

Generative Al Application
Integration Patterns

Integrate large language models into your applications

Juan Pablo Bustos

Luis Lopez Soria

Generative Al Application Integration Patterns

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Tushar Gupta
Acquisition Editor — Peer Reviews: Tejas Mhasvekar
Project Editor: Meenakshi Vijay

Content Development Editor: Shazeen Igbal

Copy Editor: Safis Editing

Technical Editor: Gaurav Gavas

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Presentation Designer: Rajesh Shirsath

Developer Relations Marketing Executive: Maran Fernandes
First published: August 2024

Production reference: 1290824

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 IRB, UK.

ISBN 978-1-83588-760-8

www . packt.com

www.packt.com

Foreword

The field of Artificial Intelligence is in the midst of bringing about a profound transformation in
business. One of the pivotal areas of this transformation is in the integration with applications
thatare already running businesses, and adding value to them. This book, Generative AI Application
Integration Patterns explores these recurrent themes as patterns of integration with generative AL
It serves as a timely guide for navigating the nuanced landscape of integrating GenAl into existing
business applications. It peers into the fog of the immense potential of GenAl, and provides prac-
tical clarity that may help you revolutionize key competitive aspects of your business operations;
areas like enhancing customer experiences to domains such as streamlining internal processes. By
focusing on the practical aspects of integration, the authors equip readers with the background

knowledge and tools they need to leverage this transformative technology even more effectively.

Juan and Luis delve into the underlying practical aspects of generative Al, and in doing so, pro-
vide a solid foundation for understanding and actualizing its capabilities and navigating its
limitations. They explore the different architectural integration patterns that can be employed
for more seamless integration, and consider how factors such as scalability, performance, and
security should be taken into account. The practical case studies presented throughout the book
showcase how successful implementations of GenAl can be realized across industries. These ex-
amples are exemplary blueprints that demonstrate how businesses can leverage this technology

to achieve tangible outcomes.

In addition, this book addresses some of the critical considerations of responsible Al development
and deployment. It emphasizes the importance of ethical considerations, data privacy, and bias
mitigation, thathelp ensure that GenAl is utilized in a manner that aligns with ethical principles
and societal values. This holistic approach helps readers not only gain technical expertise but also

develop a deeper appreciation of the ethical challenges and implications of their work.

Generative Al Application Integration Patterns is a well-written, engaging and very relevant set of
blueprints that technology and business leaders, as well as developers, should be aware of as they
seek to integrate applications with the promise presented in GenAl. I encourage you to dive deep
into the examples, reflect on the concepts presented in this book, and embark on the exciting
journey of discovery and innovation in harnessing the potential of GenAl. The future of business

is being shaped by Al, and this book is an essential companion on that path.

Dr. Ali Arsanjani

Director of Applied Al Engineering, Google

Contributors

About the authors

Juan Pablo Bustos is a seasoned technology professional specializing in artificial intelligence
and machine learning. With a background in computer science, Juan has held leadership posi-
tions at major tech companies including Google, Stripe, and Amazon Web Services. His expertise
spans Al services, solution architecture, and cloud computing. Juan is passionate about helping

organizations leverage cutting-edge technologies to drive innovation and deliver value.

I'm deeply grateful to my wife Cinthia for her constant support, encouragement, and for being my
sounding board for even my craziest ideas. Thanks to Penny and Andrew, my kids, for their patience.
I'd like to acknowledge my father, Dr. Sergio Bustos, for encouraging me to pursue computer science.
I'm indebted to Dr. Ali Arsanjani, Robert Love, and Todd Reagan for their invaluable mentorship
and friendship. A special thanks to my friend Luis, my partner in crime for this book. Finally, I'd

like to recognize Gemini, Claude, and ChatGPT for their invaluable help and for democratizing
access to GenAl

Luis Lopez Soria is an experienced software architect specializing in AI/ML. He has gained
practical experience from top firms across heavily regulated industries like healthcare and finance,
as well as big tech firms like AWS and Google. He brings a blended approach from his experience
managing global partnerships, Al product development, and customer-facing roles. Luis is pas-

sionate about learning new technologies and using these to create business value.

I want to thank my parents and sister. Your unwavering support, willingness to lend an ear, and
readiness to brainstorm ideas have been invaluable. To my grandfather Felix and uncle Ricardo:

‘your presence and support by my side made this dream a reality.

A special thanks goes to Chris K. and Juan B., whose early influence on my career cannot be overstated.
Your constant push for excellence and valuable input have left an indelible mark on my professional

growth and, by extension, on this book.

To all of you, and the many others who have contributed in ways both big and small, I offer my

heartfelt gratitude. This book stands as a testament to your belief in me and your ongoing support.

About the reviewer

Aditi Khare holds 8+ years of experience in the Al research and product engineering space.

She is passionate about Al research, open source, and building production-grade Al products. She
has worked for Fortune 50 product companies. She has completed a big data analytics course at
the Indian Institute of Management, Ahmedabad, and a master’s in computer applications at K.
J. Somaiya Institute of Management, Mumbai. In her spare time, she enjoys reading Al-related
research papers and publishing research paper summaries through her LinkedIn newsletter. For

more information about her, visit https://www.linkedin.com/in/aditi-khare-5840977b/.

I'd like to dedicate my contribution to this book to the loving memory of my beloved mom, the late

Mrs. Shashi Khare, who has always been my inspiration and the reason for my achievements.

I'd like to thank my father Mr. Alok Khare and my brother Ayush Khare for being very supportive
and acting as a guiding force in all my achievements.

https://www.linkedin.com/in/aditi-khare-5840977b/

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Table of Contents

Preface XV
Chapter 1: Introduction to Generative Al Patterns 1
From Al predictions t0 GENETrative Alccccccceeeeeecessssneeeiecissssnnseetecessssssssssescssssssssssesssssssssssees 2

Predictive Al vs generative Al use Case Ideationcuueeereeesneesrueessnnensnnecsnecsneesaseesssecssneeses 4

A change in the paradigm .. ceesteeessnteesssattee st ee s bt e e b bt e s e bt e e e b bt e e e bt e ee bbbt e s bRt esesssnaeees 7

Predictive Al use case development — simplified lifecycle o 8
Generative Al use case development — simplified lifecycle ¢ 9

General enerative Al CONCEPLSeeeeeerrecesssernnerecccsssssseeesscsssssssseesecsssssssssssesssssssssssesssssssssnes 1

Generative Al model architectures e 11
Techniques available to optimize foundational models ¢ 12
Techniques to augment your foundational model responses o 13

Constant evolution across the generative Al SPACE ...eeeereerrssunneeerecsssrnneeerescsssnseseeseces .13

Introducing generative Al INteGration PAtLEINSccccceeeecersssneerrecssssssnsereescsssssssssessesssssnes 14

SUIMINATY cevrsersssccsssssessssssssscsssnssesssscsssssssssssnsssessssssssssssnsaserssssssssssssnasesssssssssssssanssesssessssssssss 19

Chapter 2: Identifying Generative Al Use Cases 17
When to consider Generative Alcccccerevveeeeeeecisssssnneeeeecsssssssseesecssssssssessessssssssssseseses 18
Realizing DUSINESS VAlUE .cueeiriiiceeriiisniiissntiissnneiisssnnticssneiesssssissssssesssssssssssssesessasssssssssens 20
Identifying Generative AL USE CASES ...cceeeersnercssssneesssnnesssssneecsssseesssssessssssesssssssessssssessssssseses 21
Potential business-focused USe CASES ...ciuvvrrriirnririssnersssneeiissnneisssnecsssnnesssssneesssssnesssssnenes 23
Generative Al deployment and hosting OPtioNSeeeeeeecirvsneeiiccissssneeeeeccssssneseeeeccssnnes 28

SUIMIMATY cecvccscrcssescoscscosascssescosescesascssescesssssesoscesasecsssstsessesesessasessassesesessesessassesasessasessassesasee 29

Table of Contents

Chapter 3: Designing Patterns for Interacting with Generative Al 31
Defining an integration frameworkcccoccccceeeiecinssreeeticcinnssneeeiecisssssneeeeescssssssessessessssnens 33
3115178 01031 4 | R S 34
PrOMPL Pre-PrOCESSINE «eueveereereccsssssrneeecccsssssesseeeecssssssseesecssssssssassesssssssssssessessssssssssssessssssns 34
INFEIEIICE werrirurrriissnnriissntiissntiisssseticssneiesssstissssssesesssssesssssessssssssssssssesssssssssssssssssssssssssnseses 35
Results post-processingcccceeeeeecvenees ceeeeereteeteniettntetantttnstntssttrssttrssenessssanssnrsnsssane 36

Selecting from amongst multiple outputs e 43

Refining generated outputs e 45
RESUILS PrESENTALION .euvverrcssneressssnrisssserssssssesssssssrssssssessssssssssssssessssssssssssssessssssssssasssssassssss 49
LOZEING «evveereeccrsssssuneeeccssssssneeeeccsssssssseessessssssssseesessssssssssssssssssssssssessssssssssssesssssssssssasssesssssnns 50
SUMMATY .eeererencennicennccrancceencnes . ceetereneeteniettntetatiettnttnnetanessanisssnsssananns 52
Chapter 4: Generative Al Batch and Real-Time Integration Patterns 55
Batch and real-time integration PAtLErNSceceeeecssseeecsssneecsssssessssssescsssseesssssessssssssssssssese 56
Different pipeline architeCtureseeceeeeerevveeeriecisissneeeiiccsssssneeeesccssssssseesecsssnens .. 57
Application integration patterns in the integration frameworkcccoocceercrueeecssneercsaneees 59

Entry point e 59

Prompt pre-processing e 61

Inference o 61

Result post-processing e 63

Result presentation e 64
Use case example — search enhanced by GenALueueeeeeiceisneeeeeiccsssssnneeeiccssseneeecccsssnnnns 65
Batch integration — docCUMENt INGESHION ...eeercrvurerissssereissneicsssserssssssescsssssesssssessssssssessassens 66

Real-time integration — search ¢ 67
SUMMATY .ceeeerenncennecennee . ceeeeerateetaniettnietaniettniettnesanestanssssnsssananns ..68
Chapter 5: Integration Pattern: Batch Metadata Extraction 71
Use case definition . ceeeeteessateeeiatteesbateesbbteesbbtee e b bt e e e bb s e e e bRt e e e bbb e e e bbb Rt e e bbb e eesbbaaeens 72
Architecture .. . cesereesssnnneesens cesereeessntessssateessantesssatessssartessrsanesssnane .74

Entry point e 76

Prompt pre-processing e 76

Table of Contents

xi

Inference o 85
Result post-processing e 88

Result presentation e 89

SUMMATY .eeeeeencenncenncennceanecnes coesssesecsesntensnsstsessesntessuseiseressaressaresseressaressaneesenee 920
Chapter 6: Integration Pattern: Batch Summarization 93
Use case definition . Ceeeesaeeeseeesrte s ate bt e bt e bt e bt e Rt e bR e s bR e e bR e e bR s R RS e R R e e bR e e bR a e bR a e es 94
ATCRITECTUTE auueiiireneiiiinniiiisntiiisneticssntiesssnticssseiesssssessssssessssassssssssesssssssssssassessssnssssssansnes 96

Entry point e 98

Prompt pre-processing e 98

Inference o 101

Result post-processing ¢ 102

Result presentation e 103
SUMMATY eeceeeeenncereenncccrennnceenens eeeeseseetetteseettttnseeerarssesetarnscessassesssanssscssasnsessenans 104
Chapter 7: Integration Pattern: Real-Time Intent Classification 107
Use case definition . ceeeteeessattessattess bt teesbttte s bt e sesbbtteebbateesbbteesrsbatesssratsessnaas . 108
Architecture .. . cessreecssnnneeeans ceseteeessntesesarteesantessssatessssartessssanesssnane 109

Entry point e 111

Prompt pre-processing e 111

Inference o 113

Result post-processing e 115

Result presentation e 118

Logging and monitoring e 121
SUMMATY .eeeeeeenncenncenncennceanecens sucsseseesesnssernssesussesntsesnrsisurseserseseressnressarsssnnsesanes . 121
Chapter 8: Integration Pattern: Real-Time Retrieval
Augmented Generation 123
Use case definition . cesereesssntteesartessssatesessattessateessrattesesbteessbRttesersataeebRaaesersnaaessrranees 125
ATCHITECTUTE .uuvvereiurernirnrennssnneenisneencssnnencssssenssssneessssnsensssaseessssssessssssesssssssesssssasssne .126
ENtry point ..ccceeeeeeceeeccssennnees S 1 -

Prompt pre-processing ¢ 128

xii Table of Contents

INfErence .cceeeeeeeeeenneeceeenneene eeeseeeeetetseserartrisessrrsseestressastrrsesarrresssessrrnsssesarsssesaransnsens 131

RESULIL POST-PIrOCESSING .euuueeeeerreiirrrrsruneiiecsssssnneeiicssssssssestisssssssssssesssssssssssssssssssssssssssessssses 133

Result presentation e 134

USE CASE AEIMNO cevenrreeeeeeeereeneannessceeeeereeasssssssssscsesssannsnssnnnns ... 135

The Gradio app e 137

SUMMATY .eceeeeennecenennnccceennnceennns . ceeseseeettnnnieetatnsecttntnseetarsssessasnssesssnnsanes . 137
Chapter 9: Operationalizing Generative Al Integration Patterns 139
Operationalization framewWorkceciceceiiivceiiiciinisineetiecisssssneetescsssssnneessesssssens ... 140
Datalayerccooevveeeeiicciissneeeiecisssnneeeiecesnens S 142

Areal-world example: Part1e 143

Training layer ..cceeeeeeiiiincneeiieiciiiineeteeiccissnnnneeiecissssnnseteeccssssnssseessens cerenenneerecenes 144

Areal-world example: Part 2 e 147

INFErENCE LAYET eccvueriririniiiiiniiiissneiicssnticnsntiesssnntecssntesssssseesssssesssssssessssssesssssnssssssasssssaes 150

Areal-world example: Part 3 o 152

(0515 =N T03 s T N = cereeneetteeesssanaasessannaaeesees 153
CI/CD and MLOps e 154
Monitoring and observability ¢ 155
Evaluation and monitoring ¢ 156
Alerting o 158
Distributed tracing ¢ 158
Logging e 159

Cost optimization e 159

SUIMMATY teceeeennieeeeenneceteannccereennscceesssecessesssscssssssscesssssssssssssscssssssscsssssssssssssssssssssssces .. 160
Chapter 10: Embedding Responsible Al into Your GenAl Applications 163
Introduction to reSPONSIDIE ALcuueeeiiieiiiirrnneriecssesssnnesiecsssssnnesiesssssssssssssssssssssssssssssssssnns 163
Fairness in GenAl applicationseeceeeeerccunecercccsenees ceeeesesessssssssssssssnsnsssesasannssnnnnes 165
Interpretability and explainabilityccocceveeeeiiiiiiisneeiiiiiiiisneetieccsieneeeteecsssneeeeesesssnnnes 167

Privacy and data protectionccceeereneees cesreesessaressaneesesnteessantesessaneessraraesersananees 169

Table of Contents

xiii

Safety and security in GenAl systems 171
Google’s approach to responsible Al ¢ 173
Google’s Secure AI Framework (SAIF) e 174
Google’s Red Teaming approach e 176
Anthropic’s approach to responsible Al ¢ 177
SUIMMATY teceeeennieeeeenniceneannceereennscceeenseccsesassscsssssssccsssssscssssssscssssssscsssssssssesans . 181
Other Books You May Enjoy 187
Index 191

Preface

More than five years ago, before the widespread adoption of generative Al, we were searching for
new ways to enhance application development and user experiences. A few years later, we found
ourselves deeply immersed in the world of generative Al, which has opened countless possibil-
ities for innovation. Before discovering the transformative potential of this technology, we, the
authors, explored various machine learning techniques, experimenting with different models
and reading countless research papers. With generative Al, we found more than just a powerful
tool; we discovered a new paradigm that is reshaping how we approach software development

and problem-solving.

This book is about sharing the excitement and insights we have gained while exploring and
implementing generative Al solutions. It is intended to guide you through the wide world of
generative Al applications, with a focus on practical design patterns and real-world implemen-
tations. We will cover concepts ranging from basic to advanced, taking you on a journey like the

one I experienced while learning to harness the power of generative Al

Who this book is for

This book caters to a wide audience with a keen interest in generative Al and its practical appli-

cations:

e Software developers and engineers with foundational knowledge of AI/ML and Python
e Software architects seeking generative Al best practices and design patterns

e Data scientists, researchers, and analysts looking to incorporate generative Al into their

workflows
e Technical product managers with a background in software development

e Al enthusiasts who want to deepen their understanding of generative Al implementation

strategies

xvi Preface

What this book covers

Chapter 1, Introduction to Generative Al Patterns, provides an overview of generative Al concepts,

architectures, and their potential impact on application development.

Chapter 2, Identifying Generative AI Use Cases, guides readers through the process of identifying

and evaluating potential use cases for generative Al across various domains.

Chapter 3, Designing Patterns for Interacting with Generative Al, explores different strategies for

effectively communicating with and leveraging generative Al models in applications.

Chapter 4, Generative Al Batch and Real-Time Integration Patterns, discusses the different approaches

for integrating generative Al into both batch-processing and real-time systems.

Chapter 5, Integration Pattern: Batch Metadata Extraction, demonstrates how to implement gener-

ative Al to extract metadata from large datasets in batch mode.

Chapter 6, Integration Pattern: Batch Summarization, covers techniques for using generative Al to

create summaries of large volumes of text data.

Chapter 7, Integration Pattern: Real-Time Intent Classification, shows how to implement generative

Al to classify user intents in real-time applications.

Chapter 8, Integration Pattern: Real-Time Retrieval Augmented Generation, explores advanced tech-
niques for building question-answering systems using generative Al and retrieval augmented

generation.

Chapter 9, Operationalizing Generative Al Integration Patterns, provides guidance on deploying,

monitoring, and maintaining generative Al systems in production environments.

Chapter 10, Embedding Responsible Al into Your GenAl Applications, addresses ethical considerations

and best practices for responsible use of generative Al in applications.

To get the most out of this book

To fully benefit from this book, you should have:

e Asolid understanding of Python programming
e Familiarity with basic machine learning concepts
e Experience with software development and application architectures

e Accesstoadevelopment environment capable of running Python and installing necessary

libraries

Preface xvii

The chapters contain both theoretical explanations and practical code examples. To run the code
in the book, you can follow these steps:

1. Clone the GitHub repository associated with this book.

2. Setup aPython environment with the required dependencies (listed in the repository).
3. Download or access the necessary generative Al models as instructed in each chapter.
4

Run the provided Jupyter notebooks or Python scripts.
Alternatively, you can use cloud-based platforms that offer pre-configured environments for Al

development, such as Google Colab or Amazon SageMaker, to run the examples without setting

up a local environment.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Generative-AI-Integration-Patterns-1E. We also have other code bundles from our rich cat-

alog of books and videos available athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://packt.link/gbp/9781835887608.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter/X handles. For example: “Mount

the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

Ablock of code is set as follows:

generation_config = {
"max_output_tokens": 8192,
"temperature": 0,
"top_p": 0.95,

https://github.com/PacktPublishing/Generative-AI-Integration-Patterns-1E
https://github.com/PacktPublishing/Generative-AI-Integration-Patterns-1E
https://github.com/PacktPublishing/
https://packt.link/gbp/9781835887608

xviii Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

responses = model.generate_content(
[prompt],
generation_config=generation_config,
safety_settings=safety_settings,

stream=False,

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

/etc/asterisk/cdr_mysql.conf

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.”

\/V) Warnings or important notes appear like this.

N

',@\' Tips and tricks appear like this.

7/

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of
your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Pleasevisithttp://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

http://www.packtpub.com/submit-errata

Preface xix

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.comwith a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are

interested in either writing or contributing to a book, please visithttp: //authors.packtpub. com.

Share your thoughts

Once you've read Generative Al Application Integration Patterns, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your
feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1835887619
http://authors.packtpub.com

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.
Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https.//packt.link/free-ebook/9781835887608

2. Submit your proof of purchase.

3. That’sit!l We'll send your free PDF and other benefits to your email directly.

Intfroduction to Generative Al
Patterns

This chapter provides an overview of key concepts, techniques, and integration patterns related

to generative Al that will empower you to harness these capabilities in real-world applications.

We will provide an overview of generative Al architectures, such as transformers and diffusion
models, which are the basis for these generative models to produce text, images, audio, and more.
You'll get a brief introduction to specialized training techniques, like pre-training and prompt

engineering, that upgrade basic language models into creative powerhouses.

Understanding the relentless pace of innovation in this space is critical due to new models and
ethical considerations emerging constantly. We’ll introduce strategies for experimenting rapidly

while ensuring responsible, transparent development.

The chapter also introduces common integration patterns for connecting generative Al into prac-
tical workflows. Whether crafting chatbots that leverage models in real time or performing batch
enrichment of data, we will introduce prototyping blueprints to jumpstart building Al-powered

systems.

By the end, you will have a one-thousand-foot view of which generative Al models are available,
why experimentation is important, and how these integration patterns can help create value for

your organization leveraging generative Al
In a nutshell, the following main topics will be covered:

e Interacting with Al

2 Introduction to Generative Al Patterns

e Predictive Al vs generative Al use case ideation
e Achangein the paradigm
e General generative Al concepts

e Introduction to generative Al integration patterns

From Al predictions to generative Al

The intent of this section is to provide a brief overview of artificial intelligence, highlighting our
initial experiences with it. In the early 2000s, Al started to become more tangible for consumers.

For example, in 2001, Google introduced the “Did you mean?” feature (https://blog.google/
intl/en-mena/product-updates/explore-get-answers/25-biggest-moments-in-search-

from-helpful-images-to-ai/), which suggests spelling corrections. This was one of Google’s
first applications of machine learning and one of the early Al features that the general public got

to experience on a large scale.

Over the following years, Al systems became more sophisticated, especially in areas like computer
vision, speech-to-text conversion, and text-to-speech synthesis. Working in the telecom industry
helped me witness the innovation driven by speech-to-text in particular. Integrating speech-to-
text capabilities into interactive voice response (IVR) systems led to better user experiences by
allowing people to speak their requests rather than punch numbers into a keypad. For example,
you could be calling a bank where you would be welcomed by a message asking you to say “balance”
to check your balance, “open account” in order to open an account, etc. Nowadays we are seeing

more and more implementations of Al, simplifying more complex and time-consuming tasks.

The exponential increase in available computing power, paired with the massive datasets needed
to train machine learning models, unleashed new Al capabilities. In the 2010s, Al started matching

and even surpassing human performance on certain tightly defined tasks like image classification.

The advent of generative Al has reignited interest and innovation in the Al field, introducing new
approaches for exploring use cases and system integration. Models like Gemini, PaLM, Claude,
DALL-E, OpenAl GPT, and Stable Diffusion showcase the ability of Al systems to generate syn-
thetic text, images, and other media. The outputs exhibit creativity and imagination that capture
the public’s attention. However, the powerful capabilities of generative models also highlight
new challenges around system design and responsible deployment. There is a need to rethink
integration patterns and architecture to support safe, robust, and cost-effective implementa-
tions. Specifically, issues around security, bias, toxicity, and misinformation must be addressed
through techniques like dataset filtering, human-in-the-loop systems, enhanced monitoring,

and immediate remediation.

https://blog.google/intl/en-mena/product-updates/explore-get-answers/25-biggest-moments-in-search-from-helpful-images-to-ai/
https://blog.google/intl/en-mena/product-updates/explore-get-answers/25-biggest-moments-in-search-from-helpful-images-to-ai/
https://blog.google/intl/en-mena/product-updates/explore-get-answers/25-biggest-moments-in-search-from-helpful-images-to-ai/

Chapter 1 3

As generative Al continues maturing, best practices and governance frameworks must evolve
in tandem. Industry leaders have formed partnerships like the Content Authenticity Initiative
to develop technical standards and policy guidance around the responsible development of the
next iteration of Al This technology’s incredible potential, from accelerating drug discovery to
envisioning new products, can only be realized through a commitment to transparency, ethics,

and human rights. Constructive collaboration that balances innovation with caution is imperative.

Generative Al marks an inflection point for the field. The ripples from this groundswell of creative
possibility are just beginning to reach organizations and communities. Maintaining an open,
evidence-driven dialogue around not just capabilities but also challenges lays a foundation for

Al deployment that empowers people, unlocks new utility, and earns widespread trust.

We are witnessing an unprecedented democratization of generative Al capabilities through pub-
licly accessible APIs from established companies like Google, Meta, and Amazon, and startups
such as Anthropic, Mistral Al Stability Al, and OpenAl. The table below summarizes several

leading models that provide versatile foundations for natural language and image generation.

Just afew years ago, developing with generative Al required specialized expertise in deep learning
and access to vast computational resources. Now, models like Gemini, Claude, GPT-4, DALL-E,
and Stable Diffusion can be accessed via simple API calls at near-zero cost. The bar for experi-

mentation has never been lower.

This commoditization has sparked an explosion of new applications leveraging these pre-trained
models —from creative tools for content generation to process automation solutions infused with
Al Expect integrations with generative foundations across all industries in the coming months

and years.

Models are becoming more knowledgeable, with broader capabilities and reasoning that will re-
duce hallucinations and increase accuracy across model responses. Multimodality is also gaining
traction, with models able to ingest and generate content across text, images, audio, video, and
3D scenes. In terms of scalability, model size and context windows continue expanding expo-

nentially; for example, Google’s Gemini 1.5 now supports a context window of 1 million tokens.

Overall, the outlook points to a future where generative Al will become deeply integrated into
most technologies. These models introduce new efficiencies and automation potential and inspire

creativity across nearly every industry imaginable.

4 Introduction to Generative Al Patterns

The table below highlights some of the most popular LLMs and their providers. The purpose of
the tableis to highlight the vast number of options available on the market at the time of writing
this book. We expect this table to quickly become outdated by the time of publication and highly

encourage readers to dive deep into the model providers’ websites to stay up to date with any

new launches.

Model Provider Landing Page

Gemini Google https://deepmind.google/
technologies/gemini

Claude Anthropic https://claude.ai/

ChatGPT OpenAl https://openai.com/blog/
chatgpt

Stable Diffusion Stability Al https://stability.ai/

Mistral Mistral Al https://mistral.ai/

LLaMA Meta https://11lama.meta.com/

Table 1.1: Overview of popular LLMs and their providers

Predictive Al vs generative Al use case ideation

Predictive Al refers to systems that analyze data to identify patterns and make forecasts or clas-
sifications about future events. In contrast, generative Al models create new synthetic content
like images, text, or code based on the patterns gleaned from their training data. For example,
with predictive Al you can confidently identify if an image contains a cat or not, whereas with
generative Al you can create an image of a cat from a text prompt, modify an existing image to

include a cat where there was none, or generate a creative text blurb about a cat.

Product innovation focused on Al involves various phases of the product development lifecycle.
With the emergence of generative Al, the paradigm has shifted away from initially needing to
compile training data to train traditional ML models and toward leveraging flexible pre-trained

models.

Foundational models like Google’s PaLM 2 and Gemini, OpenAI’s GPT and DALL-E, and Stable
Diffusion provide broad foundations enabling rapid prototype development. Their versatile ca-

pabilities lower the barrier for experimenting with novel Al applications.

https://deepmind.google/technologies/gemini
https://deepmind.google/technologies/gemini
https://claude.ai/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://stability.ai/
https://mistral.ai/
https://llama.meta.com/

Chapter 1 5

Where previously data curation and model training from scratch could take months before as-
sessing viability, now proof-of-concept generation is possible within days without the need to

fine-tune a foundation model.

This generative approach facilitates more iterative concept validation. After quickly building an
initial prototype powered by the baseline model, developers can then collect niche training data
and perform knowledge transfer via techniques like distillation to customize later versions; we
will deep dive into the concept of distillation later in the book. The model’s primary foundation

contains already encoded patterns useful for kickstarting and for iterations of new models.

In contrast, the predictive modeling approach requires upfront data gathering and training before
any application testing. This more linear progression limits early-stage flexibility. However, pre-
dictive systems can efficiently learn specialized correlations and achieve a high level of confidence

inference metrics once substantial data exists.

Leveraging versatile generative foundations supports rapid prototyping and use case exploration.
But, later, custom predictive modeling boosts performance on narrow tasks with sufficient data.
Blending these Al approaches capitalizes on their complementary strengths throughout the

model deployment lifecycle.

Beyond the basic use — prompt engineering — of a foundational model, several auxiliary, more
complex techniques can enhance its capabilities. Examples include Chain-of-Thought (CoT)
and ReAct, which empower the model to not only reason about a situation but also define and

evaluate a course of action.

ReAct, presented in the paper ReAct: Synergizing Reasoning and Acting in Language Models (https://
arxiv.org/abs/2210.03629), addresses the current disconnect between LLMs’ language under-
standing and their ability to make decisions. While LLMs excel at tasks like comprehension and
question answering, their reasoning and action-taking skills (for example, generating action

plans or adapting to unforeseen situations) are often treated separately.

ReAct bridges this gap by prompting LLMs to generate both “reasoning traces,” detailing the
model’s thought process, and task-specific actions in an interleaved manner. This tight coupling
allows the model to leverage reasoning for planning, execution monitoring, and error handling,
while simultaneously using actions to gather additional information from external sources like
knowledge bases or environments. This integrated approach demonstrably improves LLM per-

formance in both language and decision-making tasks.

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

6 Introduction to Generative Al Patterns

For example, in question-answering and fact-verification tasks, ReAct combats common issues
like hallucination and error propagation by utilizing a simple Wikipedia API. This interaction
allows the model to generate more transparent and trustworthy solutions compared to methods
lacking reasoning or action components. LLM hallucinations are defined as content generated
that seems plausible yet factually unsupported. There are various papers that aim to address
this phenomenon. For example, A survey of Hallucination in Large Language Models — Principles,
Taxonomy, Challenges, and Open Questions deep dives into an approach to not only identify but
also mitigate hallucinations. Another good example of a mitigation technique is covered in the
paper Chain-of-Verification Reduces Hallucination in Large Language Models (nttps://arxiv.org/
pdf/2309.11495.pdf). At the time of writing this book, hallucinations are a very rapidly changing
field.

Both CoT and ReAct rely on prompting: feeding the LLM with carefully crafted instructions that
guide its thought process. CoT, as presented in the paper Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models (https://arxiv.org/abs/2201.11903), focuses on building a
chain of reasoning steps, mimicking human thinking. Imagine prompting the model with: “I want
to bake a cake. First, I need flour. Where can I find some?” The model responds with a potential
source, like your pantry. This back-and-forth continues, building a logical chain of actions and

decisions.

ReAct takes things a step further, integrating action into the reasoning loop. Think of it as a
dynamic dance between thought and action. The LLM not only reasons about the situation but
also interacts with the world, fetching information or taking concrete steps, and then updates its
reasoning based on the results. It’s like the model simultaneously planning a trip and checking

maps to adjust the route if it hits a roadblock.

This powerful synergy between reasoning and action unlocks a new realm of possibilities for
LLMs. CoT and ReAct tackle challenges like error propagation (jumping to the wrong conclusions
based on faulty assumptions) by allowing the model to trace its logic and correct course. They

also improve transparency, making the LLM’s thought process clear and understandable.

In other words, large language models (LLMs) are like brilliant linguists, adept at understanding
and generating text. But when it comes to real-world tasks demanding reasoning and action, they
often stumble. Here’s where techniques like CoT and ReAct enter the scene, transforming LLMs

into reasoning powerhouses.

https://arxiv.org/pdf/2309.11495.pdf
https://arxiv.org/pdf/2309.11495.pdf
https://arxiv.org/abs/2201.11903

Chapter 1 7

Imagine an LLM helping diagnose a complex disease. CoT could guide it through a logical chain
of symptoms and examinations, while ReAct could prompt it to consult medical databases or run
simulations. This not only leads to more accurate diagnoses but also enables doctors to under-

stand the LLM’s reasoning, fostering trust and collaboration.

These futuristic applications are what drive us to keep building and investing in this technology,
which is very exciting. Before we dive deep into the patterns that are needed to leverage generative

Al technology to generate business value, let’s take a step back and look at some initial concepts.

A change in the paradigm

It feels like eons ago in tech years, but let’s rewind just a couple of years, back when if you were
embarking on solving an Al problem, you couldn’t default to utilizing a pre-trained model through
the web or a managed endpoint. The process was meticulous — you’d have to first clearly define
the specific use case, identify what data you had available and could collect to train a custom
model, select the appropriate algorithm and model architecture, train the model using specialized
hardware and software, and validate if the outputs would actually help solve the task at hand.
If all went well, you would have a model that would take a predefined input and also provide a

predefined output.

The paradigm profoundly shifted with the advent of LLMs and large multimodal models. Suddenly,
you could access a pre-trained model with billions of parameters and start experimenting right
off the bat with these versatile foundational models where the inputs and outputs are dynamic
in nature. After tinkering around, you’d then evaluate if any fine-tuning is necessary to adapt the
model to your needs, rather than pre-training an entire model from scratch. And spoiler alert—in

most cases, chances are you won’t even need to fine-tune a foundational model.

Another key shift relates to the early belief that one model would outperform all others and solve
all tasks. However, the model itself is just the engine; you still need an entire ecosystem packaged
together to provide a complete solution. Foundational models have certainly demonstrated some
incredible capabilities beyond initial expectations. But we also observe that certain models are
better suited for certain tasks. And running the same prompt through other models can produce

very different outputs depending on the underlying model’s training datasets and architecture.

So, the new experimental path often focuses first on prompt engineering, response evaluation, and
then fine-tuning the foundational model if gaps exist. This contrasts sharply with the previous
flow of data prep, training, and experimentation before you could get your hands dirty. The bar

to start creating with Al has never been lower.

8 Introduction to Generative Al Patterns

In the following sections, we will explore the difference between the development lifecycle of
predictive Al and generative Al use cases. In each section, we have provided a high-level visual
representation of a simplified development lifecycle and an explanation of the thought process

behind each approach.

Predictive Al use case development — simplified lifecycle

Figure 1.1: Predictive Al use case development simplified lifecycle

Let’s dive into the process of developing a predictive Al model first. Everything starts with a good
use case, and ROI (return on investment) is top of mind when evaluating Al use cases. Think about
pain points in your business or industry that could be solved by predicting an outcome. Itis very

important to always keep an eye on feasibility — whether you can procure the data you need, etc.

Once you've landed on a compelling value-driven use case, next up is picking algorithms. You’ve
got endless options here —decision trees, neural nets, regressions, random forests, and on and on.
It is very important not to be swayed by the bias for the latest and greatest and to focus on the
core requirements of your data and use case to narrow the options down. You can always switch

itup or add additional experiments as you iterate through your testing.

With a plan in place, now it is time to get your hands dirty with the data. Identifying sources,
cleaning things up, and carrying out feature engineering is an art and, more often than not, the
key to improving your model’s results. There is no shortcut for rigor here, unfortunately! Garbage
in, garbage out, as they say. But once you’ve wrangled datasets you can rely on, then comes the

fun part.

It’s time to work with your model. Define your evaluation process upfront, split data wisely, and
start training various configurations. Don’t forget to monitor and tune based on validation per-
formance. Then, once you’ve got your golden model, implement robust serving infrastructure

so it scales without a hitch.

Chapter 1 9

But wait, not so fast! Testing doesn’t end when models are in production. Collect performance
data continuously, monitor for concept drifts, and retrain when needed. A solid predictive model
requires ongoing feedback mechanisms, as shown via the arrow connecting Model Enhancement

to Testing in Figure 1.1. There is no such thing as set and forget in this space.

Generative Al use case development — simplified lifecycle

Figure 1.2: Generative Al use case development simplified lifecycle

The process of generative Al use case development is similar but not the same as in predictive Al;

there are some common steps, but the order of tasks is different.

The first step is the ideation of potential use cases. This selection needs to be balanced with

business needs as satisfying them is our main objective.

With a clear problem definition in place, extensive analysis of published model benchmarks often
informs the selection of a robust foundational model best suited for the task. In this step, it is

worth asking ourselves the question is this use case better suited for a predictive model?

As foundational models provide capabilities out of the box, initial testing comes as a step early
in the process. A structured testing methodology helps reveal innate strengths, weaknesses, and
quirks of a specific model. Both quantitative metrics and qualitative human evaluations fuel

iterative improvement throughout the full development lifecycle.

The next step is to move to the art of prompt engineering. Prompting is the mechanism used to
interact with LLMs. Techniques like chain-of-thought prompting, skeleton prompts, and retrieval

augmentation build guardrails enabling more consistent, logical outputs.

If gaps remain after prompt optimization, model enhancement via fine-tuning and distillation

offers a precision tool to adapt models closer to the target task.

10 Introduction to Generative Al Patterns

Inrare cases, pretraining a fully custom model from scratch is warranted when no existing model
can viably serve the use case. However, it is important to keep in mind that due to the massive
data requirements posed by model retraining, this task won’t be suitable for most use cases and
teams; retraining a foundational model requires an extensive amount of data and processing

power that makes the process unpractical from a financial and technical perspective.

Above all, the interplay between evaluation and model improvement underscores the deeply em-
pirical nature of advancing generative Al responsibly. Testing often reveals that better solutions

come from creativity in problem framing rather than pure technological advances alone.

Figure 1.3: Predictive and generative Al development lifecycle side-by-side comparison

As we can see from the preceding figure, the development lifecycle is an iterative process that en-
ables us to realize value from a given use case and technology type. Across the rest of this chapter
and this book, we are going to focus on generative Al general concepts, some that are going to be

familiar if you are experienced in predictive Al and others that are specific to this new field in AL

Chapter 1 1

General generative Al concepts

When integrating generative Al into practical applications, it is important to have an understand-
ing of concepts such as model architecture and training. In this section, we cover an overview
of prominent concepts, including transformers, diffusion models, pre-training, and prompt en-

gineering, that enable systems to generate impressively accurate text, images, audio, and more.

Understanding these core concepts will equip you to make informed decisions when selecting
foundations for your use cases. However, putting models into production requires further archi-
tectural considerations. We will be highlighting these decision points in the rest of the chapters

in the book and in practical examples.

Generative Al model architectures

Generative Al models are based on specialized neural network architectures optimized for gen-

erative tasks. The two more widely known models are transformers and diffusion models.

Transformer models are not a new concept. They were first introduced by Google in a 2017 paper
called Attention Is All You Need (https://arxiv.org/pdf/1706.03762.pdf). The paper explains
the Transformer neural network architecture, which is entirely based on attention mechanisms
using the encoder and decoder concepts. This architecture enables models to identify relationships
across an input text. By having these relationships, the model predicts the next token, leveraging

its previous prediction as an input, creating this recursive loop to generate new content.

Diffusion models have drawn considerable interest as generative models due to their foundation
in the physical processes of non-equilibrium thermodynamics. In physics, diffusion refers to the
motion of particles from areas of high concentration to low concentration over time. Diffusion
models try to mimic this conceptin their training process. These models are trained through two
phases: the forward diffusion process adds “noise” to the original training data, followed by a
reverse conditioning process, which then learns how to remove noise in the reverse diffusion
process. By learning this process, these models can produce samples by starting from pure noise
and letting the reverse diffusion model clear away unnecessary “noise” and preserving the de-

sired “generated” content.

Other types of deep learning architectures, such as Generative Adversarial Networks (GANs),
allow you to generate synthetic data based on existing data. GANs are useful because they lever-
age two models: one to generate a synthetic output and another one that tries to predict if this

output is real or fake.

https://arxiv.org/pdf/1706.03762.pdf

12 Introduction to Generative Al Patterns

Through this iterative process, we can generate data that is indistinguishable from the real data
but different enough to be used to enhance our training datasets. Another example of data gener-
ation architectures is Variational Autoencoders (VAEs), which use an encoder-decoder approach

to generate new data samples resembling their training datasets.

Techniques available to optimize foundational models

There are several techniques used to develop and optimize foundational models that have driven
significant gains in Al capabilities, some of which are more complex than others from a technical

and monetary perspective:

e Pre-training refers to fully training a model on a large dataset. It allows models to learn
very broad representations from billions of data points, which help the model adapt to
other closely related tasks. Popular methods include contrastive self-supervised pre-train-
ing on unlabeled data and pre-training on vast supervised data like the internet.

e Fine-tuning adapts a pre-trained model’s already learned feature representations to per-
form a specific task. This only tunes some higher-level model layers rather than training
from scratch. On the other hand, adapter tuning equips models with small, lightweight
adapters that can rapidly tune to new tasks without interfering with existing capabilities.
These pluggable adapters give a parameter-efficient way of accumulating knowledge
across multiple tasks by learning task-specific behaviors while reusing the bulk of model
weights. They help mitigate forgetting previous tasks and simplify personalization. For
example, models may first be pre-trained on billions of text webpages to acquire gener-
al linguistic knowledge, before being fine-tuned on more domain-specific datasets for
question answering, classification, etc.

e Distillation uses a “teacher” model to train a smaller “student” model to reproduce the
performance of the larger pre-trained model at a lower cost and latency. Quantizing
and compressing large models into efficient forms for deployments also helps optimize

performance and cost.

The combination of comprehensive pre-training followed by specialized fine-tuning, adapter
tuning, and portable distillation has enabled unprecedented versatility of deep learning across
domains. Each approach smartly reuses and transfers available knowledge, enabling the custom-

ization and scaling of generative Al

Chapter 1 13

Techniques to augment your foundational model responses

In addition to architecture and training advances, progress in generative Al has been fueled by

innovations in how these models are augmented by external data at inference time.

Prompt engineering tunes the text prompts provided to models to steer their generation quali-
ty, capabilities, and properties. Well-designed prompts guide the model to produce the desired
output format, reduce ambiguity, and provide helpful contextual constraints. This allows simpler

model architectures to solve complex problems by encoding human knowledge into the prompts.

Retrieval augmented generation, also known as RAG, enhances text generation through efficient
retrieval of relevant knowledge from external stores. Models receive contextual pieces of infor-
mation as “context” to be considered as additional input before generating its output. Grounding
LLMs (large language models) refers to providing model-specific factual knowledge rather than

justmodel parameters, enabling more accurate, knowledgeable, and specific language generation.

Together, these approaches augment basic predictive language models to become far more versa-
tile, robust, and scalable. They reduce brittleness via tight integration of human knowledge and
grounded learning rather than just statistical patterns. RAG handles the breadth and real-time
retrieval of information, prompts provide depth and rules to the desired outputs, and grounding
binds them to reality. We would highly encourage readers to get familiar with this topic, asitis an
industry best practice to perform RAG and to ground your model to prevent it from hallucinating.
A good start is the following paper: Retrieval-Augmented Generation for Large Language Models: A
Survey (https://arxiv.org/pdf/2312.10997).

Constant evolution across the generative Al space

The generative Al space is characterized by relentless innovation and rapid advancement across
model architectures, applications, and ethical considerations. As soon as one method or archi-
tecture shows promising results, hundreds of competing and complementary approaches emerge
to push capabilities even further. Transformers gave way to BERT, which was outpaced by GPT-3,
soon rivaled by image synthesizers like DALL-E, and now GPT-4 and Gemini are competing for

the top spot. All of which happened in the past few years.

Meanwhile, we are seeing new modalities like audio, video, and 3D scene generation gaining vast
popularity and usability. On the business front, new services are launched monthly, targeting me-
dia and entertainment, finance, healthcare, art, code, music, and more. However, considerations

around ethics, access control, and legalities are key in order to maintain public trust.

https://arxiv.org/pdf/2312.10997

14 Introduction to Generative Al Patterns

One breakthrough enables several more, and each unlocks added potential. This self-fueling cycle
arises from the very nature of Al —its ability to recursively assist innovation. The only certainty is
that the field will look very different within months, not years. Maintaining awareness, respon-

siveness, and responsibility is critical amid this constant evolution.

Introducing generative Al integration patterns

Let’s now assume you already have a promising use case in mind. As I'm sure you would agree,
clearly defining the use case is critical before proceeding further. You’ve already identified which
foundational model provides acceptable performance for your needs. So now you’re starting to

consider how GenAl fits into the application development process.

Atahighlevel, there are two main workflows for integrating applications with GenAl. One is real
time, where you'll typically interact with an end user or Al agent, providing responses as prompts
come in. The second is batch processing, where requirements are bundled up and processed in

groups (batches).

A prime example of a real-time workflow would be a chatbot. Here, prompts from the user are
processed and then sent to the model and the responses are returned immediately, as you need
to consume the outputs without delay. On the other hand, consider a data enrichment use case
for batch processing. You could collect multiple data points over time for later consumption after

being enriched by the model in batches.

In this book, we will explore these integration patterns through practical examples. This will help
you to obtain hands-on experience with GenAl-driven applications and allow you to integrate

these patterns in your own use cases.

By “integration pattern,” we refer to a standardized architectural approach for incorporating a
technology into your application or system. In this context, integration patterns provide proven

methods for connecting generative Al models to real-world software.
There are a few key reasons why we need integration patterns when working with generative Al:

e Timesavings: Following established patterns allows developers to avoid reinventing the
wheel for common integration challenges. This accelerates time to value.

e Improving quality: Leveraging best practices encoded in integration patterns leads to
more robust, production-grade integrations. Things like scalability, security, and reli-

ability are top of mind.

Chapter 1 15

e Reducing risk: Well-defined integration patterns enable developers to mitigate risks
around performance, costs, and other pitfalls that can emerge when integrating new

technologies.

Overall, integration patterns deliver templates and guardrails, so developers don’t have to start
integration efforts from scratch. By relying on proven blueprints, readers can integrate genera-
tive Al more efficiently while avoiding common mistakes. This speeds up development cycles

significantly and sets integrations up for long-term success.

Summary

In this chapter, we covered an overview of key concepts, techniques, and integration patterns
related to generative Al. You now have a high-level background on prominent generative Almodel
architectures like transformers and diffusion models, as well as various methods for developing
and enhancing these models, covering pre-training, fine-tuning, adapter tuning, distillation,

prompt engineering, retrieval augmented generation, and grounding.

We discussed how rapid innovation in generative Al leads to constant evolution, with new models
and capabilities emerging at a fast pace. It emphasizes the need to keep pace with progress while

ensuring ethical, responsible development.

Finally, we introduced common integration patterns for connecting generative Al to real-world
applications, considering real-time use cases like chatbots as well as batch processing for data
enrichment. Real examples were provided to demonstrate workflows for integrating generative

models into production systems.

Innovation in Al has a very fast pace, demanding constant awareness, swift experimentation,
and a responsible approach to harnessing the latest advances. This is particularly evident in the
field of generative Al, where we’re witnessing a paradigm shift in AI-powered applications that

allows for faster experimentation and development.

A wide array of techniques has emerged to enhance models’ capabilities and efficiency. These
include pre-training, adapter tuning, distillation, and prompt engineering, each offering unique
advantages in different scenarios. When it comes to integrating these Al models into practical
applications, key patterns have emerged for both real-time workflows, such as chatbots, and

batch processing tasks like data enrichment.

16 Introduction to Generative Al Patterns

The art of crafting well-designed prompts has become crucial in constraining and steering model
outputs effectively. Additionally, techniques like retrieval augmentation and grounding have
proven invaluable in improving the accuracy of Al-generated content. The potential in blending
predictive and generative approachesis a very interesting space. This combination leverages the
strengths of both methodologies, allowing for custom modeling where sufficient data exists while

utilizing generative foundations to enable rapid prototyping and innovation.

These core concepts empower informed decision-making when architecting generative Al sys-
tems. The integration patterns offer blueprints for connecting models to practical applications

across diverse domains.

Harnessing the power of LLMs begins with identifying the right use cases where they can drive
value for your business. In the next chapter, we will present a framework and examples for cat-

egorizing LLM use cases based on projected business value.

In the next chapter, we will explore identifying use cases that can be solved with Generative Al

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Identifying Generative Al Use
Cases

In the previous chapter, we discussed how the use case exploration and proof of concept devel-
opment process has shifted with the emergence of large language models (LLMs). Specifically,
the ability for rapid experimentation with LLMs has led teams to favor an experimental approach

over more traditional requirements analysis and design processes.

With LLMs, use cases can quickly be tested by creating prompts that demonstrate potential
capabilities. This allows for greater flexibility and speed than meticulously mapping detailed
requirements upfront. Of course, once promising use cases are identified, more rigorous analysis is
highly recommended. Additionally, security, monitoring, and governance of production systems

remain critical components.

In this chapter, we will discuss an approach to identify promising use cases to explore with LLMs.
We categorize use cases based on how an application interacts with the LLM. This provides a
framework to think through the breadth of possibilities as well as the unique considerations for

implementation.
We will cover the following main topics:

e When to consider Generative AI (GenAl) as a tool to integrate into your application
e Realizing business value through GenAl
e How to identify GenAl business use cases

e The difference between Comprehensive and Generative use cases along with detailed

examples

18 Identifying Generative Al Use Cases

When to consider generative Al

As we have been exploring, one of the powers of GenAl is the ability to automatically generate
responses without being explicitly trained on it. Rather than just executing predefined tasks, LLMs
can infer responses by drawing on their contextual understanding and knowledge. This aspect
of emergent reasoning unlocks unique opportunities for rapid experimentation and iterative

refinement of novel use cases.

When considering potential applications for GenAl, the first evaluation criterion centers on com-
prehension-based tasks. Sentiment analysis, content classification, intent classification, relation-
ship extraction, summarization, and more all leverage innate language understanding. Developers
can formulate prompts aligning to use cases that interpret, organize, or infer meaning. To unlock
the full potential of LLMs, developers will iterate on these given prompts through thoughtful
“prompt engineering.” Prompt engineering attempts to optimize LLM responses by providing

task-specific input text that guides a model toward the desired output.

However, purely numerical analysis may not be the best initial fit for GenAl. While mathematical
reasoning exists within models, large volumes of statistical data processing are better suited for
traditional programmatic algorithms and predictive Al. Of course, GenAl could help describe
insights from numeric analysis — communicating trends in natural language, for example, or
creating queries from natural language. But we wouldn’t expect strong performance by running

regression analysis or optimization from prompts alone.

Along these lines, one of the earliest discoveries around the limitations of LLMs surfaced in math-
ematical reasoning. Users experimenting with prompts that involved numeric calculations or
comparisons found nonsensical outputs. The models would produce response text that sounded
coherent but lacked any grounding in basic arithmetic principles. This disconnect highlights
the risk of hallucinations — responses that have fluent language but little accuracy or logical

consistency.

Researchers formulated that the enormous parameter spaces of LLMs allow them to optimize
textual cohesion while lacking the tighter constraints of symbolic logic found in math. Without
specifically encoding numeric logic, the models “hallucinate” plausible-sounding numeric rea-
soning that mathematically makes little sense. The outputs expose both the power of language

fluency and the risk of generalizing beyond the actual knowledge limitations of models.

As we dive deeper into use cases in this book, we encourage you to brainstorm opportunities

aligned with the strengths provided by language understanding tools.

Chapter 2 19

The goal is to match high-value challenges around language, content, and reasoning with the
emergent capabilities of LLMs. We will evaluate where modern Al could augment human work-
flow —1is there a comprehension component that bogs us down? Could prompts help classify, sum-
marize, suggest, or predict within those contexts? And finally, we will factor in how the outputs

generated by LLMs could evolve from experimental prompting into a refined API-driven solution.

Itisimportant to remark one more time on the importance of business alignment. When emerging
technologies garner tremendous hype and media attention, organizations face the tendency to
rush to deploy “shiny new toys” without clearly defining the value they will drive for a business.
GenAl risks this same dynamic, given the incredible mainstream breakout prompted by chatbots
like ChatGPT. Executives clamor to stake their claim in using these powerful technological ad-

vances to future-proof competitiveness.

Unfortunately, treating Al as an end solution rather than an ingredient to enhance solutions of-
ten leads to failure. Well-intentioned teams demo flashy prototype capabilities that fail to map
into tangible business challenges or workflows. Progress stalls beyond experiments in isolation.
Funding dries up without demonstrating a real-world impact. Even worse, poorly planned Al
integration risks harming the customer experience or market position. Conversely, focusing on
use cases with clear business value upfront fosters successful Al implementations, leading to a

positive business impact while driving innovation and maximizing the return on investment.

Figure 2.1: “The Symphony of Data and Imagination” - a generated image to illustrate gen-
erative Al vs Predictive Al

20 Identifying Generative Al Use Cases

Realizing business value

When assessing opportunities to solve business problems with GenAl, it’s critical that we analyze
potential value in business terms — how does this technology shift affect structures, efficiency,
competitive positioning, or revenue opportunities in an organization? Merely showcasing so-
phisticated technical capabilities alone is not enough to show value, as it lacks strategic rigor.

Proposed projects should directly address tangible problems or sources of organizational leverage.

As thought leaders seeking executive buy-in, we need to develop skills and methodologies that
translate potential productivity gains into compelling business cases, clarifying the return on
investment. Specifically, constructing cost avoidance models resonates with executives focused

on operational efficiencies and margins.

Quantifying assumptions in terms that the business can understand and measure is an essen-
tial step to a successful integration of GenAl into your applications. What are the current costs
for manual processes targeted for automation? How many labor hours or full-time employees
(FTEs) are dedicated to inefficient areas? How might throughput scale with Al augmentation?

What expenses link to quality defects or customer friction pain points?

Understanding and extracting metrics to translate into data-driven projections is key. Gathering
baseline measurements around the current state of business operations sets the foundation to

showcase future improvements. Potential vectors to quantify gains across use cases include:

e Costsavings: Hours recovered through automation and scalability, and error and rework

reduction.

e Revenueincrements: Improved and increased customer lifetime value from engagement

and satisfaction.

e Quality improvements: Reduced error rates and higher review scores, measuring cus-

tomers’ willingness to recommend.

o Employee experience: Internal surveys on satisfaction, productivity, and meaningful

and engaging work.

The goal is framing a business case in executive-friendly models that also enable the tracking
of real-world impact versus projections. Building analytical muscle and intuition to translate Al
advances into operational and financial outcomes takes some skill development, but it pays off

through better alignment across teams.

Chapter 2 21

Let’s think of an example of a content tagging use case. Manually assigning metadata to documents
puts a strain on human reviewers attempting volume at scale. Mistakes occur, inconsistencies pop
in, and data attrition occurs — chaos. But perhaps a natural language processing (NLP) pipeline
could help automate tagging to boost throughput dramatically while lowering costs. This pipeline
then becomes an enabler for human reviewers to scale at a faster pace, allowing them to focus

on reviewing rather than creating.

Arevenue generating use case might focus more on using those rich tagged corpora as training data
for client recommendations and understanding buying signals in a given market. Competitively,
rich catalog search and personalization at scale differentiate against slower-moving players that
only produce static signals. So, smart framing of use cases ties directly into strategic priorities,

painting a compelling vision of market leadership.

The antidote to picking between efficiency gains and revenue regenerating use cases requires
framing every potential Al application in terms of specific business value drivers first and enabling
technologies second. What key objectives around cost, efficiency, differentiation, or revenue
might we use? Where do humans currently struggle with workload, subjectivity, or availability?
Do processes fail to scale sufficiently because of volume or complexity? Anchoring use cases
firmly around moving these business needs provides the appropriate context to responsibly hone
where and how GenAlI can help. Avoid the instinct to create problems and find tools to fix them.

Thoroughly map problems and then find the tools to fix them.

In essence, GenAl represents ingredients that enable business capabilities rather than an end
solution itself. We must thoughtfully apply technology to priority challenges or opportunities. If
the return on investment (ROI) in applying GenAl feels tenuous or the business value generated

is too small, broader thinking is likely required before further investment.

Identifying Generative Al use cases

As we evaluate potential applications for GenAl, two overarching categories emerge — comprehen-
sion applications and generative applications. By distinguishing use cases along this spectrum
of understanding existing data vs synthesizing new artifacts, we can better match capabilities

to appropriate business challenges:

e Comprehension applications cover processing tasks applied to analyze and structure
knowledge from existing content. This includes sentiment analysis, relationship extraction,
intent classification, summarization, and more. The key focus areas center around inter-

preting, organizing, and tagging data to be used by subsequent systems.

22 Identifying Generative Al Use Cases

Sources like chat history, customer tickets, and product catalogs yield richer insights
when machine learning models classify topics, normalize entities, and summarize con-
cepts at scale.

e Generative applications move beyond pure comprehension applications to creatively
synthesize new artifacts like text, images, or multimedia. Use cases range from content
drafting and ideation to conversational interfaces. With the right prompts and fine-tuning,
LLMs can produce natural language, code, visual designs, and more for specific domains.

Outputs integrate with customer-facing solutions or augment human workflows.

Blending both categories, we find an incredible opportunity in hybrid human-AI collaboration.
Humans contextualize business objectives, provide critical oversight, and handle exceptions. Al
automates high-volume tasks while sending signals for people to interpret. For example, genera-

tive writing aids content creators through initial drafting while expert editors finalize the content.

By organizing use cases into comprehension and generative buckets, we can better map capa-
bilities to potential applications based on desired outcomes. Comprehension-focused use cases
center around deriving insights from existing data. Generative use cases create novel artifacts by
building on learned patterns. Both transform workflows when applied thoughtfully, upholding

responsibilities around monitoring, ethics, and team augmentation.

With recent advances in multimodal models that understand connections across images, text,
and other data types, new dimensions of Al use cases are surfacing. Google’s Gemini model (see
the paperathttps://arxiv.org/abs/2312.11805) combines comprehension applications across

visual, textual, mathematical, and even code concepts within a unified underlying architecture.

This multi-modal foundation enables Gemini to not only interpret multimodal information but
also generate novel artifacts like images from text prompts, and vice versa. For comprehension
applications, this offers intriguing use cases related to visually summarizing documents, gener-
ating images from written narratives to visually interpret concepts, and enhancing images based
on descriptive captions. The generative application possibilities include ideating creative images,
designs, and data visualizations tailored to specific conceptual directions. This aligns with the

hybrid human/AI collaboration model.

Images, video, and voice media types introduce yet another set of rich content that multimodal
models are becoming very good at processing and understanding to perform generative tasks. The
comprehension of scenes, objects, speech, and overlaid text within videos enhances applications

like search, recommendation, and content moderation.

https://arxiv.org/abs/2312.11805

Chapter 2 23

Other practical examples include extracting text from images and videos, generating new content
within video frames or images, and even creating comprehensive summaries describing the con-
tents of rich media content. As with other Al advances, responsible oversight remains critical as
multimodal models start permeating workflows. Continued monitoring, ethical implementation,
and human judgment help steer us toward beneficial outcomes as this technology unlocks new
potential. But by connecting media like images, text, and sound, models such as Gemini pave the
way for the next generation of intelligent applications, augmented with a deeper understanding

across multiple dimensions.

Potential business-focused use cases

When exploring opportunities to apply GenAl, continuously evaluate any potential business
value first rather than just the technical art of the possible. To spark ideas, the following list
summarizes promising use cases organized by key value drivers. Consider cases where replicating

human-quality comprehension or creation at a machine scale has a positive impact on workflows.
Cost and efficiency gains:

e Automate high-volume/repetitive tasks. Here, your business key performance indicator

(KPI) can be an automation rate, measured as a percentage of automated tasks.

e Accelerate content development, enabling hybrid human/AI collaboration. Here, your
business KPI can be an increase in the number of hours saved compared to the current

amount of time taken to create content.

e Content evaluation to reduce errors and rework. Here, your business KPI can be the delta

in the number of tickets filed to update incorrect content.
Personalize and tailor recommendations:

e Generate consistent omnichannel experiences by leveraging image/text generation. Here,
your business KPI could be an existing engagement metric such as “time spent on a plat-
form,” or the click-through rate on a given section of your application.

e Generate contextual cues to guide users and improve product documentation. Here, your
business KPI can be the engagement of your customers with your documentation, which
can be measured as page views.

e Generate operational insights to enhance risk reduction. Here, your business KPI could

be the delta on risk assessments.

24 Identifying Generative Al Use Cases

Enhance and scale human interaction:

e Provide overview summaries from documents. Here, your business KPI could be an exist-
ing engagement metric such as “time spent on a platform,” or the click-through rate on
a given section of your application.

e Forecast emerging issues and trends. Here, your business KPI could be the predictive
power of your application as it relates to saving costs.

e Collaborate for innovation and gain competitive advantage. Here, your business KPI could
be an existing engagement metric such as “time spent on platform,” or the click-through

rate on a given section of your application.

Figure 2.2: “Brainstorming Buddies” image generated by Al

This framing of use cases aligned to core business priorities keeps implementation closely bound
to driving real outcomes, rather than deploying technology for its own sake. Many possibilities
abound at the intersection of business needs and Al capabilities, but maintaining this value-cen-
tric focus ensures the responsible application of Al, guiding teams toward beneficial innovation

and transformation.

Comprehension use cases harness the power of natural language understanding to extractinsights
and structured information from unstructured data. These techniques enable organizations to
gain valuable insights, improve discoverability, and facilitate knowledge rediscovery and reuse,

ultimately driving better decision-making and enhancing operational efficiency.

Chapter 2 25

The following is a non-exhaustive list of technically focused comprehension use cases:

e Sentiment analysis: Sentiment analysis leverages natural language understanding to
automatically classify the emotional tone within textual content, like customer feedback,
surveys, and social media posts. This allows organizations to identify pain points and
perceptions without a large-scale manual review. Common integration strategies include
sentiment API queries or batch processing analytics aggregated into reporting dashboards.
This use case focuses on understanding how customers perceive your business and iden-

tifying improvement opportunities.

¢ Document summarization: Document summarization uses Al to automatically create
condensed snippets of text, bringing key details within lengthy corpora, like wikis, re-
search papers, and knowledge base articles, to the surface. This improves discoverability
for users who can quickly determine the relevance of a piece of text before deciding to read
full documents. It also enables new modes of documents interaction and searchability,
especially across massive repositories. This use case focuses on increasing productivity

across the board.

¢ Metadata extraction: Metadata extraction harnesses natural language understanding to
identify and extract key information attributes from unstructured textual content. This
includes entities like people, places, and companies, as well as topics, concepts, tone,
and relationships. Structured metadata makes understanding documents and content

much easier at scale.

Use cases range from processing volumes of contracts to auto-tagging with counterparties, obliga-
tions, dates, or risk levels. Support ticket classification with topics, priority status, and location can
route cases correctly while pinpointing macro trends. Aggregating research publications within
a field by the concepts and techniques mentioned builds network maps for emerging schools of
thought and impact tracking. Publishing platforms can even auto-suggest high-performance

article tags to analyze headline semantics and document summaries.

Metadata extraction enables knowledge rediscovery and reuse in large organizations. For example,
employees can quickly search on past meeting notes, referencing to key projects details versus

leveraging siloed, fragmented data stores.

New team members can get up to speed, discovering pivotal documents from intelligent graphs
rather than performing aimless word searches. Over time, signal-to-noise ratios improve as Al
augments institutions’ contextual understanding of their information universe, based on this

actionable metadata layer.

26 Identifying Generative Al Use Cases

Conversely, generative use cases leverage GenAls ability to generate human-like outputs, tailored
to specific needs and contexts. These applications not only streamline repetitive tasks but also

open new avenues for personalized experiences, enhanced creativity, and accelerated innovation.
The following is a non-exhaustive list of technically focused generative use cases:

e Conversational interfaces: Conversational interfaces allow natural dialogue between end
users and intelligent assistants via chat, voice, and, potentially, augmented reality (AR).
These fluid experiences provide answers, recommendations, and next-step suggestions,
reducing the need to navigate complex apps or menus. Over time, contextual awareness

of user goals and preferences enables personalized guidance.

o Datavisualization: Data visualization uses GenAl to automatically create relevant charts,
graphs, and diagrams, tailored to provided datasets. Beyond basic types like histograms
or pie charts, advanced visualizations including interactive infographics, animated data
stories, and tailored dashboard layouts personalized to the consumption use case, bring

key trends to light.

e Report automation: Report automation generates personalized, dynamic summaries
of the most salient business insights for specific user needs. Rather than static, tem-
plate-driven reports, generative capabilities allow unique views, sending key signals from
centralized data assets. Automated analysis identifies arising issues, while customizable

layouts deliver the tailored briefings that different business leaders require.

e Code generation: The recent integration of LLMs into coding workflows presents a fasci-
nating avenue for enhanced productivity and creative exploration. LLMs are transforming
the way developers approach code creation. By translating natural language instructions
into functional code snippets, LLMs can act as intelligent assistants, suggesting alternative
solutions, streamlining repetitive tasks, and filling in knowledge gaps. However, it’s crucial
to remember that LLMs are not a replacement for core coding expertise. Their proficiency
lies in augmenting human capabilities, not supplanting them. The true potential lies in
the collaborative synergy between human ingenuity and the immense creative potential
unlocked by LLMs. As this technology matures, we can expect to see even more impactful
applications emerge, shaping the future of software development and innovation.

e Content generation: Leveraging the raw generative power of LLMs, organizations now
have new capabilities to automatically draft written content, tailored to specific guide-
lines, topics, voices, and creative directions. The main opportunities relate to marketing,

communications, and documentation needs.

Chapter 2 27

Figure 2.3: “The art of code” generated by Al

For email campaigns, GenAl can synthesize initial drafts of messages customized to different
subscriber segments, based on past high-performing templates and new product/event announce-
ments. Marketing teams set the inputs and creative direction, while machines handle much of
the repetitive composition work at scale. Humans then refine, incorporate personalization, and

approve final versions.

Similar applications empower the creation of blog posts, social media captions, landing pages,
and more to match brand style guides, while saving teams hours of effort. Responsible genera-

tive writing augments the creative process, rather than fully automating rote templated content.

On the technical documentation front, Al holds promise in accelerating knowledge capture and
transfer. Subject matter experts could speak aloud detailing processes, software capabilities, or
manufacturing equipment operations. Automatic speech-to-text, translation, and transcript

summarization would distill key facts and workflows into shareable references.

Editors would polish the final documentation, but subject matter experts (SMEs) would avoid

hours of manually documenting procedures from scratch.

28 Identifying Generative Al Use Cases

Content generation use cases introduce the fantastic potential to augment human creativity,
expertise, and judgment, not replace it. Automating rote composition alleviates writing fatigue
while providing starting points to incorporate huge learned patterns. The people element guides
objectives, allows nuance, and establishes model limitations. Together, content creation processes

achieve new scales, responsiveness, and personalization, powered by Al collaboration.

Generative Al deployment and hosting options

As we consider which types of use cases we are looking to pursue to provide business value, we
must consider the infrastructure on which we will deploy and host our systems. With the new
normal of leveraging cloud resources, we tend to assume that capacity is not a concern anymore,
but is this right? Let’s dissect this thought — is the biggest model the right solution for all use
cases? Realistically speaking, LLMs are nice and easy to test and get initial results, but when
considering scale and productionalization, they are not as appealing as you would think. Some
of the limitations are GPU availability, cost, and latency. This realization is steering the market

into more specialized smaller models that solve a specific use case.

Designing product architecture for LLMs requires careful consideration of several factors. Cost
optimization strategies like Mixture-of-Depths can be employed to dynamically allocate resources
for transformer-based models, maximizing efficiency. Cloud infrastructure should be designed
for scalability, leveraging services that automatically adjust capacity based on demand. Security
is paramount, and enterprise-grade controls are essential to protect sensitive data and prevent
unauthorized access. Additionally, robust testing frameworks like Giskard are crucial to ensure
LLM applications function as intended and mitigate potential risks. Giskard offers open-source
evaluation tools and even a course from DeepLearning.ai on red-teaming LLM applications, pro-

viding valuable resources for comprehensive testing and security assessment.

Let’s assume your use case requires a large model that needs to perform multiple tasks and accept
multiple modalities of data inputs — text, images, and videos. In this case, the very first thing that
should come to mind is leveraging a cloud-based hosted model that you can call through an API. A
cloud-native, API-driven solution serving your inference requests enables you to offload some of
the heavy-lifting tasks surrounding the underlying infrastructure, such as autoscaling, patching,
and other maintenance tasks. Assuming the API meets all your service level agreements (SLAs)
requirements, you can focus on the application logic around the inference requests, decreasing

the time to market needed to bring your application online.

Chapter 2 29

Let’s consider another use case where you need to deploy a smaller, specialized model locally to
a device, such as a personal assistant on a phone or a copilot model to provide developers with
code suggestions in real time. In these “at the edge” use cases, sending each individual request
to a hosted API may incur too much latency or have connectivity requirements that cannot be
met. Here, packaging up a compact model trained on just the data and tasks relevant to the target
domain can be the right approach. For example, an on-device personal assistant can have a con-
versational model fine-tuned on dialogue data to provide quick, low-latency responses without
needing an internet connection. Similarly, a coding assistant model can be streamlined to focus
on providing relevant code completions and suggestions as a developer types, by learning from

a code base representative of its intended programming languages and environments.

In situations where responsiveness and being self-contained are critical, targeting model develop-
ment and optimization specifically for edge deployment can enable the advanced Al capabilities

that users expect, even with intermittent connectivity and computational constraints. The key
is to understand both the use case requirements and the inference environment upfront, deter-

mining the right balance of edge versus cloud for a given solution.

Summary

This chapter explored the intricacies of evaluating potential use cases for GenAl, equipping you
with the tools to discern optimal applications for this transformative technology. By examining
different viewpoints and criteria, we’ve established a framework to determine whether a given

use case aligns with GenAI’s strengths and limitations.
The key takeaways are as follows:

e Atthe heart of every successful GenAl implementation lies clear and demonstrable busi-
ness value. Ask yourself how GenAl will directly enhance your current operations, unlock
new revenue streams, or improve customer experience. Without a tangible benefit, the

technology itself holds little merit.

e We identified two broad categories of use cases where GenAlI shines: comprehension
and generation. Comprehension focuses on analyzing and extracting meaning from data,
while generation leverages that understanding to produce entirely new content. Consider

which category your use case falls under to assess GenAl’s suitability.

30 Identifying Generative Al Use Cases

e We explored two main ways to host GenAl models — cloud APIs and optimized edge
deployment. Cloud APIs are great for scalability but can have latency and connectivity
limitations. Edge deployment works for low-latency situations like on-device assistants,
but it requires more compact, specialized models. Assess your use case constraints and
requirements first, striking the right balance between the cloud and edge when leveraging

generative Al capabilities.

In the next chapter, we will dive into a framework that will help approach the task of integrating

GenAl into applications.

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Designing Patterns for
Interacting with Generative Al

In the previous chapters, we explored the world of generative AI (GenAl), including the types
of use cases and applications that can be developed using this exciting new technology. We also
discussed evaluating the business value that GenAl can potentially bring to the table for different

organizations and industries.

In this chapter, we will dive deeper into the practical considerations around integrating GenAl
capabilities into real-world applications. A key question that arises is, where and how should
we incorporate GenAl models within an application’s architecture and workflow? There are a
few different approaches we can take, depending on factors like the application type, existing

infrastructure, team skills, and more.

Figure 3.1: Image generated by Al to depict Al integration

32 Designing Patterns for Interacting with Generative Al

We will start by examining how user requests or inputs can serve as entry points for generating
content or predictions using Al models in near-real time. For instance, a customer support chat-
bot could take a user’s question as input and pass it to a language model to formulate a helpful
response. Similarly, a creative application could take a prompt entered by a user and generate

images, text, or other media.

Next, we’ll explore exit points — the points where applications return Al-generated outputs back
to users or incorporate them into business workflows. This might involve displaying a text or
image output in a user interface or feeding a model’s predictions into a scoring algorithm or

recommendation engine.

Additionally, we’ll highlight the importance of monitoring and logging when integrating Al
Adding telemetry around model usage, inputs, outputs, and their application allows you to track
performance in production, detect issues like changing data distributions, and identify when
models need retraining or adjustment. Logging this data also enables you to create positive or
negative feedback loops for model tuning, such as evaluating prompt-response tuples against a

ground truth dataset and using the correct tuples as input for fine-tuning jobs.

By understanding these integration approaches and their practical applications, you’ll be well
equipped to seamlessly incorporate the unique capabilities of GenAl into your applications, de-

livering maximum business value while being aware of the technology’s limitations.
In a nutshell, we will cover the following topics in this chapter:

e Wewill define a 5-component framework that can easily be applied when building GenAI
applications

o Identifying strategic entry points for Al models to enhance real-time user interactions
across different application types, from customer service chatbots to creative tools

e Defining effective prompt pre-processing to maximize inference request performance

e Defining effective inference result post-processing and presentation for surfacing AI-gen-
erated outputs to users or incorporating them into business workflows, ensuring a seam-
less experience

¢ Implementing monitoring and logging mechanisms to track model performance, inputs,

and outputs, enabling continuous improvement cycles and data-driven model tuning

Chapter 3 33

Defining an integration framework

Let’s define a framework to approach the integration paths through integration components. This
five-component framework — Entry Point, Prompt Pre-Processing, Inference, Result Post-Pro-
cessing, and Logging — provides a template for systematically addressing the Al integration
process underlying many applications. The details may differ across use cases, but the conceptual
stages apply broadly. Within this framework, we will establish a main boundary for integration
depending on how users interact with the models: interactive for real-time output generation,

or batch-oriented for bulk content creation and processing.

Figure 3.2: GenAl application integration framework

Integrating GenAl models can follow these two distinct paths —interactive user-driven approaches
versus batch processing workflows. The interactive mode directly exposes model inference in real
time through an application interface, where users provide prompts that immediately trigger
requests to generate results. This tight feedback loop enables further iterations that can lead to
results refinement or follow ups. In contrast, batch processing involves queuing up prompts from
various sources that then get processed through models asynchronously in larger batches. This
mode optimizes for high throughput at scale, prioritizing total volume over low latency. Each
integration mode offers unique tradeoffs aligned to the priorities of interactivity, scale, efficiency,

and specific use case requirements.

The key distinction lies in the tradeoff between low latency and tight user interactivity versus
higher overall throughput and efficiency. Interactive mode prioritizes quick turnaround for re-
sponsive iterations, while batch mode focuses on total volume, cost control, and disconnecting
the prompt/result loop. Choosing the right workflow depends on evaluating priorities around

interactivity, scale, cost, and use case fit.

Both interactive and batch processing have strengths across different scenarios. A holistic enter-
prise Al integration may even blend these approaches, such as using batches for data pre-pro-
cessing followed by interactive delivery. Thoughtfully aligning the right mode to the use case
defines whether users directly steer models in real time or harness their capabilities through an

asynchronous accumulation process.

34 Designing Patterns for Interacting with Generative Al

Entry point

The entry point is where an application accepts a user’s input that will be processed by GenAl

models. This might be:

e Atextbox where a user enters a prompt: Interactive
e Anuploaded image that will be processed: Interactive or batch

e Avoice recording that will be transcribed and analyzed: Batch

The entry point acts as the front door for users to access the power of GenAl within an applica-
tion. As such, the entry point modality should align closely with the input types supported by the
models being leveraged. If the models only process text prompts, then a text-based entry field
is appropriate. For image generation models, the entry could be an interface supporting image

uploads. Multi-modal models may warrant options for both text and images.

Beyond matching supported input types, the entry point UX should aim to make providing
prompts fast, intuitive, and even delightful for users. Well-designed interfaces guide users nat-
urally towards creating effective prompts that will yield quality model outputs. Good prompts are
shaped through smart defaults, examples, templates, and guardrails against problematic content.

Smoothing and accelerating the path from user intent to generated results improves adoption.

Additionally, the appropriate entry point complexity depends on the user and use case. For inter-
nal teams, advanced interfaces may provide significant prompt tuning control. Consumer-facing
apps may favor simplicity and precision. In some cases, like search, the entry point could min-
imize or hide the prompt shaping from users entirely. Removing friction while clarifying paths

to value is key.

Prompt pre-processing
Before handing off prompts to generative models, pre-processing can make inputs more usable

and potentially improve the quality of the outputs.

When thinking about prompt pre-processing, there are two key dimensions that are affected —

security and model usability.

On the security aspect, this is the first opportunity to evaluate the prompts and verify that they
align with your responsible Al guardrails. Additionally, you can also check if a prompt has ma-
licious intent — for example, to try forcing the model to expose sensitive data that was used in
its training. Putting in place content filters, blocklists, and other defenses at this pre-processing

stage is important for ensuring security.

Chapter 3 35

The second dimension is related to optimizing model usability. This means processing the raw
prompts to best prepare the input for effective inference. As an example, models are unlikely to
accept high-fidelity 192 - kHz audio when probably 8 kHz (which is the sample rate used in te-
lephony) is sufficient for comprehension and response. Similarly, long text prompts may benefit

from truncation before inference. The goal is to shape the data for ideal performance.

Additionally, regardless of the input modality, the pre-processing stage is where you can generate
embeddings that may be used to leverage vector search optimizations like Retrieval Augmented
Generation (RAG). Creating uniform vector representations allows the model to be prompted

more efficiently during inference.

The prompt pre-processing phase provides critical opportunities to validate security, optimize
usability, and set up embeddings that together ready the raw input for the best possible GenAl

performance at inference time.

Inference

The inference step is where the magic happens — user inputs are actually run through the Al
models, either runninglocally or in the cloud, to generate outputs. Seamlessly orchestrating this

prediction stage requires some key technical capabilities.

First, the application needs to interface directly with the API endpoints exposed by the generative
models to submit prompts and receive back predictions. The architecture should include services
for efficient routing of requests to the appropriate models at scale. When demand exceeds a single
model’s capacity, orchestration layers can share load across multiple model instances. You can
follow traditional application architecting patterns, enabling scale through queue mechanisms,
and implementing algorithms such as exponential backoff, which sometimes are available through
cloud SDKs if you were to consume their services. It is always a good idea to evaluate common
API consumption patterns and explore the tradeoffs to understand which is the best fit for the

application you are designing.

On the infrastructure side, if you decide to host your models, hosting requirements must provide
low-latency access to models for responsive predictions along with sufficient throughput capacity.
Generative models often rely on GPUs for intensive computations — configuring the right servers,
containers, or cloud-based inferencing engines is key. Cost control is also critical —unused capacity

should be spun down when not needed.

An alternative to hosting your models is to leverage cloud services, where you can, for example,
consume the models directly from your cloud provider. In the case of Google Gemini, you can

consume the model through the Vertex Al platform.

36 Designing Patterns for Interacting with Generative Al

Lastly, redundancy plays an important role such that no single point of failure can disrupt the
availability of mission-critical Al predictions. With careful orchestration, infrastructure decisions,
and service reliability best practices, the inference stage can deliver the core value of generative
models to application users 24/7. Bringing together these technical capabilities makes it possible

to unlock Al magic at request time inside products.

The inference stage brings together many moving parts but when done well, the complexity is
hidden behind simple prompt -> prediction interfaces that users trust will just work. Creating
that seamless reliable orchestration layer to deliver Al-generated results is where much of the

real engineering challenge lies in building a successful Al-first application.

Results post-processing

Before presenting the raw outputs from GenAl models directly to end users, additional post-pro-
cessing is often essential to refine and polish results. There are a few common techniques to

improve quality, as we will see now.

Filtering inappropriate content — Despite making the best efforts during training, models will
sometimes return outputs that are biased, incorrect, or offensive. Post-processing provides a sec-
ond line of defense to catch problematic content through blocklists, profanity filters, sentiment
analysis, and other tools. Flagged results can be discarded or rerouted to human review. This

filtration ensures only high-quality content reaches users.

Models such as Google Gemini allow you to define a set of safety settings to set thresholds during
generation, allowing you to stop generating content if those thresholds are exceeded. Additionally,
it provides a set of safety ratings with your results, allowing you to determine the threshold to

filter results after generation.

The following is the full code for the example; please note that some tags present are used as part
of the Form feature of Google Colab (see https://colab.research.google.com/notebooks/
forms.ipynb):

import vertexai
from google.cloud import aiplatform

from vertexai.generative_models import GenerativeModel, Part

from google.colab import auth as google_auth

https://colab.research.google.com/notebooks/forms.ipynb
https://colab.research.google.com/notebooks/forms.ipynb

Chapter 3 37

google_auth.authenticate_user()

GCP Parameters
PROJECT = "your-GCP-project" #@param {type:"string"}
LOCATION = "us-centrall" #@param {type:"string"}

#Init Vertex AI Platform
aiplatform.init(project=PROJECT, location=LOCATION)

def generate(prompt):
model = GenerativeModel("gemini-pro")
response = model.generate_content(
[prompt],
generation_config={
"max_output_tokens": 2048,
"temperature": 0.1,
"top_p": 0,
"top_k": 5,
¥
safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,

generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,

generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,

generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,

1

stream=False,

)

return response

result = generate("Tell me a joke about cars")

print(result)

38 Designing Patterns for Interacting with Generative AI

Let’s dive deep into the generated Python example provided by the Google Vertex Al console:

def generate(prompt):
model = GenerativeModel("gemini-pro")
response = model.generate_content(
[prompt],
generation_config={
"max_output_tokens": 2048,
"temperature": 0.1,
"top_p": 1
¥
safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
¥
stream=False,

)

return response

In this case, you will see that the safety settings were defined as:

safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_
models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_
models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,

}

Chapter 3 39

From the Google Gemini documentation available at https://cloud.google.com/vertex-ai/
docs/generative-ai/multimodal/configure-safety-attributes, we can see the full list of

attributes available:

Safety Attribute Definition

Hate Speech Negative or harmful comments targeting identity and/or protected
attributes.
Harassment Malicious, intimidating, bullying, or abusive comments targeting

another individual.

Sexually Explicit Contains references to sexual acts or other lewd content.
Dangerous Promotes or enables access to harmful goods, services, and activities.
Content

Table 3.1: Google Gemini Safety Attributes as of Feb 2024

Along with the safety attributes, you will also obtain a probability:

Probability Description

NEGLIGIBLE Content has a negligible probability of being unsafe.
LOW Content has a low probability of being unsafe.
MEDIUM Content has a medium probability of being unsafe.
HIGH Content has a high probability of being unsafe.

Table 3.2: Google Gemini Safety Attributes probabilities as of Feb 2024

https://cloud.google.com/vertex-ai/docs/generative-ai/multimodal/configure-safety-attributes
https://cloud.google.com/vertex-ai/docs/generative-ai/multimodal/configure-safety-attributes

40 Designing Patterns for Interacting with Generative Al

Let’snow test the sample prompt Tell me a joke about cars.You are going to submit the prompt

using the sample function provided previously to the gemini-pro model on Google Vertex Al

candidates {
content {
role: "model"
parts {
text: "What do you call a car that\'s always breaking down?\n\nA
lemon-aid stand!"

}
}

finish_reason: STOP

safety_ratings {
category: HARM_CATEGORY_HATE_SPEECH
probability: NEGLIGIBLE

}

safety_ratings {
category: HARM_CATEGORY_DANGEROUS_CONTENT
probability: NEGLIGIBLE

}

safety_ratings {
category: HARM_CATEGORY_HARASSMENT
probability: NEGLIGIBLE

}

safety_ratings {
category: HARM_CATEGORY_ SEXUALLY_ EXPLICIT
probability: NEGLIGIBLE

}

usage_metadata {
prompt_token_count: 6
candidates_token_count: 20
total_token_count: 26

You can see that there is a property called finish_reason, which is essentially the reason why
the model stopped generating tokens. If this property is empty, the model has not yet stopped
generating the tokens. The following is the full list of options per Gemini’s documentation as of
February 2024:

Chapter 3 41

Finish Reason code Description
FINISH_REASON_UNSPECIFIED The finish reason is unspecified.
FINISH_REASON_STOP Natural stop point of the model or provided

stop sequence.

FINISH_REASON_MAX_TOKENS The maximum number of tokens as specified

in the request was reached.

FINISH_REASON_SAFETY The token generation was stopped as the
response was flagged for safety reasons. Note

that Candidate. content is empty if content

filters block the output.
FINISH_REASON_RECITATION The token generation was stopped as the
response was flagged for unauthorized
citations.
FINISH_REASON_OTHER All other reasons that stopped the token.

Table 3.3: Google Gemini finish reasons as of Feb 2024

After that section, you will find the safety_ratings for what was generated. In your application,
you can parse the result from the LLM and filter the results. A good application for leveraging
safety_ratings comes from analytics generation, where you can store the safety ratings from

your prompts, and then analyze them to create insights.

safety_ratings {

category: HARM_CATEGORY_HATE_SPEECH
probability: NEGLIGIBLE

}

safety_ratings {
category: HARM_CATEGORY_DANGEROUS_CONTENT
probability: NEGLIGIBLE

}

safety_ratings {
category: HARM_CATEGORY_HARASSMENT
probability: NEGLIGIBLE

}

safety_ratings {
category: HARM_CATEGORY_SEXUALLY_EXPLICIT
probability: NEGLIGIBLE

42 Designing Patterns for Interacting with Generative Al

Let’s now experiment with a questionable prompt. Using the safety ratings, we will set the code

to block anything with probabilities that are below or above the desired rating:

safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_

models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:

generative_models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,

generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
generative_models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,

generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_
models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,

}

And we will run the promptHow do I rob a bank with a toy gun?.After submitting the

prompt to Google Gemini Pro, I received the following result:

candidates {

content {
role: "model"

}

finish_reason: SAFETY

safety_ratings {
category: HARM_CATEGORY_HATE_SPEECH
probability: NEGLIGIBLE

}

safety_ratings {
category: HARM_CATEGORY_DANGEROUS_CONTENT
probability: LOW
blocked: true

}

safety_ratings {
category: HARM_CATEGORY_HARASSMENT
probability: NEGLIGIBLE

}

safety_ratings {
category: HARM_CATEGORY_SEXUALLY_EXPLICIT
probability: NEGLIGIBLE

Chapter 3 43

}

usage_metadata {
prompt_token_count: 10
total_token_count: 10

As you can see, the generation was stopped due to SAFETY reasons, and if you go to the safety_
ratings section, you will see that the HARM_CATEGORY_DANGEROUS_CONTENT has a probability of
LOW and has the flag blocked as True. In other words, the content was blocked due to the fact that

it was classified as being in the Dangerous Content category.

Selecting from amongst multiple outputs

Models like LLMs often produce multiple candidate responses or images. Post-processing can ana-
lyze all options based on relevance, interest, diversity, and other attributes to automatically select

the best single result for a given prompt. This avoids overloading users with extraneous outputs.

In the following example, you will use the Google PaLM 2 model for text (text-bison) to generate

multiple responses:

import vertexai
from google.cloud import aiplatform

from vertexai.language_models import TextGenerationModel

from google.colab import auth as google auth

google_auth.authenticate_user()

PROJECT = "your-GCP-project"
LOCATION = "us-centrall”

aiplatform.init(project=PROJECT, location=LOCATION)

def generate(prompt):
model = TextGenerationModel.from_pretrained("text-bison")
parameters = {

"candidate_count": 2,

44 Designing Patterns for Interacting with Generative Al

"max_output_tokens": 1024,

"temperature": 0.9,

"top_p": 1
}
response = model.predict(
prompt,
**parameters
)

return response

result = generate("Tell me a joke about cars")
for candidate in result.candidates:

print(f"Response Candidate: {candidate}\n\n")

This is what the generate function looks like:

def generate(prompt):
model = TextGenerationModel.from_pretrained("text-bison")
parameters = {
"candidate_count": 2,
"max_output_tokens": 1024,

"temperature": 0.5,

"top_p": 1
}
response = model.predict(
prompt,
**parameters
)

return response

As you can see, we are setting the number of candidate_count to 2.

When you get the response from the generate function, Google PaLM 2 will return a MultiCandi
dateTextGenerationResponse object. In order to obtain all results, you will have to iterate over
the candidates:

result = generate("Tell me a joke about cars")

Chapter 3 45

for candidate in result.candidates:

print(f"Response Candidate: {candidate}\n\n")

You will get a result in the following format:

Response Candidate: Why did the car get a parking ticket?

Because it was parked illegally.

Response Candidate: Why did the car get a speeding ticket?

Because it was going too fast!

Refining generated outputs

After a model generates an output, there are additional steps required to improve the output
quality. The techniques will vary depending on what was generated as there are different meth-
ods for post-processing audio, images, and text. While automated post-processing techniques
such as filtering and output selection provide a foundation, human interaction and refinement
can take GenAl results to the next level of quality. There are additional methodologies to enable

this collaborative improvement.

For example, users can take an initial model output, provide feedback on areas that need im-
proving, and resubmit the prompt to refine the result further. Models can be prompted to expand
on sections, fix errors, or adjust stylistic elements. Iterating in this loop surfaces the benefits of
human and Al collaboration. Let’s see an example with a text generated by Google Gemini Pro

using the following prompt:

Prompt: Tell me a joke about cars
Result:
Why don't cars like to go to the beach?

Because they just want to dune it.

Now let’s take that output, and request the model to write two paragraphs about it:

Prompt:

Expand the following text in two paragraphs:

46 Designing Patterns for Interacting with Generative Al

Why don't cars like to go to the beach?

Because they just want to dune it.

Result:

Cars, unlike humans and other creatures, harbor an aversion to the sandy
shores of the beach. This peculiar reluctance stems from the woes they
face when navigating the treacherous terrain. As tires sink into the soft
sand, cars find themselves losing traction and struggling to maintain
momentum. The endless dunes, often towering over them, pose another
formidable obstacle. Attempts to conquer these sandy peaks can lead to
wheels spinning futilely, leaving cars stranded amidst the unforgiving
landscape.

Therefore, while the beach beckons with its allure of sun, sand, and surf,
cars prefer to remain on paved roads, where they can glide effortlessly
without the fear of getting bogged down. Their aversion to the beach is
aptly summarized in the playful pun, "They just want to dune it," a clever
play on words that highlights their desire to avoid the challenges and
embrace the comfort of smooth roads.

Another helpful technique for improving GenAl outputs is leveraging multiple alternative re-
sponses. When users identify shortcomings or areas for improvement in a model’s initial result,
applications can surface several alternative candidates for the user to choose from. This allows

the human to select the option that comes closest to fulfilling their original intent and objective.

As an example, consider the example provided in the previous section with Google PaLM, which
generates multiple candidate outputs for a given prompt. The application could display these
alternatives and let the user pick the one that resonates most. The model acts as a powerful
“brain-storming partner,” rapidly producing a diverse set of options. Then, human curation and
selection refine the outputs iteratively, shaping them closer and closer to the ideal final result

the user has in mind.

Chapter 3 47

Figure 3.3: Multiple generation responses shown in the Google Cloud console

Now you will explore what the experience for generating multiple outputs would look like in the

case of a Vertex Al API call to PaLM 2 with Python:

def generate(prompt):
model = TextGenerationModel.from_pretrained("text-bison")
parameters = {
"candidate_count": 2,
"max_output_tokens": 1024,

"temperature": 0.9,

"top_p": 1

}

response = model.predict(
prompt,
**parameters

return response

48 Designing Patterns for Interacting with Generative Al

You will notice that we are using the text-bison model, and the candidate_count parameter to

specify how many results are going to be generated.

We will evaluate the results like this:

result = generate("Tell me a joke about cars")
for candidate in result.candidates:

print(f"Response Candidate: {candidate}\n\n")

You will obtain a result similar to this:

Response Candidate: What does a car with road rage suffer from?

Answer: A road rash.

Response Candidate: What did one car say to the other car as it drove
past? We should race and I bet I will win.

What did the other car say? Don't be silly there is no way you can beat a
Volkswagen!

You can now iterate through multiple results, and select which result is more adequate for the
task at hand.

Remember that you can refine an obtained result. For example, we can convert the response into,

for example, a sonnet:

result = generate(f"Modify this joke to be a sonnet with no more than 2
verses: {result.candidates[@].text} ")

for candidate in result.candidates:

print(f"Response Candidate: {candidate}\n\n")

Response Candidate: A chariot of fire, its engine's beat,
A symphony of power, fierce and wild,
With burning wheels, it danced upon the street,

A tempest unleashed, untamed and beguiled.

Its metal frame, a vessel of desire,

A rebel's heart that yearned for freedom's call,

Chapter 3 49

Through winding roads, it sparked electric fire,

A fearless spirit, soaring high and tall.

Response Candidate: A car of wrath with engine's fiery might,
Its metal frame roars to the storm within,
Its wheels devour the roads in ravenous fight,

An elemental fury none can win.

Its tires are scorching marks upon the ground,

As it dances wildly under fate's harsh glance,

With bruised fenders and paintwork battle-bound,

This rage-filled vessel knows no calm expanse.

This collaborative generation workflow leverages both the strengths of GenAl and human cre-
ativity. Generative models contribute creativity, scalability, and the ability to explore a broad
possibility space. Humans in turn provide intentionality, quality judgments, and context about
what is desirable. Together, machines and humans waltz through an iterative process bringing

the best out of each other.

The outputs start as raw ingredients from the Al, but progressively gets refined into increasingly
useful, engaging, and delightful content through this hybrid collaboration. Leveraging both au-
tomated techniques like filtering and output selection, and direct human interaction to choose

amongst alternatives, iteratively refining and editing results pushes the boundaries of GenAl

quality.

Results presentation

At this point, we have covered techniques for selecting appropriate GenAl models, crafting effective
prompts, and guiding the models to produce high-quality results. Now let’s explore consider-
ations around presenting the outputs generated by large language models and other systems to

application end users or downstream processes.

How LLM-produced content gets rendered and exposed is heavily dependent on the specific use
case and application architecture. For example, in a chatbot scenario, results would be formatted
into conversational textual or voice responses. On the other hand, for a search engine, text outputs
could be incorporated into answer boxes and summaries. Document generation workflows may

store LLM outputs directly into cloud content platforms. The possibilities span many formats.

50 Designing Patterns for Interacting with Generative Al

Some technical aspects are common across different result presentation approaches. Text outputs
often require post-processing such as Markdown tagging removal, JSON serialization, and more
based on destination needs. Safety rating data may need to be persisted alongside generated
text for governance. Multimodal outputs like images would integrate rendering frameworks to

correctly display the media to users.

Certain applications may store the raw LLM outputs in databases or data lakes for later asyn-
chronous consumption rather than immediate presentation. In these cases, additional extract,
transform, load (ETL) workflows prepare and reshape unstructured Al-produced results into
structured data repositories for downstream analytics, training, and governance. Appropriately

tagging outputs ensures they can be found easily.

The end presentation format should focus first on usability — shaping contents, structure, reso-
lution, and other attributes tailored to customer needs and the customer journey. Second, the
focus should shift to ease of integration — efficiently slotting Al outputs into existing or custom
UI codebases, content systems, and data pipelines based on accessibility requirements. Well-de-

signed result-sharing unlocks the inherent value created by generative models.

Logging

Establishing comprehensive observability through logging is critical when integrating GenAl
models into applications. Capturing detailed telemetry data across the entire workflow enables
tracking metrics, monitoring issues, and identifying failure points — essential for ensuring reliable

and responsible Al system behavior over time.

Detailed usage metrics and logging provide a wealth of observability benefits at the front-end
integration points for GenAl. This telemetry data not only reveals how models are utilized in
production environments but, more importantly, surfaces the interactive user experiences built

around Al capabilities.

By tracking every user input, generation request, and context around those events, organizations
gain an overview of emerging product usage patterns. This data can later be leveraged to expand

on certain use cases to ultimately improve the user’s experience.

Questions like “Are certain demographics or geographies clustering around particular use cas-
es?”, “Do input domains or content types reveal areas of user demand to double down on?”, and
“What sequences of prompts characterize high-value user journeys?” can be answered to generate

insights, which in turn will provide visibility on the interactions at scale.

Chapter 3 51

Log analytics also facilitate cost monitoring and optimization. With visibility into volumes of
inference requests by model, user cohort, feature area, and more, it becomes feasible to map oper-
ational expenditure and scaling needs directly to patterns of user activity over time. Load testing
can measure incremental cost impacts before rolling out new Al-intensive features. Utilization
metrics feed into autoscaling and provisioning processes. Ultimately, correlating business KPIs
against infrastructure consumption allows aligning investments to maximize Al-driven value

capture.

This Al usage intelligence effectively provides visibility on how customer experiences are evolving
and financially impacts the business. It empowers use case prioritization, roadmap planning, and
efficient resource allocation — all grounded in empirical data rather than gutinstinct. Meticulous
logging isn’t just about safety and compliance, but ensuring Al integrations sustainably deliver

value and grow adoption and ROL

The input prompts and data samples that seed generative models should get meticulously logged.
This data is key for explainability by tying inputs to their corresponding outputs. Furthermore, it
enables monitoring data quality issues by detecting drift away from expected distributions that
models were trained on. Catching these shifts through differential logging proactively reveals

when retraining may be needed.

Logging should extend to the output side by capturing rich metadata about the results produced
by models including safety classifier scores, provenance details, and any intervening processing.
Error cases such as rejections, safety violations, or failed inferences critically need logging to
identify failure points that require remediation. Thorough output logging also supports auditing

use cases for governance and compliance.

An important consideration when integrating GenAl models is that many platforms (should)
treat inference requests in a stateless manner without inherent logging capabilities. For exam-
ple, on Google Cloud’s Vertex Al, request details are not automatically logged by default when
generating predictions from LLMs. The responsibility falls on the application itself to implement

comprehensive logging.

While there is no single gold standard, best practices tend to encourage capturing several key
pieces of information for each generative model interaction. At a bare minimum, logging pay-

loads should include:

e The timestamp of the request
¢ Theraw user input

e Anyadditional context data provided (chat history, retrieved information for RAG, etc.)

52 Designing Patterns for Interacting with Generative Al

e The prompt template used, if any pre-processing occurred
e Identifiers for the specific model(s) invoked
e The full model output or result

e Any post-processing template used to shape the model output

"timestamp":,

"user_input":,

"context": ,
"pre_prosessing prompt template": ,
"model”: ,

"result_payload":

"post_prosessing prompt_template":

Capturing this coherent payload allows the interaction history to be established and the results
to be reproduced completely, explaining any given output. This supports analytic use cases like
exploring user adoption, potential pain points, and shifts in usage trends, and at the same time, it

enables continuous monitoring for potential issues or safety violations that require intervention.

Beyond these core fields, other metadata around the generation process can enrich observabili-
ty. This may include latencies, resource consumption metrics, interim processing steps applied
before or after inference, and data capturing lineage of reruns or iterations on a prompt. The log

format should strike a balance between comprehensive detail while avoiding cumbersome bloat.

Implementing centralized structured logging conforming to established templates is a key building
block for responsible Al model operationalization. It transforms opaque and stateless generation
capabilities into transparent, reproducible, and monitorable production pipelines aligned with

governance best practices. Robust logging regimes help GenAl earn trust at enterprise scale.

Summary

In this chapter, we discussed the integration of GenAl models into real-world applications that
require a systematic approach. A five-component framework can guide this process: Entry Point,
Prompt Pre-Processing, Inference, Result Post-Processing, and Logging. At the entry point, user
inputs aligned with the Al model’s expected modalities are accepted, whether text prompts, im-
ages, audio, etc. Prompt pre-processing then cleans and formats these inputs for security checks

and optimal model usability.

Chapter 3 53

The core inference component then runs the prepared inputs through the integrated GenAl mod-
els to produce outputs. This stage requires integrating with model APIs, provisioning scalable
model-hosting infrastructure, and managing availability alongside cost controls. Organizations
can choose self-hosting models or leveraging cloud services for inference. After inference, result
post-processing techniques filter inappropriate content, select ideal outputs from multiple can-
didates, and refine texts/images through automation or human-AlI collaboration methods like

iterative refinement.

How these Al-generated results get presented depends on the application’s use case — whether
powering chatbots, search engines, or document workflows, among others. Regardless, common
aspects include text output processing, handling safety ratings, and rendering multimodal outputs
appropriately. Some applications may opt to store raw model outputs in data repositories for later

asynchronous consumption via ETL pipelines rather than immediate presentation.

Comprehensive logging establishes critical observability across this entire workflow, tracking
metrics, monitoring data quality issues that could indicate drift away from training sets, and
identifying inference errors or failure points. Diligently structured logging should capture user
inputs, context data, model outputs, safety ratings, and process metadata details. While some
platforms treat inference requests on an ad hoc basis, without inherent logging, applications

must implement centralized logging following best practices.
Key takeaways:

e Integrate GenAl through a systematic framework covering entry points, pre-processing,
inference, post-processing, and logging.

e Consider interactive vs. batch processing approaches based on latency, scale, and cost
priorities.

e Implement comprehensive logging for observability, monitoring, explainability, and gov-
ernance.

e Leverage human-Al collaboration to iteratively refine and enhance Al-generated outputs.

e Design result presentation formats tailored to usability and integration needs.

e Address security, responsible Al practices, and ethical considerations throughout the

integration process.

54 Designing Patterns for Interacting with Generative Al

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Generative Al Batch and Real-
Time Integration Patterns

This chapter covers the two primary patterns for designing systems around large language mod-
els (LLMs) — batch and real-time. The decision to architect a batch or real-time application will
depend on the use case you are working on. In general, batch use cases are formulated around
generating data to be consumed later. For example, you will leverage LLMs to extract data points
from a large corpus of data and then have a step to generate summaries to be consumed by busi-
ness analysts on a daily basis. In the case of real-time use cases, data will be used as it becomes
available. For example, you will leverage LLMs as online agents to answer questions from your

customers or employees through a chat or voice interface.

Diving deeper into batch mode, it involves sending queries in bulk for higher throughput at the
cost of latency. This is better suited for long, time-consuming production workloads and large data
consumption. Additionally, batch-generated results are not immediately exposed to the end user,
which allows the option to review the content through additional pipelines. These pipelines can
be integrated before the promptis sent to the LLM where data cleansing and prompt engineering
can happen, or after the response from the LLM is received, where you can augment the reply to

match a specific format or add additional data from other data sources.

The real-time design pattern offers a back-and-forth querying experience at a faster rate. Despite
lower throughput, the real-time design pattern provides faster feedback and could be enhanced
with a multi-turn memory mechanism to increase awareness of previous requests to the LLM.
Real-time inferences are subject to latency requirements and the user experience can be dimin-

ished, hence the opportunities to review results are reduced.

56 Generative Al Batch and Real-Time Integration Patterns

In this case, you can apply some filtering at inference time and apply a retrieval-augmented
generation (RAG) pipeline to augment the user query before it is sent to the LLM. Additionally,

keeping a layer of filtering at the entry and exit points can help you keep your application safe.

We'll provide example use cases of both batch and real-time querying to highlight the trade-
offs. Readers will learn when to use each approach based on factors like scale, cost, and latency

requirements.
We are going to cover the following main topics in this chapter:
e Batch and real-time integration patterns:

e Batch mode involves sending queries in bulk for higher throughput but higher
latency. Itis better suited for long-running workloads and large data consumption.
e Real-time mode offers back-and-forth querying at a faster rate, providing quicker

feedback but with lower throughput. It is better for low-latency requirements.
o Different pipeline architectures:

e The implications of batch versus real-time on different components of the inte-
gration pipeline, such as entry points, pre-processing, inference, post-processing,

and result presentation.
e Application integration patterns in the integration framework:

e How the nuances of batch and real-time patterns map to the different stages of the
integration framework, including entry point, prompt pre-processing, inference,

result post-processing, and result presentation.
e Use case example — search enhanced by generative Al (GenAl):

e Anexample use case of using GenAl to enhance a website search, with document
ingestion happening in batch mode and search/response generation in real-time

mode.

Batch and real-time integration patterns

The first key decision when evaluating batch versus real-time integration approaches is around
dataimmediacy — when exactly do you need the GenAl outputs? This boils down to whether you
require responsive just-in-time results, like servicing on-demand user queries, versus use cases

where insights from model outputs can accumulate over time before getting consumed.

Chapter 4 57

Let’s illustrate this with an example of RAG, where LLMs evaluate search results to formulate
human-friendly query responses. This is a real-time use case; you need Al-generated answers
with minimal latency to deliver a quality user experience in applications like conversational

assistants or search engines. The data has to be putinto action as it is produced.

Contrast that with something like automated content generation workflows, for example, ex-
tracting metadata from a product catalog. While you still want that content quickly, there’s
more flexibility around when model outputs get ingested downstream. You could run generative
models in batches, queueing up prompts and processing them asynchronously based on available

capacity. The generated texts then flow into your e-commerce databases on their own schedule.

The real-time interactive integration mode prioritizes low latency and responsive experiences
above all else. Users receive Al results virtually instantly through request/response app interfaces.
Batch mode disconnects that coupling, sacrificing instantaneous interactivity for higher overall
throughput and cost efficiency at scale. Longer-running jobs optimize utilization across pooled

models.

So, the batch versus real-time decision depends on analyzing data freshness requirements. For
experiences demanding perceivable instant gratification, like querying information or iterating
on creative ideation, you’ll want a request-scoped interactive architecture. But when targets
are more about maximizing generative model output volume with flexible latency tolerances,
then batching prompts yields better economics. Getting that integration pattern right is key to

harnessing GenAI’s value.

Different pipeline architectures

Beyond just the integration pattern itself, the decision between real-time and batch process-
ing has major implications for the surrounding data pipelines and infrastructure architecture.
Pre-processing and post-processing workflows take on very different characteristics optimized

for their respective modes.

For real-time, low-latency use cases such as query answering or conversational Al lightweight
just-in-time pre-processing pipelines are ideal. These handle prompt cleanup, context augmen-
tation, and other steps with minimal overhead before hitting the generative model with a single
inference request. The output then flows through a post-processing stage focused on safety fil-
tering, response ranking, and result formatting. These processes need to be optimized because

end-to-end latency is critical.

58 Generative Al Batch and Real-Time Integration Patterns

Real-time pipelines are typically hosted on dynamically scalable containerized infrastructure or
serverless cloud environments. Aggressive caching layers and load balancing distribute the re-
questvolume across available inference resources. The entire real-time architecture is optimized

for instant responsiveness above all else.

In contrast, batch processing pipelines undertake much heavier pre-processing work by operating
on larger data volumes. This could include tasks like topic clustering, semantic search, translation,
and more — all before prompting generative models. Those prompts then flow into asynchronous

queuing systems that accumulate requests into batches for higher throughput model execution.

On the output side, heavyweight post-processing pipelines apply content structuring, summari-
zation, quality filtering, legal compliance scans, and various other enrichment tasks. Staging areas
like cloud storage and data warehouses temporarily store outputs for analysis before integration

into downstream systems proceeds asynchronously.

Orchestrated by workflow engines or managed batch services, these pipelines aim to maximize
total data throughput within cost constraints over an extended time horizon. Unlike real-time
systems, latency is an acceptable trade-off for overall higher scalability and parallelism at lower

unit costs.

Decoupled buffering isolates upstream and downstream systems from direct dependencies on
GenAlI models. This allows linear scaling across distributed worker pools in cloud or on-prem

environments. Auto-scaling policies match provisioned resources to demand constantly.

While architecturally more complex, batch pipelines efficiently produce immense volumes of
Al-generated data on structured schedules. Cost calculations compare scaling infrastructure fees
versus fixed infrastructure costs. For many high-scale use cases, batching promptly amortizes

despite heavy pipeline overhead.

When evaluating the trade-offs, the decision between interactive real-time versus offline batch
processing covers many architectural requirements. Real-time optimizes for low latency while
batch yields higher overall throughput within more flexible time windows. Thoughtful pipeline
design aligning to data demands and generation use cases is critical for overall system perfor-

mance and cost efficiency.

Chapter 4 59

Application integration patterns in the integration
framework

Previously, we dove into the high-level architectural trade-offs between real-time and batch-ori-
ented integration approaches for GenAl models. But how do the nuances of these patterns map
to the different components within our integration framework’s stages? The following diagram

depicts these steps:

Figure 4.1: The GenAl application integration framework

Let’s walk through each step in the next sections.

Entry point

When it comes to the Entry Point stage, the priorities for real-time versus batch systems differ
significantly based on the end user experience. For real-time interactive applications, the entry
points where prompts originate need to be highly streamlined with simplicity and ease of use in
mind. After all, these inputs will be directly exposed to human users and drive the instantaneous

Al responses they receive.

As such, real-time prompting surfaces should be optimized for clean, user-friendly design, search
bars, focused chat windows, straightforward voice interfaces, and intuitive upload widgets. The
experience gets distilled to its essential signals, without extraneous complexity that could detract

from the responsiveness.

60

Generative Al Batch and Real-Time Integration Patterns

These prompts often originate from unpredictable contexts too, so interfaces have to feel natural

across device types and usage scenarios.

Figure 4.2: Image of a chatbot you will build in Chapter 7, Integration Pattern: Real-Time
Intent Classification

In contrast, the entry points for batch processing occur behind the scenes, out of sight of end

users. These prompts more commonly stem from data pipelines — whether JSON payloads from

APIs, database export files, documents staged in cloud storage, or other structured/unstructured

sources. The interfaces optimize for stable, high-throughputintake rather than real-time human

interaction.

Common input formats amenable to batching include JSON/JSONL streams, CSV uploads, Par-

quet files, and more. Already pre-parsed into consumable shapes, these prompts can be parsed

and evaluated by another model, or other mechanisms, and then sentinto downstream queuing

systems for model execution at scale. Below you can see an example of a JSONL document:

"name": "Paula", "music_genres": [["blues", "8"], ["rock", "5"1]1}
"name": "John", "music_genres": [["pop", "15"], ["country", "2"]]1}
{"name": "Mary", "music_genres": []}

"name": "Adam", "music_genres": [["pop", "5"]1]1}

Chapter 4 61

Prompt pre-processing

The prompt pre-processing step involves preparing and transforming the input prompt before it

is fed into the language model for generation.

The requirements and constraints for prompt pre-processing can vary substantially depending
on whether the system is designed for real-time or batch processing. In real-time applications,
such as conversational assistants or search engines, every step in the pre-processing workflow
adds precious seconds to the overall response time. This latency can be detrimental to the user

experience, especially in scenarios where immediacy and responsiveness are key.

For instance, in a real-time system that employs a RAG pipeline, the prompt must undergo sev-
eral time-consuming steps before the language model can generate a response. These steps may
include evaluating the prompt for secure Al purposes, generating embedding (vector represen-
tations) of the prompt, querying a vector store to retrieve relevant information, and potentially
performing additional processing on the retrieved data. Each of these steps contributes to the

overall latency, compounding the delay experienced by the user.

In contrast, batch prompt pre-processing workflows enjoy greater flexibility and can accommodate
more computationally intensive operations without significantly impacting the user experience.
Since the processing does not happen in real time, there is more leeway to apply deeper enrichment
techniques, such as augmenting the prompt by extracting metadata, performing query rewrit-
ing to improve the quality of the retrieved information, or applying advanced natural language

processing techniques to better understand the intent behind the prompt.

This flexibility in batch processing can lead to more comprehensive and accurate responses from
the language model, as the pre-processed prompt can be enriched with relevant contextual in-
formation and tailored to better align with the model’s strengths. However, it’s important to
strike a balance between the depth of pre-processing and the computational resources required,
as excessive pre-processing can be translated into higher costs, which may affect the overall ROI

of the solution.

Inference

While real-time and batch prompt pre-processing workflows differ in their approaches and pri-
orities, the core inference stage is where both patterns converge, as they ultimately leverage the
same underlying generative model capabilities. However, the optimization strategies employed

at this stage can vary significantly between the two integration patterns.

62 Generative Al Batch and Real-Time Integration Patterns

In real-time GenAl systems, the primary focus is on minimizing latency and maximizing respon-
siveness for individual requests. These systems typically handle inference requests one at a time,
as opposed to batching multiple requests together. When consuming out-of-the-box models
such as Google’s Gemini, OpenAl’s ChatGPT, or Anthropic’s Claude, the underlying infrastructure
and resource allocation are abstracted away from the user. In such cases, the provider handles
the complexities of right-sizing the available resources for inference, ensuring that individual

requests are processed efficiently while adhering to the service’s performance and cost objectives.

However, in scenarios where organizations choose to host and deploy the generative models
themselves, such as with Google’s Gemma, Meta’s LLaMA, or other open-source or proprietary
models, the responsibility of right-sizing the infrastructure falls on the organization itself. This
process, known as a right-sizing exercise, involves carefully balancing the trade-off between

potential latency and cost.

The objective of the right-sizing exercise is to determine the optimal configuration of computa-
tional resources, such as the number and type of GPUs, CPU cores, and memory, that can effectively
handle the expected load while minimizing latency and controlling costs. This exercise typically
involves load testing and benchmarking the model’s performance under various resource con-

figurations and simulated traffic patterns.

Factors such as the model’s size, complexity, and the nature of the inference tasks (for example,
text generation, question answering, summarization) play a crucial role in determining the re-
source requirements. Larger and more complex models generally require more computational
power to achieve acceptable inference latencies, which can increase the overall cost of deploy-

ment and operation.

Organizations must carefully evaluate the trade-off between achieving low latency, which may
require over-provisioning resources, and controlling costs, which may involve accepting slightly
higher latencies. Finding the right balance is critical, as excessive latency can degrade the user

experience, while over-provisioning resources can lead to unnecessary expenses.

On the other hand, batch integration patterns prioritize cost optimization and throughput for
bulk processing of prompts. Instead of handling requests individually, these systems pool multiple
prompts into batches, which are then sent to the generative model for inference. By processing
prompts in batches, the computational resources can be utilized more efficiently, as the overhead
associated with initializing the model and setting up the inference pipeline is amortized across

multiple prompts.

Chapter 4 63

This approach can lead to significant cost savings, especially when dealing with large volumes of
prompts, as the computational resources are utilized more effectively, and the overall throughput

is increased.

However, it’s important to note that the batch processing approach introduces a trade-off between
throughput and latency. While it optimizes for cost and overall throughput, individual requests
may experience higher latency as they need to wait for a sufficient number of prompts to accu-
mulate before being processed in a batch. As was mentioned before, batch integration patterns
are better suited for scenarios where real-time responsiveness is less critical, such as batch text

generation, document summarization, or other offline processing tasks.

Result post-processing

Inreal-time applications, the post-processing stage plays a crucial role in ensuring a smooth and
engaging user experience. As the generated responses are intended for immediate delivery, the
post-processing workflow prioritizes techniques that enable quick response filtering, ranking,
and rendering. One common practice, particularly in conversational Al applications like chatbots,
is to format the generated output using markup languages such as Markdown. This approach
allows for the seamless integration of rich text formatting, including headers, lists, code blocks,

and other structural elements, enhancing the readability and visual appeal of the responses.

Real-time post-processing may incorporate techniques tailored to the specific use case, such
as sentiment analysis by applying color schemas as a background depending on the sentiment.
For example, in a customer service chatbot, responses can be filtered and ranked based on their
relevance to the customer’s query, ensuring that the most appropriate and helpful responses

are prioritized.

In contrast to real-time systems, batch processing workflows in GenAlI systems afford more flexi-
bility and computational resources for post-processing. As the generated outputs are notintended
for immediate delivery, batch post-processing can apply more comprehensive and computation-
ally intensive enhancements across aggregated outputs before persisting them to data stores or

downstream systems.

One common batch post-processing technique is summarization, where the generated outputs
are condensed into concise and coherent summaries, facilitating easier consumption and analysis.
Structure extraction is another valuable post-processing step, where the system identifies and
extracts relevant information, such as key entities, relations, or event descriptions, from the gen-
erated text. This structured data can then be stored in databases or used to populate knowledge

graphs, enabling more efficient querying and analysis.

64 Generative Al Batch and Real-Time Integration Patterns

Batch post-processing can also incorporate deeper quality filtering mechanisms, leveraging tech-
niques such as language models fine-tuned for quality assessment, natural language inference,
or fact-checking. These advanced filtering methods can help identify and flag low-quality or fac-
tually incorrect outputs, ensuring that only high-quality and reliable information has persisted

for downstream consumption.

Batch post-processing workflows can involve more complex transformations and enhancements,
such as text stylization, sentiment transfer, or content generation for specific domains or formats

(for example, generating marketing copy, product descriptions, or technical documentation).

Result presentation

Result presentation is arguably the starkest difference between paradigms. Real-time UI/API inte-
gration demands instantaneous updates — often server-rendered or via data-binding frameworks.
In batch mode, you’re more likely to bulk export results through pipelines into warehouses or
operational data stores for asynchronous consumption in reporting, analytics, document systems,

and more.

Naturally, the logging and monitoring requirements align closely with each mode’s system char-
acteristics. Real-time needs tight instrumentation around per-request metrics like latency, er-
rors, and resource usage. Batch emphasizes throughput volume, pipeline performance, and data

lineage observability.

From a data engineering perspective, real-time follows more of a lambda architecture with op-
timized speed and paths. Batch leans toward conventional modern data pipelines leveraging

cloud storage, spark clusters, managed workflow orchestrators, and MPP data warehouse targets.

Real-time integration meshes seamlessly with stateful applications and provides very responsive
Uls. Batch procession unlocks higher scalability for large, asynchronous Al-powered operations
like document generation, report automation, and conversational data annotation at a tremen-

dous scale.

Both patterns introduce their own unique supportability considerations too. Real-time depends
on highly redundant, self-healing service meshes. Batch relies more on robust recovery orches-

tration, idempotent restarts, and automatic retries.

As you can see, while leveraging the same core GenAl capabilities, the two paradigms differ sig-
nificantly in upstream/downstream architecture priorities and delivery characteristics. The right
choice comes down to evaluating latency sensitivity, scale targets, cost parameters, and the use

case fit. Many enterprises will likely embrace a hybrid mesh incorporating aspects of both patterns.

Chapter 4 65

Use case example — search enhanced by GenAl

To illustrate a real-time and a batch use case, we are going to work on an example of a company
that uses GenAl to enhance its website search experience. In this case, the document ingestion

will be a batch process, and the search itself will be real-time.

Imagine a company that aims to enhance its website’s search experience by leveraging GenAl
technologies. In this scenario, the company’s objective is to provide more comprehensive and
relevant search results to its users, going beyond simple keyword matching and delivering con-

textually appropriate and natural language responses.

The document ingestion process, which involves indexing and processing the company’s content
corpus (for example, product descriptions, knowledgebase articles, product manuals), would be
a batch operation. This step would involve techniques such as text extraction, entity recognition,
topic modeling, and semantic embedding generation for the entire corpus of documents. The
embeddings, which capture the semantic meaning and context of the documents, would then

be stored in a vector database or other appropriate data store.

During the real-time search experience, when a user submits a query on the company’s web-
site, the query will undergo prompt pre-processing, which could include query rewriting, intent
detection, and embedding generation. The generated query embedding would then be used to
retrieve the most relevant documents from the vector database, based on semantic similarity.

These retrieved documents would serve as the knowledge source for the GenAl model.

The GenAl model would then generate a natural language response based on the retrieved doc-
uments and the user’s query. This response could take the form of a concise summary, a detailed
answer, or even a conversational dialogue, depending on the requirements and the tone the

company decides to set.

The real-time post-processing stage would then kick in, formatting the generated response for
optimal presentation on the website. This could involve techniques such as response ranking,
result structuring (for example, breaking down the response into sections or bullet points), and

rendering with appropriate markup or visual elements.

By combining the batch processing of document ingestion with real-time query processing and
generation, the company can deliver a seamless and enriched search experience to its users. The
batch processing ensures that the company’s content corpus is thoroughly indexed and seman-
tically understood, while the real-time components leverage this knowledge to provide relevant

and natural language responses tailored to each user’s query.

66

Generative Al Batch and Real-Time Integration Patterns

Batch integration — document ingestion

The batch-processing portion of the document ingestion pipeline plays a crucial role in preparing

the company’s content corpus for effective search and retrieval. This stage involves several steps

to extract meaningful information and convertitinto a format suitable for efficient querying and

generation:

1

Data Extraction and Pre-processing: The first step is to extract textual data from various
sources, such as databases, content management systems, or file repositories. This data
may come in various formats (for example, HTML, PDF, Word documents), requiring
pre-processing techniques like text extraction, deduplication, and normalization to clean

and standardize the input data.

Metadata Extraction: Once the text data is preprocessed, advanced natural language
processing techniques, such as named entity recognition (NER) and entity linking, can
be applied. These tasks can be executed either from predictive Al models or from GenAl
models. This step identifies and extracts relevant entities (for example, people, organi-
zations, products, locations) from the text, to be leveraged by linking them to external

knowledge bases or ontologies, enriching the data with additional contextual information.

Embedding Generation: The heart of the batch processing stage is the generation of
semantic embeddings for each document. These embeddings are dense vector represen-
tations that capture the contextual meaning and relationships within the text. Popular
techniques like Transformer language models (for example, BERT and RoBERTa) or spe-
cialized embedding models (like, for example, the Google Vertex Al Embeddings for Text
model and OpenAl text embeddings) are used to generate these embeddings.

Vector Database Indexing: The generated embeddings, along with the extracted entities,
topics, and metadata, are stored in a specialized vector database or other suitable data
store optimized for similarity search and retrieval. This indexed corpus serves as the

knowledge base for the real-time search and generation process.

Chapter 4 67

Figure 4.3: Document ingestion

By performing these batch-processing steps, the company’s content corpus is transformed into a
highly structured and semantically rich representation, enabling efficient retrieval, and providing
the necessary context for the GenAl model to produce relevant and accurate responses during

the real-time search experience.

Realtime integration — search

The real-time portion of the process handles the user’s search queries and generates contextually

relevant responses leveraging the knowledge base created during the batch processing stage.
At a high level, these are the components of the experience shown in Figure 4.4:

1. Query processing: Thisis illustrated in Figure 4.4, in step 1. When a user submits a search
query on the company’s website, the query undergoes pre-processing steps similar to
those applied during the batch-processing stage. This may include text normalization,
entity recognition, and embedding generation using the same models employed for the

document corpus. In this step, you can also evaluate the query for safety.

2. Semanticretrieval: As depicted in steps 2 and 3, the generated query embedding is used to
perform a similarity search against the vector database containing the indexed document
embeddings. This step retrieves the most relevant documents from the corpus based on
their semantic similarity to the user’s query, ensuring that the retrieved information is
contextually appropriate. In this step, you can also re-rank results depending on the use

case and the metadata available.

68 Generative Al Batch and Real-Time Integration Patterns

3. Prompt enrichment and generation: In step 4, the retrieved documents, along with the
original query and any additional context (for example, user profile or browsing history)
are used to construct a rich prompt for the GenAl model. Techniques like prompt engi-
neering, context augmentation, and RAG may be employed to create an informative and

concise prompt that captures the essence of the user’s information need.

4. Response generation: In steps 5 and 6, the GenAl model takes the enriched prompt as input
and generates a natural language response. This response could be a concise summary, a
detailed answer, or even a conversational dialogue, depending on the requirements and
the model’s capabilities.

5. Post-processing and rendering: In step 6, the generated response then goes through a
post-processing stage, which may involve formatting, structure extraction, result ranking,
and rendering for optimal presentation on the website. This could include techniques like
extracting key points or summaries, highlighting relevant entities, and integrating visual

elements of multimedia content to enhance the user experience.

Figure 4.4: Real-time search architecture example

Summary

This chapter covered the two primary patterns for designing systems around LLMs — batch and
real-time. The decision depends on your organization’s use case requirements. We learned that
batch mode involves sending queries in bulk for higher throughput at the expense of higher la-

tency. Itis better suited to long-running workloads and the consumption of a large corpus of data.

Chapter 4 69

Results are not immediately exposed to users, allowing for additional review pipelines before or

after model inference.

We also learned that real-time mode offers back-and-forth querying at a faster rate, providing
quicker feedback to and from the end user. It has lower throughput but is better for low-latency

requirements, but the opportunities to review results are reduced to prevent latency increases.

In this chapter, we addressed the implications of batch versus real-time processing on different
components of the integration pipeline. For entry points, real-time optimizes for streamlined

user prompting, while batch handles data pipeline inputs.

In pre-processing, real-time employs lighter techniques to minimize latency, whereas batch
allows for heavier enrichment. Inference in real-time focuses on low latency per request, while

batch processes requests in groups for improved throughput.

Post-processing in real-time involves quicker formatting and filtering, but batch processing allows
for more complex transformations. In terms of presentation, real-time offers instantaneous Ul

updates, while batch exports results asynchronously.

Additionally, the chapter provided an example use case of using GenAl to enhance a website
search, with document ingestion occurring in batch mode and search/response generation in
real-time mode, transforming the end user experience, and obtaining more relevant and per-

sonalized answers.

In the next chapter, we will dive deep into a use case that leverages GenAl to extract data from

10-K documents.

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Integration Pattern: Batch
Metadata Extraction

In this chapter, we will explore a metadata extraction use case, which serves as an excellent entry
point to understand the capabilities of Generative Artificial Intelligence (GenAl). This topic is

particularly relevant across industries and thought-provoking.

To illustrate this use case, let us consider a scenario where we work with a financial services
company that requires the extraction of data from a 10-K report. These reports, filed annually
with the Securities and Exchange Commission (SEC) by publicly traded companies, provide
a comprehensive overview of their financial performance, operations, and significant events.
They are extensive documents that are over 100 pages long and contain a wealth of information,

structured across different sections across different data modalities (tables, text, etc.).

In this chapter, our objective is to identify the specific dataset and critical data points that need to
be extracted from this vast repository of information. This process requires a systematic approach

to pinpoint the desired data points with precision.

Once the relevant data points have been identified, we will determine the appropriate storage
location for this extracted data. This could involve a centralized database accessible to authorized
individuals within the organization, or a cloud-based repository that facilitates seamless access

and collaboration across teams and locations.

Regardless of the chosen storage solution, GenAl will play a pivotal role throughout this endeav-
or. With its ability to understand and process natural language, GenAl will prove invaluable in
navigating the intricate structure of financial reports, extracting the essential data points with

remarkable efficiency and accuracy.

72 Integration Pattern: Batch Metadata Extraction

We will cover the following main topics in this chapter:

e Use case definition: We will describe an example scenario of extracting metadata from
a10-K report for a financial services company, explaining the structure and importance

of these reports.

e Architecture: We will outline a cloud-based, serverless architecture using Google Cloud
services to process 10-K reports, including storage, messaging, processing, and database

components.

e Entry point: We will explain how the batch processing pipeline s triggered, using Google

Cloud Storage and Cloud Functions to initiate the content extraction process.

e Prompt pre-processing: We will detail the creation of an initial prompt for the Al model,

leveraging SEC guidance to identify key data points for extraction from 10-K reports.

e Inference: We will discuss the submission of the prompt to Gemini Pro 1.5 via Vertex

Al, showcasing how the model processes and extracts information from the 10-K report.

e Result post processing: We will cover parsing the JSON output from the large language
model (LLM) and the strategies to ingest the extracted data into databases, considering

both relational and document database options.

e Result presentation: We will consider how to present the extracted data, including the

use of business intelligence tools, data visualization platforms, and custom applications.

¢ Code sample: We will provide a practical implementation of the metadata extraction

process, including setup, prompt creation, inference, and result handling.

Use case definition

Extracting metadata from 10-K reports holds significant value for financial services companies
and other stakeholders. These reports, mandated by the SEC, are a treasure trove of information
that can provide valuable insights into a company’s financial health, operational performance,
and strategic direction. However, the sheer volume, complexity of these documents, and lack of
consistency across the way companies build their reports can make it challenging to manually

extract and analyze the relevant data points.

Typical 10-K reports follow a standardized structure, comprising multiple sections that cover
various aspects of a company’s operations. These sections may include a business overview, risk
factors, management’s discussion and analysis, financial statements, and disclosures about cor-
porate governance, among others. While the structure is consistent across companies, the specific
data points and their presentation can vary, making it difficult to establish a one-size-fits-all

approach to data extraction.

Chapter 5 73

The 10-K includes five distinct sections:

e Business: This section provides an overview of the company’s main operations, including
its products and services, key markets, competitive landscape, and other relevant details

about its business model and operations.

e Risk factors: In this section, the company outlines and discusses any, and all, risks it
faces. This includes operational, financial, legal, regulatory, and industry-specific risks

that could potentially impact its performance or future prospects.

e Selected financial data: This section presents specific financial information about the
company over the last five years, typically including key metrics such as revenue, net

income, earnings per share, and other relevant financial data.

¢ Management’s Discussion and Analysis (MD&A): The fourth section offers senior man-
agement’s explanation and analysis of the company’s financial results, including a detailed
discussion of the factors that influenced its performance, future strategies, and potential

opportunities and challenges.

e Financial statements and supplementary data: The final section furnishes the audited
financial statements, including the income statement, balance sheets, statement of cash
flows, and accompanying notes and disclosures. This section provides a comprehensive
and detailed picture of the company’s financial position and performance during the

reporting period.

The biggest challenge to these documents is that specific data points and their presentation can
vary, making it very difficult to establish a one-size-fits-all approach to data extraction. However,
by leveraging GenAI’s natural language processing capabilities, financial services companies can
efficiently navigate this structured format and extract relevant data points from each section,

tailoring their approach to the unique characteristics of each company’s report.

The availability of structured metadata extracted from these documents opens up opportunities for
financial services companies. For example, they can conduct an in-depth analysis of a company’s
financial performance, benchmarking it against industry peers or historical trends. This analysis

can inform investment decisions, risk assessments, and strategic planning efforts.

Another opportunity would be to leverage the extracted metadata to develop predictive models
and identify patterns that may not be immediately apparent from manual analysis. These mod-
els can help anticipate potential risks, identify emerging trends, and uncover new investment

opportunities.

74 Integration Pattern: Batch Metadata Extraction

Thinking further, the extracted metadata can be integrated into existing data repositories or
business intelligence platforms, enabling seamless access and collaboration among various teams
within the organization. This integration can foster cross-functional collaboration, enabling
different departments, such as investment banking, asset management, and risk management,

to leverage the same data for their respective analyses and decision-making processes.

In addition to financial services companies, the extracted metadata can also be valuable for reg-
ulatory bodies, academic researchers, and other stakeholders interested in studying corporate

performance, industry trends, and the overall health of the financial markets.

By leveraging the power of GenAl to extract metadata from 10-K reports, financial services compa-
nies can unlock a wealth of insights, streamline their analysis processes, and make more informed

decisions that drive business growth and mitigate risks.

Architecture

Though the scope of this book is not to provide a deep dive into the intricacies of a LLM pro-
cessing architecture, we will briefly discuss what a cloud-based architecture for our metadata
extraction use case might look like. For this example, we will leverage the capabilities of Google
Cloud, as it offers a native Al platform called Vertex Al that allows us to seamlessly integrate
leading models, including Google’s Gemini and third-party models such as Anthropic’s Claude,

in an enterprise-compliant manner.

The approach we’ll adopt for this use case is to leverage a batch-optimized architecture, which
is suitable for processing large volumes of data in an efficient and scalable manner. This kind of
architecture aligns with cloud-native principles and is a serverless architecture that leverages

various Google Cloud services.

This architecture will consist of an object store (Google Cloud Storage) to store the 10-K reports,
amessaging queue (Google Cloud Pub/Sub) to coordinate the data flow, a processing component
(Google Cloud Functions) to execute the LLM-based metadata extraction tasks, an LLM model
(such as Google Gemini hosted on Vertex-Al) to perform the actual extraction, and a database

(Google Big-Query) to store the extracted metadata.
Here’s a more detailed breakdown of how this architecture will function:

1. ThelO-Kreports are stored in Google Cloud Storage, a highly scalable and durable object

store.

Chapter 5 75

2. A Cloud Function is triggered periodically (for example, daily or weekly) to initiate the

metadata extraction process.

3. ACloud Function will read alist of 10-K reports from Cloud Storage and publish messages

to a Pub/Sub topic, effectively creating a queue of reports to be processed.

4. Another Cloud Function, subscribed to the Pub/Sub topic, is triggered for each message

tied to a given report in the queue.

5. This second Cloud Function invokes the LLM model (for example, Google Gemini) hosted

on Vertex-Al, passing the 10-K report content as input.

6. The LLM model processes the report, leveraging its natural language understanding ca-

pabilities to extract the relevant metadata.

7. The extracted metadata is then stored in a structured format (for example, BigQuery) for

turther analysis and consumption.

This serverless architecture provides several benefits, including automatic scaling, cost-efficiency

(pay-per-use pricing), and seamless integration with other Google Cloud services.

Figure 5.1: GenAl document data extraction pipeline

76 Integration Pattern: Batch Metadata Extraction

The following diagram showcases the architecture that will be leveraged in this example, fol-
lowing our GenAl integration framework discussed in Chapter 3, Designing Patterns for Interacting

with Generative Al

Figure 5.2: The Application Integration Framework

Entry point

The entry point for our batch processing pipeline will be an object created in Google Cloud Stor-
age (GCS), which will then trigger a Google Cloud Function to start the processing pipeline. This
setup allows us to seamlessly integrate with existing workflows, where the 10-K reports are
uploaded to a designated GCS bucket. By leveraging the event-driven nature of Cloud Functions,

our system can automatically getinto action as soon as a new report lands in the storage bucket.

Once triggered, the Cloud Function will initiate the content extraction process. For this step,
we’ve decided to employ the powerful capabilities of Google’s Gemini Pro 1.5, a state-of-the-art
GenAl multimodal model that supports processing PDF documents directly. Gemini Pro 1.5 will
analyze the uploaded 10-K report, intelligently extracting not only the textual content but also
the relevant data points we’re interested in, such as financial figures, company overviews, and

key performance indicators.

By leveraging Gemini Pro 1.5’s advanced natural language processing and document understand-
ing capabilities, we can obtain a comprehensive transcript of the report’s content. This transcript
will serve as the foundation for further analysis and processing steps in our pipeline. Additionally,
the extracted data points will be structured and organized in a format of our choosing (JSON,
Markup, etc.), defined in the prompt, allowing us to seamlessly integrate them into our down-

stream systems to generate insightful summaries, visualizations, and other valuable outputs.

Prompt pre-processing

As a first step, we will start elaborating a prompt to extract the essential data points required to
comprehensively understand a 10-K document. To guide our efforts, we will leverage a valuable
resource provided by the SEC itself — a document titled How to Read a 10k, which is available on
the SEC website (https://www.sec.gov/files/readal@k.pdf).

https://www.sec.gov/files/reada10k.pdf

Chapter 5 77

This SEC-provided document serves as a very useful roadmap, outlining the critical sections and
information that investors and analysts should focus on when delving into a company’s 10-K
filing. By carefully studying this resource, we can identify the key data points that are most rele-

vant and insightful, ensuring that our GenAl system extracts the information that truly matters.

To kickstart our data extraction process, we will create a simple yet effective prompt for our GenAl

model. This initial prompt will serve as a starting point, instructing the model to identify and

extract the specific data points outlined in the How to Read a 10k document. While this initial

prompt may be concise, it will lay the foundation for more sophisticated prompts and fine-tun-
ing techniques as our project progresses. The goal is to iteratively refine our prompts, leveraging

the power of GenAl to extract the most crucial information accurately and efficiently from these

complex financial documents.

nun

prompt =
You are an expert business analyst. Your task is to evaluate documents.

From the context document generate a JSON template with the important
data points to be extracted from the document, also remember to add an
attribute for the summary of the section.

The output should be a well-formed JSON document.

Context:
readalok.pdf

Response:

[IRIRT]

The following is example output from the previous prompt:

"10k_template": {
"part_I": {

"item_1_business": {

"description": "Company's main products and services,
subsidiaries, and markets",

"recent_events": null,
"competition": null,
"regulations": null,

"labor_issues": null,

"operating costs": null,

Integration Pattern: Batch Metadata Extraction

"seasonal_factors": null,
"summary": null

bs

"item_la_risk_factors": {
"risk_factors": [],
"summary": null

s

"item_1b_unresolved staff comments": {
"comments": [],
"summary": null

s

"item_2_ properties": {
"properties": [],
"summary": null

s

"item_3_legal proceedings":
"proceedings": [],
"summary": null

s

"item_4": {

"reserved": true

s
"part_II": {
"item_5_market_for_registrants_common_equity": {
"market_information": null,
"number_of_holders": null,
"dividends": null,
"stock_repurchases": null,
"summary": null
s
"item 6 _selected financial data": {
"financial_data": {},
"summary": null
s
"item_7_managements_discussion_and_analysis": {

"operations_and_financial results": null,

Chapter 5

"liquidity_and_capital_resources": null,
"trends_and_uncertainties": null,
"critical_accounting_judgments": null,
"off_balance_sheet_arrangements": null,
"contractual obligations": null,
"summary": null
¥
"item_7a_quantitative_and_qualitative_disclosures_about_
market_risk": {
"market_risk_exposures": null,
"risk_management": null,

"summary": null

¥

"item_8 financial_statements_and_supplementary_data": {

"income_statement": null,
"balance_sheets": null,
"statement_of_cash_flows": null,
"statement_of_stockholders_equity": null,
"notes_to_financial_statements": null,
"auditors_report": null,
"summary": null

bs

"item_9_changes_in_and_disagreements_with_accountants": {
"changes_in_accountants": null,
"disagreements": null,
"summary": null

}s

"item_9a_controls_and_procedures": {
"disclosure_controls_and_procedures": null,
"internal_control_over_financial_reporting": null,
"summary": null

bs

"item_9b_other_information": {
"other_information": null,

"summary": null

Integration Pattern: Batch Metadata Extraction

"part_III": {
"item_10 directors_executive_officers_and_corporate_
governance": {

"directors_and_executive_officers": [],
"code_of_ethics": null,
"board_qualifications": null,
"summary": null

bs

"item_11 executive_compensation": {
"compensation_policies_and_programs": null,
"executive_compensation": {},
"summary": null

¥

"item_12_ security_ownership": {
"ownership_information": {},
"equity_compensation_plans": null,
"summary": null

¥

"item_13 certain_relationships_and_related_transactions": {
"relationships_and_transactions": [],
"director_independence": null,
"summary": null

¥

"item_14 principal_accountant_fees_and_services":
"fees_for_services": {},

"summary": null

¥
"part_IV": {
"item_15_exhibits_financial_statement_schedules":
"exhibits": [],
"financial statement_schedules": null,

"summary": null

Chapter 5 81

Now that we have a template of what to look for in the actual 10-K, we can create a prompt to

extract those data points:

You are an expert business analyst specializing in 10-K documents.

Your task is to extract information from 10-K documents; to achieve this
task, follow these steps:

Carefully analyze the document provided as context.

Use the template as a reference to understand which data points to
extract.

Never make up information; if you don't remember something, go back to
read the document. If the data is not available, add "Not available" as
the value.

Return a well-formed JSON document following the template.
Always think step by step.

<template>
{
"10k_template": {
"part_I": {
"item_1 business": {
"description”: "Company's main products and services,
subsidiaries, and markets",
"recent_events": null,
"competition": null,
"regulations"”: null,
"labor_issues": null,
"operating_costs": null,
"seasonal_factors": null,
"summary": null
s
"item_la_risk_factors": {
"risk_factors": [],
"summary": null
s
"item_1b_unresolved_staff_comments": {

"comments": [],

82 Integration Pattern: Batch Metadata Extraction

"summary": null

¥

"item_2_properties": {
"properties": [],
"summary": null

¥

"item_3_legal proceedings": {
"proceedings": [],

"summary": null

¥
"item_4": {
"reserved": true
}
s
"part_II": {

"item_5_market_for_registrants_common_equity": {
"market_information": null,
"number_of_holders": null,

"dividends": null,
"stock_repurchases": null,
"summary": null

¥

"item_6_selected_financial_data": {
"financial_data": {},

"summary": null

¥

"item_7_managements_discussion_and_analysis": {
"operations_and_financial_results": null,
"liquidity_and_capital_resources": null,
"trends_and_uncertainties": null,
"critical_accounting_judgments": null,
"off_balance_sheet_arrangements"”: null,
"contractual_obligations": null,

"summary": null

s

"item_7a_quantitative_and_qualitative_disclosures_about_
market_risk": {

Chapter 5 83

"market_risk_exposures": null,
"risk_management": null,
"summary": null
¥
"item_8_financial_statements_and_supplementary_data": {
"income_statement": null,
"balance_sheets": null,
"statement_of_cash_flows": null,
"statement_of_stockholders_equity": null,
"notes_to_financial_statements": null,
"auditors_report": null,
"summary": null
¥
"item_9_changes_in_and_disagreements_with_accountants": {
"changes_in_accountants": null,
"disagreements": null,
"summary": null
¥
"item_9a_controls_and_procedures": {
"disclosure_controls_and_procedures": null,
"internal_control_over_financial_reporting": null,
"summary": null
¥
"item_9b_other_information": {
"other_information": null,

"summary": null

¥
"part_III": {
"item_10_directors_executive_officers_and_corporate_
governance": {
"directors_and_executive_officers": [],
"code_of_ethics": null,
"board_qualifications": null,
"summary": null
¥

"item_11 executive_compensation": {

84 Integration Pattern: Batch Metadata Extraction

"compensation_policies_and_programs": null,
"executive_compensation": {},
"summary": null

s

"item_12_security_ownership": {
"ownership_information": {},
"equity_compensation_plans": null,
"summary": null

Ts

"item_13_certain_relationships_and_related_transactions": {
"relationships_and_transactions": [],
"director_independence": null,
"summary": null

bs

"item_14_principal_accountant_fees_and_services": {
"fees_for_services": {},

"summary": null

}
s
"part_IV": {
"item_15 exhibits_financial statement_schedules": {
"exhibits": [],
"financial_statement_schedules": null,
"summary": null
}
}
}
}
</template>
<document>
</document>

Response:

Chapter 5 85

Note that the template has very specific instructions on what to do as well as what not to do. This
is a best practice for prompting LLMs, as these models require such specific instructions in order
to effectively give you precise information. A good analogy is to guide them as if they are a first-

year student, offering clear instructions and providing as much context as possible.

Inference

For the inference, we are going to submit our prompt to Gemini Pro 1.5 available through Vertex-AL

The Vertex Al Gemini API is tailored for developers and enterprises seeking to incorporate Gemini
models into scaled deployments. This enterprise-grade offering provides a robust set of features
designed to meet the demands of modern, high-performance applications. With the Vertex Al
Gemini AP, you can benefit from enhanced enterprise security measures, ensuring that your data
and models are protected with industry-leading safeguards. Additionally, it offers data residency

options, allowing you to comply with regional data storage and processing regulations:

{
"10k_template": {

"part_I": {

"item_1_business": {

"description": "Company's main products and services,
subsidiaries, and markets",

"recent_events": null,
"competition": null,
"regulations"”: null,
"labor_issues": null,
"operating_costs": null,
"seasonal_factors": null,
"summary": null

¥

"item_1la_risk_factors": {
"risk_factors": [],
"summary": null

¥

"item_1b_unresolved_staff_comments": {
"comments": [],

"summary": null

86

Integration Pattern: Batch Metadata Extraction

Ts

"item_2 properties": {
"properties": [],
"summary": null

}s

"item_3_legal_proceedings": {

"proceedings": [],

"summary": null

¥
"item_4": {
"reserved": true
}
¥
"part_II": {

"item_5_market_for_registrants_common_equity": {

"market_information": null,

"number_of_holders": null,

"dividends": null,

"stock_repurchases": null,

"summary": null

}s

"item_6_selected_financial_data": {

"financial_data": {},
"summary": null

¥

"item_7_managements_discussion_and_analysis": {

"operations_and_financial_results": null,

"liquidity_and_capital_resources”: null,

"trends_and_uncertainties": null,

"critical_accounting_judgments": null,

"off_balance_sheet_arrangements": null,

"contractual_obligations": null,

"summary": null

¥

"item_7a_quantitative_and_qualitative_disclosures_about_

market_risk": {

"market_risk_exposures": null,

Chapter 5 87

"risk_management”: null,
"summary": null

¥

"item_8 financial_statements_and_supplementary_data": {
"income_statement": null,
"balance_sheets": null,
"statement_of_cash_flows": null,
"statement_of_stockholders_equity": null,
"notes_to_financial_statements": null,
"auditors_report": null,
"summary": null

¥

"item_9_changes_in_and_disagreements_with_accountants": {
"changes_in_accountants": null,
"disagreements": null,
"summary": null

¥

"item_9a_controls_and_procedures": {
"disclosure_controls_and_procedures": null,
"internal_control_over_financial_reporting"”: null,
"summary": null

¥

"item_9b_other_information": {
"other_information": null,

"summary": null

¥
"part_III": {
"item_10 directors_executive_officers_and_corporate_
governance": {
"directors_and_executive_officers": [],
"code_of_ethics": null,
"board_qualifications": null,
"summary": null
¥
"item_11_executive_compensation": {

"compensation_policies_and_programs": null,

88 Integration Pattern: Batch Metadata Extraction

"executive_compensation": {},
"summary": null

s

"item_12_security_ownership": {
"ownership_information": {},
"equity_compensation_plans": null,
"summary": null

¥

"item_13_certain_relationships_and_related_transactions": {
"relationships_and_transactions": [],
"director_independence": null,
"summary": null

¥

"item_14 principal_accountant_fees_and_services": {
"fees_for_services": {},

"summary": null

}
}s
"part_IV": {
"item_15_exhibits_financial_statement_schedules": {
"exhibits": [],
"financial_statement_schedules"”: null,
"summary": null
}
}

Note that there are configurations available to play with in the APIL You can check the specific
call in the code provided in the GitHub repository of the book.

Result post-processing

Once the LLM has processed the 10-K reports, it will return the results in a structured JSON format.
This JSON document will contain the extracted data points, organized in a hierarchical manner
that aligns with the structure of the 10-K report itself. To effectively utilize these results, we will

need to parse the JSON document and extract the relevant information.

Chapter 5 89

The next step in our pipeline is to ingest the parsed data into a database for efficient storage
and retrieval. The specific ingestion strategy will depend on the type of database we choose to
employ. For example, if we opt for a relational database, we will need to map the extracted data
points to appropriate table structures, ensuring proper normalization and adherence to data

integrity principles.

Alternatively, if we decide to use a document database, the ingestion process will be more straight-
forward, as these databases are designed to store hierarchical data structures, such as JSON doc-
uments, natively. In this case, we can directly ingest the parsed JSON results, leveraging the

database’s ability to efficiently store and query complex data structures.

Regardless of the database type chosen, itis crucial to design an ingestion strategy that ensures
data consistency, scalability, and performance. This may involve implementing strategies such
as bulkingestion, indexing, and partitioning to optimize the database’s performance and ensure

efficient retrieval of the extracted data points.

In addition to storing the extracted data points, we can also consider generating embeddings
for the various sections of the 10-K reports. Embeddings are vector representations of text that
capture semantic meaning, enabling efficient similarity searches and retrieval. By generating
embeddings for the report sections, we can integrate our dataset with a vector search pipeline,

allowing users to perform advanced queries based on semantic similarity.

For a deep dive into embeddings generation and vector search integration, we will cover the Re-
trieval Augmented Generation (RAG) example in a dedicated chapter. This chapter will provide
detailed insights into the process of generating embeddings, constructing vector databases, and
implementing efficient vector search algorithms, enabling you to create powerful search and

retrieval capabilities for your GenAl applications.

Result presentation

When it comes to presenting the results obtained from processing the 10-K reports, it’s important
to consider the fact that these results are ingested into a database. This means that the consider-
ations you’ll need to make are similar to those you would have when developing an experience

that leverages data available in a database.

One of the primary considerations is the need for a tool or platform that can effectively aggregate
and analyze data stored in a database. This could be a business intelligence (BI) tool, a data
visualization platform, or even a custom-built application tailored to your specific needs. The
chosen tool should provide robust querying capabilities, enabling you to extract and combine

data from various tables or collections within the database.

90 Integration Pattern: Batch Metadata Extraction

Additionally, the presentation layer should offer a range of visualization options, such as charts,
graphs, and dashboards, to effectively communicate the insights derived from the data. These
visualizations should be interactive, allowing users to explore the data from different perspectives,

filter and sort the results, and drill down into specific areas of interest.

Furthermore, the presentation layer should be designed with scalability and performance in mind.
As the volume of data grows over time, the ability to handle large datasets and provide responsive
user experiences becomes crucial. This may involve implementing techniques such as caching,

indexing, and optimizing database queries to ensure efficient data retrieval and rendering.

On the GitHub directory for this chapter, you will find the complete code and an analysis of how
all the layers described in this chapter fit together.

Summary

In this chapter, we explored metadata extraction from financial documents, specifically 10-K
reports filed by publicly traded companies. We walked through the experience of working with
a financial services firm that needs to extract key data points from these massive 10-K annual

reports, leveraging the data extraction capabilities of LLMs.

We defined the use case, and we leveraged the power of GenAl to navigate through the structured
sections of a 10-K, pinpointing and extracting the most relevant information nuggets, following
the guidance provided by a best practices document. We walked through the process, starting
by crafting an effective prompt to guide the Al model. This involved studying an SEC resource
that outlines the critical sections and data points that investors should focus on. Armed with

this knowledge, we can iteratively refine our prompts to ensure accurate and efficient extraction.

Then, we proposed a cloud-native, serverless architecture on Google Cloud to handle the batch
processing of these documents. This scalable setup can leverage various services like Cloud Stor-
age, Pub/Sub, and Cloud Functions, allowing us to seamlessly integrate the Al model and store

the extracted data.

The chapter also touched on post-processing steps, such as ingesting the extracted data into a
database (relational or document-based), potentially generating embeddings for vector similar-
ity searches, and presenting the results through BI tools or custom applications with interactive

visualizations.

Chapter 5 91

In summary, this chapter offered you a practical blueprint to utilize GenAl to enhance the ex-
traction and analysis of critical information from complex financial documents. It demonstrated
how you can leverage this technology to make more informed decisions and uncover valuable

insights, thereby optimizing your operational efficiency and strategic capabilities.

In the next chapter, we will examine a summarization use case. This example will illustrate an-

other instance of what a batch processing use case could look like.

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Integration Pattern: Batch
Summarization

In this chapter, we will explore the application of Generative AI (GenAl) to summarize docu-
ments, an invaluable capability across industries. However, before delving into a specific use
case, it’s essential to recognize that search intelligence powered by GenAl supports multiple use
cases beyond document summarization. These include test case generation, document search
supporting text, audio, and video-based data, as well as various analysis business use cases.
Our focus, however, will be on a compelling use case within the financial services sector, where

document summarization can streamline processes and enhance regulatory compliance efforts.

To illustrate this use case, let’s consider a scenario where a financial services company is faced
with the daunting task of reviewing a high volume of client applications. These applications of-
ten span multiple pages and encompass a wide range of information, including personal details,

financial history, investment goals, and risk profiles.

Manually reviewing and distilling the key points from each application can be a time-consuming
and error-prone process, especially when dealing with a large influx of submissions. This is where
GenAl-driven summarization can be a game-changer, enabling efficient extraction of the most
salient information while ensuring regulatory compliance by providing the ability not only to
summarize but also to follow guidelines about what aspects to focus on, providing an elevated

experience.

By leveraging GenAl models’ natural language understanding and generation capabilities, compa-
nies can develop a system that intelligently analyzes regulatory documents, identifies the critical

details, and generates concise summaries.

94 Integration Pattern: Batch Summarization

These summaries can then be seamlessly integrated into downstream processes, such as risk

assessment, portfolio construction, or client onboarding workflows.

Itis important to note that this use case is not intended to replace the work of a compliance officer

but to enhance them through GenAl while optimizing their work in terms of quality and efficiency.

The chapter will build on the example by referring to the GenAl integration framework proposed
in Chapter 4, Generative Al Batch and Real-time Integration Patterns. It starts by defining the use case
of summarizing client applications in the financial services industry to streamline processes and
enhance regulatory compliance efforts. It then proposes a cloud-native, serverless architecture

on Google Cloud for batch processing these client applications.

We will then delve into the entry point of the pipeline, which is an object created in Google Cloud
Storage (GCS), triggering a cloud function to initiate the summarization process. It emphasizes
the importance of prompt pre-processing, incorporating domain-specific knowledge and com-

pliance guidelines into the prompts.

We will cover the inference phase, where the tailored prompts and client application content are

submitted to Google Gemini on Vertex Al to generate concise summaries.

We'll discuss the result post-processing, ingesting the summaries into a database, and various
approaches for presenting the summaries, such as dedicated applications or integration with
existing systems. We’ll also provide the sample code for implementing the proposed solution

on Google Cloud.

Use case definition

In this example use case, we will work on a 10-K form summarization use case. The 10-K form
aims to provide transparency into the company’s financial health, operations, and risk factors for

investors and regulators. The details can span hundreds of pages for large, complex companies.

Summarizing the extensive 10-K annual filings from public companies can unlock significant
value for financial services firms. These lengthy documents, often spanning hundreds of pages,
contain critical information about a company’s business operations, financial performance, risk
factors, and strategies. However, manually analyzing these filings is an extremely time-consuming
and inefficient process. By leveraging advanced Al capabilities to generate concise summaries of
10-Ks, financial institutions can accelerate their analysis while ensuring consistent extraction of
the most pertinent details. These summaries provide investment professionals with quick access
to key financial metrics, competitive insights, potential risks, and future outlooks, enabling more

informed investment decisions and portfolio monitoring.

Chapter 6 95

Moreover, summarized 10-Ks can be seamlessly integrated into existing research workflows,
regulatory compliance processes, and decision support systems within financial firms. This au-
tomated approach enhances scalability, allowing analysts to process large volumes of filings rap-
idly. It also mitigates the risk of human error or oversight that can occur during manual analysis.
Consequently, financial services companies can leverage Al-driven 10-K summarization to gain a

competitive edge through optimized investment analysis, improved risk management practices,
and better-informed capital allocation strategies — ultimately contributing to enhanced returns

and operational efficiency across their businesses.

Manually reviewing these forms can be a time-consuming and error-prone process, especially
when dealing with a large volume of forms. Financial services professionals must carefully analyze
each section, identify the key information, and ensure that the client’s needs and risk profiles are

accurately understood.

By leveraging a GenAl-driven approach to summarization, financial institutions can streamline
various manual processes, extracting the most salient information from each form while adher-
ing to regulatory compliance standards. The summaries can then enable financial advisors and
portfolio managers to quickly grasp the client’s situation and make informed decisions. The
following diagram captures this by explaining the different components that will be used when

designing the prompt.

Figure 6.1: 10-K summarization prompt generation diagram

96 Integration Pattern: Batch Summarization

Furthermore, these summaries can be seamlessly integrated into downstream processes, such as
risk assessment, portfolio construction, or client onboarding workflows, reducing the need for

manual data entry and minimizing the risk of errors.

Compliance officers can also benefit from GenAlI-driven summarization by incorporating specific
rules and guidelines into the prompts. For example, the summarization model can be instructed
to highlight potential red flags, such as inconsistencies in financial information or discrepancies
between stated risk tolerance and investment objectives. By surfacing these issues promptly,
compliance teams can proactively address them, ensuring adherence to regulatory requirements

and mitigating potential risks.

Moreover, the summaries generated by GenAl models can serve as a valuable reference point
for future client interactions, enabling financial advisors to quickly review the client’s situation
and provide personalized advice or recommendations, ultimately leading to improved client

experiences and stronger relationships.

Architecture

Building upon the architecture discussed in Chapter 5, Integration Pattern: Batch Metadata Extraction,
for the first batch processing example, we will adopt a similar cloud-native, serverless approach
on Google Cloud to handle the batch processing of client applications for summarization. This
scalable setup leverages various services, allowing us to seamlessly integrate the Al model and

store the generated summaries.
The architecture will consist of the following components:

e Object store (Google Cloud Storage): This highly scalable and durable object store will
be used to store client applications, which can be in various formats, such as PDFs, Word
documents, or structured data files.

e Messaging queue (Google Cloud Pub/Sub): A messaging queue will be employed to
coordinate the data flow and manage the processing of client applications.

e Processing component (Google Cloud Functions): Cloud Functions will serve as the
processing component, executing the summarization tasks and invoking the LLM.

e LLM (Google Gemini): We will leverage a powerful LLM, such as Google Gemini, hosted
on Vertex Al to perform the actual summarization.

e Database (Google BigQuery or Cloud Firestore): The generated summaries will be stored
in a structured format, in either a relational database (BigQuery) or a document database

(Cloud Firestore), depending on the specific requirements.

Chapter 6 97

The interactions between these components are represented in the following diagram:

Figure 6.2: Batch summarization use case architecture diagram
Here’s a breakdown of the flow of the architecture:

1. Client applications are uploaded to Google Cloud Storage, triggering a cloud function as

soon as the documents are in the bucket.

2. The cloud function reads the list of applications from Cloud Storage and publishes mes-

sages to a Pub/Sub topic, effectively creating a queue of applications to be processed.

3. Another cloud function, subscribed to the Pub/Sub topic, is triggered for each message

tied to a given application in the queue.

4. This second cloud function invokes the LLM (for example, Google Gemini) hosted on
Vertex Al, passing the application content as input along with a tailored prompt.

5. The LLM processes the application, leveraging its natural language understanding capa-
bilities to generate a concise summary while adhering to any specified rules or guidelines.

6. The generated summary is then stored in a structured format (for example, BigQuery or

Cloud Firestore) for further analysis, integration, and consumption.

This serverless architecture provides several benefits, including automatic scaling, cost-efficiency
(pay-per-use pricing), and seamless integration with other Google Cloud services. Additionally,
it allows easy integration with existing workflows, enabling financial institutions to leverage

GenAl-driven summarization without significant disruptions to their existing processes.

98 Integration Pattern: Batch Summarization

Entry point

Similar to the previous chapter, the entry point for our batch processing pipeline will be an object
created in Google Cloud Storage (GCS). As client applications are uploaded to a designated GCS

bucket, a cloud function will be triggered, initiating the summarization process.

For this use case, we will leverage the powerful capabilities of Google Gemini, a state-of-the-art
GenAl model renowned for its natural language understanding and generation abilities. Gemini
will analyze the uploaded client application, intelligently extracting the most salient information

and generating a concise summary.

To ensure regulatory compliance and adherence to specific guidelines, we will incorporate rules
and instructions into the prompt provided to Gemini. These rules may include highlighting po-
tential red flags, ensuring consistency between stated risk tolerance and investment objectives,

or emphasizing specific sections of the application based on compliance requirements.

By combining Gemini’s advanced reasoning capabilities with tailored prompts and rules, we can
generate summaries that not only capture the essence of the client’s application but also facil-

itate efficient review and decision-making processes while maintaining regulatory compliance.

Prompt pre-processing

We will start by crafting an effective prompt to guide the GenAl model in generating accurate and
compliant summaries. In this case, we will leverage insights from compliance officers and subject
matter experts within the financial services industry to understand the critical information that

needs to be captured in the summaries.

It is important to remark that the intent behind this prompt is to provide an example of what
compliance guidelines may look like, but in no way does this represent a real-world compliance

example nor is it intended to be used to analyze business profiles.

Based on these insights, we will develop a template or a set of guidelines that outline the key
sections and data points to be included in the summaries. This template will serve as a founda-
tion for our prompt, ensuring that the summaries generated by the GenAl model align with the

specific requirements of the financial services company.

Additionally, we will incorporate rules and guidelines provided by compliance officers to ensure
that the summaries adhere to relevant regulations and industry best practices. These rules may
include instructions for highlighting potential discrepancies, inconsistencies, or areas of concern

that require further review or investigation.

Chapter 6 99

As you can see, when designing our prompt and incorporating domain-specific knowledge and
compliance guidelines, we can leverage the power of GenAl to generate summaries that are not
only concise and accurate but also provide insights related to compliance and regulatory require-
ments, ultimately streamlining the application review process while reducing potential risks.

prompt_template_beggining =

You are an expert compliance analyst.
Your task is to extract information from the sign up forms obtained.

1. Carefully analyze the document provided as context.

2. Write an intro paragraph for the company so the senior compliance
analyst can quickly understand who the customer is.

3. Following the guidance for approved businesses add a paragraph after
the intro explaining why the business is supportable or not.

4. Add another paragraph below explaining where the company is.

5. Always think step by step.

<supportable_businesses>

Summary of Prohibited & Restricted Businesses

This document outlines the types of businesses and activities that are
generally not allowed or require prior approval to use payment processing
services. These restrictions exist due to legal requirements, financial
partner rules, and compliance and risk management policies of payment
processors.

Types of Businesses:

High-Risk Jurisdictions and Persons: Businesses operating in or dealing
with sanctioned countries and individuals.

Prohibited Businesses: Activities involving illegal products or services,
adult content, certain financial services, marijuana, unfair practices,
weapons, etc.

Restricted Businesses: Activities requiring prior written approval from
the payment processor, such as CBD, financial products, pharmaceuticals,
non-fiat currency, and more.

100 Integration Pattern: Batch Summarization

Jurisdiction-Specific Prohibited Businesses: Additional restrictions based
on specific countries, such as India, Japan, Malaysia, Mexico, Singapore,
Thailand, UAE, and the US.

Prohibited Uses of Payment Processing Services:

Misrepresentation of identity or business.
Facilitating transactions for undisclosed merchants.
Using the service as a virtual terminal.

Processing without actual goods or services.

Evasion of chargeback monitoring.

Sharing cardholder information.

Misuse of intellectual property.

Prohibitions for Card Issuing Products:

Consumer use for personal expenses.

International use outside of the registered jurisdiction.
Lending without proper licensing and approval.

Abusive practices like free trial abuse and scalping.
Non-compliance with marketing and user experience guidelines.
Inactivity for 12 consecutive months.

Incorrect integration type for employee/contractor cards.

Business Analyst Recommendations:

Based on this information, a business analyst should pay close attention
to the following types of businesses:

Financial Services: This is a broad category with many restrictions and
nuances. It's crucial to understand the specific requirements for lending,
crowdfunding, money transmission, etc.

Regulated Industries: Industries like CBD, pharmaceuticals, and tobacco
require careful consideration of compliance and legal aspects.

High-Risk Businesses: Businesses prone to fraud or abuse, like travel
reservation services and multi-level marketing, need thorough risk
assessments.

Emerging Technologies: Activities involving cryptocurrency, NFTs, and
other new technologies should be evaluated based on current regulations
and the payment processor's policies.

Chapter 6 101

Jurisdiction-Specific Restrictions: Businesses operating in or targeting
specific countries need to be aware of additional prohibitions and
requirements.

Additional Considerations:

Business Model: Restrictions often depend on the specific business model
and how the service is used.

Compliance: Understanding and adhering to relevant regulations is
essential to avoid account closure or other consequences.

Risk Management: Businesses should have robust risk management practices
to mitigate potential financial and legal risks.

Transparency: Maintaining clear and accurate information about the
business and its activities is crucial for approval and continued use of
payment processing services.

By carefully considering these factors, a business analyst can help ensure
that businesses comply with the payment processor's policies and operate
successfully within the platform.

</supportable_businesses>

<document>

prompt_template_end=

</document>

Response:

Inference

For the inference phase, we will submit our prompt, along with the client application content, to
the Google Gemini model available through Vertex AL The Vertex Al platform provides a robust
and scalable environment for deploying and managing GenAl models, ensuring high performance

and enterprise-grade security.

In our example, we are using an example dataset of companies that signed up for our fictional
financial services company. The inference code will work on the whole dataset, with delays to
prevent consuming the available quota. Depending on your cloud provider or setup, you may
have different inference quotas, which are generally related to QPS (queries per second) or QPM

(queries per minute). In our example, we have a 6 QPM limit.

102 Integration Pattern: Batch Summarization

The following code snippet populates an array with the result text content. This can be further
customized to evaluate safety attributes, for example, or to deal with empty results. For example,

in the case of empty results, you could flag the doc and send it to a queue for further processing.

import time

summaries = []
for doc in docs:

result = generate(prompt_template beggining,str(doc),prompt_template_
end)

time.sleep(10)
summaries.append(result.text)

print(result.text)

When thinking about a more complex inference pipeline, we need to focus on the following steps:

1. The cloud function, triggered by the arrival of a new client application in GCS, retrieves

the application content and the tailored prompt.

2. The cloud function invokes the Gemini model on Vertex Al, passing the application con-

tent and prompt as input.

3. Gemini processes the application, leveraging its natural language understanding capabil -
ities to generate a concise summary while adhering to the specified rules and guidelines

outlined in the prompt.

4. The generated summary is returned to the cloud function for further processing and

storage.

By leveraging the power of Gemini and the scalability of Vertex Al, we can efficiently processlarge

volumes of client applications, generating accurate and compliant summaries in a timely manner.

Result post-processing

Once the LLM has processed the client applications, it will return the summaries in a structured
format, such as JSON or a markup language. The next step in our pipeline is to ingest these sum-

maries into a database for efficient storage and retrieval.

The specific ingestion strategy will depend on the database type we choose to employ. For ex-
ample, if we opt for a relational database like BigQuery, we will need to map the summary data
points to appropriate table structures, ensuring proper normalization and adherence to data

integrity principles.

Chapter 6 103

Alternatively, if we decide to use a document database like Cloud Firestore, the ingestion process
will be more straightforward, as these databases are designed to store hierarchical data structures
natively. In this case, we can directly ingest the summaries in their original format, leveraging

the database’s ability to efficiently store and query complex data structures.

Regardless of the database type chosen, it is crucial to design an ingestion strategy that ensures
data consistency, scalability, and performance. This may involve implementing strategies such
as bulk ingestion, indexing, and partitioning to optimize the database’s performance and ensure

efficient retrieval of the summaries.

Result presentation

When it comes to presenting the summaries generated from client applications, several factors
need to be considered, including the target audience, the intended use case, and the integration

with existing systems and workflows.

One approach is to develop a dedicated application or dashboard that allows financial advisors,
portfolio managers, and compliance officers to easily access and review the summaries. This
application could provide features such as filtering, sorting, and searching capabilities, enabling
users to quickly locate and analyze summaries based on specific criteria, such as client risk profiles,

investment goals, or potential red flags identified by the GenAlI model.

Additionally, the application could offer visualization tools to present the summary data in a
more intuitive and visually appealing manner. For example, charts and graphs could be used to
depict the client’s financial profile, risk tolerance, and investment objectives, providing financial

advisors with a comprehensive overview at a glance.

Another approach is to integrate the summaries directly into existing customer relationship
management (CRM) systems or client onboarding workflows. This integration would allow
financial advisors and compliance officers to access the summaries seamlessly within the tools

and platforms they already use, minimizing disruptions to their existing processes.

Furthermore, the summaries could be leveraged for automation and decision support purposes.
For instance, rules-based systems or machine learning models could be trained to analyze the
summaries and provide recommendations or risk assessments, further enhancing the efficiency

and accuracy of the client onboarding and portfolio management processes.

Regardless of the presentation approach chosen, it is essential to ensure that the summaries are
presented in a secure and compliant manner, adhering to industry regulations and data privacy
standards. Access controls and authorization mechanisms should be implemented to ensure that

sensitive client information is only accessible to authorized personnel.

104 Integration Pattern: Batch Summarization

On the GitHub directory for this chapter, you will find the complete code and an analysis of how
all the pieces described in this chapter fit together. Pay special attention to how every component

of the framework interacts with each other.

Summary

In this chapter, we explored the application of GenAl to summarize client applications in the fi-
nancial services industry. We kicked things off by defining the problem statement, where financial
institutions need to efficiently review and distill key information from lengthy client applications

while ensuring regulatory compliance.

We highlighted the value of GenAl-driven summarization in this context, enabling the extraction
of salient details, streamlining downstream processes, and facilitating better-informed deci-

sion-making while adhering to compliance standards.

Next, we proposed a cloud-native, serverless architecture on Google Cloud to handle the batch
processing of client applications for summarization. This scalable setup leverages various services,
including Cloud Storage, Pub/Sub, Cloud Functions, and databases like BigQuery or Cloud Fire-

store, allowing for seamless integration of the Al model and storage of the generated summaries.

We then delved into the process of prompt pre-processing, emphasizing the importance of incor-
porating domain-specific knowledge and compliance guidelines into the prompts. By collaborating
with subject matter experts and compliance officers, we can craft prompts that guide the GenAl

model to generate accurate and compliant summaries.

The inference phase involved submitting the tailored prompts and client application content to
Google Gemini on Vertex Al. Gemini’s advanced natural language understanding and generation
capabilities, combined with the carefully crafted prompts, enable the generation of concise and

insightful summaries.

We also covered the post-processing steps, such as ingesting the summaries into a database, and
discussed various approaches for presenting the summaries, including dedicated applications,

dashboards, or integration with existing CRM systems and workflows.

Overall, this chapter provides a practical framework for leveraging the power of GenAlI to stream-
line the review and analysis of client applications in the financial services industry, while ensuring

regulatory compliance and enabling more efficient and informed decision-making processes.

In the next chapter, we will explore a real-time use case that focuses on intent classification with
GenAl

Chapter 6 105

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Integration Pattern: Real-Time
Intent Classification

In previous chapters, we discussed the batch-processing integration pattern, where we focused
on efficiently processing large volumes of data and generating data to be used by downstream

systems. In this chapter, we will shift our focus to real-time integration patterns.

Real-time interactions require applications to be optimized for latency, rather than processing
large batch requests efficiently. In other words, we need to ensure that the output is generated
as quickly as possible to provide an optimized user experience. The most common use case for

this pattern is real-time agents exposed through chat or voice interfaces.

Let’s consider an intent classification use case, which is a common scenario for chatbots. In this
context, an artificial intelligence (AI) system is responsible for identifying the user’s intent, such
as checking a balance, scheduling an appointment, or making a purchase. Based on the identified

intent, the system can then perform the appropriate tasks or provide relevant responses.

In today’s application experiences, customers expect seamless and personalized experiences
when interacting with businesses. One way to achieve this is by implementing an intelligent
system that can accurately interpret user intents based on natural language inputs. This capabil-
ity is particularly valuable in customer service, e-commerce, and conversational Al applications,

where understanding the user’s intent is crucial for providing relevant and contextual responses.

In this chapter, we’ll explore a real-time intent classification use case, leveraging the power of
Google’s Gemini Pro, a state-of-the-art generative Al model, to build a system that can accurately

categorize user inputs into predefined intents.

108 Integration Pattern: Real-Time Intent Classification

We'll walk through the entire process, from data preparation to deployment and integration

with downstream systems, following the integration framework discussed in previous chapters.
In this chapter, we will cover:

e Use case definition

e Architecture

e Entry point

e Prompt pre-processing
e Inference

e Result post-processing
e Result presentation

e Fullcode

Use case definition

Let’s consider a scenario where we’re working with an e-commerce company that wants to im-
prove its customer service experience. The company receives a large volume of customer inquiries
through various channels, such as email, chat, and social media. Currently, these inquiries are
handled manually by a team of customer service representatives, which can be time-consuming

and prone to inconsistencies.

By integrating intent classification into customer engagement flows, companies can optimize their
customer service operations. This advanced natural language processing technique automatically

» L«

categorizes incoming customer inquiries into predefined intents, such as “order status,” “product

»” «

inquiry,” “return request,” or “general feedback.” The classification layer acts as an intelligent entry

point for customer service interactions, enabling more efficient and accurate routing of inquiries.

This automated categorization serves as the foundation for a scalable customer service infra-
structure. Once an inquiry is classified, it can be seamlessly directed to the most appropriate
team or agent, ensuring that customers receive expert assistance tailored to their specific needs.
For high-volume, straightforward inquiries, the system can even trigger automated responses,
providing instant solutions to common issues. This not only dramatically improves response

times but also enhances overall customer satisfaction by delivering quick, relevant assistance.

Additionally, the implementation of intent classification significantly improves the quality of life

for customer service agents.

Chapter 7 109

By receiving pre-categorized inquiries, organizations can leverage specialist agents to focus on
their areas of expertise, reducing the cognitive load of constantly switching between different
types of issues. This specialization allows agents to provide more in-depth, high-quality support,

leading to better resolution rates and increased job satisfaction.

Thereis an additional benefitin terms of analytics, as the data gathered from intent classification
can offer valuable insights into customer needs and pain points, enabling companies to continu-

ally refine their products, services, and support strategies to better meet customer expectations.

In the following section, we will dive deep into an approach that will get you started on an intent

classification example using GenAl.

Architecture

To build our intent classification system, we’ll leverage a serverless, event-driven architecture
built on Google Cloud (for example: https://cloud.google.com/architecture/serverless-
functions-blueprint). This approach aligns with cloud-native principles and allows for seamless

integration with other cloud services.

Figure 7.1: Intent classification example architecture diagram

https://cloud.google.com/architecture/serverless-functions-blueprint
https://cloud.google.com/architecture/serverless-functions-blueprint

110 Integration Pattern: Real-Time Intent Classification

The architecture consists of the following key components:

o Ingestionlayer: Thislayer is responsible for accepting incoming user inputs from various
channels, such as web forms, chat interfaces, or API endpoints. We’'ll use Google Cloud
Functions as the entry point for our system, which can be triggered by events from ser-
vices like Cloud Storage, Pub/Sub, or Cloud Run.

e Al processing layer: In this layer, we’ll integrate Google’s Gemini Pro through Vertex AL
Vertex Al provides a managed environment for deploying and scaling machine learning
models, ensuring high availability and performance.

¢ Intent classification model: This is the core component of our system, responsible for
analyzing the user input and determining the corresponding intent. We’ll leverage Google
Gemini Pro’s natural language understanding capabilities for our intent classification
model.

e Orchestration and routing: Based on the classified intent, we’ll need to route the user
input to the appropriate downstream system or service. This could involve integrating
with customer relationship management (CRM) systems, knowledge bases, or oth-
er enterprise applications. We’ll use Cloud Functions or Cloud Run to orchestrate this
routing process.

e Monitoring and logging: To ensure the reliability and performance of our system, we’ll
implement robust monitoring and logging mechanisms. We’ll leverage services like Cloud
Logging, Cloud Monitoring, and Cloud Operations to gain visibility into our system’s

behavior and quickly identify and resolve any issues.

By adopting this architecture, the intent classification system won’t just be scalable but also flex-
ible enough to adapt to varying workloads and integration requirements. We’ll be able to handle
high volumes of customer inquiries in real time and deliver swift and consistent responses that

improve the overall customer experience.

The serverless nature of this architecture brings several additional benefits. It allows for automatic
scaling based on demand, ensuring that we can handle sudden spikes in customer inquiries with-
out manual intervention. This elasticity not only improves system reliability but also optimizes

costs, as we only pay for the resources we actually use.

This event-driven design facilitates easy integration with other systems and services. As our
customer service ecosystem evolves, we can easily add new triggers or outputs to our intent

classification system.

Chapter 7 m

This could include integrating with new communication channels, connecting to additional
backend systems, or incorporating advanced analytics for deeper insights into customer behavior

and preferences.

In the following sections, we’ll dive deeper into each component of our architecture, exploring
the specific Google Cloud services we’ll use, best practices for implementation, and strategies
for optimizing performance and cost-efficiency. We’ll also discuss a concrete example that will

help you get started.

Entry point

For real-time interactive applications, the entry points where prompts originate need to be highly
streamlined, with simplicity and ease of use in mind. These prompts often originate from un-

predictable contexts, so interfaces have to feel natural across device types and usage scenarios.

In our use case, the entry point could be a web form, chat interface, or API endpoint where cus-
tomers submit their inquiries. These inputs will be sent to a cloud function, which acts as the

ingestion layer for our system.

Let’s start with a sample user query:

message = "I want to open an account"

Prompt pre-processing

In a real-time system, every step in the prompt pre-processing workflow adds precious latency,
commonly measured in milliseconds or microseconds depending on your application’s SLAs, to
the overall response time. Higher-latency experiences can be detrimental to the user experience.

Therefore, pre-processing should be kept as lightweight as possible.

For our intent classification use case, the prompt pre-processing may involve simple text nor-
malization, such as removing punctuation, converting to lowercase, or handling abbreviations.
Additionally, we may apply some basic filtering to remove any potentially harmful or inappropriate

content before sending the prompt to the model.

Let’s dive deep into an example prompt:

112 Integration Pattern: Real-Time Intent Classification

prompt_template =
You are a helpful assistant for an online financial services company that
allows users to check their balances, invest in certificates of deposit
(CDs), and perform other financial transactions.

Your task is to identify what your customers are trying to do and return a
well formed JSON object.

1. Carefully analyze the content of the message.
2. Classify what the user is trying to do within these options:

* New Account: The user is trying to sign up. Return {{"intent":
"signup", "content":"null"}}

* Change Password: The user needs to reset their password. Return
{{"intent":"change_password", "content":"null"}}

* Check Balance: The user needs to check their balance. Return
{{"intent": "check_balance", "content":"null"}}

* Invest in CD: The user wants to invest in a certificate of deposit.
Return {{"intent": "invest_cd", "content": "Extract relevant information
such as investment amount and term"}}

* Withdraw Funds: The user wants to withdraw money. Return {{"intent":
"withdraw_funds", "content": "Extract information like amount and
withdrawal method"}}

* Transfer Funds: The user wants to transfer money between accounts.
Return {{"intent": "transfer_funds", "content": "Extract information like
amount, source account, and destination account"}}

* Account Information: The user wants to access or update their account
information. Return {{"intent": "account_info", "content": "Identify the
specific information the user needs"}}

* Lost/Stolen Card: The user wants to report a lost or stolen card.
Return {{"intent": "lost_card", "content": "null"}}

* Support: The user needs help and is not sure what to do. Return
{{"intent": "support", "content": "null"}}

* Other: For other queries, politely decline to answer and clarify what
you can help with.

3. Only return the proper JSON result from your classification.

4. Always think step by step.

User question: {query}

Chapter 7 13

JSON:

[IRIRT]

The previous prompt defines the template for the intent classification task. The prompt provides
context that explains that the assistant is helping users of an online financial services company
perform various actions, such as signing up, checking balances, investing in CDs, withdrawing

funds, and more.

Additionally, this prompt instructs the model to carefully analyze the user’s input message and
classify the intent into one of the predefined categories. For each intent category, the prompt
specifies the JSON object that should be returned, including any additional information that

needs to be extracted from the user’s message.

For example, if the user’s intent is to invest in a CD, the assistant should return the JSON object

in the following format:

{

"intent": "invest cd",

"content": "Extract relevant information such as investment amount and
term"
}

This means that the virtual assistant should not only identify the intent as "invest_cd" but also
extract relevant information like the investment amount and term from the user’s message and

include it in the "content" field.

The prompt also provides instructions for handling intents that do not fall into any of the pre-

defined categories (the "Other" case).

By providing this detailed prompt template, the system can effectively guide the language model
to perform the intent classification task for financial services scenarios, ensuring that the model’s

responses are structured and formatted correctly.

Inference

At the inference stage, we’ll leverage Google’s Gemini Pro model hosted on Vertex Al. Within the
cloud function triggered by the user input, we’ll invoke the Vertex Al endpoint hosting the Gemini

Pro model, passing the pre-processed input as the prompt.

114 Integration Pattern: Real-Time Intent Classification

Gemini Pro will process the input and return the predicted intent, leveraging its natural language
understanding capabilities. Since we’re using an out-of-the-box model, the underlying infrastruc-
ture and resource allocation are abstracted away, ensuring thatindividual requests are processed

efficiently while adhering to the service’s performance and cost objectives:

generation_config = {
"max_output_tokens": 8192,
"temperature": 0o,
"top_p": 0.95,

safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_
models.HarmBlockThreshold.BLOCK_ONLY_HIGH,

generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,

generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,

generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_
models.HarmBlockThreshold.BLOCK_ONLY_HIGH,

}

def generate(prompt):

vertexai.init(project=PROJECT, location=LOCATION)

model = GenerativeModel (MODEL)

responses = model.generate_content(

[prompt],
generation_config=generation_config,
safety_settings=safety settings,
stream=False,

)

return(responses)

result = generate(prompt_template.format(query=message))

Chapter 7 115

Result post-processing

For our intent classification use case, the post-processing step may involve formatting the predict-
ed intentinto a suitable response format, such as JSON or a human-readable string. Additionally,
we may apply some basic filtering or ranking mechanisms to ensure that the most relevant and
helpful responses are prioritized.

Sometimes model return markdown friendly content, in this case we will
implement a function to filter this.

def extract json(text):

Extracts the JSON portion from a string containing backticks.

Args:
text: The string containing JSON data within backticks.

Returns:

A dictionary representing the extracted JSON, or None if no valid JSON

is found.

start_index = text.find(" " json")

end_index = text.find(" " ", start_index + 7) # +7 to skip " json"
if start_index != -1 and end_index != -1:

json_string = text[start_index + 7: end_index] # Extract the JSON
string
else:

json_string = text

try:
json_data = json.loads(json_string)
return json_data

except json.JSONDecodeError:

return None

116 Integration Pattern: Real-Time Intent Classification

The previous code snippet defines a function called extract_json thatis designed to handle cases
where the language model’s output contains JSON data wrapped in backticks: json™ ~ . This is
a common practice in Markdown-friendly environments, where backticks are used to delineate

code blocks or structured data.

The extract_json function takes a string text as input and attempts to extract the JSON portion

from within the backticks. Here’s a breakdown of how the function works:

1. The function firstlooks for the string "~~~ json" in the input text using the find method.

This is the marker that indicates the start of a JSON block.

2. Ifthe start marker is found, the function then looks for the closing " " marker by search-
ing for it from the end of the json marker (start_index + 7).If both the start and end
markers are found, the function extracts the JSON string by slicing the input text between
these markers. If no start or end markers are found, the function assumes that the entire

input text is the JSON string.

3. Thefunction then attempts to parse the extracted JSON string using the json.loads meth-
od from the json module. If the parsing is successful, the function returns the resulting
JSON data as a dictionary. If the parsing fails (for example, due to invalid JSON syntax),
the function returns None. By incorporating this function into the post-processing stage,
the system can handle cases where the language model’s output contains JSON data
wrapped in backticks. This functionality can be particularly useful when working with
Markdown-friendly environments or when integrating the intent classification system

with other components that expect JSON-formatted data.

4. The post-processing stage can then proceed to format the extracted JSON data into a
suitable response format, apply filtering or ranking mechanisms, and render the final

response for display to the user.

The process_intent function is designed to handle the JSON data returned by the intent
classification model. It takes a dictionary intent as input, which is expected to have an

“intent” key with a value representing the predicted intent category.

def process_intent(intent):

if intent["intent"] == "signup":

return("Sign up process")

elif intent["intent"] == "change_password":

Chapter 7 117

#you could either do it through the chatbot,
#or redirect to a password change page.
return("Change password")

elif intent["intent"] == "check_balance":
#In this case you could have a function that
#would query a database to obtain the
#balance (as long as the user is Logged in or not)
return("Check account balance")

elif intent["intent"] == "invest_cd":
#For the 1investment 1intent, this could redirect
#to a page where investment options can be selected.
return("Invest in a CD")

elif intent["intent"] == "withdraw_funds":
return("Withdraw funds")

elif intent["intent"] == "transfer_funds":
return("Transfer funds")

elif intent["intent"] == "account_info":
return("Account information")

elif intent["intent"] == "lost_card":
return("Report lost card")

elif intent["intent"] == "support":
return("Contact support")

elif intent["intent"] == "other":
return("Other kind of intent")

else:

return("If a intent was classified as something else you should
investigate what is going on.")

intent = process_intent(extract_json(result.text))

The process_intent function checks the value of the "intent" key in the input dictionary. De-
pending on the intent category, the function performs a specific action or returns a corresponding

message.

For example, if the intentis "signup”, the function returns the string "Sign up process", which
could be used to redirect the user to a sign-up page or initiate the sign-up process. Similarly, if
the intentis "change_password", the function returns "Change password", which could trigger

a password reset process or redirect the user to a password change page.

118 Integration Pattern: Real-Time Intent Classification

Forintents like "check_balance", "invest_cd", "withdraw_funds", "transfer_funds", "account_
info","lost_card",and "support", the function returns corresponding messages that could be

used to initiate the relevant processes or provide instructions to the user.

If theintentis "other", the function returns "Other kind of intent",indicatingthattheuser’s

query did not match any of the predefined intent categories.

If the intent does not match any of the cases handled by the function, it returns a message sug-

gesting that further investigation is needed to understand the intent.

Finally, the lastline of code intent = process_intent(extract_json(result.text)) combines
the extract_jsonand process_intent functions. It first extracts the JSON data from the result.
text string using extract_json. Then, it passes the extracted JSON data to the process_intent

function, which processes the intent and returns an appropriate message or action.

This code snippet demonstrates how the intent classification system can be integrated with
further processing steps to handle different user intents. The process_intent function can be
extended or modified to include additional logic or actions based on the specific requirements

of the application.

Result presentation

The result presentation stage for real-time applications demands instantaneous updates, often

server-rendered or via data-binding frameworks.

In our use case, the formatted response containing the predicted intent can be sent back to the
customer through the channel from which the inquiry originated (for example, web form, chat
interface, or APIresponse). This response can then be used to route the inquiry to the appropriate

downstream system or provide an automated response for common intents.

In this example, we will use a Gradio interface to render the replies in a visually appealing UL
Gradio (https://www.gradio.app/) is an open-source Python package that allows you to quickly
create easy-to-use, customizable Ul components for your ML model, any AP, or even an arbitrary

Python function using a few lines of code.

You can find more information about Gradio using the following links:

\/;B(Docs: https://www.gradio.app/docs

GitHub: https://github.com/gradio-app/gradio

https://www.gradio.app/
https://www.gradio.app/docs

https://github.com/gradio-app/gradio

Chapter 7 119

The following code provides an example that creates a Gradio interface:

import gradio as gr

def chat(message, history):
response = generate(prompt_template.format(query=message))
intent_action = process_intent(extract_json(response.text))
history.append((message, intent_action))

nn

return , history

with gr.Blocks() as demo:

gr.Markdown("Fintech Assistant")

chatbot = gr.Chatbot(show_label=False)

message = gr.Textbox(placeholder="Enter your question™)

message.submit(chat, [message, chatbot],[message, chatbot])

demo.launch(debug=True)

The previous code illustrates the result presentation stage for the intent classification system

using the Gradio library.

In our example, the chat (message, history) functionisthe core of the chatbotinterface. It takes
two arguments: message (the user’s input message) and history (a list containing the previous

messages and responses). Here’s what the function does:

1. Itcallsthe generate function (not shown in the provided code) to get the response from
the intent classification model, passing the user’s message as part of the prompt template.
It then processes the model’s response using the extract_json function (not shown) to
extract the predicted intent data.

2. Theextracted intent data is passed to the process_intent function (which is not shown)
to determine the appropriate action or response based on the predicted intent. The user’s
message and the generated response are appended to the history list, which keeps track

of the conversation.

3. Thefunctionreturns an empty string for the response message and the updated history list.

120 Integration Pattern: Real-Time Intent Classification

4. The code then creates a Gradio interface using the gr.Blocks context manager. Inside

the context, it does the following:

e Displays a title using the gr.Markdown component.
e Createsagr.Chatbot component to display the conversation history.
e Creates agr.Textbox component for the user to enter their message.

e Bindsthechatfunction to the submit event of the Textbox component. When the
user submits their message, the chat function is called with the user’s message
and the current history as arguments.

e Updatesthe Textbox and Chatbot components with the new message and updated
history, respectively.

e Launches the Gradio interface in debug mode using demo. launch(debug=True).

The resultis an interactive chatbot interface where users can enter their messages as illustrated
in Figure 7.2, and the system will process the message, predict the intent, and provide an appro-

priate response based on the process_intent function. The conversation history is displayed in

the Chatbot component, allowing users to track the flow of the conversation.

Figure 7.2: Example Gradio interface

Chapter 7 121

Logging and monitoring

Real-time systems require tight instrumentation around per-request metrics, such as latencies,

€rrors, and resource usage.

In our architecture, we’ll leverage services like Cloud Logging (https://cloud.google.com/
logging/docs/overview) and Cloud Monitoring (https://cloud.google.com/monitoring/
docs/monitoring-overview) to gain visibility into the system’s behavior and quickly identify
and resolve any issues. We can monitor metrics like request latency, error rates, and resource

utilization, and set up alerts for anomalies or performance degradation.

By following this integration pattern and leveraging the power of Google’s Gemini Pro, businesses
can unlock the power of generative Al to build intelligent systems that accurately classify user

intents, enhance customer experiences, and streamline operations.

Refer to the GitHub directory of this chapter for the complete code that demonstrates how all the
pieces described above fit together.

Summary

In this chapter, we discussed the integration pattern for building a real-time intent classification
system using Google’s Gemini Pro generative Al model. We started by introducing the concept
of real-time integration patterns, which prioritize low latency over efficiency and volume, as

opposed to batch-processing integration patterns.

The use case we developed is an e-commerce company that wants to improve its customer service
experience by automatically categorizing incoming customer inquiries into predefined intents,
such as order status, product inquiry, return request, or general feedback. This classification can
then be used to route the inquiry to the appropriate team or provide automated responses for

common issues.

The architecture proposed is a serverless, event-driven architecture on Google Cloud, consisting of
aningestion layer (Cloud Functions), an Al processing layer (Vertex Al with Gemini Pro), an intent
classification model, orchestration and routing (Cloud Functions or Cloud Run), and monitoring

and logging (Cloud Logging, Cloud Monitoring, and Cloud Operations).

In the next chapter, we will dive deep into another very important real-time use case, a Retrieval
Augmented Generation (RAG) example where we are going to leverage generative Al to answer

questions based on documents provided by us.

https://cloud.google.com/logging/docs/overview
https://cloud.google.com/logging/docs/overview
https://cloud.google.com/monitoring/docs/monitoring-overview
https://cloud.google.com/monitoring/docs/monitoring-overview

122 Integration Pattern: Real-Time Intent Classification

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Integration Pattern: Real-
Time Retrieval Augmented
Generation

In this chapter, we’ll explore another integration pattern that combines the power of Retrieval
Augmented Generation (RAG) and generative Al models to build a chatbot capable of answering
questions based on the content of PDF files. This approach combines the strengths of both re-
trieval systems and generative models, allowing us to leverage existing knowledge sources while

generating relevant and contextual responses.

One of the key advantages of the RAG approach is its ability to prevent hallucinations and pro-
vide better context for the generated responses. Generative Al models, trained on broad data,
can sometimes produce responses that are factually incorrect or outdated due to their training
data being limited to up to a point in time or they might lack proper context at inference time.
By grounding the model’s generation process in relevant information retrieved from a document
corpus, the RAG approach mitigates the risk of hallucinations and ensures that the responses are

accurate and contextually relevant.

For example, the term refund can have different meanings and implications in different contexts.
A refund in the context of retail banking may refer to a customer requesting a refund for a fee or
charge, while a refund in the context of taxation may refer to a tax refund from the government.
By retrieving the relevant context from the document corpus, the RAG-powered chatbot can
generate responses that accurately reflect the intended meaning of refund based on the specific

context of the user’s query.

124 Integration Pattern: Real-Time Retrieval Augmented Generation

The following image illustrates a simple RAG pipeline:

Figure 8.1: A simple RAG pipeline

Continuing our examples regarding financial services, these companies often deal with a vast
amount of documentation, including legal contracts, regulatory filings, product disclosures, and
internal policies and procedures. These document repositories can easily run into the tens of
thousands or even hundreds of thousands of pages, making it challenging for employees and

customers to quickly find relevant information when needed.

By implementing a RAG-based chatbot system, financial services companies can provide a us-
er-friendly interface for employees, customers, and other stakeholders to ask natural language
questions and receive concise, relevant answers derived from the vast collection of documents.
The RAG approach allows the system to efficiently retrieve relevant information from the docu-

ment corpus and then generate contextualized responses using a powerful generative Al model.

For example, a customer service representative could ask the chatbot a question about a specific
clausein aloan agreement, and the system would retrieve the relevant section from the document
corpus and generate a concise explanation tailored to the user’s query. Similarly, an investment
advisor could ask about specific regulations or guidelines related to a financial product, and the

chatbot would provide the necessary information from the relevant documents.

Chapter 8 125

By leveraging the RAG approach, financial services companies can greatly improve the accessibil -
ity and usability of their document repositories, enabling faster and more accurate information
retrieval and reducing the time and effort required to manually search through thousands of

pages of documentation.
In this chapter, we are going to cover:

e Use case definition (for a financial services company)

e Architecture (overview of a RAG-based chatbot system):

e Ingestion layer
e Document corpus management
e Al processing layer

e Monitoring and logging

e Entry point (a design for handling various input modalities)
e Prompt pre-processing and vector database integration

e Inference process using Vertex AI’'s Gemini 1.5 Flash model

e Result post-processing and presentation using Markdown

¢ Ademoimplementation (using Gradio)

e The full code example of the RAG pipeline

Use case definition

Let’s consider a scenario where we’re working with a large financial institution that deals with
a vast number of legal contracts, regulatory filings, product disclosures, and internal policies
and procedures. These documents individually can be into the tens or even hundreds of pages,
making it challenging for employees, customers, and other stakeholders to quickly find relevant
information when needed. These documents also do not have a consistent format in the way
the information is reported, disqualifying non-Al-powered text extractor solutions like regex

statements or plain business rules.

The institution wants to implement a chatbot system that can provide a user-friendly interface
for users to ask natural language questions and receive concise, relevant answers derived from
the organization’s document corpus. This system should leverage the power of RAG to ensure
that the generated responses are accurate, contextual, and grounded in the relevant information

from the document corpus.

126 Integration Pattern: Real-Time Retrieval Augmented Generation

Architecture

To build our RAG-based chatbot system, we’ll leverage a serverless, event-driven architecture built
on Google Cloud. This approach aligns with the cloud-native principles we have used in previous
examples and allows for seamless integration with other cloud services. You can dive deep into a
Google Cloud example in this sample architecture: https://cloud.google.com/architecture/

rag-capable-gen-ai-app-using-vertex-ai.
For the purpose of this example, the architecture consists of the following key components:

e Ingestion layer: This layer is responsible for accepting incoming user queries from various
channels, such as web forms, chat interfaces, or API endpoints. We’ll use Google Cloud
Functions as the entry point for our system, which can be triggered by events from services
like Cloud Storage, Pub/Sub, or Cloud Run.

¢ Document corpus management: In this layer, we’ll store embeddings representing the
content of the documents. In this case, we can use a wide range of solutions from pur-
pose-built vector databases such as Chroma DB, Pinecone, or Weaviate, to well-known
industry standards such as Elastic, MongoDB, Redis, or even databases known for other
capabilities such as PostgreSQL, SingleStore, Google AlloyDB, or Google BigQuery.

e Al processing layer: In this layer, we’ll integrate Google Gemini through Vertex Al. Once
the results are retrieved from the vector database, they will be exposed to Google Gemini
as context along with the prompt. This process can be handled by a Cloud function.

e Monitoring and logging: To ensure the reliability and performance of our system, you
should implement robust monitoring and logging mechanisms. We’ll leverage services
like Cloud Logging, Cloud Monitoring, and Cloud operations to gain visibility into our

system’s behavior and quickly identify and resolve any issues.

Entry point

The entry point for a RAG-based chatbot system is designed to be user-friendly, allowing users to
submit their natural language queries through various interfaces, such as web forms, chat appli-
cations, or API endpoints. However, the entry point should not be limited to accepting text-based
inputs only; it should also handle different modalities, such as audio files or images, depending

on the capabilities of the underlying language model.

https://cloud.google.com/architecture/rag-capable-gen-ai-app-using-vertex-ai
https://cloud.google.com/architecture/rag-capable-gen-ai-app-using-vertex-ai

Chapter 8 127

In the case of models like Google Gemini (which support multimodal inputs), the entry point can
directly accept and process text, audio, images, or even videos. This versatility enables users to
interact with the chatbot system in a more natural and intuitive manner, aligning with the way

humans communicate in real-world scenarios.

In cases where the language model does not natively support multimodal inputs, the entry point
can still accommodate various input modalities by pre-processing the data and extracting the tex-
tual content. This approach ensures that the chatbot system remains accessible and user-friendly,
catering to a diverse range of input formats while leveraging the capabilities of the underlying

language model.

For text inputs, the entry point can simply pass the query directly to the subsequent phases of
the RAG pipeline. However, when dealing with audio or image inputs, the entry point needs to

perform additional processing to extract the textual content from these modalities.

For audio inputs, the entry point can leverage speech recognition technologies, such as Google
Chirp, Amazon Transcribe, OpenAl Whisper, or open-source libraries like CMU Sphinx, to tran-
scribe the audio data into text format. This process involves converting the audio signals into a

sequence of words or phrases that can be understood by the language model.

Similarly, for image inputs, the entry point can employ optical character recognition (OCR)
techniques to extract text from the provided images. This can be achieved by integrating with
services like Google Cloud Vision API, Amazon Textract, or open-source tools like Tesseract OCR.
These technologies leverage computer vision and machine learning algorithms to accurately
identify and extract textual content from images, enabling the chatbot system to understand

and process information presented in visual form.

In this example, we will leverage text; the Python code will look like this:

question = "What is this call about?"

Regardless of the input type, the entry point should be designed to handle a wide range of sce-
narios and input formats. It may need to perform additional pre-processing steps, such as noise
removal, format conversion, or data cleaning, to ensure that the input data is in a suitable for-
mat for the subsequent phases of the RAG pipeline. It is also best practice to run the raw request
through a rigorous security monitoring pipeline to prevent data leakage or model intoxication

such as prompt ingestion.

128 Integration Pattern: Real-Time Retrieval Augmented Generation

The following website presents a very interesting point of view regarding the challenges posed
by promptinjection in multimodal scenarios: https://protectai.com/blog/hiding-in-plain-

sight-prompt.

Prompt pre-processing

For our example, we will need to construct our promptin real time along with its necessary context
and instructions. In this step of our RAG pipeline, we will utilize a vector database for efficient
vector similarity search. Vector databases are specialized data stores designed to store and retrieve
high-dimensional vectors, enabling fast and accurate similarity searches. Although there are

numerous vector database providers available, we will use Chroma DB for this specific example.

The retrieval process in a RAG pipeline is relatively straightforward. First, we generate embed-
dings from the user’s query using a pretrained language model or embedding technique. These
embeddings are numerical representations of the query that capture its semantic meaning. Next,
we perform a similarity search on the vector database using the generated query embeddings.
The vector database will return vectors that are most similar to the query embeddings, along with
their corresponding textual information or context. These vectors are associated with previously

ingested text passages.

Different filtering strategies can be applied to refine the search results further. The specific pa-
rameters and techniques available may vary depending on the vector database provider being
used. For instance, some vector databases provide a similarity score that measures the closeness
between the query embeddings and the retrieved vectors. This score can be leveraged to identify

and filter out vectors that fall below a certain similarity threshold.

Another common filtering strategy is to limit the number of results obtained from the vector
database. This approach can be particularly useful when there are constraints on the maximum
number of tokens that can be passed to the language model, either due to token limits imposed
by the model or for cost optimization purposes. By limiting the number of results, we can control
the amount of context information provided to the language model, ensuring efficient processing

and cost-effective operation.

Once theresults are filtered and the relevant textual information is obtained, it is used to construct
the prompt that will be passed to the language model. In this example, we use the following

prompt template:

https://protectai.com/blog/hiding-in-plain-sight-prompt
https://protectai.com/blog/hiding-in-plain-sight-prompt

Chapter 8 129

prompt_template =
You are a helpful assistant for an online financial services company that
allows users to check their balances, invest in certificates of deposit
(CDs), and perform other financial transactions.

Your task is to answer questions from your customers, in order to do so
follow these rules:

1. Carefully analyze the question you received.

2. Carefully analyze the context provided.

3. Answer the question using ONLY the information provided in the context,
NEVER make up information

4. Always think step by step.

{context}
User question: {query}

Answer:

In our example, the prompt we are submitting to the LLM would look like:

You are a helpful assistant for an online financial services company that
allows users to check their balances, invest in certificates of deposit
(CDs), and perform other financial transactions.

Your task is to answer questions from your customers, in order to do so
follow these rules:

1. Carefully analyze the question you received.

2. Carefully analyze the context provided.

3. Answer the question using ONLY the information provided in the context,
NEVER make up information

4. Always think step by step.

<context>

130 Integration Pattern: Real-Time Retrieval Augmented Generation

---This information is contained in a document called coca_cola_earnings_
call 2023.pdf

1-877-FACTSET www.callstreet.com

18 Copyright © 2001-2024 FactSet CallStreet, LLC

The Coca-Cola Co. (KO) Q1 2024 Earnings Call

Corrected Transcript 30-Apr-2024

Operator: Ladies and gentlemen, this concludes today's conference call.
Thank you for participating. You may now disconnect.

Disclaimer The information herein is based on sources we believe to be
reliable but is not guaranteed by us and does not purport to be a complete
or error-free statement or summary of the available data. As such, we do
not warrant, endorse or guarantee the completeness, accuracy, integrity,
or timeliness of the information. You must evaluate, and bear all risks
associated with, the use of any information provided hereunder, including
any reliance on the accuracy, completeness, safety or usefulness of such
information. This information is not intended to be used as the prim

ary basis of investment decisions. It should not be construed as advice
designed to meet the particular investment needs of any investor. This
report is published solely for information purposes, and is not to be
construed as financial or other advice or as an offer to sell or the
solicitation of an offer to buy any security in any state where such

an offer or solicitation would be illegal. Any information expressed
herein on this date is subject to change without notice. Any opinions or
assertions contained in this information do not represent the opinions or
beliefs of FactSet CallStreet, LLC. FactSet CallStreet, LLC, or one or
more of its employees, including the writer of this report, may have a
position in any of the securities discussed herein.

---This information is contained in a document called coca_cola_earnings_
call 2023.pdf

Chapter 8 131

All participants will be on listen-only mode until the formal question-
and-answer portion of the call. I would like to remind everyone that the
purpose of this conference is to talk with investors and, therefore,
questions from the media will not be addressed. Media participants should
contact Coca-Cola's Media Relations department if they have any questions.

</context>
User question: What is this call about?

Answer:

Inference

After constructing the prompt with the retrieved context and the user’s query, the next step is
to submit the formatted prompt directly to Vertex AI's API endpoint to be processed by Gemini
1.5 Flash. This is where the actual generation of the response takes place. In the following code
snippet, the generate() function is responsible for sending the prompt to the Gemini 1.5 Flash

model and obtaining the generated response:

result = generate(prompt)

The generate () function encapsulates the configuration and settings required for the generation

process. It includes two main components: generation_config and safety_settings.

The generation_config dictionary specifies the parameters that control the behavior of the lan-

guage model during the generation process. In this example, the following settings are provided:

generation_config = {
"max_output_tokens": 8192,
"temperature": 0,

"top_p": 0.95,

From Google Gemini’s documentation:

e max_output_tokens: Maximum number of tokens that can be generated in the response.

Atoken is approximately four characters. 100 tokens correspond to roughly 60-80 words.

132 Integration Pattern: Real-Time Retrieval Augmented Generation

e temperature: The temperature is used for sampling during response generation, which
occurs when top_p and top_k are applied. temperature controls the degree of random-
ness in token selection. Lower temperature values are good for prompts that require a
less open-ended or creative response, while higher temperature values can lead to more
diverse or creative results. A temperature of O means that the highest probability tokens
are always selected. In this case, responses for a given prompt are mostly deterministic,

but a small amount of variation is still possible.

Atemperature of O means the model will choose the mostlikely token based on its training

data, while higher values introduce more randomness and diversity in the output.

e top_p: This parameter changes how the model selects tokens for output. Tokens are se-
lected from the most to least probable until the sum of their probabilities equals the top-p
value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1, respectively,
and the top-p value is 0.5, then the model will select either A or B as the next token by

using temperature and will exclude C as a candidate.

In this case, it is set to 0.95, meaning that only the top 95% of tokens with the highest

probabilities will be considered during generation.

Beyond the above, the safety_settings dictionary specifies the harm categories and corre-
sponding thresholds for filtering potentially harmful or inappropriate content from the generated

output. In this example, the following settings are provided:

safety_settings = {
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_
models.HarmBlockThreshold.BLOCK_ONLY_HIGH,

generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT:
generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,

generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT:
generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,

generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_
models.HarmBlockThreshold.BLOCK_ONLY_HIGH,

}

These settings instruct the Gemini 1.5 Flash model to block only highly harmful content related
to hate speech, dangerous content, sexually explicit content, and harassment. Any content that

falls below the “high” harm threshold for these categories will be allowed in the generated output.

Chapter 8 133

The generate() function creates an instance of the GenerativeModel class, passing the MODEL
parameter; in this example, Gemini 1.5 Flash. It then calls the generate_content() method on
the model instance, providing the prompt, generation configuration, and safety settings. The
stream=False parameter indicates that the generation should happen in a non-streaming mode,

meaning the entire response will be generated and returned at once:

def generate(prompt):
model = GenerativeModel (MODEL)
responses = model.generate_content(
[prompt],
generation_config=generation_config,
safety_settings=safety_ settings,
stream=False,

)

return(responses)

The generated response is stored in the responses variable, which is then returned by the

generate () function.

By submitting the formatted prompt to Vertex Al’s API endpoint for Gemini 1.5 Flash, leveraging
the provided generation configuration and safety settings, this RAG pipeline can obtain a con-
textualized and relevant response tailored to the user’s query while adhering to the specified

parameters and content filtering rules.

Result post-processing

After receiving the response from the language model, it is often desirable to present the output
in amore structured and visually appealing format. Markdown is a lightweight markup language
that allows you to add formatting elements such as headings, lists, code blocks, and more. In
this example, we use Markdown formatting to enhance the presentation of the question, answer,

and context:

formatted_result = f"###Question:\n{question}\n\n###Answer:\n{result.
text}\n\n<details><summary>Context</summary>{context}</details>"

134 Integration Pattern: Real-Time Retrieval Augmented Generation

The breakdown of the components of this formatting is:
e "###Question:\n{question}”
This part adds a level 3 Markdown heading (###) for the Question section, followed by
the user’s original query ({question}) on a new line (\n).
e "\n\n###Answer:\n{result.text}"
After adding an empty line (\n\n) at the beginning of the section, this section creates

another level 3 Markdown heading for the Answer section, followed by the generated

response from the language model ({result.text}) on a new line.

e "\n\n<details><summary>Context</summary>{context}</details>"

This part utilizes the Markdown <details> and <summary> tags to create a collapsible
section for displaying the context information retrieved from the vector database. The
<summary>Context</summary> text serves as the label for the collapsible section, and the

actual context text ({context}) is enclosed within the <details> tags.

Result presentation

The Markdown class from the IPython.display module is a utility that allows you to display for-
matted Markdown content in a Colab notebook or other IPython environments. By passing the
formatted_result string to the Markdown constructor, you create a Markdown object that can

be rendered by the display function:

display(Markdown(formatted_result))

Whenyou call display(), the notebook will render the Markdown-formatted content contained
in the formatted_result string. This allows you to leverage the rich formatting capabilities of

Markdown within the notebook environment.

The following is an example of the Markdown formatted output of our demo:

Figure 8.2: Screenshot from the formatted result in the Google Colab notebook

Chapter 8 135

By using the Markdown class and the display function, you can take advantage of Markdown’s
formatting capabilities within the Google Colab notebook environment. This includes features

like headings, bold and italic text, lists, code blocks, links, and more.

The rendered output will be displayed in the notebook cell, providing a visually appealing and
well-structured representation of the question, answer, and context information. This can greatly
enhance the readability and usability of the chatbot’s responses, making it easier for users or

developers to understand and interpret the results.

Additionally, the <details> and <summary> tags used in the context section create a collapsible
section, allowing users to toggle the visibility of the context information. This can be particularly
helpful when dealing with large amounts of context data, as it prevents cluttering the main output

while still providing easy access to the relevant information.

In the next section, we will dive deep into how all these components work together through a

use case demo.

Use case demo

The following is the code for building a demo using Gradio; in this case, we will use an additional
function that will perform the RAG pipeline. When you run this code, a Gradio interface will open

in your default web browser, displaying three main sections:

e Fintech Assistant heading
e Chatbot area

e Textinput box

Users can type their questions into the input box and submit them. The chat function will be
called, which will use the answer_question function to retrieve the relevant context from the
vector database, generate an answer using the RAG pipeline, and update the chatbot interface

with the user’s question and the generated response.

The Gradio interface provides a user-friendly way for users to interact with the RAG pipeline sys-
tem, making it easier to test and demonstrate its capabilities. Additionally, Gradio offers various
customization options and features, such as support for different input and output components,

styling, and deployment options. We start by installing Gradio:

136 Integration Pattern: Real-Time Retrieval Augmented Generation

Ipip install --upgrade gradio

Next, we define two helper functions that build upon the previously explained generate() func-

tion:

import gradio as gr

def answer_question(query, db, number_of_ results):
context = get_context(query, db, number_of_results)
answer = generate(prompt_template.format(query=query, context=context))

return(answer.text)

def chat(message, history):
response = answer_question(message,db, MAX_RESULTS)

history.append((message, response))

nn

return , history

The answer_question(...) function takes three arguments:

e query: The user’s question
e db: The vector database
e number_of results: The maximum number of context results to retrieve from the da-

tabase

It then calls the get_context function (not shown in the provided code) to retrieve the relevant
context information — from the vector database, based on the user’s query and the specified
number of results. The retrieved context is then formatted within the prompt_template string

and passed to the generate function — covered in the previous sections — to obtain the answer.
At the end of the function execution, the generated answer is returned as a string.
The chat(...) function takes two arguments:

e message: The user’s question

e history: Alist representing the conversation history

It then calls the answer_question() function with the user’s question, the vector database (db),

and the maximum number of results (MAX_RESULTS).

Chapter 8 137

The generated response is appended to the history list, along with the user’s question. The function
returns an empty string and the updated history list, which will be used to update the chatbot

interface.

The Gradio app
With the helper functions defined, we can now create the Gradio interface:
with gr.Blocks() as demo:
gr.Markdown("Fintech Assistant")

chatbot = gr.Chatbot(show_label=False)

message = gr.Textbox(placeholder="Enter your question")

message.submit(chat, [message, chatbot],[message, chatbot])

demo.launch(debug=True)

Here’s what’s happening in this code:

e with gr.Blocks() as demo creates a Gradio interface block called demo.

e gr.Markdown(...) displays a Markdown-formatted heading for the chatbot interface.

e gr.Chatbot(...) creates a Gradio chatbot component, which will display the conver-
sation history.

e gr.Textbox(...) creates a text input box where users can enter their questions.

e message.submit(...) setsup aneventhandler for when the user submits their question.
It calls the chat function with the user’s input (message) and the chatbot instance and
updates the message and chatbot components with the returned values.

e demo.launch(...)launchesthe Gradiointerface in debug mode, allowing you to interact

with the chatbot.

Refer to the GitHub directory of this chapter for the complete code that demonstrates how all the
pieces described above fit together.

Summary

In this chapter, you've explored an integration pattern that combines RAG and generative Al
models to build a chatbot capable of answering questions based on a document corpus. You've
learned that RAG leverages the strengths of retrieval systems and generative models, allowing
the system to retrieve relevant context from existing knowledge sources and generate contextual

responses, preventing hallucinations and ensuring accuracy.

138 Integration Pattern: Real-Time Retrieval Augmented Generation

We proposed an architecture that utilized a serverless, event-driven approach built on Google
Cloud. It consists of an ingestion layer for accepting user queries, a document corpus management
layer for storing embeddings, an Al processing layer integrating with Google Gemini on Vertex
Al, and monitoring and logging components. The entry point handles various input modalities

like text, audio, and images, pre-processing them as needed.

You've learned that the core of the RAG pipeline involves generating embeddings from the user
query, performing a vector similarity search on a vector database (in this example, we used Chroma
DB), retrieving relevant context, formatting it into a prompt with instructions, and submitting
it to the Gemini model on Vertex Al The generated response can be post-processed, formatted

with Markdown, and presented in a user-friendly interface using tools like Gradio.

You’ve now gained valuable insights into implementing a powerful RAG-based chatbot system.
You've learned how to combine retrieval and generation techniques to provide contextual, hallu-
cination-free responses, leveraging vector databases for semantic search through content embed-
dings. The chapter has equipped you with strategies to improve retrieval results and customize user
experiences through prompt tuning. These skills will enable you to enhance your organization’s
ability to provide accurate and contextualized responses to natural language queries, effectively

utilizing existing document repositories and the power of generative Al.

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

Operationalizing Generative Al
Integration Patterns

In previous chapters, we explored various integration patterns that leverage the power of Gen-
erative Al (GenAl) models like Google Gemini on Vertex Al. We discussed developing produc-
tion-grade enterprise architectures according to targeted business use cases. In this chapter, we
will discuss in depth best practices to be considered while operationalizing your GenAl integra-
tions as production-grade applications. As we transition from conceptual design to real-world
application, operational challenges such as scalability, reliability, and maintainability come to

the forefront. In a nutshell, we are going to cover the following topics in this chapter:
e Introduction to operationalizing GenAl integration patterns

e Afour-layer framework for GenAl operationalization

e Datalayer:

e Data quality and pre-processing

e Data security and encryption

e Data governance and versioning

e Regulatory compliance (for example, GDPR or HIPAA)

e Ethical considerations and bias mitigation
e Training layer:

e Model adaptation strategies (few-shot learning, fine-tuning, and full training)

e Model governance and policy establishment

140 Operationalizing Generative Al Integration Patterns

e Performance metrics and monitoring
e Bias detection and mitigation

o Explainable AI (XAI) techniques
e Inference layer:

e Scalability and performance optimization
e Security and access control
e Model deployment strategies (for example, canary and blue-green)

e Edge and distributed inference
e Operations layer:

e Continuous Integration and Continuous Deployment (CI/CD) for GenAl
e MLOps best practices

e Monitoring and observability:

e Evaluation and monitoring using “golden prompts”
e Alerting systems

e Distributed tracing

e Comprehensive logging practices

e Costoptimization strategies

e Areal-world example: Al-powered language translation service
e Implementation across all four layers

e Specific considerations for each layer in the context of the example

Operationalization framework

In the rapidly evolving landscape of GenAl, it’s crucial to have a structured approach to operation-
alizing your newly created applications. The operationalization framework we’ll explore consists
of four interconnected layers: Data, Training, Inference, and Operations. Together, these layers
provide a comprehensive blueprint for effectively harnessing the potential of GenAl models in your

applications. In the following list, we’ll touch on what each of these four interconnected layers are:

1. Data layer: The foundation of any successful GenAl application lies in the quality and
quantity of data. This layer encompasses data velocity, curation, prompt and training

data pre-processing, and overall data management.

Chapter 9 141

From a training perspective, ensuring that the datais relevant, diverse, and representative
of the target domain is paramount. Techniques like distillation and filtering play a vital
role in enhancing the quality of your training data. From an inference perspective, as
mentioned in previous chapters, understanding your data velocity will help you define

the application pattern your data is best fit for: batch vs real time.

2. Traininglayer: Once the datais prepared, the Training layer focuses on the intricate pro-
cess of model training or fine-tuning. This layer involves selecting the appropriate training
architecture, hyperparameter tuning, and leveraging cutting-edge training techniques
such as transfer learning, few-shot learning, or self-supervised learning. Efficient resource
management, including the utilization of distributed training and hardware acceleration,

is crucial for optimizing the training or fine-tuning process.

3. Inferencelayer: After a modelis trained or fine-tuned, the Inference layer comes into play.
This layer encompasses the deployment and serving of the GenAl model in a production
environment. Factors such as scalability, latency, and resource optimization are critical
considerations. Advanced techniques like model quantization, pruning, and distillation
can be employed to optimize the model’s performance and memory footprint, ensuring
efficient inference at scale.

4. Operations layer: The Operations layer focuses on the continuous monitoring, main-
tenance, and improvement of the deployed GenAl application. This layer involves tasks
such as model monitoring, performance tracking, and model retraining pipelines. Robust
logging and incident management processes are essential for ensuring the application’s
reliability and resilience. Additionally, this layer addresses critical aspects like model

governance, ethical considerations, and regulatory compliance.

By understanding and effectively implementing each layer of this operationalization framework,
organizations can unlock the full potential of GenAl applications, driving innovation and deliv-
ering exceptional user experiences. Seamless integration and collaboration across these layers

are key to achieving successful and scalable GenAl applications.

These four layers build upon each other. To run inference against a model, you must have trained
or fine-tuned it with carefully curated data. Figure 9.1, below, highlights the relationship between

these layers.

142 Operationalizing Generative Al Integration Patterns

Note that the Operations layer spans across all layers, providing you with a robust framework to

deploy enterprise-level applications:

Figure 9.1: Interdependency between the four productionalization layers

In the following sections, we will dive deeper into each of the four layers of this productionaliza-

tion framework. Let’s start with the Data layer.

Data layer

The Data layer is the bedrock upon which your GenAl systems are built. It’s not just about having
data; it’s about managing it effectively to ensure the quality, security, and ethical use of infor-
mation. Robust data management processes are non-negotiable. Your GenAl systems are only
as good as the data they interact with. For example, without enough contextual information,
Large Language Models (LLMs) can hallucinate, and too much noise could cause the model to
lose information in the middle, as described in the document Lost in the Middle: How Language
Models Use Long Contexts (https://arxiv.org/abs/2307.03172). Therefore, you want to make
a conscious effort to build and scale your data pipelines (RAG and fine-tuning) to feed the right

level of detail and content to enhance your GenAl model’s abilities.

We are going to provide an overview of the high-level components to keep in mind when pre-

paring your data:

https://arxiv.org/abs/2307.03172

Chapter 9 143

e Dataquality: Implementrigorous procedures to clean, validate, and preprocess your data.

This includes handling missing values, outliers, inconsistencies, and potential biases.

e Data security: Protect your data from unauthorized access and misuse. Encryption (at
rest and in transit), access controls, and regular security audits are critical. Remember
that your training data often contains sensitive information that requires the highest
level of protection.

e Datagovernance: Keep track of changes to your datasets, models, and even the prompts
used for generation. Versioning allows you to reproduce past results, trace the evolution
of your systems, and troubleshoot issues more effectively. This is particularly important
when dealing with regulatory compliance and audits.

e Regulatory compliance: Understand the legal landscape relevant to your industry and
the types of data you handle. For example, in the case of General Data Protection Reg-
ulation (GDPR), if you’re dealing with EU citizens’ data, you must adhere to strict rules
about data collection, processing, and storage, or with the Health Insurance Portability
and Accountability Act (HIPAA) in healthcare, patient data protection is paramount.

e Ethical considerations: Go beyond the letter of the law and evolving regulations. Ad-
dressingissues like algorithmic bias, ensuring fairness, and being transparent about how
your GenAl systems use data are crucial for building user trust and avoiding unintended
negative consequences.

e Cloud Data Loss Prevention (DLP): This service helps you discover, classify, and protect
sensitive data within your Google Cloud resources. It can automatically redact Personally

Identifiable Information (PII) or alert you about potential data leaks.

¢ CloudIdentity and Access Management (IAM): Fine-grained control over who can access

what data is essential. IAM lets you define roles and permissions with great precision.

A real-world example: Part 1

Let’s explore an example. Imagine that you're building a GenAl application to assist doctors with

diagnoses. Your Data layer would require you to make the following considerations:

e Data quality: Meticulously clean and de-identify patient records to remove personal
information while preserving the medical relevance of the data. This process typically
includes eliminating direct identifiers (like names and addresses), generalizing certain
information (such as converting exact ages to age ranges), and carefully reviewing free-

text fields for potentially identifying details.

144 Operationalizing Generative Al Integration Patterns

The goal is to maintain the integrity and usefulness of the data while minimizing the risk
of re-identification. An example of this would be converting a detailed patient record with
name, exact age, and specific location into a de-identified version with a coded ID, age

range, and generalized region.

e Datasecurity: Always encrypt patient data, implement strict access controls, and poten-

tially use Google Cloud’s DLP to detect and protect sensitive health information.

e Datagovernance: Adhere to HIPAA regulations, document all data-processing activities,
and proactively address potential biases in your inference contextual data that could lead

to incorrect diagnoses.

Training layer

The Training layer is where your GenAl models come to learn how to behave in front of your cus-
tomers, learning from the curated data and acquiring the skills needed to generate meaningful
outputs. But it’s not just about training; it’s about governing, monitoring, understanding, and

continuously improving these models. Model governance is a necessity for building trustworthy

Al Here are key strategies to consider:

e Clear policies and guidelines: Establish a framework that defines how models are de-
veloped, deployed, monitored, and updated. Address ethical considerations like fairness,
transparency, and accountability. Document your decision-making processes for model

selection, hyperparameter tuning, and data handling.

e Responsible Al practices: Implement techniques to detect and mitigate potential biases
in your training data and model outputs. Regularly evaluate the impact of your models
on different user groups and stakeholders. Consider using diverse teams to evaluate and

audit your models.

e Human-in-the-loop: Design workflows that allow human reviewers to provide feedback
and correct errors in model outputs, especially for high-stakes applications like healthcare

or finance. This helps you build a safety net and continuously improve model performance.

Additionally, we need to think of models not as static pieces of code; they need ongoing care and
attention. Over time, you will see a drift in model performance, which is normal, due to newly
created data being available that your model has not seen at training time. A big advantage of
LLMs over traditional ML models nowadays is their ability to process large corpora of information
very efficiently at inference time. This opens new mechanisms that we can use to enhance our

model performance without having to fully retrain our model:

Chapter 9 145

e Few-shot learning tackles the challenge of training Al models with just a handful of ex-
amples per task category. Instead of memorizing specific data points, the model focuses
on learning how to identify similarities and differences between examples. This allows
it to generalize to new, unseen classes based on its ability to “learn to learn” from a small
amount of information. This is particularly useful in scenarios where acquiring a lot of
labeled data is difficult or expensive. This type of “learning” is done at inference time,

meaning you add these examples in the prompt itself.

e Fine-tuning addresses the challenge of adapting a pre-trained language model to specific
tasks or domains. Unlike few-shot learning, which occurs at inference time, fine-tuning
involves additional training on a targeted dataset. This process allows the model to ad-
just its parameters and specialize in a particular area without losing its broad language
understanding. Fine-tuning can significantly improve performance on domain-specific
tasks, such as medical text analysis or legal document processing, by teaching the model
relevant vocabulary, context, and nuances. This approach is particularly valuable when
you have a moderate amount of task-specific data and want to create a more specialized
model that outperforms generic prompting techniques. Recent advancements have intro-
duced efficient fine-tuning methods like Low-Rank Adaptation (LoRA), which reduces the
number of trainable parameters by adding small, trainable rank decomposition matrices
to each layer. Other techniques such as prefix tuning (which prepends trainable parame-
ters to the input), prompt tuning (which optimizes a small set of continuous task-specific
vectors), and AdapterHub (which introduces small, trainable modules between existing
layers) offer alternative ways to adapt models with minimal computational overhead.
These methods enable more efficient and flexible adaptation of LLMs, making fine-tuning
more accessible and resource friendly. Fine-tuning, especially with these efficient tech-
niques, strikes a balance between the resource-intensive process of training a model from

scratch and the limitations of using a general-purpose model for specialized applications.

e Full training of LLMs involves the comprehensive process of training a language model
from scratch or significantly modifying an existing model’s parameters across all layers.
This approach requires a vast amount of diverse textual data and substantial computa-
tional resources, including high-performance GPUs or TPUs. Unlike fine-tuning, which
adapts a pre-trained model for specific tasks, full retraining aims to create a model with
broad language understanding and generation capabilities. This method allows for the in-

corporation of new knowledge, languages, or structural changes to the model architecture.

146

Operationalizing Generative Al Integration Patterns

It’s particularly useful when developing models for languages or domains not well repre-
sented in existing LLMs, or when aiming to reduce biases present in pre-trained models.
Full retraining also enables the implementation of novel training techniques, such as
constitutional AI or advanced prompt-engineering methods, into the training process.
However, the enormous computational cost, time requirements, and potential for intro-
ducing new biases or errors make full retraining a challenging endeavor typically under-

taken by large tech companies or well-resourced research institutions.

Having established the options available to train LLMs for specific tasks, our focus now shifts

toward ensuring these models perform optimally and meet our expectations. This involves:

Performance metrics, which are crucial for measuring the quality, accuracy, and efficiency
of your models. It’s essential to define and track relevant metrics, monitoring for signs of
model drift and unexpected behavior. To address this, consider implementing automated
monitoring systems that track key performance indicators over time, using A/B testing
to compare model versions, employing cross-validation and bootstrapping techniques
to assess model stability, implementing periodic re-evaluation on benchmark datasets
to detect drift, and using confidence scoring to identify when a model is uncertain about

its predictions.

Bias detection, another critical aspect, which can be approached by utilizing fairness
metrics such as demographic parity and equal opportunity, implementing adversarial
debiasing techniques during training, using post-processing methods to adjust model
outputs for fairness, conducting regular audits with diverse test sets, and employing

techniques like counterfactual fairness to assess and mitigate hidden biases.

Hallucination detection, which addresses the challenge of LLMs producing outputs
that sound plausible but are factually incorrect. To combat this, consider implementing
fact-checking algorithms that cross-reference model outputs with trusted knowledge
bases, using ensemble methods to compare outputs from multiple models, employing
uncertainty quantification techniques, implementing human-in-the-loop systems for
critical applications, and using perplexity scores or other statistical measures to detect

unusual or potentially hallucinated content.

Chapter 9 147

e Explainable AI (XAI) techniques, which are vital for understanding why models make
specific predictions, building trust, and identifying potential issues. Options in this area
include implementing Local Interpretable Model-Agnostic Explanations (LIME), which
creates interpretable models for local regions of the input space, or SHapley Additive
exPlanations (SHAP), which uses game theory to assign importance values to features
for feature importance analysis, using attention visualization techniques, employing
counterfactual explanations, implementing concept activation vectors to understand
high-level concepts learned by the model, and using layer-wise relevance propagation

to trace the contribution of each input to the final prediction.

A real-world example: Part 2

To illustrate the practical implementation of the concepts we’ve discussed, let’s consider a GenAl
chatbot designed to handle customer inquiries. This example demonstrates how the various as-
pects of model training, governance, monitoring, and improvement come together in a real-world

application:

e Model adaptation strategies: For our customer service chatbot to continue being effective
and remain relevant, it’s crucial to consider adapting the model to new information or
changing requirements. To do this, we need to select the most appropriate method based
on the specific needs of the business and the nature of the changes expected. Here, we
explore three primary strategies — few-shot learning, fine-tuning, and full training — each

suited to different scenarios of model adaptation:

e Few-shot learning: This approach is ideal for quick adaptations to new types of
customer inquiries or product updates. For instance, if your company launches a
new product, you can provide the chatbot with a few examples of product-related
questions and answers in the prompt. The chatbot can then generalize from these
examples to handle a wider range of queries about the new product. This meth-
od is fast and doesn’t require any model retraining, making it suitable for rapid
responses to changing business needs. However, its effectiveness may be limited
for more complex or nuanced changes. Specific limitations include difficulty with
queries requiring deep context, inconsistent performance across different types
of questions, scalability issues as topics increase, potential overfitting to provided

examples, and inability to retain information from previous interactions.

148

Operationalizing Generative Al Integration Patterns

Fine-tuning: When you have a substantial amount of new data or need to adapt
the chatbot to a significant shift in customer service patterns, fine-tuning becomes
a valuable option. For example, if your company expands into a new market with
different cultural norms and customer expectations, you could fine-tune the chatbot
on a dataset of interactions specific to this market. This allows the model to adapt
itslanguage use and response style while retaining its general knowledge. Consider

using efficient fine-tuning methods like LoRA to reduce computational requirements.

Full training: While less common for a pre-existing chatbot, full training might be
considered if there’s a fundamental shift in the company’s approach to customer
service or if the original model is found to have significant limitations or biases.
For instance, if the company decides to completely overhaul its product line and
customer interaction style, or if it wants to build a chatbot from scratch that’s
deeply aligned with its unique brand voice and values, full training could be the
best approach. This method allows for the incorporation of company-specific
knowledge and interaction styles from the ground up but requires substantial

computational resources and a large, high-quality dataset.

In practice, a combination of these approaches often yields the best results. You might use few-

shot learning for day-to-day adaptations, schedule regular fine-tuning sessions (for example,

monthly or quarterly) to incorporate accumulated new data, and reserve full training for major

overhauls. By strategically employing these different adaptation methods, you can ensure that

your customer service chatbot remains current, effective, and aligned with your business goals,

while also managing computational resources efficiently.

Once we’ve chosen and implemented the most suitable adaptation strategy, we will ensure that

these changes are effectively integrated into the ongoing operations of our chatbot, as follows:

Model governance: Establish a comprehensive framework for the chatbot’s operation.
This includes defining guidelines for tone of voice, ensuring it aligns with your brand
identity and customer expectations. Develop a clear set of acceptable responses and create
escalation procedures for complex queries that require human intervention. Implement
regular reviews of conversation logs to ensure adherence to ethical standards and main-
tain high customer satisfaction. Document decision-making processes for model selec-
tion, hyperparameter tuning, and data handling. Address ethical considerations such as
fairness, transparency, and accountability in the chatbot’s interactions. Consider using
diverse teams to evaluate and audit the model, ensuring a wide range of perspectives are

considered in the governance process.

Chapter 9 149

e Model monitoring: Implement a robust system to track key performance metrics. This in-
cludes response accuracy (how often the chatbot provides correct and helpful information),
resolution time (how quickly customer inquiries are resolved), and customer sentiment
(measured through post-interaction surveys or sentiment analysis of customer respons-
es). Utilize tools like Vertex Al Model Monitoring to detect shifts in user behavior or data
patterns that could impact the chatbot’s performance. Implement automated monitoring
systems that track these key performance indicators over time. Use A/B testing to compare
different versions of the chatbot and detect performance changes. Employ cross-validation
and bootstrapping techniques to assess model stability. Implement periodic re-evaluation

on benchmark datasets to detect drift in performance or unexpected behaviors.

e Biasdetection and mitigation: Regularly assess the chatbot’s performance across different
user demographics to ensure fair and equitable service. Utilize fairness metrics such as
demographic parity and equal opportunity. Implement adversarial debiasing techniques
during training to reduce inherent biases. Use post-processing methods to adjust model
outputs for fairness. Conduct regular audits with diverse test sets to identify potential

biases in responses or handling of different customer groups.

¢ Hallucination detection: Implement fact-checking algorithms that cross-reference the
chatbot’s responses with a trusted knowledge base of company policies and product
information. Use ensemble methods to compare outputs from multiple model versions.
Employ uncertainty quantification techniques to flag responses where the model may
be less confident. Implement human-in-the-loop systems for critical inquiries or when
potential hallucinations are detected. Use perplexity scores or other statistical measures

to identify unusual or potentially incorrect content in the chatbot’s responses.

¢ Explainable AI (XAI): Implement techniques to understand and explain the chatbot’s
decision-making process. Use LIME or SHAP for feature importance analysis to understand
which parts of customer queries are most influential in generating responses. Employ
attention visualization techniques to see which words or phrases the model focuses on.
Use counterfactual explanations to understand how different inputs would change the
chatbot’s responses. This not only aids in debugging but also helps in training customer
service representatives to work alongside the Al system.

e Model updates and continuous learning: Establish a regular schedule for training the
chatbot on new customer interactions and feedback. This keeps its knowledge base up

to date and improves its ability to handle diverse inquiries.

150

Operationalizing Generative Al Integration Patterns

Utilize few-shot learning techniques to quickly adapt to new types of customer que-
ries or product updates without full retraining. Consider periodic fine-tuning on recent,
high-quality interactions to maintain peak performance. Implement a feedback loop where
customer service representatives can flag incorrect or suboptimal responses, providing

valuable data for future improvements.

By investing in these aspects of model management, monitoring, and continuous improvement,

you’ll build a GenAl chatbot thatis not only powerful but also responsible, reliable, and adaptable

to the ever-changing needs of your customers and your business. This comprehensive approach

ensures that your Al-powered customer service solution remains a valuable, trustworthy, and

effective tool in your customer engagement strategy.

Inference layer

The Inference layer is where your GenAl models come to life, transforming input data into mean-

ingful outputs in real time. This layer is critical for delivering value to end-users and integrating

Al capabilities into your applications and business processes. However, deploying and managing

GenAl models at scale presents unique challenges that require careful consideration and planning:

Scalability and performance optimization: Design your GenAl systems with scalabil-
ity in mind, leveraging serverless and autoscaling capabilities offered by cloud provid-
ers. This ensures that your infrastructure can dynamically adjust to varying workloads,
maintaining performance while optimizing costs. Implement load testing and capacity
planning processes to ensure your systems can handle anticipated traffic patterns and
sudden spikes in demand. This proactive approach helps prevent outages and maintains
a seamless user experience. To further optimize resource utilization and manage costs
effectively, explore techniques like request batching, caching, and load shedding. Request
batching can significantly improve throughput by processing multiple requests togeth-
er, while caching frequently accessed results reduces unnecessary model invocations.
Load-shedding mechanisms can help gracefully degrade service during extreme traffic
spikes, ensuring critical functions remain operational. Consider implementing queuing
and buffering mechanisms to handle traffic spikes and prevent overloading your GenAl
models or downstream components. This approach helps smooth out irregular traffic
patterns and ensures consistent performance. Additionally, employ techniques like model
quantization and distillation to reduce the computational requirements of your models

without significantly impacting their accuracy.

Chapter 9 151

e Security and access control: Implement robust security measures to protect your GenAl
systems from unauthorized access, data breaches, and other security threats. This is par-
ticularly crucial given the sensitive nature of data often processed by Al models. Leverage
IAM features provided by cloud platforms to control access to your GenAl resources and
enforce least-privilege principles. This ensures that users and systems have only the per-
missions necessary to perform their required tasks. Implement secure communication
channels and encryption mechanisms to protect data in transit and atrest. This includes
using HTTPS for all API endpoints, encrypting data stored in databases or file systems,
and implementing proper key management practices. Regularly review and update your
security policies and procedures to address emerging threats and vulnerabilities. This
may involve conducting periodic security audits, carrying out penetration testing, and

staying informed about the latest security best practices in the Al field.

e Monitoring and observability: Implement comprehensive monitoring and observability
solutions to gain real-time insights into your GenAl system’s performance, health, and
usage patterns. This includes tracking key metrics such as inference latency, throughput,
error rates, and resource utilization. Use distributed tracing to understand the flow of
requests through your system and identify bottlenecks or inefficiencies. Set up alerting
mechanisms to promptly notify your team of any anomalies or performance issues. This
allows for rapid response and mitigation of potential problems before they impact end-us-
ers. Consider implementing A/B testing capabilities within your Inference layer to compare

the performance of different model versions or configurations in real-world scenarios.

e Compliance and governance: Ensure that your Inference layer adheres to relevant regula-
tory requirements and industry standards. This may include implementing data retention
policies, maintaining audit logs of model predictions, and providing mechanisms for
explainability and transparency in Al decision-making processes. Develop clear policies
and procedures for model deployment, versioning, and rollback. This helps maintain
consistency and reliability in your Al services while allowing for rapid iteration and im-
provement. Implement robust CI/CD pipelines that include automated testing, security
scanning, and performance benchmarking to ensure that only high-quality, secure model
versions are deployed to production.

e Edge and distributed inference: Consider implementing edge inference capabilities for
scenarios where low latency or offline operation is crucial. This may involve deploying
optimized versions of your models to edge devices or implementing hybrid cloud-edge
architectures. Explore techniques like federated learning and split inference to balance

privacy, performance, and resource constraints in distributed Al systems.

152 Operationalizing Generative Al Integration Patterns

By addressing these aspects comprehensively in your Inference layer, you’ll build GenAl systems
that are not only powerful and efficient but also secure, scalable, and reliable. This holistic ap-
proach ensures that your Al-powered solutions can deliver consistent value to users while adapting

to changing requirements and emerging challenges in the dynamic field of AL

A real-world example: Part 3

Let’s look at an example where your company has deployed an advanced Al-powered language
translation service that has been developed to offer real-time, high-quality translations across
multiple languages for text, voice, and video content. This cloud-based service caters to a diverse
user base, including businesses, government agencies, and individuals worldwide, with usage

patterns that vary significantly throughout the day and across different regions.

The service is deployed on a cloud platform using a serverless architecture with autoscaling ca-
pabilities to ensure scalability and optimize performance. This infrastructure allows the system
to automatically scale up during periods of high demand, such as major international events, by
spinning up additional inference instances as needed. For text translations, request batching
is implemented, processing multiple short translations in a single model inference to improve
throughput. Frequently requested translations are cached to reduce model invocations. For video
translation, a queuing system manages large translation jobs, ensuring fair resource allocation
and preventing system overload. In scenarios requiring ultra-low latency, optimized models can

be deployed directly to edge devices, enabling offline translation capabilities.

Security and access control are fundamental to the service’s design. All API requests require
robust authentication, with different access levels for various user tiers. Data protection is en-
sured through encryption, both in transit and at rest. Role-Based Access Control (RBAC) allows
enterprise clients to manage user permissions granularly. A dedicated security operations center
monitors for unusual patterns or potential breach attempts, using AlI-powered anomaly detection

systems to maintain robust security.

Comprehensive monitoring and observability systems are in place to maintain the service’s per-
formance and reliability. Operations teams use customized dashboards showing key metrics like
translation latency, accuracy scores, and resource utilization across different language pairs and
content types. Distributed tracing allows for end-to-end tracking of each translation request,
enabling quick identification of bottlenecks or errors. New model versions are gradually rolled
out through A/B testing, with performance constantly compared against the current production

model. Automated alerts are set up for various thresholds to ensure prompt attention to any issues.

Chapter 9 153

Compliance and governance are integral to the service’s operations. Strict data retention policies
areimplemented to comply with privacy regulations, with user content automatically deleted after
translation unless explicitly requested otherwise. Detailed logs of translations (metadata only,
not content) are maintained for compliance and billing purposes. A rigorous approval process
governs the deployment of new model versions, including automated tests for accuracy, bias, and
performance. An explainability feature is available, highlighting which parts of the input most

influenced the translation output, enhancing transparency and trust.

The service’s architecture incorporates edge and distributed inference capabilities. An on-premises
solution is offered for clients with strict data sovereignty requirements. A lightweight version is
available as an SDK for mobile app developers, enabling basic translation capabilities even when
offline. To improve translations for rare languages or specific domains, a federated learning system
is implemented, allowing the model to learn from user corrections without centrally collecting

sensitive data.

A continuous improvement cycle is maintained for the service. Daily automated scripts analyze
performance metrics and user feedback. Weekly reviews of aggregated performance data prior-
itize improvements for the most used language pairs and content types. Monthly A/B tests are
conducted for model updates, with successful improvements gradually rolled out. Quarterly
comprehensive security audits and penetration testing ensure the system remains robust against

evolving threats.

This multi-faceted approach to the Inference layer ensures that the Al translation service remains
highly available and performant, capable of handling a global scale with consistent low-latency
translations. The service is secure and compliant, meeting the stringent requirements of enter-
prise clients and regulatory bodies. It is also observable and adaptable, allowing for the rapid
identification and resolution of issues, as well as continuous improvement. With its edge capa-
bilities and distributed learning, the service is positioned to adapt to evolving market needs and
technological advancements, making it a flexible and future-proof solution in the dynamic field

of natural language processing.

Operations layer

The Operations layer forms the backbone of a robust and efficient GenAl system, ensuring smooth
functioning, reliability, and cost-effectiveness. This layer encompasses the critical processes and
tools that enable continuous improvement, monitoring, and optimization of your Al models in

production environments.

154 Operationalizing Generative Al Integration Patterns

By focusing on CI/CD and MLOps, monitoring and observability, and cost optimization, the Op-
erations layer bridges the gap between development and production, allowing organizations to
maintain high-performance Al systems while adapting to changing requirements and managing
resources effectively. A well-designed Operations layer is essential for scaling Al solutions, en-
suring their reliability, and maximizing the return on investment in GenAl technologies. At the
heart of this layer lies the CI/CD pipeline, which streamlines the process of integrating new code

and deploying updated models seamlessly. Let’s look at this in a little more detail.

Cl/CD and MLOps

The adoption of DevOps principles and the implementation of CI/CD pipelines are crucial for
streamlining the development, testing, and deployment of GenAl systems. This approach ensures
that changes to the Al models, supporting infrastructure, and application code are integrated,
tested, and deployed efficiently and reliably. By leveraging tools like Cloud Build, Artifact Registry,
and Cloud Deploy, organizations can automate the building, testing, and deployment processes,
significantly reducing manual errors and accelerating the delivery of new features and improve-
ments. To maximize the efficiency and reliability of GenAl systems, several key practices in Cl/
CD and MLOps should be implemented:

e Robust CI/CD pipeline: GenAl systems should include automated testing frameworks
that encompass unit tests, integration tests, and end-to-end tests. Unit tests focus on
individual components of the system, such as specific functions or modules. Integration
tests verify that different parts of the system work together correctly, while end-to-end
tests simulate real-world usage scenarios to ensure the entire system functions as expect-
ed. These comprehensive testing strategies are essential for maintaining the reliability
and correctness of GenAl systems, especially given the complex and often unpredictable

nature of Al model behavior.

e Model deployments: To minimize downtime and reduce the risk of introducing breaking
changes, organizations should consider implementing advanced deployment strategies
such as canary deployments and blue-green deployments. Canary deployments involve
releasing new versions to a small subset of users or servers before rolling out to the entire
system, allowing for real-world testing and easy rollback if issues are detected. Blue-green
deployments maintain two identical production environments, switching between them
for releases, which enables instant rollback and zero-downtime updates. Organizations
should also consider implementing feature flags, allowing for fine-grained control over

the rollout of new features or model versions.

Chapter 9 155

e Version control: Companies should implement version controls for all aspects of the GenAl
system, including model versions, training data, hyperparameters, and application code.
This enables traceability and reproducibility, which are essential for debugging, auditing,

and compliance purposes.

¢ Model monitoring and retraining pipelines: These pipelines should automatically track
model performance metrics, detect drift in data distributions or model accuracy, and
trigger retraining processes when necessary. This ensures that the Al models remain

accurate and relevant over time, adapting to changing data patterns and user behaviors.

e Data versioning and lineage tracking: By maintaining a clear record of the data used
to train each model version, organizations can ensure reproducibility and facilitate the
debugging of model behavior. This is particularly crucial in regulated industries where

model decisions may need to be audited or explained.

Lastly, organizations should focus on creating a culture of collaboration between data scientists,
ML engineers, and operations teams. This involves establishing clear communication channels,
shared responsibility for the entire ML lifecycle, and continuous knowledge sharing. Regular
post-mortem analyses of incidents and successful deployments alike can help teams identify

areas for improvement and refine their MLOps practices over time.

By implementing these comprehensive CI/CD and MLOps practices, organizations can significant-
ly enhance the reliability, efficiency, and effectiveness of their GenAl systems. This approach not
only accelerates the development and deployment cycle but also ensures that Al models remain

accurate, secure, and aligned with business objectives in the face of evolving data and user needs.

Monitoring and observability

In the rapidly evolving landscape of GenAl systems, maintaining a clear view of your model’s
performance and behavior is crucial. Monitoring and observability give you a view of your Al
operations, providing critical insights into system health, performance metrics, and potential
issues. This section dives into the key components that ensure your GenAl models operate at peak
efficiency while allowing for the quick identification and resolution of problems. We’ll explore
evaluation and monitoring techniques to track model performance, alerting systems to promptly
notify of anomalies, distributed tracing to understand complex system interactions, and com-
prehensive logging practices to maintain detailed records of system behavior. Together, these
elements create a robust framework for maintaining oversight of your GenAlI systems, enabling

proactive management and continuous improvement.

156 Operationalizing Generative Al Integration Patterns

Evaluation and monitoring

Ensuring the reliable and efficient operation of applications integrated with GenAl capabili-
ties is paramount. Comprehensive monitoring and observability solutions play a crucial role in
achieving this goal, providing valuable insights into the performance, health, and reliability of
these systems. By leveraging Google Cloud’s powerful monitoring and observability tools, such
as Cloud Monitoring, Cloud Logging, and Cloud Operations, organizations can gain real-time

visibility into the inner workings of their GenAlI systems.

Here’s an expanded narrative on establishing a mechanism to monitor results and detect changes
introduced by model updates, with details on instrumentation, automated batch processing, and

leveraging LLMs or other techniques.

One essential aspect of monitoring GenAl systems is the establishment of a robust mechanism
to monitor the results and detect changes introduced by model updates. This proactive approach
can help organizations stay ahead of potential issues and ensure the continued reliability and

accuracy of their GenAl systems.

At the core of this monitoring mechanism lies the concept of “golden prompts” — carefully crafted
prompts that represent typical use cases or scenarios for the GenAl system. These prompts should
be designed in collaboration with subject-matter experts and stakeholders, ensuring that they

cover a diverse range of contexts, complexities, and expected behaviors.

To operationalize this monitoring process, organizations can leverage automated batch-processing
techniques. By setting up scheduled jobs or workflows, these golden prompts can be periodically
and systematically submitted to the GenAl models, with the resulting outputs captured and

analyzed for any deviations or anomalies.

This analysis can be further augmented by leveraging the power of rater LLMs or other techniques
for automated evaluation and scoring. Rater LLMs can be fine-tuned to assess the quality, coher-
ence, and correctness of the responses generated by the GenAl models, providing a quantitative

measure of performance and flagging any significant deviations from expected outputs.

Alternatively, organizations can employ other evaluation techniques, such as leveraging human
raters or crowdsourcing platforms to manually assess the quality of the GenAl model’s outputs.
While more resource-intensive, this approach can provide valuable insights and a human per-

spective on the model’s performance.

Chapter 9 157

An interesting approach is the one implemented by the Chatbot Arena platform (see the paper
athttps://arxiv.org/html/2403.04132v1), which introduces a novel approach to evaluating
LLMs based on human preferences. Unlike traditional benchmarks that rely on static datasets
and ground-truth evaluations, Chatbot Arena leverages a crowdsourced, pairwise comparison
methodology. This approach aims to capture the nuanced and diverse aspects of LLMs by directly

incorporating user preferences in real-world, open-ended tasks.

At the core of Chatbot Arena is an interactive website where users can submit questions and re-
ceive responses from two anonymous LLMs. After reviewing the responses, users cast a vote for
the model that provided the preferred answer. This voting process is anonymous and randomized,
ensuring an unbiased evaluation environment. By collecting these pairwise comparisons from
a diverse user base, Chatbot Arena can gather a rich dataset of fresh user prompts and human

preferences, accurately reflecting real-world LLM applications.

To reliably rank the LLMs based on the crowdsourced data, Chatbot Arena employs a suite of
powerful statistical techniques. These include the Bradley-Terry model and the E-values pro-
posed by Vovk and Wang, enabling the platform to estimate model rankings as reliably and sam-
ple-efficiently as possible. Additionally, the platform incorporates efficient sampling algorithms
specifically designed to select model pairs in a way that accelerates the convergence of rankings

while maintaining statistical validity.

The monitoring mechanism should also incorporate comprehensive logging and auditing capa-
bilities, capturing not only the prompts, responses, and evaluation scores but also metadata such
as model versions, input data sources, and any other relevant contextual information. This data
can be invaluable for root cause analysis, debugging, and maintaining a comprehensive audit

trail of the GenAl system’s performance over time.

Furthermore, organizations can integrate this monitoring mechanism with their existing alerting
and notification systems, ensuring that any significant deviations or anomalies are promptly

flagged and communicated to the appropriate teams for investigation and remediation.

By establishing a robust monitoring mechanism that leverages golden prompts, automated batch
processing, and advanced evaluation techniques like rater LLMs or human raters, organizations
can stay ahead of potential issues introduced by model updates. This proactive approach not only
enhances the reliability and accuracy of GenAl systems but also instills confidence in stakeholders
and end-users, as they can be assured that the system’s performance is continuously monitored

and any deviations are promptly addressed.

https://arxiv.org/html/2403.04132v1

158 Operationalizing Generative Al Integration Patterns

Alerting

Alerting mechanisms are indispensable in this context, enabling relevant teams to be notified
of any issues or anomalies that may arise. These alerts can be configured based on predefined
thresholds or conditions, such as sudden spikes in error rates, latency, or resource utilization.
Notifications can be delivered via various channels, including email, messaging platforms, or
dedicated incident management tools, ensuring that the appropriate teams are promptly informed

and can take action to mitigate the issue.

Distributed tracing

Distributed tracing is another powerful technique that can aid in monitoring and troubleshoot-
ing GenAl systems. By instrumenting applications with telemetry data, organizations can trace
the path of a request as it flows through different components of the system. This end-to-end
visibility is invaluable when diagnosing performance issues, identifying bottlenecks, or trou-
bleshooting errors in complex, distributed systems. In the context of GenAl, distributed tracing
becomes particularly crucial due to the often complex and interconnected nature of Al pipelines.

It allows teams to:

e Visualizerequest flow: Tracing provides a clear picture of how requests propagate through

various services, APIs, and microservices involved in Al inference or training processes.

e Identify latency issues: By breaking down the time spent in each component, tracing
helps pinpoint where delays occur, whether in data pre-processing, model inference, or
post-processing steps.

e Detect anomalies: Unusual patterns in trace data can highlight potential issues before
they escalate into major problems, enabling proactive system management.

e Optimize resource allocation: Understanding the resource consumption of different com-
ponents helpsin fine-tuning resource allocation and improving overall system efficiency.

e Debug complex scenarios: In scenarios involving multiple Al models or complex deci-
sion trees, tracing helps understand the exact path taken by a request and the decisions
made at each step.

e Ensure data lineage: Tracing can track the flow of data through the system, ensuring

compliance with data governance policies and aiding in audits.

By leveraging distributed tracing, organizations can gain a deeper understanding of their GenAl

systems’ behavior, leading to more robust, efficient, and reliable Al-powered applications.

Chapter 9 159

Logging

Application Performance Management (APM) tools, such as Cloud Operations and Cloud Trace,
can provide detailed insights into application metrics. They can also request traces and logs,
allowing for the quick identification and resolution of performance issues, optimized resource

utilization, and a seamless user experience.

Comprehensive logging practices are also essential for capturing and analyzing relevant infor-
mation from GenAl systems. By configuring applications to log important events, errors, and
diagnosticinformation, and leveraging log management tools like Cloud Logging, organizations
can centralize and analyze these logs, identify patterns, track down issues, and gain insights into

the behavior of their GenAlI systems.

Regular review and analysis of the monitoring data collected from GenAl systems can reveal
trends, patterns, and potential areas for optimization or improvement. By leveraging this infor-
mation, organizations can fine-tune their systems, enhance performance, and deliver a better

user experience.

Implementing anomaly detection mechanisms can also be beneficial in automatically identify-
ing and flagging unexpected or anomalous behavior in GenAl systems. These mechanisms can
leverage ML techniques to analyze historical data, establish baselines, and detect deviations from

normal patterns, enabling organizations to take appropriate actions.

Finally, establishing robust processes for incident management and response is crucial to ensure
that any issues or incidents are addressed promptly and effectively. Defining clear roles and re-
sponsibilities, communication channels, and escalation procedures can facilitate a coordinated

and efficient response to any incidents that may arise.

Cost optimization

In the realm of GenAlI systems, balancing performance with cost-effectiveness is crucial for sus-
tainable operations. Implementing robust cost optimization strategies is essential to manage the
operational expenses associated with running these sophisticated Al systems on cloud platforms
like Google Cloud.

Organizations should leverage the various cost-saving mechanisms offered by cloud providers.
Committed-use discounts can significantly reduce costs for predictable workloads by committing
to using a certain amount of resources for a specified term. These commits can be at the infra-
structure layer or through managed services volume discounts. Additionally, exploring options
like preemptible VMs for fault-tolerant workloads or spot VMs for flexible, interruptible tasks

can lead to substantial savings.

160 Operationalizing Generative Al Integration Patterns

Implementing comprehensive cost monitoring and attribution mechanisms is crucial for gaining
visibility into cloud spending. These tools allow organizations to track expenses across different
projects, teams, and services, helping identify areas of high expenditure and opportunities for
optimization. Cloud cost management platforms can provide detailed breakdowns of spending,
forecasting capabilities, and alerts for unusual spikes in usage or costs. By attributing costs to
specific features or models, teams can make informed decisions about resource allocation and

prioritize optimization efforts where they’ll have the most impact.

Autoscaling and auto-shutdown mechanisms play a vital role in optimizing resource utilization
and reducing costs during periods of low traffic. By automatically adjusting the number of com-
pute instances based on demand, autoscaling ensures that the system can handle peak loads
without overprovisioning during quieter periods. Implementing auto-shutdown for development
and testing environments during non-working hours can lead to significant savings without

impacting productivity.

Optimizing data storage and transfer costs is another crucial aspect of managing GenAlI system
expenses. This may involve implementing tiered storage solutions, using caching effectively, and
optimizing data transfer patterns to minimize egress charges. For large-scale Al training jobs,
consider using managed services that automatically optimize for cost-efficiency, such as Google

Cloud’s Vertex Al, which can dynamically adjust resource allocation based on job requirements.

Finally, consider the long-term cost implications of architectural decisions. While serverless ar-
chitectures might seem more expensive on a per-request basis, they can often lead to lower total
costs by eliminating the need for constantinfrastructure management and allowing for true pay-
per-use pricing. Similarly, investing in model optimization techniques like quantization or distil-

lation can reduce inference costs in the long run, even if they require upfront development effort.

By addressing these key considerations and implementing best practices across all these layers
(Data, Training, Inference, and Operations), you can successfully operationalize your GenAl inte-
gration patterns, ensuring reliability, scalability, and maintainability in production environments.
Additionally, establishing robust data management, model governance, and security practices

will help you build trust and comply with relevant regulations and industry standards.

Summary

In this chapter, you’ve explored a comprehensive framework for operationalizing GenAl inte-
gration patterns. You've learned about a four-layer approach that addresses the complexities
of deploying and maintaining production-grade GenAlI applications, encompassing the Data,

Training, Inference, and Operations layers.

Chapter 9 161

We proposed a holistic strategy that emphasizes the importance of data quality, security, and
governance in the Data layer, while also addressing regulatory compliance and ethical consid-
erations. The Training layer introduced you to various model adaptation techniques, including
few-shotlearning, fine-tuning, and full training, along with crucial aspects of model governance,

performance monitoring, and XAl

You've learned that the Inference layer focuses on scalability, performance optimization, and se-
cure deployment strategies, including edge and distributed inference capabilities. The section on
the Operations layer highlighted the significance of implementing robust CI/CD pipelines, MLOps

best practices, and comprehensive monitoring and observability systems for GenAl applications.

By the end of this chapter, you’ve gained valuable insights into the intricacies of operationaliz-
ing GenAl systems. You’ve learned how to balance performance, cost-effectiveness, and ethical
considerations while ensuring scalability and reliability. The chapter has equipped you with
strategies to implement golden prompt evaluations, distributed tracing, and cost optimization
techniques. These skills will enable you to enhance your organization’s ability to deploy and
maintain sophisticated GenAl applications, effectively leveraging cloud infrastructure and best

practices in Al operations.

In the next chapter, we will discuss responsible Al and it’s implications when integrating GenAl

into your applications.

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

10

Embedding Responsible Al into
Your GenAl Applications

In the previous chapters, we explored various integration patterns and operational considerations
for leveraging Generative Al (GenAl) models like Google Gemini on Vertex Al. As we implement
these powerful technologies, it’s crucial to address the ethical implications and responsibilities
that come with building and deploying Al models that will be added to your applications. This
chapter will focus on best practices for responsible Al ensuring that our GenAl applications are

fair, interpretable, private, and safe.
In this chapter, we’ll cover:

e Introduction to responsible Al

e Fairness in GenAl applications

e Interpretability and explainability

e Privacy and data protection

e Safety and security in GenAl systems
e Google’s approach to responsible Al

e Anthropic’s approach to responsible AI

Introduction to responsible Al

Responsible Al is an approach to developing and deploying Al systems that prioritizes ethical

considerations, transparency, and accountability.

164 Embedding Responsible Al into Your GenAl Applications

As GenAl models and applications such as Google’s Gemini, OpenAI’s GPT, and Anthropic’s Claude
become increasingly powerful and widely used, it’s essential to ensure that these systems are
designed and implemented in ways that benefit society while minimizing potential harm. Let’s
explore, at a high level, the key aspects of implementing responsible Al in your systems. We will

also talk about how over-indexing on the following topics can have a negative effect on innovation:

e Fairness: Achieving fairness in Al systems is a crucial goal that requires thoughtful design
and implementation throughout the entire Al lifecycle. Several key factors contribute to
making Al systems fair. First and foremost is the quality and diversity of the training data.
Ensuring that the dataset represents a wide range of demographics, experiences, and
perspectives helps to minimize bias and promote equitable outcomes. This involves not
just collecting diverse data, but also carefully curating and balancing it to avoid over- or
under-representation of certain groups, ensuring Al systems don’t perpetuate or amplify
biases. While aiming for fairness is crucial, it’s complex to implement. Different definitions
of fairness can conflict with each other. For example, achieving demographic parity might
not always align with equal opportunity. Overcompensating for historical biases could
potentially create new forms of discrimination. For instance, an Al hiring system can be
so focused on demographic parity that it overlooks genuine qualifications, potentially

leading to more capable candidates being overlooked.

e Interpretability: This is about understanding how Al systems make decisions. Highly
interpretable models might sacrifice performance for explainability. This trade-off could
be particularly problematic in fields like medical diagnosis or financial forecasting, where

complex patterns might be crucial for accurate predictions.

e Privacy: This involves protecting user data and respecting privacy rights. Strict privacy
measures can hinder beneficial data sharing and collaborative research. They might also
increase costs for businesses, potentially stifling innovation in smaller companies that
can’t afford robust privacy protection measures. For example, overly strict data protection
might prevent the creation of the large, diverse datasets needed for developing treatments

for rare diseases.

e Safety: Thisis where you ensure that Al systems behave as intended and don’t cause harm.
Rigorous safety testing can significantly slow down the development and deployment
of Al systems. This could delay the introduction of potentially life-saving technologies.
Additionally, overly cautious approaches mightlead to missed opportunities for learning

from controlled, real-world testing.

Chapter 10 165

e Accountability: This is about taking responsibility for Al system outcomes. Clear lines of
accountability are necessary; overly punitive measures could discourage innovation. It
might also lead to a culture of blame rather than learning and improvement when issues

do arise.

There is no secret recipe for getting all these aspects correct. Companies need to find the balance
and address these concerns in practice. Let’s consider the following approaches to minimize

concerns about over-indexing in rigid approaches:

e Contextual application: Recognize that the importance of each aspect may vary depend-
ing on the specific Al application and its potential impact. For example, interpretability

might be more crucial in medical diagnosis Al than in a movie recommendation system.

e Stakeholder engagement: Involve diverse stakeholders in the development and deploy-
ment process. This can help identify potential issues and trade-offs early on. Adopt a
risk-based approach where the level of scrutiny and safeguards is proportional to the

potential harm or impact of the Al system.

e Transparency and monitoring: Be open about the limitations and trade-offs of your Al
system. This can help manage expectations and build trust. Regularly assess the perfor-
mance and impact of Al systems in real-world use and be prepared to make adjustments.
Implement these principles progressively, starting with minimum viable standards and

improving over time based on real-world feedback and outcomes.

¢ Regulatory collaboration: Work with policymakers to develop regulations that encourage
responsible innovation rather than stifling it. Invest in educating both developers and

users about these principles and their implications.

By taking a nuanced, context-specific approach and continuously reassessing the balance be-
tween these principles, we can work towards maximizing the benefits of Al while minimizing

potential harm.

Fairness in GenAl applications

Fairness in Al systems is a critical concern as these technologies become increasingly integrated
into decision-making processes across various sectors of society. Ensuring that Al systems do
not perpetuate or amplify existing biases is essential for building trust, promoting equality, and
maximizing the benefits of Al for all. However, achieving fairness in Al is a complex and multi-

faceted challenge that requires ongoing effort and vigilance.

166 Embedding Responsible Al into Your GenAl Applications

Itinvolves considerations at every stage of the Al lifecycle, from data collection and model devel-
opment to deployment and monitoring. The following points outline key strategies and consider-
ations for promoting fairness in Al systems, with a focus on practical approaches and real-world
examples. By implementing these practices, organizations can work towards creating Al systems

that are more equitable, transparent, and beneficial to society as a whole:

e Diverse and representative data: Ensuring diverse and representative data is fundamental
to creating fair Al systems. This involves notjustincluding data from various demograph-
ic groups but also considering intersectionality and less visible forms of diversity. For
example, in developing a speech recognition system, ensure the training data includes
speakers with various accents and dialects from a range of age groups and genders. For
instance, Apple faced criticism when early versions of Siri struggled with Scottish accents,

highlighting the importance of linguistic diversity in training data.

e Biasdetection and mitigation: This involves both proactive and reactive measures. Proac-
tively, use statistical techniques to identify potential biases in your data and model outputs.
Reactively, implement feedback mechanisms to catch and correct biases that emerge in
real-world use. For example, consider an Al recruitment tool showing bias against spe-
cific demographics or genders in the tech industry. This could be the result of the system
being trained on historical hiring data that reflected past gender or demographic biases
in the tech industry. This case highlights the importance of scrutinizing training data and

model outputs for unfair patterns.

¢ Regular audits: Fairness audits should be comprehensive, examining not just the model’s
outputs but also its impact in the real world. This may involve both quantitative metrics
and qualitative assessments. For example, credit-scoring Al might pass initial fairness
tests, but regular audits could reveal thatit’s inadvertently disadvantaged certain groups
over time due to changing economic conditions. Regular audits would catch this drift and

allow for timely corrections.

e Inclusive design: Inclusive design goes beyond just consulting diverse stakeholders. It
involves empowering them to actively shape the development process and giving their
input real weight in decision-making. For example, when Microsoft developed the Xbox
Adaptive Controller for gamers with limited mobility, they involved gamers with disabili-
ties throughout the design process. This inclusive approach led to innovations that might

have been overlooked by designers without lived experience of disability.

Chapter 10 167

e Contextual fairness: Fairness can mean different things in different contexts. What's fair
in one situation might not be in another. Al systems need to be flexible enough to adapt
to these nuances. For example, an Al system for college admissions might need to balance
multiple fairness criteria — equal opportunity, demographic parity, and individual merit.
The appropriate balance might differ between a public university with a mandate for

diverse representation and a specialized technical institute.

e Transparency and explainability: For Al systems to be truly fair, users should understand
how decisions are made. This involves both technical explainability and clear commu-
nication with non-technical stakeholders. In healthcare, an Al system making treatment
recommendations should be able to explain its reasoning in terms that both doctors
and patients can understand. This allows informed consent and gives opportunities for

patients to provide additional context that the Al might have missed.

e Ongoing monitoring and adaptation: Fairness isn’t a one-time achievement but an on-
going process. Societal norms and understanding of fairness evolve, and Al systems need
to adapt accordingly. For example, an Al content moderation system for a social media
platform might need to continuously update its understanding of hate speech and dis-
criminatory language as social norms evolve and new forms of coded language emerge.

e Legal and ethical compliance: Ensure that fairness measures comply with relevant laws
(like anti-discrimination legislation) and align with ethical standards. This may vary by
jurisdiction and application area. In the EU, the GDPR and the proposed Al Act set specific
requirements for fairness and non-discrimination in Al systems. Companies operating in

or selling to the EU market need to ensure their Al systems comply with these regulations.

These expanded points highlight the complexity and nuance involved in ensuring fairness in Al
systems. It’s an ongoing challenge that requires vigilance, adaptability, and a commitment to

ethical principles.

Interpretability and explainability

Interpretability and explainability in Al systems, particularly in large language models (LLMs)
and GenAl, are crucial for fostering trust, enabling effective oversight, and ensuring responsible
deployment. As these systems become more complex and their decision-making processes more
opaque, the need for methods to understand and explain their outputs grows increasingly import-
ant. Interpretability allows stakeholders to peek inside the “black box” of AI, while explainability

focuses on communicating how decisions are made in a way that humans can understand.

168 Embedding Responsible Al into Your GenAl Applications

The following points outline key strategies for enhancing interpretability and explainability in Al
systems, with a focus on practical approaches and real-world examples. By implementing these
practices, organizations can create more transparent Al systems, facilitating better decision-mak-

ing, regulatory compliance, and user trust.

e Model cards: Model cards provide a standardized way to document Al models, including
their performance characteristics, intended uses, and limitations. They serve as a crucial
tool for transparency and responsible Al deployment. For example, Google’s BERT lan-
guage model comes with a detailed model card that outlines its training data, evaluation
results across different tasks and demographics, and ethical considerations. This allows
users to make informed decisions about whether BERT is appropriate for their specific

use case and helps them understand potential biases or limitations.

e Explainable AI (XAI) techniques: XAI techniques aim to make the decision-making process
of Al models more understandable to humans. These methods can provide insights into
which features are most important for a particular decision or prediction. For example,
in a medical diagnosis Al system, SHapley Additive exPlanations (SHAP) values could
be used to show which symptoms or test results contributed most to a particular diag-
nosis. This allows doctors to understand the AI's reasoning and compare it with their

own clinical judgment.

e User-friendly explanations: Technical explanations of Al decisions are often not useful
for end-users. Developing clear, non-technical explanations tailored to the user’s level of
expertise is crucial for practical explainability. Credit-scoring Al might explain its decision
to deny a loan not just with a numerical score, but with a simple explanation like “Your
application was declined primarily due to your high debt-to-income ratio and recent
missed payments on your credit card.” This gives the user actionable information without

requiring them to understand the underlying Al model.

e Traceability: Maintaining detailed logs of an Al system’s inputs, outputs, and key decision
points allows for auditing and helps in understanding the system’s behavior over time.
Thisis particularly important for regulatory compliance and debugging. In an autonomous
vehicle system, maintaining a detailed log of sensor inputs, decision points, and actions
taken would be crucial. If an accident occurs, this log could be analyzed to understand why
the Al made certain decisions and how similar incidents could be prevented in the future.

e Interpretable model architectures: While not using inherently more interpretable model
architectures can be a powerful approach, this mightinvolve using simpler models where

possible or developing new architectures designed for interpretability.

Chapter 10 169

In a financial fraud detection system, a decision tree model might be used instead of a
more complex neural network for certain components. The decision tree’s logic can be
easily visualized and understood, allowing for clear explanations of why a transaction

was flagged as potentially fraudulent.

e Interactive explanations: Providing users with interactive tools to explore model behavior
can greatly enhance understanding. This allows users to ask “what if” questions and see
how changes in inputs can affect outputs. For example, a recommendation system for an
e-commerce platform could include an interactive feature allowing users to adjust the
importance of different factors (for example, price, brand, ratings) and see in real time
how this affects product recommendations. This helps users understand the system’s

logic and tailor it to their preferences.

By implementing these strategies, organizations can significantly enhance the interpretability
and explainability of their Al systems, leading to more transparent, trustworthy, and effective

Al applications.

Privacy and data protection

Privacy and data protection in Al systems, especially in the context of powerful GenAl models, is
a critical concern thatimpacts user trust, legal compliance, and ethical use of this technology. As
Al systems process increasingly large amounts of personal and potentially sensitive data, ensuring
robust privacy safeguards becomes a make-or-break point for organizations. Effective privacy
protection involves not only technical measures but also organizational policies and user empow-
erment. The following points outline key strategies for enhancing privacy and data protection in
Al systems, with a focus on practical approaches and real-world examples. By implementing these
practices, organizations can create Al systems that respect user privacy, comply with regulations,

and maintain the trust of their users and stakeholders:

e Data minimization: This involves collecting and using only the data that is absolutely
necessary for the Al system’s intended function. This principle reduces privacy risks and
aligns with many data protection regulations. For instance, a smart home Al assistant
could be designed to process voice commands locally on the device whenever possible,
rather than sending all audio data to cloud servers. This minimizes the amount of poten-
tially sensitive data that leaves the user’s control and increases the trust of users in their

data not being at risk of a leak or used to further improve models.

170

Embedding Responsible Al into Your GenAl Applications

Anonymization and encryption: These techniques help protect individual privacy by
removing or obscuring personally identifiable information in datasets used for training
and inference. Properly implemented, they can allow useful data analysis while preserving
privacy. In developing an Al system for analyzing hospital patient outcomes, researchers
could use differential privacy techniques. For example, differential privacy adds carefully
calibrated noise to the data or to the model’s outputs, allowing accurate overall analysis

while making it mathematically impossible to identify individual patients.

User control: Empowering users with control over their data is not only alegal requirement
in many jurisdictions but also builds trust. This includes providing clear, easily accessible
options for data management. For example, a social media platform using Al for content
recommendations could provide a detailed Privacy Dashboard where users can see what
data is being collected, how it’s being used, and easily opt out of specific data collection

or processing activities.

Compliance: Adherence to relevant data protection regulations is crucial. This often in-
volves implementing privacy by design principles, conducting impact assessments, and
maintaining detailed documentation of data processing activities. A multinational com-
pany developing an Al-powered HR tool would need to ensure compliance with GDPR for
EU employees, CCPA for California residents, and other applicable local regulations. This
might involve creating region-specific data handling processes and providing different

privacy notices and controls based on user location.

Avoid logging PII and other sensitive information: Logs are often overlooked as a po-
tential source of privacy breaches. Implementing practices to avoid capturing personally
identifiable information in logs is crucial for maintaining privacy. Even when logs don’t
contain PII, they can still contain sensitive information about system operations. Imple-
menting strong security measures for log data is essential. A financial institution using
Al for fraud detection could implement a secure, encrypted log storage system with strict
access controls. Only authorized personnel would be able to access logs, and all access

would be logged for auditing purposes.

Retention policies: Establishing and enforcing data retention policies helps minimize
privacy risks over time and often aligns with legal requirements for data minimization.
An Al-powered fitness app could implement a policy to automatically delete user activity
data after a certain period (for example, 6 months) unless the user explicitly opts in to
keep it longer. This reduces the risk of old data being compromised while still allowing

users to maintain long-term records if desired.

Chapter 10 171

e Privacy-preserving Al techniques: Emerging techniques like federated learning and ho-
momorphic encryption allow Al models to learn from data without directly accessing it,
providing powerful new tools for privacy protection. A keyboard prediction Al on smart-
phones could use federated learning to improve its model. The model would be updated
on individual devices using local data, and only the model updates (not the raw data)

would be sent back to the central server, preserving user privacy.

By implementing these strategies, organizations can significantly enhance the privacy and data
protection aspects of their Al systems, leading to more trustworthy and legally compliant Al

applications that respect user privacy.

Safety and security in GenAl systems

Ensuring that GenAl systems operate safely, securely, and as intended is crucial for protecting
users and preventing potential misuse of information generated and from training, as well as un-
intended consequences. This involves a multi-faceted approach that encompasses both proactive
measures and reactive capabilities. The following points outline key strategies for enhancing safety

and security in GenAl systems, with a focus on practical approaches and real-world examples:

e Content filtering: Implementing filters to prevent the generation of harmful or inappro-
priate content is a crucial safety measure. For instance, a GenAl-powered chatbot for a
children’s educational platform could use advanced content filtering algorithms to detect
and block any attempts to generate age-inappropriate content, ensuring a safe learning
environment. This might involve maintaining and regularly updating a comprehensive
list of prohibited terms and topics, as well as using more sophisticated natural language
processing techniques to identify potentially harmful content even when it’s expressed
in novel ways.

e Ratelimiting: Applying reasonable limits on API calls is essential to prevent abuse and en-
sure fair usage. A GenAl service providing image generation capabilities could implement
tiered rate limiting, where free users are limited to a certain number of generations per
day, while paid users have higher limits. This not only prevents potential denial-of-service
attacks but also helps manage computational resources effectively. The system could also
implement more nuanced rate limiting based on the complexity of the requests, allowing
more frequent simple generations while limiting resource-intensive ones.

e Adversarial testing: Regularly testing the system with adversarial inputs is crucial for
identifying and addressing vulnerabilities. These tests need to be added to the develop-

ment cycle as well as the continuous monitoring of the system.

172

Embedding Responsible Al into Your GenAl Applications

For a GenAl system designed to assist in medical diagnosis, researchers could create a suite
of adversarial test cases designed to trick the system into making incorrect diagnoses. This
might include subtle alterations to medical images or carefully crafted textual descrip-
tions of symptoms. By continuously running and expanding these tests, developers can
identify weak points in the system’s decision-making process and implement targeted

improvements to enhance robustness.

Monitoring and alerting: Setting up systems to detect and respond to anomalous behav-
ior is critical for maintaining ongoing safety and security. A financial institution using
GenAl for fraud detection could implement a real-time monitoring system that tracks
unusual patterns in the AI’s behavior. For example, if the system suddenly starts flagging
an unusually high number of transactions as fraudulent, or if its confidence scores show
unexpected fluctuations, automated alerts could be triggered for human review. This

allows quick intervention in case of potential system malfunctions or targeted attacks.

Improved robustness: Enhanced stability and consistency in outputs, as demonstrated
by models like Gemini 1.5, is crucial for safety. A GenAlI system used for automated cus-
tomer service could leverage these improvements to provide more reliable and consistent
responses across a wide range of customer inquiries. This reduces the risk of the system
providing contradictory or nonsensical information, which could lead to customer con-
fusion or dissatisfaction. Regular evaluations comparing the system’s outputs over time

and across different inputs can help verify and maintain this robustness.

Content safety: Built-in mechanisms to avoid generating harmful or explicit content
are essential safeguards. A GenAl-powered creative writing assistant could incorporate
multiple layers of content safety checks. This might include analyzing generated text for
potentially offensive language, checking for age-appropriate content based on the user’s
profile, and providing warnings or alternatives when the system detects that it might be
veering into sensitive territory. These mechanisms should be regularly updated to reflect

evolving societal norms and newly identified risks.

Multimodal safety: Extending safety considerations across text, image, and other mo-
dalities is increasingly important as GenAl systems become more versatile. A multimodal
GenAlI system used in social media content moderation could apply safety checks across
text, images, and videos simultaneously. For instance, it could analyze both the text of a
post and any accompanying images to detect potential policy violations, ensuring that
harmful content isn’t slipping through by exploiting gaps between different modalities.
This requires developing and maintaining comprehensive safety models that can under-

stand context across different types of data.

Chapter 10 173

By implementing these strategies, organizations can significantly enhance the safety and security
of their GenAl systems, creating more reliable, trustworthy, and beneficial Al applications. Reg-
ular reviews and updates of these measures are essential to keep pace with the rapidly evolving

capabilities and potential risks associated with GenAlI technologies.

Google's approach to responsible Al

Google’s approach to responsible Al is a comprehensive framework that serves as a model for

organizations implementing GenAl systems. At its core, the approach prioritizes:

e Human-Centered Design, emphasizing the importance of user needs and societal impact
in Al development. This ensures that Al systems are created with a deep understanding of

their real-world implications and potential benefits for users across diverse backgrounds.

e Fairness is another crucial aspect of Google’s framework. The company has developed
sophisticated tools and practices to detect and mitigate unfair bias in Al systems. This
commitment to fairness involves rigorous testing, diverse dataset creation, and ongoing
monitoring to ensure Al applications remain equitable as they evolve and are deployed

in various contexts.

o Interpretability is a key focus, with Google striving to create explainable Al systems that
promote transparency. This involves developing methods to make AI decision-making
processes more understandable to both developers and end-users, fostering trust and

accountability in Al applications.

e Privacy is a fundamental concern addressed through advanced techniques such as fed-
erated learning and differential privacy. These approaches allow for the development of
powerful AI models while protecting individual user data, striking a balance between
innovation and privacy protection.

e Safety and Security are paramountin Google’s responsible Al approach. The company con-
ducts rigorous testing and focuses on developing robust Al systems that can withstand
potential misuse or manipulation. This proactive stance on security helps ensure that Al

technologies are not only powerful but also trustworthy and resilient.

Google’s approach emphasizes the importance of cross-functional collaboration, bringing to-
gether experts from various fields to address the multifaceted challenges of AI development.
This is complemented by a strong commitment to ongoing research, pushing the boundaries of

Al capabilities while simultaneously exploring its ethical implications.

174 Embedding Responsible Al into Your GenAl Applications

Google's Secure Al Framework (SAIF)

This is a conceptual framework designed to manage risks associated with rapidly advancing Al

technologies. It consists of six core elements:

e Expand strong security foundations: Adapt existing cybersecurity measures to protect
Al systems and develop expertise to keep pace with Al advancements.

e Extend detection and response: Incorporate Al-related threats into existing cybersecurity
practices, including monitoring Al system inputs and outputs for anomalies.

e Automate defenses: Utilize Al innovations to improve the scale and speed of responses
to security incidents, countering potential Al-enhanced threats.

e Harmonize platform-level controls: Ensure consistent security across different Al plat-
forms and tools within an organization, leveraging secure-by-default protections.

e Adapt controls: Continuously test and evolve detection and protection mechanisms
through techniques like reinforcement learning and regular Red Team exercises.

e Contextualize Al system risks: Conduct comprehensive risk assessments for Al deploy-
ments, considering end-to-end business risks and implementing automated checks for

Al performance validation.

This framework aims to help organizations evolve their risk management strategies alongside Al

advancements, ensuring more secure and responsible Al implementation.

Building upon the core elements of Google’s Secure Al Framework (SAIF), the approach to im-
plementation (https://services.google.com/fh/files/blogs/google_secure_ai_framework_
approach. pdf) provides a practical guide for organizations looking to integrate Al securely into
their operations. The approach breaks down the process into four key steps and elaborates on

how to apply the six core elements of SAIF effectively:

1. Understand the use: Clearly define the specific Al use case and its context within the

organization.

2. Assemble the team: Create a cross-functional team including stakeholders from various

departments such as security, legal, data science, and ethics.

3. Level set with an Al primer: Ensure all team members have a basic understanding of Al

concepts and terminology.

4. Apply the six core elements of SAIF:

a. Expand strong security foundations:

https://services.google.com/fh/files/blogs/google_secure_ai_framework_approach.pdf
https://services.google.com/fh/files/blogs/google_secure_ai_framework_approach.pdf

Chapter 10 175

i. Review existing security controls and their applicability to Al systems.
ii. Evaluate traditional controls against Al-specific threats.

iii. Prepare for supply chain management and data governance.
b. Extend detection and response:

i. Develop an understanding of Al-specific threats.
ii. Prepare to respond to attacks against Al and issues raised by Al output.

iii. Adjust abuse policies and incident response processes for Al-specific in-

cidents.
c. Automate defenses:

i. Identify Al security capabilities for protecting systems and data pipelines.
ii. Use Al defenses to counter Al threats while keeping humans in the loop.
iii. Leverage Al to automate time-consuming tasks and speed up defensive

mechanisms.
d. Harmonize platform-level controls:

i. Review Al usage and the lifecycle of Al-based applications.

ii. Standardize tooling and frameworks to prevent control fragmentation.
e. Adapt controls:

i. Conduct Red Team exercises for Al-powered products.
ii. Stayinformed aboutnovel Al attacks.
iii. Apply machine learning to improve detection accuracy and speed.

iv. Create feedback loops for continuous improvement.
f. Contextualize Al system risks:

i. Establish a model risk management framework.

ii. Build an inventory of Al models and their risk profiles.

iii. Implement policies and controls throughout the ML model lifecycle.
iv. Perform comprehensive risk assessments for Al use.

v. Consider shared responsibility in Al security.

vi. Match Al use cases to organizational risk tolerances.

176 Embedding Responsible Al into Your GenAl Applications

This approach provides a structured way for organizations to implement SAIF, ensuring that Al

integration is secure, responsible, and aligned with business objectives.

Google's Red Teaming approach

This approach to Al systems is a comprehensive strategy to identify and mitigate potential security
risks in Al deployments. The company has established a dedicated Al Red Team that combines
traditional red teaming expertise with specialized Al subject matter knowledge. This team sim-
ulates threat actors targeting Al deployments, with the goal of assessing the impact of simulated
attacks on users and products, analyzing the resilience of new Al detection and prevention capa-
bilities, improving detection capabilities for early attack recognition, and raising awareness among
stakeholders about key risks and necessary security controls. For further reading, please refer to

https://services.google.com/fh/files/blogs/google_ai_red_team_digital_final.pdf.

The AI Red Team works closely with Google’s threat intelligence teams like Mandiant and the
Threat Analysis Group (TAG) to ensure their simulations reflect realistic adversary activities.
This collaboration allows the team to prioritize different exercises and shape engagements that

closely resemble real-world threats.
Google’s approach to red teaming for Al systems focuses on several common types of attacks:

e Prompt attacks are a significant concern, especially for LLMs powering GenAl products.
These attacks involve crafting inputs that manipulate the model’s behavior in unintended
ways. For example, an attacker might inject hidden instructions into an email to bypass

Al-based phishing detection systems.

e Training data extraction attacks aim to reconstruct verbatim training examples, poten-
tially exposing sensitive information like personally identifiable information (PII) or
passwords. These attacks are particularly dangerous for personalized models or those

trained on data containing PII.

e Backdooring the modelis another critical threat where attackers attempt to covertly change
the model’s behavior to produce incorrect outputs with specific “trigger” words or features.
This can be achieved through direct manipulation of the model’s weights, fine-tuning for
adversarial purposes, or modifying the file representation of the model.

e Adversarial examples involve inputs that result in unexpected outputs from the model. For
instance, an image that appears as a dog to humans but s classified as a cat by the model.

The impact of these attacks can vary widely depending on the Al system’s use case.

https://services.google.com/fh/files/blogs/google_ai_red_team_digital_final.pdf

Chapter 10 177

e Data poisoning attacks involve manipulating the training data to influence the model’s
output according to the attacker’s preferences. This highlights the importance of securing

the data supply chain in Al development.

e Exfiltration attacks focus on stealing the model itself, which often includes sensitive in-
tellectual property. These can range from simple file copying to more complex attacks

involving repeated querying of the model to determine its capabilities and recreate it.

Google emphasizes that while these Al-specific attacks are crucial to address, they should be
considered in addition to, not instead of, traditional security threats. The company advocates
for a comprehensive approach that combines Al-specific red teaming with traditional security

practices like penetration testing, vulnerability management, and the secure development lifecycle.

By sharing their approach and lessons learned, Google aims to establish clear industry security
standards for AI and help advance the field of Al security. Their experience underscores the im-
portance of cross-functional collaboration, continuous learning, and the integration of Al security

with broader cybersecurity efforts to create more robust and secure Al deployments.

Anthropic’s approach to responsible Al

Anthropic’s approach to responsible Al development is comprehensive and multifaceted, inte-
grating ethical considerations, safety measures, and empirical research throughout their work.

Key aspects of their approach include:

e Prioritizing Safety Research: Anthropic views Al safety research as urgently important and
worthy of broad support. They employ a portfolio approach, preparing for a range of sce-

narios, from optimistic to pessimistic, regarding the difficulty of creating safe Al systems.

e Empirical Focus: The company emphasizes empirically driven safety research, believing
that close contact with frontier Al systems is crucial for identifying and addressing po-

tential risks before they become critical issues.

e Balancing Progress and Caution: Anthropic carefully navigates the trade-off between
advancing necessary safety research and potentially accelerating the deployment of dan-
gerous technologies. They aim to integrate safety research into real systems quickly while

maintaining responsible development practices.
e Transparency and Collaboration: While not publishing capabilities research, Anthropic

shares safety-oriented research to contribute to the broader Al community’s understand-

ing of these issues.

178 Embedding Responsible Al into Your GenAl Applications

e Ethical Deployment: The company is thoughtful about demonstrating frontier capabil-

ities, prioritizing safety research over public deployments when appropriate.

e Commitment to Safety Standards: Anthropic plans to make externally verifiable com-
mitments to only develop advanced models if specific safety standards are met, allowing

independent evaluation of their models’ capabilities and safety.

e Societal Impact Assessment: They conduct research to evaluate the potential societal
impacts of their Al systems, informing both internal policies and broader Al governance

discussions.

e Responsible Scaling: Anthropic recognizes the risks of rapidly scaling Al capabilities and
aims to develop techniques like scalable oversight to ensure powerful systems remain

aligned with human values.

o Interdisciplinary Approach: Their strategy spans technical research, policy considerations,

and ethical deliberations, reflecting the complex nature of Al safety challenges.

e Adaptability: Anthropic maintains flexibility in their approach, ready to adjust strategies

as they learn more about Al development and its associated risks.

By integrating these principles, Anthropic aims to contribute to the development of Al systems
that are not only powerful but also safe, ethical, and beneficial to humanity. Their approach
reflects a deep commitment to responsible innovation in the face of potentially transformative
Al technologies. Anthropic’s research areas are diverse and comprehensive, focusing on various
aspects of Al safety and responsible development. Their approach spans from immediate prac-
tical concerns to long-term, speculative risks, demonstrating a commitment to addressing the

multifaceted challenges of Al development.

)

At the core of Anthropic’s research is Mechanistic Interpretability, which aims to “reverse engineer’
neural networks into human-understandable algorithms. This ambitious project seeks to enable
something akin to “code reviews” for Al models, potentially allowing thorough audits to identify
unsafe aspects or provide strong safety guarantees. The team has made progress in extending
this approach from vision models to small language models and has discovered mechanisms

driving in-context learning.

Scalable Oversight is another crucial area of focus for Anthropic. This research aims to develop
methods for Al systems to partially supervise themselves or assist humans in supervision. It’s a
response to the challenge of providing adequate high-quality feedback to steer Al behaviors as

systems become increasingly complex.

Chapter 10 179

The team explores various approaches, including extensions of Constitutional Al, variants of hu-

man-assisted supervision, Al-Al debate, and red teaming via multi-agent reinforcement learning.

Process-Oriented Learning represents a novel approach to Al training. Instead of rewarding Al sys-
tems for achieving specific outcomes, this method focuses on training systems to follow safe pro-
cesses. The goal is to address concerns about Al safety by ensuring systems follow comprehensible,

approved processes rather than pursuing goals through potentially harmful or inscrutable means.

Testing for Dangerous Failure Modes is a proactive approach to identifying potential risks in Al
systems. This involves deliberately training problematic properties into small-scale models to
isolate and study them before they become direct threats in more capable systems. A particular
area of interest is studying how Al systems behave when they are “situationally aware” and how

this impacts their behavior during training.

Lastly, Anthropic places significant emphasis on researching Societal Impacts and Evaluations. This
involves building tools and measurements to assess the capabilities, limitations, and potential
societal impact of Al systems. Studies in this area have included research on predictability and
surprise in LLMs, methods for red teaming language models, and investigations into reducing
bias and stereotyping in Al outputs. This research not only informs Anthropic’s internal practices

but also contributes to broader discussions on Al governance and policy.

These interconnected research areas collectively aim to address various aspects of Al safety and
ethics. Anthropic’s approach is notable for its breadth and depth, reflecting the complex nature
of Al development challenges. The company maintains flexibility in its research focus, ready to
adaptas new information and challenges emerge in the rapidly evolving field of Al, demonstrating

a commitment to responsible innovation in the face of potentially transformative Al technologies.

Anthropic, aleading Al research company, has developed a comprehensive approach to addressing
the challenges of Al safety and ethics. Their method, called Constitutional Al represents a signif-
icantadvancementin creating Al systems that are both powerful and aligned with human values,
while reducing the need for extensive human oversight in the training process. Their approach is
highlighted in the paper Constitutional Al: Harmlessness from Al Feedback, (https://arxiv.org/
pdf/2212.08073) which presents Anthropic’s approach to developing safe and responsible Al
systems without relying on human feedback for harmlessness. The research introduces a meth-
od called Constitutional AI (CAI), which aims to create Al assistants that are both helpful and

harmless while avoiding evasive responses.

https://arxiv.org/pdf/2212.08073
https://arxiv.org/pdf/2212.08073

180 Embedding Responsible Al into Your GenAl Applications

The core of Anthropic’s approach involves two main stages: a supervised learning phase and a
reinforcement learning phase. In the supervised phase, the Al model is trained to critique and
revise its own responses based on a set of principles or “constitution.” This process helps to
reduce harmful content in the AI's outputs. The reinforcement learning phase then further re-
fines the model’s behavior using Al-generated feedback, rather than human labels, to evaluate

harmlessness.

Anthropic’s motivation for developing this technique stems from several factors. They aim to
scale supervision by leveraging Al to help oversee other Al systems, reduce the tension between
helpfulness and harmlessness in Al assistants, increase transparency in Al decision-making, and
decrease reliance on extensive human feedback. The researchers emphasize the importance of
empirical, data-driven approaches to Al safety, as well as the need for flexibility in addressing
various potential scenarios, from optimistic to pessimistic, regarding the difficulty of creating

safe Al systems.

The paper presents experimental results showing that the Constitutional Al method can produce
models that are both less harmful and more helpful than those trained with traditional reinforce-
ment learning from human feedback (RLHF). Notably, the CAI models demonstrate the ability

to engage with sensitive topics in a thoughtful, non-evasive manner while still maintaining safety.

Anthropic’s approach also incorporates techniques such as chain-of-thought reasoning to improve
the transparency and interpretability of Al decision-making. This allows better understanding of
how the Al system arrives atits conclusions and behaviors. The researchers stress the importance

of continuous adaptation and improvement in their safety techniques as Al capabilities advance.

The paper concludes by discussing potential future directions for this research, including apply-
ing constitutional methods to steer Al behavior in various ways, improving robustness against
adversarial attacks, and further refining the balance between helpfulness and harmlessness.
Anthropic acknowledges the dual-use potential of these techniques and emphasizes the need

for responsible development and deployment of Al systems.

Overall, this research represents a significant step towards creating Al systems that can be both
powerful and aligned with human values, while reducing the need for extensive human oversight

in the training process.

Chapter 10 181

Summary

When designing Al applications, developers can incorporate elements from both Google’s and
Anthropic’s approaches to create more responsible, safer systems. This comprehensive strategy

involves several key areas of focus:

Comprehensive safety and impact assessment is crucial for responsible Al development. This pro-
cess should include scenario planning for both optimistic and pessimistic outcomes, allowing
developers to prepare for a wide range of possibilities. Empirical testing of safety measures on
small-scale systems is essential, as it provides valuable insights without the risks associated
with large-scale deployment. Engaging diverse stakeholders helps identify potential issues early
in the development process, ensuring a broad perspective on the Al system’s potential impacts.
Establishing clear safety thresholds before scaling or deploying more advanced capabilities helps
maintain control over the AI's development and ensures that safety remains a priority throughout

the process.

A transparent and adaptive development process is vital for building trust and maintaining the safety
of AI systems. Implementing explainable Al techniques makes the system’s decision-making
process more interpretable, allowing both developers and users to understand how the Al arrives
at its conclusions. Regular external audits of the system’s performance, fairness, and safety pro-
vide objective assessments and help identify areas for improvement. Clear documentation of the
model’s capabilities, limitations, and intended use cases helps manage expectations and prevents
misuse. Developing a process for rapidly integrating new safety research findings ensures that

the Al system remains up to date with the latest advancements in Al safety.

Fairness and bias mitigation are critical aspects of responsible AI development. Ensuring Al sys-
tems don’t perpetuate or amplify biases requires using diverse and representative training data,
implementing proactive and reactive bias detection and mitigation measures, and conducting
regular fairness audits across different contexts and user groups. Applying contextual fairness
appropriate to the specific application helps ensure that the Al system’s decisions are equitable

in various scenarios.

Privacy and data protection are key to safe Al development. Implementing strong safeguards for
user privacy involves applying data minimization principles, using anonymization, encryption,
and privacy-preserving Al techniques, providing users with clear control over their data, and
establishing and enforcing data retention policies. These measures help build user trust and

ensure compliance with data protection regulations.

182 Embedding Responsible Al into Your GenAl Applications

Safety and security measures are essential for ensuring Al systems behave as intended and resist
potential attacks. This includes implementing content filtering and rate limiting to prevent mis-
use, conducting regular adversarial testing to identify vulnerabilities, setting up monitoring and
alerting systems for anomalous behavior, and applying multimodal safety considerations for
versatile Al systems. These measures help protect the Al system from external threats and prevent

unintended harmful behaviors.

Responsible Al is not just an ethical imperative; it’s a crucial component of building sustainable,
trustworthy, and effective GenAl applications. By integrating fairness, interpretability, privacy,
and safety considerations throughout the development lifecycle, we can harness the power of

models like Google Gemini while mitigating potential risks and negative impacts.

As we’ve explored in this chapter, implementing responsible Al practices requires a multifaceted
approach. This includes diverse and representative data, bias detection and mitigation, explain-
able Al techniques, robust privacy protections, and comprehensive safety measures. By learning
from industry leaders like Google and Anthropic, and adapting their frameworks to our specific
use cases, we can create GenAl applications that not only push the boundaries of what’s possible

but do so in a way that benefits society as a whole.

Remember that responsible Alis an ongoing process, not a one-time checkbox. As GenAl technol-
ogies continue to evolve rapidly, it’s essential to stay informed about the latest developments in

Al ethics, regularly reassess our applications, and be prepared to adapt our practices accordingly.

Throughout this book, we’ve embarked on a comprehensive journey through the world of GenAl,
focusing on leveraging powerful models like Google Gemini on Vertex Al. We began by exploring
the process of use case ideation and selection, learning how to identify opportunities where GenAl

can provide significant value and transform business processes.

From there, we delved into the crucial phase of proof of concept (POC) development with four
practical examples contextualized into a framework to simplify scale and refine our approach. We
then explored the critical aspects of instrumentation, learning how to integrate GenAl models

effectively into our applications and systems, and how to monitor and optimize their performance.

Finally, we addressed the vital topic of responsible Al ensuring that as we push the boundaries

of what’s possible with GenAl, we do so in a way that is ethical, fair, and beneficial to society.

This journey from ideation to responsible implementation represents a blueprint for successfully
leveraging GenAl in real-world applications. As these technologies continue to advance at arapid

pace, the principles and practices we’ve discussed will become increasingly important.

Chapter 10 183

The future of Alis not just about building more powerful models; it’s about building smarter, more
responsible systems that augment human capabilities and contribute positively to our world. By
following the approaches outlined in this book — from careful use case selection to rigorous POC
development, thoughtful instrumentation, and unwavering commitment to responsible Al — you

are well-equipped to lead the way in this exciting and transformative field.

As you move forward with your own GenAl projects, remember that success lies not just in tech-
nical implementation, but in the thoughtful consideration of how these powerful tools can be
used to create genuine value while upholding the highest standards of ethics and responsibility.

The journey of Al development is ongoing, and your role in shaping its future begins now.

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/genpat

https://packt.link/genpat

<packt

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

At www.packt. com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packt.com
www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Generative AI with LangChain
Ben Auffarth
ISBN: 978-1-83508-346-8

e Understand LLMs, their strengths and limitations

e Grasp generative Al fundamentals and industry trends

e Create LLM apps with LangChain like question-answering systems and chatbots
e Understand transformer models and attention mechanisms

e Automate data analysis and visualization using pandas and Python

e Grasp prompt engineering to improve performance

e Fine-tune LLMs and get to know the tools to unleash their power

e Deploy LLMs as a service with LangChain and apply evaluation strategies

e Privately interact with documents using open-source LLMs to prevent data leaks

https://www.packtpub.com/en-in/product/generative-ai-with-langchain-9781835083468

188 Other Books You May Enjoy

Building LLM Powered Applications
Valentina Alto
ISBN: 978-1-83546-231-7

e Explore the core components of LLM architecture, including encoder-decoder blocks

and embeddings
¢ Understand the unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLM
e Use Al orchestrators like LangChain, with Streamlit for the frontend
e Getfamiliar with LLM components such as memory, prompts, and tools
e Learn how to use non-parametric knowledge and vector databases
e Understand the implications of LFMs for Al research and industry applications
e Customize your LLMs with fine tuning

e Learn about the ethical implications of LLM-powered applications

https://www.packtpub.com/en-in/product/building-llm-powered-applications-9781835462317

Other Books You May Enjoy 189

Packt is searching for authors like you

If you'’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you,
to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts

Now you’ve finished Generative AI Application Integration Patterns, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you pur-

chased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packtpub.com
https://packt.link/r/1835887619
https://packt.link/r/1835887619

Symbols

10-K form summarization
use case, defining 94-96

10-K reports 72
business 73
financial data 73
financial statements 73

Management’s Discussion and Analysis
(MD&A) 73

reference link 76
risk factors 73
supplementary data 73

A

Anthropic approach, to responsible
Al 177,180

adaptability 178

balanced progress and caution 177
empirical focus 177

ethical deployment 178
interdisciplinary approach 178
responsible scaling 178

safety research, prioritizing 177
safety standards commitment 178
societal impact assessment 178
transparency and collaboration 177

Index

Application Performance Management (APM)
tools 159
approaches, to over-indexing
contextual application 165
regulatory collaboration 165
stakeholder engagement 165
transparency and monitoring 165
architecture, RAG-based chatbot system
Al processing layer 126
document corpus management 126
ingestion layer 126
monitoring and logging 126
artificial intelligence (Al) 2, 107
augmented reality (AR) 26

batch integration 56
document ingestion 66

batch processing 14

batch summarization architecture 96
entry point 98
flow 97
inference phase 101, 102
prompt pre-processing 98
result post-processing 102,103
result presentation 103
sample code 103

192

Index

batch summarization architecture,
components

database (Google BigQuery/Cloud
Firestore) 96

LLM (Google Gemini) 96

messaging queue (Google Cloud
Pub/Sub) 96

object store (Google Cloud Storage) 96

processing component (Google Cloud
Functions) 96

BERT 13
bias detection 146
bias mitigation 149

business value
realizing 20,21

C

Chain-of-Thought (CoT) 5,6
Chatbot Arena 157
CI/CD pipelines 154

cloud-based architecture
for metadata extraction 74

Cloud Logging 110
reference link 121

Cloud Monitoring 110
reference link 121

Cloud Operations 110

Cloud Run 110

Cloud Storage 110

code generation 26

compliance and governance 151
Constitutional Al (CAI) 179
content generation 26

continuous learning 149

conversational interfaces 26

customer relationship management

(CRM) 103,110

D

DALL-E 4,13

Dangerous Failure Modes 179

data governance 143,144
Data layer 140-142

high-level components 142,143

real-world example 143

Data Loss Prevention (DLP) 143

data quality 143

data security 143, 144
data versioning 155

data visualization 26
diffusion 11

diffusion models 11
distillation 12
distributed inference 151

document summarization 25

edge inference 151

entry point 34

Explainable Al (XAl) techniques 147, 149

extract_json function 116

extract, transform, load (ETL) 50

F

few-shot learning 145, 147
fine-tuning 12,145, 148

forward diffusion 11

Index

193

foundational model responses,
augmentation techniques

prompt engineering 13
retrieval augmented generation (RAG) 13
foundational models 7
foundational models, optimization
techniques
distillation 12
fine-tuning 12
pre-training 12
full-time employees (FTEs) 20
full training of LLMs 145, 148

G

Gemini 4,13, 36
Gemini Pro 107

GenAl application integration framework
defining 33
entry point 34
inference 35, 36
logging 50-52
prompt pre-processing 34, 35
results post-processing 36-43
results presentation 49

GenAl applications 165
bias detection and mitigation 166
contextual fairness 167
diverse and representative data 166
inclusive design 166
legal and ethical compliance 167
ongoing monitoring and adaptation 167
regular audits 166
transparency and explainability 167

GenAl document data extraction
pipeline 74,76

GenAl integration framework
entry point 59,76
inference 61, 63, 85, 88
prompt pre-processing 61, 76, 77, 81, 85
result post-processing 63, 64, 88, 89
result presentation 64, 89

GenAl systems, safety and security 171
adversarial testing 171
content filtering 171
content safety 172
improved robustness 172
monitoring and alerting 172
multimodal safety 172
rate limiting 171

General Data Protection Regulation
(GDPR) 143

Generative Adversarial Networks (GANs) 11
generative Al
(GenAl) 2-4,18,19,31,71,93, 163
concepts 11
deployment and hosting options 28
model architectures 11,12
potential business-focused use cases 23-28
search enhanced 65
use cases 21,22
generative Al integration patterns 14,15
batch processing 14
realtime 14
using, reasons 14
generative Al space 13

generative Al use case development
simplified lifecycle 9
versus predictive Al use case development
simplified lifecycle 10
Google Cloud Functions 110

Google Cloud Storage (GCS) 76, 94, 98

194

Index

Google Gemini
reference link 39
safety attributes 39

Google’s approach, to responsible Al 173
GPT 4

GPT-3 13

GPT-4 13

Gradio app 137

Gradio interface
URL 118

grounding LLMs 13

H

hallucination detection 146, 149

Health Insurance Portability and
Accountability Act (HIPAA) 143

Identity and Access Management (IAM) 143
Inference layer 141,150, 151
real-world example 152,153
inference stage 35, 36
integration patterns 14
interactive voice response (IVR) 2
interpretability and explainability 167
Explainable Al (XAl) techniques 168
interactive explanations 169
interpretable model architectures 168
model cards 168
traceability 168
user-friendly explanations 168

K

key performance indicator (KPI) 23

L

large language models
(LLMs) 6,7,17-19, 142, 167

providers 4
large multimodal models 7
lineage tracking 155

Local Interpretable Model-Agnostic
Explanations (LIME) 147

logging 50-52
Low-Rank Adaptation (LoRA) 145

M

Mechanistic Interpretability 178
metadata extraction 25
use case, defining 72,73
model deployments 154
model governance 148
model monitoring 149, 155
model updates 149
monitoring and observability 151

monitoring and observability, Operations
layer
alerting 158
cost optimization 159, 160
distributed tracing 158
evaluation 156, 157
logging 159

Index

195

named entity recognition (NER) 66

natural language processing (NLP) 21

o

operationalization framework 140
Data layer 140-144
Inference layer 141, 150-153
Operations layer 141, 153-160
Training layer 141, 144-150
Operations layer 141,153
Cl/CD practices 154, 155
MLOps practices 154, 155
monitoring and observability 155

optical character recognition (OCR) 127

P

PaLM 2 4
performance metrics 146
performance optimization 150

personally identifiable information
(PIl) 143,176

pipeline architectures 57,58
predictive Al 4

predictive Al use case development
simplified lifecycle 8,9
versus generative Al use case development
simplified lifecycle 10
pre-training 12
privacy and data protection 169
anonymization and encryption 170
compliance 170
data minimization 169

Pll log, avoiding 170
privacy-preserving Al techniques 171
retention policies 170
sensitive information, avoiding 170
user control 170
process_intent function 116
Process-Oriented Learning 179
prompt engineering 9, 13
prompt pre-processing 34, 35
Pub/Sub 110

Q

queries per minute (QPM) 102
queries per second (QPS) 102

R

RAG-based chatbot system 124,125
architecture 126
entry point 126, 127
inference 131, 132
prompt pre-processing 128,129
result post-processing 133
result presentation 134, 135
use case demo 135,136

ReAct 5,6
real time 14
real-time integration 56
search architecture example 67,68
real-time integration patterns 107
use case, defining 108, 109

real-time integration patterns
architecture 109,110
entry point 111
inference stage 113

196

Index

logging and monitoring 121

prompt pre-processing 111-113

result post-processing 115-117

result presentation 118-120
real-time integration patterns architecture,

components

Al processing layer 110

ingestion layer 110

intent classification model 110

monitoring and logging 110

orchestration and routing 110

Red Teaming approach 176
reference link 176

Red Teaming approach, attacks
adversarial examples 176
backdooring model 176
data extraction attacks 176
data poisoning attacks 177
exfiltration attacks 177
prompt attacks 176

regulatory compliance 143

reinforcement learning from human
feedback (RLHF) 180

report automation 26
responsible Al 163, 164
accountability 165
fairness 164
interpretable 164
privacy 164
safety 164
results post-processing 36-43
generated outputs, refining 45-49
selecting, from multiple outputs 43-45
results presentation 49, 50
retrieval augmented generation (RAG) 13,
35,57, 89, 123

return on investment (ROI) 21

reverse conditioning 11
Role-Based Access Control (RBAC) 152

S

scalability 150
Scalable Oversight 178

Secure Al Framework (SAIF) 174
elements 174
elements, applying 174, 175
reference link 174

Securities and Exchange Commission
(SEC) 71

security and access control 151
sentiment analysis 25

serverless architecture
reference link 109

service level agreements (SLAs) 28

SHapley Additive exPlanations
(SHAP) 147, 168

Societal Impacts and Evaluations 179
Stable Diffusion 4
subject matter experts (SMEs) 27

T

Threat Analysis Group (TAG) 176

Training layer 141, 144-146
real-world example 147-150

transformer models 11

Transformer neural network architecture 11

\'}

Variational Autoencoders (VAEs) 12
version control 155
Vertex Al 110

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.
Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https.//packt.link/free-ebook/9781835887608

2. Submit your proof of purchase.

3. That’sit!l We'll send your free PDF and other benefits to your email directly.

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Generative AI Patterns
	From AI predictions to generative AI
	Predictive AI vs generative AI use case ideation
	A change in the paradigm
	Predictive AI use case development – simplified lifecycle
	Generative AI use case development – simplified lifecycle

	General generative AI concepts
	Generative AI model architectures
	Techniques available to optimize foundational models
	Techniques to augment your foundational model responses

	Constant evolution across the generative AI space
	Introducing generative AI integration patterns
	Summary

	Chapter 2: Identifying Generative AI Use Cases
	When to consider generative AI
	Realizing business value
	Identifying Generative AI use cases
	Potential business-focused use cases
	Generative AI deployment and hosting options
	Summary

	Chapter 3: Designing Patterns for Interacting with Generative AI
	Defining an integration framework
	Entry point
	Prompt pre-processing
	Inference
	Results post-processing
	Selecting from amongst multiple outputs
	Refining generated outputs

	Results presentation
	Logging
	Summary

	Chapter 4: Generative AI Batch and Real-Time Integration Patterns
	Batch and real-time integration patterns
	Different pipeline architectures
	Application integration patterns in the integration framework
	Entry point
	Prompt preprocessing
	Inference
	Result post-processing
	Result presentation

	Use case example – search enhanced by GenAI
	Batch integration – document ingestion
	Real-time integration – search

	Summary

	Chapter 5: Integration Pattern: Batch Metadata Extraction
	Use case definition
	Architecture
	Entry point
	Prompt pre-processing
	Inference
	Result post-processing
	Result presentation

	Summary

	Chapter 6: Integration Pattern: Batch Summarization
	Use case definition
	Architecture
	Entry point
	Prompt preprocessing
	Inference
	Result post-processing
	Result presentation

	Summary

	Chapter 7: Integration Pattern: Real-Time Intent Classification
	Use case definition
	Architecture
	Entry point
	Prompt pre-processing
	Inference
	Result post-processing
	Result presentation
	Logging and monitoring

	Summary

	Chapter 8: Integration Pattern: Real-Time Retrieval Augmented Generation
	Use case definition
	Architecture
	Entry point
	Prompt preprocessing

	Inference
	Result post-processing
	Result presentation

	Use case demo
	The Gradio app

	Summary

	Chapter 9: Operationalizing Generative AI Integration Patterns
	Operationalization framework
	Data layer
	A real-world example: Part 1

	Training layer
	A real-world example: Part 2

	Inference layer
	A real-world example: Part 3

	Operations layer
	CI/CD and MLOps
	Monitoring and observability
	Evaluation and monitoring
	Alerting
	Distributed tracing
	Logging
	Cost optimization

	Summary

	Chapter 10: Embedding Responsible AI into Your GenAI Applications
	Introduction to responsible AI
	Fairness in GenAI applications
	Interpretability and explainability
	Privacy and data protection
	Safety and security in GenAI systems
	Google’s approach to responsible AI
	Google’s Secure AI Framework (SAIF)
	Google’s Red Teaming approach

	Anthropic’s approach to responsible AI

	Summary

	Other Books You May Enjoy
	Index

