

PRINCIPLES AND LABS FOR DEEP LEARNING

PRINCIPLES AND
LABS FOR DEEP

LEARNING

SHIH-CHIA HUANG
Professor, Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan

TRUNG-HIEU LE
Assistant Professor, Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan

Lecturer, Faculty of Information Technology, Hung Yen University of Technology and Education, Hung Yen, Vietnam

Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1650, San Diego, CA 92101, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2021 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording,
or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information
about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing
Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research
methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or
experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties
for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN 978-0-323-90198-7

For information on all Academic Press publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Mara Conner
Acquisitions Editor: Chris Katsaropoulos
Editorial Project Manager: Isabella C. Silva
Production Project Manager: Swapna Srinivasan
Cover Designer: Greg Harris

Typeset by SPi Global, India

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals

Preface

In 1943, Warren McCulloch and Walter Pitts introduced a computational model based on a threshold logic algo-
rithm, paving the way for the development of artificial intelligence (AI). The field of AI research was founded at
the Dartmouth summer research project on artificial intelligence in 1956. In the nearly 80years of development history,
AI has experiencedmany ups and downs, especially the two “AI winters,”which are known as the periods of reduced
funding and interest in AI research. After AlphaGo, a deep learning-based computer Go program developed by
Google DeepMind, defeated a professional Go player in 2015, AI has once again attracted considerable research atten-
tion. In recent years, AI with deep learning algorithms has been dramatically improved and successfully applied to
many problems in academia and industry. Recognizing the potential and power of deep learning, many world-class
technology companies, such as Google, Facebook, Microsoft, Tesla, and others, have invested a lot of manpower and
resources in researching and developing their products using deep learning.

The authors of this book deeply understand the importance and development of the field of AI. As such, Principles
and Labs for Deep Learning is meant to inspire and help more students, engineers, and researchers to quickly enter the
field of AI and begin applying deep learning in their research projects, products, and platforms. This book includes
12 chapters with content that balances theory and practice.

Chapter 1: “Introduction to TensorFlow 2”
Chapter 2: “Neural networks”
Chapter 3: “Binary classification problem”

Chapter 4: “Multi-category classification problem”

Chapter 5: “Training neural network”
Chapter 6: “Advanced TensorFlow”

Chapter 7: “Advanced TensorBoard”
Chapter 8: “Convolutional neural network architectures”
Chapter 9: “Transfer learning”
Chapter 10: “Variational auto-encoder”
Chapter 11: “Generative adversarial network”
Chapter 12: “Object detection”

The first half of each chapter introduces and analyzes the corresponding theories to help readers understand the
core fundamentals of deep learning. The last half of each chapter carefully designs and implements the example pro-
grams step by step to help readers reinforcewhat they just learned. Themost popular open-source library, TensorFlow,
is employed to implement example programs. Lastly, each chapter has one corresponding Lab as well as instructions
for implementation to guide readers in practicing and accomplishing specific learning outcomes. All Labs in this book
can be downloaded from GitHub: https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master.

Shih-Chia Huang and Trung-Hieu Le
Department of Electronic Engineering,

National Taipei University of Technology, Taipei, Taiwan

vii

https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master

Environment installation

OUTLINE
• Installation of Python, TensorFlow, and expansion

packages on the Windows and Ubuntu operating
systems

• Installation of Jupyter Notebook and PyCharm IDE on
Windows and Ubuntu operating system

• Downloading all the example programs of this book
from GitHub, and running the code through Jupyter
Notebook

1 Python installation

1.1 Windows environment

To install Python, first go to the official Python website www.python.org/downloads/windows/, then download
the Python installation file. The version of TensorFlow requires Python3.4, Python3.5, or Python3.6, so be sure to install
any of these three versions. The following will use Python3.6.8 as an example.

1. Download the 3.6.8 installation file, as shown in Fig. 1.

2. Install Python: Install Python with default settings, as shown in Fig. 2.

FIG. 1 Download the Python installation file.

ix

https://www.python.org/downloads/windows/

1.2 Ubuntu environment

Since the Ubuntu operating system has built-in Python, the installation of Python in this section is omitted.

2 TensorFlow installation

There are many methods for installing TensorFlow, such as using local installation, Virtualenv virtual machine,
Docker, and so on. This book uses the Virtualenv virtual machine recommended by TensorFlow, and introduces
the installation of TensorFlow with CPU and GPU supports on two operating systems including Windows
and Ubuntu.

2.1 Windows environment

1. Open the command prompt: Press “Windows logo key + R” to open “Run” box, then type “cmd” and click “OK” as
shown in Fig. 3.

2. Install the virtualenv virtual machine:

pip install virtualenv

3. Create a new virtual environment: In the command line below, tf2 represents the name of the virtual environment.

virtualenv --system-site-packages -p python ./tf2

4. Enter the virtual environment (tf2), as shown in Fig. 4.

FIG. 2 Installation of Python.

FIG. 3 Open command prompt.

x Environment installation

cd tf2\Scripts

activate

5. Upgrade pip version:

pip install --upgrade pip

6. Install TensorFlow: There are two versions of TensorFlow installation: TensorFlow CPU support and TensorFlow
GPU support. If a computer has an Nvidia GPU and support CUDA, it is recommended to install the TensorFlow
GPU support.
▪ TensorFlow CPU support:

pip install tensorflow

▪ TensorFlow GPU support:
First, go to https://developer.nvidia.com/cuda-gpus to see whether the graphics card supports CUDA. Then
install the graphics driver, CUDA10 and cuDNN, and TensorFlow GPU version in order.
• Install the graphics card driver: Go to www.nvidia.com/download/index.aspx?lang¼en-us to download the

corresponding graphics card driver, as shown in Fig. 5, and install it.

• CUDA: Go to https://developer.nvidia.com/cuda-downloads, click the “Archive of Previous CUDA Releases” in
the window, as shown in Fig. 6.

FIG. 4 Enter the virtual environment.

FIG. 5 Download the graphics card driver.

xiEnvironment installation

https://developer.nvidia.com/cuda-gpus
https://www.nvidia.com/download/index.aspx?lang=en-us
https://www.nvidia.com/download/index.aspx?lang=en-us
https://developer.nvidia.com/cuda-downloads

- Select the version of CUDA Toolkit 10.0, as shown in Fig. 7.

- Select the installation package of Windows 10, download and install it, as shown in Fig. 8.

FIG. 6 CUDA download page.

FIG. 7 Select CUDA installation version.

FIG. 8 Download the CUDA installation file.

xii Environment installation

• cuDNN: Go to https://developer.nvidia.com/rdp/cudnn-download to download cuDNN, as shown in Fig. 9.
Note that, it is required to log in for downloading.

Unzip and copy three files from the unzipped folder of cuDNN to the CUDA installation directory. The steps are as
follows:

• Copy the < cuDNN unzipped folder > \cuda\bin\cudnn64_7.dll file to “C:\ Program Files\NVIDIA GPU
Computing Toolkit\CUDA\v10.0\bin” directory

• Copy the <cuDNN unzipped folder>\cuda\include\cudnn.h file to “C:\ Program Files\NVIDIA GPU
Computing Toolkit\CUDA\v10.0\include” directory

• Copy the < cuDNN unzipped folder> \cuda\lib\x64\cudnn.lib file to “C:\ Program Files\NVIDIA GPU
Computing Toolkit\CUDA\v10.0\lib\x64” directory

▪ Install TensorFlow GPU support:

pip install tensorflow-gpu

7. Verify the installation:

python -c "import tensorflow as tf;

print(tf.constant([[1, 2], [3, 4]]))"

2.2 Ubuntu environment

1. Open Terminal, as shown in Fig. 10.

FIG. 9 Download the cuDNN installation file.

FIG. 10 Open terminal.

xiiiEnvironment installation

https://developer.nvidia.com/rdp/cudnn-download

2. Install pip:

sudo apt-get install python3-pip

3. Install Virtualenv virtual machine:

sudo apt install virtualenv

4. Create a new virtual environment: In the command line below, tf2 represents the name of the virtual environment.

virtualenv --system-site-packages -p python3 ./tf2

5. Enter the virtual environment (tf2):

source tf2/bin/activate

6. Upgrade pip version:

pip install --upgrade pip

7. Install TensorFlow: There are two versions of TensorFlow installation: TensorFlow CPU support and TensorFlow
GPU support.
▪ TensorFlow CPU support:

pip install tensorflow

▪ TensorFlow GPU support:
• First, go to https://developer.nvidia.com/cuda-gpus to check whether the graphics card supports CUDA or

not, then perform the following steps to install.
• Second, go to https://www.tensorflow.org/install/gpu#ubuntu_ and follow the instruction to install drivers

and libraries.

• Install TensorFlow GPU support using pip package:

pip install tensorflow-gpu

8. Verify the installation:

python -c "import tensorflow as tf;

print(tf.constant([[1, 2], [3, 4]]))"

xiv Environment installation

https://developer.nvidia.com/cuda-gpus
https://www.tensorflow.org/install/gpu#ubuntu_

Supplementary explanation

Compare with the environment where “local Python” is directly installed, multiple installation environments can be created
through “Virtualenv virtual machine” or “Docker,” in which different versions of TensorFlow can be installed in different envi-
ronments without affecting each other. Thus, it is highly recommended to use the “Virtualenv virtual machine” or “Docker” for
the installation of software packages.

3 Python extension installation

The installation of extension packages on Windows and Ubuntu is the same. First, open Terminal on Ubuntu or
command prompt onWindows, then enter the Virtualenv virtual environment that installed, and finally, type the com-
mand in the window to install.

▪ Numpy: An open-source library for Python, which works with arrays and supports large and multi-dimensional
matrices. To install Numpy, run the following:

pip install numpy

▪ Matplotlib: A plotting library for Python, which supports drawing both static and animated visualization. To install
Matplotlib, run the following:

pip install matplotlib

▪ Pandas: A library built on top of Python for data manipulation and analysis. To install Pandas, run the following:

pip install pandas

▪ OpenCV: An open-source library, providing a common infrastructure for applications of computer vision such as
image processing, object detection, facial recognition, and so on. To install OpenCV, run the following:

pip install opencv-python

▪ TensorFlow Addons: An expansion package of TensorFlow, which contains many new functions are not added to
the core TensorFlow due to the limitation of their broad applicability or because they are not common. To install
TensorFlow Addons, run the following:

pip install tensorflow-addons

▪ TensorFlow Datasets: A collection of datasets that are ready for use with a specific purpose such as developing,
training, or testing machine learning models. All datasets can be obtained through tf.data.Datasets API. To install
TensorFlow Datasets, run the following:

pip install tensorflow-datasets

▪ TensorFlow Hub: A repository of trained machine learning and deep learning models that can be reused by
applying transfer learning or fine-tuning techniques to address new tasks with less training data and time. To
install TensorFlow Hub, run the following.

pip install tensorflow-hub

xvEnvironment installation

4 Jupyter notebook

JupyterNotebook is aweb-based interactive application that supports creating and sharing documents containing live
code,narrative text, andvisualizations.Thename“Jupyter” isderived fromthe three coreprogramming languages includ-
ing Julia,Python, andR.Through JupyterNotebook, a lot of kernels that allowprogramming inmore than forty languages
canbeconnected.TheIPythonkernel,whichallowswritingsourcecodeinPython, issetas thedefault in JupyterNotebook.
The installation of the Jupyter Notebook on Windows and Ubuntu operating systems is introduced below.

4.1 Jupyter notebook installation

1. Windows environment
▪ Install Jupyter Notebook: Please run the following.

python -m pip install jupyter

▪ Add the virtual environment to Jupyter Notebook: tf2 in the command line below represents the name of the
virtual environment.

.\tf2\Scripts\activate

pip install ipykernel

python -m ipykernel install --name=tf2

2. Ubuntu environment
▪ Install Jupyter Notebook: please run the following.

python3 -m pip install jupyter

▪ Add the virtual environment to Jupyter Notebook: tf2 in the command line below represents the name of the
virtual environment.

source tf2/bin/activate

pip3 install ipykernel

python3 -m ipykernel install --user --name=tf2

4.2 Setup and create new project

1. Open Jupyter Notebook: please run the following.

jupyter notebook

2. Create an execution file:
Click the “New” icon on the top-right corner of the window and then click on the Python interpreter that installed,

which is called kernel in Jupyter, to start, as shown in Fig. 11. There are three different kernels as follows:

▪ Python3: Local Python
▪ tf2: Virtual machine Python, which includes the TensorFlow-cpu version installed earlier
▪ tf2-gpu: Virtual machine Python, which includes the TensorFlow-gpu version installed earlier

xvi Environment installation

3. Select kernel: After entering the Python file, choose Kernel ! Change kernel ! select kernel. The top-right corner
will show which kernel is currently used, as shown in Fig. 12.

4.3 Jupyter Notebook operation

1. Notebooks modes: Jupyter Notebook has two modes including Edit Mode and Command Mode.
▪ Edit mode: The mode of writing the code, which can be identified by the cell with a green border and green left

margin, as shown in Fig. 13.

To enter the edit mode, press the “Enter” key or directly click in a cell. After entering, to test this mode, type
print (“Hello Jupyter Notebook”) in the cell, then press “Shift + Enter” to run the code and see the result, as shown
in Fig. 14.

FIG. 13 Edit Mode.

FIG. 14 Running code in the edit mode.

FIG. 12 Selection of kernel.

FIG. 11 Create an execution file.

xviiEnvironment installation

▪ Command mode: The mode for editing the Notebook, which can be identified by the cell with a gray border and
blue left margin, as shown in Fig. 15. To enter the command mode, press the “Esc” key or click anywhere outside
the cell.

2. Navigation in Jupyter Notebook
▪ Mouse navigation: Using the mouse to perform any action such as selecting kernel, entering the modes, running

selected cell, and so on from the interface of the Notebook.
▪ Keyboard navigation: Using keyboard shortcuts to perform specific actions such as running the current cell,

saving program, inserting cell above, copying selected cells, and so on. To see the keyboard shortcuts and their
functions, refer to “Help ! Keyboard Shortcuts” from the menu bar or click the “keyboard” icon from the tool
bar, as shown in Fig. 16.

Some keyboard shortcuts and their functions in Jupyter Notebook are shown in Fig. 17.

5 PyCharm IDE

5.1 PyCharm installation

PyCharm is one of the most versatile integrated development environments (IDEs) for computer programing. It was
developedbyaCzechsoftwaredevelopmentcompanyandhasmanyfeatures, includingcodingassistance,projectandcode
navigation,agraphicaldebugger, support forwebframeworks,andsoon.Therefore, it is recommendedtousePyCharmfor
implementing complex programs. To download thePyCharm installation package, please go to the officialwebsite:www.
jetbrains.com/pycharm/download, where there are professional and community versions of PyCharm for bothWindow
andUbuntu operating systems. The community version is free to use, while the professional version requires payment, as
shown in Fig. 18. After downloading, please follow the installation steps to install.

FIG. 15 Command Mode.

FIG. 16 Icon for displaying keyboard shortcuts.

FIG. 17 Keyboard shortcuts in Jupyter Notebook.

xviii Environment installation

https://www.jetbrains.com/pycharm/download
https://www.jetbrains.com/pycharm/download

Supplementary explanation

Remarks: If you are a student or teacher, you can go to www.jetbrains.com/student/ to apply for one-year free educational
licenses to use the professional version of PyCharm. The licenses can be renewed free of charge if you are still a student or
teacher after 1 year of use.

5.2 Setup and create new project

After the installation of PyCharm, personal environment settings are required.

1. Set UI theme: This can be set as Darcula or Light, as shown in Fig. 19. The UI theme also can be changed later in
Settings.

2. Install additional kits: PyCharm provides a few plugins in its repository for downloading and installing. If it is not
necessary, this step can be skipped, as shown in Fig. 20.

FIG. 18 Download PyCharm page.

FIG. 19 Setting UI theme in PyCharm.

xixEnvironment installation

https://www.jetbrains.com/student/

3. Create a new project: Click “Create New Project” on the window of PyCharm, as shown in Fig. 21.

4. Select or create a directory for the project, as shown in Fig. 22.

FIG. 20 Downloading featured plugins in PyCharm.

FIG. 21 Creating new project in PyCharm.

FIG. 22 Creating or selecting a directory for a new project.

xx Environment installation

5. Create a Python execution file: Right-click on project name ! New ! Python File, as shown in Fig. 23.

6. Configure a Python interpreter: Click File ! Settings ! Project: Code ! Project Interpreter ! Add ! Virtualenv
Environment! Existing environment! Select the virtual machine such as tf2 or tf2-gpu (please refer to Section 2.
TensorFlow Installation), as shown in Figs. 24 and 25.

FIG. 23 Creating a new Python execution file in PyCharm.

FIG. 24 Project interpreter.

FIG. 25 Selecting an existing virtual environment.

xxiEnvironment installation

7. Run the Python file: The Python file can be run by using the button icons from the top-right corner of the project
window or by right-clicking on the Python file, as shown in Fig. 26.

5.3 PyCharm keyboard shortcuts

PyCharm provides keyboard shortcuts for quickly performing most of the tasks related to editing, debugging,
navigation, and so on. This helps users work more effectively with keeping their hand on the keyboard. To see all
keyboard shortcuts and their function in PyCharm, click “Help ➔ Keymap Reference” from the menu bar, as shown
in Figs. 27 and 28.

FIG. 26 Running the Python file.

FIG. 27 Help menu in PyCharm.

xxii Environment installation

6 GitHub labs

6.1 Download source codes

The source codes of the Labs in the book are placed on GitHub. To download all the Labs, please go to GitHub URL:
https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master, then click “Code ! Download ZIP” to down-
load the Zip file, as shown in Fig. 29. After the download is completed, you must unzip this file for opening and
running.

FIG. 28 Keyboard shortcuts in PyCharm.

FIG. 29 The Labs of the book on GitHub.

xxiiiEnvironment installation

https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master

6.2 Open and run source code

Suppose that the project directory path is C:\Users\mmslab\Deep-Learning-Book-master. To open the project,
go to the folder “Deep-Learning-Book-master”

0. On Windows environment: Open the command prompt and run the following:

cd C:\Users\mmslab\Deep-Learning-Book-master

1. On Ubuntu environment: Open terminal and run the following:

cd /home/mmslab/Deep-Learning-Book-master

2. Open Jupyter Notebook: Run the following, the result is shown in Fig. 30:

jupyter notebook

3. To open the program of a specific Lab, click the corresponding file in the project. For example, to open the code of
Lab1, please click the “Lab1.ipynb” file, as shown in Fig. 31.

FIG. 30 Open the project through Jupyter Notebook.

FIG. 31 The source code of Lab1.

xxiv Environment installation

4. To run the program, click the “fast forward icon,” as shown in Fig. 32.

FIG. 32 Running the code on Jupyter Notebook.

xxvEnvironment installation

C H A P T E R

1

Introduction to TensorFlow 2

OUTLINE
• Getting to know deep learning

• Improvement of TensorFlow 2

• Getting started with TensorFlow 2

• Building neural networks using tf.keras

• Understanding of tf.data for building input pipelines

1.1 Deep learning

1.1.1 Introduction to deep learning

Artificial Intelligence (AI) refers to giving machines the ability to learn and mimic human actions. It is mainly used
to assist humans, especially by replacing high-repetition, low-skill jobs. AI is a comprehensive field that includes
evolutionary computation, expert systems, symbolic AI, support vector machines (SVMs), machine learning, deep
learning, reinforcement learning, and many other fields.

Machine learning is a branch of AI that involves threemain fields: reinforcement learning, deep learning, and SVMs,
as shown in Fig. 1.1. Among them, deep learning is the most popular because it has been widely and successfully
applied to various application areas such as computer vision, speech recognition, natural language processing, and
so on [1]. Deep learning is based on artificial neural networks, also known as deep neural networks that have neural
layers, namely, input layers, hidden layers, and output layers, and connections of neurons between these layers for
representation learning. The “deep” in deep learning refers to the use of multiple layers through which the data
can be transformed in the neural network.

In deep learning, the deep neural network is a complex function. When inputting a set of training data to the neural
network, a set of output predictions can be obtained, and then the weights of the network will be updated to make the
output predictions closer to the expected outputs, that is, the answers are marked.

1.1.2 Deep learning toolkits

Numerous open-source tools have been introduced to develop and train machine learning and deep learning
models. The ten most popular deep learning toolkits are as follows:
1. TensorFlow: An end-to-end, open-source platformwritten in Python, C++ that provides a comprehensive flexible

ecosystem of tools and libraries to help developers easily build and deploy machine learning- and deep learning-
powered applications. More detail about TensorFlow is provided at the official website: http://tensorflow.org,
GitHub: https://github.com/tensorflow/tensorflow.

1Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00014-8

Copyright © 2021 Elsevier Inc. All rights reserved.

http://tensorflow.org
https://github.com/tensorflow/tensorflow
https://doi.org/10.1016/B978-0-323-90198-7.00014-8

2. Keras: A high-level application programming interface (API) written in Python with the purpose of enabling fast
experimentation. Keras can be run on top of other toolkits such as TensorFlow, Theano, and CNTK. More detail
about Keras is provided at the official website: http://keras.io/, GitHub: https://github.com/keras-team/keras.

3. Caffe: A deep learning frameworkwritten in C++ developed by Berkeley Artificial Intelligence Research. Caffe is a
flexible toolkit; models and optimization can be expressed by configuration without hard coding. More detail
about Caffe is provided at the official website: http://caffe.berkeleyvision.org, GitHub: https://github.com/
BVLC/caffe.

4. MXNet: An efficient library for deep learning that quickly trains network models and supports multiple
programming languages, including Python, Scala, Clojure, Java, Julia, Perl, C++, and R. More detail about MXNet
is provided at the official website: http://mxnet.io, GitHub: https://github.com/apache/incubator-mxnet.

5. Theano: A Python library for efficiently optimizing and evaluating mathematical expressions regarding multi-
dimensional arrays. Symbolic differentiation can be efficiently performed through Theanowith the use of graphics
processing units (GPUs). More detail about Theano is provided at the official website: http://deeplearning.net/
software/theano, GitHub: https://github.com/Theano/Theano.

Neurons

Input layer

Hidden layers

Out layer

Connections
Neurons

Car

Machine learning

Reinforcement
learning

Deep learning

SVM

FIG. 1.1 Deep learning is currently the most popular technique of machine learning.

2 1. Introduction to TensorFlow 2

http://keras.io/
https://github.com/keras-team/keras
http://caffe.berkeleyvision.org
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe
http://mxnet.io
https://github.com/apache/incubator-mxnet
http://deeplearning.net/software/theano
http://deeplearning.net/software/theano
https://github.com/Theano/Theano

6. TheMicrosoft Cognitive Toolkit (CNTK): By using CNTK for building deep learning models, the networks will be
described as a series of computational steps through a directed graph. More detail about CNTK is provided at the
official website: https://docs.microsoft.com/en-us/cognitive-toolkit, GitHub: https://github.com/Microsoft/
CNTK.

7. DeepLearning4J (DL4J): A distributed deep learning library written in Java that is compatible with Java virtual
machine languages, namely, Scala, Clojure, or Kotlin. DeepLearning4J is equal to Caffe in terms of performance
when usingmultiple GPUs.More detail about DL4J is provided at the official website: https://deeplearning4j.org,
GitHub: https://github.com/deeplearning4j/deeplearning4j.

8. PyTorch: A Python package that provides tensor computations like Numpy with sped-up GPU performance and
that supports a neural network library with maximum flexibility. More detail about PyTorch is provided at the
official website: http://pytorch.org, GitHub: https://github.com/pytorch/pytorch.

9. Chainer: A Python-based deep learning framework that supports building and training neural networks by
providing automatic differentiation APIs and object-oriented high-level APIs. More detail about Chainer is
provided at the official website: https://chainer.org, GitHub: https://github.com/chainer/chainer.

10. Deep Learning GPU Training System (DIGITS): A web application that supports frameworks including Caffe,
TensorFlow, and Torch to accelerate training neural network models for image classification, segmentation, and
object detection tasks. More detail about DIGITS is provided at the official website: https://developer.nvidia.
com/digits, GitHub: https://github.com/NVIDIA/DIGITS.

Themain purpose of building the above-mentioned toolkits is to provide a convenient framework for users to easily
construct machine learning models in an efficient way. Compared to other toolkits, TensorFlow attracts the greatest
number of users onGitHubwith its top-score rating, which is calculated based on the number of GitHub contributions,
Issues, Forks, and Stars [2]. Therefore, we chose TensorFlow to build and train deep learning models in the Labs in
this book.

1.2 Introduction to TensorFlow

TensorFlow [3] is an end-to-end, open-source platform developed by the Google Brain team that uses data flow
graphs to construct machine learning and deep learning models.

1. Tensor: refers to data representation

Tensor is an array of multi-dimensions with a uniform type called a dtype. All computations in TensorFlow are
based on tensors. Some examples of creating basic tensors are listed here.

Create a “scalar” tensor (a tensor with no “axes”)

import tensorflow as tf

x1 = tf.constant(5) # dtype=int32 (default)

print(x1) # Display x1

Result: tf.Tensor(5, shape=(), dtype=int32)

31.2 Introduction to TensorFlow

https://docs.microsoft.com/en-us/cognitive-toolkit
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK
https://deeplearning4j.org
https://github.com/deeplearning4j/deeplearning4j
http://pytorch.org
https://github.com/pytorch/pytorch
https://chainer.org
https://github.com/chainer/chainer
https://developer.nvidia.com/digits
https://developer.nvidia.com/digits
https://github.com/NVIDIA/DIGITS

Create a “vector” tensor (a tensor has 1-axis):

1.0 2.0 6.0 a vector, shape: [3]

import tensorflow as tf

x2 = tf.constant([1.0, 2.0, 6.0]) # dtype= float32

print(x2) # Display x2

Result: tf.Tensor([1. 2. 6.], shape=(3,), dtype=float32)

Create a “maxtrix” tensor (a tensor has 2-axes)

1 8
a matrix, shape: [3, 2] 3 2 5

 4 4

2

import tensorflow as tf

x3 = tf.constant([[1, 8],

 [2, 5],

 [4, 4]], dtype=tf.float64)

print(x3) # Display x3

Result: tf.Tensor([[1. 8.]

 [2. 5.]

 [4. 4.]], shape=(3, 2), dtype=float64)

4 1. Introduction to TensorFlow 2

import tensorflow as tf

x4 = tf.constant ([[[1, 1, 2, 2],

 [3, 3, 4, 4]],

 [[5, 5, 6, 6],

 [7, 7, 8, 8]],

 [[9, 9, 0, 0],

 [1, 1, 3, 3]],])

print(x4) # Display x4

Result: tf.Tensor([[[1 1 2 2]

[3 3 4 4]]

[[5 5 6 6]

[7 7 8 8]]

[[9 9 0 0]

 [1 1 3 3]]], shape=(3, 2, 4), dtype=int32)

Create a 3-axes tensor with shape: [3, 2, 4]

2. Flow: refers to a computational graph

TensorFlow works by using a data flow graph to represent computations. In the computational graph, each node
represents an operation such as addition, subtraction, multiplication, division, and so on, and the edges represent the
correlation between nodes. After each operation is performed, a new tensor will be formed for the next computation.

For example, using TensorFlow to present the mathematical formula Y¼ (a+b)/(a�b). The source code is as below:

The computation graph for the above program is shown in Fig. 1.2. Note that TensorFlow uses TensorBoard to draw
the graph; we introduce this function in Chapter 7. In Fig. 1.2, starting from the left, constants a and b are connected to

51.2 Introduction to TensorFlow

the addition (Add) and subtraction (Sub) operation nodes to perform computations, then the resulting tensors from the
Add node and Sub node are connected to the division (Div) operation node for computing the final result (Y).

In TensorFlow 1, a computational graph is first generated, and then a session is created to execute the graph. This
technique is called a static computation graph. To help the user easily get started with TensorFlow and debug pro-
grams, Eager execution, an imperative programming environment has been introduced in TensorFlow 2 to perform
operations immediately without constructing graphs; it also lessens boilerplate. In addition to Eager execution, there
are many changes in TensorFlow 2, which we introduce in the next section.

1.3 Improvement of TensorFlow 2

TensorFlow 2 is an improved version of TensorFlow 1 with a focus on simple execution, easy model building, and
robust model deployment. There are six main updated functions in TensorFlow 2: Eager Execution, Keras, tf.data,
TensorFlow Hub, Distribution Strategy, and SavedModel. The first three functions are discussed in the next section.
Later chapters discuss the other functions.

▪ Eager Execution: A flexible platform for research and experimentation on machine learning and deep learning,
providing an imperative programming environment where operations can be evaluated immediately without
constructing graphs.

▪ Keras: Keras was built on top of TensorFlow 2 as a high-level API for quickly and easily designing and training
network models. Built-in Keras in TensorFlow 2 can be used through the “tf.keras” function.

▪ tf.data: An API that allows users to construct complex input pipelines in simple ways. This API can handle larger
amounts of data and read data with different formats.

▪ TensorFlowHub: A place where the trained machine learning and deep learning models are stored for reusing with
a specific purpose such as fine-tuning a network model to address a new task with less training data and
training time.

▪ Distribution Strategy: tf.distribute.Strategy, a TensorFlow API used to distribute the existing models for training
across multiple devices, such as GPUs or TPUs.

▪ SavedModel: TensorFlow 2 has standardized a unifying format for storing complete network models with weights.
Using a SavedModel, the trained models can be deployed to many platforms or devices, such as smartphones,
Raspberry Pi, or even webpages.

Fig. 1.3 shows the simplified conceptual diagram of TensorFlow 2. As shown, the diagram consists of two stages:
(1) training stage and (2) deployment stage. The training stage starts from reading and processing data with tf.data
API for input pipelines, loading pre-trained model weights from TensorFlow Hub for fine-tuning, building neural
networks with tf.keras API, training models with distribution strategy, and saving model weights with SavedMo-
del. In the deployment stage, the trained model can be deployed in different devices or platforms through different
libraries.

Constant

a c

Operations

d

Tensors

a

b

b
Sub

Add

Div Y

4

2

FIG. 1.2 Computational graph of Y¼ (a+b)/(a�b).

6 1. Introduction to TensorFlow 2

▪ TensorFlow Lite: A library for converting the trained machine learning model into a compressed flat buffer and
deploying it in mobile and Internet of Things (IoT) devices.

▪ TensorFlow.js: A library for deploying the trained machine learning model in JavaScript environments such as the
browser or Node.js.

▪ TensorFlow Serving: A flexible serving system for machine learning and deep learning models, allowing for
deployment of new algorithms while the server architecture remains unchanged.

▪ TensorFlow 2 also supports other programming languages such as Java, C, Go, and so on.

1.4 Eager execution

1.4.1 Introduction to eager execution

Immediate evaluation of operations through the Eager Execution platform is one of the most important updated
features in TensorFlow 2. Unlike TensorFlow 1, which evaluates computations by first building a computational graph
and then setting a session to execute the generated graph, Eager Execution in TensorFlow 2 provides a programming
environment where the operations can be evaluated instantly without building graphs. This allows users to more eas-
ily debug with immediate error reporting as well as simplify the specification of dynamic models.

Important features of Eager Execution are as follows:

▪ Immediate evaluation of operations.
▪ Easier debugging program.
▪ No need to construct the computational graph.
▪ The calculation result can be returned without tf.Session.run.

Read & process data
tf.data

Build network model
tf.keras

Distributed training
Distribution Strategy

TPU GPU CPU

Pre-trained weights
TensorFlow Hub

Save model weights
SavedModel

Other programming language
Java, C, Go, ...

TensorFlow Lite
Mobile, embedded system

TensorFlow.js
Browser

TensorFlow Serving
Server

Training

Deployment

FIG. 1.3 The simplified conceptual diagram for TensorFlow 2.

71.4 Eager execution

Comparisons between TensorFlow 1 and TensorFlow 2:

▪ TensorFlow 1 code:

Define a constant: x = tf.constant(1), “x” does not execute.
Set a session: using tf.Session() to execute “x”

x = tf.constant(1) # Create a scalar Tensor

print(x) # display the constant Tensor information, shape=() means a scalar,

dtype=int32 represents an integer

Create a session

sess = tf.Session()

Use sess.run to execute the graph and display the value of the constant Tensor

print("x = {}".format(sess.run(x)))

Close the Session

sess.close()

Result: Tensor("Const_5:0", shape=(), dtype=int32)

x=1

▪ TensorFlow 2 code:
 Define a constant: x = tf.constant(1), x will be evaluated immediately without
setting and running any sessions.

x = tf.constant(1) # Create a constant Tensor

print(x) # display the constant Tensor, shape=() means it is a scalar, dtype=int32

represents an integer

Result: tf.Tensor(1, shape=(), dtype=int32)

1.4.2 Basic TensorFlow operations

This section presents a simple program, where the Eager Execution is first checked to ensure that it is activated.
Then, we introduce and execute some basic operations such as addition, subtraction, multiplication, and so on to help
readers understand a complete TensorFlow program.

Step 1. Import necessary packages

import numpy as np # import Numpy library

import tensorflow as tf # import TensorFlow library

check if Eager Execution is activated

print("Eager Execution is activated: {}".format(tf.executing_eagerly()))

Result: Eager Execution is activated: True

8 1. Introduction to TensorFlow 2

Step 2. Create a constant tensor

a = tf.constant(3) # create a constant tensor with value of 3

b = tf.constant(4) # create a constant tensor with value of 4

display Tensor values

print("a = {}".format(a))

print("b = {}".format(b))

Result: a = 3

b = 4

Step 3. Check the data type of a tensor

print(a) # shape=() means “a” is a scalar, and dtype=int32 means “a” is an integer.

print(b) # shape=() means “b” is a scalar, and dtype=int32 means “b” is an integer.

Result: tf.Tensor(3, shape=(), dtype=int32)

tf.Tensor(4, shape=(), dtype=int32)

Step 4. Use the addition and multiplication operations

c = a + b

print("a + b = {}".format(c)) # show the result of a+b

d = a * b

print("a * b = {}".format(d)) # show the result of a*b

Result: a + b = 7

 a * b = 12

Step 5. Create two-dimensional Tensors.

Create a 2D Tensor whose dtype is float32

a = tf.constant([[1., 2.], [3., 4.]], dtype=tf.float32)

Create a 2D Numpy array whose dtype is float32

b = np.array([[1., 0.], [2., 3.]], dtype=np.float32)

print("a constant: {}D Tensor".format(a.ndim))

c = a + b

print("a + b = \n{}".format(c)) # Display the result of

tf.matmul is matrix multiplication

d = tf.matmul(a, b)

print("a * b = \n{}".format(d)) # Display the result of a*b

Result: a constant: 2D Tensor

a + b = [[2. 2.]

 [5. 7.]]

a * b = [[5. 6.]

 [11. 12.]]

91.4 Eager execution

Step 6. Tensor can be converted to Numpy

print("NumpyArray:\n {}".format(c.numpy()))

Result: NumpyArray:

 [[2. 2.]

 [5. 7.]]

Supplementary explanation

The data format of TensorFlow can be different from that of other libraries, such as OpenCV or Matplotlib. When data type
errors occur, the fastest solution is to convert data to the Numpy format since this format can be applied to most Python
packages.

1.5 Keras

1.5.1 Introduction to Keras

Introduced by François Chollet in 2014, Keras [4] is an open-source, deep learning library designed for quickly
building and training neural network models. Keras has no low-level operations of its own; it is run on top of
open-source deep learning libraries called backend, such as TensorFlow, CNTK, and Theano. Keras utilizes Tensor-
Flow backend by default; it can be changed to CNTK backend or Theano backend by using “use_backend()” function.
There are a lot of commonly used neural-network building modules integrated into Keras for effectively designing
models such as convolution layers, loss functions, activation functions, optimizers, and so on. In TensorFlow 2, Keras
is the high-level API, so there is no need to install any additional Keras package; it can be used directly through the tf.
keras API. It is highly recommended to use “tf.keras” API instead of “Keras” API because tf.keras supports Tensor-
Flow operations, Eager Execution, tf.data, TPU training, and so on.

The following introduces the two most commonly used methods of building network models in Keras, including
sequential models and functional models.

The following network layers are used for designing networkmodels (later chapters presentmore detail about these
layers).

▪ Dense: fully connected layer.
▪ Conv2d: convolution layer.
▪ Flatten: for flattening a tensor into a one-dimensional tensor. It is usually inserted between convolution layer and

fully connected layer.
▪ Add: for adding a list of tensors with the same shape and outputting a single tensor.
▪ Concatenate: for concatenating a list of tensors; all tensors have the same shape except for the concatenation axis.

Supplementary explanation

Using tensorflow.keras.utils.plot_model requires additional installation of pydot and graphviz packages.

▪ On Ubuntu: Open Terminal and enter the following command:

pip install pydot
sudo apt install graphviz

▪ On Windows:

10 1. Introduction to TensorFlow 2

1. Open the command prompt and enter the following command:

pip install pydot

2. Go to https://graphviz.gitlab.io/_pages/Download/windows/graphviz-2.38.msi to Download and install the “graphviz”
package, as shown in Fig. 1.4.

3. Finally, add the graphviz/bin installation path to “New system variable”: Control Panel ! System ! Advanced System
Settings ! Environmental Variables, as shown in Fig. 1.5.

FIG. 1.4 Download Graphviz 2.38.

FIG. 1.5 New environment variables.

111.5 Keras

https://graphviz.gitlab.io/_pages/Download/windows/graphviz-2.38.msi

1.5.2 Sequential model

Sequential model is a method of building deep learning networks layer by layer in a systematic fashion. Fig. 1.6
shows a sequential network that starts from an input layer, which is connected to hidden layer 1. Then, hidden layer
1 is connected to hidden layer 2, and finally, hidden layer 2 and the output layer are connected to each other to form a
complete model. Keras provides a sequential model API for constructing a network model easily and quickly. How-
ever, the construction method of the sequential model has some limitations.

▪ Only allows creating models with single input and single output.
▪ Does not allow creating models that share layers.
▪ Does not allow building models with multiple inputs or outputs.

Here, we present two methods of building a sequential network model, taking the image classification problem as
an example. The model has an input with size of 28�28, which will be flattened into a one-dimensional vector of 784;
two hidden layers (dense layers) with rectified linear (ReLU) activation functions; and an output followed by softmax
layer for classification.

Hidden
layer 1

Hidden
layer 2

Output
layer

Input
layer

Input unit Hidden unit Output unit

FIG. 1.6 Single input and output model.

12 1. Introduction to TensorFlow 2

Step 1. Import necessary packages
import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.utils import plot_model

from IPython.display import Image

Step 2. Build the network model
The first method: Using “keras.Sequential“APT in Keras

Create a Sequential model

model = keras.Sequential(name='Sequential')

Each time model.add adds a layer to the network, the first layer needs to define the input size.

model.add(layers.Dense(64, activation='relu', input_shape=(784,)))

model.add(layers.Dense(64, activation='relu'))

The last layer will be regarded as the output layer of the model

model.add(layers.Dense(10, activation='softmax'))

The second method: Using “tf.keras.Sequential” API in TensorFolow2.0
all the network layers in a list and use them as parameters of tf.keras.Sequential

And this list is also sequential, the first one needs to define the input size, and the last one is

the output layer

model = tf.keras.Sequential([layers.Dense(64, activation='relu', input_shape=(784,)),

 layers.Dense(64, activation='relu'),

 layers.Dense(10, activation='softmax')])

131.5 Keras

Step 3. Display the network model

plot_model(model, to_file='Functional_API_Sequential_Model.png')

Image('Functional_API_Sequential_Model.png')

Result:

1.5.3 Functional model

The Keras functional API is a way to build network models by using a directed acyclic graph of layers. Following
this method, instances of layers are first created, then they are connected to each other in pairs, and finally, the layers
for acting as the input and output to the network are assigned. There are three steps for defining a networkmodel using
Keras functional API.

▪ Step 1 (defining input): Different from sequential model, the input layer with specific size of input data needs to be
defined first.

▪ Step 2 (connecting layers): This step is completed by specifyingwhere the input of a new layer comes fromwhen it is
declared.

▪ Step 3 (creating model): After all layers are declared and connected, it is required to specify the input and output of
the model for completion of model creation.

The Keras functional API is very flexible for creating complex models, especially models with multiple inputs, mul-
tiple outputs, or multiple inputs and outputs, as shown in Fig. 1.7. All the complex models for advanced applications
such as object detection, image segmentation, generative adversarial network, and so on, whichwe introduce later, can
be built using a Keras functional API.

14 1. Introduction to TensorFlow 2

The following introduces how to build the four network models shown in Fig. 1.7 using a Keras functional API.

1. Single input and output model

For example, a model has an input with size of 28�28, which is flattened into a one-dimensional vector of 784; two
hidden layers named “hidden1” and “hidden2”with ReLU activation functions; and an output layer named “Output,”
followed by softmax activation function for classification. The source code for constructing model is:

input = keras.Input(shape=(784,), name='Input')

h1 = layers.Dense(64, activation='relu', name='hidden1')(inputs)

h2 = layers.Dense(64, activation='relu', name='hidden2')(h1)

output = layers.Dense(10, activation='softmax', name='Output')(h2)

model = keras.Model(inputs=input, outputs=output)

plot_model(model, to_file='Functional_API_Single_Input_And_Output_Model.png')

Image('Functional_API_Single_Input_And_Output_Model.png')

Result:

Output LayerInput Layer

Input Unit

Multiple Outputs Model

Multiple Inputs Model

Multiple Inputs and outputs Model

Single Inputs and outputs Model

Hidden Unit

Hidden Layer

Output Unit

FIG. 1.7 Different network model diagrams.

151.5 Keras

2. Multiple inputs and single output model

For example, a commodity price-prediction model consists of two inputs, including product image and product
brand, and one output of price prediction with size of (1,). The input product image with size of (128, 128, 3) is passed
through two hidden layers named “hidden1_1” and “hidden1_2”, and the input product brand with size of (1,) goes
through a hidden layer named “hidden1_3”. After combining information of two inputs, the resulting features are sent
to another hidden layer named “hidden2.” Then, the output of “hidden2” layer is used as an input of a dense layer
named “Output” for price prediction.

The source code for constructing this model is:

The source code for constructing model is as below:

Step1: Defining Input layers

img_input = keras.Input(shape=(128, 128, 3), name='Image_Input')

info_input = keras.Input(shape=(1,), name='Information_Input')

Step 2: connecting layers

#Hidden layers

h1_1 = layers.Conv2D(64, 5, strides=2, activation='relu', name='hidden1_1')(img_input)

h1_2 = layers.Conv2D(32, 5, strides=2, activation='relu', name='hidden1_2')(h1_1)

h1_2_ft = layers.Flatten()(h1_2)

h1_3 = layers.Dense(64, activation='relu', name='hidden1_3')(info_input)

concat = layers.Concatenate()([h1_2_ft, h1_3])

h2 = layers.Dense(64, activation='relu', name='hidden2')(concat)

Output layer

16 1. Introduction to TensorFlow 2

outputs = layers.Dense(1, name='Output')(h2)

Step 3: Creating network model

model = keras.Model(inputs=[img_input, info_input], outputs=outputs)

Show network model architecture

plot_model(model, to_file='Functional_API_Multi_Input_Model.png')

Image('Functional_API_Multi_Input_Model.png')

Result:

3. Single input and multiple outputs model

For example, a portrait-recognition model has an input and two outputs. The input of the model is a personal photo
with size of (128, 128, 3), which is passed through three hidden layers named “hidden1,” “hidden2,” and “hidden3.”
After flattening the output of the last hidden layer (hidden3), it is sent to two output layers named “Age_Output” and
“Gender_Output” for age and gender predictions, respectively.

171.5 Keras

The source code for constructing model is:

inputs = keras.Input(shape=(128, 128, 3), name='Input')

h1 = layers.Conv2D(64, 3, activation='relu', name='hidden1')(inputs)

h2 = layers.Conv2D(64, 3, strides=2, activation='relu', name='hidden2')(h1)

h3 = layers.Conv2D(64, 3, strides=2, activation='relu', name='hidden3')(h2)

flatten = layers.Flatten()(h3)

age_output = layers.Dense(1, name='Age_Output')(flatten)

gender_output = layers.Dense(1, name='Gender_Output')(flatten)

model = keras.Model(inputs=inputs, outputs=[age_output, gender_output])

plot_model(model, to_file='Functional_API_Multi_Output_Model.png')

Image('Functional_API_Multi_Output_Model.png')

Result:

18 1. Introduction to TensorFlow 2

4. Multiple inputs and multiple outputs model

For example, aweather predictionmodel has two inputs for satellite cloud image and climate information, and three
outputs for rainfall probability, temperature, and humidity. The satellite cloud image with size of (256x256x3) is
passed through three hidden layers named “hidden1,” “hidden2,” and “hidden3,” and climate information with size
of (10,) is put through a dense layer. After combining two inputs of information, themodel outputs climate information
including rainfall probability, temperature, and humidity through “Output1,” “Output2,” and “Output3” layers,
respectively.

The source code for constructing model is:

image_inputs = keras.Input(shape=(256, 256, 3), name='Image_Input')

info_inputs = keras.Input(shape=(10,), name='Info_Input')

h1 = layers.Conv2D(64, 3, activation='relu', name='hidden1')(image_inputs)

h2 = layers.Conv2D(64, 3, strides=2, activation='relu', name='hidden2')(h1)

h3 = layers.Conv2D(64, 3, strides=2, activation='relu', name='hidden3')(h2)

191.5 Keras

flatten = layers.Flatten()(h3)

h4 = layers.Dense(64)(info_inputs)

concat = layers.Concatenate()([flatten, h4])

weather_outputs = layers.Dense(1, name='Output1')(concat)

temp_outputs = layers.Dense(1, name='Output2')(concat)

humidity_outputs = layers.Dense(1, name='Output3')(concat)

model = keras.Model(inputs=[image_inputs, info_inputs],

 outputs=[weather_outputs, temp_outputs, humidity_outputs])

plot_model(model, to_file='Functional_API_Multi_Input_And_Output_Model.png')

Image('Functional_API_Multi_Input_And_Output_Model.png')

Result:

1.6 Tf.data

1.6.1 Introduction to tf.data

Preparing and feeding data into the model are the first steps in trainingmachine learning and deep learningmodels.
If themethod of building a data input pipeline causes the CPU to take a long time to load data, and thus the GPU needs
to wait for the CPU, this can lead to performance problems. To keep the GPU from data starvation, TensorFlow pro-
vides a “tf.data” API to facilitate building complex and highly optimized data pipelines. As shown in Fig. 1.8, before

20 1. Introduction to TensorFlow 2

data are sent to the machine learning or deep learning model, they are processed with “tf.data” through three stages:
extraction stage, transformation stage, and loading stage.

▪ Extraction: Reading data from storage such as local disks (SSD, HDD), cloud storage, and so on, is the first step in a
data pipeline, and “tf.data” supports reading a lot of data formats. Fig. 1.9 is an illustration of reading and
representing data with tf.data. Note that if data in this step are directly passed to the model, one of the rows of
represented data will be taken in each training iteration. A dataset with size 5TB and a CPU run with 16GB of RAM
will be trouble in the training model.

▪ Transformation: After reading and representing data, the common next step is to shuffle data and create mini-
batches of data. “tf.data” uses “tf.data.Dataset” API to complete this task, as shown in Figs. 1.10 and 1.11.

Datasets Extraction Transformation Loading
ML/DL
Model

tf.data
(Input Pipeline)

FIG. 1.8 Processing input data pipeline with “tf.data” API.
Note that, ML and DL are abbreviation for machine learning
and deep learning, respectively.

Extraction

Dataset

Data (tf.tensor)

tf.data
(Input Pipeline)

FIG. 1.9 Reading and representing data with “tf.data.”

Extraction Transformarmation

tf.data
(Input Pipeline)

Data (tf.tensor) Shuffling data
(tf.data.Dataset)

FIG. 1.10 Shuffling data with tf.data.

211.6 Tf.data

▪ Loading: After the transformation step, data is loaded into acceleration devices such as GPUs or TPUs for training
models. The tf.data API provides prefetching of data, parallel input/output (I/O), and parallel processing of batches
for high-performance load, as shown in Fig. 1.12.

1.6.2 Basic functions of tf.data API

This section provides some example programs that use the tf.data API for preparing data such as creating data,
setting data attributes, retrieving data, and so on. Note that it is necessary to execute each line of the code in order,
starting from 1.

1. tf.data.Dataset.from_tensors: creating dataset with single element

dataset = tf.data.Dataset.from_tensors(tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], shape=(10,)))

Display Data information: shapes and data type

print(dataset)

Result:<TensorDataset shapes: (10,), types: tf.int32>

Extraction Transformarmation

tf.data
(Input Pipeline)

Data (tf.tensor)
Creating mini-batches

of 2 samples
(tf.data.Dataset)

FIG. 1.11 Creating mini-batches of data with tf.data.

FIG. 1.12 Loading data with tf.data.

22 1. Introduction to TensorFlow 2

2. tf.data.Dataset.from_tensor_slices: creating a dataset that whose elements are slices of tensors

x_data = tf.data.Dataset.from_tensor_slices(tf.constant([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))

Display Data information: shapes and data type

print(x_data)

y_data = tf.data.Dataset.from_tensor_slices(tf.constant([0, 2, 4, 6, 8, 10, 12, 14, 16, 18]))

Display Data information: shapes and data type

print(y_data)

Result: <TensorSliceDataset shapes: (), types: tf.int32>

 <TensorSliceDataset shapes: (), types: tf.int32>

3. for loop: using for iterating over a sequence such as a list, a tuple, a string, and so on.

for dataset in dataset:

 print(data)

Result: tf.Tensor([1 2 3 4 5 6 7 8 9 10], shape=(10,), dtype=int32)

for data1, data2 in zip(x_data, y_data):

 print('x: {}, y: {}'.format(data1, data2))

Result: x: 0, y: 0

x: 1, y: 2

x: 2, y: 4

x: 3, y: 6

x: 4, y: 8

x: 5, y: 10

x: 6, y: 12

x: 7, y: 14

x: 8, y: 16

x: 9, y: 18

4. take: creating a dataset with count elements from the source dataset

for data in dataset.take(1):

print(data)

Result: tf.Tensor([1 2 3 4 5 6 7 8 9 10], shape=(10,), dtype=int32)

for data1, data2 in zip(x_data.take(5), y_data.take(5)):

print('x: {}, y: {}'.format(data1, data2))

Result: x: 0, y: 0

 x: 1, y: 2

 x: 2, y: 4

 x: 3, y: 6

 x: 4, y: 8

231.6 Tf.data

If the element count exceeds the number of elements of the source dataset, the

new dataset is the source dataset.

for data1, data2 in zip(x_data.take(12), y_data.take(12)):

print('x: {}, y: {}'.format(data1, data2))

Result: x: 0, y: 0

x: 1, y: 2

x: 2, y: 4

x: 3, y: 6

x: 4, y: 8

x: 5, y: 10

x: 6, y: 12

x: 7, y: 14

x: 8, y: 16

x: 9, y: 18

5. tf.data.Dataset.zip: creating a new dataset by zipping together the given datasets

tf.data.Dataset.zip((x_data, y_data))

Result:<ZipDataset shapes: ((), ()), types: (tf.int32, tf.int32)>

6. map: transformation of data by using a specified function

tf.data.Dataset.range(10).map(lambda x: x*2)

Result: <MapDataset shapes: (), types: tf.int64>

7. Name: the samples from dataset can be named

x = tf.data.Dataset.range(10)

y = tf.data.Dataset.range(10).map(lambda x: x*2)

dataset = tf.data.Dataset.zip({"x": x, "y": y})

print(dataset)

Result: <ZipDataset shapes: {y: (), x: ()}, types: {y: tf.int64, x: tf.int64}>

for data in dataset.take(10):

print('x: {}, y: {}'.format(data['x'], data['y']))

Result: x: 0, y: 0

x: 1, y: 2

x: 2, y: 4

x: 3, y: 6

x: 4, y: 8

x: 5, y: 10

x: 6, y: 12

x: 7, y: 14

x: 8, y: 16

x: 9, y: 18

24 1. Introduction to TensorFlow 2

8. Set a size for each batch:

dataset = tf.data.Dataset.zip({"x": x, "y": y}).batch(2)

for data in dataset.take(5):

print('x: {}, y: {}'.format(data['x'], data['y']))

Result: x: [0 1], y: [0 2]

x: [2 3], y: [4 6]

x: [4 5], y: [8 10]

x: [6 7], y: [12 14]

x: [8 9], y: [16 18]

9. Shuffle: Randomly shuffling the elements of the dataset. A buffer is filled with “buffer_size” elements, then these
elements in this buffer are randomly sampled, and the selected elements are replaced with new elements. It is
suggested to set the “buffer_size” to be greater than or equal to the size of the dataset.

dataset = dataset.shuffle(10)

for data in dataset.take(5):

print('x: {}, y: {}'.format(data['x'], data['y']))

Result: x: [0 1], y: [0 2]

x: [6 7], y: [12 14]

x: [4 5], y: [8 10]

x: [8 9], y: [16 18]

 x: [2 3], y: [4 6]

10. Repeat: After finishing reading all the samples from a dataset, no samples can be read unless a “repeat” function is
used. Setting repeat(n) allows n times dataset to be repeated

for data in dataset.take(10):

print('x: {}, y: {}'.format(data['x'], data['y']))

print('-' * 50)

dataset = dataset.repeat(2)

for data in dataset.take(10):

251.6 Tf.data

print('x: {}, y: {}'.format(data['x'], data['y']))

Result: x: [0 1], y: [0 2]

x: [6 7], y: [12 14]

x: [4 5], y: [8 10]

x: [8 9], y: [16 18]

x: [2 3], y: [4 6]

--

x: [6 7], y: [12 14]

x: [0 1], y: [0 2]

x: [4 5], y: [8 10]

x: [8 9], y: [16 18]

x: [2 3], y: [4 6]

x: [8 9], y: [16 18]

x: [4 5], y: [8 10]

x: [6 7], y: [12 14]

x: [0 1], y: [0 2]

x: [2 3], y: [4 6]

References

[1] S. Dargan, M. Kumar, M.R. Ayyagari, G. Kumar, A survey of deep learning and its applications: a new paradigm to machine learning. Arch.
Computat. Methods Eng. 27 (2020) 1071–1092, https://doi.org/10.1007/s11831-019-09344-w.

[2] J. Zacharias,M. Barz, D. Sonntag, A survey on deep learning toolkits and libraries for intelligent user interfaces, CoRR, 2018. vol. abs/1803.04818.
[Online]. Available:http://arxiv.org/abs/1803.04818.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, software available from
tensorflow.org. [Online]. Available:https://www.tensorflow.org/, 2015.

[4] F. Chollet, Keras, https://github.com/fchollet/keras, 2015.

26 1. Introduction to TensorFlow 2

https://doi.org/10.1007/s11831-019-09344-w
http://arxiv.org/abs/1803.04818
http://tensorflow.org
https://www.tensorflow.org/
https://github.com/fchollet/keras

C H A P T E R

2

Neural networks

OUTLINE
• Principles of neural networks

• Optimization algorithms for training neural networks

• Getting to know the Kaggle platform

• Using a fully connected neural network to complete a
house price-prediction system

• Getting to know TensorBoard

• The problem of overfitting

2.1 Introduction to neural networks

2.1.1 A brief history of neural networks

In 1943, WarrenMcCulloch andWalter Pitts [1] introduced a computational model based on a threshold logic algo-
rithm, paving the way for the development of artificial neural networks (ANNs). Inspired from McCullock and Pitts
[1], numerous methods have been proposed for neural networks which can be categorized into two approaches: (1)
focusing on biological process [2,3] and (2) focusing on application [4,5]. However, around 1980–2000, simpler models
such as linear classifiers or support vector machines (SVMs) [6,7] for classification and regression analysis became
more popular. The reason can be explained as follows. Deep networks with many intermediate layers called hidden
layers can obtain better performance than that of shallow neural networkswith few hidden layers, as shown in Fig. 2.1.
In a deep network, the hidden layers extract features from input data and these features are used on the following
layers for computation. Therefore, the more hidden layers, the more detailed features of data can be obtained. For
example, a human face recognition model takes face images as inputs, and then the first hidden layer takes raw data
from the input layer and extracts simple features such as edges, lines, and so on. In the following hidden layers, the
high-level specific features of the input image such as nose, eyes, hair, and others can be extracted for face recognition.
Unfortunately, machine learning algorithms like gradient-based learning methods and backpropagation [8] do not
work well for deep neural networks because of a vanishing gradient problem during the training process. Further-
more, since deep neural networks have high computational cost and memory footprint, they require large datasets
for training and development.

27Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00006-9

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00006-9

From 2000 to today, the development of various aspects of computer technology and machine learning algorithms
has made it possible to build and train deep neural networks, and there have been major breakthroughs.
▪ Computing ability

In the past, central processing units (CPUs) were used to perform the calculation of neural networks, but now
graphic processing units (GPUs) and tensor processing units (TPUs) are used because of their improved performance.
In 2012, Krizhevsky et al. used a NVIDIA GPU to train an eight-layer network called “AlexNet” [9]. After winning the
2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition [10], everyone realized the amazing
computing power of GPUs and the abilities of deep neural networks.

▪ Dataset and storage equipment

A deep neural network cannot be trained efficiently without sufficient training data. Because data storage devices
were expensive and had limited capacity, large datasets were impossible 20–30years ago. Nowadays, with the devel-
opment of science and technology, the price of storage devices has decreased, and Internet and cloud devices, such as
Kaggle (www.kaggle.com/) and TensorFlow hub (www.tensorflow.org/hub) are prevalent; there are many available
databases for users to download, research, and develop. Thus the problems of lacking of large datasets and data stor-
age devices have been solved.

▪ Activation function

Sigmoid was a very popular activation function for neural networks. However, using the sigmoid activation func-
tion in hidden layers of deep networks with randomweight initialization leads to vanishing gradients during training,
which makes the weights of the networks difficult to update, resulting in ineffective training. In 2011, Glorot et al. [11]
introduced the rectified linear unit (ReLU) function, which has proved effective at improving the problem of vanishing
gradients and the learning speed of various deep neural networks. In 2015, parametric rectified linear unit (PReLU)
activation was introduced by He et al. [12], allowing for effectively investigating and training deeper and wider deep
neural network models.

2.1.2 Principle of neural networks

A neural network is composed of three types of layers: input layer, hidden layer, and output layer. Each layer in the
network has many neurons for connection and computation, as shown in Fig. 2.2. The neurons of the input layer, hid-
den layer, and output layer are called the input neuron, hidden neuron, and output neuron, respectively. The input
layer provides initial data from outside to the network without any computations for further processing by hidden

FIG. 2.1 The architecture of a neural network.

28 2. Neural networks

http://www.kaggle.com/
http://www.tensorflow.org/hub

layers. Hidden layers are located between the input and output layers in the neural network and are responsible for
performing computation on the input data through hidden neurons and passing the results to the output layer. The
output layer takes the results from the last hidden layer as the input data and uses its neurons to compute and produce
the final result of the network.

Except for input neurons, each neuron of the neural network can receive one or more inputs with separate weights,
and these inputs are summed to produce an output. Normally, after summing the inputs, the resulting sum is sent to a
non-linear function, which is known as the activation function for generating output, as shown in Fig. 2.3. The common
activation functions include ReLU, sigmoid, and tanh, which we discuss in later chapters.

When the neural network adopts activation functions to perform a nonlinear transformation of the inputs, it can
help the neural networks describe and learn complex tasks.

2.1.3 Training neural networks

Training a neural network is the process of using training data to find the appropriate weights of the network for
creating a good mapping of inputs and outputs. As shown in Fig. 2.4, the training procedure for a neural network
consists of four parts: preparing the dataset, building a network model, loss function, and optimization.

Connections

Neurons

Input layer Output layerHidden layer

a1

x1

x2

(1)

a1
(2)

a2
(2)

a2
(1)

a3
(1)

FIG. 2.2 Example of a two-layer neural network. Note that the number of layers of the neural network is equal to the number of hidden layers plus
one, ai

(l) represents the output of i-th neuron in l-th layer, the biases are hidden.

0.0
–6 –4 –2 0

z

s (z) =

a = s (z)

z = z1w1 + z2w2 + b
x1

x2

w1

w2

Sigmoid Function

2 4 6

0.2

0.4
s

0.6

0.8

b

a

1
1 + e–z

1.0

FIG. 2.3 Illustration of a neuron of a neural network. xi,wi, and b represent inputs, weights, and bias of the neuron, respectively. σ is an activation
function.

292.1 Introduction to neural networks

1. Preparing the dataset

The dataset for training neural networks is divided into three types of data: training data, validation data, and test
data.

▪ Training data: A set of examples, which is used for fitting the weights of connections between neurons in neural
networks. The training data often contains pairs of samples (input sample, ground truth label). The ground truth
label is also called the expected output.

▪ Validation data: A set of examples, which is used to estimate the model fit during tuning the hyperparameters of the
network model, such as the number of hidden layers, the number of neurons in each layer, and so on.

▪ Test data: A set of examples, which is used to estimate the final network model fit on the training data. For most
competitions, training data and validation data are published, while the test data is kept as the basis for the final
evaluation of the model.

Supplementary explanation

The test data is used to evaluate the accuracy and generalization ability of a neural network in the real world. If the hyper-
parameters of the neural network are directly tuned through the results on the test data, the network can often obtain good
performance on both training data and test data, but it will perform poorly when applied to the real world [13]. In order to
avoid this problem, the validation data is used instead of the test set, so that the performance of the model on the test data will
be more in line with that of the model operating in the real world.

2. Building a network model

As introduced in Section 2.1.2, neural networks consist of three main components: input layers, hidden layers, and
output layers. For different tasks, the network models are built with different hyperparameters, such as the number of
hidden layers, the number of neurons in each layer, and so on. Because the choice of hyperparameters directly affects
the training results of the network models, we provide the TensorBoard tuning toolkit in Chapter 7 to assist in adjust-
ing these hyperparameters.

In the neural network, if each neuron in a layer is connected to all neurons in the following layer, this network is
called a fully connected neural network (FCNN). Fig. 2.5 shows a FCNN with three hidden layers that employ the
ReLU activation function for non-linear transformation. Because of full connection, all the combinations of the infor-
mation from the previous layer can be used to compute in the next layer; this helps the FCNN learn better input data

FIG. 2.4 Schematic diagram of the neural network training procedure.

30 2. Neural networks

[14]. However, FCNNs are often extremely computationally expensive and are challenged by the problem of overfit-
ting, a phenomenon of modeling the training data too well during the training process, which leads to poor perfor-
mance of the network, especially deep neural networks [15]. In the next sections of this chapter, we discuss the
application of an FCNN for house price-prediction, as well as provide the solution to the overfitting problem.

3. Loss function

A neural network is trained through an optimization process that uses a loss function to calculate an error between
the predicted value of the model and the expected output. For the different purposes of training, the optimization pro-
cess may minimize or maximize the loss function, which means it needs to evaluate a suitable solution such as a set of
parameters to reach the lowest or highest error score, respectively. Typically, minimizing the loss function is applied
when training the neural networks. There are many loss functions and it can be challenging to choose a suitable one for
a specific problem. The following introduces commonly used loss functions for main problems in machine learning,
including the linear regression problem, binary classification problem, and multiclass classification problem.

▪ Linear regression problem: Neural networks are designed with one neuron in the output layer for each possible
desired value. An example of a regression model is the house price-predictionmodel, which is based on information
such as the number of bedrooms, bathrooms, and floors in the house, the age of the house, and so on, to predict the
price of a house. The most common loss functions for linear regression models are mean squared error (MSE) and
mean absolute error (MAE), which calculate the average of the squared or absolute difference between the predicted
value and the expected output.

▪ Binary classification problem: Neural networks are designed with one neuron in the output layer for predicting an
input sample as belonging to one of two classes. Medical testing to determine whether a person has a certain disease
or not is a typical binary classification problem. For training binary classification models, binary cross-entropy loss
function, also known as log loss function, is commonly used. We discuss this in more detail in Chapter 3.

FIG. 2.5 Fully connected neural network.

312.1 Introduction to neural networks

▪ Multiclass classification problem: Neural networks are designed with many neurons in the output layers, where
each neuron with softmax activation functions is responsible for predicting one class. Categorical cross-entropy loss
function, also known as softmax loss function, is widely used for training multiclass classification models. We
discuss categorical cross-entropy in more detail in Chapter 4.

Because house price-prediction introduced in this chapter is a linear regression problem, MSE or MAE can be
employed as loss functions. Here, we present the formulas and differences of these two loss functions.
MSE:

MSE¼
XN

i¼1
yi� ŷi
� �2

N

MAE:

MAE¼
XN

i¼1
yi� ŷi
�� ��

N

where y is the expected output, ŷ is the predicted value of the neural network model, and N is the amount of data in a
batch.

Both MSE and MAE calculate the error between the predicted value (y_pre) of the model and the expected output
(y_true), but MSE calculates the average of squared error and MAE calculates the average of absolute error. Fig. 2.6
presents a comparison between MSE and MAE. As shown, when the value of y_true - y_pre is between �1 and 1, the
MSE loss value is lesser than that of MAE. In contrast, the MSE loss value is greater than MAE loss value when the
value of y_true - y_pre is greater than 1 or less than �1. Using these two methods as the loss function will produce
different training results.

The house price-predictionmodel in this chapter uses MSE as the training loss function. The reader can changeMSE
to MAE to compare the results between these two methods.

–2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

MSE
MAE

–1.5 –1.0 –0.5 0.0
Y_true - Y_pred

Lo
ss

Mean square error vs Mean absolute error

0.5 1.0 1.5 2.0

FIG. 2.6 MSE and MAE loss value.

32 2. Neural networks

4. Optimization

In training neural networks, the optimization process is to find a set of parameters, also called a set of weights, to
make the loss value of the loss function as small as possible. Gradient descent (GD) is the most commonly used opti-
mization algorithm for training neural networks. To find a minimum of the loss function with GD, take steps propor-
tional to the opposite direction of the gradient of the loss function at the current point. This algorithm can be likened to
a person who is looking for a path to get down a mountain where the path down is not visible. Based on the current
position of the person, they look at the steepness of the mountain, then go downhill in the direction of the steepest
descent. This step is repeated until they reach the bottom of the mountain. For example, given a neural network model
with uninitialized weightsW and a loss function Lwhich is used to calculate the error between the predicted output of
the network and the expected output. The network is trained using the GD algorithm to minimize L. The steps of find-
ing W to reach a minimum loss value of L are as follows:

▪ Step 1. Randomly initialize W
▪ Step 2. Update W with a learning rate η through the formula:

W¼W�η
∂L
∂W

where
∂L
∂W

represents the gradient of L at point W.

▪ Step 3. Calculate the value of Lwith newW, called “loss,” and repeat Step 2 until reaching aminimum loss, as shown
in Fig. 2.7

The loss value reaches minimum loss, which means the predicted results of the model are closest to the expected
outputs.

In fact, not every update of GD is updated towards the minimum value of the loss function, but rather is updated
towards the direction that can reduce the error of the loss function at that time. Thus, when the model is trained until
the loss value cannot be reduced, the reached point is usually the local minimum instead of the global minimum, as
shown in Fig. 2.8.

FIG. 2.7 Gradient descent diagram.

FIG. 2.8 The weights are updated in the direction of converg-
ing to a local minimum instead of a global minimum.

332.1 Introduction to neural networks

Learning rate is a configurable hyperparameter that determines step size at each iteration in training neural
networks. A smaller learning rate results in small changes in the weights of each update and requires many train-
ing iterations, while a larger learning rate makes quick changes and requires fewer training iterations. If the learn-
ing rate is too large, the changes in the weights of each update are too large; it is likely to jump over the minimum
value and produce oscillations, as shown in Fig. 2.9A. Conversely, if the learning rate is too small, the optimization
efficiency may be poor, and the optimal value cannot be found after a long training, as shown in Fig. 2.9B. Thus,
the learning rate is one of the most crucial hyperparameters to be carefully selected when training the network
model.

There are many kinds of gradient-based optimization algorithms. The aforementioned GD uses all training data to
calculate the gradient of the loss function and update the weights once. If the neural network is updated N times, it
needs to calculate the entire training data N times. Using GD is very time-consuming and inefficient. Therefore, the
stochastic gradient descent (SGD) algorithm is introduced. At each time, SDG calculates the gradient of the loss func-
tions based only on a random sample from the training dataset, and then updates the weights based on this gradient.
This makes SDG suitable for training a huge training dataset. In addition, there are also many optimization methods,
such as Momentum [16], AdaGrad [17], Adam [18], and others. Momentum adapts the concept of momentum while
AdaGrad adjusts the learning rate according to the gradient for optimization. Adam can be seen as a combination of
Momentum and AdaGrad that utilizes estimations of first and second moments of gradient to adapt learning rates for
different weights. By using Adam as an optimizer, the weights of the network model can be updated through the fol-
lowing formula:

wt ¼wt�1�α
m̂tffiffiffiffi
v̂t

p
+ ε

where w is the weights of the model, α is step size parameter (α¼0.001), ε is set to 10�8, t¼ 0 is for initialization of time
step, and m̂t+ 1 and v̂t+1 are defined as:

m̂t ¼ mt

1�βt1

v̂t ¼ vt
1�βt2

Here, β1, β2� [0,1) are hyperparameters for controlling the exponential decay rates of the moving average of the gra-
dient mt and the squared gradient vt.

mt ¼ β1mt�1 + gt 1�β1ð Þ
vt ¼ β2vt�1 + gt⨀gtð Þ 1�β2ð Þ

where gt represents gradient on mini-batch at timestep t, and ⨀ is the element-wise operation.
Because of the efficiency in optimization, Adam has beenwidely applied for training deep neural networks in recent

years.

Start Point

(A) Too large learning rate. (B) Too small learning rate.

End Point Start Point End Point
Weights

Loss Loss

Weights

FIG. 2.9 Optimization process with
different learning rates.

34 2. Neural networks

2.2 Introduction to Kaggle

2.2.1 Kaggle platform

Kaggle is a world-famous competition platform where companies and researchers can publish datasets and orga-
nize competitions to solve the challenges of data science. The competition is open to anyone. As shown in Fig. 2.10, the
Kaggle contest page has asmany as 19 contests in progress. It is also worth noting that Kaggle is not only a competition
website but also a community platform, allowing users to work, discuss, team up, or share research results with each
other.

Another great thing about Kaggle is that it has a datasets area, in which datasets have been sorted and made avail-
able for download, as shown in Fig. 2.11. Experimental data in this chapter is a dataset downloaded from the Kaggle
website.

2.2.2 House sales in King County dataset

In this section, a “House Sales in King County, USA” dataset from Kaggle is introduced for training and evaluating
the house price-prediction model. To download the dataset, please access the URL:https://www.kaggle.com/
harlfoxem/housesalesprediction, as shown in Fig. 2.12.

This dataset has 21,613 housing data, and each house sample has 21 items of information. The codes indicate the
following meanings:

▪ id: identification code of the house
▪ date: date the house was sold
▪ price: housing price (target)
▪ bedrooms: number of bedrooms
▪ bathrooms: number of bathrooms
▪ sqft_living: area of the interior living space (square feet)
▪ sqft_lot: area of the land space (square feet)
▪ floors: total floors of the house
▪ waterfront: a variable for whether or not the apartment overlooks the waterfront

FIG. 2.10 Kaggle competition page.

352.2 Introduction to Kaggle

https://www.kaggle.com/harlfoxem/housesalesprediction
https://www.kaggle.com/harlfoxem/housesalesprediction

FIG. 2.11 Public datasets on Kaggle.

FIG. 2.12 House sales in King County dataset.

36 2. Neural networks

▪ view: an index of how good the view of the property was
▪ condition: an index on the condition of the house
▪ grade: an index for rating building construction and design (according to the King County scoring system)
▪ sqft_above: area of the interior housing space that is above ground level (square feet)
▪ sqft_basement: area of the interior housing space that is below ground level (square feet)
▪ yr_built: building time
▪ yr_renovated: timing of last renovation
▪ zipcode: ZIP code that the house is in
▪ lat: latitude coordinates
▪ long: longitude coordinates
▪ sqft_living15: square footage of living space recorded in 2015 (implies some renovations)
▪ sqft_lot15: square footage of land lots recorded in 2015

2.3 Experiment 1: House price prediction

In this section, an FCNN is built and trained on the “House Sales in King County, USA” dataset to predict the price
of houses. The networkmodel takes the information of the houses, such as the number of bedrooms, bathrooms, floors,
and so on, as the input, and then outputs the price of the house. MSE and Adam are used as the loss function and
optimizer of the model, respectively. Fig. 2.13 shows the flowchart of the source code for the house price-prediction
model.

2.3.1 Preparing dataset

1. Import necessary packages

import os

import numpy as np

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt

from tensorflow import keras

from tensorflow.keras import layers

2. Reading and converting data

▪ Read information

1. Preparing Data 2. Building and training the
network model

3. Displaying
training results- Importing packages

- Set optimizer, loss function

- Training model-1

- Training loss
and valid loss

- The average
error percentage
on the test data

- Reading and
 converting data

- Build a fully connected
 neural network model
 (model-1)

- Data division (training,
 validation, and test)

FIG. 2.13 The flowchart of the source code for the
house price-prediction model.

372.3 Experiment 1: House price prediction

data = pd.read_csv(".\dataset\kc_house_data.csv")

Display the shape of the dataset, a total of 21613 samples, each sample has 21

kinds of information.

data.shape

Result: (21613, 21)

▪ Display data

Set the number of rows to 25

pd.options.display.max_columns = 25

display the first five lines (default)

data.head()

Result:

▪ Check the data type
There are five types of data: object (string), boolean, inte ger, float, and categorical.

data.dtypes

Result:
id int64

date object

price float64

bedrooms int64

bathrooms float64

sqft_living int64

sqft_lot int64

floors float64

waterfront int64

view int64

condition int64

grade int64

sqft_above int64

sqft_basement int64

yr_built int64

yr_renovated int64

zipcode int64

lat float64

long float64

sqft_living15 int64

sqft_lot15 int64

dtype: object

38 2. Neural networks

▪ Convert data type

Because the date data in the dataset is in a string type and the input of the model only accepts a numeric type, date
data including year, month, and day are converted into numeric values through the following code:

convert them to numeric values

data['year'] = pd.to_numeric(data['date'].str.slice(0, 4))

data['month'] = pd.to_numeric(data['date'].str.slice(4, 6))

data['day'] = pd.to_numeric(data['date'].str.slice(6, 8))

#Delete useless data, inplace is to save the updated data to the original place

data.drop(['id'], axis="columns", inplace=True)

data.drop(['date'], axis="columns", inplace=True)

data.head()

Result:

3. Data division

▪ Split data: Divide dataset into three sets: training data, validation data, and test data

data_num = data.shape[0]

Get a random index equal to the number of data,

indexes = np.random.permutation(data_num)

#Randomly divide data into Train, validation and test. The division ratio here is 6:2:2

train_indexes = indexes[:int(data_num *0.6)]

val_indexes = indexes[int(data_num *0.6):int(data_num *0.8)]

test_indexes = indexes[int(data_num *0.8):]

Retrieve training data, validation data and test data

train_data = data.loc[train_indexes]

val_data = data.loc[val_indexes]

test_data = data.loc[test_indexes]

▪ Data normalization

The main function of normalization is to scale different data to the same scale. For example: “The number of bed-
rooms or bathrooms in the house is about 1 to 5, and the area of the house is about 1500 m2 to 2500 m2.” Because of the
large difference in data scale, it may cause the prediction model to pay more attention to the data with larger values
and ignore the data with smaller values. In order to solve this problem, the input data is usually scaled between 0 and 1
or between �1 and 1; this process is called data normalization.

In this experiment, the standard score is used to standardize the data, which is formulated as follows:

xnorm ¼ x�meanð Þ
std

where, x is a raw score, mean is the mean of the population, and std is the standard deviation of the population.

392.3 Experiment 1: House price prediction

The source code for data normalization:

train_validation_data = pd.concat([train_data, val_data])

mean = train_validation_data.mean()

std = train_validation_data.std()

train_data = (train_data - mean) / std

val_data = (val_data - mean) / std

Create the training data in Numpy array format

x_train = np.array(train_data.drop('price', axis='columns'))

y_train = np.array(train_data['price'])

x_val = np.array(val_data.drop('price', axis='columns'))

y_val = np.array(val_data['price'])

There are a total of 12967 training samples, and each sample has 21 kinds of

information.

x_train.shape

Result: (12967, 21)

2.3.2 Building and training network model

1. Build a FCNN named Model-1

In this example, we construct a network model with three fully connected layers, in which ReLU is used as the acti-
vation function in the hidden layers. Since a linear output is required, the output layer does not use any activation
function.

Create a fully connected neural network

model = keras.Sequential(name='model-1')

The first fully connected layer is set to 64 neurons, and the input shape is set to (21,),

but in fact the shape of the data we input is (batch_size, 21)

model.add(layers.Dense(64, activation='relu', input_shape=(21,)))

The second fully connected layer (64 neurons)

model.add(layers.Dense(64, activation='relu'))

The output fully connected layer (1 neuron).

model.add(layers.Dense(1))

Display network model structure

model.summary()

Result:

40 2. Neural networks

2. Set the optimizer, loss function, metric function, and callback function.

Set the optimizer, loss function, metric function

model.compile(keras.optimizers.Adam(0.001),

 loss=keras.losses.MeanSquaredError(),

 metrics=[keras.metrics.MeanAbsoluteError()])

Create a directory to save Model

model_dir = 'lab2-logs/models/'

os.makedirs(model_dir) # for creating a folder to save model

Set the callback function:

TensorBoard callback function helps record training information and save as

TensorBoard log file

log_dir = os.path.join('lab2-logs', 'model-1')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

ModelCheckpoint helps to save the network model,

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-1.h5',

 monitor='val_mean_absolute_error',

 save_best_only=True,

 mode='min')

3. Training model

history = model.fit(x_train, y_train, # training data

 batch_size=64, # Batch size is set to 64

 epochs=300, # Train the entire dataset 300 times

 validation_data=(x_val, y_val), # Verification information

 callbacks=[model_cbk, model_mckp])

Result:

2.3.3 Displaying training results

1. History

history.history.keys() # View what information is saved in history
Result：dict_keys(['loss', 'val_loss', 'val_mean_absolute_error', 'mean_absolute_error'])

412.3 Experiment 1: House price prediction

2. Draw a line chart of the loss
In “model.compile,” the loss function isMSE, so the “loss” and val_loss recorded in the history are the loss values

calculated by the MSE.

plt.plot(history.history['loss'] , label='train')

plt.plot(history.history['val_loss'] , label='validation')

plt.ylabel('loss')

plt.xlabel('epochs')

plt.legend(loc='upper right')

Result:

3. Draw a line chart of metrics
In “model.compile,” the metric function has been set to MAE, so the network calculates the MAE between the

predicted value and the expected output. The mean_absolute_error and val_mean_absolute_error values will be
recorded in history.

plt.plot(history.history['mean_absolute_error'] , label='train')

plt.plot(history.history['val_mean_absolute_error'] , label='validation')

plt.ylabel('metrics')

plt.xlabel('epochs')

plt.legend(loc='upper right')

Result:

42 2. Neural networks

4. The average percentage error on test data

Predict house price on test data and calculate the average percentage error.

#Load model

model.load_weights('lab2-logs/models/Best-model-1.h5')

#take out the house price

y_test = np.array(test_data['price'])

data normalization

test_data = (test_data - mean) / std

Save the input data in Numpy format

x_test = np.array(test_data.drop('price', axis='columns'))

Predict on test data

y_pred = model.predict(x_test)

Convert the prediction results back

y_pred = np.reshape(y_pred * std['price'] + mean['price'], y_test.shape)

Calculate the mean percentage error

percentage_error = np.mean(np.abs(y_test - y_pred)) / np.mean(y_test) * 100

Display percentage error

print("Model_1 Percentage Error: {:.2f}%".format(percentage_error))

Result: Model_1 Percentage Error: 14.08%

2.4 Introduction to TensorBoard

TensorBoard is a TensorFlow toolkit that provides the visualization andmeasurement needed for machine learning
experimentation such as tracking loss values and the accuracy of the model during training, visualizing the model
graph, viewing histograms, and so on. There are two common ways to use TensorBoard: (1) adding “tf.keras.call-
backs.TensorBoard” function to create and store logs when training with Model.fit of Keras, and (2) using “tf.
summary” API to log information when training with “tf.GradientTape()” or other methods. The graphic interface
of the TensorBoard is shown in Fig. 2.14. As shown, there are four main tools in TensorBoard: the Scalars dashboard,
Graphs dashboard, Distributions dashboard, and Histograms dashboard.

FIG. 2.14 The graphic interface of TensorBoard.

432.4 Introduction to TensorBoard

▪ The Scalars dashboard: helps to track scalar values such as learning rate, loss, accuracy, and so on during training
neural networks

▪ Graphs dashboard: helps to visualize the models built by TensorFlow
▪ The Distributions and Histograms dashboards: help to display the distribution of the tensor. They are widely used

for visualizing weights and biases of the TensorFlow models

The advantages and disadvantages of TensorBoard include:

▪ Advantages: The information during training the model such as changes in the loss, accuracy, the histograms of
weights, biases, and so on, can be tracked and viewed in real time, without having to wait until the training is
completed.

▪ Disadvantages: The information will be written to the log file many times during training the model. If a lot of
information is recorded, training time is increased.

When training the house price-prediction model, the TensorBoard callback function, namely, “keras.callbacks.
TensorBoard,” has been added for creating and storing the log. There are two ways to open the log file. The first
way is to directly open the log file on Jupyter Notebook, and the second way is to run TensorBoard through a terminal
and then observe results through the browser.

▪ Open log file with Jupyter Notebook (results are shown in Fig. 2.15)

FIG. 2.15 Visualizing metrics (loss and accuracy) on TensorBoard (1).

44 2. Neural networks

Loading TensorBoard directly on the jupyter notebook

%load_ext tensorboard

Run TensorBoard and specify the log file folder as lab2-logs

%tensorboard --logdir lab2-logs

Result:

▪ Open log file with Command line

- Please go to the locationwhere the TensorBoard log file is stored and run the command below. Note that the result
is observed through URL: http://localhost:6006/, as shown in Fig. 2.16.

tensorboard --logdir lab2-logs

- The port number can be specified for displaying the result; following the command below, the result can be
observed through URL: http://localhost:9527/, as shown in Fig. 2.16.

tensorboard --port 9527 --logdir lab2-logs

In addition tometrics such as loss and accuracy, themodel graph is also visualized, as shown in Fig. 2.17.We discuss
the other visualization functions of TensorBoard such as Images, Text, Audio, and so on in Chapter 7.

FIG. 2.16 Visualizing metrics (loss and accuracy) on TensorBoard (2).

452.4 Introduction to TensorBoard

http://localhost:6006/
http://localhost:9527/

2.5 Experiment 2: Overfitting problem

2.5.1 Introduction to overfitting

Overfitting refers to the network model that obtained very good performance on the training data but that had poor
performance on the validation data. The training loss curve is usually used to observe whether or not there is an over-
fitting problem. Fig. 2.18 presents an overfitting phenomenon, where the loss value of the training data (training error)
continues to decrease after a period of training, while the loss value of the verification data (validation error) gradually
increases.

The training result of the house price-prediction model in Section 2.3 is shown in Fig. 2.19, and the overfitting
phenomenon can also be observed from the loss curve graph.

FIG. 2.17 Visualizing the model graph on TensorBoard.

Error

Underfitting zone Overfitting zone

optimism

Capacityoptimal
Capacity

Training error

Validation error

FIG. 2.18 Overfitting phenomenon.

46 2. Neural networks

Overfitting usually occurs when the training data is too small in scale or the complexity of the model is too great. As
such, adding training data or simplifying the model may improve the problem of overfitting. The three methods to
prevent overfitting without increasing the amount of data are:

▪ Reduce the size of the model: When the number of parameters of the model is reduced, the model with fewer
parameterswill not be able to easily fit all training data. Themodelmust learn how to use limited parameters to learn
an effective feature representation.

▪ Applyweight regularization:When training a neural networkmodel, the size of the networkweightswill increase. The
longer the network is trained, the larger the network weights will become. The neural network with large weights is
usuallyunstablebecause even small variationon the inputs can lead to large changes inoutput [19]. This canbea sign of
overfitting training data of the neural network. To solve the overfitting problem, the core idea of weight regularization
is to limit the size of the networkweights during the training process. To penalize large weights, the first weight size is
calculated, and then the calculated result is added to the loss function when training the model. There are two main
approaches to calculate weight size: L1 regularization and L2 regularization, also known as weight decay [20].

L1 regularization:

Loss = Loss

Weight size

+

L2 regularization:

Loss = Loss +

Weight size

where λ is a regularization parameter for controlling the penalty, λ� [0,1], w is the weights of the model,M is the total
amount of parameters of the model, and LossMSE is MSE loss function.

▪ Apply dropout technique [15]: The dropout technique refers to randomly discarding neurons in the neural network
to prevent complex co-adaptions during the training process. When discarding neurons, they are temporarily taken
out of the network, and their connectionswith other neurons are removed aswell, as shown in Fig. 2.20. The dropout

FIG. 2.19 Overfitting problem when training house price-prediction model.

472.5 Experiment 2: Overfitting problem

technique has proved effective in addressing the problem of overfitting and improving the performance of neural
networks in many applications such as speech recognition, image classification, and others.

2.5.2 Code examples

This section continues using the house price-prediction model (Model-1) for testing overfitting. We explore the
effect of the three methods for preventing overfitting problems using three modified models based on model-1: (1)
model of reducing model size, named Model-2, (2) model of adding weight regularization, named Model-3, and
(3) model of adding dropout technique, named Model-4. Table 2.1 shows the architecture of Model-1, Model-2,
Model-3, and Model-4.

FIG. 2.20 Random dropout.

TABLE 2.1 The architecture of house price-prediction models.

Name Architecture Description

Model-1 - Input layer with input shape (,21).
- Two hidden layers (fully connected layers); each layer has 64 neurons.
- One output layer (fully connected layer) with one neuron.

House price-prediction model in
Section 2.3

Model-2 - Input layer with input shape (,21).
- Two hidden layers (fully connected layers); each layer has 16 neurons.
- One output layer (fully connected layer) with one neuron.

Model of reducing theModel-1 size

Model-3 - Input layer with input shape (,21).
- Two hidden layers (fully connected layers); each layer has 64 neurons and L2 regularization.
- One output layer (fully connected layer) with one neuron.

Model of adding weights’
regularization

Model-4 - Input layer with input shape (,21).
- Two hidden layers (fully connected layers); each layer has 64 neurons; randomly discard 30% of
neurons in each layer.

- One output layer (fully connected layer) with one neuron.

Model of adding dropout
technique

48 2. Neural networks

1. Model-2: model of reducing the Model-1 size

Create model-2

model_2 = keras.Sequential(name='model-2')

first hidden fully connected layer with 16 neurons

model_2.add(layers.Dense(16, activation='relu', input_shape=(21,)))

second hidden fully connected layer with 16 neurons

model_2.add(layers.Dense(16, activation='relu'))

output fully connected layer with 1 neurons

model_2.add(layers.Dense(1))

Set the optimizer, loss function and metrics function for training

model_2.compile(keras.optimizers.Adam(0.001),

 loss=keras.losses.MeanSquaredError(),

 metrics=[keras.metrics.MeanAbsoluteError()])

Set callback function

log_dir = os.path.join('lab2-logs', 'model-2')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-2.h5',

 monitor='val_mean_absolute_error',

 save_best_only=True,

 mode='min')

Train model-2

model_2.fit(x_train, y_train,

 batch_size=64,

 epochs=300,

 validation_data=(x_val, y_val),

 callbacks=[model_cbk, model_mckp])

492.5 Experiment 2: Overfitting problem

2. Model-3: model of adding weight regularization

Create a network model

model_3 = keras.Sequential(name='model-3')

first hidden fully connected layer with 64 neurons, adding L2 regularization

model_3.add(layers.Dense(64, kernel_regularizer=keras.regularizers.l2(0.001),

 activation='relu', input_shape=(21,)))

Second hidden fully connected layer with 64 neurons, adding L2 regularization

model_3.add(layers.Dense(64, kernel_regularizer=keras.regularizers.l2(0.001),

 activation='relu'))

hidden output fully connected layer with 1 neuron

model_3.add(layers.Dense(1))

Set the optimizer, loss function and metric function for training

model_3.compile(keras.optimizers.Adam(0.001),

 loss=keras.losses.MeanSquaredError(),

 metrics=[keras.metrics.MeanAbsoluteError()])

Set callback function

log_dir = os.path.join('lab2-logs', 'model-3')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-3.h5',

 monitor='val_mean_absolute_error',

 save_best_only=True,

 mode='min')

Train model-3

model_3.fit(x_train, y_train,

 batch_size=64,

 epochs=300,

 validation_data=(x_val, y_val),

 callbacks=[model_cbk, model_mckp])

50 2. Neural networks

3. Model-4: model of adding dropout

Create model-4

model_4 = keras.Sequential(name='model-4')

first hidden fully connected layer with 64 neurons,

model_4.add(layers.Dense(64, activation='relu', input_shape=(21,)))

#randomly discard 30% neurons

model_4.add(layers.Dropout(0.3))

second hidden fully connected layer with 64 neurons

model_4.add(layers.Dense(64, activation='relu'))

randomly discard 30% neurons

model_4.add(layers.Dropout(0.3))

#Output fully connected layer with 1 neurons

model_4.add(layers.Dense(1))

Set the optimizer, loss function and indicator function for training

model_4.compile(keras.optimizers.Adam(0.001),

 loss=keras.losses.MeanSquaredError(),

 metrics=[keras.metrics.MeanAbsoluteError()])

Set callback function

log_dir = os.path.join('lab2-logs', 'model-4')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-4.h5',

 monitor='val_mean_absolute_error',

 save_best_only=True,

 mode='min')

Train model-4

model_4.fit(x_train, y_train,

 batch_size=64,

 epochs=300,

 validation_data=(x_val, y_val),

 callbacks=[model_cbk, model_mckp])

512.5 Experiment 2: Overfitting problem

After training, the trained Model-2, Model-3, and Model-4 are verified on the test data.

1. Model-2:

model_2.load_weights('lab2-logs/models/Best-model-2.h5')

y_pred = model_2.predict(x_test)

y_pred = np.reshape(y_pred * std['price'] + mean['price'], y_test.shape)

percentage_error = np.mean(np.abs(y_test - y_pred)) / np.mean(y_test) * 100

print("Model_2 Percentage Error: {:.2f}%".format(percentage_error))

Result: Model_2 Percentage Error: 13.15%

2. Model-3:

model_3.load_weights('lab2-logs/models/Best-model-3.h5')

y_pred = model_3.predict(x_test)

y_pred = np.reshape(y_pred * std['price'] + mean['price'], y_test.shape)

percentage_error = np.mean(np.abs(y_test - y_pred)) / np.mean(y_test) * 100

print("Model_3 Percentage Error: {:.2f}%".format(percentage_error))

Result: Model_3 Percentage Error: 12.89%

3. Model-4:

model_4.load_weights('lab2-logs/models/Best-model-4.h5')

y_pred = model_4.predict(x_test)

y_pred = np.reshape(y_pred * std['price'] + mean['price'], y_test.shape)

percentage_error = np.mean(np.abs(y_test - y_pred)) / np.mean(y_test) * 100

print("Model_4 Percentage Error: {:.2f}%".format(percentage_error))

Result: Model_4 Percentage Error: 13.33%

2.5.3 Visualization with TensorBoard

In this section, we use TensorBoard to observe and analyze the training results of Model-1, Model-2, Model-3, and
Model-4 in Section 2.5.2.

▪ Uncheck all the training data records in the lower-left corner of TensorBoard, displaying only the validation data
records, as shown in Fig. 2.21. In Fig. 2.21, model-1/validation with the orange line chart represents an overfitting
model; model-2/validation with the maroon line chart represents the model of reducing parameters; model-3/
validation with the cyan line chart represents the model of adding L2 regularization; and model-4/validation with
the green line chart represents the model of using the dropout technique.

▪ Adjust the smoothing ratio to zero to display the most original data without modification; note that setting the
smoothing to zero is more convenient for finding the lowest point, as shown in Fig. 2.22.

The experimental results prove that three methods are capable of solving the overfitting problem of the original
model and improving the performance of the model. Among them, Model-4 applying the dropout technique has
the lowest loss value, while Model-3 using L2 normalization has the lowest percentage error.

52 2. Neural networks

FIG. 2.21 TensorBoard Scalars (1).

532.5 Experiment 2: Overfitting problem

FIG. 2.22 TensorBoard Scalars (2).

54 2. Neural networks

References

[1] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5 (4) (1943) 115–133.
[2] N. Rochester, J. Holland, L. Haibt, W. Duda, Tests on a cell assembly theory of the action of the brain, using a large digital computer, IRE Trans.

Inform. Theory 2 (3) (1956) 80–93.
[3] B.W.A.C. Farley,W. Clark, Simulation of self-organizing systems by digital computer, Trans. IRE Prof. Group Inform. Theory 4 (4) (1954) 76–84.
[4] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. 65 (6) (1958) 386–408.
[5] J.J. Weng, N. Ahuja, T.S. Huang, Learning recognition and segmentation of 3-D objects from 2-D images, in: (4th) International Conference on

Computer Vision, IEEE, 1993, pp. 121–128.
[6] T. Joachims, Text categorization with support vector machines: learning with many relevant features, in: European Conference on Machine

Learning, Springer, Berlin, Heidelberg, 1998, pp. 137–142.
[7] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273–297.
[8] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, PhD thesis Harvard University, Cambridge,

MA, 1974.
[9] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information

Processing Systems, 2012, pp. 1097–1105.
[10] J. Deng,W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale hierarchical image database, in: Proceedings of the IEEEConference

on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
[11] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: International Conference on Artificial Intelligence and Statistics, 2011,

pp. 315–323.
[12] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of

the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
[13] B. Recht, R. Roelofs, L. Schmidt, V. Shankar, Do cifar-10 classifiers generalize to cifar-10? arXiv preprint arXiv:1806.00451, (2018).
[14] J. Janke, M. Castelli, A. Popovic, Analysis of the proficiency of fully connected neural networks in the process of classifying digital images.

benchmark of different classification algorithms on high-level image features from convolutional layers. Expert Syst. Appl. 135 (2019)
12–38, [Online]. Available https://doi.org/10.1016/j.eswa.2019.05.058.

[15] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhustdinov, Dropout: a simple way to prevent neural networks from overfitting,
J. Mach. Learn. Res. 15 (1) (2014) 1929–1958.

[16] I. Sutskever, J. Martens, G. Dahl, G. Hinton,On the importance of initialization andmomentum in deep learning, in: International Conference on
Machine Learning, 2013, pp. 1139–1147.

[17] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. (2011)
2121–2159.

[18] D. Kinga, J.B. Adam, A method for stochastic optimization, in: International Conference on Learning Representations (ICLR), vol. 5, 2015.
[19] R. Reed, R.J. Marks II, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, MIT Press, 1999, 269.
[20] A. Krogh, J.A. Hertz, A simple weight decay can improve generalization, in: Advances in Neural Information Processing Systems, 1992,

pp. 950–957.

55References

http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/optZoptU0et0A
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0070
https://doi.org/10.1016/j.eswa.2019.05.058
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0080
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0080
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0085
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0085
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0090
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0090
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0095
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0100
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0105
http://refhub.elsevier.com/B978-0-323-90198-7.00006-9/rf0105

C H A P T E R

3

Binary classification problem

OUTLINE
• Getting to know four main types of machine learning

algorithms

• Understanding the binary classification problem

• Using binary cross-entropy and one-hot encoding

• Completing the Pok�emon combat prediction model
with a fully connected neural network (FCNN)

3.1 Machine learning algorithms

Machine learning is a subfield of computer science divided into four groups according to learning style: supervised
learning, unsupervised learning, semi-supervised learning, and reinforcement learning. The following introduces the
methods and applications of each type.

▪ Supervised learning: An algorithm teaches the network model by using a given labeled dataset that consists of
samples and corresponding labels. This algorithm is categorized into two main types, including classification and
regression, and is widely applied in numerous computer vision applications such as object detection, image
segmentation, speech recognition, and so on. The most commonly used supervised learning methods are:
• k-nearest neighbors algorithm (KNN) [1–4]
• decision trees [5–8] and random forests [9–11]
• support vector machines (SVMs) [12–15]
• deep neural networks (DNNs) [16–19]

▪ Unsupervised learning: Unlike the supervised learning algorithm, the unsupervised learning algorithm only uses
the dataset without labels or annotations for drawing inference. The common tasks of the unsupervised learning
algorithm include clustering and dimension reduction. Clustering is used to classify the input data into subgroups
based on the correlation between the samples in each group. Dimension reduction is the process of transforming
data from a high-dimensional space into a low-dimensional space while maintaining the structure and
characteristics of the data. The following are commonly used unsupervised learning methods:
• For clustering problem

- k-means algorithm [20–23]
- hierarchical cluster algorithm [24–26]

• For dimension reduction problem
- principal component analysis (PCA) algorithm [27–29]
- kernel PCA [30–32]

▪ Semi-supervised learning: An approach that uses a set of data containing a larger amount of unlabeled data and a
small amount of labeled data for training the models. Typically, semi-supervised learning algorithms combine
supervised learning and unsupervised learning in an attempt to improve performance in one of these two

57Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00003-3

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00003-3

techniques through the use of information related to the other [33]. These algorithms are commonly applied for
classification problems in which labeled data is scarce or difficult to achieve, such as computer-aided diagnosis,
grammatical tagging, and so on.

▪ Reinforcement Learning: This technique has attracted much attention, as the Google DeepMind team has
successfully applied reinforcement learning to Atari games, AlphaGo [34,35], and robots. Reinforcement learning is
a technique that allows an agent to learn and take actions in an interactive environment to maximize the expected
cumulative reward. Specifically, at time t, the state St and reward Rt from the environment are sent to the agent, then
the agentmakes its own decision to select an actionAt from a set of available actions to send back to the environment.
The process is repeated with a new state St+1 and reward Rt+1 of the environment, as shown in Fig. 3.1.

3.2 Binary classification problem

3.2.1 Introduction to binary classification

Binary classification is one of themost commonproblems inmachine learning. In its basic form, it refers to themodel
of predicting an input sample into one of two classes. The binary classification models are often utilized to infer the
probability of an event or a certain class such as disease or not, male or female, win or lose, pass or fail, and so on. Fig.
3.2 shows an example of binary classification, where the “cat” image is passed through a networkmodel for computing
and inferring the probability p. Based on the predicted p, the model determines whether the input sample belongs to
the “Cat” class or “Not Cat” class. Suppose that p¼0.9; this means there is 90% confidence that the input sample
belongs to the “Cat” class, and 10% confidence that the input sample belongs to the “Not Cat” class.

3.2.2 Binary classification model

The binary classification models predict an input sample into one of two classes by modeling the probability of the
sample; therefore, its output is only a single probability score. Fig. 3.3. presents an overview of the binary classification
model.

Agent

Action
(A)

Reward
(R)

State
(S)

Environment
At

Rt

St

St+1

Rt+1

FIG. 3.1 Reinforcement learning.

Network Model

Input Image

Predicted
Probability

(p)

Cat

Not Cat

FIG. 3.2 Example of binary classification.

58 3. Binary classification problem

1. Input representation
As mentioned in Section 3.1, the classification problem belongs to the supervised learning method, which

requires input pairs of samples and corresponding labels for learning. However, most of machine learning
algorithms, especially neural networks, cannot directly work with labeled or categorical data; they need to be
converted into numbers. Integers can be used to encode this data, which may work for the tasks where the
categories have a natural ordinal relationship with each other, such as the labels for the density of fog: “light,”
“medium,” and “heavy.” If there is no a natural ordinal relationship between the categories, such as the labels
“table” and “person,” this may be resulting in poor performance of the model when using an integer-encoding
technique because of allowing the model to assume a natural ordering between categories.

One-hot encoding is a method of representing categorical data by using a group of bits containing bits 0 and 1. If
there are N classes, N groups of bits will be built, in which each group is represented byN-1 bits 0 and only one bit 1.
This helps the representation of each category to be completely independent and more expressive. For example,
given eight classes including people, dog, cat, bird, flower, aircraft, car, and truck, as listed in the first column of
Table 3.1. If the corresponding numbers 1, 2, 3, 4, 5, 6, 7, and 8 are used to represent these classes, as shown in the
second column of the Table 3.1, the “dog” class will be closer to the “people” class and the “cat” class than the other
classes. This is because 2 is closer to 1 and 3 than the other numbers in the relationship. However, this is not
reasonable because there is not a natural, original relationship between these eight classes. By using one-hot
encoding to represent these eight classes, each class is completed independently, as shown in the third column of
Table 3.1. In the next section, both one-hot encoding and integer-encoding techniques are applied to represent the
categorical data of the Pok�emon combat prediction model for exploring the effect of each technique.

FIG. 3.3 Overview of binary classification model; p is the predicted probability of the network model.

TABLE 3.1 Numerical representation and one-hot encoding representation.

Class Integer encoding One-hot encoding

People 1 00000001

Dog 2 00000010

Cat 3 00000100

Bird 4 00001000

Flower 5 00010000

Aircraft 6 00100000

Car 7 01000000

Truck 8 10000000

593.2 Binary classification problem

2. Network Model
In the binary classification problem, the network model is responsible for learning features from the input

samples and outputting a single probability for predicting one of two classes. In the following, we introduce the
network architecture and loss function for training binary classification models.

(a) Network architecture
Because of strong learning capacity, neural networks have been applied to the binary classification problem
to achieve high performance [36]. As introduced in Chapter 2, a neural network is composed of an input
layer, hidden layers, and an output layer, where each layer contains neurons for connection and
computation. For binary classification models, depending on each problem and the characteristics of the
data, the hyperparameters for building the neural network (e.g., the number of neurons in the input layer, the
number of neurons in each hidden layer, the numbers of hidden layers, etc.) may be different, but the number
of neurons in the output layer is only one, as shown in Fig. 3.4. Chapter 7 discusses selecting an optimal
neural network architecture for a specific problem like classification. In Section 3.3 of this chapter, a neural
network with five layers is introduced for predicting the result (the winner, the loser) of Pok�emon combats.

(b) Loss function
Cross-entropy (CE) and mean squared error (MSE) are widely used loss functions for training machine
learningmodels.WhileMSE is usually employed for linear regressionmodels (see Chapter 2), CE is a priority
option for classification models.
The formulas for MSE and CE are:

MSE¼

XN

i¼1

yi� ŷi
� �2

N

CE¼�

XN

i¼1

XC

j¼0

yi, j log ŷi, j

N
,

where y is the expected output, ŷ is the prediction output of themodel,C is the number of categories, andN is
the amount of data in a batch.

Fig. 3.5 shows a comparison of CE andMSE. As shown, if it is a correct prediction (ŷ¼ 1), both the loss values
of MSE and CEwill be 0; if it is a wrong prediction (ŷ¼ 0), the maximum loss value of MSE is 1, while that of CE

FIG. 3.4 The architecture of a binary neural network.

60 3. Binary classification problem

is infinity. Since the classification refers to the task of predicting one of two or more classes while linear
regression refers to the task of predicting continuous values, the decision boundary between two classes in the
classification problem is larger than that of the linear regression problem. If MSE is applied for classification, it
cannot penalize misclassifications enough, leading to low efficiency in training the network models.

The classification problem can be divided into two categories: binary classification problem and multi-class
classification problem. Binary cross-entropy (BCE) is usually used as a loss function for the binary classification
models, and categorical cross-entropy (CCE) is often employed as the loss function for the multi-class
classification models. This chapter focuses on a binary classification problem, so BCE is introduced and used as
a loss function for training the model. Chapter 4 further discusses CCE.

The BCE is a combination of sigmoid activation and CE loss, also called sigmoid cross-entropy loss, as shown
in Fig. 3.6.

The formula for BCE is:

BCE¼�

XN

i¼1

yi log f ŷi
� �� �

+ 1�yið Þ log 1� f ŷi
� �� �� �

N
,

where, y is expected output, ŷ is the predicted value of the networkmodel,N is the amount of data in a batch,
and f is sigmoid function.

0

0.0 0.2 0.4 0.6
ŷ

CE = –log(y)
MSE = (y – 1)2

ˆ
ˆ

0.8 1.0

1

2

3

Lo
ss

4

5

6

7

Cross-Entropy vs Mean squared error
y=1

FIG. 3.5 Difference between cross-entropy (CE) and mean squared error (MSE).

FIG. 3.6 Binary cross-entropy (BCE).

613.2 Binary classification problem

When training machine learning models using BCE as an objective function, the returned loss values are
between 0 and 1, and it is better to get a low loss value if the model predicts the label correctly. As can be
observed in Fig. 3.7, in both cases of the expected output, y is equal to 1 or 0. The closer the predicted value (ŷ) is
to the expected output (y), the smaller the loss value becomes.

3. Binary classification
The output of binary classificationmodels is single probability score. Themodel determineswhether the input
sample belongs to the first class or the second class by comparing its predicted probability (p) with a
threshold, as shown in Fig. 3.8. Normally, the threshold is set to a value of 0.5 as the default for the predicted
probabilities in the range between 0 and 1. If the predicted probability is greater than the threshold, the input
sample is classified into the first class; otherwise, it is assigned to the second class.

3.3 Experiment: Pok�emon combat prediction

In this section, a Pok�emon combat prediction model is implemented to illustrate a binary classification model. In a
combat, a winner can be predicted based on the characteristics of Pok�emon such as the amount of blood, attack force,

0

0.0 0.2 0.4 0.6
ŷ

0.8 1.0

1

2

3

Lo
ss

4

5

6

7 y=1
y=0

FIG. 3.7 The relationship between loss value and predicted output (ŷ) of the model using binary cross-entropy (BCE).

FIG. 3.8 Binary classification.

62 3. Binary classification problem

defense points, and so on. Therefore, the Pok�emon characteristics are used as the inputs of the Pok�emon combat pre-
diction model. The BCE loss function introduced earlier is employed for training the model. The model predicts the
winner of the combat between the first Pok�emon and the second Pok�emon based on output probability value. If the
predicted probability is less than 0.5, the winner is the first Pok�emon. On the contrary, the winner is the second
Pok�emon.

In order to verify the effect of the one-hot encoding technique, we implement two scenarios of the Pok�emon combat
prediction model:

(1) In the first scenario, the integer-encoding technique is used to represent the attributes of the Pok�emon for training
the model, named Model-1.

(2) In the second scenario, the one-hot-encoding technique is employed to represent the attributes of Pok�emon for the
training model, named Model-2.

3.3.1 Introduction to Pok�emon-Weedle’s cave dataset

The example in this chapter uses a Kaggle dataset, namely, the “Pok�emon-Weedle’s Cave” dataset for training and
evaluating the Pok�emon combat prediction model. Please access https://www.kaggle.com/terminus7/pokemon-
challenge and click “Download” to download the dataset, as shown in Fig. 3.9.

To predict the outcome of future matches between two Pok�emon, the Pok�emon-Weedle’s Cave dataset provides the
Pok�emon characteristics and the results of previous combats for training models.

1. Pok�emon data
Pok�emon-Weedle’s Cave dataset has 800 Pok�emon. Table 3.2 displays the information of the first five Pok�emon.

The characteristics of each Pok�emon are as follows:
▪ Name: Pok�emon name
▪ Type 1: The first attribute
▪ Type 2: The second attribute

FIG. 3.9 Pok�emon-Weedle’s Cave dataset page.

633.3 Experiment: Pok�emon combat prediction

https://www.kaggle.com/terminus7/pokemon-challenge
https://www.kaggle.com/terminus7/pokemon-challenge

▪ HP: Hitpoint
▪ Attack: Attack force
▪ Defense: Defense point
▪ Sp. Atk: Special attack force
▪ Sp. Def: Special defense point
▪ Speed: Speed of Pok�emon
▪ Generation: Evolutionary stage
▪ Legendary: Legendary Pok�emon

2. Combat data

Pok�emon-Weedle’s Cave dataset provides the outcome of 50,000 Pok�emon combats. Table 3.3 lists the information
of the first five combats, where the numbers represent the ID of each Pok�emon.

The detail information of each Pok�emon can be found from the ID of the Pok�emon in combat, as shown in Table 3.4.
As shown, the first Pok�emon with ID of 5 corresponds to Charmander Pok�emon; the second Pok�emon with ID of 1
corresponds to Bulbasaur Pok�emon; and the winner of the combat is Charmander Pok�emon.

TABLE 3.2 Characteristics of the first five Pok�emon.

ID Name Type 1 Type 2 HP Attack Defense Sp atk Sp def Speed Generation Legendary

1 Bulbasaur Grass Poison 45 49 49 65 65 45 1 False

2 Ivysaur Grass Poison 60 62 63 80 80 60 1 False

3 Venusaur Grass Poison 80 82 83 100 100 80 1 False

4 MegaVenusaur Grass Poison 80 100 123 122 120 80 1 False

5 Charmander Fire 39 52 43 60 50 65 1 False

TABLE 3.3 The first five combats in Pok�emon-Weedle’s Cave dataset.

First Pokemon (ID) Second Pokemon (ID) Winner (ID)

266 298 298

702 701 701

191 668 668

237 683 683

151 231 151

TABLE 3.4 Combat data and Pok�emon characteristics.

64 3. Binary classification problem

The training dataset contains training samples and corresponding ground-truth labels as follows:

▪ Training samples: First Pok�emon (Type 1, Type 2, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed, Generation,
Legendary) and second Pok�emon (Type 1, Type 2, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed, Generation,
Legendary).

▪ Ground-truth labels (or expected output): First Pok�emon or second Pok�emon; 0 means the first Pok�emon wins, 1
means the second Pok�emon wins.

Supplementary explanation

There are 18 attributes (Type1 and Type2) of Pok�emon in Pok�emon-Weedle’s Cave dataset including glass, fire, water, bug,
normal, poison, electric, ground, fairy, fighting, psychic, rock, ghost, ice, dragon, steel, dark, and flying. The numbers from 0 to
17 can be used to represent these attributes. However, there is no a natural ordinal relationship between attributes
(Section 3.2.2), so it would be better to use the one-hot encoding technique to encode these attributes.

3.3.2 Code examples

Fig. 3.10 shows the flowchart of the source code for the Pok�emon combat prediction model.

1. Preparing data
(a) Import packages

import os

import numpy as np

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt

from tensorflow import keras

from tensorflow.keras import layers

- Importing packages.

- Reading and converting
 data.

- Model-1: Using the integer
 encoding technique to
 represent the input attributes
 of Pokémons.

- Model-2: Using one-hot
 encoding technique to
 represent the input attributes
 of Pokémons.

- Data division (training,
 validation, and test).

- Set optimizer, loss function,
 metric function.

- Testing Model-2 on
 Pokémon PK.

- Training accuracy of
 Model-1 and Model-
 2.

- The accuracy of
 Model-1 and Model-
 2 on test data.

- Training Model-1, Model-2.

1. Preparing data 2. Building and training
network models

3. Displaying
results

FIG. 3.10 Flowchart of the source code for the Pok�emon combat prediction model.

653.3 Experiment: Pok�emon combat prediction

(b) Reading and converting data
▪ Read Pok�emon data from CSV file

pokemon_df = pd.read_csv('./dataset/pokemon-challenge/pokemon.csv')

pokemon_df.head()

Result:

▪ Set “#” as index value

pokemon_df= pokemon_df.set_index("#")

pokemon_df.head()

Result:

▪ Read combats data

combats_df = pd.read_csv('./dataset/pokemon-challenge/combats.csv')

combats_df.head()

Result:

▪ Check if there is any missing data in Pok�emon data
• Pok�emon data contains 800 Pok�emon samples, but “Name” and “Type 2” of Pok�emon in the Pok�emon data

have missing information.
• “Name” information may be missing from the original dataset, but it does not affect training, because the

name will not be used during training.
• Type 2: the second attribute of Pok�emon is missing information because some Pok�emon do not have this

attribute, so the data needs to be filled into the missing field.

66 3. Binary classification problem

pokemon_df.info()
Result:

<class 'pandas.core.frame.DataFrame'>

Int64Index: 800 entries, 1 to 800

Data columns (total 11 columns):

Name 799 non-null object

Type 1 800 non-null object

Type 2 414 non-null object

HP 800 non-null int64

Attack 800 non-null int64

Defense 800 non-null int64

Sp. Atk 800 non-null int64

Sp. Def 800 non-null int64

Speed 800 non-null int64

Generation 800 non-null int64

Legendary 800 non-null bool

dtypes: bool(1), int64(7), object(3)

memory usage: 69.5+ KB

missing 1 sample

missing 386 samples

▪ View the number of Pok�emon without second attribute (Type 2)

By setting the parameter “dropna¼False,” the missing data (NaN) can be taken into account. NaNmeans that
Pok�emon does not have the second attribute.

pokemon_df["Type 2"].value_counts(dropna=False)

Result:
NaN 386

Flying 97
Ground 35

Poison 34

Psychic 33

Fighting 26

Grass 25

Fairy 23

Steel 22

Dark 20

Dragon 18

Water 14

Rock 14

Ice 14

Ghost 14

Fire 12

Electric 6

Normal 4

Bug 3

Name: Type 2, dtype: int64

there are 386 Pokemon without the second attribute

673.3 Experiment: Pok�emon combat prediction

▪ Fill in missing data: replacing "NaN" with "empty"

pokemon_df["Type 2"].fillna('empty',inplace=True)

pokemon_df["Type 2"].value_counts()

Result:
empty 386

Flying 97
Ground 35

Poison 34

Psychic 33

Fighting 26

Grass 25

Fairy 23

Steel 22

Dark 20

Dragon 18

Water 14

Rock 14

Ice 14

Ghost 14

Fire 12

Electric 6

Normal 4

Bug 3

Name: Type 2, dtype: int64

NaN empty

▪ Checking data type

Type1, Type2, and Legendary are input data of the network model. Because of the difference in data types,
they cannot be directly inputted into the model. Data conversion is required.
Print the data type of input data:

print(combats_df.dtypes)

print('-' * 30)

print(pokemon_df.dtypes)

Result:

First_pokemon int64

Second_pokemo int64

Winner int64

dtype: object

Name objec
tType 1 objec

Type 2 objec

HP int64

Attack int64

Defense int64

Sp. Atk int64

Sp. Def int64

Speed int64

Generation int64

Legendary bool

dtype: object

68 3. Binary classification problem

▪ Conversion of data type
• Type1, Type2: Convert data type of “Type1” and “Type2” from “object” to “category”
• Legendary: Convert data type of “Legendary” from “bool” to “int.” The data representation will be

changed from “False” and “True” to 0 and 1, respectively

Convert Type1 to category type

pokemon_df['Type 1'] = pokemon_df['Type 1'].astype('category')

Convert Type2 to category type

pokemon_df['Type 2'] = pokemon_df['Type 2'].astype('category')

Convert Legendary to int data type

pokemon_df['Legendary'] = pokemon_df['Legendary'].astype('int')

pokemon_df.dtypes

Result:
Name object

Type 1 category

Type 2 category

HP int64

Attack int64

Defense int64

Sp. Atk int64

Sp. Def int64

Speed int64

Generation int64

Legendary int64

dtype: object

▪ Using one-hot encoding to represent the attributes (Type1 and Type2)

Use get_dummies function for converting the Type 1.

df_type1_one_hot = pd.get_dummies(pokemon_df['Type 1'])

df_type1_one_hot.head()

Result:

Use get_dummies function for converting the Type 2.

df_type2_one_hot = pd.get_dummies(pokemon_df['Type 2'])

df_type2_one_hot.head()

Result:

693.3 Experiment: Pok�emon combat prediction

▪ Combine two sets of one-hot encoding

Combine Type1 and Type2 - One-hot Encoding

combine_df_one_hot = df_type1_one_hot.add(df_type2_one_hot,

 fill_value=0).astype('int64')

Set the number of display columns to 30

pd.options.display.max_columns = 30

pokemon_df = pokemon_df.join(combine_df_one_hot)

pokemon_df.head()

Result:

▪ Using integer-encoding technique to represent the attributes (Type1 and Type2): convert attributes of
Pok�emon into numerical values (0, 1, 2, …18)

dict(enumerate(pokemon_df['Type 2'].cat.categories))

Result:
{0: 'Bug',

 1: 'Dark',

 2: 'Dragon',

 3: 'Electric',

 4: 'Fairy',

 5: 'Fighting',

 6: 'Fire',

 7: 'Flying',

 8: 'Ghost',

 9: 'Grass',

 10: 'Ground',

 11: 'Ice',

 12: 'Normal',

 13: 'Poison',

 14: 'Psychic',

 15: 'Rock',

 16: 'Steel',

 17: 'Water',

 18: 'empty'}

▪ The encoding value of the attributes can be received through “cat.codes”

pokemon_df['Type 2'].cat.codes.head(10)

Result:
1 13

2 13

3 13

4 13

5 18

6 18

7 7

8 2

9 7

10 18

dtype: int8

70 3. Binary classification problem

▪ Use numerical representation (0, 1, 2…18) to replace the original label of attributes

pokemon_df['Type 1'] = pokemon_df['Type 1'].cat.codes

pokemon_df['Type 2'] = pokemon_df['Type 2'].cat.codes

pokemon_df.head()

Result:

▪ Remove unused data (name)

pokemon_df.drop('Name', axis='columns', inplace=True)

pokemon_df.head()

Result:

▪ Using 0 and 1 to represent the winner in the Pok�emon combat data: 0 means the winner is the first Pok�emon, 1
means the winner is the second Pok�emon.

combats_df['Winner'] = combats_df.apply(lambda x: 0

if x.Winner == x.First_pokemon else 1,

axis='columns')

combats_df.head()
Result:

713.3 Experiment: Pok�emon combat prediction

(c) Data division
For training and testing network model, the Pok�emon dataset is divided into three sets, including training data,
validation data, and test datawith ratios of 6, 2, and 2, respectively. The source code for data division is as follows.

data_num = combats_df.shape[0]

Get a random index equal to the number of data

indexes = np.random.permutation(data_num)

Randomly divide data into Train, validation and test, here the division ratio is 6:2:2

train_indexes = indexes[:int(data_num *0.6)]

val_indexes = indexes[int(data_num *0.6):int(data_num *0.8)]

test_indexes = indexes[int(data_num *0.8):]

train_data = combats_df.loc[train_indexes]

val_data = combats_df.loc[val_indexes]

test_data = combats_df.loc[test_indexes]

▪ Normalize Type1 and Type 2 to limit each element between 0 and 1 (there are 19 attributes including the empty
attribute)

pokemon_df['Type 1'] = pokemon_df['Type 1'] / 19

pokemon_df['Type 2'] = pokemon_df['Type 2'] / 19

▪ Use standard score to standardize the values of characteristics of Pok�emon

mean = pokemon_df.loc[:, 'HP':'Generation'].mean()

std = pokemon_df.loc[:, 'HP':'Generation'].std()

pokemon_df.loc[:,'HP':'Generation'] = (pokemon_df.loc[:,'HP':'Generation']-mean)/std

pokemon_df.head()

Result:

Convert training data in Numpy array format.

▪ Training, validation, and test samples from the combat data

x_train_index = np.array(train_data.drop('Winner', axis='columns'))

x_val_index = np.array(val_data.drop('Winner', axis='columns'))

x_test_index = np.array(test_data.drop('Winner', axis='columns'))

print(x_train_index)

Result: [[115 674]
 [658 549]
 [434 87]
 ...
 [732 607]
 [239 608]

[298 742]]

72 3. Binary classification problem

▪ Ground-truth labels from the combat data

y_train = np.array(train_data['Winner'])

y_val = np.array(val_data['Winner'])

y_test = np.array(test_data['Winner'])

▪ Prepare two different input data

The first type: Pok�emon attributes (Type1 and Type2) are represented by using integer-encoding technique.

Get Pokemon's characteristics (10 characteristics: Type1, Type2, HP …to Legendary)

pokemon_data_normal = np.array(pokemon_df.loc[:, : 'Legendary'])

print(pokemon_data_normal.shape)

Generate input data

x_train_normal = pokemon_data_normal[x_train_index -1].reshape((-1, 20))

x_val_normal = pokemon_data_normal[x_val_index -1].reshape((-1, 20))

x_test_normal = pokemon_data_normal[x_test_index -1].reshape((-1, 20))

print(x_train_normal.shape)

Result: (800, 10)

 (30000, 20)

The second type: Pok�emon attributes are represented by using one-hot encoding.

Get Pokemon's characteristics HP, attack,…Legendary, bug, dark,… (Type1 and Type2

are represented by one hot encoding)

pokemon_data_one_hot = np.array(pokemon_df.loc[:, 'HP':])

print(pokemon_data_one_hot.shape)

Generate input data

x_train_one_hot = pokemon_data_one_hot[x_train_index -1].reshape((-1, 54))

x_val_one_hot = pokemon_data_one_hot[x_val_index -1].reshape((-1, 54))

x_test_one_hot = pokemon_data_one_hot[x_test_index -1].reshape((-1, 54))

print(x_train_one_hot.shape)

Result: (800, 27)

 (30000, 54)

2. Building and Training Network Models

Two Pok�emon combat prediction models are implemented including:
(1) Model-1: Using the integer-encoding technique to represent 18 attributes (Type1 and Type2) of Pok�emon for

training.
(2) Model-2: Using the one-hot encoding technique to represent 18 attributes (Type1 and Type2) of Pok�emon for

training.

Table 3.5 shows the architecture of Model-1 and Model-2.

(a) Model-1
The input of Model-1 is the data of two Pok�emon; each Pok�emon has ten different characteristics, so the input
shape is (20,).

733.3 Experiment: Pok�emon combat prediction

inputs = keras.Input(shape=(20,))

x = layers.Dense(64, activation='relu')(inputs)

x = layers.Dropout(0.3)(x)

x = layers.Dense(64, activation='relu')(x)

x = layers.Dropout(0.3)(x)

x = layers.Dense(64, activation='relu')(x)

x = layers.Dropout(0.3)(x)

x = layers.Dense(16, activation='relu')(x)

x = layers.Dropout(0.3)(x)

outputs = layers.Dense(1, activation='sigmoid')(x)

model_1 = keras.Model(inputs, outputs, name='model-1')

Show network architecture

model_1.summary()

Result:

TABLE 3.5 The architecture of Pok�emon combat prediction models.

Name Architecture Description

Model-1 - Input layer with input shape (20,)
- Four hidden fully connected layers: first three layers have 64 neurons
and the last layer has 16 neurons

- Randomly discard 30% of neurons in each of the hidden layers
- Each hidden layer is followed by an ReLu activation function
- Output fully connected layer with one neuron

The integer-encoding technique is applied for repressing
18 attributes of Pok�emon

Model-2 - Input layer with input shape (54,)
- Four hidden fully connected layers: first three layers have 64 neurons
and the last layer has 16 neurons

- Randomly discard 30% of neurons in each of the hidden layers
- Each hidden layer is followed by an ReLu activation function
- Output fully connected layer with one neuron

The one-hot encoding technique is applied for repressing
18 attributes of Pok�emon.

74 3. Binary classification problem

▪ Set the optimizer, loss function, and metric function

model_1.compile(keras.optimizers.Adam(),

 loss=keras.losses.BinaryCrossentropy(),

 metrics=[keras.metrics.BinaryAccuracy()])

▪ Create a storage directory for saving model

model_dir = 'lab3-logs/models'

os.makedirs(model_dir)

▪ Set the callback function

Save training records as TensorBoard log files

log_dir = os.path.join('lab3-logs', 'model-1')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

Save the best model

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-1.h5',

 monitor='val_binary_accuracy',

 save_best_only=True,

 mode='max')

▪ Training model-1

history_1 = model_1.fit(x_train_normal, y_train,

 batch_size=64,

 epochs=200,

 validation_data=(x_val_normal, y_val),

 callbacks=[model_cbk, model_mckp])

Result:

Supplementary explanation

The BCE introduced earlier included a built-in sigmoid activation function, but the sigmoid activation function is often
added to the output layer of the network model. Therefore, to avoid the output of doing two sigmoid operations, the
“keras.losses.BinaryCrossentropy” function has the from_logits parameter for setting.

- from_logits is set to False (default): Sigmoid activation function will not be added to the loss function.
- from_logits is set toTrue: Sigmoid activation function will be added to the loss function.

The function “keras.losses.CategoricalCrossentropy” has the same concept.

753.3 Experiment: Pok�emon combat prediction

(b) Model-2
The input of Model-2 is the data of two Pok�emon; each Pok�emon has twenty-seven different items of information,
so the input shape is (54,).

inputs = keras.Input(shape=(54,))

x = layers.Dense(64, activation='relu')(inputs)

x = layers.Dropout(0.3)(x)

x = layers.Dense(64, activation='relu')(x)

x = layers.Dropout(0.3)(x)

x = layers.Dense(64, activation='relu')(x)

x = layers.Dropout(0.3)(x)

x = layers.Dense(16, activation='relu')(x)

x = layers.Dropout(0.3)(x)

outputs = layers.Dense(1, activation='sigmoid')(x)

model_2 = keras.Model(inputs, outputs, name='model-2')

Show network architecture

model_2.summary()

Result:

▪ Set the optimizer, loss function, and metric function

model_2.compile(keras.optimizers.Adam(),

 loss=keras.losses.BinaryCrossentropy(),

 metrics=[keras.metrics.BinaryAccuracy()])

76 3. Binary classification problem

▪ Set the callback function

Save training records as TensorBoard log files

log_dir = os.path.join('lab3-logs', 'model-2')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

save the best model

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-2.h5',

 monitor='val_binary_accuracy',

 save_best_only=True,

 mode='max')

▪ Training model-2

history_2 = model_2.fit(x_train_one_hot, y_train,

 batch_size=64,

 epochs=200,

 validation_data=(x_val_one_hot, y_val),

 callbacks=[model_cbk, model_mckp])

Result:

3. Displaying results

(a) Display the training accuracy of the Model-1 and Model-2

plt.plot(history_1.history['binary_accuracy'], label='model-1-training')

plt.plot(history_1.history['val_binary_accuracy'], label='model-1-validation')

plt.plot(history_2.history['binary_accuracy'], label='model-2-training')

plt.plot(history_2.history['val_binary_accuracy'], label='model-2-validation')

plt.ylabel('Accuracy')

plt.xlabel('epochs')

plt.legend()

Result:

Fig. 3.11 shows that the accuracy on training data and validation data of Model-2 is better than that of Model-1. The
results prove that using the one-hot encoding technique for binary classification is more effective than the integer-
encoding technique.

773.3 Experiment: Pok�emon combat prediction

(b) Verification on the test data

Load weight of the model-1 with highest accuracy

model_1.load_weights(model_dir + '/Best-model-1.h5')

Load weight of the model-2 with highest accuracy

model_2.load_weights(model_dir + '/Best-model-2.h5')

loss_1, accuracy_1 = model_1.evaluate(x_test_normal, y_test)

loss_2, accuracy_2 = model_2.evaluate(x_test_one_hot, y_test)

print("Model-1: {}%\nModel-2: {}%".format(accuracy_1, accuracy_2))

Result:

10000/10000 [==============================] - 0s 36us/sample - loss:

0.1593 - binary_accuracy: 0.9466

10000/10000 [==============================] - 0s 36us/sample - loss:

0.0947 - binary_accuracy: 0.9654

Model-1: 0.9466000199317932%

Model-2: 0.965399980545044%

As can be observed, the accuracy of Model-2 on the test data is better than that of Model-1.

(c) Pokemon PK
Finally, the trainedModel-2 is used to predict the outcome of combats between three Pok�emon including won-
derful frog flower, spitfire dragon, and water arrow turtle, as shown in Fig. 3.12.

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

0 25 50 75 100
epochs

125 150 175

model-1-training
model-1-validation
model-2-training
model-2-validation

200

ac
cu

ra
cy

FIG. 3.11 Training result of Model-1 and Model-2.

78 3. Binary classification problem

▪ Read individual data:

venusaur = np.expand_dims(pokemon_data_one_hot[3], axis=0) # Pokemon Wonderful

frog flower

charizard = np.expand_dims(pokemon_data_one_hot[7], axis=0)
#Pokemon Spitfire Dragon
blastoise = np.expand_dims(pokemon_data_one_hot[12], axis=0)
#Pokemon Water Arrow Turtle

▪ The prediction

Wonderful frog flower vs Spitfire Dragon

pred = model_2.predict(np.concatenate([venusaur, charizard], axis=-1))

winner = ' Wonderful frog flower ' if pred < 0.5 else ' Spitfire Dragon '

print("pred={}, {} wins".format(pred, winner))

Spitfire Dragon vs Water Arrow Turtle

pred = model_2.predict(np.concatenate([charizard, blastoise], axis=-1))

winner = ' Spitfire Dragon' if pred < 0.5 else ' Water Arrow Turtle '

print("pred={}, {} wins".format(pred, winner))

Water arrow turtle vs wonderful frog flower

pred = model_2.predict(np.concatenate([blastoise, venusaur], axis=-1))

winner = ' Water Arrow Turtle ' if pred < 0.5 else ' Wonderful frog flower'
print("pred={}, {} wins".format(pred, winner))

Result:

pred=[[1.]], Spitfire Dragon wins

pred=[[1.0699459e-07]], Spitfire Dragon wins

pred=[[0.9999981]], Wonderful frog flower wins

The result shows that the Pok�emon spitfire dragon is the strongest, followed by Pok�emon wonderful frog
flower and Pok�emon water arrow turtle, respectively.

effective
against

effective
against

effective
against

FIG. 3.12 Pok�emon spitfire dragon, wonderful frog flower, and water arrow turtle.

793.3 Experiment: Pok�emon combat prediction

References

[1] J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy k-nearest neighbor algorithm, in: IEEE Transactions on Systems, 1985, pp. 580–585.
[2] T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Trans. Syst. Man Cybern. 25 (5) (1995) 804–813.
[3] K. Fukunaga, P.M. Narendra, A branch and bound algorithm for computing k-nearest neighbors, IEEE Trans. Comput. C-24 (7) (1975) 750–753.
[4] S.A. Dudani, The distance-weighted k-nearest-neighbor rule, IEEE Trans. Syst. Man Cybern. SMC-6 (4) (1976) 325–327.
[5] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81–106.
[6] H. Schmid, Probabilistic part of speech tagging using decision trees, in: Proceedings of the International Conference on New Methods in Lan-

guage Processing, 1994, pp. 44–49.
[7] C.Z. Janikow, Fuzzy decision trees: issues and methods, IEEE Trans. Syst. Man Cybern. B 28 (1) (1998) 1–14.
[8] S. Tsang, B. Kao, K.Y. Yip, W. Ho, S.D. Lee, Decision trees for uncertain data, IEEE Trans. Knowl. Data Eng. 23 (1) (2011) 64–78.
[9] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[10] A. Bosch, A. Zisserman, X. Munoz, Image classification using random forests and ferns, in: IEEE International Conference on Computer Vision,

Rio de Janeiro, 2007, pp. 1–8.
[11] P.O. Gislason, J.A. Benediktsson, J.R. Sveinsson, Random forests for land cover classification, Pattern Recogn. Lett. 27 (4) (2006) 294–300.
[12] C. Cortes, V. Vapnik, Support-vector network, Mach. Learn. (1995) 273–297.
[13] T. Joachims, Text categorization with support vector machines: learning with many relevant features, in: European Conference on Machine

Learning, 1998, pp. 137–142.
[14] W.M. Campbell, D.E. Sturim, D.A. Reynolds, Support vector machines using GMM supervectors for speaker verification, IEEE Signal Process.

Lett. 13 (5) (2006) 308–311.
[15] K.P. Bennett, A. Demiriz, Semi-supervised support vector machines, in: Advances in Neural Information Processing Systems, 1999,

pp. 368–374.
[16] T. Le, P. Lin, S. Huang, LD-Net: an efficient lightweight denoising model based on convolutional neural network, IEEE Open J. Comput. Soc.

1 (2020) 173–181.
[17] T. Le, S. Huang, D. Jaw, Cross-resolution feature fusion for fast hand detection in intelligent homecare systems, IEEE Sensors J. 19 (12) (2019)

4696–4704.
[18] Y. Liu, D. Jaw, S. Huang, J. Hwang, DesnowNet: context-aware deep network for snow removal, IEEE Trans. Image Process. 27 (6) (2018)

3064–3073.
[19] T. Le, D. Jaw, I. Lin, S. Huang, An efficient hand detection method based on convolutional neural network. International Symposium on Next

Generation Electronics (ISNE), (2018) pp. 1–2, https://doi.org/10.1109/ISNE.2018.8394651.
[20] J.A. Hartigan, M.A. Wong, A. K-Means Clustering, Algorithm, Appl. Stat. 28 (1) (1979) 100–108.
[21] A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recogn. Lett. 31 (8) (2010) 651–666.
[22] T. Kanungo, et al., An efficient k-means clustering algorithm: analysis and implementation, IEEE Trans. Pattern Anal. Mach. Intell. 24 (7) (2002)

881–892.
[23] S.Z. Selim, M.A. Ismail, K-Means-type algorithms: a generalized convergence theorem and characterization of local optimality, IEEE Trans.

Pattern Anal. Mach. Intell. PAMI-6 (1) (1984) 81–87.
[24] J.F. Navarro, C.S. Frenk, S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (2) (1997) 493–508.
[25] P. Bajcsy, N. Ahuja, Location- and density-based hierarchical clustering using similarity analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20 (9)

(1998) 1011–1015.
[26] X. Tang, P. Zhu, Hierarchical clustering problems and analysis of fuzzy proximity relation on granular space, IEEE Trans. Fuzzy Syst. 21 (5)

(2013) 814–824.
[27] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemom. Intell. Lab. Syst. 2 (1987) 37–52.
[28] I. Joliffe, Principal Component Analysis, second ed., Springer, New York, 2002.
[29] B.Moore, Principal component analysis in linear systems: controllability, observability, andmodel reduction, IEEE Trans. Autom. Control 26 (1)

(1981) 17–32.
[30] M.E. Tipping, Sparse kernel principal component analysis, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Advances in Neural Information Pro-

cessing Systems, MIT Press, Cambridge, 2000, pp. 633–639.
[31] S. Mika, B. Scholkopf, A. Smola, K. Muller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, Adv. Neural Inf. Proces. Syst.

11 (1) (1999) 536–542.
[32] C. Liu, Gabor-based kernel PCA with fractional power polynomial models for face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 26 (5)

(2004) 572–581.
[33] J.E. van Engelen, H.H. Hoos, A survey on semi-supervised learning. Mach. Learn. 109 (2) (2020) 373–440, Online Available: https://doi.org/

10.1007/s10994-019-05855-6.
[34] D. Silver, et al., Mastering the game of go with deep neural networks and tree search, Nature 529 (7587) (2016) 484–489.
[35] D. Silver, et al., Mastering the game of go without human knowledge, Nature 550 (7676) (2017) 354–359.
[36] H.Qin, R. Gong, X. Liu, X. Bai, J. Song, N. Sebe, Binary neural networks: a survey. Pattern Recogn. 105 (2020) 107281, https://doi.org/10.1016/j.

patcog.2020.107281.

80 3. Binary classification problem

http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0075
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0075
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0080
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0080
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0085
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0085
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0095
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0095
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0100
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0100
https://doi.org/10.1109/ISNE.2018.8394651
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0105
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0110
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0115
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0115
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0120
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0120
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0125
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0130
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0130
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0135
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0135
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0140
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0145
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0150
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0150
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0155
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0155
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0160
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0160
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0165
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0165
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0175
http://refhub.elsevier.com/B978-0-323-90198-7.00003-3/rf0180
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1016/j.patcog.2020.107281

C H A P T E R

4

Multi-category classification problem

OUTLINE
• Introduction to convolutional neural networks (CNNs)

• Using categorical cross-entropy

• Using data augmentation techniques to increase the
training data

• Completing multi-category classification on the
CIFAR-10 dataset using a CNN

4.1 Convolutional neural network

4.1.1 Introduction to convolutional neural network

A convolutional neural network, also known as CNN or ConvNet, is a class of deep neural network that has been
successfully applied to various computer vision applications, especially for analyzing visual images [1]. Fig. 4.1 shows
the rank of the bestmethods from the 2012 ImageNet Large Scale Visual Recognition Challenge (ImageNet LSVRC [2]).
As shown, AlexNet using CNN is superior to the previous state-of-the-art image classification methods in terms of
error rate. In subsequent ImageNet competitions, the models based on CNN, such as GoogLeNet [3], ResNet [4],
ResNeXt [5], and others, continue to be the winners and overwhelm traditional models with impressive performance.

0%

LEAR-XRCE XRCE/INRIA OXFORD_VGG Univ. of Tokyo AlexNetUniv. of Amusterdam

Error Rate

34%

29%
27% 27%

26%

16%

ILSVRC 2012 Result

5%

10%

15%

20%

25%

30%

35%

FIG. 4.1 The rank of the best methods from the 2012 ImageNet Large Scale Visual Recognition Challenge (ImageNet LSVRC).

81Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00005-7

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00005-7

As discussed in previous chapters, the regular neural networks include an input layer, hidden layers, and an output
layer, where an input from the input layer is transformed through a series of hidden layers before being sent to the
output layer. Each layer contains a set of neurons, inwhich each neuron is fully connected to all neurons in the previous
layer, and neurons operate completely independently, as shown in Fig. 4.2A. The CNNs are similar to the regular neu-
ral networks, which means they are also made of layers containing neurons with learnable weights and biases. How-
ever, different from regular neural networks, neurons in the layers of CNNs are organized in three dimensions,
including width, height, and depth, and each neuron is only connected to a local region in the previous layer through
a kernel (receptive field of the neuron), as shown in Fig. 4.2B. In CNNs, the 3D input volume of neurons is transformed
to a 3D output volume of neurons at every layer. For example, if a CNN designed for image classification on the
ImageNet [2] dataset receives an image with dimensions 256�256�3 as the input, the final output layer of the
CNN should have dimensions of 1�1�1000 because ImageNet has 1000 classes.

4.1.2 Building a convolutional neural network

In general, a simple CNN is built with three main types of layers: convolutional layer, pooling layer, and fully con-
nected layer, as shown in Fig. 4.3. The following introduces these layers in more detail.

1. Convolutional layer
The principle of the convolution layer is to use kernels or filters to slide on the input for learning features. As shown
in Fig. 4.4, a 3�3 kernel is slid onto a 4�4 input image to produce a 2�2 output feature map in size; the output of
the first calculation is 7, the calculation formula is:

1�1ð Þ+ 1�1ð Þ+ 0�0ð Þ+

Neurons

Input layer

Width

Dep
th

Height

Neurons

In
pu

t la
ye

r

Output layer

Hidden layer 1

Hidden layer 1

(A) A regular 3-layer neural network.

(B) A 3-layer convolutional neural network.

Hidden layer 2

Output layerHidden layer 2

FIG. 4.2 Illustration of a regular neural network and a convolutional neural network (CNN).

82 4. Multi-category classification problem

2�0ð Þ+ 3�ð�1Þð Þ+ 2�2ð Þ+
1�2ð Þ+ 4�0ð Þ+ 2�1ð Þ¼ 7

The size and number of kernels are adjustable hyperparameters, and most of the sizes are set to odd numbers such
as 3�3, 5�5, or 7�7. Since too many kernels may also cause over-fitting problem, it is necessary to adjust this
parameter to select the most suitable ones.

Zero padding: Fig. 4.4 describes the basic operation of the convolutional layer, in which after each convolution, the
size of the output volume is changed compared with that of the input volume. To control the size of the output
volume, a zero-padding technique is applied by padding zeros around the border of the input volume. In most

Pooling layer Convolutional layerConvolutional layer

In
pu

t

Fully connected layer

Output

Pooling layer

FIG. 4.3 Illustration of convolutional neural network (CNN) architecture.

FIG. 4.4 Computation in the convolutional layer.

834.1 Convolutional neural network

cases, zero padding is used to retain the spatial size of the input volume. For example, by applying zero padding
with a size of 1 around the border of a 4�4 input image, the input size becomes 6�6, as shown in Fig. 4.5. Then,
performing convolution with a kernel size of 3�3 on the input with a size of 6�6, the spatial size of the output
volume is 4�4, which is the same size as the original input, as shown in Fig. 4.6.

Stride: Stride controls how the kernel slides on the input. In the general convolution layer, stride with a value of 1 is
used, which means the kernel is slid one pixel at each time. When stride is greater than 1, such as stride of 2 in Fig.
4.7, the kernel is moved 2 pixels at a time, resulting in smaller output volume spatially.

FIG. 4.5 Zero padding with size of 1.

FIG. 4.6 Convolution operation with zero padding.

84 4. Multi-category classification problem

The formulas for calculating the spatial size of the output of the convolution layer in two padding modes of same
padding mode and valid padding mode are expressed as follows.

▪ Same padding (padding): The spatial size of the output is the same size as that of the input after convolution

Outputheight ¼
Inputheight
Stride:

Outputwidth ¼
Inputwidth
Stride

▪ Valid padding (no padding): The spatial size of the output is smaller than that of the input after convolution

Outputheight ¼
Inputheight� kernelheight + 1

Stride

Outputwidth ¼
Inputwidth� kernelwidth + 1

Stride

Input: Input size
Output: Output size
kernel: kernel size or convolution filter size
Stride: stride size of the convolution operation

The preceding examples are the computations of a single input channel and single kernel, but in fact, in the con-
volutional layer, the computation is performed on multiple input channels and multiple kernels. For example, the
convolution is performed on the color input image, as shown in Fig. 4.8, in which the parameters are set as:

▪ Input image: 4�4�3 (height, width, depth), here the depth (Inputchannel) is shown as three colors: R (Red),
G (Green), and B (Blue).

▪ Padding: valid
▪ Stride: 1
▪ Kernel number (kernelnumbers): 2 (W0 and W1)
▪ Kernel size: 3�3 (kernelheight � kernelwidth)
▪ Bias: None

FIG. 4.7 Convolution operation with stride 2.

854.1 Convolutional neural network

The number of parameters of the convolutional layer: The formula for calculating the number of parameter of the
convolution layer is:

Parameter¼ Inputchannel� kernelheight� kernelwidth +Bias
� �� kernelnumbers

Inputchannel: The depth or the number of channels of the input
kernelheight: The height of the kernel

FIG. 4.8 Convolution operation on an image with size of 4�4�3 with two kernels W0 (3�3�3) and W1 (3�3�3).

86 4. Multi-category classification problem

kernelwidth: The width of the kernel
kernelnumbers: The number of kernels
Bias: if bias is used, bias¼1, otherwise bias¼0

Example 1: Calculating the number of parameters of the convolutional layer in Fig. 4.8.

Parameter¼ 3�3�3 + 0ð Þ�2¼ 54

Example 2: Create a CNN that comprised of an input layer with size of 28�28�4 and an output convolutional layer
using 32 kernels, each kernel with size of 3�3. The parameter settings of the network are:

▪ Input: 28�28�4 (height, width, and depth)
▪ Padding: valid
▪ Stride: 1
▪ Kernel number: 32(kernelnumbers)
▪ Kernel size: 3�3(kernelheight, kernelwidth)
▪ Bias: Yes

Source code for building the CNN:

from tensorflow import keras

inputs = keras.Input((28, 28, 4))

outputs = keras.layers.Conv2D(32, kernel_size=3, strides=(1, 1), padding='valid',

 use_bias=True)(inputs)

model = keras.Model(inputs, outputs)

model.summary()

The number of parameters of the CNN can be obtained through the “model.summary()” function; it is 1184 param-
eters, as shown in Fig. 4.9.

To verify whether the number of parameters of the CNN is the same as the 1184 shown in Fig. 4.9, the parameter
calculation formula above is applied. Because the CNN has only one convolutional layer, the number of parameters of
the network is the number of parameters of the convolutional layer, computed as:

Parameter¼ 4�3�3 + 1ð Þ�32¼ 1184

As shown, the calculation result is consistent with the number of parameters computed through the “model.summary
()” function in Fig. 4.9.

FIG. 4.9 Summary of the convolutional neural network (CNN).

874.1 Convolutional neural network

Supplementary explanation

Because the vanishing gradients problem is easy to encounter during training when using the sigmoid activation function in
convolutional layers of the CNN, this activation function is replaced with the rectified linear activation (ReLU) function in cur-
rent CNNs for effective training. Chapter 5 provides more information on the impact of sigmoid function and ReLU function on
the performance of CNNs.

2. Pooling layer
The pooling layer is often adopted immediately after the convolution layer to reduce the spatial size (width and

height) of the input volume for reducing the computation in the CNNs and avoiding the overfitting problem during
the training process. The pooling layer works independently with every channel of the input, therefore the number
of the channels or depth dimension of the presentation remains unchanged, as shown in Fig. 4.10. There are some
pooling layers such as max pooling, average pooling, and L2 norm pooling layers. Among them, the max pooling
layer, which adopts max operation, is most commonly used in CNNs since it has proven to workmore effectively in
practice. An example in Fig. 4.11 is the operation of the max pooling layer, where the input of size 4�4 is pooled
with a 2�2 kernel and stride 2, resulting in an output of size 2�2.

3. Fully connected layer
The fully connected layer or dense layer is an important component of CNNs. This layer has neurons with full

connection to all neurons in the previous layer. It has been applied successfully in many computer vision
applications such as image classification, semantic segmentation, and so on. In CNNs, convolution and pooling
operations are performed first through convolutional layers and pooling layers to extract features from the input.
The resulting features are flattened into a one-dimensional feature vector before being sent to the fully connected
layer for combining data and driving the final output, as shown in Fig. 4.12. If the neural networks are only
constructed by fully connected layers, they are called fully connected networks. The fully connected networks are
often extremely computationally expensive and have lower performance than CNNs. In the next section, we apply
both a fully connected network and a CNN for multi-category classification to explore the effectiveness of each.

Input volume

Single channel

Output volume

Pooling

Downsampling

25
6

25
6

32

256

12
8

32

128

12
8

128

256

FIG. 4.10 Illustration of pooling layer. Pooling layers work independently in each channel of the input volume.

88 4. Multi-category classification problem

FIG. 4.11 Operation of the max pooling layer.

FIG. 4.12 The connection of a fully connected layer.

894.1 Convolutional neural network

4.1.3 Operation of convolutional neural network

In CNNs, each convolutional layer has kernels for feature extraction from the input, and using kernels with different
element values can obtain various effects, as shown in Table 4.1. The kernels have no meaning at the beginning; their
values need to be initialized and updated during training process.

The preceding description only mentions the network with one convolutional layer. How do CNNs with multiple
layers work? Fig. 4.13 illustrates the operation of a deep CNN for image classification, in which the first few convolu-
tional layers (layers 1–3) are mainly responsible for extracting simple features of the input image such as edges, lines,
and so on. Then, the resulting features are sent to the deeper layers (layers 4–6) for generating more specific features
such as nose, eyes, and ears of objects. Finally, these output features are flattened into one-dimensional feature vector
by a flatten layer and then fed into the fully connected layer for final prediction.

Figs. 4.14–4.16 show examples of feature visualization in a CNN where the trained VGG-16 [6] network on
ImageNet [2] and the DeconvNet [7] are employed for obtaining results. As shown in Fig. 4.14, the shallow layer
(layer 2) of the VGG-16 network responds to conjunctions of lines and edges.

TABLE 4.1 The meaning of different kernel parameters.

Flatten Layer
and

Fully Connected Layer

Convolution Layer 4~6

Convolution Layer 1~3

Mouse

FIG. 4.13 Deep convolutional network.

90 4. Multi-category classification problem

In Fig. 4.15, the middle layer (layer 7) of the VGG-16 network contains more complex invariances, extracting similar
textures such as the shape of the moon, the windows, and the house.

In Fig. 4.16, the deep layer (layer 15) of the VGG-16 network presents the object with significant variation and more
class specificity, such as the eyes, ears of the dogs and cat, the leg and pose of the bird, and so on.

FIG. 4.14 Visualization of features in the second layer of the trained VGG-16 model.

FIG. 4.15 Visualization of features in the seventh layer of the trained VGG-16 model.

914.1 Convolutional neural network

4.2 Multi-category classification

4.2.1 Introduction to multi-category classification

In machine learning, multi-category classification refers to the problem of categorizing samples into one of three or
more classes. Similar to the binary classification models introduced in Chapter 3, the multi-category classification
models are also used to model the probability of classes. However, unlike the binary classification models, which out-
put a single probability to infer the input sample into one of two classes, the multi-category classification models pro-
duce one probability per class, inwhich the sum of output probability scores should be equal to 1, as shown in Fig. 4.17.
Based on the predicted probability scores, themodel can determine which target class that the input sample belongs to.
For example, given a model classifying three classes, after feeding a sample to the model, it outputs the probability
score of 0.7 for class 1, 0.1 for class 2, and 0.2 for class 3. This means the model believes with 70% confidence that
the input sample is in class 1, 10% confidence it is in class 2, and 20% it is in class 3.

FIG. 4.16 Visualization of features in the fifteenth layer of the trained VGG-16 model.

Input Input

Class 1

Class 2

Class N

Network Model Network Model
Predicted
probability

(p)

Predicted
probability

(p1)

Predicted
probability

(p2)

Predicted
probability

(pN)

Class 1

Class 2

(A) Binary classification model (B) Multi-category classification model

p > threshold

Yes

No

FIG. 4.17 Flowchart of classification models.

92 4. Multi-category classification problem

4.2.2 Multi-category classification model

1. Network architecture
As introduced in Section 4.1, state-of-the-art multi-category classification models are based on CNNs, which

have two main components of feature extractor and classifier, as shown in Fig. 4.18.

Feature extractor: The feature extractor consists of convolutional layers and pooling layers for extracting features
from the input.

Classifier: The classifier consists of fully connected layers that combine extracted features from the feature
extractor for performing the final classification decision. To accomplish this goal, the last fully connected layer is
followed by softmax function to compute a probability score for each target class. Described by the probability
model, each output value of the softmax function is between 0 and 1, and the sum of all output values is guaranteed
to be 1. The softmax function is expressed as:

yi ¼ ezi

XC

j¼1

ezj
for i¼ 1,2, :::,C and z¼ z1,z2, :::,zCð Þ�RC

For example, a model of classifying three classes (C ¼ 3) outputs three values of z1 ¼ 3, z2 ¼ 1, andz3 ¼ �3 at
the last layer, and these values are passed through the softmax function to convert to probability scores of y1¼ 0.88,
y2 ¼ 0.12, and y3 ¼ 0, respectively, as shown in Fig. 4.19. Based on these output probability scores the input sample
clearly belongs to the first class.

Convolutional layer Convolutional layerPooling layer

Feature extractor Classifier

Fully connected layer

Softmax

Class 1
Class 2

Class 3

In
pu

t

FIG. 4.18 The architecture of a CNN-based multi-category classification model.

FIG. 4.19 Softmax output calculation.

934.2 Multi-category classification

2. Loss function
As mentioned in the previous chapter, the classification problem can be divided into a binary classification

problem and a multi-category classification problem. While binary cross-entropy (BCE) is usually used as the loss
function for binary classificationmodels, categorical cross-entropy (CCE) is employed as the loss function for multi-
category classification models. The CCE loss function is a combination of softmax function and cross-entropy (CE)
function. It is also called softmax loss, as shown in Fig. 4.20.

The formula for CE is defined:

CE¼�

XN

i¼1

XC

j¼1

yi, j log ŷi, j

N

The formula for CCE is expressed:

CCE¼�

XN

i¼1

XC

j¼1

yi, j log f ŷi, j
� �� �

N

where, y is the expected output, ŷ is the predicted value of the model, f is softmax function, C is number of
categories, and N is the amount of data in a batch.

Fig. 4.21 shows an example for calculating CCE. The neural network with the output layer followed by the
softmax function takes the “cat” image as the input and outputs the prediction result of [0,0,0,0.6,0,0,0.1,0,0.3,0]. The
error between the expected output [0,0,0,1,0,0,0,0,0,0] and the prediction result is calculated using:

loss¼�ð0� log 0 + 0� log 0 + 0� log 0 + 1� log 0:6 + 0� log 0+ 0
�log 0 + 0� log 0:1 + 0� log 0 + 0� log 0:3 + 0� log 0Þ

¼�1� log 0:6

¼ 0:22

Model Softmax
ŷ

ˆf(y)i = ˆyi log(f(y)i)CE =

i

C

Sj

ˆeyi

C ˆeyj

Cross-Entropy
Loss

FIG. 4.20 Categorical cross-entropy (CCE).

FIG. 4.21 A calculation example using categorical cross-entropy (CCE).

94 4. Multi-category classification problem

4.2.3 Data augmentation

Asmentioned in Chapter 2, the deep learningmodels often encounter the problem of overfitting during training. As
such, three methods are used to prevent this problem: reducing the size of the model, weight regularization, and drop-
out. Another way to deal with the problem of overfitting is to increase the amount and diversity of the training data by
applying different transformations to the available data; this is called data augmentation [8–13]. Because data augmen-
tation is most commonly used in image processing, it is also called image augmentation. By using image augmenta-
tion, the amount of data can be increased more than two times compared with the original data, as shown in Fig. 4.22.
The common image transformations techniques are:

▪ image flipping
▪ image rotation
▪ image shifting
▪ image scaling
▪ color conversion (contrast, saturation or brightness, etc.)
▪ blur image (Gaussian blur or average blur, etc.)
▪ add noise (Gaussian noise or pepper and salt noise, etc.)

4.3 Experiment: CIFAR-10 image classification

In this section, we use a CIFAR-10 dataset to train and evaluate the performance of the multi-category classification
models. For training, we use CCE and Adam as the loss function and optimizer, respectively. The network models are
implemented in three scenarios.

(1) Model-1: fully connected neural network (FCNN)
(2) Model-2: CNN without applying image augmentation technique for training the model
(3) Model-3: CNN with image augmentation technique applied to increase the amount and diversity of training data

FIG. 4.22 Example of image augmentation.

954.3 Experiment: CIFAR-10 image classification

4.3.1 Introduction to CIFAR-10 dataset

The CIFAR-10 dataset [14] contains 60,000 RGB images with size of 32�32 for each, with 50,000 images used for
training and 10,000 images for testing purposes. CIFAR-10 consists of 10 classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck, as shown in Fig. 4.23. The dataset can be downloaded at the official website: www.cs.
toronto.edu/�kriz/cifar.html.

FIG. 4.23 CIFAR-10 dataset.

96 4. Multi-category classification problem

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

4.3.2 TensorFlow datasets

The dataset plays a very important role in deep learning, but the different source format and complexities of datasets
make it difficult to simply load them into deep learning models. To address this problem, TensorFlow provides a col-
lection of ready-to-use public datasets called TensorFlow Datasets. In TensorFlow Datasets, all datasets are provided
as “tf.data.Datasets,” supporting ease of use and highly optimized input pipelines. Here we present an example of
loading data for training the network model using tf.data.Datasets.

import tensorflow_datasets as tfds

Load dataset

train_data = tfds.load("mnist", split= tfds.Split.TRAIN)

Set the input pipeline

train_data = train_data.shuffle(1024).batch(32).prefetch(tf.data.experimental.AUTOTUNE)

Train network

model.fit(train_data, epochs=100)

There are more than 60 datasets for image classification. Many datasets for various fields such as object detection,
question answering, summarization, and so on, are available on TensorFlow Datasets. Please go to www.tensorflow.
org/datasets/ for more details. In the next section, we load the CIFAR10 dataset from TensorFlow Datatsets through
“tf.data.Datasets” API for training and testing multi-category classification models.

4.3.3 Code examples

Fig. 4.24 is the flowchart of the source code for multi-category classification models.

1. Preparing data
(a) Import packages

FIG. 4.24 Flowchart of the source code for multi-category classification models.

974.3 Experiment: CIFAR-10 image classification

http://www.tensorflow.org/datasets/
http://www.tensorflow.org/datasets/

import os

import numpy as np

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt

from tensorflow import keras

from tensorflow.keras import layers

import tensorflow_datasets as tfds

(b) Data reading and analysis

View the current datasets provided by TensorFlow Datasets:

tfds.list_builders()

Result:

['abstract_reasoning',
 'bair_robot_pushing_small',
 'caltech101',
 'cats_vs_dogs',
 'celeb_a',
 'celeb_a_hq',
 'chexpert',
 'cifar10',
 'cifar100',
 'cifar10_corrupted',
 'cnn_dailymail',
 'coco2014',
 'colorectal_histology',
 'colorectal_histology_large',
 'cycle_gan',
 'diabetic_retinopathy_detection',
 'dsprites',
 'dtd',
 'dummy_dataset_shared_generator',
 'dummy_mnist',
 'emnist',
 'fashion_mnist',
 'flores',
 'glue',
 'groove',
 'higgs',
 'horses_or_humans',
 'image_label_folder',
 'imagenet2012',
 'imagenet2012_corrupted',
 'imdb_reviews',
 'iris',
 'kmnist',
 'lm1b',
 'lsun',
 'mnist',
 'moving_mnist',
 'multi_nli',
 'nsynth',
 'omniglot',
 'open_images_v4',
 'oxford_flowers102',
 'oxford_iiit_pet',
 'para_crawl',
 'quickdraw_bitmap',
 'rock_paper_scissors',
 'shapes3d',
 'smallnorb',

 'squad',
 'starcraft_video',
 'sun397',
 'svhn_cropped',
 'ted_hrlr_translate',
 'ted_multi_translate',
 'tf_flowers',
 'titanic',
 'ucf101',
 'voc2007',
 'wikipedia',
 'wmt15_translate',
 'wmt16_translate',
 'wmt17_translate',
 'wmt18_translate',
 'wmt19_translate',
 'wmt_translate',
 'xnli']

▪ Display CIFAR-10 information

Some basic information of the dataset such as input image size, number of classes, the number of samples of
training set, and so on, can display through the following simple command:

print(info)

Result:

tfds.core.DatasetInfo(
 name='cifar10',
 version=1.0.2,
 description='The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images.',
 urls=['https://www.cs.toronto.edu/~kriz/cifar.html'],
 features=FeaturesDict({
 'image': Image(shape=(32, 32, 3), dtype=tf.uint8),
 'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10)

994.3 Experiment: CIFAR-10 image classification

 },
 total_num_examples=60000,
 splits={
 'test': <tfds.core.SplitInfo num_examples=10000>,
 'train': <tfds.core.SplitInfo num_examples=50000>
 },
 supervised_keys=('image', 'label'),
 citation='"""
 @TECHREPORT{Krizhevsky09learningmultiple,
 author = {Alex Krizhevsky},
 title = {Learning multiple layers of features from tiny images},
 institution = {},
 year = {2009}
 }

 """',
 redistribution_info=,
)

▪ Display 10 classes of CIFAR-10

labels_dict = dict(enumerate(info.features['label'].names))

labels_dict

Result:

{0: 'airplane',
 1: 'automobile',
 2: 'bird',
 3: 'cat',
 4: 'deer',
 5: 'dog',
 6: 'frog',
 7: 'horse',
 8: 'ship',
 9: 'truck'}

▪ View training data and calculate the number of each class

Create a dict to count the number of tags in each category

train_dict = {}

Read the entire training data set

for data in train_data:

 # Convert the read label to numpy format

 label = data['label'].numpy()

 # Count the number of each category: use a dictionary

 train_dict[label] = train_dict.setdefault(label, 0) + 1

print(train_dict)

Result: {0: 4492, 1: 4473, 2: 4491, 3: 4497, 4: 4481, 5: 4519, 6: 4509, 7: 4515, 8: 4517, 9: 4506}

100 4. Multi-category classification problem

▪ Display images

(c) Data division
▪ Converting data

• Normalization: divide all pixels in the image by 255 to scale the pixel value between 0 and 1
• Label data: using one-hot encoding, for example, category 2 is represented as [0,0,0,0,0,0,0,0,1,0]

def parse_fn(dataset):

Image standardization

 x = tf.cast(dataset['image'], tf.float32) / 255.

Convert the output label to One-hot encoding

 y = tf.one_hot(dataset['label'], 10)

return x, y

1014.3 Experiment: CIFAR-10 image classification

▪ Setting training data, validation data, and test data

AUTOTUNE = tf.data.experimental.AUTOTUNE # Automatic adjustment mode

batch_size = 64 # Batch size

train_num = int(info.splits['train'].num_examples / 10) * 9 # Number of training

Shuffle training data

train_data = train_data.shuffle(train_num)

Training data

train_data = train_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set the batch size to 64 and turn on prefetch mode

train_data = train_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Validation data

valid_data = valid_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set the batch size to 64 and turn on prefetch mode

valid_data = valid_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Test data

test_data = test_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set the batch size to 64 and turn on prefetch mode

test_data = test_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

(d) Data Augmentation (for model-3)
▪ Building help functions

• Read image

102 4. Multi-category classification problem

• Flip horizontally

• Color conversion

1034.3 Experiment: CIFAR-10 image classification

• Image rotation

104 4. Multi-category classification problem

• Zoom image

▪ Setting data for training
• Reload Dataset: because the dataset has been set before, it is necessary to reload

train_data = tfds.load("cifar10", split=train_split)

• Converting data
- Normalization: divide all pixels in the image by 255 to scale the pixel value between 0 and 1
- Image augmentation: flip image horizontally, rotate image, convert colors, and zoom image
- Label data: using one-hot encoding, for example, category 2 is represented as [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

def parse_aug_fn(dataset):

"""

1054.3 Experiment: CIFAR-10 image classification

 Image Augmentation function

 """

 x = tf.cast(dataset['image'], tf.float32) / 255. # Image standardization

 x = flip(x) # Random horizontal flip

color conversion

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.5, lambda: color(x), lambda: x)

image rotation

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.75, lambda: rotate(x), lambda: x)

image zoom

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.5, lambda: zoom(x), lambda: x)

Convert the output label to One-hot encoding

 y = tf.one_hot(dataset['label'], 10)

return x, y

• The training data after performing image augmentation

shuffle data

train_data = train_data.shuffle(train_num)

Loading data

train_data = train_data.map(map_func=parse_aug_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

train_data = train_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

• Displaying data after performing image augmentation

for images, labels in train_data.take(1):

 images = images.numpy()

Create an array to display images

output = np.zeros((32 * 8, 32 * 8, 3))

add 64 data into the array for displaying images

for i in range(8):

for j in range(8):

 output[i*32:(i+1)*32, j*32:(j+1)*32, :] = images[i*8+j]

106 4. Multi-category classification problem

plt.figure(figsize=(8, 8))

Display image

plt.imshow(output)

Result:

2. Building and training network models
Three multi-category classification models are implemented:
(1) Model-1: FCNN
(2) Model-2: CNN without applying data augmentation technique for training
(3) Model-3: apply data augmentation technique for training Model-2
Table 4.2 shows the architecture of Model-1, Model-2, and Model-3.

TABLE 4.2 The architecture of multi-category classification models.

Name Architecture Description

Model-1 - Input layer with shape of 32�32�3
- Six fully connected layers, followed by ReLU activation functions
- One dropout layer with discard rate of 30%
- Output fully connected layer with 10 neurons, followed by softmax activation
function

- FCNN
- Do not apply data augmentation for training the
model.

Model-2 - Input layer with shape of 32�32�3
- Five convolutional layers, followed by ReLU activation function
- One max pooling layer
- One fully connected layer with 64 neurons, followed by ReLU activation
function

- Output fully connected layer with 10 neurons, followed by softmax activation
function

- CNN
- Do not apply data augmentation for training the
model.

Model-3 - Input layer with shape of 32�32�3
- Five convolutional layers, followed by ReLU activation function.
- One max pooling layer
- One fully connected layer with 64 neurons, followed by ReLU activation
function

- Output fully connected layer with 10 neurons, followed by softmax activation
function

- CNN
- Apply data augmentation for training the model.

1074.3 Experiment: CIFAR-10 image classification

(a) Model-1: FCNN
▪ Building network model

▪ Create a storage directory for saving model

model_dir = 'lab4-logs/models/'

os.makedirs(model_dir)

108 4. Multi-category classification problem

▪ Set callback function

Save training records as TensorBoard log files

log_dir = os.path.join('lab4-logs', 'model-1')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

Save the best model

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-1.h5',

 monitor='val_categorical_accuracy',

 save_best_only=True,

 mode='max')

▪ Set the optimizer, loss function, and metric function

model_1.compile(keras.optimizers.Adam(),

 loss=keras.losses.CategoricalCrossentropy(),

 metrics=[keras.metrics.CategoricalAccuracy()])

▪ Training Model-1

history_1 = model_1.fit(train_data,

 epochs=100,

 validation_data=valid_data,

 callbacks=[model_cbk, model_mckp])

Result:

1094.3 Experiment: CIFAR-10 image classification

(b) Model-2: CNN without applying data augmentation for training
▪ Building network model

inputs = keras.Input(shape=(32, 32, 3))

x = layers.Conv2D(64, (3, 3), activation='relu')(inputs)

x = layers.MaxPool2D()(x)

x = layers.Conv2D(128, (3, 3), activation='relu')(x)

x = layers.Conv2D(256, (3, 3), activation='relu')(x)

x = layers.Conv2D(128, (3, 3), activation='relu')(x)

x = layers.Conv2D(64, (3, 3), activation='relu')(x)

x = layers.Flatten()(x)

x = layers.Dense(64, activation='relu')(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10, activation='softmax')(x)

Create model

model_2 = keras.Model(inputs, outputs, name='model-2')

model_2.summary() # Show network architecture

Result:

110 4. Multi-category classification problem

▪ Set callback function

Save training records as TensorBoard log files

log_dir = os.path.join('lab4-logs', 'model-2')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

Save the best model

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-2.h5',

 monitor='val_categorical_accuracy',

 save_best_only=True,

 mode='max')

▪ Set the optimizer, loss function, and metric function

model_2.compile(keras.optimizers.Adam(),

 loss=keras.losses.CategoricalCrossentropy(),

 metrics=[keras.metrics.CategoricalAccuracy()])

▪ Training Model-2

history_2 = model_2.fit(train_data,

 epochs=100,

 validation_data=valid_data,

 callbacks=[model_cbk, model_mckp])

Result

1114.3 Experiment: CIFAR-10 image classification

(c) Model-3: CNN with data augmentation for training

▪ Set callback function

Save training records as TensorBoard log files

log_dir = os.path.join('lab4-logs', 'model-3')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

112 4. Multi-category classification problem

Save the best model

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/Best-model-3.h5',

 monitor='val_categorical_accuracy',

 save_best_only=True,

 mode='max')

▪ Set the optimizer, loss function, and metric function

model_3.compile(keras.optimizers.Adam(),

 loss=keras.losses.CategoricalCrossentropy(),

 metrics=[keras.metrics.CategoricalAccuracy()])

▪ Training Model-3

history_3 = model_3.fit(train_data,

 epochs=100,

 validation_data=valid_data,

 callbacks=[model_cbk, model_mckp])

Result:

3. Displaying results
▪ Load model weights

model_1.load_weights('lab4-logs/models/Best-model-1.h5')

model_2.load_weights('lab4-logs/models/Best-model-2.h5')

model_3.load_weights('lab4-logs/models/Best-model-3.h5')

▪ Verification on the test data

loss_1, acc_1 = model_1.evaluate(test_data)

loss_2, acc_2 = model_2.evaluate(test_data)

loss_3, acc_3 = model_3.evaluate(test_data)

1134.3 Experiment: CIFAR-10 image classification

▪ Display the loss value and accuracy result

loss = [loss_1, loss_2, loss_3]

acc = [acc_1, acc_2, acc_3]

dict = {"Accuracy": acc, "Loss": loss}

pd.DataFrame(dict)

Result:

The results show that the CNN with image augmentation (Model-3) achieved the best accuracy, followed by the
CNN alone (Model-2), and the FCNN (Model-3).

▪ Open TensorBoard: using command line to view training records

tensorboard --logdir lab4-logs

Fig. 4.25 shows the historical curve of three models on training data:

FIG. 4.25 Historical curve of three
models on training data.

114 4. Multi-category classification problem

• Model-1 with pink line is the FCNN
• Model-2 with orange line is the CNN
• Model-3 with dark red line is the CNN using the image augmentation technique

Fig. 4.25 shows that Model-2 obtained the best result on the training set, followed by Model-3 and Model-1.
Fig. 4.26 shows the historical curve of the three models on validation data:

• Model-1 with green line is the FCNN
• Model-2 with blue line is the CNN
• Model-3 with light cyan line is the CNN using the image augmentation technique.

Fig. 4.26 shows that Model-3 obtained the best results on the validation data, followed by Model-2 and Model-1. It
also shows that Model-2 has an overfitting problem. When applying image augmentation for training, the overfitting
problem was prevented and improved the accuracy of the Model-3.

FIG. 4.26 Historical curve of three models on validation data.

1154.3 Experiment: CIFAR-10 image classification

References

[1] M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, N.I. Chervyakov, Application of the residue number system to reduce hardware
costs of the convolutional neural network implementation, Math. Comput. Simul. 177 (2020) 232–243, https://doi.org/10.1016/j.mat-
com.2020.04.031. [Online]. Available.

[2] O. Russakovsky, J. Deng, H. Su, et al., ImageNet large scale visual recognition challenge, Int. J. Comput. Vis. 115 (2015) 211–252.
[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
[4] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 770–778.
[5] S. Xie, R. Girshick, P. Dollár, T. Zhuowen, K. He, Aggregated residual transformations for deep neural networks, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 1492–1500.
[6] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Rep-

resentations, 2015, pp. 1–14.
[7] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: European Conference on Computer Vision, 2014,

pp. 818–833.
[8] X. Ke, J. Zou, Y. Niu, End-to-end automatic image annotation based on deep CNN andmulti-label data augmentation, IEEE Trans. Multimedia

21 (8) (2019) 2093–2106.
[9] J. Ding, B. Chen, H. Liu, M. Huang, Convolutional neural network with data augmentation for SAR target recognition, IEEE Geosci. Remote

Sens. Lett. 13 (3) (2016) 364–368.
[10] X. Cui, V. Goel, B. Kingsbury, Data augmentation for deep neural network acoustic modeling, IEEE/ACM Trans. Audio Speech Lang. Process.

23 (9) (2015) 1469–1477.
[11] J. Salamon, J.P. Bello, Deep convolutional neural networks and data augmentation for environmental sound classification, IEEE Signal Process.

Lett. 24 (3) (2017) 279–283.
[12] R. Dellana, K. Roy, Data augmentation in CNN-based periocular authentication, in: 2016 6th International Conference on Information Com-

munication and Management (ICICM), Hatfield, 2016, pp. 141–145.
[13] Q. Hoang, T. Le, S. Huang, Data augmentation for improving SSD performance in rainy weather conditions, in: 2020 IEEE International Con-

ference on Consumer Electronics - Taiwan (ICCE-Taiwan), Taoyuan, 2020, pp. 1–2.
[14] A. Krizhevsky, V. Nair, G. Hinton, Cifar-10 (Canadian institute for advanced research), [Online]. Available: http://www.cs.toronto.

edu/�kriz/cifar.html.

116 4. Multi-category classification problem

https://doi.org/10.1016/j.matcom.2020.04.031
https://doi.org/10.1016/j.matcom.2020.04.031
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf7641
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/opt69ZgUPL0JZ
http://refhub.elsevier.com/B978-0-323-90198-7.00005-7/opt69ZgUPL0JZ
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

C H A P T E R

5

Training neural network

OUTLINE
• Understanding the backpropagation algorithm for

training neural networks

• Understanding the importance of weight initialization

• Using TensorBoard to observe the weights distribution
of the neural network

• Understanding the importance of batch normalization

• Summarize the effectiveness of different techniques for
training neural networks

5.1 Backpropagation

5.1.1 Introduction to backpropagation

Backpropagation (BP) [1] is a method to update the weights of neural networks in combination with gradient
descent, which we presented in Chapter 2. Gradient descent is one of the most common algorithms to perform opti-
mization for neural networks. By calculating the gradient and moving in the reverse direction, the error between the
predicted result of the network and the expected output is reduced during training process. The weights update for-
mula is:

W¼W�η
∂L
∂W

where L is loss function, η is learning rate, and W is weights of the neural network.
Through the preceding formula, the BP method is applied to compute the gradient of the loss function in respect to

the weights of the neural network for each input and output example. The following is an example to explain how the
gradient ∂L

∂W is calculated.
Fig. 5.1 shows the schematic diagram of a single-layer neural network with the forward propagation calculation.

The computation process is:

z¼ x1w1 + x2w2 + x3w3

ŷ¼ f zð Þ
Loss¼ y� ŷð Þ2

where x1, x2, and x3 are input data; w1, w2, and w3 are weights of the network; f is an activation function; ŷ is predicted
value of the network, and y is an expected output.

117Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00007-0

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00007-0

BP is applied to compute the gradients ∂L
∂w1

, ∂L
∂w2

, and ∂L
∂w3

for updating the weights of the network, as shown in Fig. 5.2.
The computation process is:

∂L
∂w1

¼ ∂L
∂ŷ

∂ŷ
∂z

∂z
∂w1

¼�2 y� ŷð Þ� f 0 zð Þ�x1

∂L
∂w2

¼ ∂L
∂ŷ

∂ŷ
∂z

∂z
∂w2

¼�2 y� ŷð Þ� f 0 zð Þ�x2

∂L
∂w3

¼ ∂L
∂ŷ

∂ŷ
∂z

∂z
∂w3

¼�2 y� ŷð Þ� f 0 zð Þ�x3

5.1.2 Vanishing gradient problem

The vanishing gradient refers to the problem encountered when training neural networks, especially deep neural net-
works (DNNs) with gradient methods and BP.

Table 5.1 lists three common activation functions: sigmoid, tanh, and rectified linear unit (ReLU). The use of sigmoid
and tanh activation functions in hidden layers of the neural networkmay cause the problem of vanishing gradient. For
example, when performing BP through a layer of sigmoid activation function, it needs to bemultipliedwith gradient of
sigmoid function. The maximum value of the sigmoid derivative function is f0(0)¼0.25, which means that the gradient
will be attenuated 0.25 times after one pass. If the neural network has five layers, the gradient will be reduced by at
least 0.255, which makes it difficult to update the weights of the previous layers of the neural network. Similarly, tanh
activation function has the same situation. Recently, the ReLU activation function is usually employed in hidden layers
because it outputs the input directly if the input is positive, otherwise, it outputs zero, overcoming the vanishing gra-
dient problem and allowing the neural networks to learn faster and more effectively.

FIG. 5.1 Forward propagation calculation diagram of a single-layer neural network.

FIG. 5.2 Backpropagation (BP) computation diagram of a single-layer neural network.

118 5. Training neural network

Here we explain vanishing gradient when using sigmoid activation function in neural networks. Given a two-layer
neural network, in which each layer uses the sigmoid activation function (f) to compute an output value, input x¼0.4,
weightsw1¼1, andw2¼1, and expected output y¼1. Fig. 5.3 shows a schematic diagram of the network with forward
propagation computation. The computation process is:

h1 ¼ xw1 ffi 0:4

TABLE 5.1 Three common activation functions used in neural networks.

f(z) f0(z) Plot

Sigmoid 1
1+ e�z f(z)(1� f(z))

0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid
Derivative of Sigmoid

–4 –2 0 2 4

Tanh ez�e�z

ez + e�z 1� f(z)2 1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

Tanh
Derivative of Tanh

–4 –2 0 2 4

ReLU 0 for x< 0
x for x� 0

�
0 for x< 0
1 for x� 0

�
2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

ReLU
Derivative of ReLU

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0

1195.1 Backpropagation

h2 ¼ f h1ð Þffi 0:599

h3 ¼ h2w2 ffi 0:599

ŷ¼ f h3ð Þffi 0:645

Loss¼ y� ŷð Þ2 ffi 0:126

here

f xð Þ¼ 1
1 + e�x

As shown in Fig. 5.4, ∂L
∂w1

is calculated by the BP method, the computation process is:

∂L
∂w1

¼ ∂L
∂ŷ

∂ŷ
∂h3

∂h3
∂h2

∂h2
∂h1

∂h1
∂w1

¼�2 y� ŷð Þ� f 0 h3ð Þ�w2� f 0 h1ð Þ�x¼

�2 1�0:645ð Þ� f 0 0:599ð Þ�1� f 0 0:4ð Þ�0:4¼
�2 1�0:645ð Þ�0:24�1�0:229�0:4¼�0:0156

From the computation of the BP above, it can be found that after each sigmoid activation function, the computed value
will be reduced at least 0.25 times, so the more layers of transfer, the more gradient attenuation there will be. This is the
reason for vanishing gradient during training DNNs.

Layer 1

Loss
Function

Sigmoid SigmoidW1 W2
x h1 h2 h3

Layer 2

ŷ

FIG. 5.3 Forward propagation computation diagram of a two-layer neural network.

Layer 1

Loss
Function

Sigmoid Sigmoid
x h1

¶h1

¶w1

h2 h3

Layer 2

ŷ
ŷ¶h2

¶h1

¶h3

¶h2

¶

¶h3 ŷ¶

¶L

FIG. 5.4 Backpropagation (BP) computation diagram of a two-layer neural network.

120 5. Training neural network

The computation result of ∂L
∂w1

is verified by using the TensorFlow program, as shown here.

Result: tf.Tensor(-0.015601176, shape=(), dtype=float32)

5.2 Weight initialization

The weight initialization plays an important role in training neural networks because it directly affects the conver-
gence of the model [2–5]. In this section, we introduce and analyze three weight initialization methods and the impact
of them on building the neural networks. In the following, we give a brief description of the three different weight
initialization methods.
▪ Normal distribution initialization: The simplest case of a normal distribution is known as the standard normal

distribution when the parameter μ (mean) is set to 0 and the parameter σ (standard deviation) is set to 1. In the
experiment below, the neural network of sigmoid activation function is used to analyze the initial weights of the
normal distribution with μ ¼ 0 and σ ¼ 1, and the normal distribution with μ ¼ 0 and σ ¼ 0.01. The final analysis
results show that the normal distribution with μ ¼ 0 and σ ¼ 1 is a cause of the vanishing gradient.

▪ Xavier or Glorot initialization [6]: This is used to improve the problems of the normal distribution initialization
method by trying to keep the scale of the gradient roughly the same in all layers of the neural network. However,
using Glorot initialization for DNNs with the ReLU activation function still reveals the vanishing gradient during
the training process.

▪ He initialization [7]: This addresses the problem of Xavier or Glorot initializationwhen the ReLU activation function
is employed in DNNs by making the output distribution of each layer even.

The following introduces in detail and analyzes the impacts of each initializationmethod in training and developing
neural networks. We also list the necessary packages for the program examples.

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras import initializers

5.2.1 Normal Distribution

1. The neural network of sigmoid activation function and the normal distribution with μ ¼ 0 and σ ¼ 1

To build the network model, the following network layers are used:

▪ keras.Input: input layer with shape of (100,).
▪ layers.Dense (fully connected layer): sigmoid is used as the activation function, and normal distribution with μ ¼ 0

and σ ¼ 1 is employed for weight initialization; bias is not used.

1215.2 Weight initialization

Building the network:

inputs = keras.Input(shape=(100,))

x1 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 1))(inputs)

x2 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 1))(x1)

x3 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 1))(x2)

x4 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 1))(x3)

x5 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 1))(x4)

model_1 = keras.Model(inputs, [x1, x2, x3, x4, x5])

Display the output distribution of each layer:

x = np.random.randn(100, 100)

outputs = model_1.predict(x)

for i, layer_output in enumerate(outputs):

 plt.subplot(1, 5, i+1) # Choose which cell to display in the table

 plt.title(str(i+1) + "-layer") # Set the title of the histogram

if i != 0: plt.yticks([], []) # Show only the y-axis of the first column of histograms

 plt.hist(layer_output.flatten(), 30, range=[0,1]) # Draw a histogram

plt.show()

Result:

The results show that most of the output values are distributed near 0 and 1. The gradient values will approach zero
when applying BP (please refer to the derivative of sigmoid function in Table 5.1), resulting in the vanishing gradient
problem. Therefore, the normal distribution with μ ¼ 0 and σ ¼ 1 is not an effective weight initialization method.

2. The neural network of sigmoid activation function and the normal distribution with μ ¼ 0 and σ ¼ 0.01

To build the network model, the following network layers are used:

▪ keras.Input: input layer with shape of (100,)
▪ layers.Dense (fully connected layer): sigmoid is used as activation function, and normal distribution with μ ¼ 0 and

σ ¼ 0.01 is employed for weight initialization; bias is not used

122 5. Training neural network

Building the network:

inputs = keras.Input(shape=(100,))

x1 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 0.01))(inputs)

x2 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 0.01))(x1)

x3 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 0.01))(x2)

x4 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 0.01))(x3)

x5 = layers.Dense(100, 'sigmoid', False, initializers.RandomNormal(0, 0.01))(x4)

model_2 = keras.Model(inputs, [x1, x2, x3, x4, x5])

Display the output distribution of each layer:

x = np.random.randn(100, 100)

outputs = model_2.predict(x)

for i, layer_output in enumerate(outputs):

 plt.subplot(1, 5, i+1) # Choose which cell to display in the table

 plt.title(str(i+1) + "-layer") # Set the title of the histogram

if i != 0: plt.yticks([], []) # Show only the y-axis of the first column of histograms

 plt.hist(layer_output.flatten(), 30, range=[0,1]) # Draw a histogram

plt.show()

Result:

The results show that the output values from the second layer are mostly distributed around 0.5, and the gradient
values will be around 0.25 when applying BP (please refer to the derivative of sigmoid function in Table 5.1). Although
the problem of vanishing gradient is improved, it may still occur with a deep network that consists of many convolu-
tional layers.

5.2.2 Glorot initialization

1. The neural network with Glorot initialization and sigmoid activation function

Glorot et al. [6] proposed the Glorot initialization method in 2010. It has been widely used in many DNNs and is
regarded as the default weight initialization method for training network models in Keras.

To build the network model, the following network layers are used:

▪ keras.Input: input layer with shape of (100,)
▪ layers.Dense (fully connected layer): sigmoid is used as activation function, and the Glorot method is employed for

weight initialization; bias is not used

1235.2 Weight initialization

Building the network:

inputs = keras.Input(shape=(100,))

x1 = layers.Dense(100, 'sigmoid', False, initializers.glorot_normal())(inputs)

x2 = layers.Dense(100, 'sigmoid', False, initializers.glorot_normal())(x1)

x3 = layers.Dense(100, 'sigmoid', False, initializers.glorot_normal())(x2)

x4 = layers.Dense(100, 'sigmoid', False, initializers.glorot_normal())(x3)

x5 = layers.Dense(100, 'sigmoid', False, initializers.glorot_normal())(x4)

model_3 = keras.Model(inputs, [x1, x2, x3, x4, x5])

Display the output distribution of each layer:

x = np.random.randn(100, 100)

outputs = model_3.predict(x)

for i, layer_output in enumerate(outputs):

 plt.subplot(1, 5, i+1) # Choose which cell to display in the table

 plt.title(str(i+1) + "-layer") # Set the title of the histogram

if i != 0: plt.yticks([], []) # Show only the y-axis of the first column of histograms

 plt.hist(layer_output.flatten(), 30, range=[0,1]) # Draw a histogram

plt.show()

Result:

The results show that the Glorot initialization method produces a wider output distribution than that of the normal
distribution method. This helps to prevent the vanishing gradient during the training process and allows the neural
networks to learn data efficiently. Therefore, the Glorot method for weights initialization is recommended for neural
networks with sigmoid or tanh activation function.

2. The neural network with Glorot initialization and ReLU activation function

To build the network model, the following layers are used:

▪ keras.Input: input layer with shape of (100,)
▪ layers.Dense (fully connected layer): ReLU is used as the activation function, and Glorot is employed for weight

initialization; bias is not used.

124 5. Training neural network

inputs

Building the network

= keras.Input(shape=(100,))

x1 = layers.Dense(100, 'relu', False, initializers.glorot_normal())(inputs)

x2 = layers.Dense(100, 'relu', False, initializers.glorot_normal())(x1)

x3 = layers.Dense(100, 'relu', False, initializers.glorot_normal())(x2)

x4 = layers.Dense(100, 'relu', False, initializers.glorot_normal())(x3)

x5 = layers.Dense(100, 'relu', False, initializers.glorot_normal())(x4)

model_4 = keras.Model(inputs, [x1, x2, x3, x4, x5])

Display the output distribution of each layer:

x = np.random.randn(100, 100)

outputs = model_4.predict(x)

for i, layer_output in enumerate(outputs):

 plt.subplot(1, 5, i+1) # Choose which cell to display in the table

 plt.title(str(i+1) + "-layer") # Set the title of the histogram

if i != 0: plt.yticks([], []) # Show only the y-axis of the first column of histograms

 plt.hist(layer_output.flatten(), 30, range=[0,1]) # Draw a histogram

plt.show()

Result:

The results show that when the number of layers of the network model increases, the output distribution of the
deeper layer is closer to 0, which may cause the vanishing gradient problem during training process. Therefore, using
Glorot weight initialization method for DNNs of the ReLU activation function is not recommend

5.2.3 He initialization

1. The neural network with He initialization and ReLU activation function

Kaiming He proposed the He initialization method [7] in 2015. It has proven effective in preventing the vanishing
gradient problem when using DNNs with the ReLU activation function.

To build the network model, the following layers are used:

▪ keras.Input: input layer with shape of (100,)
▪ layers.Dense (fully connected layer): ReLU is used as activation function, and He method is employed for weight

initialization; bias is not used

1255.2 Weight initialization

Building the network:

inputs = keras.Input(shape=(100,))

x1 = layers.Dense(100, 'relu', False, initializers.he_normal())(inputs)

x2 = layers.Dense(100, 'relu', False, initializers.he_normal())(x1)

x3 = layers.Dense(100, 'relu', False, initializers.he_normal())(x2)

x4 = layers.Dense(100, 'relu', False, initializers.he_normal())(x3)

x5 = layers.Dense(100, 'relu', False, initializers.he_normal())(x4)

model_5 = keras.Model(inputs, [x1, x2, x3, x4, x5])

Display the output distribution of each layer:

x = np.random.randn(100, 100)

outputs = model_5.predict(x)

for i, layer_output in enumerate(outputs):

 plt.subplot(1, 5, i+1) # Choose which cell to display in the table

 plt.title(str(i+1) + "-layer") # Set the title of the histogram

if i != 0: plt.yticks([], []) # Show only the y-axis of the first column of histograms

 plt.hist(layer_output.flatten(), 30, range=[0,1]) # Draw a histogram

plt.show()

Result:

The results show that the output distribution of each layer is very even when a deep network with ReLU activation
uses the He initialization method. The problem of using Glorot initialization method for DNNs with ReLU activation
function is successfully solved.

The following points summarize the knowledge of this section.

▪ The Glorot method is recommended for weight initialization when using neural networks with sigmoid or tanh
activation functions.

▪ The He method is recommended for weight initialization when using neural networks with ReLU activation
function.

▪ DNNs with the ReLU activation function usually achieve better performance than that of DNNs with sigmoid or
tanh activation functions.

126 5. Training neural network

5.3 Batch normalization

5.3.1 Introduction to batch normalization

Ioffe and Szegedy [8] proposed the batch normalization algorithm in 2015. It allows the use of high learning rates for
speeding up training of neural networks while placing less emphasis on weight initialization. When training neural
networks, the output distribution of the network layers is changed. The latter layer must continuously adapt to the
output distribution changes of the previous layer, that is, each layer needs to be adjusted according to the output dis-
tribution of the previous layer. This makes the neural networks update the weights slowly because of requiring careful
weight initialization and slow learning rates. To address this problem, the core idea of batch normalization is to per-
form the normalization for each batch of input data and output at each layer of the neural networks. As shown in Fig.
5.5A, the output of the network layer is evenly distributed between �10 and 10. After passing through the tanh acti-
vation function, the output distribution is not even; most output values are distributed near�1 and 1, thus causing the
problem of the vanishing gradient (please refer to the derivative of tanh function in Table 5.1). In Fig. 5.5B, the output of
the network layer is firstly normalized to the range of about �2 to 2, and then it is passed through the tanh activation
function, resulting in more even output distribution compared to the case without normalization in Fig. 5.5A.

With input mini-batch data M¼M¼ {x1,x2,…xn}, batch normalization transform is expressed through four steps:

▪ Step 1: computing the mean of mini-batch:

μM ¼ 1
n

Xn

i¼1

xi

▪ Step 2: computing the variance of mini-batch:

σ2M ¼ 1
n

Xn

i¼1

xi�μMð Þ2

–10

Output from network layer

Output from network layer

Normalization

Normalize the output of the network layer before entering the Tanh activation function.

The output of the network layer directly enters the Tanh activation function.

Tanh activation function Output from activation function

–1 1 10

–10

(A)

(B)

–1 1 10

–10 –1 1 10
–6

–1.00 1.000.00

Output from activation function

–1.00 1.000.00

–1.00

1.00

0.00

60

Tanh activation function

–6
–1.00

1.00

0.00

60

FIG. 5.5 Comparison of output distribution using normalization and without using normalization.

1275.3 Batch normalization

▪ Step 3: normalizing the value:

x̂i ¼ xi�μMffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2M + ε

q

where ε is a constant for numerical stability.

▪ Step 4: scaling and shifting:

yi ¼ αx̂i + β

where yi represents the output of batch normalization transform, and α and β are parameters to be learned.
By adding the batch normalization transform to the neural networks, any activation can bemanipulated. In the next

section, we present the location of batch normalization in the neural network.
The following points summarize the advantages of batch normalization:

▪ It speeds up the training of neural networks by using higher learning rates
▪ It reduces the overfitting problem in training neural networks
▪ It reduces the vanishing gradient and exploding gradient problems
▪ It eliminates the need to use the dropout technique to prevent loss of data information

5.3.2 Neural network with batch normalization

Batch normalization has been applied successfully to neural networks to improve the performance of various com-
puter vision applications such as image classification [9], image recognition [10], object detection [11], image-to-image
translation [12], and so on. The neural networks with batch normalization are slightly different from the normal neural
networks, in which the location of the batch normalization is between the convolutional layer and the activation func-
tion, as shown in Fig. 5.6.

Here, we present a code example of adding batch normalization to neural networks.

Original network construction:

……

x = layers.Conv2D(128, (3, 3), activation='relu')(x)

……

Adding Batch Normalization to the layer:

……

x = layers.Conv2D(128, (3, 3))(x)

x = layers.BatchNormalization()(x)

x = layers.ReLU()(x)

……

FIG. 5.6 The structure of a convolution neural network with batch normalization.

128 5. Training neural network

5.4 Experiment 1: Verification of three weight initialization methods

This section continues the topic of CIFAR-10 image classification in Chapter 4. To verify the effectiveness of each
weight initialization method, three scenarios of building neural networks are implemented:

(1) Model-1: a neural network with normal distribution (μ ¼ 0 and σ ¼ 0.01)
(2) Model-2: a neural network with Glorot weight initialization
(3) Model-3: a neural network with He weight initialization

Model-1, Model-2, and Model-3 have the same architecture and use ReLU activation in the hidden layers.

5.4.1 Code examples

Fig. 5.7 shows the flowchart of the source code for building and testing three models on CIFAR-10 dataset.

1. Preparing data
(a) Creating image augmentation functions

Because the image augmentation technique is used in the next chapters of the book, a Python file of the image aug-
mentation functions is created here. To use this technique, directly import its function to the program.

▪ Create file: create a file in Jupyter, as shown in Fig. 5.8

- Importing packages.

- Data reading and division - Model-1: using normal
 distribution initialization.

- Model-2: using Glorot
 weight initialization.

- Model-3: using He weight
 initialization.

- Set optimizer, loss function

- Creating image
 augmentation functions

- Comparison results
 of three models

- The accuracy of
 Model-1, Model-2,
 and Model-3 on test
 data.

- Model-1, Model-2, and
 Model-3 have the same
 architecture.

- Training Model-1, Model-2,
 Model-3.

1. Preparing data 2. Building and training
network models

3. Displaying
results

FIG. 5.7 The flowchart of the source code for CIFAR-10 image classification.

FIG. 5.8 Creating a file.

1295.4 Experiment 1: Verification of three weight initialization methods

▪ Rename: change the file name to “preprocessing.py,” as shown in Fig. 5.9

Import necessary packages

import tensorflow as tf

Create image augmentation functions: write image augmentation functions to

the "preprocessing.py" file.

def flip(x):

"""

 flip image

 """

 x = tf.image.random_flip_left_right(x) # Random flip image, left and right

return x

def color(x):

FIG. 5.9 Modify the file name.

130 5. Training neural network

"""

 Change Color

 """

 x = tf.image.random_hue(x, 0.08) # Adjust the hue of image by a random factor

 x = tf.image.random_saturation(x, 0.6, 1.6) # Randomly adjust image saturation

 x = tf.image.random_brightness(x, 0.05) # Randomly adjust image brightness

 x = tf.image.random_contrast(x, 0.7, 1.3) # Randomly adjust image contrast

return x

def rotate(x):

"""

 Rotate image

 """

Randomly select n times (set the range of n through minval and maxval),

 x = tf.image.rot90(x,tf.random.uniform(shape=[],minval=1,maxval=4,dtype=tf.int32))

return x

def zoom(x, scale_min=0.6, scale_max=1.4):

"""

 Zoom Image

 """

 h, w, c = x.shape

 scale = tf.random.uniform([], scale_min, scale_max) # Random scaling

 sh = h * scale # the height of image after zooming

 sw = w * scale # the width of image after zooming

 x = tf.image.resize(x, (sh, sw)) # Image zoom

 x = tf.image.resize_with_crop_or_pad(x, h, w) # resize image

return x

Data Preprocessing: Add data preprocessing functions in the

"preprocessing.py" file.

def parse_aug_fn(dataset):

"""

 Image Augmentation function

 """

 x = tf.cast(dataset['image'], tf.float32) / 255. # Image standardization

 x = flip(x) # Random horizontal flip

color conversion

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.5, lambda: color(x), lambda: x)

1315.4 Experiment 1: Verification of three weight initialization methods

image rotation

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.75, lambda: rotate(x), lambda: x)

image zoom

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.5, lambda: zoom(x), lambda: x)

Convert the output label to One-hot encoding

 y = tf.one_hot(dataset['label'], 10)

return x, y

def parse_fn(dataset):

 x = tf.cast(dataset['image'], tf.float32) / 255. # Image standardization

Convert the output label to One-hot encoding

 y = tf.one_hot(dataset['label'], 10)

return x, y

b) Import packages

import os

import numpy as np

import pandas as pd

import tensorflow as tf

import tensorflow_datasets as tfds

import matplotlib.pyplot as plt

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras import initializers

Import “parse_aug_fn” function and “parse_fn” function from the preprocessing.py file

from preprocessing import parse_aug_fn, parse_fn

c) Data reading and division

Load CIFAR-10 dataset:

Divide the training data with the rate of 9: 1 (9 for training and 1 for validation)

train_split, valid_split = ['train[:90%]', 'train[90%:]']. .

get the training data and read data information

train_data, info = tfds.load("cifar10", split=train_split, with_info=True)

get the valid data

valid_data = tfds.load("cifar10", split=valid_split)

get the test set of CIFAR-10

test_data = tfds.load("cifar10", split=tfds.Split.TEST)

132 5. Training neural network

Data settings

AUTOTUNE = tf.data.experimental.AUTOTUNE # Automatic adjustment mode

batch_size = 64 # Batch size

train_num = int(info.splits['train'].num_examples / 10) * 9 # Number of training data

train_data = train_data.shuffle(train_num) # Shuffle the training data

Training data

train_data = train_data.map(map_func=parse_aug_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

train_data = train_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Validation data

valid_data = valid_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

valid_data = valid_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Test data

test_data = test_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

#Set batch size and turn on prefetch mode

test_data = test_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

2. Building and training network models

Three CIFAR-10 image classification models with the same architecture are implemented. Table 5.2 lists the archi-
tecture and description of each model.

TABLE 5.2 The architecture of CIFAR-10 image classification models.

Name Architecture Description

Model-1 - Input layer with shape of (32,32,3)
- Five convolutional layers, followed by ReLU activation function
- One max pooling layer
- One flatten layer for flattening the input into a one-dimensional Tensor
- One fully connected layer
- One dropout layer with a discard rate of 50%
- Output fully connected layer with 10 neurons, followed by softmax
function

Using normal distribution method with μ ¼ 0 and σ ¼
0.01 for weight initialization when training the model

Model-2 - Input layer with shape of (32, 32, 3)
- Five convolutional layers, followed by ReLU activation function
- One max pooling layer
- One flatten layer for flattening the input into a one-dimensional Tensor
- One fully connected layer
- One dropout layer with a discard rate of 50%
- Output fully connected layer with 10 neurons, followed by softmax
function

Using Glorot method for weight initialization when
training the model

Model-3 - Input layer with shape of (32, 32, 3)
- Five convolutional layers, followed by ReLu activation function
- One max pooling layer
- One flatten layer for flattening the input into a one-dimensional Tensor
- One fully connected layer, followed by ReLU activation function
- One dropout layer with a discard rate of 50%
- Output fully connected layer with 10 neurons, followed by softmax
function

Using He method for weight initialization when
training the model

1335.4 Experiment 1: Verification of three weight initialization methods

Building network models:

def build_and_train_model(run_name, init):

"""

 run_name: the name of the current executing task

 init: weight initialization method

 """

 inputs = keras.Input(shape=(32, 32, 3))

 x = layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer=init)(inputs)

 x = layers.MaxPool2D()(x)

 x = layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer=init)(x)

 x = layers.Conv2D(256, (3, 3), activation='relu', kernel_initializer=init)(x)

 x = layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer=init)(x)

 x = layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer=init)(x)

 x = layers.Flatten()(x)

 x = layers.Dense(64, activation='relu', kernel_initializer=init)(x)

 x = layers.Dropout(0.5)(x)

 outputs = layers.Dense(10, activation='softmax')(x)

Create a network model (connect all the network layers that pass through from input

to output)

 model = keras.Model(inputs, outputs)

Save training log

 logfiles = 'lab5-logs/{}-{}'.format(run_name, init.__class__.__name__)

save the weight distribution of each layer

 model_cbk = keras.callbacks.TensorBoard(log_dir=logfiles,

 histogram_freq=1)

save the best weights of the model

 modelfiles = model_dir + '/{}-best-model.h5'.format(run_name)

 model_mckp = keras.callbacks.ModelCheckpoint(modelfiles,

 monitor='val_categorical_accuracy',

 save_best_only=True,

 mode='max')

Set the optimizer, loss function, and metric function for training

 model.compile(keras.optimizers.Adam(),

 loss=keras.losses.CategoricalCrossentropy(),

 metrics=[keras.metrics.CategoricalAccuracy()])

Train the network model

 model.fit(train_data,

 epochs=100,

 validation_data=valid_data,

 callbacks=[model_cbk, model_mckp])

Training the network model using three weight initialization methods:

session_num = 1

Set storage weight directory

model_dir = 'lab5-logs/models/'

134 5. Training neural network

os.makedirs(model_dir)

Set the three weight initialization methods

weights_initialization_list = [initializers.RandomNormal(0, 0.01),

 initializers.glorot_normal(),

 initializers.he_normal()]

for init in weights_initialization_list:

print('--- Running training session %d' % (session_num))

 run_name = "run-%d" % session_num

 build_and_train_model(run_name, init) # Create and train a network

 session_num += 1

Result:

3. Displaying results

Load the best trained models:

model_1 = keras.models.load_model('lab5-logs/models/run-1-best-model.h5')

model_2 = keras.models.load_model('lab5-logs/models/run-2-best-model.h5')

model_3 = keras.models.load_model('lab5-logs/models/run-3-best-model.h5')

Verification on the test set:

loss_1, acc_1 = model_1.evaluate(test_data)

loss_2, acc_2 = model_2.evaluate(test_data)

loss_3, acc_3 = model_3.evaluate(test_data)

Display the loss value and accuracy result

loss = [loss_1, loss_2, loss_3]

acc = [acc_1, acc_2, acc_3]

dict = {"Loss": loss, "Accuracy": acc}

pd.DataFrame(dict)

Result:

The results show that Model-3 with ReLU activation function and He weight initialization achieved the greatest
accuracy, followed by the Model-2 with Glorot weight initialization and Model-3 with normal distribution (μ ¼ 0
and σ ¼ 0.01).

5.4.2 Visualizing weight distribution with TensorBoard

TensorBoard provides two kinds of data distribution visualization tools; DISTRIBUTIONS and HISTOGRAMS.
When training the network, the tf.keras.callbacks.TensorBoard function has the “histogram_freq” parameter set to
1, which means that the weight distribution of each layer in each epoch training is recorded, and both DISTRIBU-
TIONS and HISTOGRAMS can be used.

The following uses directly the training results of three models in the previous section with three different weight
initialization methods including He initialization, Glorot initialization, and normal distribution (μ¼ 0 and σ¼ 0.01) to
visualize and analyze the weight distribution changes through TensorBoard.

Go to the location where the "lab5-logs" is stored, then open TensorBoard through the Command line below to view
training records.

tensorboard --logdir lab5-logs

1. The weights distribution of the Model-1 with normal distribution initialization
(a) Using the DISTRIBUTIONS tool

Fig. 5.10 shows the weight changes of Model-1 in 100 epochs, where the x-axis is the time axis and the y-axis is the
range of weight distribution. It can be observed that theweight distribution of the first and second convolutional layers
has changed very little. It is obvious that the network weights have not been updated at all.

FIG. 5.10 DISTRIBUTIONS shows the weight changes of Model-1 with normal distribution (μ¼ 0 and σ¼ 0.01). The top left and top right of the
figure are the bias distribution and kernel distribution of the second convolution layer, respectively. The bottom left and bottom right of the figure are
the bias distribution and kernel distribution of the third convolution layer, respectively.

136 5. Training neural network

(b) Using HISTOGRAMS tool

Fig. 5.11 shows another form of weight changes in 100 epochs of Model-1, where the x-axis is the range of weight
distribution and the y-axis is the time axis.

FIG. 5.11 HISTOGRAMS shows the weight changes of Model-1 with normal distribution (μ ¼ 0 and σ ¼ 0.01). The top left and top right of the
figure are the bias distribution and kernel distribution of the second convolution layer, respectively. The bottom left and bottom right of the figure are
the bias distribution and kernel distribution of the third convolution layer, respectively.

1375.4 Experiment 1: Verification of three weight initialization methods

2. The weights distribution of the Model-2 with Glorot initialization
(a) Using DISTRIBUTIONS tool

Fig. 5.12 shows the weight changes of the first and second convolutional layers observed by the DISTRIBUTIONS
tool when training Model-2 in 100 epochs using the Glorot method for weight initialization. As shown, the longer the
training is, the wider the weight distribution becomes, which means that more diverse features can be learned during
the training process.

FIG. 5.12 DISTRIBUTIONS shows the weight changes of Model-2 with Glorot initialization. The top left and top right of the figure are the bias
distribution and kernel distribution of the first convolution layer, respectively. The bottom left and bottom right of the figure are the bias distribution
and kernel distribution of the second convolution layer, respectively.

138 5. Training neural network

(b) Using HISTOGRAMS tool

Fig. 5.13 shows the weight changes of the first and second convolutional layers observed by the HISTOGRAMS tool
when training Model-2 in 100 epochs using the Glorot method for weight initialization.

FIG. 5.13 HISTOGRAMS shows the weight changes of Model-2 with Glorot initialization. The top left and top right of the figure are the bias
distribution and kernel distribution of the first convolution layer, respectively. The bottom left and bottom right of the figure are the bias distribution
and kernel distribution of the second convolution layer, respectively.

1395.4 Experiment 1: Verification of three weight initialization methods

3. The weight distribution of the Model-3 with He initialization
(a) Using DISTRIBUTIONS tool

Fig. 5.14 shows the weight changes of the first and second convolutional layers obtained by using the DISTRIBU-
TIONS tool when training Model-3 in 100 epochs using He weight initialization. Compared with the weight distribu-
tion of Model-2, the weight distribution Model-3 is wider, which means that Model-3 with He initialization can learn
more diverse features than that of Model-2 with Glorot initialization.

FIG. 5.14 DISTRIBUTIONS shows the weight changes of Model-3 with He initialization. The top left and top right of the figure are the bias dis-
tribution and kernel distribution of the first convolution layer, respectively. The bottom left and bottom right of the figure are the bias distribution
and kernel distribution of the second convolution layer, respectively.

140 5. Training neural network

(b) Using HISTOGRAMS tool

Fig. 5.15 shows the weight changes of the first and second convolutional layers observed by using the HISTO-
GRAMS tool when training Model-3 in 100 epochs using He weight initialization.

5.5 Experiment 2: Verification of batch normalization

In this section, we build a neural network, named Model-4, by adding batch normalization to the convolutional
layers of the network architecture in Section 5.4. Table 5.3 shows the architecture of Model-4. This model is trained
on the CIFAR-10 dataset to verify the effeteness of batch normalization in improving performance of the neural net-
work.

FIG. 5.15 HISTOGRAMS shows the weight changes of Model-3 with He initialization. The top left and top right of the figure are the bias dis-
tribution and kernel distribution of the first convolution layer, respectively. The bottom left and bottom right of the figure are the bias distribution
and kernel distribution of the second convolution layer, respectively.

1415.5 Experiment 2: Verification of batch normalization

� Building network:

inputs = keras.Input(shape=(32, 32, 3))

x = layers.Conv2D(64, (3, 3))(inputs)

x = layers.BatchNormalization()(x)

x = layers.ReLU()(x)

x = layers.MaxPool2D()(x)

x = layers.Conv2D(128, (3, 3))(x)

x = layers.BatchNormalization()(x)

x = layers.ReLU()(x)

x = layers.Conv2D(256, (3, 3))(x)

x = layers.BatchNormalization()(x)

x = layers.ReLU()(x)

x = layers.Conv2D(128, (3, 3))(x)

x = layers.BatchNormalization()(x)

x = layers.ReLU()(x)

x = layers.Conv2D(64, (3, 3))(x)

x = layers.BatchNormalization()(x)

x = layers.ReLU()(x)

x = layers.Flatten()(x)

x = layers.Dense(64)(x)

x = layers.BatchNormalization()(x)

x = layers.ReLU()(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10, activation='softmax')(x)

model_4 = keras.Model(inputs, outputs, name='model-4')

Show network architecture

model_4.summary()

Result：

TABLE 5.3 The architecture of a neural network with batch normalization.

Name Architecture Description

Model-4 - Input layer with shape of (32, 32, 3)
- Five convolutional layers, followed by batch normalization and ReLu
activation function, respectively

- One max pooling layer
- One flatten layer for flattening the input into a one-dimensional Tensor.
- One fully connected layer.
- One dropout layer with a discard rate of 50%.
- Output fully connected layer with 10 neurons, followed by softmax
function.

- Neural network with batch normalization
- Batch normalization is placed between the convolutional
layer and ReLu activation

142 5. Training neural network

1435.5 Experiment 2: Verification of batch normalization

Set Callback function:

model_dir = 'lab5-logs/models/' # Create storage directory

Save training log

log_dir = os.path.join('lab5-logs', 'run-4-batchnormalization')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

Store the best model weights

model_mckp = keras.callbacks.ModelCheckpoint(model_dir + '/run-4-best-model.h5',

 monitor='val_categorical_accuracy',

 save_best_only=True,

 mode='max')

Set the optimizer, loss function, and metric function.

model_4.compile(keras.optimizers.Adam(),

 loss=keras.losses.CategoricalCrossentropy(),

 metrics=[keras.metrics.CategoricalAccuracy()])

Training Model-4

history_1 = model_4.fit(train_data,

 epochs=100,

 validation_data=valid_data,

 callbacks=[model_cbk, model_mckp])

Reuslt

� Verification on the test set

loss, acc = model_4.evaluate(test_data)

print('\nModel-4 Accuracy: {}%'.format(acc))

Result Model-4 Accuracy: 0.8593000173568726%

144 5. Training neural network

5.6 Comparison of different neural networks

In this section, we summarize and compare the performance of all the neural networks in Chapter 4 and this chapter.
Table 5.4 shows the architecture and the accuracy of the models evaluated on the CIFAR-10 dataset. As shown, the
convolutional neural network with batch normalization and Glorot weight initialization (Lab 5Model-4) is superior to
the other models in terms of accuracy.

The training results of the models in Chapter 4 and this chapter can be observed through TensorBorad, as shown in
Fig. 5.16. Note that it is required to enter two log files after –logdir when opening TensorBoard.

TABLE 5.4 Performance comparison of seven neural networks.

Network architecture IA GU RN GN HN BN Accuracy (%)

Fully connected neural network (Lab4 Model-1) × ✓ × × × × 44.53

Convolutional Neural Network (Lab4 Model-2) × ✓ × × × × 72.11

Convolutional Neural Network (Lab4 Model-3) ✓ ✓ × × × × 79.80

Convolutional Neural Network (Lab5 Model-1) ✓ × ✓ × × × 10.00

Convolutional Neural Network (Lab5 Model-2) ✓ × × ✓ × × 79.33

Convolutional Neural Network (Lab5 Model-3) ✓ × × × ✓ × 81.18

Convolutional Neural Network (Lab5 Model-4) ✓ ✓ × × × ✓ 85.93

IA, image augmentation; RN, random normal distribution initialization; GU, Glorot uniform initialization; GN, Glorot normal initialization; HN, He normal
initialization; BN, batch normalization.

FIG. 5.16 Training result of neural networks on the CIFAR-10 dataset.

1455.6 Comparison of different neural networks

References

[1] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagation errors, Nature 323 (1986) 533–536.
[2] D. Mishkin, J. Matas, All you need is a good init, in: Proc. International Conference on Learning Representations, 2016, pp. 3013–3018.
[3] D. Xie, J. Xiong, S. Pu, All you need is beyond a good init: exploring better solution for training extremely deep convolutional neural networks

with orthonormality and modulation, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2017) 6176–6185.
[4] T. Salimans, D.P. Kingma, Weight normalization: a simple reparameterization to accelerate training of deep neural networks, Adv. Neural Inf.

Proces. Syst. (2016) 901–909.
[5] S.Masood,M.N. Doja, P. Chandra, Analysis ofweight initializationmethods for gradient descentwithmomentum, in: International Conference

on Soft Computing Techniques and Implementations, 2015, pp. 131–136.
[6] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proc. Conf. Artificial Intelligence and Sta-

tistics, 2010, pp. 249–256.
[7] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, in: IEEE Inter-

national Conference on Computer Vision, 2015, pp. 1026–1034.
[8] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: International Conference

on Machine Learning, 2015, pp. 448–456.
[9] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
[10] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 770–778.
[11] T. Le, S. Huang,D. Jaw, Cross-resolution feature fusion for fast handdetection in intelligent homecare systems, IEEE Sens. J. 19 (2019) 4696–4704.
[12] P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2017, pp. 1125–1134.

146 5. Training neural network

http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/optOLG09PK7ix
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00007-0/rf0065

C H A P T E R

6

Advanced TensorFlow

OUTLINE
• Using TensorFlow to create a custom API

• Understanding the benefit of using high-level Keras
API and custom API of TensorFlow in designing neural
networks

• Building neural networks with high-level Keras API
and custom API of TensorFlow

6.1 Advanced TensorFlow

The previous chapters introduced how to use the tf.keras API to build and train neural network models for linear
regression, binary classification, and multi-category classification via the following steps:
▪ Define the input of the network model: tf.keras.Input()
▪ Connect the layers of the network: tf.keras.layers()
▪ Create the network model: tf.keras.Model()
▪ Set the optimizer, loss function, and metric function: model.compile()
▪ Train network model: model.fit()

Although the high-level Keras API of TensorFlowmakes it is very easy to build and train neural network models, it
still has limitations. For example, not all loss functions for all problems are included in the high-level API, so these loss
functions are not available to use for training new network models. In this section, we demonstrate advanced Tensor-
Flow techniques to show how to customize the API for the following specific purposes.

▪ Custom network layer: how to create a new network layer
▪ Custom loss function: how to create a new loss function
▪ Custom metric function: how to create a new metric function
▪ Custom callback function: how to create a new callback function

6.1.1 Custom network layer

The types of network layers provided by TensorFlow are quite diverse and include:

▪ Convolutional layers:Conv1D,Conv2D,Conv3D, SeparableConv2D,DepthwiseConv2D,Conv2DTranspose, and soon
▪ Pooling layers: MaxPooling1D, MaxPooling2D, AveragePooling2D, GlobalMaxPooling2D, and so on

147Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00012-4

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00012-4

▪ Merge layers: Add, Subtract, Multiply, Concatenate, Maximum, and so on
▪ Activation layers: Rectified linear unit (ReLU), LeakyReLU, PReLU, and so on
▪ Recurrent layers: RNN, GRU, LSTM, ConvLSTM2D, and so on
▪ Batch normalization, dropout, and so on

If a type of network layer is not defined in TensorFlow, a new custom one can be created by inheriting the class “tf.
keras.layers.Layer.” The following is a template for creating a custom layer.

class CustomLayer(tf.keras.layers.Layer):

 def __init__(self, **kwargs):

 super(CustomLayer, self).__init__(**kwargs)

 """

 The place to set parameters

 """

 def build(self, input_shape):

 """

 The place to create weights (via add_weight method).

 Parameter:

 input_shape: input size

 """

 def call(self, inputs):

 """

 Define the forward pass (operation) of the network.

 parameter:

 inputs: input data.

 """

 def get_config(self):

 """

 (Optional!) If you want to support serialization, define it here, it will return the layer's

construction parameters

 """

The official TensorFlow document for Keras layers API is provided at www.tensorflow.org/versions/r2.0/api_
docs/python/tf/keras/layers

6.1.2 Custom loss function

There are many loss functions to choose fromwhen designing neural network models for various problems such as
classification, recognition, regression, and so on. The loss functions provided by TensorFlow are not sufficient to deal
with all problems. Therefore, if a loss function is not available in TensorFlow for addressing a specific problem, it is
necessary to define a new one. The following is a template for creating a custom loss function.

148 6. Advanced TensorFlow

http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers
http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers

def custom_loss(y_true, y_pred):

 """

 Define loss function in this place

 Parameter:

 y_true true value : expected output

 y_pred predicted value : The prediction result of the network

 """

 return loss

The official loss functions provided by TensorFlow can be accessed at www.tensorflow.org/versions/r2.0/api_
docs/python/tf/keras/losses

6.1.3 Custom metric function

The metric function is used to evaluate the quality of neural network models, and each metric for each task is dif-
ferent. For example, the intersection-over-union (IoU)metric is employed for semantic segmentationmodels, the mean
average precision (mAP) metric is used for object detection models, and the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) metrics are used for image enhancement models such as haze removal model,
fog removal model, and so on. If a metric function is not available in TensorFlow, it can be created by inheriting
the class “tf.keras.metrics.Metric.” The following is a template for creating a custom metric function.

class CustomMetrics(tf.keras.metrics.Metric):

 def __init__(self, name='custom_metrics', **kwargs):

 super(CustomMetrics, self).__init__(name=name, **kwargs)

 """

 All state variables used for the metric function need to be defined here.

 Parameter:

 name: The name of the metric function.

 """

 def update_state(self, y_true, y_pred, sample_weight=None):

 """

 Use y_true and y_pred to calculate update state variables.

 Parameter:

 y_true: expected output

 y_pred: predicted value of the network model.

 sample_weight: The weight of the sample, usually used in the sequence model.

 """

 def result(self):

 """

 Use state variables to calculate the final result.

 """

 def reset_states(self):

 """

 Re-initialize the metric function (state variable)

 """

1496.1 Advanced TensorFlow

http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/losses
http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/losses

The official metric functions provided by TensorFlow can be accessed at www.tensorflow.org/versions/r2.0/api_
docs/python/tf/keras/metrics

6.1.4 Custom callback function

A callback is a powerful tool to perform actions at various stages of training neural networkmodels. For example, using
callbackscanhelp tomonitor lossesandmetrics throughwritingTensorBoard logsaftereveryepochof training,preventover-
fitting by doing early stopping, save the best modelweights, and so on. The common callbacks available in TensorFlow are:

▪ tf.keras.callbacks.ModelCheckpoint: Monitor values and store the best model weights
▪ tf.keras.callbacks.EarlyStopping: If the monitored values of the model are too long without improvement, the

training will be terminated early
▪ tf.keras.callbacks.ReduceLROnPlateau: If the monitored values of the model are too long without improvement, the

learning rate will be reduced
▪ tf.keras.callbacks.TensorBoard: Record weights, graph, and so on, of the model during the training process

If a callback is not provided by TensorFlow, one can be created by inheriting the class “tf.keras.callbacks.Callback.”
The following is a template for creating a custom callback.

class CustomCallbacks(tf.keras.callbacks.Callback):

 def on_epoch_(begin|end)(self, epoch, logs=None):

 """

 Each epoch is started or stopped, execute this program.

 Parameters:

 epoch: The current epoch.

 logs: Input information such as loss, val_loss, etc in dict format

 """

 def on_(train|test|predict)_begin(self, logs=None):

 """

150 6. Advanced TensorFlow

http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/metrics
http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/metrics

class CustomCallbacks(tf.keras.callbacks.Callback):

 def on_epoch_(begin|end)(self, epoch, logs=None):

 """

 Each epoch is started or stopped, execute this program.

 Parameters:

 epoch: The current epoch.

 logs: Input information such as loss, val_loss, etc in dict format

 """

 def on_(train|test|predict)_begin(self, logs=None):

 """

 fitting, evaluation or prediction tasks starts, execute this program.

 parameters:

 log: Input the information such as loss, val_loss, etc in dict format

 """

 def on_(train|test|predict)_end(self, logs=None):

 """

 At the end of the training, evaluation or prediction stage, execute this program.

 Parameters:

 logs: Input the information such as loss, val_loss, etc in dict format

 """

 def on_(train|test|predict)_batch_begin(self, batch, logs=None):

 """

 This program is executed before the start of each batch of the training, evaluation,

 or prediction tasks.

 Parameters:

 batch: the current batch

 logs: Input the information such as loss, val_loss, etc. in dict format,

 """

 def on_(train|test|predict)_batch_end(self, batch, logs=None):

 """

 This program is executed after each batch of the training, evaluation,

 or prediction is completed.

 Parameters:

 batch: Current batch

 logs: Input the information such as loss, val_loss, etc in dict format

 """

The official callback functions provided by TensorFlow can be accessed at www.tensorflow.org/versions/r2.0/
api_docs/python/tf/keras/callbacks

6.2 Using high-level keras API and custom API of TensorFlow

This section presents more detail about the custom API and high-level Keras API of TensorFlow through examples.
Each example is implemented using bothmethods to show the benefits of each one.While the high-level Keras APIwas
optimized and easy to use, the custom API is very flexible in building neural networks.

1516.2 Using high-level keras API and custom API of TensorFlow

http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/callbacks
http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/callbacks

6.2.1 Network layer

In this section, we create a convolutional layer using the high-level Keras API and custom network layer of Tensor-
Flow. The parameters of the convolution layer are:

▪ Number of kernels: 64
▪ Kernel size: 3�3
▪ Strides: 1
▪ Padding: valid
▪ Activation function: ReLU
▪ Weight initialization: Glorot initialization
▪ Bias initialization: zeros

The convolution layer created by the following two methods have the same function.

a) First method: Using the high-level Keras API of TensorFlow.

tf.keras.layers.Conv2D(64, 3, activation='relu', kernel_initializer='glorot_uniform')

b) Second method: Using a custom network layer of TensorFlow.

class CustomConv2D(tf.keras.layers.Layer):

def __init__(self, filters, kernel_size, strides=(1, 1), padding="VALID", **kwargs):

super(CustomConv2D, self).__init__(**kwargs)

self.filters = filters

self.kernel_size = kernel_size

self.strides = (1, *strides, 1)

self.padding = padding

def build(self, input_shape):

kernel_h, kernel_w = self.kernel_size

input_dim = input_shape[-1]

create the weights

self.w = self.add_weight(name='kernel',

shape=(kernel_h, kernel_w, input_dim, self.filters),

initializer='glorot_uniform', # weight initialization

trainable=True) # Set whether weight can be trained

Create the biases

self.b = self.add_weight(name='bias',

shape=(self.filters,),

 initializer='zeros', # bias initialization

 trainable=True) # Set whether weight can be trained

 def call(self, inputs):

 x = tf.nn.conv2d(inputs, self.w, self.strides, padding=self.padding) # Convolution

operation

 x = tf.nn.bias_add(x, self.b)

 x = tf.nn.relu(x) # using Relu activation function

 return x

152 6. Advanced TensorFlow

6.2.2 Loss function

This section establishes the categorical cross-entropy (CCE) loss function using both high-level Keras API and cus-
tom loss function of TensorFlow. The formula for CCE is:

CCE¼�
XN

i¼1

XC

j¼1
yi, j logð f ðŷi, jÞÞ
N

where y is expected output, ŷ is prediction result of the networkmodel, f is softmax function,C is number of categories,
and N is the amount of data in a batch.

The loss functions created by the following two methods have the same function.

a) First method: Using the high-level Keras API of TensorFlow.

tf.keras.losses.CategoricalCrossentropy()

b) Second method: Using a custom loss function of TensorFlow.

def custom_categorical_crossentropy(y_true, y_pred):
x = tf.reduce_mean(-tf.reduce_sum(y_true * tf.log(y_pred), reduction_indices=[1]))
return x

Although the custom categorical cross-entropy (CCE) loss function created by the second method can work, it will
be replacedwith the official function “tf.nn.softmax_cross_entropy” in practice. The reason is that the official CCEAPI
has been optimized, and thus it is faster and more stable in training.

def custom_categorical_crossentropy(y_true, y_pred):

x = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred)

return x

6.2.3 Metric function

Ametric is a function that is employed to judge the performance of the model. TensorFlow provides a lot of metrics
for performance judging such as binary accuracy, categorical accuracy, sparse categorical accuracy, top-k categorical
accuracy, sparse_top_k categorical accuracy, and so on. In this section, we create the categorical accuracy which cal-
culates how often predictions matches one-hot labels by using the high-level Keras API and custommetric function of
TensorFlow.

1536.2 Using high-level keras API and custom API of TensorFlow

The metric functions created by the following two methods have the same function.

a) First method: Using the high-level Keras API of TensorFlow.

tf.keras.metrics.CategoricalAccuracy()

b) Second method: Using custom metric functions of TensorFlow.

class CustomCategoricalAccuracy(tf.keras.metrics.Metric):

 def __init__(self, name='custom_catrgorical_accuracy', **kwargs):

 super(CustomCategoricalAccuracy, self).__init__(name=name, **kwargs)

 # the number of correct predictions

 self.correct = self.add_weight('correct_numbers', initializer='zeros')

 # the amount of all data

 self.total = self.add_weight('total_numbers', initializer='zeros')

def update_state(self, y_true, y_pred, sample_weight=None):

 (y_true is represented by using One-hot encoding)

 # get the index with the largest value

 y_true = tf.argmax(y_true, axis=-1)

 # get the index with the largest value

 y_pred = tf.argmax(y_pred, axis=-1)

 # Compare whether the prediction result is correct, true will return True (correct),

 false will return False (error)

 values = tf.equal(y_true, y_pred)

 # # Convert to floating point: True (correct) = 1.0, False (false) = 0.0

 values = tf.cast(values, tf.float32)

 # Computes the sum of elements

 values_sum = tf.reduce_sum(values)

 num_values = tf.cast(tf.size(values), tf.float32)

 self.correct.assign_add(values_sum) # Update the total number of correct

 predictions

 self.total.assign_add(num_values) # Total amount of updated data

 def result(self):

 # Calculate accuracy

 return tf.math.divide_no_nan(self.correct, self.total)

 def reset_states(self):

 # Variables will be reinitialized after each Epoch

 self.correct.assign(0.)

 self.total.assign(0.)

154 6. Advanced TensorFlow

Supplementary explanation

An example of categorical accuracy calculation.

6.2.4 Callback function

This section introduces two methods to save the best model weights of the neural network during the training
process. The first method employs a callback of the high-level Keras API, while the second method adopts a custom
callback function of TensorFlow.

1556.2 Using high-level keras API and custom API of TensorFlow

The callbacks created by the following two methods have the same function.

a) First method: Using the high-level Keras API of TensorFlow.

tf.keras.callbacks.ModelCheckpoint('logs/models/save.h5')

b) Second method: Use a custom callback function of TensorFlow.

class SaveModel(tf.keras.callbacks.Callback):

 def __init__(self, weights_file, monitor='loss', mode='min',save_weights_only=False):

 super(SaveModel, self).__init__()

 # Set storage path

 self.weights_file = weights_file

 # Set the value to be monitored

 self.monitor = monitor

 # Set the monitoring value to "bigger is better" or "smaller is better"

 # Ex: The monitoring value is loss, it must be set to 'min', if the monitoring value

 is Accuracy, then set to 'max'.

 self.mode = mode

 # Save model weights only or Save entire network model (including Layer,

 Compile, etc.)

 self.save_weights_only = save_weights_only

 if mode == 'min':

 # Set best to infinity

 self.best = np.Inf

 else:

 # Set best to negative infinity

 self.best = -np.Inf

 # Function for saving network model

 def save_model(self):

 if self.save_weights_only:

 # Only save model weights

 self.model.save_weights(self.weights_file)

 else:

 # Save the entire network model (including Layer, Compile, etc.)

 self.model.save(self.weights_file)

 def on_epoch_end(self, epoch, logs=None):

 # Read monitored values from logs

 monitor_value = logs.get(self.monitor)

 # If the monitored values decrease or increase (depending on the mode setting)

 , save the network model

 if self.mode == 'min' and monitor_value < self.best:

 self.save_model()

 self.best = monitor_value

 elif self.mode == 'max' and monitor_value > self.best:

 self.save_model()

 self.best = monitor_value

Fig. 6.1 shows an example of a saved model weights file produced by Keras API of TensorFlow.

6.3 Experiment: implementation of two network models using high-level keras API and custom API

In this section, we present two scenarios of building neural networks for multi-category classification. In the first
scenario, we employ the high-level Keras API of TensorFlow to create the network model, called Model-1. In the sec-
ond scenario, we use the customAPI of TensorFlow to build the networkmodel, calledModel-2. Model-1 andModel-2
are trained separately on the CIFAR-10 dataset for comparing performance.

Fig. 6.2 is a flowchart of the source code for building Model-1 and Model-2.

FIG. 6.1 Saved model weights file.

FIG. 6.2 Flowchart of the source code for building multi-category classification models using high-level Keras API and custom API.

1576.3 Experiment: implementation of two network models using high-level keras API and custom API

1. Preparing data

a) Import packages

import os

import numpy as np

import pandas as pd

import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras import initializers

Import parse_aug_fn and parse_fn functions from the preprocessing.py file

from preprocessing import parse_aug_fn, parse_fn

b) Loading and setting data

� Loading data:

Divide training data 9: 1 (9 for training and 1 for validation) train_split,

valid_split = ['train[:90%]', 'train[90%:]']

get the training data

train_data, info = tfds.load("cifar10", split=train_split, with_info=True)

get the valid data

valid_data = tfds.load("cifar10", split=valid_split)

#get the test data

test_data = tfds.load("cifar10", split=tfds.Split.TEST)

Get the category of CIFAR-10 dataset

class_name = info.features['label'].names

Setting data:

AUTOTUNE = tf.data.experimental.AUTOTUNE # Automatic adjustment mode

batch_size = 64 # Batch size

train_num = int(info.splits['train'].num_examples / 10) * 9 # Number of training data

Shuffle the training data

train_data = train_data.shuffle(train_num)

Training data

train_data = train_data.map(map_func=parse_aug_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

train_data = train_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Validation data

valid_data = valid_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

valid_data = valid_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Test data

test_data = test_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

#Set batch size and turn on prefetch mode

test_data = test_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

158 6. Advanced TensorFlow

2. Building and training network model

Model-1 and Model-2 have the same architecture, as shown in Table 6.1. While Model-1 is constructed using the
high-level Keras API of TensorFlow, Model-2 is built using the custom API of TensorFlow.

a) Model-1: Using high-level Keras API of TensorFlow.

 Build network model:

inputs = keras.Input(shape=(32, 32, 3))

x = layers.Conv2D(64, 3, activation='relu', kernel_initializer='glorot_uniform')(inputs)

x = layers.MaxPool2D()(x)

TABLE 6.1 The architecture of Model-1 and Model-2.

Name Architecture Description

Model-1 - Input layer with shape of (32,32,3)
- Five convolutional layers, followed by rectified linear unit (ReLU) activation functions
- One max pooling layer
- One flatten layer for flattening the input into a one-dimensional Tensor
- One fully connected layer
- One dropout layer with a discard rate of 50%
- Output fully connected layer with 10 neurons

Using the high-level Keras API to build and
train the network model

Model-2 - Input layer with shape of (32, 32, 3)
- Five convolutional layers, followed by ReLU activation functions
- One max pooling layer
- One flatten layer for flattening the input into a one-dimensional Tensor
- One fully connected layer
- One dropout layer with a discard rate of 50%
- Output fully connected layer with 10 neurons

Using the custom API of TensorFlow to
build and train the network model

1596.3 Experiment: implementation of two network models using high-level keras API and custom API

x = layers.Conv2D(128, 3, activation='relu', kernel_initializer='glorot_uniform')(x)

x = layers.Conv2D(256, 3, activation='relu', kernel_initializer='glorot_uniform')(x)

x = layers.Conv2D(128, 3, activation='relu', kernel_initializer='glorot_uniform')(x)

x = layers.Conv2D(64, 3, activation='relu', kernel_initializer='glorot_uniform')(x)

x = layers.Flatten()(x)

x = layers.Dense(64, activation='relu')(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10)(x)

Create a network model (connect all the network layers that pass through from input to

output)

model_1 = keras.Model(inputs, outputs, name='model-1')

model_1.summary()

Result:

Create callback function:

Save training log

logs_dirs = 'lab6-logs'

model_cbk = keras.callbacks.TensorBoard(log_dir='lab6-logs')

create a path to save models

model_dirs = logs_dirs + '/models'

os.makedirs(model_dirs, exist_ok=True)

160 6. Advanced TensorFlow

save_model = keras.callbacks.ModelCheckpoint(model_dirs + '/save.h5',

monitor='val_catrgorical_accuracy',

mode='max')

Set the optimizer, loss function, and metric function:

model_1.compile(keras.optimizers.Adam(),

Since Softmax is not used in the output of the model, set from_logits to True

loss=keras.losses.CategoricalCrossentropy(from_logits=True),

metrics=[keras.metrics.CategoricalAccuracy()])

Training Model-1:

model_1.fit(train_data,

epochs=100,

validation_data=valid_data,

callbacks=[model_cbk, save_model])

Result:

b) Model-2: Using custom API of TensorFlow

Create CustomConv2D convolution layer:

class CustomConv2D(tf.keras.layers.Layer):

def __init__(self, filters, kernel_size, strides=(1, 1), padding="VALID", **kwargs):

super(CustomConv2D, self).__init__(**kwargs)

self.filters = filters

self.kernel_size = kernel_size

self.strides = (1, *strides, 1)

self.padding = padding

def build(self, input_shape):

kernel_h, kernel_w = self.kernel_size

input_dim = input_shape[-1]

1616.3 Experiment: implementation of two network models using high-level keras API and custom API

 # create the weight

 self.w = self.add_weight(name='kernel',

 shape=(kernel_h, kernel_w, input_dim, self.filters),

 initializer='glorot_uniform', # Set weight initialization

 trainable=True) # Set whether this weight can be trained

 # Create the biases

 self.b = self.add_weight(name='bias',

 shape=(self.filters,),

 initializer='zeros', # bias initialization

 trainable=True) # Set whether this weight can be trained

 def call(self, inputs):

 x = tf.nn.conv2d(inputs, self.w, self.strides, padding=self.padding) # Convolution

operation

 x = tf.nn.bias_add(x, self.b)

 x = tf.nn.relu(x) # using Relu activation function

 return x

 Build network model:

inputs = keras.Input(shape=(32, 32, 3))

x = CustomConv2D(64, (3, 3))(inputs)

x = layers.MaxPool2D()(x)

x = CustomConv2D(128, (3, 3))(x)

x = CustomConv2D(256, (3, 3))(x)

x = CustomConv2D(128, (3, 3))(x)

x = CustomConv2D(64, (3, 3))(x)

x = layers.Flatten()(x)

x = layers.Dense(64, activation='relu')(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10)(x)

Create a network model

model_2 = keras.Model(inputs, outputs, name='model-2')

model_2.summary()

Result:

162 6. Advanced TensorFlow

Supplementary explanation

Model-1 andModel-2 do not use the softmax activation function at the output layer because the built-in loss function (keras.
losses.CategoricalCrossentropy()) of Model-1 has an argument “from_logits”was set to “True” and the custom loss function of
Model-2 utilized the “tf.nn.softmax_cross_entropy_with_logits()” function, which already adopted softmax for calculating CCE
loss. Therefore, if the softmax activation function is attached at the output layer of themodels, the output valuewill be calculated
two times through the softmax function.

� Create SaveModel callback function:

class SaveModel(tf.keras.callbacks.Callback):

def __init__(self, weights_file, monitor='loss', mode='min',save_weights_only=False):

super(SaveModel, self).__init__()

set storage path

self.weights_file = weights_file

Set the value to be monitored

self.monitor = monitor

Set the monitoring value: "bigger is better" or "smaller is better"

self.mode = mode

Save model weights only or Save entire network model (including Layer,

1636.3 Experiment: implementation of two network models using high-level keras API and custom API

Compile, etc.)

self.save_weights_only = save_weights_only

if mode == 'min':

Set best to infinity

self.best = np.Inf

else:

Set best to negative infinity

self.best = -np.Inf

Function for saving network model

def save_model(self):

if self.save_weights_only:

self.model.save_weights(self.weights_file)

else:

self.model.save(self.weights_file)

def on_epoch_end(self, epoch, logs=None):

Read monitored values from logs

monitor_value = logs.get(self.monitor)

If the monitored values decrease or increase (depending on your mode setting),

save the network model

if self.mode == 'min' and monitor_value < self.best:

self.save_model()

self.best = monitor_value

elif self.mode == 'max' and monitor_value > self.best:

self.save_model()

self.best = monitor_value

164 6. Advanced TensorFlow

Create Callback function: Using custom callback function to save model

weights:

Save training log

logs_dirs = 'lab6-logs'

model_cbk = keras.callbacks.TensorBoard(log_dir='lab6-logs')

create a storage path

model_dirs = logs_dirs + '/models'

os.makedirs(model_dirs, exist_ok=True)

Custom callback function

custom_save_model = SaveModel(model_dirs + '/custom_save.h5',

monitor='val_custom_catrgorical_accuracy',

mode='max',

save_weights_only=True)

Create a custom_categorical_crossentropy loss function:

def custom_categorical_crossentropy(y_true, y_pred):

x = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred)

return x

1656.3 Experiment: implementation of two network models using high-level keras API and custom API

Create a CustomCategoricalAccuracy metric function:

class CustomCategoricalAccuracy(tf.keras.metrics.Metric):

def __init__(self, name='custom_catrgorical_accuracy', **kwargs):

super(CustomCategoricalAccuracy, self).__init__(name=name, **kwargs)

Record the number of correct predictions

self.correct = self.add_weight('correct_numbers', initializer='zeros')

Record the amount of all data

self.total = self.add_weight('total_numbers', initializer='zeros')

def update_state(self, y_true, y_pred, sample_weight=None):

#y_true is represented by One-hot encoding

#Get the index with the largest value

EX:tf.argmax([[0,0,0,1,0,0,0,0,0]],axis=-1)=[4]

y_true = tf.argmax(y_true, axis=-1)

Get the index with the largest value

y_pred = tf.argmax(y_pred, axis=-1)

check whether the predicted result is correct, true will return True (correct),

false will return False (error)

values = tf.equal(y_true, y_pred)

Convert to floating point: True (correct) = 1.0, False (false) = 0.0

values = tf.cast(values, tf.float32)

tf.reduce_sum([1. , 1. , 0.]) 2.0

values_sum = tf.reduce_sum(values)

tf.size([1. 1. 0.], out_type=tf.float32) 3.0

num_values = tf.cast(tf.size(values), tf.float32)

self.correct.assign_add(values_sum)

self.total.assign_add(num_values)

def result(self):

166 6. Advanced TensorFlow

Calculate the accuracy

return tf.math.divide_no_nan(self.correct, self.total)

def reset_states(self):

Variables will be reinitialized after each Epoch

self.correct.assign(0.)

self.total.assign(0.)

Set the optimizer, loss function, and metric function:

model_2.compile(keras.optimizers.Adam(),

loss=custom_categorical_crossentropy, # Custom loss function

metrics=[CustomCategoricalAccuracy()]) # Custom metric funtion

Training Model-2:

model_2.fit(train_data,

epochs=100,

validation_data=valid_data,

callbacks=[model_cbk, custom_save_model])

Result:

3. Displaying results.

Load model weights of two Model-1 and Model-2:

model_1.load_weights(model_dirs+'/save.h5')

model_2.load_weights(model_dirs+'/custom_save.h5')

Verification on test data:

loss_1, acc_1 = model_1.evaluate(test_data)

loss_2, acc_2 = model_2.evaluate(test_data)

loss = [loss_1, loss_2]

acc = [acc_1, acc_2]

dict = {"Loss": loss, "Accuracy": acc}

pd.DataFrame(dict)

Result:

The experimental results show that the accuracy of both models is close. This confirms that using custom API of
TensorFlow for designing neural networks can achieve a similar result as using the high-level Keras API while at
the same time being more flexible.

1676.3 Experiment: implementation of two network models using high-level keras API and custom API

C H A P T E R

7

Advanced TensorBoard

OUTLINE
• Using TensorBoard and low-level application

programming interfaces (APIs) to write data, such as
texts, audios, and images

• Visualizing output images of the neural networks
during the training process on TensorBoard by
combining tf.summary.image API and custom callback

• Using the HParams dashboard in TensorBoard to
identify the most suitable hyperparameters for
designing a neural network with a specific problem

7.1 Advanced TensorBoard

TensorBoard is an official toolkit of TensorFlow that provides the visualization needed for designing neural net-
works and machine learning experimentation. Chapters 2 and 5 introduced the use of four visualization functions
including Scalars, Graphs, Distributions, and Histograms, which only need to use tf.keras.callbacks.TensorBoard
for completing settings. However, the tf.keras.callbacks.TensorBoard function in the high-level Keras API is limited
in providing information in various states and statistics of the neural networks during the training process. For exam-
ple, only keymetrics such as loss and accuracy, and how they change as training process can be observed in the Scalars
dashboard of TensorBoard. If wewant to observe and analyze the output result of the network models during training
such as image, text, and so on, it is required to use a custom function. This chapter introduces how to write summary
data and display on TensorBoard with the “tf.summary” module of TensorFlow, which provides the following APIs:
▪ tf.summary.scalar: write a scalar summary such as loss value, accuracy value, or learning rate
▪ tf.summary.image: write an image summary
▪ tf.summary.text: write a text summary
▪ tf.summary.audio: write an audio summary
▪ tf.summary.histogram: write a histogram summary

169Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00002-1

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00002-1

The following section presents the use of “tf.summary” module.

▪ View results on TensorBoard: Open TensorBoard through the command line to view the results, as shown in Fig. 7.1.
Because data have not been written to the log file, no dashboards are active for the data.

tensorboard --logdir lab7-logs-summary

Details of the “tf.summary”module can be accessed at: www.tensorflow.org/versions/r2.0/api_docs/python/tf/
summary

7.1.1 tf.summary.scalar

The "tf.summary.scalar" is an API of the "tf.summary" module used to write a scalar summary such as loss values,
accuracy values, and so on. These values can be displayed through the scalars dashboard of TensorBoard for observing
and monitoring. Fig. 7.2 presents the loss and mean absolute error value changes of a neural network during training
obtained by using the function “tf.keras.callbacks.TensorBoard” of the high-level Keras API. If other scalar values need
to bewritten andmonitored, it is suggested to use "tf.summary.scalar". The syntax of “tf.summary.scalar” is expressed
as follows:

FIG. 7.1 TensorBoard interface.

170 7. Advanced TensorBoard

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/summary
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/summary

tf.summary.scalar (name, data, step=None, description=None)

Arguments:

name: a name for the summary.
data: a real numeric scalar value, it can be converted to a float32 tensor.
step: explicit monotonic step value.
description: optional description for the summary.

The following is an example of using the "tf.summary.scalar" API to write and visualize the Sine function on Tensor-
Board. Fig. 7.3 shows the results.

Generate 100 points linearly between 0 and 2π

x = np.linspace(0, 2 * np.pi , 100)

using Sin function to generate data

data = np.sin(x)

with summary_writer.as_default():

for i, y in enumerate(data):

tf.summary.scalar('sin', y, step=i)

FIG. 7.2 The scalars dashboard.

1717.1 Advanced TensorBoard

7.1.2 tf.summary.image

"tf.summary.image" is an API of the "tf.summary" module used for writing an image summary. Its result can dis-
play on the images dashboard of TensorBoard. The syntax of “tf.summary.image” is expressed as follows:

tf.summary.image(name, data, step=None, max_outputs=3, description=None)

Arguments:

name: a name for the summary.
data: a tensor with shape (n,h,w,c), where n,h,w, and c are the number of
images, height, width, and the number of channels of images, respectively.
step: explicit monotonic step value.
max_outputs: a positive integer number, indicating the number of images is
emitted at each step, the default value is set to 3.
description: optional description for the summary.

The followingprogramexamples explainhowtouse the "tf.summary.image"API.Pleasedownloadthe test image from
the link below and unzip it under the root directory. https://drive.google.com/open?id=1cC45twI3a5AkBYY
E6Qb3ZV3uCPlw9eL6

FIG. 7.3 The Sine on the scalars dashboard.

172 7. Advanced TensorBoard

https://drive.google.com/open?id=1cC45twI3a5AkBYYE6Qb3ZV3uCPlw9eL6
https://drive.google.com/open?id=1cC45twI3a5AkBYYE6Qb3ZV3uCPlw9eL6

▪ First read an image (airplane.png)

Create a function to read image

def read_img(file):

image_string = tf.io.read_file(file) # read file

decode the imported file

image_decode = tf.image.decode_image(image_string)

return image_decode

img = read_img('image/airplane.png') #read image

plt.imshow(img) # display the image

Result:

▪ Write an image to a log file and display it on TensorBoard, as shown in Fig. 7.4

with summary_writer.as_default():

 tf.summary.image("Airplane", [img], step=0)

FIG. 7.4 Observing an image written by the "tf.summary.image" on the images dashboard.

1737.1 Advanced TensorBoard

▪ Five images including airplane_zoom.png, plane_flip.png, plane_color.png, plane_rot.png, and plane.png are
written to the log file and displayed on TensorBoard at once, as shown in Fig. 7.5

img_files = [airplane_zoom.png, airplane_flip.png, airplane_color.png, airplane_rot.png,

 airplane.png] # create an image array.

imgs = []

for file in imgs:

 imgs.append(read_img('image/'+file)) # read image and store it in the array

with summary_writer.as_default():

 #emit five images

 tf.summary.image("Airplane Augmentation", imgs, max_outputs=5, step=0)

▪ Write five images including airplane_zoom.png, airplane_flip.png, airplane_color.png, airplane_rot.png, and
airplane.png to the log file in separate steps and display on TensorBoard, as shown in Fig. 7.6

with summary_writer.as_default():

 # writing in separate step

 for i, img in enumerate(imgs):

 tf.summary.image("Save image each step", [img], step=i)

FIG. 7.5 Observing multiple images written by “tf.summary.image” on the images dashboard.

174 7. Advanced TensorBoard

7.1.3 tf.summary.text

“tf.summary.text” is an API of the “tf.summary”module responsible for writing text summary. Its results can dis-
play through the text dashboard of TensorBoard. The syntax of “tf.summary.text” is expressed as follows:

tf.summary.text(name, data, step=None, description=None)

Arguments:

▪ name: a name for the text summary
▪ data: a string tensor value
▪ step: explicit monotonic step value
▪ description: optional description for the text summary

The following program example explains how to use “tf.summary.text” API.

▪ Write text data to a log file and display it on TensorBoard, as shown in Fig. 7.7

FIG. 7.6 Observing image written by “tf.summary.image” in separate steps on the images dashboard.

1757.1 Advanced TensorBoard

7.1.4 tf.summary.audio

“tf.summary.audio” is an API of “tf.summary” module used to write an audio summary. Its result can display on
the audio dashboard of TensorBoard. The syntax of “tf.summary.audio” is expressed as follows:

tf.summary.audio(name, data, sample_rate, step=None, max_outputs=3,
encoding=None,description=None)

Arguments:

▪ name: a name for the audio summary
▪ data: a tensor data with shape (n, m, c), where n, m, and c are the number of audios, number of frames, and the

number of channels, respectively
▪ sample_rate: an integer number, representing the sample rate
▪ step: explicit monotonic step value
▪ max_outputs: a positive integer number, indicating the number of audios is emitted at each step, the default value is

set to three
▪ encoding: a constant string, representing the type of audio formats such as “wav,” “mp3,” and so on
▪ description: optional description for the audio summary

The following program example explains how to use “tf.summary.audio”API. Please download the test audio from
the link below and unzip it under the root directory: https://drive.google.com/open?id¼1V4nNQ-ZQMBUez
ZEFWZoAZ62dORevUGPZ

▪ Read an audio

#create a function to read audio file

def read_audio(file):

 audio_string = tf.io.read_file(file) # read file

 audio, fs = tf.audio.decode_wav(audio_string)

 # tf.summary.audio requires the input format to be [n(audio), m(frames), c(channels)]

 # audio data above only has [t(frames), c(channels)], so need to add a dimension

 audio = tf.expand_dims(audio, axis=0)

 return audio, fs

audio, fs = read_audio('./audio/cat.wav') # Read audio file

FIG. 7.7 Observing the text conversation written by “tf.summary.text” on the text dashboard.

176 7. Advanced TensorBoard

https://drive.google.com/open?id=1V4nNQ-ZQMBUezZEFWZoAZ62dORevUGPZ
https://drive.google.com/open?id=1V4nNQ-ZQMBUezZEFWZoAZ62dORevUGPZ
https://drive.google.com/open?id=1V4nNQ-ZQMBUezZEFWZoAZ62dORevUGPZ

▪ Write an audio to the log file and display it on TensorBoard, as shown in Fig. 7.8

with summary_writer.as_default():

 tf.summary.audio('cat', audio, fs, step=0) # Save audio information

7.1.5 tf.summary.histogram

“tf.summary.histogram” is an API of “tf.summary”module used to write a histogram summary. Its result can dis-
play on the histograms dashboard and distributions dashboard of TensorBoard. The syntax of “tf.summary.
histogram” is expressed as follows:

tf.summary.histogram(name, data, step=None, buckets=None,
 description=None)

Arguments:

▪ name: a name for the histogram summary
▪ data: a tensor data
▪ step: explicit monotonic step value
▪ buckets: a positive integer number, representing the number of buckets
▪ description: optional description for the audio summary

Fig. 7.9 shows theweight distribution of a neural network layer obtained by using “tf.keras.callbacks.TensorBoard.”

FIG. 7.8 Observing the audio written by “tf.summary.audio” on the audio dashboard.

1777.1 Advanced TensorBoard

Because the “tf.keras.callbacks.TensorBoard” does not support writing the output distribution of the layers, “tf.
summary.histogram”API is recommended if this distribution needs to be visualized. The following program example
explains how to use tf.summary.histogram API.

▪ Write 100 sets of random values to a log file and display them on TensorBoard, as shown in Figs. 7.10 and 7.11.

with summary_writer.as_default():

 for i, offset in enumerate(tf.range(0, 10, delta=0.1, dtype=tf.float64)):

 tf.summary.histogram('Normal distribution 2', data+offset, step=i)

FIG. 7.9 Weight distribution of a neural network layer.

FIG. 7.10 Observing multiple sets of random values written by the tf.summary.histogram on the histograms dashboard.

178 7. Advanced TensorBoard

7.2 Experiment 1: Using tf.summary.image API to visualize training results

In order to help the reader with a more in-depth understanding of the APIs of the tf.summarymodule, this experiment
employs the "tf.summary.image" API to write the confusion matrix result of a network model trained on the CIFAR-10
dataset and display this result on the images dashboard of TensorBoard. Fig. 7.12 shows the visualization result of the
trained network model.

FIG. 7.11 Observing multiple sets of random values written by “tf.summary.histogram” on the distributions dashboard.

FIG. 7.12 The confusion matrix result on the images dashboard.

1797.2 Experiment 1: Using tf.summary.image API to visualize training results

Fig. 7.13 is a flowchart of the source code for building a network model and visualizing the output result.

1. Creating helper functions

import os

import io

import numpy as np

import tensorflow as tf

import tensorflow_datasets as tfds

import matplotlib.pyplot as plt

from tensorflow import keras

from tensorflow.keras import layers

Import parse_aug_fn and parse_fn functions from the preprocessing.py file

from preprocessing import parse_aug_fn, parse_fn

y_true = [2, 1, 0, 2, 2, 0, 1, 1]

y_pred = [0, 1, 0, 2, 2, 0, 2, 1]

cm = tf.math.confusion_matrix(y_true, y_pred, num_classes=3).numpy()

print(cm)

(a) Import necessary packages:

(b) Creating plot_confusion_matrix function.

Confusion matrix function: use tf.math.confusion_matrix to compute the
confusion matrix from expected outputs (y_true) and predictions (y_pred).

Result: [[2 0 0]
[0 2 1]
[1 0 2]]

Supplementary explanation

Fig. 7.14A shows an example of a confusionmatrix inwhich thematrix columns represent the prediction label, and thematrix
rows represent the true label. In Fig. 7.14B, the number 2 in themiddle indicates that the true label is 1, and the number of correct
predictions as 1 is 2. In Fig. 7.14C, the number 2 in the bottom left corner indicates that the true label is 2, and the number of false
predictions as 0 is 2.

- Importing packages.

- Custom callback.

- Training network model

- Set Callback

- Building network model

- plot_confusion_matrix
 function.

- Loading and dividing data
 for training, validation, and
 testing

- Visualizing the
 confusion matrix
 results

- plot_to_image
 function.

- Set optimizer, loss function
 and metric function.

- Opening
 TensorBoard.

1. Creating helper
functions

2. Building and training
network models

3. Visualization
results

FIG. 7.13 Flowchart of the source code for building the network model and visualizing training result.

180 7. Advanced TensorBoard

▪ Create a “plot_confusion_matrix” function: the numbers in the confusion matrix represents the percentage of
prediction

def plot_confusion_matrix(cm, class_names):

"""

:param cm (shape = [n, n]): Confusion matrix.

:param class_names (shape = [n]): category names.

 """

 # normalization of confusion matrix

 cm = np.around(cm.astype('float') / cm.sum(axis=1)[:, np.newaxis], decimals=2)

 # Set the size of the figure (for displaying)

 figure = plt.figure(figsize=(8, 8))

 # According to the value of "cm", change the color

 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)

 # The title of the image

 plt.title("Confusion matrix")

 # Scale

 tick_index = np.arange(len(class_names))

 # Y-axis displays category name

 plt.yticks(tick_index, class_names)

The x axis displays the category name and rotates the category name by 45 degrees

 plt.xticks(tick_index, class_names, rotation=45)

 # Create a color bar on the right side of the image

 plt.colorbar()

 # Enter the prediction values in each grid cell of Confusion matrix

 threshold = cm.max() / 2.

 for i in range(cm.shape[0]):

 for j in range(cm.shape[1]):

If the color of the grid cell is too dark, use white text, otherwise use black text

 color = "white" if cm[i, j] > threshold else "black"

 plt.text(j, i, cm[i, j], horizontalalignment="center", color=color)

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

 # Adjust the position of the image

 plt.tight_layout()

 return figure

img = plot_confusion_matrix(cm, [0, 1, 2])

Result:

0

0 1
Prediction label

Tr
ue

 la
be

l
(A)

2

1

2

2 0 0

0 2 1

1 0 2

0

0 1
Prediction label

Tr
ue

 la
be

l

(B)
2

1

2

2 0 0

0 2 1

1 0 2

0

0 1
Prediction label

Tr
ue

 la
be

l

(C)
2

1

2

2 0 0

0 1 1

2 0 2

FIG. 7.14 Confusion matrix analysis.

1817.2 Experiment 1: Using tf.summary.image API to visualize training results

2

0 1
Predicted label

Confusion matrix

2

0.0

0.2

0.4

0.6

0.8

1.0

1

0

0.33

0.33

0.0 0.0

0.0

0.0

0.67

0.67

1.0

Tr
ue

 la
be

l

Supplementary explanation

Confusion matrix with normalization: The code below is a normalization process of confusion matrix. Fig. 7.15 shows the
conversion operation.

np.around: decimals=2 means that round the value to 2 decimal places

cm = np.around(cm.astype('float') / cm.sum(axis=1)[:, np.newaxis], decimals=2)

0

0 1

Prediction label

Confusion matrix Normalized confusion matrix

SUM

cm.sum(axis=1)[:, np.newaxis]

Tr
ue

 la
be

l

2

1

2

2 0 0

0 2 1

1 0 2

2

3

3

0

0 1

Prediction label

Tr
ue

 la
be

l

2

1

2

1 0 0

0 0.67 0.33

0.33 0 0.67

FIG. 7.15 The normalization process of confusion matrix.

182 7. Advanced TensorBoard

(c) Create a “plot_to_image” function

 Convert Matplotlib-style image to TensorFolow-style image for visualizing on
TensorBorad.

def plot_to_image(figure):

 """ convert Matplotlib-style image to TensorFolow-style image """

 # Save Matplotlib-style image using PNG format

 buf = io.BytesIO()

 plt.savefig(buf, format='png')

 plt.close(figure)

 buf.seek(0)

 # convert image for using on TensorFlow

 image = tf.image.decode_png(buf.getvalue(), channels=4)

 image = tf.expand_dims(image, 0)

 return image

(d) Creating custom callback

After each epoch during the training process, an image of the Confusion matrix is

generated for displaying on the TensorBoard.

class ConfusionMatrix(tf.keras.callbacks.Callback):

def __init__(self, log_dir, test_data, class_name):

super(ConfusionMatrix, self).__init__()

self.log_dir = log_dir

self.test_data = test_data

self.class_names = class_name

self.num_classes = len(class_name)

def on_train_begin(self, logs=None):

path = os.path.join(self.log_dir, 'confusion_matrix')

Create TensorBoard log file

self.writer = tf.summary.create_file_writer(path)

def on_epoch_end(self, epoch, logs=None):

Calculate Confusion matrix

total_cm = np.zeros([10, 10])

for x, y_true in self.test_data:

y_pred = self.model.predict(x)

y_pred = np.argmax(y_pred, axis=1)

y_true = np.argmax(y_true, axis=1)

cm = tf.math.confusion_matrix(y_true, y_pred,

num_classes=self.num_classes).numpy()

total_cm += cm

Plot confusion matrix

figure = plot_confusion_matrix(total_cm, class_names=self.class_names)

Convert Matplotlib-style image for using on TensorFlow

cm_image = plot_to_image(figure)

 # Write the converted image

 with self.writer.as_default():

 tf.summary.image("Confusion Matrix", cm_image, step=epoch)

1837.2 Experiment 1: Using tf.summary.image API to visualize training results

2. Building and training network model

(a) Loading and dividing data

Load CIFAR-10 dataset:

#Divide training data: 9 part for training, 1 part for validation

train_split, valid_split = ['train[:90%]', 'train[90%:]']

get the training data

train_data, info = tfds.load("cifar10", split=train_split, with_info=True)

get the valid data

valid_data = tfds.load("cifar10", split=valid_split)

get test data

test_data = tfds.load("cifar10", split=tfds.Split.TEST)

Get the category name of the CIFAR-10 dataset

class_name = info.features['label'].names

Dataset setting:

AUTOTUNE = tf.data.experimental.AUTOTUNE # Automatic adjustment mode

batch_size = 64 # Batch size

train_num = int(info.splits['train'].num_examples / 10) * 9 # Number of training data

train_data = train_data.shuffle(train_num) # Shuffle the training data

Training data

train_data = train_data.map(map_func=parse_aug_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

train_data = train_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Validation data

valid_data = valid_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

valid_data = valid_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Test data

test_data = test_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

#Set batch size and turn on prefetch mode

test_data = test_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

(b) Building a network model

Table 7.1 shows the architecture of the network model.

TABLE 7.1 The architecture of the network model.

Name Architecture Description

Model-1 - Input layer with shape of (32,32,3)
- Five convolutional layers, followed by rectified linear unit (ReLu)
activation functions

- One max pooling layer
- One flatten layer for flattening the input into a one-dimensional
Tensor

- One fully connected layer
- One dropout layer with a discard rate of 50%
- Output fully connected layer with 10 neurons

- Using high-level Keras API to build and train the network
model

- Using custom Callback to write image result for displaying
on TensorBoard

184 7. Advanced TensorBoard

▪ Build network model

inputs = keras.Input(shape=(32, 32, 3))

x = layers.Conv2D(64, 3, activation='relu')(inputs)

x = layers.MaxPool2D()(x)

x = layers.Conv2D(128, 3, activation='relu')(x)

x = layers.Conv2D(256, 3, activation='relu')(x)

x = layers.Conv2D(128, 3, activation='relu')(x)

x = layers.Conv2D(64, 3, activation='relu')(x)

x = layers.Flatten()(x)

x = layers.Dense(64, activation='relu')(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10)(x)

Create a network model

model_1 = keras.Model(inputs, outputs, name='model 1')

model_1.summary()

Result:

1857.2 Experiment 1: Using tf.summary.image API to visualize training results

(c) Set Callback function

Save training log

logs_dirs = 'lab7-logs-images'

model_cbk = keras.callbacks.TensorBoard(logs_dirs)

Save Confusion matrix image

save_cm = ConfusionMatrix(logs_dirs, test_data, class_name)

(d) Set the optimizer, loss function, and metric function for training

model_1.compile(keras.optimizers.Adam(),

loss=keras.losses.CategoricalCrossentropy(from_logits=True),

metrics=[keras.metrics.CategoricalAccuracy()])

(e) Training network model

model_1.fit(train_data,

epochs=100,

validation_data=valid_data,

callbacks=[model_cbk, save_cm])

Result:

3. Visualization of confusion matrix results on TensorBoard
▪ Open TensorBoard through command line to view training records

tensorboard --logdir lab7-logs-images

▪ Use TensorBoard to visualize the confusion matrix results

The confusion matrix result of the network model in each epoch can be observed through the TensorBoard. The
progress bar is used to observe the prediction results of the network model in different epochs, as shown in Fig. 7.16.

186 7. Advanced TensorBoard

From confusion matrix result in Fig. 7.17, the larger the values in the highlight boxes, the better the performance of
the network model.

FIG. 7.16 Observing the confusion matrix result on the images dashboard.

FIG. 7.17 The confusion matrix result (1).

1877.2 Experiment 1: Using tf.summary.image API to visualize training results

In addition, the relationship between classes can also be observed from the confusion matrix. As shown in Fig. 7.18,
there is a 20% prediction of a "cat" class as a "dog" class, which means the network model easily confuses "cat" class
with "dog" class.

7.3 Experiment 2: Hyperparameter tuning with TensorBoard HParams

There are many issues in developing a good neural network model for a specific problem, such as how many net-
work layers should be used, which type of optimizer is better, how to set a suitable learning rate value, whether to
apply dropout technique or batch normalization method, and so on. These adjustable parameters are collectively
referred to as hyperparameters and they directly affect the training results. Therefore, an important step in developing
neural network models is to choose the best hyperparameters. The last section of this chapter introduces a hyperpara-
meter tuning technique using the HParams dashboard provided by TensorFlow, which can help to identify the most
suitable hyperparameters for a specific problem. This technique is explained directly through a program example that
builds 36 network models with different combinations of hyperparameters that are trained on the CIFAR-10 dataset
for analysis and comparison of obtained results. The hyperparameters used for building neural network models are as
follows:

▪ Image augmentation (IA): Yes or No
▪ Batch normalization (BN): Yes or No
▪ Learning rate (LR): 0.001, 0.01, or 0.03
▪ Weight initialization method: Random Normal, Glorot Normal, or He Normal

air
pla

ne

au
to

m
ob

ile bir
d ca

t
de

er do
g

fro
g

ho
rs

e
sh

ip
tru

ck

Prediction label

Confusion matrix
Tr

ue
 la

be
l

truck

ship

horse

frog

dog

deer

cat

bird

automobile

800

600

400

200

0

airplane 0.88 0.01 0.02 0.02 0.01 0.0 0.01 0.01 0.02 0.02

0.01 0.9 0.0 0.01 0.0 0.0 0.01 0.0 0.01 0.05

0.09 0.0 0.68 0.06 0.06 0.03 0.06 0.01 0.0 0.0

0.03 0.01 0.07 0.68 0.05 0.06 0.07 0.02 0.01 0.01

0.02 0.0 0.06 0.04 0.8 0.02 0.06 0.01 0.0 0.0

0.02 0.0 0.05 0.2 0.04 0.63 0.03 0.03 0.0 0.0

0.0 0.0 0.04 0.05 0.01 0.0 0.89 0.0 0.0 0.0

0.03 0.0 0.03 0.05 0.06 0.04 0.02 0.77 0.0 0.01

0.11 0.02 0.02 0.02 0.0 0.0 0.0 0.0 0.8 0.02

0.02 0.05 0.0 0.01 0.0 0.0 0.01 0.0 0.02 0.88

FIG. 7.18 The confusion matrix result (2).

188 7. Advanced TensorBoard

7.3.1 HPARAMS dashboard on TensorBoard

▪ Open TensorBoard through command line:

tensorboard --logdir lab7-logs-hparams

▪ Open HParams dashboard: After opening the TensorBoard, click on HParams in the list options, as shown in
Fig. 7.19.

▪ Viewing HParams dashboard

After clicking on HParams, a dashboard is opened, as shown in Fig. 7.20. The left pane of the HParams dashboard
shows the views of hyperparameters, metrics values, run status, sorting information in the table view, and number of
session groups. The main dashboard displays three different views including the list of runs on the "table view", each
run for each hyperparameter and metric on the "parallel coordinates view", and plots for comparison of each hyper-
parameter with each metric on the "scatter plot view". In Fig. 7.20, because there are not any data written, there is not
information displayed in the HParams dashboard.

FIG. 7.19 List options in TensorBoard.

1897.3 Experiment 2: Hyperparameter tuning with TensorBoard HParams

7.3.2 Code examples

Fig. 7.21 is a flowchart of the source code for building and analyzing 36 neural network models with various
hyperparameters.

FIG. 7.20 HParams dashboard in TensorBoard.

FIG. 7.21 Flowchart of the source code for building and analyzing 36 neural networks with different combinations of hyperprameters.

190 7. Advanced TensorBoard

1. Setting hyperparameters

(a) Import packages

import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras import initializers

Import parse_aug_fn and parse_fn functions from the preprocessing.py file

from preprocessing import parse_aug_fn, parse_fn

(b) Import TensorBoard HParams plugin

from tensorboard.plugins.hparams import api as hp

(c) Defining Hyperparameters

The hyperparameters used for building network models are listed as below:

Imgae Augmentation: Yes or No.
Batch Normalization (BN): Yes or No.
Learning rate (LR): 0.001, 0.01, 0.03.
Weight initialization method: Random Normal, Glorot Normal, He Normal.

hparam_ia = hp.HParam('Imgae_Augmentation', hp.Discrete([False, True]))

hparam_bn = hp.HParam('Batch_Normalization', hp.Discrete([False, True]))

hparam_init = hp.HParam('Weight_Initialization', hp.Discrete(['RandomNormal_0.01std',

 'glorot_normal',

 'he_normal']))

hparam_lr = hp.HParam('Learning_Rate', hp.Discrete([0.001, 0.01, 0.03]))

(d) Writing to a log file

Write the experimental hyperparameter information and metric information to
the TensorBoard log file:

Create TensorBoard logs file

logs_dirs = os.path.join('lab7-logs-hparams', 'hparam_tuning')

root_logdir_writer = tf.summary.create_file_writer(logs_dirs)

with root_logdir_writer.as_default():

hp.hparams_config(hparams=[hp_ia, hp_bn, hp_init, hp_lr], metrics=[hp_metric])

Label information

metric = 'Accuracy'

log_dirs = "lab7-logs-hparams/hparam_tuning"

with tf.summary.create_file_writer(log_dirs).as_default():

Write hyperparameter information and metric information to the log file

hp.hparams_config(

hparams=[hparam_ia, hparam_bn, hparam_init, hparam_lr],

metrics=[hp.Metric(metric, display_name='Accuracy')],

)

1917.3 Experiment 2: Hyperparameter tuning with TensorBoard HParams

After executing the program above, the TensorBoard screen has more information of hyperparameters and metric
values, as shown in Fig. 7.22.

2. Building and training network models

(a) Loading and dividing data

Load CIFAR-10 dataset:

Get data

valid_split, train_split = tfds.Split.TRAIN.subsplit([10, 90])

training data without image augmentation

train_data_noaug, info = tfds.load("cifar10", split=train_split, with_info=True)

training data with image augmentation

train_data_aug = tfds.load("cifar10", split=train_split)

validation data

valid_data = tfds.load("cifar10", split=valid_split)

FIG. 7.22 TensorBoard HParamas with hyperparameters and metric information.

192 7. Advanced TensorBoard

▪ Prepare training data: with image augmentation and without image augmentation

AUTOTUNE = tf.data.experimental.AUTOTUNE # Automatic adjustment mode

batch_size = 64 # batch size

train_num = int(info.splits['train'].num_examples / 10) * 9

Set the training data without image augmentation

train_data_noaug = train_data_noaug.shuffle(train_num) # shuffle training data

train_data_noaug=train_data_noaug.map(map_func=parse_fn,

num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

train_data_noaug=train_data_noaug.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

training data with image augmentation

train_data_aug = train_data_aug.shuffle(train_num) # Shuffle data

train_data_aug=train_data_aug.map(map_func=parse_aug_fn,

num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

train_data_aug = train_data_aug.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Validation data

valid_data = valid_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

valid_data = valid_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

(b) Creating custom hyperparameter callback function

The custom hyperparameter callback function is created to write the

hyperparameters and metric values for displaying on TensorBoard.

class HyperparameterCallback(tf.keras.callbacks.Callback):

Call when the category is created

def __init__(self, log_dir, hparams):

super(HyperparameterCallback, self).__init__()

self.log_dir = log_dir

 self.hparams = hparams

 self.best_accuracy = 0

 self.writer = None

 # call before starting training to create a log file

 def on_train_begin(self, logs=None):

 self.writer = tf.summary.create_file_writer(self.log_dir)

 # after each Epoch, if the model progresses, #its weights is updated.

 def on_epoch_end(self, epoch, logs=None):

 current_accuracy = logs.get('val_categorical_accuracy')

 if current_accuracy > self.best_accuracy:

 self.best_accuracy = current_accuracy

Call at the end of the training, and save the training hyperparameters and the best

accuracy in the log file.

 def on_train_end(self, logs=None):

 with self.writer.as_default():

 hp.hparams(self.hparams) # write the weight parameters of this training

 tf.summary.scalar(metric, self.best_accuracy, step=0)

1937.3 Experiment 2: Hyperparameter tuning with TensorBoard HParams

(c) Creating a function for building and training the network models.

The network layers used in the models are as follows:

▪ keras.Input: input layer with the size of 32�32�3
▪ layers.Conv2D: convolutional layer (weight initialization: Random normal, Glorot normal, or He normal)
▪ layers.BatchNormalization: batch normalization layer with preset parameters (hyperparameters: use or do not use)
▪ layers.ReLU: ReLU activation function layer
▪ layers.MaxPool2D: pooling layer, for downsampling the feature map
▪ layers.Flatten: flatten layer, for flattening the input into a one-dimensional Tensor
▪ layers.Dropout: dropout layer, which randomly sets input units to 0 with a frequency of 50 at each step during

training time
▪ layers.Dense: fully connected layer; if this layer is used as the hidden layer of the network, the ReLU activation

function will be adopted. ReLU activation function will be replaced with softmax activation function if this layer is
used as the output layer of the network

def train_test_model(logs_dir, hparams):

 """

logs_dir: the location of the currently executed task log file

hparams: Incoming hyperparameter

 """

 # Weight initialization: using normal distribution (std 0.01), Glorot, or He method

 if hparams[hparam_init] == "glorot_normal":

 init = initializers.glorot_normal()

 elif hparams[hparam_init] == "he_normal":

 init = initializers.he_normal()

 else:

 init = initializers.RandomNormal(0, 0.01)

 inputs = keras.Input(shape=(32, 32, 3))

 x = layers.Conv2D(64, (3, 3), kernel_initializer=init)(inputs)

Choose "add" or "not add" Batch Normalization layer

 if hparams[hparam_bn]: x = layers.BatchNormalization()(x)

 x = layers.ReLU()(x)

 x = layers.MaxPool2D()(x)

 x = layers.Conv2D(128, (3, 3), kernel_initializer=init)(x)

 # choose "add" or "not add" Batch Normalization layer

 if hparams[hparam_bn]: x = layers.BatchNormalization()(x)

 x = layers.ReLU()(x)

 x = layers.Conv2D(256, (3, 3), kernel_initializer=init)(x)

 # choose "add" or "not add" Batch Normalization layer

 if hparams[hparam_bn]: x = layers.BatchNormalization()(x)

 x = layers.ReLU()(x)

 x = layers.Conv2D(128, (3, 3), kernel_initializer=init)(x)

 # choose "add" or "not add" Batch Normalization layer

 if hparams[hparam_bn]: x = layers.BatchNormalization()(x)

 x = layers.ReLU()(x)

 x = layers.Conv2D(64, (3, 3), kernel_initializer=init)(x)

 # choose "add" or "not add" Batch Normalization layer

 if hparams[hparam_bn]: x = layers.BatchNormalization()(x)

 x = layers.ReLU()(x)

 x = layers.Flatten()(x)

 x = layers.Dense(64, kernel_initializer=init)(x)

194 7. Advanced TensorBoard

choose "add" or "not add" Batch Normalization layer

if hparams[hparam_bn]: x = layers.BatchNormalization()(x)

x = layers.ReLU()(x)

x = layers.Dropout(0.5)(x)

outputs = layers.Dense(10, activation='softmax')(x)

Create a network model

model = keras.Model(inputs, outputs, name='model')

Save training log

model_tb = keras.callbacks.TensorBoard(log_dir=logs_dir, write_graph=False)

Save the best model’s weight

model_mckp = keras.callbacks.ModelCheckpoint(logs_dir +'/best-model.hdf5',

monitor='val_categorical_accuracy',

save_best_only=True,

mode='max')

Set the conditions for early stopping

model_els = keras.callbacks.EarlyStopping(monitor='val_categorical_accuracy' ,

min_delta=0,

patience=30,

mode='max')

Custom callback to write the hyperparameters and metric (accuracy) of the

#training model

model_hparam = HyperparameterCallback(logs_dir + 'hparam_tuning', hparams)

Set the optimizer, loss function, and metric function

The learning rate is: 0.001, 0.01 or 0.03

model.compile(keras.optimizers.Adam(hparams[hparam_lr]),

loss=keras.losses.CategoricalCrossentropy(),

metrics=[keras.metrics.CategoricalAccuracy()])

Hyperparameters: use or do not use “image augmentation” to train the network

if hparams[hparam_ia]:

history = model.fit(train_data_aug,

epochs=100,

validation_data=valid_data,

callbacks=[model_tb,model_mckp,model_els,model_hparam])

else:

history = model.fit(train_data_noaug,

epochs=100,

validation_data=valid_data,

callbacks=[model_tb,model_mckp,model_els,model_hparam])

1957.3 Experiment 2: Hyperparameter tuning with TensorBoard HParams

(d) Training 36 network models with different combinations of hyperparameters
▪ Table 7.2 shows the combinations of hyperparameters for training 36 neural network models.

TABLE 7.2 Combinations of hyperparameters for training neural network models.

Name

Image augmentation Batch normalization Learning rate Weight initialization

Yes No Yes No 0.001 0.01 0.03 Random normal Glorot normal He normal

Model_1 ✓ ✓ ✓ ✓

Model_2 ✓ ✓ ✓ ✓

Model_3 ✓ ✓ ✓ ✓

Model_4 ✓ ✓ ✓ ✓

Model_5 ✓ ✓ ✓ ✓

Model_6 ✓ ✓ ✓ ✓

Model_7 ✓ ✓ ✓ ✓

Model_8 ✓ ✓ ✓ ✓

Model_9 ✓ ✓ ✓ ✓

Model_10 ✓ ✓ ✓ ✓

Model_11 ✓ ✓ ✓ ✓

Model_12 ✓ ✓ ✓ ✓

Model_13 ✓ ✓ ✓ ✓

Model_14 ✓ ✓ ✓ ✓

Model_15 ✓ ✓ ✓ ✓

Model_16 ✓ ✓ ✓ ✓

Model_17 ✓ ✓ ✓ ✓

Model_18 ✓ ✓ ✓ ✓

Model_19 ✓ ✓ ✓ ✓

Model_20 ✓ ✓ ✓ ✓

Model_21 ✓ ✓ ✓ ✓

Model_22 ✓ ✓ ✓ ✓

Model_23 ✓ ✓ ✓ ✓

Model_24 ✓ ✓ ✓ ✓

Model_25 ✓ ✓ ✓ ✓

Model_26 ✓ ✓ ✓ ✓

Model_27 ✓ ✓ ✓ ✓

Model_28 ✓ ✓ ✓ ✓

Model_29 ✓ ✓ ✓ ✓

Model_30 ✓ ✓ ✓ ✓

Model_31 ✓ ✓ ✓ ✓

Model_32 ✓ ✓ ✓ ✓

Model_33 ✓ ✓ ✓ ✓

Model_34 ✓ ✓ ✓ ✓

Model_35 ✓ ✓ ✓ ✓

Model_36 ✓ ✓ ✓ ✓

196 7. Advanced TensorBoard

▪ Training network models

session_id = 1 # the id of Training task

the place to store log files

logs_dir = os.path.join('lab7-logs-hparams', 'run-{}')

for ia in hparam_ia.domain.values:

 for bn in hparam_bn.domain.values:

 for init in hparam_init.domain.values:

 for lr in hparam_lr.domain.values:

 # Display the current training task id

 print('--- Running training session {}'.format(session_id))

 # Set the hyperparameters for this training

 hparams={hparam_ia:ia, hparam_bn:bn, hparam_init:init, hparam_lr:lr}

 # the place to store log files

 logs_dir=os.path.join("lab7-logs-hparams","run-{}".format(session_id))

 # Create, compile and train network models

 train_test_model(logs_dir, hparams)

 session_id += 1 # id+1

3. Analyzing the training results through TensorBoard HParams.

The hyperparameters and training results of 36 neural networkmodels are displayed on theHParams dashboard, as
shown in Fig. 7.23.

FIG. 7.23 TensorBoard HParams with 36 trained network models.

1977.3 Experiment 2: Hyperparameter tuning with TensorBoard HParams

(a) Parallel Coordinates View

To observe the results with parallel coordinates view, click “PARALLEL COORDINATES VIEW” in the dashboard,
as shown in Fig. 7.24.

From the results on the parallel coordinates view, as shown in Fig. 7.25, the network models with high accuracy
employed image augmentation and batch normalization techniques, whereas using the different types of weight ini-
tialization methods or learning rates has little effect on training results.

In TensorBoard HParams, the range of accuracy values can be set to filter unnecessary information, as shown in
Fig. 7.26. From the HParams dashboard, it can be observed that if batch normalization is applied, the choice of weight
initialization methods is less careful because it does not change much about the accuracy of the models.

FIG. 7.24 HParams dashboard with the Parallel Coordinates View.

FIG. 7.25 The impact of different hyperparameters on the accuracy of the network models.

198 7. Advanced TensorBoard

We can also display the results of the models with a specific learning rate value, such as displaying the result of
trained models with the learning rate value of 0.001, as shown in Fig. 7.27. As shown, the three network models with
the highest accuracy are all trained using a learning rate of 0.001.

Supplement explanation

Results in Fig. 7.27 show that the network model achieves the best accuracy when trained with a learning rate of 0.001. How-
ever, the comparison is not fair because the convergence rate of the network model using a learning rate of 0.001 is much slower
than that of using a learning rate of 0.01 or 0.03. Furthermore, using callback functions such as ReduceLROnPlateau also reduces
this value, so it is recommended to use the higher learning rate first, and then reduce this value gradually during the training
process.

FIG. 7.26 TensorBoard HParams with the limitation of the accuracy range.

FIG. 7.27 TensorBoard HParams with the selection of running a specific learning rate.

1997.3 Experiment 2: Hyperparameter tuning with TensorBoard HParams

(b) Scatter Plot View

To display plots comparing each hyperparameter with each metric, click “SCATTER PLOT VIEW” in the dash-
board, as shown in Fig. 7.28. We leave this to the readers to explore on their own. The analysis method is similar
to the "Parallel Coordinates View" subsection.

FIG. 7.28 HParams dashboard with Scatter Plot View.

200 7. Advanced TensorBoard

C H A P T E R

8

Convolutional neural network architectures

OUTLINE
• Introduction to popular convolutional neural network

(CNN) architectures including LeNet, AlexNet, VGG,
GoogLeNet, and ResNet

• Introduction to Keras Applications and
TensorFlow Hub

• Implementing the Inception-v3 network through Keras
Applications and TensorFlow Hub

8.1 Popular convolutional neural network architectures

This chapter introduces some of the most representative architectures of convolutional neural networks (CNNs),
including LeNet [1], AlexNet [2], VGG [3], GoogLeNet [4], and ResNet [5]. These CNNs have been widely applied
to many computer vision applications such as image classification, face recognition, object detection, and so on.

8.1.1 LeNet

Yann et al. proposed the LeNet [1] in 1998 for handwritten character recognition. The architecture of LeNet is
straightforward and simple, consisting of three convolutional layers named C1, C3, and C5, two subsampling layers
named S2 and S4, and one fully connected layer named F6 and Output, as shown in Fig. 8.1.

▪ Layer C1: The input grayscale image of LeNet with size of 32�32 is passed through a convolutional layer (C1) with
six kernels having size of 5�5 to output six feature maps of size 28�28. C1 has 22,304 connections and 156 trainable
parameters.

▪ Layer S2: The output of C1 is sent to a subsampling layer (S2) with a kernel size of 2�2 and stride of 2, followed by a
sigmoid activation function, resulting in six feature maps with a size of 14�14. S2 has 5880 connections and
12 trainable parameters.

FIG. 8.1 The architecture of LeNet.

201Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00001-X

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00001-X

▪ Layer C3: A convolutional layer with 16 kernels having a size of 5�5 receives the output of S2 as input and results in
16 feature maps of size 28�28. C3 has 156,000 connections and 1516 trainable parameters.

▪ Layer S4: A subsampling layer is the same as the second layer (S2). This layer uses 16 kernels of size 2�2 and a stride
of 2 to output 16 feature maps of size 5�5. S4 has 2000 connections and 32 trainable parameters.

▪ Layer C5: A convolutional layer with 120 kernels of size 5�5 that receives 16 output featuremapswith a size 5�5 of
S4 as the input and produces 120 feature maps with size of 1�1. C5 has 48,120 trainable parameters.

▪ Layer F6: A fully connected layer with 84 neurons followed by sigmoid activation. F6 contains 10,164 trainable
parameters.

▪ Output layer: A fully connected layer with 10 neurons, one neuron for each class.

8.1.2 AlexNet

AlexNet [2] was thewinner of the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC 2012). It has an
architecture that is larger and deeper than that of LeNet [1], as shown in Fig. 8.2. Specifically, AlexNet architecture is
composed of eight layers including five convolutional layers with kernels of size 11�11 for the first layer, 5�5 for the
second layer, and 3�3 for the other layers, followed by three fully connected layers. The rectified linear unit (ReLU)
activation function is adopted at the output of every convolutional layer and fully connected layer, except for the last
fully connected layer, which sends its output to the softmax function for final classification. To achieve impressive
performance, AlexNet employed dropout and data-augmentation techniques to prevent overfitting during the train-
ing process. If LeNet paved the way for CNNs, then AlexNet is important for driving the CNN boom.

8.1.3 VGG

VGG [3] is a deep CNN for large-scale image recognition introduced by Karen et al. in 2014. VGGhasmany versions
such as VGG-11, VGG-13, VGG-16, andVGG-19, and themain difference between each version is the number of layers.
The architecture of VGG-16 consists of 16 convolutional layers, as shown in Fig. 8.3.

55

224

224
55

3 96 256

27

27
13

13 13 13

1313

384

Feature Extraction Classification

384 256

Dense Dense

4096 4096 Softmax
1000Input

FIG. 8.2 The architecture of AlexNet.

224x224x64

Input

(224x224x3)

112x112x128
56x56x256

28x28x512
14x14x512

7x7x512

Dense

4096 4096 Softmax
1000

Convolution + ReLU

Max pooling

Dense

FIG. 8.3 The architecture of VGG-16.

202 8. Convolutional neural network architectures

In contrast to previous CNNs, VGG is only composed of convolutional layers with kernels of size 3�3 instead of
5�5, 7�7, or 9�9. The main reason for this is that a stack of multiple 3�3 convolutional layers can achieve a similar
perception field of view as using a 5�5, 7�7, or 9�9 convolutional layer, while the number of parameters is greatly
reduced. Fig. 8.4 shows a stack of two 3�3 convolutional layers, and a single 5�5 convolutional layer. Both have the
same input size and output size, but using two 3�3 convolutional layers, only 18 (32+32) parameters are required,
whereas a single 5�5 convolutional layer would require 25 (52) parameters. Note that the channel was omitted for
simple computation.

8.1.4 GoogLeNet

GoogLeNet [4] is a deep network architecture proposed byGoogle, also known as Inception-v1, whichwon the 2014
ILSVRC. The architecture of GoogLeNet is composed of nine Inception Blocks with a depth of 22 layers with param-
eters, as shown in Fig. 8.5.

The main idea of using Inception Blocks in GoogLeNet is to increase the depth and width of the network while
keeping the computation constant. The original inception architecture, also known as naïve Inception architecture,
is shown in Fig. 8.6. It contains four parallel layers including 1�1 convolution, 3�3 convolution, 5�5 convolution,
and 3�3 max pooling layers. The single output of this module is formed by concatenating all those layers, and it is
used as the input of the next stage in the network model. Although the network composed of naïve Inception Blocks
can obtain high performance, it requires a lot of parameters and computation.

The Inception Block in GoogLeNet is designed by connecting the 1�1 convolutional layer to 3�3 and 5�5
convolutional layers, and the 3�3 max pooling layer of the naïve Inception version, as shown in Fig. 8.7. To show
the benefit of using 1�1 convolutional layers in the Inception Block, let us use the example of computing the number
of parameters when using convolutional layers to convert an input with a size of 36�36�128 to 36�36�64.

▪ The first method: The input is directly fed into a 3�3 convolutional layer to generate the expected output. The
number of parameters in the convolutional layer is 73,728, as shown in Fig. 8.8.

▪ The second method: The input is first passed through a 1�1 convolutional layer to reduce the number of feature
maps to 16, then the resulting featuremaps are sent to a 3�3 convolutional layer to achieve the expected output. The
number of parameters of two convolutional layers is 11,264, which is less than the 73,728 parameters in the first
method without applying the 1�1 convolutional layer, as shown in Fig. 8.9.

Although the depth of GoogLeNet is 22 layers, by using Inception Blocks the number of parameters of GoogLeNet is
still 12 times less than that of AlexNet with 8 layers.

After Google proposed the GoogLeNet architecture, many more versions of the Inception models were introduced.
The following is a summary of each version:

▪ GoogLeNet, also known as Inception-v1 [4]: Published in 2014, it is the first multi-branch architecture that
introduced 1�1 convolution to reduce the amount of network computation

Conv2 (3x3)

Conv1 (3x3) Conv1 (5x5)

Input Layer

(A) a stack of two 3x3 convolutional layer (B) 5x5 convolutional layer

Input Layer

FIG. 8.4 A stack of multiple convolutional layers and a single convolutional layer.

2038.1 Popular convolutional neural network architectures

Max pooling
3 x 3

Convolution
1 x 1

Convolution
1 x 1

Convolution
5 x 5

Convolution
3 x 3

Concat

Convolution
1 x 1

Convolution
1 x 1

Convolution
7 x 7

Convolution
1 x 1

Convolution
3 x 3

Max pooling
3 x 3

Max pooling
3 x 3

Average pooling
5 x 5

Average pooling
5 x 5

Average pooling
7 x 7

Convolution
1 x 1

Fully Connected

Fully Connected

Output 1

Convolution
1 x 1

Fully Connected

Fully Connected

Fully Connected

Output 3

Output 1

LocalResp
Norm

LocalResp
Norm

Inception
Block

Inception
Block

Inception
Block

Inception
Block

Inception
Block

Inception
Block

Inception
Block

Inception
Block

Inception
Block

Input

In
cep

tio
n

 B
lo

ck

FIG. 8.5 The architecture of GoogLeNet.

Convolution
(1 x 1)

Convolution
(3 x 3)

Convolution
(5 x 5)

Concatenate

Previous Layer

Max pooling
(3 x 3)

FIG. 8.6 The naïve Inception Block.

▪ Inception-v2 [6]: Published in 2015, introducing batch normalization for speeding up the training and improving the
performance of CNNs

▪ Inception-v3 [7]: Published in 2016, exploring 1�n and n�1 convolutions in constructing the Inception module
▪ Inception-v4 [8]: Published in 2017, using Inception architecture with residual connections
▪ Xception [9]: Published in 2017, introducing depthwise separable convolution for building CNNarchitecture instead

of Inception modules

Convolution
(1 x 1)

Convolution
(1 x 1)

Convolution
(1 x 1)

Convolution
(1 x 1)

Convolution
(3 x 3)

Convolution
(5 x 5)

Concatenate

Previous Layer

Max pooling
(3 x 3)

FIG. 8.7 Inception Block in GoogLeNet.

128
64

Conv
Kernel size: 3x3
Kernel number: 64
Padding: same
Stride: 1
Bias: False

The number of parameters = (128 × 3 × 3 + 10) × 64 = 73,728

36

36

36

36

FIG. 8.8 Computation of the number of learnable parameters in a 3�3 convolutional layer.

128
64

Conv
Kernel size: 1x1
Kernel number: 16
Padding: same
Stride: 1
Bias: False

Conv
Kernel size: 3x3
Kernel number: 64
Padding: same
Stride: 1
Bias: False

Total number of parameters = 2,048 + 9,216 = 11,264

Parameters_1 = (128 × 1 × 1 + 0) × 16 = 2,048 Parameters_2 = (16 × 3 × 3 + 0) × 64 = 9,216

36

36

36

36

36

16

36

FIG. 8.9 Computation of the number of learnable parameters in a combined architecture of 1�1 and 3�3 convolutional layers.

2058.1 Popular convolutional neural network architectures

8.1.5 ResNet

Microsoft introduced ResNet [5] (Residual Nets) in 2015, when it won that year’s ILSVRC. There are five versions of
ResNet architecture for ImageNet, including ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. Here, the x
in ResNet-x is the number of layers of the corresponding version of ResNet. Fig. 8.10 shows the architecture of ResNet-34.

In deep learning, the deeper neural networks are able to learn more complex features and achieve better perfor-
mance than that of the shallower neural networks. However, degradation, which refers to a problem of the accuracy
of the neural network, becomes saturated and then degrades quickly during the training process, leading to greater
training error [10]. For example, Fig. 8.11 shows the experimental results of two CNNs [5], including a 20-layer neural
network and a 56-layer neural network on the CIFAR-10 dataset. As shown, the 20-layer neural network has fewer
training and test errors than the 56-layer network.

To overcome the degradation problem, ResNet uses Residual Blocks for building a deep neural network. Fig. 8.12
shows a typical Residual.

C
on

vo
lu

tio
n

3
x

3

C
on

vo
lu

tio
n

3
x

3

C
on

vo
lu

tio
n

3
x

3,
 1

/2

C
on

vo
lu

tio
n

3
x

3

(A) (B)

C
on

vo
lu

tio
n

7
x

7,
 1

/2

M
ax

 p
oo

lin
g

1/
2

A
ve

ra
ge

 p
oo

lin
g

5
x

5

F
ul

ly
 C

on
ne

ct
ed

O
ut

pu
t

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

, 1
/2

R
es

id
ua

l
B

lo
ck

, 1
/2

R
es

id
ua

l
B

lo
ck

, 1
/2

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

R
es

id
ua

l
B

lo
ck

In
pu

t

Residual Block

Identity

+ +

x

F(x)

F(x) + x

F(x)

F(x) + x

Identity
x

Residual Block, 1/2

FIG. 8.10 The architecture of ResNet-34. (A) Residual Block: a stack of two 3 � 3 convolutional layers, where the number of kernels of layers is
equal. (B) Residual Block, 1/2: a stack of two 3� 3 convolutional layers, where the number of kernels of the first layer is one a half that of the second
layer.

FIG. 8.11 Training and test errors of 20-layer neural network and 56-layer neural network on the CIFAR-10 dataset [5].

206 8. Convolutional neural network architectures

Fig. 8.13 presents the experimental result of training ResNet on the ImageNet dataset. Fig. 8.13A shows the results of
an 18-layer network and 34-layer network without using shortcut connections. As shown, the training and validation
errors of the 34-layer network are greater than those of the 18-layer network. When adding shortcut connections, that
is, using Residual Blocks to construct networks, the training and validation errors of the 34-layer network or ResNet-34
are fewer than those of the 18-layer network or ResNet-18, as shown in Fig. 8.13B.

After Microsoft proposed the ResNet architecture, many more improved Residual Blocks were introduced. The fol-
lowing is a summary of each:

▪ ResNeXt [11]: Published in 2017, introducing a block of ResNex with a new dimension called “cardinality” in
addition to the depth and width dimensions for building an image classification network model

▪ SENet [12]: Published in 2017, introducing a “Squeeze-and-Excitation” (SE) block being able to perform dynamic
channel-wise feature recalibration for improving the representational capacity of the neural network

▪ SKNet [13]: Published in 2019, proposing a dynamic selection mechanism for automatically choosing the size of the
receptive field in the neural network

8.1.6 Comparison of network architectures

Fig. 8.14 presents the results of AlexNet, VGG, GoogleNet, and ResNet trained on the ImageNet dataset. As shown,
ResNet, the deepest network architecture with 152 layers, achieved the least top-5 errors on the ImageNet test set,
followed by GoogLeNet, VGG-19, and AlexNet.

FIG. 8.12 Residual Block, adding a shortcut connection to a pair of 3�3 convolutional layer.

FIG. 8.13 Training and validation errors of the neural networks with and without using shortcut connections on ImageNet [5].

2078.1 Popular convolutional neural network architectures

8.2 Experiment: Implementation of inception-v3 network

This chapter presents how to implement the Inception-v3 network for image classification. The objective can be
accomplished by using the TensorFlow library introduced in the previous chapters; however, it takes time because
of complex network architecture. The following section introduces twomethods for building the Inception-v3 network
faster and more effectively: Keras Applications and TensorFlow Hub. Fig. 8.15 shows an example prediction of the
Inception-v3 network.

8.2.1 Keras applications

Keras Applications is the applications module of the Keras library, providing network declarations and pre-trained
weights for popular architectures such as Xception, VGG, ResNet, Inception, and so on. Table 8.1 lists the accuracy of
some networks on the ImageNet validation set used in the 2012 ILSVRC competitions obtained by employing Keras
Applications.

19 layers

8 layers

ILSVRC´12
AlexNet

ILSVRC´14
VGG

ILSVRC´14
GoogleNet

ILSVRC´15
ResNet

ILSVRC´13

8 layers

11.7

7.3
6.7

3.57

16.4

Top 5
error
rate

22 layers

152 layers

FIG. 8.14 Top-5 error CNNs on ImageNet test set.

FIG. 8.15 The African elephant image prediction of the Inception-v3 network.

208 8. Convolutional neural network architectures

▪ Top-1: if the prediction result of the model with the highest probability is the same as the answer, the prediction is
correct

▪ Top-5: if the network predicts five results with the highest probability, one of which is the same as the answer, it is
the correct prediction

▪ Parameters: the number parameters of the network
▪ Depth: the number of layers of the network, including convolutional layers, pooling layers, activation layers, and so on

The following program uses Keras Applications to build the Inception-v3 network as an example. Fig. 8.16 is a flow-
chart of the source code.

1. Creating network with Keras Applications

a) Import packages

import tensorflow as tf

import numpy as np

b) Create Inception-v3 network

Create Inception-v3 network and load pre-trained weights:

model = tf.keras.applications.InceptionV3(include_top=True, weights='imagenet',

input_tensor=None, input_shape=None, pooling=None, classes=1000

Arguments

• include_top:
- True (default): including the fully connected layer at the top of the network
- False: does not include the fully connected layer

• weights:
- None: random initialization
- Imagenet (default): using pre-trained weights on ImageNet

TABLE 8.1 Network architectures provided by Keras applications.

Model Top-1 accuracy Top-5 accuracy Parameters Depth

Xception [9] 0.790 0.945 22,910,480 126

VGG16 [3] 0.713 0.901 138,357,544 23

VGG19 [3] 0.713 0.900 143,667,240 26

ResNet50 [5] 0.749 0.921 25,636,712 168

Inception-v3 [7] 0.779 0.937 23,851,784 159

InceptionResNetV2 [14] 0.803 0.953 55,873,736 572

MobileNet [15] 0.704 0.895 4,253,864 88

MobileNetV2 [16] 0.713 0.901 3,538,984 88

DenseNet121 [17] 0.750 0.923 8,062,504 121

DenseNet169 [17] 0.762 0.932 14,307,880 169

DenseNet201 [17] 0.773 0.936 20,242,984 201

NASNetMobile [18] 0.744 0.919 5,326,716 –

NASNetLarge [18] 0.825 0.960 88,949,818 –

1. Creating network with
Keras Applications

2. Making prediction.

- Importing packages.

- Creating Inception-v3
 network.

- Data processing.

- Reading data.

- Using pre-trained model for
 prediction.

FIG. 8.16 Flowchart of the source code for building and testing the Inception-v3 network with Keras Applications.

2098.2 Experiment: Implementation of inception-v3 network

• input_tensor (optional): used for sharing inputs between multiple networks; “None” is set as the default
• input_shape (optional): input shape of (299, 299, 3); if “input_tensor” is used, “input_shape” is omitted
• pooling (optional): for feature extraction when “include_top” is set to False

- None (default): the output of the last convolutional block is used as the output of the network
- avg: using the global average pooling at the output of the last convolutional block
- max: using global max pooling at the output of the last convolutional block

• Classes (optional): the number of classes; the default is 1000. If it is necessary to customize the number of classes, it
is required to set “include_top” to True and “weights” to None

210 8. Convolutional neural network architectures

2. Making prediction
a) Data processing

For each network model, Keras Applications provides the corresponding functions for processing data.
▪ preprocess_input: for processing input data following the format the network model requires. The input

format of each model can be different. For example, some models require input image with the values range
from �1 to +1, others use the value range from 0 to 1, and so on.

▪ decode_predictions: for decoding the predictions of the pre-trained models and mapping the prediction
values to the actual class names.

Import data pre-processing and decoding functions

from tensorflow.keras.applications.inception_v3 import preprocess_input

from tensorflow.keras.applications.inception_v3 import decode_predictions

b) Reading data

Decode files in image format

img_decode = tf.image.decode_image(img_string)

Resize the image to the network input size

img_decode = tf.image.resize(img_decode, resize)

increase the dimension of the image to 4 (batch, height, width, channels)

img_decode = tf.expand_dims(img_decode, axis=0)

return img_decode

Read an image by using “read_img” funtion:

img_path = 'image/elephant.jpg'

Read the image through the function just created

img = read_img(img_path)

Display the image

plt.imshow(tf.cast(img, tf.uint8)[0])

Result:

Create a function for reading data:

def read_img(img_path, resize=(299,299)):

#Read file

img_string = tf.io.read_file(img_path)

2118.2 Experiment: Implementation of inception-v3 network

c) Using pre-trained model for prediction

img = preprocess_input(img) # Image pre-processing

preds = model.predict(img) # image prediction

print("Predicted:", decode_predictions(preds, top=3)[0]) # Show the three categories with

the highest output prediction

Result: Predicted: [('n02504458', 'African_elephant', 0.8037859), ('n01871265', 'tusker',

0.12163948), ('n02504013', 'Indian_elephant', 0.0042992835)]

8.2.2 TensorFlow Hub

TensorFlow Hub is a repository where the trained machine learning models are available for downloading and
reusing with a minimum amount of code. There are various pre-trained models provided through the “tfhub.dev”
repository such as image classification models and text embedding models. The official website of TensorFlow
Hub is https://tfhub.dev/, as shown in Fig. 8.17.

To install TensorFlow Hub, please use the following command line:

pip install tensorflow-hub

The following program uses TensorFlow Hub to build the Inception-v3 network as an example. Fig. 8.18 is a flow-
chart of the source code.

FIG. 8.17 TensorFlow Hub website.

1. Creating network with
TensorFlow Hub

2. Making prediction.

- Importing packages.

- Creating Inception-v3
 network.

- Data processing.

- Reading data.

- Using pre-trained model for
 prediction.

- Displaying three best predictions.

FIG. 8.18 Flowchart of the source code for building and testing the Inception-v3 network with TensorFlow Hub.

212 8. Convolutional neural network architectures

https://tfhub.dev/

1. Creating network with TensorFlow Hub

(a) Import packages

import tensorflow_hub as hub

(b) Cerate Inception-v3 network
▪ Step 1: Go to the website https://tfhub.dev/ and click the “classification” label as shown in Fig. 8.19.

▪ Step 2: Select Inception-v3, as shown in Fig. 8.20.

FIG. 8.19 Selection of classification label on TensorFlow Hub.

FIG. 8.20 Selection of Inception-v3 model in TensorFlow Hub.

2138.2 Experiment: Implementation of inception-v3 network

https://tfhub.dev/

▪ Step 3: Select the TF2 version of Inception-v3 network, as shown in Fig. 8.21.

▪ Step 4: Click “Copy URL” button to copy the URL for downloading the pre-trained Inception-v3 on
TensorFlow Hub, as shown in Fig. 8.22.

▪ Step 5: Create the Inception-v3 network through the URL copied in step 4

URL of the pre-trained Inception-v3 model

module_url = " https://tfhub.dev/google/tf2-preview/inception_v3/classification/2"

Buiding Inception-v3

model = tf.keras.Sequential([

hub.KerasLayer wraps the saved Inception-v3 model as a Keras layer

hub.KerasLayer(module_url,

input_shape=(299, 299, 3),

output_shape=(1001,),

name='Inception_v3')

])

FIG. 8.21 Selection of version for Inception-v3 network on TensorFlow Hub.

FIG. 8.22 Information of Inception-v3 on TensorFlow Hub.

214 8. Convolutional neural network architectures

▪ Step 6: Display the architecture of Inception-v3 through model.summary

model.summary()

Result:

2. Making prediction
(a) Reading data

Create a function for reading data:

def read_img(img_path, resize=(299,299)):

Read file

img_string = tf.io.read_file(img_path)

Decode files in image format

img_decode = tf.image.decode_image(img_string)

Resize the image to the Inception-v3 input size

img_decode = tf.image.resize(img_decode, resize)

Normalization

img_decode = img_decode / 255.0

expand dimension

img_decode = tf.expand_dims(img_decode, axis=0)

return img_decode

Reading the actual class names:

labels_path=tf.keras.utils.get_file('ImageNetLabels.txt',

'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt')

Reading the data

with open(labels_path) as file:

lines = file.read().splitlines()

Displaying data

print(lines)

imagenet_labels = np.array(lines)

Result:

2158.2 Experiment: Implementation of inception-v3 network

▪ Read an image by using “read_img” function

(b) Using pre-trained model for prediction

preds = model.predict(img) # image prediction

index = np.argmax(preds) # Get the Index with the largest prediction result

print("Predicted:", imagenet_labels[index]) # print the predicted result

Result: Predicted: African elephant

(c) Display three best predictions

Get the three indexes with the largest prediction results

top3_indexs = np.argsort(preds)[0, ::-1][:3]

mapping the prediction values to the actual class names.

print("Predicted:", imagenet_labels[top3_indexs])

Result: Predicted: ['African elephant' 'tusker' 'Indian elephant']

References

[1] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.
[2] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classificationwith deep convolutional neural networks, Adv. Neural Inf. Proces. Syst. (2012)

1097–1105.
[3] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Rep-

resentations, 2015, , pp. 1–14.
[4] C. Szegedy, et al., Going deeper with convolutions, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015, , pp. 1–9.
[5] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016) 770–778.
[6] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: International Conference

on Machine Learning, 2015, , pp. 448–456.
[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016.
[8] C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-V4, inception-ResNet and the impact of residual connections on learning, in: Association

for the Advancement of Artificial Intelligence, 2017, , pp. 1–3.
[9] F. Chollet, Xception: deep learning with depthwise separable convolutions, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, , pp. 1251–1258.
[10] K. He, J. Sun, Convolutional neural networks at constrained time cost, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, , pp. 5353–5360.

216 8. Convolutional neural network architectures

http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0055

[11] S. Xie, R. Girshick, P. Dollár, T. Zhuowen, K. He, Aggregated residual transformations for deep neural networks, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, , pp. 1492–1500.

[12] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, , pp. 7132–7141.

[13] X. Li, W.Wang, X. Hu, J. Yang, Selective kernel networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, , pp. 510–519.

[14] C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint
arXiv:1602.07261, (2016).

[15] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, (2017).

[16] M. Sandler, A. Howard,M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: inverted residuals and linear bottlenecks, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, , pp. 4510–4520.

[17] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, , pp. 4700–4708.

[18] B. Zoph, V. Vasudevan, J. Shlens, V.L. Quoc, Learning transferable architectures for scalable image recognition, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, , pp. 8697–8710.

217References

http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0075
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0075
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0080
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0080
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0085
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0085
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0090
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0090
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0095
http://refhub.elsevier.com/B978-0-323-90198-7.00001-X/rf0095

C H A P T E R

9

Transfer learning

OUTLINE
• Introduction to transfer learning strategies

• Using the pre-trained Inception-v3 model through
TensorFlow Hub for transfer learning

• Comparing transfer learning and training from scratch

9.1 Transfer learning

9.1.1 Introduction to transfer learning

In Chapter 4, Section 4.1.3., we explained and demonstrated that the features extracted by convolutional
layers of different depths of the network are different. In particular, the shallower layers are mainly responsible for
extracting simple features of the input such as edges and lines, while the deeper layers are based on the extracted fea-
tures from the previous layers, so they can recognize more specific features such as nose, eyes, ears, and so on, as
shown in Fig. 9.1.

FIG. 9.1 Example of a convolutional neural network (CNN).

219Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00008-2

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00008-2

The learned feature of convolutional neural networks (CNNs) can be applied to different tasks. For example, by
using the ImageNet dataset containing tens of thousands of images to train the CNNs, a large amount of training data
allows the network models to learn very diverse features. When we have a new dataset and want to solve a task of
interest, instead of training the entire network model from scratch, we use a trained model on a large dataset such as
ImageNet, called a pre-trained model, as an initialization or fixed feature extractor for the new task. This training
method is called transfer learning [1–9].

Transfer learning is actually very similar to our human learning method; the knowledge gained by completing
a task can also be used to solve other related tasks. The more related the tasks are, the easier the knowledge is
transferred. For example, when we know how to ride a bicycle, it will be easier for us to learn to ride a motorcycle.
According to the experimental results of many public works [10–14], using the transfer learning method for training
neural network models can help to obtain better performance while requiring less training data and training time
compared with the method of training from scratch. Fig. 9.2 shows how training from scratch differs from transfer
learning. As shown, in training from scratch, the models are trained separately for specific tasks and no knowledge
is retained for transferring from one model to another. In transfer learning, learning of new tasks is based on the
learned knowledge from previous tasks.

9.1.2 Transfer learning strategies

There are four transfer learning strategies that can be applied based on the following two characteristics of the train-
ing data.

▪ The size of training data: If a new dataset contains tens of thousands of training samples, it is considered a large
dataset. If the new dataset only consists of hundreds or thousands of training samples, it is considered a small
dataset.

▪ The similarity of data: This is the similarity between the new training data and the data used for the pre-trained
model. For example, cats and tigers are considered as similar samples, while cats and tables are considered as
different samples.

(1) The first strategy: training network models with small dataset and similar training samples

Because a huge network model is trained on a small dataset, the overfitting problem is prone to occur. Thus, when
applying transfer learning, the weights of the pre-trained model must remain unchanged during training process.
Since the new dataset has similarity to the dataset used for the pre-trained model, they have similar features in hidden
layers of the network, especially in the deeper layers. Therefore, the layers for feature extraction do not need to change.
To learn a new task, it is only required to make changes to the last layer that handles output features of the network
model. The new network model is built based on the architecture of the pre-trained model by removing the output
layer (last layer), then adding new layers for the new task. The steps for transfer learning are as follows:

▪ Step 1 (removing the network layer): Choose to remove the last layer of the pre-trained model, as shown in
Fig. 9.3.

Dataset 1

Dataset 2
Learning
Model 2

(A) Training from scratch (B) Transfer learning

Learning
Model 1

Task 1

Task 2 Dataset 2

Dataset 1

Pre-trained model

Learning
Model 1

Task 2

FIG. 9.2 Diagram of training a model from scratch and training a model using transfer learning.

220 9. Transfer learning

▪ Step 2 (adding new layer): Add one ormultiple layers to the top of the original network structure for the new task, as
shown in Fig. 9.4.

▪ Step 3 (training new model): During training the new network model, the weights of most network layers are fixed;
only newly added layers are trained, as shown in Fig. 9.5.

(2) The second strategy: training network models with small datasets and dissimilar training samples

Because of using a small dataset for training a network model, the weights of the pre-trained model should be left
unchanged to prevent the overfitting problem. Since the samples of the new dataset are different from these of the
dataset used for the pre-trainedmodel, they have similar features only in the shallower layers, while their features in
the deeper layers of the network model are very different. To build a network model based on the architecture of the
pre-trained model for learning a new task, only the shallower layers are retained, whereas the deeper layers should
be removed, and the output layer is replaced with a new one. The steps for transfer learning are as follows:

▪ Step 1 (removing the network layer): Remove most of the deep layers of the pre-trained model and leave only some
shallow layers that extract simple features such as lines and edges, as shown in Fig. 9.6.

FIG. 9.3 Removing the last layer of the pre-trained model (1).

FIG. 9.4 Adding layers for the new task (1).

Convolution Layer
(edge detector)

Convolution Layer
(shape detector)

Convolution Layer
(Higher level feature)

Trainable False Training New Layer

Output

(New task)

FIG. 9.5 Freezing layers for training (1).

2219.1 Transfer learning

▪ Step 2 (adding new layer): Choose to add new layers to the top of the original network architecture for the new task,
as shown in Fig. 9.7.

▪ Step 3 (training newmodel): During training the new network model, the weights of most network layers are fixed;
only newly added layers are trained, as shown in Fig. 9.8.

(3) The third strategy: training network models with a large dataset and similar training samples

Using a large dataset allows us to train the entire pre-trained model or a new network model from scratch. The
following provides two training methods:

(a) Using pre-trained model

Because the new dataset has similarity to the dataset used for the pre-trained model, they have similar features in
hidden layers of the network, especially in the deeper layers. Therefore, the layers for feature extraction do not need to
change. To learn a new task, it is only required to make changes to the last layer that handles the output of the network
model. The new model is built based on the architecture of the pre-trained model by replacing the last layer with new
one. Finally, because the dataset is large enough, the weights of the newly added layers as well as some or all other

FIG. 9.6 Removing layers of the pre-trained model.

FIG. 9.7 Adding layers for the new task (2).

FIG. 9.8 Freezing layers for training (2).

222 9. Transfer learning

layers of the new network model can be optimized to obtain better performance. The steps for fine-tuning are as
follows:

▪ Step 1 (removing the network layer): Choose to remove the last layer of the pre-trained model, as shown in Fig. 9.9.

▪ Step 2 (adding new layers): Choose to add one ormore layers to the top of the original network architecture for a new
task, as shown in Fig. 9.10.

▪ Step 3 (training new model):
• First method: The weights of most network layers are fixed; only newly added layers are trained, as shown in

Fig. 9.11.

• Second method: Train or fine-tune through the entire network model on the new dataset, as show in Fig. 9.12.

FIG. 9.9 Removing the last layer of the pre-trained model (2).

FIG. 9.10 Adding layer for the new task (3).

FIG. 9.11 Freezing layers for training (3).

FIG. 9.12 Training or fine-tuning the entire network model (1).

2239.1 Transfer learning

(b) Creating a new network model

Because the dataset is large enough, it allows us to create a new networkmodel and train this model from scratch, as
shown in Fig. 9.13.

(4) The fourth strategy: training network models with large dataset and dissimilar training samples

Using a larger dataset for training a network model can avoid the overfitting problem. Therefore, the entire pre-
trained network model or a new network model can be trained on the new dataset for improving performance.
The following provides two training methods.

(a) Using a pre-trained model

Due to the difference between the new dataset and the dataset used for the pre-trained model, their features are not
similar in most layers of the network model. However, in practice, it is still very often beneficial to initialize with
weights from a pre-trained model for training a new network model. The steps for the training model are as follows:

▪ Step 1 (removing the network layer): Choose to remove the last layer of the pre-trained model, as shown in Fig. 9.14.

▪ Step 2 (adding new layer): Choose to add one or more layers to the top of the original network architecture for a new
task, as shown in Fig. 9.15.

FIG. 9.13 Training the network model from scratch (1).

FIG. 9.14 Removing the last layer of the pre-trained model (3).

FIG. 9.15 Adding layers for the new task (4).

224 9. Transfer learning

▪ Step 3 (training new model): Train or fine-tune the entire network model on the new larger dataset with weights
initialization from the pre-trained model, as shown in Fig. 9.16.

(b) Creating a new network model

Because the dataset is large enough, it allows us to create a new networkmodel and train this model from scratch, as
shown in Fig. 9.17.

9.2 Experiment: Using Inception-v3 for transfer learning

This section introduces how to use the Inception-v3 network for improving image classification performance on the
Dogs vs. Cats dataset.We conduct two training scenarios. In the first scenario, we build the Inception-v3model, named
Model-1, through Keras Applications and train it from scratch with random weight initialization. In the second sce-
nario, we build a new networkmodel, namedModel-2, by using the Inception-v3 network loaded through TensorFlow
Hub for feature extraction and adopting two fully connected layers for classification. By applying transfer learning to
Model-2, the weights of most of the layers are fixed; only two newly added fully connected layers are trained on the
Dogs vs. Cats dataset to learn a new task. The experimental results show that Model-2 obtains greater accuracy than
Model-1 does.

9.2.1 Introduction to Dogs vs. Cats dataset

The Dogs vs. Cats dataset, which includes two classes of dog and cat, was introduced for a Kaggle machine learning
competition in 2013. The Kaggle provides 25,000 labeled images of dogs and cats for training and 12,500 unlabeled
images for testing. Fig. 9.18 shows some of the images from the Dogs vs. Cats dataset. To build an optimized input
pipeline in the experiment, the Dogs vs. Cats dataset is loaded from the TensorFlow dataset through the “tf.data.
Datasets” application programming interface (API) for training and testing network models.

FIG. 9.16 Training or fine-tuning the entire network model (2).

FIG. 9.17 Training the network model from scratch (2).

2259.2 Experiment: Using Inception-v3 for transfer learning

9.2.2 Code examples

Fig. 9.19 is a flowchart of the source code for images classification models.

1. Preparing dataset

a) Import packages

import os

import numpy as np

import tensorflow as tf

import tensorflow_hub as hub

import tensorflow_datasets as tfds

from tensorflow import keras

from tensorflow.keras import layers

import matplotlib.pyplot as plt

from preprocessing import flip, color, rotate, zoom

FIG. 9.18 Images from Dogs vs. Cats dataset.

FIG. 9.19 Flowchart of the source code for images classification models.

226 9. Transfer learning

b) Loading data

Load Cats_vs_Dog dataset:

Divide data with ratio of 8:1:1 for training, validation and testing

train_split, valid_split, test_split = tfds.Split.TRAIN.subsplit([80, 10, 10])

load the training set

train_data, info = tfds.load("cats_vs_dogs", split=train_split, with_info=True)

load validation set

valid_data = tfds.load("cats_vs_dogs", split=valid_split)

load test set

test_data = tfds.load("cats_vs_dogs", split=test_split)

View name of class and create decoder:

print(info.features['label'].names) # display name of class

decoder = info.features['label'].names # create decoder

Result: ['cat', 'dog']

Display the image from dataset:

for data in train_data.take(1):

img = data['image'] # read image

label = data['label'] # read lable

get the class

plt.title(decoder[label])

Display image

plt.imshow(img)

Result:

2279.2 Experiment: Using Inception-v3 for transfer learning

c) Setting data

Creating function for data augmentation:

input_shape = (299, 299) # set the input size

def parse_aug_fn(dataset):

"""

 Image Augmentation function

 """

Image standardization

 x = tf.cast(dataset['image'], tf.float32) / 255.

 x = tf.image.resize(x, input_shape)

 # Random horizontal flip

 x = flip(x)

color conversion (50%)

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.5, lambda: color(x), lambda: x)

Image rotation (25%)

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.75, lambda: rotate(x), lambda: x)

image scaling (50%)

 x = tf.cond(tf.random.uniform([], 0, 1) > 0.5, lambda: zoom(x), lambda: x)

return x, dataset['label']

def parse_fn(dataset):

 # Image standardization

 x = tf.cast(dataset['image'], tf.float32) / 255.

 x = tf.image.resize(x, input_shape)

return x, dataset['label']

Setting data for training, validation, and testing:

AUTOTUNE = tf.data.experimental.AUTOTUNE # Automatic adjustment mode

buffer_size = 1000 # Because the image is larger, the cache space is set to 1000.

batch_size = 64 # Batch size

Training data

train_data = train_data.map(map_func=parse_aug_fn, num_parallel_calls=AUTOTUNE)

shuffle training data

train_data = train_data.shuffle(buffer_size)

Set batch size and turn on prefetch mode

train_data = train_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

#Validation data

valid_data = valid_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

valid_data = valid_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Test data

test_data = test_data.map(map_func=parse_fn, num_parallel_calls=AUTOTUNE)

Set batch size and turn on prefetch mode

test_data = test_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

228 9. Transfer learning

2. Building and training network models

a) Model-1: Training from scratch

Create a storage directory for saving model:

model_dir = 'lab9-logs/models' # set storage directory path

os.makedirs(model_dir) # Create a storage directory

Set callback function:

Save training log

log_dir = os.path.join('lab9-logs', 'model-1')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

early stopping during training

model_esp = keras.callbacks.EarlyStopping(monitor='val_binary_accuracy',

 patience=30,

 mode='max')

Create Inception-v3 network:

Loading Inception-v3 network from keras.applications

base_model = tf.keras.applications.InceptionV3(include_top=False, # does not include the

fully connected layer.

 weights=None, # random initialization

 pooling='avg',

 input_shape=input_shape+(3,))

adding two fully connected layers to top of the base Inception-v3 model,

using the Sigmoid activation function in the last layer

model_1 = tf.keras.Sequential([

 base_model,

 layers.Dense(128, activation='relu'),

 layers.Dense(1, activation='sigmoid')

])

 View model information via “model.summary” API:

model_1.summary()

2299.2 Experiment: Using Inception-v3 for transfer learning

Result:

 Set the optimizer, loss function, and metric function:

model_1.compile(keras.optimizers.Adam(),

 loss=keras.losses.BinaryCrossentropy(),

 metrics=[keras.metrics.BinaryAccuracy()])

 Training network model:

history = model_1.fit(train_data,

 epochs=200,

 validation_data=valid_data,

 callbacks=[model_cbk, model_esp])

Result

b) Model-2: Transfer Learning

 Set callback function:

Save training log

log_dir = os.path.join('lab9-logs', 'model-2')

model_cbk = keras.callbacks.TensorBoard(log_dir=log_dir)

early stopping during training

model_esp = keras.callbacks.EarlyStopping(monitor='val_binary_accuracy',

 patience=30,

 mode='max')

230 9. Transfer learning

2319.2 Experiment: Using Inception-v3 for transfer learning

 Set the optimizer, loss function, and metric function:

model_2.compile(keras.optimizers.Adam(),

 loss=keras.losses.BinaryCrossentropy(),

 metrics=[keras.metrics.BinaryAccuracy()])

 Training network model:

history = model_2.fit(train_data,

 epochs=200,

 validation_data=valid_data,

 callbacks=[model_cbk, model_esp])

Reuslt:

Supplementary explanation

In Chapter 8, the Inception-v3 network was loaded through TensorFlow Hub at https://tfhub.dev/google/tf2-preview/
inception_v3/classification/4, and in this chapter, it is loaded at https://tfhub.dev/google/tf2-preview/inception_v3/
feature_vector/4. The difference between the two loaded networks is that the Inception-v3 loaded in Chapter 8 contains the
last classification layer (1000 categories), whereas this classification layer is removed in the latter network.

3. Comparison of Model-1 and Model-2

Both the best-trained weights of Model-1 and Model-2 are used for evaluating the Cats_vs_Dogs test set.

Load the best trained weights of Model-1

model_1.load_weights(model_dir + '/Best-model-1.h5')

Load the best trained weights of Model-2

model_2.load_weights(model_dir + '/Best-model-2.h5')

Calculate the loss value and accuracy of Model-1 and Model-2

loss_1, acc_1 = model_1.evaluate(test_data)

loss_2, acc_2 = model_2.evaluate(test_data)

print("Model_1 Prediction: {}%".format(acc_1 * 100))

print("Model_2 Prediction: {}%".format(acc_2 * 100))

Result Model_1 Prediction: 97.97413945198059%

 Model_2 Prediction: 99.39655065536499%

The results show that Model-2 with transfer learning obtained a classification accuracy of 99.39%, which is greater
than the 1.42% accuracy of Model-1 with training from scratch.

232 9. Transfer learning

https://tfhub.dev/google/tf2-preview/inception_v3/classification/4
https://tfhub.dev/google/tf2-preview/inception_v3/classification/4
https://tfhub.dev/google/tf2-preview/inception_v3/feature_vector/4
https://tfhub.dev/google/tf2-preview/inception_v3/feature_vector/4

References

[1] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks? Adv. Neural Inf. Proces. Syst. (2014)
3320–3328.

[2] M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and transferring mid-level image representations using convolutional neural networks,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014, pp. 1717–1724.

[3] R. Mormont, P. Geurts, R. Mar�ee, Comparison of deep transfer learning strategies for digital pathology, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2018, pp. 2343–234309.

[4] S. Kornblith, J. Shlens, Q.V. Le, Do better ImageNet models transfer better? Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2019) 2661–2671.
[5] H. Shin, et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learn-

ing, IEEE Trans. Med. Imaging 35 (5) (2016) 1285–1298.
[6] N. Tajbakhsh, et al., Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35 (5)

(2016) 1299–1312.
[7] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, Domain-adversarial training of neural

networks, J. Mach. Learn. Res. 17 (1) (2016) 2030–2096.
[8] D. Hendrycks, K. Lee, M.Mazeika, Using pre-training can improvemodel robustness and uncertainty, in: International Conference onMachine

Learning, 2019.
[9] Z. Ding, Y. Fu, Deep transfer low-rank coding for cross-domain learning, IEEE Trans. Neural Netw. Learn. Syst. 30 (6) (2019) 1768–1779.
[10] F. Zhuang, et al., A comprehensive survey on transfer learning, Proc. IEEE 109 (1) (2021) 43–76.
[11] Z. Li, D. Hoiem, Learning without forgetting, IEEE Trans. Pattern Anal. Mach. Intell. 40 (12) (2018) 2935–2947.
[12] S.-C. Huang, T.-H. Le, D.-W. Jaw, DSNet: joint semantic learning for object detection in inclement weather conditions. IEEE Trans. Pattern Anal.

Mach. Intell. (2021), https://doi.org/10.1109/TPAMI.2020.2977911.
[13] T.-H. Le, S.-C. Huang, D. Jaw, Cross-resolution feature fusion for fast hand detection in intelligent homecare systems, IEEE Sens. J. 19 (12) (2019)

4696–4704.
[14] Q.-V. Hoang, T.-H. Le, S.-C. Huang, An improvement of RetinaNet for hand detection in intelligent homecare systems, in: 2020 IEEE Interna-

tional Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2020, pp. 1–2.

233References

http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/optZCvio6q8RA
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/optqdbkVx6DuG
https://doi.org/10.1109/TPAMI.2020.2977911
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/optRqbCFsptgN
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/optRqbCFsptgN
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/optAEn3ZkMaLe
http://refhub.elsevier.com/B978-0-323-90198-7.00008-2/optAEn3ZkMaLe

C H A P T E R

10

Variational auto-encoder

OUTLINE
• Introduction to Auto-Encoder (AE)

• Introduction to Variational Auto-Encoder (VAE)

• Implementing the VAE model for reconstructing
images

10.1 Introduction to auto-encoder

The aim of Auto-Encoder (AE) is to learn to compress data while minimizing errors in reconstructing them. To
accomplish this, an AE is composed of two main parts: an encoder and a decoder [1–3]. The encoder is responsible
for compressing the input into a lower-dimensional latent space representation. The latent representation is referred
to as code, and the decoder is used to decode this code back to the input. In training the AE model, it is hoped that the
output of the decoder and the input of the encoder are as similar as possible. For example, an MNIST handwritten
image of size 28�28 is compressed into a 2D vector code by the encoder, and then the resulting code is decoded back
to the original 28�28 image through the decoder. Fig. 10.1 presents the training schematic diagram of the AE model.

However, when training the AE model, there are no constraints on the latent representations generated by the
encoder, so it cannot be ensured that every output generated by the decoder has meaningful attributes of the original
data input. For example, 225 sets of 2D vector codes are produced by the encoder of an AE model, in which the values
of codes are linearly sampled from �1.5 to +1.5. These 225 sets are sent to the decoder to generate 225 images. As
observed in Fig. 10.2, we cannot recognize all characters in the output images except for images “0,” “3,” “5,” and
“8” in the lower right corner. In the next section, we introduce a Variational Auto-Encoder (VAE), which adds con-
straints on the latent representations to address this problem.

Input Output

Decoder
Code

Ex: 2 Dimension

Encoder

Latent space
representation

The loss between the Output and Input

FIG. 10.1 Auto-Encoder (AE) training schematic diagram.

235Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00010-0

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00010-0

10.2 Introduction to variational auto-encoder

10.2.1 Introduction to VAE

VAE [4] is an advanced version of AE that learns a data-generating distribution, allowing it to take random codes or
latent representations from latent distribution to generate output data that have similar characteristics to those of
input data. Fig. 10.3 shows the differences between VAE and AE.

Fig. 10.4 shows the operation concept of the VAE. As shown, the encoder receives input data and outputs two vec-
tors including a vector of themean (μ) and a vector of variance (σ2) for generating latent distribution. Then, a code or
latent representation is randomly sampled from the latent distribution to be passed through the decoder for gen-
erating output data.

FIG. 10.2 Example of generated images of the Auto-Encoder (AE) model. Not all generated images can be recognized.

Input data Output data
Encoder

Input data
Encoder

Decoder

Output data
Decoder

Latent

representation

Latent

distribution

(A) Auto-Encoder

(B) Variational Auto-Encoder

Sampling Sampled latent

representation

FIG. 10.3 Differences between Auto-Encoder (AE) and Variational Auto-Encoder (VAE).

FIG. 10.4 Conceptual diagram of Variational Auto-Encoder (VAE).

236 10. Variational auto-encoder

As for why VAE has codes to be randomly sampled from the latent distributions, here is an intuitive example
to explain. As shown in Fig. 10.5, two images A and B are used as the inputs of the encoder. At the output of
the encoder, two codes, namely Code A and Code B are sampled and sent to the decoder to produce Output A
and Output B, respectively. Because there is an intersection between two distributions, an additional Output C
can be produced between Output A and Output B from this intersection. This design makes the outputs of
the VAE have a continuous relationship, such as the continuous relationship between Output A, Output B,
and Output C.

10.2.2 Operation of VAE

As introduced previously, instead of directly outputting the values for the latent space representation like AE, the
encoder of a VAE outputs two vectors of the mean (μ) and variance (σ2) for generating latent distributions. The
decoder takes random sampled code from the latent distributions for reconstruction of the original input. When
training the VAE model, the relationship of parameters in the model with respect to the final loss is calculated
by the backpropagation algorithm. However, it is impossible to do this for the random sampling process because
there is no value for computation. To overcome this problem, the VAE employed a reparametrization trick for sam-
pling, in which an ε from a standard normal distribution is randomly sampled to combine with parameters μ and σ2

of latent distribution for computing the output code of the encoder, which is defined as C¼ exp (σ2)∗ε+μ, as shown
in Fig. 10.6. Following this trick, μ and σ of the latent distribution can be optimized during the training process while

FIG. 10.5 Advantages of using latent distributions in VAE.

Input

Encoder DecoderC

C = exp(s 2) * e + m
*

e

m

exp

Random
sample

Output

Standard
normal distribution

s 2

FIG. 10.6 Diagram of Variational Auto-Encoder (VAE).

23710.2 Introduction to variational auto-encoder

still allowing to randomly sample from that distribution. Another more intuitive explanation for using the code
C¼ exp (σ2)∗ε+μ is that μ is considered the code of the AE, this code is added a noise (exp(σ2)∗ε) in the VAE to
produce the code C and hope that C can still be decoded to the original input.
Taking a similar example as in Section 10.1, the encoder of the VAE produces 225 sets of 2D vector codes, and then
these sets are passed through the decoder to generate 225 handwritten digit images, as shown in Fig. 10.7. As
shown, each image is a digit that can be easy to recognize, and each is smoothly transformed into another.

10.2.3 Variational auto-encoder loss function

The training goal of the VAE model is to ensure the predicted output and the input are as similar as possible. If the
data contains image samples, binary cross-entropy (BCE) loss between each pixel of the reconstructed image and input
image can be employed for training themodel. This loss is also called reconstruction loss, which is described as follows:

Lossreconstruction ¼ 1
N

XN

i¼1

XW

x¼1

XH

y¼1

XC

c¼1

binary_crossentropy xx,y, c , ŷx,y, c

� �

x: input image.
ŷ: output image or reconstructed image.
W: width of image.
H: height of image.
C: the number of image channels.
N:the amount of data in a batch.

However, if only reconstruction loss is used for training the VAE model, it is not enough. As shown in Fig. 10.6,
exp(σ2) controls the scale of noise (exp(σ2)∗ε), in which σ2 is learned by the encoder. If the encoder learns to output
exp(σ2) as 0, noise is not added to compute the output code. If there is no noise in computing the code, the output code
in the VAE model is similar to that of the AE model, which means constraints on the encoded representations are not
added to the VAEmodel. The graph of exp(σ2) is shown in Fig. 10.8, where, the smaller the value of σ2 is, the closer to 0
the value of exp(σ2) becomes.

FIG. 10.7 Example of generated images of the Variational Auto-Encoder (VAE).

238 10. Variational auto-encoder

In order to solve this problem,Lossσ2 is employed to limit the value of σ2. If the value ofLossσ2 is equal to 0, σ2must be 0.
At this time, the value of exp(σ2) is equal to 1, so the problem that the encoder updates in the direction of exp(σ2)¼ 0 is
solved. Fig. 10.9 shows the graph of Lossσ2; its formula is as follows:

Lossσ2 ¼
1
2N

XN

i¼1

exp σ2i
� �� 1 + σ2i

� �� �

In addition, L2 regularization is applied for μ, which is formulated as follows:

Lossu ¼ 1
2N

XN

i¼1

μ2i

Finally, Lossu,σ2 is established by incorporating Lossu and Lossσ2, which is also known as Kullback–Leibler divergence
loss (KL Loss) and is expressed as follows:

Lossu,σ2 ¼
1
2N

XN

i¼1

exp σ2i
� �� 1 + σ2i

� �
+ μ2i

� �

μ: mean value (one of the outputs of encoder).
σ2: variance (the other output of encoder).
N: batch size.

FIG. 10.8 The graph of exp(σ2).

–2
–4 –2 0 2 4

–1

0

1

2

3

4

5

6

7

exp(s 2) exp(s 2) – (1 + s 2)

exp(s 2) exp(s 2) – (1 + s 2)

–2
–4 –2 0 2 4

–1

0

1

2

3

4

5

6

7
1 + s 2

–2
–4 –2 0 2 4

–1

0

1

2

3

4

5

6

7

1 + s 2

FIG. 10.9 The graph of exp(σi2)� (1+σi2).

23910.2 Introduction to variational auto-encoder

10.3 Experiment: Implementation of variational auto-encoder model

This section introduces an example program of building a VAE model, which is trained and tested on the MNIST
handwritten digit dataset [5] for compressing and reconstructing images. Fig. 10.10 shows some generated images of
the VAE model.

10.3.1 Create project

Because the VAE models in this chapter are much more complicated than the example programs in the previous
chapters, we employ Pycharm IDE as a compiler to write the source codes and train the model. In the following, we
outline the process of creating the project.

1. Create a new project: Click “File”!“New Project,” as shown in Fig. 10.11.

FIG. 10.10 Handwritten digital images generated by the Variational Auto-Encoder (VAE).

FIG. 10.11 Creating a new project on Pycharm.

240 10. Variational auto-encoder

2. Set a directory of the new project, as shown in Fig. 10.12.

3. Configure a Python interpreter: Open “Project Interpreter: Python 3.6,” select the “Existing interpreter,” and set
Python Interpreter, as shown in Fig. 10.13.

FIG. 10.12 Setting a new project directory.

FIG. 10.13 Interpreter setting.

24110.3 Experiment: Implementation of variational auto-encoder model

4. Create a project: Click “Create” button to create a new project, as shown in Fig. 10.14.

Supplementary explanation

The code examples of the VAE project in this chapter can be download at: https://github.com/taipeitechmmslab/
MMSLAB-DL/tree/master, as shown in Fig. 10.15.

FIG. 10.14 Creating a project.

FIG. 10.15 The source code of Variational Auto-Encoder (VAE) on GitHub.

242 10. Variational auto-encoder

https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master
https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master

10.3.2 Introduction to the dataset

We use the MNIST handwritten digit dataset [5] for training and testing the VAEmodel in this chapter. TheMNIST
contains 60,000 training samples and 10,000 test samples, which are gray images with a size of 28�28. The dataset can
be loaded through TensorFlow datasets as follows.

import tensorflow_datasets as tfds

#Load training data

train_data, info = tfds.load("mnist", split= tfds.Split.TRAIN, with_info=True)

Loading test data

test_data = tfds.load("mnist", split= tfds.Split.TRAIN)

Display information of dataset
print(info)

Result:

tfds.core.DatasetInfo(
 name='mnist',
 version=1.0.0,
 description='The MNIST database of handwritten digits.',
 urls=['https://storage.googleapis.com/cvdf-datasets/mnist/'],
 features=FeaturesDict({
 'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
 'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
 }),
 total_num_examples=70000,
 splits={
 'test': 10000,
 'train': 60000,
 },
 supervised_keys=('image', 'label'),
 citation="""@article{lecun2010mnist,
 title={MNIST handwritten digit database},
 author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
 journal={ATT Labs [Online]. Available: http://yann. lecun. com/exdb/mnist},
 volume={2},
 year={2010}
 }""",
 redistribution_info=,
)

Fig. 10.16 shows some example images of the MNIST dataset.

FIG. 10.16 Handwritten digits from the MNIST dataset.

24310.3 Experiment: Implementation of variational auto-encoder model

10.3.3 Building a Variational auto-encoder model

1. Directory and files
Create a folder for storing python files of the VAE project, as shown in Fig. 10.17. Here, we present a brief intro-
duction to the files.
▪ train.py: file source code for training the VAE model
▪ test.py: file source code for evaluating the VAE model
▪ utils:

• model.py: file source code for the VAE model and custom network layer
• losses.py: file source code for custom loss function
• callbacks.py: file source code for custom callback function

2. Implement the VAE model
Fig. 10.18 is a flowchart of the source code for building the VAE model.

FIG. 10.17 Variational Auto-Encoder (VAE) project.

- Import packages.

- Preparing data.

- Image generation.

- Observation of
 training results
 with TensorBoard.

- Functions for
 constructing the VAE
 model. - Set callback.

- Create VAE model.

- Training VAE model.

- Set optimizer and loss
 function.- Custom callback

 function.

- Variational Auto-
 Encoder loss function

1. Creating helper
functions

2. Building and training
VAE model

3. Visualization
results

FIG. 10.18 Flowchart of the source code for the Variational Auto-Encoder (VAE) model.

244 10. Variational auto-encoder

(a) Creating helper functions
▪ Functions for constructing the VAE model
The source code of the VAE model is written in the “models.py” file. Fig. 10.19 shows the architecture of the VAE.

FIG. 10.19 The architecture of Variational Auto-Encoder (VAE).

24510.3 Experiment: Implementation of variational auto-encoder model

Creating “create_vae_model” function.

246 10. Variational auto-encoder

The sampling layer in Fig. 10.19 is a custom network layer. Fig. 10.20 describes the output of this layer.

▪ The source code of the sampling custom network layer

class Sampling(keras.layers.Layer):

def call(self, inputs):

z_mean, z_log_var = inputs

batch = tf.shape(z_mean)[0]

dim = tf.shape(z_mean)[1]

epsilon = tf.random.normal(shape=(batch, dim))

return z_mean + tf.exp(z_log_var) * epsilon

FIG. 10.20 Sampling in the Variational Auto-Encoder (VAE) model.

24710.3 Experiment: Implementation of variational auto-encoder model

Supplementary explanation

Lossu, σ2(KL Loss) is used to optimize μ and σ2 in the middle of the VAE model, so it is necessary to declare the internal loss
together at the establishment of the network layer. To accomplish this task, the “vae.add_loss” used in “create_vae_model”
function above is one of the methods. We can also create a “custom network model” or “custom network layer” to add the
Lossu, σ2 loss function.

Example 1: custom network model

class VariationalAutoEncoder(keras.Model):

def __init__(self, name='autoencoder', **kwargs):

super(VariationalAutoEncoder, self).__init__(name=name, **kwargs)

self.encoder = Encoder()

self.decoder = Decoder()

self.sampling = Sampling()

def call(self, inputs):

z_mean, z_var = self.encoder(inputs)

z = self.sampling([z_mean, z_var])

img_output = self.decoder(z)

kl_loss=0.5*tf.reduce_mean(tf.exp(z_var)-(1+z_var)+tf.square(z_mean))

self.add_loss(kl_loss)

return reconstructed

Example 2: Custom network layer

class KLLoss(keras.layers.Layer):

def call(self, inputs):

z_mean = inputs[0]

z_var = inputs[1]

kl_loss=0.5*tf.reduce_mean(tf.exp(z_var)-(1+z_var)+tf.square(z_mean))

self.add_loss(kl_loss)

return z_mean, z_var

… Omit the convolution layer and fully connected layer of the Encoder …

z_mean = keras.layers.Dense(latent_dim)(x)

z_var = keras.layers.Dense(latent_dim)(x)

z_mean, z_var = KLLoss()([z_mean, z_var])

z = Sampling()([z_mean, z_var])

encoder = keras.Model(inputs=img_inputs, outputs=z, name='encoder')

▪ VAE loss function

Lossreconstruction ¼ 1
N

XN

i¼1

XW

x¼1

XH

y¼1

XC

c¼1

binary_crossentropy xx,y, c , ŷx,y, c

� �

248 10. Variational auto-encoder

x: input image.
ŷ: output image.
W: width of image.
H: height of image.
C: the number of image channels.
N: the amount of data in a batch.

The reconstruction loss function is written in the “losses.py” file.

def reconstruction_loss(y_true, y_pred):

Binary Cross-Entropy loss is used for calculating error between each pixel of the

generated image and the input image

bce = -(y_true * tf.math.log(y_pred + 1e-07) +

(1 - y_true) * tf.math.log(1 - y_pred + 1e-07))

return tf.reduce_mean(tf.reduce_sum(bce, axis=[1, 2, 3]))

• Custom callback
Please write the source code in “callbacks.py” file.
• "SaveDecoderModel" class: Check every epoch. If there is any improvement of loss, save the decoder model

(similar to keras.callbacks.ModelCheckpoint).
• "SaveDecoderOutput" class: In each epoch, the decoder model generates 225 images and write them into the

TensorBoard log file for observing the output changes.

SaveDecoderModel

class SaveDecoderModel(tf.keras.callbacks.Callback):

 def __init__(self, weights_file, monitor='loss', save_weights_only=False):

 super(SaveDecoderModel, self).__init__()

 self.weights_file = weights_file # Decoder model storage path

 self.best = np.Inf # Set best to infinite

 self.monitor = monitor

 self.save_weights_only = save_weights_only # Save model weights

 def on_epoch_end(self, epoch, logs=None):

 """

 Each epoch, if there is an improvement of loss, the model or model weights will be

saved

 """

 loss = logs.get(self.monitor) # Get the value to be measured

 if loss < self.best:

 if self.save_weights_only:

 # Save the weight of the Decoder model

 self.model.get_layer('decoder').save_weights(self.weights_file)

 else:

 # Save the complete Decoder model

 self.model.get_layer('decoder').save(self.weights_file)

 self.best = loss

24910.3 Experiment: Implementation of variational auto-encoder model

SaveDecoderOutput

class SaveDecoderOutput(tf.keras.callbacks.Callback):

 def __init__(self, image_size, log_dir):

 super(SaveDecoderOutput, self).__init__()

 self.size = image_size

 self.log_dir = log_dir # the storage path of Tensorboard log file

 n = 15 # for generating (15x15) images

 self.save_images = np.zeros((image_size * n, image_size * n, 1))

 self.grid_x = np.linspace(-1.5, 1.5, n)

 self.grid_y = np.linspace(-1.5, 1.5, n)

 def on_train_begin(self, logs=None):

 """ Tensorboard log file is created before starting training """

 path = os.path.join(self.log_dir, 'images')

 self.writer = tf.summary.create_file_writer(path)

 def on_epoch_end(self, epoch, logs=None):

 """

 225 images are generated and write into the log file

 """

 for i, yi in enumerate(self.grid_x):

 for j, xi in enumerate(self.grid_y):

 # Generate a set of Code

 z_sample = np.array([[xi, yi]])

 # Decoder generates images

 img = self.model.get_layer('decoder')(z_sample)

 # Save image

 self.save_images[i*self.size:(i+1)*self.size,

 j*self.size:(j+1)*self.size] = img.numpy()[0]

 # write the generated 225 images to the TensorBoard log file

 with self.writer.as_default():

 tf.summary.image("Decoder output", [self.save_images], step=epoch)

(b) Building and training the VAE model
The source code for training the VAE model is written in a “train.py” file.
▪ Import packages

import os

import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow import keras

from utils.models import create_vae_model

from utils.losses import reconstruction_loss

from utils.callbacks import SaveDecoderOutput, SaveDecoderModel

250 10. Variational auto-encoder

▪ Preparing data
• Data normalization

def parse_fn(dataset, input_size=(28, 28)):

x = tf.cast(dataset['image'], tf.float32)

Resize the image to the network input size

x = tf.image.resize(x, input_size)

Normalize the image

x = x / 255.

Return training data and the answers

return x, x

• Load MNIST dataset

train_data = tfds.load('mnist', split=tfds.Split.TRAIN)

test_data = tfds.load('mnist', split=tfds.Split.TEST)

• Set data

AUTOTUNE = tf.data.experimental.AUTOTUNE # Automatic adjustment mode

batch_size = 16 # batch size

train_num = info.splits['train'].num_examples # Number of training data

Shuffle training data

train_data = train_data.shuffle(train_num)

Training data

train_data = train_data.map(parse_fn, num_parallel_calls=AUTOTUNE)

Set the batch size to 16 and turn on prefetch mode

train_data = train_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

Test data

test_data = test_data.map(parse_fn, num_parallel_calls=AUTOTUNE)

Set the batch size to 16 and turn on prefetch mode

test_data = test_data.batch(batch_size).prefetch(buffer_size=AUTOTUNE)

▪ Set callback

Create a directory to save model weights

log_dirs = 'logs_vae'

model_dir = log_dirs + '/models'

os.makedirs(model_dir, exist_ok=True)

Save the training log as a TensorBoard log file

model_tb = keras.callbacks.TensorBoard(log_dir=log_dirs)

Store the best model weights

model_sdw = SaveDecoderModel(model_dir + '/best_model.h5', monitor='val_loss')

write the image generated by Decoder to TensorBoard log file

model_testd = SaveDecoderOutput(28, log_dir=log_dirs)

25110.3 Experiment: Implementation of variational auto-encoder model

▪ Create VAE model

the input size of the VAE model

input_shape = (28, 28, 1)

Dimensional space vectors

latent_dim = 2

Create VAE model

vae_model = create_vae_model(input_shape, latent_dim)

▪ Set the optimizer and loss function

optimizer = tf.keras.optimizers.RMSprop()

vae_model.compile(optimizer, loss=reconstruction_loss)

▪ Train the VAE model

vae_model.fit(train_data,

 epochs=20,

 validation_data=test_data,

 callbacks=[model_tb, model_sdw, model_testd])

(c) Visualization results
▪ Image generation
The output image of the VAE model is generated by the decoder network. The source code for testing model is
written in a “test.py” file. Fig. 10.21 presents the test results.

Import packages:

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

Load trained model for generating images:

size = 28 # Output image size

n = 15 # Generate (15x15) images

save_images = np.zeros((size * n, size * n, 1))

grid_x = np.linspace(-1.5, 1.5, n)

grid_y = np.linspace(-1.5, 1.5, n)

Load trained VAE model.

model = tf.keras.models.load_model('logs_vae/models/best_model.h5')

for i, yi in enumerate(grid_x):

for j, xi in enumerate(grid_y):

252 10. Variational auto-encoder

Generate Codes

z_sample = np.array([[xi, yi]])

Generate images

img = model(z_sample)

Save images for displaying

save_images[i * size: (i + 1) * size, j * size: (j + 1) * size] = img.numpy()[0]

Display generated images

plt.imshow(save_images[..., 0], cmap='gray')

plt.show()

Result:

▪ Observation of training results with TensorBoard
Open TensorBoard with command line:

tensorboard --logdir logs-vae

The prediction changes of the VAE model during training can be observed through TensorBoard, as shown in
Fig. 10.22. Note the recoded image in Fig. 10.22 obtained by using the custom callback “SaveDecoderOutput.”

FIG. 10.21 The reconstructed images of the Varitaional Auto-Encoder (VAE) model.

25310.3 Experiment: Implementation of variational auto-encoder model

References

[1] G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (5786) (2006) 504–507.
[2] G.E. Hinton, R. Zemel, Autoencoders, minimum description length and helmholtz free energy, Adv. Neural Inf. Proces. Syst. 6 (1994) 3–10.
[3] P. Vincent, et al., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion, J. Mach.

Learn. Res. 11 (12) (2010).
[4] D.P. Kingma, M.Welling, Auto-encoding variational bayes, in: 2nd International Conference on Learning Representations, Canada, April 14–16,

2014 [Online]. Available: http://arxiv.org/abs/1312.6114.
[5] L. Deng, The MNIST Database of handwritten digit images for machine learning research [Best of the Web], IEEE Signal Process. Mag. 29 (6)

(2012) 141–142.

FIG. 10.22 Training results of the Variational Auto-Encoder (VAE) model on TensorBoard.

254 10. Variational auto-encoder

http://refhub.elsevier.com/B978-0-323-90198-7.00010-0/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00010-0/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00010-0/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00010-0/rf0020
http://arxiv.org/abs/1312.6114
http://refhub.elsevier.com/B978-0-323-90198-7.00010-0/optYkGZAKS2BP
http://refhub.elsevier.com/B978-0-323-90198-7.00010-0/optYkGZAKS2BP

C H A P T E R

11

Generative adversarial network

OUTLINE
• Introduction to Generative Adversarial Networks

(GANs)

• Introduction to Wasserstein distance and Wasserstein
Generative Adversarial Network with Gradient Penalty
(WGAN-GP)

• Implementing WGAN-GP for generating face images

11.1 Generative adversarial network

11.1.1 Introduction to generative adversarial network

Goodfellow et al. [1] proposed the Generative Adversarial Network (GAN) in 2014. A GAN learns to produce new
data having the same statistics as the training data and consists of two subnetworks including a generator and discrim-
inator, as shown in Fig. 11.1. The generator is responsible for generating fake samples that are indistinguishable from real
samples, while the discriminator learns to identify the authenticity of the generated samples from the generator. The
closer the generated samples are to the real samples, the higher the score the discriminator gives, and vice versa. Because
the output of the discriminator goes through the sigmoid activation function, the score is in the range of 0 to 1.

(A) Generator generates image

(C) Discriminator identifies low
similarity

(D) Discriminator identifies high
similarity

Generated image Real image

Generated image Generated image

(B) Discriminator identifies real image

Random vector

Generator
(G)

Sigmoid

0.1

1.0

Sigmoid

Sigmoid

0.9

Discriminator
(D)

Discriminator
(D)

Discriminator
(D)

FIG. 11.1 Operation of generator and discriminator.

255Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00011-2

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00011-2

The operation of a GAN can be imagined as a student (generator) who learns to draw a portrait and a teacher (dis-
criminator) who estimates and distinguishes between the portrait of the student and a real portrait. Based on the cor-
rections of the teacher, the student learns to improve the work, forming a cycle of confrontation and improvement. At
the end of the training, the portrait drawn by the student and the real portrait become indistinguishable. This is the
main concept of a GAN, as shown in Fig. 11.2.

Many types of GANs have been proposed, such as DCGAN [2], ImprovedGAN [3], PACGAN [4], WGAN [5],
WGAN-GP [6], CycleGAN [7], PGGAN [8], StackGAN [9], video2video [10], BigGAN [11], StyleGAN [12], and so
on. GANs have shown remarkable results in many computer vision tasks such as image generation, text generation,
text-to-image generation, image-to-image translation, and so on, as shown in Fig. 11.3.

11.1.2 Training generative adversarial network

The training method for a GAN is different from that of network models introduced in the previous chapters. In
training a GAN, two models including the generator and discriminator are simultaneously trained by an adversarial
process using separate loss functions, as shown in Fig. 11.4. We introduce the loss functions for training the generator
and discriminator in the following section.

1. Training generator

The purpose of training the generator is to minimize generator loss. The lesser the generator loss, the greater the
ability of the generator to produce fake samples that are close to the real samples. As shown in Fig. 11.5, after inputting
a set of random vectors (z) to the generator, a generated image (x̂) is produced. Then, this resulting image is sent to the
discriminator for identification. If the output of the discriminator is close to 1, the less the generator loss will be. This
means that the discriminator believes that the sample generated by the generator is more realistic or, in other words,
the discriminator is unable to distinguish the real sample and the generated sample (fake sample). During training of
the generator, the weights of the discriminator need to be fixed. The loss function of the generator is formulated as:

G: generator.
D: discriminator.
z: input data of the generator.
N: amount of training data.

Generated image
(image produced
by the student)

Real image

Dataset

Sample

Generator
(Student)

Discriminator
(Teacher)

Generator Loss
(updates based on teacher's estimation)

Discriminator Loss
(updates based on image

generated by student)

Predict
output 0~1

(real or fake)

Sigmoid

Random vector

FIG. 11.2 Diagram of a Generative Adversarial Network (GAN).

256 11. Generative adversarial network

(A) Image generation.

(B) Text generation.

(C) Text to image generation.

(D) Image to image generation.

Generated image

(Generated text)
Good morning.

Have the nice day.
How are you?

Generated image

Generated imageInput image

(Input text)
This flower is

white and yellow
color,

with petals that
are oval shaped

Random vector

Random vector

Generator
(G)

Generator
(G)

Generator
(G)

Generator
(G)

FIG. 11.3 Applications of Generative Adversarial Networks (GANs).

Generated
sample

Real samples

Input

Feedback

GAN

Learn what features
make samples real

Learn to generate samples
that look real

Generator
(generator loss)

Discriminiator
(Discriminator loss)

FIG. 11.4 The training process of a Generative Adversarial Network (GAN).

Generated image(x)
Random vector(z)

Generator
(G)

Discriminator
(D)

Fix Weights

Predict
Output range (0~1)

Sigmoid

Generator Loss

ˆ

FIG. 11.5 Diagram of training the generator.

2. Training discriminator

The purpose of training a discriminator is to minimize discriminator loss. The lesser the discriminator loss, the more
the discriminator is capable of distinguishing between generated samples and real samples. As shown in Fig. 11.6, after
the real image (x) is inputted to the discriminator, the output prediction result is expected to be 1. After the generated
image (x̂) is produced through the generator using a set of random vectors (z) as input, it is passed through the dis-
criminator for identification, and the output is expected to be 0. When the output of the discriminator with the real
sample is closer to 1, and that of the generated sample is closer to 0, the discriminator loss is lower or, in other words,
the discriminator can easily distinguish the real sample from the generated sample. During training of the discrimi-
nator, the weights of the generator need to be fixed. The objective function of the discriminator is described as:

D: discriminator.
x: real image from dataset.
x̂: generated image from the generator.
N: amount of training data.

During training a GAN, after each iteration, the generator produces more realistic samples, while the discriminator
becomes better at telling them apart, as shown in Fig. 11.7. The process reaches equilibriumwhen the discriminator can
no longer distinguish real samples from generated samples.

Real image(x)

Dataset

Sample

Generator
(G)

Fix Weights

Discriminator Loss

Sigmoid

Random vector (z)
Generated image(x)

Discriminator
(D)

Predict
Output range (0~1)

ˆ

FIG. 11.6 Diagram of training the discriminator.

258 11. Generative adversarial network

11.2 Introduction to WGAN-GP

In this section, we analyze the drawbacks of the original GAN [1] and the Wasserstein GAN (WGAN) [5]. Then, we
introduce an improved version of WGAN, the Wasserstein Generative Adversarial Network with Gradient Penalty
(WGAN-GP) [6], which applies a gradient penalty technique for stable training of GANs.

11.2.1 Drawbacks of generative adversarial network

The biggest drawback of the original GAN is the instability of training, which is due to the following:

▪ The discriminator is trained toowell, whichmeans that the discriminator can easily distinguish real data distribution
(ℙdata) from generated data distribution (ℙG), as shown in Fig. 11.8A. ℙG is predicted by the discriminator, and after
passing through the sigmoid activation function, the output value is close to 0. The discriminator predicts ℙdata, and
after sending to the sigmoid activation function, its output value is close to 1. However, as shown in Table 5.1 in
Chapter 5,when theoutputvalueof sigmoid is close to0or 1, its derivative approaches 0.Becauseof theproblemof the
vanishing gradient, it is difficult for the generator to update weights during the training process.

▪ The discriminator is not well trained, which means it cannot correctly judge between the ℙdata and ℙG. This may
cause ℙdata and ℙG to be predicted similarly. As shown in Fig. 11.8B, the ℙdata and ℙG are overlaps, which means the
discriminator cannot distinguishℙdata fromℙG. The incorrect judgment of the discriminator also causes the generator
to update in the wrong direction.

To avoid the problem shown in Fig. 11.8A and B, and achieve awell-trainedmodel like Fig. 11.8C, discriminator loss
needs to be carefullymonitored during training so that there is a chance for the generator to produce the results that are
closer to the real data.

Generated images Generated images

Real images

Generated images

Generator
(G)

100 iterations

Generator
(G)

1000 iterations

Generator
(G)

15800 iterations

Discriminator
(G)

100 iterations

Discriminator
(G)

1000 iterations

Discriminator
(G)

15800 iterations

FIG. 11.7 The output result changes of the generator after the different number of training iterations.

D(x)

D(x)

D(x)

PG : generated data distribution

Pdata : real data distribution

(A) Discriminator is too
well trained

(B) Discriminator is not
well trained

(C) Discriminator is well
trained

FIG. 11.8 Cases of training a discriminator.

25911.2 Introduction to WGAN-GP

The loss function of GAN [1] is:

min
G

max
D

V G,Dð Þ¼x�ℙdata log D xð Þð Þ� �
+x�ℙG log 1�D xð Þð Þ� �

(11.1)

For a fixed generator, the optimal discriminator can be obtained by:

D∗ xð Þ¼ ℙdata xð Þ
ℙdata xð Þ+ℙG xð Þ (11.2)

Therefore, Eq. (11.1) can be rewritten as:

min
G

max
D

V G,Dð Þ¼V G,D∗ð Þ (11.3)

¼x�ℙdata log
ℙdata xð Þ

ℙdata xð Þ+ℙG xð Þ
� �

+x�ℙG log
ℙG xð Þ

ℙdata xð Þ+ℙG xð Þ
� �� �

¼�2log2�KL ℙdatakℙdata +ℙG

2

� �
+KL ℙGkℙdata +ℙG

2

� �

¼�2log2+ 2JS ℙdatakℙGð Þ

ℙdata: real data distribution.
ℙG: generated data distribution.
D: discriminator.
D∗: optimized discriminator.

KL: Kullback–Leibler divergence, also known as relative entropy, which is used to measure the difference between
two probability distributions ℙ and ℚ on the same probability space X, defined as:

KL ℙð ||ℚÞ¼
X

x�X

ℙ xð Þ log ℙ xð Þ
ℚ xð Þ (11.4)

JS: Jensen–Shannon divergence (JS divergence), which is based on Kullback–Leibler divergence to measure the sim-
ilarity between two probabilities ℙ and ℚ, defined as:

JSðℙ| ℚj Þ ¼ 1
2
KL ℙkℙ+ℚ

2

� �
+
1
2
KL ℚkℙ+ℚ

2

� �
(11.5)

In Eq. (11.3), JS divergence is employed, sowhenminimizing the GAN loss functionwith an optimal discriminator, it is
referred to as minimizing the JS divergence. If ℙdata ¼ ℙG, then JS(ℙ | jℚ)¼0, which means the training model achieves
the global minimum with the value of -2log2, and the generator perfectly replicating the data distribution.

11.2.2 Introduction to Wasserstein distance

As mentioned, training a GAN is hard and unstable. To address this problem, the Wasserstein GAN (WGAN) [5]
proposed a new loss function that uses Wasserstein distance, which has a smoother gradient everywhere. The Was-
serstein distance refers to the minimum cost of transporting mass when moving one data distribution to another data
distribution. For the real data distribution (ℙdata) and generated data distribution (ℙG) by the generator, Wasserstein
distance is:

W ℙdata, ℙGð Þ¼ inf
γ�Π ℙdata, ℙGð Þ

 x, yð Þ�γ x�yk k½ � (11.6)

Π(ℙdata,ℙG): a set of all possible transport plan γ, where joint distributions γ(x,y) whose marginals are respectively ℙdata

and ℙG.

kx�yk: distance between x and y
: expected moving cost of the transport plan γ
inf: infimum or the greatest lower bound for any transport plan γ
According to the Kantorovich–Rubinstein duality [13], Eq. (11.6) of Wasserstein distance can be converted into the

following form:

W ℙdata, ℙGð Þ¼ max
D�1�Lipschitz

x�ℙdata D xð Þ½ ��x�ℙG D xð Þ½ �� 	
(11.7)

260 11. Generative adversarial network

ℙdata: real data distribution
ℙG: Generated data distribution
D: the discriminator of the WGAN,
1-Lipschitz: for enforcing a Lipschitz constraint (kD(x1) � D(x2)k � kx1 � x2k) on the discriminator

Supplementary explanation

Unlike in a GAN [1], the discriminator in a WGAN [5] does not employ the sigmoid activation function at the output layer,
and it outputs a scalar score. If the discriminator does not satisfy the 1-Lipschitz function, its output with input samples from
ℙdata can approach +∞ and its output with input samples fromℙG can approach�∞, resulting in crashing the training, as shown
in Fig. 11.9.

To enforce the Lipschitz constraint on the discriminator, the WGAN uses a simple weight-clipping method to
restrict the weights of the discriminator to be within a certain range that is controlled by a clipping threshold c. In
particular, if the weights are greater than c, they are set to c; if the weights are less than�c, they are set to�c; otherwise,
the weights are kept unchanged.

However, using the weight-clipping method to force the Lipschitz constraint on the discriminator encounters sev-
eral problems:

▪ The work in [6] shows that when the WGAN is trained on the Swiss Roll dataset, and the weights of the
discriminator are limited to a certain range [�0.01, 0.01], the weight distribution of the discriminator is not even.
Most of the weights are concentrated in the maximum and minimum values of the clipping range, which makes the
model unable to describe complex problems.

▪ The model performance is very sensitive to the clipping threshold, so it is difficult to tune the clipping threshold c
correctly [6]. If c is tuned slightly larger, the gradient becomes larger every time when passing through the network
layers; this leads to a gradient explosion problem.On the contrary, if c is tuned slightly smaller, the gradient becomes
smaller every time when passing through the network layers; this leads to gradient vanishing after multiple
transmissions.

To solve the problems of the WGAN, the WGAN-GP [6] is proposed, which uses the gradient penalty method
instead of the weight-clipping method to enforce the 1-Lipschitz constraint on the discriminator. In the WGAN-GP,
the gradient penalty technique is applied by directly constraining the gradient norm of the output of the discriminator
with respect to its input. The objective function of the WGAN-GP is:

FIG. 11.9 The output of the discriminator.

26111.2 Introduction to WGAN-GP

ð11:8Þ

ℙdata: real data distribution
ℙG: generated data distribution
ℙpenalty: sampling uniformly along straight lines between pairs of points sampled from ℙdata and ℙG

D: discriminator
λ: penalty coefficient; this parameter is set to 10 as default in the original work [6]

11.2.3 Training WGAN-GP

The training process of the WGAN-GP is the same as that of the original GAN, but both the loss functions of the
generator and discriminator are changed for performance improvement.

▪ The purpose of training the generator is to pursue the least generator loss. The lesser the generator loss is, the greater
is the ability of the generator to produce samples that are close to the real samples. For example, after a set of random
vectors (z) is inputted into the generator, an image (x̂) is produced. Then, this resulting image is sent to the
discriminator for prediction. The greater the output prediction of the discriminator, the lesser the generator loss
becomes. During training of the generator, the weights of the discriminator need to be fixed. The objective function
of the generator is:

ð11:9Þ

D: discriminator
G: generator
z: input sample of the generator
N: amount of training data

▪ The purpose of training the discriminator is to pursue the least discriminator loss. The lesser the discriminator loss is,
the better the discriminator’s ability to distinguish between generated samples and real samples. During training of the
discriminator, the weights of the generator need to be fixed. The loss function of the discriminator is formulated as:

ð11:10Þ

D: discriminator
x: real sample from dataset
x̂: generated sample from the generator
λ: penalty coefficient; usually set to 10
N: amount of training data

▪ Gradient penalty: considering directly constraining the gradient norm of the output of the discriminator with
respect to its input. The formula for gradient penalty is:

262 11. Generative adversarial network

ð11:11Þ

D: discriminator
x�: sampled from the real sample (x) and the generated sample (x̂Þ with t uniformly sampled between 0 and 1
N: amount of training data

11.3 Experiment: Implementation of WGAN-GP

This section introduces how to build theWGAN-GPmodel for image generation. To conduct experiments, we used
the large-scale CelebFaces Attributes (CelebA) dataset [14] to train and test themodel. Fig. 11.10 shows some generated
images of the WGAN-GP after different training iterations.

FIG. 11.10 (Continued)

26311.3 Experiment: Implementation of WGAN-GP

FIG. 11.10, Cont’d

264 11. Generative adversarial network

FIG. 11.10 Generated images of the WGAN-GP after different training iterations.

26511.3 Experiment: Implementation of WGAN-GP

11.3.1 Create project

Since the example program of WGAN-GP in this chapter is more complicated than that of models in Chapters 1–9,
we employ PyCharm IDE as a compiler to write the source codes and train the models. In the following, we outline the
process of creating the project.

1. Create a new project: Click “File”!“New Project,” as shown in Fig. 11.11.

FIG. 11.11 Creating a new project on PyCharm.

266 11. Generative adversarial network

2. Set the directory of the new project, as shown in Fig. 11.12.

FIG. 11.12 Setting a new project directory.

26711.3 Experiment: Implementation of WGAN-GP

3. Configure a Python interpreter: Open “Project Interpreter: Python 3.6,” select the “Existing interpreter,” and set
Python Interpreter, as shown in Fig. 11.13.

FIG. 11.13 Interpreter setting.

268 11. Generative adversarial network

4. Create a project: Click button “Create” to create a new project, as shown in Fig. 11.14.

FIG. 11.14 Create a project.

26911.3 Experiment: Implementation of WGAN-GP

Supplementary explanation

The source code for theWGAN-GP in this chapter can be downloaded at https://github.com/taipeitechmmslab/MMSLAB-
DL/tree/master, as shown in Fig. 11.15.

11.3.2 Introduction to dataset

The CelebA dataset [14] contains 202,599 images of size 218�178�3, divided into three sets, including 162,770
images in the training set, 19,962 images in the verification set, and 19,867 images in the test set. Fig. 11.16 shows some
example images from the CelebA dataset. The dataset can be loaded through TensorFlow datasets as follows.

import tensorflow_datasets as tfds

Load training set

train_data, info = tfds.load("celeb_a", split= tfds.Split.TRAIN, with_info=True)

Load validation set

valid_data = tfds.load("celeb_a", split= tfds.Split.VALIDATION)

Load test set

test_data = tfds.load("celeb_a", split= tfds.Split.TEST)

FIG. 11.15 The source code for WGAN-GP on GitHub.

270 11. Generative adversarial network

https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master
https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master

11.3.3 Building WGAN-GP model

1. Directory and files

The Python files of the WGAN-GP project are shown in Fig. 11.17. The files are as follows.

▪ train.py: file source code for training WGAN-GP model
▪ utils:

• models.py: file source code for WGAN-GP model
• losses.py: file source code for custom loss function
• dataset.py: file source code for data preprocessing

FIG. 11.16 Images from CelebA dataset.

FIG. 11.17 WGAN-GP project.

27111.3 Experiment: Implementation of WGAN-GP

2. Implementing the WGAN-GP model

Fig. 11.18 shows a flowchart of the source code for building the WGAN-GP model.

(a) Creating helper functions
▪ Functions for constructing WGAN-GP model

The network architecture of WGAN-GP is defined in the “models.py” file. Fig. 11.19 shows the architecture of the
generator and discriminator.

FIG. 11.18 Flowchart of the source code for the WGAN-GP model.

FIG. 11.19 The architecture of the WGAN-GP model.

272 11. Generative adversarial network

The functions for creating the generator and discriminator.

inputs = keras.Input(shape=input_shape)

1: Convolution Transpose Block1, 1x1 -> 4x4

x = keras.layers.Conv2DTranspose(512, 4, strides=1,

padding='valid', use_bias=False)(inputs)

x = keras.layers.BatchNormalization()(x)

x = keras.layers.LeakyReLU()(x)

2: Convolution Transpose Block2, 4x4 -> 8x8

x = keras.layers.Conv2DTranspose(256, 4, strides=2,

padding='same', use_bias=False)(x)

x = keras.layers.BatchNormalization()(x)

x = keras.layers.LeakyReLU()(x)

3: Convolution Transpose Block3, 8x8 -> 16x16

x = keras.layers.Conv2DTranspose(128, 4, strides=2,

padding='same', use_bias=False)(x)

x = keras.layers.BatchNormalization()(x)

x = keras.layers.LeakyReLU()(x)

4: Convolution Transpose Block4, 16x16 -> 32x32

x = keras.layers.Conv2DTranspose(64, 4, strides=2,

padding='same', use_bias=False)(x)

x = keras.layers.BatchNormalization()(x)

x = keras.layers.LeakyReLU()(x)

5: Convolution Transpose + Tanh, 32x32 -> 64x64

x = keras.layers.Conv2DTranspose(3, 4, strides=2, padding='same', use_bias=False)(x)

outputs = keras.layers.Activation('tanh')(x)

return keras.Model(inputs=inputs, outputs=outputs, name=name)

def Discriminator(input_shape=(64, 64, 3), name='Discriminator'):

inputs = keras.Input(shape=input_shape)

1: Convolution + LeakyReLU, 64x64 -> 32x32

x = keras.layers.Conv2D(64, 4, strides=2, padding='same')(inputs)

x = keras.layers.LeakyReLU()(x)

2: Convolution Block1, 32x32 -> 16x16

x = keras.layers.Conv2D(128, 4, strides=2, padding='same', use_bias=False)(x)

x = keras.layers.BatchNormalization()(x)

x = keras.layers.LeakyReLU()(x)

3: Convolution Block2, 16x16 -> 8x8

x = keras.layers.Conv2D(256, 4, strides=2, padding='same', use_bias=False)(x)

x = keras.layers.BatchNormalization()(x)

x = keras.layers.LeakyReLU()(x)

def Generator(input_shape=(1, 1, 128), name='Generator'):

4: Convolution Block3, 8x8 -> 4x4

x = keras.layers.Conv2D(512, 4, strides=2, padding='same', use_bias=False)(x)

x = keras.layers.BatchNormalization()(x)

x = keras.layers.LeakyReLU()(x)

5: Convolution, 4x4 -> 1x1

outputs = keras.layers.Conv2D(1, 4, strides=1, padding='valid')(x)

return keras.Model(inputs=inputs, outputs=outputs, name=name)

27311.3 Experiment: Implementation of WGAN-GP

▪ WGAN-GP loss function
• Generator loss: The purpose of this loss function is to train the generator to produce images that are

indistinguishable from the real images when using the discriminator.

GeneratorLoss¼� 1
N

XN

i¼1

D G zi

 �
 �

D: discriminator
G: generator
z: input sample of the generator
N: amount of training data

The generator loss function is described in the “losses.py” file.

def generator_loss(fake_logit):

g_loss = - tf.reduce_mean(fake_logit)

return g_loss

• Discriminator loss: Reducing the real_loss value allows the discriminator easily predict the real image, reducing the
fake_loss value allows the discriminator to easily identify the fake image, and the gradient penalty allows the
discriminator to satisfy the 1-Lipschitz constraint. The discriminator loss function is described in the “losses.py” file.

D: discriminator
x: real image from dataset
x̂: generated image from the generator
λ: penalty coefficient; usually set to 10
N: amount of training data

The functions for real_loss and fake_loss

def discriminator_loss(real_logit, fake_logit):

real_loss = - tf.reduce_mean(real_logit)

fake_loss = tf.reduce_mean(fake_logit)

return real_loss, fake_loss

• Gradient penalty

GradientPenalty¼ 1
N

XN

i¼1

rx
�D x�

�
���
���
2
�1

�
2

x�¼ tx+ 1� tð Þx̂

D: discriminator
x�: sampled from the real image (x) and the generated image (x̂Þ with t uniformly sampled between 0 and 1
N: amount of training data

274 11. Generative adversarial network

The function for gradient penalty

def gradient_penalty(discriminator, real_img, fake_img):

def _interpolate(a, b):

shape = [tf.shape(a)[0]] + [1] * (a.shape.ndims - 1)

alpha = tf.random.uniform(shape=shape, minval=0., maxval=1.)

inter = (alpha * a) + ((1 - alpha) * b)

inter.set_shape(a.shape)

return inter

Perform interpolation the generated image and the real image to obtain

x_img = _interpolate(real_img, fake_img)

with tf.GradientTape() as tape:

ensure that x_img can be tracked by tape

tape.watch(x_img)

Discriminator predict image

pred_logit = discriminator(x_img)

Compute gradient

grad = tape.gradient(pred_logit, x_img)

Calculate the norm of the gradient

norm = tf.norm(tf.reshape(grad, [tf.shape(grad)[0], -1]), axis=1)

L2 normalization

gp_loss = tf.reduce_mean((norm - 1.)**2)

return gp_loss

• Data prepossessing

Data prepossessing: using input image size of 64�64, and each pixel of the input image is normalized to scale the
value to the range [�1,+1]. The code is written in the “dataset.py” file.

The function of data preprosessing

def parse_fn(dataset, input_size=(64, 64)):

x = tf.cast(dataset['image'], tf.float32)

crop_size = 108

Image size (218, 178, 3)

h, w, _ = x.shape

Crop images

x = tf.image.crop_to_bounding_box(x, (h-crop_size)//2, (w-crop_size)//2,

crop_size, crop_size)

Resize the image with size of (108, 108, 3) to (64, 64, 3)

x = tf.image.resize(x, input_size)

Normalize the image to -1~+1

Steps: [0~255]/127.5 [0~2], [0~2]-1 [-1~1]

x = x / 127.5 - 1

return x

27511.3 Experiment: Implementation of WGAN-GP

(b) Building and training the WGAN-GP model

For this part of training the WGAN-GP model, the source code is written in the “train.py” file.

▪ Import necessary packages

import numpy as np

import tensorflow as tf

import tensorflow_datasets as tfds

from functools import partial

from utils.dataset import parse_fn

from utils.losses import generator_loss, discriminator_loss, gradient_penalty

from utils.models import Generator, Discriminator

▪ Settings parameters for training

Batch size of 64

batch_size = 64

learning rate is set to 1

lr = 0.0001

the input size of Generator

z_dim = 128

Discriminator is trained 5 times, and Generator is trained 1 time

n_dis = 5

Set the penalty coefficient, usually set to 10

gradient_penalty_weight = 10.0

▪ Loading data

#combining data

combine_split = tfds.Split.TRAIN + tfds.Split.VALIDATION + tfds.Split.TEST

Loading data

train_data, info = tfds.load('celeb_a', split=combine_split, with_info=True)

Auto adjustment mode

AUTOTUNE = tf.data.experimental.AUTOTUNE

Shuffle data

train_data = train_data.shuffle(1000)

Training data

train_data = train_data.map(parse_fn, num_parallel_calls=AUTOTUNE)

Set the batch size to 64,

train_data = train_data.batch(batch_size, drop_remainder=True)

Turn on prefetch mode

train_data = train_data.prefetch(buffer_size=AUTOTUNE)

276 11. Generative adversarial network

▪ Create WGAN-GP model

#Generator

generator = Generator((1, 1, z_dim))

#Discriminator

discriminator = Discriminator((64, 64, 3))

▪ Set the optimizers and loss functions
• Setting optimizers

g_optimizer = tf.keras.optimizers.Adam(lr, beta_1=0.5, beta_2=0.9)

d_optimizer = tf.keras.optimizers.Adam(lr, beta_1=0.5, beta_2=0.9)

• Setting function for training the generator

@tf.function

def train_generator():

with tf.GradientTape() as tape:

Generate a 128-dimensional vector

random_vector = tf.random.normal(shape=(batch_size, 1, 1, z_dim))

Generate fake image

fake_img = generator(random_vector, training=True)

Use Discriminator to evaluate

fake_logit = discriminator(fake_img, training=True)

Calculate Generator Loss

g_loss = generator_loss(fake_logit)

Compute gradient

gradients = tape.gradient(g_loss, generator.trainable_variables)

Update Generator weights

g_optimizer.apply_gradients(zip(gradients, generator.trainable_variables))

return g_loss

27711.3 Experiment: Implementation of WGAN-GP

• Setting function for training the discriminator

@tf.function

def train_discriminator(real_img):

with tf.GradientTape() as t:

Generate a 128-dimensional vector

random_vector = tf.random.normal(shape=(batch_size, 1, 1, z_dim))

Generate fake image

fake_img = generator(random_vector, training=True)

Use Discriminator to evaluate real image

real_logit = discriminator(real_img, training=True)

Use Discriminator to evaluate fake image

fake_logit = discriminator(fake_img, training=True)

Calculate the loss of Discriminator

real_loss, fake_loss = discriminator_loss(real_logit, fake_logit)

Calculate Gradient Penalty

gp_loss = gradient_penalty(partial(discriminator,training=True),

real_img,fake_img)

Calculate Discriminator Loss

d_loss = (real_loss + fake_loss) + gp_loss * gradient_penalty_weight

Compute gradient

D_grad = t.gradient(d_loss, discriminator.trainable_variables)

Update Discriminator weight

d_optimizer.apply_gradients(zip(D_grad, discriminator.trainable_variables))

return real_loss + fake_loss, gp_loss

• Function for displaying image:

def combine_images(images, col=10, row=10):

to make the image display normally, the image is scaled from -1~+1 to 0~1

images = (images + 1) / 2

Convert TensorFlow format to Numpy format

images = images.numpy()

Get the shape of the generated image, shape=(batch size, height, width, channel)

b, h, w, _ = images.shape

Create a 10x10 array to store 100 images

images_combine = np.zeros(shape=(h*col, w*row, 3))

Put 100 pictures into a 10x10 array

for y in range(col):

for x in range(row):

images_combine[y*h:(y+1)*h, x*w:(x+1)*w] = images[x+y*row]

return images_combine

278 11. Generative adversarial network

• Training WGAN-GP:

def train_wgan():

Create a directory to save the Generator model

log_dirs = 'logs_wgan'

model_dir = log_dirs + '/models/'

os.makedirs(model_dir, exist_ok=True)

Create TensorBoard log

summary_writer = tf.summary.create_file_writer(log_dirs)

create a set of random vector

sample_random_vector = tf.random.normal((100, 1, 1, z_dim))

A total of 25 Epochs

for epoch in range(25):

Read training data (real image)

for step, real_img in enumerate(train_data):

Training Discriminator

d_loss, gp = train_discriminator(real_img)

Write Discriminator loss value to TensorBoard log

with summary_writer.as_default():

tf.summary.scalar('discriminator_loss', d_loss, d_optimizer.iterations)

tf.summary.scalar('gradient_penalty', gp, d_optimizer.iterations)

5 times of training Discriminator, 1 time of training Generator.

if d_optimizer.iterations.numpy() % n_dis == 0:

Training Generator

g_loss = train_generator()

Save the generator loss to TensorBoard logs

with summary_writer.as_default():

tf.summary.scalar('generator_loss', g_loss, g_optimizer.iterations)

print('G Loss: {:.2f}\tD loss: {:.2f}\tGP Loss {:.2f}'.format(g_loss,

d_loss, gp))

if g_optimizer.iterations.numpy() % 100 == 0:

Generate 100 images

x_fake = generator(sample_random_vector, training=False)

Put generated 100 images into a 10x10 array for displaying

save_img = combine_images(x_fake)

write 100 generated images to TensorBoard logs

with summary_writer.as_default():

tf.summary.image(dataset, [save_img],

step=g_optimizer.iterations)

Each Epoch save the generator model weights

if epoch != 0:

generator.save_weights(model_dir+"generator-epochs-{}.h5".format(epoch))

27911.3 Experiment: Implementation of WGAN-GP

(c) Visualization results

The changes of the output image results of the generator can be observed through TensorBoard, as shown in Fig.
11.20. Figs. 11.21 and 11.22 display the changes of generator loss and discriminator loss, and gradient penalty,
respectively.

Open TensorBoard through the command line:

tensorboard --logdir logs-wgan

FIG. 11.20 Generated images of the generator on TensorBoard.

FIG. 11.21 Generator loss and discriminator loss.

280 11. Generative adversarial network

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, Adv. Neural
Inf. Proces. Syst. (2014) 2672–2680.

[2] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks,
in: International Conference on Learning Representations, 2016, pp. 1–16.

[3] T. Salimans, I. Goodfellow,W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved techniques for training gans, Adv. Neural Inf. Proces. Syst.
(2016) 2226–2234.

[4] Z. Lin, A. Khetan, G. Fanti, S. Oh, PacGAN: the power of two samples in generative adversarial networks, Adv. Neural Inf. Proces. Syst. (2018)
1503–1512.

[5] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN, in: Proc. 34th International Conference on Machine Learning, 2017, pp. 214–223.
[6] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein GANS, Adv. Neural Inf. Proces. Syst. (2017)

5767–5777.
[7] J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: International Con-

ference on Computer Vision, 2017, pp. 2223–2232.
[8] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of GANs for improved quality, stability, and variation, in: International Conference

on Learning Representations, 2018, pp. 1–26.
[9] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, D. Metaxas, Stackgan: text to photo-realistic image synthesis with stacked generative

adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5907–5915.
[10] T.-C.Wang,M.-Y. Liu, J.-Y. Zhu,G. Liu, A. Tao, J. Kautz, B. Catanzaro, Video-to-video synthesis, in: Advances inNeural Information Processing

Systems, 2018.
[11] A. Brock, J. Donahue, K. Simonyan, Large scale GAN training for high fidelity natural image synthesis, in: 7th International Conference on

Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019 [Online]. Available: https://openreview.net/forum?
id¼B1xsqj09Fm.

[12] T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4401–4410.

[13] C. Villani, Optimal Transport: Old and New, vol. 338, Springer Science & Business Media, 2008.
[14] Z. Liu, P. Luo, X. Wang, X. Tang, Large-scale celebfaces attributes (celeba) dataset. Retrieved August 15, 2018.

FIG. 11.22 Gradient penalty.

281References

http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0055
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00011-2/rf0075

C H A P T E R

12

Object detection

OUTLINE
• Introduction to computer vision

• Introduction to state-of-the-art CNN-based object
detection methods

• Implementing the YOLO-v3 object detection model

12.1 Computer vision

Computer vision is an interdisciplinary scientific field that focuses on addressing how computers can understand
the contents of images or videos for automating tasks like the human visual system. Computer vision has a wide range
of applications such as video surveillance [1–3], face recognition [4, 5], face annotation [6], image retrieval [7, 8], bio-
metrics [9, 10], traffic monitoring [11, 12], visibility restoration [13–19], object detection [20–33], and so on. The four
main tasks of computer vision are:
▪ Image classification: To identify the category of the image, as shown in Fig. 12.1A. The common network models

used for image classification include GoogLeNet [34], ResNet [35], and so on.
▪ Object detection: To find out the category of objects and their location in a given image, as shown in Fig. 12.1B. The

common network models used for object detection include Faster R-CNN [23], YOLO-v3 [30], and so on.
▪ Semantic segmentation: To assign a label to every pixel in the image, as shown in Fig. 12.1C. The common network

models used for semantic segmentation include FCN [36], DeepLab-v3 [37], and so on.
▪ Instance segmentation: To identify the boundary of each object at the detailed pixel level in the image, as shown in

Fig. 12.1D. The common network models used for instance segmentation include FCIS [38], Mask R-CNN [29], and
so on.

Because object detection is widely applied in various areas of computer vision, this chapter focuses on introducing
object detection methods, especially state-of-the-art CNN-based models.

12.2 Introduction to object detection

Object detection is one of the most important tasks in computer vision. It not only classifies the category of objects
but also determines the location of them on the image. As shown in Fig. 12.2, the network takes an image as input, and
then predicts multiple classes and bounding boxes for this image input. Finally, it frames and marks the label for each
predicted object on the output image.

283Principles and Labs for Deep Learning

https://doi.org/10.1016/B978-0-323-90198-7.00009-4

Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-90198-7.00009-4

Supplementary explanation

There are many bounding box formats, such as (x1, y1, x2, y2) shown in Fig. 12.2, where (x1, y1) and (x2, y2) are the top-left
and bottom-right coordinates of the object on the image, respectively. Another common format like (x, y, w, h), where (x, y) is the
top-left coordinate, w and h are the width and height of the bounding box, respectively. Each object detection method can
employ different bounding box formats for object location prediction.

FIG. 12.1 Four main tasks in computer vision.

FIG. 12.2 Block diagram of object detection.

284 12. Object detection

Object detection based on convolutional neural network (CNN) has received considerable attention and achieved
impressive performance in recent years. It can be divided into two groups [39]: (1) region proposal-based approach and
(2) regression/classification-based approach.

▪ Region proposal-based approach: Following this approach, the object detection methods perform prediction in two
steps. In the first step, the regions of interest (RoIs) of objects in a given image are created by using region proposal
methods such as selective search [40]. In the second step, the RoIs are fed into a CNN for classifying objects and
refining the bounding boxes. Although the running time of the region proposal-based approaches might be
relatively slow because of predicting objects in two separate stages, they usually obtain high performance in
detecting objects. The representative networkmodels of the first group include R-CNN [20], Fast R-CNN [22], Faster
R-CNN [23], and so on.

▪ Regression/classification-based approach: The object detection methods belonging to this group use only one step
for predicting the object, mapping directly from the whole input image to bounding boxes and class probabilities.
Thesemethods can achieve real-time speed, making them applicable to real-world systems; however, the accuracy is
not great. Many methods have been proposed to improve detection performance such as SSD [25], YOLO-v2 [26],
and YOLO-v3 [30], and so on.

12.3 Object detection methods

Numerous object detection methods have been introduced over the past decades. In this section, we present some
approaches based on deep CNNs. Fig. 12.3 shows the historical progress of object detection methods.

12.3.1 R-CNN

Girshick et al. [20] proposed Regions with CNN features (R-CNN) in 2014, which is known as the first CNN-based
detection model. A region proposal-based approach, R-CNN accomplishes object detection in two stages, as shown in
Fig. 12.4. In the first stage, the selective search method [21] is employed to generate about 2000 region proposals that
may contain objects from the input image. In the second stage, the region proposals are warped into a fixed size, and
then they are individually passed through a CNN for feature extraction. Finally, the extracted features of each region
are sent to fully connected layers to classify the object and refine the boundary box. R-CNN employs a class-specific
linear support vector machine (SVM) for object classification. If the model needs to predict n classes, n SVM classifiers
are used.

FIG. 12.3 Historical progress of CNN-based object detection methods.

28512.3 Object detection methods

Although R-CNN is superior to previous methods [41, 42] in terms of performance, this method still consumes a
huge amount of time in training and inference because of classifying individually a large number of region proposals
per image.

12.3.2 Fast R-CNN

Girshick et al. [22] proposed Fast Regionswith CNN features (Fast R-CNN) in 2015, which is an improved version of
R-CNN, as shown in Fig. 12.5.

Based on R-CNN, Fast R-CNN incorporates three major changes to improve object detection performance.

▪ Using a CNN to extract features from the entire image instead of each image patch from scratch, which helps to
improve the processing time significantly.

▪ Using a selective search method to generate RoIs from the input image, which are combined with the corresponding
feature maps and sent to an ROI pooling layer to generate fixed-length feature vectors, as shown in Fig. 12.6. These
resulting feature vectors are fed into the fully connected layers for object classification and localization.

▪ Replacing SVM with softmax function for classification.

In Fast R-CNN, RoI pooling is applied to warp the various sizes of ROIs into a fixed size. For example, transforming
an 8�8 feature map into a fixed-length feature with a size of 2�2, as shown in Fig. 12.7.

Input image

Selective search

Region
proposals

Warped region 1

Warped region 2

Warped region n-1

CNN

Extracted
Features

Bounding Box
Regression

SVM
ClassificationF

ul
ly

 c
on

ne
ct

ed
 la

ye
r

Warped region n

The first stage The second stage

FIG. 12.4 Schematic diagram of R-CNN.

FIG. 12.5 The architecture of Fast R-CNN.

286 12. Object detection

FIG. 12.6 RoI pooling in Fast R-CNN.

FIG. 12.7 RoI Pooling: (A) an 8�8 feature map, (B) combining the RoI (red) with the feature map, (C) splitting RoI into the 2�2 target where the
size of four sections can be equal or different, (D) taking a max over each section, resulting in a fixed-length feature map with a size of 2�2.

28712.3 Object detection methods

12.3.3 Faster R-CNN

Ren, et al. [23] proposed Faster Regionswith CNN features (Faster R-CNN) in 2015, which is an improved version of
Fast R-CNN. Faster R-CNN adopts similar design as the Fast R-CNN except it replaces the selective search method
with a region proposal network (RPN) for generating region proposals on the feature map, as shown in Fig. 12.8.

Faster R-CNN outperforms R-CNN and fast R-CNN in terms of both speed and accuracy. This method has two
major changes compared to the previous version:

▪ Region Proposal Network (RPN): Faster R-CNN employed a CNN, namely ZF [43] or VGG [44] to produce region
proposals instead of the selective search method used in R-CNN and Fast R-CNN. As shown in Fig. 12.9, at each
sliding-window location, RPN simultaneously predicts multiple region proposals, and it outputs 4k coordinates,
and 2k scores that estimate probalility of object or not object for each proposal, where k is the number of anchors.

FIG. 12.8 Flowchart of Faster R-CNN.

FIG. 12.9 Region Proposal Network (RPN).

288 12. Object detection

▪ Anchor: Anchor is a reference box, which is related to a scale and aspect ratio. Faster R-CNN used 9 anchor boxes
(3 scales and 3 aspect ratios) at each sliding position. Those anchors are pre-selected to cover the various size of real-
life objects.

Supplementary explanation

RPN does not output bounding box (x, y, w, h) directly; it employs the parameterizations of the four coordinates as follows:

tx ¼ x�xa
wa

, ty ¼ y�ya
ha

, tw ¼ log
w
wa

� �
, th ¼ log

h
ha

� �

t∗x ¼
x∗�xa
wa

, t∗y ¼
y∗�ya
ha

, t∗w ¼ log
w∗

wa

� �
, t∗h ¼ log

h∗

ha

� �

where x and y represent two coordinates of the predicted box center, w and h represent its width and height, respectively. (xa,
ya, wa, ha) are for the Anchors box, and (x∗, y∗, w∗, h∗) are for the ground-truth box.

12.3.4 YOLO-v1

Redmon et al. [24] proposed You Only Look Once (YOLO or YOLO-v1) in 2016. It is known as the first regression/
classification-based object detection method, as shown in Fig. 12.10. Different from the region proposal-based
approach, YOLOdirectly inferences object classification and object localization from the entire input image in one eval-
uation through a single CNN. This strategy helps YOLO achieve a running time of 45 frames per second, making it a
true real-time detector.

For prediction, as shown in Fig. 12.11, the YOLO model divides the input image into an S�S grid. If a grid cell
contains the center of an object, it is accountable for detecting that object. There are B bounding boxes, and confidence
scores of those boxes are predicted by each grid cell. Each predicted bounding box contains five predictions including
(x, y, w, h) and confidence score, where (x, y) represent the coordinates of the center of the box relative to the bounds of
the grid cell, (w, h) represent the width and height which are predicted relative to the whole image, and confidence
score reflects whether there is an object. The greater the box confidence score is, the greater the probability that the
bounding box predicted by the grid cell contains an object. The class probabilities are based on the number of predicted
classes. If there are 20 classes, 20 object class probabilities are output.

The output size of YOLO model is calculated as follows:

Output size¼S�S � (B�5+C).
S: width and height of the grid.
B: number of bounding boxes predicted by each grid cell.
5: each predicted bounding box in the grid cell contains five predictions: (x, y, w, h), and box confidence score.
C: number of conditional class probabilities; if there are 20 categories, 20 class probabilities are output.

112

112

448

448

3 192

56

56

256

28

28

512

14

14

1024

7

7

1024

7

7

7

7
1024 4096 30

Conv. Layer Conv. Layer Conv. Layer Conv. Layer Conv. Layer Conv. Layer Fc. Layer

2 Bounding Boxes

(x, y, w, h, obj score) class probability

20 classes

Fc. Layer

Input

FIG. 12.10 The architecture of YOLO.

28912.3 Object detection methods

For example, the settings of YOLO on the PASCAL VOC dataset are S¼7, B¼2, and C¼20. The output size of the
YOLO model is a 7�7� (2�5+20)¼7�7�30 tensor.

Supplementary explanation

YOLO predicts two bounding boxes on each grid cell, so a total of 7�7�2¼98 object boxes are predicted. However,
98 bounding boxes are not the final prediction. To keep the best bounding boxes for the final answer, YOLO removes redundant
bounding boxes by using the Non-Maximum Suppression (NMS) method, as shown in Fig. 12.12.

The NMS method is as follows:

1. If the confidence score is too small, it means that there is no object in the predicted bounding box, so first remove the
bounding boxes with a confidence score less than the score threshold.

2. Sort the remaining bounding boxes according to the confidence score from biggest to smallest and put them into a “list object
boxes,” denoted as L.

3. Take out a bounding box with the highest confidence score from L and put it in a “list of filtered object boxes,” denoted as F.
4. Calculate separately the intersection over union (IoU) of the bounding box just put in F with all bounding boxes in L. If the

calculated IoU value is greater than the IoU threshold, remove that bounding box from L.
5. Repeat steps 3–4 until there is no bounding box in L.

Input Image

YOLO-v1

Each grid cell predict 2
bounding boxes and N classes

S x S grid

Class probabilities

Final output

Bounding boxes

FIG. 12.11 The prediction process of YOLO.

FIG. 12.12 Selecting the best bounding box using Non-Maximum Suppression (NMS).

290 12. Object detection

12.3.5 SSD

Wei Liu et al. [25] proposed Single Shot MultiBox Detector (SSD) in 2016. It is a real-time CNN-based object detec-
tion model. The running time prediction of SSD is similar to that of YOLO, but the accuracy is much greater because of
differences in architecture design, as shown in Fig. 12.13.

To produce detection, SSD has two main features.

▪ SSD uses feature maps from six different levels of convolutional layers to make multiscale predictions. In an SSD
model, the shallower layers are used for detecting small objects, while the deeper layers are responsible for big object
detection. The concept of the prediction in the feature maps outputted by six convolutional layers is similar to that of
YOLO. Each grid cell in the feature map predicts multiple bounding boxes, and 8732 bounding boxes per class were
predicted by SSD. The number of bounding boxes predicted by the six convolutional layers is calculated as:

Conv4_3

Conv7

Conv8_2

Conv9_2

Conv10_2

Conv11_3

The size of feature maps for prediction

The number of Bounding boxes predicted by each grid in the feature maps

Total bounding box: 5776+2166+600+150+36+4¼8732

▪ For each predicted bounding box, N class scores and four offsets relative to the default box shape are computed. The
default boxes were pre-selected manually to cover a wide range of object sizes in real life. To cope with object
prediction at different scales, SSD uses different layers with different sets of default boxes, inwhich each featuremap
layer shares the same set of default boxes centered at the corresponding grid.

12.3.6 YOLO-v2

Redmon et al. [26] proposed YOLO-v2, also known as YOLO9000, in 2017. It is an improved version of YOLO that is
faster and stronger than both YOLO and SSD. YOLO-v2 incorporates the following seven important changes.

1. Batch normalization: Batch normalization is added in convolutional layers, which helps to avoid overfitting
problems during the training process and improves the performance about 2% mean Average Precision (mAP).

Input Image
(300 x 300)

V
G

G
 1

6

C
on

v4
_3

(3
8

x
38

 x
 5

12
)

C
on

v
6

(F
C

6)
(1

9
x

19
 x

 1
02

4)

C
on

v7
 (

F
C

7)
(1

9
x

19
 x

 1
02

4)

C
on

v8
_2

(1
0

x
10

 x
 5

12
)

C
on

v9
_2

(5
 x

 5
 x

 2
56

)

C
on

v1
0_

2
(3

 x
 3

 x
 2

56
)

C
on

v
11

_2

(1
 x

 1
 x

 2
56

) D
et

ec
tio

n
: 8

73
2

pe
r

C
la

ss

N
on

-M
ax

im
um

 S
up

pr
es

si
on

74.3 mAP
59 FPS

FIG. 12.13 The architecture of Single Shot MultiBox Detector (SSD).

29112.3 Object detection methods

2. High-resolution classifier: In YOLO-v2, the classifier is first trained with an input resolution of 224 x 224, then
returns with a resolution of 480 x 480 utilizing much fewer epochs. This helps to increase the accuracy of the model
by 4% mAP.

3. Convolutional with anchor boxes: YOLO-v2 replaces the prediction of arbitrary bounding boxes used in YOLO
with predicting offsets of each given anchor box. Although the accuracy is reduced a little bit when using anchor
boxes, it increases the chances for the detection of all ground-truth objects.

4. Dimension clusters: To find top-K boundary boxes that are best suitable for the training dataset, instead ofmanually
selecting anchors, the K-means clusteringmethod is employed to locate the centers of the top-K clusters. For the best
design, five anchors were selected for training the YOLO-v2 model.

5. Direct location prediction: Because YOLO does not apply a constraint on location prediction, this makes the
network unstable in training, resulting in the predicted bounding boxes being far from the original grid location.
Using the sigmoid function to constrain the output prediction of the model to fall in the range between 0 and 1
makes YOLO-v2 more stable in the training process. In the output feature map, YOLO-v2 predicts five bounding
boxes at each grid cell; each bounding box has five coordinates (tx, ty, tw, th, and t0). The corresponding prediction is
defined as:

bx ¼ σ txð Þ+ cx

by ¼ σ ty
� �

+ cy

bw ¼ pwetw

bh ¼ pheth

Pr(object)∗IOU(predicted box, ground truth box) ¼ σ(t0)
bx, by, bw, bh: coordinates of the center, width, and height of the predicted box, respectively
cx, cy: top left corner of the image
σ: sigmoid activation function
pw, ph: width and height of the anchor box, respectively
σ(t0): confidence score of the predicted box

6. Fine-grained features: Unlike SSD, which was run at various feature maps to obtain a range of resolutions, YOLO-
v2 concatenates the higher resolution features with the low resolution features for predicting detections. To
accomplish the objective, a passthrough layer is employed,which takes a 26� 26� 512 featuremap as the input and
outputs a 13� 13� 2048 feature map. Then, the generated features map is concatenated with the original 13� 13�
1024 featuremap to form a 13� 13� 3072 feature map. Finally, convolution filters are applied on the new 13� 13�
3072 layer to make predictions, as shown in Fig. 12.14. Following this method, the accuracy of the model improved
by about 1% mAP.

Passthrough layer

(13 x 13 x 2048)

C
on

vo
lu

tio
n

(1
 x

 1
)

Fe
a

tu
re

 m
ap

(2
6

x
26

 x
 5

12
)

M
ax

 p
oo

lin
g

(2
 x

 2
),

 s
tr

id
e=

2

C
on

vo
lu

tio
n

(3
 x

 3
)

C
on

vo
lu

tio
n

(3
 x

 3
)

C
on

ca
te

na
te

(13 x 13 x 1024)

R
eo

rg
an

iz
a

tio
n

FIG. 12.14 Using fine-grained features of YOLO-v2.

292 12. Object detection

Supplementary explanation

Reorganization layer: Unlike max pooling layer, which reduces the information of the input, the reorganization layer in
Fig. 12.14 retains the original information of the input after the operation, as shown in Fig. 12.15.

7. Multi-scale training: During training of the YOLO-v2model, the size of the input image is changed every 10 batches.
By taking multiples of 32 such as 320, 352, 384, 416, 448, 480, 512, 544, 576, and 608, YOLO-v2 uses the minimum
input image size of 320 x 320 andmaximum size of 608 x 608. This training strategy helps YOLO-v2 to overcome the
problems of detecting objects at multiple scales while still operating at real-time speeds.

12.3.7 Feature pyramid networks

Lin et al. [27] introduced Feature Pyramid Networks (FPNs) in 2017. FPNs adopt the feature pyramid architecture
with lateral connections for detecting object at different scales, especially small objects. Using the CNN for feature
extraction, the deeper layers have the characteristics of low resolution and rich semantic features, while the shallow
layers contain features with high resolution and weak semantic information. This leads to the poor performance of
object detectors that use the pyramidal feature hierarchy of CNN for detecting objects at multiple scales. To make
a feature pyramid that contains rich semantics at all levels, in FPN, the higher-resolution layers are constructed from
a semantic-rich layer through a top-downpathway. Because the reconstructed layers have strong semantic features but
lack the location information of the objects, lateral connections between these layers and corresponding feature maps
are added for better prediction of object location, as shown in Fig. 12.16.

There are four main network architectures to improve the performance of object detection [27]: pyramid of image,
single feature map, pyramid of feature maps, and feature pyramid network, as shown in Fig. 12.17. The following
summarizes the main characteristics of each architecture.

▪ Fig. 12.17A shows the network architecture of the pyramid of image network. In this network architecture, features
for prediction are independently computed on each of the image scales. Although this method is effective, the
running time is very slow.

▪ Fig. 12.17B shows the network architecture of a single feature map, which uses a single-scale feature for prediction.
This approach can achieve real-time prediction speed, but the accuracy is not satisfied because of struggling with
small objects. YOLO [24] is a typical representative of this architecture.

▪ Fig. 12.17C shows the network architecture of pyramid of feature maps or pyramidal feature hierarchy. This
architecture is used by SSD [25], which employs feature maps at different scales to make predictions. The advantage
of this method is that no additional calculations are required. However, using shallower layers that lack semantic
information to predict small objects is the reason for poor performance.

▪ Fig. 12.17D shows the architecture of an FPN. Similar to the pyramidal feature hierarchy in Fig. 12.17C, FPN [27] also
uses feature maps from lower pyramid levels for small object prediction and feature maps from higher pyramid
levels for big object prediction. In FPN, high-level semantic information is spread at all scales of feature maps, and
therefore it is more effective than the networks in Fig. 12.17C, whereas the speed is similar.

FIG. 12.15 Operation of the reorganization layer.

29312.3 Object detection methods

12.3.8 RetinaNet

Lin et al. [28] proposed Focal Loss for Dense Object Detection (RetinaNet) in 2017. For improving object detection
performance, RetinaNet employs ResNet [35] as a backbone, adopts FPN architecture [27] to build amulti-scale feature
pyramid for predict object at different scales, and adds two subnets, namely, the classification subnet and box regres-
sion subnet, to each pyramid level for object classification and localization, respectively, as shown in Fig. 12.18. The
classification subnet and box regression subnet have the same architecture, including four 3 x 3 convolutional layers
with ReLU activation, each with 256 filters, followed by a 3 x 3 convolutional layer for prediction. The difference
between the two subnets is that the last layer of the classification subnet uses A * K filters, followed by sigmoid

FIG. 12.17 Four commonly used network architectures for object detection.

FIG. 12.16 The architecture of a Feature Pyramid Network (FPN).

294 12. Object detection

activation function, while that of the box regression subnet utilizes 4 * A filters. A and K represent the number of
anchors and object classes, respectively. Noteworthy, focal loss is proposed for training object classification in Retina-
Net to solve the class imbalance problem and increase the accuracy of object detection.

Focal loss is an improved version of cross entropy loss (CE ¼ �log(pt)), which is defined as:

FL ptð Þ ¼�αt 1�ptð Þγ log ptð Þ,
where αt is a weighting factor (αt� [0,1]), γ is a tunable focusing parameter (γ�0), and pt is defined as:

pt ¼ p if y¼ 1
1�p otherwise,

�

here, y is the ground-truth class (y� {�1}), p is the predicted probability for the class with y¼1 of the model.
If γ¼0, FL(pt) is equal to CE, if setting γ>0, the network can focus more on misclassified examples instead of well-

classified examples during training process. For example:

▪ The network model outputs a high probability value, such as pt ¼ 0.8, which means the prediction result is close to
the ground truth (well-classified example).

When γ¼0，FL¼0.32192
When γ¼2，FL¼0.01287

▪ The network model outputs a small probability value, such as pt ¼ 0.2, which means the prediction result is very
different from the ground truth (misclassified example).

When γ¼0，FL¼2.32192
When γ¼2，FL¼1.48603
As shown, if γ > 0, the loss for well-classified examples is dow-weighted (γ¼2, pt¼0.8, FL¼0.01287), and the

model focuses on misclassified example (γ¼2, pt¼0.2, FL¼1.48603). In the experiments, RetinaNet works best with
γ¼2.

12.3.9 YOLO-v3

Redmon proposed YOLO-v3 [30], which is an optimized version of YOLO-v2, in 2018. YOLO-v3 obtains impressive
detection performance through three main improvements: (1) a change of backbone network for better feature extrac-
tion, (2) increasing the number of anchor boxes for more accurate predictions, and (3) applying the concept of FPN for
multiscale object detection, as shown in Fig. 12.19.

1. Darknet-53 backbone: The first step of all object detection methods is to train a backbone network for performing
feature extraction. For example, the backbone of SSD [25] is VGG-16, the backbone of YOLO-v2 [26] is DarkNet-19,
the backbone of RetinaNet [28] is ResNet-101 [35], and the backbone of YOLO-v3 is Darknet-53. The Darknet-53
network is built on Darknet-19 architecture by adding convolutional layers with some shortcut connections. It
consists of 53 convolutional layers, as shown in Fig. 12.20. Darknet-53 has proven more efficient than DarkNet-19,
ResNet-101, and ResNet-152 in terms of accuracy and billion floating point operations per second [30].

FIG. 12.18 The architecture of RetinaNet.

29512.3 Object detection methods

2. Anchor boxes and multiscale prediction: YOLO-v2 used five anchor boxes to predict the location of objects, while
YOLO-v3 increases the number of anchor boxes from five to nine. These nine anchor boxes with different scales are
assigned to three different output feature maps, as shown in Table 12.1.

FIG. 12.19 The architecture of YOLO-v3.

FIG. 12.20 The architecture of Darknet-19 and Darknet-53.

296 12. Object detection

Three outputs of YOLO-v3 are 52�52, 26�26, and 13�13 grid cells, corresponding to the output feature maps of
52�52, 26�26, and 13�13. The smaller the output feature map is, the larger the receptive field of the corresponding
grid cell is. As shown in Fig. 12.21, there are 4�4 and 2�2 feature maps. Each grid cell of the 4�4 feature map has a
smaller field of view than that of a 2�2 feature map, so using a small anchor box of (a) is better than using big anchor
boxes of (c). In contrast, each grid cell of the 2�2 feature map has a larger field of view, so using the big anchor box of
(d) is better than using the small anchor boxes of (b).

Since three different anchor boxes are assigned to each output feature map, and each grid cell predicts three bound-
ing boxes, the shape of each output feature map of YOLO-v3 can be expressed as gridh�gridw�3� (4+1+c) for the 4
bounding box offsets, 1 objectness prediction, and c class prediction. For example, using YOLO-v3 to detect objects on
the COCO dataset of 80 classes (c¼80). The output shapes of three prediction layers are (13,13,3,85), (26,26,3,85), and
(52,52,3,85), and the corresponding number of predicted boxes are 507, 2028 and 8112, respectively, as shown in
Fig. 12.19.

To train YOLO-v3, the objective loss function consists of three parts: offset loss (xyloss and whloss), bounding box
confidence loss, and classification loss, which are defined as follows:

xyloss ¼ λcoord
XS2

i¼0

XB

j¼0

obji, j txi � t̂xi
� �2

+ tyi � t̂yi
� �2h i

whloss ¼ λcoord
XS2

i¼0

XB

j¼0

obji, j twi � t̂wi

� �2
+ thi � t̂hi
� �2h i

TABLE 12.1 Anchor boxes used in YOLO-v3.

Size of output feature maps Size of anchor boxes

52�52 10�13, 16�30, 33�23

26�26 30�61, 62�45, 59�119

13�13 116�90, 156�198, 373�326

FIG. 12.21 Configuration of anchor box.

29712.3 Object detection methods

confidenceloss ¼
XS2

i¼0

XB

j¼0

obji, j BCE Ci, Ĉi

� �
+
XS2

i¼0

XB

j¼0

noobji, j BCE Ci, Ĉi

� �

classloss ¼
XS2

i¼0

XB

j¼0

obji, j

X
c�classes

BCE pi cð Þ, p̂i cð Þ� �

tx, ty, tw, th: four coordinates for each ground truth bounding box
t̂x, t̂y, t̂w, t̂h: four coordinates for each predicted bounding box
Ci: expected box confidence score of box in cell i
Ĉi: predicted box confidence score of box in cell i
pi(c): expected class probabilities for class c in cell i
p̂i cð Þ: predicted class probabilities for class c in cell i
S: width and height of the grid; there are three sizes of grid in YOLO-v3 including 13�13, 26�26, and 52�52
B: number of bounding boxes predicted by each grid cell
obji, j ¼ 1 if the jth bounding box in cell i is responsible for detecting the object, otherwise it is 0
noobji, j ¼ 1 if there is no object in cell i
BCE: binary cross-entropy

12.3.10 CFF-SSD

Le et al. [31] proposed Cross-Resolution Feature Fusion Single Shot MultiBox Detector (CFF-SSD) in 2019. CFF-SSD
improves small object detection performance, especially detection of small human hands in intelligent homecare sys-
tems. There are two versions of CFF-SSD: 1CFF-SSD for fast detection and 2CFF-SSD for more accurate detection, as
shown in Fig. 12.22.

CFF-SSD achieves impressive small object detection performance because of applying the proposed cross-
resolution feature fusion (CFF) approach to the base detector SSD [25] for enriching semantic and contextual informa-
tion in shallow convolutional layers. The CFF architecture includes twomainmodules: (1) NarrowAtrous Spatial Pyr-
amid Pooling (N-ASPP), and (2) Richer Semantic Information Generation (RSIG) module, as shown in Fig. 12.23.

1. Narrow Atrous Spatial Pyramid Pooling(N-ASPP) module

The N-ASPP module uses a feature map at a shallow layer as the input and extracts multi-scale contextual infor-
mation through four parallel atrous convolutions with different rates. In 1CFF-SSD architecture, one CFF is adopted,
which uses N-ASPP with four parallel atrous convolutions including a 1�1 convolution and three 3�3 atrous con-
volutions with rates of 1, 2, and 4, respectively. In 2CFF-SSD architecture, one more CFF is added to the 1CFF-SSD
architecture. Unlike the first CFF, the second CFF adopts an N-ASSP module using atrous convolutions with bigger

CFF CFF1

CFF2

Input

300x300

Input

300x300

V
G

G
-16

D
etectio

n
: 8732

D
etectio

n
: 8732

C
o

n
v4_3

(38 x 38 x 512) C
o

n
v6_2

(10 x 10 x 512)

C
o

n
v7_2

(5 x 5 x 256)

C
o

n
v8_2

(3 x 3 x 256)

C
o

n
v9_2

(1 x 1 x 256)

F
C

7
(19 x 19 x 1024)

V
G

G
-16

C
o

n
v4_3

(38 x 38 x 512) C
o

n
v6_2

(10 x 10 x 512)

C
o

n
v7_2

(5 x 5 x 256)

C
o

n
v8_2

(3 x 3 x 256)

C
o

n
v9_2

(1 x 1 x 256)

F
C

7
(19 x 19 x 1024)

FIG. 12.22 The architecture of CFF-SSD [31].

298 12. Object detection

rates to enlarge the field of view of filters for combining larger context. Specifically, three rates of three 3�3 atrous
convolutions in the N-ASSP module of the second CFF are set to 2, 4, and 8, respectively. Although the output of
the N-ASSPmodule contains rich contextual information, it lacks semantic information. Therefore, it is combined with
the output of the Richer Semantic Information Generation (RSIG) module to supplement semantic information before
using for prediction.

2. Richer Semantic Information Generation (RSIG) module

The RSIG module is responsible for providing rich semantic information from a deeper layer to a shallower layer
and consists of twomodules: a resolution matching (RM) submodule and the ResNeXt submodule. First, the RMmod-
ule enlarges the feature maps of the deeper layer to the same size as the output of the N-ASPPmodule. If the input size
of the RMmodule and the output size of the N-ASPP module are (W�H�D) and (2W�2H�D), respectively, the RM
module only contains one deconvolutional layer, as shown in Fig. 12.23A. If the input size of the RM module and the
output size of the N-ASPPmodule are (W�H�D) and (2W�1�2H�1�D), respectively, two deconvolutional layers
are adopted in the RM module, as shown in Fig. 12.23B. Next, the ResNeXt module uses the enlarged feature maps
from the RMmodule as the input and exploits richer semantic information throughmultiple branches of convolutional
layers. Finally, the resulting feature of ResNeXt module is passed through a normalization layer for producing a fea-
ture map at the output of RSIGmodule. The resulting feature map of the RSIGmodule is concatenated with that of the
N-ASPP module for improving the performance of small object detection.

Supplementary explanation

Atrous convolution: Proposed in DeepLab [45], atrous convolution adjusts the field of view of the filter by inserting zeros
between adjacent filter elements, as shown in Fig. 12.24. The number of zeros can be controlled by setting a hyperparameter
“rate.”Atrous convolution with rate r indicates that (r�1) zeros are padded, and the bigger the “rate” value used, the larger the

FIG. 12.23 Cross-Resolution Feature Fusion (CFF) [31].

29912.3 Object detection methods

field of view of the filter becomes. Using atrous convolution with different atrous rates effectively extracts multi-scale context
information from a feature map without any additional computation.

12.3.11 DSNet

Huang et al. [32] introduced the Dual-Subnet Network (DSNet) in 2021. DSNet is designed based on multi-task
learning to improve the performance of object detection in inclement weather conditions, namely, foggy weather.
To accomplish this objective, DSNet employs RetinaNet [28] as the base detector, denoted as a detection subnetwork,
and adds a feature recovery (FR) module to this base architecture to build a restoration subnetwork for enhancing the
visibility of degraded images, as shown in Fig. 12.25.

1. The detection subnetwork

In the detection subnetwork, ResNet-50 [35] with 500 pixel input image scale is first employed as the backbone for
performing feature extraction of the entire input image. Then, a feature pyramid network [27] is constructed at the top
of the backbone for multi-scale object detection. Finally, two task-specific subnets: class subnet and box subnet, are
attached at each feature pyramid level to perform object classification and localization, respectively, as shown in
Fig. 12.26.

Both class subnet and box subnet are fully convolutional networks and composed of five convolution layers with
filter size of 3�3, inwhich each of the first four convolution layers is followed by rectified linear unit (ReLU) activation.
The difference between the class subnet and box subnet is in the last layer. While the sigmoid activation function is

FIG. 12.24 Atrous convolution with different rate values.

FIG. 12.25 The architecture of DSNet [32].

300 12. Object detection

attached to the last layer with c*A filters of the class subnet for binary predictions, the box subnet uses the last layer
with 4*A filters for linear prediction, where c and A represent the number of object classes and anchor boxes, respec-
tively. Please refer to Section 12.3.9 for more detail about the anchor box.

2. The restoration subnetwork

The restoration subnetwork is designed based on the transformed atmospheric scatteringmodel and is composed of
two main modules: a common block module and a feature recovery module, as shown in Fig. 12.27.

(a) Transformed atmospheric scattering model.

The atmospheric scattering model is expressed as:

I xð Þ¼ J xð Þt xð Þ+∝ 1� t xð Þð Þ,
where I(x) and J(x) represent the hazy image and haze-free image, respectively,∝ is the global atmospheric light, and
t(x) is the medium transmission defined as:

t xð Þ¼ e�βd xð Þ

Here, β and d(x) are the scattering coefficient of the atmosphere and the scene depth, respectively.
From the atmospheric scattering model, the haze-free image is calculated as:

J xð Þ¼M xð ÞI xð Þ�M xð Þ+ 1

where M xð Þ¼
1

t xð Þ I xð Þ�∝ð Þ+ ∝� 1ð Þ
I xð Þ�1

The estimation of M(x) and J(x) is presented below.

ResNet-50 Feature Pyramid Network

Input image

Class
subnet

Box
subnet

Class
subnet

Box
subnet

Class
subnet

Box
subnet

FIG. 12.26 The architecture of a detection subnetwork.

FIG. 12.27 Flowchart of restoration subnetwork [32].

30112.3 Object detection methods

(b) Common block module

The detection subnetwork shares a common block module containing the first 10 convolution layers with the res-
toration subnetwork to guarantee clean features produced by this module can be computed for detecting objects.

(c) Feature recovery (FR) module

To enhance visibility in the image effectively, the FR is designed with three submodules: upsampling submodule,
multiscale mapping submodule, and image production submodule.

▪ Upsampling submodule: Because the restoration subnetwork requires the same size of input and output, the
upsampling submodule is used to increase the size of the output feature map of the common block module to the
same size as the input image by using the bilinear interpolation technique.

▪ Multiscale mapping submodule: This module adopts four parallel layers, namely, one convolutional layer with a
1�1 filter, one convolutional layer with a 3�3 filter, one convolutional layer with a 5�5 filter, and one
convolutional layer with a 7�7 filter for multi-scale feature extraction. The extracted features are sent to another
convolutional layer with a 3�3 filter for computing M(x).

▪ Image production submodule: This module takes M(x) as the input and uses element-wise multiplication, element-
wise subtraction, and element-wise addition operations for computing a haze-free image J(x).

DSNet is trained in an end-to-end fashion for jointly learning three tasks including visibility enhancement, object
classification, and object localization by using the objective function:

LDSNet ¼ Lcls + Lloc +Lv

Lcls: focal loss [28] is adopted for object classification
Lloc: smooth L1 loss is used for box regression [22]
Lv: loss function for visibility enhancement; this is mean square error (MSE) loss used for a ground-truth image Y

and an estimated image Ŷ

M xð Þ¼ 1
m

Xm

i

Yi� Ŷi

� �2

where m is the batch size.

12.4 Experiment: Implementation of YOLO-v3

This section introduces how to build the YOLO-v3 model for object detection. To conduct experiments, we used the
PASCAL VOC 2007 dataset for training and testing the model.

12.4.1 Load YOLO-v3 project

Because the example program of YOLO-v3model in this chapter is more complicated than the previous examples in
Chapters 1–9, we use PyCharm IDE as a compiler to write and train the model. The process of loading the YOLO-v3
project is as follows.

1. Download the YOLO-v3 project: please go to https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master
to download the source code, as shown in Fig. 12.28.

302 12. Object detection

https://github.com/taipeitechmmslab/MMSLAB-DL/tree/master

2. Use PyCharm to open the project, as shown in Fig. 12.29.

3. Select the path to load the project, as shown in Fig. 12.30.

FIG. 12.28 YOLO-v3 project (Lab12) on GitHub.

FIG. 12.29 Open the project on PyCharm.

FIG. 12.30 The path of the YOLO-v3 project.

30312.4 Experiment: Implementation of YOLO-v3

4. Set the compilation environment (Note: if this step already set, it is omitted): Click File! Settings! Project “name
of the project” ! Project Interpreter ! Add ! Virtualenv Environment ! Existing environment ! Select the
virtual machine, as shown in Figs. 12.31 and 12.32.

12.4.2 Introduction to dataset

In this section, we use the PASCAL Visual Object Classes 2007 (PASCAL VOC 2007) dataset to train and test the
YOLO-v3 model. This is a benchmark dataset that has been used to evaluate many object detection methods, such as
R-CNN, SSD, YOLO, and so on. The dataset can be loaded through TensorFlow datasets as follows.

FIG. 12.31 New interpreter.

FIG. 12.32 Selecting an existing virtual environment.

304 12. Object detection

import tensorflow_datasets as tfds

Load voc2007 dataset

train_data, info = tfds.load("voc2007", split= tfds.Split.TRAIN, with_info=True)

valid_data = tfds.load("voc2007", split= tfds.Split.VALIDATION)

test_data = tfds.load("voc2007", split= tfds.Split.TRAIN)

Display information about the dataset

print(info)

Result:

The PASCAL VOC 2007 dataset consist of three sets, including a training set with 2501 images, validation set with
2510 images, and test set with 4952 images. This dataset has 20 classes, which can be displayed by using the following
command.

info.features['labels'].names

Result: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

30512.4 Experiment: Implementation of YOLO-v3

Display dataset: display an image in the dataset and ground-truth bounding boxes of objects

classes_list = info.features['labels'].names # class labels

for dataset in train_data.take(1):

img = dataset['image'] # Read image

bboxes = dataset['objects']['bbox'] # Read bounding box

labels_index = dataset['objects']['label'] # Read label (class)

img = img.numpy() # Convert the image to Numpy format

h, w, _ = img.shape # Read image shape

for box, label_index in zip(bboxes, labels_index):

box [y1, x1, y2, x2] (y1, x1) is top left corner, (y2, x2) is bottom right corner of the

box.

the values of box coordinates [y1, x1, y2, x2] is between 0~1.

x1 = tf.cast(box[1]*w, tf.int16).numpy()

y1 = tf.cast(box[0]*h, tf.int16).numpy()

x2 = tf.cast(box[3]*w, tf.int16).numpy()

y2 = tf.cast(box[2]*h, tf.int16).numpy()

Draw ground-truth bounding box of object in the image

cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)

Mark the label in the top left corner of the bounding box

cv2.putText(img, # the image to be drawn

classes_list[label_index], # class name to be drawn

(x1, y1 - 3), # Where to place the text

cv2.FONT_HERSHEY_SIMPLEX, # Font style

1, (0, 244, 0), 2) # Font size, font color, font thickness

plt.imshow(img)

Result:

306 12. Object detection

12.4.3 Building YOLO-v3 model

1. Directory and files

Fig. 12.33 shows the YOLO-v3 project, which includes the following files and folders.

▪ train.py: the source code file for training the YOLO-v3 model
▪ train-multi-scale.py: the source code file for multi-scale training
▪ test.py: the source code file for testing the model
▪ config.py: the source code file for setting model parameters, training parameters, and weight path
▪ convert.py: the source code file for converting the trained weight of YOLO-v3 into the TensorFlow format
▪ layers: the folder where the source code files of custom network layers are stored
▪ model: the folder where the source code file of custom network models is stored
▪ losses: the folder where the source code file of custom loss function is stored
▪ utils: the folder where the toolkits are stored, such as dataset.py for loading the dataset, evaluation.py for evaluating

the model, and so on
▪ output_images: the folder for storing output results

Running the YOLO-v3 project requires executing two files: “train.py” (or “train-multi-scale.py”) for training the
model and “test.py” for testing the trained model. The difference between “train.py” and “train-multi-scale.py” is that
“train.py” uses a fixed input size to train the model, whereas “train-multi-scale.py” employs multi-scale training,
where the size of the input image is changed by multiples of 32, such as 320, 352, 384, 416, 448, 480, 512, 544, 576,
and 608, every 10 epochs of training. The minimum input size is 320�320 and the maximum input size is
608�608. The result of the training method using “train-multi-scale.py” is better than that of using “train.py,” but
it takes a longer time to train.

2. Implementing the YOLO-v3 model

Fig. 12.34 is the flowchart of the source code for building the YOLO-v3 model.

FIG. 12.33 The YOLO-v3 project.

FIG. 12.34 Flowchart of the source code for the YOLO-v3 model.

30712.4 Experiment: Implementation of YOLO-v3

(a) Creating helper functions
▪ Darknet-53 backbone: The source code for Darknet-53 is written at “model!darknet.py.” YOLO-v3 employed

Darknet-53 as the backbone network for feature extraction. Figs. 12.35 and 12.36 show the architecture of the
Darknet-53.

FIG. 12.35 The architecture of Darknet-53 (1).

FIG. 12.36 The architecture of Darknet-53 (2).

308 12. Object detection

The code for Darknet-53 is as follows.

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

Line 10

def darknet_body(name=None):

''' Create the Darknet-53 network'''

x = inputs = tf.keras.Input([None, None, 3])

x = darknetconv2d_bn_leaky(x, 32, (3, 3))

x = resblock_body(x, 64, 1)

x = resblock_body(x, 128, 2)

x = x_26 = resblock_body(x, 256, 8)

x = x_43 = resblock_body(x, 512, 8)

x = resblock_body(x, 1024, 4)

return tf.keras.Model(inputs, (x_26, x_43, x), name=name)

Code path

model®darknet.py

The source codes for Darknet Convolution and Darknet Residual Block are as follows.

import tensorflow as tf

from tensorflow.keras import layers

Darknet Convolution in Figure 12.35

def darknetconv2d_bn_leaky(x, filters, kernel_size, strides=(1, 1)):

padding = 'valid' if strides == (2, 2) else 'same'

x = layers.Conv2D(filters, kernel_size, strides,

padding=padding,

use_bias=False,

kernel_regularizer=tf.keras.regularizers.l2(5e-4))(x)

x = layers.BatchNormalization()(x)

x = layers.LeakyReLU(alpha=0.1)(x)

return x

the Darknet residual block in Figure 12.35

def resblock_body(x, num_filters, num_blocks):

x = layers.ZeroPadding2D(((1, 0), (1, 0)))(x)

x = darknetconv2d_bn_leaky(x, num_filters, (3, 3), strides=(2, 2))

for i in range(num_blocks):

y = darknetconv2d_bn_leaky(x, num_filters//2, (1, 1))

Code path

model®darknet.py

y = darknetconv2d_bn_leaky(y, num_filters, (3, 3))

x = layers.Add()([x, y])

return x

▪ YOLO-v3 architecture: The source code for the YOLO-v3 model is written at “model!yolo.py.” YOLO-v3 uses
three different convolutional layers to detect objects at multiple scales. Figs. 12.37 and 12.38 show the architecture of
YOLO-v3.

30912.4 Experiment: Implementation of YOLO-v3

FIG. 12.37 The architecture of YOLO-v3 (1).

FIG. 12.38 The architecture of YOLO-v3 (2).

310 12. Object detection

The source code of YOLO-v3 model is as follows.

def yolov3(input_size, anchors=yolo_anchors, num_classes=80,

iou_threshold=0.5, score_threshold=0.5, training=False):

""" Create YOLO_V3 network (training mode or test mode))"""

Using 3 Anchors in each prediction layer

num_anchors = len(anchors) // 3

Declare the Input

inputs = Input(input_size)

Create Darknet-53 network with three output layers

x_26, x_43, x = darknet_body(name='Yolo_DarkNet')(inputs)

layer y1 with output shape: (13, 13, 3, classes+5)

x, y1 = make_last_layers(x, 512, num_anchors, num_classes)

x = darknetconv2d_bn_leaky(x, 256, (1, 1))

Upsampling (13, 13, 256) -> (26, 26, 256)

x = layers.UpSampling2D(2)(x)

Concat (26, 26, 256) + (26, 26, 512) = (26, 26, 768)

x = layers.Concatenate()([x, x_43])

layer y2 with output shape: (26, 26, 3, classes+5)

x, y2 = make_last_layers(x, 256, num_anchors, num_classes)

x = darknetconv2d_bn_leaky(x, 128, (1, 1))

Upsampling (26, 26, 128) -> (52, 52, 128)

x = layers.UpSampling2D(2)(x)

Code path
model®yolo.py

31112.4 Experiment: Implementation of YOLO-v3

Concat (52, 52, 128) + (52, 52, 256) = (52, 52, 384)

x = layers.Concatenate()([x, x_26])

layer y3 with output shape: (52, 52, 3, classes+5)

x, y3 = make_last_layers(x, 128, num_anchors, num_classes)

get input size

h, w, _ = input_size

Convert the output (tx, ty, tw, th) into (x1, y1, x2, y2)

y1 = YoloOutputBoxLayer(anchors[6:], 1, num_classes, training)(y1)

y2 = YoloOutputBoxLayer(anchors[3:6], 2, num_classes, training)(y2)

y3 = YoloOutputBoxLayer(anchors[0:3], 3, num_classes, training)(y3)

If it is in training mode, create a training network model

if training:

return Model(inputs, (y1, y2, y3), name='Yolo-V3')

using NMS for removing redundance prediction boxes

outputs = NMSLayer(num_classes, iou_threshold, score_threshold)([y1, y2, y3])

return Model(inputs, outputs, name='Yolo-V3')

“Make last layers Block” in Figure 12.50

def make_last_layers(x, num_filters, num_anchors, num_classes):

out_filters = num_anchors * (num_classes + 5)

x = darknetconv2d_bn_leaky(x, num_filters, (1, 1))

x = darknetconv2d_bn_leaky(x, num_filters * 2, (3, 3))

x = darknetconv2d_bn_leaky(x, num_filters, (1, 1))

x = darknetconv2d_bn_leaky(x, num_filters * 2, (3, 3))

x = darknetconv2d_bn_leaky(x, num_filters, (1, 1))

y = darknetconv2d_bn_leaky(x, num_filters*2, (3, 3))

the feature map to size of (batch, grid_h, grid_w, num_anchors*(classes+5))

y = darknetconv2d(y, out_filters, (1, 1), num_classes=num_classes)

Reshape the output size (batch, grid_h, grid_w, num_anchors, classes+5)

y = YoloOutputLayer(num_anchors, num_classes)(y)

return x, y

• The setting of the convolutional layer of YOLO-v3

layer_count = 1

def darknetconv2d(x, filters, kernel_size, strides=(1, 1), num_classes=80):

global layer_count

padding = 'valid' if strides == (2, 2) else 'same'

Code path
model darknet.py

312 12. Object detection

x = layers.Conv2D(filters, kernel_size, strides,

padding=padding,

kernel_regularizer=tf.keras.regularizers.l2(5e-4),

name='conv2d_last_layer{}_{}'.format(layer_count, num_classes))(x)

layer_count += 1
return x

• YoloOutputLayer: This custom layer is used to reshape the output size to the size of (bacth, grid_h, grid_w, anchors,
classes+5)

class YoloOutputLayer(tf.keras.layers.Layer):

def __init__(self, num_anchors, num_classes, **kwargs):

super(YoloOutputLayer, self).__init__(**kwargs)

self.num_anchors = num_anchors

self.num_classes = num_classes

def build(self, input_shape):

self.input_h, self.input_w = input_shape[1:3]

def call(self, x, **kwargs):

if self.input_h is None or self.input_w is None:

x = tf.reshape(x, (-1, tf.shape(x)[1], tf.shape(x)[2],

self.num_anchors, self.num_classes + 5))

else:

x = tf.reshape(x, (-1, self.input_h, self.input_w,

self.num_anchors, self.num_classes + 5))

return x

Code path
layers output_layer.py

• YoloOutputBoxLayer: convert the predicted coordinates (tx, ty, tw, th) of the model into bounding box (x, y, w, h)
through the following formula:

bx ¼ σ txð Þ+ cx

by ¼ σ ty
� �

+ cy

bw ¼ pwetw

bh ¼ pheth

bx, by, bw, bh: coordinates of the center, width, and height of the predicted bounding box, respectively
cx, cy: top left corner of the image
σ: sigmoid activation function
pw, ph: width and height of the anchor box, respectively

31312.4 Experiment: Implementation of YOLO-v3

class YoloOutputBoxLayer(tf.keras.layers.Layer):

def __init__(self, anchors, output_layer=1,

num_classes=80, training=False, **kwargs):

super(YoloOutputBoxLayer, self).__init__(**kwargs)

self.anchors = anchors

self.num_classes = num_classes

self.training = training

The output size is (13, 13), multiply by 32 to restore the original input size (416,

416)

if output_layer == 1:

self.grid_to_img_scale = 32

elif output_layer == 2:

self.grid_to_img_scale = 16

else:

self.grid_to_img_scale = 8

def build(self, input_shape):

self.grid_h, self.grid_w = input_shape[1:3]

def call(self, inputs, **kwargs):

"""

:param inputs: (batch, grid_h, grid_w, anchors, [x, y, w, h, obj, ...classes])

:param kwargs: None

:return:

bbox: (batch, grid_h, grid_w, anchors, [x1, y1, x2, y2])

box_confidence: (batch, grid_h, grid_w, anchors, 1)

box_class_probs: (batch, grid_h, grid_w, anchors, classes)

"""

use tf.shape to dynamically obtain the output size of the previous layer

if self.grid_h is None:

grid_h, grid_w = tf.shape(inputs)[1], tf.shape(inputs)[2]

else:

grid_h, grid_w = self.grid_h, self.grid_w

box_xy, box_wh, box_confidence, box_class_probs = \

tf.split(inputs, (2, 2, 1, self.num_classes), axis=-1)

Code path
layers output_box_layer.py

314 12. Object detection

box_xy: (batch, grid_h, grid_w, anchors, [tx, ty])

box_xy = tf.sigmoid(box_xy) # scale to 0~1

box_confidence: (batch, grid_h, grid_w, anchors, confidence)

box_confidence = tf.sigmoid(box_confidence) # scale to 0~1

box_class_probs: (batch, grid_h, grid_w, anchors, classes)

box_class_probs = tf.sigmoid(box_class_probs) # scale to 0~1

pred_box: (batch, grid_h, grid_w, anchors, [tx,ty,tw,th])

pred_box = tf.concat((box_xy, box_wh), axis=-1)

grid = tf.meshgrid(tf.range(grid_w), tf.range(grid_h))

grid = tf.stack(grid, axis=-1) # (gx, gy, 2)

grid = tf.expand_dims(grid, axis=2) # (gx, gy, 1, 2)

b = σ(t) + c , b = σ(t) + c

box_xy = (box_xy + tf.cast(grid, tf.float32)) / tf.cast((grid_w, grid_h), tf.float32)

Calculate input image size

img_w, img_h=(grid_w*self.grid_to_img_scale, grid_h*self.grid_to_img_scale)

b = p e , b = p e

box_wh = self.anchors * tf.exp(box_wh) / (img_w, img_h)

bbox: (x1, y1, x2, y2)

box_x1y1 = box_xy - box_wh / 2

box_x2y2 = box_xy + box_wh / 2

bbox = tf.concat([box_x1y1, box_x2y2], axis=-1)

if self.training:

return tf.concat([bbox,box_confidence,box_class_probs,pred_box],axis=-1)

return bbox, box_confidence, box_class_probs

• NMSLayer: This custom layer is used to remove the redundant bounding box prediction

class NMSLayer(tf.keras.layers.Layer):

"""

Non maximum suppression Layer

"""

def __init__(self, num_classes, iou_threshold, score_threshold, **kwargs):

super(NMSLayer, self).__init__(**kwargs)

self.num_classes = num_classes

self.iou_threshold = iou_threshold

self.score_threshold = score_threshold

Code path
layers nms_layer.py

31512.4 Experiment: Implementation of YOLO-v3

def call(self, inputs, **kwargs):

"""

:param inputs: [OutputLayer1, OutputLayer2, OutputLayer3]

:return:

boxes: (batch, 100, 4)

scores: (batch, 100)

classes: (batch, 100)

valid_detections: (batch)

"""

bboxes, box_conf, box_class = [], [], []

Bboxes of the three output layers

for pred in inputs:

bboxes.append(tf.reshape(pred[0], (tf.shape(pred[0])[0], -1, 4)))

box_conf.append(tf.reshape(pred[1], (tf.shape(pred[1])[0], -1, 1)))

box_class.append(tf.reshape(pred[2],

(tf.shape(pred[2])[0], -1, self.num_classes)))

bboxes = tf.concat(bboxes, axis=1)

box_conf = tf.concat(box_conf, axis=1)

box_class = tf.concat(box_class, axis=1)

Prediction box score

scores = box_conf * box_class

Remove redundant boxes

boxes, scores, classes, valid_detections = \

tf.image.combined_non_max_suppression(

boxes=tf.reshape(bboxes, (tf.shape(bboxes)[0], -1, 1, 4)),

scores=tf.reshape(scores, (tf.shape(scores)[0], -1, self.num_classes)),

max_output_size_per_class=100,

max_total_size=100,

iou_threshold=self.iou_threshold,

score_threshold=self.score_threshold)

return boxes, scores, classes, valid_detections

▪ YOLO-v3 loss function

The source code of the objective loss function is described as below:

def yolo_loss(y_true, y_pred, anchors, num_classes=80,

ignore_thresh=0.5):

"""

:param y_true: (batch_size, grid_h, grid_w, anchors, [x1, y1, x2, y2, obj, ...cls])

:param y_pred: (batch_size, grid_h, grid_w, anchors, [x, y, w, h, obj, ...cls])

:param anchors: three anchors box shape: (3, 2)

:param num_classes: number of classes in dataset

:param ignore_thresh: if (IoU < threshold) and ignore

:return: total loss (xy_loss + wh_loss + confidence_loss + class_loss)

Code path
losses yolo_loss.py

316 12. Object detection

"""

1. Convert prediction output

y_pred: (batch, grid_h, grid_w, anchors, [x1, y1, x2, y2, obj, ...classes, tx, ty, tw, th])

y_pred is the output of the YoloOutputBoxLayer layer, which is divided into 4 parts

here:

pred_box: (batch, grid_h, grid_w, anchors, [x1, y1, x2,y2]) is used to calculate the

IoU with the ground truth box

pred_obj: (batch, grid_h, grid_w, anchors, obj) is used to calculate confidence_loss

pred_class: (batch, grid_h, grid_w, anchors, classes) is used to calculate class_loss

pred_xywh: (batch, grid_h, grid_w, anchors, [tx, ty, tw, th]) is used to calculate

xy_loss, wh_loss

pred_box, pred_obj, pred_class, pred_xywh = tf.split(y_pred, (4, 1, num_classes, 4),

axis=-1)

pred_xy = pred_xywh[..., 0:2]

pred_wh = pred_xywh[..., 2:4]

2. Convert (x1, y1, x2, y2)� (x, y, w, h)

true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1), axis=-1)

true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2

true_wh = true_box[..., 2:4] - true_box[..., 0:2]

Because the calculated loss value of small objects is small, the small objects are

multiplied by a larger "weight factor"

box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

3. Convert (x1, y1, x2, y2) to (tx, ty, tw, th) and calculate the loss with pred_xywh

grid_h, grid_w = tf.shape(y_true)[1], tf.shape(y_true)[2]

grid = tf.meshgrid(tf.range(grid_w), tf.range(grid_h))

grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)

true_xy = true_xy * (grid_h, grid_w) - tf.cast(grid, true_xy.dtype)

true_wh = tf.math.log(true_wh / anchors)

true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh), true_wh)

4. Generate mask (with or without objects), shape(batch_size, grid, grid, anchors)

obj_mask = tf.squeeze(true_obj, -1)

5. Generate negative sample mask, ignore false positive if iou exceeds threshold

Get the bounding box in which the object exists, true_box_flat = (N, [x1, y1, x2, y2])

true_box_flat = tf.boolean_mask(true_box, tf.cast(obj_mask, tf.bool))

Calculate iou of ground-truth box and predicted box

best_iou = tf.reduce_max(broadcast_iou(pred_box, true_box_flat), axis=-1)

31712.4 Experiment: Implementation of YOLO-v3

Generate mask, if iou <ignore_thresh

ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)

5. Calculate the loss function

xy_loss = obj_mask * box_loss_scale * tf.reduce_sum(tf.square(true_xy - pred_xy),

axis=-1)

wh_loss = obj_mask * box_loss_scale * tf.reduce_sum(tf.square(true_wh - pred_wh),

axis=-1)

obj_loss = binary_crossentropy(true_obj, pred_obj)

confidence_loss = obj_mask * obj_loss + (1 - obj_mask) * ignore_mask * obj_loss

class_loss = obj_mask * sparse_categorical_crossentropy(true_class_idx, pred_class)

6. Sum the loss values of all prediction boxes (batch, grid, grid, anchors) => (batch,

1)

xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))

wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))

confidence_loss = tf.reduce_sum(confidence_loss, axis=(1, 2, 3))

class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

return xy_loss + wh_loss + confidence_loss + class_loss

Wrap the yolo loss function by the” tf.keras.losses.LossFunctionWrapper”

class YoloLoss(tf.keras.losses.LossFunctionWrapper):

def __init__(self,

anchors,

num_classes=80,

ignore_thresh=0.5,

name='yolo_loss'):

super(YoloLoss, self).__init__(

yolo_loss,

name=name,

anchors=anchors,

num_classes=num_classes,

ignore_thresh=ignore_thresh)

The function for calculation of IoU

def broadcast_iou(pred_box, true_box):

"""

Calculate the IoU between the ground-truth box and the predicted box

:param pred_box: size(b, gx, gy, 3, 4)

Code path
losses yolo_loss.py

318 12. Object detection

:param true_box: size(n, 4)

:return: Intersection over Union(IoU)

"""

broadcast boxes

pred_box = tf.expand_dims(pred_box, -2) # (b, gx, gy, 3, 1, 4)

true_box = tf.expand_dims(true_box, 0) # (1, n, 4)

new_shape: (b, gx, gy, 3, n, 4)

new_shape = tf.broadcast_dynamic_shape(tf.shape(pred_box), tf.shape(true_box))

pred_box = tf.broadcast_to(pred_box, new_shape)

true_box = tf.broadcast_to(true_box, new_shape)

Overlap: (b, gx, gy, 3, n)

int_w = tf.maximum(tf.minimum(pred_box[..., 2], true_box[..., 2]) -

tf.maximum(pred_box[..., 0], true_box[..., 0]), 0)

int_h = tf.maximum(tf.minimum(pred_box[..., 3], true_box[..., 3]) -

tf.maximum(pred_box[..., 1], true_box[..., 1]), 0)

int_area = int_w * int_h

box size: w * h

box_1_area = (pred_box[..., 2] - pred_box[..., 0]) * (pred_box[..., 3] - pred_box[..., 1])

box_2_area = (true_box[..., 2] - true_box[..., 0]) * (true_box[..., 3] - true_box[..., 1])

return int_area / (box_1_area + box_2_area - int_area)

▪ Data preprocessing

The source code for data preprocessing is stored at “utils!dataset.py.”Data preprocessing for training the YOLO-
v3 model is divided into two steps: (1) data augmentation and (2) training target transformation.

• Data augmentation: color conversion, horizontal flip, image scale, and image rotation

def parse_aug_fn(dataset, input_size=(416, 416)):

"""

Data Augmentation

"""

ih, iw = input_size

1) Prepare information

x shape: (None, None, 3)

x = tf.cast(dataset['image'], tf.float32) / 255. # Normalization

bbox shape: (y1, x1, y2, x2)

Code path
utils®dataset.py

31912.4 Experiment: Implementation of YOLO-v3

bbox = dataset['objects']['bbox']

label shape: (1,)

label = tf.cast(dataset['objects']['label'], tf.float32)

Adjust the image to a fixed size (at the same time adjust the bounding box)

x, bbox = resize(x, bbox, input_size)

2) Data augmentation

color conversion

x = tf.cond(tf.random.uniform([], 0, 1) > 0.75, lambda: color(x), lambda: x)

flipping image

x, bbox = tf.cond(tf.random.uniform([], 0, 1) > 0.5,

lambda: flip(x, bbox), lambda: (x, bbox))

image scale

x, bbox, label = tf.cond(tf.random.uniform([], 0, 1) > 0.5,

lambda: zoom(x, bbox, label), lambda: (x, bbox, label))

image rotation

x, bbox, label = tf.cond(tf.random.uniform([], 0, 1) > 0.5,

lambda: rotate(x, bbox, label), lambda: (x, bbox, label))

3) Data Integration

shape: (num_boxes, [x1, y1, x2, y2, classes])

y = tf.stack([bbox[1], bbox[0], bbox[3], bbox[2], label], axis=-1)

Normalize (x1, y1, x2, y2)

y = tf.divide(y, [ih, iw, ih, iw, 1])

extend (num_boxes, [x1, y1, x2, y2, classes]) to (100, [x1, y1, x2, y2, classes])

paddings = [[0, 100 - tf.shape(y)[0]], [0, 0]]

y = tf.pad(y, paddings)

Redefine the shape of output y

y = tf.ensure_shape(y, (100, 5))

return x, y

• Training target transformation: Transform data format (batch size, 100, [x1, y1, x2, y2, classes]) into (batch size, grid,
grid, anchors, [x, y, w, h, obj, class])

def transform_targets(x_train, y_train, anchors,

anchor_masks, grid_size=13):

"""

transform y_label to training target label,

(batch, 100, [x1, y1, x2, y2, class]) batch, grid, grid, anchor, [x, y, w, h, obj, class])

Code path
utils®dataset.py

320 12. Object detection

:param x_train: shape: (None, 416, 416, 3)

:param y_train: shape: (None, 100, [x1, y1, x2, y2, class])

:param anchors: 9 preset anchors boxes, shape: (9,2)

:param anchor_masks: the mask of the anchors box

:return:

x_train: training image, shape: (batch, img_h, img_w, 3)

y_outs: Return the training data output by three different layers

((batch, grid, grid, 3, [x, y, w, h, obj, class, best_anchor]),

(batch, grid, grid, 3, [x, y, w, h, obj, class, best_anchor]),

(batch, grid, grid, 3, [x, y, w, h, obj, class, best_anchor]))

"""

y_outs = []

calculate anchor index for true boxes

anchors = tf.cast(anchors, tf.float32)

The area of the anchor boxes

anchor_area = anchors[..., 0] * anchors[..., 1]

Calculate the area of ground-truth boxes

box_wh = y_train[..., 2:4] - y_train[..., 0:2]

box_wh = tf.tile(tf.expand_dims(box_wh, -2),

(1, 1, tf.shape(anchors)[0], 1))

box_area = box_wh[..., 0] * box_wh[..., 1]

Calculate the IoU of ground truth boxes objects and anchor boxes

intersection = tf.minimum(box_wh[..., 0], anchors[..., 0]) * \

tf.minimum(box_wh[..., 1], anchors[..., 1])

iou = intersection / (box_area + anchor_area - intersection)

Get the largest anchor box index value

anchor_idx = tf.cast(tf.argmax(iou, axis=-1), tf.float32)

anchor_idx = tf.expand_dims(anchor_idx, axis=-1)

y_train: (batch, 100, [x1, y1, x2, y2, classes])

anchor_idx: (batch, 100, best_anchor)

combine y_train and anchor_idx-> (batch, 100, [x1, y1, x2, y2, classes, best_anchor])

y_train = tf.concat([y_train, anchor_idx], axis=-1)

generate output training data for three different layers

for anchor_idxs in anchor_masks:

y_outs.append(transform_targets_for_output(y_train, grid_size, anchor_idxs))

grid_size *= 2

return x_train, tuple(y_outs)

32112.4 Experiment: Implementation of YOLO-v3

@tf.function

def transform_targets_for_output(y_true, grid_size, anchor_idxs):

 """

 Generate a training label for the output layer

 (batch, 100, [x1, y1, x2, y2, class, best_anchor])->

 (batch, grid, grid, anchor, [x, y, w, h, obj, class])

 :param y_true: shape: (N, boxes, (x1, y1, x2, y2, class, best_anchor))

 :param grid_size: grid cell size

:param anchor_idxs: The index value of the anchor boxes of each layer (each layer

has

3 anchor boxes)

 :return:(batch, grid, grid, anchor, [x, y, w, h, obj, class])

 """

 batch = tf.shape(y_true)[0]

 y_true_out = tf.zeros((batch, grid_size, grid_size, tf.shape(anchor_idxs)[0], 6))

 anchor_idxs = tf.cast(anchor_idxs, tf.int32)

 indexes = tf.TensorArray(tf.int32, 1, dynamic_size=True)

 updates = tf.TensorArray(tf.float32, 1, dynamic_size=True)

 idx = 0

 for i in tf.range(batch):

 for j in tf.range(tf.shape(y_true)[1]):

 if tf.equal(y_true[i][j][2], 0):

 continue

 anchor_eq = tf.equal(anchor_idxs, tf.cast(y_true[i][j][5], tf.int32))

 if tf.reduce_any(anchor_eq):

 # box: (x1, y1, x2, y2)

 box = y_true[i][j][0:4]

 box_xy = (y_true[i][j][0:2] + y_true[i][j][2:4]) / 2

 anchor_idx = tf.cast(tf.where(anchor_eq), tf.int32)

 grid_xy = tf.cast(box_xy // (1/grid_size), tf.int32)

 indexes = indexes.write(idx,

 [i, grid_xy[1], grid_xy[0], anchor_idx[0][0]])

 updates = updates.write(idx,

 [box[0], box[1], box[2], box[3], 1, y_true[i][j][4]])

 idx += 1

 return tf.tensor_scatter_nd_update(y_true_out, indexes.stack(), updates.stack())

• Converting pre-trained model

Using “convert.py” file to convert the original pre-trained YOLO-v3 model into the HDF5 format used by Keras.

322 12. Object detection

Step 1: Download the trained model weights of the original YOLO-v3:

wget https://pjreddie.com/media/files/yolov3.weights -O model_data/yolov3.weights

Step 2: Convert the trained model by using “convert.py” file, a "yolov3.h5" file is generated.

python convert.py

▪ Setting hyperparameters for training

The “config.py” file is used to store hyperparameters for training the YOLO-v3 model.

import numpy as np

Yolo Anchor boxes size

yolo_anchors = np.array([(10, 13), (16, 30), (33, 23), (30, 61), (62, 45),

(59, 119), (116, 90), (156, 198), (373, 326)], np.float32)

Yolo Anchor boxes mask, ex: 6,7,8 for the first output layer, 3,4,5 for the second output

layer

yolo_anchor_masks = np.array([[6, 7, 8], [3, 4, 5], [0, 1, 2]])

Input size of the YOLO

size_h = 416

size_w = 416

Training is divided into two steps

step1_batch_size = 32

step1_learning_rate = 1e-3

step1_start_epochs = 0

step1_end_epochs = 100

step2_batch_size = 8

step2_learning_rate = 1e-4

step2_start_epochs = step1_end_epochs

step2_end_epochs = step1_end_epochs + 100

Pre-Trained weights

yolo_weights = 'model_data/yolo_weights.h5'

Classes of COCO dataset (the order of classes following yolo_weights.h5')

coco_classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat',

Code path
config.py

32312.4 Experiment: Implementation of YOLO-v3

'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat',

'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack',

'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',

'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',

'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',

'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',

'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse',

'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',

'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',

'toothbrush']

the classes of VOC dataset

voc_classes = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow',

'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa',

'train', 'tvmonitor']

(b) Building and training the YOLO-v3 model

To train the YOLO-v3 model, the converted YOLO-v3 model weights (yolov3.h5) are loaded first, and then the
model is fine-tuned on the PASCAL VOC 2007 dataset. The code is written in the “train.py” file.

▪ Import packages

import os

import tensorflow as tf

import tensorflow_datasets as tfds

import config

from losses import YoloLoss

from model import yolov3

from utils import trainable_model

from utils import parse_aug_fn, parse_fn, transform_targets

Code path
train.py

▪ Set hyperparameter for training YOLO-v3

anchor_masks = config.yolo_anchor_masks

Read the number of classes of the VOC dataset

num_classes = len(config.voc_classes)

Code path
train.py

▪ Create YOLO-v3 model and load weights

Create YOLO-v3 network model

model = yolov3((config.size_h, config.size_w, 3),

num_classes=num_classes, training=True)

Load pre-trained weights

model.load_weights(config.yolo_weights, by_name=True)

Code path
train.py

324 12. Object detection

▪ Set callback

Create logs directory

log_dir = 'logs_yolo'

model_dir = log_dir + '/models'

os.makedirs(model_dir, exist_ok=True)

Save training log

model_tb = tf.keras.callbacks.TensorBoard(log_dir=log_dir)

Save the best model weights

model_mckp=tf.keras.callbacks.ModelCheckpoint(model_dir+'/best_{epoch:03d}.h5',

monitor='val_loss',

save_best_only=True,

mode='min')

After 10 epochs, if the val_loss does not improve, learning rate is reduced

mdoel_rlr = tf.keras.callbacks.ReduceLROnPlateau(verbose=1)

Code path
train.py

▪ Creating function for training

def training_model(model, callbacks, num_classes=80, step=1):

Set training parameters

if step == 1:

batch_size = config.step1_batch_size

learning_rate = config.step1_learning_rate

start_epochs = config.step1_start_epochs

end_epochs = config.step1_end_epochs

else:

batch_size = config.step2_batch_size

learning_rate = config.step2_learning_rate

start_epochs = config.step2_start_epochs

end_epochs = config.step2_end_epochs

anchors = config.yolo_anchors / 416

AUTOTUNE = tf.data.experimental.AUTOTUNE # Auto adjustment mode

Code path
train.py

32512.4 Experiment: Implementation of YOLO-v3

combine data

combined_split = tfds.Split.TRAIN + tfds.Split.VALIDATION

train_data, info = tfds.load("voc2007", split=combined_split, with_info=True)

shuffle data

train_data = train_data.shuffle(1000)

Data standardization and data augmentation,

train_data = train_data.map(lambda dataset: parse_aug_fn(dataset),

num_parallel_calls=AUTOTUNE)

batch size

train_data = train_data.batch(batch_size)

Training target conversion

train_data = train_data.map(lambda x,y:transform_targets(x,y,anchors,anchor_masks),

num_parallel_calls=AUTOTUNE)

Enable prefetch mode

train_data = train_data.prefetch(buffer_size=AUTOTUNE)

Validation data

Use test set as verification data, a total of 4952 images

val_data = tfds.load("voc2007", split=tfds.Split.TEST)

val_data = val_data.map(lambda dataset: parse_fn(dataset),

num_parallel_calls=AUTOTUNE)

batch size

val_data = val_data.batch(batch_size)

target transformation

val_data = val_data.map(lambda x, y: transform_targets(x, y, anchors, anchor_masks),

num_parallel_calls=AUTOTUNE)

Enable prefetch mode

val_data = val_data.prefetch(buffer_size=AUTOTUNE)

Set the optimizer

optimizer = tf.keras.optimizers.Adam(lr=learning_rate)

Set loss function

model.compile(optimizer=optimizer,

loss=[YoloLoss(anchors[mask],

num_classes=num_classes) for mask in anchor_masks],

run_eagerly=False)

Train the network model

model.fit(train_data,

epochs=end_epochs,

callbacks=callbacks,

validation_data=val_data,

initial_epoch=start_epochs)

326 12. Object detection

▪ Training YOLO-v3 (Step 1): Freeze all the layers of the model; only the weights of the output layers to be updated

Except for the output layers, freeze all network layers in YOLO-v3

trainable_model(model, trainable=False)

model.get_layer('conv2d_last_layer1_20').trainable = True

model.get_layer('conv2d_last_layer2_20').trainable = True

model.get_layer('conv2d_last_layer3_20').trainable = True

Step1: Train the output layers of the YOLO-v3

training_model(model,

callbacks=[model_tb, model_mckp, mdoel_rlr],

num_classes=num_classes,

step=1)

Code path
train.py

▪ Training YOLO-v3 (Step 2): Train entire network

Unfreeze all network layers of YOLO-v3

trainable_model(darknet, trainable=True)

Train the entire YOLO-v3 network model

print("Start teraining Step2")

training_model(model,

callbacks=[model_tb, model_mckp, mdoel_rlr, model_ep],

num_classes=num_classes,

step=2)

Code path
train.py

(c) Making predictions

After training, the trained YOLO-v3weights on the Pascal VOC 2007 training set are used formaking predictions on
the VOC 2007 test set. The code is written in the “test.py” file.

▪ Import packages

import cv2

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

Code path
test.py

import tensorflow_datasets as tfds

import config

from model import yolov3

from utils import parse_fn_test, trainable_model

32712.4 Experiment: Implementation of YOLO-v3

▪ Load test data and data information

Use a total of 4952 data in the test set

test_data = tfds.load("voc2007", split=tfds.Split.TEST)

weight_file = 'model_data/yolo_weights.h5' # or 'logs_yolo/models/best_xxx.h5'

if weight_file == 'model_data/yolo_weights.h5':

COCO weights

classes_list = config.coco_classes

num_classes = len(config.coco_classes)

freeze = False

else:

VOC2007 weights

classes_list = config.voc_classes

num_classes = len(config.voc_classes)

if int(os.path.splitext(weight_file)[0].split('_')[-1]) <= 100:

freeze = True

Code path
test.py

▪ Create YOLO-v3 model and load weights

Create YOLO-v3 model

model = yolov3((config.size_h,config.size_w,3),

num_classes=num_classes training=False)

Specify the model weights , please modify the file name "best_xxx.h5"

weight_file = 'logs_yolo/models/best_xxx.h5'

If the model weights is in step1, freeze all the layers Darknet-53

if int(os.path.splitext(weight_file)[0].split('_')[-1]) <= 100:

darknet = model.get_layer('Yolo_DarkNet')

trainable_model(darknet, trainable=False)

load model weights

model.load_weights(weight_file)

Code path
test.py

▪ Detection of YOLO-v3

328 12. Object detection

def test_and_show_result(model, test_number=10):

for data in test_data.take(test_number):

Reading data

org_img = data['image'].numpy()

h, w, _ = data['image'].shape

Pre-processing the data

img, bboxes = parse_fn_test(data)

Predicted boxes and score

boxes, scores, classes, nums = model.predict(tf.expand_dims(img, axis=0))

boxes, scores, classes, nums = boxes[0], scores[0], classes[0], int(nums[0])

for i in range(nums):

Mark the predicted bounding boxes on the image

x1y1 = tuple((np.array(boxes[i][0:2]) * (w, h)).astype(np.int32))

x2y2 = tuple((np.array(boxes[i][2:4]) * (w, h)).astype(np.int32))

cv2.rectangle(org_img, x1y1, x2y2, (255, 0, 0), 2)

Show the predicted object category on the image

cv2.putText(org_img,

'{} {:.4f}'.format(classes_list[int(classes[i])], scores[i]),

x1y1,

cv2.FONT_HERSHEY_SIMPLEX,

1, (255, 0, 0), 2)

plt.figure()

plt.imshow(org_img)

plt.show()

Code path
test.py

▪ Detection results: Run the function for making prediction; Fig. 12.39 shows some detection results of the YOLO-v3
model.

test_and_show_result(model, test_number=1)

FIG. 12.39 Detection results of the YOLO-v3 model on the Pascal VOC test set.

32912.4 Experiment: Implementation of YOLO-v3

References

[1] X. Zhu, Y. Wang, J. Dai, L. Yuan, Y. Wei, Flow-guided feature aggregation for video object detection, in: 2017 IEEE International Conference on
Computer Vision, Venice, 2017, pp. 408–417.

[2] S.C. Huang, An advanced motion detection algorithm with video quality analysis for video surveillance systems, IEEE Trans. Circuits Syst.
Video Technol. 21 (1) (2011) 1–14.

[3] S.C. Huang, B.H. Do, Radial basis function based neural network for motion detection in dynamic scenes, IEEE Trans. Cybern. 44 (1) (2014)
114–125.

[4] Y. Taigman,M. Yang,M. Ranzato, L.Wolf, Deepface: closing the gap to human-level performance in face verification, Proc. IEEEConf. Comput.
Vis. Pattern Recognit. (2014) 1701–1708.

[5] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: a unified embedding for face recognition and clustering, Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (2015) 815–823.

[6] S.C. Huang, M.K. Jiau, C.A. Hsu, A high-efficiency and high-accuracy fully automatic collaborative face annotation system for distributed
online social networks, IEEE Trans. Circuits Syst. Video Technol. 24 (10) (2014) 1810–1813.

[7] L. Zheng, Y. Yang, Q. Tian, SIFT meets CNN: a decade survey of instance retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 40 (5) (2018)
1224–1244.

[8] A. Gordo, J. Almazan, J. Revaud, D. Larlus, Deep image retrieval: learning global representations for image search, in: European Conference on
Computer Vision, 2016, pp. 241–257.

[9] K. Cao, A.K. Jain, Automated latent fingerprint recognition, IEEE Trans. Pattern Anal. Mach. Intell. 41 (4) (2019) 788–800.
[10] A. Gangwar, A. Joshi, DeepIrisNet: deep iris representation with applications in iris recognition and cross-sensor iris recognition, in: 2016 IEEE

International Conference on Image Processing, Phoenix, AZ, 2016, pp. 2301–2305.
[11] S. Huang, B. Chen, Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems, IEEE Trans. Neural

Netw. Learn. Syst. 24 (12) (2013) 1920–1931.
[12] S. Huang, B. Chen, Automatic moving object extraction through a real-world variable-bandwidth network for traffic monitoring systems, IEEE

Trans. Ind. Electron. 61 (4) (2014) 2099–2112.
[13] Y. Liu, D. Jaw, S. Huang, J. Hwang, DesnowNet: context-aware deep network for snow removal, IEEE Trans. Image Process. 27 (6) (2018)

3064–3073.
[14] B. Chen, S. Huang, C. Li, S. Kuo, Haze removal using radial basis function networks for visibility restoration applications, IEEE Trans. Neural

Netw. Learn. Syst. 29 (8) (2018) 3828–3838.
[15] S. Huang, B. Chen, W. Wang, Visibility restoration of single hazy images captured in real-world weather conditions, IEEE Trans. Circuits Syst.

Video Technol. 24 (10) (2014) 1814–1824.
[16] T.-H. Le, P.-H. Lin, S.-C. Huang, LD-Net: an efficient lightweight denoising model based on convolutional neural network, IEEE Open, J. Com-

put. Soc. 1 (2020) 173–181.
[17] S. Huang, J. Ye, B. Chen, An advanced single-image visibility restoration algorithm for real-world hazy scenes, IEEE Trans. Ind. Electron. 62 (5)

(2015) 2962–2972.
[18] B. Chen, S. Huang, Edge collapse-based Dehazing algorithm for visibility restoration in real scenes, J. Disp. Technol. 12 (9) (2016) 964–970.
[19] B. Chen, S. Huang, S. Kuo, Error-optimized sparse representation for single image rain removal, IEEE Trans. Ind. Electron. 64 (8) (2017)

6573–6581.
[20] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (2014) 580–587.
[21] J. Uijlings, K. van de Sande, T. Gevers, A. Smeulders, Selective search for object recognition, Int. J. Comput. Vis. (2013).
[22] R. Girshick, Fast R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448.
[23] S. Ren, K. He, R.B. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in: Advances in Neural

Information Processing Systems, 2015, pp. 91–99.
[24] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (2016) 779–788.
[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.E. Reed, Ssd: single shot multibox detector, in: European Conference on Computer Vision, 2015,

pp. 21–37.
[26] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2017) 7263–7271.
[27] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (2017) 2117–2125.
[28] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 2999–3007.
[29] K. He, G. Gkioxari, P. Dollar, R.B. Girshick, Mask R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, 2017,

pp. 2980–2988.
[30] J. Redmon, A. Farhadi, YOLOv3: An incremental improvement, arXiv preprint arXiv:1804.02767, (2018).
[31] T. Le, S. Huang, D. Jaw, Cross-resolution feature fusion for fast hand detection in intelligent homecare systems, IEEE Sensors J. 19 (12) (2019)

4696–4704.
[32] S. Huang, T. Le and D. Jaw, "DSNet: joint semantic learning for object detection in inclement weather conditions," in IEEE Transactions on

Pattern Analysis and Machine Intelligence, https://doi.org/10.1109/TPAMI.2020.2977911.
[33] T.-H. Le, D.-W. Jaw, I.-C. Lin, H.-B. Liu, S.-C. Huang, An efficient hand detection method based on convolutional neural network, in: 2018 7th

International Symposium on Next Generation Electronics (ISNE), IEEE, 2018, pp. 1–2.
[34] C. Szegedy, et al., Going deeper with convolutions, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
[35] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016) 770–778.
[36] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(2015) 3431–3440.

330 12. Object detection

http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0010
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0015
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0020
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0025
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0030
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0035
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0040
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0045
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0050
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0055
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0060
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0065
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0070
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0075
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0075
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0080
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0080
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0085
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0085
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0090
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0090
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0095
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0100
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0100
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0105
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0105
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0110
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0115
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0120
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0120
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0125
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0125
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0130
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0130
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0135
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0140
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0140
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0145
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0145
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0150
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0150
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0155
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0160
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0160
https://doi.org/10.1109/TPAMI.2020.2977911
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0165
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0165
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0170
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0175
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0180
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0180

[37] L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, arXiv preprint
arXiv:1706.05587, (2017).

[38] Y. Li, H. Qi, J. Dai, X. Ji, Y. Wei, Fully convolutional instance-aware semantic segmentation, Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(2017) 2359–2367.

[39] Z.-Q. Zhao, P. Zheng, S.-t. Xu, X. Wu, Object detection with deep learning: a review, IEEE Trans. Neural Netw. Learn. Syst. 30 (11) (2019)
3212–3232.

[40] J.R. Uijlings, K.E. Van De Sande, T. Gevers, A.W. Smeulders, Selective search for object recognition, Int. J. Comput. Vis. 104 (2) (2013) 154–171.
[41] S. Fidler, R. Mottaghi, A. Yuille, R. Urtasun, Bottom-up segmentation for top-down detection, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2013, pp. 3294–3301.
[42] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: Integrated recognition, localization and detection using convolu-

tional networks, arXiv preprint arXiv:1312.6229, (2013).
[43] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: European Conference on Computer Vision, 2014,

pp. 818–833.
[44] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Rep-

resentations, 2015, pp. 1–14.
[45] L. Chen, et al., DeepLab: Semantic image segmentationwith deep convolutional nets, atrous convolution, and fully connectedCRFs, IEEE Trans.

Pattern Anal. Mach. Intell. 40 (4) (2018) 834–848.

331References

http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0185
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0185
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0190
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0190
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0195
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0195
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0200
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0205
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0205
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0210
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0210
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0215
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0215
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0220
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/rf0220
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/opt5ZXa7u659F
http://refhub.elsevier.com/B978-0-323-90198-7.00009-4/opt5ZXa7u659F

Index

Note: Page numbers followed by f indicate figures, t indicate tables, and b indicate boxes.

A
Activation function, 10, 29
Activation layers, 148
AdaGrad methods, 34
Adam methods, 34
AE model. See Auto-encoder (AE) model
AlexNet, 28, 81, 202, 202f,

207, 208f
Anchor boxes
configuration, 297f
YOLO-v3, 296–297, 297t

Application programming interfaces (APIs),
169–170

advanced TensorFlow2, 147–151
custom API and high-level Keras API of,

151–157
custom callback function, 150–151
custom loss function, 148–149
custom metric function, 149–150
custom network layer, 147–148

Keras API, 2, 6, 10–20, 11–12f, 15f, 44–45,
208–212, 209t, 209f, 225

TensorBoard (see TensorBoard)
TensorFlow2, 3–7

data flow graph, 5, 6f
data format, 10b
deep learning, 1–3, 2f
deployment stage, 6–7, 7f
eager execution, 7–10
improvement of, 6–7, 7f
Keras, 10–20, 11–12f, 15f
operations, 8–10
tf.data, 20–26, 21–22f
training stage, 6–7, 7f

Artificial intelligence (AI), 1
Artificial neural networks (ANNs), 27
Atmospheric scattering model, 301
Atrous convolution, 299–300, 300f
Auto-encoder (AE) model, 235, 235–236f.

See also Variational auto-encoder (VAE)
model

B
Backends, 10
Backpropagation (BP), 27, 117–121
single-layer neural network, 118, 118f
two-layer neural network, 119, 120f

Batch normalization, 127–128, 127f, 291
neural network with, 128, 128f, 142t
verification of, 141–144, 142t

Berkeley Artificial Intelligence Research, 2

Binary classification models,
58–62, 59f, 92

input representation, 59
loss function, 60
network architecture, 60
network model, 60
output of, 62, 62f

Binary classification problem, 31, 58, 58f
binary classification models, 58–62, 59f
machine learning algorithms, 57–58
Pokemon combat prediction model, 62–79

code examples, 65–79, 65f, 79f
Pok�emon-Weedle’s cave dataset, 63–65,
63f, 64t

Binary cross-entropy (BCE) loss, 61, 61–62f,
75b, 94, 238

Bounding box confidence loss, 297

C
Caffe, 2
Callback function, 41

custom, 150–151
custom API and high-level Keras API of

TensorFlow, 155–157
TensorBoard, 44–45

Cardinality, 207
Categorical accuracy, 153, 155b
Categorical cross-entropy (CCE) loss function,

61, 94, 94f, 153
CelebFaces Attributes (CelebA) Dataset, 263,

270
Central processing units (CPUs), 28
CIFAR-10 image classification models,

95–115
architecture of, 133t
CIFAR-10 dataset, 96, 96f, 188–189
code examples, 97–115, 114–115f
flowchart of, 129f
TensorFlow datasets, 97

Classification loss, 297
Classification problem, 61

binary (see Binary classification problem)
multiclass, 32

Classifier, 93
Clustering problem, 57
CNNs. See Convolutional neural networks

(CNNs)
COCO dataset, 292, 297
Command mode, Jupyter notebook, xviiif
Common block module, 302
Computer vision, 283, 284f

Confusion matrix, TensorBoard, 179–181, 179f,
181f, 187–188, 187–188f

with normalization, 182, 182f
visualization, 186, 187f

ConvNet, 81
Convolutional layers, 82, 83f, 86–87, 147
Convolutional neural networks (CNNs),

81–91, 82f, 86–87f, 201, 219f, 220
AlexNet, 202, 202f
architecture, 83f
comparison, 207, 208f
GoogLeNet, 203–205, 204–205f
for image classification, 90
LeNet, 201–202, 201f
object detection, 285, 285f
CFF-SSD, 298–300, 298–299f
DSNet, 300–302, 300f
faster R-CNN, 288–289, 288f
fast R-CNN, 286–287, 286–287f
feature pyramid networks, 293, 294f
R-CNN, 285–286, 286f
RetinaNet, 294–295, 295f
single shot multibox detector, 291, 291f
YOLO-v1, 289–290, 289–290f
YOLO-v2, 291–293
YOLO-v3, 295–298, 296f, 297t,

302–329
operation of, 90–91, 91–92f
ResNet, 206–207, 206f
VGG, 202–203, 202–203f

Convolution layers, 10
Cross-entropy (CE), 60–61, 61f

loss function, 32
Cross-resolution feature fusion (CFF), 298–300,

299f
Cross-resolution feature fusion single shot

multibox detector (CFF-SSD), 298–300,
298–299f

CUDA installation, xi–xiif
cuDNN, xiiif
Custom callback function, 150–151
Custom loss function, 148–149
Custom metric function, 149–150
Custom network layer, 147–148

D
Darknet-19, 295, 296f
Darknet-53 backbone, 295, 296f,

308–309, 308f
Darknet Convolution, 309–311
Darknet Residual Block, 309–311

333

Data augmentation
multi-category classification model, 95
YOLO-v3, 319

Data normalization, 39
Data preprocessing

WGAN-GP, 275
YOLO-v3, 319

Data processing, Keras applications, 211
Deep convolutional network, 90f
Deep learning (DL), 1–3, 2f
Deep-Learning-Book-master, xxiv–xxv
Deep Learning GPU Training System

(DIGITS), 3
DeepLearning4J (DL4J), 3
Deep neural networks (DNNs), 1, 28, 118
Detection subnetwork, DSNet, 300, 301f
Dimension clusters, 292
Dimension reduction problem, 57
Direct location prediction, 292
Discriminators

loss function, 262, 274, 278, 280f
operation, 255f
training method
generative adversarial network, 258–259,

258–259f
WGAN-GP, 262

Distributions dashboard, 44
DISTRIBUTIONS tool

Glorot initialization, 138, 138f
He initialization, 140, 140f
normal distribution initialization, 136, 136f

Distribution strategy, 6
Docker, xv
Dogs vs. Cats dataset, 225, 226f
Dropout technique, 47, 48f
dtype, 3–5
Dual-Subnet Network (DSNet), 300–302, 300f

E
Eager execution, 6–10
Edit mode, Jupyter notebook, xviif
Environment installation

Ubuntu environment
Jupyter notebook, xvi
Python, x
TensorFlow, xiii–xvf

Windows environment
Jupyter notebook, xvi
Python, ix–xf
TensorFlow, x–xiiif

F
Faster R-CNN, 288–289, 288f
Fast R-CNN, 286–287, 286–287f
Feature extraction

backbone network, 295–297, 300, 308
CNN for, 285, 293

Feature extractor, 93
Feature map

N-ASPP module, 298–299
region proposal network, 288
regions of interest pooling, 286, 287f
RM module, 299–300
single shot multibox detector, 291–292
YOLO (see You Only Look Once (YOLO))

Feature pyramid networks (FPNs), 293, 294f
Feature recovery (FR) module, 302
Fine-grained features method, 292, 292f
Focal loss, 294–295
Fog removal model, 149–150
FPNs. See Feature pyramid networks (FPNs)
Fully connected layer, 88, 89f
Fully connected neural network (FCNN),

30–31, 31f
Functional model, in Keras, 14–20, 15f

G
Generative adversarial network (GAN), 255,

256f
applications, 256, 257f
drawbacks, 259–260
generator and discriminator operation, 255f
loss function, 260, 280f
training method, 256, 257f

discriminator loss, 258–259, 258–259f
generator loss, 256, 257f, 259f

types, 256
Generators
loss function, 256–258, 274
operation, 255f
training method

generative adversarial network, 256, 257f,
259f

WGAN-GP, 262
GitHub
download source codes, xxiiif
open and run source code, xxiv–xxv
VAE model on, 242, 242f
YOLO-v3, 302, 303f

Glorot initialization method, 121, 123–125
GoogLeNet, 81, 203–205, 204–205f, 207, 208f
Gradient-based optimization algorithms, 34
Gradient descent (GD), 33, 33f, 117
Gradient penalty, 274–275, 281f
Graphic processing units (GPUs), 28
Graphics card driver, xif
The Graphs dashboard, 44
Graphviz, 10–11b, 11f

H
Haze removal model, 149–150
He initialization method, 121, 125–126
Hidden layers, 1, 27–29
High-resolution classifier, 292
Histograms dashboard, 44
HISTOGRAMS tool
Glorot initialization, 139, 139f
He initialization, 141, 141f
normal distribution initialization,

137, 137f
House price-prediction models, 37–43, 37f, 48t
HParams dashboard, 188–189, 190f, 197, 197f
with accuracy range limitation, 198, 199f
with Parallel Coordinates View function,

198, 198f
running specific learning rate, 199–200, 199f
Scatter Plot View function, 200, 200f

Human face recognition model, 27
Hyperparameters tuning, TensorBoard,

188–200, 196t

I
Image augmentation, 95, 95f, 129, 129–130f
Image classification, 88, 128, 226–232, 226f, 283,

284f
Image enhancement models, 149–150
ImageNet, 206–207, 207–208f, 220
ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), 28, 203, 206, 208f
Image production submodule, 302
Image recognition, 128
Image-to-image translation, 128
Image transformations techniques, 95
Inception blocks

GoogLeNet, 203, 205f
Naïve inception block, 203, 204–205f

Inception-v1, 203
Inception-v2, 205
Inception-v3, 205, 208, 208f

Keras applications, 208–212, 209t, 209f
TensorFlow Hub, 212–216, 212–214f
transfer learning, 225–232

Inception-v4, 205
Input layer, 1, 28–29
Instance segmentation, 283, 284f
Integer-encoding technique, 59, 63
Integrated development environments (IDEs),

xviii–xxii. See also PyCharm
Intersection over union (IoU), 290, 318–319

metrics, 149–150
YOLO-v3, 318–319

J
Jensen–Shannon divergence (JS divergence),

260
Jupyter notebook, xvif, xxiv–xxvf

keyboard shortcuts, xviiif
modes, xvii–xviiif
navigation in, xviii
operation, xvii–xviii
project creation, xvi–xviif
Ubuntu environment, xvi
Windows environment, xvi

K
Kaggle, 28, 35–37, 35–36f, 63, 225
Keras applications, 2, 6, 10–20, 11f, 208–212,

209t, 209f, 225
functional model, 14–20, 15f
keras.callbacks.TensorBoard function, 44–45
"keras.Sequential"APT in, 12–14
sequential model, 12–14, 12f

Kernel parameters, 90t
Keyboard shortcuts

Jupyter notebook, xviiif
PyCharm, xxii–xxiiif

K-means clustering method, 292
Kullback–Leibler (KL) divergence, 239–240,

248, 260

L
Latent distributions, 236–238
Learning rate, 34, 34f
LeNet, 201–202, 201f, 207, 208f
Linear classifiers, 27
Linear regression problem, 31

334 Index

Lipschitz constraint, 261
Log loss function, 31
Loss function, 10, 41
custom API and high-level Keras API of

TensorFlow, 153
discriminator, 262, 274, 278
generative adversarial network, 260
generator, 256–258, 274
multi-category classification model, 94
neural network, 31
variational auto-encoder model, 238–239,

239f, 248
WGAN-GP, 274
YOLO-v3, 297, 316

M
Machine learning (ML), 1, 27, 57–58
Matplotlib, xv
Mean absolute error (MAE), 31–32, 32f
Mean average precision (mAP), 149–150
Mean squared error (MSE), 31–32, 32f, 60–61,

61f
Merge layers, 148
Metric function, 41
custom API and high-level Keras API of

TensorFlow, 153–155
Microsoft Cognitive Toolkit (CNTK), 3
MNIST handwritten digit dataset, 240, 240f,

243
"model.summary()" function, 87
Momentum methods, 34
Mouse navigation, Jupyter notebook, xviii
Multi-category classificationmodels, 92–95, 92f
architecture, 107t
flowchart, 97f
loss function, 94
network architecture, 93, 93f

Multiclass classification problem, 32
Multiscale mapping submodule, 302
Multiscale prediction, YOLO-v2, 296
Multi-scale training, 293
MXNet, 2

N
Naïve inception block, 203, 204–205f
Narrow Atrous Spatial Pyramid Pooling

(N-ASPP) module, 298
Network architecture, 60
Network layer, 152
Neural network
architecture of, 28f
components, 30
history of, 27–28
house price-prediction models, 37–43, 37f,

48t
building and training network model,

40–41
dataset preparation, 37–40
display training results, 41–43

hyperparameters of, 30b
Kaggle platform, 35–37, 35–36f

"House Sales in King County, USA"
dataset, 35–37, 36f

overview, 35
overfitting problem, 46–54, 46–47f

principle of, 28–29, 29f
problems (see specific problems)
TensorBoard, 43–45, 169–171

hyperparameters, 188–189, 190f, 196–198,
196t

visualization with, 52–54, 53–54f
visualizing training result, 180–184, 180f
weight distribution, 177, 178f

training and test errors, 206, 206f
training procedure, 29–34, 30f
transfer learning (see Transfer learning)
types

hidden layer, 28–29
input layer, 28–29
output layer, 28–29

NMSLayer, 315
Non-maximum suppression (NMS) method,

290, 290f
Normal distribution

initialization method, 121–123
variational auto-encoder model, 236, 237f

Normalization process
batch normalization, 127–128, 127f, 291

neural network with, 128, 128f, 142t
verification of, 141–144, 142t

confusion matrix with, 182, 182f
data normalization, 39

Numpy, xv

O
Object detection, 128, 283–285, 284f

block diagram, 284f
bounding box formats, 284
convolutional neural networks, 285, 285f

CFF-SSD, 298–300, 298–299f
DSNet, 300–302, 300f
faster R-CNN, 288–289, 288f
fast R-CNN, 286–287, 286–287f
feature pyramid networks, 293, 294f
R-CNN, 285–286, 286f
RetinaNet, 294–295, 295f
single shot multibox detector (SSD), 291,
291f

YOLO-v1, 289–290, 289–290f
YOLO-v2, 291–293
YOLO-v3, 295–298, 296f, 297t

network architectures for, 293–294, 294f
selective search method, 285–286, 288

offset loss, 297
One-hot encoding techniques, 59, 59t, 63, 78f
OpenCV, xv
Optimization process, 33
Optimizers, 10, 41
Output layer, 1, 28–29
Overfitting problem, 46–54, 46–47f

dropout technique, 47, 48f
reduce the size of model, 47
weight regularization, 47

P
Pandas, xv
Parametric rectified linear unit (PReLU)

activation, 28
PASCAL Visual Object Classes 2007 dataset,

304–306, 324–330, 329f

Peak signal-to-noise ratio (PSNR), 149–150
Pok�emon combat prediction models, 62–79

architecture of, 74t
flowchart of, 65–67, 65f

Pok�emon-Weedle’s cave dataset, 63–65, 63f,
64t, 65b

Pooling layer, 88, 88–89f, 147
Pre-trained model, 220

Keras applications, 212
TensorFlow Hub, 216
transfer learning (see Transfer learning)

PyCharm
help menu, xxiif
installation, xviii–xxf
keyboard shortcuts, xxii–xxiiif
project creation, xix–xxiif
Python execution file, xxif
Python interpreter, xxif
UI theme in, xixf
VAE, 240–243, 240f
WGAN-GP, 266–270, 266f
YOLO-v3, 302–304, 303f

Pydot, 10–11b
Python

extension installation, xv
package, 3
Ubuntu environment, x
Windows environment, ix–xf

PyTorch, 3

R
Reconstruction loss, 238, 249
Rectified linear unit (ReLU) activation

function, 28, 88b, 118, 202
Recurrent layers, 148
Region proposal-based approach, 285–286, 289
Region proposal network (RPN), 288–289, 288f
Regions of interest (RoI), 285
Regions of interest (RoI) pooling, 287f

faster R-CNN, 288
fast R-CNN, 286, 287f

Regions with CNN (R-CNN), 285–286, 286f
faster R-CNN, 288–289, 288f
fast R-CNN, 286–287, 286–287f

Regression/classification-based approach,
285, 289

Reinforcement learning technique, 2f, 58, 58f
Relative entropy, 260
Reorganization layer, 293, 293f
Residual block, 206, 207f
ResNet (Residual Nets), 81, 206–207, 206f, 208f
ResNeXt, 81, 207, 299–300
Resolution matching (RM) submodule,

299–300
Restoration subnetwork, DSNet, 301, 301f
RetinaNet, 294–295, 295f
Richer Semantic Information Generation

(RSIG) module, 299
RoI. See Regions of interest (RoI)

S
Same padding mode, 85
Scalars dashboard, 44
Semantic segmentation, 88, 149–150, 283, 284f
Semi-supervised learning algorithms, 57

335Index

SENet, 207
Sequential model, in Keras, 12–14, 12f
Sigmoid activation function, 28, 118, 121
Sigmoid cross-entropy loss, 61
Single-layer neural network, 117, 118f
Single shot multibox detector (SSD), 291, 291f
SKNet, 207
Softmax function, 32, 93–94, 93f, 163b
Squeeze-and-Excitation (SE) block, 207
Static computation graph, 6
Stochastic gradient descent (SGD) algorithm,

34
Stride, 84, 85f
Structural similarity index (SSIM), 149–150
Supervised learning methods, 57
Support vector machine (SVM), 2f, 27, 285

T
Tanh activation functions, 118
TensorBoard, 43–45, 169–170, 170f

advantages of, 44
callback function, 44–45
confusion matrix, 179–181, 179f, 181f,

187–188, 187–188f
normalization process, 182, 182f
visualization, 186, 187f

disadvantages of, 44
graphic interface of, 43–44f
hyperparameter tuning, 188–200
model graph, 45, 46f
tf.summary, 169–170
tf.summary.audio, 176–177, 177f
tf.summary.histogram, 177–178,

178–179f
tf.summary.image, 172–174, 173–175f
tf.summary.scalar, 170–171, 171–172f
tf.summary.text, 175, 176f
variational auto-encoder model,

253, 254f
visualization with, 52–54, 53–54f
visualizing loss and metric changes, 45f
weight distribution with, 136–141
WGAN-GP, 280–281, 280f

TensorFlow, ix–x, 1, 169–170, 188–189
datasets, xv, 97
Ubuntu environment, xiii–xvf
Windows environment, x–xiiif

TensorFlow2, 3–7
advanced, 147–151
custom API and high-level Keras API of,

151–157
custom callback function, 150–151
custom loss function, 148–149
custom metric function, 149–150
custom network layer, 147–148

data flow graph, 5, 6f
data format of, 10b
deep learning, 1–3, 2f
deployment stage, 6–7, 7f
eager execution, 7–10
improvement of, 6–7, 7f
Keras, 10–20, 11f
functional model, 14–20, 15f
sequential model, 12–14, 12f

operations, 8–10

tf.data, 20–26, 21–22f
"tf.keras.Sequential" API in, 12–14
training stage, 6–7, 7f

TensorFlow Addons, xv
TensorFlow CPU support, xi, xiv
TensorFlow GPU support, xi, xiii–xiv
TensorFlow hub, xv, 6, 28, 212–216, 212–214f
TensorFlow.js, 7
tensorflow.keras.utils.plot_model, 10–11b
TensorFlow Lite, 7
TensorFlow Serving, 7
TensorFlowtoolkit, 43–44
Tensor processing units (TPUs), 28
Test data, training neural networks, 30
Tf.data, 6, 20–26, 21–22f
tf.GradientTape(), 43–44
tf.keras.callbacks, 169–170
tf.keras.callbacks.Callback, 150–151
tf.keras.callbacks.TensorBoard, 43–44, 136,

177, 178f
tf.keras.layers.Layer, 148
tf.keras.metrics.Metric, 149–150
tf.summary, 43–44, 169–170, 170f
tf.summary.audio, 176–177, 177f
tf.summary.histogram, 177–178, 178–179f
tf.summary.image, 172–174, 173–175f,

179–188, 184t
tf.summary.scalar, 170–171, 171–172f
tf.summary.text, 175, 176f
Theano, 2
Training data, training neural networks, 30
Training from scratch, 220, 220f, 229, 232
Training method
generative adversarial network

discriminator loss, 258–259, 258–259f
generator loss, 256, 257f, 259f

neural networks
activation functions in, 119t
backpropagation, 117–121
batch normalization, 127–128, 127f,

141–144, 142t
performance of, 145, 145t, 145f
vanishing gradient problem, 118–121
weight initialization (see Weight

initialization methods)
WGAN-GP, 262–263

Transfer learning, 219–220
inception-v3, 225–232
strategies, 220–225, 221–225f
for training neural network model, 220, 220f

Two-layer neural network, 119, 120f

U
Ubuntu environment, xxiv
Jupyter notebook, xvi
Python, x
TensorFlow, xiii–xvf

Unsupervised learning methods, 57
Upsampling submodule, 302
"use_backend()" function, 10

V
VAE model. See Variational auto-encoder

(VAE) model
Validation data, training neural networks, 30

Valid padding mode, 85
Vanishing gradient problem, 88b, 118–121
Variational auto-encoder (VAE) model,

236–237, 236f, 244f. See also Auto-
encoder (AE) model

architecture, 245f
auto-encoder vs., 236f
binary cross-entropy loss, 238
conceptual diagram, 236f
“create_vae_model” function, 246–247
GitHub, 242, 242f
implementation, 237–238,

237–238f, 240, 244
building and training, 244–253
creating helper functions, 245
MNIST handwritten digit dataset, 240,
240f, 243, 243f

project creation, 240–242
source code, 244, 244f
visualization results, 252, 253f

loss function, 238–239, 239f, 248
reconstruction loss, 238, 249
sampling in, 247f
TensorBoard, 253, 254f

VGG, 202–203, 202–203f, 207, 208f
Virtualenv virtual machine, x, xv
Visualization tools

The distributions dashboard, 177
The histograms dashboard, 177
The images dashboard, 172
The text dashboard, 175

W
Wasserstein distance, 260–262
Wasserstein generative adversarial network

with gradient penalty (WGAN-GP),
259–260

architecture, 272f
implementation, 263, 272

CelebA Dataset, 270
directory and files, 271
generated face images after training
iterations, 263, 263–265f

project creation, 266–270
loss function, 274
source code, 270, 270f
training process, 262–263, 279
visualization results, 280

Weight decay, 47
Weight initialization methods, 121–126

He initialization, 125–126
loss function, 47
normal distribution initialization,

121–123
verification of, 129–141
Xavier or Glorot initialization, 121, 123–125

Weight regularization, 47
Windows environment, xxiv

Jupyter notebook, xvi
Python, ix–xf
TensorFlow, x–xiiif

X
Xavier initialization method, 121
Xception, 205

336 Index

Y
You Only Look Once (YOLO), 289–290,

289–290f
YOLO-v1, 289–290, 289–290f
YOLO-v2, 291–293
YOLO-v3, 295–298, 296f, 297t, 307f

anchor boxes, 296–297, 297t
architecture, 309, 310f
data augmentation, 319

data preprocessing, 319
detection, 328–329, 329f
directory and files, 307
GitHub, 302, 303f
hyperparameters for training, 323–324
implementation, 307
intersection over union, 318–319
last convolutional layer, 312
loading process, 302–304

PASCAL Visual Object Classes 2007
dataset, 304–306, 324–330, 329f

path of, 303f
PyCharm, 302–304, 303f
source code, 307–309, 307f, 311
virtual environment, 304, 304f

Z
Zero padding technique, 83–84, 84f

337Index

	Principles and Labs for Deep Learning
	Copyright
	Preface
	Environment installation
	Python installation
	Windows environment
	Ubuntu environment

	TensorFlow installation
	Windows environment
	Ubuntu environment

	Python extension installation
	Jupyter notebook
	Jupyter notebook installation
	Setup and create new project
	Jupyter Notebook operation

	PyCharm IDE
	PyCharm installation
	Setup and create new project
	PyCharm keyboard shortcuts

	GitHub labs
	Download source codes
	Open and run source code

	Introduction to TensorFlow 2
	Deep learning
	Introduction to deep learning
	Deep learning toolkits

	Introduction to TensorFlow
	Improvement of TensorFlow 2
	Eager execution
	Introduction to eager execution
	Basic TensorFlow operations

	Keras
	Introduction to Keras
	Sequential model
	Functional model

	Tf.data
	Introduction to tf.data
	Basic functions of tf.data API

	References

	Neural networks
	Introduction to neural networks
	A brief history of neural networks
	Principle of neural networks
	Training neural networks

	Introduction to Kaggle
	Kaggle platform
	House sales in King County dataset

	Experiment 1: House price prediction
	Preparing dataset
	Building and training network model
	Displaying training results

	Introduction to TensorBoard
	Experiment 2: Overfitting problem
	Introduction to overfitting
	Code examples
	Visualization with TensorBoard

	References

	Binary classification problem
	Machine learning algorithms
	Binary classification problem
	Introduction to binary classification
	Binary classification model

	Experiment: Pokémon combat prediction
	Introduction to Pokémon-Weedles cave dataset
	Code examples

	References

	Multi-category classification problem
	Convolutional neural network
	Introduction to convolutional neural network
	Building a convolutional neural network
	Operation of convolutional neural network

	Multi-category classification
	Introduction to multi-category classification
	Multi-category classification model
	Data augmentation

	Experiment: CIFAR-10 image classification
	Introduction to CIFAR-10 dataset
	TensorFlow datasets
	Code examples

	References

	Training neural network
	Backpropagation
	Introduction to backpropagation
	Vanishing gradient problem

	Weight initialization
	Normal Distribution
	Glorot initialization
	He initialization

	Batch normalization
	Introduction to batch normalization
	Neural network with batch normalization

	Experiment 1: Verification of three weight initialization methods
	Code examples
	Visualizing weight distribution with TensorBoard

	Experiment 2: Verification of batch normalization
	Comparison of different neural networks
	References

	Advanced TensorFlow
	Advanced TensorFlow
	Custom network layer
	Custom loss function
	Custom metric function
	Custom callback function

	Using high-level keras API and custom API of TensorFlow
	Network layer
	Loss function
	Metric function
	Callback function

	Experiment: implementation of two network models using high-level keras API and custom API

	Advanced TensorBoard
	Advanced TensorBoard
	tf.summary.scalar
	tf.summary.image
	tf.summary.text
	tf.summary.audio
	tf.summary.histogram

	Experiment 1: Using tf.summary.image API to visualize training results
	Experiment 2: Hyperparameter tuning with TensorBoard HParams
	HPARAMS dashboard on TensorBoard
	Code examples

	Convolutional neural network architectures
	Popular convolutional neural network architectures
	LeNet
	AlexNet
	VGG
	GoogLeNet
	ResNet
	Comparison of network architectures

	Experiment: Implementation of inception-v3 network
	Keras applications
	TensorFlow Hub

	References

	Transfer learning
	Transfer learning
	Introduction to transfer learning
	Transfer learning strategies

	Experiment: Using Inception-v3 for transfer learning
	Introduction to Dogs vs. Cats dataset
	Code examples

	References

	Variational auto-encoder
	Introduction to auto-encoder
	Introduction to variational auto-encoder
	Introduction to VAE
	Operation of VAE
	Variational auto-encoder loss function

	Experiment: Implementation of variational auto-encoder model
	Create project
	Introduction to the dataset
	Building a Variational auto-encoder model

	References

	Generative adversarial network
	Generative adversarial network
	Introduction to generative adversarial network
	Training generative adversarial network

	Introduction to WGAN-GP
	Drawbacks of generative adversarial network
	Introduction to Wasserstein distance
	Training WGAN-GP

	Experiment: Implementation of WGAN-GP
	Create project
	Introduction to dataset
	Building WGAN-GP model

	References

	Object detection
	Computer vision
	Introduction to object detection
	Object detection methods
	R-CNN
	Fast R-CNN
	Faster R-CNN
	YOLO-v1
	SSD
	YOLO-v2
	Feature pyramid networks
	RetinaNet
	YOLO-v3
	CFF-SSD
	DSNet

	Experiment: Implementation of YOLO-v3
	Load YOLO-v3 project
	Introduction to dataset
	Building YOLO-v3 model

	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

