Bullynck, “Roots of ‘Program’

revisited,” Commun. ACM, vol. 64, no. 4, pp. 35–37, 2021.

[3] P. J. Denning et al., “Computing as a discipline,”

Commun. ACM, vol. 32, no. 1, pp. 9–23, 1989.

[4] H. Dreyfus,What Computers Still Can’t Do. Cambridge,

MA, USA: MIT Press, 1992. Originally published as “What

computers can’t do” in 1972.

[5] D. Hilbert and W. Ackermann, Principles of

Mathematical Logic, 2nd translated ed. Providence, RI,

USA: AMS Chelsea Pub., 1958, p. 122.

[6] M. Y. Vardi, “A logical revolution (slides for keynote),” in

Proc. 9th JointMeeting Found. Softw. Eng., 2013, Art. no. 1.

100 IEEE Annals of the History of Computing October-December 2021

THINK PIECE

many people believe: designing, building, experiment-
ing, and are at least equally foundational for the field.

Software and Cybersecurity ■ Big Data: Privacy Versus Accessibility ■ Resiliency in Cloud Computing

November/December 2018
Vol. 16, No. 6

CYBERSECURITY AND
PRIVACY ISSUES IN BRAZIL

IEEE SEC
U

RIT
Y &

 PRIVA
C

Y
A

I ETH
IC

S
V

O
LU

M
E 16

N
U

M
BER 3

M
AY/JU

N
E 2018

W
W
W
.CO

M
PU

TER.O
RG

/SEC
U
RIT

Y

E-Currency and Fairness ■ Ransomware Defense ■ A National Cybersecurity Policy

May/June 2018
Vol. 16, No. 3

IEEE SEC
U

RIT
Y &

 PRIVA
C

Y
PRIVA

C
Y A

N
D

 A
U

TO
M

ATED
 A

IRPO
RT SC

REEN
IN

G
V

O
LU

M
E 17

N
U

M
BER 2

M
A

RC
H

/A
PRIL 2019

W
W
W
.CO

M
PU

TER.O
RG

/SEC
U
RIT

Y

March/April 2019
Vol. 17, No. 2

IEEE SEC
U

RIT
Y &

 PRIVA
C

Y
D

IG
ITA

L FO
REN

SIC
S, PA

RT 2
V

O
LU

M
E 17

N
U

M
BER 1

JA
N

U
A

RY/FEBRU
A

RY 2019
W
W
W
.CO

M
PU

TER.O
RG

/SEC
U
RIT

Y

Blockchain Technologies ■ The Fuzzing Revival ■ Cybersecurity for the Public Interest

January/February 2019
Vol. 17, No. 1

Resiliency in Cloud Computing

November/December 2018
Vol. 16, No. 6

Join the IEEE Computer Society
for subscription discounts today!
www.computer.org/product/magazines/security-and-privacy

IEEE Security & Privacy is a bimonthly magazine
communicating advances in security, privacy,
and dependability in a way that is useful to a
broad section of the professional community.

The magazine provides articles with both a
practical and research bent by the top thinkers in
the fi eld of security and privacy, along with case
studies, surveys, tutorials, columns, and in-depth
interviews. Topics include:

• Internet, software, hardware, and systems security
• Legal and ethical issues and privacy concerns
• Privacy-enhancing technologies
• Data analytics for security and privacy
• Usable security
• Integrated security design methods
• Security of critical infrastructures
• Pedagogical and curricular issues in security education
• Security issues in wireless and mobile networks
• Real-world cryptography
• Emerging technologies, operational resilience,

and edge computing
• Cybercrime and forensics, and much more

www.computer.org/security

SSUUBBSSCCRRIIBBEE AANNDD SSUUBBMMIITT
For more information on paper submission, featured articles, calls
for papers, and subscription links visit:

www.computer.org/tsusc

The IEEE Transactions on Sustainable Computing (T-SUSC) is a peer-reviewed journal devoted to

notion of sustainability is one of the core areas in computing today and can cover a wide range
of problem domains and technologies ranging from software to hardware designs to application

sources) is needed in computing devices and infrastructure and has grown to be a major limitation
to usability and performance.

Contributions to T-SUSC

These problems can be related to information processing, integration, utilization, aggregation, and
generation. Solutions for these problems can call upon a wide range of algorithmic and computational
frameworks, such as optimization, machine learning, dynamical systems, prediction and control,
decision support systems, meta-heuristics, and game-theory to name a few.

T-SUSC covers pure research and applications within novel scope related to sustainable computing,
such as computational devices, storage organization, data transfer, software and information

hardware/software implementations, new architectures, modeling and simulation, mathematical
models and designs that target sustainable computing problems are encouraged.

SSCCOOPPEE

IEEE TRANSACTIONS ONSUBMIT
TODAY

Join the IEEE Computer Society
for subscription discounts today!
www.computer.org/product/journals/tbd

IEEE Transactions on Big Data is a quarterly
journal that publishes peer-reviewed articles
with big data as the main focus.

The articles provide cross-disciplinary,
innovative research ideas and applications
results for big data including novel theory,
algorithms, and applications. Research areas
include:

• Big data
• Analytics
• Curation and management
• Infrastructure
• Performance analyses
• Semantics
• Standards
• Visualization

• Intelligence and scientific discovery from big data
• Security, privacy, and legal issues specifi c

to big data

Applications of big data in the fi elds of
endeavor where massive data is generated
are of particular interest.

www.computer.org/tbd

Keep up with the latest IEEE Computer Society publications and activities wherever you are.

Follow us:

stay connected.

  | @ComputerSociety

 | facebook.com/IEEEComputerSociety

 | IEEE Computer Society

  | youtube.com/ieeecomputersociety

 | instagram.com/ieee_computer_society

Publish your work in the IEEE Computer Society’s fl agship journal, IEEE
Transactions on Computers (TC). TC is a monthly publication with a wide
distribution to researchers, industry professionals, and educators in the
computing fi eld.

TC seeks original research contributions on areas of current computing
interest, including the following topics:

• Computer architecture
• Software systems
• Mobile and embedded systems

• Security and reliability
• Machine learning
• Quantum computing

All accepted manuscripts are automatically considered for the monthly
featured paper and annual Best Paper Award.

Learn about calls for papers and submission details at
www.computer.org/tc.

Call for Papers:

IEEE Transactions

on Computers

SHARE AND MANAGE
YOUR RESEARCH DATA
IEEE DataPort is an accessible onl ine platform that enables re-
searchers to easi ly share, access, and manage datasets in one
trusted location. The platform accepts al l types of datasets, up

to 2TB, and dataset uploads are currently free of charge.

UPLOAD DATASETS AT IEEE-DATAPORT.ORG

2TB Cloud Storage
Per Dataset

Supports Research
Reproducibility

Link Dataset to
Manuscript

Generates Citations

Host Data Competitions

ORCID
Integration

Broad Range of
Data Topics

Open Access Options

DOI Provided

Join the IEEE Computer Society
for subscription discounts today!
www.computer.org/product/journals/cal

IEEE Computer Architecture Letters is a forum for fast
publication of new, high-quality ideas in the form of
short, critically refereed technical papers. Submissions
are accepted on a continuing basis and letters will be
published shortly after acceptance in IEEE Xplore and in
the Computer Society Digital Library.

Submissions are welcomed on any topic in computer
architecture, especially:

• Microprocessor and multiprocessor systems
• Microarchitecture and ILP processors
• Workload characterization
• Performance evaluation and simulation techniques
• Interactions with compilers and operating systems
• Interconnection network architectures
• Memory and cache systems
• Power and thermal issues at the architectural level
• I/O architectures and techniques
• Independent validation of previously published results
• Analysis of unsuccessful techniques
• Domain-specifi c processor architecture

(embedded, graphics, network)
• High-availability architectures
• Reconfi gurable computer architectures

www.computer.org/cal

63 August 2024	 Published by the IEEE Computer Society � 2469-7087/24 © 2024 IEEE

Conference Calendar

IEEE Computer Society conferences are valuable forums for learning on broad and dynamically shifting top-

ics from within the computing profession. With over 200 conferences featuring leading experts and thought

leaders, we have an event that is right for you. Questions? Contact conferences@computer.org.

SEPTEMBER
2 September

	• VL/HCC (IEEE Symposium on

Visual Languages and Human-

Centric Computing), Liver-

pool, UK

15 September

	• IISWC (IEEE Int’l Symposium

on Workload Characterization),

Vancouver, Canada

	• QCE (IEEE Int’l Conf. on Quan-

tum Computing and Eng.), Mon-

treal, Canada

16 September

	• ACSOS (IEEE Int’ l Conf. on

Autonomic Computing and

Self-Organizing Systems), Aar-

hus, Denmark

	• e-Science (IEEE Int’l Conf. on

e-Science), Osaka, Japan

23 September

	• MASS (IEEE Int’ l Conf. on

Mobile Ad-Hoc and Smart Sys-

tems), Seoul, South Korea

24 September

• CLUSTER (IEEE Int’l Conf. on

Cluster Computing), Kobe,

Japan

	• IC2E (2024 IEEE Int’l Conf. on

Cloud Eng.), Paphos, Cyprus

OCTOBER
6 October

	• ICSME (IEEE Int’ l Conf. on

Software Maintenance and

Evolution), Flagstaff, USA

	• VISSOFT (IEEE Working Conf.

on Software Visualization),

Flagstaff, USA

7 October

	• SCAM (IEEE Int’ l Conf. on

Source Code Analysis and

Manipulation), Flagstaff, USA

	• SecDev (IEEE Secure Develop-

ment Conf.), Pittsburgh, USA

8 October

	• DFT (IEEE Int’l Symposium on

Defect and Fault Tolerance in

VLSI and Nanotechnology Sys-

tems), Didcot, United Kingdom

	• LCN (IEEE Conf. on Local Com-

puter Networks), Normandy,

France

10 October

	• ICPADS (IEEE Int’l Conf. on Par-

allel and Distributed Systems),

Belgrade, Serbia

11 October

	• ICEBE (IEEE Int’l Conf. on e-Busi-

ness Eng.), Shanghai, China

13 October

	• LDAV (IEEE Symposium on

Large Data Analysis and Visu-

alization), St. Pete Beach, USA

	• TopoInVis (IEEE Topological

Data Analysis and Visualiza-

tion), St. Pete Beach, USA

	• VIS (IEEE Visualization and

Visual Analy tics), St. Pete

Beach, USA

14 October

• VDS (IEEE Visualization in

Data Science), St. Pete Beach,

USA

21 October

	• ISMAR (IEEE Int’l Symposium

on Mixed and Augmented Real-

ity), Bellevue, Washington, USA

27 October

	• FOCS (IEEE Annual Sympo-

sium on Foundations of Com-

puter Science), Chicago, USA

28 October

	• CIC (IEEE Int’l Conf. on Collab-

oration and Internet Comput-

ing), Washington, DC, USA

	• CogMI (IEEE Int’l Conf. on Cog-

nitive Machine Intelligence),

Washington, DC, USA

	• ICNP (IEEE Int’l Conf. on Net-

work Protocols), Charleroi,

Belgium

	• ISSRE (IEEE Int’l Symposium

on Software Reliability Eng.),

Tsukuba, Japan

	• TPS-ISA (IEEE Int’l Conf. on

Trust, Privacy and Security in

Intelligent Systems, and Appli-

cations), Washington, DC, USA

30 October

	• BDCloud (IEEE Int’l Conf. on

Big Data and Cloud Comput-

ing), Kaifeng, China

	• ISPA (IEEE Int’l Symposium

on Parallel and Distributed

https://ldav.io/2024/
https://conf.researchr.org/home/icsme-2024
https://conf.researchr.org/home/vlhcc-2024
https://2024.acsos.org
https://iiswc.org
https://qce.quantum.ieee.org/2024
https://www.escience-conference.org/2024
https://sites.google.com/view/ieee-mass-2024
https://clustercomp.org
https://conferences.computer.org/IC2E/2024/index.html
https://conf.researchr.org/home/icsme-2024
https://vissoft.info/2024/index.html
https://www.ieee-scam.org/2024/
https://www.ieeelcn.org
https://secdev.ieee.org
https://www.dfts.org
https://conferences.computer.org/icebe/2024/index.htm
https://topoinvis-workshop.github.io/2024
https://attend.ieee.org/icpads
https://ieeevis.org
https://www.visualdatascience.org/2024/index.html
https://focs.computer.org/2024/
https://www.ismar.net
https://www.ieee-ispa.org/2024/ispa/
https://www.sis.pitt.edu/lersais/conference/cic/2024
https://www.sis.pitt.edu/lersais/conference/tps/2024
https://www.sis.pitt.edu/lersais/conference/cogmi/2024
https://icnp24.cs.ucr.edu
https://issre.github.io/2024/
https://www.ieee-ispa.org/2024/bdcloud/

Processing with Applications),

Kaifeng, China

• SocialCom (IEEE Int’l Conf. on

Social Computing and Net-

working), Kaifeng, China

• SpaCCS (IEEE Int’l Conf. on

Security, Privacy, Anonymity

in Computation and Commu-

nication and Storage), Kaifeng,

China

• SustainCom (IEEE Int’l Conf.

on Sustainable Computing

and Communications), Kai-

feng, China

NOVEMBER
3 November

• ICCD (IEEE Int’l Conf. on Com-

puter Design), Milan, Italy

5 November

• CBDCom (IEEE Conf. on Cloud

and Big Data Computing),

Boracay Island, Philippines

• CyberSciTech (IEEE Cyber

S cien c e a n d Te chn o l o g y

Congress), Boracay Island,

Philippines

• DASC (IEEE Conf. on Depend-

able, Autonomic and Secure

Computing), Boracay Island,

Philippines

• PICom (IEEE Conf. on Pervasive

and Intelligent Computing),

Boracay Island, Philippines

13 November

• PRDC (IEEE Pacific Rim Int’l

Symposium on Dependable

Computing), Osaka, Japan

14 November

• SmartIoT (IEEE Int’l Conf. on

Smart Internet of Things),

Shenzhen, China

15 November

• MedAI (IEEE Int’l Conf. on Med-

ical Artif icial Intelligence),

Chongqing, China

22 November

• IPCCC (IEEE Int’l Performance,

Computing, and Communica-

tions Conf.), Orlando, USA

27 November

• BIBE (IEEE Int’l Conf. on Bio-

informatics and Bioengineer-

ing), Kragujevac, Serbia

DECEMBER
4 December

• ICA (IEEE Int’l Conf. on Agents),

Wollongong, Australia

9 December

• ICDM (IEEE Int’l Conf. on Data

Mining), Abu Dhabi, United

Arab Emirate

10 December

• RTSS (IEEE Real-Time Systems

Symposium), York, UK

11 December

• ICKG (IEEE Int’l Conf. on Knowl-

edge Graph), Abu Dhabi, United

Arab Emirates

• ISM (IEEE Int’l Symposium on

Multimedia), Tokyo, Japan

13 December

• DependSys (IEEE Int’l Conf. on

Dependability in Sensor, Cloud

& Big Data Systems & Applica-

tions), Wuhan, China

• DIKW (IEEE Int’l Conf. on Data,

Information, Knowledge and

Wisdom), Wuhan, China

• DSS (IEEE Int’l Conf. on Data

Science and Systems), Wuhan,

China

• HPCC (IEEE Int’l Conf. on High

Performance Computing and

Communications), Wuhan,

China

• ICESS (IEEE Int’ l Conf. on

Embedded So� ware and Sys-

tems), Wuhan, China

• SmartCity (IEEE Int’l Conf. on

Smart City), Wuhan, China

15 December

• BigData (IEEE Int’l Conf. on Big

Data), Washington, District of

Columbia, USA

18 December

• HiPC (IEEE Int’l Conf. on High

Performance Computing, Data,

and Analytics), Bangalore, India

19 December

• ESAI (Int’l Conf. on Embedded

Systems and Artificial Intelli-

gence), Fez, Morocco

Learn more
about IEEE
Computer
Society
conferences

computer.org/conferences

ce8con(all).indd 73ce8con(all).indd 73 7/9/24 3:43 PM7/9/24 3:43 PM

https://www.ieee-ispa.org/2024/ispa/
https://www.ieee-ispa.org/2024/sustaincom/
https://www.ieee-ispa.org/2024/spaccs/
https://www.ieee-ispa.org/2024/socialcom/cfp.php
https://www.iccd-conf.com/
http://www.bibe2024.kg.ac.rs/
https://www.ipccc.org/
https://prdc.dependability.org/PRDC2024/
https://www.ieee-smartiot.org/
http://www.bigdatacq.cn/2024MedAl.html
https://www.ieee-smartiot.org/
https://attend.ieee.org/ica-2024/
https://icdm2024.org/
https://2024.rtss.org/
https://bigdataieee.org/BigData2024/index.html
https://hipc.org/
https://esaiconference.org/
http://www.computer.org/conferences/
https://cyber-science.org/2024/cyberscitech/
https://cyber-science.org/2024/cbdcom/
https://cyber-science.org/2024/dasc/
https://cyber-science.org/2024/picom/
http://ickg2024.openkg.cn/
https://www.ieee-ism.org/
http://www.ieee-hust-ncc.org/2024/DependSys/index.html
http://www.ieee-hust-ncc.org/2024/DIKW/index.html
http://www.ieee-hust-ncc.org/2024/DSS/index.html
http://www.ieee-hust-ncc.org/2024/HPCC/index.htm
http://www.ieee-hust-ncc.org/2024/ICESS/index.html
http://www.ieee-hust-ncc.org/2024/SmartCity/index.html

Career Accelerating
Opportunities
Explore new options—upload your resume today

I E E E C O M P U T E R S O C I E T Y C A R E E R C E N T E R

Changes in the marketplace shift demands for vital skills and talent.
The IEEE Computer Society Career Center is a valuable resource tool
to keep job seekers up to date on the dynamic career opportunities
offered by employers.

Take advantage of these special resources for job seekers:

No matter what your career level, the IEEE Computer
Society Career Center keeps you connected to

workplace trends and exciting career prospects.

JOB ALERTS

CAREER
ADVICE

WEBINARSTEMPLATES

RESUMES VIEWED
BY TOP EMPLOYERS

careers.computer.org

