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Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-

ing from software design and computer graphics to Internet computing and security, from scientific appli-

cations and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Venture Building in the 
Digital Era: Unraveling the 
Past, Present, and Future of 
Corporate Innovation

This May 2024 Computer article 

examines the evolution of Venture 

Building and its symbiotic relation-

ship with digital disruption. The 

author highlights successful mod-

els, offering insights into corpo-

rate strategies for navigating dig-

ital transformation and fostering 

entrepreneurial cultures, while 

anticipating future trends and 

stressing the importance of fur-

ther research.

Tensorlab+: A Case Study  
on Reproducibility in  
Tensor Research

Tensor methods emerge as an 

important class of basic tech-

niques, generalizing matrix meth-

ods to multiway data and models. 

The authors of this September/

October 2023 Computing in Sci-

ence & Engineering article have 

recently released Tensorlab+, 

which is a downloadable archive 

of code and data that allows peers 

to reproduce the experiments 

reported in their publications on 

tensor decompositions and appli-

cations. They briefly discuss the 

basic tensor tools and introduce 

the contents of Tensorlab+. The 

authors elaborate on the steps 

that were taken to ensure the 

reproducibility of the experiments 

and the quality of the code.

 

Lady Lovelace’s Objection: 
The Turing–Hartree Disputes 
Over the Meaning of Digital 
Computers, 1946–1951

Can machines think? Or can they 

do “whatever we know how to 

order” them to perform? Should 

machines be liberated from slav-

ery and given “fair play” to “com-

pete with men in all purely intel-

lectual fields”? Or should this be 

associated with a fashion that 

decries “human reason” and a path 

that “leads straight to Nazism”? 

In the postwar years, these ques-

tions were debated by Alan Turing 

and Douglas Hartree, who differed 

in their interpretations of the digi-

tal computer as a new piece of sci-

ence and technology. This Janu-

ary–March 2024 IEEE Annals of the 

History of Computing article exam-

ines the Turing–Hartree disputes 

and draws a parallel between their 

positions and their perspectives 

on postwar Britain.

Integrated Augmented and 
Virtual Reality Technologies 
for Realistic Fire Drill Training

The authors of this March/April 

2024 IEEE Computer Graphics 

and Applications article propose 

a novel fire drill training system 

designed specifically to integrate 

augmented reality (AR) and vir-

tual reality (VR) technologies 

into a single head-mounted dis-

play device to provide realistic 

as well as safe and diverse expe-

riences. Applying hybrid AR/VR 

technologies in fire drill training 

may be beneficial because they 

can overcome limitations such 

as space–time constraints, risk 

factors, training costs, and diffi-

culties in real environments. The 

proposed system can improve 

training effectiveness by trans-

forming arbitrary real spaces into 

real-time, realistic virtual fire sit-

uations, and by interacting with 

tangible training props. 
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From Electroencephalogram 
Data to Brain Networks: 
Graph-Learning-Based Brain 
Disease Diagnosis

Many studies exploit brains from 

the perspective of graph learn-

ing to diagnose the nerve diseases 

of brains. However, many of these 

algorithms are unable to automati-

cally construct brain function topol-

ogy based on electroencephalo-

gram (EEG) and fail to capture the 

global features of multichannel EEG 

signals for whole-graph embed-

ding. To address these challenging 

issues, the authors of this March/

April 2024 IEEE Intelligent Systems 

article propose an attention-based 

whole-graph learning model for the 

diagnosis of brain diseases, namely, 

MAINS, which can adaptively con-

struct brain functional topology 

from EEG signals and effectively 

embed multiple node features 

and the global structural features 

of brain networks into the whole-

graph representations.

Open Experimental 
Measurements of  
Sub-6GHz Reconfigurable 
Intelligent Surfaces

In this March/April 2024 IEEE Inter-

net Computing article, the authors 

present two datasets that they 

make publicly available for research. 

The data is collected in a testbed 

comprised of a custom-made recon-

figurable intelligent surface (RIS) 

prototype and two regular orthog-

onal frequency-division multiplex-

ing (OFDM) transceivers within an 

anechoic chamber. The authors dis-

cuss the details of the testbed and 

equipment used, including insights 

about the design and implementa-

tion of their RIS prototype. They fur-

ther present the methodology they 

employ to gather measurement 

samples, which consists of letting 

the RIS electronically steer the sig-

nal reflections from an OFDM trans-

mitter toward a specific location. 

Enabling Artificial 
Intelligence Supercomputers 
With Domain- 
Specific Networks

This article, featured in the March/

April 2024 issue of IEEE Micro, 

argues how domain-specific net-

works are a critical enabling tech-

nology necessary for AI supercom-

puters. In particular, the authors 

advocate for flexible, low-latency 

interconnects capable of deliver-

ing high throughput across massive 

scales with tens of thousands of 

endpoints. Additionally, they stress 

the importance of reliability and 

resilience in handling long-duration 

training workloads and the demand-

ing inference needs of domain-spe-

cific workloads.

Exploiting Illumination 
Knowledge in the Real  
World for Low-Light  
Image Enhancement

To bridge the gap and benchmark 

outdoor LLIE tasks, the authors of 

this January–March 2024 IEEE Mul-

tiMedia article propose the first 

outdoor, real-world, 2-D, low-light 

dataset, dubbed RE2L. Based on 

RE2L, they propose a semisuper-

vised LLIE framework to further 

exploit the illumination knowledge 

from both the signal fidelity con-

straint and characteristics of nor-

mal-light natural images. Experi-

mental results demonstrate that 

using RE2L for training deep LLIE 

schemes can improve the model 

effectiveness, both quantitatively 

and visually, especially on semisu-

pervised LLIE.

Unifying Threats Against 
Information Integrity in 
Participatory Crowd Sensing

This October–December 2023 IEEE 

Pervasive Computing article pro-

poses a unified threat landscape 
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for participatory crowd sens-

ing (P-CS) systems. Specifically, 

it focuses on attacks from orga-

nized malicious actors that may 

use the knowledge of P-CS plat-

form’s operations and exploit algo-

rithmic weaknesses in AI-based 

methods of event trust, user rep-

utation, decision-making, or rec-

ommendation models deployed 

to preserve information integrity 

in P-CS. The authors emphasize 

on intent driven malicious behav-

iors by advanced adversaries and 

how attacks are crafted to achieve 

those attack impacts.

Unleashing Malware Analysis 
and Understanding with 
Generative AI

Dissecting low-level malware behav-

iors into human-readable reports, 

such as cyber threat intelligence, is 

time-consuming and requires exper-

tise in systems and cybersecurity. 

This article, featured in the May/

June 2024 issue of IEEE Security & 

Privacy, combines dynamic analysis 

and artificial intelligence-generative 

transformation for malware report 

generation, providing detailed tech-

nical insights and articulating mal-

ware intentions.

Innovating Industry  
with Research: eknows  
and Sysparency

The authors of this article in the 

May/June 2024 issue of IEEE Soft-

ware present the multi-language 

software platform eknows for 

building reverse engineering tools 

and documentation generators as 

a concrete example of how to suc-

cessfully translate research on 

software analysis into innovative 

products and services. Platform 

development includes domain-

specific requirements and an 

architecture supporting reuse of 

components.

Conceptual Framework for 
Software Change

Ever since the invention of soft-

ware, change has been a desta-

bilizing factor. Although many 

new software changes are being 

applied, the terminologies used 

to describe them are often incon-

sistent. This restricts practitio-

ners to designing and evaluating 

their changes. This March/April 

2024 IT Professional article aims 

to develop a conceptual frame-

work of software change based 

on six main dimensions regard-

ing the source, essence, and con-

sequences of software change. To 

evaluate the proposed framework, 

benchmarking is applied against 

selected 11 previous studies. 
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Editor’s Note

Learning from the Past to 
Accelerate the Future

H uman advancement can 

be summarized as a series 

of failures and successes. Peo-

ple test new approaches, fail, and 

learn from their failures. Quan-

tum computing is a prime exam-

ple of combining failures and 

learning to create something new 

and extraordinary. This issue of 

ComputingEdge explores how 

to leverage quantum computing 

to accelerate systems. The arti-

cles emphasize the importance of 

learning from past approaches to 

enhance future efforts, from apply-

ing lessons from ancient empires 

to using AI in software develop-

ment. The issue also discusses the 

importance of improving scientific 

computing accessibility. 

To realize the potential of 

quantum computing, engineers 

must determine how to integrate 

it with existing systems. In “Mone-

tizing Quantum Computing,” from 

IT Professional, the author maps 

the quantum computing land-

scape, exploring potential growth, 

investment, and value genera-

tion. The Computing in Science 

& Engineering article, “Quantum 

Computing and High-Performance 

Computing: Compilation Stack 

Similarities,” illustrates how quan-

tum computing can accelerate 

HPC applications using a software 

stack for integration.

AI and quantum comput-

ing can advance HPC and soft-

ware development—with the right 

approach. The authors of “Accel-

erating HPC With Quantum Com-

puting: It Is a Software Challenge 

Too,” from Computing in Science & 

Engineering, describe their vision 

for an integrated ecosystem that 

combines HPC and quantum soft-

ware stacks into one system, sim-

plifying user experience. The arti-

cle, “Low Code for Smart Software 

Development,” from IEEE Software, 

outlines the promise and perils of 

using AI enhanced low-code envi-

ronments to quickly deliver soft-

ware solutions.

To make scientific comput-

ing more accessible, engineers 

must break down barriers between 

researchers and intricate science 

software. In the IT Professional 

article, “On the Role of Computer 

Languages in Scientific Comput-

ing,” the authors dissect the com-

plexity and roles of computer lan-

guages in scientific computing and 

offer guidelines for choosing the 

right language. Computer’s article, 

“Democratizing Science Through 

Advanced Cyberinfrastructure,” 

identifies barriers to accessing 

cyberinfrastructure in scientific 

research and how to address them.

Learning from historical mis-

takes, successes, and discover-

ies is an important step in future 

advancement. The authors of Com-

puter article, “Byzantine Empire and 

Its Generals: An Ancient Empire 

Back to Life in Computer Security” 

revisit lessons from the Byzantine 

Empire’s reign and apply them to 

today’s problem of software sys-

tems security. In “Mathematics, 

Logic, and Engineering in Comput-

ing,” from IEEE Annals of the His-

tory of Computing, the authors 

trace the origins of computing 

back to early approaches to logic, 

mathematics, and engineering in 

ancient civilizations. 
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Monetizing Quantum Computing
Nir Kshetri , University of North Carolina at Greensboro

Quantum computers demonstrate significant speed advantages over classical
computers in specific tasks. This article explores the current quantum computing
landscape, encompassing investment, market growth, and the potential value
generation across key industries.

The next frontier in computing, quantum com-
puters, exhibit remarkable speed advantages in
performing specific tasks when compared to

classical computers. In October 2023, China’s national
newspaper Global Times reported that Jiuzhang 3.0
quantum computer developed by University of Science
and Technology of China can solve an extremely diffi-
cult mathematical problem known as Gaussian boson
sampling 10 quadrillion (1015) times faster than the
world's fastest supercomputer “Frontier” (https://www.
globaltimes.cn/page/202310/1299679.shtml).

Increasing the computational capacity of a classi-
cal computer necessitates roughly doubling the num-
ber of transistors addressing a problem. In contrast, a
quantum computer's computational capacity has the
potential to increase twofold with the addition of a sin-
gle quantum bit (qubit), the fundamental unit of quan-
tum information, akin to the classic binary bit. (https://
tinyurl.com/yc3uvdze). It is obvious that quantum com-
puters’ remarkable speed in handling specific tasks is
likely to create significant economic and social value.1

Quantum technologies are thus viewed as a potential
solution to address global challenges such as climate
change and accelerated drug delivery.2

The technology's value creation potential is signifi-
cantly heightened when integrated with other techno-
logical advancements like machine learning and edge
computing. Machine learning typically involves numer-
ous parameters and extensive training data, but
quantum machine learning can achieve comparable
accuracy with fewer parameters. In a preliminary
study conducted with Hyundai, researchers developed
quantum machine learning algorithms capable of
distinguishing between ten road signs in controlled

laboratory experiments. Their quantummodel employed
a mere 60 parameters to achieve the same accuracy as
a classical neural network using 59,000 parameters. The
quantum algorithms also demand significantly fewer
training iterations.3 Likewise, a paradigm shift in how
data is managed and utilized can happen if quantum
computing and edge computing are combined. The
colossal volume of raw data gathered by sensors is
beyond the capabilities of today's classical computing
for real-time analysis, but quantum computing can
make it feasible (https://www.ibm.com/downloads/cas/
KOQZNQPL).

In this article, we discuss the current quantum
computing landscape including investment andmarket
growth in this industry. We also delve into quantum
computing's capacity to generate value across key
industries.

THE QUANTUM COMPUTING
LANDSCAPE: INVESTMENT AND
MARKET GROWTH
Current State and Ongoing
Developments
Current quantum computing technologies are
described to be in the noisy intermediate-scale quan-
tum (NISQ) era, which are characterized by quantum
devices with few useful qubits and high error rates
(https://thequantuminsider.com/2023/03/13/what-is-
nisq-quantum-computing/). Practical computations
are only achievable on quantum machines with a sig-
nificant number of qubits, a technology not yet
accessible due to the complex hardware develop-
ment. Data storage in quantum computers involves
qubits, created using diverse technologies such as
superconducting rings, optical traps, and light pho-
tons. Cooling requirements range from near absolute
zero to room temperature.3

1520-9202 © 2024 IEEE
Digital Object Identifier 10.1109/MITP.2024.3356111
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Researchers have provided mathematical evidence
demonstrating the considerable advantages of quan-
tum computers over current classical counterparts.
These advantages are most pronounced in simulating
quantum physics and chemistry and in breaking
public-key cryptosystems crucial for securing sensitive
communications, including online financial transac-
tions. Other contemplated use cases are generally
either marginal, speculative, or encompass elements of
both3 and remain in the realm of experimentation and
hypothesis.4

Despite restricted qubit quantities and elevated
error rates, NISQ computers have the capability to exe-
cute valuable computations (https://tinyurl.com/
3s7e2uwe). There is a focus among developers and
users on the realistic possibility of achieving a near-
term quantum advantage using current NISQ.5 In the
current prebreakthrough era, quantum applications
often employ hybrid algorithms, blending classical and
quantum computing capabilities, with classical pro-
cessors handling part of the computational workflow.
An alternative approach includes classical algorithms
simulating a quantum system's behavior on a classical
processor, referred to as quantum-inspired algorithms.6

In certain use cases, quantum models are already
exhibiting an edge over purely classical methods, albeit
not a significant one.6 Weather forecasts, relying on
simulations using current data, are known for their
errors. Achieving more accuracy requires assessing
numerous parameters and their interactions, a task
exceeding standard computers' capacity. Quantum
computers, with their ability to handle multiple param-
eters, hold promise for transformation. BASF, a German
chemical company, is incorporating Paris-based quan-
tum computing startup PASQAL's technology into
weather modeling to seek quantum advantages over
classical methods.6

Major players in the technology sector continue to
advance their quantum capabilities. For instance, tech-
nology giants such as Alibaba, Amazon, Google, IBM,
and Microsoft have already introduced commercial
quantum computing cloud services to the market,
known as quantum computing as a service (QCaaS).4

As early as in 2016, IBM provided access to a 5-qubit
quantum computer for researchers through the cloud
(https://www.protocol.com/manuals/quantum-comput-
ing/noisy-intermediate-scale-nisq). Some are providing
industry-specific solutions. Microsoft's Azure Quantum
Elements, unveiled in June 2023, is a new computing
service aimed at facilitating the R&D of novel materials
by chemical companies. Leveraging a blend of existing
quantum computers, artificial intelligence, and con-
ventional high-performance computing systems, this

service allows chemical firms to simulate extensive per-
mutations of atom combinations. It entails utilizing
computers to virtually explore potential new materials
and subsequently predict how these materials would
interact with the physical world (https://www.reuters.
com/technology/microsoft-says-new-computing-service-
chemicals-can-slash-rd-time-2023-06-21/).

The Quantum Computing Market
The market size of quantum computing is currently
small but experiencing rapid growth. According to the
International Data Corporation (IDC), the global quan-
tum computing market size was $1.1 billion in 2022
(https://tinyurl.com/4yuee9ws). IDC expects the global
quantum computing market to reach $7.6 billion by
20275 and $50.22 billion by 2035 (https://tinyurl.com/
4yuee9ws).

Currently, the cost of a quantum computer is
quite high, ranging from several million to tens of mil-
lions of dollars (https://ts2.space/en/how-much-
does-1-quantum-computer-cost/). Thus, in the near
term, only a few firms will develop or possess quan-
tum computers. Instead, as noted previously, a cloud-
computing-style model is emerging, where companies
lease access to quantum machines from specialized
providers, akin to the way businesses currently pro-
cure computing resources from AWS, Google Cloud,
and Microsoft Azure.7 QCaaS allows businesses to
harness quantum computing capabilities within bud-
get constraints (https://techwireasia.com/2023/03/
equinix-to-offer-quantum-computing-as-a-service/). As
noted previously, major technology companies have
introduced QCaaS.

While actual commercial use of quantum comput-
ing has not yet started, research and analyst firm
Enterprise Strategy Group’s 2023 Technology Spending
Intentions Survey found that a pilot or testing phase to
assess practical usefulness of quantum computing
was underway for about 28% of enterprises (Figure 1).
The survey also found that more than half of the firms
had not yet piloted or tested but had researched or
shown interest in this technology.

Investment in the Quantum Computing
Industry
The investment in the quantum computing industry is
witnessing a rapid increase. As reported by data analyt-
ics and consulting company GlobalData, venture capi-
tal funding for quantum computing startup reached
$1.62 billion in 2022 (https://www.investmentmonitor.ai/
news/commercial-scale-quantum-computing-unlikely-
before-2027/?cf-view). The collective annual investment
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newspaper Global Times reported that Jiuzhang 3.0
quantum computer developed by University of Science
and Technology of China can solve an extremely diffi-
cult mathematical problem known as Gaussian boson
sampling 10 quadrillion (1015) times faster than the
world's fastest supercomputer “Frontier” (https://www.
globaltimes.cn/page/202310/1299679.shtml).

Increasing the computational capacity of a classi-
cal computer necessitates roughly doubling the num-
ber of transistors addressing a problem. In contrast, a
quantum computer's computational capacity has the
potential to increase twofold with the addition of a sin-
gle quantum bit (qubit), the fundamental unit of quan-
tum information, akin to the classic binary bit. (https://
tinyurl.com/yc3uvdze). It is obvious that quantum com-
puters’ remarkable speed in handling specific tasks is
likely to create significant economic and social value.1

Quantum technologies are thus viewed as a potential
solution to address global challenges such as climate
change and accelerated drug delivery.2

The technology's value creation potential is signifi-
cantly heightened when integrated with other techno-
logical advancements like machine learning and edge
computing. Machine learning typically involves numer-
ous parameters and extensive training data, but
quantum machine learning can achieve comparable
accuracy with fewer parameters. In a preliminary
study conducted with Hyundai, researchers developed
quantum machine learning algorithms capable of
distinguishing between ten road signs in controlled

laboratory experiments. Their quantummodel employed
a mere 60 parameters to achieve the same accuracy as
a classical neural network using 59,000 parameters. The
quantum algorithms also demand significantly fewer
training iterations.3 Likewise, a paradigm shift in how
data is managed and utilized can happen if quantum
computing and edge computing are combined. The
colossal volume of raw data gathered by sensors is
beyond the capabilities of today's classical computing
for real-time analysis, but quantum computing can
make it feasible (https://www.ibm.com/downloads/cas/
KOQZNQPL).

In this article, we discuss the current quantum
computing landscape including investment andmarket
growth in this industry. We also delve into quantum
computing's capacity to generate value across key
industries.

THE QUANTUM COMPUTING
LANDSCAPE: INVESTMENT AND
MARKET GROWTH
Current State and Ongoing
Developments
Current quantum computing technologies are
described to be in the noisy intermediate-scale quan-
tum (NISQ) era, which are characterized by quantum
devices with few useful qubits and high error rates
(https://thequantuminsider.com/2023/03/13/what-is-
nisq-quantum-computing/). Practical computations
are only achievable on quantum machines with a sig-
nificant number of qubits, a technology not yet
accessible due to the complex hardware develop-
ment. Data storage in quantum computers involves
qubits, created using diverse technologies such as
superconducting rings, optical traps, and light pho-
tons. Cooling requirements range from near absolute
zero to room temperature.3
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in quantum startups that year reached a record high of
$2.35 billion (https://tinyurl.com/aem5ctc5). IDC projects
that investments in the quantum computing market will
reach approximately $16.4 billion by 2027.5

It is worth highlighting the increasing enthusiasm
for quantum computing among government agencies
worldwide (Figure 2). As of August 2023, 14 entities
(comprising 13 countries and the European Union) had
unveiled long-term quantum initiatives expected to
fund quantum computing research with billions of
dollars.5

Such funds are also being used to facilitate collabo-
rative research in quantum computing. For instance, in
April 2023, the Japanese government announced a
plan to invest $31.7 million in a cloud-based quantum
computing expansion project led by the University of
Tokyo. Over the next five years, the Ministry of Econ-
omy, Trade, and Industry would provide funding for this
initiative. As of that time, the University used a
27-qubit IBM quantum computer. The government

allocated funds to enhance accessibility to the 127-
qubit IBM model in the cloud at the University of
Tokyo.8 The project is anticipated to facilitate the
utilization of quantum computing by corporations and
academic institutions, fostering research collabo-
rations (https://www.u-tokyo.ac.jp/focus/en/features/
z1304_00193.html).

QUANTUM COMPUTING’S VALUE
CREATION POTENTIAL ACROSS
KEY INDUSTRIES

In this section, we explore potential applications within
select industries that research indicates could experi-
ence significant short-term advantages from quantum
technology: pharmaceuticals, chemicals, automotive,
and finance. When considered collectively and conser-
vatively, these sectors could potentially unlock a value
ranging from $300 billion to $700 billion.4 Key insights
and predictions regarding the value-generating poten-
tial of quantum computing in these industries are pre-
sented in Table 1.

Pharmaceuticals and Health Care
The quantum computing in health-care market is esti-
mated to reach $1 billion by 2030.9 With the potential
to cut $35 billion in annual R&D expenses for drug dis-
covery and increase $920 billion in annual branded
pharmaceutical revenues, quantum computing is
anticipated to generate between $35 billion and $75 bil-
lion in annual operating income for end users.10

Prominent market players are adopting strategic
partnerships to address evolving end-user require-
ments in this sector. In April 2023, IBM joined forces
with Moderna, Inc. to utilize quantum computing in
mRNA research, aiding the exploration of novel thera-
peutics.9 Likewise, Google, in collaboration with Bayer
AG, is harnessing quantum computing for early-stage
drug discovery, fostering innovation in pharmaceutical
development.9

Quantum computing has the potential to transform
many domains of health care and pharmaceutical
industries. In drug design, the process revolves around
pinpointing the precise drug target, such as a protein,
DNA, or RNA associated with a specific disease, and
creating a molecule for safe and effective modification.
Despite the abundance of potential targets and mole-
cules, the current approach heavily relies on trial and
error, resulting in a time-consuming and expensive ven-
ture. Qubit Pharmaceuticals, a Paris-based startup,
employs hybrid quantum algorithms for digital twinning
of drug molecules, allowing precise simulations of
interactions and behavior prediction. This approach

FIGURE 1. Quantum computing readiness of enterprises (per-

cent at different stages). Data source: Enterprise Strategy

Group’s 2023 Technology Spending Intentions Survey (https://

tinyurl.com/mprfxb).

FIGURE 2. Public funds committed for quantum computing

investments (as of September 2022, US$, billion). Data source:

McKinsey.2
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eliminates the need for synthesis, potentially reducing
drug screening time by half and cutting required invest-
ments by 10-fold.6

Quantum computing also has a potential to bring a
dramatic improvement in conventional cancer treat-
ments, such as radiotherapy and chemotherapy. For
instance, radiotherapy employs radiation to eliminate
cancerous cells or inhibit their growth. It's essential to
create a radiation plan that minimizes damage to
healthy tissues and organs, which presents intricate
optimization challenges with multiple variables. Quan-
tum computing can aid in simulating numerous scenar-
ios in each iteration, allowing health-care experts to
run multiple simulations simultaneously and develop
an optimal radiation approach.9

Chemical
Quantum advantage holds significant implications,
particularly in the context of chemical R&D. It can also
enhance production and optimize supply chains. With
an annual production budget of $800 billion, the chemi-
cals industry stands to gain between $20 billion and
$40 billion in value by achieving a 5%–10% increase in
efficiency.4 For instance, if quantum simulation allows
researchers to accurately model material interactions
on a larger scale without relying on the imprecise heu-
ristic methods currently in use, companies could
potentially cut down or entirely eliminate costly and
time-consuming laboratory procedures, like in situ test-
ing. Some companies, such as Zapata Computing, are

already placing their bets on the notion that quantum-
advantaged molecular simulation will not only lead to
substantial cost reductions but also facilitate the
development of superior products that can reach the
market more quickly.10

Half of the production in this industry, valued at
$400 billion, relies on catalysts.4 Quantum computing
can be used in production to improve catalyst designs.
The technology can be used to create new catalysts
and improve existing catalysts. These catalysts have
the potential to achieve energy savings in current pro-
duction processes. As an example, a single catalyst
can result in efficiency gains of up to 15%, and pioneer-
ing catalysts might facilitate the transition from petro-
chemicals to more sustainable feedstock or the
conversion of carbon into usable CO2.

4

Finance
The finance industry has consistently relied on com-
puting speed as a means of gaining an advantage, with
hedge funds particularly focused on securing millisec-
ond advantages in price information acquisition.11

Quantum computing is thus likely to lead to a signifi-
cant increase in data processing speed. For instance,
TerraQuantum, a Swiss startup, works with fintech firm
Cirdan Capital to apply quantum-inspired algorithms
for pricing exotic options, achieving a 75% increase in
pricing speed over traditional methods.6

Unsurprisingly, global financial giants, including
Allianz, Barclays, Citigroup, Goldman Sachs, JPMorgan,

TABLE 1. Quantum computing’s effect on some key industries.

Industry
Some key areas likely to be

impacted Market size/sample economic impact

Pharmaceuticals and health care R&D, early-stage drug discovery Quantum computing in health-care
market: $1 billion by 2030
Drug discovery: Potential to cut $35
billion in annual R&D expenses
Expected increase in annual branded
pharmaceutical revenues: $920 billion
Expected increase in annual operating
income $35-75 billion

Chemical R&D, production, supply chain
management, catalyst design

Estimated annual gain: $20–$40 billion

Finance Portfolio, risk management,
attracting and retaining customers

Potential for reducing capital reserves
by 15%
Expected increase in operating income:
$40–70 billion.

Automotive R&D, product design, supply-chain
management, production,
optimization of mobility, and traffic
control.

Quantum computing market size: $143
million in 2026; $5.2 billion by 2035
Potential annual value generation: $10-
$25 billion
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and Mizuho, as well as a number of national and
regional companies are actively researching quantum
computing (https://tinyurl.com/mrzvrjua). Turning quan-
tum computing investments and endeavors into finan-
cial returns is the goal for these companies.

The creation of analytical models that can effi-
ciently and accurately sort through extensive behav-
ioral data to determine the products essential for
specific customers in near real-time is a complex
endeavor. This constraint prevents financial institu-
tions from delivering preemptive product recommen-
dations with optimal feature selection in an agile
manner (https://tinyurl.com/yc3uvdze). Likewise, due
to the high inaccuracy of fraud detection systems,
financial institutions tend to adopt an overly risk-
averse approach. The customer onboarding process,
lasting 12 weeks, is facing growing resistance from con-
sumers. Financial institutions that fail to engage with
new customers swiftly are losing them to more agile
competitors (https://tinyurl.com/yc3uvdze). The use of
quantum computing is likely to address and overcome
these challenges. The technology has the potential to
revolutionize customer targeting and prediction model-
ing by surpassing current limitations related to com-
plex data structures. Its data modeling capabilities
are anticipated to excel in pattern recognition, classi-
fication, and prediction tasks (https://tinyurl.com/
yc3uvdze).

Quantum computing is also anticipated to have an
impact on portfolio and risk management. An instance
of this is the successful quantum optimization of loan
portfolios, which could empower lenders to improve
their services, potentially decreasing interest rates and
boosting capital availability.4 Quantum computing
technology is maturing, leading to improved model
accuracy and increased resilience against extreme tail
events such as those that might arise once in every 50
years.10 Multiverse Computing, a Spanish quantum
startup, has partnered with Spanish multinational
financial services company Banco Bilbao Vizcaya
Argentaria, S.A. to improve investment portfolio optimi-
zation, addressing the common challenge of account-
ing for external factors' impact on asset performance
in finance. The experiment showcased that Multi-
verse's quantum-inspired methods sped up calcula-
tions, maximizing profitability while minimizing risk.6

The potential for reducing capital reserves, up to 15%
in certain projections, is likely to be a notable outcome
of this maturation. This reduction in capital reserves
positions quantum computing to deliver an operating
income of $40 billion to $70 billion to banks and other
financial services companies.10

Automotive
According to market research company Marketsand-
Markets, the quantum computing in automotive mar-
ket is expected to reach $143 million in 2026 and to
$5.2 billion in 2035.12 Even a modest increase in produc-
tivity (2%–5%) within an industry that spends $500 bil-
lion annually on manufacturing costs could yield an
annual value of $10 billion to $25 billion.4

In this industry, quantum computing has the poten-
tial to revolutionize R&D, product design, supply-chain
management, production, and the optimization of
mobility and traffic control. As an illustration, this tech-
nology could be utilized to reduce manufacturing costs
associated with the process and expedite production
cycles. It achieves this by optimizing aspects like path
planning within intricate multirobot operations, such
as welding, gluing, and painting.4

Quantum computing can also have other positive
effects such as reduction of defects. For instance, PAS-
QAL and BMW are partnering to use quantum algo-
rithms for simulating the formation of metallic pieces,
with the goal of identifying defects and ensuring parts
meet specifications.6

This sector will also benefit from initiatives being
taken in the manufacturing sector to improve supply
chain performance and enhance maintenance optimi-
zation. In a partnership between Multiverse and
German multinational engineering and technology
company Bosch, quantum algorithms are being utilized
to predict and detect defects in production lines,
addressing the challenge of managing extensive data
for accurate predictions. Their aim is to establish digital
twins of factory lines to predict supply chain failures
and optimize maintenance.6

CONCLUSION
The quantum computing industry is currently in the
NISQ era, marked by substantial error rates and the
constrained size of quantum processors, which signifi-
cantly hampers the effectiveness of quantum com-
puters. Despite the current infancy stage of quantum
computing, its effects are anticipated to increase with
ongoing application development. Private investment
in this innovation has seen a notable increase in recent
years, accompanied by significant allocations of public
funds aimed at propelling its growth. The substantial
financial investments dedicated to quantum computing
R&D have spurred recent progress in both quantum
computing hardware and software, along with the devel-
opment of innovative error mitigation and suppression
methods. Certainly, all this activity doesn't automatically
equate to immediate commercial success. Nonetheless,
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with advancements in this innovation, several pathways
for monetization are likely to become available.

The aforementioned discussion has shown that
there are numerous underlying value creation mecha-
nisms and monetization models of quantum comput-
ing. A number of trials and tests carried out so far
indicate that this innovation has the potential to
reshape various business functions, including R&D,
supply chain management, and production. Quantum
computing can also greatly improve the ability to
attract and retain customers. While most organizations
will not be in a position to buy a quantum computer in
the near term, emerging business models such as
QCaaS allow them to access and monetize this innova-
tion faster and better.

Overall, while quantum computers are not yet ready
for widespread industry use, startups are actively identi-
fying potential applications for the technology. Quantum
computing thus holds promise for delivering positive
outcomes for businesses, economies, and societies.
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There is a great deal of focus on how quantum computing as an accelerator differs from
other traditional high-performance computing (HPC) resources, including accelerators
like GPUs and field-programmable gate arrays. In classical computing, how to design the
interfaces that connect the different layers of the software stack, from the applications
and high-level programming language description, through compilers and schedulers,
and down to the hardware and gate level, has been critical. Likewise, quantum
computing’s interfaces enable access to quantum technology as a viable accelerator.
From the ideation of the quantum application to the manipulation of the quantum chip,
each interface has its challenges. In this article, we discuss the structure of this set of
quantum interfaces, their many similarities to the traditional HPC compilation stack,
and how these interfaces impact the potential of quantum computers as HPC
accelerators.

Quantum computing will not replace classi-
cal high-performance computing (HPC) sys-
tems—at least not in the foreseeable future.

However, there is currently a lot of research focusing
on how they can be used as an accelerator for quan-
tum simulations, machine learning applications,1,2 opti-
mization and combinatorial problems,3,4 and other
computationally expensive applications.5 Quantum
computing grew from the birth of quantum information
theory in 1970 and Benioff’s four publications in
the early 1980s that showed, for the first time, how
quantum computers were theoretically possible.a The
first experimental quantum gates were implemented
shortly after. IBM, Intel, Google, IonQ, Honeywell, Xan-
adu, and many other large companies and start-ups
are now all investing in advancing this technology, to
the point that it is hard to keep up with the number of
research papers being published.

The power of quantum computing stems from
how densely it can represent information. This comes
from the quantum superposition property—the linear
combinations of two or more states, much like a com-
bination of musical tones results in a new unique
sound—and entanglement—the inexplicable correla-
tions that happen between quantum bits (qubits).
Interference is used to cancel portions of the superpo-
sition, similar to the use of noise-canceling technolo-
gies in headphones. In addition, quantum gates are
reversible, which means that the system preserves the
information at any point of the execution. The theory
says that, since information is not destroyed, applica-
tion of the operands (also known as quantum gates)
does not consume power. However, note that power is
required to generate the operands and to keep a
closed quantum state.

While traditional computing systems store zeros
and ones, a two-qubit system has been claimed by
IBMb to store the equivalent entangled state informa-
tion of 512 classical bits, 10 qubits (the equivalent of
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16 kB of classical bits), and the current
large quantum computing systems with
100 and 280 qubits would need a num-
ber of bits equal to the number of atoms
on planet Earth and the universe,
respectively.

Quantum states are extremely deli-
cate, and the challenge is to keep a sys-
tem of qubits in its superposed and
entangled state andmanipulate them in
a controlled way. External interactions
in all energy forms, even at the smallest
scale, can easily make the state of the
quantum system fall out of coherence,
inducing noise as an error. This is a
major challenge for implementing con-
crete quantum computers. Supercon-
ducting qubits need to be maintained at
temperatures as cold as or colder than
outer space to not be susceptible to
such errors. Recent technologies using
photonic and diamond-defect designs
try to overcome this. In the photonic
case, the sensors still need to be super-
cooled, whereas systems based on dia-
mond defects currently are limited to
single-digit qubits.c

The current technology used in quan-
tum computing is known as the noisy
intermediate-scale quantum (NISQ) sys-
tem, a term that was coined by John
Preskill.6 Small numbers of qubits with high error rates
and limited connectivity define these systems. On these
systems, only very specific applications that are hardly
considered useful can outperform classical implementa-
tions. This is, however, a necessary step toward powerful
quantum computing, with a high enough number of
qubits to allow not only computational power but also
tolerance to error.

The progress is real, mainly and most crucially at
the technology level, but also in all of the other layers
that separate the user from the physical quantum sys-
tem: algorithms, applications, programming models,
and compilers.7 Each of these layers is an interface
that abstracts out the details of the layers below and
simplifies the development task.

An IEEE Computing in Science & Engineering
“Leadership Computing” department recently discussed
the integration of quantum computing and HPC in a sin-
gle software stack.8 This time, we take a closer look at

the software stack that bridges the gap between the
quantum application and the actual quantum systems
leveraging quantummechanical properties.

In classical computing, interfaces support the devel-
opment steps, from the high-level programming language
description of an application to controlling electrons
through semiconductor transistors. Similarly, quantum
computing relies on a set of steps and interfaces.7 The
actual computation on the quantum hardware is only the
final step, while the majority of the development and pre-
processing (D&PP) is done classically, with a quantum
mindset, as shown in Figure 1.

The challenges of this D&PP are in no way negligible.
The compiler, in particular, calls for a series of optimiza-
tions and graph problems that threaten the scalability
of quantum computers.

QUANTUM COMPUTING
INTERFACES

A quantum computer is a quantum system that evolves
according to quantum mechanical principles from an

FIGURE 1. The quantum computing software stack can also be envisioned as

this stack of interfaces.

cPublished 20 March 2023: https://www.eetimes.eu/the-
status-of-room-temperature-quantum-computers/
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There is a great deal of focus on how quantum computing as an accelerator differs from
other traditional high-performance computing (HPC) resources, including accelerators
like GPUs and field-programmable gate arrays. In classical computing, how to design the
interfaces that connect the different layers of the software stack, from the applications
and high-level programming language description, through compilers and schedulers,
and down to the hardware and gate level, has been critical. Likewise, quantum
computing’s interfaces enable access to quantum technology as a viable accelerator.
From the ideation of the quantum application to the manipulation of the quantum chip,
each interface has its challenges. In this article, we discuss the structure of this set of
quantum interfaces, their many similarities to the traditional HPC compilation stack,
and how these interfaces impact the potential of quantum computers as HPC
accelerators.

Quantum computing will not replace classi-
cal high-performance computing (HPC) sys-
tems—at least not in the foreseeable future.

However, there is currently a lot of research focusing
on how they can be used as an accelerator for quan-
tum simulations, machine learning applications,1,2 opti-
mization and combinatorial problems,3,4 and other
computationally expensive applications.5 Quantum
computing grew from the birth of quantum information
theory in 1970 and Benioff’s four publications in
the early 1980s that showed, for the first time, how
quantum computers were theoretically possible.a The
first experimental quantum gates were implemented
shortly after. IBM, Intel, Google, IonQ, Honeywell, Xan-
adu, and many other large companies and start-ups
are now all investing in advancing this technology, to
the point that it is hard to keep up with the number of
research papers being published.

The power of quantum computing stems from
how densely it can represent information. This comes
from the quantum superposition property—the linear
combinations of two or more states, much like a com-
bination of musical tones results in a new unique
sound—and entanglement—the inexplicable correla-
tions that happen between quantum bits (qubits).
Interference is used to cancel portions of the superpo-
sition, similar to the use of noise-canceling technolo-
gies in headphones. In addition, quantum gates are
reversible, which means that the system preserves the
information at any point of the execution. The theory
says that, since information is not destroyed, applica-
tion of the operands (also known as quantum gates)
does not consume power. However, note that power is
required to generate the operands and to keep a
closed quantum state.

While traditional computing systems store zeros
and ones, a two-qubit system has been claimed by
IBMb to store the equivalent entangled state informa-
tion of 512 classical bits, 10 qubits (the equivalent of
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initial state to a final state. If all things go well, this final
state contains the solution to a computational problem.

A stack of interfaces makes it possible to take a
quantum application from ideation to reality. The soft-
ware stack and the interfaces needed to realize the
quantum application are envisioned as a workflow in
which the compiler plays a central role, as illustrated in
Figure 2.

A potential quantum application, e.g., identifying the
maximum clique of a graph, makes use of a quantum
algorithm, e.g., Grover’s algorithm. The “only” quantum
aspect of these two interfaces is the understanding of
core and fundamental quantum properties and how
classical problems can be framed in a quantum context.
This understanding is probably the greatest gap keeping
the general scientific community from taking advantage
of quantum acceleration at this point in time, even
greater than the technology itself. It is still unclear
which applications can be efficiently accelerated by
quantummeans.

Many scientists (mainly theoretical physicists) have
described or envisioned these applications and algo-
rithms as mathematical exercises with “pencil and
paper.” However, to take these closer to an actual
quantum implementation, a description on a suitable
programming language, e.g., quantum-specific Python
extensions, should define the steps of the application
and its quantum algorithms in a way that can then be
compiled targeting a specific quantum instruction set
architecture and microarchitecture.

The quantum instruction set architectures in their
current form are far from being a set of general-
purpose instructions but, rather, are a sort of single- or
two-qubit basic operand known as gates. Figure 3
depicts a basic circuit with several single- and two-
qubit gates operating on a three-qubit register. Each
quantum computing technology has its own set of
native gates. The implementation of these quantum
gates is in the form of analog signals (microwaves,
lasers, or others, depending on the technology) that
act on the qubits and that are generated and con-
trolled by the microarchitecture. Also, the qubits’ con-
nectivity map is part of the system’s architecture since
not all qubits can interact with all other qubits.

Therefore, with a description of the quantum appli-
cation, typically as a collection of quantum gates
known as a quantum circuit, as well as the quantum
architecture and microarchitecture’s information, the
quantum compiler can generate the necessary infor-
mation to control the quantum system: its initialization
and quantum time evolution to the final quantum state
on the quantum chip (Figure 2).

Notice that the D&PP down to the classical quan-
tum interface does not involve any physical quantum
interaction. Instead, all of this is done on classical com-
puting systems.

QUANTUM COMPILATION
Compilation for a quantum computer system involves
a number of steps that take the high-level language
description all the way down to generating the control
signals. The decomposition of the high-level gates
breaks them down into the native gates of the archi-
tecture. For instance, Figure 5 represents a swap gate
and its equivalent decomposition into three controlled
NOT (CNOT) gates. Sometimes, consecutive quantum
gates cancel each other or are commutative in the
order of the execution. These optimizations are taken

FIGURE 2. Quantum compilation takes in information from

different interfaces. Through a number of steps, it generates

the fault-tolerant synthesis of the quantum applications.

FIGURE 3. An example of a basic circuit, including a three qubit

register, Hadamard (H), controlled NOT and NOT (þ) gates built

with IBM’s Quantum Composer.9 The computation proceeds

from left to right, from the initial to final quantum state of the

three-qubit register.
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care of before scheduling the order in which the oper-
ands will take place, respecting all dependencies and
exploiting parallelism when possible.

The mapping stage involves two operations: map-
ping and routing. In the quantum circuit high-level
description, gates act on quantum variables that we
call logical qubits. These have to be mapped to physi-
cal qubits on the architecture’s map. Then, as the exe-
cution evolves, the qubits that need to interact with
each other through two-qubit gates are routed to phys-
ically adjacent qubits in the architecture’s map.

For example, if logical qubit 1 (Q1) and logical qubit 2
(Q2) in Figure 5 were mapped originally to physical qubits
6 and 10 in Kolkata’s map (Figure 4), Q1 would have to be
rerouted to qubit 7, so it would be physically adjacent to
10. Qubit rerouting is done adding swap gates. Low con-
nectivity is a critical problem in the current NISQ sys-
tems,6 with high noise levels, low coherence times, and
no error-correction protocols enabled yet. In IBM’s super-
conducting systems, the necessary swap gates (three
CNOT gates each) for qubit routing do, on the other hand,
accumulate link error and increase the depth of the cir-
cuit in ways that often surpass the quantum coherence
time of the system, resulting in too noisy of an output to
be useful. Efficient routing algorithms route not only to
ensure correctness but also tominimize noise.

Once the final circuit is built with
all of its optimizations and added
swaps and the gates are scheduled,
the compiler will generate the fault-
tolerant synthesis according to the
system’smicroarchitecture.

Scheduling and mapping/routing
are well-known NP-hard problems
that can be found in a plethora of
other fields. The HPC community is
well aware of the time complexity,
memory, and hardware resources
required to solve these problems.
Inputs are large graphs, such as
dependency graphs or the connec-
tivity map. The goal usually involves
an optimization problem in which
time, hardware usage, error, or noise
need to beminimized.

Quantum Versus Classical
Compilation
Quantum and classical compilation processes have
some analogies: starting from the dependency graphs,
the scheduling of operations and allocation of resources
need to be performed. Those with experience in field-
programmable gate array (FPGA) acceleration may
notice the resemblance with the high-level synthesis

FIGURE 4. IBM Quantum’s 27-qubit Kolkata back end. The shades of color represent

the quality of the qubits and the links among them. (A darker shade means better

quality.) This quality is based on different noise and error metrics. Different back ends

have different maps and noise levels.10

FIGURE 5. SWAP gate and its decomposition in three CNOT

gates.

FIGURE 6. High-level synthesis (HLS) full compilation process:

from a high-level language description, an implementation in

a hardware description language (HDL) is generated (Verilog

or VHDL) to then be synthesized and run on the field-

programmable gate array (FPGA).
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classical problems can be framed in a quantum context.
This understanding is probably the greatest gap keeping
the general scientific community from taking advantage
of quantum acceleration at this point in time, even
greater than the technology itself. It is still unclear
which applications can be efficiently accelerated by
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described or envisioned these applications and algo-
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full compilation stack. Figure 6 represents this stack,
from the high-level language description to the FPGA
execution.

Similar to the decomposition stage, allocation iden-
tifies the basic elements needed to implement the
operations described in high-level language. Then, oper-
ations are scheduled and mapped (also known as
bound) to those elements. From the hardware descrip-
tion language (HDL), the logic synthesis and necessary
optimizations generate the files of zeros and ones that
will take care of the actual implementation on an FPGA.

FPGA users may have experience with the limita-
tions of this process: compilation on the fly is prohibitive
in terms of time; the high-level language description of
the computations cannot implement recursive calls and
may have issues with pointers and memory accesses;
and, in summary, hardware design skills that are not
accessible to all users are necessary. Whether using
HDLs or high-level synthesis, the implementation’s des-
cription is hardware description, not software.

QUANTUM DESCRIPTION
LANGUAGES

Setting aside the necessary understanding of quantum
algorithms to be able to develop quantum applications,
the quantum programming paradigm is the most imme-
diate interface to the quantum computer user. The
lexicon used around the description of quantum appli-
cations seems to indicate that we are describing hard-
ware, just like VHDL or Verilog are used to describe
FPGA hardware: first of all, because we call the descrip-
tion a “quantum circuit”; second, because the operands
are referred to as “gates”; and last, because the opera-
tions are described at a qubit-by-qubit granularity.
There are no memory, no data types, and no general-
purpose flexible instructions. None of this is compatible
with software execution.

However, if we take the term hardware as its literal
translation of something that is hardwired or physically
palpable, this term does not apply either. Figure 7 gives
an example of what really happens on the execution of

a quantum application, after all of the steps in Figure 2
have been completed, and the quantum system finally
kicks in. The quantum chip contains the “hardwired”
qubits. The quantum D&PP have generated the sets of
gates as analog control signals. Groups of these con-
trol signals arrive at the quantum chip to act on the
qubits and alter the state of the quantum system. If,
like in Grover’s algorithm, the sets of gates need to be
iterated through multiple times, the corresponding
control signals can just be repeated as many times as
needed. They are not real “hardwired” gates.

The quantum programming models leverage high-
level languages, Python most commonly, to describe
these extremely fine-grained computations. The state
of the quantum system contains the information. The
quantum chip and its qubits act, actually, as a very
short-lived memory upon which we need to operate
before the system falls out of its delicate quantum
equilibrium.

Although the quantum application is described
using high-level languages, such as Python, much has
to happen at the development level to give “quantum

FIGURE 7. Quantum Hadamard (H), Phase (S) and Controlled-

NOT (CNOT) are sent to the quantum chip as control signals.
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purpose flexible instructions. None of this is compatible
with software execution.

However, if we take the term hardware as its literal
translation of something that is hardwired or physically
palpable, this term does not apply either. Figure 7 gives
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needed. They are not real “hardwired” gates.

The quantum programming models leverage high-
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description languages” a software-like feeling. This inc-
ludes the use of more generic application programming
interfaces (APIs) and libraries of computations. The
implementation of reasonably long-lasting quantum
memory is also a key piece that is missing in this picture
and that currently forces the start of every computation
to long strings of operands just to initialize the states to
the data that are going to be operated on.

CONCLUSION
Despite the many challenges, quantum computing holds
real potential for accelerating certain applications, such
as machine learning applications, combinatorial and opti-
mization problems, and quantum molecular simulation.
Proof of quantum acceleration for practical, real-world
cases will most likely have to wait until the post-NISQ era
is reached, with a higher number of qubits and the inclu-
sion of error-correction protocols. Most companies are
looking at a five-year timeline,11 primarily depending on
technology advances.

Meanwhile, a solid stack of interfaces needs to be
developed to support these future applications. In this
article, we discussed how the D&PP of quantum applica-
tions entails a series of classical steps that can quickly
become unmanageable, even more so given that the
number of qubits and quantum gates required often can
grow exponentially with the size of the problem—without
even considering error-correction mechanisms. The good
news is that these are not new problems. Scheduling,
mapping, routing, allocation, and optimization problems
are common in other fields, and heuristics can be applied
to approximately solve these problems more efficiently.
An efficient programming paradigm is yet to be defined,
but the field can leverage the decades of experience of
the HPC community at creating interfaces that bridge
knowledge gaps and that conceal the intricacies and
challenges of the physical implementation.
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With quantum computing (QC) maturing, high-performance computing (HPC)
centers are already preparing to host early-phase production versions of such
systems. Unlike their experimental predecessors in physics laboratories, with a very
small and dedicated user community, this next generation of systems needs to
serve a wider user community and must work in concert with existing HPC systems
and software stacks. This article describes our vision for an integrated ecosystem
that combines existing HPC and evolving quantum software stacks into a single
system to enable a common and continuous user experience. This integration
comes with several major challenges as quantum systems pose significantly
different requirements including increased need for compilation at run time, long
optimization times, statistical evaluations of results, and the need to work with few
centralized resources. To overcome these challenges, new scheduling approaches
on the HPC side and new programming approaches on the QC side are required.

MOTIVATION

Quantum computing (QC), i.e., the idea of
using quantum states and transformations
to express computation, is taking shape.

After decades of experimentation in physics laborato-
ries, many large-scale research efforts in academia,
laboratories, and industry world-wide have started to
target usable and accessible quantum computing
devices. These efforts explore a wide range of underly-
ing technologies from superconducting qubits, spin-
qubits, ion traps to neutral atoms, to name just a few.

While these developments are highly promising, it is
becoming clear that quantum computing systems will

not replace existing compute architectures; they more
likely augment them by accelerating certain suitable
tasks or kernels. The computation of other kernels and
work needed for I/O and workflow management will (at
least for the foreseeable future) remain bound to the
existing compute approaches. Additionally, quantum
computing relies on several compute-intensive tasks,
which require support from HPC systems. Consequently,
QC must seamlessly become part of HPC, enabling com-
mon user access and experience.

In order to enable the needed integration, it will be
essential to not only develop QC hardware and physi-
cally connect it to HPC systems, which is currently the
main focus for several groups with approaches ranging
from loosely coupled cloud or modular access,1,2 to near
quantum compute options,3 to actual deep integration
targeting low-latency access.4 We also need to focus on
a continuous software stack that enables a user to har-
ness the combined computational capabilities of both
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their experimental predecessors in physics laboratories, with a very small and dedicated 
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pose significantly different requirements including increased need for compilation at run 
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system components in a seamless fashion. In this arti-
cle, we describe our efforts toward this combined soft-
ware stack: we build on novel features for the HPC
software side, particularly dynamic adaptivity and mal-
leability across all software components and modern
workflow features. On the QC side, we start with the
standard programming packages available to QC
researchers, such as Cirq5 and Qiskit,6 and link them to
the HPC resources management as well as augment
their back-ends to efficiently and transparently onload
compute intensive tasks back to the HPC system, ide-
ally using the HPC workload manager to identify other-
wise unused resources.

Combining these two worlds, however, is not trivial,
as they work on radically different assumptions. The
HPC world is trimmed for low latency and precompila-
tion; on the other hand, QC systems require a much
larger runtime component. The latter is caused by com-
piling at runtime as input arguments are likely to change
the intended quantum program (i.e., the generated cir-
cuits). Further, the computation needed to compile and
map to the final topology of theQC system is substantial.

Also, QC systems only target single-user operations
and offer limited support for multiuser operations.
Therefore, integration requires a careful redesign of the
runtime component to enable efficient overlap of QC
executions from multiple users and to mitigate idle
times caused by complex preparation tasks.

Our framework addresses these challenges by add-
ing the needed resource isolation coupled with QC
operation interleaving and integrates QC execution
scheduling with the ability to onload work needed to
drive the QC execution back to the HPC system effi-
ciently. Our approach bridges the software stacks from
the two worlds, enabling a single system abstraction
for the end user while ensuring high system efficiency.

We are implementing our vision as part of a series of
European HPC Software Stack projects and with the
Munich Quantum Valley (MQV), a large research initia-
tive driving the development of three different quan-
tum computing technologies with a common software
stack. The resulting software will ultimately drive the
usage of QC technologies at the Leibniz Supercomput-
ing Centre (LRZ) and compute centers world-wide.

THE ANATOMY OF HPC VERSUS
QC SOFTWARE STACKS

Seamless integration needs to support both the HPC
users requiring a traditional HPC software stack and
the QC users accustomed to the existing stand-alone
QC development environments, as well as emerging
user groups targeting hybrid HPCQC operations with

direct access to QC systems from within HPC sys-
tems. Consequently, we need to, at a minimum, sup-
port the existing HPC and QC software stacks while
also adding support for integrated usage.

A key challenge comes from existing software
stacks; the two types of systems are radically different
in structure, approach, and user interfaces. This disparity
is rooted in the maturity and current scale of the differ-
ent system components and the diverging requirements
stemming from the fundamentally different technolo-
gies. Consequently, simply integrating one stack into the
other is neither possible nor desirable. Instead, we will
build on state-of-the-art software stacks for HPC and
QC, respectively, and work to provide an efficient link
between the stacks offering the needed integration. This
will ensure a solution that offers the best of both worlds
while offering a cohesive, integrated view of the system
for the users and developers.

HPC Software Stacks
On the HPC side, we build on top of widely available
technology forming the software stacks as they are
now available on most HPC systems. Examples for this
are HPC enabled stacks, such as OpenHPC,a the E4S
initiative,b or the DEEP-SEA stack developed for the
European exascale systems,c as they are used in most
large-scale HPC centers. These include state-of-the-art
components for compilers, runtimes, parallel program-
ming abstractions including MPI7 and OpenMP,8 sup-
port for accelerators following the evolution of system
architectures, as well as a wide range of libraries to
support efficient application development.

HPC stacks typically target the optimization of
execution time by implementing as much work as
possible at compile time (compilation, optimization,
job preparation, etc.) and, with that, reducing runtime
overheads. The latter is then limited to scheduling
operations at the job level and actual execution over-
heads. For this reason, compiled languages such as
C, C++, or Fortran are dominant, while interpreted
languages play a minor role, e.g., only for coarse-
grained workflow orchestration. Further, HPC soft-
ware stacks typically offer system access via com-
mand-line driven batch execution, enabling users
direct and fine-grained control of their execution.

QC Software Stacks
Quantum computing stacks, on the other hand, fea-
ture a radically different approach to programming

ahtt_ps://openhpc.community/
bhtt_ps://e4s-project.github.io/
chtt_ps://www.deep-projects.eu/
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With quantum computing (QC) maturing, high-performance computing (HPC)
centers are already preparing to host early-phase production versions of such
systems. Unlike their experimental predecessors in physics laboratories, with a very
small and dedicated user community, this next generation of systems needs to
serve a wider user community and must work in concert with existing HPC systems
and software stacks. This article describes our vision for an integrated ecosystem
that combines existing HPC and evolving quantum software stacks into a single
system to enable a common and continuous user experience. This integration
comes with several major challenges as quantum systems pose significantly
different requirements including increased need for compilation at run time, long
optimization times, statistical evaluations of results, and the need to work with few
centralized resources. To overcome these challenges, new scheduling approaches
on the HPC side and new programming approaches on the QC side are required.

MOTIVATION

Quantum computing (QC), i.e., the idea of
using quantum states and transformations
to express computation, is taking shape.

After decades of experimentation in physics laborato-
ries, many large-scale research efforts in academia,
laboratories, and industry world-wide have started to
target usable and accessible quantum computing
devices. These efforts explore a wide range of underly-
ing technologies from superconducting qubits, spin-
qubits, ion traps to neutral atoms, to name just a few.

While these developments are highly promising, it is
becoming clear that quantum computing systems will

not replace existing compute architectures; they more
likely augment them by accelerating certain suitable
tasks or kernels. The computation of other kernels and
work needed for I/O and workflow management will (at
least for the foreseeable future) remain bound to the
existing compute approaches. Additionally, quantum
computing relies on several compute-intensive tasks,
which require support from HPC systems. Consequently,
QC must seamlessly become part of HPC, enabling com-
mon user access and experience.

In order to enable the needed integration, it will be
essential to not only develop QC hardware and physi-
cally connect it to HPC systems, which is currently the
main focus for several groups with approaches ranging
from loosely coupled cloud or modular access,1,2 to near
quantum compute options,3 to actual deep integration
targeting low-latency access.4 We also need to focus on
a continuous software stack that enables a user to har-
ness the combined computational capabilities of both
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and computing. QC programs, typically in the form of
quantum circuits, are defined at runtime using inter-
preted languages, such as Python, for convenience.
Typical programming front-ends are frameworks such
as Qiskit6 or Cirq,5 which use Python as their base.
Programs are then assembled and translated into
lower level representations at runtime. The latter is
driven by the property of QC programs that changing
parameters influences the structure and composition
of the program and hence requires new compilations.

This approach works for current scenarios, where
individual users access a specific quantum system to
execute a particular circuit. As circuits are small, usage
is typically interactive and preparation time for a partic-
ular problem is ignored as it does not contribute to over-
all execution time. This, however, changes when users
intend to run larger as well as multiple QC applications
with only minor parameter changes triggering frequent
recompilation and optimization. To maximize system
utilization, the resource QC system, which is rare com-
pared to the typical abundance of HPC nodes, needs to
be time and space shared; this prohibits the currently
used single-user allocationmodel.

Gaps and Challenges
To combine these two software stacks with their radi-
cally different properties, we must include the inher-
ent runtime component of the QC stack and attempt
to hide it as much as possible during the execution.
This requires both novel scheduling techniques to
overlap QC circuit compilation and execution, to
overlap executions from multiple users, and novel
approaches to reduce the QC circuit generation and
optimization times by parallelizing and onloading this
work back to the HPC system.

Additionally, it will be important to unify the system
software environments, especially with respect to sys-
tem management, monitoring, and scheduling in order
to enable an efficient and stable operation of the joint
HPCQC system. This requires new developments to
fuse themonitoring environments available in the differ-
ent systems, an integrated scheduling approach com-
bining the coarse-grained batch scheduling with the
fine-grained scheduling of individual QC experiments,
and a joint management concept for the involved nodes
or subsystems. This will ensure that system administra-
tors can monitor and manage the overall system as one
entity and using a single set of consistent policies.

LINKING THE HPC AND QC
SOFTWARE STACKS

As discussed in the previous section, we need to build
on top of the existing software stacks for both HPC
and QC, to ensure continuity for users, but at the same
time we also need to provide an integrating bridge. This
concept is illustrated in Figure 1, showing the interac-
tions of the two software stacks for HPC and QC, and
the connection to the underlying shared system envi-
ronment. In the following, we will discuss the interac-
tions between the components in more details.

Support for Offloading
The most natural way of integration is to allow HPC
systems to push workloads to the QC system, a mech-
anism we refer to as “offloading” in congruence with
offloading mechanisms in other accelerators. This
requires the ability to specify quantum computation
from within HPC programs, which is challenging due

FIGURE 1. Integrating the HPC and QC software environments as well as the overall system environments to reach a seamless

hybrid HPCQC system with a combined workflow.
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to the different programming approaches. To solve
this challenge, we are developing new techniques to
1) enable Python-driven front-ends and integrate them
into existing offload approaches such as OpenMP and
2) use noninterpreted approaches directly in C/C++,
similar to the XACC approach.9

In all cases, the quantum environments require a
compilation on the fly, i.e., at runtime, as input param-
eters will (in most cases) affect the required circuit, as
initial conditions need to be directly encoded. Such a
compilation can be trivial in the naive case. However,
in most cases, it requires intensive computations to
achieve the needed optimizations and mapping to the
underlying qubit topologies on the quantum devices.
This introduces extra latencies, which will block the
calling entity. While this is acceptable for individual
experiments through direct access from frameworks
like Qiskit, it causes substantial delays when used
from within HPC jobs. In the latter case, a large num-
ber of nodes are held until the translation and optimi-
zation is complete, causing unacceptable idle times.

Support for Onloading
In order to combat the challenges identified above, we
need to find ways to speed up compilations and optimi-
zation of quantum circuits. Using the connected HPC
resources is a promising approach but requires 1) the
ability to send optimization requests back to the HPC
system and 2) novel quantum circuit optimizers, which
are parallelized. The latter requires quantum develop-
ment environments to be implemented on compiled
platforms with the necessary parallel structures. We are
working on new compilers and optimizers that enable
such optimization. Our current targets are implementa-
tions in Rust, which combine safe coding practices and
efficient threading models for parallelization.

Common Scheduling Mechanisms
A common issue for both onloading versus offloading is
efficient scheduling: when to execute which QC compu-
tation, how to schedule compilation steps versus exe-
cuting on the actual QC system, and how to onload QC
operational considerations back to the HPC systems.
Such scheduling needs to be resource-driven, i.e., the
execution from multiple users must be interleaved and
compilation of quantum circuits must be pushed back
to the HPC system looking for idle resources, e.g., for
nodes that actually issued the quantum computation
and may be idle until the results return.

CONCLUSIONS
Quantum computing is a highly promising techno-
logy that has the potential to accelerate certain

computations substantially. However, QC must be
integrated into the context of existing HPC ecosys-
tems, and for this we need to carefully consider
requirements and changes to the respective software
stacks, too.

This article presents our vision for a combined HPC
and QC software stack. It builds on existing software
stacks from HPC and QC, and extends them to ensure
tight integration. We provide extensions to include
scheduling components for QC-enabled portions on
the HPC side. At the same time, on the QC side, we
add programming models and the ability to push oper-
ations to the HPC side to speed up operations. For
this, we leverage recent developments in the HPC
software stack for malleability to integrate the more
dynamic nature of QC computations.

The result is an efficient link between the HPC and
QC software stacks, allowing them to leverage each
other and achieve efficient hybrid execution. Ulti-
mately, this will form the needed bridge between the
two worlds and enable efficient HPCQC operations.
We are pursuing this direction both as part of several
European software stack projects and the MQV with
the goal of providing the first truly integrated HPCQC
software stack to be deployed in production.
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Low Code for Smart  
Software Development
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To tame complexity for many applications, 
including artificial intelligence (AI)-based sys-
tems, software engineers typically choose to 

work at a higher abstraction level,1 where irrelevant 
technical details can be ignored, at least during the 
initial development phases. Low-code platforms are 
the latest incarnation of this trend, promising to accel-
erate software delivery by dramatically reducing the 
amount of hand coding required.

Low code can be seen as a continuation of 
other model-based approaches.2 This includes the 
well-known model-driven architecture by the Object 
Management Group (https://www.omg.org/mda/). The 
benefits of low code are varied, ranging from faster 
prototyping and development to improved under-
standing, reusability, and maintenance.3,4,5 Low-code 
platforms are especially promising in the current soft-
ware landscape, where many software systems embed 

AI components, mostly based on ML techniques. These 
benefits are widely recognized, so much that low-code 
platforms are the now the basis for start-ups reaching 
billion-dollar valuations (see examples in the following).

Such AI-enhanced ML-enabled systems (also 
called smart software) give rise to unique software 
engineering challenges;6,7,8 e.g., AI elements are hard 
to specify,9 architect, test, and verify.10 Organizations 
must adapt to leverage them.11,12 Additional complex-
ity arises from all the potential interactions between 
the AI components and the “traditional” ones (since 
we need to specify how they collaborate, test that they 
behave consistently, and analyze their interdependen-
cies). Accordingly, in this article, we offer a “wish list” 
that outlines what developers need to watch for in 
low-code tools for smart software. Also, we present 
work on an architecture (see Figure 1) that is one way 
to satisfy items on that wish list.

STATE OF THE ART
Organizations trying to offer AI products and services 
are constrained by the challenges in attracting skilled 
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talent. In a recent survey,13 83% of companies identi-
fied AI as a strategic priority but had problems enroll-
ing talent. Another survey14 reported that 40% of com-
panies claim that AI technologies and expertise are too 
expensive. For instance, the U.S. Bureau of Labor Sta-
tistics15 reported that the current mean average wage 
for data scientists in the United States was US$108,660. 
As a result, companies are looking into tools and tech-
nologies to 1) streamline the creation and management 
of AI products and services and 2) enable contributions 
from professionals without a strong AI background.

Low-code tools could be the solution to this prob-
lem. The number of low-code tools keeps growing.16 
Well-known examples include Mendix, OutSystems, 
Appian, and GeneXus, all with a significant user base 
(for example, OutSystems, Appian, and Mendix have 
all disclosed surpassing $100 million in annual recur-
ring revenue), recent acquisitions (Mendix has been 
acquired by Siemens and GeneXus by Globant), and 
funding rounds (OutSystems raised more than half a 
billion euros in the past five years, with a US$9.5 bil-
lion valuation in the last round). Moreover, all major 
tech companies, including the “Big Five,” have their 
own offering in this space, mostly oriented to help 
clients use their own tech stack and services when 
building new applications. Some vendors focus on 
vertical domains (e.g., human resources and customer 

relationship management automation) but most 
offer a generic solution for the horizontal domain of 
web-based and mobile data-intensive applications.

But, perhaps surprisingly, low-code tools have, 
so far, paid little attention to the new breed of smart 
software systems. Support for AI features is mostly 
constrained to embed and call an external AI service 
from one of the web components or back-end ser-
vices. Such AI services are not modeled as part of the 
application. Instead, they are developed and deployed 
outside the “main” software application and integrated 
as black-box components. To minimize the amount 
of glue code required for this integration, some tools 
offer predefined integrations with specific providers. 
For instance, for a low-code tool to be able to work 
with Google’s Dialogflow, creating a chatbot for a web 
application would require creating and deploying the 
chatbot logic with Dialogflow and using the low-code 
tool connector to provide the Dialogflow agent with 
credentials to display the bot on the desired webpage. 
Similarly, you could call other types of AI components 
and pretrained ML models, e.g., for computer vision, 
text classification, and sentiment analysis.

While, with some manual effort, developers can 
make it work, this solution is far from ideal. The soft-
ware specification and code are scattered, and there 
is no visibility (or traceability and explainability) of 
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what happens inside the AI components, which have 
their own independent monitoring and analysis tools. 
Moreover, we are unable to analyze and describe 
the fine-grained details of the important collabora-
tion aspects between the two and the potential side 
effects of such interactions. For instance, consider 
a loan approval component in a banking application 

that depends on an ML-based prediction system to 
decide which clients are to be trusted. A new release 
of the prediction model can drastically change the 
behavior of the application, but if that ML model is a 
black box, it is very difficult to account and test for 
this type of evolution.

Clearly, AI features are not first-class citizens in 
current low-code platforms: we cannot model how 
the ML models are trained and configured. We cannot 
decide what concrete low-level AI platform we want to 
target during deployment. And the list goes on. Smart 
software development requires low-code tools with a 
more native support for the specification of these sys-
tems. We have seen this type of abstraction capability 
in tools targeting only data science processes, such as 
the Konstanz Information Miner, Amazon SageMaker 
Studio, IBM SPSS Modeler, and Azure Machine Learn-
ing Studio. Therefore, we know it is possible. We next 
elaborate on this wish list for our ideal low code for 
smart software solutions.

LOW CODE FOR SMART 
SOFTWARE WISH LIST

We believe a developer working on smart software 
would be interested in a low-code platform capable of

	› managing concerns for both AI components and 
traditional software components in a consistent 
and integrated way, including their interdepen-
dencies (e.g., an AI component trained using the 
data entered via a regular component)

	› supporting the complete life cycle of the required 
AI components (training, validation, deployment, 
and monitoring) as well as tracing the decisions 
behind their architecture and evolution

	› operating with a technology-independent and 
platform-agnostic specification while support-
ing a transparent deployment to different AI 
service providers

	› enabling the integration of AI components in 
both the front end (e.g., chatbots) and back end 
(e.g., prediction tasks) of a system

	› defining high-level goals and quality concerns 
(e.g., fairness) that can be automatically tested 
and/or monitored after deployment

	› facilitating use without intricate knowledge of the 
underlying AI techniques, offering mechanisms 
to automatically select a suitable method and 
(hyper)parameters for a particular usage scenario

	› supporting a variety of AI tasks beyond text and 
image classification.

A LOW-CODE ARCHITECTURE FOR 
SMART SOFTWARE

To provide the features identified in the preceding 
wish list, we envision an architecture (see Figure 1) 
based around the following components:

	› Model editor: Developers provide a description 
of the software system using a unified nota-
tion—a smart software model—which includes 
both traditional and smart elements:
	» a description of the application domain and 
the architecture of the software system, i.e., 
components and the relationships among them

	» a high-level description of the tasks to be 
performed by the AI components (classifica-
tion, synthesis, and so on), target quality 
metrics (e.g., a desired precision/recall value), 
and concerns (e.g., ethical issues, resource 
budgets for training, and deployment) that 
should be considered

	» a description of the input data sources storing 
the domain knowledge, with emphasis on the 
identification of information relevant from the 
point of view of fairness (e.g., gender, religion, 
country of birth, and so on); moreover, the 
developer should be able to select predefined 

CLEARLY, AI FEATURES ARE NOT 
FIRST-CLASS CITIZENS IN CURRENT 
LOW-CODE PLATFORMS: WE CANNOT 
MODEL HOW THE ML MODELS ARE 
TRAINED AND CONFIGURED.
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policies for data preparation and cleaning 
(e.g., how to deal with null values).

	› Code generator: The information provided in the 
model drives the generation of code implement-
ing the different processes within the low-code 
tool. The developer may either select a particu-
lar technology or service provider or delegate 
this choice to the tool, which can leverage 
model annotations describing nonfunctional 
qualities, such as price and scalability, to make 
simple tradeoff decisions.

	› Training: The code generator emits code to train 
an ML model, preparing training and validation 
datasets from the input data sources according 
to the resource budget. After training, the target 
quality metrics are measured, and any ethical 
constraint is checked.

	› Deployment: The trained model is deployed on 
a particular AI platform, which can be either a 
cloud service from a variety of providers or a 
local AI package.

	› Traditional software components: Software 
modules that do not integrate AI features are 
generated in the usual way. These modules 
interact with AI components through a dedi-
cated application programming interface that 
encapsulates the specific deployment strategy.

	› Monitoring and feedback: Finally, the AI com-
ponents should be continuously monitored and 
tested after deployment to provide continuous 
feedback to the developer. This feedback should 
include
	» a dashboard displaying performance informa-
tion about both the target quality metrics and 
resource usage

	» explanations regarding the decisions made by 
the AI components, linking back to the input 
data sources or tracing back to requirements 
in the input model.

All components in this architecture are feasible 
and already partially exist as separate elements in 
other low-code, AI, and monitoring platforms. Bringing 
them all together in a unified framework could be a 
force multiplier and a significant next step in lowering 
the barrier to entry for the next generation of smart 
software developers. 
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Scientific codes are complex software systems. Their engineering involves various
stakeholders using various computer languages for defining artifacts at different
abstraction levels and for different purposes. In this article, we review the overall
processes leading to the development of scientific software, and discuss the role of
computer languages in the definition of the different artifacts. We provide
guidelines to make informed decisions when the time comes to choose a computer
language to develop scientific software.

Scientific computing is a cross-cutting field, its
heart and soul being the development of mathe-
matical models to understand physical systems

through their simulations. Those models can be numeri-
cal (e.g., systems of differential equations), nonnumerical
(e.g., agent-based models) or based on analytics (e.g.,
machine learningmodels), and aim to capture the behav-
ior of the modeled system. Numerical models can be fur-
ther refined as continuous or discrete. Simulations of
mathematical models correspond to the execution of
the computer programs containing thesemodels, the so-
called “simulation codes.” In this article, we refer to the
subsuming concept of scientific software, which we
define as software dedicated to scientific computing and
simulation. The development of scientific software
involves both software engineering (SE) and scientific
computing concerns. Mathematical models and scien-
tific software are tightly coupled throughout their life
cycles. The tools and methods used for their develop-
ment—in particular, computer languages—can impact
the definition of both, as well as the engineering princi-
ples that ensure the development of reliable scientific
software.

When the time comes to implement a newmodel, i.e.,
develop new simulation software, scientists and

engineers are faced with the choice of what computer
language(s) to use (e.g., MATLAB, Mathematica, Fortran,
Python, C++, or even an in-house domain-specific lan-
guage). This choice has important consequences on the
expressiveness available to implement the model and
the corresponding simulation code, but also in terms of
SE practices to develop reliable and efficient scientific
software. The more general-purpose the language is—
with low-level, computing-related, system abstractions—
the more flexibility and performance it may provide, but
also the more rigorous engineering principles and verifi-
cation & validation (V&V) activities will be required to
obtain a reliable piece of scientific software.

Most scientists and engineers are not trained in SE
and are therefore not aware of its best practices beyond
programming (e.g., version control management, com-
ponent reuse, unit testing, continuous integration),1

which has led to initiatives addressing this problem,
such as the research software engineering movement.2

Since the final goal is to build and apply the model
encoded in the simulation code, the code itself ismerely
a means to that end. Final stakeholders (e.g., citizens,
policy, and decision makers, research institutions, sys-
tem users) may even be unaware of the importance of
software for science and engineering.

In this article, we explore the overall scientific soft-
ware development process, we provide an integrated
view of the scientific computing and SE activities, arti-
facts, and roles, and we discuss the tradeoffs on the
computer languages at hand to help scientists and
engineers make informed decisions.
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SCIENTIFIC COMPUTING:
COMPUTER LANGUAGES TO THE
RESCUE

The implementation of scientific software is the result of
the successive refinement of different artifacts, starting
with observations to elaborate the mathematical model
thanks to theories, then, applying discretization methods
to obtain a numerical scheme, to finally end with the
implementation of the scientific software (cf. Figure 1).

Thus, the design of scientific software based on
mathematical models requires the involvement and
cooperation of various stakeholders, ranging from sci-
entists and engineers to experts in numerical analysis or
SE. These stakeholders play one of three roles (depend-
ing on context, one person may fulfill more than one
role): scientists as domain experts, numerical analysts
as experts on the discretization of a continuous phe-
nomenon, and software engineers as experts on soft-
ware development to deliver the expected services.
Each role is in charge of the elaboration of one of the
artifacts: scientists define the mathematical model,
numerical analysts define the numerical scheme, and
software engineers implement the computer software.

Computer languages enable the different stakehold-
ers to perform their activities at the corresponding level
of abstraction. We can thus classify computer lan-
guages according to their level of abstraction and the
support they provide to stakeholders.

Languages to Define the Mathematical
Model
Scientists can define a mathematical model and derive
the corresponding scientific software using languages

such as Mathematica,a or MATLAB.b Such languages
provide continuous mathematical constructs (e.g., alge-
braic computation and differential blocks in MATLAB’s
block diagrams) allowing scientists to directly define
their mathematical models with the language. The lan-
guage infrastructure is then able to automatically dis-
cretize the mathematical models defined with the
language, possibly in a configurable way, and to derive
the corresponding scientific software.

Languages to Specify the Numerical
Scheme
Alternatively, some languages allow deriving scientific
software directly from a numerical scheme. Languages
dedicated to the definition of numerical schemes (or
with the right abstractions to do so), such as Julia,c R,d

or NabLab,e allow automatically deriving the corre-
sponding piece of scientific software without having to
handle SE concerns. Thus, once numerical analysts
obtain a numerical scheme as a result of the application
of their chosen discretizationmethod to themathemati-
cal model, they can directly implement it using the dis-
crete mathematics constructs offered by the language.
From this encoded numerical scheme, the infrastruc-
ture of the language (e.g., model transformations, inter-
preters, compilers, code generators) derives the
corresponding piece of scientific software.

FIGURE 1. Overall scientific software development process across the scientific V-model.4

ahtt _ps://www.wolfram.com/mathematica or more specifically
the Wolfram language, htt _ps://www.wolfram.com/language
bhtt _ps://matlab.mathworks.com
chtt _ps://julialang.org/
dhtt _ps://www.r-project.org/
ehtt _ps://cea-hpc.github.io/NabLab/
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Scientific computing is a cross-cutting field, its
heart and soul being the development of mathe-
matical models to understand physical systems

through their simulations. Those models can be numeri-
cal (e.g., systems of differential equations), nonnumerical
(e.g., agent-based models) or based on analytics (e.g.,
machine learningmodels), and aim to capture the behav-
ior of the modeled system. Numerical models can be fur-
ther refined as continuous or discrete. Simulations of
mathematical models correspond to the execution of
the computer programs containing thesemodels, the so-
called “simulation codes.” In this article, we refer to the
subsuming concept of scientific software, which we
define as software dedicated to scientific computing and
simulation. The development of scientific software
involves both software engineering (SE) and scientific
computing concerns. Mathematical models and scien-
tific software are tightly coupled throughout their life
cycles. The tools and methods used for their develop-
ment—in particular, computer languages—can impact
the definition of both, as well as the engineering princi-
ples that ensure the development of reliable scientific
software.

When the time comes to implement a newmodel, i.e.,
develop new simulation software, scientists and

engineers are faced with the choice of what computer
language(s) to use (e.g., MATLAB, Mathematica, Fortran,
Python, C++, or even an in-house domain-specific lan-
guage). This choice has important consequences on the
expressiveness available to implement the model and
the corresponding simulation code, but also in terms of
SE practices to develop reliable and efficient scientific
software. The more general-purpose the language is—
with low-level, computing-related, system abstractions—
the more flexibility and performance it may provide, but
also the more rigorous engineering principles and verifi-
cation & validation (V&V) activities will be required to
obtain a reliable piece of scientific software.

Most scientists and engineers are not trained in SE
and are therefore not aware of its best practices beyond
programming (e.g., version control management, com-
ponent reuse, unit testing, continuous integration),1

which has led to initiatives addressing this problem,
such as the research software engineering movement.2

Since the final goal is to build and apply the model
encoded in the simulation code, the code itself ismerely
a means to that end. Final stakeholders (e.g., citizens,
policy, and decision makers, research institutions, sys-
tem users) may even be unaware of the importance of
software for science and engineering.

In this article, we explore the overall scientific soft-
ware development process, we provide an integrated
view of the scientific computing and SE activities, arti-
facts, and roles, and we discuss the tradeoffs on the
computer languages at hand to help scientists and
engineers make informed decisions.
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Languages to Implement the Scientific
Software
Finally, when software engineers deal with execution-
related concerns (e.g., architecture, hardware, optimi-
zation, storage, etc.), system-level languages such as
C,f C++,g and Fortranh can be used, together with
frameworks like OpenMP,i and standards such as
MPI.3 Language users express the particularities of
their simulator with regard to all the concerns involved
in the development of scientific software, ranging
from the mathematical model to the encoded numeri-
cal scheme and system-level concerns such as con-
currency, memory, and data handling.

The artifacts at each level of abstraction can capture
different concerns (e.g., data curation, mesh definition,
and numerical analysis all relate to a numerical scheme,
while concurrency and memory management are both
related to the scientific software). Capturing these dif-
ferent concerns in a given artifact can be achieved with
a single general-purpose language, or with separate,
though coordinated, dedicated languages, leading to a
polyglot development of this artifact.

The successive refinement of the different artifacts
can be done automatically by the language infrastruc-
ture provided by interpreters or compilers. It can also be
done (at least partially) manually by the different stake-
holders, by specifying the handling of certain concerns
according to their specific expertise. While automatic
refinement through the language infrastructure pro-
vides a predefined way of refining a given artifact, man-
ual refinement lets different roles handle concerns on
their own and optimize their implementation for a given
context.4 For instance, a numerical scheme specified
with NabLab is usually compiled using one of the compi-
lation chains, thereby automatically taking into account
the execution flow, parallelism, and memory model. Yet,
one may want to handcraft the C++ code generated
from a NabLab specification to customize how the
related concerns are handled in a particular application.

COMPUTER LANGUAGES: V&V
TECHNIQUES TO THE RESCUE

Language choice allows selecting the level of abstrac-
tion at which one wants to work. This determines
which artifacts must be defined as part of the develop-
ment process, and which artifacts are automatically
derived through the language infrastructure. While

this language infrastructure guarantees the correct-
ness of the derived artifacts with regard to user-
defined ones, the V&V concerns corresponding to
those user-defined artifacts still need to be addressed.

For example, using a language at the discrete-
mathematics abstraction level, numerical analysts
can derive the scientific software from the numerical
scheme. This derived software is guaranteed to be
correct with regard to the provided numerical scheme,
but the correctness of both the numerical scheme and
the governing equations constituting the mathemati-
cal model still remains to be assessed.

We illustrate this on Figure 1, a V-Model for scientific
computing, or scientific V-Model, where the different
artifacts involved in scientific software development are
represented on the left, from observations tomathemat-
ical model, numerical scheme, and actual scientific soft-
ware. Facing each of these artifacts is the corresponding
V&V concern to be addressed. In addition, for each arti-
fact and V&V concern, the figure indicates the associ-
ated roles, i.e., the skills necessary to develop the
artifacts and address their corresponding V&V concerns.

The model contains a nested V-model (“SE V-
model”) representing the artifacts specific to SE that
are defined over the course of the development of the
actual scientific software, from stakeholder require-
ments to the implementation. This nested SE V-model
also contains the SE-specific V&V activities required
to address the V&V concerns corresponding to each
of these SE-specific artifacts.

The scientific V-model reads as follows. The left
descending branch of the V-Model indicates which arti-
facts must be defined, based on the level of abstraction
at which one works: artifacts above the chosen level of
abstraction have to be defined as well, as each acts as
specification for the artifact directly below. The right
ascending branchof theV-model indicates the V&Vactiv-
ities to be undertaken for each artifact defined by the
stakeholders. This includes the V&V activities corre-
sponding to the artifacts defined with the chosen lan-
guage, and every V&V activity situated above. In addition,
while languages provide guarantees over the software
they allow deriving, any V&V activity not handled by a lan-
guage is left to the developers.

For a more detailed look at the scientific V-model,
we direct the reader to our previous work.4

CLASSIFYING COMPUTER
LANGUAGES FOR SCIENTIFIC
COMPUTING

In Table 1, we propose a guide supporting decision-
making with regard to the computer language(s) to

fhtt _ps://www.iso.org/standard/74528.html
ghtt_ps://isocpp.org/
hhtt_ps://fortran-lang.org/
ihtt _ps://www.openmp.org/
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use for scientific software developments. We evaluate
a range of computer languages commonly used in sci-
entific computing,5,6 aiming to highlight how well each
language supports the definition of the three catego-
ries of artifacts (mathematical model, numerical
scheme, and scientific software), and how they facili-
tate the required V&V activities for these artifacts.

We propose a scale assigning a score to each lan-
guage for the development of the three identified artifacts
based on their ability to accurately describe these arti-
facts and the level of expertise required for their use. The
more “+” symbols, the more detailed the language can
describe the corresponding artifact, and the more exper-
tise it requires from the designer. For example, languages
providing fine control over concurrency and memory are
better suited if one needs to directly work at the system
level to define the scientific software (e.g., for perfor-
mance or architecture reasons). In the remainder of this
section, we give a brief overviewof these languages.

The Wolfram Language, provided as part of Mathe-
matica, offers continuous mathematical constructs,
while also providing some expressivity with regard to dis-
crete mathematics.j MATLAB works similarly, but also
provides discrete numerical constructs.k R is a language
more geared toward statistics, but can also be used for
matrix computations, and provides continuous mathe-
matical abstractions as well.l For each of these lan-
guages, SE abstractions aremostly kept out of the hands
of the language user, and the associated concerns are
addressed as part of their supporting infrastructure.

NabLab is a language dedicated to numerical anal-
ysis, which provides code generators targeting an
array of C++ backends.7 The language exclusively
exposes numerical abstractions, and SE concerns are
addressed as part of the provided generators and
compilation chains.

Julia is a language gaining traction in scientific
computing. It offers numerical abstractions, while giv-
ing finer control over some system concerns as well,
such as multithreading and networking, enabling its
use in the context of high-performance computing.m

However, when such system-level abstractions are
used, the user needs to address the corresponding
V&V concerns as usual, requiring SE skills.

Python is a popular language in scientific comput-
ing, even if it does not provide native abstractions
suited to continuous or discrete mathematics. This
popularity stems from its low entry level in terms of SE
skills (e.g., dynamic typing, managed memory), its
extensive library support, such as SciPyn and NumPyo

providing the missing abstractions for scientific com-
puting, and a mature support for the definition of
wrappers for C/C++ applications.

Java does not natively provide mathematical
abstractions, but abstracts some system-level con-
cerns, such as memory management. It is also cited in
the literature as one of the frequently used languages
by the scientific community.6

C and C++ are extensively used in the scientific
computing community, despite missing numerical and
mathematical abstractions, and working at a very low
level of abstraction.8 This is due to its good perfor-
mance and the large number of libraries available for
scientific computing. However, developing scientific
software with C or C++ demands addressing numer-
ous SE V&V concerns, which come in addition to the
usual numerical and mathematical V&V concerns. For-
tran is a similar case to C and C++, except that it does
provide numerical abstractions, as it was designed for
writing scientific software.p

CONCLUSION
In this article, we presented a scientific software
development process that integrates both scientific
computing and SE activities: the scientific V-model.
This model describes how the different artifacts and
stakeholders involved in this process are related to

TABLE 1. Overview of languages commonly used in scientific

computing according to the associated levels of abstraction.

Language Mathematical
Model

Numerical
Scheme

Scientific
Software

Mathematica
(Wolfram
Language)

+++ ++

MATLAB ++ ++
R + +
NabLab +++
Julia ++ +
SciPy ++ +
Python +
Java ++
C/C++ +++
Fortran ++ +++

jhtt_ps://www.wolfram.com/language/index.php.en
khtt _ps://www.mathworks.com/products/matlab.html
lhtt_ps://www.r-project.org/

mhtt_ps://julialang.org/
nhtt _ps://scipy.org/
ohtt _ps://numpy.org/
phtt _ps://fortran-lang.org/
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Languages to Implement the Scientific
Software
Finally, when software engineers deal with execution-
related concerns (e.g., architecture, hardware, optimi-
zation, storage, etc.), system-level languages such as
C,f C++,g and Fortranh can be used, together with
frameworks like OpenMP,i and standards such as
MPI.3 Language users express the particularities of
their simulator with regard to all the concerns involved
in the development of scientific software, ranging
from the mathematical model to the encoded numeri-
cal scheme and system-level concerns such as con-
currency, memory, and data handling.

The artifacts at each level of abstraction can capture
different concerns (e.g., data curation, mesh definition,
and numerical analysis all relate to a numerical scheme,
while concurrency and memory management are both
related to the scientific software). Capturing these dif-
ferent concerns in a given artifact can be achieved with
a single general-purpose language, or with separate,
though coordinated, dedicated languages, leading to a
polyglot development of this artifact.

The successive refinement of the different artifacts
can be done automatically by the language infrastruc-
ture provided by interpreters or compilers. It can also be
done (at least partially) manually by the different stake-
holders, by specifying the handling of certain concerns
according to their specific expertise. While automatic
refinement through the language infrastructure pro-
vides a predefined way of refining a given artifact, man-
ual refinement lets different roles handle concerns on
their own and optimize their implementation for a given
context.4 For instance, a numerical scheme specified
with NabLab is usually compiled using one of the compi-
lation chains, thereby automatically taking into account
the execution flow, parallelism, and memory model. Yet,
one may want to handcraft the C++ code generated
from a NabLab specification to customize how the
related concerns are handled in a particular application.

COMPUTER LANGUAGES: V&V
TECHNIQUES TO THE RESCUE

Language choice allows selecting the level of abstrac-
tion at which one wants to work. This determines
which artifacts must be defined as part of the develop-
ment process, and which artifacts are automatically
derived through the language infrastructure. While

this language infrastructure guarantees the correct-
ness of the derived artifacts with regard to user-
defined ones, the V&V concerns corresponding to
those user-defined artifacts still need to be addressed.

For example, using a language at the discrete-
mathematics abstraction level, numerical analysts
can derive the scientific software from the numerical
scheme. This derived software is guaranteed to be
correct with regard to the provided numerical scheme,
but the correctness of both the numerical scheme and
the governing equations constituting the mathemati-
cal model still remains to be assessed.

We illustrate this on Figure 1, a V-Model for scientific
computing, or scientific V-Model, where the different
artifacts involved in scientific software development are
represented on the left, from observations tomathemat-
ical model, numerical scheme, and actual scientific soft-
ware. Facing each of these artifacts is the corresponding
V&V concern to be addressed. In addition, for each arti-
fact and V&V concern, the figure indicates the associ-
ated roles, i.e., the skills necessary to develop the
artifacts and address their corresponding V&V concerns.

The model contains a nested V-model (“SE V-
model”) representing the artifacts specific to SE that
are defined over the course of the development of the
actual scientific software, from stakeholder require-
ments to the implementation. This nested SE V-model
also contains the SE-specific V&V activities required
to address the V&V concerns corresponding to each
of these SE-specific artifacts.

The scientific V-model reads as follows. The left
descending branch of the V-Model indicates which arti-
facts must be defined, based on the level of abstraction
at which one works: artifacts above the chosen level of
abstraction have to be defined as well, as each acts as
specification for the artifact directly below. The right
ascending branchof theV-model indicates the V&Vactiv-
ities to be undertaken for each artifact defined by the
stakeholders. This includes the V&V activities corre-
sponding to the artifacts defined with the chosen lan-
guage, and every V&V activity situated above. In addition,
while languages provide guarantees over the software
they allow deriving, any V&V activity not handled by a lan-
guage is left to the developers.

For a more detailed look at the scientific V-model,
we direct the reader to our previous work.4

CLASSIFYING COMPUTER
LANGUAGES FOR SCIENTIFIC
COMPUTING

In Table 1, we propose a guide supporting decision-
making with regard to the computer language(s) to

fhtt _ps://www.iso.org/standard/74528.html
ghtt_ps://isocpp.org/
hhtt_ps://fortran-lang.org/
ihtt _ps://www.openmp.org/
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each other. We also provide a categorization of com-
puter languages according to their ability to develop
specific artifacts and discuss the impact on verifica-
tion and validation activities.

We argue that, when choosing a computer language
to implement scientific software, the researcher should
consider the level of abstraction at which they are work-
ing and keep in mind that this choice has an impact on
the V&V activities they must manage. To facilitate an
informed decision on the choice of computer languages,
we provide a guide with the most commonly used lan-
guages in scientific computing, referring to the skills
required to take full advantage of them in the definition
of artifacts and associated V&V activities.

With this article, we aim to make scientific com-
puting practitioners aware of the role of computer lan-
guages and to initiate the discussion early on with the
information necessary when faced with the choice of
computer language(s) to use in scientific computing.
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Democratizing Science Through 
Advanced Cyberinfrastructure
Manish Parashar, National Science Foundation

Democratizing access to cyberinfrastructure is essential to democratizing science. 
This article explores knowledge, technical, and social barriers to accessing and using 
cyberinfrastructure and explores approaches to addresses them. It also highlights recent 
activities and investments at the National Science Foundation that implement some of 
these approaches.

Science and engineering (S&E) research in the 
21st century, powered by the growing avail-
ability of computation and data, continues 

to explore new frontiers, generating discoveries and 
innovations with the potential to transform our lives, 
our environment, and our economies. Examples of 
such S&E research enabled by computation and data 
include fundamental discoveries about our solar sys-
tem and the universe, understanding and modeling 
climate change and potential strategies for mitigat-
ing these changes, understanding the nature and 
progression of diseases and how to cure illnesses, 
changing the way we farm and deliver food and other 
natural resources to consumers, and responding to 
and managing the impacts of natural disasters, such 
as hurricanes, earthquakes, and wildfires. Research-
ers today have unprecedented amounts of data from 
diverse sources, including sensors, instruments, 
and computational simulations, as well as an equally 
unprecedented need for computing to allow them to 
extract meaningful insights from the data to drive 
understanding, predictions, and decision making.

The essential role of computation and data in 21st 
century science has been highlighted in several recent 
reports, including a 2021 National Academies of Sci-
ences, Engineering, and Medicine (NASEM) report, 
“Global Change Research and Opportunities for 2022–
2031,”1 which identified the critical need for computing 

research and computing resources that can advance 
the nation’s understanding of and response to climate 
challenges, as well as the 2021 NASEM “Decadal 
Survey on Astronomy and Astrophysics,”2 which 
summarized the tremendous impacts of data from 
multiple observatories. It is therefore imperative, now 
more than ever, that all researchers benefit from the 
opportunities for scientific exploration enabled by 
computation and data. As a result, ensuring broad, fair, 
and equitable access to advanced cyberinfrastructure 
(CI), including computing, data, networking, software, 
and expertise, that is, democratizing access to CI, is 
essential to democratizing science.

Recognizing this growing role of computation 
and data across all areas of scientific research, there 
have been significant investments around the globe in 
advanced CI resources, services, and expertise. In the 
United States, the National Science Foundation (NSF), 
through its Office of Advanced Cyberinfrastructure 
(OAC) and predecessor offices, has, over the past four 
decades, funded the development and provisioning of 
advanced CI resources and services toward an over-
arching vision3 of ensuring the broad availability and 
innovative use of an agile, integrated, robust, trust-
worthy, and sustainable CI ecosystem that can drive 
new thinking and transformative discoveries in all 
areas of research and education. Investments include 
acquisition, integration, coordination, and production 
operations associated with shared data, secure net-
working, advanced computation, scientific software 
and data services, and the design and development of 
computational and data-enabled S&E.
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The OAC also nurtures the computational and data 
skills and expertise needed for next-generation S&E 
research, and it promotes innovative, robust, secure, 
and interoperable CI as well as sharing and collabora-
tion among academic research infrastructure groups, 
other federal agencies, international research funders, 
and the private sector. A recent road map by the 
National Science and Technology Council Subcom-
mittee on Future Advanced Computing Ecosystems4 
highlights that these investments are complemented 
by investments at the national, regional, and local 
levels; by other U.S. federal agencies, academic insti-
tutions, and industry; and in other countries.

BARRIERS TO CI ACCESS AND USE
However, despite these global investments and the 
growing availability of an advanced CI ecosystem, sig-
nificant barriers still limit broad and equitable access 
to this ecosystem, especially for individuals and insti-
tutions that are resource constrained and for commu-
nities that have been traditionally underrepresented. 
These knowledge, technical, and social barriers were 
explored in a recent study,5 and they span several key 
areas, as summarized in the following.

KNOWLEDGE BARRIERS
As a result of increasing national, regional, and insti-
tutional investments in the CI ecosystem, research-
ers typically have access to a range of resources and 
services. However, researchers often lack a broad 
awareness of this availability, and perhaps even more 
importantly, even when they are aware of the available 
resources, they may not understand how to use these 
resources (for example, determining which resources 
are relevant to a researcher’s specific needs and how 
to gain access to these resources can be challeng-
ing). Effective use of advanced computing and other 
CI resources requires significant support structures 
to help researchers determine the most appropriate 
resources, obtain allocations, train practitioners once 

they have allocations, and support application migra-
tion and execution. Such support structures are often 
missing at the local level, especially at underresourced 
institutions that often need the most help. The lack of 
access to necessary support has been noted as the 
most significant barrier to broad access to the CI eco-
system.5 National and regional entities and institu-
tions do provide support structures, but scaling these 
structures to meet the needs of a growing and diverse 
community is challenging. Current efforts often focus 
on domains and communities that have traditionally 

used advanced CI resources rather than on integrat-
ing new and developing communities that are not as 
able to adapt to specific needs.

A related barrier is associated with the recruit-
ment, retention, and cultivation of a highly capable, 
adaptive, and agile workforce, for example, system 
administrators, software developers, and data cura-
tors. Developing and sustaining such a CI workforce 
presents challenges, including initiating effective 
institutional and on-the-job training to keep up with 
evolving software, technologies, platforms, and appli-
cation requirements. Furthermore, there remains a 
lack of recognized job titles for the CI workforce, and 
skilled CI workers often face career uncertainty and a 
lack of recognition, as their valued services are in posi-
tions not visible to the research community and they 
have titles that are neither consistent nor meaningful. 

BARRIERS STILL LIMIT BROAD 
AND EQUITABLE ACCESS TO THIS 
ECOSYSTEM, ESPECIALLY FOR 
INDIVIDUALS AND INSTITUTIONS 
THAT ARE RESOURCE CONSTRAINED 
AND FOR COMMUNITIES THAT 
HAVE BEEN TRADITIONALLY 
UNDERREPRESENTED.
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Providing creative incentives, reward mechanisms, 
and career paths will be essential to sustain this 
workforce. Whereas the formal educational pathway 
is critical, providing on-ramps for nontraditional stu-
dents (for instance, those who are older and/or seek-
ing reskilling and upskilling opportunities) requires 
thoughtful educational practices, mentoring, and sup-
port to promote success and advancement.

TECHNICAL/PROCEDURAL 
BARRIERS

The number and diversity of researchers using CI 
resources has continued to evolve over the past few 
decades. However, the mechanisms used to allocate 
these resources have largely remained the same. 
Most national and regional resources and many 
institutional resources use proposal-based mecha-
nisms for allocating resources: once their research is 
funded, researchers must submit a second proposal 

requesting resources. These proposals are then peri-
odically evaluated, and if selected, the researchers 
are given an allocation that they can use to access the 
resources and conduct their research. This approach 
works well for certain classes of users and types of 
usage modes, but it can prevent broad usage of the 
resources for a multitude of reasons. For example, 
users often face “double jeopardy” by having to get 
their proposal and resource requests through two 
separate processes. Users must have a certain level 
of expertise and experience to appropriately articu-
late their needs and put together a competitive pro-
posal. The latency of the proposal process presents 
additional barriers. Furthermore, proposal review cri-
teria tend to be skewed toward more experienced 
users, requiring prior results for performance and 

scalability. Although many systems provide small 
“start-up” allocations, these are limited and cannot 
support extended research needs. Alternate access 
models, such as on-demand and urgent access as well 
as the integration of access into popular science tools, 
are not typically supported.

The ability of researchers to use growing national 
and regional CI capabilities is often limited by local 
infrastructure, which is typically needed to allow them 
to have access and effectively use these resources. 
These limits include a lack of adequate local capa-
bilities for securely connecting to advanced compu-
tational resources, accessing relevant data resources, 
and integrating these resources into their application 
workflow. Perhaps most importantly, local resources 
are not equitably available across the full range of 
institution types, preventing certain segments of the 
research community from accessing the on-ramps 
that would pave the way toward their engagement in 
computational and data-enabled S&E.

Social barriers
In addition to the technical and procedural barri-
ers noted in the preceding, there remain social barri-
ers at the institutional and regional levels that impact 
how research CI is viewed, funded, and supported. 
For example, the unique nature of research CI, how 
it is used, the needs of its user community, and how 
it differs from more typical IT infrastructure and ser-
vices are often not appreciated at an institutional 
level, resulting in a lack of mechanisms and structures 
needed to support researchers and, more importantly, 
to expose them to the potential benefits of CI to their 
research. This lack of appreciation also makes it harder 
to attract and retain the necessary talent and can lead 
to the deployment of CI solutions that do not match 
user needs. Furthermore, these adverse impacts often 
disproportionately affect underresourced institutions 
and communities. The resulting lack of engagement 
of underresourced institutions and communities can 
further result in the downstream exclusion of certain 
communities and their contributions from the scien-
tific research enterprise and the propagation of bias. 
Specific efforts and incentives focused on increas-
ing awareness and access by, for example, integrating 
and embedding CI, CI expertise, and CI best practices 
within communities, must be a priority.

SPECIFIC EFFORTS AND INCENTIVES 
FOCUSED ON INCREASING 
AWARENESS AND ACCESS BY, 
FOR EXAMPLE, INTEGRATING AND 
EMBEDDING CI, CI EXPERTISE, 
AND CI BEST PRACTICES WITHIN 
COMMUNITIES, MUST BE A PRIORITY.
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DEMOCRATIZING ACCESS TO CI
Democratizing access to the CI ecosystem is essen-
tial to democratizing science and ensuring that 
every researcher has fair and equitable access to the 
resources that support his or her work. As the needs 
for and opportunities from CI grow and broaden, elim-
inating the barriers listed previously is becoming crit-
ical. This approach requires strategic investment in a 
broad set of CI resources, services, and expertise that 
can systematically address barriers to CI access while, 
at the same time, providing adequate training and sup-
port structures. Specifically, such investments should 
consist of the following:

	› integrated and user-friendly portals and gate-
ways for discovering and accessing resources, 
supported by flexible allocation and access 
mechanisms that sustain a wide spectrum of 
users and their needs

	› access to local CI resources as part of a shared 
fabric of national CI resources connected and 
reachable through high-speed frictionless data 
networking

	› diverse and flexible allocation and access 
modes (for example, on-demand, urgent, and 
coordinated access) that support a diversity of 
users and application needs

	› agile, easily accessible, and scalable networks of 
experts that integrate embedded expertise and 
user support that is responsive to local needs

	› broadly accessible training targeting the 
spectrum of CI users and skills as well as sup-
port for exchanges among communities and the 
dissemination of best practices.

Collectively, the preceding steps can be transfor-
mational in broadening and democratizing access to 
CI and the research opportunities CI provides.

NSF investments toward 
democratizing CI
The broad requirements for democratizing CI listed in 
this article are fundamental to the NSF’s CI vision3 for a 
national CI ecosystem and underlie many of the agen-
cy’s recent investments that implement this vision. 
They are also integral to the NSF’s blueprint for future 
national CI coordination services.6 For example, the 

NSF recently announced7 a suite of awards through 
its Advanced Cyberinfrastructure Coordination Eco-
system: Services and Support (ACCESS) program. This 
program is aimed at improving the accessibility and 
usability of the national CI ecosystem and increasing 
its integration with systems and research communi-
ties on campuses across the nation. ACCESS services 
build on the NSF’s past CI investments and activi-
ties as well as more recent explorations, such as a 
high-throughput computing allocation pilot.8

Complementing the ACCESS services are the 
NSF’s sustained efforts to foster and nurture a 
diverse, recognized, and skilled CI professional (CIP) 
workforce.9 CIP refers to the community of individuals 
who provide a broad spectrum of skills and expertise 
to the scientific and engineering research enterprise 
by inventing, developing, deploying, and/or supporting 
research CI and CI users. Examples of CIPs include 
CI system administrators, CI research support staff, 
CI research software engineers, data curators, and 
CI facilitators, and it may also include computational 
research scientists and engineers who are not in tra-
ditional academic paths. The NSF uses the broadest 
definition of CIP, including researchers who use CI, CI 
developers, and CI operators—all workforce catego-
ries required to effectively leverage and utilize cur-
rent, emerging, and future CI capabilities and amplify 
the transformative impact of CI across S&E research 
fields.10,11 These individuals and the highly valued ser-
vices they provide to S&E deserve more institutional 
recognition, support as a community, and clearer 
pathways for their professional/career development. 
Specific NSF activities to support CIPs include the 
Training-Based Workforce Development for Advanced 
Cyberinfrastructure (CyberTraining) program,12 which 

DEMOCRATIZING ACCESS TO THE 
CI ECOSYSTEM IS ESSENTIAL TO 
DEMOCRATIZING SCIENCE AND 
ENSURING THAT EVERY RESEARCHER 
HAS FAIR AND EQUITABLE ACCESS TO 
THE RESOURCES THAT SUPPORT HIS 
OR HER WORK.
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supports innovative, scalable training, education, and 
curriculum/instructional materials along with deeper 
incorporation of CIPs into the research enterprise.

CyberTraining seeks to broaden CI access and 
adoption by 1) increasing adoption of advanced CI and 
computational and data-driven methods by a broader 
range of S&E disciplines and institutions; 2) enhancing 
the incorporation of CIPs into the research enterprise, 
highlighting the value of those professionals in S&E 
research; and 3) effectively utilizing the capabilities 
of individuals from a diverse set of underrepresented 
groups. The program includes a track for funding CIPs 
at the institute and regional levels and their integration 
into a national computational science support net-
work managed by one of the services that are part of 
the ACCESS program. Importantly, CyberTraining and 
other programs supporting CIPs require a mentoring 
and/or professional development plan to encourage 
research proposals to explicitly consider and support 
this important but often neglected aspect of CI.

A related support activity is the Research Comput-
ing and Data Nexus Cyberinfrastructure Center of 
Excellence,13,14 which aims to advance research com-
puting and data infrastructure through the strategic 
development of tools, practices, and professionals. 
Overall, the NSF envisions networks of connected and 
coordinated hubs that recognize and connect CIPs, 
support communications and training, share best 
practices, and foster mobility and synergies across 
projects and organizations. Finally, the NSF recog-
nizes the importance of diversity in driving scientific 
innovation and discovery. The NSF is thus committed 
to enabling the broadest access to its CI ecosystem 
and continues to make investments to support this 
commitment. For example, the recently funded 
Minority-Serving Cyberinfrastructure Consortium15 
envisions a transformational partnership to promote 
advanced CI capabilities on the campuses of histori-
cally Black colleges and universities, Hispanic-oriented 
institutions, tribal colleges and universities, and other 
minority serving institutions.

To harness the full potential of research discov-
eries and the resulting impacts on science and 

society, all researchers must be able to avail them-
selves of the opportunities for scientific exploration 
provided by advanced CI. Ensuring broad, fair, and 

equitable access to advanced CI resources, services, 
and expertise will be essential for democratizing sci-
ence in the 21st century. This article described some 
of the barriers to achieving this objective on the 
basis of experiences at the NSF and highlighted the 
NSF’s recent activities and investments to address 
these barriers. However, the democratization of sci-
ence and its benefits requires not only continued 
investments by the NSF but also broader and more 
coordinated local, national, and global efforts and 
investments. The NSF intends to continue to look at 
more effective ways to reduce barriers to CI access 
and explore new approaches to ensure broader par-
ticipation and equity. For example, the NSF is colead-
ing the congressionally chartered National Artificial 
Intelligence (AI) Research Resource Task Force,16 
which is seeking to address the “resource divide” in AI 
research and has been developing a plan to democra-
tize access to AI R&D for America’s researchers and 
students and providing them with critical computa-
tional, data, and training resources through a broadly 
accessible shared CI. 
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The Byzantine Empire and Its 
Generals: An Ancient Empire 
Back to Life in Computer Security
Pedro Reviriego , Universidad Politécnica de Madrid
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Forty years after its initial publication, we revisit the seed contribution of Byzantine 
fault tolerance, focusing on its application for the security of systems implemented 
in software. We describe new environments in which it is being used.

Security and dependability are key require-
ments for most of today’s computing systems, 
and their importance is poised to grow as 

we increasingly rely on their pervasive use in almost 
every aspect of our lives. At the same time, the com-
plexity of computing systems unabatedly continues 
to grow with many different organizations providing 
interdependent components that, in turn, coordinate 
to implement services. In this scenario, making sure 
that such a system will work reliably when some of 
the components or nodes fail or are compromised by 
an attacker becomes critical. For example, several 
attacks, like Spectre or Meltdown, have been inves-
tigated; they exploit the advanced mechanisms of 
modern processors to extract information. Similarly, 
in the recent SolarWinds attack, a software tool was 
compromised, and then automatic updates were 
exploited to disseminate the infected version. Failures 
can also disrupt the operation of computing systems 
in many complex ways. For example, radiation-induced 
soft errors can flip any bit stored in a memory or regis-
ter, leading to silent data corruption that can manifest 
in erratic system behavior.

From a design perspective, in many cases, the same 
mechanisms can be used to mitigate both attacks and 
failures. In fact, many of the models commonly used 

for secure and dependable system design cover both 
scenarios. This is the case with the Byzantine Generals 
problem formulated more than 40 years ago; this has 
led to the concept of Byzantine fault tolerance (BFT), 
which has found widespread adoption in many techni-
cal domains.1

In this article, we revisit BFT four decades after its 
introduction, focusing on software implementations 
and briefly discussing how it is now being used in new 
systems, domains, and applications. We also look back 
to the Byzantine empire to understand how it survived 
for one millennium and how its history relates to the 
Byzantine generals problem. This discussion links 
computing with history and shows that the choice 
made by the authors for the generals is, in an unin-
tended way, backed by facts.

An analogy with a group of generals who have to 
act consistently in taking the decision to attack or 
retreat has been used in Lamport et al.1 to provide a 
model for secure and dependable system design. The 
generals can be loyal or traitors, and there can also be 
communication failures or restrictions among gener-
als. This models a computing system in which some 
nodes may have been compromised and in which fail-
ures could also either disable nodes or prevent them 
from communicating.

As has been the case with other famous problems 
in computing, the analogy can facilitate the under-
standing of the problem and the algorithms used 
to solve it. Indeed, formulating the problem with an 
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appealing analogy was one of the objectives of the 
authors of the article [see http://lamport.azureweb-
sites.net/pubs/pubs.html#byz (46. The Byzantine 
Generals Problem)]. Apparently, they chose the gener-
als to be Byzantine to avoid offending any nationality, 
and thus, the model became the Byzantine Generals 
problem.1 From then on, systems and algorithms that 
can solve this problem and work consistently in that 
scenario are known as Byzantine fault tolerant (BFT). 
Hence, BFT has become a key concept in dependable 
and secure system design.

After presenting the initial model, different sce-
narios, for example by considering that messages 
exchanged by the generals can be forged by traitors 
or, conversely, that they are signed and thus cannot 
be forged, are analyzed in Lamport et al.1 This has led 
to a fundamental result; for the group of loyal generals 
to act consistently, there can be at most m traitors 
in a group of 3m + 1 generals when messages can be 
manipulated by traitors. For example, when there is 
a single traitor, there have to be at least three loyal 
generals for them to act consistently. This illustrates 
the high cost of building systems that can tolerate fail-
ures or attacks; not only are 3m + 1 generals needed, 
but they must also exchange a sequence of messages 
recursively to reach a consensus on the action to take.

By presenting the problem in a general manner, 
considering different scenarios with signed or oral 
messages and with failures or restrictions in the 
communications among the generals, the article 
instantiated a framework for the analysis and design 
of fault-tolerant systems that has been used in a 
myriad of applications and designs. Initially, the con-
cept was used for safety-critical applications such 
as space systems; avionics; military equipment; or 
industrial and nuclear control systems. However, 
its adoption has extended to almost every domain 
in computing. For example, BFT is a key element in 
many blockchain-based systems, and in particular for 
cryptocurrencies, to ensure that a group of completely 

independent nodes can maintain a consistent state. 
This has motivated a large body of research through-
out the years in this area to ensure that consensus can 
be achieved reliably in systems that involve large num-
bers of nodes and transactions. These efforts have 
led to the development of new consensus algorithms, 
such as, for example, proof of work and proof of stake.2

The game with the nationality of the generals 
seems to continue. For example, three of the main 
forks in Ethereum (see Figure 1) are named Byzantium, 
Constantinople, and Istanbul, which does not seem to 
be a coincidence, and it is likely a play with words and a 
tribute to the Byzantine generals problem.

Before discussing other areas in which BFT is 
currently being used, let us go back in time and look 
at the empire that gives the name to the problem and 
concept. For more than one millennium, the Byzantine 
empire was able to survive despite having to face 
powerful enemies from the East and West. Therefore, 
in a way, the empire can itself be seen as a complex 
resilient system from the outset. Most of its rulers 
had a solid military background; lineage was not a 
sufficient condition—sometimes not even neces-
sary. For emperors and coemperors to be considered 
worthy to wear the imperial purple, they had to have 
demonstrated their ability as generals, which partially 
explains the strategic strength the empire enjoyed for 
centuries. Right from the start, the binomial formed by 

FIGURE 1. The Ethereum logo.
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Justinian and his general Belisarius (Figure 2) paved 
the way that would forever associate military power 
with imperial power, often in a single person, a circum-
stance that would be essential in defensive strategies.

In addition to the skill of many of its rulers, defen-
sive resources, such as the chain of the Golden Horn 
(Figure 3) or the one known as Greek fire (Figure 4), 
were fundamental for the Byzantine resistance to 
attacks throughout its history. It is significant that 
even in the case of war tools from the past, they con-
tinue to pose enigmas in the present. The chemical 
composition of Greek fire, a kind of liquid fire capable 

of spreading over water and eas-
ily reaching enemy ships, has not 
yet been formulated. The precise 
mechanism that allowed the 
closing of the Golden Horn by 
means of a heavy chain that was 
pulled up to the surface is even 
today the subject of speculation. 
In addition to the scientific chal-
lenge of unraveling how these 
tools worked, their efficient 
performance can be inspiring for 
engineers who are currently devel-
oping cyberdefense systems.

The adoption of the term Byz-
antine to describe the problem of 
the Byzantine Generals is a cau-
tious decision that contrasts with 
the apparently inappropriate use 
to denominate the Eastern Roman 
Empire. Leslie Lamport assigned 
the Byzantine nationality so as 
not to offend any reader in the 
certainty that an extinct empire 
was a safe bet. However, the name 
“Byzantine” turned out to be one 
of the most controversial of the 
historical empires. Curiously, the 
Byzantines themselves would 
surely have felt bothered with the 
name attributed to them to avoid 
calling them “Romans,” as they 
considered themselves. The name 
“Byzantine” to name the Eastern 
Roman Empire is subsequent to 

the disappearance of the empire itself. The origin of 
the name and its connotations are still part of a scien-
tific discussion today.3

Lamport also confesses that he took the idea of 
the generals from the problem in distributed comput-
ing that is sometimes called the Chinese Generals 
problem, “in which two generals have to come to a 
common agreement on whether to attack or retreat, 
but can communicate only by sending messengers 
who might never arrive.”1 The idea of going back to 
the past arises intuitively at the moment in which 
the figure of the messenger appears. The times when 

FIGURE 2. A portrait possibly of General Belisarius and Emperor Justinian (from a 

mosaic in San Vitale, Ravenna.)

FIGURE 3. The iron chain prevents the fleet of Thomas the Slav from entering the 

Golden Horn. (Source: Biblioteca Nacional de España.)
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messages could be transmitted 
only through intermediaries seem 
to contrast with the current situ-
ation in which the immediacy of 
sending and receiving can give the 
impression that the endpoints of 
the communication are enough. 
However, it is obvious, although 
imperceptible, that the messenger, 
which connects the sender and 
receiver, continues to be present, 
merged, or frequently confused 
with the channel.

The immediacy of the trans-
mission of information, so com-
mon nowadays, can lead to a feel-
ing of false security in the minds 
of communicators. It is possible 
to mistakenly perceive that the 
instantaneity and the apparent 
absence of intermediaries guar-
antee the veracity of the message. 
The speed of communication does 
not seem to offer enough time to 
intentionally alter the message. 
In a similar way, immediacy seems 
to establish a direct thread with 
the addressee, without interme-
diaries. However, messages and 
the channels through which they 
travel can be as insecure today 
as they were 500 years ago. The 
messages today must go through 
a myriad of hardware and software 
components and systems before 
reaching their destination. Not 
only can the senders or recipients 
of the message be malicious, but 
all those complex elements can 
also be manipulated to interfere with and disrupt com-
munication, opening a vast attack surface. In fact, the 
security of communications has been a critical issue 
since the beginning of its existence and is one of the 
oldest problems in the history of communication.

The Byzantine Empire offers heroic examples 
of safe message delivery. One of the most thrilling 
episodes in the transmission of a message occurred 

only a few days before the Fall of Constantinople 
(see Figure 5). Constantine XI Palaiologos, the last 
Byzantine emperor, urgently needed to know if more 
reinforcements from Venice would arrive in Con-
stantinople. Without them, the city was doomed. 
Twelve men trusted by Constantine embarked in a 
small brigantine, with a false flag, disguised as Turks, 
toward the Aegean Sea, to see if the necessary help 

FIGURE 5. A large miniature depicting a view of besieged Constantinople from 

Jacques Tedaldi, Recueil de textes historiques  Récit de la prise de Constantinople 

(1453). (Source: Bibliothèque nationale de France.)

FIGURE 4. An illustration of Greek fire, from J. Scylitzes (flourished), History of 

Byzantium. (Source: Biblioteca Nacional de España.)
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was approaching. The 12 messengers found that there 
was no help on the horizon. They were to return to 
Constantinople to deliver their hopeless message. 
One of the messengers proposed to the others to con-
tinue toward Christian lands to save their own lives. 
Returning to Constantinople to deliver the message 
to the emperor meant certain death. However, loyalty 
prevailed, and they returned to the city to transfer the 
information even at the cost of their lives.4 Although 
the precious message arrived uncorrupted on 23 May 
1453, it was already too late for everything, and just 
six days later, the city would fall, and with it, the last 
stronghold of the empire.

Although the error-free transmission of this last 
message could do nothing to prevent the final Fall of 
Constantinople, throughout the history of the Byz-
antine Empire, there are other kinds of episodes that 
exemplify how the system was able to survive despite 
the spread of erroneous messages. One of the ver-
sions of the events that occurred in the famous Battle 

of Manzikert in 1071, between Byzantines and Seljuk 
Turks, illustrates how false messages about the defeat 
of Emperor Romanus IV Diogenes were spread. It is 
possible that the jealous Byzantine general Androni-
kos Doukas, belonging to the family that had ruled 
Byzantium in the previous generation, took advantage 
of the confusion in the transmission of a message to 
abandon the emperor in battle.

Romanus IV Diogenes gave the signal to bring the 
pursuit against the Turks to a halt,5 fearing an ambush. 
The message was misinterpreted in the rear guard. 
The order to return to the camp was interpreted as a 
withdrawal, and it was deduced that the emperor had 
fallen in his advance against the enemies. Some argue 
that the rumor was actually started by Andronikos 
Doukas, who did not forgive Romanus IV for having 
interrupted the succession of the house of Doukas to 

the throne of Byzantium. The contaminated message 
of the fall of Emperor Romanus IV Diogenes caused 
the abandonment of his people and determined that, 
indeed, he was finally captured by the Seljuk Sultan Alp 
Arslan. Although the defeat of Manzikert, due in part 
to the spread of an adulterated message, is considered 
as one of the greatest disasters in the history of the 
empire, the Byzantines continued to persist.

Seven decades later, the transmission of a cor-
rupted message once again put another emperor in 
trouble. During the maneuvers to recapture Antioch 
for the Byzantine Empire, Emperor John II Komnenos 
was betrayed by two apparent allies: Raymond of 
Antioch and Joscelin II, Count of Edessa. The latter 
sent secret messengers to spread the false message 
to the citizens of Antioch that Emperor John II Kom-
nenos wanted to harm them. The rumor that Antioch 
had been sold to the Byzantine Greeks and that the 
citizens should leave their homes forced one of the 
greatest emperors in the history of Byzantium to leave 
Antioch in 1142.6 However, the empire still had more 
than three centuries to live.

The problem of the Byzantine Generals is still valid 
40 years later, and its name, even if it was adopted to 
avoid potentially more controversial terms, demon-
strates its relevance in the face of the many examples 
that can be extracted from the long history of Byzan-
tium. It would also be interesting to consider some of 
the weak points of Byzantine history to name possible 
security flaws. For example, according to Doukas, a 
contemporary historian of the Fall of Constantinople, 
the door next to the circus, known as the kerkoporta, 
was left ajar, and 50 Janissaries slipped through the 
unattended door.7 The chapter of the forgotten door 
could have been decisive for the final blow to the city 
on 29 May 1453. This is very similar to backdoors that 
are created to gain unauthorized access to computing 
systems today.

However, different from the Byzantine Generals 
problem, the link with the past was not made, thus 
losing the opportunity to use the term “kerkoporta” 
to denote security backdoors, and thus, keeping the 
term for the collective memory of humanity. However, 
there may be some hope as recently “kerkoporta” has 
been used to name a ransomware, so in the long run, 
the term may be adopted, increasing the links between 
the old Byzantine empire and computer security.

AFTER 40 YEARS, SECURITY AND 
DEPENDABILITY HAVE BECOME 
CRITICAL DESIGN REQUIREMENTS, 
AND BFT HAS BEEN USED IN A 
MYRIAD OF SYSTEMS, DOMAINS, AND 
APPLICATIONS.
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After 40 years, security and dependability have 
become critical design requirements, and BFT has 
been used in a myriad of systems, domains, and appli-
cations. In fact, in recent years, new scenarios for 
BFT have emerged. For example, due to storage and 
processing limitations or privacy concerns, machine 
learning is increasingly being implemented in multiple 
nodes. Typically, each node stores or generates a part 
of the dataset, and all nodes cooperate to implement 
training or inference. For example, distributing the 
dataset among several computing nodes in a data 
center can provide large speedups for training, while in 
Internet of Things applications, the nodes commonly 
operate in a decentralized manner with limited capa-
bility to exchange data.8

The use of several nodes creates the need for the 
system to operate reliably when some of the nodes 
fail or are compromised. A good example is federated 
learning, which is emerging as a technology that can 
enable learning from many users or sensors while 
preserving privacy. Basically, training is done locally 
without sharing the data, and the results from many 
devices are aggregated to obtain a model based on 
data from all of them. The implementation of federated 
learning poses challenges to developing efficient algo-
rithms to coordinate training but also to ensure that 
it is robust when some of the devices fail or act mali-
ciously. Therefore, there is a strong need to implement 
BFT at scale in federated learning. Different schemes 
have been proposed; they try, for example, to detect 
the updates from malicious nodes by comparing them 
with those of the rest of the nodes or to reduce their 
impact on the aggregated result.

Distributed nodes or sensors are used not only for 
training but also for inference, and then again, there 
is a need to make sure that the system can withstand 
the failure or misbehavior of some of them. This can 
be achieved by carefully analyzing the information 
coming from each sensor to estimate their reliability 
and use them accordingly for the inference process.9 
Therefore, the trend to use distributed systems to 
implement both training and inference makes BFT a 
key element for future machine learning systems.

Networking is another area in which BFT is 
becoming increasingly important. For example, in 
software-defined networks, controllers are critical, 
and thus, they are typically replicated to tolerate 

failures. As security is also a major issue in networks, 
providing BFT for the control plane when some of 
the controllers may have been compromised is also 
desirable in all cases and needed for networks used 
for critical applications. Several schemes have been 
proposed to reduce the overhead of implementing BFT 
by first identifying the disagreement among a subset 
of controllers and only then activating all the control-
lers needed to implement BFT or to detect malicious 
controllers.10

Similarly, BFT is also fundamental in wireless sen-
sor networks that are by nature decentralized systems 
and for which attackers can use sophisticated mecha-
nisms or direct jamming to disrupt communications. 
The ability to send broadcast messages in real time is 
also critical in some systems, and thus, BFT has to be 
implemented.11 In summary, networks are by nature 
distributed, and thus, they can suffer failures and com-
promised nodes, thus making BFT imperative when 
reliable operation is needed.

Distributed optimization, similarly to distributed 
machine learning, relies on different nodes to optimize 
a function; this can be done locally and independently 
at each node or in a coordinated way.12 In all cases, 
there can again be faulty or malicious nodes, and thus, 
there is a need to implement BFT. New mechanisms to 
support the coordination of multiple agents to perform 
a given computation with BFT are being proposed13 by 
using replication; such a scheme can be used as a gen-
eral solution when the cost introduced by replication 
is acceptable.

The use of quantum technologies has also been 
proposed to reach an agreement between generals.14 
Soon, with computing systems moving toward more 
complex, distributed, and in many cases, decentral-
ized systems, the importance of BFT is poised to keep 
growing. Therefore, these first 40 years seem to be 
only the beginning of a new Byzantine era, but this 
time in computer science rather than as an empire.

Looking forward, we think that using analogies 
when presenting new algorithms and ideas can be 

a powerful tool to catch the attention of the readers, 
enable a formulation of problems and solutions that 
is more general, and link computer science with other 
fields like history. The Byzantine Generals problem is 
an excellent example of how those benefits can be 
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achieved. However, that has not always been the 
case. In fact, Leslie Lamport used another analogy 
to describe a consistency algorithm, relating it to 
an ancient parliament formed by part-time legisla-
tors in the Greek island of Paxos, but in this case, 
it seems that, at least initially, the analogy was not 
well received [see http://lamport.azurewebsites.net 
/pubs/pubs.html#lamport-paxos (123. The Part-Time 
Parliament)]. Therefore, as with any powerful tool, 
analogies should be used with caution. 
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From its beginning in the 1950s, noncomputingaca-
demics were skeptical about computer science
because it seemed strong on technology and

weak on theory. To answer the critics and shore up their
case, computer scientists turned to a rich trove of compu-
tationalmethods from logic andmathematics. Computing
from ancient times focused on methods of manipulating
symbols that could be performed by people untrained in
mathematics. Examples include ancient Babylonian algo-
rithm-like step-by-step rules, Greek mathematical proce-
dures like the Euclidean algorithm or the sieve of
Eratosthenes, and al-Khwarizmi’s algorithmic techniques.
In the twentieth century, the mathematical logicians
Turing, G€odel, Church, Kleene, and Post provided a solid
foundational theory for the new field of computer science,
showingwhatcanandcannotbecomputed.

Much human computation is based on procedures of
many steps,many ofwhichdependon logic: decomposing
a large task into a series of smaller ones, choosing
between alternative tasks based on a condition, and
repeating tasks until some condition was achieved. Popu-
lar history texts in computing cite the development of
logic as ameans for ultimately automating these choices.
Boole’s algebra for logic formulas (1854) gave a notation
for conditions used inmaking the choices, which could be
composed from simple true–false elements connected by
AND, OR, and NOT. Shannon’s insight (1938) made Boole’s
algebra the basis for describing electronic computer cir-
cuits. Frege’s axiomatic predicate logic (1879) presented
formal rules of inference and syntax, which, in the 1950s,
came to be seen as the logical basis for programming lan-
guages. Like many others, Boole and Frege believed that
logicwas the foundation for rational human thought.

Thenotion that logicenabledcomputationopened the
reverse possibility that computation could automate the

logic of mathematical proofs. Beginning around 1900,
prominent mathematicians and logicians sought to char-
acterizetheprocessofproofsopreciselythatanautomatic
procedure could decide whether any given proposition is
provable infirst-order logic. In 1928, the famous mathema-
ticianDavid Hilbert posed this Decision Problem as one of
thefundamentalchallenges inmathematics [5].

To many, the Decision Problem looked eminently
doable: a proof system consisted of given axioms and
rules of inference, and a proof is a well-structured
sequence of statements in which each statement is
either an axiom or is constructed from previous state-
ments by a rule. Hilbert andmany others had believed for
years that an algorithm for the Decision Problem existed,
although they never could find it. Their hopes were per-
manently dashed when, in the 1930s, G€odel, Post, Turing,
and Church proved that this was impossible. Their differ-
ent systemsofmechanizationwere all shown to be equiv-
alent—any computation in one could be simulated in all
the others. The famous Church–Turing thesis stated that
all effective computations could be formalized as Turing
machines. What an irony, that logic-inspired computation
was incapable of answering the Decision Problem’s ques-
tion of whether logical proofs could be automated.

This irony supported the academic case for com-
puter science. Not only did the work of Turing and the
others provide a basic theory of computation, it led to
the surprising conclusion that many important ques-
tions cannot be answered by computational algorithms.
It made the case that a small set of logic principles gov-
erned the thought processes of designing algorithms.

For these reasons, when computing became an
academic discipline in the 1950s, the popular disciplin-
ary narratives of computing prominently featured
mathematics and logic.

COMPUTING AS A BRANCH
OF LOGIC

Many pioneers of the nascent computing field in the
1950s came from mathematics. They took it as a given
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that electronic automatic computers are governed by
logic systems. Engineers agreed: logic was baked into
computer architecture from the beginning. In his 1938
M.Sc. thesis, Claude Shannon showed that the func-
tions of switching circuits, such as those found in tele-
phone exchanges and motor control equipment, could
be described by Boolean algebra. Through a series of
developments into practical applications, Shannon’s
insight permeated the engineering world [1] and was
eventually adopted for computer circuits. Electronic
computer circuits came to be called logic circuits, and
Boole’s algebra of logic became the standard basis for
computing. Logic’s influence on circuit design contin-
ued in the 1950s and 1960s. For instance, an early
design technique using Karnaugh maps (1953) enabled
logic circuit designers to minimize the number of logic
gates needed and avoid race hazards where a change
of state could cause an output to flicker. Logic
also influenced programming practice. The 1966
B€ohm–Jacopini theorem restated the logic basis of pro-
gramming languages: every computation could be con-
structed from simpler computations by joining them in
sequences, if-then clauses, or iteration clauses. The the-
orem was taken as a support for “structured program-
ming”—a programming practice that advocated a
limited set of constructs to build programs.

Similarly, early research programs in artificial intelli-
gence were based on an idea that human intelligence (at
least the rational part) is based on logic. This ideawas cel-
ebrated in the monumental intellectual achievements of
the early 1900s, notably Russell andWhitehead’sPrincipia
Mathematica and Wittgenstein’s Tractatus Logico-Philo-
sophicus. Logic was revered as a pinnacle of human intel-
ligence. Not surprisingly, early AI focused on getting logic
programs to perform intelligent actions. The logic theory
of intelligence received a big boost in 1956, when the
Logic TheoryMachine ofNewell, Simon, and Shawproved
38of thefirst 52 theoremsof thePrincipia. Somesaw that
machine as an improvement to human intelligence—it
produced in a few minutes proofs of several theorems
that brilliant thinkers took years to prove. Logic came to
be seen as a litmus test formachine intelligence.

This idea spawned a branch of AI devoted to logic
programming, from which expert systems emerged in
the early 1980s. The prototypes used new logic lan-
guages LISP and PROLOG. Engineers built special-pur-
pose machines to run programs in these languages very
efficiently. The Japanese Fifth Generation Project
(1980s) was aimed at turbocharging expert systems by
building supercomputers for massive logic operations,
just as a numerical supercomputer could do with mas-
sive arithmetic operations. The United States responded
with its Strategic Computing Initiative, more generally

focused on supercomputers capable of solving “grand
challenge problem” in science.

Logic pervaded other parts of computing as well. In
1970, Codd introduced the logic of relational databases,
which became a major IBM project later in that decade
and spawned a host of database companies. These sys-
tems are often queried and managed with the language
SQL, which consists of logic expressions to select, join,
and project records. Logic made the data management
systems common in business simpler andmore effective.

Inthesametime,therewasanexplosionof insights into
the complexity of computations. It was well known that
someproblemsarehardertosolvethanothers—theiralgo-
rithmstakemore timeandmemory.TheNP-completeness
theorems of Cook (1971) and Levin (1973) to characterize
theseproblemsare deeply rooted in logic.Manyharddeci-
sion problems could be simulated with gigantic logic cir-
cuits; finding the answer amounted to finding an input to
the logicnetworkthatproducesthedesiredyes–nooutput.
This is known in logic as the satisfiability (SAT) problem.
Any fast algorithm for solving the SAT problem would be
convertible to a fast algorithm for any of the numerous
hard problems that could be simulated as a SAT problem.
Ourtheoryofcomplexity restson logic.

CRACKS APPEAR
Yet, logic’s hegemony had already started to show
signs of cracking in the late 1960s. When software engi-
neering was being born to address the software crisis,
several pioneers from the logic-oriented community
proposed that much of the unreliability of software
would be eliminated if the software could be formally
proved to meet its specifications, for then there would
be no doubt that the software was error free once it
was compiled. Formal verification, however, turned out
to be a formidable challenge. It sparked heated
debates that forever shaped the computing field.

It turned out that formal logic proofs could be car-
ried out only for relatively small programs, but large
systems were beyond their reach. Even if the program
source code could be proved correct, there was the
additional difficulty of proving that the compiled
machine code as well as the hardware platform also
met their specifications. In his 1983 Turing Award lec-
ture, Ken Thompson reminded us that bugs were not a
feature of program code alone but of the total soft-
ware-hardware–human system. Logicians and engi-
neers argued endlessly about the practicality of
formal proof. Many engineers were concerned that
recovery from defects and deterioration of hard-
ware—such as a transistor failure or arrival of a signal
corrupted by noise—could not be supported in the
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case, computer scientists turned to a rich trove of compu-
tationalmethods from logic andmathematics. Computing
from ancient times focused on methods of manipulating
symbols that could be performed by people untrained in
mathematics. Examples include ancient Babylonian algo-
rithm-like step-by-step rules, Greek mathematical proce-
dures like the Euclidean algorithm or the sieve of
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In the twentieth century, the mathematical logicians
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foundational theory for the new field of computer science,
showingwhatcanandcannotbecomputed.

Much human computation is based on procedures of
many steps,many ofwhichdependon logic: decomposing
a large task into a series of smaller ones, choosing
between alternative tasks based on a condition, and
repeating tasks until some condition was achieved. Popu-
lar history texts in computing cite the development of
logic as ameans for ultimately automating these choices.
Boole’s algebra for logic formulas (1854) gave a notation
for conditions used inmaking the choices, which could be
composed from simple true–false elements connected by
AND, OR, and NOT. Shannon’s insight (1938) made Boole’s
algebra the basis for describing electronic computer cir-
cuits. Frege’s axiomatic predicate logic (1879) presented
formal rules of inference and syntax, which, in the 1950s,
came to be seen as the logical basis for programming lan-
guages. Like many others, Boole and Frege believed that
logicwas the foundation for rational human thought.

Thenotion that logicenabledcomputationopened the
reverse possibility that computation could automate the

logic of mathematical proofs. Beginning around 1900,
prominent mathematicians and logicians sought to char-
acterizetheprocessofproofsopreciselythatanautomatic
procedure could decide whether any given proposition is
provable infirst-order logic. In 1928, the famous mathema-
ticianDavid Hilbert posed this Decision Problem as one of
thefundamentalchallenges inmathematics [5].

To many, the Decision Problem looked eminently
doable: a proof system consisted of given axioms and
rules of inference, and a proof is a well-structured
sequence of statements in which each statement is
either an axiom or is constructed from previous state-
ments by a rule. Hilbert andmany others had believed for
years that an algorithm for the Decision Problem existed,
although they never could find it. Their hopes were per-
manently dashed when, in the 1930s, G€odel, Post, Turing,
and Church proved that this was impossible. Their differ-
ent systemsofmechanizationwere all shown to be equiv-
alent—any computation in one could be simulated in all
the others. The famous Church–Turing thesis stated that
all effective computations could be formalized as Turing
machines. What an irony, that logic-inspired computation
was incapable of answering the Decision Problem’s ques-
tion of whether logical proofs could be automated.

This irony supported the academic case for com-
puter science. Not only did the work of Turing and the
others provide a basic theory of computation, it led to
the surprising conclusion that many important ques-
tions cannot be answered by computational algorithms.
It made the case that a small set of logic principles gov-
erned the thought processes of designing algorithms.

For these reasons, when computing became an
academic discipline in the 1950s, the popular disciplin-
ary narratives of computing prominently featured
mathematics and logic.

COMPUTING AS A BRANCH
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logic formalisms. The prospects for full and complete
verification started to look very gloomy when many
agreed that developing complete specifications repre-
senting the true intentions of the human stakeholders
and users of systems could not be formalized—and
therefore not amenable to the tools of standard logic.

Other anomalies about the completeness of logic as
the basis of computing appeared. In themid-1960s, Lotfi
Zadeh argued that engineers are frequently faced with
ambiguous situations where a condition can be partially
true and partially false at the same time. He proposed
“fuzzy logic” as an extension of Boolean logic that allows
truth values to be represented by numbers between 0
and 1. Fuzzy logic proved useful in many physical devi-
ces, but did not gain much foothold in the AI and logic
community. Still another anomaly in the field of AI was
foundwith expert systems, which were expected to per-
form as a human expert by acquiring enough deductive
rules and facts. Dreyfus (1972) challenged this idea on
the grounds that much expert behavior does not follow
known rules; expert systems might become competent,
he argued, but not expert [4]. Many other anomalies
between the expectations of what AI could achieve and
what AI actually achieved arose from the presumption
that intelligence is founded in formal logic.

In 2013, Moshe Vardi lamented about the accumu-
lation of gloomy conclusions about logic two decades
before. He recalled how he and his colleagues experi-
enced a feeling that large-scale program verification
may indeed be hopeless: “First-order logic is undecid-
able, the decidable fragments are either too weak or
too intractable, even Boolean logic is intractable [6].”
Moreover, as computers invaded many new areas
such as entertainment, cyber-physical control sys-
tems, office tools, art, transportation, medicine, and
more, skillful development relied progressively less on
logic and more on design acumen, human communi-
cation, aesthetics, social savvy, and other nonformal
skills. Continuing progress in important technologies
such relational databases, Boolean reasoning, and
model checking did not stave off the growing feeling
that computing could not be reducible to logic.

NO COMPUTING WITHOUT
ENGINEERING

Over the 1980s, there was a growing consensus that the
logic view does not cover many engineering, science,
and technology aspects of computing. We were being
pulled back to the historic notion that the roots of com-
puter science are a complex mixture combining mathe-
matics, science, and engineering. Logic did not cover
everything in computing. The 1989 Computing as a

Discipline report crystallized this growing feeling among
people in the computing field [3]. Herewith a few
examples.

Start with logic circuits. The logic formulas describ-
ing circuits assume that the signals are 0 and 1. But
these are abstractions. The 0 and 1 represent states of
the circuits, such as voltage low or high. Because a
physical circuit can be in transient states that are nei-
ther 0 nor 1, the logic of the abstraction is unable to
deal with some physical behaviors. The “half signal
problem” asks what happens when one part of a cir-
cuit tries to read another part that has not settled into
a definite 0 or 1 state. The “arbitration problem” asks
what happens if a logic signal and clock signal arrive
at the input of a flip-flop circuit at the same time. This
condition can trigger the flip-flop into a metastable
state that is neither 0 nor 1 and can crash the CPU
when it persists for many clock ticks. These problems
have physical solutions that cannot be derived in
logic. Physical circuits display important stochastic
behaviors that cannot be addressed by logic alone.

Next, consider the architecture of computers. In
1945, John von Neumann published the ideas of a
team of pioneers from the early computing projects
who defined a better architecture that would be more
reliable and faster than their previous machines. What
emerged is now known as the von Neumann architec-
ture. It separated the computer into CPU, memory,
and input–output, and defined the CPU cycle that
fetches and executes programs stored as instructions
in the main memory. While this architecture has often
been held as an example of logical and analytic think-
ing in computing, it was actually the product of engi-
neering improvements for efficiency and reliability [2].

One of the innovations of that architecture was to
fetch instructions from main memory rather than
paper tapes or cards. This engineering innovation
greatly speeded up program execution. However, folk-
lore developed that the stored program idea was the
implementation of Turing’s universal machine. This is
not so. Historians find evidence to the contrary that
the architecture was not influenced by Turing’s model,
nor did Turing have in mind an architecture of the
same type. Other folklore held that the new architec-
ture would be easier to build than its predecessors. In
some ways, it surely was, but at the same time it also
created new challenges. For instance, Maurice Wilkes,
who led the EDSAC project at the University of
Cambridge, said that one of the many engineering
challenges was finding a technology that could sup-
port a main memory large enough to hold all the
instructions of the program. Wilkes found that a mer-
cury delay line did the job better than other available
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verification started to look very gloomy when many
agreed that developing complete specifications repre-
senting the true intentions of the human stakeholders
and users of systems could not be formalized—and
therefore not amenable to the tools of standard logic.

Other anomalies about the completeness of logic as
the basis of computing appeared. In themid-1960s, Lotfi
Zadeh argued that engineers are frequently faced with
ambiguous situations where a condition can be partially
true and partially false at the same time. He proposed
“fuzzy logic” as an extension of Boolean logic that allows
truth values to be represented by numbers between 0
and 1. Fuzzy logic proved useful in many physical devi-
ces, but did not gain much foothold in the AI and logic
community. Still another anomaly in the field of AI was
foundwith expert systems, which were expected to per-
form as a human expert by acquiring enough deductive
rules and facts. Dreyfus (1972) challenged this idea on
the grounds that much expert behavior does not follow
known rules; expert systems might become competent,
he argued, but not expert [4]. Many other anomalies
between the expectations of what AI could achieve and
what AI actually achieved arose from the presumption
that intelligence is founded in formal logic.

In 2013, Moshe Vardi lamented about the accumu-
lation of gloomy conclusions about logic two decades
before. He recalled how he and his colleagues experi-
enced a feeling that large-scale program verification
may indeed be hopeless: “First-order logic is undecid-
able, the decidable fragments are either too weak or
too intractable, even Boolean logic is intractable [6].”
Moreover, as computers invaded many new areas
such as entertainment, cyber-physical control sys-
tems, office tools, art, transportation, medicine, and
more, skillful development relied progressively less on
logic and more on design acumen, human communi-
cation, aesthetics, social savvy, and other nonformal
skills. Continuing progress in important technologies
such relational databases, Boolean reasoning, and
model checking did not stave off the growing feeling
that computing could not be reducible to logic.

NO COMPUTING WITHOUT
ENGINEERING

Over the 1980s, there was a growing consensus that the
logic view does not cover many engineering, science,
and technology aspects of computing. We were being
pulled back to the historic notion that the roots of com-
puter science are a complex mixture combining mathe-
matics, science, and engineering. Logic did not cover
everything in computing. The 1989 Computing as a

Discipline report crystallized this growing feeling among
people in the computing field [3]. Herewith a few
examples.

Start with logic circuits. The logic formulas describ-
ing circuits assume that the signals are 0 and 1. But
these are abstractions. The 0 and 1 represent states of
the circuits, such as voltage low or high. Because a
physical circuit can be in transient states that are nei-
ther 0 nor 1, the logic of the abstraction is unable to
deal with some physical behaviors. The “half signal
problem” asks what happens when one part of a cir-
cuit tries to read another part that has not settled into
a definite 0 or 1 state. The “arbitration problem” asks
what happens if a logic signal and clock signal arrive
at the input of a flip-flop circuit at the same time. This
condition can trigger the flip-flop into a metastable
state that is neither 0 nor 1 and can crash the CPU
when it persists for many clock ticks. These problems
have physical solutions that cannot be derived in
logic. Physical circuits display important stochastic
behaviors that cannot be addressed by logic alone.

Next, consider the architecture of computers. In
1945, John von Neumann published the ideas of a
team of pioneers from the early computing projects
who defined a better architecture that would be more
reliable and faster than their previous machines. What
emerged is now known as the von Neumann architec-
ture. It separated the computer into CPU, memory,
and input–output, and defined the CPU cycle that
fetches and executes programs stored as instructions
in the main memory. While this architecture has often
been held as an example of logical and analytic think-
ing in computing, it was actually the product of engi-
neering improvements for efficiency and reliability [2].

One of the innovations of that architecture was to
fetch instructions from main memory rather than
paper tapes or cards. This engineering innovation
greatly speeded up program execution. However, folk-
lore developed that the stored program idea was the
implementation of Turing’s universal machine. This is
not so. Historians find evidence to the contrary that
the architecture was not influenced by Turing’s model,
nor did Turing have in mind an architecture of the
same type. Other folklore held that the new architec-
ture would be easier to build than its predecessors. In
some ways, it surely was, but at the same time it also
created new challenges. For instance, Maurice Wilkes,
who led the EDSAC project at the University of
Cambridge, said that one of the many engineering
challenges was finding a technology that could sup-
port a main memory large enough to hold all the
instructions of the program. Wilkes found that a mer-
cury delay line did the job better than other available
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technologies. With this and other engineering innova-
tions, he got the EDSAC machine working a year ear-
lier than its U.S. version (EDVAC). Wilkes steadfastly
maintained that there are important aspects of com-
puting that logic cannot address.

Next, consider large multiuser networked systems.
The Multics project at MIT (1965) dreamt of a “com-
puter utility” that would dispense cheap computing
power over a network to the masses. No one knew how
to organize large operating systems that would coordi-
nate hundreds of users. The logic-inspired view at the
time was to carefully construct the operating system
as a set of modules that interacted by well-defined
interfaces. But these systems had great difficulties
with coordination and were prone to many errors and
crashes. Operating systems designers at MIT, IBM, and
elsewhere invented a new idea, the process, as the
basic entity demanding service from the system, and
they organized the system as a “society of cooperating
processes.” This led rapidly to successful operating sys-
tems and a new theory of concurrent process coordina-
tion. Although logic helped to make coordination
theories more precise, neither the gestation of the pro-
cess idea nor its development was in logic—the pro-
cess arose in the pragmatics of coordinating activities
in an operating system. Over the years, the engineering
understanding of these systems led to very small oper-
ating system kernels that could be formally verified by
the methods pioneered in the 1970s. Today the sel4
secure operating system kernel illustrates how an engi-
neered system can progress to the point of being a
commercially viable, fully verified kernel.

Computational science, which grew up in the
1980s, is based on the idea that many physical pro-
cesses can be viewed as information processes that
can be simulated on a computer. Formal logic does
not capture the simulation and modeling prevalent in
computational science.

Finally, consider the performance of computer sys-
tems. As users, we want computers to get our jobs
done as fast as possible within the constraints of pro-
cessors and memory. Complexity theory gave order-of-
magnitude estimates of running times of algorithms on
a single CPU. But it was not able to predict the response
time when multiple jobs were competing for the CPU.
The solution to this was again found by engineers who
recognized that queueing theory could answer the
question. Computer scientists plunged into the perfor-
mance analysis and prediction problem and discovered
very fast algorithms to compute throughput and
response times for operating systems (and the Inter-
net) built as networks of servers. This led eventually to

a thriving performance-evaluation industry. But queue-
ing theory is not a product of logic, and performance
evaluation is an empirical, not logical, matter.

In all these systems, engineering was oriented
toward finding what works and what does not work.
This is often accomplished with lots of trial and error,
tinkering, and experimenting. There is often no theory
or science available to understand what is going on;
understanding is developed by trying things out. For
instance, designers of early time-sharing systems
found no theory that could predict their response
time. Once time-sharing systems started to show
promise, a rich body of theory emerged to accurately
predict response time, guide the design of systems,
and evaluate their performance.

The modern computational thinking movement for
K-12 education has embraced the idea that computa-
tional thinking is founded on logical thinking. The
movement has defined curricula that teach comput-
ing principles using generic logic puzzles and games.
This has been controversial because generic logic
does not demonstrate the unique aspects of comput-
ing and because it omits study of engineering and
design in computing systems.

In truth, computer science is built on a complex
framework of understandings from logic, mathemat-
ics, science, and engineering. Combined together,
these different modes of thinking produced the amaz-
ing progress we have seen in computing. Computing
is bigger than logic, and logic is less foundational than
many people believe: designing, building, experiment-
ing, and are at least equally foundational for the field.
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