DATA

RNING

OR

=

a

Ricard Gavald
Geoffrey Holmes

Albert Bifet

STREAMS

with Practical

Bernhard Pfahringer

Examples in MOA

MACHINE LEARNING FOR DATA STREAMS
with Practical Examples in MOA

Adaptive Computation and Machine Learning
Francis Bach, Editor

Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns,
Associate Editors

A complete list of books published in The Adaptive Computation and Machine
Learning series appears at the back of this book.

MACHINE LEARNING FOR DATA STREAMS
with Practical Examples in MOA

Albert Bifet

Ricard Gavalda
Geoff Holmes
Bernhard Pfahringer

The MIT Press
Cambridge, Massachusetts
London, England

(© 2017 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval) with-
out permission in writing from the publisher.

This book was set in Times Roman and Mathtime Pro 2 by the authors.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data is available

ISBN: 978-0-262-03779-2

109876543 21

Contents

List of Figures
List of Tables
Preface
I INTRODUCTION
1 Introduction
1.1 BigData
1.1.1 Tools: Open-Source Revolution
1.1.2 Challenges in Big Data
1.2 Real-Time Analytics
1.2.1 Data Streams
1.2.2 Time and Memory
1.2.3 Applications
1.3 What This Book Is About
2 Big Data Stream Mining
2.1 Algorithms
2.2 Classification
2.2.1 Classifier Evaluation in Data Streams
2.2.2 Majority Class Classifier
2.2.3 No-Change Classifier
2.2.4 Lazy Classifier
2.2.5 Naive Bayes
2.2.6 Decision Trees
2.27 Ensembles
2.3 Regression
2.4 Clustering
2.5 Frequent Pattern Mining
3 Hands-on Introduction to MOA
3.1 Getting Started
3.2 The Graphical User Interface for Classification
3.2.1 Dirift Stream Generators
3.3 Using the Command Line

xiii
XVii

XiX

O 0 00 00O ON L W W

—
)

g GV O GO GG S G GG GO Sy
(o I B B =)N Y R R U R S O R

[\SJNN ST (SR ST)
O N W = =

vi

II

Contents

STREAM MINING

Streams and Sketches

4.1
4.2
4.3
4.4
4.5

4.6

4.7
4.8
4.9

Setting: Approximation Algorithms

Concentration Inequalities

Sampling

Counting Total Items

Counting Distinct Elements

4.5.1 Linear Counting

4.5.2 Cohen’s Logarithmic Counter

4.5.3 The Flajolet-Martin Counter and HyperLogLog

4.5.4 An Application: Computing Distance Functions in Graphs

4.5.5 Discussion: Log vs. Linear

Frequency Problems

4.6.1 The SPACESAVING Sketch

4.6.2 The CM-Sketch Algorithm

4.6.3 CountSketch

4.6.4 Moment Computation

Exponential Histograms for Sliding Windows
Distributed Sketching: Mergeability

Some Technical Discussions and Additional Material
4.9.1 Hash Functions

4.9.2 Creating (¢,d)-Approximation Algorithms
4.9.3 Other Sketching Techniques

4.10 Exercises

Dealing with Change

5.1 Notion of Change in Streams

5.2 Estimators
5.2.1 Sliding Windows and Linear Estimators
5.2.2 Exponentially Weighted Moving Average
5.2.3 Unidimensional Kalman Filter

5.3 Change Detection

5.3.1 Evaluating Change Detection
5.3.2 The CUSUM and Page-Hinkley Tests

33

35
35
37
39
41
42
43
44
45

48
48
49
51
54
56
57
60
61
61
62
63
63

67
67
72
73
73
74
75
75
75

Contents

54
5.5

5.3.3 Statistical Tests

5.3.4 Dirift Detection Method

5.3.5 ADWIN

Combination with Other Sketches and Multidimensional Data
Exercises

Classification

6.1

6.2

6.3

6.4

6.5
6.6
6.7

Classifier Evaluation

6.1.1 Error Estimation

6.1.2 Distributed Evaluation

6.1.3 Performance Evaluation Measures
6.1.4 Statistical Significance

6.1.5 A Cost Measure for the Mining Process
Baseline Classifiers

6.2.1 Majority Class

6.2.2 No-change Classifier

6.2.3 Naive Bayes

6.2.4 Multinomial Naive Bayes
Decision Trees

6.3.1 Estimating Split Criteria

6.3.2 The Hoeffding Tree

6.3.3 CVFDT

6.3.4 VFDTc and UFFT

6.3.5 Hoeffding Adaptive Tree
Handling Numeric Attributes

6.4.1 VFML

6.4.2 Exhaustive Binary Tree

6.4.3 Greenwald and Khanna’s Quantile Summaries
6.4.4 Gaussian Approximation
Perceptron

Lazy Learning

Multi-label Classification

6.7.1 Multi-label Hoeffding Trees

vii

76
78
79
81
81

85
86
87
88
90
92
93
94
94
94
95
98
99
101
102
105
107
108
109
110
110
111
111
113
114
115
116

viii

Contents

6.8 Active Learning
6.8.1 Random Strategy
6.8.2 Fixed Uncertainty Strategy
6.8.3 Variable Uncertainty Strategy
6.8.4 Uncertainty Strategy with Randomization

6.9 Concept Evolution

6.10 Lab Session with MOA

Ensemble Methods

7.1 Accuracy-Weighted Ensembles

7.2 Weighted Majority

7.3 Stacking

7.4 Bagging
7.4.1 Online Bagging Algorithm
7.4.2 Bagging with a Change Detector
7.4.3 Leveraging Bagging

7.5 Boosting

7.6 Ensembles of Hoeffding Trees
7.6.1 Hoeftding Option Trees
7.6.2 Random Forests
7.6.3 Perceptron Stacking of Restricted Hoeffding Trees
7.6.4 Adaptive-Size Hoeffding Trees

7.7 Recurrent Concepts

7.8 Lab Session with MOA

Regression

8.1 Introduction

8.2 Evaluation

8.3 Perceptron Learning

8.4 Lazy Learning

8.5 Decision Tree Learning

8.6 Decision Rules

8.7 Regression in MOA

117
119
119
119
121
121
122

129
129
130
132
133
133
133
134
135
136
136
136
137
138
139
139

143
143
144
145
145
146
146
148

10

111

11

Contents

Clustering

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Evaluation Measures

The k-means Algorithm

BIRCH, BICO, and CLUSTREAM

Density-Based Methods: DBSCAN and Den-Stream
CLUSTREE

StreamKM-++: Coresets

Additional Material

Lab Session with MOA

Frequent Pattern Mining

10.1

10.2

10.3

10.4

10.5
10.6

An Introduction to Pattern Mining

10.1.1 Patterns: Definitions and Examples
10.1.2 Batch Algorithms for Frequent Pattern Mining
10.1.3 Closed and Maximal Patterns

Frequent Pattern Mining in Streams: Approaches
10.2.1 Coresets of Closed Patterns

Frequent Itemset Mining on Streams

10.3.1 Reduction to Heavy Hitters

10.3.2 Moment

10.3.3 FP-STREAM

10.3.4 IncMine

Frequent Subgraph Mining on Streams

10.4.1 WINGRAPHMINER

10.4.2 ADAGRAPHMINER

Additional Material

Exercises

THE MOA SOFTWARE

Introduction to MOA and Its Ecosystem

11.1
11.2
11.3
11.4

MOA Architecture

Installation

Recent Developments in MOA
Extensions to MOA

ix

149
150
151
152
154
156
158
159
160

165
165
165
168
169
170
172
174
174
174
175
176
178
179
179
181
182

185

187
188
188
188
189

12

13

14

Contents

11.5 ADAMS

11.6 MEKA

11.7 OpenML

11.8 StreamDM

11.9 Streams

11.10 Apache SAMOA

The Graphical User Interface

12.1 Getting Started with the GUI

12.2 Classification and Regression
12.2.1 Tasks
12.2.2 Data Feeds and Data Generators
12.2.3 Bayesian Classifiers
12.2.4 Decision Trees
12.2.5 Meta Classifiers (Ensembles)
12.2.6 Function Classifiers
12.2.7 Dirift Classifiers
12.2.8 Active Learning Classifiers

12.3 Clustering
12.3.1 Data Feeds and Data Generators
12.3.2 Stream Clustering Algorithms
12.3.3 Visualization and Analysis

Using the Command Line

13.1 Learning Task for Classification and Regression
13.2 Evaluation Tasks for Classification and Regression
13.3 Learning and Evaluation Tasks for Classification and Regression

13.4 Comparing Two Classifiers

Using the API

14.1 MOA Objects

14.2 Options

14.3 Prequential Evaluation Example

190
193
194
195
196
196

201
201
201
203
204
208
208
209
210
210
211
211
212
212
212

217
217
217
218
219

221
221
221
224

Contents

15 Developing New Methods in MOA

15.1 Main Classes in MOA

15.2 Creating a New Classifier

15.3 Compiling a Classifier

15.4 Good Programming Practices in MOA
Bibliography
Index

Xi

227
227
228
237
237

239
257

List of Figures

3.1
3.2
33

34

3.5
3.6

3.7

4.1
4.2
4.3
44
4.5
4.6
4.7

4.8
4.9
4.10

4.11

5.1
5.2

53

MOA graphical user interface.
MOA GUI running two different tasks.

Exercise 3.1, comparing the Naive Bayes Classifier and the Hoeffding
tree.

Exercise 3.2, comparing three different evaluation methods on the same
classifier.

A sigmoid function f(t) = 1/(1 + e~4(t=P)/w),

Exercise 3.3, comparing the Hoeffding tree and Naive Bayes classifiers
on a nonstationary stream.

Exercise 3.4, comparing three different classifiers.

The RESERVOIR SAMPLING sketch.

Morris’s approximate counting algorithm.

The LINEAR COUNTING sketch.

Cohen’s counting algorithm.

The basic Flajolet-Martin probabilistic counter.
The SPACESAVING sketch.

Example CM-sketch structure of width 7 and depth 4, corresponding to
e =0.4and § = 0.02.

The CM-SKETCH algorithm.
The COUNTSKETCH algorithm.

Partitioning a stream of 29 bits into buckets, with £ = 2. Most recent bits
are to the right.

The EXPONENTIAL HISTOGRAMS sketch.

Managing change with adaptive estimators. Figure based on [30].

Managing change with explicit change detectors for model revision. Fig-
ure based on [30]

Managing change with model ensembles.

Xiv

List of Figures

6.1

6.2

6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2

9.1
9.2
9.3
9.4

10.1
10.2

10.3
10.4
10.5

11.1
11.2
11.3
11.4
11.5

Evaluation on a stream of 1,000,000 instances, comparing holdout, inter-
leaved test-then-train, and prequential with sliding window evaluation
methods.

A dataset describing email features for deciding whether the email is
spam, and a decision tree for it.

The Hoeffding Tree algorithm.

The CVFDT algorithm.

Gaussian approximation of two classes. Figure based on [199].
Active learning framework.

Variable uncertainty strategy, with a dynamic threshold.

MOA graphical user interface.

The Weighted Majority algorithm.

Online Bagging for M models. The indicator function I(condition)
returns 1 if the condition is true, and 0 otherwise.

The k-means clustering algorithm, or Lloyd’s algorithm.
The DEN-STREAM algorithm.

The MOA Clustering GUI tab.

Evolving clusters in the GUI Clustering tab.

Example of an itemset dataset.

Frequent, closed, and maximal itemsets with minimum absolute support
3, or relative support 0.5, for the dataset in figure 10.1.

A general stream pattern miner with batch updates and sliding window.
The WINGRAPHMINER algorithm and procedure CORESET.

The ADAGRAPHMINER algorithm.

The ADAMS flow editor.

The ADAMS flow example.

The MEKA GUL

Integration of OpenML with MOA.

Parallelism hint in SAMOA.

List of Figures XV

12.1 The MOA Graphical User Interface.
12.2 Options to set up a task in MOA.

12.3 Option dialog for the RBF data generator. By storing and loading set-
tings, streaming datasets can be shared for benchmarking, repeatability
and comparison.

12.4 Visualization tab of the MOA clustering GUL

13.1 Rendering of learning curves of two classifiers using gnuplot.

List of Tables

1.1 Memory units in multiples of bytes.

6.1 Simple confusion matrix example.
6.2 Confusion matrix of table 6.1, modified.

6.3 Summary of budget allocation strategies.

Preface

Streaming data analysis in real time is becoming the standard to obtain use-
ful knowledge from what is happening right now, allowing organizations to
react quickly when problems appear, or to detect new trends, helping them
to improve their performance. This book presents many of the algorithms and
techniques that are currently used in the field of data stream mining. A software
framework that implements many of the techniques explained in this book is
available from the Web as the open-source project called MOA.

The goal of this book is to present the techniques in data stream mining to
three specific groups of readers:

1. Readers who want to use stream mining as a tool, who do not have a strong
background in algorithmics or programming, but do have a basic back-
ground in data mining. An example would be students or professionals in
fields such as management, business intelligence, or marketing. We pro-
vide a hands-on introduction to MOA, in a task-oriented (not algorithm-
oriented) way.

2. Readers who want to do research or innovation in data stream mining. They
would like to know details of the algorithms, evaluation methods, and so
on, in order to create new algorithms or use existing ones, evaluate their
performance, and possibly include them in their applications. This group
comprises advanced undergraduate, master’s, and PhD students in comput-
ing or data science, as well as developers in innovative environments.

3. Readers who, in addition to the above, want to try including new algorithms
in MOA, possibly contributing them to the project. They need to know the
class structure of MOA and how to create, for instance, new learners for
MOA.

To achieve this goal, the book is divided in three parts. Part I is a quick intro-
duction to big data stream mining. It is structured in three chapters: two that
introduce big data mining and basic methodologies for mining data streams,
and a hands-on chapter on using MOA for readers who prefer to get started
and explore on their own.

For a longer course on data stream mining, part II of the book presents a
detailed explanation of the problems in data stream mining and the most impor-
tant algorithms. Since this is a vast area, some priority has been given to the
methods that have been implemented in MOA. It starts with a chapter covering
sketching techniques, which in our opinion deserve to be better known (and

XX

Preface

used) by the stream mining community. Most of the chapters contain a set of
exercises or an MOA-based lab session, or both.

Finally, part III is devoted to the MOA software. It covers its use via the
graphical user interface and via the command line, and moves to using MOA
via its API, and implementing new methods within MOA.

Readers of type 1 should read part I, possibly chapter 11 for a broad view
of MOA’s ecosystem, and then chapter 12 for other options available from the
MOA GUL

Readers of type 2 should read part I, at least sections 4.1 to 4.3 (and more
of chapter 4 if they are interested in sketches), chapter 5, and chapter 6. After
that, they can read chapters 7 to 10 pretty much independently according to
their interests. Then they should continue to chapters 11 to 14 if they plan to
call MOA from their applications.

Readers of type 3 should in addition read Chapter 15.

The accompanying website
https://mitpress.mit.edu/books/data-stream-mining
will contain updates and corrections to the book, slides, additional sets of exer-
cises and lab sessions, and other course material. Contributions by readers are

welcome.

Several books on data stream mining have emerged over the last decade.
The books edited by Garofalakis, Gehrke, and Rastogi on data stream manage-
ment [118], and by Aggarwal on data streams [4], cover some common topics
with the material presented here, but the perspective of these books is more
from the very-large-database community rather than from the data mining or
machine learning communities.

The latter perspective is very much present in the book by Gama [110],
who covers a similar territory but does not include a common framework for
development and evaluation as provided by MOA. Rather, the book presents
pseudo-code of algorithms, some of which are implemented in MOA and some
not. As such, it is a very useful companion to this book.

To keep up with this rapidly developing field, we recommend regular read-
ing of the proceedings of the following conferences: Knowledge Discovery in
Databases (KDD), International Conference on Data Mining 1ICDM), Sympo-
sium on Applied Computing (SAC) — has a track on data streams, European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), SIAM Conference on Data Mining
(SDM), and Data Science and Advanced Analytics (DSAA).

https://mitpress.mit.edu/books/data-stream-mining

Preface Xxi

To date, there is no dedicated journal on data stream mining, so articles
appear on the topic across a number of journals too numerous to list.

Acknowledgments. We would like to thank the following groups of people,
who have contributed to this book and the software behind it. It is not pos-
sible to mention all by name, either because the names are unknown to us
(e.g., the reviewers) or because the list is long and we may inadvertently miss
someone (e.g., our coauthors or the many students and other people who have
contributed to MOA by asking questions, pointing out bugs, and so forth, on
the mailing list, or those who have directly contributed code).

We would like to thank the people at MIT Press, and in particular Marie
Lufkin Lee, Christine Bridget Savage, and Kathleen Hensley, for their assis-
tance.

It is worth acknowledging that the inspiration for this project and book came
from the groundbreaking work of the WEKA project.

For those authors working in the area of stream mining, we would like to
apologize in advance if your work is not mentioned in the book. Such a state
of affairs will have arisen because of space limitations, ignorance, or the wrong
choice on our part.

Work by Ricard Gavalda has been partially supported by the MACDA
project of Generalitat de Catalunya (SGR2014-0890) and by the APCOM
project of MINECO (TIN2014-57226).

I INTRODUCTION

1 Introduction

Nowadays, we are creating a huge amount of data every day from all kinds of
devices, in different formats, from independent or connected applications. This
flood of big data has outpaced our capability to process, analyze, store, and
understand these datasets. This rapid expansion is accelerated by the dramatic
increase in acceptance of social networking applications, which allow users to
create content freely and increase the already huge size of the Web.

Furthermore, with mobile phones becoming the sensory gateway to get real-
time data on people from different aspects, the vast amount of data that mobile
carriers can potentially process to improve our daily life has significantly out-
paced our past call data record-based processing, which was designed only
for billing purposes. We can foresee that Internet of Things applications will
raise the scale of data to an unprecedented level. People and devices (from
home coffee machines to cars, to buses, railway stations, and airports) are
all loosely connected. Trillions of such connected components will generate
a huge data ocean, and valuable information must be discovered from the data
to help improve our quality of life and make our world a better place. For
example, after we get up every morning, in order to optimize our commute
time to work and complete the optimization before we arrive at the office, the
system needs to process information from traffic, weather, construction, police
activities, and our calendar schedules, and perform deep optimization under
tight time constraints.

To deal with this staggeringly large quantity of data, we need fast and effi-
cient methods that operate in real time using a reasonable amount of resources.

1.1 Big Data

It is not really useful to define big data in terms of a specific dataset size,
for example, on the order of petabytes. A more useful definition is that the
dataset is too large to be managed without using nonstandard algorithms or
technologies, particularly if it is to be used for extracting knowledge.

While twenty years ago people were struggling with gigabytes, at the time
of writing this book the corresponding memory unit in table 1.1 is between the
terabyte and the petabyte. There is no question that in a further twenty years,
we will be a few lines down from this point.

Big data was characterized by Laney in [154] by the three Vs of big data
management:

Chapter 1

Table 1.1

Memory units in multiples of bytes.

Memory unit Decimal Size Binary size
kilobyte (kB, KB) 10 210
megabyte (MB) 108 220
gigabyte (GB) 10° 230
terabyte (TB) 1012 240
petabyte (PB) 101® 250
exabyte (EB) 1018 260
zettabyte (ZB) 102! 270
yottabyte (YB) 10%4 280

e Volume: There is more data than ever before, and its size continues to
increase, but not the percentage of data that our tools can process.

e Variety: There are many different types of data, such as text, sensor data,
audio, video, graph, and more, from which we would like to extract infor-
mation.

e Velocity: Data is arriving continuously in streams, and we are interested in
obtaining useful information from it in real time.

Other Vs have been added since then:

e Variability: The structure of the data, or the way users want to interpret the
data, changes over time.

e Value: Data is valuable only to the extent that it leads to better decisions,
and eventually to a competitive advantage.

e Validity and Veracity: Some of the data may not be completely reliable, and
it is important to manage this uncertainty.

Gartner [200] summarizes this in his definition of big data in 2012 as “high
volume, velocity and variety information assets that demand cost-effective,
innovative forms of information processing for enhanced insight and decision
making.”

Applications of big data should allow people to have better services and
better customer experiences, and also be healthier:

Introduction 5

e Business: Customer personalization and churn detection (customers moving
from one company to a rival one).

e Technology: Reducing processing time from hours to seconds.

e Health: Mining people’s medical records and genomics data, to monitor and
improve their health.

e Smart cities: Cities focused on sustainable economic development and high
quality of life, with wise management of natural resources.

As an example of the usefulness of big data mining, we refer to the work by
Global Pulse [236], which uses big data to improve life in developing coun-
tries. Global Pulse is a United Nations initiative, functioning as an innovative
lab, whose strategy is to mine big data for:

1. Researching innovative methods and techniques for analyzing real-time
digital data to detect early emerging vulnerabilities.

2. Assembling a free and open-source technology toolkit for analyzing real-
time data and sharing hypotheses.

3. Establishing an integrated, global network of Pulse Labs, to pilot the
approach at the country level.

The big data mining revolution is not restricted to the industrialized world,
as mobile devices are spreading in developing countries as well. It is estimated
that there are over five billion mobile phones, and that 80% are located in
developing countries.

1.1.1 Tools: Open-Source Revolution

The big data phenomenon is intrinsically related to the open-source software
revolution. Large companies such as Yahoo!, Twitter, LinkedIn, Google, and
Facebook both benefitted from and contributed to open-source projects. Some
examples are:

e Apache Hadoop [16], a platform for data-intensive distributed applications,
based on the MapReduce programming model and the Hadoop Distributed
File system (HDFS). Hadoop allows us to write applications that quickly
process large amounts of data in parallel on clusters of computing nodes.

e Projects related to Apache Hadoop [260]: Apache Pig, Apache Hive, Apache
HBase, Apache ZooKeeper, Apache Cassandra, Cascading, Scribe, and

6 Chapter 1

Apache Mahout [17], which is a scalable machine learning and data mining
open-source software based mainly on Hadoop.

o Apache Spark [253], a data processing engine for large-scale data, running
on the Hadoop infrastructure. Spark powers a stack of libraries including
SQL and DataFrames, MLIib for machine learning, GraphX, and Spark
Streaming. These libraries can be combined easily in the same application.

e Apache Flink [62], a streaming dataflow engine that provides data distribu-
tion, communication, and fault tolerance for distributed computations over
data streams. Flink includes several APIs for creating applications that use
the Flink engine. If Apache Spark is a batch data processing engine that
can emulate streaming data processing with Spark Streaming using micro-
batches of data, Apache Flink is a streaming data processing engine that can
perform batch data processing.

e Apache Storm [168], software for streaming data-intensive distributed appli-
cations, similar to Apache S4 and Apache Samza.

e TensorFlow [1], an open-source package for machine learning and deep neu-
ral networks.

1.1.2 Challenges in Big Data

There are many challenges for the future in big data management and analytics,
arising from the very nature of data: large, diverse, and evolving [128]. Some
of the challenges that researchers and practitioners will have to deal with in the
years to come are:

e Analytics architecture. It is not clear yet how an optimal architecture of an
analytics system should be built to deal with historical data and with real-
time data at the same time. A first proposal was the Lambda architecture of
Nathan Marz [169]. The Lambda architecture solves the problem of com-
puting arbitrary functions on arbitrary data in real time by decomposing the
problem into three layers: the batch layer, the serving layer, and the speed
layer. It combines in the same system Hadoop for the batch layer and Storm
for the speed layer. A more recent proposal is the Kappa architecture, pro-
posed by Kreps from LinkedIn [152]. It simplifies the Lambda architecture,
removing the batch processing system.

e Evaluation. It is important to achieve significant statistical results, and not be
fooled by randomness. If the “multiple hypothesis problem” is not properly

Introduction 7

cared for, it is easy to go wrong with huge datasets and thousands of ques-
tions to answer at once, as Efron explains [95]. Also, it will be important to
avoid the trap of focusing only on technical measures such as error or speed
instead of on eventual real-world impact, as discussed by Wagstaff [242]:
arguing against those who believe that big data is all hype is only possi-
ble by regularly publishing applications that meet reasonable criteria for a
challenge-problem in the sense explained in that paper.

e Distributed mining. Many data mining techniques are not trivial to paral-
lelize. To have distributed versions of some methods, substantial research is
needed with both practical experiments and theoretical analysis.

e Time-evolving data. Data may be evolving over time, so it is important that
the big data mining techniques are able to adapt to, and in some cases explic-
itly detect, change. Many data stream mining techniques in this book are
motivated by exactly this requirement [110].

e Compression. When dealing with big data, the quantity of space needed
to store it is very relevant. There are two main approaches: compression,
where we lose no information; and sampling, where we choose data that we
deem representative. Using compression, we will use more time and less
space, so we can consider it as a transformation from time to space. Using
sampling, we are losing information, but the gains in space may be in orders
of magnitude. For example Feldman et al. [99] use coresets to reduce the
complexity of big data problems; a coreset is a small subset of the data that
provably approximates the original data for a given problem.

e Visualization. A main issue in big data analysis is how to visualize the
results. Presenting information from large amounts of data in a way that
is understandable to humans is quite a challenge. It requires new techniques
and frameworks to tell stories, such as those covered in the beautiful book
The Human Face of Big Data [228].

e Hidden big data. Large quantities of useful data are in fact useless because
they are untagged, file-based, and unstructured. The 2012 IDC study on big
data [117] explained that, in 2012, 23% (643 exabytes) of the digital uni-
verse would be useful for big data if tagged and analyzed. However, at that
time only 3% of the potentially useful data was tagged, and even less was
analyzed. The figures have probably gotten worse in recent years. The Open
Data and Semantic Web movements have emerged, in part, to make us aware
and improve on this situation.

8 Chapter 1

1.2 Real-Time Analytics

One particular case of the big data scenario is real-time analytics. It is impor-
tant for organizations not only to obtain answers to queries immediately, but to
do so according to the data that has just arrived.

1.2.1 Data Streams

Data streams are an algorithmic abstraction to support real-time analytics.
They are sequences of items, possibly infinite, each item having a timestamp,
and so a temporal order. Data items arrive one by one, and we would like to
build and maintain models, such as patterns or predictors, of these items in real
time. There are two main algorithmic challenges when dealing with streaming
data: the stream is large and fast, and we need to extract information in real
time from it. That means that usually we need to accept approximate solutions
in order to use less time and memory. Also, the data may be evolving, so our
models have to adapt when there are changes in the data.

1.2.2 Time and Memory

Accuracy, time, and memory are the three main resource dimensions of the
stream mining process: we are interested in methods that obtain the maximum
accuracy with minimum time and low total memory. It is possible, as we will
show later, to reduce evaluation to a two-dimensional task, by combining mem-
ory and time in a single cost measure. Note also that, since data arrives at high
speed, it cannot be buffered, so time to process one item is as relevant as the
total time, which is the one usually considered in conventional data mining.

1.2.3 Applications

There are many scenarios of streaming data. Here we offer a few example
areas:

e Sensor data and the Internet of Things: Every day, more sensors are used
in industry to monitor processes, and to improve their quality. Cities are
starting to implement huge networks of sensors to monitor the mobility of
people and to check the health of bridges and roads, traffic in cities, people’s
vital constants, and so on.

Introduction 9

Telecommunication data: Telecommunication companies have large quanti-
ties of phone call data. Nowadays, mobile calls and mobile phone locations
are huge sources of data to be processed, often in real-time.

Social media: The users of social websites such as Facebook, Twitter,
LinkedIn, and Instagram continuously produce data about their interactions
and contributions. Topic and community discovery and sentiment analysis
are but two of the real-time analysis problems that arise.

Marketing and e-commerce: Sales businesses are collecting in real time
large quantities of transactions that can be analyzed for value. Detecting
fraud in electronic transactions is essential.

Health care: Hospitals collect large amounts of time-sensitive data when
caring for patients, for example, monitoring patient vital signs such as
blood pressure, heart rate, and temperature. Telemedicine will also monitor
patients when they are home, perhaps including data about their daily activ-
ity with separate sensors. Also, the system could have results of lab tests,
pathology reports, X-rays, and digital imaging. Some of this data could be
used in real time to provide warnings of changes in patient conditions.

Epidemics and disasters: Data from streams originating in the Internet can
be used to detect epidemics and natural disasters, and can be combined with
official statistics from official centers for disease and disaster control and
prevention [63].

Computer security: Computer systems have to be protected from theft and
damage to their hardware, software and information, as well as from disrup-
tion or misdirection of the services they provide, in particular, insider threat
detection [11, 229] and intrusion detection [194, 195].

Electricity demand prediction: Providers need to know some time in advance
how much power their customers will be requesting. The figures change
with time of day, time of year, geography, weather, state of the economy,
customer habits, and many other factors, making it a complex prediction
problem on massive, distributed data.

10 Chapter 1

1.3 What This Book Is About

Among the many aspects of big data, this book focuses on mining and learning
from data streams, and therefore on the techniques for performing data analyt-
ics on data that arrives in sequence at high speed. Of the Vs that define big
data, the one we address most is therefore Velocity.

The techniques are illustrated in a hands-on way using MOA-Massive
Online Analysis. MOA is the most popular open-source framework for data
stream mining, with a very active growing community. It includes a collec-
tion of machine learning (ML) algorithms (classification, regression, cluster-
ing, pattern mining, outlier detection, change detection, and recommender sys-
tems) and tools for evaluation. Related to the WEKA project, MOA is also
written in Java, while designed to scale to more demanding problems.

Part I is an introduction to the field of big data, an overview of the main
techniques, and a first hands-on introduction to MOA usage. Part II presents
in detail a good number of algorithms for stream mining, prioritizing those
that have been implemented in MOA, and provides pointers to the relevant lit-
erature for the reader who is interested in more. Part III delves into MOA in
more depth. It presents some additional hands-on exercises and some of the
internal structure of MOA, oriented to readers who would like to add algo-
rithms to MOA or modify existing ones, or use MOA through its API in their
applications.

Finally, we would like to mention that there are other data stream mining
techniques that are very useful and important, but that could not be covered
in the book, such as matching problems, motif discovery, ranking/learning to
rank, recommender systems, recurrent concept mining, geospatial data, and
mining of large streaming graphs. Also, in real projects, aspects such as miss-
ing data, feature extraction, outlier detection, and forming training instances,
among others, will be important; we do not cover them explicitly here as they
tend to be highly problem-dependent.

2 Big Data Stream Mining

In this chapter we give a gentle introduction to some basic methods for learning
from data streams. In the next chapter, we show a practical example of how to
use MOA with some of the methods briefly presented in this chapter. These
and other methods are presented in more detail in part II of this book.

2.1 Algorithms

The main algorithms in data stream mining are classification, regression, clus-
tering, and frequent pattern mining.

Suppose we have a stream of items, also called instances or examples, that
are continuously arriving. We are in a classification setting when we need to
assign a label from a set of nominal labels to each item, as a function of the
other features of the item. A classifier can be trained as long as the correct label
for (many of) the examples is available at a later time. An example of classifi-
cation is to label incoming email messages as spam or not spam. Regression is
a prediction task similar to classification, with the difference that the label to
predict is a numeric value instead of a nominal one. An example of regression
is predicting the value of a stock in the stock market tomorrow.

Classification and regression need a set of properly labeled examples to learn
amodel, so that we can use this model to predict the labels of unseen examples.
They are the main examples of supervised learning tasks. When examples are
not labeled, one interesting task is to group them in homogeneous clusters.
Clustering can be used, for example, to obtain user profiles in a website. It is
an example of an unsupervised learning task.

Frequent pattern mining looks for the most relevant patterns within the
examples. For instance, in a sales supermarket dataset, it is possible to know
what items are bought together and obtain association rules, as for example:
Most times customers buy cheese, they also buy wine.

The most significant requirements for a stream mining algorithm are the
same for predictors, clusterers, and frequent pattern miners:

Requirement 1: Process an instance at a time, and inspect it (at most) once.
Requirement 2: Use a limited amount of time to process each instance.

Requirement 3: Use a limited amount of memory.

Requirement 4: Be ready to give an answer (prediction, clustering, patterns)
at any time.

Requirement 5: Adapt to temporal changes.

12 Chapter 2

2.2 Classification

In batch or offline classification, a classifier-building algorithm is given a set of
labeled examples. The algorithm creates a model, a classifier in this case. The
model is then deployed, that is, used to predict the label for unlabeled instances
that the classifier builder never saw. If we go into more detail, we know that
it is good methodology in the first phase to split the dataset available into two
parts, the training and the testing dataset, or to resort to cross-validation, to
make sure that the classifier is reasonably accurate. But in any case, there is a
first training phase, clearly separated in time from the prediction phase.

In the online setting, and in particular in streaming, this separation between
training, evaluating, and testing is far less clear-cut, and is interleaved. We need
to start making predictions before we have all the data, because the data may
never end. We need to use the data whose label we predict to keep training the
model, if possible. And probably we need to continuously evaluate the model
in some way to decide if the model needs more or less aggressive retraining.

Generally speaking, a stream mining classifier is ready to do either one of
the following at any moment:

1. Receive an unlabeled example and make a prediction for it on the basis of
its current model.

2. Receive the label for an example seen in the past, and use it for adjusting
the model, that is, for training.

For example, an online shop may want to predict, for each arriving cus-
tomer, whether the customer will or will not buy a particular product (predic-
tion). When the customer session ends, say, minutes later, the system gets the
“label” indicating whether indeed the customer bought the product or not, and
this feedback can be used to tune the predictor. In other cases, the label may
never be known; for example, if the task is to determine whether the customer
is a robot or a human, the true label may be available for a few customers
only. If trying to detect fraudulent transactions in order to block them, transac-
tions predicted to be fraudulent are not executed, so their true labels are never
known.

This simple description glosses over a number of important practical issues.
First, how many of the unlabeled instances eventually receive their correct
label? Clearly, the fewer labels received, the harder the prediction task. How
long should we wait for an instance label to arrive, before we drop the

Big Data Stream Mining 13

instance? Efficiently managing the buffer of instances waiting for their labels
is a very delicate implementation problem when dealing with massive, high-
speed streams. Finally, should we use all labeled instances for training? If in
fact many labels are available, perhaps there is a diminishing return in accuracy
for the increased computational cost of training on all instances.

It is difficult to deal with these issues in generic ways, because often the
good solution depends too much on the details of a specific practical scenario.
For this reason, a large part of the research in stream classification deals with
a simplified cycle of training/prediction: we assume that we get the true label
of every unlabeled instance, and that furthermore we get it immediately after
making the prediction and before the next instance arrives. In other words, the
algorithm executes the following loop:

o Get an unlabeled instance x.
e Make a prediction § = f(x) for ’s label, where f is the current model.
o Get the true label y for x.

e Use the pair (x,y) to update (train) f, and the pair (,y) to update statistics
about classifier performance.

e Proceed to the next instance.

This model is rightly criticized by practitioners as too simple, because it
ignores the very real problem of delayed and missing label feedback. It is how-
ever quite useful for comparing learning algorithms in a clean way, provided
we have access to, or can simulate, a stream for which we have all labels.

Two variations of these cycles are worth mentioning. In semi-supervised
learning, we use unlabeled examples for training as well, because at least they
provide information on the distribution of the examples. Unfortunately, there
is little work on semi-supervised stream learning, even though the abundance
of data in high-speed streams makes it promising and a good approach to the
delayed/missing label feedback problem. In active learning, the algorithm does
not expect the labels of all instances but selectively chooses which ones to
request. This is a good approach when every label is theoretically available but
obtaining it has a cost. In this book we cover active learning in streams but not
semi-supervised learning.

14 Chapter 2

2.2.1 Classifier Evaluation in Data Streams

Given this cycle, it is reasonable to ask: How do we evaluate the performance
of a classification algorithm? In traditional batch learning, evaluation is typ-
ically performed by randomly splitting the data into training and testing sets
(holdout); if data is limited, cross-validation (creating several models and aver-
aging results across several random partitions in training and test data) is pre-
ferred.

In the stream setting, (effectively) unlimited data tends to make cross-
validation too expensive computationally, and less necessary anyway. But it
poses new challenges. The main one is to build an accurate picture of accu-
racy over time. One solution involves taking snapshots at different times dur-
ing the induction of a model to see how the model accuracy varies. Two main
approaches arise:

e Holdout: This is measuring performance on a single holdout partition. It is
most useful when the division between train and test sets has been prede-
fined, so that results from different studies can be directly compared. How-
ever, holdout only gives an accurate estimation of the current accuracy of a
classifier if the holdout set is similar to the current data, which may be hard
to guarantee in practice.

o Interleaved test-then-train or prequential: Each individual example is
used to test the model before it is used for training, and from this the accu-
racy can be incrementally updated. When the evaluation is intentionally per-
formed in this order, the model is always being tested on instances it has not
seen. This scheme has the advantage that no holdout set is needed for testing,
making maximum use of the available data. It also ensures a smooth plot of
accuracy over time, as each individual example will become less and less
significant to the overall average. In test-then-train evaluation, all examples
seen so far are taken into account to compute accuracy, while in prequential,
only those in a sliding window of the most recent ones are.

As data stream classification is a relatively new field, such evaluation prac-
tices are not nearly as well researched and established as they are in the tradi-
tional batch setting.

Next we name and describe a few of the best-known stream classifiers. The
first two are so simple that they are usually only considered baselines for the
evaluation of other classifiers.

Big Data Stream Mining 15

2.2.2 Majority Class Classifier

The majority class classifier is one of the simplest classifiers. It stores a count
for each of the class labels, and predicts as the class of a new instance the most
frequent class label.

2.2.3 No-Change Classifier

The no-change classifier is another one of the simplest: predict the last class in
the data stream. It exploits autocorrelation in the label assignments, which is
very common.

2.2.4 Lazy Classifier

The lazy classifier is based on a very simple idea: the classifier consists of
keeping some of the instances seen, and predicting using the class label of
the closest instances to the instance whose class label we want to predict. In
particular, the k-nearest neighbor or k-NN method outputs the majority class
label of the k instances closest to the one to predict.

For this classifier, a predefined notion of closeness or distance is required,
and the performance depends on the meaningfulness of this distance with
respect to labels.

Example 2.1 Consider the following dataset of tweets, on which we want to
build a model to predict the sentiment (+ or —) of new incoming tweets.

ID Text Sentiment
T1 glad happy glad +
T2 glad glad joyful +
T3 glad pleasant +
T4 miserable sad glad —

Assume we want to classify the following new instance:

ID Text Sentiment
TS glad sad miserable pleasant glad ?

The simple classifiers will perform the following predictions:

e Majority classifier: The majority class label is +, so the prediction is +.

16 Chapter 2

e No-change classifier: The class label of the last instance (T4) is —, so the
prediction is —.

o Lazy classifier: If we measure similarity by the number of common words,
the tweet closest to TS5 is T4, with label —. Therefore, the 1-NN classifier
predicts — for T5.

2.2.5 Naive Bayes

The Naive Bayes classifier is a simple classifier based on the use of the Bayes’
theorem. The basic idea is to compute a probability for each one of the classes
based on the attribute values, and select the class with the highest probability.
Under the naive assumption that the attributes are all independent, the class
probabilities can be computed by multiplying over all attributes the probabil-
ity of having that particular class label conditioned on the attribute having a
particular value. The independence assumption is almost always false, but it
can be shown that weaker assumptions suffice, and Naive Bayes does surpris-
ingly well for its simplicity on a variety of tasks.

2.2.6 Decision Trees

Decision tree learners build a tree structure from training examples to predict
class labels of unseen examples. The main advantage of decision trees is that
it is easy to understand their predictions. That is why they are among the most
used classifiers in settings where black-box classifiers are not desirable, for
example, in health-related applications.

In stream mining, the state-of-the art decision tree classifier is the Hoeffding
tree, due to Domingos and Hulten [88], and its variations. Traditional decision
trees scan the entire dataset to discover the best attribute to form the initial
split of the data. Once this is found, the data is split by the value of the cho-
sen attribute, and the algorithm is applied recursively to the resulting datasets,
to build subtrees. Recursion is applied until some stopping criterion is met.
This approach cannot be adopted directly in the stream setting, as we cannot
afford the resource cost (time and memory) of storing instances and repeatedly
scanning them.

The Hoeffding tree is based on the idea that, instead of looking at previ-
ous (stored) instances to decide what splits to do in the trees, we can wait to
receive enough instances and make split decisions when they can be made con-
fidently. The main advantage of this approach is that it is not necessary to store

Big Data Stream Mining 17

instances. Instead, sufficient statistics are kept in order to make splitting deci-
sions. The sufficient statistics make it easy to incorporate Naive Bayes models
into the leaves of the tree.

The Hoeffding adaptive tree [33] is an extension of the Hoeffding tree that
is able to create and replace new branches when the data stream is evolving
and the class label distribution or instance distribution is changing.

2.2.7 Ensembles

Ensembles are sets of classifiers that, when combined, can predict better than
any of them individually. If we use the same algorithm to build all the classi-
fiers in the ensemble, we will need to feed the algorithm with different subsets
of the data to make them different. Bagging is an ensemble method that (1)
uses as input for each run of the classifier builder a subset obtained by sam-
pling with repetition of the original input data stream, and (2) uses majority
voting of the classifiers as a prediction strategy.

The ADWIN bagging method [38], implemented as OZABAGADWIN in
MOA, is an extension of bagging that it is able to create and replace new
classifiers when the data stream is evolving and the class label distribution
is changing.

2.3 Regression

As in classification, the goal in a regression task is to learn a model that predicts
the value of a label attribute for instances where the label is not (yet) known.
However, here the label is a real value, and not one of a discrete set of values.
Predicting the label exactly is irrealistic, so the goal is to be close to the correct
values under some measure, such as average squared distance.

Several classification algorithms have natural counterparts for regression,
including lazy learning and decision trees.

2.4 Clustering

Clustering is useful when we have unlabeled instances and we want to
find homogeneous groups or clusters in them, according to their similarities
or affinities. The main difference from classification is that the groups are
unknown before the learning process, and we do not know whether they are

18 Chapter 2

the “correct” ones after it. This is why it is a case of so-called unsupervised
learning. Uses of clustering include segmentation of customers in marketing
and finding communities in social networks.

We can see clustering as an optimization problem where we want to min-
imize a cost function that evaluates the “badness” of a partition of examples
into clusters. Some clustering methods need to be told the desired number of
clusters to find in the data, and others will find some number of clusters by
themselves.

The k-means clustering method is one of the most used methods in cluster-
ing, due to its simplicity. It starts by selecting k centroids in a random way.
After that, two steps are repeated: first, assign each instance to the nearest cen-
troid, and second, recompute the cluster centroids by taking the center of mass
of the instances assigned to it. This is repeated until some stopping criterion is
met, such as no changes in the assignments. It is not a streaming method, as it
requires several passes over the same data.

Streaming methods for clustering typically have two levels, an online one
and an offline one. At the online level, a set of microclusters is computed and
updated from the stream efficiently; in the offline phase, a classical batch clus-
tering method such as k-means is performed on the microclusters. The online
level only performs one pass over the data; the offline phase performs several
passes, but not over all the data, only over the set of microclusters, which is
usually a pretty small set of controllable size. The offline level can be invoked
once, when (if) the stream ends, or periodically as the stream flows to update
the set of clusters.

2.5 Frequent Pattern Mining

Frequent pattern mining is an important task in unsupervised learning. It can
be used to simply describe the structure of the data, to find association rules,
or to find discriminative features that can be used for classification or clus-
tering tasks. Examples of pattern classes are itemsets, sequences, trees, and
graphs [255].

The problem is as follows: given a source of data (a batch dataset or a
stream) that contains patterns, and a threshold o, find all the patterns that
appear as a subpattern in a fraction o of the patterns in the dataset. For example,
if our source of data is a stream of supermarket purchases, and o = 10%, we
would call {cheese, wine} frequent if at least 10% of the purchases contain at

Big Data Stream Mining 19

least cheese and wine, and perhaps other products. For graphs, a triangle could
be a graph pattern, and if we have a database of graphs, this pattern would be
frequent if at least a fraction o of the graphs contain at least one triangle.

In the batch setting, Apriori, Eclat, and FP-growth are three of the best-
known algorithms for finding frequent itemsets in databases, where each item
is a set. Similar algorithms exist for data structures such as sequences and
graphs. However, it is difficult to translate them directly to the stream setting,
either because they perform several passes over the data or because they store
too much information.

Algorithms for frequent pattern mining on streams typically use a batch
miner as a base, but need to implement other ideas; furthermore, they are often
approximate rather than exact. Moment and IncMine are algorithms for fre-
quent itemset mining in data streams.

3 Hands-on Introduction to MOA

In this chapter, we are going to start using MOA, learn its basics, and run
a simple example comparing two classifiers. If you have some background in
data mining for the nonstreaming setting, this quick start should let you explore
other options, such as clustering and frequent pattern mining. Otherwise, it is
probably best to continue with part II which covers these techniques.

LR | MOW, Graphics! User interface
B Rearession MultiTarger Clustering Qutliers Concept Drift
Configure 5| al beert { Dol nad 50/ cowtypeMomm.arffh - & BaskeClassificationPerformanceEvaluator -1 1000000 -F 1000 Run
command oS time elapsed curment activiy % comphete
Fause Resume Canced Delete

Mo preview available Rofrosh Auto efresh

Evvaluiaton

Walues Flot
Measure Current Mean Zoom in ¥ Zoom out ¥ Zoom in K Zoarm out X
) Accuracy - = =
kappa . - = L0
HKappa Temp - = =
H
Ram-Hours o
Time
Memary - - = -
o0 T T T
a St 100000, 150000 200000
Figure 3.1

MOA graphical user interface.

3.1 Getting Started

First, we need to download the lastest release of MOA from https://
moa.cms.waikato.ac.nz. It is a compressed zip file that contains the
moa. jar file, an executable Java jar file that can be used either as a Java

https://moa.cms.waikato.ac.nz
https://moa.cms.waikato.ac.nz

22

Chapter 3

application or from the command line. The release also contains the jar file
sizeofag. jar, which is used to measure the memory used running the
experiments. The scripts bin\moa.bat in Windows and bin/moa. sh in
Linux and Mac are the easy way to start the graphical user interface of MOA
(figure 3.1).

Click Configure to set up a task; when ready to launch a task, click Run.
Several tasks can be run concurrently. Click on different tasks in the list and
control them using the buttons underneath. If textual output from a task is
available, it will be displayed in the center of the GUI, and can be saved to
disk.

Note that the command line text box displayed at the top of the window
represents textual commands that can be used to run tasks on the command
line. The text can be selected, then copied onto the clipboard. At the bottom
of the GUI there is a graphical display of the results. It is possible to compare
the results of two different tasks: the current task is displayed in red, and the
previously selected task is in blue.

As an example, let us compare two different classifiers, a Naive Bayes and a
decision tree, using prequential evaluation on 1,000, 000 instances generated
by the default RandomTreeGenerator stream generator (figure 3.2):

EvaluatePrequential -i 1000000 -f 10000 -1 bayes.NaiveBayes

EvaluatePrequential -i 1000000 —-f 10000 -1 trees.HoeffdingTree

Remember that the prequential evaluation is an online evaluation technique
distinct from the standard cross-validation used in the batch setting. Each time
a new instance arrives, it is first used to test, then to train.

You can use streams from ARFF files, a convenient data format defined
by the WEKA project. Sample ARFF datasets are available from https:
//moa.cms.waikato.ac.nz.

EvaluatePrequential -s (ArffFileStream -f elec.arff)

Also, you can generate streams with concept drift, joining several differ-
ent streams. For example, the SEA concepts dataset is generated joining four
different streams with a different SEA concept in each one:

EvaluatePrequential
-s (ConceptDriftStream
-s (generators.SEAGenerator -f 1) -d (ConceptDriftStream
-s (generators.SEAGenerator -f 2) -d (ConceptDriftStream
—-s generators.SEAGenerator

https://moa.cms.waikato.ac.nz
https://moa.cms.waikato.ac.nz

Hands-on Introduction to MOA 23

LN MO Graghical User intarface
m Regression MuliTarges Clustering Outliers Concepr Drifi
Configure Eva]un!hmlenual ~| trees Hoeffding Tree - IOGUDM -f lubﬁ - 10000 Run
command statis time elapsed current activity % complete
EvaluatePreguential -1 bay. e e 1,985 R L
Pause Riesurie: Carced Delete
Final result efrosh Aurg refreah avory second

96, 2,92, 2EOATTAEA 26817, 91. BARGA1 A58 34167, 91, 2240184 7575857 991088, 0, 8,0, 1116. 8, T16.
96, 2. BRE196 72131146, 90, E4TAR20 1430849, 902008, @, B0, 1116, &, T16.
/96, 8,93, 42751161481531, 43, A9 20T TEO02I6, 92, JE2T 4064 2005, 9930000, 0.9, 1114, 8, T16.
LT H
i
95,

1,93 G9RIINSITARGST, B4, 10141414142413, 97, SFEHISZGAIAI0E, SO0, 9, 8.0, 1116.8, 1'10_

EFNOSUA995A999, 93, 575 4T5THI1343, 93, 35185435539835 Eiu'ﬁiiﬁimlﬁ S950RR. M,1116,8,716.4, WG.D.S.B.G‘E a.m,
B, OR S5TIGR1R0E0E, 91. 16465062453314, 50, 57545??156305 FIGERE, 8,49.9,1118. B, '.T:I.? 2,717.8,9.8,0.4,0.8,1.9

96, BEUNOGS0GHN000, 07 SORBERGEAGR4ES, 93, S146435146443, 07, A FORZ4INOTA30, D0TOHR, 0, B, 0, 11700, T10.9, VIS0, 9. 0, 0. 8,0, 8,1
96, 7,93, 20137 126781438, 93, 26538612244598, 91, 990291 26213591, 998088, 0, 8.4, 1124, 8,720,9,778.#,9.8,0.9,9.8, 1.8

26.2,92, 22535026843, 92, 2TH421T6413763, 98, H526066358711, 9908R0. 8, 0.9, 1124.6,720.8,728.9,9.0,8.0,8.0, 1.8

48,9, 96.7 93 26122599?19055 '93 1515337&?3312& o, 2!9119621616622,[08&%& 8,8.8,1134.8,728.9,720.8,9.98,0.8,0.0,7

Export as oxt fila

Evaluation
Values Plot
Measure Cumens hean Zowm in ¥ Zowm out ¥ Zoom in X Zoorm out X
& Accuracy 6. TO72.60594.45 73,63
Kappa 07,2042 59665644 35 =

ey iy ket

Kappa Temp 03 7543 97 BE.5045 85
unprerbarnason i g b A oA b

Ram-Hours 0,05 0,00 0,00 ¢.00
Time 70.94 1.08 25.58 1.07
Memory 0.00 000 G00 0.00

Figure 3.2
MOA GUI running two different tasks.

—d (generators.SEAGenerator —-f 4)
-w 50 -p 250000)
-w 50 -p 250000)
-w 50 -p 250000)

3.2 The Graphical User Interface for Classification

We start by comparing the accuracy of two classifiers.

24

Chapter 3

Exercise 3.1 Compare the accuracies of the Hoeffding tree and the Naive

Bayes classifiers, for a RandomTreeGenerator stream of 1,000,000

instances, using interleaved test-then-train evaluation. Use a sample frequency

of 10,000 instances to output the evaluation results every 10, 000 instances.
We configure and run the following tasks:

EvaluateInterleavedTestThenTrain -1 bayes.NaiveBayes
-i 1000000 —f 10000

EvaluateInterleavedTestThenTrain -1 trees.HoeffdingTree
-i 1000000 —-f 10000

The results are shown in figure 3.3.

sa0e 00000 WONGrbical User imerioee .
m Regression MulilTarges Clustering Owtliers Concepa Drift
Conlfigure EvalualelnlerleavedTesﬁhen\‘raJn | mea.classifrers trees HoeffdingTree -1 1000000 ~f 10004 Run
| command T time elisieil gusent aclivey. Xcomplele
| EvilusteliterlegvedTestTh.. completed 1755 e 1
Pause Resume Carced Delete

Final regult Refresh At rofrash vy Berond =

| GibaRe. B, 84, 23494505404586, 8. 1TAGAI98UT 130T, B, 173XS0AT177T9, B6. IXIRA1 TI1A6TEY, 010000, B, 8.8, 1829, 4, 653,
J.EMB& @, 4. 2580434 TR2E80 T , B0, T1RGSETRTSE61Z, BR. 222BA10IH2Te99, 8. 33‘112&32338231 28008, 5 8,8, 1831, 8, 65
.QMBH @, G4, 2812003205 8065 , 80, JE0ALTIE24TRET, BE. 2R52911041 110, BE. 4345360 TARGT1, S6UEQ. B, 0.8, 1838.0, 654,
| G4DEER. D, B4, IN4TAIZ3AR425S, S0, JLARGTI1ATO T2, BE. D1HERETIISLVE, 0O SUNGI2E0SNG0 AN, 4080, B, 0.8, 1050, 0, G,
1 9500RD.0, 54, 22598047 3684271, B9, IET1IRTIAEEING, BA, 3713490907171, 86, SEAOTINEAL2TTG, G50A00. 0, 0.8, 10570, 669, 0, 669

| GEOIRR. 8, 4. 3545633333333, 50, 41 TR 1566578229, BE. 4210188573518, 86, 6110577 3005376, PEHR0. B, 8.0, 1857.4,5673. 8,673.9, 8. 4.0
ﬁg'.'mn 2,94 37EENA17371134, 25, A1 748015747, 58, 4ESRESA TS VAN, B6 . GEARSURISUREET, GTHRRG. B, 0.9, 18669, 670.0,570.0, 8.8, R.&
1 DEDER. A, 94. 355 1R3TH5IB612, B0, 5071149 1423566, BE, SR550 90258782, B5. 71451872661 299, 96ARC.8, 8 l} 1879.8,637.8,6087.8,3.4,8.
1|, 990889, 9, 34, 4255555555 5555, 8, 55209803 106432, BE, S67460058604 17 , 85, 777 70E15997051, 200008, 9,8, 9, 1115. 0, 716.9, 716 8,9. 8,9
,.1%8&&3 i, 24, 4465, BR. GOS6TTHAATERIT BA. G1RTZRIEG0ITED, BE, H2ESATB4AR6T 1T, 10GddbE, &, 8.0, 1104, 8, T2, 9,720.9,9.9,0.8,0.8, 11

i
4.0, 054, B
B, 650,09, 8.9, 8.
B, 850.0,8
.@.8

h
1 Export as 1xt file,.

| Evaluation
| Walues: Plot
Measiing Current Mear

Zoom in Y Zoom out Y Zoom inX Zoom out X
O Accumey 9445738302177355
' Kappa BRGIAAIMRIMIT

Kappa Temp 8G145.9163.9145.68 | 3

Ram-Haurs 0.0¢ 0.00 0.00 0.00

Time 568 175 250 ose |||

Memary 000 0,00 0.00 .00

oo T T T T

Figure 3.3
Exercise 3.1, comparing the Naive Bayes Classifier and the Hoeffding tree.

Hands-on Introduction to MOA 25

Exercise 3.2 Compare and discuss the accuracy for the stream in the previous
example using three different evaluations with a Hoeffding tree:

e Periodic holdout with 1,000 instances for testing
o Interleaved test-then-train

e Prequential with a sliding window of 1,000 instances

The tasks needed for this example are the following:
e Periodic holdout with 1,000 instances for testing:
EvaluatePeriodicHeldOutTest —-n 1000 —i 1000000 —f 10000
o Interleaved test-then-train:

EvaluateInterleavedTestThenTrain -1 trees.HoeffdingTree
-i 1000000 —-f 10000

e Prequential with a sliding window of 1,000 instances:

EvaluatePrequential -1 trees.HoeffdingTree -i 1000000 -f 10000

The comparison between the first two is shown in figure 3.4.

3.2.1 Drift Stream Generators

MOA streams are built using generators, reading ARFF files, joining several
streams, or filtering streams. MOA stream generators allow us to simulate
potentially infinite sequences of data.

It is possible to build streams that exhibit concept drift, or concept change
over time. Two examples are the rotating hyperplane and the random RBF
generator. The rate of change in these streams is determined by a parameter,
and their operation will be explained in chapter 12.

We can also introduce concept drift or change by joining several streams. In
MOA this is done by building a weighted combination of two pure distribu-
tions that characterizes the target concepts before and after the change. MOA
uses the sigmoid function as an elegant and practical solution to define the
probability that each new instance of the stream belongs to the new concept
after the drift. The sigmoid function introduces a gradual, smooth transition
whose duration is controlled with two parameters: p, the position where the
change occurs, and the length w of the transition, as can be seen in figure 3.5.

An example is:

26 Chapter 3

2w MO Grrphical Uver inporfaps
RGN Feoression MultiTarger | Clustering Ovtllers _Concept Drift
Cnnl'lqur: Eualua[ehlodltHddUutfes: -1 ht-es HoeffdingTree -n 1000 = 1000000 - F 10000 _ Run
-r.nmns) s tmeebgsed custent ety *eomple g
E\-almhﬁ\.—duml | tree, competed 5.8235 e —
Evaluatoineerloaved TostTh ., coenphted 5. 748 P NI [[Ty ——
Pause Resume Cariced Delete
Final requir Refrosh Ao rofrash: avery Becond 2

AL, 1080, B, 96, 6,92, S 189354634571, 92 . TE505TA466085 , 1. 392405863290 12 , 310684, #, 8.8, 1051.0,673.8,673.0,8.0,8.
14249, 1050, B, 96,5, 92, B5ERTSE799112, 03, 4 TH1402537 3152, 51, TR6161137 44876, 928680, 0, 8.0, L & 67 5.4,
(30001, 1000, @, 47 .2, 54 JUSVEGOIALI6AT | 04, 42544550455045, 43, AOOITIRGINDI0G, DRRR00. B, 0. 1, 10 &4
WABI1Y, 10HS. @, 96, B, 91 T4N12TTRGIGTAL, 91, GEIGG RETU01RE, 90 A6 THIGSA2G TR, GAAN0E_ 1, 0.8, 10
8T, 1000, B, 95 BINORILINGGT, 3. 621134075066, 93, T1RSEERITRH1TT , 92, 4AFIETILZIERT, 150000, 0,
i39‘3 10000, 0640, 1. BRE2HAZ4827213, 91, EG-IWTBEWH}'I 8. 30461533461537, 0000 4,0, 8, 10” a. '.'u LA 'NE

A

SRB41, 1000, 0, 95, 5,52, DR4S06I50G3124 93, B1307205588022, 01 GAGT 1462320735, J00RRG.. B, 0. 8, 1135. 6,730, 8, 730.0,5.8, 8.6,
SGTTALY, 1. 8, 56,5, 52, BTOREHAAT 1961, 52, TANSEUZI161605, 01, PISTARIRIS1TAN, 1000008, 0, 8.9, 1137, 4, 731.0, 7314, 6.

Export as txt file...

Evaluation
Values - | Pot-
Measure Cumrent Magn

Zoim i Y Lo QUL Y Zoom in X Zoamm out X
© Accuracy UB5004.4594.6292,17
" Kappa 92.5788.6166.9683.90 | B
| p———— T
Kappa Temp 02.74 A8 6188 9483.91 =
Ram-Hours - 000 - 000
Time 248 565 126 250 ||
Memary 000 000 000 .00
s — - T - i
|3y 000 100000 159000 2000000 il

Figure 3.4

Exercise 3.2, comparing three different evaluation methods on the same classifier.

ConceptDriftStream -s (generators.AgrawalGenerator -f 7)
—-d (generators.AgrawalGenerator -f 2) -w 1000000 -p 900000

where the parameters of ConceptDriftStream are:

e —s : Initial stream generator
e —d : Generator of the stream after drift or change
e —p : Central position of the change

e —w : Width of the change period

Hands-on Introduction to MOA 27

Figure 3.5
A sigmoid function f(t) =1/(1+ 3*4(’5*1’)/“’),

Exercise 3.3 Compare the accuracy of the Hoeffding tree with the
Naive Bayes classifier, for a RandomRBFGenerator stream of 1,000,000
instances with speed change of 0.001 using interleaved test-then-train evalua-

tion.
The tasks needed for this example are:

EvaluateInterleavedTestThenTrain -1 bayes.NaiveBayes
-s (generators.RandomRBFGeneratorDrift -s 0.001)
-i 1000000 -f 10000

EvaluatelInterleavedTestThenTrain -1 trees.HoeffdingTree
—-s (generators.RandomRBFGeneratorDrift -s 0.001)

-i 1000000 —-f 10000

The comparison between the two classifiers is shown in figure 3.6.

Exercise 3.4 Compare the accuracy for the stream of the previous exercise
using three different classifiers:

e Hoeffding tree with majority class at the leaves
e Hoeffding adaptive tree
e ADWIN bagging (OzaBagAdwin) on ten Hoeffding trees

The tasks needed for this example are:

28

Chapter 3

eve 0000000 MOhGrehicel Userieiiane
(RGN Feoression MultiTarger | Clustering Ovtllers _Concept Difi
~ Configure waluatelntereavedTestThenTrain -5 igenerators RandomAGFGeneratorDift -5 0.001) -1 1000000 -F 10006 Aun

| command s time elirsed O cussent activey R eompe
| EvaluateinterieavedTesTh... completed 7.965
1 | A
Pause Resume Cariced Delete
Final requir Ite!u-ih Ao rofreh avery :et_n_nd o]

BE, &, 53, 17107802 197A8T, 6. 44579141 F156459, 6, 455502 556575501, 5. 0647 14838065926, 510000, 0,8.8
B, B, 53, 182151 5B 4TES, B, 467517 TEA517EY, ., 401 6ERSSHA605A5, 5. SA3EHTAS1H51937, S20000.
B, B, 53, OREE1TIRAINT, &, SAGEAGUEED 158 5S14242422300793%, 6, 02069721 0E37217, SI00E0
‘A B 1RTRIELTRTLITT 6. 46a7R01955 10848 BT17832372896 6. BOSIATIZN549419, 010080,
AR B, 53, 164315 TAMTI6E. 6. 42669 THIT06264T, 6. 426530968 TR0 111, 5. I645655TIISRINT, 5500
AR B, 53, 1615635, B, 4155768547 73560 , 5. 47 1407 TMER16, 5. 977 15044620617 , IGHOAR.0, 3.0
ARG, 53, 160484 SIGRE24E, 6. A7ABOTSOITITRGZ , 6. 434540735067401 , 5. 09GR A TARGE65, 07R000.0, B.0

AR, B, 53, EES10ZA40E1635, 6. 4277912957 15263, 6. A3T6RTE6 2483905, 5, 97 ILADGT5604276, 050000 B, 0.8

DR 8, 53, ISBI0SE0ESB0ES4, 6. 415841011706192, 6. 41448132 IAEA510S, 5, 9573501 26504481, 30RE00. B, 0.8

DRdbae. 8, 51.142,6, 3TA02I6I11915T, 6. 37174168794, 5. B20A20T10T050GE, 1madaee. 0, 8.9 []

Export as txt file..

Eviluation
Values - || Plot-
Measure Curment Mean Zowim i ¥ Toom Ut ¥ Zoom In X Zoom out X |
O Accuracy 53.14575053.3350.09 : —— ; |
" Kappa 6381522675 1820 | [
Kappa Temp 637 1528 6721828 ||| |- ————
Ram-Haours 0.00 0.00 0.40 0.00 |
Time 153 7.53 181 370 | | 1
Memary 000 .00 000 ©.00 |
000+ T T T —x |
13y 4000 2000000 1000 200000

Figure 3.6

Exercise 3.3, comparing the Hoeffding tree and Naive Bayes classifiers on a nonstationary stream.

EvaluateInterleavedTestThenTrain -1 (trees.HoeffdingTree -1 MC)
-s (generators.RandomRBFGeneratorDrift -s 0.001)
-1 1000000 —-f 10000

EvaluateInterleavedTestThenTrain -1 trees.HoeffdingAdaptiveTree
-s (generators.RandomRBFGeneratorDrift -s 0.001)
-i 1000000 —-f 10000

EvaluateInterleavedTestThenTrain -1 meta.OzaBagAdwin
-s (generators.RandomRBFGeneratorDrift -s 0.001)
-i 1000000 —-f 10000

Hands-on Introduction to MOA 29

The comparison of these three classifiers is shown in figure 3.7. We observe
that the two adaptive classifiers perform much better than the standard Hoeff-
ding tree, since the data stream is evolving and changing.

2889 s WOR G e KT
m Regre«sslon MultlTarget Clustering Outliers Concept Drift

Configure sa.classifiers meta Ozasac.&dﬂln -5 menerators landean!FGeneratorDrlil -5 0 0015 i ‘:U(IUEIDD f IUDDG Aun

s time elacrsed cutent activiy W compiie

i e
|EvaluateinterleavedTesiTh.. urnplel-d 13.85s e
‘Evaluatineerloavod TosTh., comp beted 4.985 e]

Fause Resumse Cancel Dalets
Final reault. Rofresh Auta refresh oy second
o 2a 1 8. FE3IFINITIINAZAI6, 2, LOAAOARLGAR0ONS, B, 2I3FIIFIAIIFIIIHA, 1.1, 9. 233F333F333T
7,148, 8. 199399 1.8,B.1 9938, 0.5, 0. ST T

?5,&.0‘3.ﬂ,s.n,l.uanm}ﬁm:uu 2.3, 0. 512076383391 3406, 0. 2, 8. 5120076383101 2488, 8. 5, 8. 3!35!11&&9.!2«91823 B, 0.8,0.8,0
1.0, 0 B0 TTIOVIOIGE6 1. 5, 0. AN IBEARNERTASE, 1.5, B AR IRAARSHNGTAYD 0. ISH0GINGE09559ST 0. I0ASRI0A01341593, 0.0, 2.8, B,
6,0.0,8,0,1,0,0,8,1,8,0.8, 1,8,0,0,8,0,0.8,0.0,0.5,0.8,0.8,1.8,0.4
8.6, 1. 20999059059000098, B, 3, 1, 200090 U9000500E, 0., 3,2, 109099900097 19908, 8. 10990059 099909998, 2.4,0,4,0,4,0.9, 1.9, B.9
D a.8,3.4,8. 1.2 ﬂ 133333333333 333 1. 7,@.13333333333333333, 8, 7000
| Eﬂ,&ﬁ,sﬁﬂﬁiﬁﬁﬂ
i 9‘]’99!999!‘}99!96 8. ‘)?!?935!?1131?12 1 ?mgmgmnm B 45909]‘5135566356 1 ?99!99‘3!9995!‘?9& 8. 4898979485566356, 8.6, 8.3 _
i ,8.3,1. G0, 3,0, 3,0.3,0,0,0.8,0.8,0.8,1,8,0.8 |

[t

Expart a5 txt file..

Evisluation |
Walues Flot |
e rERNE N TRIE S fpen Zoom in ¥ Zoom out ¥ Zoom In X Zoam out X

© Accuracy 6E.1151.7168.2051.70 =
Kappa 36,27 142 3641 338 o
Kappa Temip 3628 3.52 36.44 3.45
Ram=Hours 000 0.00 0.0 0.00
Time SO.E0 4.05 30,24 2.20
Memary .00 0,00 0,00 000
0.00 T T T
S0000. 000000 1500000 2000000 |

Figure 3.7
Exercise 3.4, comparing three different classifiers.

3.3 Using the Command Line

An easy way to use the command line is to copy and paste the text in the
Configure line of the GUI. For example, suppose we want to execute the task
EvaluatePrequential -1 trees.HoeffdingTree —-i 1000000 -w 10000

from the command line. We can simply write

30

Chapter 3

java —cp moa.jar —-javaagent:sizeofag.jar moa.DoTask
"EvaluatePrequential -1 trees.HoeffdingTree -i 1000000 -w 10000"

Note that some parameters are missing, so default values will be used. We
explain this line in the following paragraphs.

The class moa .DoTask is the main one for running tasks on the com-
mand line. It will accept the name of a task followed by any appropriate
parameters. The first task used is the LearnModel task. The —1 param-
eter specifies the learner, in this case the HoeffdingTree class. The
—s parameter specifies the stream to learn from, in this case genera-
tors.WaveformGenerator, which is a data stream generator that pro-
duces a three-class learning problem of identifying three types of waveform.
The —m option specifies the maximum number of examples to train the learner
with, in this case 1,000,000 examples. The —O option specifies a file to output
the resulting model to:
java -cp moa.jar —-javaagent:sizeofag.jar moa.DoTask

LearnModel -1 trees.HoeffdingTree
—-s generators.WaveformGenerator -m 1000000 -O modell.moa

This will create a file named modell.moa that contains a decision tree
model that was induced during training.

The next example will evaluate the model to see how accurate it is on
a set of examples that are generated using a different random seed. The
EvaluateModel task is given the parameters needed to load the model
produced in the previous step, generate a new waveform stream with random
seed 2, and test on 1,000,000 examples:
java —-cp moa.jar —-javaagent:sizeofag.jar moa.DoTask

"EvaluateModel -m file:modell.moa
-s (generators.WaveformGenerator -i 2) -i 1000000"

Note that we are nesting parameters using brackets. Quotes have been added
around the description of the task, otherwise the operating system might be
confused about the meaning of the brackets.

After evaluation the following statistics are displayed:
classified instances = 1,000,000

classifications correct (percent) = 84.474
Kappa Statistic (percent) = 76.711

Note that the two steps above can be rolled into one, avoiding the need to
create an external file, as follows:

Hands-on Introduction to MOA 31

java —-cp moa.jar —-javaagent:sizeofag.jar moa.DoTask
"EvaluateModel -m (LearnModel -1 trees.HoeffdingTree
-s generators.WaveformGenerator —-m 1000000)
-s (generators.WaveformGenerator -i 2) -i 1000000"

The task EvaluatePeriodicHeldOutTest will train a model while
taking snapshots of performance using a holdout test set at periodic intervals.
The following command creates a comma-separated value (CSV) file, training
the HoeffdingTree classifier on the WaveformGenerator data, using
the first 100,000 examples for testing, training on a total of 100, 000, 000 exam-
ples, and testing every 1,000, 000 examples:
java -cp moa.jar -javaagent:sizeofag.jar moa.DoTask

"EvaluatePeriodicHeldOutTest -1 trees.HoeffdingTree

-s generators.WaveformGenerator
-n 100000 -i 10000000 —f 1000000" > dsresult.csv

These are examples of how we can use MOA from the command line. In part
II of the book we discuss the classifiers that appear here. In part III we explain
the generators used here, and see how to use the MOA API from source code
written in Java.

II STREAM MINING

4 Streams and Sketches

Streams can be seen as read-once sequences of data. Algorithms on streams
must work under what we call the data stream axioms, already stated in chap-
ter 2:

1. Only one pass is allowed on the stream; each stream item can be observed
only once.

2. The processing time per item must be low.

3. Memory use must be low as well, certainly sublinear in the length of the
stream; this implies that only a few stream items can be explicitly stored.

4. The algorithm must be able to provide answers at any time.

5. Streams evolve over time, that is, they are nonstationary data sources.

The concern of this chapter is the design of algorithms that satisfy the first
four axioms. We make no probabilistic assumption on the stream, on the pro-
cess that generates the stream items, or on any statistical laws it may obey.
Streams are generated adversarially, that is, following the patterns that are
hardest for the algorithm. Thus, axiom 5 is irrelevant in this chapter. In con-
trast, in chapter 5 we will define a more benign model of stream generation
where items are generated according to some stochastic process, and therefore
obey statistical laws. This assumption lets us formalize axiom 5 and is implicit
in most available stream ML and data mining algorithms.

Many solutions to streaming problems use the notion of a stream sketch or
summary. A sketch is a data structure plus accompanying algorithms that read
a stream and store sufficient information to be able to answer one or more
predefined queries about the stream. We will view sketches as building blocks
for higher-level learning and mining algorithms on streams. In this light, the
requirement to use little memory is particularly pressing, because the mining
algorithm will often create not a single sketch, but many, for keeping track of
many different statistics on the data simultaneously.

4.1 Setting: Approximation Algorithms

We first fix some notation used throughout the rest of the book. We use E[X]
and Var(X) to denote the expected value and the variance, respectively, of
random variable X. A log without a subscript denotes a logarithm in base 2,
and In denotes a natural logarithm. A function f is O(g) if there is a constant
¢ > 0 such that for every « we have f(x) < ¢- g(x). The cardinality of a set A

36

Chapter 4

is denoted | A|. In pseudocode, < denotes variable assignment, and > starts a
comment line.

In streaming, an ifem is simply an element of a universe of items I without
any relevant inner structure. Set [is potentially very large, which means that
it is unfeasible to use memory proportional to |I|. We will sometimes assume
that storing an element of [takes one unit of memory; this is necessary when 1
is infinite—for instance, the set of real numbers. In other cases we will go into
more detail and count the number of bits required to store an item, which is at
least log |1].

We define a sketching algorithm by giving three operations: an Inif(...)
operation that initializes the data structure, possibly with some parameters
such as the desired approximation or the amount of memory to be used; an
Update(item) operation that will be applied to every item on the stream; and
a Query(...) operation that returns the current value of a function of interest
on the stream read so far (and may or may not have parameters). In general, a
sketch may implement several types of queries.

Many functions that can be computed easily on offline data are impossible
to compute exactly on streams in sublinear memory. For example, computing
the number of distinct items seen requires linear memory in the length of the
stream, in the worst case and large enough item universes. On the other hand,
for many functions there are algorithms that provide approximate solutions
and obtain large gains in memory and time with only a small loss in accuracy,
which is often acceptable in applications. We next introduce some formalism
for discussing approximate computation.

Let f and g be two real-valued functions. We think of g as an approximation
of f. For an accuracy value €, we say that g is

e an absolute or additive e-approximation of f if |f(z) — g(x)| < € for every
input x;

e a relative or multiplicative e-approximation of f if | f(z) — g(z)| < €| f(x)]
for every input z.

Many approximate algorithms on streams are also randomized, meaning that
they have access to a source of random bits or numbers to make their choices.
Their output on a fixed input is not uniquely defined, as it may be different
on different runs. It should therefore be treated as a random variable g that
hopefully is close to the desired f in most places. The definition of (absolute
or relative) (e, d)-approximation is like that of e-approximation as above, but

Streams and Sketches 37

requiring only that the approximation above holds with probability at least 1 —
0 over the runs of the algorithm, rather than in every single run. For example, to
say that the output ¢ of an algorithm is an absolute (0.1,0.01)-approximation
of a desired function f, we require that, for every z, g(x) is within £0.1 of
f(z) at least 99% of the times we run the algorithm. The value 1 — § is usually
called confidence.

This framework is similar to the PAC learning model [146] used to formalize
prediction learning problems, where PAC stands for “probably approximately
correct.” It should be noted that, usually, the approximation guarantees only
hold when the updates and queries made do not depend on the answers returned
by previous queries. That is, we cannot apply these guarantees for adaptive
queries, which are common in exploratory data analysis.

In statistics, the traditional way of approximately describing a random vari-
able X is by giving its expected value E[X] and its variance Var(X). Suppose
we have a randomized algorithm g that approximates a desired function f, in
the sense that E[g(x)] = f(x) with some variance Var(g) = 2. In that case,
we can design, on the basis of g, another algorithm h that approximates f
in the seemingly stricter sense of (¢, §)-approximation. The new algorithm h
takes any € and J as parameters, in addition to x, and uses O((0%/€?)In(1/6))
times the memory and running time of f. As we might expect, it uses more
resources as more accuracy and more confidence are required. The details of
the conversion are given in section 4.9.2, but we describe next the main ingre-
dient, as it is ubiquitous in stream algorithmics and stream mining.

4.2 Concentration Inequalities

While processing a stream, algorithms often need to make decisions based
on the information they have seen, such as deciding the value to output or
choosing among some finite number of options. If a decision has to be made
around accumulated statistics, then a useful tool would be a method to establish
the likelihood of an undesired event occurring. In other words, one could ask
the question: If I make a decision at this point in time about the model I am
constructing, what is the chance that I will be wrong in the long run? Such
decision-making leans heavily on concentration inequalities.

Inequalities stating that random variables are concentrated around the
mean with high probability are known as concentration inequalities or large-
deviation bounds. They can also be regarded as providing confidence bounds

38

Chapter 4

for the variables. An example is the law of large numbers of classical probabil-
ity theory, or the three-sigma rule, which states that for a normal distribution
nearly all (99.73%) of the probability mass lies within three standard devia-
tions of the mean.

The most basic concentration inequality is Markov’s inequality, which states
that for any nonnegative random variable X, and ¢t > 0,

Pr[X > t] <E[z]/t.

Chebyshev’s inequality is an application of Markov’s inequality and states
that for any nonnegative random variable X, and ¢ > 0,

Pr[X — E[X] > t] < Var[X]/t?.

Often, we want to estimate E[X] by averaging several copies of X. Aver-
ages, a special kind of random variable, converge to their expectation much
faster than stated by Chebyshev’s inequality, as the number of copies grows.
For any n, define X = (3_7"_, X;) /n where X1,..., X,, are independent vari-
ables taking values in [0, 1] with E[X] = p. Then:

1. Chernoff’s bound: For all € € (0,1),
Pr[|X —p| > ep] < 2exp (—€*pn/3).
2. Hoeffding’s bound: For all € > 0,
Pr[|X —p| > €] < 2exp (—2€%n).

3. The normal approximation: If in a draw of Xi,..., X, we
obtain X = p, then |p — p| > ¢ happens with probability about 2(1 —
D(ey/n/(p(1 —p)))), where ®(z) is the probability that a normally dis-
tributed variable with average 0 and standard deviation 1 is less than z.
The function ®(z) equals (1 + erf(z/v/2)), where erf is the error func-
tion available in most programming languages.

We can apply the bounds in the reverse direction and derive a formula
relating the deviation from the mean and its probability. For example, if
€ = +/log(2/6)/2n, Hoeffding’s bound gives Pr[|X —p| > €] < 4. This is
useful for obtaining additive (e, d)-approximations. Chernoff’s bound gives
multiplicative approximations instead, but has the disadvantage that the bound
mentions p = E[X], the unknown value that we want to estimate; also, it
applies only to € < 1.

Streams and Sketches 39

The normal approximation is based on the fact that, as n tends to infin-
ity, the variable n.X tends to a normal with mean pn and standard devia-
tion at most /p(1 — p)n; notice that 0/1-valued or Bernoulli variables are the
worst case and lead to this variance exactly. It is not completely rigorous, both
because n is finite and because it permutes the roles of p and p. However, folk-
lore says that the approximation is correct enough for all practical purposes
when pn and (1 — p)n are larger than about 30, and tighter than Hoeffding’s
and Chernoff’s bounds, which require larger n to reach the same uncertainty e.
It is thus preferable in most practical settings, except when we are interested
in proving rigorous theorems about the performance of algorithms.

Many more inequalities are known. For example, Bernstein’s inequality gen-
eralizes both Chernoff’s and Hoeffding’s (up to constant factors) using the
variance of the variables X;. McDiarmid’s inequality applies to functions of
the X;s other than the sum, as long as no single X; determines the function
too much. Other inequalities relax the condition that the X;s are fully indepen-
dent. There are also approximate bounds other than the normal one, such as
the Agresti-Coull bound, which is better for values of p close to 0 or to 1 and
small n.

In the following sections, we will consider these problems in detail:

e Sampling

e Counting items and distinct items

e Frequency problems

e Counting within a sliding window

e Merging sketches computed distributedly

For readability, some technical details and references are deferred to sec-
tion 4.9.

4.3 Sampling

Sampling is an obvious approach to dealing with streams: for each item in the
stream, process it with probability «, and ignore it with probability 1 — a.
For many tasks, including many in learning and data mining contexts, we
can obtain quite good approximations while reducing computational cost by
computing the function on the fraction « of sampled elements. But be warned
that sampling is not a universal solution, as it does perform poorly in some

40

Chapter 4

tasks. For example, for the problem of estimating the number of distinct ele-
ments, rare elements may be missed entirely and their numbers are typically
underestimated.

Often, we want to reduce the number of items to be processed, yet maintain
a representative sample of the stream of a given size k. Reservoir sampling,
due to Vitter [240], is a simple and efficient technique for achieving this. It is
presented in figure 4.1.

RESERVOIR SAMPLING
1 Init(k):

2 create a reservoir (array[0. ..k — 1]) of up to k items
3 fill the reservoir with the first £ items in the stream
4 t< k > t counts the number of items seen so far
5 Update(x):
6 select a random number r between 0 and ¢ — 1
7 ifr <k
8 replace the rth item in the reservoir with item x
9 t—t+1

10 Query():

11 return the current reservoir

Figure 4.1

The RESERVOIR SAMPLING sketch.

Reservoir sampling has the property that no matter how many stream ele-
ments ¢ have been read so far, each of them is currently in the reservoir with
the same probability, k/¢. That is, it is equally biased toward early elements
and late elements. To see that this is true, use induction on ¢. It is clearly true
after the first ¢ steps, for ¢ < k. Ata later time ¢ > k, the probability that the ¢th
item in the stream is in the reservoir is k/t because it is added with that prob-
ability. For item number ¢ (with ¢ < t) to be in the reservoir, (1) it must hap-
pen that it was in the reservoir at time ¢ — 1, which inductively happens with
probability k/(¢t — 1), and (2) it must not happen that the ¢th item is selected
(probability k/t) and that it is placed in the position of the reservoir where the
ith item is (probability 1/k). All this occurs, as desired, with probability

k k1 ko t—1 k
(1=t)= -
t—1 t k t—1 t t

Streams and Sketches 41

A variant called skip counting is better when the time for processing one
item exceeds the arrival time between items. The idea is to randomly choose
at time ¢ the index t’ > ¢ of the next item that will be included in the sample,
and skip all records before it with no computation—in particular, without the
relatively costly random number generation. Rules for randomly choosing ¢/
given t and k can be derived so that the output of this method is probabilisti-
cally identical to that of reservoir sampling [240].

4.4 Counting Total Items

Counting the total number of items seen so far is perhaps the most basic ques-
tion one can imagine on a stream. The trivial solution keeps a standard integer
counter, and has the update operation just increment the counter. Typical pro-
gramming languages implement integers with a fixed number of bits, such as
16, 32, or 64, which is supposed to be at least logt to count up to t.

A more economical solution is Morris’s approximate counter [183]. It is
a randomized, approximate counter that counts up to t using loglogt bits,
instead of logt. This means that it can count up to 10° with loglog10? =5
bits, and to any practical number of items in 6 bits. The tradeoff is, of course,
that the counting is only approximate.

The initial idea is to use uniform sampling as we have described it before:
fix some probability p that is a power of 2, say 27*. Use an integer counter ¢
as before, but upon receiving an item, increment the counter with probabil-
ity p, and do nothing with probability 1 — p. Now, the expected value of ¢
after ¢ items is pt, so ¢/p should be a good approximation of ¢. The sketch
uses log(pt) = logt — k bits instead of log ¢ bits; for example, with p = 1/8, 3
bits are saved. The returned value will be inaccurate, though, because of the
random fluctuations of ¢ around pt.

Morris’s simple but clever idea is as follows: instead of fixing k a priori and
counting up to 2¥, use c in the place of k. The algorithm is shown in figure 4.2;
observe that it does not mention k.

More precisely, it can be shown [103] that after reading ¢ stream elements
the expected value of 2¢ is ¢ + 1 and its variance is ¢(t — 1)/2. That is, it returns
the right value in expectation, although with a large variance. Only the value
of ¢ needs to be stored, which uses logc ~ loglogt bits, with an additional
copy of c alive only during the Update procedure.

42

Chapter 4

MORRIS’S COUNTER

1 Init():

2 c+0

3 Update(item):

4 increment ¢ with probability 27¢

5 > and do nothing with probability 1 —27¢
6 Query():

7 return 2¢ — 1

Figure 4.2

Morris’s approximate counting algorithm.

We can reduce the variance by running several copies of the algorithm and
taking averages. But in this case, there is an ad-hoc more efficient method.
Intuitively, c is incremented about once every time that ¢ doubles—that is
why we have t o~ 2¢; the sketch is probabilistically placing ¢ in intervals of
the form (2¢,2¢*1). If we replace the 2s in the algorithm with a smaller base
b < 2, intuitively we are increasing the resolution to finer intervals of the form
(b¢,b¢T1). It can be shown [103] that the expected value of b¢ is (b — 1)t + 1
and its variance (b— 1)¢(t — 1)/2. The number of bits required is roughly
log c = loglogt — loglogb. For example, taking b = 1.08, we can count up
to t ~ 10° with 1 byte of memory and standard deviation 0.2¢.

As an example of application, Van Durme and Lall [94] addressed the prob-
lem of estimating the frequencies of k-grams in large textual corpora by using
a variant of Morris’s counter. The number of occurring k-grams may be huge
even for moderate values of k and they have to be kept in RAM for speed, so
it is important to use as few bits as possible for each counter.

4.5 Counting Distinct Elements

A more challenging problem is counting the number of distinct elements
observed in the stream so far (also somewhat incorrectly called unique ele-
ments, perhaps by analogy with the Unix unig command). The difficulty is
that an item may appear only once and another item millions of times, but both
add the same, 1, to the distinct element count.

Streams and Sketches 43

As motivation, consider the problem of counting the number of distinct
flows (source-destination IP address pairs) seen by an Internet link. The num-
ber of potential items is huge: an IPv6 address is 64 bits, so there are 2128 ~
1038 potential items, or address pairs. The direct solution is to keep some asso-
ciative table, such as a hash table, and record the pairs that have actually been
seen. This may quickly become too large for busy links. Fortunately, we can
often trade off approximation quality for memory usage.

4.5.1 Linear Counting

Several methods for distinct element counting are variations of the classical
idea of Bloom filter. As an example, we discuss LINEAR COUNTING, due to
Whang et al. [246], which is presented in figure 4.3.

LINEAR COUNTING
1 Init(D,p):

> D is an upper bound on the number of distinct elements
> p > 0 is a load factor
s« D/p
choose a hash function % from items to {0,...,s — 1}
build a bit vector B of size s

Update(x):
Blh(z)] + 1

Query():
let w be the fraction of Os in B

11 return s - In(1/w)

O 00 1 O Lt &AW N

—
)

Figure 4.3
The LINEAR COUNTING sketch.

Parameter D in the initialization is an upper bound on the number of dis-
tinct elements d in the stream, that is, we assume that d < D. A hash function
between two sets, intuitively, maps every element z in the first set to a “ran-
dom” element in the second set. The technical discussion on what exactly this
means, and how to build “good enough” hash functions that can be stored in
few bits is left for section 4.9.1. Let us say only that hash functions that are ran-
dom enough for our purposes and map {0, ..., m — 1} to itself can be obtained
from O(logm) truly random bits, and stored with O(logm) bits.

44

Chapter 4

Each item present in the stream sets to 1 an entry of table B, the same
one regardless of how many times it occurs. Intuitively, a good hash function
ensures that the distinct items appearing in the stream are uniformly allocated
to the entries of B. Then, the expected value returned by Query is the num-
ber of distinct values seen in the stream plus a tiny bias term, whose standard
deviation is \/Dp(e? — p — 1). For a reasonably large number of distinct ele-
ments (d > /D) this is much smaller than d itself, which means that LINEAR
COUNTING will be pretty accurate in relative terms.

4.5.2 Cohen’s Logarithmic Counter

Cohen’s counter [74] builds on this idea but moves to logarithmic space using
the following observation. The average gap between two consecutive 1s in B
is determined by the number of 1 bits in the stream, and is approximately s/d.
This is true in particular for the first gap, or equivalently for the position of the
first 1. Conveniently, it only takes log s bits to store this first position, because
it is the minimum of the observed values of the hash function. The sketch is
shown in figure 4.4. Cohen’s counter only uses log D bits to store p.

COHEN’S COUNTER
1 Init(D):

2 > D is an upper bound on the number of distinct elements
3 p< D

4 choose a hash function A from items to {0,...,D — 1}

5 Update(x):

6 p < min(p,h(z))

7 Query():

8 return D/p

Figure 4.4
Cohen’s counting algorithm.

It can be shown that the expected value of p is D/d and that the Query
procedure returns d in expectation. Its variance is large, roughly (D/d)?. It can
be reduced by running several copies in parallel and averaging, but this requires
building several independent and “good” hash functions, which is problematic.
An alternative method using a single hash function will be presented as part of
the next sketch.

Streams and Sketches 45

4.5.3 The Flajolet-Martin Counter and HyperLogLog

A series of algorithms starting with the Flajolet-Martin counter [105] and cul-
minating in HyperLogLog [104], achieve relative approximation e with even
fewer bits, O((loglog D)/€?), plus whatever is required to store a hash func-
tion. The intuition of this method is the following: let D be 2¥. Select without
repetition numbers in the range [0,2* — 1] uniformly at random; this is what
we obtain after applying a good hash function to stream items. All these num-
bers can be written with & bits in binary; half of these numbers have O as
the first bit, one-quarter have two leading Os, one-eighth start with 000, and
so on. In general, a leading pattern 0’1 appears with probability 2~(+1), so
if 0’1 is the longest such pattern in the hash values drawn so far, then we
may expect d to be around 2:71. Durand and Flajolet [93], in their improve-
ments of Flajolet-Martin, realized that one only needs to remember k, with
log k = loglog D bits, to keep track of the longest pattern, or largest 7. The
basic Flajolet-Martin probabilistic counter with this improvement is given in
pseudocode in figure 4.5.

PROBABILISTIC COUNTER

1 Init(D):
2 > D is an upper bound on the number of distinct elements
3 L <+ logD
4 choose a hash function % from items to {0,...,L — 1}
5 p<+ L
6 Update(x):
7 let i be such that h(x) in binary starts with 0°1
8 p < min(p,i)
9 Query():
10 return 27 /0.77351
Figure 4.5

The basic Flajolet-Martin probabilistic counter.

The method needs a hash function h that transforms each item into an integer
between 0 and L — 1, as randomly as possible. It was shown in [105] that, if d
distinct items have been read, the expected value of p is log(0.77351 d) and its
standard deviation is 1.12127... The sketch only requires memory to store p,
whose value is at most L = log D, and so requires loglog D bits.

46

Chapter 4

The main drawback of this method is the relatively large error in the esti-
mation, on the order of d. It can be reduced by averaging several copies, as
discussed before. But this has two problems: one, it multiplies the compu-
tation time of the update operation accordingly. Two, obtaining several truly
independent hash functions is hard.

Flajolet and Martin propose instead the technique they call stochastic aver-
aging: Conceptually divide the stream into m = 2° substreams, each one feed-
ing a different copy of the sketch. For each item z, use the first b = logm bits
of h(z) to decide the stream to which z is assigned, and the other m — logm
of bits of h(z) to feed the corresponding sketch. A single hash function can be
used now, because items in different substreams see independent parts of the
same function, and update time is essentially the same as for a single sketch.
Memory use is still multiplied by m.

Different variants of the algorithm differ in how they combine the results
from the m copies into a single estimation.

o Loglog [93] returns the geometric average of their estimations, which is 2
to the arithmetic average of their variables p, times a constant.

e SuperLogLog [93] removes the top 30% of the estimations before doing the
above; this reduces the effect of outliers.

e HyperLogLog, by Flajolet et al. [104], returns instead the harmonic average
of the m estimations, which also smooths out large outliers.

The variants above achieve standard deviations 1.3d/+/m, 1.05d/+/m, and
1.04d/+/m, respectively, and use memory O(mloglogD), plus O(log D)
bits to store a hash function that can be shared among all instances of the
counter. By using Chebyshev’s inequality, we obtain an (e, §)-approximation
provided that m = O(1/(8€%)); note that it is not clear how to apply Hoeff-
ding’s bound because the estimation is not an average. Stated differently, tak-
ing e = O(1/4/m), we achieve relative approximation € for fixed confidence
using O((loglog D)/€?) bits of memory.

In more concrete terms, according to [104], HyperLogLog can approximate
cardinalities up to 10° within, say, 2% using just 1.5 kilobytes of memory. A
discussion of practical implementations of HyperLoglog for large applications
can be found in [134].

Streams and Sketches 47

4.5.4 An Application: Computing Distance Functions in Graphs

Let us mention a nonstreaming application of the Flajolet-Martin counter, to
illustrate that streaming algorithms can sometimes be used to improve time or
memory efficiency in nonstreaming problems.

Boldi et al. [47], improving on [192], proposed the HyperANF counter,
which uses HyperLoglog to approximate the neighborhood function N of
graphs. For a node v and distance d, N (v, d) is defined as the number of nodes
reachable from node v by paths of length at most d. The probabilistic counter
allows for a memory-efficient, approximate calculation of N(.,d) given the
values of N(.,d — 1), and one sequential pass over the edges of the graph in
the arbitrary order in which they are stored in disk, that is, with no expensive
disk random accesses.

We give the intuition of how to achieve this. The first key observation is
that a vertex is reachable from v by a path of length at most d if it is either
reachable from v by a path of length at most d — 1, or reachable by a path of
length at most d — 1 from a vertex w such that (v,u) is an edge. The second
key observation is that HyperLoglLog counters are mergeable, a concept we
will explore in section 4.8. It means that, given two HyperLogLog counters
H 4 and H g that result from processing two streams A and B, there is a way
to obtain a new HyperLogLog counter merge(H 4, Hp) identical to the one
that would be obtained by processing the concatenation of C' of A and B. That
is, it contains the number of distinct items in C'. Then, suppose inductively
that we have computed for each vertex v a HyperLogLog counter H;_1(v)
that (approximately) counts the number of vertices at distance at most d — 1
from v, or in other words, approximates N (v,d — 1). Then compute Hy(v) as
follows:

1. Hd(’l)) — del(v).
2. For each edge (v, u) (in arbitrary order) do

Hq(v) = merge(Hq(v), Hqg—1(u)).

Using the first key observation above, it is clear that H,(v) equals N (v,d)
if the counts are exact; errors due to approximations might in principle accu-
mulate and amplify as we increase d, but experiments in [47] do not show
this effect. We can discard the H;_; counters once the H,; are computed, and
reuse the space they used. Thus we can approximate neighborhood functions
up to distance d with d sequential scans of the edge database and memory
O(nloglogn).

48

Chapter 4

Using this idea and a good number of clever optimizations, Backstrom et
al. [21] were able to address the estimation of distances in the Facebook graph,
the graph where nodes are Facebook users and edges their direct friendship
relationships. The graph had 721 million users and 69 billion links. Remark-
ably, their computation of the average distance between users ran in a few
hours on a single machine, and resulted in average distance 4.74, correspond-
ing to 3.74 intermediaries or “degrees of separation.” Informally, this confirms
the celebrated experiment by S. Milgram in the 1960s [177], with physical let-
ters and the postal service, hinting that most people in the world were at the
time no more than six degrees of separation apart from each other.

A unified view of sketches for distance-related queries in massive graphs is
presented in [75].

4.5.5 Discussion: Log vs. Linear

More details on algorithms for finding distinct elements can be found in [176],
which also provides empirical evaluations. It focuses on the question of when
it is worth using the relatively sophisticated sublinear sketches rather than
simple linear counting. The conclusion is that linear sketches are preferable
when extremely high accuracy, say below € = 1074, is required. Logarithmic
sketches typically require O(1/€2) space for multiplicative error €, which may
indeed be large for high accuracies.

In data mining and ML applications, relatively large approximation errors
are often acceptable, say within € = 10~1, because the model mined is the
combination of many statistics, none of which is too crucial by itself, and
because anyway data is viewed as a random sample of reality. Thus, loga-
rithmic space sketches may be an attractive option.

Also worthy of mention is that [144] gives a more involved, asymptoti-
cally optimal algorithm for counting distinct elements, using O(e~2 + log d)
bits, that is, removing the log log d factor in HyperLogLog. HyperLogLog still
seems to be faster and smaller for practical purposes.

4.6 Frequency Problems

In many cases, we do not simply want to count all items in a stream, but sepa-
rately count different types of items in the stream. Estimating the frequencies
of all items is impossible to do in general in sublinear memory, but often it
suffices to have approximate counts for the most frequent items.

Streams and Sketches 49

For an initial segment of length ¢ of a stream, the absolute frequency of an
item z is the number of times it has appeared in the segment, and its relative
frequency is the absolute frequency divided by ¢. We will mostly consider the
following formulation of the problem:

The heavy hitter problem. Given a threshold ¢ and access to a stream, after
reading any number of items from the stream, produce the set of heavy hitters,
all items whose relative frequency exceeds e.

This problem is closely related to that of computing iceberg queries [97] in
the database area. A basic observation is that there can be at most 1/¢ items
having relative frequency above €; otherwise relative frequencies add to more
than 1, which is impossible.

A first approximation to the heavy hitter problem is to use sampling; for
example, use reservoir sampling to draw a uniform sample from the stream,
and at all times declare that the frequent elements in the sample are the frequent
elements in the stream. This is a valid algorithm, but the sample size required
to achieve any fixed confidence is proportional to 1/€2. In this section we will
present three algorithms for the heavy hitter problem, each with its own strong
points. The first is deterministic and based on counters; the other two are based
on hashing.

The surveys [80, 164] discuss and evaluate the algorithms we are going to
present, and several others.

In this section we measure memory in words, assuming that an item, integer,
pointer, and such simple variables fit in one memory word.

4.6.1 The SPACESAVING Sketch

Counter-based algorithms are historically evolutions of a method by Boyer and
Moore [50] to find a majority element (one with frequency at least 1/2) when it
exists. An improvement of this method was independently discovered by Misra
and Gries [179], Demaine et al. [86], and Karp et al. [145]. Usually called
FREQUENT now, this method finds a list of elements guaranteed to contain all
e—heavy hitters with memory O(1/¢) only.

A drawback of FREQUENT is that it provides the heavy hitters but no
reliable estimates of their frequencies, which are often important to have.
Other counter-based sketches that do provide approximations of the frequen-
cies include Lossy Counting and Sticky Sampling, both due Manku and Mot-
wani [165, 166], and Space Saving, due to Metwally et al. [175]. We describe
Space Saving, reported in [80, 161, 164] to have the best performance among

50

Chapter 4

several heavy hitter algorithms. Additionally, it is simple and has intuitive rig-
orous guarantees on the quality of approximation.

Figure 4.6 shows the pseudocode of SPACESAVING. It maintains in memory
a set of at most k pairs (item, count), initialized with the first £ distinct elements
and their counts. When a new stream item arrives, if the item already has an
entry in the set, its count is incremented. If not, this item replaces the item
with the lowest count, which is then incremented by 1. The nonintuitive part
is that this item inherits the counts of the element it evicts, even if this is its
first occurrence. However, as the following claims show, the error is never too
large, and can neither make a rare element look too frequent nor a true heavy
hitter look too infrequent.

SPACESAVING
1 Init(k):
2 create an empty set S of pairs (item,count) able to hold up to k pairs
3 Update(x):
4 if item x is in S
5 increase its count by 1
6 else if S contains less than & entries
7 add (z,1)to S
8 else
9 let (y, count) be an entry in .S with lowest count
10 replace the entry (y, count) with (z, count + 1) in S
11 Query():
12 return the list of pairs (z, count(x)) currently in S
Figure 4.6

The SPACESAVING sketch.

Let f; . be the absolute frequency of item = among the first ¢ stream ele-
ments, and if z is in the sketch at time ¢, let count,(x) be its associated count;
we omit the subindex ¢ when it is clear from the context. The following are
true for every item x and at all times ¢:

1. The value of the smallest counter min is at most ¢/k.
2. Ifx € S, then f, < min.
3. Ifx € S, then f, < count(z) < f + min.

Streams and Sketches 51

(1) and (2) imply that every = with frequency above ¢/k is in S, that is, the
sketch contains all (1/k)-heavy hitters. (3) says that the counts for elements
in S do not underestimate the true frequencies and do not overestimate them by
more than ¢/k. The value ¢/k can be seen as the minimum resolution: counts
are good approximations only for frequencies substantially larger than ¢/k,
and an item with frequency 1 may have just made it into the sketch and have
associated count up to ¢/k.

The Stream-Summary data structure proposed in [175] implements the
sketch, ensuring amortized constant time per update. For every count value ¢
present in the sketch, a bucket is created that contains ¢ and a pointer to a dou-
bly linked list of all the items having count c. Buckets are kept in a doubly
linked list, sorted by their values c. The nodes in the linked lists of items all
contain a pointer to their parent bucket, and there is a hash table that, given an
item, provides a pointer to the node that contains it. The details are left as an
exercise.

All in all, taking k = [1/€], SPACESAVING finds all e-heavy hitters, with
an approximation of their frequencies that is correct up to ¢, using O(1/¢)
memory words and constant amortized time.

SPACESAVING, FREQUENT, Lossy Counting, and Sticky Sampling are all
deterministic algorithms; they do not use hash functions or randomization,
except perhaps inside the hash table used for searching the set. It is easy to
adapt SPACESAVING to updates of the form (z, ¢), where z is an item, ¢ any
positive weight, and the pair stands for the assignment f, < f, + ¢, with no
significant impact on memory or update time. But it cannot simulate item dele-
tions or, equivalently, updates with negative weights.

4.6.2 The CM-Sketch Algorithm

The Count-Min sketch or CM-sketch is due to Cormode and Muthukrish-
nan [81] and can be used to solve several problems related to item frequen-
cies, among them the heavy hitter problem. Unlike FREQUENT and SPACE-
SAVING, it is probabilistic and uses random hash functions extensively. More
importantly for some applications, it can deal with updates having positive and
negative weights, in particular, with item additions and subtractions.

We first describe what the sketch achieves, then its implementation. We con-
sider streams with elements of the form (x, ¢) where x is an item, c any positive
or negative weight update to f,. We use F to denote the total weight > f; at
a given time.

52

Chapter 4
hi(j) h3(j) h2(j) ho(s)
3 /—) +c
2 / PR
= +c
0 TT——b +c
Figure 4.7

Example CM-sketch structure of width 7 and depth 4, corresponding to € = 0.4 and 6 = 0.02.

The CM-sketch creation function takes two parameters, the width w and the
depth d. Its update function receives a pair (z,c) as above. Its Query func-
tion takes as parameter an item x, and returns a value fm that satisfies, with
probability 1 — 4, that

fo < fo<foteF (4.1)

provided w > [e/€] and d > [In(1/§)]. This holds at any time, no matter how
many items have been added and then deleted before.

We assume from now on that F' > 0 for the inequality above to make sense,
that is, the negative weights are smaller than the positive weight. Like in
SPACESAVING, this means that fz is a reasonable approximation of f, for
heavy items, that is, items whose weight is a noticeable fraction of F'. Addi-
tionally, the memory used by the algorithm is approximately wd counters or
accumulators. In summary, values f, are approximated within an additive fac-
tor of € with probability 1 — ¢ using O(In(1/4)/€) memory words.

Let us now describe the implementation of the sketch. A CM-sketch with
parameters w, d consists of a two-dimensional array of counters with d rows
and w columns, together with d independent hash functions hy, ..., hg—1 map-
ping items to the interval [0. .. w — 1]. Figure 4.7 shows an example of the CM-
sketch structure for d = 4 and w = 7, and figure 4.8 shows the pseudocode of
the algorithm.

It can be seen that both Update and Query operations perform O(d) opera-
tions. We do not formally prove the approximation bounds in inequality (4.1),
but we provide some intuition of why they hold. Observe first that for a row @
and column j, A[é,j] contains the sum of the weights in the stream of all

Streams and Sketches 53

CM-SKETCH

1 Init(w, d):

2 create a d X w array of counters A, all initialized to 0

3 choose d hash functions hy, ..., h4—1 from items to {0,...,w — 1}
4 Update(z,c):

5 fori«+0...d—1

7 Query(x):

8 return min{A[i, h;(z)]: i =0...d—1}

Figure 4.8

The CM-SKETCH algorithm.

items x such that h;(x) = j. This alone ensures that f, < A[i, h;(z)] and
therefore that f, < Query(x). But A[i, h;(z)] may overestimate f, if there
are other items y that happen to be mapped to the same cell of that row, that
is h;(z) = h;(y). The total weight to be distributed among the w cells in the
row is F, so the expected weight falling on any particular cell is F'/w. One
can show that it is unlikely that any cell receives much more than this expected
value. Intuitively, this may happen if a particularly heavy item is mapped in the
cell, but the number of heavy items is limited, so this happens rarely; or else if
too many light items are mapped to the cell, but this is also unlikely because
the hash function places items more or less uniformly among all w cells in the
row. Markov’s inequality is central in the proof.

Returning to the heavy hitter problem, the CM-sketch provides a reasonable
approximation of the frequency of elements that are heavy hitters, but there is
no obvious way to locate them from the data structure. A brute-force search
that calls Query(x) for all possible z is unfeasible for large item universes.
The solution uses an efficient implementation of so-called Range-Sum queries,
which are of independent interest in many situations.

A Range-Sum query is defined on sets of items that can be identified with
integers in {1,...,|I|}. The range-sum query with parameters [x,y]| returns
fo+ fog1+ -+ fy—1 + fy. As an example, consider a router handling pack-
ets destined to IP addresses. A range-sum query for the router could be “How
many packets directed to IPv4 addresses in the range 172.16.aaa.bbb have you

54

Chapter 4

seen?” We expect to solve this query faster than iterating over the 26 addresses
in the range.

Range-sum queries can be implemented using CM-sketches as follows:
Let |I| = 2" be the number of potential items. For every power of two 2¢,
0 < i < n, create a CM-sketch C; that range-sums items in intervals of size 20,
More precisely, Query(j) to C; will return the total count of items in the inter-
val [j2¢...(j 4+ 1)2¢ — 1]. Alternatively, we can imagine that at level i each
item x belongs to the “superitem” z mod 2", In particular, Cyy stores indi-
vidual item counts and C,, the sum of all counts. Then we can answer the
range-sum query (x,y) to C;, for 2 and y in the same interval of size 2¢, with
the following recursion: If = and y fall in the same interval of size 2i—1 we
query (z,y) to C;_1 and return its answer. If, on the other hand, there is some j
such that x < 52/~ <y (that is, = and y do not belong to the same inter-
val of size 2¢~1), we ask the range-sum queries (x, 2!~ — 1) and (52", y)
to C;_1, and then return the sum of the answers. Sketch Cj is the base of the
recursion.

Now, the heavy hitter problem with parameter k£ can be solved by exploring
the set of intervals [j2¢, (j + 1)2¢ — 1] by depth. If the weight of the interval is
below F'/k, no leaf below it can be a heavy hitter, so the empty list is returned.
Otherwise, it is divided into two equal-size intervals that are explored sepa-
rately, and the lists returned are concatenated. When a leaf is reached, it is
returned if and only if it is a heavy hitter, that is, its weight is F'/k or more.
Also, at each level of the tree there can be at most k nodes of weight F'/k or
more, so at most k log |I| nodes of the tree are explored. All in all, heavy hitters
are found using O((log |I|)In(1/6)/€) memory words.

As already mentioned, the CM-sketch can be used for solving several
other problems on streams efficiently [81], including quantile computations,
item frequency histograms, correlation, and the inner product of two streams.
For the case of quantile computation, however, the specialized sketch Fru-
galStreaming [163] is considered the state of the art. We will describe
another quantile summary in section 6.4.3 when describing the management
of numeric attributes in classification problems.

4.6.3 CountSketch

The COUNTSKETCH algorithm was proposed by Charikar et al. [64]. Like
CM-SKETCH, it supports updates with both positive and negative weights. It

Streams and Sketches 55

uses memory O(1/€2), but it finds the so-called Fr—heavy hitters, which is an
interesting superset of the regular heavy hitters, or F;—heavy hitters.

The I, norm of a stream is defined as) |, f2.ltem x is an Fr-heavy hitter
with threshold € if f, > e/F5. Some easy algebra shows that every F;—heavy
hitter is also an Fh—heavy hitter.

In its simplest form, COUNTSKETCH can be described as follows. It chooses
two hash functions. Function & maps items to a set of w buckets {0,...,w —
1}. Function ¢ maps items to {—1,+1}. Both are assumed to be random
enough. In particular, an important property of ¢ is that for different = and
y, o(x) and o(y) are independent, which means that Pr[o(z) = o(y)] = 1/2,
which means that E[o(x) - o(y)] = 0.

The algorithm keeps an array A of w accumulators, initialized to 0. For
every pair (z,c) in the stream, it adds to A[h(x)] the value o(x) - c. Note that
updates for a given z are either all added or all subtracted, depending on o (x).
When asked to provide an estimation of f,, the algorithm returns Query(z) =
o(z) - Alh(zx)]. This estimation would be exact if no other item y was mapped
to the same cell of A as x, but this is rarely the case. Still, one can prove that
the expectation over random choices of the hash functions is the correct one.
Indeed:

E[Query(z)] = E[o(x) - Z o) fy]
y:h(y)=h(z)
—Elo@)’f]+ Y. o@owfy]=fo

y:h(y)=h(z),y#

because, as mentioned, E[o(z)o(y)] =0 for z # y, and o(x)? = 1. Similar
algebra shows that Var(Query(z)) < Fy/w.

Now we can use a strategy like the one described in section 4.9.2 to improve
first accuracy, then confidence: take the average of w = 12/(5¢?) independent
copies; by Chebyshev’s inequality, this estimates each frequency with additive
error €/2 - /F; and probability 5/6. Then do this d = O(In(1/4)) times inde-
pendently and return the median of the results; Hoeffding’s inequality shows
(see exercise 4.9) that this lifts the confidence to 1 — §. Therefore, the set of
«’s such that Query(z) > €/2 - \/F; contains each Fy-heavy hitter with high
probability. Note that, unlike in CM-SKETCH and SPACESAVING, there may
be false negatives besides false positives, because the median rather than the
min is used. Memory use is O(In(1/3)/€*) words.

At this point, we can view the d copies of the basic algorithm as a
single algorithm that resembles CM-SKETCH: it chooses hash functions

56

Chapter 4

ho,-.-,h4g—1, 00,...,04—1, and maintains an array A with d rows and w
columns. The pseudocode is shown in figure 4.9. To recover the heavy hit-
ters efficiently, COUNTSKETCH also maintains a heap of the most frequent
elements seen so far on the basis of the estimated weights.

COUNTSKETCH
1 Init(w,d):
2 create a d X w array of counters A, all initialized to 0
3 choose d hash functions hq, ..., h4—1 from items to {0, ..., w — 1}
4 choose d hash functions oy, ..., 041 from items to {—1,+1}
5 create an empty heap
6 Update(z,c):
7 fori«+0...d—1
8 Ali, hi(2)] < Ali, hi(z)] +0(i) - ¢
9 if z is in the heap, increment its count there by ¢
10 else if Query(y) < Query(x) where y has smallest weight in the heap
11 remove y from the heap and add (z, ¢) to the heap
12 Query(x):
13 return median{ A[¢, h;(x)] : 1 =0...d — 1}
Figure 4.9

The COUNTSKETCH algorithm.

Improvements of COUNTSKETCH are presented in [51, 249].

As a brief summary of the heavy hitter methods, and following [164], if
an application is strictly limited to discovering frequent items, counter-based
techniques such as Lossy Counting or Space Saving are probably preferable
in time, memory, and accuracy, and are easier to implement. For example,
COUNTSKETCH and CM-SKETCH were found to be less stable and perform
worse for some parameter ranges. On the other hand, hash-based methods are
the only alternative to support negative item weights, and provide useful infor-
mation besides simply the heavy hitters.

4.6.4 Moment Computation

Frequency moments are a generalization of item frequency that give different
information on the distribution of items in the stream. The pth moment of a

Streams and Sketches 57

stream where each item x has absolute frequency f, is defined as
By =) 7.
x

Observe that Fj is the length of the stream and that Fj is the number of
distinct items it contains (if we take 0° to be 0, and f° = 1 for any other f). Fy
is of particular interest, as it can be used to compute the variance of the items
in the stream. The limit case is F, defined as

= i /p —
Foo pli)H;O(FP) mwa'xfa:

or, in words, the frequency of the most frequent element.

Alon et al. [14] started the study of streaming algorithms for computing
approximations of frequency moments. Their sketch for p > 2 (known as the
Alon-Matias-Szegedy or AMS sketch) uses a technique similar to the one in
CM-SKETCH: take hash functions that map each item to {—1,+1}, use them
to build an unbiased estimator of the moment with high variance, then average
and take medians of several copies to produce an arbitrarily accurate estima-
tion.

Their work already indicated that there was an abrupt difference in the mem-
ory requirements for computing F}, for p < 2 and for p > 2. After a long series
of papers it was shown in [141] that, considering relative approximations,

e for p <2, F, can be approximated in a data stream using O(e~?(logt +
logm)In(1/4)) bits of memory, and

e for p>2, F, can be approximated in a data stream using
O(e2t'=2/P1n(1/6)) bits,

up to logarithmic factors, where ¢ is the length of the stream and m = |I| is the
size of the set of items. Furthermore, memory of that order is in fact necessary
for every p other than 0 and 1. Later work has essentially removed the loga-
rithmic gaps as well. In particular, for F%, or the maximum frequency, linear
memory in the length of the stream is required. Observe that for the special
cases p =0 and p = 1 we have given algorithms using memory O(loglogt)
rather than O(logt) in previous sections.

4.7 Exponential Histograms for Sliding Windows

Often, more recent items in the stream should be considered more important
for analysis. We will model this idea in several ways in chapter 5, but here we

58

Chapter 4

consider the simplest model, the sliding window: At all times, we only consider
relevant the last W items received, where W is the window size; all previous
items are irrelevant. Alternatively, we fix a time duration 7" (such as one week,
one hour, or one minute) and consider only the items that have arrived within
time 7" from now. We will consider mostly the first model, but adaptation to
the second is easy.

Consider the problem of maintaining the sum of the last W values in a
stream of real numbers. The natural solution is to use a circular buffer of
size W; every arriving element is added to the sum; it evicts the oldest element
from the buffer, which is subtracted from the sum. The scheme has constant
update time, but uses memory W. In fact, one can show that any streaming
algorithm that exactly solves this problem must use memory at least 1.

We will see next a method for maintaining an approximate value of the sum
storing only O(log W) values. The Exponential Histogram sketch by Datar et
al. [83] maintains approximations of aggregate functions on sliding windows
of real numbers. We describe in detail only the case in which the aggregate
function is the sum and the items are bits.

The sketch partitions the length-W window into a sequence of subwindows,
and represents each subwindow by a bucket. Intuitively, buckets encode the
desired window of size W where older 1s are represented with less and less
resolution. Each bucket has a capacity, which is a power of 2, and represents a
subwindow containing as many 1s as its capacity. It contains an integer value,
the timestamp, which is the timestamp of the most recent 1 in the subwindow it
represents. For a parameter k£ > 1, there are k buckets of capacity 1, delimited
by the most recent k 1s, k buckets of capacity 2, k buckets of capacity 4, and
so on, up to k buckets of capacity 2", where m is the smallest value ensuring
that there are enough buckets to hold W items, that is,

m—1

kZQi<W§kzm:2i.
=0 =0

Observe that m ~ log(W/k), and so there are km ~ klog(W/k) buckets.

The pseudocode of the method is given in figure 4.11 and an example of a
sliding window split into buckets is given in figure 4.10. The example shows
the partition of the last 29 bits of a stream into 6 buckets at some time ¢,
with & = 2. Each bucket contains as many 1s as its capacity. The most recent
bit is on the right, with timestamp t. The least recent bit is on the left, with
timestamp ¢ — 28. The timestamp of each bucket is the timestamp of its most
recent 1. If the desired sliding window size W is 25, the true count of 1s within

Streams and Sketches 59

the most recent W bits is 11, as there are 11 1s with timestamps between ¢t — 24
and t. The sketch will report the sum of the window to be 12: the total num-
ber of 1s in the buckets (14), minus half the capacity of the oldest bucket (2).
Therefore the relative error is (12 — 11)/11 ~ 9%.

Bucket: [1011100] [10100101] [100010]
Capacity: 4 4 2 2 1 1
Timestamp: ¢t —24 t—14 t—9 t—-6 t—5 t—3

Figure 4.10
Partitioning a stream of 29 bits into buckets, with & = 2. Most recent bits are to the right.

EXPONENTIAL HISTOGRAMS

1 Init(k,W):
2 t«0
3 create a list of empty buckets
4 Update(b):
5 t+t+1
6 if b=1 > do nothing with Os
7 let ¢ be the current time
8 create a bucket of capacity 1 and timestamp ¢
9 10
10 while there are more than k buckets of capacity 2¢
11 merge the two oldest buckets of capacity 2% into a
12 bucket of capacity 2¢+!: the timestamp of the new bucket
13 is the largest (most recent) of their two timestamps
14 t+—1+1
15 remove all buckets whose timestamp is <t — W
16 Query():
17 return the sum of the capacities of all existing buckets
18 minus half the capacity of the oldest bucket
Figure 4.11

The EXPONENTIAL HISTOGRAMS sketch.

The error in the approximation is introduced only by the oldest bucket. It
must contain at least one 1 with timestamp greater than ¢ — W, otherwise it
would have been dropped, but possibly also up to 2" — 1 1s whose timestamp

60

Chapter 4

is at most ¢ — W and that should not be counted by an exact method. The
relative error is therefore at most half the capacity of the oldest bucket over
the capacity of all buckets. Since, after some transient, there are either £ — 1
or k buckets of each size except the largest one, the relative error is at most
(2m/2)/(2™ + (k—1)(2™ L+ 4+ 1)) ~ 1/2k.

If the desired approximation rate is €, it suffices to set kK = 1/2¢. The number
of buckets is then (log W) /2e. Each bucket contains a timestamp, which is in
principle an unbounded number. However, we can reduce the timestamps to
the interval 0...W — 1 by counting mod W, so a timestamp has log W bits,
giving a total of O((logW)?/e) bits of memory. Update time is O(log W)
in the worst case if the cascade of bucket updates affects all buckets, but this
happens rarely; amortized time is O(1). A variant of exponential histograms
called deterministic waves achieves worst-case O(1) time [122].

The sketch can be adapted to work for nonnegative numbers in a range
[0, B] multiplying memory by log B, and also to maintain approximations of
other aggregates such as variance, maximum, minimum, number of distinct
elements, and histograms [83].

4.8 Distributed Sketching: Mergeability

Most of the sketches discussed so far have the property called mergeabil-
ity, which makes them appropriate for distributed computation. We say that
a sketch type is mergeable if two sketches built from data streams D7 and Do
can be combined efficiently into another sketch of the same type that can cor-
rectly answer queries about interleavings of D1 and Ds. Note that in problems
that only depend on item frequencies, the answer is the same for all interleav-
ings of the streams. For other problems, the definition of mergeability can be
more complex.

As a simple example, consider a “sketch” consisting of an integer that counts
the number of items in the stream. Now we build two such sketches from two
streams. If we add their values, the result is—correctly—the number of items
in any stream obtained by merging the original two.

Less trivially, taking the OR is a correct merging operation for Linear Coun-
ters. For Cohen’s and Flajolet-Martin counters and variants, take the mini-
mum of their stored values, componentwise if we use several copies to reduce
the variance. For the CM-sketch, add the two arrays of counters component-
wise. In these cases, the two sketches to be merged must use the same hash

Streams and Sketches 61

functions. The cases of SPACESAVING and EXPONENTIAL HISTOGRAMS are
left for the exercises.

Mergeability allows for distributed processing as follows: suppose we
have k different computing nodes, each receiving a different stream—or equiv-
alently some fraction of a large, distributed stream. A central node that wants
to build a sketch for this large implicit stream can periodically request the k
nodes to send their sketches, and merge them into its own global sketch.

For Morris’s counter, Cohen (section 7 of [75]) presents a merging method;
it is not as trivial as the ones above, particularly the correctness analysis.

4.9 Some Technical Discussions and Additional Material

4.9.1 Hash Functions

For several sketches we have assumed the existence of hash functions that
randomly map a set of items [to a set B. Strictly speaking, a fully independent
hash function h should be such that the value of h on some value x cannot be
guessed with any advantage given the values of h on the rest of the elements
of I; formally, for every ¢,

Pr[h(a:z)\h(xl), ey h(l‘i_l), h(.f(:i+1), ceey h(.rm)} = Pr[h(a:z)] = 1/|I|

But it is incorrect to think of i(z;) as generating a new random value each
time it is called—it must always return the same value on the same input. It
is thus random, but reproducibly random. To create such an A we can ran-
domly guess and store the value of h(x;) for each z; € I, but storing h will
use memory proportional to || log | B|, defeating the goal of using memory far
below |I].

Fortunately, in some cases we can show that weaker notions of “random
hash function” suffice. Rather than using a fixed hash function, whenever the
algorithm needs to use a new hash function, it will use a few random bits to
choose one at random from a family of hash functions H. We say that family A
is pairwise independent if for any two distinct values z and y in I and «, 8 in B
we have

Pr(h(z) = a|h(y) = f] = Pr[h(z) = o] = 1/]1],

where the probability is taken over a random choice of h € H. This means that
if we do not know the h chosen within H, and know only one value of h, we
cannot guess any other value of h.

62

Chapter 4

Here is a simple construction of a family of pairwise independent hash func-
tions when |I| is some prime p. View I as the interval [0. .. p — 1]. A function h
in the family is defined by two values a and b in [0...p — 1] and computes
h(z) = (az + b) mod p. Note that one such function is described by a and b,
so with 2log p bits. This family is pairwise independent because given x, y and
the value h(y), for each possible value h(x) there is a unique solution (a, b) to
the system of equations {h(x) = az + b, h(y) = ay + b}, so all values of h(z)
are equally likely. Note however that if we know z, y, h(x), and h(y), we can
solve uniquely for a, b so we know the value h(z) for every other input z. If
|I] is a prime power p®, we can generalize this construction by operating in
the finite field of size pb; be warned that this is not the same as doing arith-
metic modulo p®. We can also choose a prime slightly larger than |I| and get
functions that deviate only marginally from pairwise independence.

Pairwise independent functions suffice for the CM-sketch. Algorithms for
moments require a generalization called 4-wise independence. For other algo-
rithms, such as HyperLogLog, k-wise independence cannot be formally shown
to suffice, to the best of our knowledge. However, although no formal guar-
antee exists, well-known hash functions such as MD5, SHA1, SHA256, and
Murmur3 seem to pose no problem in practice [104, 134]. Theoretical argu-
ments have been proposed in [71] for why simple hash functions may do well
on data structure problems such as sketching.

4.9.2 Creating (¢,)-Approximation Algorithms

Let f be a function to be approximated, and g a randomized algorithm such that
E[g(z)] = f(=) for all z, and Var(g(x)) = 0. Run k independent copies of g,
say gi, - .., gk, and combine their outputs by averaging them, and let /» denote
the result. We have E[h(x)] = f(x) and, by simple properties of the vari-
ance, Var(|f(z) — h(x)|) < Var(f(z) — h(x)) = Var(h(z)) = 02 /k. Then by
Chebyshev’s inequality we have |f(x) — h(x)| > e with probability at most
o2 /(ke?), for every e. This means that A is an (e, §)-approximation of f if we
choose k = 02 /(€26). The memory and update time of h are k times those of g.

A dependence of the form 02 /€2 to achieve accuracy e is necessary in gen-
eral, but the dependence of the form 1/4 can be improved as follows: use the
method above to achieve a fixed confidence, say, (¢, 1/6)-approximation. Then
run ¢ copies of this fixed confidence algorithm and take the median of the
results. Using Hoeffding’s inequality we can show that this new algorithm is

Streams and Sketches 63

an (e, d)-approximation if we take £ = O(In(1/6)); see exercise 4.9. The final
algorithm therefore uses k- ¢ = O((0?/e?) In(1/6)) times the memory and
running time of the original algorithm g.

This transformation is already present in the pioneer paper on moment esti-
mation in streams by Alon et al. [14].

4.9.3 Other Sketching Techniques

The sketches presented in this chapter were chosen for their potential use in
stream mining and learning on data streams. Many other algorithmic prob-
lems on data streams have been proposed, for example solving combinatorial
problems, geometric problems, and graph problems. Also, streaming variants
of deep algorithmic techniques such as wavelets, low-dimensionality embed-
dings, and compressed sensing have been omitted in our presentation. Recent
comprehensive references include [79, 172].

Algorithms for linear-algebraic problems deserve special mention, given
how prominent they are becoming in ML. Advances in online Singular Value
Decomposition ([221] and the more recent [159]) and Principal Component
Analysis [49] are likely to become highly influential in streaming. The book
[248] is an in-depth presentation of sketches for linear algebra; their practi-
cal use in stream mining and learning tasks is a very promising, but largely
unexplored, direction.

4.10 Exercises

Exercise 4.1 We want to estimate the fraction f of items in a stream that
satisfy some boolean property P. We do not have access to the stream itself,
but only to a reservoir sampling of it, of capacity k. Let g be the fraction of
items in the reservoir that satisfy P. Give the accuracy e of the approximation g
to f as a function of k if the desired confidence is 95%. (Hint: use Hoeffding’s
bound.)

Exercise 4.2 Suppose that in Morris’s counter we change the threshold 27¢ to
the exponentially smaller threshold 2-2°. (1) Argue informally that we obtain
an algorithm that can count up to ¢ using memory O(logloglogt). (2) Explain
why this algorithm is not interesting in practice.

64

Chapter 4

Exercise 4.3 Give pseudocode for (or better, implement) the SPACESAVING
algorithm using the Stream Summary data structure outlined in the text.

Exercise 4.4 Complete the proof by induction of the approximation guaran-
tees (1)—(3) given for SPACESAVING.

Exercise 4.5 Give an algorithm for merging two SPACESAVING sketches of
the same size k into a sketch of size &', where k < k' < 2k. Its runtime should
be proportional to k, not to the sum of the counts contained in either of the
sketches.

Exercise 4.6 Give pseudocode for (or better, implement) the range-sum
query algorithm and the heavy hitter algorithm based on CM-SKETCH.

Exercise 4.7 Suppose that we change the Exponential Histograms (for the
worse) as follows: 0 bits are now not ignored, but added to the bucket. A
bucket, besides a timestamp, has a counter m of the 1s it contains (the num-
ber of Os being its capacity minus m). Explain how buckets should be merged,
and argue that querying the sketch returns an additive e-approximation of the
fraction of 1s in the sliding window of size W, instead of a multiplicative one.

Exercise 4.8 Give a procedure to merge two Exponential Histograms for the
sum of two bit streams. The two input sketches and the output sketch must all
have the same window length W and the same parameter k. You can start by
assuming that the sketches are synchronized, that is, they represent windows
with the same set of timestamps. An extension is to do without this assumption.

Exercise 4.9 Complete the proof that the construction of an (e,0d)-
approximation algorithm from any approximation algorithm is correct.

First show the following: suppose that a real-valued random variable X sat-
isfies

Prla < X <b] >5/6.

Streams and Sketches 65

Then the median Z of ¢ independent copies of X, say X7, ..., Xy, satisfies
Prla < Z <b] > 1—2exp(—2¢/9).

To show this, follow these steps:

e For each i </, define an indicator variable Z; as 1 if the event “a < X;”
occurs, and 0 otherwise.

e State the relation between Zle Z; and the event “Z < a.”

o Use Hoeffding’s inequality to bound the probability that Z < a.

e Proceed similarly to bound the probability that Z > b, and conclude the

proof.

Now take k = 602 /€2 and create an algorithm h that averages k copies of the
given approximation algorithm g for f. As shown in the text, h is an (e,1/6)-
approximation algorithm for f. Show that the algorithm that returns the median
of ¢ independent copies of h is an (e, d)-approximation algorithm of f for
¢=19/2-1n(2/6). This gives kl = 2702 /e - In(2/6).

5 Dealing with Change

A central feature of the data stream model is that streams evolve over time, and
algorithms must react to the change. For example, let us consider email spam
classifiers, which decide whether new incoming emails are or are not spam.
As classifiers learn to improve their accuracy, spammers are going to mod-
ify their strategies to build spam messages, trying to fool the classifiers into
believing they are not spam. Customer behavior prediction is another example:
customers, actual or potential, change their preferences as prices rise or fall, as
new products appear and others fall out of fashion, or simply as the time of the
year changes. The predictors in these and other situations need to be adapted,
revised, or replaced as time passes if they are to maintain reasonable accuracy.

In this chapter we will first discuss the notion of change as usually under-
stood in data streaming research, remarking on the differences with other areas
that also consider changing data, then discuss possible types of change, some
measures of performance used in the presence of change, and the general
strategies for designing change-aware algorithms on streams (section 5.1). We
will then consider methods for accurately estimating statistics of evolving data
streams (section 5.2), and methods for detecting and quantifying change (sec-
tion 5.3). We will conclude with some references on time-aware sketches and
change detection in multidimensional streams (section 5.4).

There is a vast literature on change detection in data, and we have prior-
itized methods that are most applicable to data streams, easy to implement,
and computationally light, and in particular those that are available in MOA.
A comprehensive discussion for all types of data is [27], and an up-to-date
discussion for streams is [116]. A framework for experimenting with change
detection and management in MOA is presented in [41].

5.1 Notion of Change in Streams

Let us first discuss the notion of change in streams with respect to notions in
other paradigms, as well as some nuances that appear when carefully defining
change over time.

First, nonstationary distributions of data may also appear in batch data anal-
ysis. Data in batch datasets may also be timestamped and vary statistically over
time. Algorithms may take this possibility into account when drawing conclu-
sions from the data, but otherwise can perform several passes and examine data

68

Chapter 5

from before and after any given recorded time. In streaming, we cannot explic-
itly store all past data to detect or quantify change, and certainly we cannot use
data from the future to make decisions in the present.

Second, there is some similarity to the vast field of time series analysis,
where data also consists of a sequence (or a set of sequences) of timestamped
items. In time series analysis, however, the analysis process is often assumed
to be offline, with batch data, and without the requirements for low memory
and low processing time per item inherent to streams. (Of course, we can also
consider streaming, real-time time series analysis.) More importantly, in time
series analysis the emphasis is often on forecasting the future evolution of the
data. For example, if the average increase in sales has been 1% per month in
the last six months, it is reasonable to predict that sales next month are going to
be 1% higher than this month. In contrast, most of the work in streaming does
not necessarily assume that change occurs in predictable ways, or has trends.
Change may be arbitrary. The task is to build models describing how the world
behaves right now, given what we are observing right now.

Third, the notion of change used in data streaming is different from (or a par-
ticular case of) the more general notion of “dataset shift” described in [182].
Dataset shift occurs whenever training and testing datasets come from differ-
ent distributions. Streaming is one instance of this setting; for example, the
predictive model we have built so far is going to be used to predict data that
will arrive later, which may follow a different distribution. But it also applies
to other situations, for instance where a classifier trained with batch data from
a geographical region is applied to predict data coming from another region.

What do we mean exactly when we say that a data stream changes or
evolves? It cannot mean that the items we observe today are not exactly the
same as those that we observed yesterday. A more reasonable notion is that
statistical properties of the data change more than what can be attributed to
chance fluctuations. To make this idea precise, it helps to assume that the
data is in fact the result of a random process that at each time generates an
item according to a probability distribution that is used at that exact time, and
that may or may not be the same that is used at any other given time. There
is no change when this underlying generating distribution remains stationary.
Change occurs whenever it varies from one time step to the next.

Recall that in the previous chapter we assumed an adversarial model, in
which no randomness was assumed in the stream—only perhaps in the algo-
rithm if it used random bits and numbers. The algorithm had to perform well
even in an adversarially chosen, worst-case input. In contrast, in the randomly

Dealing with Change 69

generated stream model, it makes sense to consider the “average case” per-
formance of an algorithm by averaging over all possible streams according to
their probability under the generating distribution. This notion of a stochastic
data stream is used almost everywhere in the following chapters. For example,
if the stream consists of independently generated bits with 1 having probabil-
ity 1/2, then we expect to have Os and 1s interleaved at random. The unique
n-bit sequence containing n/2 1s first and then n/2 Os has negligible proba-
bility, but could determine the performance of an algorithm in the adversarial
model if it turns out to be its hardest case.

Often, an additional independence assumption is implicitly or explicitly
used: that the item generated at time ¢ is independent of those generated at
previous time steps. In other words, it is common to assume that the process
is Markovian. This is admittedly dubious, or patently false: in many situations
the stream has memory, and experiences bursts of highly correlated events.
For example, a fault in a component of a system is likely to generate a burst of
faults in related components. A more relaxed version of the hypothesis is that
correlations are somehow short-term and that over long enough substreams
the statistics are those of a Markovian process. Designing algorithms that take
such autocorrelations into account is an active area of research.

Although changes in the item distribution may be arbitrary, it helps to name
a few generic types, which are not exclusive within a stream. The naming is
unfortunately not consistent throughout the literature. In fact, change in general
is often called concept drift in the literature; we try to be more precise in the
following.

e Sudden change occurs when the distribution has remained unchanged for a
long time, then changes in a few steps to a significantly different one. It is
often called shift.

e Gradual or incremental change occurs when, for a long time, the distribution
experiences at each time step a tiny, barely noticeable change, but these
accumulated changes become significant over time.

e Change may be global or partial depending on whether it affects all of the
item space or just a part of it. In ML terminology, partial change might affect
only instances of certain forms, or only some of the instance attributes.

e Recurrent concepts occur when distributions that have appeared in the past
tend to reappear later. An example is seasonality, where summer distribu-
tions are similar among themselves and different from winter distributions.
A different example is the distortions in city traffic and public transportation

70

Chapter 5

due to mass events or accidents, which happen at irregular, unpredictable
times.

e In prediction scenarios, we are expected to predict some outcome feature Y

of an item given the values of input features X observed in the item.
Real change occurs when Pr[Y|X] changes, with or without changes in
Pr[X]. Virtual change occurs when Pr[X] changes but Pr[Y|X] remains
unchanged. In other words, in real change the rule used to label instances
changes, while in virtual change the input distribution changes.

We should also distinguish the notions of outliers and noise from that of dis-
tribution change. Distinguishing true change from transient outliers and from
persistent noise is one of the challenges in data stream mining and learning.

All in all, we need to consider the following requirements on data stream
algorithms that build models (e.g., predictors, clusterers, or pattern min-
ers) [116]:

1. Detect change in the stream (and adapt the models, if needed) as soon as
possible.

2. At the same time, be robust to noise and outliers.

3. Operate in less than instance arrival time and sublinear memory (ideally,
some fixed, preset amount of memory).

Change management strategies can be roughly grouped into three families,
or a combination thereof. They can use adaptive estimators for relevant statis-
tics, and then an algorithm that maintains a model in synchrony with these
statistics. Or they can create models that are adapted or rebuilt when a change
detector indicates that change has occurred. Or they can be ensemble methods,
which keep dynamic populations of models. We describe all three approaches
in detail next.

The first strategy relies on the fact that many model builders work by mon-
itoring a set of statistics from the stream and then combining them into a
model. These statistics may be counts, absolute or conditional probabilities,
correlations between attributes, or frequencies of certain patterns, among oth-
ers. Examples of such algorithms are Naive Bayes, which keeps counts of co-
occurrences of attribute values and class values, and the perceptron algorithm,
which updates weights taking into account agreement between attributes and
the outcome to be predicted. This strategy works by having a dynamic estima-
tor for each relevant statistic in a way that reflects its current value, and letting

Dealing with Change 71

Estimator;

Estimators

Estimators

Estimatory

Estimators

input Model builder output

Figure 5.1
Managing change with adaptive estimators. Figure based on [30].

the model builder feed on those estimators. The architecture is presented in
Figure 5.1.

In the second strategy, one or more change detection algorithms run in par-
allel with the main model-building algorithm. When significant change in the
stream is detected, they activate a revision algorithm, which may be different
if the change is abrupt (where a new model may be built from scratch on new
data) or gradual (where recalibration of the current model may be more con-
venient), local (affecting only parts of the model) or global (affecting all of it).
A particular case is when the change is detected by observing the performance
of the model—such as decreasing accuracy of a predictor. The architecture of
this approach is presented in figure 5.2.

The third strategy is based on the idea of an ensemble, used to build complex
classifiers out of simpler ones, covered in chapter 7. A single or several model-
building algorithms are called at different times, perhaps on different subsets of
the data stream. An ensemble manager algorithm contains rules for creating,
erasing, and revising the models in its ensemble, as well as for combining
the predictions of the models into a single prediction. Here, it is mainly the
responsibility of the ensemble manager to detect and react to change, although
the individual models may have this capability as well. The architecture of this
approach is presented in figure 5.3.

72

Chapter 5

Change detector

!

Model builder
input output

4
4

Current model

Figure 5.2
Managing change with explicit change detectors for model revision. Figure based on [30]

The next two sections describe some of the methods required to implement
the strategies above: estimating statistics on varying streams, and detecting
changes.

5.2 Estimators

An estimator algorithm estimates one or several statistics on the input data,
which may change over time. We concentrate on the case in which such a
statistic is (or may be rewritten as) an expected value of the current distribution
of the data, which therefore could be approximated by the average of a sample
of such a distribution. Part of the problem is that, with the possibility of drift,
it is difficult to be sure which past elements of the stream are still reliable as
samples of the current distribution, and which are outdated.

There are two kinds of estimators: those that explicitly store a sample of the
data stream (we will call this store “the Memory”) and memoryless estima-
tors. Among the former we explain the linear estimator over sliding windows.
Among the latter, we explain the EWMA and the Kalman filter; other run-
time efficient estimators are the autoregressive model and the autoregressive-
moving-average estimator.

Dealing with Change 73

input output
— Ensemble manager —

Model 2 e Model n h

Managing change with model ensembles.

Figure 5.3

5.2.1 Sliding Windows and Linear Estimators

The simplest estimator algorithm for the expected value is the linear estimator,
which simply returns the average of the data items contained in the Memory.
An easy implementation of the Memory is a sliding window that stores the
most recent W items received. Most of the time, W is a fixed parameter of the
estimator; more sophisticated approaches may change W over time, perhaps
in reaction to the nature of the data itself.

The memory used by estimators that use sliding windows can be reduced, for
example, by using the Exponential Histogram sketch discussed in section 4.7,
at the cost of some approximation error in the estimation.

5.2.2 Exponentially Weighted Moving Average

The exponentially weighted moving average (EWMA) estimator updates the
estimation of a variable by combining the most recent measurement of a vari-
able with the EWMA of all previous measurements:

Av=axi+(1—a)Ai_q, A=,

where A, is the moving average at time ¢, x; is the latest measurement, and « €
(0,1) is a parameter that reflects the weight given to the latest measurement.
It is often called a decay or fading factor. Indeed, by expanding the recurrence

74

Chapter 5

above, we can see that the estimation at time ¢ is
t
Ay = Za 1—a) "z + (1 —a) o,
=2
so the weight of each measurement decays exponentially fast with basis 1 — a.
Larger values of « imply faster forgetting of old measurements, and smaller
ones give higher importance to history.

5.2.3 Unidimensional Kalman Filter

The unidimensional Kalman filter addresses the problem of estimating the hid-
den state = € R of a discrete-time controlled process that is governed by the
linear stochastic difference equation

Ty = Tp—1 +Wr—1
where x is observed indirectly via a measurement z € R that is
2 = Tt + V.

Here w; and v; are random variables representing the process and measure-
ment noise, respectively. They are assumed to be independent of each other
and with normal probability distributions

w~N(0,Q), v~ N(0,R).

In our setting, z; is the expected value at time ¢ of some property of the
stream items, z; is the value of the property on the item actually observed
at time ¢, and w;, v; are the random change in x; and the observation noise
in z;. The estimation y; of the state at time ¢ is updated in the Kalman filter as
follows, where P and K are auxiliary quantities:

Ky« P,_1/(Pi-1+R),

Yr Ye—1 + Ki(ze — ye—1),
P+ (1-K)P_1+Q.

The effectiveness of the Kalman filter in any particular application depends
on the validity of the stochastic equations, of the Gaussian assumptions on the
noise, and on the accuracy of the estimate of the variances @) and R.

This is a very simple version of the Kalman filter. More generally, it can be
multidimensional, where x is a vector and each component of z is a linear com-
bination of all its components at the previous time, plus noise. It also allows for

Dealing with Change 75

control variables that we can change to influence the state and therefore create
feedback loops; this is in fact the original and main purpose of the Kalman
filter. And it can be extended to nonlinear measurement-to-process relations.
A full exposition of the Kalman filter is [245].

5.3 Change Detection

Change detection in data is a vast subject with a long tradition in statistics;
see [27]. Not all methods are apt for streaming, typically because they require
several passes over the data. We cover only a few streaming-friendly ones.

5.3.1 Evaluating Change Detection

The following criteria are relevant for evaluating change detection methods.
They address the fundamental trade-off that such algorithms must face [130],
that between detecting true changes and avoiding false alarms. Many depend
on the minimum magnitude 6 of the changes we want to detect.

e Mean time between false alarms, MTFA: Measures how often we get false
alarms when there is no change. The false alarm rate (FAR) is defined as
1/MTFA.

e Mean time to detection, MTD(6): Measures the capacity of the learning sys-
tem to detect and react to change when it occurs.

e Missed detection rate, MDR(0): Measures the probability of not generating
an alarm when there has been change.

e Average run length, ARL(6): This measure, which generalizes MTFA and
MTD, indicates how long we have to wait before detecting a change after it
occurs. We have MTFA = ARL(0) and, for § > 0, MTD(6) = ARL(6).

5.3.2 The CUSUM and Page-Hinkley Tests

The cumulative sum (CUSUM) test [191] is designed to give an alarm when
the mean of the input data significantly deviates from its previous value.

In its simplest form, the CUSUM test is as follows: given a sequence of
observations {x; }+, define z; = (z; — u) /o, where p is the expected value of
the z; and o is their standard deviation in “normal” conditions; if x and o are

76

Chapter 5

not known a priori, they are estimated from the sequence itself. Then CUSUM
computes the indices and alarm:

go = 07
ge = max (0,1 + 2 — k),
if g; > h, declare change and reset g; = 0, and p and o.

CUSUM is memoryless and uses constant processing time per item. How its
behavior depends on the parameters k and A is difficult to analyze exactly [27].
A guideline is to set k to half the value of the changes to be detected (measured
in standard deviations) and h to In(1/6) where ¢ is the acceptable false alarm
rate; values in the range 3 to 5 are typical. In general, the input z; to CUSUM
can be any filter residual, for instance, the prediction error of a Kalman filter.

A variant of the CUSUM test is the Page-Hinkley test:

go = 07

9t =gt—1+ 2z — k,

Gt = min{gta Gt—l}a

if g¢ — Gy > h, declare change and reset g; = 0, G¢, and i and o.
These formulations are one-sided in the sense that they only raise alarms

when the mean increases. Two-sided versions can be easily derived by sym-
metry, see exercise 5.3.

5.3.3 Statistical Tests

A statistical test is a procedure for deciding whether a hypothesis about a quan-
titative feature of a population is true or false. We test a hypothesis of this sort
by drawing a random sample from the population in question and calculating
an appropriate statistic on its items. If, in doing so, we obtain a value of the
statistic that would occur rarely when the hypothesis is true, we would have
reason to reject the hypothesis.

To detect change, we need to compare two sources of data and decide
whether the hypothesis Hy, that they come from the same distribution, is true.
Let us suppose we have estimates i, ji1, 03, and 0% of the averages and stan-
dard deviations of two populations, drawn from equal-sized samples. If the
distribution is the same in the two populations, these estimates should be con-
sistent. Otherwise, a hypothesis test should reject Hy. There are several ways

Dealing with Change 77

to construct such a hypothesis test. The simplest one is to study the difference
[t — 11, which for large samples satisfies

fio — fi1 € N(0,08 + o), under Hy.

For example, suppose we want to design a change detector using a statistical
test with a probability of false alarm of 5%, that is,

Pr (“02“1|2 > h) = 0.05.
o5 t+o1
A table of the Gaussian distribution shows that P(X < 1.96) = 0.975, so
the test becomes
(fio — fi1)?
op +of
In the case of stream mining, the two populations are two different parts of
a stream and H) is the hypothesis that the two parts have the same distribu-

tion. Different implementations may differ on how they choose the parts of

> 1.96.

the stream to compare. For example, we may fix a reference window, which
does not slide, and a sliding window, which slides by 1 unit at every time step.
The reference window has average [ig and the sliding window has average /fi;.
When change is detected based on the two estimates, the current sliding win-
dow becomes the reference window and a new sliding window is created using
the following elements. The performance of this method depends, among other
parameters, on the sizes of the two windows chosen.

Instead of the normal-based test, we can perform a X2 -test on the variance,
because

(1o — fun)?
0(2) + O’%
from which a standard hypothesis test can be formulated.

Still another test can be derived from Hoeffding’s bound, provided that the
values of the distribution are in, say, the range [0, 1]. Suppose that we have two
populations (such as windows) of sizes ngy and n;. Define their harmonic mean
n = 1/(1/77/0 + 1/’[11) and

€ x%(1), under H,

1 4
e L Anotna)
2n 1)
We have:
o If Hy is true and pg = p1, then

Prl|iio — fu| > €/2] < 6.

78

Chapter 5

e Conversely, if Hy is false and |po — 1| > €, then
PI‘H[LO 7,&1‘ > 6/2] >1-9.

So the test “Is |fig — fi1]| > €/2?” correctly distinguishes between identical
means and means differing by at least ¢ with high probability. This test has
the property that the guarantee is rigorously true for finite (not asymptotic) ng
and n1; on the other hand, because Hoeffding’s bound is loose, it has small
false alarm rate but large mean time to detection compared to other tests.

5.3.4 Drift Detection Method

The drift detection method (DDM) proposed by Gama et al. [114] is applicable
in the context of predictive models. The method monitors the number of errors
produced by a model learned on the previous stream items. Generally, the error
of the model should decrease or remain stable as more data is used, assuming
that the learning method controls overfitting and that the data and label dis-
tribution is stationary. When, instead, DDM observes that the prediction error
increases, it takes this as evidence that change has occurred.

More precisely, let p; denote the error rate of the predictor at time ¢. Since
the number of errors in a sample of ¢t examples is modeled by a binomial distri-
bution, its standard deviation at time ¢ is given by s; = y/p¢(1 — p;)/t. DDM
stores the smallest value p,,,;, of the error rates observed up to time ¢, and the
standard deviation s,,;,, at that point. It then performs the following checks:

o If py + St > Pmin + 2 - Simin, a warning is declared. From this point on, new
examples are stored in anticipation of a possible declaration of change.

o If pi + St > Dmin + 3 - Smin, change is declared. The model induced by the
learning method is discarded and a new model is built using the examples
stored since the warning occurred. The values for p,,;, and s,,;, are reset
as well.

This approach is generic and simple to use, but it has the drawback that it
may be too slow in responding to changes. Indeed, since p; is computed on the
basis of all examples since the last change, it may take many observations after
the change to make p; significantly larger than p,,;,,. Also, for slow change, the
number of examples retained in memory after a warning may become large.

An evolution of this method that uses EWMA to estimate the errors is pre-
sented and thoroughly analyzed in [216].

Dealing with Change 79

5.3.5 ADWIN

The ADWIN algorithm (for ADaptive sliding WINdow) [30, 32] is a change
detector and estimation algorithm based on the exponential histograms
described in section 4.7. It aims at solving some of the problems in the change
estimation and detection methods described before. All the problems can be
attributed to the trade-off between reacting quickly to changes and having few
false alarms.

Often, this trade-off is resolved by requiring the user to enter (or guess) a
cutoff parameter. For example, the parameter o in EWMA indicates how to
weight recent examples versus older ones; the larger the «, the more quickly
the method will react to a change, but the higher the false alarm rate will be
due to statistical fluctuations. Similar roles are played by the parameters in the
Kalman filters and CUSUM or Page-Hinkley tests. For statistical tests based
on windows, we would like to have on the one hand long windows so that the
estimates on each window are more robust, but, on the other hand, short win-
dows to detect a change as soon as it happens. The DDM method has no such
parameter, but its mean time to detection depends not only on the magnitude
of the change, but also on the length of the previous run without change.

Intuitively, the ADWIN algorithm resolves this trade-off by checking change
at many scales simultaneously, as if for many values of o in EWMA or for
many window lengths in window-based algorithms. The user does not have
to guess how often change will occur or how large a deviation should trig-
ger an alarm. The use of exponential histograms allows us to do this more
efficiently in time and memory than by brute force. On the negative side, it
is computationally more costly (in time and memory) than simple methods
such as EWMA or CUSUM: time-per-item and memory are not constant, but
logarithmic in the length of the largest window that is being monitored. So it
should be used when the scale of change is unknown and this fact might be
problematic.

ADWIN solves, in a well-specified way, the problem of tracking the average
of a stream of bits or real-valued numbers. It keeps a variable-length window
of recently seen items, with the property that the window has the maximal
length statistically consistent with the hypothesis “There has been no change
in the average value inside the window.” More precisely, an old fragment of
the window is dropped if and only if there is enough evidence that its average
value differs from that of the rest of the window. This has two consequences:
one, change is reliably detected whenever the window shrinks; and two, at any

80

Chapter 5

time the average over the current window can be used as a reliable estimate of
the current average in the stream (barring a very small or recent change that is
not yet clearly visible). We now describe the algorithm in more detail.

The inputs to ADWIN are a confidence value ¢ € (0, 1) and a (possibly infi-
nite) sequence of real values z1, xs, T3, ..., ¢, ... The value of z; is available
only at time .

The algorithm is parameterized by a test T'(Wy, W7,) that compares the
averages of two windows Wy and W; and decides whether they are likely
to come from the same distribution. A good test should satisfy the following
criteria:

o If W, and W, were generated from the same distribution (no change), then
with probability at least 1 — § the test says “no change.”

o If W, and W were generated from two different distributions whose aver-
age differs by more than some quantity e(Wy, W7, 6), then with probability
at least 1 — 4 the test says “change.”

ADWIN feeds the stream of items z; to an exponential histogram. For each
stream item, if there are currently b buckets in the histogram, it runs test 7" up
to b — 1 times, as follows: For ¢ in 1...b— 1, let W, be formed by the ¢ old-
est buckets, and W; be formed by the b — ¢ most recent buckets, then perform
the test T'(Wy, W1,). If some test returns “change,” it is assumed that change
has occurred somewhere and the oldest bucket is dropped; the window implic-
itly stored in the exponential histogram has shrunk by the size of the dropped
bucket. If no test returns “change,” then no bucket is dropped, so the window
implicit in the exponential histogram increases by 1.

At any time, we can query the exponential histogram for an estimate of
the average of the elements in the window being stored. Unlike conventional
exponential histograms, the size W of the sliding window is not fixed and can
grow and shrink over time. As stated before, W is in fact the size of the longest
window preceding the current item on which 7' is unable to detect any change.
The memory used by ADWIN is O(log W) and its update time is O(log W).

A few implementation details should be mentioned. First, it is not strictly
necessary to perform the tests after each item; in practice it is all right to test
every k items, of course at the risk of delaying the detection of a sudden change
by time k. Second, experiments show a slight advantage in false positive rate
if at most one bucket is dropped when processing any one item rather than
all those before the detected change point; if necessary, more buckets will be
dropped when processing further items. Third, we can fix a maximum size for

Dealing with Change 81

the exponential histogram, so that memory does not grow unboundedly if there
is no change in the stream. Finally, we need to fix a test 7’; in [30, 32] and in
the MOA implementation, the Hoeffding-based test given in section 5.3.3 is
used in order to have rigorous bounds on the performance of the algorithm.
However, in practice, it may be better to use the other statistical tests there,
which react to true changes more quickly for the same false alarm rate.

5.4 Combination with Other Sketches and Multidimensional Data

The sketches proposed in chapter 4, with the exception of exponential his-
tograms, take into account the information in the whole data stream since the
moment the sketch is initialized. This means they contain no forgetting mech-
anism and do not consider more recent data to be more important. It is possible
and natural to combine those sketches with the estimation and change detection
algorithms presented in this chapter.

For example, Papapetrou et al. [193] propose ECM, a variant of the CM-
Sketch where integer counts are replaced with sliding window structures sim-
ilar to Exponential Histograms. Muthukrishnan et al. [184] combine the CM-
Sketch with sequential testing techniques in order to detect change in multidi-
mensional data.

Change detection in multidimensional data streams is a challenging prob-
lem, particularly if one must scale well with the number of dimensions, and
if the solution must be generic and not tailored to a specific setting. A quick
solution is to reduce the problem to one dimension by monitoring the change in
one or more unidimensional statistics of the data, for instance performing ran-
dom projections or PCA. This typically will reduce the sensitivity to change,
particularly if the change is localized in a small subspace of the data. Generic
approaches for dealing with multidimensional change directly can be found
in [82, 153, 201, 237].

5.5 Exercises

Exercise 5.1 Discuss the differences between distribution change, outliers,
anomalies, and noise.

82

Chapter 5

Exercise 5.2 Propose a few strategies for managing ensembles of classifiers
in the presence of distribution change. Your strategies should specify mecha-
nisms for creating new classifiers, discarding classifiers, combining their pre-
dictions, and managing ensemble size. Think which of your strategies would be
more appropriate for gradual and for sudden change. (Note: Ensemble methods
will be discussed in chapter 7. Here we encourage you to give your preliminary
ideas.)

Exercise 5.3 The CUSUM and Page-Hinkley tests given in the text are one-
sided. Give two-sided versions that detect both increases and decreases in the
average.

Exercise 5.4 a. We want to keep an array of K EWMA estimators keeping k
different statistics of the stream. We know that every item in the stream con-
tributes a 1 to at most one of the estimators, and 0 to all others. For example,
the EWMAS track the frequency of k mutually exclusive types of items. The
obvious strategy of updating all k estimators uses O(k) time per item. Describe
another strategy that uses constant time per item processed and gives the same
answers. Query time can be O(k).

b. Replace every integer entry of a CM-Sketch with an EWMA estimator
with parameter . Use the idea in the exercise above to update these estimators.
What can you say about the frequency approximations that you get for every
item?

c. Can you do something similar for the SPACESAVING sketch?

Exercise 5.5 DDM has the drawback that it may take a long time to react to
changes after a long period without change. Suggest a couple of ways to fix
this, possibly at the cost of introducing some parameters.

Exercise 5.6 For the mathematically oriented:
e Derive the test for mean difference based on Hoeffding’s bound given in
section 5.3.3.

e Consider the implementation of ADWIN with the Hoeffding-based test. Ana-
lyze and describe how ADWIN will react to:

Dealing with Change 83

o A stream with abrupt change: after a long stream of bits with average (i,
at some time 7 the average suddenly changes to p1 # fig-

e Gradual shift: after a long stream of bits with average pg, at time T’
the average starts increasing linearly so that the average at time ¢t > T’
is pp11 = py + A, with A a small value.

Deduce when ADWIN will declare change, and how the window length and
estimation of the average will evolve from that point on.

Exercise 5.7 For the programming oriented: program a random bit-stream
generator in which the probability of getting a 1 changes abruptly or gradu-
ally after a long period with no change. Program the Page-Hinkley test, the
DDM test, and the three tests in section 5.3.3 with a reference window and
a sliding window. Compare the measures described in section 5.3.1 for these
tests, including different window sizes for the last three tests. Do not forget to
average each experiment over several random runs to get reliable estimates.

Classification

Classification is one of the most widely used data mining techniques. In very
general terms, given a list of groups (often called classes), classification seeks
to predict which group a new instance may belong to. The outcome of classifi-
cation is typically either to identify a single group or to produce a probability
distribution of the likelihood of membership for each group. It is the most
important case of supervised learning, meaning that the labels available to the
learning algorithm can be used to guide it. A spam filter is a good exam-
ple, where we want to predict whether new emails are considered spam or
not. Twitter sentiment analysis is another example, where we want to predict
whether the sentiment of a new incoming tweet is positive or negative.

More formally, the classification problem can be formulated as follows: we
are given a set of labeled instances or examples of the form (x,y), where
T =x1,...,%) 18 a vector of feature or attribute values, and y is one of n¢
different classes, regarded also as the value of a discrete attribute called the
class. The classifier building algorithm builds a classifier or model f such that
y = f(x) is the predicted class value for any unlabeled example x. For exam-
ple, z could be a tweet and y the polarity of its sentiment; or could be an
email message, and y the decision of whether it is spam or not. Most classic
methods for classification load all training data into main memory and then
build f via multiple passes over the data. In the stream setting, f is typically
constructed incrementally, with inspection of data restricted to a single pass
with instances presented one at a time.

We start by reviewing how to evaluate classifiers, the most popular classifi-
cation methods, and how they can be applied in a data stream setting. The two
important characteristics of any classification method in the stream setting are:
that limitations exist in terms of memory and time (so that we cannot store all
instances in memory), and that classification models must be able to adapt to
possible changes in the distribution of the incoming data. These characteristics
imply that exact solutions are unlikely, so we should expect approximate solu-
tions and therefore expect the associated error to be bounded. Bounds on error
are problematic in the sense that, when they themselves make few assump-
tions about the distribution generating the error, they tend to be conservative
(that is, in practice, results are much better than predicted by the bound). When
they do make assumptions, they can be much more consistent with experimen-
tal results, but are vulnerable to cases where those assumptions simply do not
hold.

A third requirement, not covered in this chapter, is the ability to cope with
changes in the feature space. In a sensor network, for example, it is likely that

86

Chapter 6

one or more sensors providing values to certain features will go offline now
and then due to malfunction or replacement. The replacement sensors could
be newer models, so they might make measurements differently from the past.
In fact, it makes sense that a sensor could be removed permanently. Almost
all stream classification algorithms assume that the feature space is fixed and
cannot respond easily to this type of change. Aside from the feature space, the
set of class labels could also change over time. Thus algorithms would need
to be able to cope with the addition of new class labels and the deletion of
existing ones. Both these changes in x and y represent fertile ground for the
development of new stream classification algorithms.

6.1 Classifier Evaluation

Evaluation is one of the most fundamental tasks in all data mining processes,
since it helps to decide which techniques are more appropriate for a specific
problem, and to set parameters. The main challenge is to know when a method
is outperforming another method only by chance, and when there is a statistical
significance to that claim. Some of the methodologies applied in stream mining
are the same as in the case of nonstreaming data, where all data can be stored
in memory. However, mining data streams poses new challenges and must use
modified evaluation methodologies.

One thing worth noting before we continue is that almost all the discov-
eries made in data mining, and particularly classification, assume that data is
independently and identically distributed (IID). Thus a stationary distribution
is randomly producing data in no particular order, and the underlying distribu-
tion generating the data is not changing. In a streaming environment no part of
the IID assumption remains valid. It is often the case, for example, that for cer-
tain time periods the labels or classes of instances are correlated. In intrusion
detection, there are long periods where all class labels are no-intrusion, mixed
with infrequent, short periods of intrusion. This is another aspect of data stream
mining that would benefit from further research.

An evaluation framework should be composed of the following parts:

e error estimation,
e cvaluation performance measures,
e statistical significance validation, and

e a cost measure of the process.

Classification 87

For evolving data streams, the main difference from traditional data mining
evaluation is how to perform the error estimation. Resources are limited and
cross-validation may be too expensive. We start by looking at how to define
and estimate accuracy, then we look at which measures are the most conve-
nient to measure the performance of the algorithms. Finally we review some
statistical techniques for checking significance and measuring the cost of the
overall process.

6.1.1 Error Estimation

The evaluation procedure of a learning algorithm determines which examples
are used for training the algorithm and which are used for testing the model
output by the algorithm.

In traditional batch learning, a first approach is to split the dataset into dis-
joint training and test sets. If the data is limited, cross-validation is prefer-
able: we create several models and average the results with different random
arrangements of training and test data.

In the stream setting, (effectively) unlimited data poses different challenges.
Cross-validation typically is computationally too expensive, and not as neces-
sary. On the other hand, creating a picture of accuracy over time is essential.
The following main approaches arise:

e Holdout: When data is so abundant that it is possible to have test sets peri-
odically, then we can measure the performance on these holdout sets. There
is a training data stream that is used to train the learner continuously, and
small test datasets that are used to compute the performance periodically. In
MOA, the implementation of this concept requires the user to specify two
parameters (say, j and k): j is the size of the first window (set of instances)
for testing purposes, and % is the frequency of testing—that is, test after
every k instances (using a test set of size 7).

o Interleaved test-then-train: Each individual example can be used to test
the model before it is used for training, and from this, the accuracy can be
incrementally updated. The model is thus always being tested on examples
it has not seen. In MOA, this scheme is implemented using a landmark win-
dow model (data in the stream is considered from the beginning to now).

88 Chapter 6

e Prequential: Like interleaved test-then-train but—in MOA—implements
the idea that more recent examples are more important, using a sliding win-
dow or a decaying factor. The sizes of the sliding window and the decaying
factor are parameters.

e Interleaved chunks: Also like interleaved test-then-train, but with chunks
of data in sequence. Chunks of different sizes may need to be considered
(this is a parameter in the MOA implementation).

Note that if we set the size of the sliding window to the number of instances in
the entire dataset, then the middle two schemes are equivalent.

Holdout evaluation more accurately estimates the accuracy of the classifier
on more recent data. However, it requires recent test data that is difficult to
obtain for real datasets. There is also the issue of ensuring coverage of impor-
tant change events: if the holdout is during a less volatile period of change,
then it might overestimate classifier performance.

Gama et al. [115] propose a forgetting mechanism for estimating holdout
accuracy using prequential accuracy: a sliding window of size w with the most
recent observations, or fading factors that weigh observations using a decay
factor . The fading factor « is used as follows:

with
Si=Li+ax8_q, Bi=n;+ax B;_1,

where n; is the number of examples used to compute the loss function L;. We
have n; = 1 since the loss L; is computed for every single example.

The output of the two mechanisms is very similar, as a window of size w
may be approximated by a decay factor o ~ 1/w. Figure 6.1 shows a com-
parison of a holdout evaluation, an interleaved test then train evaluation, and
a prequential evaluation using a sliding window of size 1,000. Looking at the
plot in figure 6.1 it seems that, at least for this dataset, prequential evaluation
using a sliding window is a good approximation of holdout evaluation.

6.1.2 Distributed Evaluation

In a distributed data stream setting, we have classifiers that can be trained at
the same time. This provides an opportunity to implement something akin to
classic k-fold cross-validation. Several approaches to evaluation in this setting

Classification 89

100 T T T T
ol
S
= ,
o]
=
o
3]
S i
75 I I I I
0 0.2 0.4 0.6 0.8 1
Examples processed -10°
Holdout evaluation
—— Interleaved test-then-train
—o— Prequential
Figure 6.1

Evaluation on a stream of 1,000,000 instances, comparing holdout, interleaved test-then-train, and
prequential with sliding window evaluation methods.

have been proposed to cover combinations of data abundance or scarcity, and
numbers of classifiers to be compared [40]:

o k-fold distributed split-validation: when there is abundance of data and &
classifiers. Each time a new instance arrives, it is decided with probabil-
ity 1/k whether it will be used for testing. If it is used for testing, it is
used by all the classifiers. If not, then it is used for training and assigned
to only one classifier. Thus, each classifier sees different instances, and they
are tested using the same data.

e 522 distributed cross-validation: when data is less abundant, and we want
to use only, say, ten classifiers. We create five groups of classifier pairs,
and for each group, each time a new instance arrives, it is decided with

90

Chapter 6

probability 1/2 which of the two classifiers is used to test; the other classifier
of the group is used to train. All instances are used to test or to train, and
there is no overlap between test instances and train instances.

e k-fold distributed cross-validation: when data is scarce and we have k

classifiers. Each time a new instance arrives, it is used for testing in one
classifier selected at random, and for training in the others. This evaluation
is equivalent to k-fold distributed cross-validation.

6.1.3 Performance Evaluation Measures

In real data streams, the number of instances for each class may be evolving
and changing. It may be argued that the prequential accuracy measure is only
appropriate when all classes are balanced and have approximately the same
number of examples. The Kappa statistic is a more sensitive measure for quan-
tifying the predictive performance of streaming classifiers.

The Kappa statistic « was introduced by Cohen [76] and defined as follows:

:p()*pc

K .
1_pc

The quantity pg is the classifier’s prequential accuracy, and p, is the proba-
bility that a chance classifie—one that randomly assigns to each class the same
number of examples as the classifier under consideration—makes a correct pre-
diction. If the classifier is always correct, then k = 1. If its predictions coincide
with the correct ones as often as those of a chance classifier, then x = 0.

The Kappa M statistic x,,, [40] is a measure that compares against a majority
class classifier instead of a chance classifier:

Po — Pm

Kim = 7 o
In cases where the distribution of predicted classes is substantially different
from the distribution of the actual classes, a majority class classifier can per-
form better than a given classifier while the classifier has a positive « statistic.
An alternative to the Kappa statistic is to compute the area under the
receiver operating characteristics curve AUC. Brzezinski and Stefanowski
present in [59] an incremental algorithm that uses a sorted tree structure with
a sliding window to compute AUC with forgetting. The resulting evaluation
measure is called prequential AUC, and is also available in MOA.

Classification 91

Another Kappa measure, the Kappa temporal statistic [42, 262], considers
the presence of temporal dependencies in data streams. It is defined as

. _ po—7D.
per —
1—p.

where p’, is the accuracy of the No-change classifier, the classifier that simply
echoes the last label received (section 6.2.2), a simple and useful classifier
when the same labels appear together in bursts.

Statistic ke, takes values from O to 1. The interpretation is similar to that
of r: if the classifier is perfectly correct, then ke, = 1. If the classifier is
achieving the same accuracy as the No-change classifier, then ., = 0. Clas-
sifiers that outperform the No-change classifier fall between 0 and 1. Some-
times ke, < 0, which means that the classifier is performing worse than the
No-change baseline.

Using ke, instead of x,,, we can detect misleading classifier performance
for data that is not IID. For highly imbalanced but independently distributed
data, the majority class classifier may beat the No-change classifier. The e,
and k., measures can be seen as orthogonal, since they measure different
aspects of the performance.

Other measures that focus on the imbalance among classes are the arithmetic
mean and the geometric mean:

A=1/n.- (A1 +As+ ...+ A,,), G=(A; xAyx...xA,)/,

where A; is the testing accuracy on class ¢ and n. is the number of classes.
Note that the geometric accuracy of the majority vote classifier would be 0, as
accuracy on the classes other than the majority would be 0. The accuracy of a
perfectly correct classifier would be 1. If the accuracies of a classifier are equal
for all classes, then both arithmetic and geometric accuracies are equal to the
usual accuracy.

Consider the simple confusion matrix shown in table 6.1. From this table,
we see that Class+ is predicted correctly 75 times, and Class— is predicted
correctly 10 times. So accuracy pg is 85%. However, a classifier predicting
solely by chance—in the given proportions—will predict Class+ and Class—
correctly in 68.06% and 3.06% of cases respectively. Hence, it has accuracy
pe = 71.12% and k = 0.48; the majority class classifier has accuracy p,, =
75% and k,,, = 0.40.

Chapter 6

Table 6.1

Simple confusion matrix example.

Predicted Predicted

Class+ Class— Total
Correct Class+ 75 8 83
Correct Class— 7 10 17
Total 82 18 100

Table 6.2
Confusion matrix of table 6.1, modified.

Predicted Predicted

Class+ Class— Total
Correct Class+ 75 8 83
Correct Class— 57 10 67
Total 132 18 150

The accuracy for Class+ is 90.36% and for Class— is 58.82%. The arith-
metic mean A is 74.59%, and the geometric mean G is 72.90%. So we see that
A > @G and that G tends to the lower value.

Imagine that, as shown in table 6.2, the number of misclassified examples of
Class— increases to 57. Then, the accuracy for Class— decreases to 14.92%,
to 0.05, and k,, to 0.13. The arithmetic mean A changes to 52.64%, and the
geometric mean G to 36.72 %.

6.1.4 Statistical Significance

When evaluating classifiers, we should be concerned with the statistical sig-
nificance of the results. Looking at the performance of only one classifier, it
is convenient to give some insights about its statistical significance. We may
use confidence intervals of parameter estimates to indicate the reliability of our
estimate. To do that, we can use Chernoff’s or Hoeffding’s bounds, which are
sharper than Markov’s or Chebyshev’s inequalities, because the measures we
are interested in are averages of evaluations on individual items. For reasonably
large numbers of points the approximation by a normal is usually applicable;
see section 4.2.

Classification 93

When comparing two classifiers, we need to distinguish between ran-
dom and nonrandom differences in the experimental accuracies. McNemar’s
test [173] is the most popular nonparametric test in the stream mining litera-
ture to assess the statistical significance of differences in the performance of
two classifiers. This test needs to store and update two variables: the number
of instances misclassified by the first classifier and not by the second, a, and
the number of instances misclassified by the second classifier and not by the
first, b. The McNemar statistic is given as M = |a — b — 1|?/(a + b). The test
follows the x? distribution. At 0.99 confidence it rejects the null hypothesis
(the performances are equal) if M > 6.635.

Although the field of ML is several decades old, there is still much debate
around the issue of comparing the performance of classifiers and, conse-
quently, measurements of significant performance difference. The latest con-
tribution is by Berrar [29], who argues that the magnitude of the difference in
performance (and reasonable bounds on that difference) should be the focus,
not statistical significance. The outcome of this work is a new evaluation tool
called confidence curves, curves that show the magnitude difference directly.
Issues with null hypothesis significance testing and p-values have also recently
led to Bayesian alternatives to the problem being proposed [78]. Thus, it is not
possible at this time to give a definitive answer to the question of performance
measurement, as further research in classic and streaming ML is still needed.
In particular, a measure for estimating the effect size over time for data streams
has yet to be proposed.

6.1.5 A Cost Measure for the Mining Process

The issue of measuring three evaluation dimensions simultaneously has led
to another important issue in data stream mining, namely, estimating the com-
bined cost of performing the learning and prediction processes in terms of time
and memory. As an example, several rental cost options exist:

e Cost per hour of usage: Amazon Elastic Compute Cloud (Amazon EC2) is
a web service that provides resizable computing capacity in the cloud. The
cost depends on the time and on the size of the machine rented (for example,
small instance with 2 GB of RAM, large with 8 GB or extra large with 16
GB).

94

Chapter 6

e Cost per hour and memory used: GoGrid is a web service similar to Amazon
EC2, but it charges by RAM-hours. Every GB of RAM deployed for 1 hour
equals by definition 1 RAM-hour.

The use of RAM-Hours as defined above was introduced in [37] as an eval-
uation measure of the resources used by streaming algorithms. Although pro-
posed for learning, it can be applied to the other data mining tasks.

6.2 Baseline Classifiers

6.2.1

Batch learning has led to the development of hundreds of different classifiers
that belong to a number of paradigms, such as divide-and-conquer methods,
rule learners, lazy learners, kernel methods, graphical models, and so on. If we
are to streamify methods from these paradigms, we need to consider how to
make them both incremental and fast. Some methods are naturally incremen-
tal and fast, and we will start with these. Research on the application of batch
methods to large datasets tells us to look for methods with good bias manage-
ment. If a method has high bias, like the ones we will introduce next, then its
ability to generalize will be limited. Methods producing more complex models
are typically better at generalization but have necessarily higher maintenance
costs and should be controlled for overfitting. Producing methods that manage
the trade-off well (complexity of model representation versus speed of model
update) is the main issue in data stream classification research.

Majority Class

The Majority Class algorithm is one of the simplest classifiers: it predicts
the class of a new instance to be the most frequent class. It is used mostly
as a baseline, but also as a default classifier at the leaves of decision trees. A
Majority Class classifier is very easy to compute and maintain, as it only needs
to keep an array of counters for each one of the classes.

6.2.2 No-change Classifier

Another simple classifier for data streams is the No-change classifier, which
predicts the label for a new instance to be the true label of the previous instance.
Like the Majority Class classifier, it does not require the instance features, so it
is very easy to implement. In the intrusion detection case where long passages

Classification 95

of “no intrusion” are followed with briefer periods of “intrusion,” this classifier
makes mistakes only on the boundary cases, adjusting quickly to the consistent
pattern of labels.

When a temporal dependence among consecutive labels is suspected, it usu-
ally pays to add the label(s) of the previous instance(s) as new attributes. This
capability, proposed in [42, 262], is available as a generic wrapper TEMPO-
RALLYAUGMENTEDCLASSIFIER in MOA.

6.2.3 Naive Bayes

Naive Bayes is a classification algorithm known for its low computational cost
and simplicity. As an incremental algorithm, it is well suited for the data
stream setting. However, it assumes independence of the attributes, and that
might not be the case in many real data streams.

It is based on Bayes’ theorem, which may be stated informally as

prior x likelihood

posterior =

)

evidence
that is, it tells how the probability of an event is modified after accounting for
evidence. More formally:

Pr(c) Pr(d|c)
Pr(d)

where Pr(c) is the prior, the initial probability of event ¢, Pr(c|d) is the
posterior, the probability after accounting for d, Pr(d|c) is the likelihood of
event d given that event ¢ occurs, and Pr(d) is the probability of event d. It
is based on the definition of conditional probability, by which Pr(cNd) =
Pr(c) Pr(d|c) = Pr(d) Pr(c|d).

The Naive Bayes model is built as follows: Let x4, ..., z; be k discrete
attributes, and assume that x; can take n; different values. Let C' be the class
attribute, which can take nc different values. Upon receiving an unlabeled
instance I = (1 =v1,...,2; = vk), the Naive Bayes classifier computes a
“probability” of I being in class c as:

Pr(c|d) =

k
Pr(C=c|I) HPr i =v;|C=¢)
=1
k
Pr(xl—vz/\C’—c)

- =c)

Z.’Il

96

Chapter 6

The values Pr(z; =v; AC =c¢) and Pr(C = c) are estimated from the
training data. Thus, the summary of the training data is simply a 3-dimensional
table that stores for each triple (z;,v;, ¢) a count n; j,c of training instances
with z; = v; and class c, together with a 1-dimensional table for the counts of
C = c. This algorithm is naturally incremental: upon receiving a new example
(or a batch of new examples), simply increment the relevant counts. Predic-
tions can be made at any time from the current counts.

Example 6.1 Suppose we have the following dataset of tweets, and that we
want to build a model to predict the polarity of newly arriving tweets.

ID Text Sentiment
T1 glad happy glad +
T2 glad glad joyful +
T3 glad pleasant +
T4 miserable sad glad —

First, we transform the text associated with each instance to a vector of
attributes.

Id | glad happy joyful pleasant miserable sad | Sentiment
T1| 1 1 0 0 0 0 +
T2 | 1 0 1 0 0 0 +
T3 | 1 0 0 1 0 0 +
T4 | 1 0 0 0 1 1 —

Now, we can build a table with the counts for each class:

Class | Value | glad happy joyful pleasant miserable sad
+ 1 3 1 1 1 0 0
+ 0 0 2 2 2 3 3
— 1 1 0 0 0 1 1
— 0 0 1 1 1 0 0

Assume we have to classify the following new instance:

ID Text Sentiment
TS glad sad miserable pleasant glad ?

Classification 97

First, we convert it to a vector of attributes.

ID | glad happy joyful pleasant miserable sad | Sentiment
5| 1 0 0 1 1 1 ?

And now we compute the probabilities as follows:

e Pr(+|T5) = Pr(+) - Pr(glad = 1|+) - Pr(happy = 0|+) - Pr(joy ful =
0|+) - Pr(pleasant = 1|+) - Pr(miserable = 1|+) - Pr(sad = 1|+), so

e Pr(—|T5) = Pr(—)-Pr(glad = 1|-) - Pr(happy = 0|—) - Pr(joy ful =
0]—) - Pr(pleasant = 1|—) - Pr(miserable = 1|—) - Pr(sad = 1|—), so

1 11
Pr(—|T5) = TTTTT —0.

N

We see that the probabilities are equal to 0 the moment a single term is
0, which is too drastic. A way to avoid this is using the Laplace correction,
which is adding, for example, 1 to the numerator and the number of classes to
the denominator to allow for unseen instances:

Nge + 1
nd+nc'

Pr(d|c) =

In practice, this is done by initializing the counters to 1. In our example, the
table of counts for each class becomes:

Class | Value | glad happy joyful pleasant miserable sad
+ 1 4 2 2 2 1 1
+ 0 1 3 3 3 4 4
— 1 2 1 1 1 2 2
— 0 1 2 2 2 1 1

And recomputing the probabilities we get:

e Pr(+|T5) =Pr(+) - Pr(glad = 1|4) - Pr(happy = 0|+) - Pr(joy ful =
0]4+) - Pr(pleasant = 1|+) - Pr(miserable = 1|+) - Pr(sad = 1|+), so

Pr(+|T5) = = .= =0.0128.

ol w

=
Ot >~
Ut W
ol e
ol
| =

98

6.2.4

Chapter 6

e Pr(—|T5) =Pr(—)-Pr(glad = 1|-) - Pr(happy = 0|—) - Pr(joy ful =
0]—) - Pr(pleasant = 1|—) - Pr(miserable = 1|—) - Pr(sad = 1|—), so

Pr(—|T5) = = 0.0987.

Wl N

Wl N
W =
wl o

Wl N
[SSI)

1
1
We see that Pr(—|75) > Pr(+|7'5) and the Naive Bayes classifier predicts
that the new tweet has negative polarity.

Observe that the two probabilities do not add up to 1 as they should, because
we have ignored the term Pr(d) in Bayes’ theorem. It is normally impossible to

assess the probability of a specific data point from a sample. We, can, however
normalize by the sum to obtain figures that add up to 1.

Multinomial Naive Bayes

The Multinomial Naive Bayes classifier [171] is an extension of Naive Bayes
for document classification that often yields surprisingly good results. Multi-
nomial Naive Bayes considers a document as a bag of words, so it takes into
account the frequency of each word in a document and not just its presence or
absence. Since word frequency is usually relevant for text classification, this
method is preferred over Naive Bayes for text mining.

Let n,,4 be the number of times word w occurs in document d. Then the
probability of class c given a test document is calculated as follows:

Pr(c) [Lyeq Priwle)™

Pr(cld) = =0 ,

where Pr(d) can be thought of as a normalization factor.

But a key difference with Naive Bayes is the interpretation of Pr(w|c): here
it is the ratio between the number of occurrences of w in documents of class ¢
over the total number of words in documents of class c. In other words, it is
the probability of observing word w at any position of a document belonging
to class c. Observe that, again unlike Naive Bayes, the absence of a word in a
document does not make any class more likely than any other, as it translates
to a 0 exponent.

Conveniently, 7,4, Pr(w|c) and Pr(c) are trivial to estimate on a data
streams by keeping the appropriate counters. Laplace correction can be added
by initializing all the counts to 1 instead of 0.

Classification 99

Example 6.2 Suppose we want to build a Multinomial Naive Bayes classifier
using the tweets in example 6.1. First we compute the number of occurrences
of each word in each document. We use Laplace correction, setting each entry
to 1 before starting to count occurrences:

Class | glad happy joyful pleasant miserable sad | Total
+ 6 2 2 2 1 1 | 8+6=14
— 2 1 1 1 2 2 | 3+6=9

And now the probabilities for each class are:

o Pr(+|T5) =
Pr(+) - Pr(glad|+) - Pr(pleasant|+) - Pr(miserable|+) - Pr(sad|+),

3 /6N 2\ /1\" /1\"
Pr(+T5)=>-{—=) (=) (=] - (=) =10.04-107°.
H(HT) = § <14> (14) (14) (14) 0.04-10

o Pr(—|T5) =
Pr(—) - Pr(glad|-) - Pr(pleasant|—) - Pr(miserable|—) - Pr(sad|—),

Pr(—|T5) = i : (;)2. (;)1 : (;)1 : (3)1 =6.77-10°.

In this case, we see that Pr(+|7'5) > Pr(—|T'5) and the Multinomial Naive
Bayes classifier predicts that the new tweet has positive polarity, in contrast to
regular Naive Bayes, which predicted negative polarity.

6.3 Decision Trees

Decision trees are a very popular classifier technique since it is very easy to
interpret and visualize the tree models. In a decision tree, each internal node
corresponds to an attribute that splits into a branch for each attribute value, and
leaves correspond to classification predictors, usually majority class classifiers.
Figure 6.2 shows an example.

The accuracy of decision trees can be improved using other classifiers at the
leaves, such as Naive Bayes, or using ensembles of decision trees, as we will
see later on.

The basic method to build a tree is to start by creating a root node at the
beginning node = root, and then do the following:

100 Chapter 6

Contains Domain Has Time

“Money” type attach. received spam
yes com yes night yes
yes edu no night yes
no com yes night yes
no edu no day no
no com no day no
yes cat no day yes

YES NO

Figure 6.2

A dataset describing email features for deciding whether the email is spam, and a decision tree for
it.

Classification 101

If training instances are perfectly classified at the node, then stop. Else:
Assign A to be the “best” decision attribute for node.

For each value of A, create new descendant (leaf) of node.

.

Split the training instances according to the value of A, and pass each split
to the corresponding leaf.

5. Apply this method recursively to each leaf.
Two common measures are used to select the best decision attribute:

e Information gain, that is, the difference between the entropy of the class
before and after splitting by the attribute. Recall that the entropy H of a
sample S is H(S) = —)__p.log(p.), where p. is the probability in .S of
class label c. The entropy of S after splitting on attribute A is H(S, A) =
> u H(Sa)|5a4|/]S|, where S, is the subset of S where A has value a. The
information gain of A is then IG(S, A) = H(S) — H(S, A). This measure
was made popular after the C4.5 decision tree algorithm.

e Gini impurity reduction, that is, the difference between the Gini index before
and after splitting by the attribute. This measure was made popular after
the CART decision tree algorithm. The Gini index of a random variable C
is another nonlinear measure of the dispersion of C, defined as G(C) =

Zcpc(l - pc) = Zc;éc/ PcPer -

6.3.1 Estimating Split Criteria

The measures above need to be estimated from finite samples, but in a way that
generalizes to future examples (that is, whether it is made now or in a month,
year, or decade hence, it will still be the same decision, assuming stationarity).
This calls for concentration inequalities in the spirit of those presented in sec-
tion 4.2, which bound the probability that an estimate over a finite sample is
far off its expectation.

Hoeffding’s inequality has often been used for estimating measures like
information gain or the Gini index. Unfortunately, these measures cannot be
expressed as a sum of independent random variables, and so Hoeffding’s bound
is argued in recent work by Rutkowski et al. [218] to be the wrong tool.

A generalization of Hoeffding’s inequality called McDiarmid’s inequal-
ity can, however, be used for making split decisions using these mea-
sures as it works explicitly on functions of the data [218]. For infor-
mation gain /G, the following can be shown for any two attributes A

102 Chapter 6

and B: if E[IG(S, A) — IG(S, B)] > e, then with probability 1 — ¢ we have
IG(S,A)—IG(S,B) >0, where ¢ = K(n.,n)y/In(1/8)/2n, K(nen)=
6(n.logen +log2n) + 2logn., n is the size of S, and n. is the number
of classes. The formulation for the Gini index is simpler: it suffices to have

81n(1/4)/2n. Similar bounds are given in [215]. Misclassification error
can also be used [217], eventually giving a bound very similar to Hoeffding’s
bound.

Note that our description of work on decision trees for streaming takes a
historical perspective. The use of McDiarmid’s bound is cutting-edge for this
particular method and represents a relatively new result. Hoeffding trees may,
in the future, be proven incorrect in the sense of being based on assumptions
that do not hold, however, they are still very effective in practice, and so worthy
of study.

6.3.2 The Hoeffding Tree

In the data stream setting, where we cannot store all the data, the main problem
of building a decision tree is the need to reuse instances to compute the best
splitting attributes. Domingos and Hulten [88] proposed the Hoeffding Tree,
a very fast decision tree algorithm for streaming data, where instead of reusing
instances, we wait for new instances to arrive. The most interesting feature of
the Hoeffding Tree is that it builds a tree that provably converges to the tree
built by a batch learner with sufficiently large data; a more precise statement
of this equivalence is provided later in this section.

The pseudocode of the Hoeffding Tree is shown in figure 6.3. It is based
on Hoeffding’s bound, discussed in section 4.2. On the basis of the bound, the
proposal in [88] was to choose, as a confidence interval for the estimation of
the entropy at a node, the value

_ [R?In1/$
= 2n

where R is the range of the random variable, ¢ is the desired probability of
the estimate not being within e of its expected value, and n is the number of
examples collected at the node. In the case of information gain, the entropy is
in the range [0, .. ., log n.] for n.. class values. Although the use of Hoeffding’s
bound in this context is formally incorrect, as explained before, it is still used
in most implementations; the reasonable results it achieves may be due to the
fact that it gives, in most cases, an overestimation of the true probability of
error.

Classification 103

HOEFFDINGTREE(Stream, d)

Input: a stream of labeled examples, confidence parameter §

let HT be a tree with a single leaf (root)
init counts ;) at root
for each example (z,y) in Stream

do HTGROW((z,y),HT,0)

B R S

HTGrOW((z,y), HT,0)

1 sort (x,y) to leaf [using HT

2 update counts n;; at leaf [

3 if examples seen so far at [are not all of the same class

4 then

5 compute G for each attribute

6 if G(best attribute) - (G(second best) > 4/ w

7 then

8 split leaf on best attribute

9 for each branch
10 do start new leaf and initialize counts
Figure 6.3

The Hoeffding Tree algorithm.

104

Chapter 6

The Hoeffding Tree algorithm maintains in each node the statistics needed
for splitting attributes. For discrete attributes, this is the same information as
needed for computing the Naive Bayes predictions: a 3-dimensional table that
stores for each triple (z;,v;,c) a count n; ; . of training instances with z; =
v;, together with a 1-dimensional table for the counts of C' = c. The memory
needed depends on the number of leaves of the tree, not on the length of the
data stream.

A theoretically appealing feature of the Hoeffding Tree not shared by other
incremental decision tree learners is that it has sound guarantees of perfor-
mance. It was shown in [88] that its output is asymptotically nearly identical
to that of a nonincremental learner using infinitely many examples, in the fol-
lowing sense.

The intensional disagreement A; between two decision trees DT} and D75
is the probability that the path of an example through D73 will differ from
its path through D75, in length, or in the attributes tested, or in the class
prediction at the leaf. The following result is rigorously proved in [88]: Let
HTjs be the tree produced by the Hoeffding Tree algorithm with parameter §
from an infinite stream of examples, DT’ be the batch tree built from an infi-
nite batch, and p be the smallest probability of a leaf in DT. Then we have
E[A(HTy, DT)] < §/p.

Domingos and Hulten [88] improved the Hoeffding Tree algorithm to a more
practical method called the very fast decision tree (VFDT), with the following
characteristics:

e Ties: When two attributes have similar split gain G, the improved method
splits if Hoeffding’s bound is lower than a certain threshold parameter 7.

R2Inl/é
G (best attribute) — G(second best) < 1/ % <T

e To speed up the process, instead of computing the best attributes to split
every time a new instance arrives, the VFDT computes them every time a
number n.,,,;,, of instances has arrived.

e To reduce the memory used in the mining, the VFDT deactivates the least
promising nodes, those with the lowest product p; x e;, where
e p; is the probability to reach leaf [, and

e ¢; is the error in node [.

Classification 105

e The method can be started from any preexisting decision tree, for example,
one built from an available batch of data. Hoeffding trees can grow slowly
and performance can be poor initially, so this extension provides an imme-
diate boost to the learning curve.

It is worth noting that there has been very little research on the last point in
the VFDT method. Slow initial learning is an issue for these trees, and boot-
strapping via an initial decision tree to create a better starting point makes
sense.

One way to improve the classification performance of the Hoeffding Tree is
to use Naive Bayes learners at the leaves instead of the majority class classifier.
Gama and Medas [113] were the first to use Naive Bayes in Hoeffding Tree
leaves, replacing the majority class classifier. However, Holmes et al. [135]
identified situations where the Naive Bayes method outperforms the standard
Hoeffding Tree initially but is eventually overtaken. To solve that, they pro-
posed a hybrid adaptive method that generally outperforms the two original
prediction methods for both simple and complex concepts: when performing a
prediction on a test instance, the leaf will return the Naive Bayes prediction if
it has been more accurate overall than the majority class prediction, otherwise
it returns the majority class. The only overhead is keeping the two counts for
the number of times each classifier has been correct.

6.3.3 CVFDT

Hulten et al. [138] presented the concept-adapting very fast decision tree
(CVFEDT) algorithm as an extension of VFDT to deal with concept drift, main-
taining a model that is consistent with the instances stored in a sliding window.
Unfortunately, such trees do not have theoretical guarantees like Hoeffding
trees. Note that, theoretically, Hoeffding trees can to some extent adapt to con-
cept drift, because leaves that would not grow any more under a stationary
distribution may start to grow again if evidence gathers that further splitting
would improve accuracy. However, this process is too slow in practice.

Figure 6.4 shows a sketch of the code for the CVFDT algorithm; a fuller
description is provided in the reference above. It is similar to the code for the
Hoeffding Tree but with the changes listed below. Note that here we use the
terms “remove” and “forget” which look the same. They are different, however,
as forgetting is a complex procedure that removes an instance from the tree. In
contrast, adding and removing instances only applies to the sliding window.

106 Chapter 6

CVFDT(Stream,d)

Input: a stream of labeled examples, confidence parameter §

let HT be a tree with a single leaf (root)
init counts n;;; at root
for each example (z,y) in Stream
do add, remove, and forget Examples
CVFEDTGROW((z,y),HT,)
CHECKSPLITVALIDITY (HT,n, §)

AN AW

CVFDTGROW((z,y), HT, 5)

1 sort (x,y) to leaf [using HT
2 update counts n;;;, at leaf [and nodes traversed in the sort
3 if examples seen so far at [are not all of the same class
4 then
5 compute G for each attribute
6 if G(best attribute)—G(second best) > /R?1n(1/§)/(2n)
7 then
8 split leaf on best attribute
9 for each branch
10 do start new leaf and initialize counts
11 create alternate subtree

CHECKSPLITVALIDITY (HT,n,¢)

1 for each node [in HT that it is not a leaf

2 do for each tree T,;; in ALT(1)

3 do CHECKSPLITVALIDITY (T, 1, 0)
4 if there is a new promising attribute at node [
5 do start an alternate subtree

Figure 6.4
The CVFDT algorithm.

Classification 107

e The main method maintains a sliding window with the latest instances, so it
has to add, remove, and forget instances.

e The main method calls procedure CVFDTGROW to process an example,
but also method CHECKSPLITVALIDITY to check whether the chosen splits
are still valid.

e CVFDTGROW also updates counts of the nodes traversed in the sort.

e CHECKSPLITVALIDITY creates an alternate subtree if the attributes chosen
to split are now different from the ones that were chosen when the split was
done.

e Periodically, the algorithm checks whether the alternate branch is perform-
ing better than the original branch tree, and if so it replaces the original
branch, and if not, it removes the alternate branch.

6.3.4 VFDTc and UFFT

VFDTc and UFFT are two methods that extend the Hoeffding Tree to handle
numeric attributes and concept drift. VFDTc, developed by Gama et al. [111],
does the following:

1. It keeps Naive Bayes learners at the leaves to make predictions.

2. It handles numeric attributes using binary trees, as explained in sec-
tion 6.4.2.

3. To handle concept drift, it uses the statistical DDM method explained in
section 5.3.4.

The ultra fast forest of trees (UFFT), developed by Gama and Medas [113],

generates a forest of binary trees, one for each possible pair of classes. The

trees contain a Naive Bayes classifier at each node, like VFDTc. The main
difference from VFDTc is in the handling of numeric attributes.

UFFT uses analytical techniques to choose the splitting criteria, and infor-
mation gain to estimate the merit of each possible splitting test. For multiclass
problems, the algorithm builds a binary tree for each possible pair of classes,
leading to a forest of trees, that comprises k(k — 1)/2 classifiers for a k-class
problem. The analytical method uses a modified form of quadratic discriminant
analysis to include different variances on the two classes.

108 Chapter 6

6.3.5 Hoeffding Adaptive Tree

The Hoeffding Adaptive Tree [33] is an adaptive extension to the Hoeffding
Tree that uses ADWIN as a change detector and error estimator. It has theoret-
ical guarantees of performance and requires no parameters related to change
control. In contrast, CVFDT has no theoretical guarantees, and requires several
parameters with default values that can be changed by the user, but which are
fixed for a given execution. It requires:

1. W: The example window size.

2. Ty: Every T, examples, CVFDT traverses the entire decision tree, and
checks at each node whether the splitting attribute is still the best. If there
is a better splitting attribute, it starts growing an alternate tree rooted at this
node, and it splits on the current best attribute according to the statistics at
the node.

3. Ti: After an alternate tree is created, the following 77 examples are used to
build the alternate tree.

4. Ty: After the arrival of T examples, the following 75 examples are used to
test the accuracy of the alternate tree. If the alternate tree is more accurate
than the current one, CVFDT replaces it with this alternate tree (we say that
the alternate tree is promoted).

The default values are W = 50,000, Ty = 10,000, 77 = 9,000, and T =
1,000. We can interpret these figures as the assumptions that often the last
50,000 examples are likely to be relevant, that change is not likely to occur
faster than every 10,000 examples, and that 1,000 examples will be sufficient
to tell the best among current and candidate trees. These assumptions may or
may not be correct for a given data source. Moreover, the stream may change
differently at different times, so no single set of values may be best for all the
stream.

The main differences of the Hoeffding Adaptive Tree with respect to
CVEFDT are:

e The alternate trees are created as soon as change is detected, without having
to wait for a fixed number of examples to arrive after the change. Further-
more, the more abrupt the change, the faster a new alternate tree will be
created.

Classification 109

e The Hoeffding Adaptive Tree replaces an old tree with the alternate tree as
soon as there is evidence that it is more accurate, rather than waiting for
another fixed number of examples.

These two effects can be summarized by saying that the Hoeffding Adaptive
Tree adapts to the scale of time change in the data, rather than relying on the a
priori guesses made by the user.

6.4 Handling Numeric Attributes

Handling numeric attributes in a data stream classifier is much more difficult
than in a nonstreaming setting. In this section we will review the most popular
methods used for discretization in decision trees and Naive Bayes algorithms
in evolving data streams. We need to examine how to manage the statistics of
numeric attributes and how to determine the best splitting points in decision
trees.

We start by mentioning the methods in the nonstreaming scenario. There,
the main discretization strategies are:

e Equal width: The range of the numeric attribute is divided into a fixed quan-
tity of bins of the same size. The maximum and minimum values are needed
to compute the upper and lower values in the bins. This is the simplest
method as it does not need to sort the data, but it is vulnerable to the exis-
tence of outliers and to skewed distributions.

e Equal frequency: This strategy also uses a fixed number of bins, but each
bin contains the same number of elements. For n values and k bins, the bin
weight will be n/k, up to rounding. It is well suited for outliers and skewed
distributions, but it needs more processing time, as it needs to sort the values.

e Fayyad and Irani’s method [98]: This is based on computing the best cut-
points using information gain as it is used in decision trees. First, it sorts
the data, and then each point between adjacent pairs of values is selected
as a split candidate. Using information gain, the best cut-point is selected,
and then the procedure continues recursively in each of the parts. A stop-
ping criterion is needed to stop the recursive process. The criterion is based
on stopping when intervals become pure, with values of one class only, or
when the minimum description length principle estimates that dividing the
numeric range will not bring any further benefit.

110 Chapter 6

64.1 VFML

The very fast machine learning (VFML) package of Hulten and Domin-
gos [137] contains a method for handling numeric attributes in VFDT and
CVFDT. Numeric attribute values are summarized by a set of ordered bins.
The range of values covered by each bin is fixed at creation time and does
not change as more examples are seen. A hidden parameter serves as a limit
on the total number of bins allowed—in the VFML implementation this is
hard-coded to allow a maximum of 1,000 bins. Initially, for every new unique
numeric value seen, a new bin is created. Once the fixed number of bins have
been allocated, each subsequent value in the stream updates the counter of the
nearest bin.

Essentially, the algorithm summarizes the numeric distribution with a his-
togram, made up of a maximum of 1,000 bins. The boundaries of the bins are
determined by the first 1,000 unique values seen in the stream, and after that
the counts of the static bins are incrementally updated.

There are two potential issues with this approach. Clearly, the method is
sensitive to data order. If the first 1,000 examples seen in a stream happen to
be skewed to one side of the total range of values, then the final summary
cannot accurately represent the full range of values.

The other issue is estimating the optimal number of bins. Too few bins will
mean the summary is small but inaccurate, whereas too many bins will increase
accuracy at the cost of space. In the experimental comparison the maximum
number of bins is varied to test this effect.

6.4.2 Exhaustive Binary Tree

Gama et al. [111] present this method in their VFDTc system. It aims at achiev-
ing perfect accuracy at the expense of storage space. The decisions made are
the same that a batch method would make, because essentially it is a batch
method—no information is discarded other than the order of values.

It works by incrementally constructing a binary tree as values are observed.
The path a value follows down the tree depends on whether it is less than,
equal to, or greater than the value at a particular node in the tree. The values
are implicitly sorted as the tree is constructed, and the number of nodes at each
time is the number of distinct values seen. Space saving occurs if the number
of distinct values is small.

Classification 111

On the other hand, the structure saves search time versus storing the values
in an array as long as the tree is reasonably balanced. In particular, if values
arrive in order, then the tree degenerates to a list and no search time is saved.

6.4.3 Greenwald and Khanna’s Quantile Summaries

The field of database research is also concerned with the problem of summa-
rizing the numeric distribution of a large dataset in a single pass and limited
space. The ability to do so can help to optimize queries over massive databases.

Greenwald and Khanna [129] proposed a quantile summary method with
even stronger accuracy guarantees than previous approaches. The method
works by maintaining an ordered set of tuples, each of which records a value
from the input stream, along with implicit bounds for the range of each value’s
true rank. Precisely, a tuple ¢; = (v;, g;, A;) consists of three values:

e a value v; of one of the elements seen so far in the stream,

e a value g; that equals 7,5, (V;) — Tmin (vi—1), Where 7, (v) is the lower
bound of the rank of v among all the values seen so far, and

e a value A; that equals 7,4, (Vi) — Tmin (v;), Where rpq.(v) is the upper
bound of the rank of v among all the values seen so far.

Note that

T'min (U7) = Zgja and 70, (Uz) = T'min (Ui) +A; = Zgj +A;.

J<i J<i

The quantile summary is e-approximate in the following sense: after see-
ing N elements of a sequence, any quantile estimate returned will not differ
from the exact value by more than e/N. An operation for compressing the quan-
tile summary is defined that guarantees max(g; + A;) < 2¢N, so that the error
of the summary is kept within 2e.

The worst-case space requirement is shown to be O(tlog(eN')), with empir-
ical evidence showing it to be even better than this in practice.

6.4.4 Gaussian Approximation

This method, presented in [199], approximates a numeric distribution in small
constant space, using a Gaussian or normal distribution. Such a distribution
can be incrementally maintained by storing only three numbers, in a way that is

112

Chapter 6
Y
x
= i I I i =
A B C D E F G H I J
Information gain
Figure 6.5

Gaussian approximation of two classes. Figure based on [199].

insensitive to data order. A similar method to this one was described by Gama
and Medas in their UFFT system [113].

For each numeric attribute, the method maintains a separate Gaussian dis-
tribution per class label. The possible values are reduced to a set of points
spread equally across the range, between the minimum and maximum values
observed. The number of evaluation points is determined by a parameter, so
the search for split points is parametric, even though the underlying Gaus-
sian approximations are not. For each candidate point, the weight of values to
either side of the split can be approximated for each class, using their respective
Gaussian curves, and the information gain is computed from these weights.

The process is illustrated in figure 6.5. At the top of the figure are two
Gaussian curves, each approximating the distribution of values for a numeric
attribute and labeled with a particular class. Each curve can be described using
three values: the mean, the variance, and the total weight of examples. For
instance, in figure 6.5, the class shown to the left has a lower mean, higher
variance, and higher example weight (larger area under the curve) than the
other class. Below the curves, the range of values has been divided into ten

Classification 113

split points, labeled A to J. The vertical bar at the bottom displays the relative
amount of information gain calculated for each split. The split point that would
be chosen as the best is point E, which the evaluation shows has the highest
information gain.

A refinement of this method involves also tracking the minimum and maxi-
mum values of each class. This requires storing an extra two counts per class,
but they are simple and take little time to maintain. When evaluating split
points, the method exploits per-class minimum and maximum information to
determine when class values lie completely to one side of a split, eliminat-
ing the small uncertainty otherwise present in the tails of the Gaussian curves.
From the per-class minimum and maximum, the minimum and maximum of
the entire range of values can be established, which helps to determine the
position of split points to evaluate.

Approximation by a sum of Gaussians will almost certainly not capture the
full detail of an intricate numeric distribution, but the approach is efficient in
both computation and memory. Whereas the binary tree method uses extreme
memory costs to be as accurate as possible, this method employs the opposite
approach—using gross approximation to use as little memory as possible. And
in fact, the simplified view of numeric distributions is not necessarily harmful
to the accuracy of the trees it produces. There will be further opportunities to
refine split decisions on a particular attribute by splitting again further down the
tree. Also, the approximation by a few simple parameters can be more robust
and resistant to noise and outliers than more complicated methods, which con-
centrate on finer details.

6.5 Perceptron

The Perceptron, proposed by Rosenblatt in 1957, is a linear classifier and one
of the first methods for online learning. Because of its low computational cost,
it was shown in [37] to be a useful complement to the Majority Class and Naive
Bayes classifiers at the leaves of decision trees.

The algorithm is given a stream of pairs (Z;, y;), where Z; is the ith example
and y; is its class. The perceptron keeps at all times a vector of weights w
that defines the function hg used to label examples; in particular, for every
example & we have h,, (z) = o (T ¥), where o(z) = 1/(1 +e~%) is a soft-
threshold function whose range is [0, 1]. The prediction given to the outside is
more likely produced by applying the sign function (i.e., a O or 1 value), but

114 Chapter 6

using o is more convenient for the derivation of the update rule. A nonzero
decision threshold can be simulated by adding an additional feature in z that
is always 1.

The derivation of the update rule can be found in many texts on ML, and
is omitted here. In essence, its goal is to update the weights @ to minimize
the number of misclassified examples, and this is achieved by moving each
component of w0 in the direction of the gradient that decreases the error. More
precisely, the rule is:

@ =T+ nZ(yi — h (&) has (83) (1 — hep () 2,

where 7 is a parameter called the learning rate.
This method is the simplest example of so-called stochastic gradient descent
for incremental optimization of a loss function on a set or stream of examples.

6.6 Lazy Learning

Perhaps the most obvious batch method to try in the streaming context is the
k-nearest neighbor method, k-NN [209]. The change to streaming is readily
achieved by using a sliding window as the search space for determining the
k-nearest neighbors to a new unclassified instance, and predicting the majority
among their k labels. Votes can optionally be weighted by the inverse of the
distance to the point to predict, or some other scheme. The method using a slid-
ing window with the 1,000 most recent instances was found to be remarkably
effective in [209].

As the window slides, the method naturally responds to concept drift. Con-
cept drift can be either abrupt or gradual, and responding to these differently
makes sense for lazy learners [28].

If implemented naively, the method is generally inefficient at prediction time
because of the search for neighbors, but it is possible to index the instances in
the sliding window to improve prediction efficiency [257].

More recently, Losing et al. [162] proposed the use of two memories for
coping with different concept drift types and drift speeds. A short-term mem-
ory, containing data from the most current window, is used to model the current
concept, and a long-term memory is used to maintain knowledge of past con-
cepts. By carefully managing these two memories, very competitive results can
be achieved in benchmark tests. The authors point out that the method is useful
in practice because it does not require any meta-parameters to be tuned.

Classification 115

Some variant of k-NN, even just the simplest one, should always be used
when evaluating new classification methods.

6.7 Multi-label Classification

In many real-world applications, particularly those involving text, we are faced
with multiclass problems: classifying instances into multiple class labels rather
than only one. An example in text categorization is applying fags to docu-
ments. Imagine that we are tagging news articles, and we have to tag an article
about a rugby game between France and New Zealand. That document can
be classified as both France and New Zealand, as well as rubgy and possi-
bly sports. There are many other applications: scene and video classification,
medical diagnosis, and applications in microbiology.

The main challenge in multi-label classification is detecting and modeling
dependencies between labels, without becoming too complex computationally.
A simple baseline method is binary relevance (BR). BR transforms a multi-
label problem into multiple binary problems, such that binary models can be
employed to learn and predict the relevance of each label. An advantage of
the method is that it is quite resistant to labelset overfitting, since it learns
on a per-label basis. It has often been overlooked in the literature because it
fails to take into account label correlations directly during the classification
process [123, 210, 235], although there are several methods that overcome
this limitation [68, 123, 211]. For example, in [211] Read et al. introduced
ensembles of BR classifiers, and also the concept of classifier chains, both of
which improve considerably on BR in terms of predictive performance.

A problem for BR methods in data streams is that class-label imbalance may
become exacerbated by large numbers of training examples. Countermeasures
to this are possible, for example by using per-label thresholding methods or
classifier weightings as in [203].

BR can be applied directly to data streams by using streaming binary base
models. Additional advantages in the streaming setting are BR’s low time com-
plexity and the fact that it can be easily parallelized.

An alternative paradigm to BR is the label combination or label powerset
method (LC). LC transforms a multi-label problem into a single-label (multi-
class) problem by treating all label combinations as atomic labels, that is, each
labelset in the training set becomes a single class-label within a single-label

116 Chapter 6

problem. Thus, the set of single class-labels represents all distinct label sub-
sets in the original multi-label representation, so label correlations are taken
into account. Disadvantages of LC include its worst-case computational cost
(as there are potentially up to 2% labelsets on L labels) and a strong tendency
to overfit the training data, although this problem has been largely overcome
by newer methods [210, 235]; ideas include, for example, taking random label
subsets from the labelset to train an ensemble of classifiers, as well as various
pruning strategies.

A particular challenge for LC methods in a data stream context is that the
label space expands over time due to the emergence of new label combina-
tions. It is possible to adapt probabilistic models to account for the emergence
of new labelset combinations over time; however, probabilistic models are not
necessarily the best-performing ones. A general “buffering” strategy may be
useful [208], where label combinations are learned from an initial number of
examples and these are considered sufficient to represent the distribution. Dur-
ing the buffering phase, another model can be employed to adhere to the “ready
to predict at any point” requirement.

Another multi-label approach is pairwise classification (PW), where binary
models are used for every possible pair of labels [109]. PW performs well in
some contexts, but the complexity in terms of models—namely, L x (L — 1)/2
for L labels—demands new ideas to make it applicable to large problems.

Note that these are all problem transformation methods, wherein a multi-
label problem is transformed into one or more single-label problems, after
which any off-the-shelf multi-class classifier (or binary, in the case of BR and
PW) can be used. These methods are interesting generally due to their flexibil-
ity and general applicability.

The iSOUP-Tree (incremental structured output prediction) method [188]
is a multi-label classifier that performs multi-label classification via multitar-
get regression. There exist two variants of the iSOUP-Tree method (building
regression and model trees), as well as ensembles of iSOUP-Trees.

6.7.1 Multi-label Hoeffding Trees

A Multi-label Hoeffding tree was presented in [208], based on adaptation of
the information gain criterion to multi-label problems.

Recall that Hoeffding trees use the information gain criterion to decide the
best attribute at each expanding node, and that the information gain of an
attribute is the difference between the entropy of the dataset before and after

Classification 117

the split. As entropy measures the amount of uncertainty in the dataset, in the
case of multi-label examples, we need to add to the entropy the information
needed to describe all the classes that an example does not belong to.

Clare and King [72] showed that this can be accomplished by adding to
the regular entropy a term that adds, for each label, a quantity related to the
class entropy in the examples having that label. From there, they proposed a
multi-label version of C4.5. The Multi-label Hoeffding Tree [208] uses this
strategy to construct a decision tree. A Majority Labelset Classifier (the multi-
label version of Majority Class) is used as the default classifier on the leaves of
a Multi-label Hoeffding tree. However, any multi-label classifier at the leaves
can be used.

6.8 Active Learning

Classifier methods need labeled training data to build models. Often unlabeled
data is abundant but labeling is expensive. Labels can be costly to obtain due
to the required human input (labor cost). Consider, for example, textual news
arriving as a stream. The goal is to predict whether a news item will be interest-
ing to a given user at a given time, and the interests of the user may change. To
obtain training data the historical news needs to be read and labeled as interest-
ing or not interesting. Currently this requires human labor. Labeling can also
be costly due to a required expensive, intrusive, or destructive laboratory test.
Consider a production process in a chemical plant where the goal is to predict
the quality of production output. The relationship between input and output
quality might change over time due to constant manual tuning, complementary
ingredients, or replacement of physical sensors. In order to know the quality
of the output (the true label) a laboratory test needs to be performed, which is
costly. Under such conditions it may be unreasonable to require true labels for
all incoming instances.

Active learning algorithms ask for labels selectively instead of expecting
to receive all the instance labels. This has been extensively studied in pool-
based [157] and online settings [77]. In pool-based settings, the decision con-
cerning which instances to label is made from all historical data.

In [261], a framework setting for active learning in evolving data streams
was presented. It works as follows: Data arrives in a stream, and predictions
need to be made in real time. Concept drift is expected, so learning needs
to be adaptive. The true label can be requested immediately or never, as the

118

Chapter 6

ACTIVE LEARNING FRAMEWORK (Stream, B)

Input: a stream of unlabeled examples, labeling budget B,
other strategy parameters
Output: a stream of predictions

1 for each x,—incoming instance

2 do if ACTIVE LEARNING STRATEGY (¢, B, ...) = true

3 then request the true label y; of instance z;

4 train classifier L with (¢, y;)

5 if L,, exists then train classifier L,, with (z,y;)
6 if change warning is signaled

7 then start a new classifier L,,

8 if change is detected

9 then replace classifier L with L,,

Figure 6.6
Active learning framework.

instances are regularly discarded from memory. The goal is to maximize pre-
diction accuracy over time, while keeping the labeling costs fixed within an
allocated budget. After scanning an instance and outputting the prediction for
it, we need a strategy to decide whether or not to query for the true label, so
that our model could train itself with this new instance. Regular retraining is
needed due to changes in data distribution. Active learning strategies in data
streams, in addition to learning an accurate classifier in stationary situations,
must be able to

e balance the labeling budget over time,
e notice changes happening anywhere in the instance space, and

e preserve the distribution of the incoming data for detecting changes.

More formally, the setting is as follows: The algorithm receives a stream of
unlabeled instances z; and a budget B, expressing the fraction of past instances
that it is allowed to ask for labeling. If it requests the label for x;, the algo-
rithm receives the true label of x;, denoted y;. The cost of obtaining a label
is assumed to be the same for all instances. B = 1 means that all arriving
instances can be labeled, whereas B = 0.2 means that, at any moment, the

Classification 119

algorithm may have requested the labels of at most 20% of the instances seen
so far.

Figure 6.6 shows the framework that combines active learning strategies
with adaptive learning. This framework uses the change detection technique
of [114]: when the accuracy of the classifier begins to decrease, a new classifier
is built and trained with new incoming instances. When a change is detected,
the old classifier is replaced by the new one.

Next we describe four of the strategies proposed for budget allocation.

6.8.1 Random Strategy

The first (baseline) strategy is naive in the sense that it labels the incoming
instances at random instead of actively deciding which label would be most
relevant. For every incoming instance the true label is requested with probabil-
ity B, where B is the budget.

6.8.2 Fixed Uncertainty Strategy

Uncertainty sampling is perhaps the simplest and the most common active
learning strategy [224]. The idea is to label the instances for which the cur-
rent classifier is the least confident. In an online setting, this corresponds to
labeling the instances for which the certainty is below some fixed threshold. A
simple way to measure uncertainty is to use the posterior probability estimates,
output by a classifier.

6.8.3 Variable Uncertainty Strategy

One of the challenges with the fixed uncertainty strategy in a streaming data
setting is how to distribute the labeling effort over time. Using a fixed thresh-
old, after some time a classifier will either exhaust its budget or reach the
threshold certainty. In both cases it will stop learning and thus fail to adapt
to changes.

Instead of labeling the instances that are less certain than the threshold, we
want to label the least certain instances within a time interval. Thus we can
introduce a variable threshold, which adjusts itself depending on the incoming
data to align with the budget. If a classifier becomes more certain (stable situa-
tions), the threshold expands to be able to capture the most uncertain instances.
If a change happens and suddenly a lot of labeling requests appear, then the
threshold is contracted to query only the most uncertain instances.

120 Chapter 6

VARIABLEUNCERTAINTY (24, L, B, s)

Input: 2;—incoming instance, L—trained classifier,
B—budget, s—adjusting step

Output: label € {true, false} indicates whether to request
the true label y,

Starting defaults:
total labeling cost w = 0, initial labeling threshold 6 = 1

1 if (u/t < B)
2 then > budget is not exceeded
3 Uy = argmax, Pr(y|x;), where y € {1,...,c}
4 is one of the class labels
5 if (Pr(ge|ze) < 6)
6 then > uncertainty below the threshold
7 u=u-+1 > labeling costs increase
8 0 =6(1—s) © the threshold decreases
9 return true
10 else > certainty is good
11 > make the uncertainty region wider
12 0=0(1+s)
13 return false
14 else > budget is exceeded
15 return false
Figure 6.7

Variable uncertainty strategy, with a dynamic threshold.

It may seem counterintuitive to ask for more labels in quiet periods and
fewer labels at change points. But, in fact, this ensures that the algorithm asks
for the same fraction of labels in all situations. Since it does not know when
or how often changes will be happening, this helps in spending the budget

uniformly over time.

The variable uncertainty strategy is described in figure 6.7. More detail and

a comparison with the other strategies can be found in [261].

Classification 121

6.8.4 Uncertainty Strategy with Randomization

The uncertainty strategy always labels the instances that are closest to the deci-
sion boundary of the classifier. In data streams, changes may happen anywhere
in the instance space. When concept drift happens in labels, the classifier will
not notice it without the true labels. In order to not miss concept drift we
should, from time to time, label some instances about which the classifier is
very certain. For that purpose, for every instance, the strategy randomizes the
labeling threshold by multiplying by a normally distributed random variable
that follows N (1,6). This way, it labels the instances that are close to the deci-
sion boundary more often, but occasionally also labels some distant instances.

This strategy trades off labeling some very uncertain instances for labeling
very certain instances, in order to not miss changes. Thus, in stationary situa-
tions this strategy is expected to perform worse than the uncertainty strategy,
but in changing situations it is expected to adapt faster.

Table 6.3 summarizes the four strategies with respect to several require-
ments. The random strategy satisfies all three requirements. Randomized
uncertainty satisfies budget and coverage, but it produces biased labeled data.
Variable uncertainty satisfies only the budget requirement, and fixed uncer-
tainty satisfies none.

Table 6.3
Summary of budget allocation strategies.
Controlling Instance space Labeled data
budget coverage distribution
Random present full 1ID
Fixed uncertainty no fragment biased
Variable uncertainty handled fragment biased
Randomized uncertainty handled full biased

6.9 Concept Evolution

Concept evolution occurs when new classes appear in evolving data streams.
For example, in mining text data from Twitter, new topics can appear in tweets;
or in intrusion detection in network data streams, new types of attacks can
appear, representing new classes.

122 Chapter 6

Masud et al. [170] were the first to deal with this setting. Their approach
consists of training an ensemble of k-NN-based classifiers that contain pseudo-
points obtained using a semisupervised k-means clustering. Each member of
the ensemble is trained on a different labeled chunk of data. New instances are
classified using the majority vote among the classifiers in the ensemble.

Each pseudopoint represents a hypersphere in the feature space with a cor-
responding centroid and radius. The decision boundary of a model is the union
of the feature spaces; and the decision boundary of the ensemble is the union
of the decision boundaries of all the models in the ensemble.

Each new instance is first examined by the ensemble of models to see if it
is outside the decision boundary of the ensemble. If it is inside the decision
boundary, then it is classified normally using the majority vote of the models
of the ensemble. Otherwise, it is declared as an F-outlier, or filtered outlier.
These F-outliers are potential novel class instances, and they are temporarily
stored in a buffer to observe whether they are close to each other. This is done
by using a g-neighborhood silhouette coefficient (q-NSC), a unified measure
of cohesion and separation that yields a value between —1 and +1. A positive
value indicates that the point is closer to the F-outlier instances (more cohe-
sion) and farther away from existing class instances (more separation), and
vice versa. A new class is declared if there are a sufficient number of F-outliers
having positive q-NSC for all classifiers in the ensemble.

The SAND (semisupervised adaptive novel detection) method [133] deter-
mines the chunk size dynamically based on changes in the classifier confi-
dence. SAND is thus more efficient and avoids unnecessary training during
periods with no changes.

Finally, in [10], a “class-based” ensemble technique is presented that
replaces the traditional “chunk-based” approach in order to detect recurring
classes. The authors claim that the class-based ensemble methods are superior
to the chunk-based techniques.

6.10 Lab Session with MOA

In this session lab you will use MOA through the graphical interface to learn
several classifier models and evaluate them in different ways. The initial MOA
GUI screen is shown in figure 6.8.

Classification

123

LN MO8, Graphical User imerface
B Rearession MultiTarger Clustering Outllers Comcept Drift
Contigure - s al bert/Download s covtypeMormearff) - BasicClassiflcationPedformanceEvaluator -1 1000000 -f 1000 Aun
command (1 ITEY time slapsed currant activity X comphets
Pause Resume Cancel Delete
Mo preview available Refresh Auro refrech
Evaluation
Values Plor
Measure Current Mean Zoomin ¥ Zogm out ¥ Zoomin X Zoorm out X
0 Accuracy - -
Kappa = 00
Kappa Temp -
Rar-Hours N
Tirme -
Memary = =
o0+ T T T v
] o Anco0: 13000 200000
Figure 6.8

MOA graphical user interface.

Exercise 6.1 Click Configure to set up a task. Change the task type in the
dropdown menu at the top to LearnModel. As you can see, the default
learner is NaiveBayes. You could change it by clicking the Edit button
and then selecting from the dropdown menu at the top. However, leave it as
NaiveBayes for now. The default data stream is RandomTreeGenera—
tor. Use the corresponding Edit button to change it to WaveformGener—
ator, which generates instances from a combination of waveforms. Change
the number of instances to generate from 10,000,000 to 1,000, 000. Finally,
specify a taskResultFile, say modelNB.moa, where MOA will output

the model.

124

Chapter 6

Now click OK, and then Run fo launch this task. Textual output appears in
the center panel: in this case, every 10,000 steps. Various evaluation measures
appear in the lower panel, and are continuously updated until the task com-
pletes. MOA can run several tasks concurrently, as you will see if you click
Run twice in quick succession. Clicking on a job in the top panel displays its
information in the lower two panels.

The task you have just run is

LearnModel -1 bayes.NaiveBayes
-s generators.WaveformGenerator
-m 1000000 -0 modelNB.moa

—you can see this in the line beside the Configure button—and it has stored
the Naive Bayes model in the file mode 1NB. moa. (However, parameters that
have their default value are not shown in the configuration text.)

Click Configure and change the learner to a Hoeffding Tree with output file
modelHT.moa:

LearnModel -1 trees.HoeffdingTree
—s generators.WaveformGenerator
-m 1000000 -0 modelHT.moa

and run it. Now we have two models stored on disk, mode 1NB . moa and mod—
elHT.moa.

We will evaluate the Naive Bayes model using 1,000,000 new instances
generated by the Wave formGenerator, which is accomplished by the task

EvaluateModel -m file:modelNB.moa
-s (generators.WaveformGenerator —-i 2) -i 1000000

The —1i 2 sets a different random seed for the waveform generator. You can
set up most of these in the Configure panel: at the top, set the task to Eval-
uateModel, and configure the stream (which has now changed to Ran—
domTreeGenerator) to WaveformGenerator with instanceRan-—
domSeed equal to 2. Frustratingly, though, you cannot specify that the model
should be read from a file.

It is useful to learn how to get around such problems. Click OK to return to
the main MOA interface, select Copy configuration to clipboard from the right-
click menu, then select Enter configuration and paste the clipboard into the
new configuration, where you can edit it, and type -m file:modelNB.moa
into the command line. This gives the EvaluateModel task the parameters

Classification 125

needed to load the Naive Bayes model produced in the previous step, gener-
ate a new waveform stream with a random seed of 2, and test on 1,000,000
examples.

a. What is the percentage of correct classifications?

b. Edit the command line to evaluate the Hoeffding Tree model. What is the
percentage of correct classifications?

c. Which model performs best according to the Kappa statistic?

Exercise 6.2 In MOA, you can nest commands. For example, the
LearnModel and EvaluateModel steps can be rolled into one, avoid-
ing the need to create an external file. You cannot do this within the interactive
Configure interface; instead you have to edit the Configure command text.

OzaBag is an incremental bagging technique that we will see in the next
chapter. Evaluate it as follows:

EvaluateModel -m (LearnModel -1 meta.OzaBag
-s generators.WaveformGenerator -m 1000000)
-s (generators.WaveformGenerator -i 2) -i 1000000

Do this by copying this command and pasting it as the Configure text using
right-click, Enter configuration.
What is the accuracy of OzaBag?

Exercise 6.3 The task EvaluatePeriodicHeldOutTest trains a
model while taking performance snapshots at periodic intervals on a holdout
test set.

a. The following command trains the HoeffdingTree classifier on
10,000, 000 samples from the Wave formGenerator data, after holding out
the first 100,000 samples as a test set; after every 1,000,000 examples it per-
forms a test on this set:

EvaluatePeriodicHeldOutTest -1 trees.HoeffdingTree
-s generators.WaveformGenerator
-n 100000 -i 10000000 —-f 1000000

126

Chapter 6

You can copy this configuration and paste it in (cheating!), or set it up in the
interactive Configure interface (test size 100, 000, train size 10,000, 000, sam-
ple frequency 1,000, 000). It outputs a CSV file with 10 rows in the center
panel and final statistics in the lower panel. What is the final accuracy?

b. What is the final Kappa statistic?

Exercise 6.4 Prequential evaluation evaluates first on any instance,
then uses it to train. Here is an EvaluatePrequential task that
trains a HoeffdingTree classifier on 1,000,000 examples of the
WaveformGenerator data, testing every 10,000 examples, to create a 100-
line CSV file:

EvaluatePrequential -1 trees.HoeffdingTree
-s generators.WaveformGenerator
-1 1000000 —-f 10000

Set it up in the interactive Configure interface and run it. At the bottom, the
GUI shows a graphical display of the results—a learning curve. You can com-
pare the results of two different tasks: click around the tasks and you will find
that the current one is displayed in red and the previously selected one in blue.

a. Compare the prequential evaluation of NaiveBayes
with HoeffdingTree. Does the Hoeffding Tree always outperform Naive
Bayes in the learning curve display?

b. What is the final Kappa statistic for the Hoeffding Tree?

c. What is the final Kappa statistic for Naive Bayes?

Exercise 6.5 By default, prequential evaluation displays performance com-
puted over a window of 1000 instances, which creates a jumpy, jagged learning
curve. Look at the evaluator in the Configure panel: you can see that the Win-
dowClassificationPerformanceEvaluator is used, with a win-
dow size of 1000. Instead, select the BasicClassificationPerfor—
manceEvaluator, which computes evaluation measures from the beginning
of the stream using every example:

EvaluatePrequential -1 trees.HoeffdingTree
—-s generators.WaveformGenerator
—e BasicClassificationPerformanceEvaluator
-1 1000000 —-f 10000

Classification 127

As you can see, this ensures a smooth plot over time, because each individual
example becomes less and less significant to the overall average.

a. Compare again the prequential evaluations of the Hoeffding Tree and
Naive Bayes using the BasicClassificationPerformanceEvalua-
tor. Does the Hoeffding tree always outperform Naive Bayes in the learning
curve display?

b. What is the final Kappa statistic for the Hoeffding Tree?

c. What is the final Kappa statistic for Naive Bayes?

7 Ensemble Methods

Ensemble predictors are combinations of smaller models whose individual pre-
dictions are combined in some manner (say, averaging or voting) to form a final
prediction. In both batch and streaming scenarios, ensembles tend to improve
prediction accuracy over any of their constituents, at the cost of more time
and memory resources, and they are often easy to parallelize. But in stream-
ing, ensembles of classifiers have additional advantages over single-classifier
methods: they are easy to scale; if mining a distributed stream, they do not
require the several streams to be centralized toward a single site; and they can
be made to adapt to change by pruning underperforming parts of the ensem-
ble and adding new classifiers. A comprehensive and up-to-date discussion of
ensembles for streams is [124].

We first discuss general methods for creating ensembles by weighting or
voting existing classifiers, such as weighted majority and stacking. We then
discuss bagging and boosting, two popular methods that create an ensemble
by transforming the input distribution before giving it to a base algorithm that
creates classifiers. Next, we discuss a few methods that use Hoeffding Trees
as the base classifiers. Finally, we discuss recurrent concepts, that is, scenarios
where distributions that have appeared in the past tend to reappear later, and
how they can be addressed with ensembles.

7.1 Accuracy-Weighted Ensembles

A simple ensemble scheme takes N predictors C1, ..., Cx and applies some
function f to combine their predictions: on every instance x to predict, the
ensemble predicts f(Cy(z),...,Cn(x)), where C;(x) denotes the prediction
of C; for x. The predictors may be fixed from the beginning, perhaps trained
offline from batch data, or trained online on the same stream.

For classification, f may simply be voting, that is, producing the most pop-
ular class among the C;(x). In weighted voting, each classifier C; has a weight
w; attached to its vote. If we have a two-class problem, with classes in {0, 1},
weighted voting may be expressed as:

prediction(x) =)

0 otherwise
where 6 is a suitable threshold. Weights may be fixed for the whole process,
determined by an expert or by offline training, or vary over time. We concen-

trate on the latter, more interesting case.

130 Chapter 7

Accuracy-Weighted Ensembles (AWE) were proposed by Wang et al. [244],
and designed to mine evolving data streams using nonstreaming learners. An
AWE processes a stream in chunks and builds a new classifier for each new
chunk. Each time a classifier is added, the oldest one is removed, allowing the
ensemble to adapt to changes. AWEs are implemented in MOA as ACCURA-
CYWEIGHTEDENSEMBLE.

It is shown in [244] that the ensemble performs better than the base classi-
fiers if each classifier is given weight proportional to err,. — err;, where err;
is the error of the ¢th classifier on the test set and err,. is the error of a random
classifier, one that predicts class ¢ with the probability of class c in the training
set. As a proxy for the test set, AWE computes these errors on the most recent
chunk, assumed to be the one that is most similar to the instances that will
arrive next.

Advantages of this method are its simplicity and the fact that it can be used
with nonstreaming base classifiers and yet work well on both stationary and
nonstationary streams. One disadvantage of the method is that the chunk size
must be determined externally, by an expert on the domain, taking into account
the learning curve of the base classifiers.

Variations of AWE have been presented, among others, in [58, 148]. The
one in [58] is implemented in MOA as ACCURACYUPDATEDENSEMBLE.

7.2 Weighted Majority

The Weighted Majority Algorithm, proposed by Littlestone and War-
muth [160], combines N existing predictors called “experts” (in this context),
and learns to adjust their weights over time. It is similar to the perceptron
algorithm, but its update rule changes the weights multiplicatively rather than
additively. Unlike the perceptron, it can be shown to converge to almost the
error rate of the best expert, plus a small term depending on N. It is thus useful
when the number of experts is large and many of them perform poorly.

The algorithm appears in figure 7.1. The input to the algorithm is a stream of
items requiring prediction, each followed by its correct label. Upon receiving
item number ¢, x;, the algorithm emits a prediction ¢, for the label of x;. Then
the algorithm receives the correct label y, for x;. In the algorithm the sign
function returns 0 for negative numbers and 1 for nonnegative ones.

At time t, the algorithm predicts 1 if the sum of the experts’ predictions,
weighted by the current set of weights, is at least 1/2. After that, the weight

Ensemble Methods 131

WEIGHTEDMAIJORITY (Stream, [3)

Input: a stream of pairs (x,y), parameter 5 € (0,1)
Output: a stream of predictions y for each x

1 initialize experts C1, ..., Cy with weight w; = 1/N each
2 for each x in Stream
3 do collect predictions Cy(z), ..., Cn(z)
4 p 2w Ci(z)
5 9 < stgn (p - %)
6 foriel...N
7 do if (C;(z) # y) then w; + 5 - w;
8 Sy w;
9 foriel...N
10 do w; + w;/s
Figure 7.1

The Weighted Majority algorithm.

of every classifier that made a mistake is reduced by factor 3. The weights are
renormalized so that they add up to 1 at all times.

The intuition of the algorithm is that the weight of an expert decreases expo-
nentially with the number of errors it makes. Therefore, if any expert has a
somewhat smaller error rate than the others, its weight will decrease much
more slowly, and it will soon dominate the linear combination used to make
the prediction. Formalizing this argument, it was shown in [160] that no matter
the order of the stream elements, at all times ¢,

log(1/8) min; err; + + log N
log(2/(1 + 1))

where errwwm ¢ is the number of prediction errors (examples where § #)
made by Weighted Majority up to time ¢, and err; ; is the analogous figure
for expert number ¢ (number of examples where C;(x) # y). In particular, for
B = 0.5, we have

errwm,t <

errwm,: < 2.41 (min; err; ; +log N).

In words, the number of mistakes of the Weighted Majority algorithm is
only a constant factor larger than that of the best expert, plus a term that does

132 Chapter 7

not grow with ¢ and depends only logarithmically on the number of experts.
Observe, however, that the running time on each example is at least linear
in IV, unless the algorithm is parallelized.

For deterministic algorithms, the constant factor in front of min; err; ; can-
not be made smaller than 2. A randomized variant is proposed in [160]: rather
than predicting § = sign(p) in line 5, predict § = 1 with probability p and 0
with probability 1 — p. Randomness defeats to some extent the worst adversary
choice of labels, and the constants in the bound are improved in expectation to

In(1/8) min; err; ; + In N

1-73 ’
So, choosing 3 close enough to 1, the constant in front of min, err;; can be
made as close to 1 as desired. In particular, setting 5 = 0.5 we get

Elerrwm,:] <

Elerras:] < 1.39min; err; ; +2In N.

If we are interested in bounding the errors up to some time horizon 7" known
in advance, we can set 3 = exp(—+/T); some calculus shows:

Elerrmr) S (1+ 1/\/?) min; err; ; + VT log N,

so the coefficient in the first term tends to 1 for large 7. Weighted Majority
is a special case of the Exponentiated Gradient method [147], which applies
when labels and predictions are real values not in {0, 1}, that is, it applies to
regression problems.

7.3 Stacking

Stacking [247] is a generalization of Weighted Majority and, in fact, the most
general way of combining experts. Assuming again [N experts C; to Cy, a
meta-learning algorithm is used to train a meta-model on instances of the form
(Ci(z),...,Cn(z)), that is, the prediction of expert C; is considered to be
feature number ¢. The instance x can, optionally, also be given to the meta-
classifier.

The meta-learner used in stacking is often a relatively simple one such as
the perceptron. Weighted Majority and Exponentiated Gradient can be seen as
special cases of Stacking where a meta-learner learns a linear classifier using
a multiplicative update rule instead of the additive one in the perceptron.

Ensemble Methods 133

7.4 Bagging

The bagging method is due to Breiman [52] for the batch setting, and works
in a quite different way. A base learning algorithm is used to infer M different
models that are potentially different because they are trained with different
bootstrap samples. Each sample is created by drawing random samples with
replacement from the original training set. The resulting meta-model makes
a prediction by taking the simple majority vote of the predictions of the M
classifiers created in this way.

The rationale behind bagging is that voting reduces the sample variance of
the base algorithm, that is, the difference among classifiers trained from dif-
ferent samples from the same source distribution. In fact, it works better the
higher the variance among the bootstrapped classifiers.

7.4.1 Online Bagging Algorithm

In the streaming setting, it seems difficult at first to draw a sample with replace-
ment from the stream. Yet the following property allows bootstrapping to be
simulated: in a bootstrap replica, the number of copies K of each of the n
examples in the training set follows a binomial distribution:

o= (o= O (-

For large values of n, this binomial distribution tends to a Poisson(1) distri-
bution, where Poisson(1) = exp(—1)/k!. Using this property, Oza and Russell
proposed Online Bagging [189, 190], which, instead of sampling with replace-
ment, gives each arriving example a weight according to Poisson(1). Its pseu-
docode is given in figure 7.2. It is implemented in MOA as OZABAG.

7.4.2 Bagging with a Change Detector

A problem with the approach above is that it is not particularly designed to
react to changes in the stream, unless the base classifiers are themselves highly
adaptive.

ADWIN Bagging [38], implemented in MOA as OZABAGADWIN,
improves on Online Bagging as follows: it uses M instances of ADWIN to
monitor the error rates of the base classifiers. When any one detects a change,

134 Chapter 7

ONLINE BAGGING(Stream, M)

Input: a stream of pairs (x,y), parameter M = ensemble size
Output: a stream of predictions g for each x

1 initialize base models h,, for all m € {1,2,..., M}

2 for each example (z,y) in Stream

3 do predict § argmaxyey S, I(he(z) = y)

4 form=1,2,.... M

5 do w < Poisson(1)

6 update h,,, with example (z,y) and weight w
Figure 7.2

Online Bagging for M models. The indicator function I (condition) returns 1 if the condition is
true, and O otherwise.

the worst classifier in the ensemble is removed and a new classifier is added to
it. This strategy is sometimes called “replace the loser.”

7.4.3 Leveraging Bagging

An experimental observation when using online bagging is that adding more
randomness to the input seems to improve performance. Since adding random-
ness increases the diversity or variance of the base classifiers, this agrees with
the intuition that bagging benefits from higher classifier variance.

Additional randomness can be introduced by sampling with distributions
other than Poisson(1). For example, Lee and Clyde [155] use the I'(1,1) dis-
tribution to obtain a Bayesian version of bagging. Note that I'(1,1) equals
Exp(1). Biihlmann and Yu [60] propose subbagging, that is, using resampling
without replacement.

Leveraging Bagging [36] samples the stream with distribution Poisson(\),
where A > 1 is a parameter of the algorithm. Since the Poisson distribution
has variance (and mean) A, this does increase the variance in the bootstrap
samples with respect to regular Online Bagging. It is implemented in MOA as
LEVERAGINGBAG.

Besides adding randomness to the input, Leveraging Bagging also adds
randomization at the output of the ensemble using output codes. Dietterich
and Bakiri [87] introduced a method based on error-correcting output codes,

Ensemble Methods 135

which handles multiclass problems using only a binary classifier. The classes
assigned to each example are modified to create a new binary classification of
the data induced by a mapping from the set of classes to {0,1}. A variation
of this method by Schapire [222] presented a form of boosting using output
codes. Leveraging Bagging uses random output codes instead of determinis-
tic codes. In standard ensemble methods, all classifiers try to predict the same
function. However, using output codes, each classifier will predict a different
function. This may reduce the effects of correlations between the classifiers,
and increase the diversity of the ensemble.

Leveraging Bagging also incorporates the “replace the loser” strategy in
ADWIN Bagging. Experiments in [36] show that Leveraging Bagging improves
over regular Online Bagging and over ADWIN Bagging.

7.5 Boosting

Like bagging, boosting algorithms combine multiple base models trained with
samples of the input to achieve lower classification error. Unlike bagging, the
models are created sequentially rather than in parallel, with the construction of
each new model depending on the performance of the previously constructed
models. The intuitive idea of boosting is to give more weight to the examples
misclassified by the current ensemble of classifiers, so that the next classifier
in the sequence pays more attention to these examples. AdaBoost.M1 [108] is
the most popular variant of batch boosting.

This sequential nature makes boosting more difficult than bagging to transfer
to streaming. For online settings, Oza and Russell [189, 190] proposed Online
Boosting, an online method that, rather than building new models sequentially
each time a new instance arrives, instead updates each model with a weight
computed depending on the performance of the previous classifiers. It is imple-
mented in MOA as OZABOOST. Other online boosting-like methods are given
in [53, 54, 65, 85, 197, 243, 259].

According to [187], among others, in the batch setting boosting often outper-
forms bagging, but it is also more sensitive to noise, so bagging gives improve-
ments more consistently. Early studies comparing online boosting and online
bagging methods, however, seemed to favor bagging [38, 189, 190]. An excep-
tion is [100], which reported the Arc-x4 boosting algorithm [53] performing
better than online bagging. Additional studies comparing the more recent vari-
ants would be interesting. Also, it is unclear how to make a boosting algorithm

136 Chapter 7

deal with concept drift, because a strategy such as “replace the loser” does not
seem as justifiable as in bagging.

7.6 Ensembles of Hoeffding Trees

Since Hoeffding Trees are among the most useful and best-studied streaming
classifiers, several ways of combining them into ensembles have been pro-
posed.

7.6.1 Hoeffding Option Trees

Hoeffding Option Trees (HOT) [198] represent ensembles of trees implicitly
in a single tree structure. A HOT contains, besides regular nodes that test
one attribute, option nodes that apply no test and simply branch into several
subtrees. When an instance reaches an option node, it continues descending
through all its children, eventually reaching several leaves. The output of the
tree on an instance is then determined by a vote among all the leaf nodes
reached.

Option nodes are introduced when the splitting criterion of the Hoeffding
Tree algorithm seems to value several attributes similarly after receiving a rea-
sonable number of examples. Rather than waiting arbitrarily long to break a
tie, all tied attributes are added as options. In this way, the effects of limited
lookahead and instability are mitigated, leading to a more accurate model.

We omit several additional details given in [198] and implemented in the
MOA version of HOT, named HOEFFDINGOPTIONTREE. The voting among
the leaves is weighted rather than using simple majority voting. Strategies to
limit tree growth are required, as option trees have a tendency to grow very
rapidly if not controlled. HOTSs for regression, with subtle differences in the
construction process, were proposed in [140].

7.6.2 Random Forests

Breiman [55] proposed Random Forests in the batch setting as ensembles of
trees that use randomization on the input and on the internal construction of
the decision trees. The input is randomized by taking bootstrap samples, as
in standard bagging. The construction of the trees is randomized by requiring
that at each node only a randomly chosen subset of the attributes can be used

Ensemble Methods 137

for splitting. The subset is usually quite small, with a size such as the square
root of the total number of attributes. Furthermore, the trees are grown with-
out pruning. Random Forests are usually among the top-performing classifier
methods in many batch tasks.

Streaming implementations of random forests have been proposed by,
among others, Abdulsalam et al. [2], who did not exactly use Hoeffding Trees
but another type of online tree builder. An implementation using Hoeffding
Trees that exploits GPU computing power is given in [167]. These and most
other implementations of streaming Random Forests use the “replace the loser”
strategy for dealing with concept drift.

Unfortunately, none of these Random Forest algorithms have been able to
compete effectively with the various bagging- and boosting-based algorithms
mentioned before. Recently, however, Gomes et al. [125] presented the Adap-
tive Random Forest (ARF) algorithm that appears as a strong contender. In
contrast to previous attempts at replicating Random Forests for data stream
learning [124], ARF includes an effective resampling method and adaptive
operators that can cope with different types of concept drift without complex
optimizations for different datasets. The parallel implementation of ARF pre-
sented in [125] shows no degradation in terms of classification performance
compared to a serial implementation, since trees and adaptive operators are
independent of one another.

7.6.3 Perceptron Stacking of Restricted Hoeffding Trees

An observation made repeatedly in ML is that, often, complicated models are
outperformed by simpler models that do not attempt to model complex inter-
actions among attributes. This possibility was investigated for ensembles of
Hoeffding Trees by Bifet et al. [31]. In contrast with Random Forests of full
Hoeffding Trees, they proposed to use stacking with the perceptron algorithm
using small trees.

More precisely, their algorithm enumerates all the subsets of attributes of
size k and learns a Hoeffding Tree on each. These trees are the input to a
stacking algorithm that uses the perceptron algorithm as a meta-learner. Grow-
ing the trees is fast, as each tree is small, and we expect the meta-learner to end
up assigning large weights to the best combination(s) of £ attributes.

Since there are (Z) sets of size k among n attributes, only small values
of k are feasible for most values of n. For k = 1 the algorithm becomes the
perceptron, but k = 2 is found to be practical for medium-size datasets. To

138 Chapter 7

deal with concept drift, the method adds an ADWIN change detector to each
tree. When the error rate of a tree changes significantly, the tree is reset and
a new tree with that attribute combination is learned. The method is shown
in [31] to perform better than ADWIN Bagging on simple synthetic datasets,
which suggests that it could perform well in cases where the key to prediction
is not a complex combination of attributes.

This method is implemented in MOA as LIMATTCLASSIFIER.

7.6.4 Adaptive-Size Hoeffding Trees

The Adaptive-Size Hoeffding Tree (ASHT) method [38], implemented in
MOA as OZABAGASHT, creates an ensemble of Hoeffding trees with the
following restrictions:

e Each tree in the ensemble has an associated value representing the maximum
number of internal nodes it can reach.

e After a node split occurs in a tree, if its size exceeds its associated value,
then the tree is reset to a leaf.

If there are NV trees in the ensemble, one way to assign the maximum sizes
is to choose powers of, say, 2: 2, 4, ... up to 2% The intuition behind this
method is that smaller trees adapt more quickly to changes, and larger trees
perform better during periods with little or no change, simply because they
were built using more data. Trees limited to size s will be reset about twice
as often as trees limited to size 2s. This creates a set of different reset speeds
for an ensemble of such trees, and therefore a subset of trees that are a good
approximation for the current rate of change.

The output of the ensemble can be the majority vote among all trees,
although [38] finds experimentally that it is better to weight them in inverse
proportion to the square of their errors. The error of each tree is monitored by
an EWMA estimator.

It is important to note that resets will happen all the time, even for stationary
datasets, but this behavior should not harm the ensemble’s predictive perfor-
mance.

Ensemble Methods 139

7.7 Recurrent Concepts

In many settings, the stream distribution evolves in such a way that distribu-
tions occurring in the past reappear in the future. Streams with clear daily,
weekly, or yearly periodicity (such as weather, customer sales, and road traf-
fic) are examples, but reoccurrence may also occur in nonperiodic ways.

Recurring or recurrent concept frameworks have been proposed [112, 127,
143, 219] for these scenarios. Proposals differ in detail, but the main idea is
to keep a library of classifiers that have been useful in the past but have been
removed from the ensemble, for example because at some point they under-
performed. Still, their accuracy is rechecked periodically in case they seem to
be performing well again, and if so, they are added back to the ensemble.

Far fewer examples are required to estimate the accuracy of a classifier than
to build a new one from scratch, so this scheme trades training time for mem-
ory. Additional rules are required for discarding classifiers from the library
when it grows too large.

The RCD recurrent concept framework by Gongalves and de Barros [143]
is available as a MOA extension.

7.8 Lab Session with MOA

In this lab session we will use MOA through the graphical interface with vari-
ous ensemble streaming classifiers and evolving streams.

Exercise 7.1 We begin with a non-evolving scenario. The RandomRBF data
generator creates a random set of centers for each class, each comprising a
weight, a central point per attribute, and a standard deviation. It then generates
instances by choosing a center at random (taking the weights into considera-
tion), which determines the class, and randomly choosing attribute values and
an offset from the center. The overall vector is scaled to a length that is ran-
domly sampled from a Gaussian distribution around the center.

a. What is the accuracy of Naive Bayes on a RandomRBFGenerator
stream of 1,000,000 instances with default values, using Prequential
evaluation and the BasicClassificationPerformanceEvaluator?

b. What is the accuracy of the Hoeffding Tree in the same situation?

140

Chapter 7

Exercise 7.2 MOA’s Hoeffding Tree algorithm can use different pre-
diction methods at the leaves. The default is an adaptive Naive Bayes
method, but a majority class classifier can be used instead by specifying —1
(trees.HoeffdingTree -1 MC). You can set this up in MOA’s Con-

figure interface (you need to scroll down).

a. What is the accuracy of the Hoeffding Tree when a majority class classifier
is used at the leaves?

b. What is the accuracy of the OzaBag bagging classifier?

Exercise 7.3 Now let us use an evolving data stream. The rate of movement
of the centroids of the RandomRBFGeneratorDrift generator can be con-
troled using the speedChange parameter.

a. Use the Naive Bayes classifier on a RandomRBFGeneratorDrift
stream of 1,000,000 instances with 0.001 change speed.
Use again BasicClassificationPerformanceEvaluator for pre-
quential evaluation. What is the accuracy that we obtain?

b. What is the accuracy of a Hoeffding Tree under the same conditions?

c. What is the corresponding accuracy of OzaBag?

Exercise 7.4 The Hoeffding Adaptive Tree adapts to changes in the data
stream by constructing tentative “alternative branches” as preparation for
changes, and switching to them if they become more accurate. A change detec-
tor with theoretical guarantees (ADWIN) is used to check whether to substitute
alternative subtrees.

a. What is the accuracy of HoeffdingAdaptiveTree in the above sit-
uation?

b. What is the accuracy for OzaBagAdwin, the ADWIN adaptive bagging
technique?

c. Finally, what is the accuracy for LeveragingBag method?

Exercise 7.5 Besides data streams, MOA can also process ARFF files. We
will use the covtypeNorm.arff dataset, which can be downloaded from

the MOA website. Run the following task, which uses the Naive Bayes classi-
fier:

EvaluatePrequential

Ensemble Methods 141

-s (ArffFileStream —-f covtypeNorm.arff)
—e BasicClassificationPerformanceEvaluator
-1 1000000 —-f 10000

You will have to copy and paste this into the Configure text box, because you
cannot specify an ArffFileStream in MOA’s interactive interface. Also,
the default location for files is the top level of the MOA installation folder—
you will probably find the model files mode1NB.moa and modelHT.moa
that you made in the last session lab there—so you should either copy the
AREFF file there or use its full pathname in the command.

a. What is the accuracy of Naive Bayes on this dataset?

b. What is the accuracy of a Hoeffding Tree on the same dataset?

c. Finally, what is the accuracy of Leveraging Bagging?

d. Which method is fastest on this data?

e. Which method is most accurate?

8 Regression

Regression is a learning task whose goal is to predict a numeric value, instead
of a categorical attribute as in classification. Some of the techniques that are
used in classification can be used in regression, but not all. Decision trees, the
Perceptron and lazy learning can be used for regression, with modifications.

8.1 Introduction

Given a numeric attribute to be predicted, called the outcome, a regression
algorithm builds a model that predicts for every unlabeled instance z a numeric
prediction y for the outcome of z.

Examples of regression problems are predictions of quantities that cannot
be reduced to a discrete label, such as prices in stock markets, product sales,
time delays, or the number of visits to a website. It is possible to reduce regres-
sion to classification problems by discretizing the values of the outcome into
intervals, or the other way around, to use regression algorithms to do classi-
fication, transforming the discrete class into a numerical variable. Of course,
these transformations need not give optimal results.

The simplest regression algorithm is to return the mean value of the attribute
that we want to predict. This is equivalent to the majority class method in clas-
sification, a learner that does not use the information in the rest of the attributes.
A far more useful method in nonstreaming regression is linear regression.

Linear regression builds a linear model f, of the form

fle)=Bo+>_ Bjx; =Xp,

Jj=1
that minimizes the residual sum of squares:

N

RSS(B) = (yi — f(x:)* = (y — XB) (y — XB),

i=1
where the input is the set of N pairs (x;,y;). However, the exact solution is
B — (:X'_/)()—l)(/},7

which is hard to compute incrementally, let alone in the streaming setting.
Approximate solutions can be given using random projection sketches (see [73,
248] for example), but their use in practical data mining is still preliminary. So
we look for other strategies that are more clearly incremental and adaptive.

144 Chapter 8

8.2 Evaluation

To evaluate regression methods, we can use the same methodologies as in clas-
sification, such as holdout, prequential, and Interleaved test-then-train, but the
misclassification rate measure is not applicable. The following measures are
usually considered in regression:

Mean square error (MSE): This is the most common measure, and gives
the error using the mean of the squares of the differences between the actual
values and the predictions:

MSE = 3" (f(a;) ~ y:)?/N.

%

Root mean square error: The square root of the mean square error:

RMSE =VMSE = \/Z(f(xi) —y;)2/N.

Relative square error: The ratio between the MSE of the regression
method, and the MSE of the simplest regression method available, the mean
regression algorithm:

RSE = 3"(f(a:) — 4>/ S (5 — y)*
Root relative square error: The square root of the relative square error:

RRSE = VRSE = \/Z(f(xi) —vi)?/ Z(yi — i)

Mean absolute error: This measure is similar to the MSE, but considers
absolute values of the difference:

MAE:ZU(%’) _yi‘/N'

Relative absolute error: Similar to the relative square error, but considers
absolute values of the difference:

RAE = Z|f(xz) —yz|/2|ﬂz — Yil-

It is easy to see that all these measures can be computed incrementally by

maintaining a constant number of values in memory.

Regression 145

8.3 Perceptron Learning

The Perceptron [37] was presented in section 6.5 as an online classification
method. However, it is just as naturally viewed as a regression method.

Given a data stream of pairs (Z;,y;), where Z; is an example and y; is its
numeric outcome value, the goal of the perceptron is to minimize MSE on the
examples. To do this, the strategy is again to move each weight in the weight
vector w0 in the direction of the descending error gradient.

The update rule becomes in this case:

=140y (v — ha(T3)) ;.

As in classification, weights can be updated at every single example, as in the
weight above, or taken in mini-batches for a single update step per mini-batch.
This allows us to fine-tune the trade-off between update time and adaptiveness.

8.4 Lazy Learning

Lazy learning is one of the simplest and most natural models for classification
and regression—in particular the k-Nearest Neighbor algorithm. Given a dis-
tance function d among instances, the k-NN method in regression finds the k
instances closest to the instance to predict, and averages their outcomes. As in
classification, the average may be weighted according to the distance to each
neighbor.

The performance of the method strongly depends on the distance function
used. For dense instances with numeric attributes, the Euclidean distance could
be appropriate. For textual data, the cosine similarity measure or the Jaccard
coefficient could be more appropriate.

IBLStreams, due to Shaker and Hiillermeier [225], is an implementation of
lazy learning for regression on streams. Besides the basic ideas from streaming
k-NN, it includes heuristics for removing outlier points from the database,
removing instances that are too close to some already in the database (hence,
not that useful), and for adaptively choosing the size of the database and of the
parameter k.

146 Chapter 8

8.5 Decision Tree Learning

Fast Incremental Model Tree with Drift Detection (FIMT-DD) is a decision
tree for streaming regression due to Ikonomovska et al. [139]. It is an extension
of the Hoeffding Tree method that differs in the following areas:

Splitting criterion: Variance reduction is used instead of information gain,
that is, the attribute chosen is the one such that the variance > (7 — v;)?/N
is maximally reduced if splitting by this attribute.

Numeric attributes: They are handled using an extension of the exhaustive
binary tree method seen in section 6.4.2. At each node of the tree, the method
stores a key value and keeps the following information for each of the two
ranges < key, or > key:

e the sum of the values of the numeric outcome,

e the sum of the square of the values of the outcome, and

e acount of the number of instances.

Pruning: Some pruning rules are used to avoid storing every single value of
the outcome.

Linear model at the leaves: Perceptrons are used at the leaves, to adapt to
drift.

Concept drift handling: The Page-Hinkley test is used at the inner nodes of
the decision tree to detect changes in the error rate.

Tree updates: When a subtree is underperforming, an alternate tree is grown
with new incoming instances; it replaces the original tree when (and if) it
performs better.

FIMT-DD overall behaves similarly to Hoeffding Trees for classification,

and is one of the state-of-the-art methods for regression. An option tree for
regression was presented later in [140].

8.6 Decision Rules

Decision rules are a formalism that combines high expressive power with high
interpretability. Learning sets of decision rules has consequently received

Regression 147

intense attention in the batch case. In the streaming case, the AMRules algo-
rithm developed by Almeida, Ferreira, Gama, Duarte, and Bifet [12, 13, 90-92]
is the first and still most popular rule-learning system.

AMRules stands for adaptive model rules, and is specifically designed so
that rules can be added and removed from the ruleset as the stream evolves. A
rule in AMRules is of the form A — M where:

e The antecedent A is a conjunction of literals and M is a model that emits a
prediction.

e A literal is either a condition of the form A = a, where A is a discrete
attribute and a one of its values, or of the form A <wv or A > v, where
A is continuous and v a real value. We say that a rule covers an example x
if x satisfies all the conditions in the rule’s antecedent.

e Model M is a regression model. AMRules supports three types of regres-
sors: (1) the mean of the target attribute computed from the examples cov-
ered by the rule; (2) a linear combination of the attributes; and (3) an adap-
tive strategy that chooses between (1) and (2), picking the one with lower
MSE on recent examples.

AMRules maintains a set of rules that are neither exclusive nor complete, in
the sense that they need not cover all examples and that an example may be
covered by several rules. This differentiates it from decision trees, which can
naturally be viewed as a set of exclusive and complete rules. A set of rules can
be viewed as ordered or unordered; AMRules supports both views. If viewed as
ordered, the prediction of an example is that of the first rule that covers it. If the
rules are viewed as unordered, all rules that cover an example are evaluated and
their predictions are averaged. In addition, AMRules maintains a distinguished
default rule that has no antecedents and that is applied whenever no rule covers
an example.

At the core of the algorithm are the methods for creating new rules, expand-
ing existing rules, and deleting underperforming rules.

Rule expansion. In a way similar to the Hoeffding Tree for trees, for each
rule and for each attribute, the algorithm monitors the standard deviation reduc-
tion (SDR) that would be introduced if the attribute was added to the rule. If the
ratio of the two largest SDR measures among all potential attributes exceeds
a threshold, the feature with the largest SDR is added to the rule to expand
it. When an example is received, it is used to update the statistics to compute
the SDR values of the first rule that covers it, if the ruleset is ordered, or of

148 Chapter 8

all the rules that cover it, if the set is unordered. Expansion of a rule is only
considered after it has received a certain minimum number of examples NV, ;.

Rule creation. If the default rule is expanded, it will become a normal rule
and will be added to the model’s ruleset. A new default rule is initialized to
replace the expanded one.

Rule deletion. The error rate of every rule on the examples that it covers
is monitored with a Page-Hinkley test. If the test indicates that its cumulative
error exceeds a threshold, then the rule may be removed.

AMRules is reported in [90, 92] to have better performance on average than
IBLStreams and FIMT-DD on a variety of synthetic and real datasets. The
unordered version seems to achieve a slightly lower error rate than the ordered
version; however, this is at the cost of interpretability, because the prediction
for an example is easier to understand if it comes from a single rule than if it
is the average of several rules.

8.7 Regression in MOA

MOA currently includes the algorithms discussed in this chapter: the Average
(or Majority) algorithm, the Perceptron, IBLStreams (as an extension), and
AMRules.

It also includes SGD, a stochastic gradient descent for learning various linear
models (binary class SVM, binary class logistic regression and linear regres-
sion), and SPegasos, the stochastic variant of the Pegasos (Primal Estimated
sub-GrAdient SOlver for SVM) method of Shalev-Shwartz et al. [226].

Clustering

Clustering is an unsupervised learning task that works on data without labels.
It consists of distributing a set of instances into groups according to their com-
monalities or affinities. The main difference versus classification is that the
groups are unknown before starting the learning process, and in fact the task is
to create them. Uses of clustering include customer segmentation in marketing
and finding communities in social networks, among many others.

Many, but not all, clustering methods are based on the assumption that
instances are points in some space on which we can impose a distance function
d, and that more similar instances are closer in the distance. In many of these
methods, a clustering is determined by a set of centroid points in this space.
A more formal definition of centroid-based clustering is the following: given
a set of instances P belonging to some space X, a distance function d among
elements in X, and optionally a number of clusters k, a clustering algorithm
computes a set C' of centroids or cluster centers C' C P, with |C| = k, that
(approximately) minimizes the objective function

cost(C, P) = % Z d(z,C)
rEP

where
d(z,C) = min.ccd(x,c),

that is, the distance from z to the nearest point in C'.

As indicated, some algorithms require the user to specify a value for &, while
others determine a number of clusters by themselves. Observe that by taking
k = | P| and assigning an instance to a cluster by itself leads to a clustering
with O cost, so if % is not bound, some form of penalization on the number of
clusters will be required to get meaningful results.

We start by discussing the evaluation problem in clustering and review the
popular k-means method. We then discuss three incremental methods that are
inspired more or less distantly by k-means: Birch, BICO, and CLUSTREAM.
After that, we look at two density-based methods, starting with DBSCAN
for nonstreaming data, which leads to Den-Stream for the streaming setting.
Finally, we describe two more recent and state-of-the-art tree-based streaming
methods, ClusTree and StreamKM-++. We provide references and brief discus-
sions of other methods in the closing section 9.7.

150 Chapter 9

9.1 Evaluation Measures

Evaluating a clustering is unfortunately not as unambiguous as evaluating a
classifier. There are many different measures of clustering quality described in
the literature, maybe too many, which formalize different expectations of what
a “good clustering” should achieve.

Measures can be categorized into two distinct groups: structural or inter-
nal measures, and ground-truth-based ones, called external measures. The first
kind are strictly based on the data points and the clustering obtained. An exten-
sive study of thirty internal measures can be found in [178], and other studies
of external measures include [57, 231, 250]. Some examples are:

e Cohesion: The average distance from a point in the dataset to its assigned
cluster centroid. The smaller the better.

e SSQ: The sum of squared distances from data points to their assigned cen-
troids. Closely related to cohesion. The smaller the better.

e Separation: Average distance from a point to the points assigned to other
clusters. The larger the better.

o Silhouette coefficient: Roughly speaking, the ratio between cohesion and
the average distances from the points to their second-closest centroid. It
rewards clusterings where points are very close to their assigned centroids
and far from any other centroids, that is clusterings with good cohesion and
good separation.

External measures, on the other hand, require knowledge of the “true” clus-
tering of the data points, or ground truth, which by definition is almost always
unknown in real scenarios. However, when evaluating new clusterers, one often
creates synthetic datasets from a known generator, so it is possible to com-
pare the clustering obtained by the algorithm with the true model. Some mea-
sures in these cases are similar to others applied in classification or information
retrieval:

e Accuracy: Fraction of the points assigned to their “correct” cluster.
e Recall: Fraction of the points of a cluster that are in fact assigned to it.

e Precision: Fraction of the points assigned to a cluster that truly belong to it.

Clustering 151

K-MEANS(P, k)

Input: a dataset of points P = {p1,...,p,}, a number of clusters k
Output: centers {cy,. .., ¢k} implicitly dividing P into & clusters

choose k initial centers C' = {c1,...,cx}
while stopping criterion has not been met
do > assignment step:
fori=1,...,N
do find closest center ¢, € C' to instance p;
assign instance p; to set C
> update step:
fori=1,...,k
do set ¢; to be the center of mass of all points in C;

O 00 1 O BN

Figure 9.1
The k-means clustering algorithm, or Lloyd’s algorithm.

e Purity: In a maximally pure clustering, all points in the cluster belong to
the same ground-truth class or cluster. Formally, purity is

k
N Z (number of points in cluster c in the majority class for c).
c=1
e Cluster Mapping Measure (CMM): A measure introduced by Kremer et
al. [151], specifically designed for evolving data streams, which takes into
account the fact that mergers and splits of clusters over time may create
apparent errors.

The measures listed above can be easily maintained incrementally storing a
constant number of values, if the centroids remain fixed. When the centroids
evolve over time, we can resort to turning these values into EWMA accumula-
tors or to evaluating on a sliding window.

9.2 The k-means Algorithm

The k-means (also called Lloyd’s) algorithm is one of the most used methods
in clustering, due to its simplicity. Figure 9.1 shows its pseudocode.

152 Chapter 9

The k-means assumes that the set of points P is a subset of R? for some
dimension d, so that points can be added and averaged. The algorithm starts
selecting k centroids in an unspecified way—for example, at random. After
that, two steps are iterated: first, each instance is assigned to the nearest cen-
troid; second, centroids are recomputed as the mean or center of mass of the
examples assigned to it. The process typically stops when no point changes
centroid, or after a maximum number of iterations has been performed. The k
centroids produced determine the % clusters found by the algorithm.

The greedy heuristic implicit in k-means only guarantees convergence to a
local minimum, and the quality of the solution found and the speed of conver-
gence of k-means notoriously depend on the initial random assignment step.
k-means++ [19] improves the stability of the method over the purely random
one, using a new initialization step:

1 choose center ¢ to be py
2 fori=2,....k
3 do select ¢; = p € P with probability d(p, C')/cost(C, P).

In words, the initial center is selected at random, but all subsequent cen-
ters are selected with probability proportional to their distance to already
selected centers. Spreading out the % initial cluster centers helps in that it leads
to faster convergence to better local minima. The stream clustering method
StreamKM-++ also employs this strategy.

Converting k-means to the streaming setting is not straightforward, since
it iterates repeatedly over the dataset. We will see that most stream clustering
methods have two phases, one online and one offline. The online phase updates
statistics of the data, producing some form of summary or sketch, usually rep-
resented as a reduced number of points called microclusters. The offline phase
then uses these summaries to compute a final clustering efficiently, either at
regular time intervals, or on demand.

9.3 BIRCH, BICO, and CLUSTREAM

These three algorithms are incremental and share a common idea for summa-
rizing the stream in microclusters, in order to cluster them in the offline phase.

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is
due to Zhang et al. [258]. It is the first method for incremental clustering that

Clustering 153

proposes to use so-called clustering feature (CF) vectors to represent micro-
clusters. Assuming dataset points are vectors of d real numbers, a CF is a triple
(N,LS,SS) composed of the following items:

e N: number of data points in the CF
e [LS: d-dimensional sum of the [V data points

e SS: d-dimensional sum of squares of the IV data points.
CFs have the following useful properties:

e They are additive: CF+CFy = (Nl + No, LSy + LS5,551 + SSQ)

e The distance from a point to a cluster, the average intercluster distance, and
the average intracluster distance are easy to compute from the CF.

Another feature of BIRCH is its use of CF trees, a height-balanced tree sim-
ilar to the classical B+ tree data structure. It is defined with two parameters:
the branching factor B, or maximum number of children that any given node
may have, and the leaf radius threshold R. The algorithm maintains the prop-
erty that all points represented by a leaf fall in a ball of radius R of the centroid
there. Every leaf and also every inner node contains a CF vector.

The BIRCH algorithm comprises up to four phases:

Phase 1: Scan all data and build an initial in-memory CF tree
Phase 2: Condense the CF tree into a smaller one (optional)
Phase 3: Cluster globally

Phase 4: Refine clusters (optional and offline, as it requires more passes).

Phases 2, 3, and 4 are the offline part. Phase 3, in particular, performs batch
clustering based on the information collected in the CF tree. Phase 1 is the
online process, and the one that actually works on the stream. For every arriv-
ing point, the algorithm descends the tree, updating the statistics at the CFs of
the inner nodes traversed, to reach a leaf closest to the point. Then it checks
whether the leaf can absorb it within radius R. If so, the point is “assigned” to
the leaf by updating the leaf statistics. If not, a new leaf is created for the new
point. This new leaf may cause the parent node to have more than B children;
if so, it has to be split into two, and so recursively up to the root. A further rule,
not described here, is applied to merge leaves and nodes that may have become
too close in the process.

154 Chapter 9

BICO (an acronym for “BIRCH meets coresets for k-means clustering”) is
due to Fichtenberger et al. [101]. It combines the data structure of BIRCH
with the theoretical concept of coresets for clustering. Coresets are explained
in detail in section 9.6. BIRCH decides heuristically how to group the points
into subclusters. The goal of BICO is to find a reduced set that is not only
small, but also offers guarantees of approximating the original point set.

CLUSTREAM, by Aggarwal et al. [6], is designed as an adaptive extension
of BIRCH that can deal with changing streams. In CLUSTREAM, nodes of the
CF tree maintain CF vectors of the form (N, LS, SS, LT, ST), which extend
BIRCH CFs with two additional temporal features:

e [LT': sum of the timestamps

e ST': sum of squares of the timestamps

The offline phase of CLUSTREAM simply applies k-means periodically to
the microclusters at the leaves of the CF tree. The online phase is similar to that
of BIRCH, but it takes the recency of clusters into account. It keeps a maxi-
mum number of microclusters in memory. If a point requires creating a new
microcluster (leaf) and there is no more space available, the algorithm either
deletes the oldest microcluster or else merges two of the oldest microclusters.
The notion of the “oldest” microcluster is defined taking into account whether
there has been significant recent activity in the microcluster. More precisely,
statistics LT and ST are used to compute average and standard deviation of
its timestamps; assuming a normal distribution of the timestamps, the algo-
rithm can use them to decide whether a desired fraction of the points in the
microcluster are older than a desired recency threshold.

The fact that the oldest clusters, not the smallest ones, are chosen for dele-
tion gives CLUSTREAM an interesting property: by looking at microclusters
of similar timestamp distributions, we can obtain a snapshot of the clustering
in a desired time frame, with more resolution for more recent time frames and
less resolution as we move further back in time. This is sometimes called a
pyramidal time frame.

9.4 Density-Based Methods: DBSCAN and Den-Stream

Density-based clusterers are based on the idea that clusters are formed not only
by overall proximity in distance, but also by the density of connections. They

Clustering 155

may thus produce clusters that are not spherical, but rather have shapes that
adapt to the specific data being clustered.

The DBSCAN algorithm [96], due to Ester et al., is the best-known density-
based, offline algorithm. It is based on the idea that clusters should be built
around points with a significant number of points in their neighborhoods. The
following definitions formalize this idea:

e The e-neighborhood of p is the set of points at a distance € or less from p.

e A core point is one whose e-neighborhood has an overall weight (fraction of
dataset points) of at least .

o A density area is the union of the e-neighborhoods of core points.

e A point q is directly reachable from p if g is in the e-neighborhood of p.
Point q is reachable from p if there is a sequence p1, . .., p, such that p; = p,
Pn, = q, and each p; 1 is directly reachable from p;.

e A core point p forms a cluster with all the (core or non-core) points that are
reachable from it.

o All points that are not reachable from core points are considered outliers.

Note that a cluster is determined by any of the core points it contains, and
that these definitions create a unique clustering for any dataset, for given values
of € and p.

The DBSCAN algorithm has parameters ¢ and p and uses these proper-
ties to find this unique clustering. It visits the points in the dataset in an arbi-
trary order. For a previously unvisited point p, it finds all the points that are
directly e-reachable from p. If p is found to be a p core point, a new cluster
is formed and all points reachable from p are added to the cluster and marked
visited; otherwise, if p has weight below p, it is temporarily marked as “out-
lier” and the method proceeds to the next unvisited point. An outlier may later
be found to be reachable from a true core point, and declared “not outlier” and
added to some cluster.

Observe that DBSCAN is strongly nonstreaming, because each point may
be repeatedly accessed.

Den-Stream, developed by Cao et al. [61], is a density-based streaming
method based on ideas similar to DBSCAN, but using microclusters to com-
pute online statistics quickly. It uses the damped window model, meaning that
the weight of each data point decreases exponentially using a fading function
f(t) =27 where A > 0.

156 Chapter 9

For a microcluster with center ¢ and representing points py, pa, . . ., Pn, With
timestamps 11,75, . . ., T,,, Den-Stream maintains the following information at
time ¢:

o Weight w=>"1" f(t—T;)
e Center:c=Y .| f(t—T;)p;/w

e Radius: 7 =", f(t — T;)d(p;,c)/w (in fact, the sums of the squares of
p; are kept, from which 7 can be computed when needed)

There are two types of microcluster: depending on whether the weight is
larger or smaller than p, the microcluster is called a potential core microclus-
ter (p-microcluster) or an outlier microcluster (o-microcluster). So an outlier
microcluster is a microcluster that does not (yet) have enough weight to be
considered a core.

The DEN-STREAM method has two phases, an online phase and an offline
phase. Their pseudocode is shown in figure 9.2. In the online phase, every time
a new point arrives, DEN-STREAM first tries to merge it into one of the poten-
tial microclusters. If this is not possible, it then tries to merge the point with
an outlier microcluster. If the weight of the outlier microcluster has increased
enough to be a potential microcluster, the microcluster is promoted. Otherwise,
DEN-STREAM starts a new outlier microcluster. The offline phase consists of
removing the microclusters that have not reached a sufficient weight, and per-
forming a batch DBSCAN clustering.

9.5 CLUSTREE

The streaming clustering algorithms presented up to now require an application
of an offline phase in order to produce a cluster when requested. In contrast,
CLUSTREE (Kranen et al. [150]) is an anytime clustering method, that is, it
can deliver a clustering at any point in time. It is a parameter-free algorithm
that automatically adapts to the speed of the stream and is capable of detecting
concept drift, novelty, and outliers in the stream.

CLUSTREE uses a compact and self-adaptive index structure for maintaining
stream summaries with a logarithmic insertion time. The structure is a balanced
tree where each node contains a CF of a number of points, as in CLUSTREAM.
This tree contains a hierarchy of microclusters at different levels of granularity.
The balanced condition guarantees logarithmic access time for all microclus-
ters.

Clustering 157

DEN-STREAM(Stream, A, 1, 3)

Input: a stream of points, decaying factor A,
core weight threshold p, tolerance factor 3

1 > Online phase
2 T, [Llog(524)]
3 for each new point that arrives
4 do try to merge to a p-microcluster; if not possible,
5 merge to nearest o-microcluster
6 if o-microcluster weight > Su
7 then convert the o-microcluster to p-microcluster
8 else create a new o-microcluster
9 > Offline phase
10 if (! mod T, = 0)
11 then for each p-microcluster ¢,
12 do if w, < S
13 then remove c,
14 for each o-microcluster ¢,
15 do if w, < (27—t Te) 1) /(272> — 1)
16 then remove ¢,
17 apply DBSCAN using microclusters as points
Figure 9.2

The DEN-STREAM algorithm.

158 Chapter 9

When a new point arrives, the CLUSTREE method descends the tree to find
the microcluster that is most similar to the new point. If the microcluster at
the leaf reached is similar enough, then the statistics of the microcluster are
updated, otherwise a new microcluster is created. But, unlike other algorithms,
this process is interruptible: if new points are arriving before the leaf is reached,
the point being processed is stored temporarily in an aggregate in the current
inner node, and insertion is interrupted. When a new point passes later through
that node, the buffered local aggregate is taken along as a “hitchhiker” and
pushed further down the tree. This way, CLUSTREE can prevent the loss of
points at burst times in variable-speed streams.

9.6 StreamKM-++: Coresets

Given a problem and a set of input instances P, a coreset is a small weighted
subset that can be used to approximate the solution to the problem. In other
words, solving the problem for the coreset provides an approximate solution
for the problem on P. In clustering, we can define a (k,€)-coreset as a pair
(S,w) where S is a subset of P and function w assigns a nonnegative real
value, the weight, to each point, in a way that the following is satisfied for
each size-k subset C of P:

(1 —€)cost(P,C) < costy,(S,C) < (1+¢€)cost(P,C),

where cost,, denotes the cost function where each point s of S is weighted
by w(s). That is, any possible clustering chosen on P is almost equally good
in S weighted by w, and vice versa. So indeed, solving the clustering problem
on S and on P is approximately the same.

StreamKM++, due to Ackermann et al. [3], is based on this coreset idea. It
uses the randomized k-means++ algorithm, explained in section 9.2, to create
an initial set of seeds S = {s1,..., 8, }. It then defines w(s;) to be the number
of points in P that are closer to s; than to any other seed in .S. One of the main
results in [3] is that (S, w) defined in this way is a (k, €)-coreset with proba-
bility 1 — &, if m is, roughly speaking, of the form klogn/(0%/?¢?). Here, d is
the dimension of the points in P and n is the cardinality of P. The dependence
on n is very good; not so the dependence on d, although experimental results
seem to indicate that this bound is far from tight concerning d.

Furthermore, StreamKM-++ places the points in a coreset tree, a binary tree
that is designed to speed up the sampling according to d. The tree describes a

Clustering 159

hierarchical structure for the clusters, in the sense that the root represents the
whole set of points P and the children of each node p in the tree represent a
partition of the examples in p.

StreamKM++ performs an online and an offline phase. The online phase
maintains a coreset of size m using coreset tree buckets. For a stream of n
points, the method maintains L = [log, (%) + 2] buckets B, By, ..., Br_1.
Bucket By can store less than m numbers, and the rest of the buckets are empty
or maintain m points. Each bucket maintains a coreset of size m that represents
2¢=1m points. Each time a point arrives, it is inserted in the first bucket. If this
first bucket is full, then a new bucket is computed, merging By and B; into a
new coreset tree bucket, and moved into By. If By is not empty, this merge-
and-move process is repeated until an empty bucket is reached.

At any point of time the offline phase consists of applying k-means++ to
a coreset of size m. The coreset of size m is obtained from the union of the
buckets By, B1,...,Br_1.

Note that StreamKM-++ does not handle evolving data streams, as it has no
forgetting or time-decaying mechanism.

9.7 Additional Material

Clustering is possibly the most studied task in stream mining after classifica-
tion, so many other methods have been proposed besides the ones described
here, including some that can be considered state-of-the-art as well. Recent
comprehensive surveys are [84, 185] and [7, chapter 10]. See also chapter 2 of
[4] for an earlier survey perspective.

Streaming clustering methods were classified in [84] in five categories: par-
titioning methods, hierarchical methods, density-based methods, grid-based
methods, and model-based methods. Among partitioning methods, DGClust
and ODAC are among those with best performance. Among the hierarchi-
cal ones, improving on CLUSTREAM, are HPstream, SWClustream (which
unlike CLUSTREAM can split microclusters), EStream (which explicitly mod-
els cluster dynamics by appearance, disappearance, merging, and splitting
operations), and REPSTREAM (inspired by CHAMELEON). The STREAM-
LEADER method by Andrés-Merino and Belanche [15] was implemented on
MOA and performed very competitively versus CLUSTREAM, Den-Stream,
and ClusTree, both in metrics and in scalability. Among the grid-based, besides

160 Chapter 9

D-Stream, we can mention MR-Stream and CellTree. We refer to the surveys
above for references and more details.

Given the emphasis we placed on Hoeffding Trees in the classification chap-
ter, we mention very fast k-means (VFKM), by Domingos and Hulten [89]. It
continues the philosophy of the Hoeffding Tree in that, rather than perform-
ing several passes over the same data, fresh stream data is used to simulate
the further passes, and that Hoeffding’s bound is used to determine when the
algorithm has seen enough data to make statistically sound choices. Like the
Hoeffding Tree, VFKM has a formal guarantee that it converges to the same
clustering as k-means if both work on infinite data.

9.8 Lab Session with MOA

In this lab session you will use MOA through the graphical interface to com-
pare two clustering algorithms and evaluate them in different ways.

Exercise 9.1 Switch to the Clustering tab to set up a clustering experiment.
In this tab, we have two sub-tabs, one for setup and one for visualization. This
is shown in figure 9.3. The Setup tab is selected by default. In this tab, we
can specify the data stream, and the two clustering algorithms that we want to
compare.

By default, the RandomRBFGeneratorEvents will be used. It gener-
ates data points with class labels and weights that reflect the age of a point,
depending on the chosen horizon. Since clusters move, a larger horizon yields
more tail-like clusters; a small horizon yields more sphere-like clusters. Tech-
nically, the data points are obtained by generating clusters, which have a center
and a maximal radius and which move through a unit cube in a random direc-
tion. At the cube boundaries, the clusters bounce off. At specific intervals,
all cluster centers are shifted by 0.01 in their respective direction and points
are drawn equally from each generating cluster. All clusters have the same
expected number of points. This stream generator has the following param-
eters: the number of clusters moving through the data space, the number of
generated points, the shift interval, the cluster radius, the dimensionality, and
the noise rate.

The clustering algorithms that can be selected are mainly the ones we have
discussed in this chapter. On the right side of the tab we can find the evaluation
measures that are going to be used in the experiments.

Clustering 161

L MO Graphical User interfaca
Classificatlon ~ Regresslon Mulf(Targes Outllers Concepr Drifi
W Wisualizatlon
Clustar Abgorithin Satup Eunluatins Maasires
- MM
Stream rRBFGeneratnrEvents —m Edit ¢
MM Basic
Algorithm 1 -ClusterGanarator Edit
CMM Miszed
Algorithm? clustream WithKmeans Edit Clear EnM Misplaced
CMM Moise

CA Seperability

A Noise

Stan Ste Import Expart Wk Exalarer

Figure 9.3
The MOA Clustering GUI tab.

Start by selecting clustering methods denstream.WithDBSCAN and
clustream.WithKmeans. Now we are going to run and visualize our
experiments. Switch to the Visualization tab.

Click Start to launch the experiment. The GUI will look like in figure 9.4.
The upper part of this tab offers options to pause and resume the stream, adjust
the visualization speed, and choose the dimensions for x and y as well as the
components to be displayed (points, micro and macro clustering, and ground
truth). The lower part of the GUI displays the measured values for both set-
tings as numbers (left side, including mean values) and the currently selected
measure as a plot over the examples seen. Textual output appears in the bottom
panel of the Serup tab.

162 Chapter 9

LN MO Graphical User interface
Classification Regresslon Mult|Target Outllers Concept Drifi

Serup EREEIEEETEH]

= Visualisation Speed
oim1 [3 Points Ground truth
Stop Wy Dim 2 Microclustering B Clustening Pause in: 5000

Resurie | X Procassad: 1004

Evaluation
Valuwes

& T
FI-R
Punity
GPrecisicn
GRecall
Redundancy
nurnCluster

Zoam out ¥ Zomm in X Zoam out X

numclasses

Figure 9.4
Evolving clusters in the GUI Clustering tab.

Click Resume to continue running the experiment.
a. What is the purity for both algorithms after 5,000 instances?
b. What is the purity for both algorithms after 10,000 instances?

Exercise 9.2 In MOA, we can easily change the parameters of the data stream
generator and clustering methods.
a. Add more noise to the data, changing the noise level from 0.1 to 0.3.
Which method is performing better in terms of purity after 50,000 instances?
b. Change the epsilon parameter in the Den-Stream algorithm to 0.01. Does
this improve the purity results of the algorithm? Why?

Clustering 163

Exercise 9.3 Letus compare CLUSTREAM and CLUSTREE using the default
parameters. Change the methods to use in the Sefup tab.

a. Which method performs better in terms of purity?

b. And in terms of CMM?

Exercise 9.4 Let us compare the performance of CLUSTREAM and CLUS-
TREE in the presence of noise.

a. What is the CMM of each method when there is no noise on the data
stream?

b. What happens when the noise in the data stream is 5%, 10%, 15%, and
20%?"?

1 O Frequent Pattern Mining

Frequent pattern mining is an important unsupervised learning task in data
mining, with multiple applications. It can be used purely as an unsupervised,
exploratory approach to data, and as the basis for finding association rules. It
can also be used to find discriminative features for classification or clustering.

In this chapter we describe techniques for building stream pattern mining
algorithms. We start (section 10.1) by presenting the main concepts related to
pattern mining, the fundamental techniques used in the batch setting, and the
concept of a closed pattern, particularly relevant in the stream setting. We then
show (section 10.2) in general how to use batch miners to build stream miners
and how to use coresets for efficiency. We then concentrate on two instances
of the notion of pattern—itemsets and graphs—with algorithms that use the
general approach with various optimizations. In section 10.3 we describe sev-
eral algorithms for frequent itemset mining, and particularly the IncMine algo-
rithm implemented in MOA. In section 10.4 we describe algorithms for fre-
quent subgraph mining, including the AdaGraphMiner implemented in MOA.
Section 10.5 provides references for additional reading.

10.1 An Introduction to Pattern Mining

10.1.1 Patterns: Definitions and Examples

In a very broad sense, patterns are entities whose presence or absence, or fre-
quency, indicate ways in which data deviates from randomness. Combinato-
rial structures such as itemsets, sequences, trees, and graphs, presented next,
are widely used to embody this idea. Patterns in this sense can all be viewed
as subclasses of graphs [255]. Our presentation, based on the idea of pattern
relation, follows the lines of [34]; we believe that this allows a more unified
presentation of many algorithmic ideas.

Itemsets are subsets of a set of items I = {4y, - ,i,}. In itemsets, the
notions of subpattern and superpattern correspond to the notions of subset and
superset. The most cited example of itemset mining is the case in which [is the
set of products for sale at a supermarket and an itemset is the set of products
in one particular purchase. Mining frequent itemsets means finding the sets of
products that customers often buy together.

Sequences in their most basic form are ordered lists of items, such
as (is,i7,12,110,%6); both (i7,710) and (is,i7,ig) are subsequences of this
sequence. An example of usage would be finding sequences of commands fre-
quently issued by the users of some software. A generalization makes every

166

Chapter 10

element of the ordered list an itemset, such as S = (Iy,Is,...,I,), where
each I; is a subset of I. The notion of subsequence is correspondingly more
difficult: S’ = (I{,15,...1],) is a subsequence of S if there exist integers
1<ji<je<...<jn<msuchthatl{ CI; I5C1I;,...,and I}, C I;

Trees are a special case of acyclic graphs; trees may or may not be rooted,
and nodes and edges may or may not be labeled. There are several possible
notions of subtree or tree subpattern. An induced subtree of a tree t is any
tree rooted at some node v of ¢ whose vertices and edges are subsets of those
of t. A top-down subtree of a tree t is an induced subtree of ¢ that contains the
root of . An embedded subtree of a tree t is any tree rooted at some node v
of ¢t. See [69, 142] for examples and discussions. A practical application of
frequent tree mining is related to servers of XML queries, as XML queries are
essentially labeled rooted trees. Detecting the frequent subtrees or subqueries
may be useful, for example, to classify queries or to optimize, precompute, or
cache their answers.

A graph G is a pair formed by a set of nodes V' and a set of edges E
among nodes. One may add labels to nodes and edges. A common definition
of G = (V, E) being a subgraph, or graph subpattern, of G’ = (V', E’) is that
VCV'and E C (V x V)N E’. In complex network analysis, motifs are sub-
networks that appear recurrently in larger networks, and typically can be used
to predict or explain behaviors in the larger network. Finding significant motifs
in a network is closely related to mining frequent subgraphs.

Let us now generalize these definitions to a single one. A class of patterns
is a set P with a relation < that is a partial order: reflexive, antisymmetric,
and transitive, possibly with pairs of patterns that are incomparable by <. For
patterns p,p’ € P, if p < p’, we say that p is a subpattern of p’ and p’ is a
superpattern of p. Also, we write p < p’ if p is a proper subpattern of p’, that
is,p=<p'andp#p'.

The input to our data mining process is a dataset (or stream, in the stream
setting) D of transactions, where each transaction s € D consists of a transac-
tion identifier and a pattern. We will often ignore the transaction identifiers and
view D as a multiset of patterns, or equivalently a set of pairs (p,¢) where p
occurs 7 times in D.

We say that a transaction ¢ supports a pattern p if p is a subpattern of
the pattern in transaction t. The absolute support of pattern p in dataset D,
denoted supp(p), is the number of transactions in dataset D that support p.
The relative support of p is o(p) = supp(p)/|D|, where | D| is the cardinality
of D. The o-frequent patterns in a database are those with relative support at

m*

Frequent Pattern Mining 167

ID Transaction
t1 abce
t2 cde
t3 abce
t4 acde
t5 abcde
t6 bed
Figure 10.1
Example of an itemset dataset.
Support Frequent Gen Closed Max
6 tl, t2, t3, t4, t5, to6 c C c
5 t1, t2, t3, t4, t5 e, ce e ce
4 tl, t3, t4, t5 a, ac, ae, ace a ace
4 tl, €3, t5, t6 b, bc b bc
4 t2, t4, t5, t6 d, cd d cd
3 t1, t3, t5 ab, abc, abe ab
be, bce, abce be abce abce
3 t2, t4, t5 de, cde de cde cde
Figure 10.2

Frequent, closed, and maximal itemsets with minimum absolute support 3, or relative support 0.5,
for the dataset in figure 10.1.

least ¢ in it. Note that the o-frequent itemsets of size 1 were called o-heavy
hitters in section 4.6.

The frequent pattern mining problem is defined as follows: given a dataset D
and a threshold o in [0, 1], find all o-frequent patterns in D.

Figure 10.1 presents a dataset of itemsets, and Figure 10.2 shows the fre-
quent, closed, and maximal itemsets of that dataset (closed and maximal pat-
terns will be defined later). For example, patterns de and cde appear in trans-
actions 12, t4, t5, and no other, and therefore have support 3.

In most cases of interest there is a notion of size, a natural number, associated
with each pattern. We assume that size is compatible with the pattern relation,
in the sense that if p < p’ then p is smaller in size than p’. The size of an itemset

168 Chapter 10

is its cardinality, the size of a sequence is the number of items it contains, and
the size of a tree or graph is its number of edges. Typically the number of
possible patterns of a given size n is exponential in n.

10.1.2 Batch Algorithms for Frequent Pattern Mining

In principle, one way to find all frequent patterns is to perform one pass over
the dataset, keep track of every pattern that appears as a subpattern in the
dataset together with its support, and at the end report those whose support
is larger than the required minimum support. However, the number of sub-
patterns in the dataset typically grows too fast with dataset size to make this
feasible. Therefore, more efficient approaches are required.

A most useful property is antimonotonicity, also known as Apriori property:
any subpattern of a frequent pattern is also frequent; equivalently, any super-
pattern of an infrequent pattern is also infrequent. This suggests the follow-
ing approach, embodied in the groundbreaking Apriori algorithm for frequent
itemset mining [9]:

1. Compute the set I of frequent patterns of size 1, with one pass over the
dataset.

2. For k > 1, given the set F_1,

2.1. compute the set C}, of candidate patterns, those patterns of size k all of
whose subpatterns of size k — 1 are in Fj,_q;

2.2. with one pass over the dataset, compute the support of every pattern
in Cy; let F}; be the subset of patterns in CY, that are frequent.

3. Stop when F}, is empty.

Observe that by the antimonotonicity property we are not losing any truly
frequent pattern in step 2.1 when restricting the search to Cj,. Furthermore,
in practice, the number of frequent patterns in Fj decreases quickly with k,
so step 2.1 becomes progressively faster and the number of passes is mod-
erate. In other words, Apriori [9] performs a breadth-first exploration of the
set of all frequent patterns. It also incorporates other strategies to make the
candidate generation phase 2.1 efficient, in particular representing itemsets in
lexicographical order.

Other approaches to batch itemset mining differ in the exploration strat-
egy and on the data structures added for efficiency. For example, the FP-
growth algorithm [131] uses a clever data structure called FP-Trees to store

Frequent Pattern Mining 169

the dataset in a compact form using two passes, and then retrieve the frequent
itemsets from the FP-tree directly, thus avoiding the expensive candidate gener-
ation phase. The Eclat algorithm [256] can be seen as performing a depth-first
search: it associates to each itemset observed a list of the transaction identifiers
that support it, then recursively intersects these sets to obtain the lists for larger
itemsets.

These and similar ideas have been applied to mining frequent sequences,
trees, and graphs. See the surveys cited in section 10.5 for references.

The algorithms sketched above are very clearly batch-oriented: Apriori per-
forms several passes over the dataset; Eclat and FP-growth perform one and
two passes, respectively, but it is unclear how they can return results in an
anytime way, and they store too many patterns for streaming settings. Before
describing approaches that work in streaming, we introduce additional notions
that help in reducing memory requirements, in both the batch and stream cases.

10.1.3 Closed and Maximal Patterns

A major problem of frequent pattern mining in practice is that often the algo-
rithm obtains far more patterns than can be later analyzed or used; not only that,
the patterns are often redundant or uninteresting in ways that are sometimes
obvious and sometimes subtle. See [119] for proposals of interest measures in
pattern mining.

One form of redundancy is to have two frequent patterns p and ¢ such
that p < ¢ but p and ¢ have the same or almost the same support. Knowing
that p is frequent does not add much when we know that ¢ is frequent. The
notions of closed and maximal pattern help reduce redundancy in the output as
well as time and memory usage, in both batch and stream miners.

DEFINITION 10.1 A pattern is closed for a dataset D if it has higher support
in D than every one of its superpatterns. A pattern is maximal if it is frequent
and none of its superpatterns are frequent.

Figure 10.2 shows the frequent closed and frequent maximal itemsets of the
dataset in figure 10.1. For example, ce is closed because it has higher sup-
port than its supersets ace, bce, and cde, but e is not, because it has the same
support as its superset ce. Pattern ce is frequent but not maximal because its
superset cde is also frequent.

Observe that every maximal pattern is closed. It is easy to see (exercise 10.1)
that, given all frequent closed patterns, we can retrieve all frequent patterns. If

170

Chapter 10

we know moreover the frequency of all closed patterns, we can deduce the
frequency of every pattern. There are often far fewer frequent closed patterns
than frequent patterns in a dataset. Therefore, algorithms that look for frequent
closed patterns without computing all frequent patterns might be much more
efficient in time and memory, while providing the same information and less
redundant output. This has been verified repeatedly in practice. Maximal pat-
terns only inform us about the border between frequency and infrequency.

CHARM, CLAIM, and FPClose are batch algorithms for mining frequent
closed itemsets. BIDE+, ClaSP, and CloSPan are batch miners for frequent
closed sequences. CloseGraph finds frequent closed subgraphs. The references
can be found in the surveys cited in section 10.5.

10.2 Frequent Pattern Mining in Streams: Approaches

Algorithms for extracting frequent patterns from data streams can be classified
according to a number of criteria, including:

o Whether they mine all frequent patterns or only the closed or maximal ones.

e Whether they consider the pattern frequency from the beginning of the
stream, or give more importance to recent items, either via sliding windows
or some importance decay scheme.

e Whether they update the set of frequent items after each item arrives, or per-
form batch updates: that is, collect a batch of stream items, then update the
data structure that represents frequent patterns using the batch. The choice
of batch size is key to performance.

e Whether they are exact or approximate, that is, whether they return exactly
the set of patterns that satisfy the frequency condition, or just some approx-
imation of the set. Approximate algorithms may have false positives (infre-
quent patterns reported as frequent), false negatives (frequent patterns not
reported), or both.

We will focus mostly on closed pattern mining using approximate algo-
rithms that perform batch updates. This is because closed pattern mining has a
large advantage because of the memory and time reduction it implies. Approx-
imate answers are acceptable in many applications, especially if that saves the
high computational cost of exact algorithms. Finally, per-item updates are too
slow in most cases and make little difference in the result compared to batch
updates.

Frequent Pattern Mining 171

BATCHUPDATEPATTERNMINER(Stream, b, w, o)

Input: a stream of patterns, a batch size b,
a window size w, a relative minimum support o

Output: at every moment C contains (approximately) the set of
o-frequent closed patterns in the last bw stream elements

1 C <+ an empty summary representing the empty set of patterns
2 (@ < the empty queue of summaries
3 repeat
4 collect the next b elements in Stream into a batch B
5 if Q hassizew ©> queue is full
6 then let C'1 be the oldest summary in)
7 C « remove(C,C1)
8 delete C'1 from @)
9 add B to)
10 using a batch miner, obtain a summary C2 representing
11 the patterns in B with support > o
12 C « add(C,C2)
Figure 10.3

A general stream pattern miner with batch updates and sliding window.

Algorithms that perform batch updates typically behave as in figure 10.3.
A specific algorithm fixes a summary data structure to remember the current
set of patterns being monitored. The summary type will depend on whether
the algorithm mines all patterns, or closed ones, or maximal ones. Of course,
the summary is also designed from efficiency considerations. The key opera-
tions are add(C,C") and remove(C,C"). Here, C and C’ are summary struc-
tures representing two pattern datasets D and D’. The operations should
return the summaries corresponding to DU D’ and D \ D’, or approxima-
tions thereof. Here D \ D’ denotes multiset difference, the multiset that con-
tains max{0, suppp(p) — suppp’(p)} copies of each pattern p. As mentioned
already, exact algorithms pay a high computational price for exactness, so add
and remove operations that are not exact but do not introduce many false pos-
itives or false negatives may be of interest.

The most obvious summary of a dataset D simply forgets the order of trans-
actions in D and keeps the multiset of patterns they contain, or more compactly

172 Chapter 10

the set of pairs (p, suppp(p)). Then, add and remove are simply multiset
union and multiset difference, and are exact. A more sophisticated summary
is to keep the pairs (p, suppp(p)) for all patterns that are closed in D, even
if they do not appear literally in D. This is still exact because the support
of all nonclosed patterns can be recovered from the summary. Efficient rules
for implementing exact add and remove operations on this representation are
given, for example, in [34].

Example 10.1 Suppose D = {ab,ac,ab}. Its summary in terms of closed
patterns is C = {(ab,2), (ac,1),(a,3)}, because a is closed in D. If
the new batch is D’ = {ac,bd}, its summary is C' = {(ac,1),(bd,1)},
and add(C,C") ideally should return the summary of DU D', which
is {(ab,2), (ac,2),(bd,1),(a,4),(b,3)}. Observe that add must somehow
include (b, 3), even though b is neither in C nor in C".

Since every pattern that occurs literally in a transaction is closed, this sum-
mary contains even more distinct patterns than the stream, which seems ineffi-
cient. However, if we keep in the summary only the o-frequent closed patterns,
the number of patterns stored decreases drastically, at the cost of losing exact-
ness. In particular, we may introduce false negatives over time, as we may be
dropping from a batch summary occurrences of p that are critical to making p
o-frequent in the stream. These false negatives may be reduced by using, in
line 15 of the algorithm, some support value o/ < o. Assuming a stationary
distribution of the patterns, this makes it less likely that a truly o-frequent
pattern is dropped from a batch because it is not even o’-frequent there by
statistical fluctuations. Hoeffding’s bound or the normal approximation can be
used to bound the rate of false negatives introduced by this approach in terms
of o, o’ and batch size (see, for example [35]).

10.2.1 Coresets of Closed Patterns

Recall from section 9.6 that a coreset of a set C' with respect to some problem
is a small subset of C' such that solving the problem on the coreset provides
an approximate solution for the problem on C'. We describe an application of
the notion of coreset to speed up frequent pattern mining, at the cost of some
approximation error. It was proposed for graphs in [35] as a generalization of
closed graphs, but can be applied to other pattern types.

Frequent Pattern Mining 173

Recall that supp(p) and o (p) denote the absolute and relative supports of p.
We say that p is d-closed in D if every superpattern of p has support less
than (1 — &) suppp (p). Closed patterns are the 0-closed patterns and maximal
patterns are the 1-closed patterns. This notion is related to others used in the
literature, such as the relaxed support in the CLAIM algorithm [230].

Now define a (o, d)-coreset of D to be any dataset D’ C D such that, for
every pattern p,

e every pattern p occurring in D’ is o-frequent and d-closed in D,

e and furthermore, if p € D’ then p occurs as many times in D’ as in D.

A (o, 0)-coreset is a lossy, compressed summary of a dataset. This compres-
sion is two-dimensional:

e Minimum support o excludes infrequent patterns, and

e J-closure excludes patterns whose support is very similar to that of some
subpattern.

Example 10.2 Suppose D = {(ab,10),(ac,5), (a,8),(b,2)}. A (0,0.4)-
coreset of D is {(ab,10), (ac,5),(a,8)}. a is in the coreset because it has
support 23 in D, and the supports of both ab and ac are below 0.6 - 23. On
the other hand, b is not, because it has support 12 in D and the support of ab is
above 0.6 - 12. From the coreset we can only say that the support of b in D is
at least 10 and at most 16.

We can build a (o,0)-coreset by greedily choosing a subset of the o-
frequent, d-closed patterns in D and then putting all their occurrences in D’.
If we do this until it is no longer possible, we obtain a maximal coreset, that
is, one that cannot be extended by adding more patterns from D and remain a
coreset. See exercise 10.2. For § = 0, the set of all o-frequent closed patterns is
the unique maximal (o, 0)-coreset. If 0 < § < 1, however, there may be several
maximal (o, 0)-coresets of D.

A strategy for reducing computation time and memory in the generic algo-
rithm is to keep only summaries of (c,d)-coresets of the batches. Of course,
the summaries do not exactly represent the full dataset, not even the o-frequent
patterns in the dataset, so the output will only be approximate.

174 Chapter 10

10.3 Frequent Itemset Mining on Streams

10.3.1 Reduction to Heavy Hitters

In chapter 4 we described a number of sketches for maintaining the heavy
hitters of a stream, that is, the elements with relative frequency above a thresh-
old e. Such sketches can often be used to maintain the set of frequent patterns
in a stream. The extensions need to take into account that it is no longer true
that there are at most 1/¢ frequent elements, because each stream element may
generate updates for many patterns.

For example, the paper that presents the Lossy Counting algorithm [165]
also presents an extension to count frequent itemsets. The stream is divided in
batches, each batch is mined for frequent itemsets, and the sketch is updated
with the result. The error in the frequency estimates of Lossy Counting trans-
lates to rates of false positives and negatives in the set of frequent patterns. A
similar idea can be developed for the SPACESAVING sketch (exercise 10.3).

This approach has two disadvantages in some settings: one, it tracks all fre-
quent itemsets rather than frequent closed ones, so it may require large mem-
ory. Second, Lossy Counting and Space Saving do not allow removals, so it is
not possible to simulate the forgetting effect of a sliding window.

10.3.2 Moment

Moment, by Chi et al. [70], is a closed frequent itemset miner on a sliding
window. It is an exact algorithm: at every moment, it reports exactly the set of
frequent closed itemsets in the sliding window.

The method uses a tree structure called a Closed Enumeration Tree to store
all the itemsets that are needed at any given moment, where the root is at the
top and corresponds to the smallest (empty) itemset. Nodes in the tree belong
to one of four types, two on the boundary of frequent and infrequent itemsets,
and two on the boundary of closed and nonclosed frequent itemsets:

e Infrequent gateway node: Contains an itemset x that is not frequent, but
whose parent node contains an itemset y that is frequent and has a frequent
sibling z such that x = y U z.

e Unpromising gateway node: Contains an itemset x that is frequent and such
that there is a closed frequent itemset y that is a superset of x, has the same
support, and is lexicographically before z.

Frequent Pattern Mining 175

e Intermediate node: A node that is not an unpromising gateway and contains
a frequent itemset that is nonclosed, but has a child node that contains an
itemset with the same support.

o Closed node: Contains a closed frequent itemset.

These definitions imply the following properties of Closed Enumeration
Trees:

1. All supersets of itemsets in infrequent gateway nodes are infrequent.

2. All itemsets in unpromising gateway nodes, and all their descendants, are
nonclosed.

3. All itemsets in intermediate nodes are nonclosed but have some closed
descendant.

4. When adding a transaction, closed itemsets remain closed.

5. When removing a transaction, infrequent items remain infrequent and non-
closed itemsets remain nonclosed.

The core of Moment is a set of rules for adding and removing a transaction
from the tree while maintaining these five properties.

10.3.3 FP-STREAM

FP-STREAM, by Giannella et al. [121], is an algorithm for mining frequent
itemsets at multiple time granularities from streams. It uses a FP-Tree structure
as in FP-growth to store the set of frequent patterns, and a tilted-time window.
There are two types of tilted-time window:

e Natural tilted-time window: Maintains the most recent 4 quarters of an hour,
the last 24 hours, and the last 31 days. It needs only 59 counters to keep this
information.

e Logarithmic tilted-time window: Maintains slots with the last quarter of an
hour, the next 2 quarters, 4 quarters, 8 quarters, 16 quarters, and so on. As in
Exponential Histograms, the memory required is logarithmic in the length
of time being monitored.

FP-STREAM maintains a global FP-Tree structure and processes transac-
tions in batches. Every time a new batch is collected, it computes a new FP-
Tree and adds it to the global FP-Tree.

176

Chapter 10

If only the frequent itemsets in each batch are kept, or only frequent item-
sets are maintained in the global FP-Tree structure, many itemsets will be lost,
because many nonzero counts that do not reach the minimum required thresh-
old o will not be included, therefore they are considered effectively zero. It is
convenient to keep also some infrequent ones, in case they become frequent
in the future. For that purpose, FP-STREAM uses the notion of subfrequent
pattern. A pattern is subfrequent if its support is more than ¢’ but less than o,
for a value 0/ < 0. FP-STREAM computes frequent and subfrequent patterns.
Pattern occurrences in a batch whose frequency is below ¢’ will not be added
to the global FP-Tree, so they will be undercounted and may become false neg-
atives later on. This, however, drops from consideration a large amount of truly
infrequent patterns, saving memory and time. A reinforcement of this idea is
crucial to the next algorithm we will present.

In summary, FP-STREAM allows us to answer time-sensitive queries
approximately and keeps more detailed information on recent data. It does
however consider all frequent itemsets instead of closed ones.

10.3.4 IncMine

The IncMine algorithm for mining frequent closed sets was proposed by Cheng
et al. in [66]. It is approximate and exhibits a controllable, usually small,
amount of false negatives, but it is much faster than Moment and FP-STREAM.
Its implementation in MOA, including some details not explicit in [66], is
described in [202].

At a high level, IncMine maintains a sliding window with batches of the
most recent transactions. IncMine aims at reporting the frequent closed item-
sets (FCIs) in the window. But it actually stores a superset of those, including
some that are not frequent in the current window but may become frequent in
the future; we call this set the semi-FCI. Its definition is more restrictive than
that of subfrequent patterns in FP-STREAM.

Stream elements are collected in batches B of some size b. Let w be the
number of batches stored in the window, which therefore represents wb trans-
actions.

Let C denote the set of semi-FCIs mined at any given time from the current
window. When a new batch of transactions b arrives, C' must be updated to
reflect the transactions in B and forget the effect of the oldest batch of transac-
tions in the window. Roughly speaking, IncMine performs this by first mining

Frequent Pattern Mining 177

the set C2 of FClIs in B, and then updating C' with the contents of C'2, accord-
ing to a set of rules that also implements the forgetting of expired transactions.
We omit this part of the description, but note that it is crucial for the efficiency
of IncMine. Note also that it is specific to itemsets, unlike the following ideas,
which are applicable to other types of patterns such as sequences and graphs.

However, a direct implementation of this idea is costly. The number of item-
sets that have to be stored in order to perform this task exactly can grow to be
very large, because even itemsets that seem very infrequent at this time have
to be kept in C, just in case they start appearing more often later and become
frequent in the window within the next wb time units or w batches.

IncMine adopts the following heuristic to cut down on memory and com-
putation. Suppose that our minimum support for frequency is . If pattern p
is frequent in a window of wb batches, by definition it appears at least cwb
times in it. Naively, we might expect that it would appear ¢ib times in the
first ¢ batches. But it is too much to expect that patterns are so uniformly dis-
tributed among batches. However, if p appears far less than oib times in the
first 7 batches, it becomes less likely that the required occurrences appear later
in the window, and we might decide to drop pattern p from the window, at the
risk that it becomes a false negative some time later. This risk becomes smaller
and smaller as 7 approaches w.

More generally, if o is the desired minimum support for an FCI, IncMine
sets up a schedule of augmented supports (i) fori = 1...b, such that r(1) <
r(2) <--- <r(w—1) < r(w) = 1. When a pattern in the ith batch in the win-
dow has frequency below 7 (7)o b, it is considered unlikely that it will reach
frequency owb after adding w — ¢ batches more, and it is dropped from the
current set C'.

Therefore, the set C' kept by IncMine at a given time is, precisely speak-
ing, the set of o-frequent closed itemsets in the window plus the set of infre-
quent closed itemsets that have not been dropped as unpromising in the last w
batches. If 7(w) = 1, this implies that all itemsets that have lived through w
batches are o-frequent in the window, and can be reported as true FCIs. Thus,
IncMine may have false negatives, but not false positives, because an itemset
reported as frequent is guaranteed to be frequent.

Cheng et al. [66] propose the linear schedule (i) = (i — 1) - (1 —r)/(w —
1) 4+ r for some value r < 1. Observe that r(1) = r and r(w) = 1. An anal-
ysis in [202] yields another schedule, based on Hoeffding’s bound, that cuts
unpromising itemsets much more aggressively while still guaranteeing that at

178

Chapter 10

most a desired rate of false negatives is produced, assuming a stationary distri-
bution in the stream.

Let us note also that the implementation in MOA described in [202] uses
CHARM [254] as the batch miner, partly because of the superior performance
reported in [254] and partly because it can use the well-tested implementation
in the Sequential Pattern Mining Framework, SPMF [106]. The implementa-
tion is experimentally shown in [202] to perform orders of magnitude faster
than Moment, with far less memory and with a very small, often negligible,
number of false negatives.

10.4 Frequent Subgraph Mining on Streams

Note first that the term graph mining has been used to describe several tasks.
A common meaning, which we do not cover here, is the task of mining infor-
mation such as communities, shortest paths, and centrality measures, from a
single large graph such as a social network; the graph arrives an edge at a time,
often with edge insertions and deletions. Here we are consistent with the rest
of the chapter: each element of the stream is in itself a graph, and the task is to
mine the subgraphs of these incoming graphs that are frequent (and, perhaps,
closed).

We present two coreset-based algorithms described in [35], one that imple-
ments the general idea for mining patterns over a fixed-size sliding window
described in section 10.2, and another one that adapts to change by reporting
the approximate set of closed frequent graphs for the recent graphs, those in an
adaptive-size sliding window over the stream where the distribution seems to
be stationary.

Note that [35] represents sets of closed graphs in a form equivalent to, but
more convenient than, the one implicitly assumed in section 10.2, which was
a set of pairs (closed pattern, frequency). The A-support of a pattern is its
support minus the sum of the absolute supports of all its closed, proper super-
patterns; it is called the relative support in [35], a term we already use with
another meaning here.

An interesting property of A-support is that, conversely, the absolute support
of a closed pattern equals the sum of the A-supports of all its closed superpat-
terns (including itself). This makes adding patterns to a summary much faster.
Suppose we have computed the set of closed patterns of a dataset and asso-
ciated to each its absolute support. To add one occurrence of a pattern p to

Frequent Pattern Mining 179

the summary, we need to increment by 1 the absolute support of p and of all
its closed subpatterns. If we instead have kept the A-supports of each closed
pattern, simply adding 1 to the A-support of p implicitly adds 1 to the regular
support of all its subpatterns, by the property above. The same argument can
be made for removals. Regular supports have to be computed only when the
algorithm is asked to output the set of frequent closed graphs, which should
happen far more rarely than additions and removals.

If all closed patterns of D are kept in the summary, the A-support of p is
the number of transactions in D whose pattern is precisely p. However, if the
summary is based on a (o, d)-coreset, the missing occurrences of p from the
omitted patterns may lead to negative A-supports.

10.4.1 WINGRAPHMINER

The WINGRAPHMINER algorithm maintains the frequent closed graphs in
a sliding window of fixed size, implementing the coreset idea described in
section 10.2. Its pseudocode is shown in figure 10.4. Note that, for brevity, in
line 8 we have used set operations in (G U C) \ R to denote what really is an
application of operation add and an application of operation remove.

Every batch of graphs arriving from the stream is mined for closed frequent
graphs using some batch miner, and transformed to the relative support rep-
resentation. Procedure CORESET implements this idea using the CloseGraph
algorithm [252]. The coreset maintained by the algorithm is updated by adding
to it the coreset of the incoming batch. Also, after the first w batches, the win-
dow is full, so the algorithm subtracts the coreset of the batch that falls from
the sliding window. The subtraction operation can be performed by changing
the signs of all the A-supports in the subtracted dataset and then adding the
coreset summaries.

10.4.2 ADAGRAPHMINER

ADAGRAPHMINER is an extension of the previous method that is able to adapt
to changes in the stream, reporting the graphs that are frequent and closed in
the current distribution.

There are two versions of this method. One monitors some simple statistic
of the global distribution, and shrinks the window when change is detected;
in the implementation presented, ADWIN is used as a change detector, and the
statistic monitored is the total number of closed graphs. Another version uses

180

Chapter 10

WINGRAPHMINER(Stream, b, w, o)

O 00 N Lt AW

Input: a stream of graphs, batch size b,
window size w, minimum support o

Output: at all times, the summary G contains the (approximate) set of
frequent closed subgraphs of the last wb graphs in the stream

G+ 0
for every batch B of graphs in Stream
do C < CORESET(B,0)
store C' in sliding window
if sliding window is full
then R <« oldest batch in sliding window
else R+ 0
G + CORESET((GUC)\ R,0)
return G

CORESET(B, 0)

Input: Graph dataset B and minimum support o
Output: A coreset C of B

C < CLOSEGRAPH(B, o)

2 C + COMPUTE_A_SUPPORT(C)
3 return C
Figure 10.4

The WINGRAPHMINER algorithm and procedure CORESET.

a separate ADWIN instance for monitoring the support of each frequent closed
subgraph. This version has two advantages: first, it is sensitive to changes in
individual graphs that are too small to be noticed in the global distribution.
Second, it does not need to keep all the batches in a sliding window in memory,
so each graph is stored once, with its ADWIN instance, rather than w times.
Although an ADWIN is stored for every graph, this experimentally requires

less memory for moderate values of w.

Figure 10.5 shows the pseudocode of ADAGRAPHMINER, where the param-

eter mode chooses among both versions.

Frequent Pattern Mining 181

ADAGRAPHMINER(Stream, mode, b, o)

Input: a stream of graphs, boolean flag mode,
batch size b, minimum support o

Output: at all times, the summary G contains the (approximate) set of
frequent closed subgraphs of the graphs in the current window

1 Init ADWIN
2 for every batch B of graphs in Stream
3 do C < CORESET(B,0)
4 R+ 0
5 if mode is true 1> indicating Sliding Window mode
6 then store C in sliding window
7 if ADWIN detected change
8 then R <« batches to remove from sliding window
9 G + CORESET((GUC)\ R,0)
10 if mode is true > indicating Sliding Window mode
11 then insert number of closed graphs into ADWIN
12 else For every g in G, update g’s ADWIN
13 return G
Figure 10.5

The ADAGRAPHMINER algorithm.

10.5 Additional Material

The literature on frequent pattern mining, both batch and in streams, is vast.
We prioritize surveys if available, from which many other references can be
found. The survey [5] is most comprehensive on pattern mining; see in partic-
ular [156], chapter 4, on pattern mining in data streams.

Regarding itemsets, [67] focuses on mining frequent itemsets on streams,
and [202] includes a comparison of the pros and cons of several itemset min-
ing algorithms on streams, besides describing the MOA implementation of
IncMine.

For sequence patterns, [180] is a recent survey, mostly for the batch context.
[174, 204] are two approaches to sequence mining on data streams.

For frequent subtree mining, [24, 69, 142] present in detail the various
notions of “subtree” and survey associated batch algorithms. [158] presents

182

Chapter 10

FQT-Stream, an online algorithm for mining all frequent tree patterns on an
XML data stream. [34] describes the generic approach to stream pattern min-
ing that we have used in this chapter, and applies it in particular to subtree
mining.

For subgraph mining, two surveys dealing with the batch case are [142, 206].
Two algorithms for mining frequent subgraphs from graphs of streams are
gspan [251] and its extension for closed graphs, CloseGraph [252]. [35] pro-
poses the notion of coreset for subgraph mining in graph streams and the algo-
rithms in section 10.2.1. [207] investigates finding frequent subgraphs in a sin-
gle large dynamic (streaming) graph.

We have omitted the discussion on association rules, as typically they are
obtained by first mining frequent itemsets from the dataset (or stream), then
determining the frequent rules from the mined itemset; that is, there is nothing
essentially specific to the streaming setting beyond mining frequent itemsets.
Association rules, or probabilistic implications, for trees are discussed in [23],
and shown to behave differently from those on sets in several nontrivial ways.

The Sequential Pattern Mining Framework (SPMF) [106] contains many
implementations of pattern mining algorithms, mostly for the batch setting, and
mostly in Java. Implementations of IncMine, AdaGraphMiner, and Moment
are available from the Extensions section in the MOA website.

10.6 Exercises

Exercise 10.1 Show that: 1. The set of all frequent patterns in a dataset can
be derived from its set of closed frequent patterns. 2. If, additionally, we know
the support of each frequent closed pattern, we can compute the support of
every frequent pattern.

Exercise 10.2 1. Formalize the greedy algorithm sketched in section 10.2.1
to compute a maximal (o, d)-coreset.

2. Consider the dataset D = {(a,100), (ab,80), (abc, 60), (abed,50)} of
itemsets. Find two different maximal (0.1, 0.3)-coresets of D.

Frequent Pattern Mining 183

Exercise 10.3 If you have studied the SPACESAVING sketch in chapter 4,
think how to adapt it for maintaining the o-frequent itemsets, counting fre-
quency from the start of the stream. How much memory would it require?
Does it have false positives or false negatives, and if so, what bounds can you
prove for the error rates?

Exercise 10.4 Without looking at the original paper, give pseudocode for the
IncMine algorithm based on the ideas given in this chapter.

Exercise 10.5 Prove that the absolute support of a closed pattern equals the
sum of the A-supports of all its closed superpatterns (including itself). Hint:
Use induction from the maximal patterns down.

III THE MOA SOFTWARE

11

Introduction to MOA and Its Ecosystem

Massive Online Analysis (MOA) is an open-source software framework that
allows users to build and run ML and data mining experiments on evolving data
streams. It is being developed at the University of Waikato in New Zealand and
named after the large, extinct, flightless moa bird that used to live only in New
Zealand.

The distinctive feature of MOA is that it can learn and mine from large
datasets or streams by performing only one pass over the data, with a small
time per data item. As it scans the data, it only stores summaries and statistics
rather than the instances themselves, so memory use is usually small too.

MOA is written in Java and distributed under the terms of the GNU General
Public License. It includes a set of learners, stream generators, and evaluators
that can be used from the graphical user interface (GUI), the command-line
interface (CLI), and the Java API. Advantages of being Java-based are the
portability and the strong and well-developed support libraries. Use of the lan-
guage is widespread, and features such as automatic garbage collection help
reduce programming burden and errors. MOA runs on any platform with an
appropriate Java virtual machine, such as Linux, Mac, Windows, and Android.

One intended design goal of MOA is to be easy to use and simple to extend.

There are several open-source software libraries related to MOA. Some of
them, such as ADAMS, MEKA, and OpenML, use MOA to perform data
stream analytics inside their systems. StreamDM contains an implementation
in C++ of some of the most popular methods in MOA, and Apache SAMOA is
a new platform that performs stream mining in a distributed environment using
Hadoop hardware.

In this part of the book, we show how to use the GUI, the CLI, and the Java
API, and how to master MOA algorithms, generators, and evaluators.

In this chapter, we first discuss briefly the architecture of MOA, and how to
install the software. After that we look at recent developments in MOA and the
extensions available in MOA, and finally we present some of the open-source
frameworks that can be used with MOA, or as an alternative to it. The intention
is not to make readers proficient in all these other packages, but to make them
aware of their possibilities.

188 Chapter 11

11.1 MOA Architecture

MOA is built around the idea of the fask. All experiments run in MOA are
defined as tasks. There are simple tasks, such as writing streams to files or
computing the speed of a stream, but the most important tasks are the evalua-
tion tasks. For example, in classification, there are two main types of evaluation
methods, described in section 6.1: holdout and prequential.

MOA contains methods for classification, regression, clustering, outlier
detection, recommendation, and frequent pattern mining. Tasks are usually
composed of stream sources, learners, and the parameters of the evaluation,
such as number of instances to use, periodicity of the output result, and name
of the file to output the predictions. Also, different task types require different
evaluation strategies.

Tasks can be run from the GUI or from the CLI.

11.2 Installation

MOA is available from https://moa.cms.waikato.ac.nz, where the
latest release can always be downloaded as a compressed zip file. The release
contains a moa. jar file, an executable Java jar file that can be run as
a Java application or called from the command line. It also contains the
sizeofag. jar file, used to measure the memory used by experiments. The
scripts bin\moa.bat in Windows and bin/moa. sh in Linux and Mac are
the easiest way to start MOA’s GUL

11.3 Recent Developments in MOA

Some of the recent developments in MOA, not covered in detail in this book,
are:

e Multitarget learning: A tab for multitarget learning [91, 188, 232], where
the goal is to predict several related target attributes simultaneously. Exam-
ples of multitarget learning are the prediction of temperatures in the same
building, traces in the same road network, or stock prices.

e Outlier detection: A tab for detection of distance-based outliers [20, 120].
This tab uses the most widely employed criteria for determining whether an

https://moa.cms.waikato.ac.nz

Introduction to MOA and Its Ecosystem 189

element is an outlier, based on the number of neighboring elements within a
fixed distance, against a fixed threshold.

Recommender system: MOA has a task to use online recommender algo-
rithms. The EvaluateOnlineRecommender task in MOA takes a rat-
ing predictor and a dataset (each training instance being a [user, item, rat-
ing] triplet) and evaluates how well the model predicts the ratings, given
the user and item, as more and more instances are processed. This is sim-
ilar to the online scenario of a recommender system, where new ratings of
items by users arrive constantly, and the system has to make predictions of
unrated items for the user in order to know which ones to recommend. There
are two online recommender algorithms available: BaselinePredictor
and BRISMFPredictor. The first is a very simple rating predictor, and
the second implements a factorization algorithm described in [234].

11.4 Extensions to MOA

The following useful extensions to MOA are available from its website:

IBLStreams: IBLStreams [225], described in section 8.4, is an instance-
based learning algorithm for classification and regression problems on data
streams.

MOA-IncMine: IncMine, proposed in [66] and described in section 10.3.4,
computes frequent closed itemsets from evolving data streams. The imple-
mentation in MOA is described in [202] and uses the implementation of the
CHARM batch miner from [106].

MOA-AdaGraphMiner: AdaGraphMiner [35] (see section 10.4) is a
framework for mining frequent subgraphs in time-varying streams. It con-
tains three new methods for mining frequent closed subgraphs. All methods
work on coresets of closed subgraphs, compressed representations of graph
sets, and maintain these sets in a batch-incremental manner, but use different
approaches to address potential concept drift.

MOA-Moment: Moment [70] is a closed frequent itemset miner over a
stream sliding window. This version was implemented by M. Jarka (www .
admire-project.eu).

MOA-TweetReader: This extension reads and converts tweets from the
Twitter Streaming API to MOA instances, to facilitate streaming analysis
of tweets.

www.admire-project.eu
www.admire-project.eu

190

Chapter 11

Classifiers & DDMs: This extension provides several published ensem-
ble classifiers (DWM, RCD, Learn++.NSE, EB), concept drift detectors
(ECDD, PHT, Paired Learners), and artificial datasets (Sine and Mixed).

MODL split criterion and GK class summary: This new split criterion
for numeric attributes is based on the MODL approach [48]. The GK class
summary is based on Greenwald and Khanna’s quantile summary (see sec-
tion 6.4.3) but in this version class counts are included in each tuple in the
summary.

Incrementally Optimized Very Fast Decision Tree iOVFDT): A new
extension of the Hoeffding tree (section 6.3.2) proposed in [132].

Anytime Nearest Neighbor: Implementation by Liu and Bell of the anytime
classifier presented in [227].

Social Adaptive Ensemble 2 (SAE2): Social-based algorithms, Scale-Free
Network Classifier (SFNClassifier) [25, 126], and the Social Network Clus-
terer Stream (SNCStream) [26].

Framework for Sentiment Analysis of a Stream of Texts: This project’s
goal was to build an online, real-time system able to analyze an incoming
stream of text and visualize its main characteristics using a minimal desktop
application [18].

MOAReduction: An extension for MOA that allows users to perform data
reduction techniques on streams without drift. It includes several reduction
methods for different tasks, such as discretization, instance selection, and
feature selection, as presented in [205].

MOA for Android: Contains software to make MOA usable as part of an
Android application.

11.5 ADAMS

WEKA and MOA are powerful tools to perform data mining analysis tasks.
Usually, in real applications and professional settings, the data mining pro-
cesses are complex and consist of several steps. These steps can be seen as
a workflow. Instead of implementing a program in Java, a professional data
miner will build a solution using a workflow, so that it will be much easier to

Introduction to MOA and Its Ecosystem 191

understand and maintain for nonprogrammer users. The Advanced Data min-
ing And Machine learning System (ADAMS) [213, 214] is a flexible work-
flow engine aimed at quickly building and maintaining real-world, complex
workflows. It integrates data mining applications such as MOA, WEKA, and
MEKA, support for the R language, image and video processing and feature
generation capabilities, spreadsheet and database access, visualizations, GIS,
web services, and fast prototyping of new functionalities using scripting lan-
guages (Groovy/Jython).

[Hals] Flone editor [adams-auoa—classifier_syabaton fow — (Lisecs (abifers Softwars | adams-all-0.4.1-5HAPSHOT iltows]

File Edit Debug Execution View Window
¥ [
(D@l [« - [o]
AdAmS = rea-dassifier_evaluation 11 Actors | melp | Paramerers

¥ A
[rost
o (23 adams o

fon in tewtual fommat and the statistics is
o ety

+ [if) GlobatAcrs
¢ [GREVIEN %1, top, W80, HAR, fows 3, Cal
St Kapna Hoight. i, WA, HS
oA PRFCRNG COTPREE Horighl. i
= Dasplay Llsh T
)'I.V" MOASIeam pen
TEE| MO ClassifierE va luation
EchBeanch paralicl, tiveaits @
= e
= {iHkappa
= fiFperce nr correct

40,

"

Figure 11.1
The ADAMS flow editor.

The core of ADAMS is the workflow engine, which follows the philoso-
phy of less is more. Instead of letting the user place operators (or actors, in
ADAMS terms) on a canvas and then manually connect inputs and outputs,
ADAMS uses a treelike structure. This structure and the control actors define
how the data flows in the workflow; no explicit connections are necessary. The

192 Chapter 11

treelike structure stems from the internal object representation and the nesting
of subactors within actor handlers.

VE |]

1

Clanaiiied [netances = 19,000
lapalfleatlons corTect (percemt) =
appa-statlatia (percent) = 0.925

Figure 11.2
The ADAMS flow example.

Figure 11.1 shows the ADAMS flow editor loaded with the adams-moa-
classifier-evaluation flow. It uses the Kappa statistic and a decision stump,
a decision tree with only one internal node. Figure 11.2 shows the result of
running the workflow.

ADAMS can also perform tweet analysis. Tweets and their associated meta-
data can be recorded using the public Twitter API, storing them for future

Introduction to MOA and Its Ecosystem 193

replay. This tweet stream replay functionality allows the same experiment to be
performed as often as required, using the same stream of tweets each time, and
applying different filters (e.g., checking for metadata) and algorithms. Tweets
with geotagging information can be displayed using the OpenStreetMap GIS
functionality, allowing for visualization of geographical phenomena.

ADAMS is also able to process videos in near real time, with frames being
obtained at specific intervals. Apart from tracking objects, it is also possible to
use the image processing and feature generation functionality to generate input
for ML platforms such as MOA or WEKA.

11.6 MEKA

MEKA [212] is an open-source project started at the University of Waikato
to perform and evaluate multi-label classification. It uses the so-called prob-
lem transformation methods to make WEKA single-label (binary or multi-
class) methods available as base classifiers for multi-label classification; see
Section 6.7.

MEKA contains all the basic problem transformation methods, advanced
methods including varieties of classifier chains that have often been used as
a benchmark in the recent multi-label literature, and also algorithm adapta-
tions such as multi-label neural networks and deep neural networks. It includes
two strategies for automatic threshold calibration, and a variety of evaluation
metrics from the literature. MEKA is easy to use from either the CLI or the
GUI (figure 11.3) . Thus no programming is required to parameterize, run, and
evaluate classifiers, making it suitable for practitioners unfamiliar with Java.
However, it is straightforward to extend MEKA with new classifiers and inte-
grate it into other frameworks. Those familiar with WEKA will have almost
no learning curve—much of WEKA’s documentation and modus operandi is
directly applicable. Any new MEKA classifier can also be combined within
any of MEKA’s existing ensemble schemes and any WEKA base classifier
without writing extra code, and may be compared easily with benchmark and
state-of-the-art methods. MEKA also supports semisupervised and streaming
classification in the multi-label context, as discussed in section 6.7.

194

Chapter 11
L] o MEKA Expiarar
Flle Edic
Classify Visualize Log
Filter
Choose | AllFiler Apply
Current data set Classes
Relation: Music: -C & Antributes; 77
Instances: 592 Sum of weights: 592 Al Mone rvert Fattern
Attributes
Mo, Name
Al None Invert Pattern 1 amazed-suprised
2 happy-pleasad

N, (= : rﬁa‘::hil'm
1 amazed-suprised bty
I happy-pleased : andnely i

angry-aggresive
: ”‘:ﬂ'f':';fll“" 7 Mean_Acc1298_Mean_Memd0_Centroid
5 :M_ lonel B Mean_AcclZ98_Mean Memd0_Roloff
r - 8 Mean_hcel29E Mean MemdO_Fiux

6 angry-aggresive A i e B b A AT
7 Mean Accl298_Mean MemdD_Certroid
& Mnan_Acci298_Mean_Memai_Ralioff Lite dass atrbines

9 Mean_Acc1298_Mean_Memd 0 Flux Satected atcabuite
10 Mean_Acci298_Mean_Mem40_MFCC_O Mame: None T - N

ype: Nene
LL| MR fcc 1295 Mean Meman MrCC 1 Missing: None Distincr: Mone Unigue: Nenga
12 Mean Acc1298_Mean Memd0_MACC 2
13 Mean_Acc1298_Mean_MemdO_MFCE_3
14 Mean_Accl298_Mean_Memd0_MRCC &
1% Mnan_Accl298_Mean Memd0_MFCC S
16 Maaa Arrl TR Maan MamaAl MECE

Rermove

wE
=r

Figure 11.3
The MEKA GUIL

11.7 OpenML

OpenML [238, 239] is an online platform where scientists can automatically
log and share machine learning datasets, code, and experiments, organize them
online, and build directly on the work of others. It helps automate many tedious
aspects of research, it is readily integrated into several ML tools, and it offers
easy-to-use APIs. It also enables large-scale and real-time collaboration, allow-
ing researchers to share their very latest results, while keeping track of their
impact and reuse. The combined and linked results provide a wealth of infor-
mation to speed up research, assist people while they analyze data, or automate
the experiments altogether.

Introduction to MOA and Its Ecosystem 195

Regression | Clustering | Outliers | Concept Drift
Configure untllml-.-i':-I;nr-n.llﬁ:!;.ﬁtream-clusiﬁuli-un -1 Iruu.H-n:F-fdinghdauli{-é‘i’ru -t 188 Run

command status tma elapsed currant activi... % comglate
openml.OpenmiDataStreamClassification - trees.HoeffdingAdaptiveTree -t 192 completed 55.168 ol
openml.OpenmiDataSireamClassification ~| trees HoeffdingAdaptiveTree -t 191 completed 44.69s 10000
openml.OpenmiDataStreamClassification -1 trees HoeffdingAdaptiveTree -t 190 completed 34.00s - 10000
- 10000
10000

|

openmlOpenmiDataStreamClassification =1 irees.HoeffdingAdaptiveTree -1 185 completed 42.66s
openmlOpenmiDataSireamClassification -1 trees. HoefldingAdantveTres -t 1B8 eomolered 1m22s

8.0.0 Comfiguretasle

class moa.tasks.openml.OpenmiDatastreamdlassification &

Purpose

Pause

Evaluares a clagsifier on an OpanML Data Stream Classification

Tash

Final result Refresh

0200, 0, 71, 56700008088001, 55, 566893979949006 , 5!
155525.0, 73.53903230793013,55. 4581471095 72715, ~53,

learner trees.HoeffdingAdaptiveTree EEII |
. taskld 188 (%
Evaluation
Values Plot evaluator ssificationPerformanceEvaluator __EEII |
Measure Current Mean
(=) Accuracy 73..81.8978.7882.33 sampleFrequency 100,000 | |7
' Ka 55...71.2564.3169.10 T |
i 2 i dumgpFile Browse |
Kappa Temp $3..266...119...200... ——
Ram-Hours 0.00 0,00 0.00 0.00 taskResultFile [| Browse |
Timme 76..40.5944.4223.14 || |1 , B i
Help Reset to defaults |

Memony 0,00 0.00 0.00 0.00

Figure 11.4
Integration of OpenML with MOA.

OpenML features an extensive REST API to search, download, and upload
datasets, tasks, flows, and runs. Moreover, programming APIs are offered in
Java, R, and Python to allow easy integration into existing software tools.
Using these APIs, OpenML is already integrated into MOA, as shown in fig-
ure 11.4. In addition, R and Python libraries are provided to search and down-
load datasets and tasks, and upload the results of ML experiments in just a few
lines of code.

11.8 StreamDM

StreamDM-C++ [43] is an open-source project started at the Huawei Noah’s
Ark Lab. It implements Hoeffding adaptive trees (section 6.3.5) for data
streams in C++ and has been used extensively at Huawei. Hoeffding adaptive
trees adapt to changes in streams, a huge advantage since standard decision
trees are built using a snapshot of data and cannot evolve over time.

196 Chapter 11

StreamDM for Spark Streaming [39] is an open-source project for mining
big data streams using Spark Streaming [253], an extension of the core Spark
API that enables scalable stream processing of data streams.

11.9 Streams

The streams [46] framework is a Java implementation of a simple stream
processing environment. It aims at providing a clean and easy-to-use Java-
based platform to process streaming data. The core module of the streams
library is a thin API layer of interfaces and classes that reflect a high-level
view of streaming processes. This API serves as a basis for implementing cus-
tom processors and providing services with the streams library.

The st ream-analysis modules of the st reams library provide imple-
mentations for online methods for analysis, such as different approximative
counting algorithms and computation of online statistics (e.g., quantile sum-
maries). As st reams incorporates MOA, the methods from MOA are avail-
able inside the framework.

11.10 Apache SAMOA

Apache Scalable Advanced Massive Online Analysis (SAMOA) [181] is a
framework that provides distributed ML for big data streams, with an inter-
face to plug in different stream processing platforms that run in the Hadoop
ecosystem.

SAMOA can be used in two different modes: it can be used as a running plat-
form to which new algorithms can be added, or developers can implement their
own algorithms and run them within their own production system. Another fea-
ture of SAMOA is the stream processing platform abstraction, where developers
can also add new platforms by using the available API. With this separation of
roles, the SAMOA project is divided into the SAMOA API layer and the DSPE-
adapter layer. The SAMOA API layer allows developers to develop for SAMOA
without worrying about which distributed stream processing engine (SPE) will
be used. When new SPEs are released or there is interest in integrating with
another platform, a new DSPE-adapter layer module can be added. Currently,
SAMOA supports four SPEs that are currently state-of-the-art: Apache Flink,
Storm, Samza, and Apex.

Introduction to MOA and Its Ecosystem 197

The SAMOA modular components are processor, stream, content event,
topology, and task.

e A processor in SAMOA is a unit-of-computation element that executes some
part of the algorithm on a specific SPE. Processors contain the actual logic
of the algorithms. Processing Items (PIs) are the different internal, concrete
implementations of processors for each SPE.

The SPE-adapter layer handles the instantiation of PIs. There are two
types of PI, an entrance PI and a normal PI. An entrance PI converts data
from an external source into instances, or independently generates instances.
Then it sends the instances to the destination PI via the corresponding stream
using the correct type of content event. A normal PI consumes content events
from an incoming stream, processes the content events, and may send the
same content events or new content events to outgoing streams. Developers
can specify the parallelism hint, which is the number of runtime PIs dur-
ing SAMOA execution, as shown in figure 11.5. A runtime PI is an actual
PI that is created by the underlying SPE during execution. SAMOA dynam-
ically instantiates the concrete class implementation of the PI based on the
underlying SPE.

A PI uses composition to contain its corresponding processor and streams.
A processor is reusable, which allows developers to use the same imple-
mentation of processors in more than one ML algorithm implementation.
The separation between PIs and processors allows developers to focus on
developing their algorithms without worrying about the SPE-specific imple-
mentation of Pls.

e A stream is a connection from a PI into its corresponding destination PIs.
Developers view streams as connectors between PIs and as mediums to send
content events between PIs. A content event wraps the data transmitted from
a PI to another via a stream. Moreover, in a way similar to processors, con-
tent events are reusable. Developers can use a content event in more than
one algorithm.

e A source PI is a PI that sends content events through a stream. A destination
PI is a PI that receives content events via a stream. Developers instantiate
a stream by associating it with exactly one source PI. When destination PIs
want to connect to a stream, they need to specify the grouping mechanism,
which determines how the stream routes the transported content events.

e A fopology is a collection of connected processing items and streams. It
represents a network of components that process incoming data streams. A

198

Chapter 11

)
[1 9
N/

Source runtime
Pl

© 06000

N

()
{ nth)
NS

Destination runtime PI

Figure 11.5
Parallelism hint in SAMOA.

n runtime Pls since
parallelism hint is setton

Introduction to MOA and Its Ecosystem 199

distributed streaming algorithm implemented on top of SAMOA corresponds
to a topology.

o A task is an ML-related activity such as performing a specific evaluation for
a classifier. An example of a task is a prequential evaluation task, that is, a
task that uses each instance for testing the model performance and then uses
the same instance to train the model using specific algorithms. A task also
corresponds to a topology in SAMOA.

Platform users esentially call SAMOA tasks. They specify what kind of task
they want to perform, and SAMOA automatically constructs a topology based
on the task. Next, platform users need to identify the SPE cluster that is avail-
able for deployment and configure SAMOA to execute on that cluster. Once the
configuration is correct, SAMOA deploys the topology seamlessly into the con-
figured cluster, and platform users can observe the execution results through
dedicated log files of the execution.

The ML-adapter layer in SAMOA consists of classes that wrap ML algorithm
implementations from other ML frameworks. Currently SAMOA has a wrapper
class for MOA algorithms or learners, which means SAMOA can easily use
MOA learners to perform some tasks. SAMOA does not change the underlying
implementation of the MOA learners, so the learners still execute in a sequen-
tial manner on top of the SAMOA underlying SPE.

Developers design and implement distributed streaming ML algorithms with
the abstraction of processors, content events, streams, and processing items.
Using these modular components, they have flexibility in implementing new
algorithms by reusing existing processors and content events, or writing new
ones from scratch. They have also flexibility in reusing existing algorithms and
learners from existing ML frameworks using the ML-adapter layer.

Developers can also implement tasks with the same abstractions. Since pro-
cessors and content events are reusable; the topologies and their corresponding
algorithms are also reusable. This means they also have flexibility in imple-
menting new tasks by reusing existing algorithms and components, or by writ-
ing new algorithms and components from scratch.

Currently, SAMOA contains these algorithms:

e Vertical Hoeffding tree [149]: A vertical parallelism approach partitions
instances in terms of attributes for parallel processing. Decision tree induc-
ers with vertical parallelism process the partitioned instances (which consist
of subsets of attributes) to compute splitting criteria in parallel. For exam-
ple, if we have instances with 100 attributes and we partition the instances

200

Chapter 11

into 5 portions, we will have 20 attributes per portion. In each portion, the
algorithm processes the 20 attributes in parallel to determine the locally best
attribute to split, and combines the parallel computation results to determine
the globally best attribute to split and grow the tree.

AMRules [241]: SAMOA uses a hybrid of vertical and horizontal parallelism
to distribute AMRules on a cluster. The decision rules built by AMRules are
comprehensible models, where the antecedent of a rule is a conjunction of
conditions on the attribute values, and the consequent is a linear combination
of the attributes.

Adaptive bagging: This is an easy method to parallelize. Each bagging
replica is given to a different processor.
Distributed clustering: Clustering in SAMOA has two levels: a first level

that performs clustering on the split data, and a second level that performs a
meta-clustering with the microclusters of the output of the first level.

1 2 The Graphical User Interface

The MOA Graphical User Interface (GUI) allows using MOA via menu selec-
tion and form filling. It contains several tabs on the top, for four learning tasks:
Classification, regression, clustering, and outlier detection. In this chapter we
describe the main options for evaluation, classification, and clustering; readers
are encouraged to explore more, and read the MOA documentation for more
detail on, for example, the parameters available for each method.

12.1 Getting Started with the GUI

The GUI for configuring and running tasks is invoked with the command:
bin/moa.sh

in Linux or Mac, and

bin\moa.bat

in Windows. These commands call the GUI using

java —-Xmx1lG ... moa.gui.GUI

There are several tabs, for classification, regression, clustering, and outlier
detection. In the following sections we are going to describe how to use them.

12.2 Classification and Regression

The classification and regression tabs in MOA contain four different compo-
nents as seen in Figure 12.1:

Configure Current Task
e List of Tasks
Output Panel

Evaluation Measure and Chart Output Panel.

To use the classification GUI, first we need to configure a task, then run it,
and finally see the results in the output panels.

We can click Configure to set up a task, modify the parameters of the task
(see Figure 12.2), and when ready we can launch a task clicking Run. Several
tasks can be run concurrently. We can click on different tasks in the list and

202

Chapter 12

[] [] MO Graphicad User interfaca
Regression MultiTarger Clustering Owtliers Concepr Drifi

Configure equential -| meta LeveragingBag -s fgenerators RandomABFGeneratorDnift -5 8.001) -1 1600000 -F 10000 Aun

command natus time elapried currang acliviy % complets
EvaluatePrequentisl -1 tree... eompleted 11.023 MR i —
Evﬁlua!e“wu:nlnl -] free w.urnplql.ed 7895 s A PR
E\l:lluﬂ!l’\'!ﬂﬂ!nml -1 met... -:nmpl:bed SB.60s i
EvaluateinterleavedTestTh.., eomnpleted 55,003 e O
Evaluaeingrieavad Testmh. coep tad 13.95% L L]
Evaluateinterleaved TestTh... eomploted 498 b
Pause Resumse Cancel Delene
Final result Fofrerh nd

T AEATIETIEG0ATIS, 25,7, T 13372 T HARRETE, 5. &, 0, B4R 46 BEB61 2327, 0 @ ﬁ B0, B8, 1.0, B0
|3B@6A3, 31, 5,8, 264B452B3 08653, 6.5,1, B246350TE5055507 0. 8, 0. B, .8, 1.8,8.8

1427437, 20,4, 6 ERSREREE TA00437 6.0, 00 .?9999!9999999!93.!.0.8&1.0.6.0.1.9.8.@

|7 FEQAESTISIIAAT 166, T FIA4RN1RI0DA7 4.5 B BGTIZTABTHSS TSRS A, 0,8.0,4.9,0.8, 1.0 0.8
(2,5, 874237539176184, 25. 2,5, 31’423753?175]54 5.5, 1.8H7511I541367147,8, 0,09, 0,2,0.9,1,8,0.0

A0965,22.3, 7. #6171 4.9,1,2339353333333334,0.8,0.9,0.9,0.8,1.8,0.0
9.5,5, 191478814 163184, 19. 6, 5. 319147501418 3154, 5. GRRGORAGORRGORNS, 1, Z22RI01A53215573, 0. B, 0.8, 0.0, 0.4, 1.8,0.0
1922952, 13,7, 3, 56A535336022052, 4 0. 999,9,0,.9,8,9,8.9,1.9,8.0
A33399939055005, 7. 209694410957675, 26, A99399IATIHAIE, 7. 2006II418957075, 5.8, 1 27191935 2705944 , 0. 8,0.8,0.9, 8.8, 1. 8,0
GA306RE49R, 20, 0, 7. 685484153042452, 29, 9, 7. GBS4BA15342052 6 5,0. 71802187 L0, 0.0,0.0,8.0,1.0,8.8
Export as ot file..
Evaluation
Values Plot
Measure mens Mean Zooin in ¥ Zoom out ¥ Zoom in X Zoom out X
© Accuracy B4.30 70.40BL.2566.29
Kappa EE.ED 40.5062.4632.53
Kappa Temp 6223 417362263200 || [e oo
emp 223 A . £ Y Y)
j i WA ey
Ham-Hours 000 @00 000 000
Time 130,5013.7565.18 6.79 || | **
Memary 0,00 0.00 ¢00 0.00
Q.00 T T T T T
0 00000 1000030 1800000 2000000

Figure 12.1
The MOA Graphical User Interface.

control them using the buttons below. If textual output of a task is available it
will be displayed in the bottom half of the GUI, and can be saved to disk. If
graphical output is available it will be displayed in the bottom chart display.

Note that the command line text box displayed at the top of the window
represents textual commands that can be used to run tasks on the command
line as described in the next chapter. The text can be selected then copied onto
the clipboard. At the bottom of the GUI there is a graphical display of the
results. It is possible to compare the results of two different tasks: The current
task is displayed in red, and the previously executed one is in blue.

The Graphical User Interface 203

& Configure task

| class moa.tasks.EvaluateModel

~Purpose
Evaluates a static model on a stream.

model Maodel -1 bayes.NaiveBayes Edit

stream tors.RandomTreeGenerator Edit

evaluator ationPerformanceEvaluator Edit
maxlInstances 1,000,000 2
outputPredictionFile _ Browse
taskResultFile Browse
Help Reset to defaults

Cancel [ENOKINN
e —

Figure 12.2
Options to set up a task in MOA.

12.2.1 Tasks
The main tasks in MOA are the following:

o WriteStreamToARFFFile Outputs a stream to an ARFF file. ARFF is a
convenient data format used by the WEKA project [107] that extends the
CSV format with a header specifying attribute types, names, and values.

204

Chapter 12

MeasureStreamSpeed Measures the speed of a stream.
LearnModel Learns a predictive model from a stream.
EvaluateModel Evaluates a static predictive model on a stream.

EvaluatePeriodicHeldOutTest Evaluates a classifier on a stream by peri-
odically testing on a holdout set.

EvaluateInterleavedTestThenTrain Evaluates a classifier on a stream by
testing then training with each instance in sequence. There is no forgetting
mechanism so all instances are equally important in the evaluation.

EvaluatePrequential Evaluates a classifier on a stream by testing then train-
ing with each example in sequence. It may optionally use a sliding window
or a fading factor as forgetting mechanisms.

EvaluatePrequential CV Evaluates a classifier on a stream by doing k-fold
distributed cross-validation; each time a new instance arrives, it is used for
testing in one classifier selected randomly, and trained using the others. It
may optionally use a sliding window or a fading factor as forgetting mecha-
nisms.

EvaluateInterleavedChunks Evaluates a classifier on a stream by testing
then training with chunks of data in sequence.

Evaluation methods were defined in Section 6.1.

12.2.2 Data Feeds and Data Generators

MOA streams are built using generators, reading ARFF files, joining sev-
eral streams, or filtering streams. They allow to simulate a potentially infinite
sequence of data. The following ones are implemented:

o ArffFileStream Reads a stream from an ARFF file.

o ConceptDriftStream Creates a stream with concept drift by smoothly

merging two streams that have the same attributes and classes.

MOA models concept drift in a data stream as a weighted mixture of two
existing streams that describe the data distributions before and after the drift.
MOA uses the sigmoid function as a simple and practical solution to define
the merging of two streams to simulate drift.

We see from Figure 3.5 in Section 3.2.1 that the sigmoid function

FO)=1/(1+e D)

The Graphical User Interface 205

has a derivative at the point p such that f’(p) = s/4. The tangent of angle «
is equal to this derivative, tan o = s/4. We observe that tana = 1/w, and
as s = 4tana then s = 4/w. So the parameter s in the sigmoid gives the
length of w and the angle «. In this sigmoid model we only need to specify
two parameters : the point of change p, and the length of change w. Note
that for any positive real number g3

flp+B-w)=1~f(p—5-w),

and that f(p+ B -w) and f(p— B -w) are constant values that do not
depend on p and w. We have, for example,

flp+w/2)=1—f(p—w/2) =1/(1+e"2) ~ 83.08%,
flp+w)=1—f(p—w)=1/(1+e?) =~ 98.20%,
flp+2w) =1—f(p—2w)=1/(1+e"%) ~99.97%.
Given two data streams a, b, ¢ = a @;;” b is defined as the data stream built

joining the two data streams a and b, where p is the point of change, w is the
length of change and

) a(t) with probability 1 — 1/(1 + e~ 4(t=P)/w)
C =
b(t) with probability 1/(1 + e~ 4(t=P)/w),
We observe the following properties, if a # b:
e ad)bF#bD) a
e ad,a=a
e ad®)b=10
e ady (bdyc)# (ady b))y ¢
e ady (b,)= (a®y, b) Dy, cif p1 < pgand w K pa2 — p1.
In order to create a data stream with multiple concept changes, we can
build new data streams joining different concept drifts:

(((a@yrb)@pzc)@p2d). ...

e ConceptDriftRealStream Generator that creates a stream with concept
drift by merging two streams that have different attributes and classes. The
new stream contains the attributes and classes of both streams.

o FilteredStream A stream that is obtained from a stream filtered by a filter,
for example AddNoiseFilter.

206

Chapter 12

e AddNoiseFilter Adds random noise to examples in a stream. To be used

with FilteredStream only.

generators.AgrawalGenerator Generates one of ten different pre-defined
loan functions.

This generator was introduced by Agrawal et al. in [8]. It was a common
source of data for early work on scaling up decision tree learners. The gen-
erator produces a stream containing nine attributes, six numeric ones and
three categorical ones. Although not explicitly stated by the authors, a sen-
sible guess is that these attributes describe hypothetical loan applications.
There are ten functions defined for generating binary class labels from the
attributes. Presumably these determine whether the loan should be approved
or not.

A source code in C is publicly available. The built-in functions are based
on the cited paper (page 924), which turn out to be functions pred20 thru
pred29 in the public C implementation. The perturbation function works as
in the C implementation rather than the description in paper.

generators.HyperplaneGenerator Generates a problem of predicting class
of a rotating hyperplane.

The problem was used as testbed for CVFDT versus VEDT in [138]. A
hyperplane in d-dimensional space is the set of points € R¢ that satisfy
ijl w;x; = Wy, where x; is the ith coordinate of point x. Point exam-
ples for which Zle w;x; > wo are labeled positive, and point examples
for which Zle w;z; < wo are labeled negative. Hyperplanes are useful for
simulating time-changing concepts, because we can change the orientation
and position of the hyperplane in a smooth manner by changing the relative
values of the weights. We add change to this dataset adding drift to each
weight attribute, w; = w; + do, where o is the probability that the direction
of change is reversed and d is the speed of change.

generators.LEDGenerator Generates a problem of predicting the digit dis-
played on a 7-segment LED display.

This data source originates from the CART book [56]. The goal is to
predict the digit displayed on a seven-segment LED display, where each
attribute has a 10% chance of being inverted. It has an optimal Bayes classi-
fication rate (rate of the best possible classifier) of 74%. The particular con-
figuration of the generator used for experiments (led) produces 24 binary
attributes, 17 of which are irrelevant.

The Graphical User Interface 207

o generators.LEDGeneratorDrift Generates a problem of predicting the
digit displayed on a 7-segment LED display with drift.

o generators.RandomRBFGenerator Generates a random radial basis func-
tion stream.

This generator was devised to offer an alternate complex concept type that
is not straightforward to approximate with decision trees. The RBF (Radial
Basis Function) generator works as follows: A fixed number of random clus-
ters are generated. Each cluster has a random center, a standard deviation, a
class label and a weight. New examples are generated by selecting a clus-
ter with probability proportional to its weight, then generating a point from
a Gaussian distribution with the center at the cluster’s center and the clus-
ter’s standard deviation along every axis. This effectively creates a normally
distributed hypersphere of examples surrounding each center, with varying
densities. Only numeric attributes are generated. The chosen cluster also
determines the class label of the example.

e generators.RandomRBFGeneratorDrift Generates a random radial basis
function stream with drift. Drift is introduced by moving the centers at con-
stant speed.

o generators.RandomTreeGenerator Generates a stream based on a ran-
domly generated tree.

This generator is based on that proposed in [88] and produces concepts
that should favor decision tree learners. It builds a decision tree by choosing
attributes to split at random and assigning a random class label to each leaf.
Once the tree is built, examples in the stream are generated by assigning
uniformly distributed random values to attributes, which then determine the
class label via the tree. The generator has parameters to control the number
of classes, attributes, nominal attribute labels, and the depth of the tree.

Noise can be introduced in the examples after generation. In the case of
discrete attributes and the class label, a probability of noise parameter deter-
mines the chance that any particular value is switched to something other
than the original value. For numeric attributes, a degree of random noise is
added to all values, drawn from a random Gaussian distribution with stan-
dard deviation equal to the standard deviation of the original values multi-
plied by noise probability.

o generators.SEAGenerator Generates SEA concepts functions.

This generator was proposed in [233] to study reaction to abrupt concept

drift. The stream is generated using three attributes, and only the first two

208

Chapter 12

are relevant. All three attributes have values between 0 and 10. The points
in the stream are divided into four blocks with different concepts. In each
block, the 0/1 class is determined by the inequality f; + fo < 6, where f;
and f, represent the first two attributes and 6 is a threshold value. The most
usual threshold values for the four classes are 9, 8, 7 and 9.5.

generators.STAGGERGenerator Generates STAGGER concept func-
tions, introduced by Schlimmer and Granger in [223].

The STAGGER concepts are boolean functions of three attributes encod-
ing objects: size (small, medium, large), shape (circle, triangle, rectangle),
and color (red, blue, green). A concept is a conjunction or disjunction
of two attributes, such as (color=red and size=small) or (color=green or
shape=circle).
generators.WaveformGenerator Generates a problem of predicting one of
three waveform types.

It shares its origin with the LED dataset. The goal of the task is to differ-
entiate between three different classes of waveform, each of which is gen-
erated from a combination of two or three base waves. The optimal Bayes
classification rate is known to be 86%. There are two versions of the prob-
lem, wave21 which has 21 numeric attributes, all of which include noise,
and wave40, which introduces 19 additional irrelevant attributes.

generators.WaveformGeneratorDrift Generates a problem of predicting
one of three waveform types, with drift.

12.2.3 Bayesian Classifiers

e NaiveBayes Performs classic bayesian prediction making the naive assump-

tion that all attributes are independent. It has been described in Section 6.2.3.

e NaiveBayesMultinomial The Multinomial Naive Bayes classifier is

described in 6.2.4.

12.2.4 Decision Trees

o HoeffdingTree Decision tree inducer for data streams without change,

described in Section 6.3.2. To use majority class learners at the leaves, use
HoeffdingTree -1 MC.

e DecisionStump Decision tree with a single inner node, so that only one

attribute is tested to predict an instance.

The Graphical User Interface 209

HoeffdingOptionTree Hoeffding Option Trees, described in Section 7.6.1.
It is possible to choose the type of classifier placed at the leaves: Major-
ity class, Naive Bayes, or Naive Bayes Adaptive. By default, the option
selected is Naive Bayes Adaptive, since it tends to give best results; it mon-
itors the error rate of the majority class and Naive Bayes predictors, and
switches from one to the other tracking the one with better rate on recent
instances. To run experiments using a majority class learner at leaves, use
HoeffdingOptionTree -1 MC.

HoeffdingAdaptiveTree Decision tree inducer for evolving data streams,
described in Section 6.3.5.

AdaHoeffdingOptionTree Adaptive Hoeffding Option Tree for streaming
data with Naive Bayes Adaptive classifiers at the leaves [38]. An Adap-
tive Hoeffding Option Tree is a Hoeffding Option Tree with the following
improvement: Each leaf stores an estimation of the current error, estimated
using an EWMA counter with a = 0.2. The weight of each node in the vot-
ing process is proportional to the square of the inverse of the error.

12.2.5 Maeta Classifiers (Ensembles)

0OzaBag Incremental online bagging by Oza and Russell, described in Sec-
tion 7.4.1.

0OzaBoost Incremental online boosting by Oza and Russell [190].

OCBoost Online Coordinate Boosting by Pelossof et al. [197]. An online
boosting algorithm for adapting the weights of a boosted classifier, which
yields a closer approximation to Freund and Schapire’s AdaBoost algo-
rithm. The weight update procedure is derived by minimizing AdaBoost’s
loss when viewed in an incremental form. This boosting method may be
reduced to a form similar to Oza and Russell’s algorithm.

0zaBagASHT Bagging using Hoeffding trees, each with a maximum size
value, and described in Section 7.6.4. The base learner must be ASHoefft-
dingTree, a Hoeffding Tree with a maximum size value.

0OzaBagADWIN Bagging using ADWIN, described in Section 7.4.2.
AccuracyWeightedEnsemble, described in Section 7.1.

AccuracyUpdatedEnsemble, a variant by Brzezinski and Stefanowski [58]
of the method described in Section 7.1.

210 Chapter 12

LimAttClassifier, ensemble combining Restricted Hoeffding Trees using
Stacking with a Perceptron, described in Section 7.6.3.

LeveragingBag Leveraging Bagging for evolving data streams using
ADWIN, described in Section 7.4.3. There are four different versions of
this algorithm:

e Leveraging Bagging ME, using weight 1 if misclassified, otherwise
error/(1-error).

e Leveraging Bagging Half, using resampling without replacement half of
the instances.

e [everaging Bagging WT, without taking out all instances.

e [everaging Subagging, using resampling without replacement.

The “-0” option can be used to use Random Output codes.

TemporallyAugmentedClassifier Wrapper that includes labels of previous
instances into the training data. This enables a classifier to exploit potential
label auto-correlation. See Section 6.2.2.

12.2.6 Function Classifiers

MajorityClass always predicts the class that has been observed most fre-
quently in the training data.

NoChange It predicts the class that has been observed in the last instance
used to train the model.

Perceptron, single perceptron classifier. Performs the classic multiclass per-
ceptron learning, incrementally.

SGD Implements stochastic gradient descent for learning various linear
models: binary class SVM, binary class logistic regression, and linear
regression.

SPegasos Implements the stochastic variant of the Pegasos (Primal Esti-
mated sub-GrAdient SOlver for SVM) method of Shalev-Shwartz et
al. [226].

12.2.7 Drift Classifiers

SingleClassifierDrift classifier for handling concept drift data streams,
based on using a change detector to monitor the error of the classifier. When

The Graphical User Interface 211

the change detector raises a warning signal, a new classifier is created; and
when a change signal is raised, the current classifier is replaced by the new
one. It is the strategy in the DDM method of Gama et al. [114], described in
Section 5.3.4. There are several drift detection methods that can be used:

CusumDM and PageHinkleyDM, as seen in Section 5.3.2.

DDM, seen in Section 5.3.4.

EDDM, based on using the estimated distribution. of the distances
between classification errors, presented in [22].
ADWINChangeDetector, as seen in Section 5.3.5.

EWMAChartDM, based on using an exponentially weighted moving
average (EWMA) chart [216], mentioned in Section 5.3.4.
GeometricMovingAverageDM, based in the use of a geometric moving
average estimation.

HDDM _A _Test and HDDM_W _Test, based on using Hoeffding’s bounds
presented in [44].

SEEDChangeDetector, based on detecting volatility shift, presented
in [136].

SeqDrift1 ChangeDetector and SeqDrift2ChangeDetector, the first one
based on comparing data in a sliding window and data in a repository,
and the second one based in comparing data in a reservoir and data in a
repository, presented in [196, 220].

STEPD, based on using a statistical test of equal proportions, presented
in [186].

12.2.8 Active Learning Classifiers

o ActiveClassifier Classifier for active learning that aims at learning an accu-

rate model while not requesting more labels than allowed by its budget. This

classifier can use several active learning strategies that explicitly handle con-
cept drift, described in Section 6.8.

12.3 Clustering

The Clustering tab in MOA has the following main components:

212

Chapter 12

e Data generators for stream clustering on evolving streams (including events
like novelty, merge, etc.),

e a set of state-of-the-art stream clustering algorithms,
e cvaluation measures for stream clustering, and

e visualization tools for analyzing results and comparing different settings.

12.3.1 Data Feeds and Data Generators

Figure 12.3 shows a screenshot of the configuration dialog for the RBF data
generator with events. Generally the dimension, number, and size of clusters
can be set as well as the drift speed, decay horizon (aging), and noise rate.
Events constitute changes in the underlying data model such as cluster growth,
cluster merging, or creation of a new cluster. Using the event frequency and the
individual event weights, one can study the behavior and performance of differ-
ent approaches on various settings. Finally, the settings for the data generators
can be stored and loaded, which offers the opportunity of sharing settings and
thereby providing benchmark streaming datasets for repeatability and compar-
ison.

12.3.2 Stream Clustering Algorithms

Currently MOA contains several stream clustering methods, including:

o StreamKM-++, described in Section 9.2.
e CluStream, described in Section 9.3.

e ClusTree, described in Section 9.5.

e Den-Stream, described in Section 9.5.

e CobWeb. A hierarchical clusterer, and one of the first incremental methods
for clustering data, due to Fisher [102].

12.3.3 Visualization and Analysis

After the evaluation process is started, several options for analyzing the outputs
are possible:

e The stream can be stopped and the current (micro)clustering result can be
passed as a dataset to the WEKA explorer for further analysis or mining;

The Graphical User Interface 213

o the evaluation measures, which are evaluated at configurable time intervals,
can be stored as a CSV file to obtain graphs and charts offline using a pro-
gram of choice;

e finally, both the clustering results and the corresponding measures can be
visualized online within MOA.

MOA allows the simultaneous configuration and evaluation of two different
setups for direct comparison, for example of two different algorithms on the
same stream or the same algorithm on streams with different noise levels, and
SO on.

The visualization component allows to visualize the stream as well as the
clustering results, choose dimensions for multidimensional data, and compare
experiments with different settings in parallel. Figure 12.4 shows a screenshot
of the visualization tab. In this screenshot, two different settings of the Clu-
Stream algorithm are compared on the same stream setting, including merge/
split events every 50000 examples, and four measures were chosen for online
evaluation (F1, Precision, Recall, and SSQ).

The upper part of the GUI offers options to pause and resume the stream,
adjust the visualization speed, choose the dimensions for x and y as well as the
components to be displayed (points, micro- and macro- clustering and ground
truth). The lower part of the GUI displays the measured values for both set-
tings as numbers (left side, including mean values) and the currently selected
measure as a plot over the processed examples (right, SSQ measure in this
example).

214 Chapter 12

& Editing option: Stream

class moa.streams.clustering.RandomRBFGeneratorEvents

Purpose
Generates a random radial basis function stream.

kernelRadiusRange e
densityRange 02
speed 500 °
speedRange oils
noiselLevel 01|12 {_r -
noiselnCluster
eventFrequency 30,000 C

eventMergeSplitOption

eventDeleteCreate
Help Reset to defaults

Figure 12.3

Option dialog for the RBF data generator. By storing and loading settings, streaming datasets can
be shared for benchmarking, repeatability and comparison.

The Graphical User Interface

215

LR] o MOA Graphical User Imsrfaon
| Classlfication Regression MuliiTarge: [ENEEININ Outliers Concepr Drifi
EET s iliarion |
~WVisuslisation Speed —— :
[Resume | X Dim1 B g gy £ Ground truth Frocast ot 30000
stop ¥ bimz [[Mcroclustering B Clustering | Pausein 15000

GPrecision 100 166 100 100 | |
GRecall 064 057 0.88 056 !
0 sso LEGE 10.96 9.96 16.10

~Evaluation
Values Plot —
leesgues. favenk M Zoamin ¥ Zoam out ¥ Zoemin X Zoom out X
FL-p 062 0.78 0.67 057
F1-R 0El 074 066 059

Figure 12.4
Visualization tab of the MOA clustering GUL

1 3 Using the Command Line

MOA methods and tasks can be used from the GUI as explained in the previous
chapter, or using the CLI. For classification and regression, the task commands
used in the GUI can be used in the CLI directly. In this chapter we will show
how to run these and other tasks from the command line.

Running tasks is as easy as calling the moa .DoTask command from the
command line. For example, to run the LearnModel task, simply type

java —-cp moa.jar —-javaagent:sizeofag.jar moa.DoTask LearnModel
...parameters...

In the next sections, we will see specific examples of this use.

13.1 Learning Task for Classification and Regression

The first example will command MOA to train the HoeffdingTree classi-
fier and create a model. The moa .DoTask class is the main class for running
tasks on the command line. It will accept the name of a task followed by any
appropriate parameters. The first task we will use is the LearnModel task.
The —1 parameter specifies the learner, in this case the HoeffdingTree
class. The —s parameter specifies the data stream to learn from, in this case
generators.WaveformGenerator, generating a three-class learning
problem. The —m option specifies the maximum number of examples to train
the learner with, in this case 1,000,000 examples. The —O option specifies a
file to output the resulting model to:

java -cp moa.jar -javaagent:sizeofag.jar moa.DoTask

LearnModel -1 trees.HoeffdingTree
-s generators.WaveformGenerator -m 1000000 -O modell.moa

This will create a file named modell.moa containing the tree model
induced during training.

13.2 Evaluation Tasks for Classification and Regression

The next example will evaluate the model to compute its accuracy on a set
of examples generated using a different random seed. The EvaluateModel
task is given the parameters needed to load the model produced in the previous
step, generate a new waveform stream with random seed 2, and test on another
1,000,000 examples:

218 Chapter 13

java —cp moa.jar —-javaagent:sizeofag.jar moa.DoTask
"EvaluateModel -m file:modell.moa
-s (generators.WaveformGenerator —-i 2) —-i 1000000"

Observe the use of nested parameters using parentheses. Quotes have been
added around the description of the task, otherwise the operating system might
be confused by the parentheses.

After evaluation the following statistics are output:
classified instances = 1,000,000

classifications correct (percent) = 84.474
Kappa Statistic (percent) = 76.711

Note that the two steps above can be rolled into one, avoiding the need to
create an external file, as follows:

java —-cp moa.jar —-javaagent:sizeofag.jar moa.DoTask
"EvaluateModel -m (LearnModel -1 trees.HoeffdingTree
—-s generators.WaveformGenerator -m 1000000)
-s (generators.WaveformGenerator -i 2) -i 1000000"

MOA will create and use the classifier in memory, without storing it in a file.

13.3 Learning and Evaluation Tasks for Classification and Regression

The EvaluatePeriodicHeldOut Test task will train a model while tak-
ing snapshots of performance using a holdout test set at periodic intervals. The
following command creates a CSV file, trains the HoeffdingTree classi-
fier on the WaveformGenerator data, keeps the first 100,000 examples for
testing, trains on a total of 100,000,000 examples, and tests on the holdout set
every 1,000,000 examples:

java —-cp moa.jar —-javaagent:sizeofag.jar moa.DoTask
"EvaluatePeriodicHeldOutTest -1 trees.HoeffdingTree
—-s generators.WaveformGenerator
-n 100000 -1 100000000 —-f 1000000" > dsresult.csv

For the purposes of comparison, a bagging learner using 10 decision trees
can be trained on the same problem:

java —-cp moa.jar —-javaagent:sizeofag.jar moa.DoTask
"EvaluatePeriodicHeldOutTest -1 (OzaBag -1 trees.HoeffdingTree
-s 10) -s generators.WaveformGenerator
-n 100000 -1 100000000 —-f 1000000"™ > htresult.csv

Using the Command Line 219

Another evaluation method implemented in MOA is the interleaved test-
then-train. It produces smoother plots of accuracy over time, as each indi-
vidual example becomes less and less significant to the overall average.
Here is an example of an EvaluateInterleavedTestThenTrain
task that creates a CSV file, trains the HoeffdingTree classifier on
WaveformGenerator data, trains and tests on a total of 100,000,000 exam-
ples, and records accuracy every 1,000,000 examples:
java —-cp moa.jar -javaagent:sizeofag.jar moa.DoTask

"EvaluateInterleavedTestThenTrain -1 trees.HoeffdingTree

-s generators.WaveformGenerator
-1 100000000 —-f 1000000"™ > htresult.csv

13.4 Comparing Two Classifiers

Suppose we want to compare the learning curves of two classifiers, a
decision stump and a Hoeffding Tree. First, we have to execute the
EvaluatePeriodicHeldOutTest task to train a model while taking
snapshots of performance with a holdout test set at periodic intervals. The fol-
lowing commands create CSV files and train the DecisionStump and the
HoeffdingTree classifiers on WaveformGenerator data, using 1,000
examples for holdout testing, training on a total of 100,000 examples, and test-
ing every 10,000 examples:

java —-cp moa.jar —-javaagent:sizeofag.jar moa.DoTask

"EvaluatePeriodicHeldOutTest -1 trees.DecisionStump

-s generators.WaveformGenerator
-n 1000 -1 100000 -f 10000" > dsresult.csv

java —-cp moa.jar -—-javaagent:sizeofag.jar moa.DoTask
"EvaluatePeriodicHeldOutTest -1 (trees.HoeffdingTree -1 MC)
—-s generators.WaveformGenerator
-n 1000 -i 100000 —-f 10000" > htresult.csv

Assuming that gnuplot is installed on the system, the learning curves can
be plotted with the following commands:
gnuplot> set datafile separator ","

gnuplot> set ylabel "% correct"
gnuplot> set xlabel "examples processed"

gnuplot> plot [][0:100] \
"dsresult.csv" using 1:9 with linespoints \
title "DecisionStump", \

"htresult.csv" using 1:9 with linespoints \

220 Chapter 13

100 T T T T : — I I
DecisionStump ———
HoeffdingTree - - x- - -
80 |- -
R TRREE e X
IUEREES SR
6OﬂW’\!~q——‘_,
% correct
40 |- -
20 - -
0 L 1 1 1 1 1 1 1

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Examples processed

Figure 13.1

Rendering of learning curves of two classifiers using gnuplot.

title "HoeffdingTree"

This results in the graph shown in figure 13.1.

For this problem it is obvious that a full tree can achieve higher accuracy
than a single stump. The stump has an almost constant accuracy (around 58%)
that does not improve with further training, while that of the full tree increases
by 10% on the first 100,000 examples.

1 4 Using the API

MOA can be used from external Java code by calling its APL. It is very easy to
use the generators, methods, and tasks of MOA inside your Java applications.
In this chapter we show how to use the MOA API and include stream ML
capabilities inside your programs. We assume basic knowledge of Java and
object-oriented programming.

14.1 MOA Objects

The basic objects available from the MOA API are:

Task: All tasks in MOA follow this interface. All tasks that write their result
to a file must extend MainTask and implement the doMa inTask method.

InstanceStream: Streams used in MOA use this interface. To use a
stream, call prepareForUse to prepare it and then next Instance to
get each new instance from the stream.

Classifier: Classifiers should extend AbstractClassifier. To
use a classifier, first call prepareForUse to prepare it, and then
use trainOnInstance to train the model with a new instance, or
getVotesForInstance to get the classification predictions for an
instance.

14.2 Options

MOA classes that have parameters or options have to extend the class
AbstractOptionHandler. These options can be of the following types:

Integer: IntOption (name, char, purpose, default
Value, min Value, max Value)

Float: FloatOption (name, char, purpose, default
Value, min Value, max Value)

Flag: FlagOption (name, char, purpose)

File: FileOption (name, char, purpose, default File
name, default File extension, Output)

String: StringOption (name, char, purpose, default
Value)

222 Chapter 14

e Multichoice: MultichoiceOption (name, char, purpose,
option labels, option descriptions, default option
index)

e C(lass: ClassOption (name, char, purpose, required
type, default CLI string)

e List: ListOption (name, char, purpose, expected
option type, default list, separator char)

These are some examples of options defined as Java classes:

Listing 14.1: Definition of option classes with default values.

public IntOption gracePeriodOption = new
IntOption (
"gracePeriod",

4 14

g’
"The number of instances a leaf should

observe between split attempts.",
200, 0, Integer.MAX_ VALUE);

public ClassOption splitCriterionOption = new
ClassOption("splitCriterion",
"s’, "Split criterion to use.",
SplitCriterion.class,
"InfoGainSplitCriterion");

public FloatOption splitConfidenceOption = new
FloatOption (

"splitConfidence",

rer,

"The allowable error in split decision,
values closer to 0 will take longer
to decide.",

0.0000001, 0.0, 1.0);

public FlagOption binarySplitsOption = new
FlagOption("binarySplits", ’'b’,
"Only allow binary splits.");

Using the API 223

public FileOption dumpFileOption = new
FileOption ("dumpFile", ’'d’,
"File to append intermediate csv
results to.", null, "csv", true);

public StringOption xTitleOption = new
StringOption("xTitle", 'm’,
"Title of the plots’ x—-axis.",
"Processed instances");

To change the values of these options from your Java source code via API,
there are two possibilities:

e setValueViaCLIString(String s) : Sets the value for this option
via text that can contain several nested parameters, similar to the CLI text.

e Each option has a particular method to change its value:

e Integer: setValue (int v)

e Float: setValue (double v)

e Flag: setvValue (boolean v)

e File: setvValue (String v)

e String: setValue (String v)

e Multichoice: setChosenIndex (int index)
e (Class: setCurrentObject (Object ob7j)
e List: setList (Option[] optList)

There are also two ways to get the values of these options:

e getValueAsCLIString () : Gets the text that describes the nested
parameters of this option.

e FEach option has a particular method to get its value:

e Integer: getValue ()

Float: getValue ()

Flag: isSet ()

File: getFile ()

224 Chapter 14

String: getValue ()

Multichoice: getChosenIndex ()

Class: getPreparedClassOption (ClassOption classOption)
e List: getList ()

14.3 Prequential Evaluation Example

As an example, we will write Java code to perform prequential evaluation.

We start by initializing the data stream from which we will read instances.
In this example we will use the RandomRBFGenerator, explained in sec-
tion 12.2.2.

Listing 14.2: Java code for stream initialization.

RandomRBFGenerator stream = new
RandomRBFGenerator () ;
stream.prepareForUse () ;

Now we have to build an empty learner. We create a Hoeffding Tree, and tell
it the information about instance attributes using setModelContext.

Listing 14.3: Java code for learner initialization.

Classifier learner = new HoeffdingTree();
learner.setModelContext (stream.getHeader ());
learner.prepareForUse () ;

To perform prequential evaluation, we have to first test and then train on each
one of the instances in the stream. At the same time, we keep some accuracy
statistics to be able to compute the final accuracy value.

Listing 14.4: Java code for prequential evaluation.

int numInstances=10000;

int numberSamplesCorrect=0;
int numberSamples=0;
boolean isTesting = true;

Using the API 225

while (stream.hasMoreInstances () &&
numberSamples < numInstances) {
Instance inst =
stream.nextInstance () .getData();
if(isTesting) {
if (learner.correctlyClassifies (inst)) {
numberSamplesCorrect++;

}
numberSamples++;
learner.trainOnInstance (inst) ;

Finally, we output the results of the evaluation. In our case, we are interested
in accuracy, so we print the final prequential accuracy of the HoeffdingTree in
this setting.

Listing 14.5: Java code to output result.

double accuracy = 100.0% (double)
numberSamplesCorrect /
(double) numberSamples;

System.out.println (numberSamples+" instances
processed with "+accuracy+"$% accuracy");

The complete Java code of our evaluation method is:

Listing 14.6: Complete Java code.

RandomRBFGenerator stream = new
RandomRBFGenerator () ;
stream.prepareForUse () ;

Classifier learner = new HoeffdingTree();
learner.setModelContext (stream.getHeader ());

learner.prepareForUse();

int numInstances=10000;

226 Chapter 14

int numberSamplesCorrect=0;
int numberSamples=0;
boolean isTesting = true;
while (stream.hasMoreInstances () &&
numberSamples < numInstances) {
Instance inst =
stream.nextInstance () .getData();
if(isTesting) {
if (learner.correctlyClassifies (inst)) {
numberSamplesCorrect++;

}

numberSamples++;
learner.trainOnInstance (inst) ;

}

double accuracy = 100.0* (double)
numberSamplesCorrect /
(double)numberSamples;

System.out.println (numberSamples+" instances
processed with "+accuracy+"$% accuracy");

1 5 Developing New Methods in MOA

In some cases, it is useful to develop new methods that extend MOA capa-
bilities. In this chapter, we present the structure of some of the most popular
objects in MOA, and show how to implement new ones. This chapter requires
a good understanding of data structures in Java.

15.1 Main Classes in MOA

All objects in MOA should implement the MOAObject interface and
extend the AbstractMOAObject abstract class. To create a new
class in Java that needs to configure options, one needs to extend the
AbstractOptionHandler abstract class. MOA options are very flexible
and, since they can be recursive, it is possible to define, as options, objects that
have options themselves. For example, this is the specification of a Hoeffding
Tree classifier with options different from the default ones:

moa.classifiers.trees.HoeffdingTree
-n (VFMLNumericAttributeClassObserver -n 20)
-g 300 -s GiniSplitCriterion -t 0.04 -1 MC

In this example, we are selecting as a numeric attribute class observer a
VFMLNumericAttributeClassObserver object that has 20 bins. We
pass the number 20 as an option to this class. Notice that the options are recur-
sive, and can contain a large number of Java classes.

The main learner interfaces in MOA are:

o Classifier: This interface is used by classifiers and regressors. Classifiers
usually extend the AbstractClassifier abstract class, and implement
the following three methods:

e resetLearningImpl to reset or initialize the classifier
e trainOnInstanceImpl to update the learner with a new instance
e getVotesForInstance to obtain a prediction from the learner

The AbstractClassifier abstract class contains the following two
methods, used in the API:

e prepareForUse, which calls resetLearningImpl to prepare the
classifier

228

Chapter 15

e trainOnInstance, which uses trainOnInstanceImpl to train
the learner with a new instance

e Regressor: Regression methods implement this interface and extend the
AbstractClassifier abstract class. The difference between classifi-
cation and regression is that, for classification, getVotesForInstance
returns an array with estimated prediction values for each class, while, for
regression, getVotesForInstance returns an array of length 1 with the
predicted outcome.

e Clusterer: This interface is used by clusterers and outlier detectors. Clus-
terers extend the AbstractClusterer abstract class, and implement the
following methods:

e resetLearningImpl to reset or initialize the clusterer
e trainOnInstanceImpl to update the clusterer with a new instance
e getClustering to obtain the clustering points computed by the clus-

terer

e OutlierDetector: Similar to clusterers, but specifically designed for outlier
detection.

15.2 Creating a New Classifier

To demonstrate the implementation and use of learning algorithms in the sys-
tem, we show and explain the Java code of a simple decision stump classifier.
The classifier monitors the information gain on the class when splitting on each
attribute and chooses the attribute that maximizes this value. The decision is
revisited many times, so the stump has potential to change over time as more
examples are seen. In practice it is unlikely to change after sufficient training,
if there is no change in the stream distribution.

To describe the implementation, relevant code fragments are discussed in
turn, with the entire code listed at the end (listing 15.7). The line numbers
from the fragments refer to the final listing.

A simple approach to writing a classifier is to extend the class
moa.classifiers.AbstractClassifier (line 10), which will take
care of certain details to ease the task.

Developing New Methods in MOA 229

Listing 15.1: Option handling

public IntOption gracePeriodOption = new

PR

IntOption (7 gracePeriod”, 'g’,
”The number of instances to observe between
model changes.”,
1000, 0, Integer .MAXVALUE) ;

public FlagOption binarySplitsOption = new
FlagOption(”binarySplits”, ’b’,
”Only allow binary splits.”);

public ClassOption splitCriterionOption = new
ClassOption(”splitCriterion”,
c’, 7”Split criterion to use.”,
SplitCriterion .class ,
"InfoGainSplitCriterion”);

To set up the public interface to the classifier, you must specify the options
available to the user. For the system to automatically take care of option han-
dling, the options need to be public members of the class and extend the
moa.options.Option type, as seen in listing 15.1.

The example classifier—the decision stump-has three options, each of a dif-
ferent type. The meanings of the first three parameters used to build options are
consistent between different option types. The first parameter is a short name
used to identify the option. The second is a character intended to be used on
the command line. It should be unique— a command-line character cannot be
repeated for different options, otherwise an exception will be thrown. The third
standard parameter is a string describing the purpose of the option. Additional
parameters to option constructors allow you tp specify additional information,
such as default values, or valid ranges for values.

The first option specified for the decision stump classifier is the “grace
period.” The option is expressed with an integer, so the option has the type
IntOption. The parameter will control how frequently the best stump is
reconsidered when learning from a stream of examples. This increases the effi-
ciency of the classifier—evaluating after every single example is expensive,
and it is unlikely that a single example will change the choice of the currently
best stump. The default value of 1,000 means that the choice of stump will be
re-evaluated only every 1,000 examples. The last two parameters specify the
range of values that are allowed for the option—it makes no sense to have a
negative grace period, so the range is restricted to integers 0 or greater.

230

Chapter 15

The second option is a flag, or a binary switch, represented by a
FlagOption. By default all flags are turned off, and will be turned on only
when the user requests so. This flag controls whether the decision stumps are
only allowed to split two ways. By default the stumps are allowed to have more
than two branches.

The third option determines the split criterion that is used to decide which
stumps are the best. This is a ClassOption that requires a particular Java
class of type SplitCriterion. If the required class happens to be an
OptionHandler, then those options will be used to configure the object
that is passed in.

Listing 15.2: Miscellaneous fields.

protected AttributeSplitSuggestion bestSplit;
protected DoubleVector observedClassDistribution;

protected AutoExpandVector<AttributeClassObserver>
attributeObservers ;

protected double weightSeenAtLastSplit;

public boolean isRandomizable () {
return false;

}

In listing 15.2 four global variables are used to maintain the state of the
classifier:

o The bestSplit field maintains the stump that is currently chosen by the
classifier. It is of type AttributeSplitSuggestion, a class used to
split instances into different subsets.

e The observedClassDistribution field remembers the overall dis-
tribution of class labels that have been observed by the classifier. It is of
type DoubleVector, a handy class for maintaining a vector of floating-
point values without having to manage its size.

e The attributeObservers field stores a collection of
AttributeClassObservers, one for each attribute. This is the infor-
mation needed to decide which attribute is best to base the stump on.

Developing New Methods in MOA 231

e The weightSeenAtLastSplit field records the last time an evaluation
was performed, so that the classifier can determine when another evaluation
is due, depending on the grace period parameter.

The isRandomizable () function needs to be implemented to specify
whether the classifier has an element of randomness. If it does, it will automat-
ically be set up to accept a random seed. This classifier does not, so false is
returned.

Listing 15.3: Preparing for learning.

@Override
public void resetLearningImpl() {
this.bestSplit = null;
this.observedClassDistribution = new DoubleVector () ;
this.attributeObservers = new
AutoExpandVector<AttributeClassObserver >();
this.weightSeenAtLastSplit = 0.0;

The resetLearningImpl function in listing 15.3 is called before any
learning begins, so it should set the default state when no information has been
supplied, and no training examples have been seen. In this case, the four global
fields are set to sensible defaults.

Listing 15.4: Training on examples.

@Override
public void trainOnInstancelmpl(Instance inst) {
this.observedClassDistribution.addToValue ((int)
inst.classValue (), inst
.weight());
for (int i = 0; i < inst.numAttributes() — 1; i++) {
int instAttlndex =
modelAttIndexTolInstanceAttIndex (i, inst);
AttributeClassObserver obs =
this.attributeObservers.get(i);
if (obs == null) {
obs =
inst.attribute (instAttIndex).isNominal ()
9
newNominalClassObserver ()
newNumericClassObserver () ;
this . attributeObservers.set(i, obs);

232

21

Chapter 15

obs.observeAttributeClass (inst.value(instAttIndex),
(int) inst
.classValue (), inst.weight());
}
if (this.trainingWeightSeenByModel —
this.weightSeenAtLastSplit >=
this.gracePeriodOption.getValue()) {
this.bestSplit =
findBestSplit ((SplitCriterion)
getPreparedClassOption (this.splitCriterionOption));
this.weightSeenAtLastSplit =
this .trainingWeightSeenByModel ;

Function trainOnInstanceImpl in listing 15.4 is the main function
of the learning algorithm, called for every training example in a stream. The
first step, lines 47—48, updates the overall recorded distribution of classes. The
loop on lines 49-59 repeats for every attribute in the data. If no observations
for a particular attribute have been seen before, then lines 53-55 create a new
observing object. Lines 57-58 update the observations with the values from
the new example. Lines 60—61 check whether the grace period has expired. If
so0, the best split is reevaluated.

Listing 15.5: Functions used during training.

protected AttributeClassObserver newNominalClassObserver () {
return new NominalAttributeClassObserver () ;
}

protected AttributeClassObserver newNumericClassObserver () {
return new GaussianNumericAttributeClassObserver () ;
}

protected AttributeSplitSuggestion
findBestSplit(SplitCriterion criterion) {
AttributeSplitSuggestion bestFound = null;
double bestMerit = Double . NEGATIVE_INFINITY ;
double[] preSplitDist =
this.observedClassDistribution . getArrayCopy () ;
for (int i = 0; i < this.attributeObservers.size ();
i++) {
AttributeClassObserver obs =
this . attributeObservers.get(i);
if (obs != null) {

20

22

2

26

28

Developing New Methods in MOA 233

AttributeSplitSuggestion suggestion
obs.getBestEvaluatedSplitSuggestion (
criterion ,
preSplitDist ,
i,
this.binarySplitsOption.isSet());
if (suggestion.merit > bestMerit) {

bestMerit =
suggestion . merit ;
bestFound = suggestion;

}
}

return bestFound;

Functions in listing 15.5 assist the training algorithm. Classes
newNominalClassObserver and newNumericClassObserver are
responsible for creating new observer objects for nominal and numeric
attributes, respectively. The findBestSplit () function will iterate
through the possible stumps and return the one with the highest “merit” score.

Listing 15.6: Predicting the class of unknown examples.

public double[] getVotesForInstance (Instance inst) {
if (this.bestSplit != null) {
int branch =

this.bestSplit.splitTest.branchForlnstance (inst);

if (branch >= 0) {
return this.bestSplit
.resultingClassDistributionFromSplit(branch);

}
}

return this.observedClassDistribution.getArrayCopy();

Function getVotesForInstance in listing 15.6 is the other impor-
tant function of the classifier besides training—using the model that
has been induced to predict the class of new examples. For the deci-
sion stump, this involves calling the functions branchForInstance ()
and resultingClassDistributionFromSplit (), which are imple-
mented by the AttributeSplitSuggestion class.

234 Chapter 15

Putting all of the elements together, the full listing of the tutorial class is
given below.

Listing 15.7: Full listing.

package moa.classifiers;

©

import moa.core.AutoExpandVector;

4 import moa.core.DoubleVector;
import moa.options.ClassOption;

6 import moa.options.FlagOption;
import moa.options.IntOption;

s import weka.core.Instance;

10 public class DecisionStumpTutorial extends
AbstractClassifier {

12 private static final long serialVersionUID = IL;

14 public IntOption gracePeriodOption = new
IntOption (7 gracePeriod”, 'g’,
”The number of instances to observe between model
changes.”,
16 1000, 0, Integer .MAXVALUE);

18 public FlagOption binarySplitsOption = new
FlagOption(”binarySplits”, ’b’,
”Only allow binary splits.”);
20
public ClassOption splitCriterionOption = new
ClassOption(”splitCriterion”,
2 c’, ”Split criterion to use.”,
SplitCriterion.class ,
"InfoGainSplitCriterion”™);
24
protected AttributeSplitSuggestion bestSplit;
26
protected DoubleVector observedClassDistribution;
28
protected AutoExpandVector<AttributeClassObserver>
attributeObservers;
30
protected double weightSeenAtLastSplit;
32
public boolean isRandomizable () {
34 return false;

}

36

38

40

42

46

48

50

52

54

56

58

60

66

68

70

72

74

76

Developing New Methods in MOA 235

@Override
public void resetLearningImpl() {
this.bestSplit = null;
this.observedClassDistribution = new DoubleVector();
this . attributeObservers = new
AutoExpandVector<AttributeClassObserver >();
this.weightSeenAtLastSplit = 0.0;

}

@Override
public void trainOnlInstancelmpl(Instance inst) {
this.observedClassDistribution.addToValue ((int)
inst.classValue (), inst
.weight());
for (int i = 0; i < inst.numAttributes() — 1; i++) {
int instAttIndex =
modelAttIndexTolnstanceAttIndex (i, inst);
AttributeClassObserver obs =
this . attributeObservers.get(i);
if (obs == null) {
obs = inst.attribute (instAttIndex).isNominal () ?
newNominalClassObserver ()
newNumericClassObserver () ;
this.attributeObservers.set(i, obs);
}
obs.observeAttributeClass (inst.value(instAttIndex),
(int) inst
.classValue (), inst.weight());
}
if (this.trainingWeightSeenByModel —
this.weightSeenAtLastSplit >=
this.gracePeriodOption. getValue()) {
this.bestSplit = findBestSplit ((SplitCriterion)
getPreparedClassOption (this.splitCriterionOption));
this.weightSeenAtLastSplit =
this .trainingWeightSeenByModel ;

}

public double[] getVotesForInstance (Instance inst) {
if (this.bestSplit != null) {
int branch =
this.bestSplit.splitTest.branchForInstance (inst);
if (branch >= 0) {
return this.bestSplit
.resultingClassDistributionFromSplit(branch);
}
}

return this.observedClassDistribution.getArrayCopy () ;

236

78

80

82

84

86

88

90

92

94

96

98

100

102

106

108

110

112

114

116

Chapter 15

}

protected AttributeClassObserver

}

newNominalClassObserver () {
return new NominalAttributeClassObserver () ;

protected AttributeClassObserver

}

newNumericClassObserver () {
return new GaussianNumericAttributeClassObserver () ;

protected AttributeSplitSuggestion

}

findBestSplit(SplitCriterion criterion) {
AttributeSplitSuggestion bestFound = null;
double bestMerit = Double . NEGATIVE_INFINITY ;
double[] preSplitDist =
this.observedClassDistribution. getArrayCopy () ;
for (int i = 0; i < this.attributeObservers.size();
i++) {
AttributeClassObserver obs =
this . attributeObservers.get(i);
if (obs != null) {
AttributeSplitSuggestion suggestion =
obs. getBestEvaluatedSplitSuggestion (
criterion ,
preSplitDist ,
i,
this.binarySplitsOption.isSet());
if (suggestion.merit > bestMerit) {
bestMerit = suggestion. merit;
bestFound = suggestion;

}
}

return bestFound;

public void getModelDescription(StringBuilder out, int

}

indent) {

protected moa.core.Measurement|[]

getModelMeasurementsImpl () {
return null;

Developing New Methods in MOA 237

15.3 Compiling a Classifier

The following files are assumed to be in the current working directory:

DecisionStumpTutorial. java
moa. jar
sizeofag. jar

The example source code can be compiled with the following command:
javac —-cp moa.jar DecisionStumpTutorial. java

This command produces a compiled Java class file named
DecisionStumpTutorial.class.

Before continuing, note that the commands below set up a directory structure
to reflect the package structure:

mkdir moa
mkdir moa/classifiers
cp DecisionStumpTutorial.class moa/classifiers/

The class is now ready to use.

15.4 Good Programming Practices in MOA

We recommend the following good practices in Java programming when devel-
oping methods in MOA:

e When building new learners or tasks, to add new strategies or behavior, add
them using class options. Follow these steps:
1. Create a new interface for the strategy.
2. Create different strategy classes that implement that new interface.
3. Add a class option, so that users can choose what strategy to use from
the GUI or command line.
e Minimize the scope of variables.
e Favor composition over inheritance.

e Favor static member classes over nonstatic ones.

238

Chapter 15

e Minimize the accessibility of classes and members.
e Refer to objects by their interfaces.
e Use builders instead of constructors with many parameters.

The book Effective Java by Bloch [45] is a good reference for mastering the
best practices in Java programming.

Bibliography

(1]

[2]

[3]

[4]

[3]
[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

[14]

[15]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaogiang
Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2—4, 2016., pages 265-283, 2016.

Hanady Abdulsalam, David B. Skillicorn, and Patrick Martin. Streaming random forests. In
Eleventh International Database Engineering and Applications Symposium (IDEAS 2007),
September 6-8, 2007, Banff, Alberta, Canada, pages 225-232, 2007.

Marcel R. Ackermann, Marcus Mairtens, Christoph Raupach, Kamil Swierkot, Christiane
Lammersen, and Christian Sohler. Streamkm++: A clustering algorithm for data streams.
ACM Journal of Experimental Algorithmics, 17(1), 2012.

Charu C. Aggarwal, editor. Data Streams — Models and Algorithms, volume 31 of Advances
in Database Systems. Springer, 2007.

Charu C. Aggarwal and Jiawei Han, editors. Frequent Pattern Mining. Springer, 2014.

Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework for clus-
tering evolving data streams. In VLDB 2003, Proceedings of 29th International Conference
on Very Large Data Bases, September 9—12, 2003, Berlin, Germany, pages 81-92, 2003.

Charu C. Aggarwal and Chandan K. Reddy, editors. Data Clustering: Algorithms and
Applications. CRC Press, 2014.

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Database mining: A performance
perspective. I[EEE Trans. Knowl. Data Eng., 5(6):914-925, 1993.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in
large databases. In VLDB’94, Proceedings of 20th International Conference on Very Large
Data Bases, September 12—15, 1994, Santiago de Chile, Chile, pages 487499, 1994.

Tahseen Al-Khateeb, Mohammad M. Masud, Khaled Al-Naami, Sadi Evren Seker,
Ahmad M. Mustafa, Latifur Khan, Zouheir Trabelsi, Charu C. Aggarwal, and Jiawei Han.
Recurring and novel class detection using class-based ensemble for evolving data stream.
IEEE Trans. Knowl. Data Eng., 28(10):2752-2764, 2016.

Khaled Al-Naami, Swarup Chandra, Ahmad M. Mustafa, Latifur Khan, Zhigiang Lin,
Kevin W. Hamlen, and Bhavani M. Thuraisingham. Adaptive encrypted traffic fingerprint-
ing with bi-directional dependence. In Proceedings of the 32nd Annual Conference on Com-
puter Security Applications, ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016,
pages 177-188, 2016.

Ezilda Almeida, Carlos Abreu Ferreira, and Jodo Gama. Adaptive model rules from data
streams. In Machine Learning and Knowledge Discovery in Databases - European Confer-
ence, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings,
Part I, pages 480492, 2013.

Ezilda Almeida, Carlos Abreu Ferreira, and Jodo Gama. Learning model rules from high-
speed data streams. In Proceedings of the 3rd Workshop on Ubiquitous Data Mining
co-located with the 23rd International Joint Conference on Artificial Intelligence (IJCAI
2013), Beijing, China, August 3, 2013, page 10, 2013.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 20-29,
1996.

Jaime Andrés-Merino and Lluis Belanche. Streamleader: A new stream clustering algo-
rithm not based in conventional clustering. In Artificial Neural Networks and Machine

240

Bibliography

(16]
(17]
[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

(30]

[31]

[32]

Learning, ICANN 2016, 25th International Conference on Artificial Neural Networks,
Barcelona, Spain, September 6-9, 2016, Proceedings, Part II, pages 208-215, 2016.

Apache Hadoop. http://hadoop.apache.org, accessed May 21st, 2017.
Apache Mahout. http://mahout .apache.org, accessed May 21st, 2017.

Marta Arias, Albert Bifet, and Alberto Lumbreras. Framework for sentiment analysis of
a stream of texts (a 2012 PASCAL Harvest Project). http://www.cs.upc.edu/
~marias/harvest/, accessed May 28th, 2017.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 1027-1035, 2007.

Ira Assent, Philipp Kranen, Corinna Baldauf, and Thomas Seidl. Anyout: Anytime outlier
detection on streaming data. In Database Systems for Advanced Applications - 17th Inter-
national Conference, DASFAA 2012, Busan, South Korea, April 15-19, 2012, Proceedings,
Part I, pages 228-242, 2012.

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four
degrees of separation. In Web Science 2012, WebSci ’12, Evanston, IL, USA, June 22-24,
2012, pages 33-42, 2012.

Manuel Baena-Garcia, José del Campo—Avila, Raiil Fidalgo, Albert Bifet, Ricard Gavalda,
and Rafael Morales-Bueno. Early drift detection method. In Fourth International Workshop
on Knowledge Discovery from Data Streams, ECML PKDD, 2006.

José L. Balcazar, Albert Bifet, and Antoni Lozano. Mining implications from lattices of
closed trees. In Extraction et gestion des connaissances (EGC’2008), Actes des 8émes
Journées Extraction et Gestion des Connaissances, Sophia-Antipolis, France, 29 janvier
au ler février 2008, 2 Volumes, pages 373-384, 2008.

José L. Balcazar, Albert Bifet, and Antoni Lozano. Mining frequent closed rooted trees.
Machine Learning, 78(1-2):1-33, 2010.

Jean Paul Barddal, Heitor Murilo Gomes, and Fabricio Enembreck. SFNClassifier: A scale-
free social network method to handle concept drift. In Symposium on Applied Computing,
SAC 2014, Gyeongju, Republic of Korea, March 24-28, 2014, pages 786791, 2014.

Jean Paul Barddal, Heitor Murilo Gomes, and Fabricio Enembreck. SNCStream: A social
network-based data stream clustering algorithm. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, Salamanca, Spain, April 13—17, 2015, pages 935-940,
2015.

Michele Basseville and Igor V. Nikiforov. Detection of abrupt changes: Theory and appli-
cation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993. http://people.
irisa.fr/Michele.Basseville/kniga/, accessed May 21st, 2017.

Jiirgen Beringer and Eyke Hiillermeier. Efficient instance-based learning on data streams.
Intell. Data Anal., 11(6):627-650, 2007.

Daniel Berrar. Confidence curves: An alternative to null hypothesis significance testing for
the comparison of classifiers. Machine Learning, 106(6):911-949, 2017.

Albert Bifet. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data
Streams, volume 207 of Frontiers in Artificial Intelligence and Applications. 10S Press,
2010.

Albert Bifet, Eibe Frank, Geoff Holmes, and Bernhard Pfahringer. Ensembles of restricted
Hoeffding trees. ACM TIST, 3(2):30:1-30:20, 2012.

Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive window-
ing. In Proceedings of the Seventh SIAM International Conference on Data Mining, April
26-28, 2007, Minneapolis, Minnesota, USA, pages 443—448, 2007.

http://hadoop.apache.org
http://mahout.apache.org
http://www.cs.upc.edu/~marias/harvest/
http://www.cs.upc.edu/~marias/harvest/
http://people.irisa.fr/Michele.Basseville/kniga/
http://people.irisa.fr/Michele.Basseville/kniga/

Bibliography 241

(33]

[34]

(35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Albert Bifet and Ricard Gavalda. Adaptive learning from evolving data streams. In
Advances in Intelligent Data Analysis VIII, 8th International Symposium on Intelligent
Data Analysis, IDA 2009, Lyon, France, August 31 — September 2, 2009. Proceedings,
pages 249-260, 2009.

Albert Bifet and Ricard Gavalda. Mining frequent closed trees in evolving data streams.
Intell. Data Anal., 15(1):29-48, 2011.

Albert Bifet, Geoff Holmes, Bernhard Pfahringer, and Ricard Gavalda. Mining frequent
closed graphs on evolving data streams. In Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD 11), San Diego, CA,
USA, August 21-24, 2011, pages 591-599, 2011.

Albert Bifet, Geoffrey Holmes, and Bernhard Pfahringer. Leveraging bagging for evolv-
ing data streams. In Machine Learning and Knowledge Discovery in Databases, European
Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings,
Part I, pages 135-150, 2010.

Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, and Eibe Frank. Fast perceptron deci-
sion tree learning from evolving data streams. In Advances in Knowledge Discovery and
Data Mining, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24,
2010. Proceedings. Part 11, pages 299-310, 2010.

Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavalda.
New ensemble methods for evolving data streams. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 09),
Faris, France, June 28 — July 1, 2009, pages 139-148, 2009.

Albert Bifet, Silviu Maniu, Jianfeng Qian, Guangjian Tian, Cheng He, and Wei Fan.
StreamDM: Advanced data mining in Spark streaming. In /EEE International Conference
on Data Mining Workshop, ICDMW 2015, Atlantic City, NJ, USA, November 14-17, 2015,
pages 1608-1611, 2015.

Albert Bifet, Gianmarco De Francisci Morales, Jesse Read, Geoff Holmes, and Bernhard
Pfahringer. Efficient online evaluation of big data stream classifiers. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 15), Sydney, NSW, Australia, August 10—13, 2015, pages 59-68, 2015.

Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Indré Zliobaité. CD-
MOA: Change detection framework for massive online analysis. In Advances in Intelligent
Data Analysis XII - 12th International Symposium, IDA 2013, London, UK, October 17-19,
2013. Proceedings, pages 92—103, 2013.

Albert Bifet, Jesse Read, Indré Zliobaité, Bernhard Pfahringer, and Geoff Holmes. Pitfalls
in benchmarking data stream classification and how to avoid them. In Machine Learn-
ing and Knowledge Discovery in Databases, European Conference, ECML PKDD 2013,
Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I, pages 465-479,
2013.

Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff
Holmes, and Bernhard Pfahringer. Extremely fast decision tree mining for evolving data
streams. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 17), Halifax, Canada, August 14-18, 2017, 2017,
to appear.

Isvani Inocencio Frias Blanco, José del Campo-Avila, Gonzalo Ramos-Jiménez,
Rafael Morales Bueno, Agustin Alejandro Ortiz Diaz, and Yailé Caballero Mota. Online
and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans.
Knowl. Data Eng., 27(3):810-823, 2015.

Joshua Bloch. Effective Java (2nd Edition) (The Java Series). Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2 edition, 2008.

242

Bibliography

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]
[56]

[57]

(58]

[59]

[60]
[61]

[62]

(63]

[64]

Christian Bockermann and Hendrik Blom. The streams Framework. Technical Report 5,
TU Dortmund University, 12 2012. http://kissen.cs.uni-dortmund.de:
8080/PublicPublicationFiles/bockermann_blom_2012c.pdf, accessed
May 21st, 2017.

Paolo Boldi, Marco Rosa, and Sebastiano Vigna. HyperANF: Approximating the neigh-
bourhood function of very large graphs on a budget. In Proceedings of the 20th Interna-
tional Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 — April
1, 2011, pages 625-634, 2011.

Marc Boullé. MODL: A Bayes optimal discretization method for continuous attributes.
Machine Learning, 65(1):131-165, 2006.

Christos Boutsidis, Dan Garber, Zohar Shay Karnin, and Edo Liberty. Online principal
components analysis. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 887—
901, 2015.

Robert S. Boyer and J. Strother Moore. MJIRTY: A fast majority vote algorithm. In Auto-
mated Reasoning: Essays in Honor of Woody Bledsoe, pages 105-118, 1991.

Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. Beating
CountSketch for heavy hitters in insertion streams. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 740-753, 2016.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-824, 1998.

Leo Breiman. Pasting small votes for classification in large databases and on-line. Machine
Learning, 36(1-2):85-103, 1999.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. The Wadsworth statistics/probability series. Chapman and Hall/CRC, 1984.

Marcel Brun, Chao Sima, Jianping Hua, James Lowey, Brent Carroll, Edward Suh, and
Edward R. Dougherty. Model-based evaluation of clustering validation measures. Pattern
Recognition, 40(3):807-824, 2007.

Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types of concept drift: The
accuracy updated ensemble algorithm. /EEE Trans. Neural Netw. Learning Syst., 25(1):81—
94, 2014.

Dariusz Brzezinski and Jerzy Stefanowski. Prequential AUC: Properties of the area under
the ROC curve for data streams with concept drift. Knowledge and Information Systems,
52(2):531-562, 2017.

P. Biihlmann and B. Yu. Analyzing bagging. Annals of Statistics, 30:927-961, 2003.

Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based clustering over an

evolving data stream with noise. In Proceedings of the Sixth SIAM International Conference
on Data Mining, April 20-22, 2006, Bethesda, MD, USA, pages 328-339, 2006.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. Apache Flink™:: Stream and batch processing in a single engine. IEEE
Data Eng. Bull., 38(4):28-38, 2015.

Carlos Castillo. Big Crisis Data: Social Media in Disasters and Time-Critical Situations.
Cambridge University Press, New York, NY, USA, 1st edition, 2016.

Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3-15, 2004.

http://kissen.cs.uni-dortmund.de:8080/PublicPublicationFiles/bockermann_blom_2012c.pdf
http://kissen.cs.uni-dortmund.de:8080/PublicPublicationFiles/bockermann_blom_2012c.pdf

Bibliography 243

[65]

[66]

[67]

[68]

[69]

(70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

(80]

(81]

[82]

(83]

[84]

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with the-
oretical justifications. In Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 — July 1, 2012, 2012.

James Cheng, Yiping Ke, and Wilfred Ng. Maintaining frequent closed itemsets over a
sliding window. J. Intell. Inf. Syst., 31(3):191-215, 2008.

James Cheng, Yiping Ke, and Wilfred Ng. A survey on algorithms for mining frequent
itemsets over data streams. Knowl. Inf. Syst., 16(1):1-27, 2008.

Weiwei Cheng and Eyke Hiillermeier. Combining instance-based learning and logistic
regression for multilabel classification. Machine Learning, 76(2-3):211-225, 2009.

Yun Chi, Richard R. Muntz, Siegfried Nijssen, and Joost N. Kok. Frequent subtree mining
— an overview. Fundam. Inform., 66(1-2):161-198, 2005.

Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Catch the moment: Main-
taining closed frequent itemsets over a data stream sliding window. Knowl. Inf. Syst.,
10(3):265-294, 2006.

Kai-Min Chung, Michael Mitzenmacher, and Salil P. Vadhan. Why simple hash functions
work: Exploiting the entropy in a data stream. Theory of Computing, 9:897-945, 2013.

Amanda Clare and Ross D. King. Knowledge discovery in multi-label phenotype data. In
Principles of Data Mining and Knowledge Discovery, 5th European Conference, PKDD
2001, Freiburg, Germany, September 3-5, 2001, Proceedings, pages 42-53, 2001.

Kenneth L. Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, Xian-
grui Meng, and David P. Woodruff. The Fast Cauchy Transform and faster robust linear
regression. SIAM J. Comput., 45(3):763-810, 2016.

Edith Cohen. Size-estimation framework with applications to transitive closure and reach-
ability. J. Comput. Syst. Sci., 55(3):441-453, 1997.

Edith Cohen. All-distances sketches, revisited: HIP estimators for massive graphs analysis.
IEEE Trans. Knowl. Data Eng., 27(9):2320-2334, 2015.

Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psychologi-
cal Measurement, 20(1):37-46, April 1960.

David A. Cohn, Les E. Atlas, and Richard E. Ladner. Improving generalization with active
learning. Machine Learning, 15(2):201-221, 1994.

Giorgio Corani and Alessio Benavoli. A Bayesian approach for comparing cross-validated
algorithms on multiple data sets. Machine Learning, 100(2-3):285-304, 2015.

Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses
for massive data: Samples, histograms, wavelets, sketches. Foundations and Trends in
Databases, 4(1-3):1-294, 2012.

Graham Cormode and Marios Hadjieleftheriou. Finding the frequent items in streams of
data. Commun. ACM, 52(10):97-105, 2009.

Graham Cormode and S. Muthu Muthukrishnan. Approximating data with the Count-Min
sketch. IEEE Software, 29(1):64-69, 2012.

Tamraparni Dasu, Shankar Krishnan, Dongyu Lin, Suresh Venkatasubramanian, and Kevin
Yi. Change (detection) you can believe in: Finding distributional shifts in data streams. In
Advances in Intelligent Data Analysis VIII, Proceedings of the 8th International Symposium
on Intelligent Data Analysis, IDA 2009, pages 21-34, 2009.

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794-1813, 2002.

Jonathan de Andrade Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hruschka,
André Carlos Ponce Leon Ferreira de Carvalho, and Jodo Gama. Data stream clustering: A
survey. ACM Comput. Surv., 46(1):13:1-13:31, 2013.

244

Bibliography

[85]

[86]

(87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

(971

(98]

(991

Erico N. de Souza and Stan Matwin. Improvements to Adaboost Dynamic. In Advances in
Artificial Intelligence — 25th Canadian Conference on Artificial Intelligence, Canadian Al
2012, Toronto, ON, Canada, May 28-30, 2012. Proceedings, pages 293-298, 2012.

Erik D. Demaine, Alejandro Lépez-Ortiz, and J. Ian Munro. Frequency estimation of inter-
net packet streams with limited space. In Algorithms, ESA 2002, 10th Annual European
Symposium, Rome, Italy, September 17-21, 2002, Proceedings, pages 348-360, 2002.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes. J. Artif. Intell. Res. (JAIR), 2:263-286, 1995.

Pedro M. Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings
of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 00), Boston, MA, USA, August 20-23, 2000, pages 71-80, 2000.

Pedro M. Domingos and Geoff Hulten. A general method for scaling up machine learning
algorithms and its application to clustering. In Proceedings of the Eighteenth International
Conference on Machine Learning (ICML 2001), Williams College, Williamstown, MA, USA,
June 28 — July 1, 2001, pages 106—113, 2001.

Jodo Duarte and Jodo Gama. Ensembles of adaptive model rules from high-speed data
streams. In Proceedings of the 3rd International Workshop on Big Data, Streams and Het-
erogeneous Source Mining: Algorithms, Systems, Programming Models and Applications,
BigMine 2014, New York City, USA, August 24, 2014, pages 198-213, 2014.

Jodo Duarte and Jodo Gama. Multi-target regression from high-speed data streams with
adaptive model rules. In 2015 [EEE International Conference on Data Science and
Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, October 19-21,
2015, pages 1-10, 2015.

Jodo Duarte, Jodo Gama, and Albert Bifet. Adaptive model rules from high-speed data
streams. ACM Transactions on Knowledge Discovery from Data (TKDD), 10(3):30:1-
30:22, 2016.

Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended
abstract). In Algorithms, ESA 2003, 11th Annual European Symposium, Budapest, Hungary,
September 16—19, 2003, Proceedings, pages 605-617, 2003.

Benjamin Van Durme and Ashwin Lall. Probabilistic counting with randomized storage.
In IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelli-
gence, Pasadena, California, USA, July 11-17, 2009, pages 1574—1579, 2009.

B. Efron. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and
Prediction. Institute of Mathematical Statistics Monographs. Cambridge University Press,
2010.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD 96), Portland,
Oregon, USA, pages 226-231, 1996.

Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D.
Ullman. Computing iceberg queries efficiently. In VLDB’98, Proceedings of 24th Interna-
tional Conference on Very Large Data Bases, August 24-27, 1998, New York City, New
York, USA, pages 299-310, 1998.

Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence. Chambéry, France, August 28 — September 3, 1993, pages
1022-1029, 1993.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the

Bibliography 245

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Tenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages 1434-1453, 2013.

Alan Fern and Robert Givan. Online ensemble learning: An empirical study. Machine
Learning, 53(1-2):71-109, 2003.

Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, and Christian
Sohler. BICO: BIRCH meets coresets for k-means clustering. In Algorithms, ESA 2013,
21st Annual European Symposium, Sophia Antipolis, France, September 2—4, 2013. Pro-
ceedings, pages 481-492, 2013.

Douglas H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2(2):139-172, 1987.

Philippe Flajolet. Approximate counting: A detailed analysis. BIT, 25(1):113-134, 1985.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm. In Philippe Jacquet, editor,
2007 Conference on Analysis of Algorithms, AofA07, Discrete Mathematics and Theoretical
Computer Science Proceedings, pages 127-146, 2007.

Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base appli-
cations. J. Comput. Syst. Sci., 31(2):182-209, 1985.

Philippe Fournier-Viger, Jerry Chun-Wei Lin, Antonio Gomariz, Ted Gueniche, Azadeh
Soltani, Zhihong Deng, and Hoang Thanh Lam. The SPMF open-source data mining library
version 2. In Machine Learning and Knowledge Discovery in Databases — European Con-
ference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings,
FPart 111, pages 3640, 2016.

Eibe Frank, Mark A. Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H.
Witten, and Len Trigg. Weka-a machine learning workbench for data mining. In Data Min-
ing and Knowledge Discovery Handbook, 2nd ed., pages 1269—1277. Springer, 2010.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. J. Comput. Syst. Sci., 55(1):119-139, 1997.

Johannes Fiirnkranz, Eyke Hiillermeier, Eneldo Loza Mencia, and Klaus Brinker. Multil-
abel classification via calibrated label ranking. Machine Learning, 73(2):133-153, 2008.

Jodo Gama. Knowledge Discovery from Data Streams. Chapman and Hall / CRC Data
Mining and Knowledge Discovery Series. CRC Press, 2010.

Jodo Gama, Ricardo Fernandes, and Ricardo Rocha. Decision trees for mining data streams.
Intell. Data Anal., 10(1):23-45, 2006.

Jodo Gama and Petr Kosina. Recurrent concepts in data streams classification. Knowl. Inf.
Syst., 40(3):489-507, 2014.

Joao Gama and Pedro Medas. Learning decision trees from dynamic data streams. J. UCS,
11(8):1353-1366, 2005.

Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Pereira Rodrigues. Learning with
drift detection. In Advances in Artificial Intelligence — SBIA 2004, 17th Brazilian Sympo-
sium on Artificial Intelligence, Sdo Luis, Maranhdo, Brazil, September 29 — October 1,
2004, Proceedings, pages 286-295, 2004.

Joao Gama, Raquel Sebastido, and Pedro Pereira Rodrigues. Issues in evaluation of stream
learning algorithms. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 09), Paris, France, June 28 — July 1, 2009,
pages 329-338, 2009.

Jodao Gama, Indre Zliobaité, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Comput. Surv., 46(4):44:1-44:37,
2014.

246

Bibliography

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]
[131]

[132]

John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital shad-
ows, and biggest growth in the far east, December 2012.

Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors. Data Stream Man-
agement — Processing High-Speed Data Streams. Data-Centric Systems and Applications.
Springer, 2016.

Ligiang Geng and Howard J. Hamilton. Interestingness measures for data mining: A survey.
ACM Comput. Surv., 38(3), 2006.

Dimitrios Georgiadis, Maria Kontaki, Anastasios Gounaris, Apostolos N. Papadopoulos,
Kostas Tsichlas, and Yannis Manolopoulos. Continuous outlier detection in data streams:
An extensible framework and state-of-the-art algorithms. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 1061-1064, 2013.

C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining frequent patterns in data streams at
multiple time granularities. In Proceedings of the NSF Workshop on Next Generation Data
Mining, pages 191-212, 2002.

Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding win-
dows. Theory of Computing Systems, 37(3):457-478, 2004.

Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled classi-
fication. In Advances in Knowledge Discovery and Data Mining, 8th Pacific-Asia Confer-
ence, PAKDD 2004, Sydney, Australia, May 26-28, 2004, Proceedings, pages 22-30, 2004.

Heitor Murilo Gomes, Jean Paul Barddal, Fabricio Enembreck, and Albert Bifet. A survey
on ensemble learning for data stream classification. ACM Comput. Surv., 50(2):23:1-36,
2017.

Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabricio Enembreck,
Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. Adaptive random forests for
evolving data stream classification. Machine Learning, 106(9-10):1469-1495, 2017.

Heitor Murilo Gomes and Fabricio Enembreck. SAE2: Advances on the social adaptive
ensemble classifier for data streams. In Symposium on Applied Computing, SAC 2014,
Gyeongju, Republic of Korea, March 24-28, 2014, pages 798-804, 2014.

Joao Bartolo Gomes, Mohamed Medhat Gaber, Pedro A. C. Sousa, and Ernestina Menasal-
vas Ruiz. Mining recurring concepts in a dynamic feature space. I[EEE Trans. Neural Netw.
Learning Syst., 25(1):95-110, 2014.

Vivekanand Gopalkrishnan, David Steier, Harvey Lewis, and James Guszcza. Big data, big
business: Bridging the gap. In Proceedings of the 1st International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models
and Applications (BigMine 2012). Beijing, China, August 12—12, 2012, pages 7-11. ACM,
2012.

Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In Proceedings of the 2001 ACM SIGMOD International Conference on Man-
agement of Data, Santa Barbara, CA, USA, May 21-24, 2001, pages 58—66, 2001.

Fredrik Gustafsson. Adaptive Filtering and Change Detection. Wiley, 2000.

Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without can-
didate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov., 8(1):53-87,
2004.

Yang Hang and Simon Fong. Incrementally optimized decision tree for noisy big data.
In Proceedings of the st International Workshop on Big Data, Streams and Heteroge-
neous Source Mining: Algorithms, Systems, Programming Models and Applications, Big-
Mine 2012, Beijing, China, August 12, 2012, pages 3644, 2012.

Bibliography 247

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Ahsanul Haque, Latifur Khan, and Michael Baron. SAND: semi-supervised adaptive novel
class detection and classification over data stream. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12—17, 2016, Phoenix, Arizona, USA.,
pages 1652-1658, 2016.

Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: Algorithmic
engineering of a state of the art cardinality estimation algorithm. In Joint 2013 EDBT/ICDT
Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 683-692,
2013.

Geoffrey Holmes, Richard Kirkby, and Bernhard Pfahringer. Stress-testing Hoeffding trees.
In Knowledge Discovery in Databases: PKDD 2005, 9th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases, Porto, Portugal, October 3-7,
2005, Proceedings, pages 495-502, 2005.

David Tse Jung Huang, Yun Sing Koh, Gillian Dobbie, and Russel Pears. Detecting volatil-
ity shift in data streams. In 2014 IEEE International Conference on Data Mining, ICDM
2014, Shenzhen, China, December 14—17, 2014, pages 863-868, 2014.

Geoff Hulten and Pedro Domingos. VFML — a toolkit for mining high-speed time-changing
data streams. http://www.cs.washington.edu/dm/vEfml/, accessed May 21st,
2017, 2003.

Geoff Hulten, Laurie Spencer, and Pedro M. Domingos. Mining time-changing data
streams. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 01), San Francisco, CA, USA, August 26-29, 2001,
pages 97-106, 2001.

Elena Ikonomovska, Joao Gama, and Saso Dzeroski. Learning model trees from evolving
data streams. Data Min. Knowl. Discov., 23(1):128-168, 2011.

Elena Ikonomovska, Jodo Gama, Bernard Zenko, and Saso Dzeroski. Speeding-up
Hoeffding-based regression trees with options. In Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 — July
2, 2011, pages 537-544, 2011.

Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 202-208, 2005.

Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph mining
algorithms. Knowledge Eng. Review, 28(1):75-105, 2013.

Paulo Mauricio Gongalves Jr. and Roberto Souto Maior de Barros. RCD: A recurring con-
cept drift framework. Pattern Recognition Letters, 34(9):1018-1025, 2013.

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2010, June 611, 2010,
Indianapolis, Indiana, USA, pages 41-52, 2010.

Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for
finding frequent elements in streams and bags. ACM Trans. Database Syst., 28:51-55, 2003.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, 1994.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors. Inf. Comput., 132(1):1-63, 1997.

J. Zico Kolter and Marcus A. Maloof. Dynamic weighted majority: An ensemble method
for drifting concepts. Journal of Machine Learning Research, 8:2755-2790, 2007.

http://www.cs.washington.edu/dm/vfml/

248

Bibliography

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet, and Arinto Murdopo.
VHT: Vertical Hoeffding tree. In 2016 IEEE International Conference on Big Data, Big-
Data 2016, Washington DC, USA, December 5-8, 2016, pages 915-922, 2016.

Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. The ClusTree: Indexing
micro-clusters for anytime stream mining. Knowl. Inf. Syst., 29(2):249-272, 2011.

Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes,
and Bernhard Pfahringer. An effective evaluation measure for clustering on evolving data
streams. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 11), San Diego, CA, USA, August 21-24, 2011, pages
868-876, 2011.

Jay Kreps. Questioning the lambda architecture, 2014. https://www.oreilly.com/
ideas/questioning-the-lambda-architecture, accessed May 21st, 2017.

Ludmila I. Kuncheva. Change detection in streaming multivariate data using likelihood
detectors. IEEE Trans. Knowl. Data Eng., 25(5):1175-1180, 2013.

Doug Laney. 3-D Data Management: Controlling Data Volume, Velocity and Variety.
META Group Research Note, february 2001, 2001. https://blogs.gartner.com/
doug-laney/, accessed May 21st, 2017.

Herbert K. H. Lee and Merlise A. Clyde. Lossless online Bayesian bagging. Journal of
Machine Learning Research, 5:143-151, 2004.

Victor E. Lee, Ruoming Jin, and Gagan Agrawal. Frequent pattern mining in data streams.
In Frequent Pattern Mining, pages 199-224. Springer, 2014.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers.
In Proceedings of the 17th Annual International ACM-SIGIR Conference on Research and
Development in Information Retrieval. Dublin, Ireland, 3—6 July 1994 (Special Issue of the
SIGIR Forum), pages 3—12, 1994.

Hua-Fu Li, Man-Kwan Shan, and Suh-Yin Lee. Online mining of frequent query trees over
XML data streams. In Proceedings of the 15th international conference on World Wide
Web, WWW 2006, Edinburgh, Scotland, UK, May 23-26, 2006, pages 959-960, 2006.

Edo Liberty. Simple and deterministic matrix sketching. In The 19th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD 2013), Chicago, IL,
USA, August 11-14, 2013, pages 581-588, 2013.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212-261, feb 1994.

Hongyan Liu, Yuan Lin, and Jiawei Han. Methods for mining frequent items in data
streams: An overview. Knowl. Inf. Syst., 26(1):1-30, 2011.

Viktor Losing, Barbara Hammer, and Heiko Wersing. KNN classifier with self adjusting
memory for heterogeneous concept drift. In IEEE 16th International Conference on Data
Mining, ICDM 2016, December 12—15, 2016, Barcelona, Spain, pages 291-300, 2016.

Qiang Ma, S. Muthukrishnan, and Mark Sandler. Frugal streaming for estimating quantiles:
One (or two) memory suffices. CoRR, abs/1407.1121, 2014.

Nishad Manerikar and Themis Palpanas. Frequent items in streaming data: An experimental
evaluation of the state-of-the-art. Data Knowl. Eng., 68(4):415-430, 2009.

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. In VLDB 2002, Proceedings of 28th International Conference on Very Large Data
Bases, August 20-23, 2002, Hong Kong, China, pages 346-357, 2002.

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. Proceedings of the VLDB Endowment, 5(12):1699, 2012.

https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://blogs.gartner.com/doug-laney/
https://blogs.gartner.com/doug-laney/

Bibliography 249

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]
[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

Diego Marron, Albert Bifet, and Gianmarco De Francisci Morales. Random forests of very
fast decision trees on GPU for mining evolving big data streams. In ECAI 2014, 21st Euro-
pean Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic,
pages 615-620, 2014.

Nathan Marz. Storm: distributed and fault-tolerant realtime computation, May 2013.
http://storm-project.net/, accessed May 21st, 2017.

Nathan Marz and James Warren. Big Data: Principles and best practices of scalable real-
time data systems. Manning Publications, 2013.

Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei
Han, Ashok N. Srivastava, and Nikunj C. Oza. Classification and adaptive novel class detec-
tion of feature-evolving data streams. IEEE Trans. Knowl. Data Eng., 25(7):1484-1497,
2013.

Andrew Mccallum and Kamal Nigam. A comparison of event models for Naive Bayes text
classification. In AAAI-98 Workshop on Learning for Text Categorization, 1998.

Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Record, 43(1):9-20,
2014.

Quinn McNemar. Note on the sampling error of the difference between correlated propor-
tions or percentages. Psychometrika, 12(2):153-157, June 1947.

Luiz F. Mendes, Bolin Ding, and Jiawei Han. Stream sequential pattern mining with precise
error bounds. In Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM 2008), December 15-19, 2008, Pisa, Italy, pages 941-946, 2008.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of fre-
quent and top-k elements in data streams. In Database Theory, ICDT 2005, 10th Interna-
tional Conference, Edinburgh, UK, January 5-7, 2005, Proceedings, pages 398—412, 2005.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Why go logarithmic if we
can go linear? Towards effective distinct counting of search traffic. In EDBT 2008, 11th
International Conference on Extending Database Technology, Nantes, France, March 25—
29, 2008, Proceedings, pages 618-629, 2008.

Stanley Milgram. The small world problem. Psychology Today, 2:60-67, 1967.

Glenn W. Milligan. A Monte Carlo study of thirty internal criterion measures for cluster
analysis. Psychometrika, 46(2):187-199, 1981.

Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program.,
2(2):143-152, 1982.

Carl Mooney and John F. Roddick. Sequential pattern mining — approaches and algorithms.
ACM Comput. Surv., 45(2):19:1-19:39, 2013.

Gianmarco De Francisci Morales and Albert Bifet. SAMOA: Scalable Advanced Massive
Online Analysis. Journal of Machine Learning Research, 16:149—-153, 2015.

Jose G. Moreno-Torres, Troy Raeder, Rocio Alaiz-Rodriguez, Nitesh V. Chawla, and Fran-
cisco Herrera. A unifying view on dataset shift in classification. Pattern Recognition,
45(1):521-530, 2012.

Robert Morris. Counting large numbers of events in small registers. Commun. ACM,
21(10):840-842, 1978.

S. Muthukrishnan, Eric van den Berg, and Yihua Wu. Sequential change detection on data
streams. In Workshops Proceedings of the 7th IEEE International Conference on Data Min-
ing (ICDM 2007), October 28-31, 2007, Omaha, Nebraska, USA, pages 551-550, 2007.

Hai-Long Nguyen, Yew-Kwong Woon, and Wee Keong Ng. A survey on data stream clus-
tering and classification. Knowl. Inf. Syst., 45(3):535-569, 2015.

http://storm-project.net/

250

Bibliography

[186]

[187]

[188]

[189]

[190]

[191]
[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Kyosuke Nishida and Koichiro Yamauchi. Detecting concept drift using statistical testing.
In Discovery Science, 10th International Conference, DS 2007, Sendai, Japan, October
14, 2007, Proceedings, pages 264-269, 2007.

David W. Opitz and Richard Maclin. Popular ensemble methods: An empirical study. J.
Artif. Intell. Res. (JAIR), 11:169—-198, 1999.

Aljaz Osojnik, Pance Panov, and Saso Dzeroski. Multi-label classification via multi-target
regression on data streams. Machine Learning, 106(6):745-770, 2017.

Nikunj C. Oza and Stuart J. Russell. Experimental comparisons of online and batch ver-
sions of bagging and boosting. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 01), San Francisco, CA, USA,
August 26-29, 2001, pages 359-364, 2001.

Nikunj C. Oza and Stuart J. Russell. Online bagging and boosting. In Proceedings of the
Eighth International Workshop on Artificial Intelligence and Statistics, AISTATS 2001, Key
West, Florida, US, January 4-7, 2001, 2001.

E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100-115, 1954.

Christopher R. Palmer, Phillip B. Gibbons, and Christos Faloutsos. ANF: a fast and scalable
tool for data mining in massive graphs. In Proceedings of the Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD 02), July 23-26,
2002, Edmonton, Alberta, Canada, pages 81-90, 2002.

Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. Sketching dis-
tributed sliding-window data streams. The VLDB Journal, 24(3):345-368, 2015.

Pallabi Parveen, Nate McDaniel, Varun S. Hariharan, Bhavani M. Thuraisingham, and Lat-
ifur Khan. Unsupervised ensemble based learning for insider threat detection. In 2072
International Conference on Privacy, Security, Risk and Trust, PASSAT 2012, and 2012
International Confernece on Social Computing, SocialCom 2012, Amsterdam, Netherlands,
September 3-5, 2012, pages 718-727, 2012.

Pallabi Parveen, Nathan McDaniel, Zackary R. Weger, Jonathan Evans, Bhavani M. Thu-
raisingham, Kevin W. Hamlen, and Latifur Khan. Evolving insider threat detection stream
mining perspective. International Journal on Artificial Intelligence Tools, 22(5), 2013.

Russel Pears, Sripirakas Sakthithasan, and Yun Sing Koh. Detecting concept change in
dynamic data streams — A sequential approach based on reservoir sampling. Machine
Learning, 97(3):259-293, 2014.

Raphael Pelossof, Michael Jones, Ilia Vovsha, and Cynthia Rudin. Online coordinate boost-
ing. In On-line Learning for Computer Vision Workshop (OLCV), 2009 IEEE 12th Interna-
tional Conference on Computer Vision, 2009.

Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. New options for Hoeffding
trees. In Al 2007: Advances in Artificial Intelligence, 20th Australian Joint Conference on
Artificial Intelligence, Gold Coast, Australia, December 2—6, 2007, Proceedings, pages 90—
99, 2007.

Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. Handling numeric attributes in
Hoeffding trees. In Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia
Conference, PAKDD 2008, Osaka, Japan, May 20-23, 2008 Proceedings, pages 296-307,
2008.

Daryl C. Plummer, Kurt Potter, Richard T. Matlus, Jacqueline Heng, Rolf Jester, Ed Thomp-
son, Adam Sarner, Esteban Kolsky, French Caldwell, John Bace, Neil MacDonald, Brian
Gammage, Michael A. Silver, Leslie Fiering, Monica Basso, Ken Dulaney, David Mitchell
Smith, Bob Hafner, Mark Fabbi, and Michael A. Bell. Gartner’s top predictions for it orga-
nizations and users, 2007 and beyond. https://www.gartner.com/doc/498768/
gartners-top-predictions-it-organizations, 2006.

https://www.gartner.com/doc/498768/gartners-top-predictions-it-organizations
https://www.gartner.com/doc/498768/gartners-top-predictions-it-organizations

Bibliography 251

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

Abdulhakim Ali Qahtan, Basma Alharbi, Suojin Wang, and Xiangliang Zhang. A PCA-
based change detection framework for multidimensional data streams: Change detection
in multidimensional data streams. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 15), pages 935-944, 2015.

Massimo Quadrana, Albert Bifet, and Ricard Gavalda. An efficient closed frequent itemset
miner for the MOA stream mining system. Al Commun., 28(1):143-158, 2015.

Arturo Montejo Réez, Luis Alfonso Urenia Lopez, and Ralf Steinberger. Adaptive selec-
tion of base classifiers in one-against-all learning for large multi-labeled collections. In
Advances in Natural Language Processing, 4th International Conference, ESTAL 2004,
Alicante, Spain, October 20-22, 2004, Proceedings, pages 1-12, 2004.

Chedy Raissi, Pascal Poncelet, and Maguelonne Teisseire. Need for speed : Mining sequen-
tial patterns in data streams. In 2/émes Journées Bases de Données Avancées, BDA 2005,
Saint Malo, 17-20 octobre 2005, Actes (Informal Proceedings)., 2005.

Sergio Ramirez-Gallego, Bartosz Krawczyk, Salvador Garcia, Michal Wozniak, and Fran-
cisco Herrera. A survey on data preprocessing for data stream mining: Current status and
future directions. Neurocomputing, 239:39-57, 2017.

T. Ramraj and R. Prabhakar. Frequent subgraph mining algorithms: A survey. Procedia
Computer Science, 47:197-204, 2015.

Abhik Ray, Larry Holder, and Sutanay Choudhury. Frequent subgraph discovery in large
attributed streaming graphs. In Proceedings of the 3rd International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models
and Applications, BigMine 2014, New York City, USA, August 24, 2014, pages 166—181,
2014.

Jesse Read, Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Scalable and efficient
multi-label classification for evolving data streams. Machine Learning, 88(1-2):243-272,
2012.

Jesse Read, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. Batch-incremental ver-
sus instance-incremental learning in dynamic and evolving data. In Advances in Intelligent
Data Analysis XI - 11th International Symposium, IDA 2012, Helsinki, Finland, October
25-27, 2012. Proceedings, pages 313-323,2012.

Jesse Read, Bernhard Pfahringer, and Geoffrey Holmes. Multi-label classification using
ensembles of pruned sets. In Proceedings of the 8th IEEE International Conference on
Data Mining (ICDM 2008), December 15—19, 2008, Pisa, Italy, pages 995-1000, 2008.

Jesse Read, Bernhard Pfahringer, Geoffrey Holmes, and Eibe Frank. Classifier chains for
multi-label classification. In Machine Learning and Knowledge Discovery in Databases,
European Conference, ECML PKDD 2009, Bled, Slovenia, September 7—11, 2009, Pro-
ceedings, Part II, pages 254-269, 2009.

Jesse Read, Peter Reutemann, Bernhard Pfahringer, and Geoff Holmes. MEKA: A multi-
label/multi-target extension to Weka. Journal of Machine Learning Research, 17(21):1-5,
2016.

Peter Reutemann and Geoff Holmes. Big data with ADAMS. In Proceedings of the 4th
International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algo-
rithms, Systems, Programming Models and Applications, BigMine 2015, Sydney, Australia,
August 10, 2015, pages 5-8, 2015.

Peter Reutemann and Joaquin Vanschoren. Scientific workflow management with ADAMS.
In Machine Learning and Knowledge Discovery in Databases — European Conference,
ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II, pages 833—
837,2012.

252

Bibliography

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

Rocco De Rosa and Nicolo Cesa-Bianchi. Splitting with confidence in decision trees with
application to stream mining. In 2015 International Joint Conference on Neural Networks,
IJCNN 2015, Killarney, Ireland, July 12-17, 2015, pages 1-8, 2015.

Gordon J. Ross, Niall M. Adams, Dimitris K. Tasoulis, and David J. Hand. Exponentially
weighted moving average charts for detecting concept drift. Pattern Recognition Letters,
33(2):191-198, 2012. Erratum in Pattern Recognition Letters 33:16, 2261 (2012).

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, and Piotr Duda. A new method for
data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learning
Syst., 26(5):1048-1059, 2015.

Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, and Maciej Jaworski. Decision trees for
mining data streams based on the McDiarmid’s bound. /EEE Trans. Knowl. Data Eng.,
25(6):1272-1279, 2013.

Sripirakas Sakthithasan, Russel Pears, Albert Bifet, and Bernhard Pfahringer. Use of
ensembles of Fourier spectra in capturing recurrent concepts in data streams. In 2015 Inter-
national Joint Conference on Neural Networks, IICNN 2015, Killarney, Ireland, July 12—
17, 2015, pages 1-8, 2015.

Sripirakas Sakthithasan, Russel Pears, and Yun Sing Koh. One pass concept change detec-
tion for data streams. In Advances in Knowledge Discovery and Data Mining, 17th Pacific-
Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Proceedings,
Part 11, pages 461-472, 2013.

Tamads Sarlds. Improved approximation algorithms for large matrices via random projec-
tions. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006),
21-24 October 20006, Berkeley, California, USA, Proceedings, pages 143—152, 2006.

Robert E. Schapire. Using output codes to boost multiclass learning problems. In Pro-
ceedings of the Fourteenth International Conference on Machine Learning (ICML 1997),
Nashville, Tennessee, USA, July 812, 1997, pages 313-321, 1997.

Jeffrey C. Schlimmer and Richard H. Granger. Incremental learning from noisy data.
Machine Learning, 1(3):317-354, 1986.

B. Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin-Madison, 2009. https://research.cs.wisc.
edu/techreports/2009/TR1648.pdf, accessed May 21st, 2017.

Ammar Shaker and Eyke Hiillermeier. IBLStreams: A system for instance-based classifi-
cation and regression on data streams. Evolving Systems, 3(4):235-249, 2012.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal
estimated sub-gradient solver for SVM. Math. Program., 127(1):3-30, 2011.

Jin Shieh and Eamonn J. Keogh. Polishing the right apple: Anytime classification also ben-
efits data streams with constant arrival times. In ICDM 2010, The 10th IEEE International
Conference on Data Mining, Sydney, Australia, 14—17 December 2010, pages 461-470,
2010.

R. Smolan and J. Erwitt. The Human Face of Big Data. Sterling Publishing Company Incor-
porated, 2012.

Mohiuddin Solaimani, Mohammed Iftekhar, Latifur Khan, Bhavani M. Thuraisingham,
Joey Burton Ingram, and Sadi Evren Seker. Online anomaly detection for multi-source
vmware using a distributed streaming framework. Softw., Pract. Exper., 46(11):1479-1497,
2016.

Guojie Song, Dongging Yang, Bin Cui, Baihua Zheng, Yunfeng Liu, and Kunging Xie.
CLAIM: An efficient method for relaxed frequent closed itemsets mining over stream data.
In Advances in Databases: Concepts, Systems and Applications, 12th International Confer-
ence on Database Systems for Advanced Applications, DASFAA 2007, Bangkok, Thailand,
April 9-12, 2007, Proceedings, pages 664—675, 2007.

https://research.cs.wisc.edu/techreports/2009/TR1648.pdf
https://research.cs.wisc.edu/techreports/2009/TR1648.pdf

Bibliography 253

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

Mingzhou (Joe) Song and Lin Zhang. Comparison of cluster representations from partial
second- to full fourth-order cross moments for data stream clustering. In Proceedings of the
8th IEEE International Conference on Data Mining (ICDM 2008), December 15—19, 2008,
Pisa, Italy, pages 560-569, 2008.

Ricardo Sousa and Jodo Gama. Online semi-supervised learning for multi-target regression
in data streams using AMRules. In Advances in Intelligent Data Analysis XV — 15th Inter-
national Symposium, IDA 2016, Stockholm, Sweden, October 13—-15, 2016, Proceedings,
pages 123-133, 2016.

W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (SEA) for large-scale
classification. In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 01), San Francisco, CA, USA, August 26—
29, 2001, pages 377-382, 2001.

Gabor Takdécs, Istvan Pildszy, Bottydn Németh, and Domonkos Tikk. Scalable collabora-
tive filtering approaches for large recommender systems. Journal of Machine Learning
Research, 10:623-656, 2009.

Grigorios Tsoumakas and Ioannis P. Vlahavas. Random k-labelsets: An ensemble method
for multilabel classification. In Machine Learning: ECML 2007, 18th European Conference
on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings, pages 406—
417, 2007.

United Nations Global Pulse. Harnessing big data for development and humanitarian
action. http://www.unglobalpulse.org, accessed May 21st, 2017.

Matthijs van Leeuwen and Arno Siebes. Streamkrimp: Detecting change in data streams. In
Proceedings of the European Conference on Machine Learning and Knowledge Discovery
in Databases, ECML/PKDD 2008, pages 672687, 2008.

Joaquin Vanschoren, Jan N. van Rijn, and Bernd Bischl. Taking machine learning research
online with OpenML. In Proceedings of the 4th International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models
and Applications, BigMine 2015, Sydney, Australia, August 10, 2015, pages 1-4, 2015.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. SIGKDD Explorations, 15(2):49-60, 2013.

Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37—
57, 1985.

Anh Thu Vu, Gianmarco De Francisci Morales, Jodo Gama, and Albert Bifet. Distributed
adaptive model rules for mining big data streams. In 2014 IEEE International Conference
on Big Data, Big Data 2014, Washington, DC, USA, October 27-30, 2014, pages 345-353,
2014.

Kiri Wagstaff. Machine learning that matters. In Proceedings of the 29th International Con-
ference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012, 2012.

Boyu Wang and Joelle Pineau. Online bagging and boosting for imbalanced data streams.
IEEE Trans. Knowl. Data Eng., 28(12):3353-3366, 2016.

Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data streams
using ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD 03), Washington, DC, USA,
August 24-27, 2003, pages 226-235, 2003.

Greg Welch and Gary Bishop. An introduction to the Kalman Filter, Manuscript, 1995.
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf,
accessed May 21st, 2017.

http://www.unglobalpulse.org
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

254

Bibliography

[246]

[247]
[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

Kyu-Young Whang, Brad T. Vander Zanden, and Howard M. Taylor. A linear-time
probabilistic counting algorithm for database applications. ACM Trans. Database Syst.,
15(2):208-229, 1990.

David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241-259, 1992.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1-157, 2014.

David P. Woodruff. New algorithms for heavy hitters in data streams (invited talk). In /9th
International Conference on Database Theory, ICDT 2016, Bordeaux, France, March 15—
18, 2016, pages 4:1-4:12, 2016.

Junjie Wu, Hui Xiong, and Jian Chen. Adapting the right measures for k-means clustering.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDDO09), Paris, France, June 28 — July 1, 2009, pages 877-886,
2009.

Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In Proceed-
ings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), 9-12
December 2002, Maebashi City, Japan, pages 721-724, 2002.

Xifeng Yan and Jiawei Han. Closegraph: Mining closed frequent graph patterns. In Pro-
ceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 03), Washington, DC, USA, August 24-27, 2003, pages 286-295,
2003.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. Apache Spark: A unified engine for big data processing.
Commun. ACM, 59(11):56-65, 2016.

Mohammed Javeed Zaki and Ching-Jiu Hsiao. CHARM: an efficient algorithm for closed
itemset mining. In Proceedings of the Second SIAM International Conference on Data Min-
ing, Arlington, VA, USA, April 11-13, 2002, pages 457-473, 2002.

Mohammed Javeed Zaki, Nagender Parimi, Nilanjana De, Feng Gao, Benjarath
Phoophakdee, Joe Urban, Vineet Chaoji, Mohammad Al Hasan, and Saeed Salem. Towards
generic pattern mining. In Formal Concept Analysis, Third International Conference,
ICFCA 2005, Lens, France, February 14—18, 2005, Proceedings, pages 1-20, 2005.

Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. New
algorithms for fast discovery of association rules. In Proceedings of the Third ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 97),
Newport Beach, California, USA, August 14—17, 1997, pages 283-286, 1997.

Peng Zhang, Byron J. Gao, Xingquan Zhu, and Li Guo. Enabling fast lazy learning for data
streams. In /1th IEEE International Conference on Data Mining, ICDM 2011, Vancouver,
BC, Canada, December 11-14, 2011, pages 932-941, 2011.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient data clustering
method for very large databases. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996., pages
103-114, 1996.

Ji Zhu, Hui Zou, Saharon Rosset, and Trevor Hastie. Multi-class Adaboost. Statistics and
Its Interface, 2:349-360, 2009.

Paul Zikopoulos, Chris Eaton, Dirk deRoos, Tom Deutsch, and George Lapis. IBM Under-
standing Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-
Hill Companies, Incorporated, 2011.

Indre Zliobaité, Albert Bifet, Bernhard Pfahringer, and Geoft Holmes. Active learning with
evolving streaming data. In Machine Learning and Knowledge Discovery in Databases,

Bibliography 255

European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Pro-
ceedings, Part 111, pages 597-612, 2011.

[262] Indre Zliobaité, Albert Bifet, Jesse Read, Bernhard Pfahringer, and Geoff Holmes. Evalua-
tion methods and decision theory for classification of streaming data with temporal depen-
dence. Machine Learning, 98(3):455-482, 2015.

Index

Accuracy-Weighted Ensembles, 129, 209
AccuracyUpdatedEnsemble, 130, 209
AccuracyWeightedEnsemble, 130, 209
active learning, 13, 117

Fixed Uncertainty Strategy, 119

in MOA, 211

Random Strategy, 119

Uncertainty Strategy with Randomization,

121

Variable Uncertainty Strategy, 119
ActiveClassifier, 211
Adaboost, 135
AdaGraphMiner algorithm, 179, 189
AdaHoeffdingOptionTree, 209
ADAMS project, 190
adaptive bagging, see ADWIN Bagging
Adaptive Random Forests, 137
Adaptive-Size Hoeffding Trees, 138, 209
AddNoiseFilter, 206
ADWIN Bagging, 17, 133, 200, 209
ADWIN sketch, 79, 82, 108, 179, 211
AgrawalGenerator, 206
Agresti-Coull bound, 39
AMRules, 147, 200
AMS (Alon-Matias-Szegedy) sketch, 57
Android operating system, 190
Apex, 196
approximation, 36

absolute, 36

(e, d)-approximation, 36, 37, 62, 64

relative, 36
Apriori algorithm, 19, 168
Area under the curve (AUC), 90
AREFF files, 22, 203
ArffFileStream, 204
ARL, Average Run Length, 75
attributes, 85
AUC, 90

bagging, 17, 133
Bayes’ theorem, 95
Bernstein’s inequality, 39
bias (in classifiers), 94
BICO algorithm, 154
Big Data, 3

challenges, 6

hidden, 7

Three V’s, 3

visualization, 7, 212
BIRCH algorithms, 152
Bloom filter, 43
boosting, 135
bootstrap, 133

C++ language, 195

C4.5,101, 117
CART, 101
centers (clustering), 149
centroids (clustering), 149
CF trees, 153
change in data streams, see drift
CHARM algorithm, 170, 178
Chebyshev’s inequality, 38, 46, 62, 92
Chernoff’s bound, 38, 92
classification, 11, 85
comparing classifiers, 92
concept evolution, 121
CVFDT, 105
decision stump, 208
decision trees, 99, 208
delayed feedback, 13
ensembles, 71, 82, see also ensembles
evaluation, 86
Hoeffding Adaptive Tree, 108
Hoeffding Tree, 102
in MOA, 190, 201, 208-210
k-NN, 114, 190
lazy learning, see k-NN (nearest neighbors)
Majority Class classifier, 94
missing feedback, 13
multi-label, 115
Multinomial Naive Bayes, 98
Naive Bayes, 95
No-change classifier, 94
perceptron, 113
UFFT, 107
VEDT, 104
VFDTc, 107
closed pattern, 169
CloseGraph algorithm, 170, 179, 182
cluster mapping measure (CMM), 151
clustering, 11, 17, 149
BICO, 154
BIRCH, 152
centroids or centers, 149
CluStream, 154
ClusTree, 156
CobWeb, 212
cost functions, 149
DBSCAN, 155
Den-Stream, 155
density-based, 155
distance function, 149
distributed, 200
evaluation, 150
in MOA, 160, 211
k-means, 18, 151
k-means++, 152
microclusters, 152
other methods, 159

258

Index

similarity, 149

StreamKM++, 158, 212

surveys, 159
CluStream algorithm, 154, 212, 213
ClusTree algorithm, 156, 212
CM-sketch, see Count-Min sketch
CMM (cluster mapping measure), 151
CobWeb algorithm, 212
Cohen’s counter, 44, 60
cohesion measure (clustering), 150
communities, 18
comparing classifiers, 92
concentration inequalities, 37, 101
concept drift, see drift
concept evolution, 121
ConceptDriftRealStream, 205
ConceptDriftStream, 204
confidence intervals, 37, 92
confusion matrix, 91
coresets

coreset tree, 158

in clustering, 158

in pattern mining, 172, 178, 182
cost measures, 93
Count-Min sketch, 51, 60, 81, 82
counting

distinct or unique items, 40, 42, 48

items, 41
CountSketch, 54
cross-validation, 87, 204

distributed, 88
CUSUM test, 75, 82, 211
CVFDT, 105, 110

data streams, 35
adversarial vs. stochastic, 35, 69
change, see drift
definition, 8, 11
distributed, 61, 88, 197
frequency moments, 56
in computer security, 9, 121
in disaster management, 9
in e-commerce, 9
in healthcare, 9
in marketing, 9
in social media, 9, 189, 190
in utilities, 9
items, 36
Markovian, 69
scenarios, 8, 85, 121, 143
dataset shift, 68
DBSCAN algorithm, 155
DDM, Drift Detection Method, 78, 82, 83, 107,
211
decay factor, 73

decision rules, 146, 200
Decision Stump classifier, 208
decision trees, 16, 99, 208

split criteria, 101
delayed feedback, 13
4, confidence parameter, 37
A-support, 178, 183
Den-Stream algorithm, 155, 212
density-based clustering, 155
discretization, 109, 190
distinct items, see counting
distributed evaluation, 88
drift, 67

gradual, 69

in MOA, 190, 210

recurrent concepts, 69, 139

shift, 69

simulating in MOA, 22, 25, 204

strategies to manage, 70

types of, 69

Eclat algorithm, 19, 169
ensembles, 17, 71, 82, 129
Accuracy-Weighted, 129
Adaboost, 135
Adaptive Random Forests, 137
Adaptive Size Hoeffding Tree, 138
ADWIN Bagging, 17, 133
bagging, 17, 133
boosting, 135
exponentiated gradient, 132
Hoeffding Option Tree, 136
in MOA, 209
Leveraging Bagging, 134
Online Bagging, 133
Online Boosting, 135
random forests, 136
stacking, 132, 137
Weighted Majority, 130
entropy, 101, 117
€, accuracy parameter, 36
Equal-frequency discretization, 109
Equal-width discretization, 109
error-correcting output codes, 134
estimators, 72
evaluation, 14, 86
AUC, 90
cross-validation, see cross-validation
distributed, see distributed evaluation
holdout, see holdout evaluation
in clustering, 150
in MOA, 22-31, 203
interleaved chunks, see interleaved chunks
evaluation

Index

prequential, see prequential evaluation

statistical significance, 92

test-then-train, see test-then-train evaluation

EWMA estimator, 73, 82, 151, 211
exhaustive binary tree, 110, 146

Exponential Histograms, 57, 61, 64, 73, 80
exponentiated gradient algorithm, 132

Facebook graph, 48

fading factor, 73

Fayyad and Irani’s discretization, 109
feature extraction, 10

features, see attributes
FilteredStream, 205

FIMT-DD, 146

Flajolet-Martin counter, 45, 60
Flink, 6, 196

FP-Growth algorithm, 19, 168, 175
FP-Stream algorithm, 175

FP-Tree, 168

frequency moments (in streams), 56
frequency problems, 48

frequent elements, see heavy hitters
frequent pattern, see pattern mining
Frequent sketch, 49
FrugalStreaming sketch, 54

Gaussian distribution, 38, 111
Gini impurity index, 101
gnuplot, 219

GPU computing, 137

graph mining, 10, 178
graphical models, 94
GraphX, 6

Hadoop, 5, 196
hash functions, 43, 44, 61
families of random, 61
fully independent, 61
in practice, 62
pairwise independent, 61
HDEFS, 5
heavy hitters, 49, 64
by sampling, 49
in itemset mining, 174
in pattern mining, 174
surveys, 49

Hoeffding Adaptive Tree classifier, 17, 108,

209

Hoeffding adaptive tree classifier, 195
Hoeffding Option Tree classifier, 136, 146, 209
Hoeffding Tree classifier, 16, 102, 190, 208

multi-label, 117
vertical, 200

259

Hoeffding’s bound, 38, 46, 63, 65, 81, 82, 92,

101, 102, 172, 177
holdout evaluation, 14, 87, 204
Huawei, 195
HyperANF counter, 47
HyperLogLog counter, 46, 47
HyperplaneGenerator, 206
hypothesis testing, see statistical tests

IBLStreams, 145, 189

iceberg queries, 49

IID assumption, 69, 86, 91

IncMine algorithm, 19, 176, 183, 189
information gain, 101, 101, 117

interleaved chunks evaluation, 88, 204

Internet of Things, 3, 8
items, 36
itemset, 165

Java language, 187, 188, 195, 196, 221, 227

good practices, 238

Kalman filter estimator, 74
Kappa architecture, 6
Kappa M statistic, 90
Kappa statistic, 90
Kappa temporal statistic, 91
kernel methods, 94, 148
k-grams, counting, 42
k-means algorithm, 18, 151
k-means++ algorithm, 152
k-NN (nearest neighbors), 15, 190
for classification, 114, 122
for regression, 145

Lambda architecture, 6
Laplace correction, 97, 99

large-deviation bounds, see concentration

inequalities

lazy learning, see k-NN (nearest neighbors)

learning rate, 114
LEDGenerator, 206
LEDGeneratorDrift, 207
Leveraging Bagging, 134, 210
LimAttClassifier, 138, 210
Linear counting, 43, 60

linear estimator, 73

linear regression, 143

Lossy Counting sketch, 49, 174

Mahout, 6

Majority Class classifier, 15, 94, 210
Markov’s inequality, 38, 53, 92
maximal pattern, 169

260

Index

McDiarmid’s inequality, 39, 101
McNemar’s test, 93
MDL, Minimum Description Length, 109
MDR, Missed Detection Rate, 75
MEKA project, 193
Mergeability, 60
Merging sketches, 60
microclusters, 18, 152, 154, 200
Milgram’s degrees of separation, 48
Misra-Gries counter, 49
missing data, 10
missing feedback, 13
MLIB, 6
MOA, 10, 21, 187
adding classes to, 227
API, 221
classification, 201, 218
clustering, 160
Command Line Interface (CLI), 29, 217
compiling code for, 237
discretization, 190
distributed, see SAMOA
evaluation, 22-31, 203, 218
extensions, 189
for Android, 190
for social media analysis, 189, 190, 192
for video processing, 193
generators, 160, 204, 204, 212
good programming practices, 237
GUI, 22, 23, 201
Hadoop, 196
installing, 21, 188
modifying the behavior of, 227
multi-target learning, 188
outlier detection, 188
platforms, 187, 188, 190
programming applications that use, 221
recent developments, 188
recommender systems, 189
regression, 148, 218
running tasks, 22, 123, 201, 217
SAMOA, 196
Spark, 195
tasks, 188,203, 217
visualization, 212
MOA-TweetReader, 189
MOAReduction, 190
Moment algorithm, 19, 174, 189
moment computation, 56
Morris’s counter, 41, 61, 63
motif discovery, 10
MTD, Mean Time to Detection, 75

MTFA, Mean Time between False Alarms, 75

multi-label classification, 115
BR method, 115

in MOA, 193
LC method, 115
multi-label Hoeffding Tree, 116
PW method, 116
multi-target learning, 188

Multinomial Naive Bayes classifier, 98, 208

Naive Bayes

Multinomial, see Multinomial Naive Bayes

classifier

Naive Bayes classifier, 16, 95, 105, 208
neighborhood function (in graphs), 47
No-change classifier, 15, 94, 210
normal approximation, 38, 92, 172
normal distribution, 38, 111
numeric attributes, 109, 143

in MOA, 190

OCBoost, 209

Online Bagging, 133

Online Bagging algorithm, 209
Online Boosting algorithm, 209
Onling Boosting algorithm, 135, 209
OpenML project, 194

outliers, 70, 81, 109, 113, 188
overfitting (in classifiers), 94
OzaBag, 133, 209
0OzaBagADWIN, 133, 209
OzaBagASHT, 138, 209
OzaBoost, 135, 209

PAC-learning, 37
Page-Hinkley test, 76, 82, 83, 146, 211
pattern mining, 11, 18, 165, 167
AdaGraphMiner, 179
Apriori, 168
association rules, 182
candidate pattern, 168
CHARM, 170, 178
closed pattern, 169, 182, 183
CloseGraph, 170, 179, 182
coresets, 172, 178, 182
Eclat, 169
FP-Growth, 168
FP-Stream, 175
generic algorithm on streams, 170
graph, 166, 178, 182
in MOA, 178, 182, 189
IncMine, 176, 183
itemset, 18, 165, 181
maximal pattern, 169
Moment, 174
other algorithms, 170, 181
pattern, 165, 166

Index

pattern size, 167

sequence, 165, 181

SPMF, 178, 182

subpattern, 166

superpattern, 166

support, 166

surveys, 181

tree, 166, 181

WinGraphMiner, 179
Perceptron, 132, 146, 210

for regression, 145

stacking on Hoeffding Trees, 137, 210
perceptron

for classification, 113
Poisson distribution, 133, 134
prequential evaluation, 14, 88, 90, 204
Probabilistic counter, see Flajolet-Martin

counter

purity measure (clustering), 150
Python language, 195

quantiles, 54
FrugalStreaming sketch, 54
Greenwald and Khanna’s sketch, 111, 190
in MOA, 190

R language, 191, 195
RAM-hour, 94
random forests, 136
randomized algorithm, 36
RandomRBFGenerator, 207
RandomRBFGeneratorDrift, 207
RandomSEAGenerator, 207
RandomTreeGenerator, 207
range-sum queries, 53, 64
ranking / learning to rank, 10
real-time analytics, see data streams
recommender systems, 10, 189
recurrent concepts, 10, 69, 139
regression, 143

AMRules, 147

error measures, 144

FIMT-DD, 146

IBLStreams, 145

in MOA, 148, 189, 210

k-NN, 145

linear regression, 143

Perceptron, 145

Spegasos, 148

stochastic gradient descent, 148
reservoir sampling, 40
rule learners, 94, 146

SAMOA, 196

261

sampling, 39, 63
for heavy hitters, 49
reservoir, see reservoir sampling
Samza, 196
semi-supervised learning, 13
SGD, 210
sigmoid, 25, 204
silhouette coefficient, 150
six degrees of separation, 48
sketches, 35, 36
ADWIN, 79, 82, 108, 179
AMS (Alon-Matias-Szegedy), 57
Cohen’s counter, 44
Count-Min, 51
CountSketch, 54
Exponential Histograms, 57, 73
Flajolet-Martin counter, 45
for linear algebra, 63
for massive graphs, 48
Frequent, 49
FrugalStreaming, 54
HyperLogLog counter, 46
Linear counting, 43
Lossy Counting, 49, 174
merging, 60
Misra-Gries, 49
Morris’s counter, 41
other sketches, 63
quantiles, 54, 111
range-sum queries, 53
reservoir sampling, 40
Space Saving, 50, 64, 82, 174, 183
Sticky Sampling, 49
Stream-Summary, 51
skip counting, 41
sliding windows, 58, 73, 79, 83, 178
Space Saving sketch, 50, 61, 64, 82, 174, 183
spam, 11, 85, 100
Spark, 6, 195
Spark Streaming, 6, 195
SPegasos, 148, 210
split criteria, 101
split-validation, 89
SPMF framework, 178, 182
SSQ measure (clustering), 150
stacking, 132
Perceptron on Hoeffding Trees, 137, 210
STAGGERGenerator, 208
statistical significance, 92
McNemar’s test, 92
statistical tests, 76, 81
Sticky Sampling sketch, 49
stochastic averaging, 46
stochastic gradient descent, 114, 148, 210
Storm, 196

262

Index

stream cross-validation, 90
Stream-Summary structure, 51
StreamDM-C++ project, 195
streaming, see data streams
StreamKM-++ algorithm, 158, 212
Streams project, 196
subpattern, see pattern mining
summaries, see sketches
superpattern, see pattern mining
supervised learning, 11, 85
support (of a pattern), 166

support vector machines (SVM), see kernel

methods

Temporally AugmentedClassifier, 95, 210

TensorFlow, 6

test-then-train evaluation, 14, 87, 204

time series, 68

Twitter, 15, 85, 96, 99, 121, 189, 192

UFFT, 107, 112
unique items, see counting
unsupervised learning, 11, 149, 165

Vertical Hoeffding Tree, 200
VFDT, 104, 110

VEDTc, 107, 110

VEML, 110

video processing, 193

WaveformGenerator, 208
WaveformGeneratorDrift, 208
Weighted Majority algorithm, 130
WEKA, 10, 22, 190, 193, 203
WinGraphMiner algorithm, 179

Adaptive Computation and Machine Learning

Francis Bach, Editor

Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns,
Associate Editors

Bioinformatics: The Machine Learning Approach, Pierre Baldi and Seren Brunak

Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G.
Barto

Graphical Models for Machine Learning and Digital Communication, Brendan J.
Frey

Learning in Graphical Models, Michael 1. Jordan

Causation, Prediction, and Search, second edition, Peter Spirtes, Clark Glymour,
and Richard Scheines

Principles of Data Mining, David Hand, Heikki Mannila, and Padhraic Smyth

Bioinformatics: The Machine Learning Approach, second edition, Pierre Baldi
and Seren Brunak

Learning Kernel Classifiers: Theory and Algorithms, Ralf Herbrich

Learning with Kernels: Support Vector Machines, Regularization, Optimization,
and Beyond, Bernhard Scholkopf and Alexander J. Smola

Introduction to Machine Learning, Ethem Alpaydin

Gaussian Processes for Machine Learning, Carl Edward Rasmussen and
Christopher K.I. Williams

Semi-Supervised Learning, Olivier Chapelle, Bernhard Schélkopf, and Alexander
Zien, Eds.

The Minimum Description Length Principle, Peter D. Griinwald
Introduction to Statistical Relational Learning, Lise Getoor and Ben Taskar, Eds.

Probabilistic Graphical Models: Principles and Techniques, Daphne Koller and
Nir Friedman

Introduction to Machine Learning, second edition, Ethem Alpaydin

Machine Learning in Non-Stationary Environments: Introduction to Covariate
Shift Adaptation, Masashi Sugiyama and Motoaki Kawanabe

Boosting: Foundations and Algorithms, Robert E. Schapire and Yoav Freund
Machine Learning: A Probabilistic Perspective, Kevin P. Murphy

Foundations of Machine Learning, Mehryar Mohri, Afshin Rostami, and Ameet
Talwalker

Introduction to Machine Learning, third edition, Ethem Alpaydin
Deep Learning, lan Goodfellow, Yoshua Bengio, and Aaron Courville

Toward Causal Learning, Jonas Peters, Dominik Janzing, and Bernhard
Scholkopf

Machine Learning for Data Streams with Practical Examples in MOA, Albert Bifet,
Ricard Gavalda, Geoff Holmes, and Bernhard Pfahringer

	Contents
	List of Figures
	List of Tables
	Preface
	I INTRODUCTION
	1 Introduction
	2 Big Data Stream Mining
	3 Hands-on Introduction to MOA

	II STREAM MINING
	4 Streams and Sketches
	5 Dealing with Change
	6 Classification
	7 Ensemble Methods
	8 Regression
	9 Clustering
	10 Frequent Pattern Mining

	III THE MOA SOFTWARE
	11 Introduction to MOA and Its Ecosystem
	12 The Graphical User Interface
	13 Using the Command Line
	14 Using the API
	15 Developing New Methods in MOA

	Bibliography
	Index
	Пустая страница

