

Visualize This
Second Edition

Visualize This
The FlowingData Guide to Design,

Visualization, and Statistics

Second Edition

Nathan Yau

Copyright © 2024 by Nathan Yau. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394214860 (Paperback), 9781394214884 (ePDF), 9781394214877 (ePUB)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470,
or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the
United States and other countries and may not be used without written permission. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make
no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim
any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. Further,
readers should be aware that websites listed in this work may have changed or disappeared between when this work was written
and when it is read. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our reader support team at
wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic
formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2024935194

Cover image: © Nathan Yau
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:wileysupport@wiley.com
http://www.wiley.com

To Bea, Caleb, and Audrey

About the Author
Nathan Yau has a PhD in statistics from the University of California at Los Angeles, with a focus
on visualization for presenting and communicating data to everyone. He was the winner of
a FastCompany Innovation by Design Award for Graphic Design & Data Visualization, he has
won Information is Beautiful awards, and he was featured in The Best American Infographics. He
has worked as a researcher and for mainstream publications. His work leans toward practical
and has reached millions of people. Since 2007, Yau has written, analyzed, and made graphics
for FlowingData, his site on visualization, statistics, and design. Yau’s goal is to help people
understand data, and he believes visualization—from statistical charts to information graphics
to data art—is the best way to get there.

About the Technical
Editor

Jan Willem Tulp (TULP interactive) is an award-winning data experience designer from The
Netherlands. As an independent data visualization designer with more than 12 years of experi-
ence, he has worked for a wide variety of clients, such as World Bank, Scientific American, Google
News Lab, European Space Agency, the Dutch Railways (NS), and Nielsen. Tulp speaks regularly
at international conferences, such as Open VisConf, IEEE VIS in Practice, Visualized, Indo Data
Week, and OutlierConf. His work has been published in a number of books and magazines,
including The Functional Art, Design for Information, and The Book of Circles. The nature of his pro-
jects ranges from interactive exploratory tools to data-driven storytelling to experimental
visualizations that push the boundaries. Occasionally, his work is shown in exhibitions. One
of his current projects is in the permanent collection for 3 years of Ars Electronica.

Acknowledgments
This book would not have been possible without the work of statisticians, data scientists,
cartographers, analysts, and designers before me, who developed and continue to create
useful tools for everyone. If you are one of these people, I thank you.

Many thanks to the FlowingData readers who helped me, an introvert who likes to think
about data, reach more people than I ever could have imagined. They are one of the main
reasons why this book was written.

Thank you to my wife for supporting me and to my parents who always encouraged me to
find what makes me happy. Thank you to my kids for their perspective, which makes work
more meaningful and life fuller.

Contents

Introduction . xv

	 1	 Telling Stories with Data	 1
More than Numbers . 2
Ask Questions About the Data . 8
Design . 14
Wrapping Up . 20

	 2	 Choosing Tools to Visualize Data	 21
Mixed Toolbox . . 22
Point-and-Click Visualization . 23
Programming . . 31
Mapping . 40
Illustration . . 45
Small Visualization Tools . 49
Pencil and Paper . . 54
Survey Your Options . 55
Wrapping Up . 57

	 3	 Handling Data	 59
Data Preparations . 60
Finding Data . 60
Collecting Data . 65
Loading Data . 73
Formatting Data . 74
Processing Data . 86
Filtering and Aggregating Sampled Data . 87
Wrapping Up . 89

	 4	 Visualizing Time	 91
Trends . . 92
Events . 112
Cycles . 131
Wrapping Up . 141

xiv  |  Contents

	 5	 Visualizing Categories	 143
Amounts . 144
Parts of a Whole . 159
Rank and Order . . 176
Categories and Time . . 180
Wrapping Up . 192

	 6	 Visualizing Relationships	 193
Correlation . 194
Differences . 212
Multiple Variables . 225
Connections . 235
Wrapping Up . 243

	 7	 Visualizing Space	 245
Working with Spatial Data . 246
Locations . 250
Spatial Distributions . 266
Space and Time . 283
Wrapping Up . 293

	 8	 Analyzing Data Visually	 295
Gathering Information . 296
Overviews . 296
Exploring Details . 324
Drawing Conclusions . 336
Wrapping Up . 337

	 9	 Designing with Purpose	 339
Good Visualization . . 340
Insight for Others . 344
Wrapping Up . 351

Index ..  353

Introduction
Data is everywhere, and one of the best ways to explore a dataset is with visualization.
Place the numbers into a visual space and let your brain find the patterns. We’re good at
that. Discover insights that you wouldn’t see in a spreadsheet alone. From here, you can use
visualization to communicate to others, from an audience of one to millions.

For a long while, visualization was more of a quantitative and technical exercise. Show data,
get out of the way, and let the data speak. This approach works sometimes, but it assumes
that data speaks a language that everyone understands and that it always speaks definitively
and in absolutes. However, data is not always so straightforward, and the insights are often
not so certain.

Over the past 17 years of writing for FlowingData, a site on visualization, statistics, and design,
I’ve seen an evolution. Visualization was mostly an analysis tool when I started my studies
but it has developed into a medium to tell stories with data. You can show just the facts, but
you can also evoke emotion, entertain, and compel change.

In my own work, visualization is a way to understand data, share what I find, and, most
importantly, make sense of what’s going on around me. I follow an iterative process of answer-
ing questions with data, visualizing the answers, and then asking more questions. Repeat until
there are no more questions. While the general analysis and visualization process remained
about the same since the first edition of this book, the steps to carry out the process were
refined and the tools shifted, varying by the year you asked me.

This is the second edition of Visualize This. When I wrote the first edition more than a decade
ago, visualization in practice was in a different place. The tools were different (like Flash),
people tended to follow stricter design guidance (like ratios between data and ink), the
purpose behind visualization was narrower (such as analysis and quantitative insights only),
and organizations were still figuring out what data to make public (which feels less open at
times these days).

As a reflection of my own evolving process, this edition provides all new examples, explana-
tions, and guidance, with a focus on making charts to communicate. This is how to visualize
data from my point of view, and it isn’t the only way to do things. For me, it’s what works
best. My hope is that after working through this book, you’ll know the mechanics of chart-
making, be able to refine your process to fit your specific needs and form your own opinions
about what makes visualization great.

xvi  |  Introduction

LEARNING DATA VISUALIZATION
I got my start in statistics during my first year in college. It was a required introductory course
toward my electrical engineering degree. The professor was refreshingly enthusiastic about
his teaching and clearly enjoyed the topic. He quickly walked, nearly running, up and down
the stairs of the lecture hall as he taught. He waved his hands wildly as he spoke and got
students involved as he whizzed by. His excitement drew me into studying data and eventu-
ally led to graduate school, studying statistics four years later.

Throughout my undergraduate studies, statistics was procedural data analysis, distributions,
and hypothesis testing. I enjoyed it. It was fun to look at a new dataset to find trends, pat-
terns, and correlations. When I started graduate school, though, my field of vision widened,
and things got more interesting. My appreciation for statistics grew.

Statistics became less about hypothesis testing, bell curves, and coin flips. It became more
about telling stories with data. You get a bunch of data, which represents the real world, and
then you analyze and interpret that data to make sense of what’s going on around you. These
stories can inform public policy, business, technology, health, happiness, and everyday life.

The ubiquity of data means the process of communicating data comes in handy in many
places. However, a lot of people don’t have the time or know how to connect data to real
life. You can be the bridge between abstract numbers and insight.

How do you learn the necessary skills to visualize data usefully? These days, there are courses
and degrees you can earn in data visualization, but you can also learn through practice with-
out a dedicated degree. I’ve never taken a visualization course.

The first charts I made from scratch were in the fourth grade. They were for my science fair
project. My project partner and I pondered, very deeply I am sure, what surface snails move
on the fastest. We put snails on rough and smooth surfaces and timed them to see how long
it took them to crawl a specific distance. So, the data was clocked times for different surfaces,
and I made a bar chart. I can’t remember if I had the insight to sort from least to greatest, but
I do remember struggling with Microsoft Excel. Charts were easier after that, though. Once
you learn the basic functionality and your way around the software, the rest is easier to learn.
(By the way, the snails moved fastest on glass, in case you were wondering.)

It’s the same process with any software or programming language you learn. As my career
extended beyond the fourth-grade science fair project on snails, I learned how to visualize
data as I went. I learned R to analyze data in school and more so later for work. I joined a
research group using Python for data collection and PHP for web applications, so I learned
those languages to not be totally useless. I wanted to make interactive and animated graph-
ics for the web, so I learned Flash, and when Flash died, I learned JavaScript. To prepare for
a graphics internship, I studied all the data design books I could, but it wasn’t until I strug-
gled making graphics with Adobe Illustrator when I figured out how to make charts for a
general audience.

How to Use This Book  |  xvii

If you’ve never written a line of code or used a hefty software package, the process can seem
intimidating, but after you work through some examples, you start to get the hang of things.
This book can help you with that.

HOW TO USE THIS BOOK
This book is example-driven, with practical steps for how to use a mix of visualization tools
and understand different types of data. With each example, you start with a dataset and work
through the process of asking questions, learning about data, and communicating insights to
a wider audience.

Each chapter includes data, code, and files you can download. Download everything at
www.wiley.com/go/visualizethis2e or https://book.flowingdata.com/vt2. The files will
make it easier to work through examples step-by-step, poke at the data if you are curious,
and apply what you learn to other datasets.

You can read this book cover to cover or pick your spots if you already have a dataset or
visualization in mind. The chapters are organized by data type and what you want to visualize.
The sections within each chapter discuss what to look for in your data and the chart types
that can help you and others see relevant patterns.

By the end, you should be able to visualize your own data and design publication-ready
graphics. Have fun in the process.

https://www.wiley.com/go/visualizethis2e
https://www.wiley.com/go/visualizethis2e
https://book.flowingdata.com/vt2

Ch.1

Telling Stories
with Data

2  |  CHAPTER 1:  Telling Stories with Data

Think of the data visualization works that you enjoy—the ones that you see
online, that appear in lectures, and that you associate with quality. Most likely
the works that popped into your head tell an interesting story. Maybe the story
was to convince you of something. Maybe it was to compel you to action,
enlighten you with new information, or force you to question your assumptions.
Maybe it made you smile. Whatever it is, the best data visualization, big or small,
for art or a slide presentation, shows patterns that you could not see otherwise.

MORE THAN NUMBERS
My interest in visualization began as a new statistics student ready to analyze
all the datasets. Charts were a tool I could use to understand data better, and
I would occasionally export an image to stick in a report. That was about it.

I approached chart-making from a technical point of view, without giving much
thought to what type of chart worked best, who was going to look at my work,
or how to design around insight and story. I just needed to figure out how to
make a chart so that I could move on to the rest of my analysis.

However, the more I worked with data, the more I learned about its complexity,
subjectivity, and how it related to the rest of the world. At the same time, we
were interacting with data more through computers, phones, and connected
devices. Data intertwined with the everyday instead of with just a spreadsheet
that analysts opened at work, and I grew interested in how data would play a
role in understanding ourselves better.

A couple of years into graduate school, a graphics internship at a major news
publication got me thinking about visualization’s role in the presentation and
communication of data. How did it differ from visualization for exploratory data
analysis? Then with FlowingData, I suddenly got a taste of what it was like for a
visualization project to communicate data to millions of people. I felt like I was
onto something, so I kept going. I was hooked. What started as a side project
to keep in touch with classmates became my full-time dream job.

Over the years, visualization matured beyond just an analysis tool. It became
a way to communicate data to nonprofessionals. It could be fun. Visualization
grew into a medium to tell stories with data, and like any good medium, it lets
you tell different types of stories.

STATISTICALLY INFORMATIVE

Statistical stories probably come to mind for most people when it comes to
data and visualization. In a journalistic context, the stories often follow a familiar

See the classic Exploratory
Data Analysis by John
Tukey (Pearson, 1977),
which introduced a novel
idea at the time to use
visualization to study data.

More than Numbers  |  3

article format with charts coupled with narrative. The charts show the data,
and the narrative, in the form of text and annotations, describe what the data
is about and provide context for the numbers. Think data projects by news
organizations like the New York Times, the Washington Post, and Reuters.

You can also find statistical stories in a more analytical context, such as in
reports, presentations, and analysis results. Maybe these aren’t stories in the
traditional sense, but the data you work with is about something, and that
something is what makes visualization meaningful.

In 1874, the United States Census Bureau published a Statistical Atlas of the United
States. It provided a graphical summary of the data collected for the 1870
decennial count with maps and charts. In the present day, it’s like looking at a
snapshot in time that shows what life was like.

More recently, I wondered if I could use the visual forms of the original atlas
to take a current snapshot. I used the most recently available data to make
a revised atlas. For example, as shown in Figure 1.1, a breakdown of popula-
tion by state and race was designed using the original 19th century aesthetic
and wordage.

This idea of data snapshots that we can look at centuries from now drives most
of my work. How do things look now, and how will things look 100 years from
now? What do these snapshots look like for individuals using the data they
collect (actively and passively) through their phones and devices?

We can use data for insight, and the insight coupled with context gives us
stories. This helps people make better informed decisions in both work and
everyday life.

ENTERTAINING

Statistics. People would ask me what I studied, and either their eyes would
glaze over in disinterest, or they would groan about the introductory statistics
course they hated in college. They remembered bell curves and hypothesis tests
something or other. Occasionally, someone would feign interest, and while I
appreciated the effort, I knew better.

Data can be boring if you don’t know how to interpret it. It might as well be
gibberish. The fun thing about visualization is that people can see patterns
in pictures that are more difficult to understand through equations and text.

Over the years, more people grew to appreciate data, and charts grew into
a form of entertainment. People tell jokes with charts, draw comics, explore
fun curiosities, and create social media-based businesses under the premise
of infotainment.

Check out the Statistical
Atlas of the United
States from the 1870s at
https://datafl

.ws/7l4.

https://datafl.ws/7l4
https://datafl.ws/7l4

4  |  CHAPTER 1:  Telling Stories with Data

FIGURE 1.1  “Revised Statistical Atlas of the United States,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2015/
06/16/reviving-the-statistical-atlas-of-the-united-states-with-new-data  / last accessed February 08, 2024.

https://flowingdata.com/2015/06/16/reviving-the-statistical-atlas-of-the-united-states-with-new-data
https://flowingdata.com/2015/06/16/reviving-the-statistical-atlas-of-the-united-states-with-new-data

A lot of the projects I publish on FlowingData are for my own entertainment,
such as the one in Figure 1.2. A question pops up, and I try to answer it with
data. But if I’m interested in something, at least one other person must be
curious, too. I think that’s one of the foundations of the Internet.

Every year, the beer review site RateBeer publishes the top 100 breweries
based on preferences and user ratings. With a fascination for road trips and an
appreciation of fine beer, I wondered what a road trip through the breweries
on the list in the lower United States would look like. And, where there is one
excellent brewery, there are usually others nearby, so I also wanted to know
the places to stop in between the top breweries. The map shows the way to
the top breweries in 2014 routed by travel times and a genetic algorithm, or
a set of rules that stepped through possible solutions until it converged to an
optimal route.

FIGURE 1.2  “Top Brewery Road Trip, Routed Algorithmically,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2015/10/
26/top-brewery-road-trip-routed-algorithmically  / last accessed February 08, 2024.

More than Numbers  |  5

https://flowingdata.com/2015/10/26/top-brewery-road-trip-routed-algorithmically
https://flowingdata.com/2015/10/26/top-brewery-road-trip-routed-algorithmically

6  |  CHAPTER 1:  Telling Stories with Data

The visualization might not be optimized for lightning-fast decision-making,
but it did seem to entertain a good number of people.

EMOTIONAL

Visualization as a field of study has a tendency toward optimized insights. This
makes sense for analysis. You want to explore data quickly and efficiently so
that you can evaluate from various angles.

However, if we were always after the most efficient and perceptually accurate
visualization, we should just use bar charts most of the time. Or better yet, skip
the visualization and just show a table for full accuracy. (I am exaggerating, but
not by much.) This is not my favorite path.

Sometimes you want to visualize data in a way that reflects meaning beyond
the quantitative insights. In Figure 1.3, I explored what makes people happy.

FIGURE 1.3  “Counting Happiness and Where it Comes From,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2021/07/29/
counting-happiness  / last accessed February 08, 2024.

https://flowingdata.com/2021/07/29/counting-happiness
https://flowingdata.com/2021/07/29/counting-happiness

Researchers asked 10,000 participants to list 10 things that recently made them
happy. The result was HappyDB, a collection of 100,000 happy moments. For
each moment, I parsed out the subject, verb, and object to better see what
makes people happy overall. While the aggregates help you see the big picture,
I was most interested in the moments and the individual words used.

How do we use visualization to feel through data? There are lots of examples
such as Jonathan Harris and Sep Kamvar’s We Feel Fine (Scribner, 2009), which
examined emotions through connected vignettes; Giorgia Lupi and Stefanie
Posavec’s Dear Data (Princeton, 2016), which was a year-long data drawing project
that used unique visual representations to communicate via post cards; and
Stamen Design’s Atlas of Emotions (2016), a collaboration with the Dalai Lama
and Paul Ekman, which explored the range of human emotions.

While data can seem dry and concrete, it can also represent less measurable
things, and visualization helps bring that aspect of data to life.

COMPELLING

It’s possible for visualization to be more than one thing at a time. When a
project is informative, entertaining, and emotional, it can also be compelling.

No one has done this better than the late Hans Rosling, who was a professor
of international health and director of the Gapminder Foundation. Using a tool
called Trendalyzer, as shown in Figure 1.4, Rosling ran an animation that showed
changes in poverty by country. He did this during a talk that first draws you in
to the data, and by the end, everyone is on their feet applauding. A standing
ovation for data. Amazing.

The visualization itself is straightforward these days. Rosling’s presentations
compelled many to implement their own versions of Trendalyzer with various
tools. Bubbles represent countries and move based on the corresponding
country’s poverty during a given year. Why is the talk so popular then? It’s in
Rosling’s presentation style and framing. He tells a story. How often have you
seen a presentation with charts and graphs that makes you drowsy? Rosling
used the meaning of the data to his advantage and found a way to engage his
audience. The sword-swallowing at the end of his talk tends to form a lasting
impression, too.

As statistician John Tukey wrote in his 1977 book Exploratory Data Analysis, “The
greatest value of a picture is when it forces us to notice what we never expected
to see.” Visualization allows you to show data with context, and framed as a
story, you can help people understand concepts that are often too complex
on their own.

See FlowingData for more
examples of data art at
https://datafl.ws

/art.

Watch Hans Rosling wow
the audience with data at
https://datafl.ws

/hanstalk.

More than Numbers  |  7

https://datafl.ws/art
https://datafl.ws/art
https://datafl.ws/hanstalk
https://datafl.ws/hanstalk

8  |  CHAPTER 1:  Telling Stories with Data

What kind of story are you trying to tell? Is it a report or is it a novel? Do you
want to convince people that action is necessary?

Every data point has a story behind it in the same way that a character in a
movie has a past, present, and future. There are interactions and relationships
between the data points. It’s up to you to find them.

ASK QUESTIONS ABOUT THE DATA
That’s the challenge. You must figure out what the data is about and what
stories to tell based on what you find. Some might tell you to just let the data
speak, as if you could plug a dataset into your favorite charting software and
a magical, visual tale comes out. If that were the case, we could end the book
here, but as of this writing, there’s still more to the process.

A single dataset, even a small one with a few data points, can be visualized in
many ways. Add more data variables and observations, and the possibilities for
chart types, geometries, colors, formats, and dimensions multiply. To demon-
strate, I visualized a single dataset, life expectancy by country over time, with
25 different charts (see Figure 1.5).

FIGURE 1.4  Trendalyzer by the
Gapminder Foundation

Ask Questions About the Data  |  9

I could’ve made a lot more charts by grouping regions, focusing on specific
countries, or highlighting a range of time. I could’ve switched to less tradi-
tional visualization methods. I didn’t even get to annotating and explain-
ing the data.

Try it yourself. Think of all the ways to visualize two numbers, say 5 and 10.
You could draw 10 circles and 5 squares, draw 10 squares and 5 circles, draw a
shape that’s twice the area of another shape, use a darker shade to indicate a
higher number, or use a line that connects the two numbers with a defined axis.

With so much fun to be had, you need a way to filter. Find the relevant parts
in the data and work through the noise. This is basically the field of statistics,
which I don’t have time to detail in its entirety right now, but I’ve found that
the best way to analyze data and to provide focus to your visualizations is to
ask questions about it. Use these questions and the resulting answers to verify
quality, explore the meaning of the data, and communicate insight.

FIGURE 1.5  “One Dataset, Visualized 25 Ways,” FlowingData / https://flowingdata.com/2017/01/24/one-dataset-visualized-25-
ways  / last accessed 08 February, 2024.

https://flowingdata.com/2017/01/24/one-dataset-visualized-25-ways
https://flowingdata.com/2017/01/24/one-dataset-visualized-25-ways

10  |  CHAPTER 1:  Telling Stories with Data

VERIFICATION

While you’re looking for the stories in data, you should always question what
you see. Remember, numbers don’t always mean truth. Data is subjective in
the way it’s collected, who collected it, and what is collected.

In my younger days, data checking was my least favorite part of visualizing
data. It seemed like a chore when I just wanted to make some charts. However,
over the years, I’ve grown to appreciate verifying data as an important part of
the visualization process. Weak data leads to mistakes and misinterpretations,
whereas high confidence in your data makes it a lot easier to have high con-
fidence in your visualization.

Basically, what you’re looking for is stuff that makes no sense. Maybe there
was an error at data entry and someone added an extra zero or missed one.
Maybe there were connectivity issues during a data scrape and some bits got
mucked up in random spots. Maybe the data was collected in haste and does
not represent what you think it does.

Data always has its imperfections. You need to work with them if you plan to
understand the data. Here are some questions to ask early in the process:

■■ Does the sample represent the full population?

■■ Why are there so many gaps in the data, and are those gaps relevant to
the existing data?

■■ Are the outliers errors in measurement or true standouts?

■■ How reliable is the data?

■■ Did you make an error in your calculations?

■■ How does the data hold up against your expectations?

This is not an exhaustive list. Some people spend their entire academic careers
figuring out this stuff. But for our purposes, make sure the data is good before
you waste all your time analyzing and visualizing junk.

EXPLORATION

Most of my visualization projects stem from an everyday curiosity, which I’ve
learned to note immediately note because I have a terrible memory. They are
questions like how people earn an income (https://datafl.ws/7nz), whether I
am old or not (https://datafl.ws/7n1), whether it is too late for a career change
(https://datafl.ws/7o1), or how much toilet paper I should buy at the store
when I restock (https://datafl.ws/7o0). I try to answer these deeply profound
questions with data.

Note:  Data scraping is a
way to automate the
process of retrieving data
on the Web. You’ll learn
how to do this in
Chapter 3.

https://datafl.ws/7nz
https://datafl.ws/7n1
https://datafl.ws/7o1
https://datafl.ws/7o0

Ask Questions About the Data  |  11

Answering these simple questions, or at least trying to, often generates more
questions and leads me to various datasets. I make a lot of charts to explore.
They are unpolished and made with speed in mind. Figure 1.6 shows a sample
from an analysis session.

If I can answer my own questions and more curiosities pop up, it usually means
I’m on the right track.

FIGURE 1.6  Exploratory charts from analysis session

12  |  CHAPTER 1:  Telling Stories with Data

So, it helps to ask a question first and then look for data that helps you answer
those questions. Your work might go the other way, where you have a lot of
data and need to form your own questions afterward. Either way, questions
can form a path toward worthwhile insights.

Here are general questions to help you get started:

■■ What is this data about?

■■ How did things change over time?

■■ How are these things related?

■■ Can you explain the shifts over time or across categories?

■■ What makes one group different or similar to another?

■■ What’s most common? Most rare?

■■ What if?

■■ What stands out?

■■ Is this normal?

Try to form questions that are more specific than “What is the mean?” Of
course, you can always calculate the mean, but think about it in the context
of the data and what you’re studying. Does the mean matter? Is it out of the
ordinary? Is the mean heavily influenced by a few data points with high or low
values? What does the value of the mean. . .mean?

The best data visualization projects stem from interesting curiosities that the
creator spent time digging into. In the end, the story you want to tell is rarely
about the data itself and much more about what the data represents.

COMMUNICATION

This brings us to insights. Let’s assume you have good data. Let’s assume you
figured out what your data is about. This leads to questions about how you
want to communicate to others.

■■ Who is the audience?

■■ What do you want to highlight?

■■ What details do you have to explain, and which ones can you quickly
summarize?

■■ What is the purpose of the chart?

Ask Questions About the Data  |  13

While visualization for analysis and visualization for an audience share many
of the same statistical aspects, they require different approaches because you
use them differently. For example, Figure 1.7 is an alluvial diagram using system
defaults. The chart type is one my favorites to show how categorical values
change over time, and you’ll learn how to make one in Chapter 5. This one
shows the consumption of dairy foods in the United States over time.

Figure 1.8 is a more polished version with clearer annotation and coloring that
more closely resembles the food category. The second chart, part of a data
story on food consumption in America, is easier to read because it provides
context and explains the data, even with just a few short notes.

When you visualize data for an audience, you explain the data to people while
considering what they know and what they need to know for the chart to
be useful.

You communicate. Your chart exists to show people specific patterns, com-
parisons, or trends in data rather than plopping a bunch of numbers in front
of readers and expecting them to know what to look for. Otherwise, you force
them to become the analyst, and usually, that’s not what people are looking
for. Even as an admirer of visualization, I have only so much attention span that
I can dedicate to interpreting data.

FIGURE 1.7  Exploratory plot on
dairy consumption

14  |  CHAPTER 1:  Telling Stories with Data

Ask questions about how you want to communicate your findings, who you’re
communicating to, and what you’re communicating for.

You’ll ask more questions with concrete examples throughout this book, but
keep it in mind as you work through charts and think about how it applies to
your own data.

DESIGN
Answering questions about how you want to communicate through visuali-
zation leads to design choices. Thoughtful design can help make your data
more readable and understandable, which typically leads to good things when
you’re telling stories.

Some mistakenly classify design in visualization as just a way to make charts
look pretty. Anyone who says this either doesn’t know what they’re talking
about or has a very narrow view of visualization.

First, I’m not sure what these people have against pretty charts. A good-looking
chart is an indicator that someone cared enough about the data or informa-
tion to make it look good. In contrast, a chart that looks rough and was made
with default settings would indicate a rough analysis, even if it shows the same

FIGURE 1.8  “Seeing How Much We Ate Over the Years,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2021/06/08/
seeing-how-much-we-ate-over-the-years  / last accessed February 08, 2024.

https://datafl.ws/7le
https://datafl.ws/7le

Design  |  15

data as the pretty chart. Second, good chart design can show readers where
to look and, at its best, helps people understand and appreciate a dataset as
well as you do without the hours of analysis.

When you design for purpose, audience, devices, and clarity, you produce
charts that are better than default computer output.

PURPOSE

One of my go-to datasets is survey responses from the American Time Use
Survey. It’s from the Bureau of Labor Statistics, which asks Americans to recall
what they did during the past 24 hours. For each activity, respondents fill in
what they did, when the activity started, and when it ended.

Individually, you get a diary of someone’s day, such as when they woke up, when
they went to work, and when they ate dinner. Put all those diaries together
in aggregate, and you get a good picture of Americans’ day-to-day schedule.
Figure 1.9 shows the percentage of people who were engaged in various
activities on a weekday.

FIGURE 1.9  “Daily Routine,
2020,” FlowingData /
https://flowingdata
.com/2021/08/19/
daily-routine-2020  /
last accessed 08 February, 2024.

https://flowingdata.com/2021/08/19/daily-routine-2020
https://flowingdata.com/2021/08/19/daily-routine-2020
https://flowingdata.com/2021/08/19/daily-routine-2020

16  |  CHAPTER 1:  Telling Stories with Data

Most people are sleeping during the early morning hours, work peaks around
8 a.m., and meals peak around 12 p.m. and 6 p.m. for lunch and dinner. The
chart provides an overview of the day.

However, with a different visualization using the same dataset, I simulated the
day of 1,000 individuals and animated their activities over time, as shown in
Figure 1.10.

Both visualizations show the same data. Different goals led to different design
choices. The first one is a quick summary, whereas the second one takes longer
to play out because it is an animation but better reflects the flow of people
from one activity to the next.

Different purpose means different design choices. Use colors, geometries, and
charts that best serve or highlight the purpose.

FIGURE 1.10  “A Day in the Life of Americans,” FlowingData / https://flowingdata.com/2015/12/15/a-day-in-the-life-of-
americans  / last accessed 08 February, 2024.

https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans
https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans

Design  |  17

AUDIENCE

Consider who the charts are for. If they’re for an auditorium full of people, you
might want to avoid going too complex so that the people in the back can
read the labels. On the other hand, if you design a large graphic that’s meant
to be studied on a computer screen by one person at a time, you can include
more details.

Maybe you’re after engagement on social media in the land where volume is
high and attention span is low. Your charts must stand out, perhaps visually or
with unique insights or both, but they also must be quick to read.

Are you working on a business report for your boss? Then you probably don’t
need to create the most beautiful piece of data art the world has ever seen.
Instead, create a clear and straight-to-the-point graphic.

Are the charts just for you to analyze data? Then you don’t need to spend too
much time on aesthetics and readability because you’re already familiar with
the data. Make the chart and move on to the next to learn more about your
data instead of tinkering with label placement.

Imagine who you’re telling your stories to and, go from there. In my own work,
I like to make charts and write as if I’m talking to an old friend from high school.
It forces me to make the data relatable, avoid jargon, and try not to be boring.
The more specific your audience, the more focused you can make your charts.

DEVICES

When I wrote the first edition of Visualize This, there weren’t as many devices
to consider as there are now. My research group in graduate school was still
wondering if the iPhone was significant enough to study. If we wanted our
mobile data collection devices to work for the full day, we had to carry around
oversized battery packs. So, if a chart wasn’t made for print, it was typically
assumed to exist on a computer monitor that sat on a desk.

Now we must consider smaller mobile phones, which have become the default
screen size in many cases. Some places design specifically for mobile, some
just for desktop, and some accommodate both. I try to do both, which usually
means before publishing, I’ll make at least two versions of a chart. I test differ-
ent sizes in the browser, as shown in Figure 1.11.

We can gripe all we want about variable screen sizes (I did for a good while),
but if your audience is mostly looking at your work with a phone, it’s in your
best interest to figure out how to make data readable with limited space.

18  |  CHAPTER 1:  Telling Stories with Data

CLARITY AND INSIGHT

There are many types of charts. On FlowingData, I have a growing list of more
than 60, shown in Figure 1.12, all of which can be combined and modified
slightly to make other types. The options can seem intimidating when you’re
first figuring out what kind of chart to use for a dataset, but we’ll go over many
of them in this book.

There’s a filtering process. Some chart types lend themselves to a certain type
of data, such as a line chart for timeseries data. Some chart types are useful
for showing certain aspects of data, such as a histogram to show distributions.

However, the process rarely narrows down your choices to a single option.
Instead, you pick among what’s available that best fits your purposes. Ideally,
clarity and insight are at the top of your reasons for visualizing data, so you
choose charts (and visual encodings for the more advanced) that show data
patterns honestly in a nonconfusing way.

It’s OK to make charts that take a while to understand, but also design them
so that the confusing parts are easier to work through visually. At the least, this
means you use geometries and colors correctly to represent your data, explain

FIGURE 1.11  “Social Media
Usage by Age,” mobile version,
FlowingData / https://
flowingdata.com/2022/
04/13/social-media-
usage-by-age  / last
accessed 08 February, 2024.

https://flowingdata.com/2022/04/13/social-media-usage-by-age
https://flowingdata.com/2022/04/13/social-media-usage-by-age
https://flowingdata.com/2022/04/13/social-media-usage-by-age
https://flowingdata.com/2022/04/13/social-media-usage-by-age

Design  |  19

encodings that might not be obvious to your audience, and label your charts
to provide context to the numbers. You’ll see more of this in later chapters.

TRADE-OFFS

A lot of visualization design advice would have you believe that there is a
fixed set of rules that every chart should follow. Some people act as if there is
a checklist, and the visualization is classified as unsuccessful or misleading if
there are any missing boxes.

However, in practice, professionals don’t work through a checklist or pontifi-
cate about the placement of every single element on a chart. There are always
limitations at some point in the process. The right data might not be available

FIGURE 1.12  Chart types, flowingdata.com/chart-types/ with Adapted from Chart Types.

https://flowingdata.com/chart-types

20  |  CHAPTER 1:  Telling Stories with Data

to answer the original question, an idea might not be technically feasible in a
limited amount of time or on the current platform, or the skillset required to
understand a dataset in a certain way just isn’t there.

Every chart has its trade-offs because of such limitations. So, the goal isn’t to
follow a certain set of magical rules. The goal is to make the best thing you
can with what you have.

WRAPPING UP
In short, start with a question, explore your data with a critical eye, and figure
out the purpose of your graphics and who they’re for. This will help you design
clear graphics that are worth people’s time—no matter what kind of graphic it is.

You learn how to do this in the following chapters. You learn how to handle
and visualize data. You learn how to design graphics from start to finish. You
then apply what you learn to your own data. Figure out what story you want
to tell and design accordingly.

The next chapter covers the visualization tools available to help you follow this
process. Some like to stick with a single tool, but I like a mixed toolset, which
lets you stay flexible to make focused charts that fit your needs.

Ch.2

Choosing Tools
to Visualize Data

22  |  CHAPTER 2:  Choosing Tools to Visualize Data

In the previous chapter, you learned about asking questions to guide analyses
and communicate with data. You could do this by hand with pencil and paper,
but my guess is that you’d rather use a computer for some of the work.

Luckily, you have lots of options. Some are point-and-click. Others require pro-
gramming. Some tools weren’t designed specifically for data visualization but
are still useful. Some tools are small and are good at helping with visualization
tasks. This chapter covers these options to help you decide which tool or set
of tools is best for you.

MIXED TOOLBOX
Many people stick with a single tool for all their visualization needs. It helps to
streamline your workflow, and you don’t have to spend time struggling with
a new tool. Instead, you can spend your time analyzing and visualizing data.

Others move with shifts in technology, so they learn how to use new tools
before their current toolset falls out of favor. After all, many of the visualization
tools listed in the first edition of this book are no longer available or don’t work
with the current Web.

I go with a hybrid approach. I have a small set of tools that I use to complete
most of my work, and I learn new tools when I want to make something that
stretches beyond the scope of my current toolset. The approach helps you get
things done but lets you work closer to the boundaries of your imagination
than the limits of a certain software package.

For the tools I am already comfortable with, I don’t have to think too much
about how to use them. I try to work without having to stop to debug or
read a lot of documentation. It’s like learning to type. At first you must think
about where each letter is on a keyboard, but when you figure it out, you can
just write.

At the same time, there is no single tool that can do everything. Some com-
panies might want you to think their software can do it all, but every tool has
its trade-offs. Some are great for analysis but lack in presentation functions.
Some are good for static graphics but don’t work well if you want interaction
and animation. Some work well for the Web but make less sense if you work
with print.

In the following sections, you learn the options and the trade-offs. I’ll point
out the ones that I like to use, but every practitioner has their own preferences
depending on what they want to make.

Point-and-Click Visualization  |  23

POINT-AND-CLICK VISUALIZATION
Noncoding solutions are the easiest for beginners to pick up. Copy and paste
your data or load a CSV file. Then just click the chart type you want, select from
options like labels and grid type, and you have a visualization.

Many point-and-click solutions have come and gone over the years, and many
solutions promise wonderful insights for minimal effort. Some suggest an
automated process. I still have not seen a solution that follows through on
those promises.

Of course, there are parts of visualization that can be automated. For example,
given a certain data format, you can automatically narrow down options. You
probably wouldn’t visualize a single-metric, nonproportion time series with a
pie chart. However, that still leaves a lot of other options and doesn’t even cover
the most important insight portion of the analysis. Insight is contextual and
specific to a dataset and application, which is what makes great data stories.

So, be wary of any software or service that says it provides automatic insights.
Look for software that is flexible enough for you to adapt your visualizations
to the data you’re looking at.

OPTIONS

The point-and-click tools vary, depending on the application they’ve been
designed for. Some, such as Microsoft Excel or Google Sheets, are meant for
basic data management and graphs, whereas others were built for more rigor-
ous analyses, visual exploration, or presentation.

While there are always new tools that try to improve on the current offerings,
most tend to fade away (especially the ones that try to do everything). The
tools that follow have solidified themselves in the data visualization process
and should stick around for a while.

Microsoft Excel

You know this one. You have the familiar spreadsheet where you put your data,
such as in Figure 2.1. More buttons and features have been added over the
decades since my fifth-grade science fair project, but much of the software
still works the same.

You click the button with the little bar graph on it to make the chart you want.
You get all your standard chart types (see Figure 2.2) such as the bar chart,
line, pie, and scatterplot.

24  |  CHAPTER 2:  Choosing Tools to Visualize Data

Some people scoff at Excel, but it’s not all that bad for the right tasks. For example,
I don’t use Excel for any sort of deep analyses or graphics for a publication, but
if I get a small dataset in an Excel file, as is often the case, and I want a quick
feel for what is in front of me, then sure, I’ll whip up a graph with a few clicks.

Google Sheets

Google Sheets is a browser-based spreadsheet application that is like Microsoft
Excel (see Figure 2.3).

Find more about Microsoft
Excel at www.micro
soft.com/en-us/

microsoft-365/excel.

FIGURE 2.1  Microsoft
Excel spreadsheet

FIGURE 2.2  Microsoft Excel
chart options

https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel

Point-and-Click Visualization  |  25

It also offers standard chart types, as shown in Figure 2.4.

Sheets was previously the only usable online spreadsheet application. Your
data would automatically save to the cloud, and you could collaborate in real
time with others on a spreadsheet. You could easily share your spreadsheets
with different permission levels.

One time, I was looking for a dataset on movie box office numbers. I had the
movie names but I didn’t have the dollar amounts, so I shared a spreadsheet via
Google Sheets and asked readers to fill in the blanks with data from Wikipedia.
It was fun to watch the spreadsheet fill out in real time, and the process was
much quicker than if I had done it by myself. The online availability felt like a
huge advantage at the time.

But Microsoft made an online version of its own, so the collaborative feature of
Google Sheets is not much of an advantage anymore. Over the years, Google
has tried adding various features to try to automate parts of the analysis, but
they never seemed to catch on. So, the choice between Sheets and Excel is
mostly a choice between Google and Microsoft products. That and Sheets is
free to use compared to Excel’s subscription fee.

It’s good to use at least one. I go back and forth with both, depending on what
I already have open or the original format of the data I’m looking at.

Visit Google Sheets at
sheets.google.com.

FIGURE 2.3  Google Sheets

http://sheets.google.com

26  |  CHAPTER 2:  Choosing Tools to Visualize Data

Tableau

Tableau has various products, but for the individual, Tableau
Desktop, shown in Figure 2.5, remains the point of focus. The
software leans more heavily into visual analytics and data
exploration than the spreadsheet applications.

The software offers interactive visualization tools and does
a good job with data management, too. You can import
data from Excel, text files, and database servers. Standard
timeseries charts, bar graphs, pie charts, basic mapping,
and so on are available. You can mix and match these
displays, integrate a dynamic data source for a custom
view, or a dashboard, for a snapshot of what’s going on
in your data.

Tableau also offers Tableau Public, which is a way for you
to share your work online. Make interactive dashboards and
views in the browser. While the implementation seems more
straightforward with a graphical interface instead of code,
the browser-based views tend to be sluggish.

The expanded functionality also comes at a cost, which
is more expensive than Excel. So, if you don’t need all
the features, it might be better to stick with the simpler
options.

Looker Studio

Looker Studio from Google is an online tool less focused
on data analysis and more focused on reports and dash-
boards. They make it easier to integrate data from various
sources so that you can make a quick view into a more
complex (business) system. As of this writing, Looker Stu-
dio, shown in Figure 2.6, is free to use for individuals.

Looker Studio Pro is a paid enterprise version, although there is currently
no fixed price.

Power BI

As the name suggests, Power BI from Microsoft is an analytics tool focused
on business intelligence. It is not so much a visualization tool as it is a tool to
manage data from various sources. You can make charts in the process. There
is variable pricing for individuals and enterprise users.

Find out more about
Tableau at tableau.com.

Find out more about
Looker Studio at
lookerstudio

.google.com.

Learn more about
Power BI at powerbi
.microsoft.com.

FIGURE 2.4  Google Sheets charting options

http://tableau.com
http://lookerstudio.google.com
http://lookerstudio.google.com
http://powerbi.microsoft.com
http://powerbi.microsoft.com

Point-and-Click Visualization  |  27

FIGURE 2.5  Tableau Desktop

FIGURE 2.6  Looker Studio

28  |  CHAPTER 2:  Choosing Tools to Visualize Data

Datawrapper

Many visualization tools for presentations have come and gone over the years,
but they were usually too generalized and tried to do too much at once. The
nonspecific tools, mostly targeted toward business, lacked polish and specific
purpose, which is essential for telling stories with data.

Datawrapper, as shown in Figure 2.7, is focused specifically on telling stories
with data online. You can import data, select your options, and make a wide
variety of charts, maps, and tables that work well in browsers and are respon-
sive to screen size. Because of the focus on online presentations, the process
of making charts with Datawrapper is straightforward and intuitive instead
of filled with a lot of buttons and menus that try to fit every single need. The
charts are built for communication.

Datawrapper also promises not to sell your data, not track your readers, keep
charts private when you want, and, most importantly, in the age of fleeting
online things, have pledged to keep your charts online indefinitely. This applies
to even the flexible free tier of the application, which is surprising these days
but welcome.

Make publication-ready
charts with Datawrapper at
datawrapper.de.

FIGURE 2.7  Datawrapper

http://datawrapper.de

Point-and-Click Visualization  |  29

Flourish

Flourish is an online application focused on helping you tell stories with data.
They aim to make it easier to share visualization online with a library of charts
and templates. Upload data, fill in the blanks, and export or embed the charts
on your site.

It has a similar premise to Datawrapper’s, but Flourish, shown in Figure 2.8, is more
open-ended with what you can do using story-centric templates. This provides
more ad hoc visualization flexibility, visualization, such as animated bar charts,
packed circles, and Sankey diagrams. There are also templates for interactive ele-
ments, such as quizzes or visualization that incorporates sliders. These elements
used to require code, but Flourish has made such story formats easier to implement.

This flexibility also adds complexity. You can do more, but there are more
options and menus to sift through. That should not be a deterrent though, as
Flourish provides a free plan, which is useful for individuals and small groups.
For more functionality, Flourish provides paid tiers.

Try making interactive
charts with Flourish at
flourish.studio.

FIGURE 2.8  Flourish

30  |  CHAPTER 2:  Choosing Tools to Visualize Data

RAWGraphs

RAWGraphs is an open-source tool aimed at designers who want to make and
customize charts. Load your data, pick your chart type, set the variables you
want to visualize (like you would with spreadsheet software), and customize.
You can export the result as an image or a vector file. Then do what you want
with the file: publish it as is or edit in your favorite illustration software.

This is a great option for those who are used to visualizing data with spread-
sheets but want more chart options. RAWGraphs, shown in Figure 2.9, provides
31 chart types as of this writing. A point-and-click interface makes it easy to
use. If you’re a developer, you can also extend the open-source application.

TRADE-OFFS

Although these tools do not require programming experience, there are draw-
backs. In exchange for point-and-click, you give up flexibility in what you can
do. You can usually change colors, fonts, and titles, but you’re restricted to
what the software offers. If there is no button for the chart type you want,
you’re out of luck.

It can also be a challenge to reproduce analyses and visualizations. While you
don’t have to learn a new language with point-and-click interfaces, you must
learn which buttons to press and which menus to open, and the order of
operations isn’t always intuitive.

Use the interactive and
open-source RAWGraphs at
rawgraphs.io.

FIGURE 2.9  Chart options
in RAWGraphs

http://rawgraphs.io

Programming  |  31

Say you want to make a chart that is like something you’ve made before but
with a different dataset. If you don’t save a template, you must remember
all the steps. Maybe that’s not too bad for advanced users. For beginners, it
might be more tedious. In contrast, when you write code to handle your data,
it’s often more straightforward to reuse code and plug in a different dataset.

Don’t get me wrong. I’m not saying to avoid point-and-click software. It can
help you explore your data quickly and easily, and the applications continue
to improve. But as you work with more datasets, there will be times when the
software doesn’t fit, and when that time comes, you can turn to programming.

PROGRAMMING
Gain just a little bit of programming skills, and you can do so much more with
data than if you stick only with point-and-click software. Again, it’s no knock
on point-and-click. It’s just that programming gives you the ability to be more
flexible and more able to adapt to different types of data, because you are not
limited to buttons and menus.

If you’ve ever been impressed by a visualization that looked custom-made,
most likely code was involved. With code, you’re able to make a visualization
specifically for a dataset instead of working within fixed limits of a collection
of chart types.

Code can look cryptic to beginners—I’ve been there. But think of it as learning
a new language. You’re learning to tell your computer what to do, and like any
language, you can’t immediately converse fluently. Start with the basics and
then work your way up. Before you know it, you’ll be coding and visualizing
data in a way that more closely resembles your imagination.

OPTIONS

So, you decide to get your hands dirty with code—good for you. A lot of options
are freely available. Some languages are better at performing certain tasks than
others. Some solutions can handle large amounts of data, whereas others are
not as robust in that department but can produce better visuals or provide
interaction and animation. The language you use largely depends on the kind
of visualization you want to make and what you’re most comfortable with.

Some people stick with one language and get to know it well. This is fine, and
if you’re new to programming, I highly recommend this strategy. Familiarize
yourself with the basics and core concepts of code.

32  |  CHAPTER 2:  Choosing Tools to Visualize Data

As you progress, you might find that what you’re using doesn’t allow for certain
visualization methods or makes what you want to do tedious. In this case, it’s
worth exploring other options. For me, I have go-to tools that I use for analysis
and asking questions about data, but over the years, I’ve picked up others as
I need them, namely, to keep up with the changing requirements of making
things for the Web.

R

If you are new to programming but want to learn a language to visualize data,
I recommend R. It is free and open-source and typically straightforward to
install on your computer. The language was designed by statisticians to help
with analysis and statistical graphics, so it’s easy to load, explore, and visualize
data, which is great for asking and answering questions.

R is also my favorite software for analysis and visualization, so take that as you
like. I call R my thinking language. I know it well enough that I don’t have to
think about the mechanics or syntax, and I can spend more time looking at
the data. If I get stuck somewhere, I know where to look for help and how to
debug quickly enough to get unstuck more quickly than if I were working with
a different tool. Again, that’s just me. Different chart-makers have their favorites,
although clearly R is the best.

You can make traditional statistical graphics, such as bar charts, line charts, and
scatterplots, with just a few lines of code. Customize colors, shapes, and sizes as
you like. You’ll see how this works in Chapter 4, “Visualizing Time.” Figure 2.10
shows a heatmap made in R.

FIGURE 2.10  Heatmap
generated in R

Programming  |  33

One of the main advantages of R is that there are lots of packages that extend
the basic functionality (also known as base R). Many packages have been added
over the years and continue to be maintained and developed. Installing them is
also straightforward, which is a big plus when you want to try new visualization
types or experiment with your own.

For example, R does not come with a treemap function (to show hierarchical
data) out of the box, but you can install the treemap package and then you
have a new function to use, as shown in Figure 2.11.

There are packages for alluvial diagrams, streamgraphs, packed circles, geo-
graphic maps, calendars, networks, and more. If there’s a name for the visuali-
zation method, there is probably a package for it.

FIGURE 2.11  A treemap
generated in R

R Visualization Packages
Packages extend the functionality of R. There are tens of thousands of
them in the R repository (called CRAN). Here are general visualization
packages and a few chart-specific ones that were used to make the
charts you’ve seen so far in this book. You will see more packages in
later chapters.

34  |  CHAPTER 2:  Choosing Tools to Visualize Data

If there is no package or existing function for what you want to make, R provides
base drawing functions. Draw lines, shapes, and colors using the coordinate
system and geometries that you want.

R sounds great, right? It’s easy to install, useful for analysis, and, most impor-
tantly, you can make many charts in a short time. It still doesn’t do everything,
though. For example, R works on your desktop but not so great online, and
while there are solutions for running an instance of R in the browser, they are
either clunky or require a complicated setup, or usually both.

R is also not good with interactive graphics on the Web. There are packages
that try to make exporting or generating web-native charts, but they are limited
in what they provide.

Finally, you might have noticed that the charts in Figures 2.10 and 2.11 lack
polish and contextual elements such as titles and annotation. I used default
settings on purpose, which often work fine when you’re analyzing data for
yourself. When it’s time to publish, you might want to create a certain aesthetic
or improve readability for the audience. You can tighten up the design in R by
messing with different options or writing additional code, but there’s a lot of
trial and error involved. So, my strategy is usually to start charts in R and then
edit and refine them in illustration software such as Adobe Illustrator, which
is discussed soon.

Python

Now that I’ve given you the hard sell for R, you might wonder what Python is
doing here. But like I said, I mix my tools, and sometimes there are fun-looking

Learn more about R and
download it for free at
r-project.org. While
R comes with its own
developing environment,
it’s grown more common
to use RStudio, which you
can download at https://
datafl.ws/rstudio.

■■ ggplot2: A flexible visualization package that follows a syntax
consistent across a collection of packages known as the
Tidyverse. It is based on The Grammar of Graphics by Leland
Wilkinson.

■■ plotrix: As the name implies, a general package that provides
new plot types and functions that follow the same code patterns
as base R.

■■ animation: Makes the data move with GIFs.

■■ treemap: Visualizes hierarchical data with a treemap.

■■ alluvial: Shows ranks and absolute values over time.

■■ packcircles: Draws circles that don’t overlap.

http://r-project.org
https://datafl.ws/rstudio
https://datafl.ws/rstudio

Programming  |  35

libraries that are available only in Python. Mostly though, I use the language
for data processing and formatting. Occasionally, I use it to scrape data.

Unlike the statistics-focused R, Python is a general-purpose programming
language. Data analysis and visualization are not baked into the language.
Instead, there are libraries like pandas and Matplotlib that make working
with data more straightforward in Python. If you can make a chart in R, you
can most likely make it in Python. For example, Figure 2.12 shows a heatmap
made in Python that uses the same data that was used for Figure 2.10, which
was made in R.

Go with what you already know or are required to learn when you start with
visualization. If you’re one of the many who use Python, then you should
make charts with Python. Learn the logic and process of visualizing data in
one language and the steps translate to other languages. The upside is that
you can spend less time on programming principles and more time learning
how to use the relevant libraries.

Find Python documentation
on getting started and
what’s available at
python.org.

FIGURE 2.12  A heatmap
generated in Python

Python Visualization Libraries

Python is a general-purpose programming language, so the approaches
to visualization vary across libraries.

■■ Matplotlib (matplotlib.org): Released in 2003; one of the earlier
plotting libraries for Python.

http://python.org
http://matplotlib.org

36  |  CHAPTER 2:  Choosing Tools to Visualize Data

Processing

Processing is an open-source programming language and software sketchbook
(see Figure 2.13) originally intended for visual artists who are new to code. It’s
quick to get up and running, and the programming environment is lightweight.

■■ Seaborn (https://seaborn.pydata.org): Based on Matplotlib;
provides high-level functions to make charts.

■■ pandas (https://pandas.pydata.org): Primarily used for data
analysis but has some charts and works with Seaborn.

■■ Altair (https://altair-viz.github.io): Focused on simplicity
and consistency with less code.

■■ Plotly (https://plotly.com/graphing-libraries): Interactive
charts for the Web. They have both open-source and enterprise
offerings that provide functionality for Python, R, JavaScript,
and others.

FIGURE 2.13  Processing
sketchbook

https://seaborn.pydata.org
https://pandas.pydata.org
https://altair-viz.github.io
https://plotly.com/graphing-libraries/

Programming  |  37

With just a few lines of code, you can make an animated and interactive visual.
It would, of course, be basic, but because it was designed with the creation
of visuals in mind, you can draw shapes and work with geometry more easily
than if you were to use a general programming language. Load data, draw
based on that data, and you’ve got yourself a visualization.

Processing was originally only Java-based, which is a general programming lan-
guage, and you get a mini-application, or applet, when you export your project
that you can embed elsewhere. However, Processing also now has versions in
JavaScript (different from Java) and Python, which make it easier to incorporate
with what you know or to use the version that works best for your purposes.

So, this is a great place to start for beginners, especially if you’re more interested
in custom visualization than in established chart types. If you mostly want to
make charts with axes, you might want to try other options first.

HTML, CSS, and JavaScript

Then there is visualization for the Web. You can always share static images, but
if you want interactive and animated visualization that runs in the browser, you
need to know a combination of HTML, CSS, and JavaScript. Hypertext Markup
Language (HTML) provides structure; Cascading Style Sheets (CSS) sets the
way objects appear; and JavaScript lets you dynamically change objects on
a web page. This is broadly speaking, as there is overlap in what you can use
each for. This also means you change how you use JavaScript, HTML, and CSS
together, based on what you want to make.

This route tends to be more complex than the previously mentioned options
because the Web serves a broad spectrum of purposes, appears on varied
devices, and is used by many people. The technology also changes. For visuali-
zation that was interactive and animated on the Web, Flash and its associated
programming language, ActionScript, were the default solution. Flash was
deprecated in 2017, and many visualization projects were lost to the ephem-
eral web. You can still find Flash files through the Internet Archive, a nonprofit
organization and website that serves as a digital library of all things that appear
online, but even then, only some will work with a Flash emulator.

In the first edition of this book, I listed resources for the JavaScript section, and
they either went offline, were deprecated, haven’t been updated in more than
a decade, or are still around but are no longer considered a good solution for
visualizing data. So, this branch of visualization tends to update quickly, which
can be good or bad, depending on your point of view. That said, most of my
favorite JavaScript-based visualization projects still work despite the change.

The upside is flexibility. When you want standard chart types, you can use
code libraries that take care of most of the work. Usually, there are functions

Try Processing software
with the visual arts in focus
at processing.org.

http://processing.org

38  |  CHAPTER 2:  Choosing Tools to Visualize Data

for specific charts. You just supply the data. When you need more control over
each chart element or want a custom visualization, there are also libraries for
that. They let you define the parts and how things fit together.

Figure 2.14 shows a visualization that I needed to customize for interaction
and layout. I used D3, which is a JavaScript library that doesn’t have specific

FIGURE 2.14  “Feelings at Work,” Nathan Yau / 2007-Present FlowingData /https://flowingdata.com/2022/10/26/feelings-at-work  /
last accessed February 08, 2024.

https://flowingdata.com/2022/10/26/feelings-at-work

Programming  |  39

charting functions. Instead, it provides methods to load and handle data and
to draw geometries and colors based on that data.

People were asked to score stress, sadness, happiness, and meaningfulness at
work on a scale from 0 to 6, where 0 is low and 6 is high. There’s a bar chart
for each occupation group and feeling, and when you hover over an occupa-
tion group, all the charts for the group highlight and connect. The result is a
combination of bar charts and a bump chart.

It was more straightforward for me to implement the interaction with D3,
but there are multiple ways to do the same thing. The specific method you
choose will usually depend on your current setup. You also don’t have to stick
with one library. Sometimes, you just need a quick bar chart, so you go with a
high-level library, and sometimes, you need to get creative, so you go with
the low-level library. Sometimes, you want a combination of several libraries.

Learn about HTML basics
from Mozilla at https://
datafl.ws/whathtml.

What is CSS? See https://
datafl.ws/whatcss.

What is JavaScript? See
https://datafl

.ws/whatjs.

JavaScript Visualization Libraries
JavaScript is a general-purpose language mainly used for the Web, but
there are visualization libraries you can use so you don’t have to start
from scratch.

■■ D3 (d3js.org): Use to makes custom visualizations. It doesn’t
provide standard chart types and instead makes it more straight-
forward to bring together and control the elements that com-
prise a chart.

■■ p5.js (p5js.org): It’s a JavaScript interpretation of Processing.

■■ Vega (vega.github.io): Use to makes charts using a visualiza-
tion grammar based on the JSON data format. The grammar
also integrates with languages other than JavaScript, such as R
and Python.

■■ Chart.js (chartjs.org): This is a lightweight library for charts on
the modern web.

■■ Observable Plot (observablehq.com/plot/): This is built on top
of D3 with a “grammar of graphics” approach.

■■ Laker Cake (layercake.graphics): Svelte is a popular JavaScript
web framework, and Layer Cake, which is a framework for Svelte,
provides components within the framework.

https://datafl.ws/whathtml
https://datafl.ws/whathtml
https://datafl.ws/whatcss
https://datafl.ws/whatcss
https://datafl.ws/whatjs
https://datafl.ws/whatjs
http://d3js.org
http://p5js.org
http://vega.github.io
http://chartjs.org
http://observablehq.com/plot/

40  |  CHAPTER 2:  Choosing Tools to Visualize Data

MATLAB

MATLAB is a proprietary programming language from MathWorks. Its focus is
on computation, but it has some visualization functionality for traditional chart
types. I used this during a previous life in electrical engineering but haven’t
touched it in a long time. If you already use MATLAB, I’d check out what it offers
for charts. Otherwise, try the more open options first.

TRADE-OFFS

Learning to program gets you flexibility to visualize data how you want, adapt
previous code to new data, and use existing libraries so that you don’t have
to start every project from scratch. In the long run, it can save time, and you
can let your imagination run wilder.

However, you must learn to program first, which takes time, especially if you
don’t have experience with code yet. This makes point-and-click solutions more
inviting, and if all you need is a one-off chart that you will never make or see
again, then point-and-click is probably the solution you need.

Installing and setting up your coding environment can also be a pain sometimes,
which is one reason I suggest R over other solutions for beginners. Setting up
Python can be tricky, and setting up web development environments usually
requires multiple steps. Companies and organizations also have their own
system requirements and restrictions.

The good news is that you don’t have to know how to do all the things all at
once to make nice charts. You learn as you go and then take that experience
with you for the next project. It’s like learning a new language. Basic vocabu-
lary can help you find a toilet in a foreign country. You learn more about the
language: more words, how they go together, and grammar. You get more
fluent and can converse. With programming, you learn how to use the func-
tions you need, how functions work together, and the logic behind the code.
You get more fluent.

MAPPING
From a data design perspective, there is a lot of overlap between geographic
mapping and visualization. They both make use of visual perception to show
patterns, which means there are similar choices around color, geometry, and
space. Charts and maps also often exist in the same context when telling stories

Find out more about
MATLAB at https://
datafl.ws/matlab.

https://datafl.ws/matlab
https://datafl.ws/matlab

Mapping  |  41

with data. It’s common to see both in the same project, overlaid on each other,
or placed side by side.

However, geographic data is tied to physical places in the world and comes
with its own encodings, file formats, and scales. Maps can be used to com-
municate data like visualization is, but they also exist as an everyday interface
for directions and exploring a new space. So, the process of making maps can
and should be specialized. That might mean changing your approach with the
software you already use or using a map-specific tool.

OPTIONS

I used to research how mobile phones could be used to survey our surround-
ings. To track location continuously throughout the day, we connected an
external GPS device to a phone, and to keep everything powered, we plugged
all the things into a laptop in our backpacks. Then, making a dynamic map for
the Web that was not a Google map required substantial effort.

Now, location comes standard with most phones. Batteries last a full day. There
is no shortage of spatial data that people want to understand, which means
there are plenty of tools to make maps. It’s also more straightforward to make
maps than it was when I wrote the first edition of this book.

In fact, you can make maps with all the tools that I’ve listed so far, both the
point-and-click and programming solutions. The technical requirements of
visualization and maps overlap, which means you can stick with the software
you know and see how far it takes you. For example, I make most of my maps
in R. Sometimes I need JavaScript if I want to make an interactive project. That
fits my needs, but if you need more, the following map-specific tools might
work better for you.

ArcGIS

ArcGIS, from Esri, is a suite of tools that enables mapping on the desktop
(ArcGIS Pro) and online (ArcGIS Online). The names and range of services have
changed over the years, but the overall goal to help you make maps stays the
same. ArcGIS is a feature-rich tool that lets you make maps, explore spatial
data, and process and aggregate data. It is point-and-click, so you don’t have
to learn to code.

The downside of such a rich feature set is that there are a lot of buttons and
menus to go through. Although, like most software, the process grows more
intuitive with use. Perhaps the main drawback for most is that ArcGIS requires

42  |  CHAPTER 2:  Choosing Tools to Visualize Data

a recurring license fee that varies depending on the level that you use. That
might be too much if you just want simple maps.

QGIS

QGIS is a free and open-source alternative to ArcGIS. It also has several applica-
tions: QGIS Desktop, QGIS Server, and QGIS Web Client. The Desktop version,
as you might guess, works on your desktop and lets you make maps and
visualize spatial data. The Server and Web Client applications make it more
straightforward to publish spatial data and your QGIS maps online.

The application, shown in Figure 2.15, is point-and-click, so you don’t have
to learn to code to load and map various spatial files. However, you can run
Python scripts to process data in a more customized way.

There is an active community and ample documentation, so you can find
help if you need. The main drawback of QGIS is that the interface can feel less
polished than ArcGIS, but it has improved over the years.

Mapbox

Mapbox offers a wide array of products for developers, mainly those who want
to make interactive maps that integrate with other services and products. They

Find out more about
ArcGIS at esri.com.

Get the open-source QGIS
at qgis.org.

FIGURE 2.15  QGIS Desktop

http://esri.com
http://qgis.org

Mapping  |  43

provide and serve background maps that you can customize. They also pro-
vide spatial data, navigation, traffic, and geographic search. For most mapping
needs on the Web, Mapbox has some solution for it. Figure 2.16 shows Mapbox
Studio, which is a point-and-click tool to design maps.

Most of the services are free to try, and then there is a recurring fee based on
total usage. If cost is a concern, try searching for an open-source alternative,
such as Leaflet or OpenLayers, for the features that you’re after. There’s no free
service that matches Mapbox overall, but you can usually find micro-services
that mimic features.

Google Maps and Bing Maps

There was a time when all maps on the Internet looked like they were served
by Google, because most of them were. It was a relatively simple interface that
you could place markers and draw connecting lines. Then you could embed
the map on your web page. It was new and amazing, and it didn’t matter that
100 markers overlapping each other in a small area obscured any semblance
of a pattern. The data sources and look have changed, but the core functions
are similar, as shown in Figure 2.17.

While Google Maps and Bing Maps are still around, Mapbox has grown more
common, and it’s gotten easier to implement your own maps for custom

Find more about Mapbox
at mapbox.com.

FIGURE 2.16  Mapbox Studio

http://mapbox.com

44  |  CHAPTER 2:  Choosing Tools to Visualize Data

integration. When I use Google or Bing Maps for data, it’s usually for the appli-
cation programming interfaces (APIs), which come in handy for data processing
and search. Limited usage is free, and heavier usage is available at a varying
price, depending on how many queries you need.

TRADE-OFFS

If you analyze spatial data often and need to make a lot of maps, these appli-
cations might be worth the added time and cost. A specialized tool means
you’ll get access to map-specific features that might not be available with more
general visualization programs.

On the other hand, if you already use a different visualization tool heavily,
learning to make maps with what you know could be a better use of your time.
That way, you can stay in your workflow. It’s possible your maps might not turn
out as well because of software limitations. It’s also possible that what you use
already provides all that you need.

At the least, it’s good to know the tools available so that you have a backup
plan when something doesn’t work as expected. I don’t make enough detailed,
cartography-heavy maps to justify paid solutions, but it’s been useful to have
QGIS available at times when R isn’t working for me.

Find more on Google Maps
at https://developers
.google.com/maps
and more on Bing Maps
at https://datafl
.ws/bingmaps.

FIGURE 2.17  Google Maps

https://developers.google.com/maps
https://developers.google.com/maps
https://datafl.ws/bingmaps
https://datafl.ws/bingmaps

Illustration  |  45

ILLUSTRATION
By now, it might seem like you’ve seen more than enough tools to make
great charts. You have! You can do a lot with a combination of code and
point-and-click visualization tools, and for the most part, they let you custom-
ize graphics to make them more readable. Move some labels here. Adjust
a legend there.

However, these small adjustments can be finicky with a lot of applications. They
often require a fair amount of trial and error, which is why a lot of charts look
like they were made with a certain software. People don’t have the time to go
through the hassle. But usually, when you make graphics for a presentation, a
report, or a publication, you want charts that fit in with the flow. You want to
match typography, color scheme, borders, and overall aesthetics so that the
charts don’t look copied and pasted or out of context. You also want to make
the charts readable. You want the charts to look good.

For example, Figure 2.18 shows a set of charts made in R with default settings,
which show the age of mothers when their first, second, and third children were
born. The age distributions shift to the right as you might expect.

To make the charts easier to read and to explain the differences, I exported
a file from R and edited it in illustration software, as shown in Figure 2.19.
I changed line widths, edited labels, annotated ranges, and added color to fit
within the context of FlowingData.

These are not complex changes. I could make the same edits in R, but I don’t
know the final layout of a graphic until I’ve added everything and see how the
parts fit together. In R, label placement and custom annotation often require
trial and error, whereas illustration software allows you to iterate visually and
quickly by clicking and dragging.

OPTIONS

A lot of illustration programs are available, but there are only a few that most
people use—and one that almost everyone uses. Cost will likely be your decid-
ing factor. If you just want to dabble at first, I recommend the open-source
route, and if your needs expand beyond that, try the other options.

Adobe Illustrator

Adobe Illustrator is the most common illustration software. Most static charts
that you see in major news publications are edited in Illustrator. A chart-maker

Note:  I use illustration
software mostly for a layer
of annotation, layout, and
small adjustments to color,
line widths, and size. Again,
R (and other programming
languages) let you do this,
but the placement of chart
components can change
slightly when you export
an image, and a few pixels
is enough to make my brain
itchy. Illustration software
allows you to interactively
adjust, and when you know
where you want something
to be, you just stop drag-
ging the cursor. I need this
level of control, but it’s not
for everyone.

46  |  CHAPTER 2:  Choosing Tools to Visualize Data

will produce a vector-based file (which is defined with geometries and can be
scaled up without pixelation), such as a PDF or SVG, and import it into Illustra-
tor to finish, as shown in Figure 2.20.

The software was originally designed for font development and later became
popular among designers for illustrations such as logos and more art-focused
graphics. And that’s still what Illustrator is primarily used for.

Illustrator offers some basic graphing functionality via its Graph tool. You can
make basic graph types such as bar graphs, pie charts, and line charts. You
can paste your data into a small spreadsheet, but that’s the extent of the data
management capabilities.

FIGURE 2.18  Charts made in R to
show age of moms

Illustration  |  47

The best part about using Illustrator, in terms of data graphics, is the flexibility
that it provides. However, with that flexibility comes a lot of buttons and menus,
which can be confusing at first. In Chapter 4, you’ll see some of the basics.

The main downside is that it’s expensive when you compare it to doing every-
thing with code, which is free, assuming you already have the computer to install
things on. As of this writing, Adobe charges a monthly fee to use the software
(and other Adobe products). Illustrator has been ingrained in my workflow for
a while now, so the fee is worth it for me, but there are other options.

Check out Adobe
Illustrator at https:
//datafl.ws/7ln.

FIGURE 2.19  “Age of Moms
When Kids are Born,” https:
//datafl.ws/momage

https://datafl.ws/7ln
https://datafl.ws/7ln
https://datafl.ws/momage
https://datafl.ws/momage

48  |  CHAPTER 2:  Choosing Tools to Visualize Data

Affinity Designer

Affinity Designer is newer than Adobe Illustrator and has positioned itself as a
worthwhile alternative. Instead of paying a subscription for continued use of
the software, you can buy Affinity Designer for a one-time fee.

Like Illustrator, the software supports major file types and affords you the flex-
ibility to visually edit charts by clicking and dragging.

Inkscape

Inkscape is the free and open-source alternative to Adobe Illustrator. If you want
to avoid paying for a tool, Inkscape is your best bet. I use Illustrator because
when I started to learn the finer points of data graphics on the job, the work
required Illustrator. It just made sense. But if I were to start now, I would likely
use Inkscape first and Affinity Designer second.

Get Affinity Designer at
affinity.serif.com.

Get the free design tool
Inkscape at inkscape
.org.

FIGURE 2.20  Editing a chart in Illustrator

http://affinity.serif.com
http://inkscape.org
http://inkscape.org

Small Visualization Tools  |  49

TRADE-OFFS

Illustration software is not made specifically for visualization. It’s rooted in
graphic design, so chart-makers who use Illustrator, Designer, or Inkscape typi-
cally use only a small subset of what is offered. You won’t analyze or explore
data with these applications. You won’t build complex charts from scratch here.

That said, these programs are great if you want to make publication-level
graphics. Use them to adjust aesthetics, improve readability, and clean up
messy charts.

Visualization is often generalized to analyze a wide array of datasets, and illus-
tration software is one way customize specifically for a single dataset. Manual
edits are a way to add a human touch to more mechanical charts. If you use
charts only for analysis, then you can probably skip this communication-focused
facet of visualization.

SMALL VISUALIZATION TOOLS
So far, you’ve learned about general tools for visualization that cover a wide
range of chart types and methods. This is often enough for the job. However,
sometimes there are small, visualization-related tasks that you need to complete
in the process. These are small tools to help with these tasks.

OPTIONS

I’m hesitant to include a set of small tools, because they tend not to stick
around long. Instead, they come and go with the trends, and if a small task is
important enough, the generalized tools eventually implement a new feature.

But small visualization tools can be useful because they are focused on a single
task. They’re usually easy to use and get the job done quickly. So, while this
isn’t a comprehensive list of all the small tools available right now, these are
the ones I’ve used and that have been around for a few years.

ColorBrewer

Picking colors for your charts and maps is fun because there are infinite options
and combinations. However, color palettes should make sense for your dataset,
work for those who are color blind, and, of course, look good. Cynthia Brewer
and Mark Harrower designed ColorBrewer, shown in Figure 2.21, in the early

50  |  CHAPTER 2:  Choosing Tools to Visualize Data

2000s to narrow down the choices. Select from a set of color schemes based
on your data, how many shades you want, and limitations with color blindness.
The tool was originally intended for thematic maps, but the color themes found
their way to visualization more generally.

Chroma.js Color Palette Helper

You might want to make your own color palettes, but still ensure that every-
one can see the contrast between different shades and see the differences as
you intend. Chroma.js by Gregor Aisch is a JavaScript library that helps with
that, and the Color Palette Helper, shown in Figure 2.22, is a point-and-click
interface for the library.

Pick the two end colors for your scale, and optionally the colors in between,
and the small application defines the shades in between. It’ll correct for light-
ness and let you know if the result is colorblind-safe.

Sip

There are many color-related tools. Maybe it’s because most color choice is
subjective, and the process of picking colors isn’t limited to just visualization.
Sip, shown in Figure 2.23, is a color-picking app for macOS that lets you select
a pixel on the screen to copy its color. There is currently a one-time fee or an

Pick your color palettes
with ColorBrewer at
colorbrewer2.org.

Create custom color
palettes with Chroma.js
at www.vis4.net/
palettes.

FIGURE 2.21  ColorBrewer

http://colorbrewer2.org
https://www.vis4.net/palettes
https://www.vis4.net/palettes

Small Visualization Tools  |  51

FIGURE 2.22  Chroma.js Color
Palette Helper

FIGURE 2.23  Using Sip for
color matching

52  |  CHAPTER 2:  Choosing Tools to Visualize Data

annual one for updates. Although macOS comes with Digital Color Meter,
Sip is design-focused and fits well in the workflow. Windows also has its own
Color Picker utility.

Sim Daltonism

Sim Daltonism, shown in Figure 2.24, is an open-source color-blindness simula-
tor for macOS and iOS. With the iOS app, you just point a camera, and you’ll
see from the perspective of a color-blind person. With the macOS app, you
drag a window across your screen for similar results.

TwoTone

Sonification of your data, creating sounds based on the numbers, can provide
another dimension to your visuals. TwoTone, in Figure 2.25, lets you make music
based on a dataset that is uploaded.

Data Viz Project

When there are so many chart types to pick from, it can feel like a bit much.
Data Viz Project by Ferdio, shown in Figure 2.26, filters chart types of data
structure, purpose, and shape to help you narrow down your choices.

Grab colors on the screen
with Sip at sipapp.io.

Simulate color blindness
with Sim Daltonism by
visiting https://datafl
.ws/daltonism.

Make data-driven music
with TwoTone at
twotone.io.

FIGURE 2.24  Using Sim Daltonism

http://sipapp.io
https://datafl.ws/daltonism
https://datafl.ws/daltonism
http://twotone.io

Small Visualization Tools  |  53

It’s not going to tell you exactly what to do, but it’s a good starting point if
you’re stuck.

FastCharts

Most large newsrooms have an in-house tool to make quick charts. FastCharts,
as shown in Figure 2.27, is a public version of Financial Times’ solution. Copy and
paste a comma- or tab-delimited dataset, and it spits out a chart with options.

Pick a chart with Data
Viz Project at
datavizproject.com.

Make charts fast with
FastCharts at
fastcharts.io.

FIGURE 2.25  TwoTone by Sonify
and the Google News Initiative

FIGURE 2.26  Data Viz Project

http://datavizproject.com
http://fastcharts.io

54  |  CHAPTER 2:  Choosing Tools to Visualize Data

TRADE-OFFS

Except for Sip, these small tools are free to use, and some of them are open
source, which is nice, but that also means they might not stick around. The
people who create and maintain these tools usually have jobs to tend to.

On the other hand, the tools I’ve mentioned have been available for a few years,
which usually means they’ll stay online for at least a bit. Also, these tools are
mostly nice-to-haves more than they are core to the workflow. So, give them
a try. If they work for you, then great, and if not, you will not have lost that
much time or effort.

PENCIL AND PAPER
Finally, I can’t leave out the always trusty pencil and paper. I don’t finish graph-
ics with them, but almost every nontrivial chart I’ve made started with a sketch
or a scribble. I keep a notepad and pencil within reach.

They’re easy access, which helps quickly record ideas and brainstorm new
ones. I don’t need a computer, and I can think more fluidly. Maybe that’s just
me, though. Maybe I’m showing my age. But I’ve always been one to scribble,
so it works for me.

FIGURE 2.27  FastCharts

Survey Your Options  |  55

TRADE-OFFS

It’s pencil and paper. Detailed work might take a while.

SURVEY YOUR OPTIONS
This isn’t a comprehensive list of what you can use to visualize data, but it
should be enough to get you started. There’s a lot to play with here.

Many people start using specific software because their job or studies require
it. Some just go with what’s available. Use the software that you know or have
to know first and focus on the process of visualizing data. The process of ask-
ing questions, analyzing data, and deciding what colors and geometries to use
translates to other applications.

When your toolset doesn’t allow you to make what you want in the time you
must make it, then it might be time to switch tools or add new ones. Want to
design static data graphics? Maybe try R or Illustrator. Do you want to build
an interactive tool for a web project? Try JavaScript. While not always possible,
answer questions about how you want to visualize your data and then figure
out the tools required.

In a 2021 survey conducted by the Data Visualization Society, people were
asked to select among 33 tools they used often to visualize data. Figure 2.28
shows how they answered.

Out of the 1,870 people who selected at least one tool, 58% said they used
Microsoft Excel, 46% used Tableau, 36% used Microsoft PowerPoint, 33% used
R, 28% used Python, and so on. There’s another 20% that used “other” tools
not covered in this chapter.

So, there are tools that a lot of people use, but there are also a mix of smaller-
scale or application-specific tools that come into the picture. Most people use
a mix of tools, as shown in Figure 2.29. Only 8% of people used one tool, and
only 14% used two tools. Twenty percent used three, and more than half of
people used at least four.

Start with what you know or what’s available—usually one of the more general
applications—and then branch out as you need. People getting started with
visualization often get stuck on tool selection, but in many ways, the tool is
the least important part of the process. To make great charts, you don’t have
to learn every aspect of every software application. Focus on the process of
visualization and what you want to make, and this guides you toward the
features you need.

Check out the data from
the survey via Data
Visualization Society:
https://datafl

.ws/soti.

https://datafl.ws/soti
https://datafl.ws/soti

56  |  CHAPTER 2:  Choosing Tools to Visualize Data

FIGURE 2.28  “Visualization Tools
That Practioners Use”

Wrapping Up  |  57

WRAPPING UP
None of these tools are a cure-all. In the end, the analyses and data design are
still up to you. The tools are just that—they’re tools. Just because you have a
hammer doesn’t mean you can build a house. Likewise, you can have great
software, but if you don’t know how to understand and communicate with
data, then the software won’t do much good. You decide what questions to
ask, what data to use, and what stories to tell. In the following chapters, you’ll
walk through the process of figuring this out.

In the next chapter, you can try your hand at using some of the tools men-
tioned. You start at the beginning—the data—because without data there is
no visualization.

FIGURE 2.29  “Numbers of
Tools Selected”

Ch.3

Handling Data

60  |  CHAPTER 3:  Handling Data

Before you work on the visual part of any visualization, you need data. Data makes
a visualization interesting and worthwhile. Without data, you just have empty
charts. That’s no fun. Where can you find good data? How can you access it?

Once you have data, you need to format it so that it loads with your software.
Maybe you got the data as a comma-delimited text file or an Excel spreadsheet,
and you need to convert it to something such as XML, or vice versa. Maybe the
data is accessible online spread out over many pages but you want a unified
spreadsheet.

Learn where to find data, how to prepare data, and how to process data. Get all
your data in order, and the visual part of visualization gets much easier.

DATA PREPARATIONS
Those who are interested in learning more about visualization are often,
understandably, focused only on the visual part of the practice. The stuff
they see—geometry, color, and patterns—draws them in. However, you need
worthwhile data to make worthwhile visualization. Garbage data leads to
garbage visualization.

Sometimes, the interesting datasets are given to you, and you get to play
right away, but often, the data you need doesn’t exist yet or isn’t in a format
that’s useful for your purposes. There’s a process behind finding this data and
preparing it so that you can more easily visualize it.

I used to work in a restaurant kitchen. My job was to prepare all the ingre-
dients: cleaning, chopping, tenderizing, and marinating. It all went into the
walk-in refrigerator where there was a wall of chopped vegetables and meats
organized in containers. When an order came in, the chef could quickly grab
the prepared ingredients and get to cooking.

This early stage of the visualization process is like kitchen preparations. Some-
times, it can feel tedious, but over time, I have learned to enjoy getting everything
ready. It’s satisfying to transform a mess of data into a nicely formatted data file.
When it’s time to make the chart, you can just grab the data and get to visualizing.

FINDING DATA
Data is the foundation of every visualization. If you don’t already have the data
you need to answer your questions, you have to find it. Fortunately, there are

Finding Data  |  61

a lot of places to get data, and it’s gotten easier to find over the years. You
can find data with standard search engines, data-specific applications, data
catalogs, governments, researchers, and anywhere else we interact with data,
which is just about everywhere these days.

This section covers some of the places to find data. Like most things online,
resources tend to fade over time or are replaced by something better (or worse).
So, consider these good places to start your search, as of this writing.

SEARCH ENGINES

You can search for data via the common search engines, such as Google or
Bing, just like you would search for other bits of information. I use DuckDuckGo.
Just enter the topic in the search box with “data” appended to the end of your
query, and usually that’ll at least point you in the right direction.

GENERAL DATA APPLICATIONS

Some services focus on supplying data or making it searchable, with varying
degrees of success. Some applications provide large data files that you can
download for free or for a fee. Others are built with developers in mind with
data accessible via an application programming interface (API). The following
are a few suggested resources:

■■ WolframAlpha (wolframalpha.com): This is a “computational search
engine” that can be useful for looking up basic statistics.

■■ Kaggle (kaggle.com): Known for running data competitions, Kaggle
also provides a catalog of public datasets.

■■ Wikipedia (wikipedia.org): You might not think of the online ency-
clopedia as a place for data, but there are many HTML tables within all
the articles.

■■ GitHub Curated Core Datasets (github.com/datasets): GitHub is a
developer platform that hosts a lot of datasets. It keeps a curated list of
the more popular ones.

■■ Google Dataset Search (datasetsearch.research.google.com): This
is a search engine for datasets. It’s been out of beta for a while but is
more a research project at this point.

■■ Data.world (data.world/search): This is a searchable catalog of
downloadable datasets.

■■ Amazon Data Exchange (datafl.ws/7lp): Amazon provides a service
for selected groups to provide large publicly available datasets.

http://wolframalpha.com
http://kaggle.com
http://wikipedia.org
http://github.com/datasets
http://datasetsearch.research.google.com

62  |  CHAPTER 3:  Handling Data

■■ DataHub (datahub.io): Focused on making it easier for organizations
to provide open data, DataHub also provides datasets.

■■ The Data and Story Library (dasl.datadescription.com): This is an
archive of data files meant to be used for teaching statistics and data
science in a classroom setting.

RESEARCHERS

If a data search doesn’t provide anything of use, try searching for academics
who specialize in the area you’re interested in. Sometimes, they post data on
their personal sites. If not, scan their papers and studies for possible leads.

You can also try emailing them, but make sure they’ve done related studies.
Otherwise, you’ll just be wasting time.

You can also spot sources in graphics published by reputable news outlets.
Usually, data sources are included in small print somewhere on the graphic.
If it’s not in the graphic, it should be mentioned in the related article or in
the footnotes or endnotes. This is useful when you see a graphic in the news
that uses data you want to explore. Use a search site to find the source, which
might lead you to the right person who has the data readily available.

GOVERNMENTS

In efforts to improve transparency, many governments provide data about their
municipalities. The data coverage is wide-ranging in topic, format, precision,
and regularity of release time. The data availability varies by where you live and
who you’re getting it from. In some cases, it is written law that certain counts
must happen, such as the United States decennial census, which demands a
certain level of rigor.

How much you want to dig into government-sourced data depends on your
situation. For FlowingData, many of the datasets I use are from the U.S. federal
government, which I like for consistency over longer periods of time.

Running a data site on the Internet has brought me many random emails
about data sources. Some people’s emails ask for datasets unrelated to
anything I’ve ever done, which confuses me. Make sure your cold queries
are relevant to the recipient.

Try Google Scholar to
find relevant research at
scholar.google.com.

http://dasl.datadescription.com
http://scholar.google.com

Finding Data  |  63

The following are some government-provided places to look for data:

■■ Data.gov (data.gov): Catalog for data supplied by U.S. government
organizations

■■ Data.gov.uk (www.data.gov.uk): Data published by the United
Kingdom central government, local authorities, and public bodies

■■ Census Bureau Data (data.census.gov): A tool to access data from the
U.S. Census Bureau for various geographies, times, and topics

■■ General Social Survey (gss.norc.org): An ongoing survey that’s
been going since 1972 about attitudes and way of life in the
United States

■■ Integrated Public Use Microdata Series (ipums.org): Collates and uni-
fies individual-level datasets from various government sources

CATALOGS AND LISTS

There are many datasets scattered across the Internet. Some people keep a
running list of what they find.

■■ Awesome Public Datasets (https://datafl.ws/awe): A community-
driven, growing list of public data sources, started in 2014 on GitHub

■■ Data Is Plural (data-is-plural.com): Weekly newsletter by Jeremy
Singer-Vine for those interested in useful datasets

■■ Corpora (https://datafl.ws/7lv): Useful datasets for fun and
learning

■■ Data Sources on FlowingData (https://datafl.ws/datasrc): A running
list of fun and interesting data sources on my blog

TOPICAL REFERENCES

Outside more general data suppliers and applications, there’s no shortage of
subject-specific sites that provide datasets to download.

The following discussion is a sample of what’s available for different topics. I’ve
included only free and open sources, but there are, of course, other services
that provide data for a fee.

Geography

Do you have mapping software but no geographic data? You’re in luck. Plenty
of shapefiles and other geographic file types are at your disposal.

http://data.gov
http://data.gov
http://data.gov.uk
http://www.data.gov.uk
http://data.census.gov
http://gss.norc.org
http://ipums.org
https://datafl.ws/awe
http://data-is-plural.com
https://datafl.ws/7lv
https://datafl.ws/datasrc

64  |  CHAPTER 3:  Handling Data

■■ Natural Earth (www.naturalearthdata.com): A public domain map
dataset available at various scales

■■ TIGER/Line Shapefiles (datafl.ws/tiger): From the U.S. Census
Bureau, the most extensive detailed data about roads, railroads, rivers,
and ZIP codes you can find for the United States

■■ OpenStreetMap (openstreetmap.org): One of the best examples of
data and community effort

■■ U.S. Geological Survey (datafl.ws/usgs): Downloadable topographic
maps and geographical data

■■ ArcGIS Hub (hub.arcgis.com/search): Catalog with a variety of
geographic data files

Sports

People love sports statistics, and you can find decades’ worth of consistent
sports data. Get it on ESPN or sports league sites, but you can also find more
complete datasets on sites dedicated to the data specifically.

Sports Reference (sports-reference.com) is the most common place to find
comprehensive sports data. They provide data for teams, players, games, and
plays for professional basketball, American football, baseball, and hockey. The
sites for each sport used to be separate entities but settled under the Refer-
ence umbrella over the years.

World

Several international organizations keep data about the world, mainly health
and development indicators. Sometimes, it takes some effort to sift through
sparse datasets. It’s not easy to get standardized data across countries with
varied methods, but the following are good places to start your search:

■■ World Bank (data.worldbank.org): Data for hundreds of indicators
and developer-friendly

■■ UNdata (data.un.org): Aggregator of world data from a variety
of sources

■■ World Health Organization (who.int/data): Again, a variety of
health-related datasets such as mortality and life expectancy

■■ OECD Statistics (stats.oecd.org): Major source for economic
indicators

■■ Our World in Data (ourworldindata.org): A view of the world through
the lens of data, which you can download

http://www.naturalearthdata.com
http://openstreetmap.org
http://hub.arcgis.com/search
http://sports-reference.com
http://data.worldbank.org
http://data.un.org
http://stats.oecd.org
http://ourworldindata.org

Collecting Data  |  65

Politics

Politics can be tricky to understand, so organizations have tried to provide
clarity through data. Some of the datasets used by these organizations are
publicly available.

■■ OpenSecrets (opensecrets.org): This provides details on government
spending and lobbying.

■■ ProPublica Data Store (propublica.org/datastore/): ProPublica
makes some of the data that it collates available for free and some
for a fee.

■■ MIT Election Lab (electionlab.mit.edu/data): Get relevant datasets
used to study elections.

■■ Pew Research Center (datafl.ws/pew): This runs surveys about
American life, often centered around politics.

■■ Voting and Registration via Census (datafl.ws/voting): This has data
about characteristics of American voters.

COLLECTING DATA
Even with all the sources of data available, maybe you can’t find the data you
need in a nice, clean format, or what you found doesn’t cover the range you’re
looking for. You can either scrap the project or go with the solution that is
more fun and collect the data yourself.

COPY AND PASTE

Data collection sounds fancy, but it doesn’t have to be. It might just be copying
tables from web pages and pasting to a spreadsheet. For example, Figure 3.1
shows a table of EGOT winners—or entertainers who have won an Emmy,
Grammy, Oscar, and Tony—from Wikipedia. Highlight the table and copy. Then
paste it in a spreadsheet.

Alternatively, if the tables are on the larger side or you just don’t feel like copying
and pasting, you can use the IMPORTHTML function in Google Sheets (https://
www.google.com/sheets). As shown in Figure 3.2, it takes a URL, a query that
is either a list or a table, and the index of the list or table. For example, an
index of 1 indicates the first table on the page.

Straightforward stuff. We like straightforward.

Note:  Be mindful of
permissions and credit
when you copy and paste
from outside sources. Just
because something is
published online does not
make it free to use however
you want.

http://opensecrets.org
http://propublica.org/datastore
https://www.google.com/sheets/
https://www.google.com/sheets/

66  |  CHAPTER 3:  Handling Data

MANUAL COLLECTION

Maybe you know where the data points are, but they are on different sites or
pages. You might think that you need (or just want) automation to avoid the
tedious tasks of loading pages and entering data in a spreadsheet. Think about
scale, though, and how long it might take to write a script to automate the

FIGURE 3.1  Copying and pasting
an HTML table to a spreadsheet

FIGURE 3.2  Using
IMPORTHTML in
Google Sheets

Collecting Data  |  67

process (and be honest with yourself). If it’s not really that much data, try the
quick and dirty route. Manual data collection, while sometimes not the most
fun, often takes less time and effort than you think it will.

SCRAPING

When manual data collection is not feasible, but the data you want is on a
bunch of publicly available web pages, then it might be time to automate the
process. This process is called data scraping.

Instead of manually loading each page in your browser, looking for the data
on the pages, and finally entering the data in a spreadsheet point by point,
you can use code to carry out these steps. The assumption is that the pages
follow the same structure across a given range, and the data is always in the
same place on each page.

For example, Figure 3.3 shows a page from Weather Underground, a site that
provides current and historical weather from sensors around the world. The
page shows temperature data for August 6, 2020, in Cheektowaga, New York.
There’s a table that shows the actual, historic average, and record high tem-
perature, low temperature, and so on.

FIGURE 3.3  Weather data from
Weather Underground,
https://datafl.ws/7lx

https://datafl.ws/7lx

68  |  CHAPTER 3:  Handling Data

If you look at the page for a different date, the structure and placement of the
table are the same. The data values are specific to the day.

This is the full URL of the page:

www.wunderground.com/history/daily/us/ny/cheektowaga/KBUF/

date/2020-8-6

Again, this page is for August 6, 2020, which is specified at the end of the URL
with 2020-8-6. The URL for the next day, August 7, 2020, ends with 2020-8-7.
For exactly one year prior, adjust the date in the URL to 2019-8-7.

So, if you were to manually collect the high temperature for every day over the
past year, you could adjust the date in the URL, load the page in your browser,
scroll to the table with the temperature values, copy the high temperature value,
and paste to your data file or spreadsheet. Then, just do that 365 times. Or,
given the structure of the URL and the structure of the page, you can scrape.

SCRAPING A WEBSITE

Tool used: Python

Try scraping a website with code. In this example, you use Python to scrape
tabular data from a simplified website spread out over 20 pages (see Figure 3.4).

Note:  The goals behind
the examples in this book
are to introduce you to a
mix of tools and show that
there are different ways to
work with data. If the tool
used in an example is not
for you, take note of the
process and logic, which
can be used with your
preferred tool.

FIGURE 3.4  Tabular data
on a website, https:
//datafl.ws/7m6

https://www.wunderground.com/history/daily/us/ny/cheektowaga/KBUF/date/2020-8-6
https://www.wunderground.com/history/daily/us/ny/cheektowaga/KBUF/date/2020-8-6
https://datafl.ws/7m6
https://datafl.ws/7m6

Collecting Data  |  69

Collectively, the data is a sample of 200 observations from the 2021 American
Community Survey. Each row represents a family unit with an index, age of
the person who answered the survey, and total family income. You want the
data from all 20 pages as a single comma-delimited file.

First, look at the structure of the URL. The full URL of the first page is as follows:

http://book.flowingdata.com/vt2/ch3/scraping/family-income-page1.html

The URL for the second page is as follows:

http://book.flowingdata.com/vt2/ch3/scraping/family-income-page2.html

The URL for the third page is as follows:

http://book.flowingdata.com/vt2/ch3/scraping/family-income-page3.html

For all 20 pages, only the page number changes with each page. Hold on to
that thought for later.

Each page is in HTML and follows the same structure, which you can see by
viewing the source, as shown in Figure 3.5. There is a header enclosed by <h1>,
page numbers enclosed by <h4>, navigation enclosed by <div>, and, finally,

FIGURE 3.5  Page
source with HTML

http://book.flowingdata.com/vt2/ch3/scraping/family-income-page1.html
http://book.flowingdata.com/vt2/ch3/scraping/family-income-page2.html
http://book.flowingdata.com/vt2/ch3/scraping/family-income-page3.html

70  |  CHAPTER 3:  Handling Data

income data enclosed by <table>. Each <tr> tag indicates a row, and each <td>
indicates a cell in the table. The first row in the table is the header, enclosed
by <th>, and the rest of the rows are enclosed by <tbody>. 

For example, the first row of data in <tbody> has 1 in the first cell as an index,
45 for the age of the householder, and 114000 for the family income. The second
row has an index of 2, an age of 37, and a family income of 280000.

You know the structure of the URLs and the structure of the pages. You want
to write code that does the following:

■■ Loads each page

■■ Extracts the data points of interest from each loaded page

■■ Saves the data as a delimited text file

Assuming you have Python already installed, you will need two libraries. The
first is Beautiful Soup, which is a library for parsing HTML and XML. Basically,
it breaks up a document into manageable and selectable elements.

With Beautiful Soup installed, start a blank file in your favorite text or code
editor, such as Notepad++ for Windows or TextMate for macOS, and save it
as scrape-income.py. You can also open the finished file in the book source
download to follow along.

Import the Beautiful Soup library and the urllib.request module, which
comes with a fresh Python installation.

from bs4 import BeautifulSoup
import urllib.request

To view the HTML source
in major browsers, right-
click a blank spot of a
page and select View
Page Source in the pop-up
menu. The wording might
vary slightly depending
on what browser you use.
Learn more about HTML
at https://datafl
.ws/7m4.

Visit Python.org to download and install Python, which is available on
major operating systems. If you’re new to programming, check out the
“Python for Beginners” guide at https://datafl.ws/7m2. Again, if you’re
not interested in the tool, feel free to read to understand the process.

Beautiful Soup is a flexible Python library that helps you parse HTML
documents. Visit https://datafl.ws/bsoup to download it and for
installation instructions. You can also find thorough documentation
on the site.

https://datafl.ws/7m4
https://datafl.ws/7m4
http://python.org
https://datafl.ws/7m2
https://datafl.ws/bsoup

Collecting Data  |  71

Start with the first page of data. Assign the URL to page _ url.

page_url = 'http://book.flowingdata.com/vt2/ch3/scraping/family-
income-page1.html'

Create a request.

req = urllib.request.Request(page_url)

Then open the request.

response = urllib.request.urlopen(req)

Get the page contents.

the_page = response.read()

Use Beautiful Soup to parse the contents.

soup = BeautifulSoup(the_page, features="html.parser")

Using the find _ all() method, you can grab all the rows in the table.

Get the table rows
rows = soup.find_all("tr")

The first page has seven rows of data with a header on top. To access
the header, use index 0 and enter rows[0] . To access the first row of
data, use index 1 and enter rows[1]. To get three cells in the data row, use
find _ all() again.

cells = rows[1].find_all('td')

To get the income in the first row, which is the third cell, use the following:

inc = cells[2].string

That gives you an output of 114000. Checks out.

Use a for loop to get the values from every row on the page. Use the print()
function to output each row of values.

Save each row of data
for j in range(1, len(rows)):

 # Get the cells in a row
 cells = rows[j].findAll("td")

 # Comma-delimited row
 print(cells[0].string + "," + cells[1].string + "," +
cells[2].string)

72  |  CHAPTER 3:  Handling Data

This reads as, “For j in 1 to the number of rows, get the cells for the current row,
and then output the contents of each row as a string, separated by commas.”

Here is the scraping script in its entirety:

from bs4 import BeautifulSoup
import urllib.request

base_url = 'http://book.flowingdata.com/vt2/ch3/scraping/'

Header
print("famindex,AGE,FTOTINC")

for i in range(1, 21):

 # Page URL, based on page number
 page_url = base_url + 'family-income-page'+str(i)+'.html'

 # Open the page
 req = urllib.request.Request(page_url)
 with urllib.request.urlopen(req) as response:

 # Save page contents.
 the_page = response.read()

 # Parse.
 soup = BeautifulSoup(the_page, features="html.parser")

 # Get the table rows
 rows = soup.find_all("tr")

 # Save each row of data
 for j in range(1, len(rows)):

 # Get the cells in a row
 cells = rows[j].findAll("td")

 # Comma-delimited row
 print(cells[0].string + "," + cells[1].string + "," +
cells[2].string)

A for-loop is commonly used in programming languages to repeat a sec-
tion of code multiple times, or iterate, over a given condition or range. In
this example, you iterate over 1 to the row count to reference the cells
for each row, referenced with j. Visit wikipedia.org/wiki/For _ loop
for more on for loop.

http://wikipedia.org/wiki/For_loop

Loading Data  |  73

The first for-loop iterates over a range from 1 to 20 to request the contents
of each data page. So, when you run the script, as shown in Figure 3.6, each
page is requested, and the data for each row on each page is printed. The
output is redirected to a CSV file called income-scraped.csv. This shows the
script running in the Terminal in macOS. For Windows, you can run the script
from the command prompt. You might also use python instead of python3,
depending on your setup.

The values in the saved file match the values in the HTML tables, and you have
a unified rectangular CSV file. This is usually easier to load and analyze in your
favorite software.

The web pages that you scrape on other sites are likely more complex than the
ones in this example, but the process of loading pages, parsing those pages,
and saving the data will be similar. The key is to find the patterns in page
structure and the data points on each page.

LOADING DATA
Once you have your data, which is sometimes the hardest part, it’s time to load
the data files in your software. Usually (and ideally) this is a straightforward pro-
cess. Most spreadsheet software can easily open its own file format or import
competitor’s file formats. If you’re working with code, most languages let you
import data in various formats (discussed in the next section).

Tip:  Alternatively, you
could open and save a
file directly in the Python
script using the open()
and close() functions.

FIGURE 3.6  Running
Python script to scrape data
in macOS Terminal

74  |  CHAPTER 3:  Handling Data

Just don’t let the ease of loading data trick you into thinking that the software
did it correctly. Check for automatically removed rows with missing values,
switches from characters to numeric data, truncated large numbers, misinter-
pretation of foreign languages, missing headers, and anything else that might
seem out of sorts. Compare the loaded data and the actual data file to see if
the first few rows match and loaded as expected.

The checks you make in the beginning are usually trivial, but can save a lot of
time in the end so that you don’t make your charts based on error-filled data.

FORMATTING DATA
Different visualization tools and implementations use different data formats
(more on this in the next section). The more flexible you are with the structure
of your data, the more possibilities you gain. Make use of data formatting
applications, couple that with a little bit of programming know-how, and you
can get your data in any format you want to fit your specific needs.

Tip:  It is a terrible feeling
when you think you are
nearly done with a visuali-
zation project only to real-
ize that you messed up in
the beginning and basically
have to start over. Check
your data early.

Stay Skeptical
Data, and by extension, visualization, can feel like it provides concrete-
ness to things that are abstract and fuzzy. However, data has its own
challenges with bias, errors, and uncertainty because data is generated
by and collected by people. On FlowingData, I keep a running list of
mistaken data. The following is a sample:

■■ When geolocation makes everyone think you stole their phone
(datafl.ws/7m0): An exact address was reported when it
should’ve been a range of addresses.

■■ Algorithm leads to arrest of the wrong person (datafl.ws/7lz):
This was due to faulty facial recognition.

■■ Honesty research likely faked data (datafl.ws/7ly): Research-
ers studied honesty, but the analysis doesn’t work if the data
is made up.

■■ Study retracted after finding a mistaken recoding of the data
(datafl.ws/7m1): Researchers found that a hospital program
reduced hospitalizations, until they realized the data was not
coded as they expected.

When you load a dataset, stay skeptical and always wonder if what you’re
seeing makes sense.

Formatting Data  |  75

Various data formats, the tools available to deal with these formats, and using
code to shift between formats are described next.

DATA FORMATS

People most commonly work with data in Excel. This is fine if you’re going to
do everything from analysis to visualization in the application, but if you want
to step beyond that, you need to familiarize yourself with other data formats.
Which data format you use can change by visualization tool and purpose, but
the following formats cover most of your bases.

Spreadsheets

You’re reading this book. You know the spreadsheet file formats already. The
nice thing about this format is that when you open the files in Excel, Sheets,

Working with Raw Data
When I first learned statistics in high school, the data was always provided
in a nice, rectangular format. All I had to do was plug numbers into an
Excel spreadsheet or my handy graphing calculator (which was the best
way to look like you were working in class but actually playing Tetris).
That’s how it was all the way through my undergraduate education.
Because I was learning about techniques and theorems for analyses, my
teachers didn’t spend much time with raw data.

This is understandable, given time constraints, but in graduate school and
eventually, in my work, the data never seems to be in the right format.
There are missing values, inconsistent labels, typos, and values without
any context. Often, the data is spread across several tables when you
need everything in one table.

These days, I almost always spend as much time formatting and process-
ing data as I do working on the visual parts of a visualization project. This
might seem strange at first, but visualization design comes much easier
when your data comes neatly organized, just like it was back in that high
school introductory course.

Many of the examples in this book will use data that is at least partially
processed so that you get to the visual side of chart-making. When it’s
time to use your own data, remember that the process might not be so
straightforward, which is perfectly normal.

76  |  CHAPTER 3:  Handling Data

or Numbers, you see the data in a familiar grid layout that you can directly
interact with, as shown in Figure 3.7.

Delimited Text

You’re probably familiar with delimited text. If you think of a dataset in the
context of rows and columns, a delimited text file splits columns by a delimiter.
The delimiter is a comma in a comma-delimited file. The delimiter might also
be a tab. It can be spaces, semicolons, colons, slashes, or whatever you want,
although a comma and tab are the most common.

Delimited text is widely used and can be read into most spreadsheet programs
such as Excel or Google Sheets. You can also export spreadsheets as delimited
text. If multiple sheets are in your workbook, you usually have multiple delim-
ited files, unless you specify otherwise.

This format is also good for sharing data with others because it doesn’t depend
on any program.

Here’s what the small spreadsheet example with two data points looks like as
comma-delimited text:

id,val
1,100
2,110

FIGURE 3.7  Basic spreadsheet
view with two data points

Formatting Data  |  77

Fixed-Width Text

Whereas delimited text separates columns of data by a delimiter, fixed-width
text specifies columns by the position of each number or character. For exam-
ple, a row of fixed-width data might be ten characters long. The first column
might be defined as characters one to four. The second column might be five
to six, and a third column might be seven to ten.

This file format tends to be less common. It seems to come up when the data
provider wants to reduce file size or a rectangular, delimited file format does
not work for the given data.

A fixed-width version of the previous two data points might look like the
following:

0001100
0002110

Characters one through four represent the id with leading zeros, and characters
five through seven represent val.

JSON

JavaScript Object Notation (JSON) is a common format for the Web. It’s designed
to be both machine- and human-readable; however, if you have a lot of it in
front of you, it’ll probably make you cross-eyed if you stare at it too long. It’s
based on JavaScript notation, but it’s not dependent on the language. While
there are a lot of specifications for JSON, you can usually get by with just the
basics. It uses brackets and key-value pairs.

[
 { "id": 1, "val": 100 },
 { "id": 2, "val": 110 }
]

XML

Extensible Markup Language (XML) is a common format on the Web. There
are lots of types and specifications for XML, but at the most basic level, it is
a text document with content enclosed by markup that starts with < and ends
with >. There is a start tag, like <data>, and an end tag, like </data> (with the
forward slash). Data points are usually in between the start tag and end tags.
Here is how our two data points could be formatted as XML:

<data>
 <row>
 <id>1</id>
 <val>100</val>
 </row>

Visit json.org for the full
specification of JSON. You
don’t need to know every
detail of the format, but
it can be handy at times
when you don’t under-
stand a JSON data source.

http://json.org

78  |  CHAPTER 3:  Handling Data

 <row>
 <id>2</id>
 <val>110</val>
 </row>
</data>

Shapefile

The shapefile format is specifically for geographic data. It was developed by
and is maintained by Esri, the company behind the mapping tool ArcGIS. It’s
an open specification and has become the de facto format for sharing spatial
data beyond just points with latitude and longitude.

The file format encodes points, lines, and polygons. While an actual shapefile is a
single file, the usable format is a directory of files that specifies both geographic
geometries and data that is connected to the geometries. The directory and
the files in the directory share the same name, just with different extensions.

For example, as shown in Figure 3.8, a shapefile for state boundaries provided
by the U.S. Census Bureau contains seven files with the same name tl _ rd22 _
us _ state. The files with extensions .dbf, .shp, and .shx specify data for each
shape, geometry, and shape ordering, respectively, and are included with every
shapefile. The other files, not required by the specifications, include metadata
about the geometries.

FORMATTING TOOLS

You can format data by writing quick, one-off scripts that land in the trash or
disappear into the file archives after you’re done. After you’ve written a few
scripts, you recognize patterns in the logic, so it’s not super hard to write new

See www.w3.org/XML
for XML details and
specifications.

Check out the documenta-
tion for shapefiles from
Esri at https://datafl
.ws/7m5.

FIGURE 3.8  Shapefile that
specifies boundaries in the
United States

http://www.w3.org/XML
https://datafl.ws/7m5
https://datafl.ws/7m5

Formatting Data  |  79

scripts for specific datasets, but it does take time. Enter the tools to handle the
boilerplate routines, which can save time.

Spreadsheet Applications

If all you need is simple sorting, or you just need to make small changes to
individual data points, your favorite spreadsheet software is always available.
Take this route if you’re OK with manually editing data. Otherwise, try the tools
that follow, or go with a custom coding solution (especially if you have a large,
complex dataset that could get messed up in a spreadsheet).

OpenRefine

OpenRefine, previously called Google Refine, which itself was the evolution of
Freebase Gridworks, is an open-source tool to clean and format your data. On
the surface, the tool looks like spreadsheet software when you load a dataset,
but the focus is on making your data more usable. You can find inconsistencies
in your data, consolidate multiple datasets in a relatively easy way, and search
the data more flexibly than with spreadsheets.

For example, say you have an inventory list for your kitchen. You can load the
data in Refine and quickly find inconsistencies such as typos or differing clas-
sifications. Maybe “fork” was misspelled as “frk,” or you want to reclassify all
the forks, spoons, and knives as utensils. You can easily find these things with
OpenRefine and make changes. If you don’t like the changes, you can revert
to the old dataset with a simple undo.

If anything, OpenRefine is a good tool to keep in your back pocket. It’s free to
download and runs locally on your computer.

Tabula

PDF files are good for sharing documents that are meant to be read or used
as a reference. The PDF format is not ideal for sharing tables of data that
you want to load in visualization software. Sometimes, that’s just how the
data comes, though, so you can either avoid using it, manually translating
data from a document to a spreadsheet, or use Tabula to pull data more
automatically. Tabula, shown in Figure 3.9, is probably the less headache-
inducing solution.

Open a PDF with Tabula, select the pages with tables, and the software lets
you export data files. The process is not fully automated, and sometimes the
software gets stuck because tables in PDF files are not standardized, but it
usually takes care of the tedious parts.

Download the open-source
OpenRefine and view
tutorials on how to make
the most out of the tool at
openrefine.org.

Download Tabula at tabula.
technology. The project is
also available on GitHub at
https://github.com

/tabulapdf/tabula.

http://openrefine.org
https://github.com/tabulapdf/tabula
https://github.com/tabulapdf/tabula

80  |  CHAPTER 3:  Handling Data

Mr. Data Converter

Often, you might get all your data in Excel or as a comma-delimited file, but
then need to convert it to another format to fit your needs. This is almost always
the case when you create visualization for the Web. Mr. Data Converter, shown
in Figure 3.10, is a free and simple tool that lets you copy and paste data and
quickly convert it to various formats, such as JSON or XML. Shan Carter made
it when he was a graphics editor for the New York Times.

FIGURE 3.9  Tabula helps you
extract data from PDF files.

FIGURE 3.10  Mr. Data Converter
makes switching between data
formats easy.

Formatting Data  |  81

Either you can run it from the site or download the code to run it locally on
your computer. You can also extend the application for your own data formats.

FORMATTING WITH CODE

Although point-and-click software can be useful, sometimes, the applications
don’t quite do what you want. Some software doesn’t handle large data files
well; they get slow, or they crash.

What do you do at this point? You can throw your hands in the air and give
up; however, that wouldn’t be productive. Instead, you can write some code to
get the job done. With code you gain flexibility, and you can tailor your scripts
specifically for your data.

Now, jump right into an example on how to switch between data formats with
a quick script.

SWITCHING BETWEEN DATA FORMATS

Tool Used: Python

Go back to the scraped comma-delimited file income-scraped.csv. Each row
represents a family income and the age of the householder who answered the
survey. The first rows look like this:

famindex,AGE,FTOTINC
1,45,114000
2,37,280000
3,60,184000
4,70,250100
5,79,33040
6,60,168000
7,56,557000
8,69,84500
9,54,128800
10,72,28500

Say you want the data as XML in the following format:

<?xml version="1.0" encoding="UTF-8"?>
<rows>
 <row>
 <famindex>1</famindex>
 <AGE>45</AGE>
 <FTOTINC>114000</FTOTINC>
 </row>

Try Mr. Data Converter at
https://shancarter

.github.io/mr-data-

converter or download
the source on GitHub at
https://github.com/

shancarter/Mr-Data-

Converter to convert
your Excel spreadsheets to
a web-friendly format.

Note:  This example uses
Python, but like the scrap-
ing example, the logic
translates to other lan-
guages. So, if Python is not
for you, think about how
you might apply the logic
with a different tool.

https://shancarter.github.io/mr-data-converter/
https://shancarter.github.io/mr-data-converter/
https://shancarter.github.io/mr-data-converter/
https://github.com/shancarter/Mr-Data-Converter
https://github.com/shancarter/Mr-Data-Converter
https://github.com/shancarter/Mr-Data-Converter

82  |  CHAPTER 3:  Handling Data

 <row>
 <famindex>2</famindex>
 <AGE>37</AGE>
 <FTOTINC>280000</FTOTINC>
 </row>
 <row>
 <famindex>3</famindex>
 <AGE>60</AGE>
 <FTOTINC>184000</FTOTINC>
 </row>
 <row>
 <famindex>4</famindex>
 <AGE>70</AGE>
 <FTOTINC>250100</FTOTINC>
 </row>

 ...
</rows>

Each family unit is enclosed in <row> tags with a <famindex>, <AGE>, and
<FTOTINC>, which match the fields in the CSV file.

To convert the CSV into the preceding XML format, you can use the following
code snippet:

import csv

fields = None
with open('income-scraped.csv') as csvfile:

 reader = csv.reader(csvfile, delimiter=",")
 for row in reader:

 # Save header variables
 if fields == None:
 fields = row
 print('<?xml version="1.0" encoding="UTF-8"?>')
 print("<rows>")
 else:
 # Add family unit
 famunit = '<row>'
 famunit += '<' + fields[0] + '>' + row[0] + '</' +
fields[0] + '>' # famindex
 famunit += '<' + fields[1] + '>' + row[1] + '</' +
fields[1] + '>' # AGE
 famunit += '<' + fields[2] + '>' + row[2] + '</' +
fields[2] + '>' # FTOTINC

Formatting Data  |  83

 famunit += '</row>'

 # Print family unit
 print(famunit)

 print("</rows>")

As before, you import the necessary modules. You only need the csv module
in this case to read in income-scraped.csv.

import csv

The second line of code opens income-scraped.csv to read using the open()
function and then reads it with the csv.reader() method.

with open('income-scraped.csv') as csvfile:
 reader = csv.reader(csvfile, delimiter=",")

Notice the delimiter is specified as a comma. If the file were a tab-delimited
file, you could specify the delimiter as ‘\t’.

Then you can print the opening lines of the XML file in line 3.

print('<?xml version="1.0" encoding="UTF-8"?>')
print("<rows>")

In the main chunk of the code, you can use a for loop through each row of
data and print in the format that you need the XML to be in. In this example,
each row in the CSV header is equivalent to each observation in the XML.

for row in reader:

 # Save header variables
 if fields == None:
 fields = row
 print('<?xml version="1.0" encoding="UTF-8"?>')
 print("<rows>")
 else:

 # Add family unit
 famunit = '<row>'
 famunit += '<' + fields[0] + '>' + row[0] + '</' +
fields[0] + '>' # famindex
 famunit += '<' + fields[1] + '>' + row[1] + '</' +
fields[1] + '>' # AGE
 famunit += '<' + fields[2] + '>' + row[2] + '</' +
fields[2] + '>' # FTOTINC

84  |  CHAPTER 3:  Handling Data

 famunit += '</row>'

 # Print family unit
 print(famunit)

Each row has three values: the index, householder age, and family income.

End the XML conversion with its closing tag:

print("</rows>")

There are two main steps here:

1.	 Read the data in.
2.	 Iterate over the data, changing the row in some way.

It’s the same logic if you go the other direction and convert the resulting XML
back to CSV. As shown in the following snippet, the difference is that you use
a different library to parse the XML file:

from bs4 import BeautifulSoup

fields = None
with open('income-scraped-to-xml.xml') as xmlfile:

 xmlread = xmlfile.read()

 soup = BeautifulSoup(xmlread, features='xml')

 # Start file
 f = open('xml-back-to-csv.csv', 'w')

 # Write rows to file
 f.write(",".join(['famindex', 'AGE', 'FTOTINC'])+'\n')
 rows = soup.findAll('row')
 for row in rows:
 f.write(','.join([row.famindex.string, row.AGE.string,
row.FTOTINC.string])+'\n')

 # Close file
 f.close()

Instead of importing the csv module, you import the BeautifulSoup module.
Remember, you used BeautifulSoup to parse the HTML from the sample web
pages. However, this time you pass ‘xml' to BeautifulSoup().

You can open the XML file for reading with open() and then assign the con-
tents to the xmlread variable. At this point, the contents are stored as a string.

Formatting Data  |  85

To parse, pass the xmlread string to BeautifulSoup to iterate through each
<row> in the XML file. Use findAll() to fetch all the rows, and finally, like you
did with the CSV to XML conversion, iterate through each row, printing the
values in your desired format.

The previous has one small wrinkle in how the file is saved. In the previous
snippets, you use print(). In this snippet, you open a new file, xml-back-to-
csv.csv, and then write to the file with write() instead of printing, and at the
end, you close the file with close().

This takes you back to where you began. The following is the first 10 rows of
the output file, which should look familiar:

famindex,AGE,FTOTINC
1,45,114000
2,37,280000
3,60,184000
4,70,250100
5,79,33040
6,60,168000
7,56,557000
8,69,84500
9,54,128800
10,72,28500

To drive the point home, here’s the code to convert the CSV to JSON format:

import csv

fields = None
with open('income-scraped.csv') as csvfile:

 reader = csv.reader(csvfile, delimiter=",")
 for row in reader:

 # Save header variables
 if fields == None:
 fields = row

 else:

 # Start JSON string
 if row[0] == "1":
 famunit = '['
 else:
 famunit = ''

 # Add family unit

86  |  CHAPTER 3:  Handling Data

 famunit += '{'
 famunit += '"' + fields[0] + '":' + row[0] + ',' #
famindex
 famunit += '"' + fields[1] + '":' + row[1] + ',' #
AGE
 famunit += '"' + fields[2] + '":' + row[2] #
FTOTINC
 famunit += '}'

 # Close set if at end
 if (row[0] == "200"):
 famunit += ']'
 else:
 famunit += ','

 # Print family unit
 print(famunit)

Go through the lines to figure out what’s going on, but again, it’s the same
logic with different output. Here’s what the JSON looks like if you run the
preceding code:

[
 {"famindex":1,"AGE":45,"FTOTINC":114000},
 {"famindex":2,"AGE":37,"FTOTINC":280000},
 {"famindex":3,"AGE":60,"FTOTINC":184000},
 {"famindex":4,"AGE":70,"FTOTINC":250100},
 {"famindex":5,"AGE":79,"FTOTINC":33040},
 {"famindex":6,"AGE":60,"FTOTINC":168000},
 {"famindex":7,"AGE":56,"FTOTINC":557000},
 {"famindex":8,"AGE":69,"FTOTINC":84500},
 {"famindex":9,"AGE":54,"FTOTINC":128800},
 {"famindex":10,"AGE":72,"FTOTINC":28500},
...
]

This is the same data, with index, age, and income, but in a different format.
Computers just love variety.

PROCESSING DATA
Finding, loading, and formatting data are mostly moving data around between
files and locations. These steps are important so that you can work with data
using the tools available. As you start to explore and analyze your data, you’ll
need to process it—aggregate, filter, and calculate—to find patterns.

Filtering and Aggregating Sampled Data  |  87

This is essentially the early stages of an analysis, which should be considered
an exploratory phase more than a set of fixed steps to follow. But there are
operations that tend to come up more often.

For example, you might be interested in only a subset of the data, in which
case, you need to filter. The sampled income data in this chapter comes from a
larger representative sample of the United States. I narrowed it down to people
who were employed and reported an income, and for the sake of simplicity,
I showed only 200 observations instead of 2 million.

Maybe you’re interested in comparing groups, but the data represents indi-
viduals within each group. You could aggregate for each group and calculate
means and medians. If the dataset is big, it might be worth sampling for a
more manageable size. If you have probabilities, it might be worth running
simulations to produce samples or run tests.

This is part of the fun of working with data because you finally have something
to look at and analyze, and if you have interesting data, there are interesting
stories to find. However, you must be extra careful because it’s not just mov-
ing around data. You’re mushing data together and pulling things apart. Be
careful with the math and the interpretations to avoid miscommunication and
becoming someone who accidentally publishes a misleading chart.

FILTERING AND AGGREGATING
SAMPLED DATA
Tool used: Python

In this example, you come back to Python for basic data processing. You will
need the library NumPy, which makes it easier to work with data in Python. You
also need the pandas library, which provides analysis and data manipulation
functions. Remember that Python is a general-purpose programming language,
but you can use libraries for a focus on data.

Note:  My own preference
is to switch to R (if I’m not
using it already) when I
enter the data processing
stage, because the stage
is tightly coupled with the
analysis process. But that’s
what works for me. There
are many paths tool-wise
that can lead to the same
results.

NumPy is a helpful Python library for working with data. Download it
at numpy.org and follow the installation instructions. The pandas library
makes it easier to analyze and manipulate data. Download and install at
pandas.pydata.org.

http://numpy.org
http://pandas.pydata.org

88  |  CHAPTER 3:  Handling Data

Instead of writing a script, start the Python interpreter in your terminal or
console by entering python (or python3, depending on your setup). This lets
you enter code line by line and get immediate output. When you start the
interpreter, you get a prompt that starts with >>> where you can enter code.

Import numpy and pandas.

import numpy as np
import pandas as pd

Load the data with read _ csv() from the pandas library.

people = pd.read_csv('income-scraped.csv')

To see the first few rows of the data to make sure it loaded correctly, use the
head() method.

people.head()

This is what you get:

 famindex AGE FTOTINC
0 1 45 114000
1 2 37 280000
2 3 60 184000
3 4 70 250100
4 5 79 33040

With data loaded, it’s straightforward to subset. The following uses bracket
notation to subset family units with a householder who is older than 40:

over40 = people[people.AGE > 40]

Using the head() method, you can see the first rows, and you can see that only
family units with householders older than 40 are shown:

 famindex AGE FTOTINC
0 1 45 114000
2 3 60 184000
3 4 70 250100
4 5 79 33040
5 6 60 168000

Instead of subsetting, you can mark each row as a family unit with a householder
who is older than 40. The following creates a new column called isover40:

people['isover40'] = people['AGE'] > 40

Then you can calculate the median family income by group.

Wrapping Up  |  89

people.groupby(['isover40'])['FTOTINC'].median()

You can also calculate the overall median income.

people['FTOTINC'].median()

Maybe you want more granular age groups, such as a group for every 10 years
of age. You can calculate it as follows, which creates an agegrp column:

people['agegrp'] = (people['AGE'] / 10).apply(np.floor) * 10

Then you can use groupby() like before but with the agegrp column.

people.groupby(['agegrp'])['FTOTINC'].median()

You get medians for each 10-year age group, where 20 indicates 20 to 29,
30 indicates 30 to 39, and so on.

agegrp
20.0 42000.0
30.0 88000.0
40.0 59000.0
50.0 94400.0
60.0 84500.0
70.0 43210.0
80.0 31400.0
90.0 16900.0

These calculations are based on a small sample, so don’t put too much weight
on the interpretations. Ideally, this gives you a good idea of how filtering and
aggregating can work. Most data-centric languages provide useful subsetting
and aggregation functions. If not, I’d look for something else since the basic
functions are used frequently throughout the analysis.

WRAPPING UP
This chapter covered where you can find the data you need and how to man-
age it after you have it. This is an important step in the visualization process.
A visualization is only as interesting as its underlying data. You can dress up
a graphic all you want, but the data (or the results from your analysis of the
data) is still the substance, and now that you know where and how to get your
data, you’re already a step ahead of the pack.

You also got your first taste of programming. You scraped data from a web-
site and then formatted and rearranged that data, which will be useful in

90  |  CHAPTER 3:  Handling Data

later chapters. The main takeaway is the logic in the code. You used Python,
but you could have used a different language. The logic is similar. When you
learn one programming language (and if you’re a programmer, you can attest
to this), it’s much easier to learn other languages.

You don’t always have to use code of course. Sometimes, there are point-and-
click applications that make your job a lot easier, and you should take advantage
of that when you can. In the end, the more tools you have in your toolbox, the
less likely you’re going to get stuck somewhere in the process.

OK, you handled data. Now, it’s time to get visual. In the next several chapters,
you will ask questions about the data, make visualizations to answer the
questions, and use charts to communicate insights to an audience.

Ch.4

Visualizing Time

92  |  CHAPTER 4:  Visualizing Time

Businesses grow, public opinion changes, populations shift, communities evolve,
user counts stagnate, and weight fluctuates. Time passes. With time series
data, you can see how things change and by how much. This chapter covers
different types of time-series datasets and the charts you can use, depending
on what you’re looking for. You look at time every day. It’s on your computer,
your phone, and your watch. It’s in your car. It’s on your calendar. Even without
a clock, you feel time as you wake up and go to sleep. The sun rises, and it
sets. Time moves forward, and sometimes it feels like it’s standing still. If we’re
lucky, we get older. So, it’s only natural to look at data over time.

Time-series data lets you see how things change through trends, events,
and cycles.

Trends represent a shift, such as an increase or a decrease, over a range of time
or specific points in time when something significant happens. When the
trends and events seem to happen again and again, you start to see repeating
patterns or cycles.

Some charts show these patterns better than others. You’ll learn about the
options in the following sections. You also get your hands dirty with R and
Adobe Illustrator—two programs that go great together.

TRENDS
Are things getting better, worse, or staying the same? Is there growth or
decline? Trends in data represent patterns in a certain direction. To see these
patterns, you need more than a single data point. Instead, you must visualize
data over a range of time to make comparisons between points and to see
the data overall.

For example, Figure 4.1 shows the rise of married couple households with dual
income and no kids (DINKs) between 1980 and 2022. There is an overall trend
upwards with a small dip in the early 2000s. The lines highlight increases and
decreases by connecting points in time. The surrounding charts show the
trends for other household types, such as a decrease for households with two
earners and one kid.

The timespan between 1980 through 2022 is the same for each chart, but
the y-axis scales are different. The chart for DINKs uses a scale from 34% to
42% of married couple households, whereas the chart for two earners and
one kid spans only 10% to 12%. This was to highlight the trends over the
absolute changes.

Trends  |  93

Had the question behind the graphic been more about the distribution of
household types instead of the rise of dual income and no kids, it might have
been better to use the same y-scale for every chart.

Either way, you would be able to compare percentages in 2022 against other
years. If you used, say, a pie chart, the comparisons would be less straightfor-
ward, because the chart type focuses on parts of a whole rather than how
something changes over time.

Tip:  Select scales based
on what you want to show
and the question you’re
trying to answer. Choose
truthfully.

FIGURE 4.1  “More Dual Income, No Kids,” https://datafl.ws/dink

https://datafl.ws/dink

94  |  CHAPTER 4:  Visualizing Time

Pick chart types that highlight your insights instead of forcing readers to make
connections.

BAR CHART FOR TIME

The bar chart is one of the most common chart types. It is steady. It is universal.
You’ve probably made some. The bar chart can be used to visualize various
types of data, but now look at how it can be used in the context of time.

Figure 4.2 shows a basic framework. The horizontal axis, also known as the x-axis,
represents time. It defines where to place points from left to right. In this case,
the range of time is from January to June in a given year, and each increment
is a month. The axis could also be by year, by day, by hour, or by some other
unit of time. Bar width and bar spacing do not represent values in this example.

The vertical axis, also known as the y-axis, represents the scale for the values
for a given point in time. Figure 4.2 shows a linear scale where units are evenly
spaced across the range of the axis. The scale of the y-axis defines the height
of each bar. The first bar, for example, goes up to one unit, whereas the high-
est bar goes up to four units.

This is important. All charts use visual encodings, which are the sizes, shapes,
positions, angles, lengths, directions, and colors that represent your data. For
bar charts, height is the visual encoding. The lower the value is, the shorter
the bar will be. The greater a value is, the taller a bar will be. The heights of
all the bars should be proportional to the values, so that when one value is

FIGURE 4.2  Bar chart framework

Trends  |  95

twice that of the other, the bar for the greater value should
be twice the height of the other. So, you can see that the
height of the four-unit bar in April is twice as tall as the two-
unit bar in February.

Many programs, by default, set the lowest value of the y-axis
to the minimum of the dataset, as shown in Figure 4.3. In this
case, the baseline is set at 1. The April bar is not twice the
height of the February bar anymore. The bar for February is
one-third that of April. The bar for January is nonexistent. The
point: Always start the value axis of a bar chart at zero. Otherwise, the chart
provides incorrect comparisons.

MAKING A BAR CHART

Tool used: R

Dataset: Winners from Nathan’s Hot Dog Eating Contest, book.flowingdata
.com/vt2/ch4/data/hot-dog-contest-winners.csv

It’s time to make your first chart using real data, and it’s an important part of
history, vital to our existence as humans. These are the results of Nathan’s Hot
Dog Eating Contest for the past three decades. Oh, yes.

In case you’re unfamiliar with the competitive eating circuit, Nathan’s Hot Dog
Eating Contest is an annual event that happens every July 4. That’s Independ-
ence Day in the United States. Competitors celebrate freedom by eating as
many hot dogs as they can in 10 minutes.

Throughout the late 1990s, the winners ate 10 to 20 hot dogs and buns (HDBs)
in about 15 minutes. However, in 2001, Takeru Kobayashi, a professional eater
from Japan, obliterated the competition by eating 50 HDBs. That was more
than twice the amount anyone in the world had eaten before him. American
eater Joey Chestnut arrived in 2007 to break the world record with 66 HDBs.
Chestnut’s legend began. Except for 2015, when Matt Stonie won the competi-
tion, Chestnut has won every year since.

How much has the HDB count increased over the years?

In R, load data for contest winners from 1980 to 2023 with the read.csv()
function, as shown here. Remember that the file location is relative to your
current working directory.

Load data
winners <- read.csv("data/hot-dog-contest-winners.csv")

Research shows that peo-
ple perceive some visual
encodings more efficiently
than others. Some interpret
such results as a cue to
avoid certain encodings,
but practitioners tend to be
less judgmental. Find more
information on encodings
at https://datafl
.ws/percep.

Note:  Always start the
value axis of a bar chart at
zero when you’re dealing
with all positive values.
Anything else is visually
misleading, because the
height of the bars must be
proportional to the values
they represent.

FIGURE 4.3  Bar graph with nonzero axis

http://book.flowingdata.com/vt2/ch4/data/hot-dog-contest-winners.csv
http://book.flowingdata.com/vt2/ch4/data/hot-dog-contest-winners.csv
https://datafl.ws/percep
https://datafl.ws/percep

96  |  CHAPTER 4:  Visualizing Time

Alternatively, you can pass a URL to read.csv() for the same result.

winners <- read.csv("https://book.flowingdata.com/vt2/ch4/data
/hot-dog-contest-winners.csv")

Use head() to see the first few rows of the loaded data. Make sure it loaded
as expected.

First rows in dataset
head(winners)

You should see the following data. There are five columns for the year, the
winner(s) during that year, the number of HDBs eaten, the competitor’s country,
and whether or not the winner set a record.

> head(winners)
 year winner hotdogs country record
1 1980 Paul Siederman & Joe Baldini 9.75 United States 0
2 1981 Thomas DeBerry 11.00 United States 1
3 1982 Steven Abrams 11.10 United States 1
4 1983 Emil Gomez 10.50 Mexico 0
5 1984 Birgit Felden 9.50 Germany 0
6 1985 Oscar Rodriguez 11.75 United States 1

The data is stored as a data frame in R, and you can access each column with
the dollar sign ($) operator. For example, to access the values in the hotdogs
column of the winners data frame, enter the following:

Using dollar sign operator
winners$hotdogs

This returns the values in the column, starting with 9.75, 11.00, and so on. Try
using the dollar sign with other columns to see what you get.

Use the barplot() function to make a bar chart that shows the hotdogs values:

Default bar chart
barplot(winners$hotdogs)

Figure 4.4 shows the default bar chart. It shows a series of bars with an
upward trend.

The default chart has no labels on the x-axis. In this example, you want to show
the years from the year column. Pass the values to the names.arg argument
in barplot().

Year labels
barplot(winners$hotdogs, names.arg=winners$year)

https://book.flowingdata.com/vt2/ch4/data/hot-dog-contest-winners.csv
https://book.flowingdata.com/vt2/ch4/data/hot-dog-contest-winners.csv

Trends  |  97

Year labels appear on the x-axis of the bar chart, space permitting, as shown
in Figure 4.5.

Use the question mark operator, ?, to see documentation for what else you
can do with barplot().

Help docs for barplot()
?barplot

FIGURE 4.4  Default chart of
number of hot dogs and buns
eaten, using barplot() in R

FIGURE 4.5  Bar chart with
labels for years

98  |  CHAPTER 4:  Visualizing Time

To remove the borders around the bars, set the border argument to NA; to
change the space in between bars, set space to a proportion of bar width
between 0 and 1; to add x-axis and y-axis titles, use xlab and ylab, respectively;
to add a title on top, use main.

Axis labels
barplot(winners$hotdogs,
 names.arg=winners$year,
 border=NA,
 space=.1,
 xlab="Year",
 ylab="Hot dogs and buns (HDB) eaten",
 main="Contest Winners")

Figure 4.6 shows a bar chart with titles and different bar spacing from
the default.

We’ll come back to this example. For now, note how R has functions that you
can pass data to. You can change the values you pass to function arguments
for labeling and aesthetics, and you can always see what you can change and
how you can do it through documentation.

FIGURE 4.6  Bar chart with titles

Trends  |  99

LINE CHART

You’re probably familiar with this one. As the name suggests, the line chart uses
a line to connect points ordered chronologically. The x-axis typically represents
time, and the y-axis represents values, so a single coordinate represents a value
at a given point in time. Figure 4.7 shows the geometry.

The slope of the line represents the change. The line goes up when there is an
increase in value, the line goes down when there is a decrease in value, and
the line remains flat when there is no change.

Unlike the bar chart, which must have a baseline of zero, the line chart does
not because it uses slope for a visual encoding. You compare one position
against another to see how much something changed.

However, this also means you must be careful with how much or how little you
stretch the scales. As shown in Figure 4.8, a stretched scale on the y-axis can
make a shift appear more dramatic, and a squished scale can make changes
less obvious.

Some suggest maintaining a 45-degree angle at the maximum shift, but this
is not a hard rule. Choose based on context. If a change is significant in the
data’s context, then a steeper slope might be better, but if a small shift is just
that, then adjust the scale to match the level of importance.

FIGURE 4.7  Line chart framework

100  |  CHAPTER 4:  Visualizing Time

MAKING A LINE CHART

Tool used: R

Dataset: Winners from Nathan’s Hot Dog Eating Contest, book.flowingdata
.com/vt2/ch4/data/hot-dog-contest-winners.csv

Making a line chart in R is similar to how you made a bar chart, except instead
of the barplot() function, you use plot(). If you’re starting with a fresh R ses-
sion, load the hot dog data again with read.csv() and assign the data frame
to winners.

Load data
winners <- read.csv("data/hot-dog-contest-winners.csv")

Before you make the line chart, use par() to set the graphical parameter las
to 1. This tells R to set axis labels horizontally. Notice that the previous R charts
have y-axis labels that are rotated 90 degrees.

Graphical parameter to make axis labels horizontal
par(las=1)

You can use par() to set other graphical parameters, such as background
color, margins, fonts, and axis types, but keep it simple for now. Enter ?par
for documentation.

Use plot() by providing the year on the x-axis and hotdogs on the y-axis; set
the type to l, which stands for “line”; and set axis titles and the main title with
xlab, ylab, and main.

Line chart with plot()
plot(winners$year, winners$hotdogs,
 type="l",
 xlab="",
 ylab="Hot dogs and buns (HDB) eaten",
 main="Nathan's Hot Dog Eating Contest, Winning Results,
1980-2023")

Note:  Sometimes visu-
alization design can seem
like a checklist of rules, but
a lot of the choices you
make should be based on
the dataset you’re showing.
Use design to highlight
noteworthy patterns in
context.

FIGURE 4.8  Different scales over the same range

http://book.flowingdata.com/vt2/ch4/data/hot-dog-contest-winners.csv
http://book.flowingdata.com/vt2/ch4/data/hot-dog-contest-winners.csv

Trends  |  101

You get the line chart shown in Figure 4.9, which shows the same trend as the
bar chart from Figure 4.6.

Just for fun, check out the other types you can pass to type in plot() for other
chart types, as shown in Figure 4.10.

FIGURE 4.9  Line chart that
shows an upward trend

FIGURE 4.10  Other chart
types with plot()

102  |  CHAPTER 4:  Visualizing Time

Go back to the line chart. It could use some annotation to point out important
bits, such as the sudden spike by Kobayashi in 2001. The text() function lets
you add words to your charts. The following places a label at the x-y-coordinate
(2001, 50) for the year 2000 and 50 hot dogs. The pos argument specifies text
alignment. In this case, it is set to 2 so that the text appears to the left of the
coordinate.

Text
text(2001, 50,
 "In 2001, Takeru Kobayashi nearly doubled the previous
record with 50 HDBs.",
 pos=2)

The text appears at the spike, shown in Figure 4.11.

The text is too long to fit on one line, though, so the words run off the chart
on the left. Draw the line chart again with plot() and then put line breaks
where you want to with text().

Line chart with plot()
plot(winners$year, winners$hotdogs,
 type="l",
 xlab="",
 ylab="Hot dogs and buns (HDB) eaten",
 main="Nathan's Hot Dog Eating Contest, Winning Results,
1980-2023")

FIGURE 4.11  Annotating a
line chart

Trends  |  103

Text with line breaks
text(2001, 48,
 "In 2001, Takeru Kobayashi
 nearly doubled the previous
 record with 50 HDBs.",
 pos=2)

This puts the full text in the body of the chart, as shown in Figure 4.12. Note
that the y-coordinate this time is 48 instead of 50. The text() function places
words by the corner (which corner depends on pos). Decreasing the y-coordinate
moves the words down on the chart so that the middle of the text body lines
up with the 2001 spike.

As usual, find out more about the text() function via the documentation.

Find documentation
?text

If you’re placing annotation at many points on a chart, you probably don’t
want to manually add line breaks like you did earlier. The strwrap() function
can come in handy here, as shown next. It breaks up words by number of
characters into a vector, which is a common data structure in R that contains
values that are of the same type, such as numeric or characters. Use paste()
to put the words back together with a line break character, \n. In this example,
the following snippet yields the same results as earlier:

Note:  One of the best
things about R is that you
can always easily access
documentation in the con-
sole. Enter a question mark,
?, followed by the function
name, and you get a help
page. The documentation
includes a description of
the function, usage and
defaults, details about
usage, and examples that
you can run. This is great
for learning new functions
in R and getting unstuck
when you run into errors.

FIGURE 4.12  Annotation with
line breaks

104  |  CHAPTER 4:  Visualizing Time

Wrapped text
anno <- "In 2001, Takeru Kobayashi nearly doubled the previous
record with 50 HDBs."
text(2001, 48,
 paste(strwrap(anno, 30), collapse="\n"),
 pos=2)

While barplot() and plot() make different types of charts, the approach is
similar. You pass data to the functions and set labels through the arguments,
which you can look up in the documentation. Use par() to set overall graphical
parameters, and use text()to layer words over your charts.

STEP CHART

A standard line chart uses a straight line to connect one point to another. It
implies a steady change between the points, which makes sense for something
that is continuously shifting, such as world population. You visually estimate
change by the slope of the line between two points in time.

But some things stay at a value for periods of time, and then the data immedi-
ately jumps up or falls. Interest rates, for example, can stay the same for months
and then increase or decrease right after an announcement. Use a step chart,
as shown in Figure 4.13, for this type of data.

FIGURE 4.13  Step chart
basic framework

Trends  |  105

Instead of connecting points directly, the line stays at the same value until
there is a change, at which point it jumps up or falls to the next value with a
vertical segment. You end up with a bunch of steps. Get it? Steps.

MAKING A STEP CHART

Tool used: R

Dataset: Postage prices in the United States, book.flowingdata.com/vt2
/ch4/data/us-postage.csv

While it still amazes me that we can stick a letter in the mailbox and somehow
it gets to its destination, the cost to mail a letter in the United States has risen
over the years. If you still use physical mail, you’ve probably noticed the upticks.
How much did prices increase and when?

Load the data in R with read.csv(). Like in the previous example, you can also
pass the function a URL if you don’t have the data saved on your computer.

Load data
postage <- read.csv("data/us-postage.csv")

Check out the first few rows with head() to make sure the data loaded and
looks like what you expect.

First few rows
head(postage)

You should get the following, where each row represents a price change. There
are two columns: Year and Price to mail the first ounce of mail.

> head(postage)
 Year Price
1 1863 0.06
2 1883 0.04
3 1885 0.02
4 1917 0.03
5 1919 0.02
6 1932 0.03

The summary() function lets you check the ranges, mean, and median of each
column. Pass the postage data frame to the function.

Summary
summary(postage)

http://book.flowingdata.com/vt2/ch4/data/us-postage.csv
http://book.flowingdata.com/vt2/ch4/data/us-postage.csv

106  |  CHAPTER 4:  Visualizing Time

You get summary statistics for each column. The Year minimum is 1863, the
maximum is 2023, and the median is 1995. The Price minimum is 2 cents, and
the maximum is 66 cents. This is useful to get a rough idea of what the data
looks like and to make sure the data loaded as expected.

> summary(postage)
 Year Price
 Min. :1863 Min. :0.0200
 1st Qu.:1970 1st Qu.:0.0700
 Median :1995 Median :0.3200
 Mean :1981 Mean :0.2869
 3rd Qu.:2012 3rd Qu.:0.4550
 Max. :2023 Max. :0.6600

From the previous example, you already know how to make a line chart with
plot(). Give it a try with this postage data.

Plot as regular time series
par(las=1)
plot(postage$Year, postage$Price, type="l",
 xlab="Year", ylab="Postage Rate (Dollars)",
 main="US Postage Rates for Letters, First Ounce, 1863-2023")

Check out Figure 4.14. The price to mail the first ounce didn’t change that much
during the earlier decades. Prices decreased in the beginning of this data. Then
they started to rise relatively quickly in the 1970s.

FIGURE 4.14  Line chart showing
postage rates over time

Trends  |  107

However, the line chart suggests a steady increase in between years. Price
should stay the same for a while and then get an instant bump on an increase.
Just set type to s (for step) instead of l (for line) in the call to plot().

Step chart with labels
par(las=1)
plot(postage$Year, postage$Price, type="s",
 xlab="Year", ylab="Postage Rate (Dollars)",
 main="US Postage Rates for Letters, First Ounce, 1863-2023")

Figure 4.15 shows a more accurate presentation of the rising postage prices.

Maybe you want to focus on a narrower time range, such as 1991 and on.
Subset the data using R’s bracket notation, as shown here:

Change limits ("zoom")
postagesub <- postage[postage$Year >= 1991,]

Rows that represent prices from 1991 and on are assigned to postagesub.
Use head() to look at the first few rows. The first Year observation is for 1991.

> head(postagesub)
 Year Price
17 1991 0.29
18 1995 0.32
19 1999 0.33
20 2001 0.34
21 2002 0.37
22 2006 0.39

Note:  The data frame is
two-dimensional, and with
the bracket notation, you
indicate rows and columns.
For example, if you enter
postage[1,1], you will
get the value in the first
row and column of the
postage data frame. By
passing a vector of TRUE
and FALSE values, also
known as Booleans, to the
first part of the bracket,
you subset to only the rows
that are TRUE.

FIGURE 4.15  Step chart of
postage prices

108  |  CHAPTER 4:  Visualizing Time

Pass postagesub to plot() for a zoomed-in view of the time series.

Par(las=1)
plot(postagesub$Year, postagesub$Price, type="s",
 xlab="Year", ylab="Postage Rate (Dollars)",
 main="US Postage Rates for Letters, First Ounce, 1991-2023")

Zooming in lets you show more detail in the selected range, as shown in
Figure 4.16.

The smaller, more frequent steps mean quicker changes to the price, whereas
longer, horizontal lines indicate periods with no change. Sometimes these steps
are more interesting, and other times the trends you see in a continuous line
are more interesting. Your choice should be specific to the context of your data.

SMOOTHING

Sometimes your data might be too noisy with a lot of spikes and dips, even
though there’s a pattern to show. It might be worth smoothing your data,
which can highlight trends over the noise.

There are various ways to do this, which depend on the format of your data.
You could try bigger bins, such as aggregating over months instead of days

FIGURE 4.16  Narrower range
on the step chart

Trends  |  109

or hours instead of minutes. You could try a moving average, which takes the
average over set intervals of time. If your data is unevenly spaced over time,
you could try local regression, which is like fitting many lines to a dataset that
connect to make a continuous curve. If you already have a line and just want
to smooth out the edges, you could try a spline, which fits functions along the
range of data points. Covering each of these methods would stretch beyond
the scope of this book, but a quick search will yield useful explanations, and
there are packages in R that make using the methods straightforward. In the
example that follows, you learn how to apply a spline.

USING A SPLINE

Tool used: R

Dataset: Baby names, book.flowingdata.com/vt2/ch4/data
/nathan-beatrice.tsv

The Social Security Administration releases baby name data each year. It’s a
fun time series dataset to play with because there are almost 100,000 names
that date back to 1880.

You can download the baby names data directly from the Social Security
Administration website (https://datafl.ws/7mc), but the years are split into
individual files. To make it easier, load the data via the babynames package
in R. Either install through the package manager or use install.packages()
in the console.

Install package
install.packages("babynames")

I’ve used the baby name dataset a bunch of times with FlowingData
projects. It never seems to get old.

■■ The Most Trendy Names in US History, https://datafl.ws/7m8

■■ The Most Unisex Names in US History, https://datafl.ws/7m9

■■ Guessing Names Based on What They Start With, https:
//datafl.ws/7ma

My curiosity started when Hilary Parker went looking for the most poi-
soned name in U.S. history, which was her own: https://datafl.ws/7mb.

http://book.flowingdata.com/vt2/ch4/data/nathan-beatrice.tsv
http://book.flowingdata.com/vt2/ch4/data/nathan-beatrice.tsv
https://datafl.ws/7mc
https://datafl.ws/7m8
https://datafl.ws/7m9
https://datafl.ws/7ma
https://datafl.ws/7ma
https://datafl.ws/7mb

110  |  CHAPTER 4:  Visualizing Time

Once installed, use library() to load the package.

Load package
Library(babynames)

Each row of data shows the year, sex, name, number of babies who were given
the name (n), and the proportion (prop) in that year.

 year sex name n prop
 1 1880 F Mary 7065 0.0724
 2 1880 F Anna 2604 0.0267
 3 1880 F Emma 2003 0.0205
 4 1880 F Elizabeth 1939 0.0199
 5 1880 F Minnie 1746 0.0179
 6 1880 F Margaret 1578 0.0162
 7 1880 F Ida 1472 0.0151
 8 1880 F Alice 1414 0.0145
 9 1880 F Bertha 1320 0.0135
10 1880 F Sarah 1288 0.0132

Pull out two totally random names from the dataset.

nathan <- babynames[babynames$name == "Nathan"
& babynames$sex == "M",]
beatrice <- babynames[babynames$name == "Beatrice"
& babynames$sex == "F",]

Draw a line chart that shows the time series for each name.

Line chart, no smoothing
par(las=1, mar=c(4,5,3,2))
plot(nathan$year, nathan$prop,
 type="l",
 xlab="", ylab="Proportion")
lines(beatrice$year, beatrice$prop,
 lwd=2)

Figure 4.17 shows the chart. Beatrice is the line with the peak in the early 1900s,
and Nathan is the other line.

There are spiky parts in both lines that might benefit from smoothing
with a spline. Use the spline() function with coordinates from nathan
and beatrice.

natcoords <- spline(nathan$year, nathan$prop)
beacoords <- spline(beatrice$year, beatrice$prop)

Trends  |  111

Pass the new coordinates to plot() and lines() like you did earlier. In Figure 4.18,
you can see the smoother lines. Use the col argument to add some color while
you’re at it.

FIGURE 4.17  Line chart
for two names

FIGURE 4.18  Line chart
with splines

112  |  CHAPTER 4:  Visualizing Time

par(las=1, mar=c(4,5,3,2))
plot(natcoords,
 col="#ac5c5a",
 type="l",
 xlab="", ylab="Proportion")
lines(beacoords, lwd=2, col="#176572")

You won’t want to smooth your time series data all the time, but it can help
place more emphasis on a trend or pattern and less on noise and small fluc-
tuations. In this case, the smoother lines are more aesthetically pleasing, so it’s
worth the trade-off for me. Make the call with your own data. The good news
is that it takes only one function call to check it out.

EVENTS
You won’t always look for trends with time series data. Instead of highlight-
ing what’s increasing and decreasing, the individual events might be the
point of focus. When was the last time something happened? How often
does something occur? Are the events rare, or do they occur more often
than previously thought?

On March 10, 2023, Silicon Valley Bank was unable to fulfill its responsibilities,
so the Federal Deposit Insurance Corporation (FDIC) took over. Figure 4.19
shows the bank plotted with previous bank failures.

The focus is on individual events rather than highlighting a trend of bank
failures. Charts that show separation between geometries is good for pulling
focus to each point.

TIMELINE

The timeline is all about when things happen. As shown in Figure 4.20, in
its simplest form, there is just one axis for time, and you place symbols
along the axis. More events mean more symbols, and fewer events mean
fewer symbols.

With the focus on individual points, the chart can get crowded if you have a
lot of events to show. You can either stretch out the timeline for more space
or go with a different view.

Note:  Try changing
the value passed to n in
spline() to see how the
resulting line becomes
more or less broad.

Events  |  113

FIGURE 4.19  “Bank Failures in the United States, Since 2008,” https://datafl.ws/banks

https://datafl.ws/banks

114  |  CHAPTER 4:  Visualizing Time

MAKING A TIMELINE

Tool used: R

Dataset: EGOT winners, book.flowingdata.com/vt2/ch4/data
/EGOT-winners.csv

EGOT is an acronym for Emmy, Grammy, Oscar, and Tony awards. The awards
are given to those with exceptional performances in television, music, movies,
and theatre, respectively. An EGOT winner is someone who has won an award
from each category. How many people have earned EGOT status? When did
they do it?

Load the EGOT dataset with read.csv(). You can either load the file locally
or load it with the URL mentioned earlier. The following assumes a local file
in a data folder. Remember to set your working directory in R to where you
downloaded the data.

Load data
egots <- read.csv("data/EGOT-winners.csv")

Each row in the dataset represents a winner, when they won awards, and
what they won awards for. Check the dimensions of the egots data frame
with dim().

Column names
dim(egots)

This returns two values, where the first one is the number of rows and the
second one is the number of columns:

[1] 18 15

So, there are 18 rows and 15 columns, which means that as of this writing there
have been 18 EGOT winners.

FIGURE 4.20  Timeline framework

http://book.flowingdata.com/vt2/ch4/data/EGOT-winners.csv
http://book.flowingdata.com/vt2/ch4/data/EGOT-winners.csv

Events  |  115

To see the column names, you can check the first few rows with head() like in
previous examples. You can also use colnames() to just see the column names.

Column names
colnames(egots)

This returns the column names in the order they appear in the data frame. The
first column name is each person’s name; the emmy _ year is when the person
won an Emmy; the emmy _ title is the category they won the award in; the
emmy _ desc is the show they won for. There are similar columns for the other
awards. The last two columns, completion _ year and category, are when
they achieved the EGOT and what role they play in the industry, such as actor,
composer, or director.

 [1] "name" "emmy_year" "emmy_title"
"emmy_desc"
 [5] "grammy_year" "grammy_title" "grammy_desc"
"oscar_year"
 [9] "oscar_title" "oscar_desc" "tony_year"
"tony_title"
[13] "tony_desc" "completion_year" "category"

In this example, you are mostly interested in completion _ year. Check the range
of the column with range() and the dollar operator to indicate the column.

Range of completion years
range(egots$completion_year)

You get two values: the minimum and maximum. That’s 1962 and 2023.

[1] 1962 2023

In the previous R examples, you made charts with built-in chart types, but
you can also visualize data piecewise, which provides flexibility in what you
want to make. Start with a blank plot with plot() and set the type to n, which
stands for “no plotting.” Also, set yaxt and bty to n so that there is no y-axis
or bordering box.

Blank plot
plot(NA,
 xlim=range(egots$completion_year), ylim=c(0,2),
 xlab="Completion Year", ylab="",
 yaxt="n", bty="n", type="n")

Shown in Figure 4.21, you get a blank plot with an x-axis that goes from 1962
to 2023 and an axis label. The y-axis ranges from 0 to 2. It’s not much to look
at now, but this is how I start many of my custom plots.

116  |  CHAPTER 4:  Visualizing Time

Draw a horizontal line at y-coordinate 1 with abline().

Baseline
abline(h=1)

Then use points() to draw, well, points at the EGOT completion year on the
x-axis, all at 1 on the y-axis. The rep() function creates a vector of repeating
first values that is the length specified by the second value. The following cre-
ates a vector of eighteen 1s passed to points():

Points
points(egots$completion_year,
 rep(1, dim(egots)[1]))

The chart has points and a line across now, as shown in Figure 4.22.

There’s an issue. Some years, there are multiple people who achieved EGOT
status, but multiple points just look like one on the timeline. For example, look
at the data points for 2001:

egots[egots$completion_year == 2001, c("completion_year", "name")]

Mel Brooks and Mike Nichols earned the status that year:

 completion_year name
10 2001 Mel Brooks
11 2001 Mike Nichols

One quick solution is to use jitter(), which adds a small amount of noise
to the data so that the points are not in the same spot. The following uses
jitter() with both the x- and y-coordinates. While you’re making edits, use
pch to change the point symbol, bg to change the fill color, and cex to increase
the size of each point.

Note:  When points are
plotted in the same area,
the overlap can obscure
patterns and make the data
unreadable. This is called
overplotting.

FIGURE 4.21  Blank plot
with x-axis

FIGURE 4.22  A horizontal line
added with abline() and
points added with points()

Events  |  117

Jitter
points(jitter(egots$completion_year),
 jitter(rep(1, dim(egots)[1]), factor=2),
 pch=21, bg="#efe2aa", cex=2)

The years with multiple winners show more clearly, as shown in Figure 4.23.

The timeline could use annotation. Make a note for the first EGOT winner
Richard Rodgers. To find his information, use tail() to see the last few rows
in the egots data frame.

Last rows of data frame
tail(egots)

Put together the annotation with paste0(), which is like paste(), but it assumes
no space in between the text fragments. Then use text() to place the annota-
tion for Rodgers.

Annotation
anntext <- paste0(egots$name[18], "\ncompletes first \nEGOT in ",
 egots$completion_year[18])
text(egots$completion_year[18]-1,
 1.5,
 anntext,
 pos=4)

Text placement is relative to text size and chart size, so the actual spot that text
appears can be finicky. So, you might need to adjust the coordinates some to
get the text where you want. In the previous code, the x-coordinate is on the
year minus 1, and the y-coordinate is set at 1.5. Figure 4.24 shows the chart
with the note.

You could make this timeline with a call to plot() with type set to p (for points),
but this should give you an idea of how you can add components separately.
This gives you the flexibility to make a chart how you want instead of settling
for defaults.

FIGURE 4.23  Points with jitter

118  |  CHAPTER 4:  Visualizing Time

DOT PLOT

Like a bar chart, the dot plot is a general chart type that can be used for various
types of data. In the context of time, one axis represents time, and the other
represents values, as shown in Figure 4.25.

If you use each dot to represent an event, the geometry is similar to that of a
timeline but with multiple categories or groups.

FIGURE 4.24  Timeline with
annotation

FIGURE 4.25  Dot
plot framework

Events  |  119

MAKING A DOT PLOT

Tools used: R, Illustrator

Dataset: EGOT winners, book.flowingdata.com/vt2/ch4/data
/EGOT-winners.csv

Instead of just looking at when individuals completed their EGOT status, it might
be more informative to look at when each person won their awards. What is
the path each person took to get to EGOT? Load the dataset with read.csv()
if you haven’t done that yet.

Load data
egots <- read.csv("data/EGOT-winners.csv")

Your goal is to make a dot plot where each row is a winner’s timeline. There
will be a point for each award won, and each award gets its own color dot.
Make a vector of the columns that indicate when each person won their award
and indicate the colors for each award type. The following uses hexadecimal
format to represent colors, which is commonly used in web development.
Most of the color tools from Chapter 2, “Choosing Tools to Visualize Data,” will
automatically convert colors to hexadecimal format for you.

Awards and colors
year_cols <- c("emmy_year", "grammy_year", "oscar_year", "tony_
year")
award_colors <- c("#3F78E7", "#cb84cc", "#BDB63B", "#83c4b3")

Make a blank plot with labels set to blank and type set to n.

Blank plot
par(las=1)
plot(NA, xlim=c(1930, 2023),
 ylim=c(0, dim(egots)[1]),
 type="n", xlab="", ylab="")

Again, it’s not much to look at now (Figure 4.26), but think of it as your
blank canvas.

Use a for loop to add points for each award type specified in year _ cols.
As a reminder, the code inside the brackets, {}, runs multiple times through
the range provided. In this example, you iterate through year _ cols and i
increases to the length of the vector.

Points
for (i in 1:length(year_cols)) {
 points(egots[,year_cols[i]], 1:dim(egots)[1], pch=19)
}

http://book.flowingdata.com/vt2/ch4/data/EGOT-winners.csv
http://book.flowingdata.com/vt2/ch4/data/EGOT-winners.csv

120  |  CHAPTER 4:  Visualizing Time

This gives you a point for each award and winner, as shown in Figure 4.27.

Color would be good. Apply the colors from award _ colors in the for loop:

With color
plot(NA, xlim=c(1930, 2023),
 ylim=c(0, dim(egots)[1]),

FIGURE 4.26  Blank plot
for multiple timelines

FIGURE 4.27  Dots for all
the awards

Events  |  121

 type="n", xlab="", ylab="")
for (i in 1:length(year_cols)) {
 points(egots[,year_cols[i]], 1:dim(egots)[1],
 pch=21, cex=1.5,
 col="black",
 bg=award_colors[i])
}

Each dot is colored accordingly with a black border, as shown in Figure 4.28.

To add connecting lines, create another for-loop before the calls to points()
so that the lines are under the points. R runs code in the order that you pro-
vide, so you can imagine stacking layers on top of a chart with each snippet,
like you might use brush strokes to add layers in a painting.

Connect
plot(NA, xlim=c(1930, 2023),
 ylim=c(0, dim(egots)[1]),
 type="n", xlab="", ylab="")
for (j in 1:dim(egots)[1]) {
 endyrs <- range(egots[j, year_cols])
 lines(endyrs, c(j, j))
}

FIGURE 4.28  Color
applied to points

122  |  CHAPTER 4:  Visualizing Time

for (i in 1:length(year_cols)) {
 points(egots[,year_cols[i]], 1:dim(egots)[1],
 pch=21, cex=1.5,
 col="black",
 bg=award_colors[i])
}

In Figure 4.29, the lines make it clear that the points are connected on each
horizontal.

The y-axis is kind of useless right now, though. It’s just numbers by default. It’d
be useful to have the entertainers’ names. Make a blank plot again, using the
mar argument in par() to set a wider left margin. Set the y-axis type (yaxt)
in plot() to n.

Blank plot, margin
par(las=1, mar=c(4,12,2,2))
plot(NA, xlim=c(1930, 2023),
 ylim=c(0, dim(egots)[1]),
 yaxt="n", bty="n",
 type="n", xlab="", ylab="")

Use axis() to add the y-axis manually with labels set to the name column.
Also add vertical grid lines.

FIGURE 4.29  Connecting
the points with lines

Events  |  123

Axis and grid
axis(side=2, at=1:dim(egots)[1], labels = egots$name,
 tick=FALSE)
grid(NULL, 0, lty=1, lwd=.5)

This gives you a blank plot with names on the left side, shown in Figure 4.30.
If you did not set the wider margin on the left with par(), the names would
run off the screen.

Add the lines and points like before:

Lines and points
for (j in 1:dim(egots)[1]) {
 endyrs <- range(egots[j, year_cols])
 lines(endyrs, c(j, j))
}
for (i in 1:length(year_cols)) {
 points(egots[,year_cols[i]], 1:dim(egots)[1],
 pch=21, cex=1.5,
 col="black",
 bg=award_colors[i])
}

FIGURE 4.30  Custom axis
and grid lines

124  |  CHAPTER 4:  Visualizing Time

Figure 4.31 shows a chart with a timeline for each entertainer.

Remember that if any of the functions seem foreign to you, enter a ? followed
by the function name in the R console to check out the documentation.

Save the chart as a PDF file. With the R GUI, you can select the menu File ➢
Save As and in RStudio select Export ➢ Save As PDF. Alternatively, you can
use pdf() to export, but I prefer to use the menus so that I can quickly test
dimensions.

Edit the Chart  It’s time to try Adobe Illustrator for small edits. Nothing too
crazy. You’ll add notes to indicate what each color represents, change fonts,
and align text.

Open the saved PDF file. You can also use egot-winners-raw-dots.pdf found
in this chapter’s source download if you didn’t export from R. You should see
a view like Figure 4.32.

Save the PDF as an Illustrator file (with a .ai extension) so that you don’t
lose edits.

From the tools menu, pick the Direct Selection tool. Click and drag over the
outer edge of the chart, as shown in Figure 4.33. This is a rectangle-shaped

If you’ve never used Adobe
Illustrator, check out the
quick-start guide for
the basics at https:
//datafl.ws/7o2.

FIGURE 4.31  Points
and lines added

https://datafl.ws/7o2
https://datafl.ws/7o2

Events  |  125

clipping mask, which encapsulates the objects in its area and hides objects
that are beyond the mask border. Press Delete or Backspace to remove it. In
this example, nothing is hidden by the mask, but deleting the mask makes it
easier to select objects in the chart.

Still using the Direct Selection tool , select the names on the left. In
Figure 4.34, you can see the blue dots on the left side of each name label. These
are the anchors and indicate that the text is left-aligned. The labels look right-
aligned now, but if you change the size or the font of the text, that will change.

Figure 4.35 shows alignment options. With the name labels still selected, click
the icon that has lines that are aligned right. The blue dots should be on the
right of the labels now.

To align the labels based on the new anchors, click the icon in Figure 4.36 that
shows bars on the left and a vertical line on the right. This aligns objects to
the right.

Change the font through the menu shown in Figure 4.37. Your options will vary
depending on what fonts you have installed on your computer.

FIGURE 4.32  PDF opened in Illustrator

126  |  CHAPTER 4:  Visualizing Time

FIGURE 4.33  Clipping mask
selected for deletion

FIGURE 4.34  Anchors on the left

Events  |  127

Figure 4.38 shows labels in Inconsolata.

Figure 4.39 shows options for changing stroke weight, among
other things. Figure 4.40 shows color options.

The general theme for editing charts is that you can select
objects and change their properties—stroke, color, size, align-
ment, and other things—by clicking options. You can remove
objects. You can add objects. You immediately see what the
changes look like so that you can adjust as needed.

Figure 4.41 shows a few more simple edits to the dot plot,
mainly direct labels to specify what each color means and
a source on the bottom. Try using the Type tool to add the
annotation to your chart. With the Type tool selected, you can
click the artboard and add your text, or you can click and drag
to add a text box with word wrapping.

If you’re new to this kind of illustration software, all the buttons
can seem like a lot. It takes some getting used to, but you don’t
have to learn how to use every single tool available. The ones
mentioned will get you far with chart editing, and with practice,
you figure out what options you need most of the time. So,
don’t worry if it seems like a bit much. You’ll see more in upcoming examples.

FIGURE 4.35  Text alignment options FIGURE 4.36  Object alignment options

FIGURE 4.37  Font options

128  |  CHAPTER 4:  Visualizing Time

FIGURE 4.38  Changed font
and alignment

FIGURE 4.39  Stroke options

FIGURE 4.40  Color options

Events  |  129

FIGURE 4.41  Added labels
with Type tool

Visual Hierarchy
For visualization, software tends to default to flat charts where each
element is given equal visual weight. The axes stand out just as much
as the data itself, and background data elements look the same as the
points you want to draw focus to.

For example, Figure 4.42 shows a line chart that represents the number
of Social Security cards distributed each year between 1880 to 2018, for
boys and girls. All the elements—data lines, grids, axes, and labels—are
visually on the same level.

130  |  CHAPTER 4:  Visualizing Time

To make the data stand out more from the chart’s supporting elements,
design with a visual hierarchy in mind. Make the elements that are more
important look more important. This directs the reader where to look
and how to interpret your chart.

The updated chart in Figure 4.43 highlights the data better with trend
lines that are different colors from the rest of the chart. Labels are smaller.
Grid lines are more subtle. Lines are labeled.

Match visual weight to the insight you want to communicate.

FIGURE 4.42  Flat line chart

Cycles  |  131

CYCLES
Weeks repeat with five weekdays and a weekend. Years repeat every twelve
months. The four seasons repeat every year. Are there patterns tied to these
repetitions? If there are, are the overall patterns changing, or is it the same
thing every cycle?

Figure 4.44 shows the percentage of people in different age groups who are
alone over a 24-hour period. There is a recurring pattern of spikes in the morn-
ing and dips in the afternoon. The overall percentage rises by age.

When visualizing cycles, you often use similar geometries that you’ve used so
far but cut the data in a way that focuses on repetition. Then place the slices
in a way that encourages comparisons.

FIGURE 4.43  Line chart with different visual weights

132  |  CHAPTER 4:  Visualizing Time

MULTI-LINE CHART

The geometry of a multi-line chart is the same as a standard line chart with
only one line. The former just has more lines on the same scale. Each line might
represent a category, a group, or, like in the following example, a timeframe.

The tricky part is when you have a lot of lines to draw. The chart can quickly
get too busy and start to look like spaghetti. The key is to differentiate the
lines so that you can tell which line represents what. If that doesn’t work, you
might consider splitting up the data into multiple charts.

MAKING A MULTI-LINE CHART

Tools used: R, Adobe Illustrator

Dataset: Marital status by age, https://book.flowingdata.com/vt2/ch4
/data/mar_w_age_all.tsv

People are getting married later in life. In the 1940s, people typically married
in their early 20s, whereas these days, people typically marry in their late 20s

FIGURE 4.44  “Alone Time,” https://datafl.ws/alone

https://book.flowingdata.com/vt2/ch4/data/mar_w_age_all.tsv
https://book.flowingdata.com/vt2/ch4/data/mar_w_age_all.tsv
https://datafl.ws/alone

Cycles  |  133

and early 30s. That’s just for people who get married. There are many beyond
their 30s who are not married. How common is it for someone to be married,
and how does that change with age? How much has the commonness of mar-
riage shifted over the years?

Load a dataset of marital status by age, from 1900 to 2021, with read.csv().

Load data
marstat <- read.csv("data/mar_w_age_all.tsv", sep="\t")

Use head() to see the first rows of the data and to make sure it loaded correctly.
You should get a row for each year, age, and marital status. The n column is the
number of people, and prop is the proportion of the population with a given
AGE who recorded a given marital status, MARST, that year.

 YEAR AGE MARST n prop
1 1900 0 6 1916975 1
2 1900 1 6 1750946 1
3 1900 2 6 1825203 1
4 1900 3 6 1825021 1
5 1900 4 6 1826842 1
6 1900 5 6 1804255 1

Marital status is encoded as numbers in this dataset, which comes from the
decennial Census in the United States. Use unique() on the MARST column to
see the values.

unique(marstat$MARST)

You get a vector of values 1 through 6.

[1] 6 1 2 4 5 3

A MARST of 1 represents married and the spouse is present, which is the only
status you need for this example. Subset using bracket notation.

Subset married
married <- marstat[marstat$MARST == 1,]

For now, you only want the rows for the year 2021, so use the bracket notation
again on the married subset.

married2021 <- married[married$YEAR == 2021,]

The married2021 subset shows the proportions for married people in 2021 at
different ages.

134  |  CHAPTER 4:  Visualizing Time

 YEAR AGE MARST n prop
5800 2021 15 1 4514 0.001041716
5805 2021 16 1 5579 0.001283682
5811 2021 17 1 6648 0.001556808
5817 2021 18 1 15756 0.003486387
5823 2021 19 1 40502 0.009453335
5829 2021 20 1 98929 0.022342840

Start a blank chart with plot() like in previous examples, with the type set to
n. Set the y-axis limits from 0 to 100, with ylim set to c(0, 100). Also set xaxt
and yaxt to n to add custom axes in the next step.

par(las=1)
plot(married2021$AGE, married2021$prop*100,
 ylim=c(0, 100),
 type="n",
 bty="n", xaxt="n", yaxt="n",
 xlab="", ylab="",
 main="Proportion of people married, by age")

Add axes with axis(): first the x-axis with no ticks and then the y-axis with
labels from 0 to 100, in increments of 20.

axis(1, tick=FALSE)
axis(2,
 at=seq(0, 100, by=20),
 labels=paste0(seq(0, 100, by=20), "%"),
 tick=FALSE)

Then use grid() to add a grid with default settings.

grid()

This gives you a blank chart, shown in Figure 4.45. You’ve done this a few
times now. Basically, you’re setting up your canvas to draw some data instead
of using plot() to draw the full chart.

Use lines() to draw a line showing married proportions by age.

lines(married2021$AGE, married2021$prop*100,
 lwd=2,
 col="#b31dc2")

Now, you have a line chart in Figure 4.46.

To draw a chart with multiple lines, start the same way with a blank chart using
plot(), axis(), and grid().

Cycles  |  135

FIGURE 4.45  Blank chart
with axes and grid

FIGURE 4.46  Line chart for
single year

136  |  CHAPTER 4:  Visualizing Time

All available years
plot(married2021$AGE, married2021$prop*100,
 ylim=c(0, 100),
 type="n",
 bty="n", xaxt="n", yaxt="n",
 xlab="", ylab="")
axis(1, tick=FALSE)
axis(2,
 at=seq(0, 100, by=20),
 labels=paste0(seq(0, 100, by=20), "%"),
 tick=FALSE)
grid()

To keep things spicy, use abline() to add a baseline at zero.

abline(h=0, lwd=2)

Instead of using a subset for 2021, you want to draw a line for each avail-
able year. Use unique() to find each year in the YEAR column of the married
data frame.

years <- unique(married$YEAR)

This assigns a vector of values to years, which is a range of decades from 1900
to 2010, ending with 2021.

[1] 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
2000 2010 2021

Use a for loop to iterate through the years values. Subset for the current year
on each iteration and draw lines with the subset.

for (yr in years) {
 curr <- married[married$YEAR == yr,]
 lines(curr$AGE, curr$prop*100,
 col="#b31dc2")
}

A line is added for each year to the chart shown in Figure 4.47. Although each
line has the same line width, it’s hard to say which line represents the most
recent year and which direction the distribution is going.

To give a sense of movement, you can make the lines for more recent decades
thicker and the lines for older decades thinner. Make a blank plot like before
and then use a for loop to draw a line for each year. Except this time, change
the line width, lwd, when you call lines(), based on how far from 2021 it is.
The line for 2021 will be the thickest with no more than a width of 3, using
the min() function to take the minimum between 3 and the calculated width.

Cycles  |  137

I experimented to get to this point, which will be common when you visualize
your own data.

Change line width for each year
for (yr in years) {
 curr <- married[married$YEAR == yr,]
 lines(curr$AGE, curr$prop*100,
 lwd=min(c(3, 15*1/(2021-yr+.5))),
 col="#b31dc2")
}

In Figure 4.48, you can see the percentages decreasing and the distributions
stretching out over time. There’s a sense of movement in the lines even though
they’re static. Some might argue that it’d be better to make a separate line chart
for each decade, but it’s easier to see the repeated pattern slightly shifted in
the multi-line view.

Edit the Chart  From here, you can export the chart with functions like png()
or pdf(). If the chart is only for your eyeballs, you might just move on to the
next chart to further explore your data. Figure 4.49 shows an example of the
previous chart lightly edited and annotated for clarity.

The spacing, alignment, and font match my taste. Find what works best for
you and your applications.

See an animated version
of multi-line charts for
different marital statuses
at https://datafl
.ws/7m7.

FIGURE 4.47  Multi-line chart

https://datafl.ws/7m7
https://datafl.ws/7m7

138  |  CHAPTER 4:  Visualizing Time

FIGURE 4.48  Specified line
width to show passing time

FIGURE 4.49  Edited
multi-line chart

Cycles  |  139

HEATMAP

The heatmap is a direct translation of a data table. You replace numbers with
colors to represent the values, as shown in Figure 4.50.

You end up with a grid the same size as the original data table, and you find
high and low values based on color. Typically, dark or more saturated colors
mean greater values, and lighter or less saturated colors represent lower values,
but that can easily change based on application.

MAKING A HEATMAP

Tools used: Python, R, Adobe Illustrator

Dataset: Fatal motor vehicle crashes involving alcohol, https://book
.flowingdata.com/vt2/ch4/data/month _ hour _ pct _ matrix.csv

Image for editing: https://book.flowingdata.com/vt2/ch4
/pmat-heatmap.pdf

In 2015, based on data from the National Highway Traffic Safety Admin-
istration, there were 31,917 recorded fatal car crashes that led to 35,092
deaths. Alcohol was involved in many of the crashes, but it varies by time

Note:  This is when the
color-picking tools listed
in Chapter 2 are especially
useful. Select colors that
are relevant to the data
topic, and because heat-
maps rely heavily on color,
make sure readers can see
the differences.

FIGURE 4.50 
Heatmap framework

https://book.flowingdata.com/vt2/ch4/data/month_hour_pct_matrix.csv
https://book.flowingdata.com/vt2/ch4/data/month_hour_pct_matrix.csv
https://book.flowingdata.com/vt2/ch4/pmat-heatmap.pdf
https://book.flowingdata.com/vt2/ch4/pmat-heatmap.pdf

140  |  CHAPTER 4:  Visualizing Time

of day. The heatmap from Chapter 2, in Figure 2.12, shows the hourly break-
down by month.

The chart was made in Python, and like with R, you can export figures as
PDF files. This means you can edit the chart in Illustrator. This isn’t specific to
programming languages either. If you can save a file or export an image as a
PDF, you can import it into Illustrator, which is nice if you want to edit by hand.

Edit the Chart  In this example, you’ll focus on editing, but you can download
the scripts if you want to make a heatmap yourself. The Python version uses
the seaborn library to make a heatmap, and the R version uses the symbols()
function to draw a bunch of squares. If you want to skip to the editing, down-
load the PDF version linked at the beginning of this example.

Open the pmat-heatmap.pdf file in Illustrator. Through the File ➢ Save As menu,
save the PDF as an Illustrator file (with the .ai extension). This assures your
edits are saved in the right format when you open the file later.

Remove the clipping masks like before by clicking, dragging, and deleting
with the Direct Selection tool. Try changing the fonts used by selecting
text. Figure 4.51 shows labels with the Inconsolata font, but you can pick
what you want.

You can select each label with a click, but sometimes it’s hard to select text
because other objects in the way. One solution is to select a single text object
and then use Select ➢ Same to automatically select other matching objects.
Figure 4.52 shows the menu options.

You can download the
Python and R scripts
to make a heatmap at
http://datafl

.ws/heatmaps.

FIGURE 4.51  Changing label font

http://datafl.ws/heatmaps
http://datafl.ws/heatmaps

Wrapping Up  |  141

Notice the tick marks for time in Figure 4.52?
You can use the Pen tool to draw straight
line segments.

Maybe you want to rotate the legend so that it’s
horizontal instead of vertical. Use a selection tool
to click and drag on the legend, and then move
your cursor over one of the corners so that a
curved arrow appears. Rotate as you like. Hold
down the Shift key as you rotate, and it forces
rotation in 45-degree increments.

If you selected the full legend with the color
scale and numbers and rotated 90 degrees, you
would have Figure 4.53. To rotate the labels so
that they read horizontally, you could select each
one individually and rotate.

There are only six labels, so that would be
straightforward. However, you can also select
all the labels and via the menu select Object ➢
Transform ➢ Transform Each, and you get the
options in Figure 4.54.

Enter -90° in the Rotate section to make
the labels horizontal. A negative value
rotates an object clockwise, and a posi-
tive value rotates counterclockwise.
From here, you can move elements
around and organize how you want. Try using the Type tool to add head-
ers or other annotations. Figure 4.55 shows an edited heatmap with a header
and a resized legend on the bottom.

WRAPPING UP
It’s fun to explore patterns over time. Time is so embedded in our day-to-
day lives that many aspects of visualizing time series data are intuitive. You
understand things changing and evolving—the hard part is figuring out by
how much and learning what to look for in your charts. Start with questions
about trends, events, and cycles. Let the answers lead you to more questions
and repeat.

FIGURE 4.52  Menu to select
same objects

FIGURE 4.53  Rotated labels

142  |  CHAPTER 4:  Visualizing Time

You used R with Illustrator to accomplish this. With R,
you built the base, and with Illustrator, you developed
a visual hierarchy to direct readers’ attention.

In the next chapter on visualizing categories, you use
these skills and tools with some others. Even though
you’ll work with a different type of data, think about
how you can apply a similar charting and design process.

FIGURE 4.54  Transform Each options

FIGURE 4.55  Edited heatmap

Ch.5

Visualizing Categories

144  |  CHAPTER 5:  Visualizing Categories

What is the best? What is the worst? How does one choice compare to another?
How are totals distributed across categories? The stories we tell with categori-
cal data are based on comparisons. This chapter describes the charts that help
make such comparisons easier.

When analyzing categorical data, you usually look at amounts to figure out scale
and magnitude. Together, the categories might form a total, and you’ll want to
know how the parts of the whole are spread out. Then rank and order categories
in a way that makes sense for your dataset and purpose, which draws focus
to the highs and lows.

In a poll, people might be asked if they approve, disapprove, or have no opin-
ion on an issue. Each category represents an answer, and the sum of the parts
represent a population. We compare metrics across demographics, such as
age, sex, and race. We have food groups. We shop different departments. We
watch and listen to various forms of entertainment.

In the sections that follow, you learn to highlight the differences and similarities
in categorical data. You use what you learned in the previous chapter and get
your first taste of making charts with Python. Then you take a step back from
code and try a couple of streamlined point-and-click tools. See how code and
point-and-click can be used together.

AMOUNTS
How much? How many? These questions are probably why numbers and
data exist in the first place, so there better be ways to visualize the answers.
There are, of course. You have the ever-reliable bar chart, which uses the
length of rectangles to show data, but you can also generalize this as scaled
symbols. Bigger shapes represent greater values, and smaller shapes repre-
sent lesser values.

Figure 5.1 shows how common it is for mathematicians and statisticians to
marry people with different occupations, on a relative scale, using circles. If you
are a mathematician or statistician, you’re a lot more likely than the general
population to marry another mathematician or statistician.

This is from an interactive graphic that lets you see the matches between
hundreds of occupations, based on the American Community Survey. I called
it the “Occupation Matchmaker.” The size of the circles represent likelihood,
so bigger circles mean more likely to marry. Colors represent occupation
categories.

Amounts  |  145

Overall, it’s about how much and how many. Visualization provides a quick way
to demonstrate scale, the range of your data from minimum to maximum, and
how things are distributed in between.

BAR CHART FOR CATEGORIES

Bar charts for categories use the same visual encoding as the bar charts for time
from Chapter 4, “Visualizing Time.” The length of a bar represents a value in the
data, so a longer bar means a greater value, a shorter bar means a lesser value,
and a nonexistent bar means zero (or the data does not exist). The difference
is that instead of using an axis to represent time, the axis is used to represent
categories, as shown in Figure 5.2.

FIGURE 5.1  “Occupation Matchmaker,” FlowingData / https://flowingdata.com/2017/08/28/occupation-matchmaker  /
last accessed 08 February, 2024.

https://flowingdata.com/2017/08/28/occupation-matchmaker

146  |  CHAPTER 5:  Visualizing Categories

Bar charts for categories, like their time-based counterpart, should always start
the value axis at zero. People often try to think of exceptions, but the excep-
tions require a stretch of the imagination and are always wrong.

MAKING A BAR CHART FOR CATEGORIES

Tools used: Python, Illustrator

Dataset: Occupations Married to Physicians, book.flowingdata.com/vt2/ch5/
data/physician-marry.tsv

In the previous chapter, you used R to make a bar chart, and you can apply the
same code in this example. It’ll be a good exercise. However, it’s good to be
multilingual in your data explorations, so it’s time to make a bar chart in Python.

The American Community Survey, which is run throughout the year by the U.S.
Census Bureau, asks people about their occupation. I wondered if people with
a given occupation were more likely to marry others with some other occupa-
tion. Are software engineers more likely to marry other software engineers?
How common is it for a teacher to marry an economist? For a more straight-
forward view than the graphic from Figure 5.1, I made an interactive bar chart
that showed the most common occupations.

The dataset provides a subset. It represents the occupations of spouses who
were married to physicians in 2018 and 2019. You’ll make a bar chart showing
the most common.

Check out the most
common occupations
that marry at https://
datafl.ws/occmar.

FIGURE 5.2  Categorical bar
chart framework

http://book.flowingdata.com/vt2/ch5/data/physician-marry.tsv
http://book.flowingdata.com/vt2/ch5/data/physician-marry.tsv
https://datafl.ws/occmar
https://datafl.ws/occmar

Amounts  |  147

There are many ways to make a bar chart in Python. In this example, you
use three libraries: Matplotlib, seaborn, and pandas. Matplotlib is a general
visualization library, seaborn is built on top of the first to make charting more
straightforward, and pandas makes it easier to handle data in Python. Import
the libraries, as shown here:

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

Load the tab-delimited file physician-marry.tsv with read _ csv() from the
pandas library. The file path is relative to the directory you are in.

Load data
marjobs = pd.read_csv("data/physician-marry.tsv",
delimiter="\t")

This assigns a DataFrame to marjobs, which is a two-dimensional data structure
in Python that is like a data frame in R. This is what it looks like, which should
match the TSV file:

code occname p n
 440 Other managers 0.030421 31477
4850 Sales representatives, wholesale... 0.006934 7175
9130 Driver/sales workers and truck drivers 0.004522 4679
5730 Medical secretaries and administ... 0.000637 659
820 Budget analysts 0.000648 671

4530 Baggage porters, bellhops... 0.000184 190
2700 Actors 0.000468 484
8450 Upholsterers 0.000156 161
2723 Umpires, referees, and other sp... 0.000080 83
8850 Adhesive bonding machine operato... 0.000262 271
[441 rows x 4 columns]

There is one row per occupation. There are four columns that indicate the
occupation code (code, as defined by the Census Bureau), the name of the
occupation (occname), the proportion of physician spouses with the given
occupation (p), and an estimated count (n).

Sort the rows by p with sort _ values().

Sort by most common
marsorted = marjobs.sort_values(by=['p'], ascending=False)

With the data ready, you can set the dimensions of the chart, among other
parameters.

148  |  CHAPTER 5:  Visualizing Categories

Set figure size and margin
sns.set(rc={'figure.figsize':(8,8), 'pdf.fonttype': 42 })

The previous code snippet uses set() from seaborn to set rcParams. This is like
using par() in R to set graphical parameters. The rc stands for “run commands,”
which comes from Unix. The figure will be 8 by 8 inches, and by setting pdf.
fonttype to 42, the text in the chart will be selectable if you export it as a PDF
and edit in Illustrator.

Use subplots() to initialize the figure and axes and then subplots _ adjust()
to set a wider left margin:

fig, axes = plt.subplots(1, 1)
plt.subplots_adjust(left=.5)

The subplots() method can also be used to create a grid of charts in a single
figure, but in the previous code you create a 1 by 1 grid so that you can set
the left margin.

Make a bar chart for the 30 most common occupations that are married to
physicians. Use barplot(), set the x argument to p, the y argument to occname,
and the orientation (orient) to h for horizontal.

P1 = sns.barplot(data=marsorted[0:30],
 x="p", y="occname", orient="h")

Get the figure.

fig = p1.get_figure()

Save the figure as a PDF file.

Save as PDF
fig.savefig("bar-mar.pdf")

You get a horizontal bar chart with 30 bars, each one representing an occupa-
tion, as shown in Figure 5.3. Physicians most commonly marry other physicians
at about 1 in 5.

Like in previous examples, you can take the chart in various directions from
here. If it’s for analysis, you probably don’t need anything more from this
chart. The question is answered. For communication, the chart is still rough
with cut-off labels and no explanation of what is shown. I’m not a fan of the
default color scheme and the gray background. You can work with parameters
to move things around and adjust for your needs, or you can click and drag
in illustration software.

You can set a lot more
parameters, and you
can also set them with
Matplotlib. See the docs
at https://datafl
.ws/7mi.

https://datafl.ws/7mi
https://datafl.ws/7mi

Amounts  |  149

EDITING THE CHART

Like in the previous chapter, open the PDF file
in Illustrator. If you didn’t walk through the
Python script, you can open the bar-mar.pdf
file in the example files linked at the beginning
of the book.

Select the outer edge of the chart with the
Selection tool, and then right-click to get the
menu shown in Figure 5.4. Select Release
Clipping Mask.

The clipping mask hides everything outside its
boundaries, which is why the labels in the origi-
nal PDF are clipped. Figure 5.5 shows the chart
without the clipping mask, so all the occupa-
tion labels and axis labels are visible.

FIGURE 5.3  Horizontal bar
chart of occupations

FIGURE 5.4  Release clipping mask

150  |  CHAPTER 5:  Visualizing Categories

With everything visible, select objects with the selection tools and edit as you
like. Try changing the fonts, experiment with size, edit the colors, and annotate.
Figure 5.6 shows an edited version with shortened labels, a different background
grid, p changed to percentages, a zero-baseline, and some quick words.

These edits are based on personal taste, which has changed for me over time.
I hope that you’ll get a chance to develop your own style as you work on more
charts. This comes with practice, I promise.

Just make sure you don’t accidentally mess up the scales, geometries, or visual
encodings as you manually edit. One way around this is to select the objects
you don’t want to edit and then select Object ➢ Lock ➢ Selection so that they
can’t be changed when you are editing. When you’re done, select Object ➢
Unlock All. You can also lock layers via the Layers window.

SCALED SYMBOLS

Bar charts use length to represent values, which is one dimension. Scaled
symbols use area, which is two dimensions, as shown in Figure 5.7. Different

Note:  Some argue that
editing software should
be avoided, because it’s
too easy to mess up a visu-
alization manually, but the
same applies for code or
point-and-click software.

FIGURE 5.5  Visible labels
without a clipping mask

Amounts  |  151

FIGURE 5.6  Edited
categorical bar chart

symbols and geometries can be used, such as squares, triangles, or icons, but
circles tend to be the most common for now.

In the context of categorical data, each symbol represents a category and is
sized based on the category’s corresponding value. So in the physician mar-
riage example, the circle for other physicians would be the largest, just like
the bar is the longest in the bar chart, as you’ll see in the following example.

The main thing to watch out for is that you size the symbols by area. Visualiza-
tion software often lets you scale symbols, but they vary in how you specify size.

152  |  CHAPTER 5:  Visualizing Categories

Some take radii as input, whereas some will automatically size by area. As shown
in Figure 5.8, if you scale the radius directly by the data, you increase area
exponentially, because the area of a circle is pi times the square of the radius.
You don’t want that. If a value is three times the size of another value, you want
the corresponding symbols to be three times the size (by area) as the other.

Scaled symbols can be useful for showing a lot of categories at once because
their positioning is not constrained to an x-y-coordinate space like a bar chart is.
You can arrange the circles as you like. Although the area-based encoding has a
trade-off (like all charts do): It’s not as easy to see the differences between cat-
egories like with a bar chart. If you want to focus on small differences between
categories, you might want to try a different chart type.

USING SCALED SYMBOLS

Tools used: Python, Illustrator

Dataset: Occupations Married to Physicians, book.flowingdata.com/vt2/ch5/
data/physician-marry.tsv

We’re back with the physician marriage data. This time, you use scaled
symbols instead of the bar chart, which you can do with scatter() from

In more practical terms,
compare large and small
pizza sizes: https:
//datafl.ws/pizza.
It is a very serious matter.

FIGURE 5.7  Scaled
symbols framework

http://book.flowingdata.com/vt2/ch5/data/physician-marry.tsv
http://book.flowingdata.com/vt2/ch5/data/physician-marry.tsv
https://datafl.ws/pizza
https://datafl.ws/pizza

Amounts  |  153

Matplotlib. Start like before by importing the necessary libraries (no seaborn
this time).

import matplotlib.pyplot as plt
import pandas as pd

Load the data and sort by p, taking just the top 10 for now.

Load data
marjobs = pd.read_csv("data/physician-marry.tsv", delimiter="\t")
marsorted = marjobs.sort_values(by=['p'],
 ascending=False)[0:10] # Top 10.

This next part is different. You’re going to line up 10 circles vertically from
greatest at the top and least at the bottom. Specify the coordinates of each
circle in a DataFrame:

Prepare data for circles using bubble plot
mardf = pd.DataFrame({
 "x": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 "y": [10, 9, 8, 7, 6, 5, 4, 3, 2, 1],
 "r": list(marsorted.p * 50000)
})

FIGURE 5.8  Scaling by
area or radius

154  |  CHAPTER 5:  Visualizing Categories

This gives you a DataFrame with three columns for x, y, and r (for “radius”). The
following is what it looks like. The first number in the row is an index.

 x y r
0 1 10 10705.998328
1 1 9 2692.506560
2 1 8 1526.473729
3 1 7 1521.061559
4 1 6 1503.278712
5 1 5 1330.330867
6 1 4 927.607386
7 1 3 757.510595
8 1 2 750.020537
9 1 1 648.928922

Set the rcParams for figure size and font size. In the first example, you set
parameters with set() from the seaborn library, but this time you set the
parameters via Matplotlib.

Figure size
plt.rcParams['figure.figsize'] = (7, 10)
plt.rcParams['pdf.fonttype'] = 42

Use scatter() to make the scaled symbols using the coordinates from the
mardf DataFrame.

Plot
plt.scatter("x", "y", s="r", data=mardf)

Add a label with percentage and occupation name for each circle using
text().

Text
for i in range(0, len(marsorted)):
 thelabel = str(round(100*marsorted.iloc[i].p)) + "%, "
 thelabel += marsorted.iloc[i].occname
 plt.text(1, 10-i, thelabel)

Save the figure as a PDF file.

Save as PDF
plt.savefig("symbols-chart-mar.pdf")

You get 10 circles in a vertical line, as shown in Figure 5.9.

It’s not much to look at, but maybe with some editing and limited vertical
space, it could be of use. But let’s try a wider grid that can accommodate more
occupations on the page or screen.

Amounts  |  155

Import the libraries.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

This time, you import the numpy library, which provides methods that make
handling numbers and doing math easier. Loading the physician-marry.tsv
file is the same. Sort and get the top 49 occupations.

FIGURE 5.9  Scaled
symbols in a line

156  |  CHAPTER 5:  Visualizing Categories

Load data
marjobs = pd.read_csv("data/physician-marry.tsv", delimiter="\t")
marsorted = marjobs.sort_values(by=['p'], ascending=False)[0:49]

Imagine a 7 by 7 grid. Start at the top corner and then move to the right one
position. In terms of x- and y-coordinates, the former increases by one, and
because you stay on the same row, the y-coordinate stays the same. Move to
the right again, and the x-coordinate increases by one again. The y-coordinate
stays the same until you to go down to the next row. The x-coordinate goes
back to the beginning, and the y-coordinate increments by one. You do this
until you get to the last spot in the bottom-right corner. The following snippet
calculates these x- and y-coordinates with a for loop by row and then with
repeat(), by column:

Grid coordinates for a 7x7 grid
x = []
for i in range(0, 7):
 x = x + list(range(0, 7))
y = list(reversed(np.repeat(np.arange(0,7), 7)))

Store the coordinates, the radius size (based on marriage proportions), the
occupation name, and the proportions in a DataFrame.

Prepare data for circles using bubble plot
mardf = pd.DataFrame({
 "x" : x,
 "y" : y,
 "r" : list(marsorted.p * 50000),
 "occname" : list(marsorted.occname),
 "p" : list(marsorted.p * 100)
})

This gives you a DataFrame with five columns assigned to mardf.

Set the rcParams. Make it bigger than last time at 13 by 13 inches, and set the
PDF font type to 42 for editing text later.

Figure size
plt.rcParams['figure.figsize'] = (13, 13)
plt.rcParams['pdf.fonttype'] = 42

Pass the data to scatter().

Plot
plt.scatter("x", "y", s="r", data=mardf)

Amounts  |  157

Add text, this time iterating through mardf for each occupation.

Text
plt.rcParams['font.size'] = 8
plt.rcParams['pdf.fonttype'] = 42
for i in range(0, len(mardf)):
 thelabel = str(round(mardf.p[i], 2)) + "%\n "
 thelabel += mardf.occname[i]
 plt.text(mardf.x[i], mardf.y[i], thelabel,
 horizontalalignment="center")

Save the figure as a PDF.

Save as PDF
plt.savefig("symbols-grid-mar.pdf")

Figure 5.10 shows the result. It’s a 7 by 7 grid, where each circle represents an
occupation. The most common occupation, physician, is in the top left, and
the ordering runs left to right and top to bottom.

As expected, the grid is not the most readable of charts, but it has the right
geometry. You can fix the rest in post.

FIGURE 5.10  Scaled
symbols in a grid

158  |  CHAPTER 5:  Visualizing Categories

EDITING THE CHART

Start with the line of top 10 occupations from Figure 5.9. It’s symbols-chart-
mar.pdf in example files. In Illustrator, use the Direct Selection tool to high-
light the clipping mask, outside box, and axes. Press Delete on your keyboard
to remove them. Select the labels to change the font and size. Figure 5.11 uses
Inconsolata and a smaller font size.

FIGURE 5.11  No more axes,
just scaled circles

Parts of a Whole  |  159

Using the Selection tool select the circles.
Right-click to ungroup the circles, as shown in
Figure 5.12. Then with the circles still selected,
but ungrouped now, navigate to Object ➢
Transform ➢ Transform Each. Through the
menu shown in Figure 5.13, increase the hori-
zontal and vertical size to 120%. This increases
the size of each circle by 20% while maintain-
ing their positions. If you transformed with-
out ungrouping, the circles would collectively
increase in size, which is not what you want in
this case.

Try changing the color of the circles and clean-
ing up the labels with the Type tool to match
Figure 5.14.

Try similar editing with the grid of charts. The
raw output was saved as symbols-grid-mar
.pdf. Work with the sizes, organize the labels,
and remove elements like the axes and border
box to start. Figure 5.15 shows a clean version
using transparency and no borders for the cir-
cles, which puts them more in the background of the labels than with the
single line in Figure 5.14.

Edit the charts to how you want them. This can be a challenge because
you have so many more possibilities than if you were to always stick with
the defaults. It’s the burden of choice. To ease the burden, think about what
you want first and then design toward that goal instead of surveying all
the possibilities and trying to filter. This makes for a more efficient design
process.

PARTS OF A WHOLE
Categorical amounts often belong to an overall total. Demographic groups
belong to an overall population. Portions of your total income go to taxes, to
retirement, and to your checking account. The 24 hours in your day are split
up by different activities. Together the parts form a whole.

FIGURE 5.12  Ungroup menu

160  |  CHAPTER 5:  Visualizing Categories

Which part makes up the largest percentage? Which parts are insignificant
to the overall count? Which parts of the whole are useful? How is the total
distributed across all categories?

Figure 5.16 shows a view from an interactive graphic about the demographics
of others. The premise is that there are millions of people like you when you
break down the population by broad demographics like sex, age, and race.
But even when you look at different groups not like your own, you find areas
of common ground.

FIGURE 5.13  Transform menu

Parts of a Whole  |  161

FIGURE 5.14  Edited line
of scaled symbols

162  |  CHAPTER 5:  Visualizing Categories

An overall count along with a set of square pie charts update when you select
different demographics. Each grouping of squares represents a whole, or 100%.
The highlighted portion represents a portion of the whole.

While you can show percentages separately using the chart types you’ve seen
already, there are views that emphasize how the parts fit together.

FIGURE 5.15  Edited grid of scaled symbols

Parts of a Whole  |  163

PIE CHART

The pie chart was created by William Playfair in the early 19th century, plac-
ing a focus on parts of a whole. However, more recently, there was a short
period of time when a lot people decided that the food-based data slices
weren’t for them. Unlike a bar chart, which uses length to represent values,
the pie chart uses angles, which are more difficult to read as quickly and
accurately. You can read them, but it’s harder to figure out the exact value
each slice represents.

Even with all the haters, the pie chart persevered, and people seem to have
softened their stance that the chart should be avoided at all costs. People still
use pie charts. The chart is familiar to many people, and they read the slices
with little complaint. That seems enough reason to keep the pies around.

The pie chart has limitations just like every chart. Work within those limitations,
and you will be good. Figure 5.17 shows the framework. You start with a circle,
which represents a whole, and then cut wedges, like you would a pie. Each
wedge represents a part of the whole.

The percentage of all the wedges should add up to 100%. Be careful here,
because most software spits out a pie chart whether or not your parts

FIGURE 5.16  “The
Demographics of Others,”
FlowingData / https://
flowingdata.com/2018/
01/23/the-demographics-
of-others  / last accessed
February 08, 2024.

https://flowingdata.com/2018/01/23/the-demographics-of-others
https://flowingdata.com/2018/01/23/the-demographics-of-others
https://flowingdata.com/2018/01/23/the-demographics-of-others
https://flowingdata.com/2018/01/23/the-demographics-of-others

164  |  CHAPTER 5:  Visualizing Categories

sum correctly. The software will just normalize the data as if it were counts.
So, if the sum of the parts is anything other than 100%, you have done some-
thing wrong.

You also must limit the number of slices that you use in a single pie chart. As
shown in Figure 5.18, space is limited to the 360 degrees of a circle. Increase
the number of slices, and it gets harder to compare categories, especially for
the small values.

Try clumping smaller categories into an “other” category or making multiple
pie charts that split up categories in a logical way. If that doesn’t work, you
might need a different chart.

FIGURE 5.17  Pie chart
framework

FIGURE 5.18  Limiting the
slice count

Parts of a Whole  |  165

MAKING A PIE CHART

Tool used: Datawrapper, datawrapper.de

Dataset: Meeting Online, book.flowingdata.com/vt2/ch5/data
/met-online-2010s.txt

There are many ways to make a pie chart. Every visualization tool mentioned
in Chapter 2, “Choosing Tools to Visualize Data,” lets you easily make one. So
far, you’ve made charts in R, Python, and Illustrator, which all have functions
to make a pie chart. There are various ways to get the same result.

For this example, you’ll check out the web-based tool Datawrapper. It’s free to
use for individuals and is very good at helping you make charts for the Web that
work on all devices. You don’t even have to create an account to get started,
which is saying something these days.

Since 2009, researchers at Stanford University have been asking American cou-
ples how they met through the How Couples Meet and Stay Together (HCMST)
survey. They publish the data so that others can also learn from the survey.
The data used here is a small, processed subset of the data to answer a simple
question: how commonly did people meet online in the 2010s?

The data is just two rows and two columns. The first column (waymet) is how
people met, and the second column (p) is the percentage of people who said
they met online or offline.

waymet,p
"Met Online",18.9
"Met Offline",81.1

Navigate to Datawrapper in your favorite browser. If you don’t have an account,
click the Start Creating button. If you have an account, go to the dashboard
and select Create New ➢ Chart. Either way, you should see a place to copy and
paste data, as shown in Figure 5.19.

Copy and paste the two-row data into the text area. Click Proceed. Datawrap-
per smartly guesses data formats and asks that you make sure it guessed right
(Figure 5.20). If it looks right, proceed.

You get a grid of chart types to pick from. Select the pie chart option, and you
get the chart shown in Figure 5.21.

About 1 in 5 couples who met in the 2010s met online. Mystery solved.

Tip:  People often like to
focus on the tools used to
visualize data, but from a
reader’s point of view, a
near-zero percentage of
people care how we make
charts. They just want to
see the chart, which is
liberating in some ways
from a chart-maker point
of view.

Find the full HCMST dataset
at https://data
.stanford.edu

/hcmst2017.

http://book.flowingdata.com/vt2/ch5/data/met-online-2010s.txt
http://book.flowingdata.com/vt2/ch5/data/met-online-2010s.txt
https://data.stanford.edu/hcmst2017
https://data.stanford.edu/hcmst2017
https://data.stanford.edu/hcmst2017

166  |  CHAPTER 5:  Visualizing Categories

There is a Refine tab next to Chart Type that lets you adjust the chart for your
needs. Through the menus, change the color of the “Met Offline” slice to a
light gray to emphasize the “Met Online” slice. Change the number format to
show a percent symbol, as shown in Figure 5.22.

FIGURE 5.19  Adding data in
Datawrapper

FIGURE 5.20  Formatting data

Parts of a Whole  |  167

FIGURE 5.21  Pie chart

FIGURE 5.22  Refine the
pie chart.

168  |  CHAPTER 5:  Visualizing Categories

Use the next tab over to annotate with a title, description, data source, and
other information, as shown in Figure 5.23. Proceed.

At the end of the four-step process, you can either publish or export the chart
to put online or prepare for print. That’s it. With an account, the chart and data
can be saved for later. For more customization options, you must upgrade to
a paid plan, but the free plan is still useful.

DONUT CHART

Your good friend the pie chart also has a lesser cousin: the donut chart. It’s like
a pie chart, but with a hole cut out in the middle so that it looks like a donut,
as shown in Figure 5.24.

Because there’s a hole in the middle, you don’t judge values by angle anymore.
Instead, you use arc length. The same challenges with space and number of
categories apply.

I tend to avoid the donut chart, and I don’t think I’ve ever used a donut chart
to show data in a project. To my eyes, pie charts look better. The hole in the
middle pushes the data to the background, and I’m usually trying to move it
to the foreground. But I leave the choice up to you.

FIGURE 5.23  Annotate
the pie chart.

Parts of a Whole  |  169

MAKING A DONUT CHART

Tool used: Datawrapper, datawrapper.de

Dataset: Meeting Online, book.flowingdata.com/vt2/ch5/data
/met-online-2010s.txt

Sticking with Datawrapper and the HCMST dataset, you can easily switch from
a pie chart to a donut chart. As shown in Figure 5.25, go back to step 3 in the
process, select the Chart Type tab, and click Donut Chart. The settings from
the pie chart stay the same.

Like before, you can refine, annotate, and adjust the layout. Publish or export
when you’re done.

All the charts that Datawrapper offers follow a similar process of loading data,
checking the data, visualizing, and publishing. It’s straightforward with an
intuitive interface, which explains why so many news organizations use the
application.

The trade-off is that you’re limited to the chart types that are offered, and unless
you have access to the paid offering, which is priced more for organizations,
you can’t customize as much.

FIGURE 5.24  Donut
chart framework

http://book.flowingdata.com/vt2/ch5/data/met-online-2010s.txt
http://book.flowingdata.com/vt2/ch5/data/met-online-2010s.txt

170  |  CHAPTER 5:  Visualizing Categories

SQUARE PIE

Not everyone loves pie and donut charts. Sometimes, you just want more visual
accuracy but still want to show the distribution of parts of a whole. Enter the
square pie chart, also known as a waffle chart. Shown in Figure 5.26, it is usually
a 10-by-10 grid for a total of 100 squares, and each cell in the grid represents
a percentage point.

Note:  For FlowingData,
I tend to make more ad hoc
charts, so Datawrapper is
not for me. But if you don’t
need to customize too
much and just need solid
charts (and maps) to share
on the Web, then Data­
wrapper is worth a try.

FIGURE 5.25  Donut chart in
Datawrapper

FIGURE 5.26  Square
pie framework

Parts of a Whole  |  171

You see percentage points explicitly, so there are no issues with figuring out
what geometry represents what value. You just count.

The square pie is a relatively new chart type, which means it doesn’t come
standard with a lot of software. But, if you can draw squares and fill in the
colors, then you can make a square pie chart.

MAKING A SQUARE PIE CHART

Tool used: Illustrator

Dataset: Meeting Online, book.flowingdata.com/vt2/ch5/data
/met-online.tsv

Based on the HCMST data, you can compare couples who met in the 1990s
against those who met in the 2010s. As you might have heard, there was this
Internet thing that came around that changed how we do a lot of things,
including meeting significant others.

In the dataset file, which, again, is a simpler processed version of the full HCMST
data, there is a row for each decade that indicates the proportion of couples
who met online and offline.

"year" "ponline" "poffline"
1960 0.0042 0.9958
1970 0.0032 0.9968
1980 0.0002 0.9998
1990 0.0153 0.9847
2000 0.0949 0.9051
2010 0.189 0.811

We’ll focus on the 1990s and 2010s. In the 1990s, only 1.5% of people reported
meeting online, whereas in the 2010s, that figure rose to 18.9%. The square pie
requires round percentages, though, so we’ll say 2% and 19%, respectively.
Meeting online has gotten way more popular (and I’m guessing more so in the
2020s). It’s kind of funny to think back to when meeting online seemed strange.

Open a new document in Illustrator. The first step is to make a grid.

Using the Pen tool , create a straight horizontal line. Click and release and
then, while holding the Shift key on your keyboard, click and release to where
you want the other end of the line. This should give you a single line. Do this
10 more times to make 11 horizontal lines total, one on top of the other, as
shown in Figure 5.27. Create 11 vertical lines in the same way.

http://book.flowingdata.com/vt2/ch5/data/met-online.tsv
http://book.flowingdata.com/vt2/ch5/data/met-online.tsv

172  |  CHAPTER 5:  Visualizing Categories

Select the vertical lines and evenly distribute them horizontally via the Align
window. Then select the horizontal lines and evenly distribute them vertically

. You should have something like the second step in Figure 5.27.

Select the vertical lines and drag them over the horizontal lines to cre-
ate a grid.

Click and drag to select the lines. Select the Live Paint Bucket tool . Choose
your border (i.e., stroke) and fill color via the Color window and then hover over
the selected grid of lines. Click. The selected square should change color like
in the fourth step of Figure 5.27.

This gives you a single square pie that you can use to represent percentage
values. Copy and paste to make additional square pies. Figure 5.28 shows a
comparison between the 1990s and 2010s.

If you’re new to Illustrator, this probably seems like a lot of random clicking
and dragging with a sprinkle of various tools. Starting a chart from scratch isn’t
as straightforward as editing an existing chart, and it admittedly takes some
getting used to because of all the buttons and menus.

Just remember that if you can draw a grid of squares, then you can make
a square pie chart. You could do this in R, Python, Microsoft Excel, or pen
and paper.

Note:  You might have
to resize the lines to make
a square, in which case
select and then click and
drag so that width and
height are equal for both
the horizontal and vertical
lines. You can also enter
width (W) and height (H) in
the properties panel, which
typically appears at the top
of your screen when you
select objects.

FIGURE 5.27  Making a grid
in Illustrator

Parts of a Whole  |  173

TREEMAP

In 1990, Ben Shneiderman wanted to visualize what was going on in his always-
full hard drive. Given the hierarchical structure of directories and files, he first
tried a tree diagram. It got too big too fast to be useful, though. The treemap
was his solution.

As shown in Figure 5.29, it’s an area-based visualization where the size of each
rectangle represents a metric. Outer rectangles represent parent categories,
and rectangles within the parents are subcategories.

See https://datafl
.ws/11m for a full history
of treemaps and additional
examples described by the
creator, Ben Shneiderman.

FIGURE 5.28  Square pie
comparison

FIGURE 5.29  Treemap
framework

https://datafl.ws/11m
https://datafl.ws/11m

174  |  CHAPTER 5:  Visualizing Categories

MAKING A TREEMAP

Tools used: R, Illustrator

Dataset: How People Meet, 2010s book.flowingdata.com/vt2/ch5/data/
how-met-2010s.tsv

Illustrator doesn’t have a treemap tool, but there is an R package. It is aptly
named treemap. Open R and install the package with install.packages().

Install package if have not yet
install.packages("treemap")

Load the package with library().

Load package
library(treemap)

Like you did in previous R examples, load the data with read.csv().

Load data.
howmet2010 <- read.csv("data/how-met-2010s.tsv", sep="\t")

Check out the dataset to make sure it loaded right.

> head(howmet2010)
 waymet category year p
1 Met Through Family Friends and Family 2010 0.0638
2 Met Through Friend Friends and Family 2010 0.1722
3 Met Through Neighbors Friends and Family 2010 0.0304
4 Met Through Coworker Work 2010 0.0853
5 Met Online Online 2010 0.1890
6 Primary or Secondary School School 2010 0.0461

There are four columns: waymet is how couples met, there’s a category for each
way of meeting, the year (which represents the decade), and the proportion
p of people who met in each way in the decade.

Call treemap() with the howmet2010 data frame.

Draw treemap
treemap(howmet2010,
 index = c("category", "waymet"),
 vSize = "p",
 algorithm = "squarified",
 title = "How People Met, 2010s")

The index argument specifies the hierarchy of the data. Start with the high-
est level and then work your way down. In this case, category is the highest

http://book.flowingdata.com/vt2/ch5/data/how-met-2010s.tsv
http://book.flowingdata.com/vt2/ch5/data/how-met-2010s.tsv

Parts of a Whole  |  175

level and then waymet. The vSize argument specifies which variable to use
for rectangle size. The squarified treemap algorithm is used to organize
the rectangles, and title specifies the main title at the top of the treemap.
Figure 5.30 shows the result.

In the 2010s, people mostly met in a group setting or through friends and
family. The other categories follow.

EDITING THE CHART

Export the chart as a PDF either through the menus in R or with the pdf() func-
tion. For the latter, check out the documentation with ?pdf, but in a nutshell,
you can call pdf() before treemap() and then call dev.off() after treemap()
to close the device. But again, unless you must export a lot of PDF files at once
or you have a memory-hungry graphic to make, the menu route will do fine.

I won’t go through all the steps in Illustrator since they’re the same as in other
examples. Use the Selection tool to select objects and the Direct Selection tool
to select individual objects. When you select an object, you can change the
stroke weight and colors through the Stroke and Color windows, respectively.

In Figure 5.31, I thickened the borders for the categories and changed the color
of each category to a single color instead of the variations used by treemap().

FIGURE 5.30  Treemap of how
people met

176  |  CHAPTER 5:  Visualizing Categories

I also moved the labels for ways of meeting to the top-left corner of each
rectangle where I could and emphasized the category labels with a dark back-
ground. There’s a title, lead-in text, and a source.

The default treemap from R is available in the chapter source download if you
don’t want to go through the script. Open the file in Illustrator or related and
think about what you would add, remove, or edit. What changes will you make?
Can you change the focus of the treemap through design? Can you change
the chart to fit within your current reporting framework? You can! Your tastes
for what you like and don’t like will evolve with practice.

RANK AND ORDER
Time series data carries a natural progression from oldest to most recent. Order-
ing by the passage of time is usually the most intuitive route. With categorical
data, ordering is usually based on amounts.

When we compare categories, we want to get a sense of the range. What is
the most? What is the least? How are things distributed across all categories?

FIGURE 5.31  Edited treemap

Rank and Order  |  177

Sorting your data with these questions in mind can help make it easier for
readers to decipher rank and order in the data.

In the examples so far, the categories are sorted from least to greatest, or vice
versa. For example, Figure 5.6 shows the jobs of physician spouses. Start at the
top for the most common and work your way down to less common. If the
ordering is random, like in Figure 5.32, you can quickly pick out the job that
sticks out, but you must examine more closely to figure out the rest.

FIGURE 5.32  Bar chart with
random order

178  |  CHAPTER 5:  Visualizing Categories

Sorting also makes it easier to see differences between categories because you
don’t have to skip around visually to decide what’s bigger and what’s smaller.

Figure 5.33 shows two pie charts. One is unsorted, and the other is sorted. They
show the percentage of households in the United States that are of a certain
type. (You will look at this dataset closer in the next section.) There is no clear
reading direction for the unsorted pie chart. You just kind of look at it. With
the sorted pie chart, you can see that single households are most common,
and you move your eyes clockwise.

For reference, Figure 5.34 shows the same values as unsorted and sorted bar
charts. The contrast in readability still applies.

These are basic examples with not that many data points, but you can see the
difference. Sorting grows more important as you add complexity.

FIGURE 5.33  Unsorted and
sorted pie charts

FIGURE 5.34  Unsorted and
sorted bar charts

Rank and Order  |  179

After one of those long days as a parent, I thought about how different life is
before and after kids. You must spend your time with different responsibili-
ties, which means time spent on other things decreases. Based on data from
the American Time Use Survey, Figure 5.35 shows the activities that show the
biggest median drops timewise.

This shows just a subset of the available activities. The ATUS uses 605 activity
classifications at the time of this writing. Out of the activities that showed a
drop, they are sorted from biggest drop to least. Without sorting, the graphic
would be a mess, especially if I didn’t sort in the analysis phase and included
hundreds of activities.

How you sort and what you sort changes with the data that you use and the
questions you want to answer. You can sort by maximums, minimums, means,
and medians. Sort from least to greatest or greatest to least. If your chart is

FIGURE 5.35  “How Much the Everyday Changes When You Have Kids,” Adapted from How Much the Everyday Changes When You Have Kids

180  |  CHAPTER 5:  Visualizing Categories

meant as a lookup reference, you might want to sort alphabetically so that
your readers can quickly find the data point they want.

Visualization is usually about finding the order in things. Sort the data so that
the order is more obvious.

CATEGORIES AND TIME
You’ve seen how you can visualize categories. You’ve seen how you can visual-
ize time. Now, put the two together to see how categories change over time
because life is too complex and interesting to keep the two separated.

Figure 5.36 is a representation of a weekday in 2020. It shows how people move
into different activities throughout the day, based on data from the American
Time Use Survey. More dots mean more people during the 24 hours.

FIGURE 5.36  “Cycle of Many,” a
24-hour snapshot for a day
in the life of Americans,
Nathan Yau / 2007-Present
FlowingData / https://
flowingdata.com/
2021/08/25/cycle-of-
many  / last accessed
February 08, 2024

https://flowingdata.com/2021/08/25/cycle-of-many
https://flowingdata.com/2021/08/25/cycle-of-many
https://flowingdata.com/2021/08/25/cycle-of-many
https://flowingdata.com/2021/08/25/cycle-of-many

Categories and Time  |  181

Each color represents a category. Time moves clockwise. Both aspects of the data
could be visualized separately (which I have done plenty), but it wouldn’t be as fun.

STACKED BAR CHART

As shown in Figure 5.37, the geometry of stacked bar charts is like regular bar
charts. The difference, of course, is that rectangles are stacked on top of each
other to represent subcategories.

Also, like bar charts, you can use them to show data over categories and over
time. Use them to show percentages or use them to show counts. It depends
on what you want to highlight and the context of your data.

Usually, it’s a good idea to limit the number of subcategories because the
stacks can get messy if there are a lot of thin, barely visible bars. If you have a
lot of subcategories, try grouping the small ones into an “other” subcategory
or split the data into separate charts.

MAKING A STACKED BAR CHART

Tool used: R; RAWGraphs, rawgraphs.io

Dataset: Household types, 1976–2021, book.flowingdata.com/vt2/ch5
/data/household-types.tsv

How common is it to live in a household as a married couple with children?
What about as a single person? Has the share of household types changed

Did I mention the ATUS
is my favorite dataset?
Find more at https://
datafl.ws/timeuse.

FIGURE 5.37  Stacked bar
chart framework

http://book.flowingdata.com/vt2/ch5/data/household-types.tsv
http://book.flowingdata.com/vt2/ch5/data/household-types.tsv
https://datafl.ws/timeuse
https://datafl.ws/timeuse

182  |  CHAPTER 5:  Visualizing Categories

much over the years? The Current Population Survey, run by the U.S. Census
Bureau for the Bureau of Labor Statistics, publishes household data that can
help answer these questions.

You’ll use a stacked bar chart to see how proportions for different house-
hold types changed over time. The open-source, web-based RAWGraphs
will be the tool of choice in this example, but first, you use R to format and
prepare the data.

FORMATTING THE DATA

Oftentimes, the data you want to visualize comes in a different format or
structure than you need it be. Depending on your line of work, this might be
the case all the time.

Download the household dataset. Open R, set your working directory to where
you downloaded the data, and use read.csv() to load the tab-delimited
file.

Load data
htypes <- read.csv("household-types.tsv", sep="\t")

Use head() to see the first few rows to make sure it loaded correctly.

> head(htypes)
 year htype n p
1 1976 composite 2628779.6 0.035917149
2 1976 extended 5395372.8 0.073717252
3 1976 nuclear-father 617377.9 0.008435266
4 1976 nuclear-married-children 27239504.1 0.372174729
5 1976 nuclear-married-nochildren 16911072.9 0.231056848
6 1976 nuclear-mother 5147660.4 0.070332745

There are four columns: year (year), household type (htype), estimated count
(n), and proportion of households (p). Each row represents the share of a given
household type in a year. For example, in 1976, households with a married
couple with children (nuclear-married-children) made up 0.37 of house-
holds, or 37%.

To use this data in RAWGraphs, you need to reformat it so that each row rep-
resents a year with a column for each household type. Get the unique years
and household types with unique().

Unique years and household types
years <- unique(htypes$year)
uhtypes <- unique(htypes$htype)

Categories and Time  |  183

Start a new data frame.

Start data frame
htypes_new <- data.frame(year = years)

Add columns to the data frame htypes _ new for each household type.

Add columns
for (uht in uhtypes) {
 curr <- htypes[htypes$htype == uht,]
 curr_name <- paste0("p_", gsub("-", "_", uht))
 htypes_new[, curr_name] <-
 curr$p[match(htypes_new$year, curr$year)]
}

The for-loop iterates through each household type and subsets the data from
the original htypes data frame, assigning it to curr. It sets a column name based
on the current household type uht by substituting hyphens for underscores,
because R doesn’t like hyphens in column names. Then the proportions from
the curr subset are matched to the years in the new data frame to make a
new column.

Here are the first two rows and first four columns for the new data frame
htypes _ new. In 1976, 3.6% of households were composite, 7% were extended
families, and less than 1% were single-father.

> htypes_new[1:2,1:4]
 year p_composite p_extended p_nuclear_father
1 1976 0.03591715 0.07371725 0.008435266
2 1977 0.03993042 0.07273152 0.008507778

With the data in the format you need, use write.table() to save the data
frame as a tab-delimited file.

Save formatted data
write.table(htypes_new,
 file="data/htypes_rectangular.tsv",
 sep="\t",
 row.names=FALSE)

MAKING THE CHART

Navigate to RAWGraphs in your web browser. Click the Use It Now button. Then
follow the steps. Paste the saved data from R, or if you skipped the formatting
step, the file is also available in the source download for this chapter. After
copying and pasting the data, the tool guesses the formatting, as shown in
Figure 5.38. Check to make sure it looks right.

Tip:  Be sure to check out
the documentation for any
function with a question
mark (?) followed by the
function name if you’re not
sure how to use them.

184  |  CHAPTER 5:  Visualizing Categories

Scroll down to choose a chart. As shown in Figure 5.39, there are several options
(31 of them as of this writing). Select the stacked bar chart option.

Scroll down more to the third step: Mapping. This is where you specify which
variable defines the x-axis and the size of the bars in each stack. In this exam-
ple, year goes on the x-axis, and the household type proportions define bar
size. Click and drag the variables (labeled “dimensions” here), as shown in
Figure 5.40.

FIGURE 5.38  Loading data
in RAWGraphs

FIGURE 5.39  Choosing a chart

Categories and Time  |  185

Scroll down to see the stacked bar chart. Figure 5.41 shows the customization
options for padding, sorting, and colors.

Scroll to the end, and you can export the chart in SVG, PNG, JPG, or RAWGraphs
format to use with the tool later. You can use the graphic as is, but the goal
of the tool is to provide a link between chart-making software and graphics
editors, so usually, the next step, with the visual encoding part taken care of,
is to edit elsewhere.

STACKED AREA CHART

The stacked area chart is the continuous version of a stacked bar chart, as shown
in Figure 5.42. Points are connected, as opposed to separated stacks in a bar
chart, so the stacked area chart is specific to changing categories over time.

FIGURE 5.40:  Mapping data
to geometry

FIGURE 5.41  Customizing
the stacked bar chart

186  |  CHAPTER 5:  Visualizing Categories

If you only have one stack, then you have yourself an area chart. There is also a
chart called a streamgraph, which is a variant of a stacked area chart that shifts
the baseline to the center and orders stacks from greatest to least from the
inside out.

MAKING A STACKED AREA CHART

Tool used: RAWGraphs

Dataset: Household Types, 1976-2021, book.flowingdata.com/vt2/ch5/data
/household-types.tsv

Let’s stay with RAWGraphs since you just used it and make a stacked area chart
for the household type data. You might expect to use the same data format
as in the bar chart example, but the stacked area chart is specific to time, so
RAWGraphs takes a different format. It’s the format of the original file.

Navigate to RAWGraphs if you haven’t already. Copy and paste the data. You
should see the four columns, for year, household type, count, and proportion.
Select the Streamgraph (Area Chart) option in the next step. Then use year
for the x-axis, p for the size, and htype for the streams in the Mapping step,
as shown in Figure 5.43.

This should get you the chart shown in Figure 5.44. You get options that are
specific to the chart type you select, so you can specify ordering, curve type
(the way that each point is connected), and alignment, among other things.

Tip:  See https://
datafl.ws/area for
more examples and
variants of area charts.

Tip:  Some chart types,
especially the newer ones,
have different names
depending on who you ask.
RAWGraphs has a stream-
graph option, which is a
kind of stacked area chart.

FIGURE 5.42  Stacked area
chart framework

http://book.flowingdata.com/vt2/ch5/data/household-types.tsv
http://book.flowingdata.com/vt2/ch5/data/household-types.tsv
https://datafl.ws/area
https://datafl.ws/area

Categories and Time  |  187

Again, you can export the chart in different file formats and edit as you like,
but let’s save the editing for later.

A challenge with stacked areas and bars is that the geometries’ position on
top depends on the geometries on the bottom. For example, if there were
a spike on the bottom area for married households with children, that spike
would ripple through each area. The same vertical offset can also make smaller
differences harder to see, which is why I often use the next chart type.

ALLUVIAL DIAGRAM

With stacked area charts, the ordering of the areas or streams stay the same
throughout. If an area starts on the bottom, then it will stay on the bottom

FIGURE 5.43  Data selection
for stacked area chart

FIGURE 5.44  Stacked
area chart

188  |  CHAPTER 5:  Visualizing Categories

until the end. An alluvial diagram, as shown in Figure 5.45, changes the order
of the streams based on the values. The diagram is named after the naturally
occurring alluvial fans because of its appearance.

The change in ordering lets you show amounts, parts of a whole, and rank
over time. Given the right data, alluvial diagrams are intuitive, informative, and
nice to look at. However, they come with a caveat: If there are a lot of rank-
ing switches over time across several categories, overlapping streams can get
messy, rendering the chart a useless view of spaghetti. Use your best judgment.

MAKING AN ALLUVIAL DIAGRAM

Tools used: RAWGraphs, Illustrator

Dataset: Household Types, 1976-2021, book.flowingdata.com/vt2/ch5
/data/household-types.tsv

We’ll use RAWGraphs one more time to show how household types changed
between 1976 through 2021. The nice thing about the newer point-and-click
tools, which weren’t around during the first edition of this book, is that it’s a
lot easier to backtrack or pick up where you left off.

Note:  Alluvial diagrams
can also be used to look at
correlation between vari-
ables by showing the flow
between one group and
another. However, it’s dif-
ficult to glean useful rela-
tionships in this format,
so I stick to showing cat-
egories over time.

FIGURE 5.45  Alluvial
diagram framework

http://book.flowingdata.com/vt2/ch5/data/household-types.tsv
http://book.flowingdata.com/vt2/ch5/data/household-types.tsv

Categories and Time  |  189

The alluvial diagram with RAWGraphs does not assume changes over time.
Instead, it assumes changes over categories. However, the bump chart option
does show changes over time in the layout that you want in this example.

I’d argue that this option produces an alluvial diagram and that a bump chart,
outlined in the next section, uses lines to show rankings. But there’s overlap
between the chart types, so I can see how one might be called the other.
Semantics. The point is that you can make the thing.

Copy and paste the same data you used for the stacked area chart. Select the
Bumpchart option, and, as shown in Figure 5.46, map year to the x-axis, p to
the size, and htype to the streams.

This gives you an alluvial diagram that shows the growth of single households,
the climb to the top spot, and the decline of married households with children,
as shown in Figure 5.47. Married households with no kids moved up to the
number-two spot.

FIGURE 5.46  Mapping
variables for an alluvial
diagram in RAWGraphs

FIGURE 5.47  Alluvial diagram
in RAWGraphs

190  |  CHAPTER 5:  Visualizing Categories

As the name suggests, RAWGraphs produces charts that you should consider
not quite done. It translates data to visual encodings. You take care of the
design to make the output useful for your audience and purpose.

Figure 5.48 shows an edited version of Figure 5.47. The goal was to make the
trends in the data obvious to someone who doesn’t look at data all the time.

FIGURE 5.48  Edited alluvial
diagram for clarity

Categories and Time  |  191

I changed the color scheme. I’m in a phase of less saturated colors, so I edited
the areas to my taste. The horizontal axis is year-focused instead of using a
comma to separate the thousands position. There are also labeled axes on
both the top and bottom so that you don’t have to look to the bottom and
move your eyes up to see the year of a point. The names for each household
type are less ambiguous than the made-for-computers classifications. Start
and end percentages are also included. A layer of annotation is placed over
the areas for more context.

Think about who the chart is for, what it is for, and what you want to show,
and let that tell you what you need to edit.

BUMP CHART

Alluvial diagrams to show categories over time are like stacked area charts
that reorder as you go. Bump charts are like alluvial diagrams but without the
changing sizes. It’s just rank over time for each category, as shown in Figure 5.49.

FIGURE 5.49  “Bump chart
framework,” Nathan Yau /
2007-Present FlowingData /
https://flowingdata
.com/2021/08/25/cycle-
of-many  /  last accessed
February 08, 2024.

https://flowingdata.com/2021/08/25/cycle-of-many
https://flowingdata.com/2021/08/25/cycle-of-many

192  |  CHAPTER 5:  Visualizing Categories

So, if you’re interested only in the ordering of things and not so much the
amounts, a bump chart might work. However, the lines tend to turn into spa-
ghetti even quicker than the alluvial diagram because all the categories get
the same visual weight.

To make a (pseudo-)bump chart in RAWGraphs, follow the steps in the previ-
ous alluvial diagram example, but remove p for size in the data-mapping step.
Alternatively, you can think of the bump chart as a multi-line chart with ranks,
which you made in the previous chapter.

WRAPPING UP
Visualizing categories is about looking at amounts, how those amounts are
spread out across a whole, and the range of the data for a sense of scale.

But it’s not just that. Categories can go together with time so that you can see
how groups change rather than exist as a single snapshot of the way things
used to be.

We like to talk about data types separately: categorical data, time series data,
spatial data, and so forth. But data types are often intertwined and can represent
different things at once. Visualization, a representation of the data, should be
able to show such relationships. That’s usually where the interesting bits are.
Look for the interesting bits.

Hopefully, by now, you can also see how different visualization tools can be
used together to make charts more efficiently. You don’t always have to use R,
Python, or Illustrator. You can use a code-based tool to analyze and process
data, you can use a point-and-click tool to handle more complex chart types,
and you can use another tool to edit and annotate. It’s in your best interest to
keep adding to the toolbox, especially as technology and the uses for visuali-
zation shift in the field.

In the next chapter, you’ll test more tools you might want to add to your
collection. You’ll use them to look at relationships between multiple variables
and datasets and how people, places, and things relate to each other.

Ch.6

Visualizing
Relationships

194  |  CHAPTER 6:  Visualizing Relationships

What are the similarities between groups? Within groups? Within subgroups?
How are things connected? Statistically, the relationship that most people are
familiar with is correlation. One variable tends to change when another variable
changes in an expected way. However, the relationships in your data grow more
complex as you consider more factors or find patterns that aren’t one-to-one.
This chapter discusses how to use visualization to find such relationships and
highlight them for storytelling.

So far, you looked at basic relationships in time series data and categories. You
learned about trends over time and compared proportions and percentages
to see the least and greatest and everything in between. Now you’ll look at
relationships between variables.

Correlation is how two variables change with each other. This is a common
relationship that you look for in data, but it’s not the only one. When compar-
ing two things, it’s often worth focusing on the differences, maybe over time or
across categories. You can look for relationships across multiple variables, which
adds complexity and is sometimes a good thing. Relationships are also about
connections. How are data points linked to each other?

When you zoom in close to people, places, and things, it can seem like every-
one and everything functions independently. However, take a step back and
you see that the world is connected in many ways. In this chapter, you focus
on these relationships. You try your hand at making charts for the Web using
HTML, CSS, and JavaScript. Then you come back to R with a shift toward the
data exploration phase of visualization.

CORRELATION
Correlation is probably the first thing you think of when you hear about rela-
tionships in data. Maybe you’ve heard of or calculated a correlation coefficient
that expresses the relationship between variables quantitatively. In regular
people terms, correlation is a way to express how one thing tends to change
in an expected way as another thing changes. It can be a strong or a weak
relationship. We don’t always know why the things change together in predict-
able ways, but they do.

For example, when you plot occupations in the United States by median
salary against divorce rate, the latter appears to decrease as the former
increases. As shown in Figure 6.1, there is a negative correlation between
the two.

Correlation  |  195

However, does a higher salary cause lower divorce rates? If you gave every
working person a raise, would divorce rates decline nationally? Are divorce
rates lower for people with certain occupations because the jobs say some-
thing about temperament or marrying tendencies? If we made everyone stay
married, would incomes rise?

It’s difficult to account for every outside or confounding factor, which makes it
challenging to prove causation. However, just because one doesn’t always mean
the other, correlation can be a good indicator of how things are related and
what we might be able to do to change those things if needed. Oftentimes,
correlation is all we can do, so we do the best with what we have and consider
the evidence surrounding the calculations.

Spurious Correlations by
Tyler Vigen pokes fun at
the difference between
correlation and causation
with unrelated variables
that are highly correlated:
https://datafl.ws

/spurious.

FIGURE 6.1  “Divorce and Occupation,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2017/07/25/divorce-and-
occupation  / last accessed February 08, 2024.

https://datafl.ws/spurious
https://datafl.ws/spurious
https://datafl.ws/divocc
https://datafl.ws/divocc

196  |  CHAPTER 6:  Visualizing Relationships

SCATTERPLOT

In Chapter 4, “Visualizing Time,” you learned about a dot plot to show patterns
over time. It’s a general chart type that, as the name indicates, uses dots to
show data that can be placed using various axes. Dots can be placed on a single
timeline, they can be stacked on top of each other, or they can be organized in
a grid layout. A scatterplot is a specific type of dot plot where both the x- and
y-axes represent values, as shown in Figure 6.2.

The purpose of the scatterplot is to see how two variables, the one on the
x-axis and the one on the y-axis, are related. Usually, the relationship of interest
is correlation, shown in Figure 6.3.

Relationships between two variables can be more complex than positive and
negative correlation but for communication and storytelling purposes, these
cover most of your bases.

MAKING A SCATTERPLOT

Tools used: HTML, CSS, JavaScript, D3.js

Dataset: Meaningfulness and Happiness, book.flowingdata.com/vt2/ch6
/data/act _ means.tsv

So far, you’ve visualized data mostly with individual tools. You’ve made charts
completely with Python, R, and point-and-click applications. In some examples,

As the comic xkcd put it,
“Correlation doesn’t imply
causation, but it does wag-
gle its eyebrows sugges-
tively and gesture furtively
while mouthing ‘look over
there.’” See https:
//xkcd.com/552.

FIGURE 6.2  Scatterplot
framework

http://book.flowingdata.com/vt2/ch6/data/act_means.tsv
http://book.flowingdata.com/vt2/ch6/data/act_means.tsv
https://xkcd.com/552/
https://xkcd.com/552/

Correlation  |  197

you used Illustrator to edit, but you could have also stopped before that step
or worked within the parameters of the current tool.

Visualization for the Web tends toward more parts that you must fit together,
usually HTML, CSS, and JavaScript at the minimum. The process of fitting
these parts together can grow more complex depending on your setup. This
makes point-and-click tools like Datawrapper useful because they let you
make charts quickly, and you can copy and paste a code snippet to your site.

However, there is also fun in making your own charts that are custom fit for
the dataset, in exchange for more complexity. It’s the little differences between
projects and chart-makers, the little bits of charm, that make visualization most
interesting and compelling.

The following example uses D3, which is a JavaScript visualization library without
functions for specific chart types. Instead, it provides functions for visualization
components, such as axes, scales, data transformations, and geometries.

You’ll learn how to make a scatterplot, among other standard charts in this
chapter, but pay special attention to how the components fit together and

See Chapter 2, “Choosing
Tools to Visualize Data,”
for JavaScript libraries that
have built-in functions to
make standard chart types.

FIGURE 6.3  Correlations shown
in scatterplots

198  |  CHAPTER 6:  Visualizing Relationships

the similarities across various charts. The charts are different, but the building
process between the examples repeats itself.

You come back to the well-being module from the 2022 American Time Use
Survey. People were asked to score meaningfulness and happiness while
engaged in daily activities. How are meaningfulness and happiness related?

Open the scatterplot folder in the chapter source to follow along in your
favorite code editor, such as Sublime Text, which is available for macOS, Win-
dows, and Linux. There are three main parts that we’ll look at separately.

■■ index.html: HTML for structure

■■ js/scatterplot.js: JavaScript for handling data, adding interaction,
and dynamically adding elements based on the data

■■ style/style.css: CSS for styling

This needs to run on a web server so that the JavaScript runs when the
page loads. So, make sure you have a development environment set up on
your system.

HTML for Structure

There is not much to the HTML file index.html. It starts with a header, which
defines the page title with the <title> tag and loads the style.css file with
the <link> tag. You’ll come back to the CSS later.

<head>
<meta charset="utf-8">
<title>Activities, Happiness, and Meaning</title>
<link rel="stylesheet" href="style/style.css" type="text/css"
media="screen" />
</head>

A couple of <div> tags serve as holders for things you’ll add with D3.

<div id="main-wrapper">
 <h1>Meaningfulness with Happiness</h1>
 <div id="chart"></div>
</div>

Load D3 and a JavaScript file named scatterplot.js with the <script> tags.
Alternatively, you can load the hosted version using https://cdn.jsdelivr
.net/npm/d3@7 as the src.

<script src="js/d3.v7.min.js"></script>
<script src="js/scatterplot.js"></script>

If you are new to D3 or
making things for the Web
in general, it will help to
work through a primer to
familiarize yourself with
how the library works at
https://datafl.ws

/d3intro. You can also
find a beginner tutorial on
FlowingData at https:
//datafl.ws/d3start.

For Windows, check out
https://datafl.ws

/windev for setting up a
development environment.
For macOS, see https:
//datafl.ws/macdev.

https://cdn.jsdelivr.net/npm/d3@7
https://cdn.jsdelivr.net/npm/d3@7
https://datafl.ws/d3intro
https://datafl.ws/d3intro
https://datafl.ws/d3start
https://datafl.ws/d3start
https://datafl.ws/windev
https://datafl.ws/windev
https://datafl.ws/macdev
https://datafl.ws/macdev

Correlation  |  199

That’s it for the HTML. If you load the page now, you’ll just see a title that reads
“Meaningfulness with Happiness” with nothing else.

JavaScript for Construction

This is when you put together the actual chart. You’ll use D3 functionality to
construct an SVG object that loads on the page. Open js/scatterplot.js.
Start by setting the dimensions of the chart in terms of margins, width, and
height.

// Dimensions of chart.
let margin = { top: 20, right: 10, bottom: 50, left: 45 },
 width = 600 - margin.left - margin.right,
 height = 750 - margin.top - margin.bottom;

There will be a top margin of 20 pixels, a right margin of 10 pixels, and so on.
The full width of the chart will be 600 pixels wide, and the chart will be a bit
taller than it is wide at 750 pixels.

Start the SVG by selecting the <div> with an ID set to chart in index.html.
Append an svg tag with append().

// Start SVG
let svg = d3.select("#chart").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + ","
+ margin.top + ")");

If you load the page now, you still just get a title, but right-click the page and
select Inspect or Inspect Element in the menu, depending on which browser
you use. This brings up a Web Inspector that shows the elements on the page,
including the ones added with JavaScript, like Figure 6.4. This is useful for
debugging and making sure your code does what you expect.

Define the x-scale for meaningfulness scores with d3.scaleLinear(). Set the
domain from 3 to 6, which covers the span of average meaningfulness scores
in the data. Then define the range from 0 to width, which refers to how val-
ues between 3 and 6 will translate to the space on the page. For example, a
meaningfulness score of 3 maps to a pixel value of 0, and a score of 6 maps to
a pixel value equal to width.

// x scale
let x = d3.scaleLinear()
 .domain([3, 6])
 .range([0, width]);

Scalable Vector Graphics
(SVG) is an image format
based on Extensible
Markup Language (XML).
See https://datafl
.ws/7mr for the full speci-
fications for SVG. The for-
mat will allow you to draw
lines, shapes, text, and
other visual elements.

D3 provides other scales,
such as logarithmic and
category-based scales.
You can find the full list
in the documentation at
https://d3js.org

/d3-scale. We’ll keep
the scales linear for now,
though.

http://datafl.ws/7mr
http://datafl.ws/7mr
https://d3js.org/d3-scale
https://d3js.org/d3-scale

200  |  CHAPTER 6:  Visualizing Relationships

Define the y-scale similarly, but set the domain as 2 to 6 and the range for
height to 0. Why not the other direction from 0 to height? Unlike charts
where the origin at (0, 0) is typically at the bottom with increasing y-values as
you move up, the SVG coordinate system starts (0, 0) in the top-left corner.
The x-coordinates increase left to right, which is the same as most charts, but
y-coordinates increase top to bottom, so the range is reversed. Sometimes you
might want a chart that shows lower values at the top, such as ranks, in which
case you would use 0 to height.

// y scale
let y = d3.scaleLinear()
 .domain([2, 6])
 .range([height, 0]);

Now create an x-axis using d3.axisBottom() with four ticks that extend the
height of the chart plus eight with a padding of five between the tick marks
and tick labels.

FIGURE 6.4  Web Inspector

Correlation  |  201

// x-axis
let xAxis = d3.axisBottom(x)
 .ticks(4)
 .tickSize(-height-8)
 .tickPadding(5);

Add the x-axis to the SVG with append(). Set attributes as shown here:

// x-axis element
let xAxisEl = svg.append("g")
 .attr("class", "x axis bottom")
 .attr("transform", "translate(0,"+(height+8)+")");

Add a text label to the x-axis element.

xAxisEl.append("text")
 .attr("class", "axistitle")
 .attr("text-anchor", "start")
 .attr("x", 0).attr("y", 0)
 .attr("dx", -1).attr("dy", "2.5em")
 .text("Meaningfulness Score Average");
xAxisEl.call(xAxis);

Load the page; there’s an x-axis with grid lines that extend the height of the
chart, as shown in Figure 6.5.

It’s likely the JavaScript so far looks like gibberish to you, especially if you’ve
never written a line of JavaScript before. This will grow more intuitive with prac-
tice and repetition, but stay with me here. At each step, the main thing you are
doing is defining, then adding, and then setting attributes for what you added.

Add a y-axis by defining the axis with d3.axisLeft(), adding an element with
append(), adding the axis label with append() again, and then applying the
defined yAxis to the element with call().

// y-axis
let yAxis = d3.axisLeft(y)
 .ticks(5)
 .tickSize(-width-8)
 .tickPadding(5);
let yAxisEl = svg.append("g")
 .attr("class", "y axis left")
 .attr("transform", "translate("+(-8)+",0)");
yAxisEl.append("text")
 .attr("class", "axistitle")
 .attr("x", 0).attr("y", 0)
 .attr("dx", "4px")

202  |  CHAPTER 6:  Visualizing Relationships

 .attr("dy", "-1.5em")
 .style("text-anchor", "end")
 .attr("transform", "rotate(-90)")
 .text("Happiness Score Average");
yAxisEl.call(yAxis);

Figure 6.6 shows the chart set up with a grid.

FIGURE 6.5  The x-axis added

Correlation  |  203

With the coordinate system and axes defined, you can make the points for the
data. Create two variables, or declare, activities and circle. The former is to
assign data, and the latter is for each point.

let activities;
let circle;

Here is a sample from data/act _ means.tsv, where each row represents an
activity, and there is a column for the average happiness score, schappy _ mean,
and a column for average meaningfulness score, meaning _ mean.

FIGURE 6.6  Blank chart with grid

204  |  CHAPTER 6:  Visualizing Relationships

"activity" "schappy_mean" "meaning_mean" "descrip"
"010301" 3.65 5.2875 "Health-related self care"
"010399" 0.4441 4.332 "Self care, misc."
"020101" 4.3016 5.0383 "Interior cleaning"
"020102" 4.1979 4.866 "Laundry"

Prepare to the load the data, as shown next. This creates a Promise object in
JavaScript, which in this case is a way to make sure the data loads before any
other code executes. Like with other software, the file path, specified in d3.
tsv(), is relative to the location of the main file, in this case index.html.

// Load data
const activitiesData = Promise.all([
 d3.tsv("data/act_means.tsv", d3.autoType)
]);

Load the data, and when the data is loaded, run initChart() (defined by the
Promise object’s then() method), which you define in the next step.

activitiesData.then(function(data) {
 activities = data[0];
 // console.log(activities);

 // Initialize chart now that data is loaded.
 initChart();
});

The function initChart() adds the circles, one for each activity. The average
meaningfulness score is on the x-axis, and the average happiness score is on
the y-axis. Using the standard syntax with D3, use selectAll() to select the
circle elements (of which there are currently none), bind the data activities,
and use join() to join a circle for each observation, with the given attributes
for id, the center coordinate of each circle (cx and cy), and a fill color.

function initChart() {
 // Circle for each node.
 circle = svg.append("g")
 .selectAll("circle")
 .data(activities)
 .join("circle")
 .attr("id", d => "circle"+d.activity)
 .attr("cx", d => x(d.meaning_mean))
 .attr("cy", d => y(d.schappy_mean))
 .attr("fill", "#5a8171")
 .attr("r", 3);
}

Find more details about
the Promise object in
JavaScript at https:
//datafl.ws/promise.

https://datafl.ws/promise
https://datafl.ws/promise

Correlation  |  205

As shown in Figure 6.7, you get a scatterplot of meaningfulness versus happiness.

Again, don’t worry if this section has been confusing. D3 has a reputation
for having a steep learning curve, and there are a few more examples in this
chapter to cover the details more closely. The flexibility gained has proven to
be a fine advantage over the years, but if that flexibility is unnecessary in your
work, you can always fall back on the previously mentioned JavaScript libraries
that provide specific chart types as functions.

Joins in D3 can be confus-
ing at first, but they do
seem to grow more intui-
tive with repetition. Mike
Bostock, the creator of D3,
provides a guide on think-
ing with joins at https:
//datafl.ws/d3join.

FIGURE 6.7  Scatterplot in D3

https://datafl.ws/d3join
https://datafl.ws/d3join

206  |  CHAPTER 6:  Visualizing Relationships

CSS for Styling

The chart assumes that you already set styles in style.css that match the class
names you set with .class() in the JavaScript. Here you can set positioning
on the page (not just the SVG), font styles, colors, line widths. Start with posi-
tioning the chart <div>.

#chart {
 margin: 0 auto;
}

This sets the margins on the left and right automatically based on the width
so that the <div> is centered. Set the font style for the axis text.

.axis text {
 font-family: "Courier New", Courier, monospace;
 font-size: .8rem;
}

Set separate properties for the axis titles. Set the color of the axis lines to a
light gray with a stroke width of one pixel.

.axis .axistitle {
 text-transform: uppercase;
 fill: #333;
 font-size: .8rem;
}
.axis path,
.axis line {
 fill: none;
 stroke: #ccc;
 stroke-width: 1px;
 shape-rendering: crispEdges;
}

You can go on and on here. Try changing values in the file and reloading the
page to see what happens. You might have to clear your browser cache so
that the stylesheet reloads.

BUBBLE PLOT

A bubble plot shares the same geometries as a scatterplot, using x- and
y-coordinates for placement. It shows the relationship between two variables.
However, as shown in Figure 6.8, scaled circles, or bubbles, let you show a
third variable.

Note:  So far, you’ve seen
visualization in terms of
named chart types. There
is a function or a guided
interface to make a bar
chart or a line chart. This
will cover most of your
bases, but for maximum
control and flexibility,
it pays to think of visu-
alization as components:
coordinate systems,
scales, visual encodings,
and context. Think about
this moving forward, and
we’ll cover this more in
Chapter 9, “Designing with
Purpose.”

Correlation  |  207

Like scaled symbols discussed in Chapter 5, “Visualizing Categories,” bubbles
are sized by total area. Again, take note of how your software scales the circles
so that you do not accidentally exaggerate or diminish differences between
categories.

The typical use case for bubble plots is when you have two variables that are
normalized, like rate, percentage, or an average, and a third variable that rep-
resents an absolute count (usually). The normalized variables define placement,
and the absolute count defines size.

For example, in Hans Rosling’s famous use of a moving bubble plot (refer-
enced in Chapter 1, “Telling Stories with Data”), fertility rate is on the x-axis,
life expectancy is on the y-axis, and each bubble representing a country
is sized by population. This gives greater visual attention to places with
more people.

The bubble plot gives you a chance to see how three variables might relate.
The trade-offs are similar to that of scaled symbols described in Chapter 5. It
is more difficult to see differences between areas than with length or posi-
tions. Scaled circles also use more space than points on a scatterplot, which
can make a mess of a plot quickly if you use larger circles relative to the size
of the plot. You decide if the trade-off is worth it. The good news is that if you
already made a scatterplot, it’s usually straightforward to make a bubble plot
to see if it’s worthwhile.

Find bubble plot examples
at https://datafl.ws
/bubble.

FIGURE 6.8  Bubble
plot framework

https://datafl.ws/bubble
https://datafl.ws/bubble

208  |  CHAPTER 6:  Visualizing Relationships

MAKING A BUBBLE PLOT

Tools used: HTML, CSS, JavaScript, D3.js

Dataset: Meaningfulness and Happiness, book.flowingdata.com/vt2/ch6
/data/act _ means.tsv

Coming back to average meaningfulness and happiness scores from the scat-
terplot example, you don’t have to start from scratch. You can load data, create
axes, and place points (which were small circles) in the same way. The differ-
ence is in circle size. In the scatterplot, the radius of every circle was set to
3 in initChart(). In bubbleplot.js, which is in the chapter download, define
a third scale for radius, r, after the x and y scales.

// Radius scale
let r = d3.scaleSqrt()
 .domain([0, 10])
 .range([0, 25]);

The act _ means.tsv data file has a relwt column, which was calculated based
on the number of people who engaged in an activity on their survey day. The
variable is on a scale from 0 to 10, where 0 means no one engaged in the activ-
ity and 10 means a lot of people did. The radius scale uses d3.scaleSqrt()
with a domain from 0 to 10 (the extent of the data) and a range from 0 to 25
(the extent of the pixels on the screen).

Then in initChart(), you append circles and set the r attribute based on relwt
instead of 3 with the .attr() method.

// Circle for each node.
circle = svg.append("g")
 .selectAll("circle")
 .data(activities)
 .join("circle")
 .attr("id", d => "circle"+d.activity)
 .attr("cx", d => x(d.meaning_mean))
 .attr("cy", d => y(d.schappy_mean))
 .attr("fill", "#5a8171")
 .attr("r", d => r(d.relwt));

Notice that .attr() is called several times after the join to set the attributes of
the circles. For most of the attributes—the id, the center x-coordinate (cx), the
center y-coordinate (cy), and the radius (r)—a function is provided. The functions
are applied to each data point for each attribute. However, the fill is set to a hexa-
decimal value #5a8171, in which case, all the circles’ fill attribute is set to the value.

This gives you the bubble plot shown in Figure 6.9, which looks like inkblots.

http://book.flowingdata.com/vt2/ch6/data/act_means.tsv
http://book.flowingdata.com/vt2/ch6/data/act_means.tsv

Correlation  |  209

The chart needs adjustments, but you can see how the change in radius shifts
the dynamic of the chart. Whereas the scatterplot focused on the x-y relation-
ship between two variables, the bubble chart highlights the relationship along
with how common each activity is. The activities that are less common show
less prominently.

To focus on the more common activities, you can adjust the domains for the
x and y scales to zoom in on the relevant area. Make the x domain 4 to 6 and
the y domain 3 to 6.

FIGURE 6.9  Scaling bubbles
from the scatterplot version
of the chart

210  |  CHAPTER 6:  Visualizing Relationships

let x = d3.scaleLinear()
 .domain([4, 6])
 .range([0, width]);
let y = d3.scaleLinear()
 .domain([3, 6])
 .range([height, 0]);

For the circles, change the fill-opacity attribute to 0.75 so that you can see
what’s behind each circle, and add a white border to each circle with the stroke
and stroke-width attributes to provide more separation.

// Circle for each node.
circle = svg.append("g")
 .selectAll("circle")
 .data(activities)
 .join("circle")
 .attr("id", d => "circle"+d.activity)
 .attr("cx", d => x(d.meaning_mean))
 .attr("cy", d => y(d.schappy_mean))
 .attr("fill", "#5a8171")
 .attr("fill-opacity", .75)
 .attr("r", d => r(d.relwt))
 .attr("stroke", "#fff")
 .attr("stroke-width", ".5px");

Changing the height to be the same as the width, you get the chart in Figure 6.10,
which is less inkblot-ish and bubblier.

It’s more readable than the first version. You can see all the circles. But it would
be nice to know what each circle represents so a reader can easily pick out
outliers or investigate areas that might be worth looking into. You could just
place labels on top of every circle, but that would get messy and illegible
quickly unless you had a lot of space for a few circles.

How about a label appears when you hover over or press a circle? D3 lets
you define functions to run when these events occur. In setInteraction() of
bubbleplot.js, you listen for “mouseover” events to trigger a label to appear
for the circle you hover over. The function is called at the end of initChart().
You have to call the function for the following to apply to the circles:

function setInteraction() {

 // Create label
 labeltext = svg.append("text")
 .attr("text-anchor", "middle");

Correlation  |  211

 // Hover events
 circle.on("mouseover", function(e,d) {
 d3.selectAll(".current").classed("current", false);
 d3.select(this).classed("current", true);

 let curract = d3.select(this).datum();

 labeltext.text(curract.descrip)
 .attr("x", x(curract.meaning_mean))
 .attr("y", y(curract.schappy_mean)-r(curract.relwt)-5);
 })
 .on('mouseout', function(d) {
 d3.select(this).classed('current', false);
 labeltext.text('');
 }); // @end mouseover

}

FIGURE 6.10  Bubble chart with
improved visibility

212  |  CHAPTER 6:  Visualizing Relationships

A blank text element is added to the SVG. Then on a mouseover, the current
circle selected is given a CSS class of current, and any previous elements that
were classed as current are set to false. The class is defined in style/style.
css to make the border of the circle black.

The data bound to the circle is assigned to curract. This data is used to set
the label text and set the x and y attributes to place the text just above the
current circle, as shown in Figure 6.11.

On a mouseout event, when the cursor moves away from a circle, the CSS class
is removed, and the text is set to blank.

DIFFERENCES
How different is one thing from another? Are they the same? Have the differ-
ences changed over time? In comparing ourselves and situations to others, we
can’t help but look for the differences. The unevenness. My young children are

Note:  When I first learned
JavaScript and how to use
D3, I was caught off guard
by how much I had to
define to make charts inter-
active. Part of this comes
from D3 intended for
custom visualization, but
it’s also partly the nature of
making things for the Web.

FIGURE 6.11  Bubble chart
with hover text

Differences  |  213

especially in tune with who got what and what is fair, which I then respond
with their differences in age and the need to adjust their expectations.

In the grown-up world, we often highlight the differences between men and
women. There are differing expectations, responsibilities, and motivations that
diverge and converge over time. For example, Figure 6.12 shows percentages
of male and female employees for jobs that were once mostly male but shifted
to majority female. A lot of the change comes from women more commonly
entering the workforce, and some is from a shift in culture.

The example uses difference charts, which you’ll see more of in this section, to
highlight the space between male and female percentages over time. You could
show the same percentages with a two-line line chart or a stacked bar chart,
but these focus specifically on which category is greater during a given time.
Telling stories with data is about directing attention to the insights of interest.

BARBELL CHART

A barbell chart is like a dot plot that focuses on the difference between two
categories across various groups. Visualization folks like to name chart types
after things in the physical world, and as shown in Figure 6.13, the comparisons
look like barbells. I guess it’s catchier than my description.

FIGURE 6.12  “Most Male and Female Occupations Since 1950,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2017/
09/11/most-female-and-male-occupations-since-1950  / last accessed February 08, 2024.

https://datafl.ws/7mt
https://datafl.ws/7mt

214  |  CHAPTER 6:  Visualizing Relationships

The chart is useful for direct comparisons between two categories, such as
demographic groups. Think age groups, sex, or race. The dots let you show
where each category is, and the line in between emphasizes the difference. So
you often see the chart used to show gaps between the sexes, which is what
you’ll look at in the following example.

MAKING A BARBELL CHART

Tools used: HTML, CSS, JavaScript, D3.js

Dataset: Taking Care of Kids, Men and Women, book.flowingdata.com/vt2
/ch6/data/hh-activities-withkids.tsv

Sticking with D3, there are again three parts with HTML, CSS, and JavaScript.
The HTML and CSS are like the previous examples, which you can look at in the
barbell folder of this chapter’s source. The main difference is in the JavaScript
(js/barbell.js), but there are also parts that you’ll recognize.

In this example, you compare the time spent by mothers and fathers on
childcare-related activities based on American Time Use Survey responses
between 2013 and 2017. Men have shifted toward more responsibilities in
taking care of children, but there is still a noticeable difference between
men and women, who tend to take on more. How much do they differ,
and in what?

FIGURE 6.13  Barbell
chart framework

http://book.flowingdata.com/vt2/ch6/data/hh-activities-withkids.tsv
http://book.flowingdata.com/vt2/ch6/data/hh-activities-withkids.tsv

Differences  |  215

As before, set the dimensions and start the SVG in the same way. The left
margin is wider than that of the scatterplot and bubble chart to give more
space for labels.

// Dimensions of chart.
let margin = { top: 20, right: 20, bottom: 50, left: 290 },
 width = 650 - margin.left - margin.right,
 height = 550 - margin.top - margin.bottom;
// Start SVG
let svg = d3.select("#chart").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + ","
+ margin.top + ")");

Define the x- and y-scales. Use d3.scaleBand() this time for the y-scale, which
is useful for showing categories on an axis. The domain will be set after load-
ing the data.

// Scales: x and y
let x = d3.scaleLinear()
 .domain([0, 80])
 .range([0, width]);
let y = d3.scaleBand()
 .range([height, 0]);

Load the dataset, which is a TSV file. Each row represents an activity, and there
are columns for the percentage of women who engaged in the activity, the
percentage of men who engaged in the activity, and an activity code with a
description. The following snippet sorts the rows by the percentages for women,
from least to greatest. A function initChart() is called when the data loads.

// Load data
const activitiesData = Promise.all([
 d3.tsv("data/hh-activities-withkids.tsv", d3.autoType)
]);
activitiesData.then(function(data) {
 activities = data[0].sort((a, b) => a.pctkidsf - b.pctkidsf);

 // Initialize chart now that data is loaded.
 initChart();
});

In initChart(), set the domain of the y-scale based on the data that was
loaded. The domain, or the range of the data, will be the description of each

216  |  CHAPTER 6:  Visualizing Relationships

activity, such as physical care, homework, and attending events. Whereas in
the previous examples the y-scale was linear, defined by .scaleLinear(), the
y-scale here is defined with .scaleBand() to indicate a categorical scale that
is evenly split across the range (from height to 0 in this case).

// y-scale domain
y.domain(activities.map(d => d.desc));

With axes defined, they are added by initChart(). Figure 6.14 shows what the
chart looks like so far.

For each activity, add an SVG group element, <g>, translated vertically to the
corresponding position on the y-scale.

// barbells
barbell = svg.selectAll(".barbell")
 .data(activities)
 .join("g")
 .attr("class", "barbell")

Note:  To avoid repeating
myself, I’ll only go over
the code that differs from
the previous example. Be
sure to follow along with
the source available in the
chapter download.

FIGURE 6.14  Axes added for
barbell chart

Differences  |  217

 .attr("transform", d =>
 "translate(0,"+(y(d.desc)+(y.bandwidth()/2))+")")
 .attr("id", d => "act"+d.code);

Then for each group element, add a connecting line from the percentage for
men to the percentage for women on the x-axis.

// connecting lines
barbell.append("line")
 .attr("x1", d => x(d.pctkidsm))
 .attr("x2", d => x(d.pctkidsf))
 .attr("y1", 0).attr("y2", 0)
 .attr("stroke", "#000000");

Append the circles for the men’s percentages. The cx attribute sets the
x-position of the circle. The cy attribute is set to 0, because the group ele-
ment that the circle is appended to was already translated. Generally speaking,
the position of child elements in a <g> element are relative to the parent <g>
element. The r attribute, for radius, is set to 6.

barbell.append("circle")
 .attr("class", "men")
 .attr("cx", d => x(d.pctkidsm))
 .attr("cy", 0)
 .attr("r", 6);

except use pctkidsf.

barbell.append("circle")
 .attr("class", "women")
 .attr("cx", d => x(d.pctkidsf))
 .attr("cy", 0)
 .attr("r", 6);

Finally, add labels for the circles as <text> elements so a reader knows what
colors represent men and women.

// labels
svg.append("text")
 .attr("x", x(activities[14].pctkidsm))
 .attr("y", y(activities[14].desc))
 .attr("text-anchor", "middle")
 .text("MEN");
svg.append("text")
 .attr("x", x(activities[14].pctkidsf))
 .attr("y", y(activities[14].desc))
 .attr("text-anchor", "middle")
 .text("WOMEN");

218  |  CHAPTER 6:  Visualizing Relationships

The barbell chart, shown in Figure 6.15, shows a higher percentage of women
than men engaged in each activity. The biggest difference is in physical care
and pick-up and drop-off.

DIFFERENCE CHART

Imagine a line chart with two lines. Each line represents a category, and over
time, you want to highlight which category is greater. So, you fill the area
between the two lines based on which category is greater. This is a difference
chart, as shown in Figure 6.16.

You can still see the trends over time, like with a line chart, but the focus is on
the difference between the two represented categories. The gap gets bigger
and smaller over time, and color indicates which is greater.

The main trade-off with this chart is that not everyone will understand how
to read it right away because it’s not as widely used as line charts. However,
you can make the patterns more obvious with annotations that guide readers
where to look.

FIGURE 6.15  Barbell chart
comparing categories

Differences  |  219

MAKING A DIFFERENCE CHART

Tools used: HTML, CSS, JavaScript, D3.js

Dataset: Beef and Chicken Consumption, 1909-2017 book.flowingdata.com
/vt2/ch6/data/beef-vs-chicken-difference.csv

When comparing meat consumption per capita, beef was the leader for decades,
but chicken took over the last decade and seems to be pulling further ahead.
When did chicken finally overtake beef? How much more beef did people
consume? A difference chart can show the shift over time, using estimates
from the United States Department of Agriculture.

We’re sticking with D3 for one more example, and we have HTML, CSS, and
JavaScript. The HTML and CSS are like the other examples, so you’ll focus
on the JavaScript portion. I won’t show every line of code here, so open the
differencechart source to follow along.

The margins and SVG are set like before. This time, though, you use linear scales
for x and y. The x-scale represents years, and the y-scale represents pounds
per capita consumed each year in the United States.

// Scales: x and y
let x = d3.scaleLinear()
 .domain([1909, 2017])
 .range([0, width]);
let y = d3.scaleLinear()
 .domain([0, 100])
 .range([height, 0]);

FIGURE 6.16  Difference
chart framework

http://book.flowingdata.com/vt2/ch6/data/beef-vs-chicken-difference.csv
http://book.flowingdata.com/vt2/ch6/data/beef-vs-chicken-difference.csv

220  |  CHAPTER 6:  Visualizing Relationships

The data is a CSV file with three columns for year, beef consumption in pounds
per capita, and chicken consumption in pounds per capita. It looks like this:

Year,Beef,Chicken
1909,51.1,10.4
1910,48.5,11.0
1911,47.2,11.1
1912,44.5,10.6
1913,43.6,10.3
1914,42.7,10.3
1915,38.8,10.2

After the data is loaded in differencechart.js, initChart() is called where
the x- and y-axes are added. To add lines, you append <path> elements using
d3.line() to define the geometry. Add the line for chicken consumption as
shown here:

// Chicken consumption line
svg.append("path")
 .attr("class", "line chicken")
 .attr("fill", "none")
 .attr("stroke", "#bf980d")
 .attr("stroke-width", "2px")
 .attr("d", d3.line()
 .x(d => x(d.Year))
 .y(d => y(d.Chicken)));

Append another path for beef consumption. It is the same as the chicken
consumption line, except the y-coordinate is the Beef variable. Figure 6.17
shows the line chart.

// Beef consumption line
svg.append("path")
 .attr("class", "line beef")
 .attr("fill", "none")
 .attr("stroke", "#fb470e")
 .attr("stroke-width", "2px")
 .attr("d", d3.line()
 .x(d => x(d.Year))
 .y(d => y(d.Beef)));

To fill in the area between the lines, you can use clipping paths. You create
an area that fills from the top of the chart to the beef consumption line and
another area that fills from the bottom of the chart to the beef consumption
line. Then the clipping paths are used to cut out the area above and below
the consumption lines. Create the clipping paths first.

Differences  |  221

// Area clipping paths
svg.append("clipPath")
 .attr("id", "clip-above")
 .append("path")
 .attr("d", d3.area()
 .x(d => x(d.Year))
 .y0(0)
 .y1(d => y(d.Chicken)));
svg.append("clipPath")
 .attr("id", "clip-below")
 .append("path")
 .attr("d", d3.area()
 .x(d => x(d.Year))
 .y0(height)
 .y1(d => y(d.Chicken)));

Then create the areas and apply the clipping paths using the clip-path attrib-
ute. This is probably confusing if you’re unfamiliar with JavaScript and SVG clip-
ping paths, but try commenting out the lines that add the clip-path attributes
to see what the areas look like without the clipping paths versus with.

FIGURE 6.17  Line chart
with two lines

222  |  CHAPTER 6:  Visualizing Relationships

// Area differences
svg.append("path")
 .attr("class", "area above")
 .attr("clip-path", "url(#clip-above)")
 .attr("fill", "#fdad94")
 .attr("d", d3.area()
 .x(d => x(d.Year)).y0(height).y1(d => y(d.Beef)));
svg.append("path")
 .attr("class", "area below")
 .attr("fill", "#f9e59f")
 .attr("clip-path", "url(#clip-below)")
 .attr("d", d3.area()
 .x(d => x(d.Year)).y0(0).y1(d => y(d.Beef)));

In Figure 6.18, you can see beef dominate, but then chicken takes over in 2010.
It looks like chicken might stick around for a while.

HIGHLIGHTING DIFFERENCES

You compared categories with barbell and difference charts. However, you
can also highlight differences with charts that are not specifically designed
to show gaps and change. Adjust color, scale, and geometry to draw focus to
where you need.

Note:  The difference
chart code is adapted from
an example by Mike
Bostock, the creator of D3.
Find it at https:
//datafl.ws/7my.

FIGURE 6.18  Difference chart for
beef versus chicken

https://datafl.ws/7my
https://datafl.ws/7my

Differences  |  223

Figure 6.19, a line chart sometimes referred to as a baseline chart, shows the
shift in bachelor’s degrees conferred by field of study. Instead of showing
totals over the years, percentages change compared to the counts from the
first year highlight shifts. Color further directs attention to the fields of study
with more change.

FIGURE 6.19  “Bachelor’s Degree Movers,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2019/07/10/bachelors-
degree-movers  / last accessed February 08, 2024.

https://datafl.ws/7n0
https://datafl.ws/7n0

224  |  CHAPTER 6:  Visualizing Relationships

A stacked area chart, shown in Figure 6.20, highlights the contrast between
who is older and younger than you, given your age. Usually, the y-axis shows a
range from 0% to 100%, but an extension of the axis to show both categories
separately draws more attention to the splits.

Compare categorical values against a reference point, and a bar chart can show
differences like a baseline chart. Use a color scheme that represents more than
or less than, and you can use a heatmap to show similar data. You can contrast
multiple charts with the same geometry but different subsets of the data. Think
about the aspects or insights from the data you want to show and let them
guide your design and story.

FIGURE 6.20  “Who is Older and
Younger than You,” Nathan Yau
/ 2007-Present FlowingData /
https://flowingdata.
com/2016/05/10/who-
is-older-and-younger-
than-you  / last accessed
February 08, 2024.

https://datafl.ws/7n1
https://datafl.ws/7n1
https://datafl.ws/7n1
https://datafl.ws/7n1

Multiple Variables  |  225

MULTIPLE VARIABLES
The chart types so far show two variables at a time. You showed correlation
between two variables. You showed the differences between two categories.
Visualizing the relationships between more than two variables is tricky because
more variables mean more complexity. To communicate the complexity, you
either must explain data concepts or assume your audience already knows
how to interpret your results.

However, if the emphasis is more on the individual observations than on
overall patterns between all the data points and variables, the charts seem
to have a higher success rate. Think of the visualization as a reference or to
display a profile.

For example, I occasionally like to bring data out of the screen and into the
physical world. In one of those experiments, I brewed beer based on county
data, as shown in Figure 6.21. An R script considered population density, race,
education levels, healthcare coverage, and household income to define the
amounts of hops and grains used in a beer recipe for a given county.

I translated multiple variables into a single result: the beer. For more statistically
rigorous examples, you might want to check out principal component analysis or
multidimensional scaling, but making beer is also fun.

FIGURE 6.21  “Brewing
Multivariate Beer,” FlowingData /
https://flowingdata.
com/2015/05/20/
brewing-multivariate-
beer  / last accessed
February 08, 2024.

https://datafl.ws/multibeer
https://datafl.ws/multibeer
https://datafl.ws/multibeer
https://datafl.ws/multibeer

226  |  CHAPTER 6:  Visualizing Relationships

HEATMAP FOR MULTIPLE VARIABLES

You saw how to use a heatmap to visualize data over time in Chapter 4, and the
overall structure to show multiple variables is similar, as shown in Figure 6.22.
Each row represents a unit or an observation, each column represents a variable,
and each cell represents the value of the corresponding observation-variable
pair with a color.

For multiple variables, the method is useful for a wideout view of your data-
set. You can spot missing values or outliers, and you can use it as a reference
to look up observations. However, deciphering relationships and patterns is
usually more challenging.

MAKING A HEATMAP FOR MULTIPLE VARIABLES

Tools used: R

Dataset: NBA top scorers, 2022-2023 season, book.flowingdata.com/vt2
/ch6/data/nba-top50scorers-2022-23.csv

I have fond memories of flipping to the sports section in the daily news-
paper (delivered to our house!) to see how my favorite basketball teams
and players did the night before. We didn’t have cable television, and the

If beer is of interest, I also
visualized all the styles
based on multiple variables
at https://datafl.
ws/7mv.

FIGURE 6.22  Heatmap for
multiple variables framework

http://book.flowingdata.com/vt2/ch6/data/nba-top50scorers-2022-23.csv
http://book.flowingdata.com/vt2/ch6/data/nba-top50scorers-2022-23.csv
https://datafl.ws/7mv
https://datafl.ws/7mv

Multiple Variables  |  227

reception wasn’t great all the time, so I rarely watched the games live. The
box scores the day after were the next best thing. In this example, you look
at the stats for the National Basketball Association’s top 50 scores from the
2022–23 season. Are minutes per game, shooting percentages, and points
per game related?

Load the data with read.csv() and use head() to see the first few rows.

Load data
players <- read.csv("data/nba-top50scorers-2022-23.csv")
head(players)

The following is a sample of the rows and columns. Each row represents a
player, and each column represents a player stat. During the 2022–23 season,
Joel Embiid was the leading scorer with 33.1 points per game.

> head(players[,c("Player", "FG", "FGpct", "PTS")])
 Player FG FGpct PTS
1 Joel Embiid 11.0 0.548 33.1
2 Luka Dončić 10.9 0.496 32.4
3 Damian Lillard 9.6 0.463 32.2
4 Shai Gilgeous-Alexander 10.4 0.510 31.4
5 Giannis Antetokounmpo 11.2 0.553 31.1
6 Jayson Tatum 9.8 0.466 30.1

For simplicity’s sake, subset the first 20 players.

First 20 players
play20 <- players[1:20,]

Use the heatmap() function, which takes a data matrix and translates the val-
ues to filled cells. Set scale to column so that the color scale is defined by the
range of values in a column, and set Rowv and Colv to NA so that dendrograms
linking rows and columns aren’t drawn.

Four columns
heatmap(as.matrix(play20[,c("MP", "FG", "FGpct", "PTS")]),
 scale = "column",
 Rowv = NA, Colv = NA)

Figure 6.23 shows the output with a structure that resembles the data frame.
There are four columns for minutes played per game (MP), field goals per game
(FG), field goal percentage (FGpct), and points per game (PTS).

Just looking at the heatmap, you don’t know which row represents which
player. Set labRow to the Player column for row labels so that the heatmap
provides a better reference, as shown in Figure 6.24.

228  |  CHAPTER 6:  Visualizing Relationships

Names
heatmap(as.matrix(play20[,c("MP", "FG", "FGpct", "PTS")]),
 scale = "column",
 labRow = play20$Player,
 Rowv = NA, Colv = NA)

To reverse the order of the players so that the leading scorer, Joel Embiid, is at
the top, you can use order() to rearrange the data.

Reorder
playrev <- play20[order(play20$PTS, decreasing = FALSE),]

Then pass playrev to heatmap(). While you’re at it, show more columns and
change the color scheme away from the default with the col argument.

FIGURE 6.23  Heatmap for
NBA players

Multiple Variables  |  229

fnames <- c("MP", "FG", "FGpct", "X2Ppct", "X3Ppct", "FTpct",
"PTS")
heatmap(as.matrix(playrev[,fnames]),
 scale = "column",
 labRow = playrev$Player,
 cexCol = 1,
 col = rev(hcl.colors(20, palette = "Blues 3")),
 Rowv = NA, Colv = NA)

As shown in Figure 6.25, you get a heatmap with a blue color scheme and
more columns of data, with Embiid at the top of the chart.

As you might expect, you can customize the chart more with labels, sizes,
and different subsets of the data. Enter ?heatmap in the R console to check
the documentation. Or export the image as a PDF and edit in Illustrator like
in previous chapters.

FIGURE 6.24  Heatmap with
row labels

230  |  CHAPTER 6:  Visualizing Relationships

PARALLEL COORDINATES

Parallel coordinates use positioning and lines to show the relationships between
variables. As shown in Figure 6.26, you place multiple axes parallel to each
other. The top of each axis represents a variable’s maximum, and the bottom
represents the minimum. For each unit, a line is drawn from left to right, mov-
ing up and down, depending on the unit’s values.

A cluster of lines that move up or down together indicates that a correlation
between the connecting variables might exist. Lines that cross randomly indi-
cate weak or no correlation.

The challenge is that you can only compare adjacent variables in such a plot
and the overall pattern of the lines change depending on the ordering of
the axes. So, I tend toward other methods where I can make more compari-
sons or see patterns more clearly. But maybe you will find a good use for
the method.

FIGURE 6.25  Reordered heatmap
and a different color scheme

Multiple Variables  |  231

MAKING PARALLEL COORDINATES

Tools used: R

Dataset: NBA top scorers, 2022-2023 season book.flowingdata.com/vt2/ch6
/data/nba-top50scorers-2022-23.csv

Come back to the basketball data from the heatmap example. Maybe it’ll be
useful to see the data from the parallel coordinates point of view.

Install and load the MASS package in R, which provides a function for parallel
coordinates.

Install/load package
install.packages("MASS")
library(MASS)

Load the dataset with read.csv(). Remember that the file path is relative to
your current working directory.

Load data
players <- read.csv("data/nba-top50scorers-2022-23.csv")

Note:  The chart can work
as a reference if you’re
more interested in each
unit than overall relation-
ships. For example, the
Guardian used a modified
version of parallel coordi-
nates to show athlete rank-
ings https://datafl
.ws/7ms.

FIGURE 6.26  Parallel coordinates
plot framework

http://book.flowingdata.com/vt2/ch6/data/nba-top50scorers-2022-23.csv
http://book.flowingdata.com/vt2/ch6/data/nba-top50scorers-2022-23.csv
https://datafl.ws/7ms
https://datafl.ws/7ms

232  |  CHAPTER 6:  Visualizing Relationships

If you enter head(players), you’ll see that each row of the data represents
a player, and 31 columns represent information about each player, such as
minutes played, field goal percentage, and points per game. Subset the data
to seven of the columns as shown here:

fnames <- c("MP", "FG", "FGpct", "X2Ppct", "X3Ppct",
"FTpct", "PTS")
psub <- players[,fnames]

The subset is assigned to psub. Enter head(psub) to see the first few rows.
It looks like the following, which shows minutes per game (MP), field goals
per game (FG), field goal percentage (FGpct), two-point percentage (X2Ppct),
three-point percentage (X3Ppct), free-throw percentage (FTpct), and points
per game (PTS):

 MP FG FGpct X2Ppct X3Ppct FTpct PTS
1 34.6 11.0 0.548 0.587 0.330 0.857 33.1
2 36.2 10.9 0.496 0.588 0.342 0.742 32.4
3 36.3 9.6 0.463 0.574 0.371 0.914 32.2
4 35.5 10.4 0.510 0.533 0.345 0.905 31.4
5 32.1 11.2 0.553 0.596 0.275 0.645 31.1
6 36.9 9.8 0.466 0.558 0.350 0.854 30.1

It’s OK if you don’t what these mean in terms of basketball. Just treat them as
metrics that may or may not be related.

Pass psub to the parcoord() function from the MASS package. Figure 6.27
shows the result.

parcoord(psub)

FIGURE 6.27  Parallel coordinates
for basketball players

Multiple Variables  |  233

There appears to be a positive correlation between two-point percentage and
three-point percentage and maybe between three-point percentage and free-
throw percentage. The lines tend to move in the same direction as the former
but are less tightly paired between the latter. The other metrics appear less
related with a lot of crossing lines in between the axes.

You can see how the chart can get messy quickly. When there are a lot of
lines that cross each other, the chart looks like scribbles. However, sometimes
it’s helpful to show one observation at a time, and the rest of the lines pro-
vide context.

Try making one chart each for Joel Embiid, Giannis Antetokounmpo, Stephen
Curry, and LeBron James. Start with the names.

One player at a time
curr_players <- c("Joel Embiid", "Giannis Antetokounmpo",
 "Stephen Curry", "LeBron James")

Use a for loop to make each chart in a two-by-two layout.

Chart each player
par(mfrow=c(2,2))
for (pl in curr_players)) {
 col <- rep("gray", dim(players)[1])
 lwd <- rep(.5, dim(players)[1])
 i <- which(players$Player == pl)
 col[i] <- "blue"
 lwd[i] <- 3
 parcoord(psub, col=col, lwd=lwd, main=pl)
}

Whereas Figure 6.27 uses equal visual weight to each line, Figure 6.28 gives
more visual weight to the current player in blue, and the other lines provide
a point of comparison.

Embiid, Curry, and James follow similar patterns, but Antetokounmpo shows
a dip at free-throw percentage (FTpct), with the lowest percentage out of the
top 50 scorers during the season. The low free-throw percentage stands out
compared to the gray lines for the other players.

That said, if you want to compare each variable against the others, a scatterplot
matrix might work better. Use plot() on the player subset.

Scatterplot Matrix
plot(psub)

234  |  CHAPTER 6:  Visualizing Relationships

You get a pairwise grid, as shown in Figure 6.29, that gives you a sense of cor-
relation between each pair of variables, which is useful if you’re exploring the
data to see what’s there.

SEPARATING VIEWS

Like a scatterplot matrix, which is just a grid of scatterplots strategically
placed, oftentimes, it’s more useful to show separate views instead of one
visualization for everything. It’s less burdensome for readers to decipher an
unfamiliar chart and less responsibility for you to explain how to read such a
chart. To show multiple variables or dimensions, split the data using multiple
straightforward charts.

This approach often works well with categorical data, which provides a natural
separation. Figure 6.30 shows the shifting causes of death over time and age.
Each chart represents a cause, as classified by the Centers for Disease Control
and Prevention.

By separating the causes, you can see more variables at once and directly
compare each chart against the others because of a consistent format.

FIGURE 6.28  Parallel coordinates
highlighted

Connections  |  235

If you try to squeeze too much data into a single chart, you end up showing
nothing by including everything. So, if you’re stuck with a multivariate dataset
and are not sure what to do with it, start with a series of simpler charts and go
into more detail after. This analysis-based path can also be useful for explain-
ing the data to others.

CONNECTIONS
Through family and friends, work, school, social media, and interactions with
people, places, and things, we form connections between each other. Without
connections, we are all just tiny islands with nothing to do, which doesn’t
seem like much fun. How closely are we connected? What kind of networks
do you belong to?

If you think of your family or household as a network, where each member
or resident is connected, you can estimate how many household types exist.
As you might imagine, there are the common types of households, shown in
Figure 6.31, such as a married couple, married with a child, or two roommates.
Based on data from the 2021 American Community Survey, there are more
than 4,700 such combinations.

FIGURE 6.29  Scatterplot matrix

236  |  CHAPTER 6:  Visualizing Relationships

FIGURE 6.30  “How Cause of
Death Shifted with Age and
Time in America,” https:
//datafl.ws/7n2

https://datafl.ws/7n2
https://datafl.ws/7n2

Connections  |  237

Like a cheesy line in a movie, we are all connected in some way. It can be use-
ful to see how.

NETWORK GRAPH

Network graphs literally show connections. Use shapes to represent people,
places, things, categories, or entities and use lines to connect them. As shown
in Figure 6.32, the shapes are called vertices, sometimes referred to as nodes,
and the connecting lines are edges, sometimes referred to as links.

FIGURE 6.31  “All the Household
Types in the U.S.,” https:
//datafl.ws/fams

FIGURE 6.32  Network
graph framework

https://datafl.ws/fams
https://datafl.ws/fams

238  |  CHAPTER 6:  Visualizing Relationships

Network graphs are not as popular as they once were, because the novelty
wore off, and when you have a lot of vertices and edges, you can quickly end
up with an unreadable hairball. Network graph software implements algorithms
to minimize overlap and cluster vertices based on number and strength of
connections between other vertices, but it has its limitations.

Still, with these limitations in mind, it’s not hard to find use cases that let you
see connections in a more literal way than abstract metrics.

MAKING A NETWORK GRAPH

Tools used: R

Each network showing the family structures in Figure 6.31 was made in R. This
example covers how you might make one of those networks, which you can
extrapolate for your own data.

In the R console, install the igraph package if you don’t have it yet with install.
packages() and then load the package with library().

install.packages("igraph")
library(igraph)

Start with an empty graph using make _ empty _ graph(). Set the directed
argument to FALSE since we don’t care about the direction of the connections
between vertices in this example.

Empty graph
g <- make_empty_graph(directed=FALSE)

Add vertices to the empty graph, g, with add _ vertices(). The following
adds one vertex with hexadecimal color of #a3b8a3 and a size of 50, which
indicates diameter of the circle:

Add vertices
g <- g %>% add_vertices(1, color="#a3b8a3", size=50)

Add another vertex with a different color but the same size.

g <- g %>% add_vertices(1, color = "#d7c668", size=50)

Then add 10 vertices with a smaller size of 20.

g <- g %>% add_vertices(10, color = "#cccccc", size=20)

Pass g to the plot() function to draw the current graph.

plot(g)

Note:  igraph is an open-
source collection of tools
that, in addition to R, is
available for Python, Math-
ematica, and C. Find more
details at https:
//datafl.ws/7mw.
The process is similar to
the steps outlined here.

https://datafl.ws/7mw
https://datafl.ws/7mw

Connections  |  239

The result, in Figure 6.33, has one large green vertex, a large yellow one, and
10 smaller gray ones for 12 vertices total. The numbers indicate the index and
order the vertices were added to the graph.

You add edges in a similar way with add _ edges(). However, instead of specify-
ing how many to add, you use a vector of indices to define how and what to
connect. Pass c(1, 2) to add an edge that connects vertices 1 and 2. You can
specify the color of the edge, which will be a line, and the weight, set to 0.01
for now, which indicates how strong the connection is between the vertices.

Connect the two first vertices
g <- g %>% add_edges(c(1,2), weight=0.01, color="#cccccc")

You can add multiple edges by adding pairs of numbers to the vector of indices.
To connect vertices 8 and 10 and then 8 and 7, try the following:

FIGURE 6.33  Graph with
added vertices

240  |  CHAPTER 6:  Visualizing Relationships

Connect 8 to 10 and 7
g <- g %>% add_edges(c(8,10, 8,7), weight=0.01, color="#cccccc")

Here is how to add three edges between 3 and 1, 4 and 1, and 5 and 1. The
weight and the color are the same.

Connect 3, 4, and 5 to 1
g <- g %>% add_edges(c(3,1, 4,1, 5,1), weight=0.01,
color="#cccccc")

Figure 6.34 shows what you have so far. If you’re following along, you might
note the placement of the vertices looks different. There is randomness in the
initial placement, so the layout is not always the same.

FIGURE 6.34  Graph with edges
and vertices

Connections  |  241

Add two more edges with greater weight.

Connect 11 and 12 to 2 with more weight
g <- g %>% add_edges(c(12,2, 11,2), weight=1, color="#cccccc")

Call plot() again, and you get Figure 6.35. The vertices 11 and 12 are closer to
node 2, because the weight on the edges were higher than the previous ones.

The igraph package provides various layout algorithms that you can choose
depending on your application. The following snippet uses the Fruchterman-
Reingold force-directed algorithm, a grid, and a circle, and the last one,
layout _ nicely, tries to automatically pick for you based on the graph’s
properties. Figure 6.36 shows the differences.

FIGURE 6.35  Varying weights
for the edges

242  |  CHAPTER 6:  Visualizing Relationships

Layouts
par(mfrow=c(2,2), mar=c(1,0,3,0))
plot(g, vertex.label=NA, layout=layout_with_fr, main="Force-
directed")
plot(g, vertex.label=NA, layout=layout_on_grid, main="Grid")
plot(g, vertex.label=NA, layout=layout_in_circle, main="Circle")
plot(g, vertex.label=NA, layout=layout_nicely, main="Nicely")

You can do more by adding and removing vertices and edges, adjusting sizes,
weights, and colors, and using different layout algorithms. However, I tend to
avoid more complex networks because I am not fond of the hairball aesthetic.
That said, check out make-network-graph.R in the chapter source for an exam-
ple of making a network graph based on a dataset.

FIGURE 6.36  Different
graph layouts

Wrapping Up  |  243

WRAPPING UP
Relationships can be complex and messy. They can also be super obvious.
So, it’s best to consider the context of the data: where it came from, how and
why variables appear connected, and how they differ. Use this information to
understand data better and help others interpret results.

As you saw in this chapter, various chart types can highlight relationships in
different ways. Alternatively, you can design more general chart types to show
what you want by adjusting color, geometry, and data choices. Focus more on
showing aspects of your data than on just showing data, which typically yields
better results with purpose.

You got your first dose of making charts for the Web using the JavaScript library
D3.js. There was a little bit of HTML and CSS. If you’re new to web development,
this might have been tricky because there are more moving parts instead of
calling a single function. But if you want flexibility in the browser, it’s worth
going deeper.

Next up: visualizing space.

Ch.7

Visualizing Space

246  |  CHAPTER 7:  Visualizing Space

Location is inherent in many of the things we do. As you read these words,
you’re aware of where you physically are in the world, and it’s increasingly easy
to pull out a digital map to find directions to where you want to go. There’s an
immediate connection to location, which makes maps a great way to visualize
geographic data for understanding and communicating spatial patterns.

Mapping spatial data shares much of the process required by visualizing data
with charts. However, the added dimension of physical location brings with it
different considerations.

For example, a plot that uses abstract x- and y-coordinates can be easily trans-
formed between linear and logarithmic scales to improve readability. Trans-
forming a map that uses latitude and longitude can’t just be cropped, zoomed,
and stretched without considering the preservation of area, distance, and
boundary shapes.

There are separate fields of study to analyze spatial data and to communicate
with maps. This chapter focuses on a subset of these fields that uses maps to
visualize data. You look at locations. Where are people, places, and things in the
world? You look at spatial distributions. How are the people, places, and things
spread out or concentrated within different regions? You look at change over
space and time. Does spread change year over year?

WORKING WITH SPATIAL DATA
There are usually two categories when working with spatial data: the geogra-
phy and the data associated with that geography. You use the former to make
the map with boundaries, locations, and features such as bodies of water. The
latter tells you about the former, such as who or what lives there.

Sometimes, the data comes bundled together in one set of files. Often, the data
that defines the map, and the data about the places in the map come separately,
so you have to merge them. In this chapter, you’ll learn how to handle this,
but first, let’s briefly look at working with the geography portion specifically.

GEOCODING ADDRESSES

When your data is a collection of addresses, how do you specify their locations
on a map? You can’t just open R and tell it to plot 123 Random Street, Some City,
USA. You need to know where each address is in terms of latitude, the north-
south position of a point on the surface of Earth, and longitude, the east-west

Working with Spatial Data  |  247

position, also known as geographic coordinates. Geocoding is the process of finding
geographic coordinates based on an address. Reverse geocoding is the process
of finding addresses given geographic coordinates.

There are many services you can use to geocode coordinates, but your results
will vary depending on where your addresses are based and their accuracy.
Paid services run by companies like Google, Mapbox, and Esri tend to be the
most robust. If you have funds and are short on time, you can access their APIs,
usually priced by number of queries.

Worthwhile free options do exist, though. Nominatim uses OpenStreetMap data,
and you can either search for addresses one by one in the browser or use the
API for higher volumes.

For addresses based in the United States, the Census Bureau has a geocoder
that you can access via API or upload up to 10,000 addresses and get back
coordinates in a batch. It doesn’t always find coordinates, though.

Sometimes, the best solution is to use a combination of the geocoding services.
For example, you could use free services to get most of your coordinates, and
for the addresses that return errors or no results, you could use one of the
paid services. The Python library geopy can be helpful here, which lets you
try different services at once.

Useful Geocoding Tools
■■ Google Maps Platform (developers.google.com/maps): Provides

APIs for map, including for geocoding

■■ Mapbox(mapbox.com): An alternative to Google Maps that will
probably yield similar results

■■ Esri ArcGIS Platform(esri.com): Useful if you already use ArcGIS

■■ Census Geocoder(geocoding.geo.census.gov): Good for
addresses in the United States

■■ Nominatum(nominatim.openstreetmap.org): Provides an
interactive map and an API

■■ geopy(github.com/geopy/geopy): Python library to use multiple
geocoding services

http://developers.google.com/maps
http://mapbox.com
http://esri.com
http://geocoding.geo.census.gov
http://nominatim.openstreetmap.org
http://github.com/geopy/geopy

248  |  CHAPTER 7:  Visualizing Space

MAP PROJECTIONS

With maps, you must compromise when you represent a three-dimensional
world with two dimensions on the screen or on paper. Map projections, essentially
math that places three-dimensional space on a two-dimensional surface, are
part of the compromise. They typically try to minimize distortion in area, shape,
direction, or distance or a combination of them. Figure 7.1 shows a handful of
projections, but some projections are better at things and worse at others, so
you choose based on the geography you want to show.

For example, the Mercator projection provides latitude and longitude
lines that are straight, which are good for showing turn-by-turn directions.
The popular online mapping services use Mercator for their maps when
you need to get from one place to another. The streets appear with right
angles. But as shown in Figure 7.2, when you zoom out to show larger areas,
the spaces toward the poles appear much larger than they are. This uses
Tissot’s indicatrix, which uses circles to show the amount of distortion in
map projections.

FIGURE 7.1  Map
projections sample

Working with Spatial Data  |  249

On the other hand, the Albers projection preserves area for regions about the
size of the United States or Europe, so many maps of those places use Albers.
The Gall-Peters projection distorts shape but preserves area. The Winkel tripel
projection minimizes distortion of area, direction, and distance, and it’s a com-
mon projection for maps of the world.

Many of the projections have parameters for latitude and longitude to define
focus on different areas of the world. So, with unlimited options, it can be kind
of overwhelming at first. The good news is that you don’t have to remember the
parameters and customizations most of the time. From a practical standpoint,
you can reuse the same projections quite a bit or look up typical projections
for a given geography.

Find more demonstrations
of the distortion with
the Mercator projection
at https://datafl
.ws/7n7.

SOURCE: Stefan Kühn / Wikipedia / CC BY 3.0.
FIGURE 7.2  World map with
Mercator projection

https://datafl.ws/7n7
https://datafl.ws/7n7

250  |  CHAPTER 7:  Visualizing Space

LOCATIONS
Where? It is the most basic question you can ask with a map, but it can take
you down many paths. Where are we? Where do we need to go? Where is the
nearest pizza place? Where is the best pizza place? From there, you can ask
how are locations connected? What is this place like, and how does it compare
to others?

For example, one day I wondered about popular coffee chains across the
country. My main experience was with Starbucks, which is nearly everywhere,
and then I moved to southern California, where I enjoyed The Coffee Bean &
Tea Leaf, and then in Buffalo, New York, I saw the dominance of Tim Hortons.
I mapped several coffee chains, as shown in Figure 7.3.

I can never remember all
the parameters for every
projection, so I either
revisit my old projects or
search for the geography
of interest to see what is
currently standard.

FIGURE 7.3  Coffee chain locations

Locations  |  251

Which coffee chain reigned supreme? As shown in Figure 7.4, I compared
number of locations within a 10-mile radius across the country and colored
dots by the predominant chain. Starbucks covered the largest geographic area;
however, other chains held their own.

My fascination continued with pizza, grocery stores, sandwich shops, and
bars. A simple question about coffee shops led to many more questions and
maps, along with playful discussions around the Internet as people chose
their favorites.

When looking at location, you want to answer questions about where, the
aggregates, and how they might connect. Start with the basics and see where
it takes you.

FIGURE 7.4  “Coffee Place Geography,” https://datafl.ws/coffee

https://datafl.ws/coffee

252  |  CHAPTER 7:  Visualizing Space

POINTS

The most straightforward way to show locations with latitude and longitude
is to draw points on a map. As shown in Figure 7.5, you draw a marker for
each location.

Although a simple concept, you can see features in the data such as clustering,
spread, and outliers.

MAPPING POINTS

Tool used: R

Datasets:

■■ State boundaries for the United States, book.flowingdata.com/vt2
/ch7/data/cb _ states.zip

■■ Walmart Locations in the United States, book.flowingdata.com/vt2
/ch7/data/walmart-openings-geocoded.csv

Mapping locations with points is like making a dot plot in R. Set up a visualiza-
tion area and add dots. However, instead of drawing a blank plot and adding

FIGURE 7.5  Mapping
points framework

http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/walmart-openings-geocoded.csv
http://book.flowingdata.com/vt2/ch7/data/walmart-openings-geocoded.csv

Locations  |  253

points with x-y-coordinates, you first make a blank map and then use longitude
and latitude to define the locations of points.

In this example, you want to see where Walmart locations are in the conter-
minous United States. So, you will draw a map with state boundary lines and
then add the locations.

Load the sf package (i.e., Simple Features for R), which provides functional-
ity specifically for spatial data. Use install.packages() if don’t have the
package yet.

Library(sf)

The state boundary lines come as a shapefile from the U.S. Census Bureau, which
updates boundaries at various geographic levels each year. The shapefiles are
available in this chapter’s download material. Point to the file path for the .shp
file and use st _ read() from the sf package to load the file:

State boundaries
statefp <- "data/cb_states/cb_2022_us_state_20m.shp"
statebnds <- st_read(statefp)

Here is a subset of the data, which contains polygons for each state and meta-
data, such as a unique ID, state abbreviation, and name.

Simple feature collection with 6 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -124.5524 ymin: 25.84012
 xmax: -80.84313 ymax: 47.05468
Geodetic CRS: NAD83
 AFFGEOID STUSPS NAME geometry
1 0400000US48 TX Texas MULTIPOLYGON (((-106.6234 3...
2 0400000US06 CA California MULTIPOLYGON (((-118.594 33...
3 0400000US21 KY Kentucky MULTIPOLYGON (((-89.54443 3...
4 0400000US13 GA Georgia MULTIPOLYGON (((-85.60516 3...
5 0400000US55 WI Wisconsin MULTIPOLYGON (((-86.93428 4...
6 0400000US41 OR Oregon MULTIPOLYGON (((-124.5524 4...

For the sake of simplicity, subset the statebnds data to the conterminous
United States.

Conterminous United States
inconterm <- !(statebnds$STUSPS %in% c("AK", "HI", "PR"))
conterm <- statebnds[inconterm,]

Store locations are in a CSV file, so use read.csv().

There is more than one way
to make maps in R. I pri-
marily use the sf package,
but you might also want to
check out the maps or terra
packages to use instead of
or in combination with sf.

254  |  CHAPTER 7:  Visualizing Space

Store locations
stores <- read.csv("data/walmart-openings-geocoded.csv")

Use head() to see the first rows of the data and to make sure it loaded correctly.

> head(stores)
 store_num year month day lat lng store
1 1 1962 7 1 36.33445 -94.17890 walmart
2 2 1964 8 1 36.25059 -93.11949 walmart
3 4 1965 8 1 36.18320 -94.51260 walmart
4 7 1967 10 1 34.83613 -92.23114 walmart
5 8 1967 10 1 35.16881 -92.72411 walmart
6 9 1968 3 1 36.89540 -89.59512 walmart

Each row represents a store with an opening date (year, month, and day),
location expressed as latitude (lat) and longitude (lng), and the kind of store,
which can be Walmart or the Walmart-owned Sam’s Club. Subset to just the
Walmart stores.

Subset to Walmart stores only
walmarts <- stores[stores$store == "walmart",]

With data loaded and subset, the mapping part is straightforward with
the plot() function. The following shows how to draw the original state
boundaries from the shapefile. The call to st _ geometry() on the statebnds
data is to specify a map of just boundaries rather than several maps of
metadata.

States and United States territories
plot(st_geometry(statebnds))

Figure 7.6 shows boundaries for the conterminous United States along with
Alaska, Hawaii, and Puerto Rico. Because of geographic space in between
regions, it is difficult to see everything, which is why in this example you focus
on the conterminous United States.

Use plot() and st _ geometry() again, but this time use the conterm subset.

FIGURE 7.6  Default
state boundaries

Locations  |  255

Conterminous United States
plot(st_geometry(conterm))

As shown in Figure 7.7, you can more easily see the boundaries of the states.

Use points() to add store locations to the map. Treat longitude, which speci-
fies the east-west position on a map, as the x-coordinate and latitude, which
specifies the north-south position on a map as the y-coordinate. Make the
locations blue for now with the col argument.

Draw locations
points(walmarts$lng, walmarts$lat,
 col="blue")

Figure 7.8 shows the result. As you might expect, Walmart is located across the
country with a higher concentration in areas with greater populations.

To transform the map to an Albers projection, which is commonly used to show
the United States, use the proj-string assigned to conterm _ p4s and apply it to
conterm with st _ transform().

Project map
conterm_p4s <-
 "+proj=aea +lat_1=29.5 +lat_2=45.5 +lon_0=97.2w"
conterm_albers <- st_transform(conterm, conterm_p4s)

You must also transform the store locations, but to use st _ transform(),
the data must be a compatible data type, which in this case, is an object of

The shapefile stores
geographic locations, so if
you want to map Alaska,
Hawaii, and Puerto Rico
in the same view but on
different scales, you must
add the maps separately.
I like to use the plt
graphical parameter with
par(), but you can also
try using layout() or
viewport().

Note:  The Albers projec-
tion, named after Heinrich
Albers, is an equal-area
map projection, which
means it preserves area
across geographies.

FIGURE 7.7  Conterminous
United States

256  |  CHAPTER 7:  Visualizing Space

class sf. You can change the walmarts data frame with st _ as _ sf(). Pass
the data frame, specify which columns represent the coordinates, and set
the proj-string.

Set data
wal_sf <- st_as_sf(walmarts,
 coords = c("lng", "lat"),
 crs = "+proj=longlat")

Use st _ transform() on the new Walmart data, wal _ sf, using the same proj-
string, conterm _ p4s, you used to transform the boundaries.

Transform points
wal_sf_albers <- st_transform(wal_sf, conterm_p4s)

Map the store locations the same as before using the projected data.
Let’s adjust colors and line widths while we’re at it when calling plot()
and points().

Projected points on map
par(mar = c(0,0,0,0))
plot(st_geometry(conterm_albers),
 border = "#cccccc", lwd = .5)
points(st_coordinates(wal_sf_albers),
 col="#30437b", cex = .5)

You get a map with an Albers projection, as shown in Figure 7.9, which prob-
ably looks familiar shape-wise.

FIGURE 7.8  Walmart
locations on a map

Locations  |  257

This process of converting data and projecting the boundaries and geographic
coordinates typically follows the same steps for other geometries you want to
use in maps.

SCALED SYMBOLS

Oftentimes, you don’t just have location data. You have data associated with the
locations, such as sales for a business or city population. You can still map with
points, but you can take the principles of a bubble plot, discussed in Chapter 6,
“Visualizing Relationships,” and use it on a map. As shown in Figure 7.10, you
scale symbols by area and place them on the map by location.

ADDING SCALED SYMBOLS

Tool used: R

Datasets:

■■ State boundaries for the United States, book.flowingdata.com/vt2
/ch7/data/cb _ states.zip

■■ Walmart Locations in the United States, book.flowingdata.com/vt2
/ch7/data/walmart _ addresses.csv

FIGURE 7.9  Projected points

http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/walmart_addresses.csv
http://book.flowingdata.com/vt2/ch7/data/walmart_addresses.csv

258  |  CHAPTER 7:  Visualizing Space

In the previous example, you mapped each Walmart location, but maybe you
have a dataset that doesn’t include an exact address, or it’s aggregated by a
larger geography. Maybe you don’t need the granularity of every location, or
you don’t want to go through the trouble of geocoding.

For example, how many Walmart stores are there in each state? To answer
visually, it’d be more useful to show counts by state instead of every location.
Load the dataset with read.csv().

Load addresses
wal <- read.csv("data/walmart_addresses.csv",
 header=FALSE)

This is different from the previous dataset in that it has addresses without
longitude and latitude. The first column is just a unique ID number, and
then the rest of the columns are the address, city, state, and ZIP code, as
shown here:

> head(wal)
 V1 V2 V3 V4 V5
1 1 2110 W Walnut St Rogers AR 72756
2 2 161 N. Walmart Drive Harrison AR 72601
3 3 30983 Highway 441 S Commerce GA 30529
4 4 2901 Highway 412 E Siloam Springs AR 72761
5 5 1155 Hwy 65 North Conway AR 72032
6 7 9053 Highway 107 Sherwood AR 72120

FIGURE 7.10  Mapping with
scaled symbols framework

Locations  |  259

There are different ways to aggregate by state in R (surprise). Here’s how to
count with table():

Count locations by state
statecnts <- table(wal$V4)

This gives you the counts as a table assigned to statecnts. Here are the first
few counts:

> statecnts[1:6]

 AK AL AR AZ CA CO
 9 97 82 78 201 72

A circle will represent each count on the map, but first you need to know where
to place each circle. You’ll use the centroid of each state, which is the geometric
center of each state polygon’s boundaries. The st _ centroid() function makes
it straightforward to find the coordinates.

Centroids
state_centroids <- st_centroid(conterm)

To join the statecnts and centroid coordinates, create a new data frame,
statesdf, with a column for state abbreviations. Then use cbind() to add the
coordinates.

States data frame
statesdf <- data.frame(abbrev = conterm$STUSPS)
statesdf <- cbind(statesdf,
 st_coordinates(state_centroids))

As before, use match() to add the counts to the statesdf data frame.

Merge counts with data frame
imatch <- match(statesdf$abbrev, dimnames(statecnts)[[1]])
statesdf$walmarts <- as.numeric(statecnts)[imatch]

The new data frame with centroid coordinates and store counts for each state
looks like the following:

> head(statesdf)
 abbrev X Y walmarts
1 TX -99.30284 31.44191 365
2 CA -119.47278 37.17976 201
3 KY -85.30026 37.53428 84
4 GA -83.43304 32.63690 142
5 WI -89.99169 44.62587 89
6 OR -120.56277 43.93507 31

260  |  CHAPTER 7:  Visualizing Space

Map the conterminous U.S. boundaries with plot(). Also use par() to set the
margins of the plot to zero all around so that the map fills the space.

Blank map
par(mar=c(0,0,0,0))
plot(st_geometry(conterm), border="#cccccc")

Add the scaled circles with the symbols() function. It takes the x- and
y-coordinates, and by setting the radii of the circles to the square root of the
counts, you add circles that are sized by area. Dividing the square root values
by 7 is for overall scaling. Try dividing by smaller and larger numbers to see
how the circle sizes change.

Scaled symbols
symbols(statesdf$X, statesdf$Y,
 circles = sqrt(statesdf$walmarts)/7,
 bg = "#b7c1e2",
 inches = FALSE,
 add = TRUE)

You get a map with circles sized by the number of Walmart locations in each
state, as shown in Figure 7.11.

Applying the Albers projection to symbols is just like with points. Specify the
coordinate columns with st _ as _ sf(), which in this case are the X and Y
columns. Project to Albers with st _ transform(). Use plot() and symbols()
to draw the map.

Sizing each circle’s radius
by the square root of the
count instead of linearly
assures that the areas of
the circles correspond to
the counts. This follows
the same logic described
in Chapter 5, “Visualizing
Categories,” when you
used scaled symbols to
represent data.

FIGURE 7.11  Scaled sym-
bols by state

Locations  |  261

Projected scaled symbols
statesdf_sf <- st_as_sf(statesdf,
 coords = c("X", "Y"),
 crs = "+proj=longlat")
statesdf_sf_albers <- st_transform(statesdf_sf, conterm_p4s)
par(mar=c(0,0,0,0))
plot(st_geometry(conterm_albers), border="#cccccc")
symbols(st_coordinates(statesdf_sf_albers),
 circles = sqrt(statesdf$walmarts)*12000,
 bg = "#b7c1e2",
 inches = FALSE,
 add = TRUE)

In the original latitude-longitude version, circle radii were scaled down by
dividing by seven in symbols(). In the Albers version, the radii are scaled up
by 12,000. The sizes passed to the circles argument in symbols() are relative
to the scale of the plotting space. To find the scale that you should use, check
the range of the data or use par("usr") to get the limits of the current plot.
Figure 7.12 shows the projected symbols map. Note the more conical shape
that curves versus the flat rectangular shape of the latitude-longitude version.

LINES

In some cases, it could be useful to connect the dots on your map if the order of
the points is relevant or places interact. Think routes, such as driving directions

FIGURE 7.12  Scaled symbols
with Albers projection

262  |  CHAPTER 7:  Visualizing Space

and running paths, or relationships between geographic locations, such as
migration and financial aid. As shown in Figure 7.13, lines draw attention to
how the locations go together.

ADDING LINES

Tool used: R

Datasets:

■■ State boundaries for the United States, book.flowingdata.com/vt2
/ch7/data/cb _ states.zip

■■ Walmart Locations in the United States, book.flowingdata.com/vt2
/ch7/data/walmart _ addresses.csv

■■ Brewery Road Trip, book.flowingdata.com/vt2/ch7/data/brewery-
road-trip-path.tsv

To draw lines that connect locations on a map, you follow the same process
as points and symbols. Draw a blank map. Add lines (and other geometries
if you like). In this example, you draw a line that connects the first two state
centroids from the previous example. It assumes you have boundaries for the
conterminous United States and Walmart locations loaded, assigned to conterm
and statesdf, respectively.

FIGURE 7.13  Mapping
lines framework

http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/walmart_addresses.csv
http://book.flowingdata.com/vt2/ch7/data/walmart_addresses.csv
http://book.flowingdata.com/vt2/ch7/data/brewery-road-trip-path.tsv
http://book.flowingdata.com/vt2/ch7/data/brewery-road-trip-path.tsv

Locations  |  263

Draw a blank map with zero margins using the mar argument from par() and
st _ geometry() to draw only the boundaries from the shapefile data.

Blank map
par(mar=c(0,0,0,0))
plot(st_geometry(conterm), border="#cccccc")

Use lines() to draw a single line. The function takes a vector of x-coordinates
and a vector of y-coordinates, which in this case, are the first two observations
from statesdf. Set line width (lwd) to 2 and line color (col) to the hexadecimal
value #30437b.

Draw line
lines(x = statesdf$X[1:2],
 y = statesdf$Y[1:2],
 lwd = 2,
 col = "#30437b")

This adds a line to the map, as shown in Figure 7.14.

You can also add other elements to the map, such as points and labels. For
example, use points() to add end points to the existing line.

End points
points(x = statesdf$X[1:2],
 y = statesdf$Y[1:2],
 pch = 21,
 bg = "#30437b",
 col = "#000000")

Note:  Think of the addi-
tion of more elements to a
blank map as layering on
top of the other. The blank
map is the bottom layer,
the line is the second layer,
the points are the third,
and the labels the top layer.

FIGURE 7.14  Line connecting
two locations

264  |  CHAPTER 7:  Visualizing Space

Add labels for the state abbreviations with text(). Use the same x- and
y-coordinates from the lines and points, but give the y-coordinates a 0.75
bump up so that the labels appear above the points.

Labels
text(x = statesdf$X[1:2],
 y = statesdf$Y[1:2]+.75,

labels = statesdf$abbrev[1:2])

As shown in Figure 7.15, this places two points at the end of the lines and labels
on top of each point.

This is a simplified example with only two x-y-coordinates, but the same logic
applies to add a line with more points. As shown in the following snippet, load
brewery-road-trip-path.tsv. It is the data for the algorithmically routed road
trip through the best breweries in the United States described in Chapter 1,
“Telling Stories with Data.”

A longer path
roadtrip <- read.csv("data/brewery-road-trip-path.tsv",
 sep = "\t")

The data is assigned to roadtrip. Use head(roadtrip) to see the first rows of
the data frame. There are several columns to the dataset, but you need only
the first two for this example to map latitude and longitude.

FIGURE 7.15  Connecting line
and points

Locations  |  265

> head(roadtrip[,1:2])
 lat lng
1 36.13686 -96.04723
2 36.13522 -96.04725
3 36.13348 -96.04725
4 36.13348 -96.04725
5 36.13347 -96.04275
6 36.13344 -96.03357

Draw the blank map with plot() and add the road trip with lines().

par(mar=c(0,0,0,0))
plot(st_geometry(conterm), border="#cccccc")
lines(roadtrip$lng, roadtrip$lat, lwd = 3)

Now, you know the shortest route to take to visit the best breweries, as shown
in Figure 7.16. Enjoy.

To transform the map with the Albers projection, specify the coordinates of
roadtrip with st _ as _ sf() and apply the transformation with st _ transform().
Draw the blank transformed map and add the transformed lines. These are the
same steps you used to project the Walmart points and state-level symbols.

Project map
conterm_p4s <-
 "+proj=aea +lat_1=29.5 +lat_2=45.5 +lon_0=97.2w"
conterm_albers <- st_transform(conterm, conterm_p4s)

FIGURE 7.16  Road trip on a map

266  |  CHAPTER 7:  Visualizing Space

Projected road trip
roadtrip_sf <- st_as_sf(roadtrip,
 coords = c("lng", "lat"),
 crs = "+proj=longlat")
roadtrip_sf_albers <- st_transform(roadtrip_sf, conterm_p4s)

Map the projected road trip
par(mar=c(0,0,0,0))
plot(st_geometry(conterm_albers), border="#cccccc")
lines(st_coordinates(roadtrip_sf_albers),
 lwd = 3)

Figure 7.17 shows the road trip map with an Albers projection. Compare
this to Figure 7.16, which treated latitude and longitude as rectangular
coordinates.

SPATIAL DISTRIBUTIONS
When dealing with multiple locations, you’re usually not just interested
in where each place is. How are things spread out? Are there areas of high
density and low density, or are things uniformly distributed across regions?
Are there regional differences or similarities? The questions are less about
individual places and more about the collection of and the variation within
places.

FIGURE 7.17  Road trip with the
Albers projection

Spatial Distributions  |  267

In 2014, I scraped data from RunKeeper, an app to keep track of your runs. I
wanted to know the running patterns of people in major cities. Figure 7.18 shows
the collection of traces by mapping running routes one on top of the other.

While at the time, the RunKeeper site allowed queries only within a certain
distance from a city center, you can still see the popular areas around parks,
bodies of water, and established running paths. In some cases, the traces col-
lectively show the walkability of a city and the areas that people tend to stay
away from, for running at least.

The distribution across the areas and the variation and noise along the paths
create interest in the maps.

CHOROPLETH MAP

Choropleth maps are the most common way to map regional data. Based on a
metric, regions are colored following a color scale that you define, as shown in

FIGURE 7.18  “Where People
Run in Major Cities,” FlowingData
/ https://flowingdata
.com/2014/02/05/where-
people-run  / last accessed
February 08, 2024.

https://datafl.ws/run
https://datafl.ws/run
https://datafl.ws/run

268  |  CHAPTER 7:  Visualizing Space

Figure 7.19. The areas and locations are already defined, so your job is to decide
the appropriate color scales to use.

As touched on in Chapter 2, “Choosing Tools to Visualize Data,” Cynthia Brewer
and Mark Harrower’s ColorBrewer is a straightforward way to pick your colors.
The palettes are pregenerated. You select what kind of palette you want and
how many data classes there are, and the tool provides options.

If you have continuous data, you might want a similarly continuous color scale
that goes from light to dark, but all with the same hue (or multiple similar hues),
as shown in Figure 7.20.

A diverging color scheme, as shown in Figure 7.21, might be good if your data
has a two-sided quality to it, such as good and bad or above and below a
threshold.

Finally, if your data is qualitative with classes or categories, then you might
want a unique color for each (Figure 7.22).

ColorBrewer is a good place to start if you don’t require custom color scales,
especially since you can narrow down to use only colorblind-safe options.
However, for color schemes that match a company color palette or the context
of a dataset, you should try the other tools mentioned in Chapter 2.

Note:  ColorBrewer,
which you can try at
colorbrewer2.org,
was intended for maps, but
the applications have since
spread to statistical visu-
alization more generally,
such as with heatmaps.

FIGURE 7.19  Choropleth
map framework

http://colorbrewer2.org

Spatial Distributions  |  269

FIGURE 7.20  Sequential color
schemes with ColorBrewer

FIGURE 7.21  Diverging color
schemes with ColorBrewer

270  |  CHAPTER 7:  Visualizing Space

FIGURE 7.22  Qualitative color
scheme with ColorBrewer

Colorblind-Safe Palettes
When using color as the main visual encoding for your data, such as with
choropleth maps and heatmaps, select palettes that are colorblind-safe.
About 1 in 12 men and 1 in 200 women have red-green colorblindness,
the most common type. This means it is difficult to see the difference
between shades of red and green. So, if you make a map that uses only
red and green, someone who is red-green colorblind would likely be
unable to compare regions. This defeats the purpose of making the map.

Plenty of tools can help with this. ColorBrewer provides a filter to show
only colorblind-safe palettes; the Chroma.js Color Palette Helper runs a
check to see if your selections are colorblind-safe; Adobe products like
Illustrator have options in the View menu to simulate colorblindness in
your designs; Microsoft has an Accessibility Checker to analyze spread-
sheets; Sim Daltonism is an app that lets you point your camera to see
from the perspective of someone who is colorblind. So, it’s a lot more
straightforward these days to pick colors that everyone can see.

If all else fails, because you’re restricted by an existing color scheme or
need to use color to match for context, you can use more than one encod-
ing to represent data. This is called redundant encoding. You can use text,
position, or size to indicate values, along with color. Even if people can’t
see the contrast between shades, they can still pick up on other cues.

Spatial Distributions  |  271

MAKING A CHOROPLETH MAP

Tool used: R

Datasets:

■■ State boundaries for the United States, book.flowingdata.com/vt2
/ch7/data/cb _ states.zip

■■ Population Counts, by Race, book.flowingdata.com/vt2/ch7/data
/DECENNIALPL2020.P1.zip

Are there geographic patterns in the distribution of the Asian population
in the United States? A choropleth can show what states and regions have
high and low rates, based on population estimated from the Census Bureau.
Sticking with R, the process should look familiar if you worked through the
previous examples.

Load the sf package, which provides functions to work with spatial data.

library(sf)

Load the shapefile for state boundary lines at a 1 to 20,000,000 scale using
st _ read().

Boundaries
statefp <- "data/cb_states/cb_2022_us_state_20m.shp"
statebnds <- st_read(statefp)

Subset to the conterminous United States and transform to Albers.

Conterminous subset
inconterm <- !(statebnds$STUSPS %in% c("AK", "HI", "PR"))
conterm <- statebnds[inconterm,]
conterm_p4s <- "+proj=aea +lat_1=29.5 +lat_2=45.5 +lon_0=97.2w"
conterm_albers <- st_transform(conterm, conterm_p4s)

Load state-level population data from the 2020 decennial Census with
read.csv().

Load population data
fileloc <- "data/DECENNIALPL2020.P1/DECENNIALPL2020.P1.csv"
pop <- read.csv(fileloc, stringsAsFactors = FALSE)

Each row represents a state, and there are 71 columns that represent counts
for people who identify as a single race or multiple races. Find the first few
rows here:

Note:  Remember that
file paths are relative to
your current working
directory in R.

http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/DECENNIALPL2020.P1.zip
http://book.flowingdata.com/vt2/ch7/data/DECENNIALPL2020.P1.zip

272  |  CHAPTER 7:  Visualizing Space

> pop[1:10, 1:5]
 GEO_ID NAME P1_001N P1_002N P1_003N
1 0400000US01 Alabama 5024279 4767326 3220452
2 0400000US02 Alaska 733391 643867 435392
3 0400000US04 Arizona 7151502 6154696 4322337
4 0400000US05 Arkansas 3011524 2797949 2114512
5 0400000US06 California 39538223 33777988 16296122
6 0400000US08 Colorado 5773714 5066044 4082927
7 0400000US09 Connecticut 3605944 3273040 2395128
8 0400000US10 Delaware 989948 913430 597763
9 0400000US11 District of Columbia 689545 633468 273194
10 0400000US12 Florida 21538187 17986115 12422961

In this example, you want the P1 _ 001N column for total population and
P1 _ 006 column for Asian population. You can also look at DECENNIALPL2020.
P1 _ metadata.csv in the same data folder to try other variables later.

Note the first column GEO _ ID from pop. It represents a unique ID for each state.
Now, look at the first few rows attached to the boundary data conterm _ albers.

> conterm_albers[1:10, 1:6]
 STATEFP STATENS AFFGEOID GEOID STUSPS NAME
0 48 01779801 0400000US48 48 TX Texas
1 06 01779778 0400000US06 06 CA California
2 21 01779786 0400000US21 21 KY Kentucky
3 13 01705317 0400000US13 13 GA Georgia
4 55 01779806 0400000US55 55 WI Wisconsin
5 41 01155107 0400000US41 41 OR Oregon
6 29 01779791 0400000US29 29 MO Missouri
7 51 01779803 0400000US51 51 VA Virginia
8 47 01325873 0400000US47 47 TN Tennessee
9 22 01629543 0400000US22 22 LA Louisiana

The AFFGEOID column from conterm _ albers is the same ID structure as
GEO _ ID from pop. You can use these shared IDs to join the population data
to the boundary data with match(). The function returns a vector (the most
common data structure in R with elements of the same type) of indices, where
the former is located in the latter. The indices are used to get the matching
population from pop. For example, the first state in conterm _ albers is Texas
with an AFFGEOID of 0400000US48. This matches the 44th row in pop. In the fol-
lowing, the 44th value in the P1 _ 006N column, or Asian population, is returned
for the first row (for Texas) in conterm _ albers.

Join Asian population
conterm_albers$asianpop <-
 pop$P1_006N[match(conterm_albers$AFFGEOID, pop$GEO_ID)]

Note:  The logic with
match() can take some
getting used to, because
you must keep track of
indices, but I like it for the
flexibility. You might find
merge() more intuitive
to join two datasets. Enter
?merge in the console to
read the documentation.

Spatial Distributions  |  273

Do the same with the P1 _ 001N column to join the total population to the
conterm _ albers boundary data.

Join total population
conterm_albers$totalpop <-
 pop$P1_001N[match(conterm_albers$AFFGEOID, pop$GEO_ID)]

Calculate the proportion or rate of Asian population out of the total popula-
tion for each state.

Calculate rate
conterm_albers$asianrate <-
 conterm_albers$asianpop / conterm_albers$totalpop

The conterm _ albers data has three new columns now: totalpop, asianpop,
and asianrate. Check to see if the calculations look right.

> conterm_albers@data[1:10,
+ c("NAME", "totalpop", "asianpop", "asianrate")]
 NAME totalpop asianpop asianrate
0 Texas 29145505 1585480 0.05439878
1 California 39538223 6085947 0.15392566
2 Kentucky 4505836 74426 0.01651769
3 Georgia 10711908 479028 0.04471920
4 Wisconsin 5893718 175702 0.02981174
5 Oregon 4237256 194538 0.04591132
6 Missouri 6154913 133377 0.02167001
7 Virginia 8631393 615436 0.07130205
8 Tennessee 6910840 135615 0.01962352
9 Louisiana 4657757 86438 0.01855786

Use summary() on the asianrate variable to check the quartiles and the range.

Summary statistics
summary(conterm_albers$asianrate)

As shown here, the range is about zero to 0.153 with a median of 0.029. That
seems about right.

 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.007655 0.017695 0.029366 0.038254 0.047825 0.153926

With the population data matched to the boundary data, the next step is to
define the color scheme. This is when the color tools described in Chapter 2
come in handy. The hexadecimal colors assigned to shades in the newly defined
function pickCol() shown here were generated using the Chroma.js Color
Palette Helper:

274  |  CHAPTER 7:  Visualizing Space

Define color
pickCol <- function(x) {
 propbreaks <- c(0, .02, .04, .06, .08, 1)
 shades <- c('#d9e0e1', '#acc0c4', '#7fa1a8',
 '#51828c', '#196572')
 i <- max(which(propbreaks <= x))
 return(shades[i])
}

The pickCol() function takes a value and returns a color based on where it
lies on the propbreaks scale. The sapply() function is used to get the color
for each value of asianrate in conterm _ albers.

conterm_albers$col <-
 sapply(conterm_albers$asianrate, pickCol)

Typically, when you define a color scheme for a choropleth map, the shades
should be based on a normalized variable instead of absolute counts. Otherwise,
larger regions, such as California, will always have greater counts just because
of its size. In this example, the shades are chosen based on proportions, which
are normalized by population.

Plot conterm _ albers and set the col argument in plot() to define the fill
color of each state. Use a white border.

Draw map
plot(st_geometry(conterm_albers),
 col = conterm_albers$col,
 border = "white")

This returns a choropleth map with higher rates shown with darker shades, as
shown in Figure 7.23.

To add a color legend to the map, I often use Adobe Illustrator to add one
manually, but the legend() function is a quick way to add one in R. The func-
tion is flexible enough so that you can make different types of legends with
variation in labels, colors, and geometry. The following snippet adds a legend
on the bottom left of the map with a rectangle and corresponding label for
each color:

Add legend
legend("bottomleft",
 legend = c("0-.01", ".02-.03", ".04-.05",
 ".06-.07", ".08+"),
 fill = c('#d9e0e1', '#acc0c4', '#7fa1a8',
 '#51828c', '#196572'),
 title = "Asian Population")

Spatial Distributions  |  275

CARTOGRAM

An advantage of choropleth maps is that you can use a familiar map like a
contextual anchor for readers. Usually, readers will have at least a sense of the
boundary shapes in the areas they’ve lived. Then you just add color to the
shapes for another layer of meaning. However, a trade-off with choropleth
maps is that large geographic areas will always get more visual attention than
small geographic areas because they fill more space.

Cartograms treat geography more loosely and size areas or symbols by data.
So, a large place with few people won’t take up so much space when you want
to visualize a dataset that is about people.

The example cartogram in Figure 7.24 is a noncontiguous isomorphic car-
togram that shifts the size of geographic areas. That is, the cartogram pre-
serves the shape of the boundaries but does not require that the states
stay together.

This is one type of cartogram among many that have been devised over the
years. A contiguous cartogram keeps neighboring boundaries intact and
stretches areas like a sheet of rubber. Dorling cartograms use scaled circles.
Mosaic cartograms restrict the layout in a grid.

Each type of cartogram has its merits but, of course, comes with a trade-off
that shows geographic areas that are not geographically locked into place. For

FIGURE 7.23  Choropleth map
colored by rate

276  |  CHAPTER 7:  Visualizing Space

many, the trade-off is too much, so they stick to choropleth maps. I’ll leave it
up to you. I personally have an affinity for Dorling cartograms. I have an aver-
sion to contiguous cartograms because the shapes are usually so warped that
it is difficult to compare areas, which makes it difficult to see anything useful.

MAKING A CARTOGRAM

Tool used: R

Datasets:

■■ State boundaries for the United States, book.flowingdata.com/vt2
/ch7/data/cb _ states.zip

■■ Population Counts, by Race and Origin, book.flowingdata.com/vt2
/ch7/data/DECENNIALPL2020.P1.zip

If you made the choropleth map to show Asian population rates in the previ-
ous example, then the cartogram package will make the rest straightforward.
However, if you didn’t make the choropleth map yet, work through the example
to load boundary and population data, join the two datasets, and select colors.
Then come back to this example.

The goal is to show both Asian rates and total population counts at the same
time. Color will represent the former, and circle size will represent the latter in

FIGURE 7.24  Cartogram
framework

http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/DECENNIALPL2020.P1.zip
http://book.flowingdata.com/vt2/ch7/data/DECENNIALPL2020.P1.zip

Spatial Distributions  |  277

a Dorling cartogram. Start by loading the cartogram package. Enter install
.packages("0-.01") if you do not have the package installed yet.

library(cartogram)

Assuming you have the data from the previous example loaded, pass
conterm _ albers to cartogram _ dorling(), weighted by asianpop to
indicate size.

Cartogram calculations
conterm_dorling <- cartogram_dorling(conterm_albers,
 weight = "asianpop")

Draw a blank state map with plot().

Blank map
plot(st_geometry(conterm_albers),
 border = "#cccccc",
 lwd = .6)

Then add the cartogram circles, also with plot(), but with the add argument
set to TRUE. Use the same color choices from the choropleth map.

Add Dorling cartogram circles
plot(st_geometry(conterm_dorling),
 col = conterm_albers$col,
 add = TRUE)

Figure 7.25 shows a cartogram with circles size by Asian population in each
state. The circles, most noticeable in the northeast, do not overlap.

FIGURE 7.25  Dorling cartogram,
sized by count and colored by rate

278  |  CHAPTER 7:  Visualizing Space

To maintain boundary lines with a noncontiguous cartogram, you follow the
same steps, except instead of cartogram _ dorling(), you use cartogram _

ncont() to calculate.

Non-contiguous
conterm_ncont <- cartogram_ncont(conterm_albers,
 "asianpop")

Draw a blank map first, and then add the cartogram shapes.

Blank map and cartogram
plot(st_geometry(conterm_albers),
 border = "#cccccc",
 lwd = .6)
plot(st_geometry(conterm_ncont),
 col = conterm_albers$col,
 add = TRUE)

State geometries are sized by Asian population instead of circles, as shown in
Figure 7.26.

Since you’re here, you might as well try a contiguous cartogram that preserves
adjacent borders. The steps are similar and made easy with the cartogram
package, given you prepared the data. Use cartogram _ cont() and use plot()
to draw the results.

FIGURE 7.26  Noncontiguous
cartogram, sized by count and
colored by rate

Spatial Distributions  |  279

Contiguous cartogram
conterm_cont <- cartogram_cont(conterm_albers,
 "asianpop")
plot(st_geometry(conterm_cont),
 col = conterm_albers$col)

You get a blobby result that loosely resembles the United States, as shown in
Figure 7.27.

Can you make cartograms for different race populations?

DOT DENSITY MAP

Whereas the cartogram modifies areas to shift visual attention to larger values,
a dot density map uses dots instead of a solid fill to represent data. As shown
in Figure 7.28, more dots mean greater counts.

Large areas with low counts appear sparse, and smaller areas with high counts
appear dense. Dots are usually placed randomly or in a grid, depending on the
total counts. The map type is often used to show population density across
geographic regions, so the dot metaphor isn’t too far off from reality.

The dot density map has been around since the early 1800s, but the method
more recently regained popularity with maps by Bill Rankin. In 2009, Rankin
mapped race and income in Chicago, Illinois. Dots colored by class shows dis-
tinct neighborhood groupings even without government-drawn boundaries.

FIGURE 7.27  Contiguous
cartogram, sized by count and
colored by rate

280  |  CHAPTER 7:  Visualizing Space

MAKING A DOT DENSITY MAP

Tool used: R

Datasets:

■■ Block group boundaries for Nevada, book.flowingdata.com/vt2/ch7
/data/cb _ 2022 _ 32 _ bg _ 500k.zip

■■ Population Counts, by Race, book.flowingdata.com/vt2/ch7/data
/DEC2020.P8 _ bg.zip

For a more granular view of Asian population, you zoom in to Census block
groups in Nevada. Views at the state and county level can show general dis-
tributions, but as you get closer, you can see more details and variation. Load
the sf package, which helps with handling spatial data.

library(sf)

Load the block groups for Nevada with st _ read().

Load block boundaries
bgfp <- "data/cb_2022_32_bg_500k/cb_2022_32_bg_500k.shp"
nvblocks <- st_read(bgfp)

Load block-level population data with read.csv().

Block level population
popfp <- "data/DEC2020.P8_bg/DECENNIALDHC2020.P8-Data.csv"
nvpop <- read.csv(popfp)

See Bill Rankin’s dot
density maps of Chicago
at https://datafl
.ws/randots. I made
a national version, which
you can find at https://
datafl.ws/dotsback.

FIGURE 7.28  Dot density
map framework

http://book.flowingdata.com/vt2/ch7/data/cb_2022_32_bg_500k.zip
http://book.flowingdata.com/vt2/ch7/data/cb_2022_32_bg_500k.zip
http://book.flowingdata.com/vt2/ch7/data/DEC2020.P8_bg.zip
http://book.flowingdata.com/vt2/ch7/data/DEC2020.P8_bg.zip
https://datafl.ws/randots
https://datafl.ws/randots
https://datafl.ws/dotsback
https://datafl.ws/dotsback

Spatial Distributions  |  281

To get in closer, subset the boundary data to just Clark County in Nevada,
which has an ID of 003.

Clark county block groups
clarkblocks <- nvblocks[nvblocks$COUNTYFP == "003",]

Subset the population data, nvpop, to just Clark County also. The following
snippet is different from earlier because the ID in the population data is in a
different format than the boundary data.

> nvpop[1:5, c("GEO_ID", "P8_001N")]
 GEO_ID P8_001N
1 0400000US32 3104614
2 1500000US320030001011 1293
3 1500000US320030001012 1765
4 1500000US320030001013 644
5 1500000US320030001014 2062

We know that the ID for Clark County is 1500000US32003 (with a quick web
search or a Census reference). The GEO _ ID in nvpop is a unique ID for each
block group, but the first pass of the block group ID indicates the county. So,
use substr() to take a substring that is of the length of clark _ geoid and
subset based on the substrings.

County level ids in nvpop
clark_geoid <- "1500000US32003"
nvpop$countyid <- substr(nvpop$GEO_ID, 1,
 nchar(clark_geoid))
clarkpop <- nvpop[nvpop$countyid == clark_geoid,]

Join the boundary data and population data with match() like in previ-
ous examples.

Merge population by county
imatch <- match(clarkblocks$AFFGEOID, clarkpop$GEO_ID)
clarkblocks$asianpop <- clarkpop$P8_006N[imatch]

Now there’s an asianpop variable in clarkblocks. Use st _ sample() to cal-
culate coordinates for one dot per ten population.

Dots
clarkdots <- st_sample(clarkblocks,
 as.integer(clarkblocks$asianpop/10))

Draw the map and then add the dots. The hexadecimal color for the points,
#19657250, is usually of length six, but the last two digits, 50, indicate an opacity
of 50 percent to make the dots semi-transparent. So, when dots overlap, the
color becomes darker rather than obscuring everything underneath.

Note:  The st _
sample() function can
take a little while depend-
ing on the complexity of
your boundaries and how
many dots you need.

282  |  CHAPTER 7:  Visualizing Space

Map and dot
plot(st_geometry(clarkblocks),
 border = "#cccccc", lwd = .5)
plot(clarkdots, pch=19, cex=0.1,
 col="#19657250",
 add = TRUE)

As shown in Figure 7.29, there is a much higher population density in the
center, and then population is sparser as you move away from the city centers.

FIGURE 7.29  Dot density map to
show population

Space and Time  |  283

Experiment with different colored dots, sizes, and number of dots per popula-
tion to see how the map changes. With your own data, you’ll want to look for
the balance between image size and dot counts. If there are too many dots in
a small space, the filled boundaries will look solid. If there are only a few dots
in a big space, then the map will look almost blank.

SPACE AND TIME
You’ve seen the different types of data and visualization methods separated
by chapters, but as you saw in Chapter 5, data types can go together to
form an interesting story. The passing of time lends itself well to creating a
narrative that moves forward. Looking at space and time together works the
same.

Think of each map you make as a snapshot in time. The data is collected dur-
ing a period to estimate what the area was like then. So, if you make more
than one map, you can show several snapshots in time. Create a sequence of
maps spread over a significant time span, and you can see changes, stability,
and irregularities.

Figure 7.30 shows a sequence of state grid maps that show obesity rates from
1985 through 2015, based on body mass index estimates from the Centers for
Disease Control and Prevention (CDC).

Each square represents a state. Each grid represents a year. The colors repre-
sent the average rates in each state during a year. The color scale was chosen
based on historical CDC maps and to show an inflection point in the 2000s,
with a shift from green to purple, In the 1980s, obesity rates were mostly less
than 15%, but by 2015, rates were mostly greater than 30%. Maybe this means
that diets should adjust. Maybe this means we need to adjust the definition
of healthy weight. Maybe it’s both.

By placing the maps in a sequence over the years, you can see the shifts for
individual states and how the nation changed overall. Spatial and temporal
data go well together.

SEQUENCE OF MAPS

If you know how to make a single map, then you can make more than one
map. Make maps for different periods of time, line them up, and you can show
changes over space and time, as shown in Figure 7.31.

I mapped one dot per
person for all the races at
https://datafl.ws/

dotsback.

https://datafl.ws/dotsback
https://datafl.ws/dotsback

284  |  CHAPTER 7:  Visualizing Space

FIGURE 7.30  “Mapping the Spread of Obesity,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2016/09/26/the-
spread-of-obesity  / last accessed February 08, 2024.

FIGURE 7.31  Sequence of
maps framework

https://datafl.ws/bmi
https://datafl.ws/bmi

Space and Time  |  285

Usually, the main challenge is to make the changes noticeable between maps.
Try a color scheme that emphasizes changes and differences. Use encodings
that don’t get lost when you make smaller maps.

Making a Sequence of Maps

Tool used: R

Datasets:

■■ State boundaries for the United States, book.flowingdata.com/vt2/
ch7/data/cb _ states.zip

■■ Walmart Openings in the United States, book.flowingdata.com/vt2/
ch7/data/walmart-openings-geocoded.csv

The first Walmart location opened in 1962, then called Wal-Mart Discount City.
Since then, thousands of locations opened around the world. How did they
get to where they are now? You can map the Walmart location dataset you
looked at already to see the growth over time.

You already made a map of all the locations. You can build on that previous
example to make a sequence of maps. There will be one map per year to show
the cumulative number of stores opened each year since 1962.

Load the sf package like before. It is the workhorse package for dealing with
spatial data.

library(sf)

Read in state boundaries with st _ read(), subset to the conterminous United
States, and load the Walmart openings dataset with read.csv(). The dataset
contains observations for both Walmart and the Walmart-owned Sam’s Club,
but you just need the Walmart locations.

State boundaries
statefp <- "data/cb_states/cb_2022_us_state_20m.shp"
statebnds <- st_read(statefp)

Conterminous United States
inconterm <- !(statebnds$STUSPS %in% c("AK", "HI", "PR"))
conterm <- statebnds[inconterm,]

Store locations
stores <- read.csv("data/walmart-openings-geocoded.csv",
 sep=",")
walmarts <- stores[stores$store == "walmart",]

http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/walmart-openings-geocoded.csv
http://book.flowingdata.com/vt2/ch7/data/walmart-openings-geocoded.csv

286  |  CHAPTER 7:  Visualizing Space

Use the Albers projection to transform the state borders. Project the location
data too with st _ transform().

Project map
conterm_p4s <-
 "+proj=aea +lat_1=29.5 +lat_2=45.5 +lon_0=97.2w"
conterm_albers <- st_transform(conterm, conterm_p4s)

Project points
wal_sf <- st_as_sf(walmarts,
 coords = c("lng", "lat"),
 crs = "+proj=longlat")
wal_sf_albers <- st_transform(wal_sf, conterm_p4s)

You’ve done everything up to this point in previous examples. Now, you get
into the time component. Check the time span with range().

> range(walmarts$year)
[1] 1962 2010

The data goes from 1962 to 2010. Set a sequence of numbers using the colon
(:) notation for the year range.

Year range
years <- 1962:2010

Set a seven-by-seven grid with the mfrow argument in par(). Set margins with
mar, which is the space around each map, and the outer margins with oma,
which is the space around the full grid.

Seven rows, seven columns, with set margins
par(mfrow = c(7, 7),
 mar = c(2,0,1,0), oma = c(2,2,2,2))

Use a for loop to iterate through the years. On each iteration, you draw a map
for the current year with points showing all the stores that have opened on
or before that year.

for (yr in years) {
 curr <- wal_sf_albers[wal_sf_albers$year <= yr,]
 plot(st_geometry(conterm_albers),
 border = "#cccccc", lwd = .2,
 main = yr)
 points(st_coordinates(curr),
 col="#30437b", pch=20, cex = .2)
}

The curr line subsets the data, plot() line draws a blank map, and points()
adds the stores based on the subset. This produces Figure 7.32.

Space and Time  |  287

Annotating

You see the first location open in 1962. There is relatively slow growth for about
a decade, and then openings pick up in an organic-like way out of Arkansas
until there are Walmart locations across the country.

The passage of time lends itself to annotation to highlight the changes. Figure 7.33
shows a lightly annotated version of Figure 7.32 rearranged for size.

Data folks often assume that patterns in maps and charts are obvious, so
they don’t annotate. They don’t want to get in the way of the data. However,

FIGURE 7.32  Sequence of maps, one for each year

288  |  CHAPTER 7:  Visualizing Space

FIGURE 7.33  Annotated sequence of maps

Space and Time  |  289

when there’s a pattern that stands out is when you should annotate the most.
Bring attention to the changes, reinforce text, and verify what the readers
think they see.

It is better to annotate too much than to not annotate enough. Despite my
best efforts, I have received many notes that a chart didn’t make sense. I have
never received a complaint that there was too much explanation.

ANIMATED MAP

One of the more fun ways to visualize changes over space and time is to
animate your data. As shown in Figure 7.34, instead of showing slices in time
with individual maps, you can show the changes as they happen frame by
frame.

The trade-off with animation is that viewers must watch the whole thing and
wait for things to play out. Some will be impatient and wish you just showed
everything at once. Why make a bar chart that updates over time when you
can show an entire time series as a line chart? With maps, why animate when
you can show a sequence of maps to show an overall pattern?

FIGURE 7.34  Animated
map framework

290  |  CHAPTER 7:  Visualizing Space

It’s fun to watch data dance on the screen. It might take more time to interpret,
but many times, you need people to stay and watch. When the data moves,
people tend to watch. That is a good thing.

One of my first experiences with animation and audience came when I was
poking at the Walmart dataset that you’ve been looking at in this chapter.
Shown in Figure 7.35, dots appeared on a map in a grow-then-shrink animation,
starting in 1962 through 2010. The growth is slow at first, and then Walmart
locations spread across the country almost like a virus. It keeps growing, with
bursts in areas where the company makes large acquisitions. Before you know
it, Walmart is everywhere.

At the time, in 2010, I was just trying to learn the now-defunct Flash and Action-
Script, but the map was shared across the Web and viewed millions of times.
This was before social media was commonplace. Although I’ve made things
since that were more popular, the quick experience sticks with me as when
I learned that visualization is sometimes better even when it is not the most
visually efficient. Data can be fun.

For what it’s worth, the most popular things on FlowingData, over almost two
decades, move in some way. I’m not saying you should animate all your charts,
because balance in life is also a good thing, but making things that are fun can
help people consider a dataset more seriously.

Note:  The Internet is
full of visualization critics,
which can be intimidating
for beginners. But if you
want to communicate data
to an audience, you must
put it in front of eyeballs.
Don’t take feedback per-
sonally and consider the
context of the critiques.
Filter out the insincere
ones.

FIGURE 7.35  “Growth
of Walmart,” https:
//datafl.ws/wmt

https://datafl.ws/wmt
https://datafl.ws/wmt

Space and Time  |  291

MAKING AN ANIMATED MAP

Tool Used: R

Datasets:

■■ State boundaries for the United States, book.flowingdata.com/vt2
/ch7/data/cb _ states.zip

■■ Walmart Openings in the United States, book.flowingdata.com/vt2
/ch7/data/walmart-openings-geocoded.csv

You made a sequence of maps in the previous example. Imagine you made
a flip book out of each map in the sequence. You would show one map at a
time instead of all of them at once in a grid. The animation package makes this
straightforward. Load the package with library().

library(animation)

The package provides a saveGIF() function that pieces together an animated
GIF, given a sequence of plots or maps. Specify the animation width (ani
.width), animation height (ani.height), the time in between each frame in
seconds (interval), and the filename to save it as (movie.name). Every new
plot made in the first bracketed part of saveGIF(), the expr, creates a new
frame in the animation.

saveGIF({

 # Use for-loop like with map sequence
 # to draw frames.

}, ani.width = 800, ani.height = 500,
interval = 0.1, movie.name = "walmart-growth.gif")

Like the sequence of maps, you use a for loop to iterate through each year,
as shown in the following snippet. You don’t use mfrow in par() to make a
grid this time.

saveGIF({
 years <- 1962:2010

 par(mar = c(2,0,5,0))
 for (yr in years) {

 # Wal-Mart locations open on or before this year
 curr <- wal_sf_albers[wal_sf_albers$year <= yr,]

http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/cb_states.zip
http://book.flowingdata.com/vt2/ch7/data/walmart-openings-geocoded.csv
http://book.flowingdata.com/vt2/ch7/data/walmart-openings-geocoded.csv
http://movie.name

292  |  CHAPTER 7:  Visualizing Space

 # Blank map
 plot(st_geometry(conterm_albers),
 border = "#cccccc",
 lwd = .2,
 main = yr)

 # Previous years
 prev <- curr[curr$year != yr,]
 points(st_coordinates(prev),
 col = "#dbe1f1", pch=20, cex = .3)

 # This year
 thisyear <- curr[curr$year == yr,]
 points(st_coordinates(thisyear),
 col = "#30437b", cex = 1)
 }
}, ani.width = 800, ani.height = 500,
interval = 0.1,
movie.name = "walmart-growth.gif")

To make the openings each year more obvious, the stores opened in previous
years are colored light gray (col = "#dbe1f1") and made smaller (cex = .3)
than the points for the current year, which are dark blue (col = "#30437b") and
made larger (cex = 1). Figure 7.36 shows one frame from the animated GIF.

The animated version of the sequence of maps better shows the growth pat-
tern over the years because you can see which stores open each year. This

FIGURE 7.36  One frame from
animated map

Wrapping Up  |  293

could be further refined by introducing more frames per year, annotating, or
adding a counter.

You can also venture outside of R and use a hybrid approach to animate. For
example, I have used R to generate images and then used the command-line
tool ImageMagick to string together the images as frames in an animation. The
advantage was that I had more control over how the frames played. I could
make the animation speed up, slow down, and pause.

If you have a lot of frames, GIF files can grow quickly, especially if you have
higher-resolution images. In this case, it might be better to use a tool like
FFmpeg, which generates video files. Then, you can use video-editing software
to make further edits with text overlays, music, and speed.

WRAPPING UP
There are a lot of possibilities for what you can do with spatial data. With just a
few basic skills, you can map geographic datasets and tell all sorts of interest-
ing stories. Draw a blank map. Add features. Explain. Repeat.

While the examples in this chapter used R, you can apply similar steps with
other tools, such as the ones described in Chapter 2. The good news is that
it continues to get easier to map data, especially online. Design custom maps
for the web with point-and-click interfaces. Make them interactive. Animate.
Make them responsive for mobile phones.

In the first edition of this book, I explained how to make an interactive map
with Flash and ActionScript. It felt like a lot of work. It also felt like it could
easily break if one of the services stopped working or one of the components
grew outdated. I just didn’t realize the part that would die would be Flash. But
if you know the process of making maps and visualizing data, it’s a lot easier
to apply the steps to other tools.

It’s time to shift attention toward what to visualize. You’ve learned how to visu-
alize data up to this point. You can make different charts and handle different
types of data. In the next chapter, you use what you’ve learned to ask questions
about data and find the interesting spots in the infinite set of options. It’s like
learning to write and type. Once you can type without stopping to search for
every letter, you can shift attention to the words you want to say and just write.

See more about
ImageMagick at
imagemagick.org
and more about FFmpeg
at ffmpeg.org.
I used the latter alongside
R to show the growth
of Target locations at
https://datafl.ws/

target.

http://imagemagick.org
http://ffmpeg.org
https://datafl.ws/target
https://datafl.ws/target

Ch.8

Analyzing Data
Visually

296  |  CHAPTER 8:  Analyzing Data Visually

Visualization reveals patterns in data that you might not have seen otherwise,
but there are infinite choices for how you can visualize a single dataset. What
you see depends on what you look for. Data analysis helps you filter through
noise, answer questions, and guide you toward interesting areas. You can use
the tools and methods you’ve learned so far in this process.

GATHERING INFORMATION
For those new to visualization, it’s easy to see finished graphics and appreciate
the power of displaying patterns. A generic spreadsheet of numbers transforms
into obvious insights. It can seem automatic. Plug a dataset into a tool, and the
truth reveals itself. Sometimes, this happens, but more often, there is a not-so-
elegant process of gathering information that leads to insight.

A question or a curiosity kickstarts the process. You gather data. Check to
see if the data is worth digging into with quick charts and overviews. If there’s
something there, then you spend time exploring details. You ask more questions,
maybe gather more data, filter out noise (or focus on it), and repeat the process
until you reach conclusions.

Practitioners walk through this process in different ways, depending on the data,
the application, the field of study, the available resources, the tools on hand, and
the questions they’re asking. Some use statistical tests. Some run simulations. Some
use visualization. Some use heavy computing. Go with what suits your needs.

I take a hybrid approach, but as you might have guessed, I tend strongly toward
visualization. I spend more time making charts to gather information than I do
on the charts that I publish.

Tukey called it “graphical detective work” in Exploratory Data Analysis (Pearson,
1977). You kind of know what you’re looking for, but you don’t know what
you’re going to find yet. You work with your bag of tools through the available
resources. In spending time with the dataset and making charts, you generate
knowledge about the numbers, and ideally you glean something useful.

OVERVIEWS
Before you spend a lot of time and resources analyzing a dataset, get a
general sense of what you’re working with. Is the data trustworthy? Is there
a lot of noise? Are there a lot of gaps or missing data? Do overall aggregates
match your expectations? Do you need to adjust your expectations?

Overviews  |  297

These first steps of analysis are a gentle way of getting to know your data. It’s
like when you meet someone on a first date or at a party with an unfamiliar
crowd. It’s the small talk. There are common questions, and conversation points
that you use to decide if you want to get to know someone better. Instead of
talking about the weather, asking where someone is from and what they do
for a living, or seeing how they react to certain jokes, you ask data questions
about structure, sources, and distributions.

It’s during this stage when you can quickly decide if you want to pursue the
gathering process further. It’s no fun getting to know a dataset only to find
out deep into the analysis that the numbers don’t represent what you thought
they did. Sometimes, it’s impossible to know what the data is about until
you’ve looked at it deeply, but it’s good to at least get a feel for things early
on if you can.

Look at the summary statistics that you might have learned about in an
introductory statistics course, plot distributions to see the spread of observa-
tions, perform quick checks for quality, and adjust your questions based on
what you find.

SUMMARIES

Some summary statistics provide a quick look at the range of a dataset: mean,
median, mode, minimum, and maximum. Any software designed to help you
understand data provides functions to find these values. Here’s a quick rundown
of what each statistic represents.

■■ Mean: Statistically, it is the sum of observations divided by the num-
ber of observations. It provides an idea of where the collection of
numbers tends toward. More commonly, when people refer to an
“average” from a numeric point of view, they usually are talking
about the mean.

■■ Median: Imagine arranging a group of five people by height, from
shortest to tallest. The middle point, or the third person’s height,
would be the median. It represents the middle of a dataset and
is less prone to getting pulled lower or higher by extreme values
than the mean.

■■ Mode: What value occurs the most in a dataset? That is the mode. For
example, if in the group of five people, two of them were 60 inches tall
and the other three were 55, 57, and 59 inches, respectively, the mode
would be 60. It is helpful to find what is most common.

■■ Minimum: It is the lowest value.

■■ Maximum: It is the highest value and, with the minimum, indicates the
full range.

298  |  CHAPTER 8:  Analyzing Data Visually

■■ Percentiles: Order the data and mark where a percentage of the data
is below. For example, 90th percentile is where 90% of the data is less
than the corresponding value, median is 50th percentile, and 10th
percentile is where 10% of the data is less than the value.

Calculate the summary statistics. Check to see if they make sense. This might
mean comparing to estimates from previous years or a known calculation from
a different data group. Maybe you have prior knowledge about what it should
be. Do the values seem too high or low? Were there miscalculations because
of missing data? Look for anything that seems off.

While the calculations themselves might be enough to judge, it can help to
visualize them with a box plot, as shown in Figure 8.1. The ends of the box
introduce two more values for the 25th percentile and the 75th. The distance

FIGURE 8.1  Box plot framework

Overviews  |  299

between the two marks is known as the interquartile range. The lines that
extend from the box, known as the whiskers, represent the minimum and maxi-
mum values within 1.5 the interquartile range of the 25th and 75th percentiles,
respectively.

A box plot on its own isn’t especially useful, though, unless you have prior
knowledge about the data. They’re more useful when you have multiple ranges
to compare, such as in Figure 8.2. During several speed dating sessions, people
were asked to score their partners on various attributes and say if they wanted
to go on an actual date with that person. You can see increasing yes rates with
higher scores, as one might expect.

You don’t have to use a box, of course. It’s the values that each spot in the box
plot represents that are important. Figure 8.3 shows a different version that
represents the age of workers in different occupations. It’s from an interactive
graph that lets you search for an occupation to see the summary statistics. Dots
show the summary statistics, a thicker line shows the interquartile range, and
a dotted line extends to the minimum and maximum ages.

You can see that even though the summary statistics are basic and show
limited details, they can provide a useful overview. At this point in the game,
that is all you need.

MAKING A BOX PLOT

Tool used: R

Dataset: NBA Players, 2013-14, book.flowingdata.com/vt2/ch8/data
/nba-players-2013-14.csv

How tall are players in the National Basketball Association? Probably tall. The
dataset provides players’ names, positions, and heights, along with other
information from the 2013–2014 season. Start by loading two packages in R:
readr and dplyr. If you haven’t installed them yet, use install.packages(), as
shown here:

Load package
install.packages(c("readr", "dplyr"))
library(readr)
library(dplyr)

The readr package provides functions to load files, and dplyr provides functions
for data manipulation. You could use read.csv() and bracket notation like in
previous chapters, but like I’ve said, there are various methods and tools to
get you where you need to go. Even within R, you can use different packages,
functions, and data structures to produce the same results.

http://book.flowingdata.com/vt2/ch8/data/nba-players-2013-14.csv
http://book.flowingdata.com/vt2/ch8/data/nba-players-2013-14.csv

300  |  CHAPTER 8:  Analyzing Data Visually

FIGURE 8.2  “What the Sexes Want, in Speed Dating,” https://datafl.ws/dating

https://datafl.ws/dating

Overviews  |  301

FIGURE 8.3  “Age and Occupation,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2021/09/30/age-and-occupation  /
 last accessed February 08, 2024.

https://datafl.ws/ageocc
https://datafl.ws/ageocc

302  |  CHAPTER 8:  Analyzing Data Visually

readr and dplyr belong to a collection of packages called the tidyverse that “share
an underlying design philosophy, grammar, and data structures.” The collection
grew in popularity since the first edition of this book, and it provides a unified
way of programming in R. Some people use tidyverse packages exclusively.

You get a sampling in this chapter, but we won’t lean on the tidyverse com-
pletely. Instead, you’ll use some functions and see how it works with what you’ve
learned in previous chapters. Start by loading the CSV file with read_csv()
instead of read.csv(). The NBA dataset is relatively small, but for larger files
in hundreds of megabytes or gigabytes, read_csv() tends to load data more
efficiently.

Load data
players <- read_csv("data/nba-players-2013-14.csv")

The function returns a data structure known as a tibble, which is a modified
version of a data frame. You can treat it like a data frame. The first rows of the
dataset look like the following. There is one row per player for 528 rows total.

> players %>% select(Name, POS, Ht_inches)
A tibble: 528 × 3
 Name POS Ht_inches
 <chr> <chr> <dbl>
 1 Gee, Alonzo F 78
 2 Wallace, Gerald F 79
 3 Williams, Mo G 73
 4 Gladness, Mickell C 83
 5 Jefferson, Richard F 79
 6 Hill, Solomon F 79
 7 Budinger, Chase F 79
 8 Williams, Derrick F 80
 9 Hill, Jordan F/C 82
10 Frye, Channing F/C 83
… with 518 more rows

The previous code uses %>%, which is known as a pipe and is provided by the
dplyr package. The output from the left side of the pipe is passed to the right
side of the pipe. If you’re familiar with piping in Unix, this is like using the pipe
character, |. (If not, no need to worry.) So, the player data is passed to select()
to show specific columns: Name, POS (player position), and Ht_inches (player’s
height in inches). You can still use the dollar sign notation to access columns,
as shown next. Call summary() to get summary statistics for height.

> summary(players$Ht_inches)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 69.00 77.00 80.00 79.12 82.00 87.00

Learn more about the
tidyverse at
tidyverse.org.

Overviews  |  303

The minimum is 69 inches, and the maximum is 87 inches. The median is
80 inches. Maybe this is all you need to know, but you can see this in box plot
form with the boxplot() function. The graphical parameter las is set to 1 so
that all axis labels are set horizontally.

Box plot
par(las = 1)
boxplot(players$Ht_inches,
 main = "NBA Player Height, Inches")

This gives you a box plot, as shown in Figure 8.4. The y-axis represents height.
The maximum height of 87 inches is represented by the top bar, and the
minimum height is represented by the dot at the bottom, as it falls outside 1.5
times interquartile range of the 25th percentile. This is the default behavior of
the boxplot() function, but you can modify these marks if you want to make
custom box plots with your own software.

Basketball players tend to vary in height by the position they play. Centers tend
to be taller, guards tend to be shorter, and forwards are usually somewhere in
the middle. Does this check out with the data?

FIGURE 8.4  Box plot showing
NBA player heights

304  |  CHAPTER 8:  Analyzing Data Visually

Find the positions classified by POS in the players data using the
unique() function.

Player positions
ppos <- unique(players$POS)

Alternatively, if you were sticking with the tidyverse, you could use the follow-
ing with distinct():

> players %>% distinct(POS)
A tibble: 5 × 1
 POS
 <chr>
1 F
2 G
3 C
4 F/C
5 G/F

We’ll stick with the first option. There are five player positions in the dataset.
Set mfrow with par() to make five charts, one for each position. Set margins,
outer margins, and the bordering box type to none while you’re setting graphi-
cal parameters.

Graphical parameters
par(mfrow = c(1, length(ppos)),
 mar = c(2, 2, 2, 2),
 oma = c(1, 3, 2, 2),
 bty = "n")

Use a for-loop to make a box plot for each position, as shown next. The pipe
notation is used again, along with filter() to subset the players with the cur-
rent position in the loop. This is the equivalent of using players[players$POS
== pos,] with bracket notation. The boxplot() function is called on the
heights in curr. The y-axis limits are set explicitly to the range of the full
dataset so that each chart covers the same range, which makes it easier to
compare positions.

Box plot for each player position
for (pos in ppos) {
 curr <- players %>%
 filter(POS == pos)
 boxplot(curr$Ht_inches,
 ylim = range(players$Ht_inches),
 main = pos)
}

Overviews  |  305

As shown in Figure 8.5, you get five box plots side-by-side. Centers, noted with
“C” appear highest and are, therefore, the tallest. The guards are the shortest.
So, the values appear to verify the initial expectation.

There is a more straightforward way to make multiple box plots by using for-
mula notation, as shown next. The formula with the tilde (~) specifies that box
plots should be drawn by POS.

Using the tilde notation
boxplot(Ht_inches ~ POS,
 data = players,
 ylab = "",
 main = "NBA Player Height by Position")

All the box plots are drawn in the same plotting space instead of five separate
charts, as shown in Figure 8.6.

When making comparisons, it’s often helpful to sort categories in a useful way.
In this case, you can sort the positions by height. The following sets the order
of the positions explicitly with levels in factor():

Reorder
players_fact <- players
players_fact$POS <-
 factor(players_fact$POS,
 levels = c("C", "F/C", "F", "G/F", "G"))

FIGURE 8.5  Several box plot
side-by-side

306  |  CHAPTER 8:  Analyzing Data Visually

Use the formula notation again but with the ordered data players_fact.

boxplot(Ht_inches ~ POS,
 data = players_fact,
 ylab = "",
 main = "NBA Player Height by Position,\nOrdered")

From left to right, the positions are ordered from tallest to shortest (Figure 8.7).

DISTRIBUTIONS

In statistics, distributions can be expressed with mathematical formulas, and
they have formal names and specific shapes. But more generally, you can think
of distribution as how the data is spread out across a range or multiple ranges.

FIGURE 8.6  Box plots in the
same chart

Overviews  |  307

Summary statistics are a simplification of distributions. Look at the data more
closely, and you can find more detail.

As shown in Figure 8.8, sometimes plotted data looks like a bell curve (unimodal),
has a couple of peaks (bimodal or multimodal), or has multiple peaks (multimodal).
The tapered ends of the distributions are the tails. Peaks indicate where the
data tends to or the spots in the data that are more common.

You might also have heard of skewness, or which way a distribution leans. With
unimodal distributions, there can be negative skew or positive skew. As shown
in Figure 8.9, the former shows a tail that seems to pull further left, and the
latter shows a tail that pulls further right.

While distributions can be closely studied, I typically look for a shape that
doesn’t look random and a modality that makes sense for a given dataset

FIGURE 8.7  Ordered box plots,
specified with factored positions

308  |  CHAPTER 8:  Analyzing Data Visually

when I am in the early stages of analysis. The histogram, shown in Figure 8.10,
comes in handy.

The histogram looks like a bar chart initially. There are bars that sit next to
each other along a value axis. Height represents frequency. However, the value
axis is continuous, and each bar width, or bin, represents the covered range
of values. So, taller bars mean higher frequency or that a given range is more
common than the others.

For example, Figure 8.11 shows a simple timeline for the median age American
females and males experience relationship milestones for the first time in their
lives. This is based on 2013 to 2015 data from the National Survey of Family
Growth by the Centers for Disease Control and Prevention.

FIGURE 8.8  Distribution
modality

FIGURE 8.9  Distribution
skewness

Overviews  |  309

The median age when females had sex for the first time was 17 years old. The
median age for males was 16. However, the median ages tell only part of the
story. As shown in Figure 8.12, the ages that things happen in people’s lives
are spread across a range.

FIGURE 8.10  Histogram
framework

FIGURE 8.11  Relationship
timelines

310  |  CHAPTER 8:  Analyzing Data Visually

We often refer to the peaks of these distributions as what is normal, but the
peaks can be a small percentage of a wider distribution. It’s worth getting an
overall sense of the distributions so that you can make more detailed conclu-
sions later.

Making a Histogram

Tool used: R

Dataset: NBA Players, 2013-14, book.flowingdata.com/vt2/ch8/data
/nba-players-2013-14.csv

Use a histogram to see more details in the distribution of NBA player heights.
Load the readr and dplyr packages again for loading and handling data,
respectively.

library(readr)
library(dplyr)

Use read_csv() to load the dataset. This is the same dataset as the box plot
example where each row represents a player.

FIGURE 8.12  “Relationships: The First Time. . .,” FlowingData / https://flowingdata.com/2017/02/23/the-first-time  / last accessed
February 08, 2024.

http://book.flowingdata.com/vt2/ch8/data/nba-players-2013-14.csv
http://book.flowingdata.com/vt2/ch8/data/nba-players-2013-14.csv
https://datafl.ws/relfirst

Overviews  |  311

Load data
players <- read_csv("data/nba-players-2013-14.csv")

Pass the Ht_inches data to hist() for a default histogram. As shown in
Figure 8.13, each bin covers two inches, and while the median is 80 inches
overall, there appears to be a quicker drop-off in the taller ranges.

Default histogram
hist(players$Ht_inches,
 xlab="inches",
 main="NBA Player Heights")

You can specify the bin breaks for more detail. The breaks argument in hist()
takes a vector of values or passes a single value to define the number of total
bins. The following creates one-inch bins from 65 to 90 inches:

Histogram
hist(players$Ht_inches,
 breaks=seq(65, 90, 1),
 xlab="inches",
 main="NBA Player Heights")

FIGURE 8.13  Default histogram

312  |  CHAPTER 8:  Analyzing Data Visually

There is a spike at 80 inches, as shown in Figure 8.14, and while the shape is
similar to Figure 8.14, you can see more variation with the one-inch bins.

Try more bin sizes to see how this affects the shape of the histograms.

Vary bin sizes
par(mfrow=c(1,3), mar=c(5,3,3,3))
hist(players$Ht_inches,
 breaks=seq(65, 90, 1),
 xlab="inches", main="One-inch bins")
hist(players$Ht_inches,
 breaks=seq(65, 90, 3),
 xlab="inches", main="Three-inch bins")
hist(players$Ht_inches,
 breaks=seq(65, 90, 6),
 xlab="inches", main="Six-inch bins")

Figure 8.15 shows the difference between one-, three-, and six-inch bins.
The smaller bins show the most variation, and the larger bins show the least
detail. In this case, the smaller bins are useful, but this might not be the case
with your own datasets. Smaller bins might just be a bunch of noise or larger

FIGURE 8.14  Histogram with
smaller bins

Overviews  |  313

bins might be too broad to show any shape, so I’ll leave bin size to you. It’s
up to you to adjust.

How about comparing height distributions across player positions? The process
is like that of the box plots. Get the unique position classifications and iterate
with a for loop. For the former, use unique().

Comparison between positions
ppos <- unique(players$POS)

Instead of placing charts side-by-side with one row and five columns, define
a layout with five rows and one column. Set mfrow with par() to c(5, 1). On
each for loop iteration, use filter() to subset to the players with the current
position and explicitly define breaks so that each histogram is on the same
horizontal scale.

Plot
par(mfrow=c(5,1))
for (pos in ppos) {
 curr <- players %>% filter(POS == pos)
 hist(curr$Ht_inches,
 breaks=seq(65, 90, 1),
 xlab="inches", main=paste0(pos, " Heights"))
}

Guards are the shortest overall, but they also have the widest range. You can
see this easily, because the histogram for the guards has the most bins. On
the other hand, the height of centers appears to be more restricted to tall, as
shown in Figure 8.16.

Sorting usually makes it easier to compare distributions, so try the previous
using an order from shortest to tallest position. The following snippet also
calculates the mean height for each position with mean() and draws a blue
reference line with abline().

FIGURE 8.15  Varying bin size for
more granular or broader ranges

314  |  CHAPTER 8:  Analyzing Data Visually

Reordered histograms
ppos2 <- c("G", "G/F", "F", "F/C", "C")
par(mfrow=c(5,1))
for (pos in ppos2) {
 curr <- players %>% filter(POS == pos)
 curr_mean <- mean(curr$Ht_inches)

 hist(curr$Ht_inches,
 breaks=seq(65, 90, 1),
 border = "white",
 xlab="inches",
 main=paste0(pos, " Heights"))
 abline(v = curr_mean,
 col = "blue",
 lwd = 2)
}

This lets you make the straightforward comparison between means. The
light gray bars, as shown in Figure 8.17, are like background information to
provide context.

FIGURE 8.16  Comparing
distributions by category

Overviews  |  315

Making a Density Plot

Tool used: R

Dataset: NBA Players, 2013-14, book.flowingdata.com/vt2/ch8/data
/nba-players-2013-14.csv

The bins in a histogram are discrete. However, sometimes you might want a
continuous version because your data is on a continuous scale, or you need
to a see a smoother view. A density plot is a solution, as shown in Figure 8.18.
Like the histogram, the x-scale is continuous without breaks, and the y-scale
is the proportion of the data that falls in the corresponding range. The differ-
ence is that the data is smoothed to make one shape instead of separate bins.

Load the readr and dplyr packages and then load the data with read_csv()
like in previous examples.

library(readr)
library(dplyr)

Load data
players <- read_csv("data/nba-players-2013-14.csv")

FIGURE 8.17  Reordered
histograms with median marks

http://book.flowingdata.com/vt2/ch8/data/nba-players-2013-14.csv
http://book.flowingdata.com/vt2/ch8/data/nba-players-2013-14.csv

316  |  CHAPTER 8:  Analyzing Data Visually

Use density() on the Ht_inches variable to calculate smoothed coordinates.
The function provides different smoothing options, which you can read about
in the documentation (Enter ?density in the console), but the defaults will do
fine for this example.

Calculate density coordinates
pdens <- density(players$Ht_inches)

Pass the calculations to plot().

Plot
par(las = 1)
plot(pdens, lwd = 2,
 main = "NBA Player Height")

As shown in Figure 8.19, you get a smoothed version of Figure 8.13 in
line form.

Add a fill under the smoothed curve with polygon() to which you can pass
the same pdens coordinates. Think of it as layers. Use plot() to draw the initial
view and use polygon() to add to the view.

Plot
par(las = 1)
plot(pdens, lwd = 2,
 main = "NBA Player Height")
polygon(pdens,
 col = "lightblue")

While you’re adding to the plot, use abline() and points() to mark the peak
of the curve.

FIGURE 8.18  Density
plot framework

Overviews  |  317

Max point
i <- which.max(pdens$y)
abline(v = pdens$x[i],
 lty = 2)
points(pdens$x[i], pdens$y[i],
 pch = 21,
 bg = "black")

This gives you the density plot in Figure 8.20 with a filled light blue polygon.

Like in the histogram example, it would be helpful to see the density plots for dif-
ferent positions. I’ll leave that for you as an exercise, but you can use the same logic
with a for loop, subset to a player position, and draw the plot on each iteration.

Making a Beeswarm Chart

Tool used: b

Dataset: NBA Players, 2013-14, book.flowingdata.com/vt2/ch8/data
/nba-players-2013-14.csv

Whereas the histogram and density plot show distributions by aggregating
and smoothing, the beeswarm chart shows every data point individually as a

FIGURE 8.19  Simple density plot

http://book.flowingdata.com/vt2/ch8/data/nba-players-2013-14.csv
http://book.flowingdata.com/vt2/ch8/data/nba-players-2013-14.csv

318  |  CHAPTER 8:  Analyzing Data Visually

dot (or bee). The clustering of the dots reveals an overall distribution, as shown
in Figure 8.21.

The chart type is relatively new. The name didn’t exist when I wrote the first edi-
tion of this book, but the beeswarm is commonplace these days. I see it in use
every day. At the trade-off of using more space and often showing more noise,
the beeswarm chart is less abstract and less aggregated than other chart types.

FIGURE 8.20  Density plot with
annotation

FIGURE 8.21  Beeswarm
chart framework

Overviews  |  319

It’s easier to see when an event occurred or where a person, place, or thing
belongs compared to the full population.

When I started using beeswarm charts, before they had an established name, I
had to construct them from scratch. However, the process is a lot more straight-
forward now. In R, the beeswarm package provides a single function.

Load the readr and beeswarm packages. As usual, you can use install
.packages() or a package installer via RStudio or the R GUI to install the pack-
ages if you don’t have them yet.

library(readr)
library(beeswarm)

Load the NBA player data with read_csv().

Load data
players <- read_csv("data/nba-players-2013-14.csv")

Pass Ht_inches to beeswarm() to look at the distribution of player heights.

Beeswarm
par(las = 1)
beeswarm(players$Ht_inches,
 main = "NBA Player Heights")

Height in this dataset are integers, so there are players with the same height,
which you can see in Figure 8.22. The dots, each one representing a player,
are centered on the x-axis and placed on the y-axis by height. You’re probably
familiar with this distribution shape by now, with a peak around 80 inches and
quicker drop off at the taller heights.

With the same formula notation you used to make separate box plots for each
position, you can make beeswarms separately, too. Set the swarm method to
swarm and the dot size (cex) to 0.7. The corral argument specifies what to do
with dots that would stretch past boundaries and overlap with other player
positions. Setting it to random sets the x-position randomly. Set point type
(pch) to 21, which is a filled circle with a border, and the fill color (bg) to black
with 50% transparency.

By position
beeswarm(Ht_inches ~ POS,
 method = "swarm",
 cex = .7,
 corral = "random",
 pch = 21,
 bg = "#00000050",
 data = players,
 main = "NBA Player Heights, by Position")

Note:  Enter ?beeswarm
to see all the chart options.

320  |  CHAPTER 8:  Analyzing Data Visually

There is a swarm for each position, as shown in Figure 8.23.

FIGURE 8.22  Beeswarm chart
showing player heights

FIGURE 8.23  Beeswarm chart
by category

Overviews  |  321

Because the heights round to whole numbers, the dots line up horizontally.
However, beeswarm charts tend to be more useful when values aren’t so
even. For the sake of demonstration, add random noise to the heights with
runif(), which generates random numbers from a uniform distribution within
a specified range, 0 to 1 in this case. Assign the heights with noise added to
Ht_inches_rand in the players data.

Add noise
players$Ht_inches_rand <- players$Ht_inches +
 runif(dim(players)[1], 0, 1)

Make a beeswarm chart with the new data.

beeswarm(Ht_inches_rand ~ POS,
 method = "swarm",
 pch = 21,
 bg = c("red", "blue", "black", "purple", "darkgreen"),
 data = players,
 main = "NBA Player Heights, by Position")

With less space in between dots and tighter clustering, as shown in Figure 8.24,
the charts look more like full distributions instead of a bunch of dots in a row.

FIGURE 8.24  Beeswarm chart
with more variation

322  |  CHAPTER 8:  Analyzing Data Visually

Like I said, one of the advantages of the beeswarm is that each data point gets
a symbol. In this case, each dot represents a player. The beeswarm() function
lets you set colors and sizes pointwise, which means you can call out individual
data points.

For example, highlight the player Rudy Gobert by using a different color and
size so that the point for Gobert stands out from the rest. Start with the color.
All points will be gray, except the point for Gobert, which will be purple.

Color for each player
players$col <- "#cccccc"
players$col[players$Name == "Gobert, Rudy"] <- "purple"

Define the size of all the points as 1, except the point for Gobert, which will
get a cex size of 3.

Circle size for each player
players$cex <- 1
players$cex[players$Name == "Gobert, Rudy"] <- 3

Use beeswarm() like before, but set the pwcol and pwcex arguments to the col
and cex columns in players, respectively.

Beeswarm
beeswarm(Ht_inches_rand ~ POS,
 method = "swarm",
 pch = 20,
 pwcol = players$col,
 pwcex = players$cex,
 data = players,
 main = "NBA Player Heights, by Position")

As shown in Figure 8.25, the point for Gobert stands out from the rest. Can
you figure out how to add a name label with text()?

The beeswarm() function provides a lot of flexibility so that you can custom-
ize charts for your own data. Try changing the method for arranging points,
adding labels, or using different color schemes.

QUALITY OF THE DATA

Like distributions, there are formal methods to assess data quality, but the
eyeball test again works well in the early stages of gathering information. Make
quick charts without worrying about aesthetics and readability.

Overviews  |  323

If you have time series data, make a line chart. If you have categorical data,
make a bar chart. If you have spatial data, make a map. Is there a trend? Does
it match expectations? Does the line or bars go up and down randomly sug-
gesting that the data is a bunch of noise? Do you have to aggregate the data
into wider time bins or broader categories to capture a signal? Answer these
questions early so you don’t have to suffer through analytical regret later.

Consider the source of the data and how the files you have on your computer
came to be. Is the source reliable? What was the methodology behind the
estimates? For example, once a pornography site analyzed their traffic data
to find which state watched the most. Kansas appeared to be a strong outlier
with many more pageviews per capita. The Internet did its thing for a few
days where it gawks and points without much context. However, traffic loca-
tion was based on IP addresses, and if the software could not define the state,
it defaulted to the center of the United States. The geolocation defaulted to
Kansas, which inflated the state’s per capita count.

In another example, news outlets reported on what appeared to be important
research on changing people’s minds. The research concluded that you could
change a person’s mind with a 22-minute conversation, which carried implica-
tions in how you might shift thought and voting on political and social issues.
It turns out the data behind the research was fake.

FIGURE 8.25  “One point
highlighted in the swarms ,”
Nathan Yau / 2007-Present
FlowingData / https://
flowingdata.com/
2016/03/03/marrying-
age  / last accessed
February 08, 2024.

https://flowingdata.com/2016/03/03/marrying-age
https://flowingdata.com/2016/03/03/marrying-age
https://flowingdata.com/2016/03/03/marrying-age

324  |  CHAPTER 8:  Analyzing Data Visually

As of this writing, AI-generated images and text are at a peak. It’s gotten easier
to generate and edit media, and it’s getting more difficult to decipher what
is real and not. I can only imagine that fake datasets will grow more readily
available with time.

When I work with data, my main method to judge quality is to compare against
previous estimates from a source that I trust. I often work with microdata, or
individual survey responses instead of aggregates, to make my own calcula-
tions. To verify, I might use my methodology with a previous year’s microdata
to match with known estimates. If they aren’t equal, then I probably made an
error, or the microdata is not right.

Do what works for you, but keep an eye out throughout the process. Ask your-
self if what you’re seeing makes sense. Sometimes the numbers lie, intentionally
and unintentionally. If the data seems overly shocking or the trends seem to
be oddly clear, look closer.

ADJUSTING QUESTIONS

Once you have a sense of data quality and what the data is about, you can
decide what questions you’ll be able to answer. Oftentimes, you need to adjust
when the data is too noisy, doesn’t represent what you thought, or more inter-
esting things popped up as you were summarizing.

I find it’s best to treat initial curiosities as a jumping-off point. Rarely do I end
up answering the exact questions that I had to start, but they often lead to
something else that is worth analyzing more deeply. The alternative, posing
a question and leaving it unanswered or providing data that provides zero
information, isn’t much fun for you or the reader.

EXPLORING DETAILS
You have a good feel for the data. Now, get in closer to see the details. This
stage of the gathering process is less mechanical and more context-specific. It
depends on how much data you have, the structure of the data, how granular
the data is, and what you’re looking for in the data.

Looking for what is best in your dataset? Define what is “best.” Are the estimates
reliable enough to make a judgment? Are there unexpected trends, and if so,
do you need to adjust your own expectations, or is there something interest-
ing going on here? Is there variation within groups and stagnation in others?

See other examples of
mistaken data at https://
datafl.ws/miss.

Exploring Details  |  325

Do any people, places, or things jump out from the rest of the distributions,
and are they measurement errors or real-life outliers?

This is a third or fourth date conversation. You’ve done the small talk and found
out a little bit about the person. You know their hometown, what food they
like, gotten a feel for their humor, and what movies they’ve seen lately. Now,
it’s time to find out who this person truly is, which is more complex but vastly
more interesting.

COMPARISONS

When I was a kid, sometimes I earned a good grade or scored well on a test.
I would excitedly tell my parents the news. After giving me the kudos that I
craved, they almost always followed by asking how others did. It bothered me,
because I didn’t want to be compared to anyone else.

But my parents were just trying to figure out the scale of my scores. Me saying
that I got an 85 doesn’t mean a lot if you don’t know the minimum and maxi-
mum. Did everyone get an 85? Is an 85 good or was the test out of a possible
200? I understand my parents’ queries better now that I have young children
who come home with similar sentiments.

Comparisons provide meaning to your data. They provide context, whether
something is good or bad, high or low, and top or bottom. There is a genre of
visualization that specifically gives you a sense of scale by starting with some-
thing familiar and then scaling up or down toward the unfamiliar.

You can look at variation across a full population, and you can look at varia-
tion across and within subgroups of a population. Figure 8.26 shows income
distributions by age group, as education levels and work experience play a
role in how much you make. An annual income of $43,000 was the median
overall in 2020, but it’s on the lower side if you’re older than 60 and impressive
if you’re a teenager.

In Chapter 4, “Visualizing Time,” you saw how comparing data over days,
months, and years can show change, trends, and cycles. In Chapter 7,
“Visualizing Space,” you saw how to compare cities, countries, and regions.
The most straightforward method to make visual comparisons is to use a
common scale across all categories, time, or space. Have multiple charts?
Use the same x- and y-scales with each chart. Scaled symbols? Size with the
same area scale across categories.

To compare marrying age across demographics, Figure 8.27 shows percentages
for males and females with age on the x-axis and percentage of marriages on

Find examples of scale
comparisons that range
from the practical to the
ridiculous at https://
datafl.ws/scale.

326  |  CHAPTER 8:  Analyzing Data Visually

FIGURE 8.26  “How Much
Americans Make,” https:
//datafl.ws/ageinc

https://datafl.ws/ageinc
https://datafl.ws/ageinc

Exploring Details  |  327

the y-axis. The chart is interactive with demographic toggles, and the lines
update as you click. As you look at different groups, you see the lines shift
up and down.

Use comparisons to better understand your data, and then keep the good
ones with you for later when you need to communicate the unfamiliar to
an audience.

PATTERNS

Throughout this book, you have looked for patterns. The volume of traffic
crashes tends to repeat itself on a weekly basis. People with certain jobs tend
to marry others with certain jobs. Household types have moved toward smaller
families and dual incomes with no kids.

Data trends upwards and downwards, like the whims of a teenager on social
media (Figure 8.28). By the time you read these words, there will probably be
a social media platform that I’ve never heard of sitting on top, or maybe social
media will disband, and we’ll return to a more peaceful time on the Internet
where independent websites roamed free.

FIGURE 8.27  “Marrying Age,” FlowingData / https://flowingdata.com/2016/03/03/marrying-age  / last accessed 08 February, 2024.

328  |  CHAPTER 8:  Analyzing Data Visually

In some places, as shown in Figure 8.29, there are more bars than grocery
stores based on data from the Google Maps API. From a per-capita perspec-
tive, Wisconsin has the third highest rate with about 8 bars per 10,000 people.
North Dakota and Montana take the one and two spots at 9.9 and 8.6 bars
per 10,000 people, respectively. Delaware, Maryland, and Mississippi have the
lowest rates, all with fewer than 1.5 bars per 10,000 people.

According to estimates from the Bureau of Labor Statistics, those in higher
income groups tend to spend differently than those in lower income groups.

FIGURE 8.28  “Shifted Social
Media Usage, Among Teens,”
https://datafl.ws/7nj

Exploring Details  |  329

When the essentials are paid for, there is greater flexibility for spending in other
categories, as shown in Figure 8.30.

Look for the tendencies in the data. Note the patterns. When you find some-
thing, zoom in closer to see if there’s more to note in the smaller details.

UNCERTAINTY

We want the simple answer. We want the concrete, definitive answer, and data
is supposed to supply that, but usually, it doesn’t work that way. Instead, we
have estimates with margins of error, probabilities for possible outcomes, and
ranges that the true answer might fall in. There is almost always uncertainty
attached to the data, so when you visualize and analyze, you should treat it
like it is not concrete.

FIGURE 8.29  “Where Bars Outnumber Grocery Stores,” https://datafl.ws/bars

330  |  CHAPTER 8:  Analyzing Data Visually

In statistics, we use a lot of “maybe” and “possibly” and “likely.” There is less
use of “definitely” and “absolutely certain.” Even when a pattern in a chart
looks obvious, I still feel the need to qualify the pattern with “it appears that”
instead of “it is that.”

For example, with a curiosity about the variation of dinner time between states,
I used the American Time Use Survey, the dataset that keeps on giving, to cal-
culate peak dinner time for each state. Figure 8.31 shows the results.

The peak times are highlighted in the middle, but as a parent with young chil-
dren, I am attuned to much earlier, off-peak dinner times. I couldn’t just leave
it as single data points per state. There’s a range of dinner time possibilities,
so I calculated when eating tends to pick up and when it tends to slow down.
The start and end times are noisy, but they’re closer to reality.

FIGURE 8.30  “How Different Income Groups Spend Money,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2018/02/08/
how-different-income-groups-spend-money  / last accessed February 08, 2024.

https://flowingdata.com/2018/02/08/how-different-income-groups-spend-money
https://flowingdata.com/2018/02/08/how-different-income-groups-spend-money

Exploring Details  |  331

FIGURE 8.31  “When is Dinner,
by State,” https://datafl
.ws/dintime

https://datafl.ws/dintime
https://datafl.ws/dintime

332  |  CHAPTER 8:  Analyzing Data Visually

When pondering how many years we have left to live, it’s impossible to know
the exact date and time. But using mortality data, we can guess the possible
outcomes, as shown in the interactive in Figure 8.32. The range of possibilities
is more interesting than average life expectancy.

Even when we have a lot of data, it can be difficult to provide an exact answer.
How much do people have saved for retirement, given their age? The Survey
of Consumer Finances asks people every two years, but when you look at the
survey data, you see a lot of noise. Then there are more questions, such as
what you should consider retirement savings. Should it just be money marked
as retirement savings, or do you count all financial assets? What about home
equity? Figure 8.33 is from an interactive graphic that shows a range of val-
ues for different types of savings using median, 25th and 75th percentiles, and
individual data points.

While basic summary statistics are the simple answer, sometimes the more
accurate solution is the more uncertain one. Favor ranges and possibilities
over single values.

FIGURE 8.32  “Years You Have Left to Live, Probably,” FlowingData / https://flowingdata.com/2015/09/23/years-you-have-left-to-
live-probably  / last accessed 08 February, 2024.

Exploring Details  |  333

OUTLIERS

Outliers are data points that stand out from the rest. There are methods and
criteria to detect outliers, but in the end, finding outliers is a subjective task.
The context of your data dictates what you do with the outlier.

For example, Figure 8.34 shows subscribers to FlowingData over a 30-day
period. There are two days when subscriber counts suddenly dipped. These
two points are outliers in the context of the rest of the data points, but what
do you do with them? Was there a server error that led to incorrect measure-
ments? Did I make an offensive chart that made a bunch of people hate me

FIGURE 8.33  “How Much Savings Growth with Age,”  Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2019/11/08/
saving-for-retirement-and-age  / last accessed February 08, 2024.

https://flowingdata.com/2019/11/08/saving-for-retirement-and-age
https://flowingdata.com/2019/11/08/saving-for-retirement-and-age

334  |  CHAPTER 8:  Analyzing Data Visually

suddenly? Given the counts rise back quickly, it’s most likely the former, in
which case you could ignore the errant estimates. However, if I were a content
creator known for making offensive videos, you might treat the dip differently.

In some cases, you can treat outliers as something to highlight. It is a standout
or something unique rather than something to ignore. Figure 8.35 is a still from
an animated scatterplot that shows the distribution of births by age. Using
data from the National Survey of Family Growth, there was one respondent
who had 12 kids by age 30. At the time, my two kids were a handful, and the
data point resonated for me.

When looking at relative job popularity across the country (Figure 8.36), the
most interesting data points were the outliers. They were the ones that were,
compared to the national average, much more popular in a given state or
region. For example, economists and budget analysts are many times more
popular in Washington, D.C., whereas actors are more common in California
and New York. Fishing and hunting workers are more popular in Alaska, Maine,
and Louisiana. The outlier jobs help define a state by showing what is unique.

There are ingredients that are unique to certain cuisines. As shown in Figure 8.37,
soy sauce, sesame oil, and Szechwan peppercorns are relatively more common
in Chinese cuisine, based on the percentage of recipes the ingredients appear
in. In Italian recipes, the most cuisine-specific ingredients were parmesan cheese
and fresh basil; in French recipes, it was shallots and unsalted butter; in Mexican
recipes, it was corn tortillas, black beans, and avocado.

FIGURE 8.34  Line chart showing
subscribers over time

Exploring Details  |  335

FIGURE 8.35  “How Many Kids
We Have and When We
Have Them,” Nathan Yau /
2007-Present FlowingData /
https://flowingdata
.com/2019/02/01/how-
many-kids-we-have-and-
when-we-have-them  / last
accessed February 08, 2024.

FIGURE 8.36  “Where Your
Job is Most Popular,” Nathan Yau /
2007-Present FlowingData /
https://flowingdata
.com/2019/02/27/where-
your-job-is-most-
popular  / last accessed
February 08, 2024.

https://flowingdata.com/2019/02/01/howmany-kids-we-have-and-when-we-have-them
https://flowingdata.com/2019/02/01/howmany-kids-we-have-and-when-we-have-them
https://flowingdata.com/2019/02/27/where-your-job-is-most-popular
https://flowingdata.com/2019/02/27/where-your-job-is-most-popular

336  |  CHAPTER 8:  Analyzing Data Visually

To find outliers, look for what sticks out. What you do with the outlier depends
on what you’re looking at, what you’re looking for, and the questions you ask.

DRAWING CONCLUSIONS
With findings in hand from your data explorations, the process of telling stories
with data is more straightforward. It’s no longer just, “Here’s the data. Look
at it.” You’ve answered questions through data and explored the details so
that you can say, “Here’s the data. This is what it says. Here is what we learned
and why it’s important.” You move beyond an audience of one (yourself) and
think about who you must communicate to.

The visualization process is about taking data, which is an abstract view of
something more complex. The data is usually a simplification, but it is the best
way to measure how things are going, so you analyze and explore. Then, in
telling stories with data, you highlight what you found in the process to help
others connect the abstract to reality.

I scribbled this process some years ago, as shown in Figure 8.38. It’s not perfect,
but the steps still hold. A lot of people get stuck between data and visualiza-
tion. They never make it all the way around, which leads to charts that don’t
do much other than take up space.

FIGURE 8.37  “Cuisine
Ingredients,” Nathan Yau /
2007-Present FlowingData /
https://flowingdata
.com/2018/09/18/
cuisine-ingredients  /
last accessed February 08, 2024.

https://flowingdata.com/2018/09/18/cuisine-ingredients

Wrapping Up  |  337

When you analyze data, think about where it came from, why it exists, what
it is supposed to represent, and what it actually represents. Let the context
inform your questions and answers. The context makes for meaningful visu-
alization that tells you more than how numbers were converted to shapes
and colors.

WRAPPING UP
In school, analyzing data can feel automatic and mechanical. Generate a hypoth-
esis test. Calculate statistics. Consult table and make pseudo-decision. However,
in a practical setting, analysis is more fluid. You ask questions, try to answer
them, and adjust. You can move back and forth between steps as one finding
informs another.

The analysis phase of visualization is my favorite part of the process because
it’s when you learn about the data. You get to take a spreadsheet or a data
file that might as well be gibberish to most, and you find new things and cre-
ate insights. With the new information, you can tell stories that communicate

FIGURE 8.38  Visualization
process flowchart

338  |  CHAPTER 8:  Analyzing Data Visually

complexity to a wider audience. The information you gather during the analysis
phase makes decisions a lot easier when you design your final graphics.

I tend to couple more traditional analysis with visual analysis equally. It provides
me with the right balance of precision and exploration. The balance might look
different for you. The key is not the balance, though. The key is to keep asking
and answering questions about the data until you are satisfied with the findings.

In the next chapter, you figure out how to design graphics with these find-
ings in mind. You design with a purpose. A lot of people just copy and paste
the output from their software, which is the easy thing to do, but you can do
better than that.

Ch.9

Designing
with Purpose

340  |  CHAPTER 9:  Designing with Purpose

When you explore your own data, you don’t need to do much in terms of
storytelling. You are, after all, the storyteller, so you probably don’t need to
narrate to yourself. However, the moment you use visualization to present
information—whether it’s to one person, several thousand, or millions—a
stand-alone chart is no longer good enough.

Sure, you want others to interpret results and perhaps form their own stories,
but it’s hard for readers to know what questions to ask when they don’t know
anything about the data in front of them. It’s your responsibility to set the
stage. Think about who and what your visualization is for and design with the
purpose in mind.

GOOD VISUALIZATION
Although people have been visualizing data for centuries, only in the past
few decades have researchers been studying what works and what doesn’t.
In that respect, visualization is a relatively new field. For a while, there was no
consensus on what visualization actually is. Is it an analysis tool? Is it a form
of communication? Is it art? Those who believed visualization was one thing
would disagree with others who felt visualization was another thing because
a chart that is good for communication might not be good for analysis, and
vice versa.

However, visualization is not a single thing with a single set of rules and stand-
ards. Visualization is a medium that can serve different purposes.

For example, those who analyze data often use traditional statistical charts in
their explorations. If a graphic or interactive chart doesn’t help in analysis, then
it’s not useful. On the other hand, those who use visualization to communi-
cate data to others require ways to highlight insights more than they need to
discover insights. Those who use visualization for data art require flexibility in
visual encodings and ways to piece together components. Some people use
all the resources that visualization provides.

Imagine if we expected movies to follow the same structure, flow, and style
across all genres. Dramas, comedies, action movies, and documentaries would
all be the same, which defeats the purpose of making and watching movies. An
action movie shouldn’t have to make you laugh, and every comedy shouldn’t
need a great car chase. With visualization, you don’t always need speedy pre-
cision or beautiful aesthetics. What you need depends on the who, what, and
why of your work.

Martin Wattenberg and
Fernanda Viégas used book
genres to describe the vari-
ous forms of visualization,
and Eric Rodenbeck related
visualization to movies
and photography, which
you can see at https:
//datafl.ws/genre
and https://datafl
.ws/med, respectively.

https://datafl.ws/genre
https://datafl.ws/genre
https://datafl.ws/med
https://datafl.ws/med

Good Visualization  |  341

When you approach visualization as a medium instead of just a tool, you’re
allowed to ask better questions about your data and produce better work.
Instead of asking what a tool can do and then adjusting your statistical ques-
tions to fit within the tool’s capabilities, you start with the data and purpose
and then use the visualization to achieve your goal. If the visualization fits the
purpose, then it’s good. If it does not, then you try something else.

For those new to visualization, it can be easy to be fooled into what makes a
good chart. People are quick to assume what a chart is for, what it should look
like, and the motives behind it. If the work does not check their boxes, which
usually stem from analytics or from some “expert” opinion article, they deem
it a failure. So, while criticism can be useful, consider where it comes from and
if it’s worth absorbing in the context of the visualization’s purpose.

INFINITE OPTIONS

It’s common to learn about visualization in terms of restrictions and rules, as if
you must limit your possibilities to make charts the right way. This approach is
important in the beginning. It works in the same way you must learn how to
write. Learn to spell words correctly, what punctuation is for, how to structure
sentences, and how to break up ideas into paragraphs and sections.

Learn how charts work so that you don’t accidentally make a misleading chart
that says the opposite of what you want. A bar chart value axis should start at
zero because the length of the bar represents the data. Pie chart percentages
should sum to 100 because the sum of the parts represents the whole.

Once you set up foundations, the maximum fun begins. You get infinite options
with visualization as a medium. Adjust colors and geometries. Add layers of
context through annotation and visual metaphors. Use the insights that you
found during data exploration and analysis to guide your choices.

VISUALIZATION COMPONENTS

All the choices at once can be overwhelming, like kids in a candy shop allowed
to get whatever they want. It can help to think of visualization as components
that fit together. Instead of imagining a single chart full of data, you split it up
into smaller pieces to figure it out.

There are various ways you can split up a visualization. Jacques Bertin, in Semi-
ology of Graphics from 1967, described (based on the 1983 English translation
by William S. Berg) a “plane” and the “retinal variables.” The former is like the
coordinate system that defines how geometries are placed in a space.
The latter defines how to encode data into visuals.

342  |  CHAPTER 9:  Designing with Purpose

William S. Cleveland, in his 1994 book The Elements of Graphing Data, lists the
“basic elements of graph construction” as “scales, captions, plotting symbols,
reference lines, keys, labels, panels, and tick marks.” In The Grammar of Graphics,
published in 2005, Leland Wilkinson more formally defined the components
of a statistical graphic as data, variable transformations, scale transformations,
coordinate system, visual elements, and guides.

For example, Figure 9.1 shows the components of a simplified bar chart using
Wilkinson’s classifications. The data and transformations are not shown, but
with the coordinate system (time on the x-axis and a linear numeric scale on
the y-axis), visual elements (the bars), and the guides (axes, title, and source),
the components make the bar chart.

FIGURE 9.1  Bar chart
components

Good Visualization  |  343

This breakdown is useful when you want to experiment with form and
aesthetics because you can adjust the parts instead of making every chart
from scratch. For example, if you change the visual elements in Figure 9.1
but keep everything else the same, you get different charts, as shown in
Figure 9.2.

From an implementation point of view, this reduces the amount of work you
have to do to make different charts, as various code libraries make direct use
of the approach. The JavaScript library D3, the Python library Altair, and the
R package ggplot2 let you define charts as components. Make one chart and
modify parts of your code to get new charts. With point-and-click tools, using
components as a way of thinking about visualization can help you navigate
through the options.

Load the data. Define a coordinate system. Draw the axes with defined
scales. Draw the data based on visual encodings. Customize the components
along the way.

As you’ve seen throughout this book, you can get a lot done working with
charts without splitting them into components. There are packages and appli-
cations that put things together for you once you supply the data. A single
function call can get you almost all the way to where you need to go for a
finished chart. However, when you want to customize results or make your
own ad hoc visualizations that are specific to a dataset, think of a visualization
as pieced together components.

FIGURE 9.2  Changing visual elements

344  |  CHAPTER 9:  Designing with Purpose

INSIGHT FOR OTHERS
Once you shift jobs from data detective to data designer, your task is to com-
municate what you know to the audience. They most likely haven’t looked at
the data in the same way you did, so they won’t see the same thing that you
see if there’s no explanation or setup. My rule of thumb is to assume that people
are showing up to graphics blindly because usually they are. They come from
social media, a link in a random article, or a mention in a talk.

When people get to your charts, you want to tell them the story of the data or
at least give them a guided tour. You don’t have to write an essay to accom-
pany every graphic, but a title and a little bit of explanation are always helpful.
Otherwise, it can quickly become like a game of Telephone, and before you
know it, the graphic you carefully designed is explained with the opposite
meaning you intended. The Web is weird like that.

VISUAL HIERARCHY

You went over visual hierarchy in Chapter 4, “Visualizing Time,” but it’s worth
mentioning again, as it should be a consistent goal when you visualize data
for an audience. The defaults in most software use equal visual weight for
many components because the areas that deserve more attention should be
decided by you.

If you want to focus on specific data points, make them more visually
prominent to direct reader attention. Make the important bits jump out.
You can use contrasting colors to highlight subsets of the data and make
others fall into the background. You can make data points appear larger,
and because they take up more space on the screen, they demand more
attention. Use position to separate points. Provide annotation to explain
interesting areas.

At the least, figure out the elements that you want to highlight the most and
the elements that are there for context. Then you can decide the visual weights
in between.

AESTHETICS

Aesthetics inherently refers to beauty, which is subjective. To some, a minimal-
ist chart represents beauty. To others, bright colors with decorations represent
beauty. Some might argue that making charts pretty is an unnecessary effort
because it gets in the way of the data and inhibits clarity.

Insight for Others  |  345

It’s the other way around, though. Aesthetics can improve clarity. Put effort into
aesthetics, and it can help readers understand your charts better by provid-
ing readability through visual hierarchy, a common identity across a broader
theme, and a signal that time and effort was spent on the visualization. Plus,
it’s fun to make nice things. People like nice things. I like nice things. Default
settings are no fun.

I have ongoing projects that I like to separate visually with differing aesthet-
ics. Data Underload is a more analysis-focused project that I use to answer data
curiosities. Many of the charts you’ve seen throughout this book come from
the project. They vary in complexity, but they typically use a healthy amount
of whitespace, a monospace typeface for labels, and a serif typeface for expla-
nations. My color preferences have shifted over the years between saturated
and unsaturated colors.

On the other hand, my Statistical Atlas project is meant to resemble previous
atlases produced by the Census Bureau in the 1800s. As shown in Figure 9.3,
the colors are more washed out, there are decorative borders, and the text
layout is template-like.

FIGURE 9.3  “Coming and Going Age Generations,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2021/05/18/
change-in-age-generations  / last accessed February 08, 2024.

https://datafl.ws/agegen
https://datafl.ws/agegen

346  |  CHAPTER 9:  Designing with Purpose

Sometimes I go with the use-the-nearest-drawing-tool-available aesthetic, such
as in Figure 9.4. There were crayons nearby, and I tried to visually explain the
importance of filling out surveys for the decennial count.

If you make graphics for a publication, you likely will need to match existing
aesthetics. Maybe you have to make company dashboards that need to use a
common theme across platforms. If you’re doing your own thing, it might be
beneficial to develop your own aesthetic so that your work is specific to you.
Whatever it is, working on aesthetics in your charts is worth the extra effort.

VISUAL METAPHORS

Statistical charts are often abstract representations of data whittled down to
bare geometries. They look like computer output with no connection to what
the data is about. That’s fine when you are in the data. Barebones gets you
quick charts that can be applied to various datasets, regardless of context.
However, the abstraction can make it a challenge for readers to connect.

Tip:  If you’re not sure
where to begin, it can help
to copy a graphic pixel-by-
pixel, which forces you to
look closely at the details.

FIGURE 9.4  “Making the Count,”
2007-Present FlowingData /
https://flowingdata.
com/2018/03/05/making-
the-count  /  last accessed
February 08, 2024.

https://datafl.ws/thecount
https://datafl.ws/thecount
https://datafl.ws/thecount

Insight for Others  |  347

It’s hard to feel or interpret anything beyond quantitative measurements when
all you have is a barebones dot plot. Visual metaphors can help.

Use elements in your visualization to represent the context of the data. This can
be straightforward, such as selecting colors that are relevant. Figure 9.5 shows
the percentage of people who still smoke by demographic. The categories in
the stacked bar charts use common cigarette colors.

Figure 9.6 is a screenshot from an interactive visualization that shows rising
incomes with an elevator metaphor. A person icon in each elevator makes the
choice more obvious. The visualization represents a “rise to the top.” The higher
the income, the higher the percentile, and it varies by age.

FIGURE 9.5  “Who Still Smokes?”
Nathan Yau / 2007-Present
FlowingData / https://
flowingdata.com/
2016/06/20/who-still-
smokes  / last accessed
February 08, 2024.

https://datafl.ws/smoke
https://datafl.ws/smoke
https://datafl.ws/smoke
https://datafl.ws/smoke

348  |  CHAPTER 9:  Designing with Purpose

To show what makes people happy over a lifetime, I used force-directed happy
faces that varied by area, color, and smile size, as shown in Figure 9.7. It might
not be the most perceptually accurate visualization, but it was fun to make.
That’s bonus points.

Nigel Holmes’ work epitomizes the use of visual metaphor in charts, often
intertwining illustration and data patterns into a single graphic. The combina-
tion is often playful and entertaining as it informs. Mona Chalabi uses visual
metaphors to great effect. She won a Pulitzer Prize showing the ridiculous
scale of Amazon founder Jeff Bezos’ wealth with a series of growingly outra-
geous comparisons.

Funny illustrations might not work for your next company report, but you can
adopt the sentiment. Your visualization is about something. Use visual elements
to represent that something alongside the quantitative insights.

FIGURE 9.6  “Rising to Top Net Worth, by Age,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2023/10/26/rising-
to-top-net-worth-by-age  / last accessed February 08, 2024.

https://datafl.ws/elev
https://datafl.ws/elev

Insight for Others  |  349

FIGURE 9.7  “When Americans are Happiest,” Nathan Yau / 2007-Present FlowingData / https://flowingdata.com/2023/01/04/when-
americans-are-happiest  / last accessed February 15, 2024.

https://datafl.ws/smile
https://datafl.ws/smile

350  |  CHAPTER 9:  Designing with Purpose

ANNOTATION

Visualization is great for revealing patterns, but they’re not always obvious to
those who haven’t looked at the underlying data. Words are a straightforward
solution to improve this readability issue. They can help set expectations, explain
encodings, direct readers’ eyes to the insights, and provide narrative. Err on the
side of too much annotation rather than too little because a reader can always
skip words, but if a reader gets lost because you didn’t explain enough, then
the visualization is a sunk effort.

Direct annotation, as shown in Figure 9.8, works best if you have the space.
It’s more straightforward to make a chart separately and write the words

FIGURE 9.8  “Life Satisfaction
and Age,” Nathan Yau / 2007-
Present FlowingData /
https://flowingdata.
com/2022/11/10/life-
satisfaction-and-age  /
last accessed February 15, 2024.”

https://datafl.ws/satage
https://datafl.ws/satage
https://datafl.ws/satage

Wrapping Up  |  351

somewhere else, but an annotation layer on top of the chart keeps the words
and encodings more tightly coupled. This is especially useful when you might
traditionally use a legend to describe categories. You don’t have to scan back
and forth to remind yourself what each color represents, and instead you can
keep your eyes on the patterns.

Imagine you’re giving a talk, and your chart appears on a large screen. You
might use a pointer to direct attention to a specific area of the chart and
then explain why that area is relevant. To explain the chart when you’re not
in the room, place words in the area you would point to and explain the
area with text.

ACCESSIBILITY

If your goal is to help people understand data, it’s in your best interest to
make your charts accessible to everyone. Use colors that most people will
likely see. The color tools listed in Chapter 2 should help. Supplement visual
encodings with text to explain the patterns and insights. Adding text is
relatively straightforward, and researchers are working on ways to automate
the annotation process. Provide computer interaction that is accessible via
key presses.

Some have experimented with the nonvisual senses to communicate data.
There are sonification tools to turn data into sound. There are tangible objects
through 3-D printing or just everyday things like balls and boxes that are off
the computer screen.

At the time of this writing, accessibility is relatively new in visualization, but
I hope that when I revisit this text in another decade, there will be a lot
more in this area. For that to happen, we must actively design with acces-
sibility in mind.

WRAPPING UP
Many people see design as just a way to make your graphics look pretty. That’s
part of it, but design is also about making your graphics readable, understand-
able, and usable. You can help people understand your data better than if they
were to look at a default graph. You can clear clutter, highlight important points
in your data, or evoke an emotional response. Data graphics can be entertain-
ing, fun, and informative. Sometimes, it’ll just be the former, depending on
your goal, but no matter what you try to design—visualization, information
graphic, or data art—let the data guide your work.

352  |  CHAPTER 9:  Designing with Purpose

When you have a lot of data, and you don’t know where to begin, the best
place to start is with a question. What do you want to know? Are you look-
ing for seasonal patterns? Relationships between multiple variables? Outliers?
Spatial relationships? Differences between categories? Then, look back to your
data to see if you can answer your question. If you don’t have the data you
need, then look for more.

When you have your data, you can use the skills you learned from the examples
in this book to tell an interesting story. Don’t stop here, though. Think of the
material you worked through as a foundation. At the core of all your favorite
data visualization projects is a data type and a method that you now know
how to work with. You can build on these for more advanced and complex
graphics. Add interactions, combine plots, or complement your graphics with
photographs and words to add more context.

Remember, data is simply a representation of real life. When you visualize data,
you visualize what’s going on around you and in the world. You can see what’s
going on at a micro-level with individuals or on a larger scale spanning the
universe. Learn data, and you can tell stories that most people don’t even know
about yet but are eager to hear. There’s more data to play with than ever before,
and people want to know what it all means. Now you can tell them. Have fun.

Index

A

abline() function, 313, 316
accessibility, 351
ActionScript, 290
add _ edges() function, 239
adding

lines, 262–266
scaled symbols, 257–261

addresses, geocoding, 246–247
add _ vertices() function, 238
adjusting questions, 324
Adobe Illustrator

about, 45–48
creating

alluvial diagrams, 188–191
bar charts for categories, 146–149
dot plots, 119–129
heatmaps, 139–141
multi-line charts, 132–138
square pie charts, 171–173
treemaps, 174–175

using scaled symbols, 152–157
aesthetics, 344–346
Affinity Designer, 48
aggregating sampled data, 87–89
Aisch, Gregor, 50
Albers projection, 255
alluvial diagrams

about, 187–188
creating, 188–191

alluvial package, 34
Altair library, 36
Amazon Data Exchange, 61
amounts

about, 144–145
bar charts, 145–146
creating bar charts, 146–149
editing

bar charts, 149–150
charts, 158–159

scaled symbols, 150–152
using scaled symbols, 152–157

animated maps
about, 289–290
creating, 291–293

animation package, 34
annotating

about, 350–351
sequence of maps, 287–289

append() function, 201
application programming interface (API), 61–62
ArcGIS, 41–42, 64
Atlas of Emotions, 7
ATUS dataset, 181
audience, design and, 17
Awesome Public Datasets, 63
axis() function, 122, 134

B

b, creating beeswarm charts, 317–322
bar charts

about, 94–95
for categories, 145–150
creating, 95–98
editing, 149–150

barbell charts
about, 213–214
creating, 214–218

barplot() function, 97, 100, 104, 148
beeswarm charts, creating, 317–322
beeswarm() function, 322
Berg, William S., 341
bimodal, 307
bin, 308
Bing Maps, 43–44

354  |  Index

Bing search, 61
Bostock, 205
box plots, creating, 299–306
boxplot() function, 303, 304
Brewer, Cynthia, 49–50
bubble plots

about, 206–207
creating, 208–212

bump charts, 191
Bureau of Labor Statistics, 15

C

cartograms
about, 275–276
creating, 276–279

Cascading Style Sheets (CSS)
about, 37–39
creating

barbell charts, 214–218
bubble plots, 208–212
scatterplots, 196–206

for styling, 206
catalogs, 63
categories, time and, 180–191
category visualization

about, 144
amounts, 144–159
categories and time, 180–191
parts of a whole, 159–176
rank and order, 176–180

cbind() function, 259
Census Geocoder, 247
Chalabi, Mona, 348
Chart.js library, 39
choropleth maps

about, 267–270
creating, 271–275

Chroma.js Color Palette Helper, 50, 51
clarity, design and, 18–19
Cleveland, William S. (author)

The Elements of Graphing Data, 342
clipping mask, 149
code, formatting with, 81
collecting data, 65–73
colnames() function, 115
colorblind-safe palettes, 270

ColorBrewer, 49–50, 268–270
communication, of data, 12–14
comparisons, 325–327
compelling, for data visualization, 7–8
conclusions, drawing, 336–337
connections

about, 235–237
creating network graphs, 238–242
network graphs, 237–238

construction, JavaScript for, 199–205
copy and paste, 65–66
Corpora, 63
correlation

about, 194–195
bubble plots, 206–207
creating

bubble plots, 208–212
scatterplots, 196–206

scatterplots, 196
CRAN repository, 33–34
creating

alluvial diagrams, 188–191
animated maps, 291–293
bar charts, 95–98
barbell charts, 214–218
beeswarm charts, 317–322
box plots, 299–306
bubble plots, 208–212
cartograms, 276–279
choropleth maps, 271–275
density plots, 315–317
difference charts, 219–222
donut charts, 169–170
dot density maps, 280–283
dot plots, 119–129
heatmaps

about, 139–141
for multiple variables, 226–230

histograms, 310–315
line charts, 100–104
multi-line charts, 132–138
network graphs, 238–242
parallel coordinates, 231–234
pie charts, 165–168
scatterplots, 196–206
sequence of maps, 285–287
square pie charts, 171–173
stacked area charts, 186–187
stacked bar charts, 181–182, 183–185

Index  |  355

step charts, 105–108
timelines, 114–118
treemaps, 174–175

CSS (Cascading Style Sheets)
about, 37–39
creating

barbell charts, 214–218
bubble plots, 208–212
scatterplots, 196–206

for styling, 206
cycles

about, 131–132
creating

heatmaps, 139–141
multi-line charts, 132–138

heatmaps, 139
multi-line charts, 132

D

D3 library, 39
d3.axisBottom() function, 200–201
D3.js

creating barbell charts, 214–218
creating bubble plots, 208–212
creating scatterplots, 196–206

d3.scaleSqrt() function, 208
data

aggregating sampled, 87–89
asking questions about, 8–14
filtering sampled, 87–89
finding

about, 60–61
catalogs, 63
general data applications, 61–62
governments, 62–63
lists, 63
researchers, 62
search engines, 61
topical references, 63–65

formatting
about, 74–75, 182–183
with code, 81
delimited text, 76
Extensible Markup Language (XML), 77–78
fixed-width text, 77
JavaScript Object Notation (JSON), 77
Mr. Data Converter, 80–81

OpenRefine, 79
Shapefile, 78
spreadsheet applications, 79
spreadsheets, 75–76
switching between data formats, 81–86
Tabula, 79–80
tools for, 78–81

quality of, 322–324
raw, 75

data analysis
about, 296
details, 324–336
drawing conclusions, 336–337
information gathering, 296
overviews, 296–324

data collection
about, 65
copy and paste, 65–66
manual collection, 66–67
scraping, 67–68
scraping websites, 68–73

data communication, 12–14
data exploration, 10–12
data handling

about, 60
aggregating sampled data, 87–89
collecting data, 65–73
data preparations, 60
filtering sampled data, 87–89
finding data, 60–65
formatting data, 74–86
loading data, 73–74
processing data, 86–87

Data Is Plural, 63
data loading, 73–74
data processing, 86–87
data scraping

about, 67–68
websites, 68–73

Data Sources on FlowingData, 63
data underload, 345
data verification, 10
data visualization

about, 2
compelling, 7–8
emotional, 6–7
entertaining, 3–6
statistically informative, 2–3

Data Visualization Society, 55

356  |  Index

Data Viz Project, 52–53
Data.gov, 63
Data.gov.uk, 63
DataHub, 62
The Data and Story Library, 62
Data.world, 61
Datawrapper

about, 28
creating

donut charts, 169–170
pie charts, 165–168

datawrapper.de
creating donut charts, 169–170
creating pie charts, 165–168

Dear Data (Lupi and Posavec), 7
delimited text, as a data format, 76
density() function, 316
density plots, creating, 315–317
design

about, 14–15, 340
accessibility, 351
aesthetics, 344–346
annotation, 350–351
audience and, 17
clarity and, 18–19
devices and, 17–18
good visualization, 340–343
infinite options, 341
insight and, 18–19
insights, 344–351
purpose and, 15–16
trade-offs and, 19–20
visual hierarchy, 344
visual metaphors, 346–349
visualization components, 341–343

details
about, 324–325
comparisons, 325–337
outliers, 333–336
patterns, 327–329
uncertainty, 329–333

devices, design and, 17–18
dev.off() function, 175
difference charts

about, 218–219
creating, 219–222

differences
about, 212–213
barbell charts, 213–214
creating

barbell charts, 214–218

difference charts, 219–222
difference charts, 218–219
highlighting, 222–224

DINKs (dual income and no kids), 92–93
Direct Selection tool, 125, 140, 158
distinct() function, 304
distributions

about, 306–310
creating histograms, 310–315

donut charts
about, 168–169
creating, 169–170

dot density maps
about, 278–279
creating, 280–283

dot plots
about, 118, 196
creating, 119–129
editing, 124

drawing conclusions, 336–337
dual income and no kids (DINKs), 92–93
DuckDuckGo, 61

E

editing
bar charts, 149–150
charts, 158–159
dot plots, 124
multi-line charts, 137
treemaps, 175–176

The Elements of Graphing Data (Cleveland), 342
Elman, Paul, 7
emotional, for data visualization, 6–7
entertaining, for data visualization, 3–6
Esri, 247
Esri ArcGIS Platform, 41–42, 247
events

about, 112
creating

dot plots, 119–131
timelines, 114–118

dot plots, 118
timelines, 112–114

Excel (Microsoft), 23–24, 55
exploration, of data, 10–12
Exploratory Data Analysis (Tukey), 7, 296
Extensible Markup Language (XML), as a data

format, 77

Index  |  357

F

factor() function, 304
Falai Lama, 7
FastCharts, 53–54
Ferdio, 52
filter() function, 304, 313
filtering sampled data, 87–89
finding data, 60–65
fixed-width text, as a data format, 77
Flash, 290
Flourish, 29
FlowingData, 2, 5, 18, 45, 62, 74, 170, 333
formatting data, 74–86, 182–183
functions

abline(), 313, 316
add _ edges(), 239
add _ vertices(), 238
append(), 201
axis(), 122, 134
barplot(), 97, 100, 104, 148
beeswarm(), 322
boxplot(), 303, 304
cbind(), 259
colnames(), 115
d3.axisBottom(), 200–201
d3.scaleSqrt(), 208
density(), 316
dev.off(), 175
distinct(), 304
factor(), 304
filter(), 304, 313
grid(), 134
head(), 96, 105, 107, 115
heatmap(), 227, 228
hist(), 311
initChart(), 204, 209, 215–216
install.packages(), 238, 253, 319
jitter(), 116
join(), 204
layout(), 255
legend(), 274
lines(), 111, 136, 263, 265
make _ empty _ graph(), 238
match(), 259, 272, 281
mean(), 313
min(), 136
order(), 228
par(), 100, 104, 122, 123, 148, 255, 260, 261,

263, 286, 291, 304

parcord(), 232
paste(), 117
pdf(), 124, 137
pickCol(), 273–274
plot(), 100, 101, 102, 104, 106–108, 111,

115, 134, 233, 254, 256, 260, 265, 274,
277, 278, 316

points(), 116, 121–122, 255, 256,
263, 316

polygon(), 316
range(), 286
read.csv(), 100, 105, 114, 119, 174, 182, 271,

285, 299, 302, 310–311, 315–316
rep(), 116
runif(), 321
sapply(), 274
saveGIF(), 291
scatter(), 154
select(), 302
selectAll(), 204
set(), 148, 154
setInteraction(), 209
spline(), 110
st _ as _ sf(), 256, 260, 265
st _ centroid(), 259
st _ geometry(), 254, 263
st _ read(), 285
strwrap(), 103
st _ sample(), 281
st _ transform(), 255–256,

260, 265
subplots(), 148
summary(), 105–106, 302
symbols(), 140, 260, 261
table(), 259
tail(), 117
text(), 102–104, 117, 154, 264, 322
treemap(), 33, 175
unique(), 133, 136, 304, 313
viewport(), 255
write.table(), 183

G

Gall-Peters projection, 249
Gapminder Foundation, 7
general data applications, 61–62
General Social Survey, 63
geocoding addresses, 246–247

358  |  Index

geocoding tools, 247
geographic coordinates, 247
geography references, 63–64
geopy, 247
ggplot2 package, 34
GitHub Curated Core Datasets, 61
Google

about, 247
Looker Studio, 26, 27
search, 61

Google Dataset Search, 61
Google Maps, 43–44
Google Maps Platform, 247
Google Scholar, 62
Google Sheets, 24–25
governments, 62–63
The Grammar of Graphics (Wilkinson),

34, 342
grid() function, 134

H

HappyDB, 7
Harris, Jonathan (author)

We Feel Fine, 7
Harrower, Mark, 49–50, 268
HCMST (How Couples Meet and Stay

Together), 165–168
head() function, 96, 105, 107, 115
heatmap() function, 227, 228
heatmaps

about, 32, 139
creating

about, 139–141
for multiple variables, 226–230

for multiple variables, 226
highlighting differences, 222–224
hist() function, 311
histograms, creating, 310–315
How Couples Meet and Stay Together

(HCMST), 165–168
Hypertext Markup Language (HTML)

about, 37–39
creating

barbell charts, 214–218
bubble plots, 208–212
scatterplots, 196–206

for structure, 198–199

I

illustration, tools for, 45–49
Illustrator

about, 45–48
creating

alluvial diagrams, 188–191
bar charts for categories, 146–149
dot plots, 119–129
heatmaps, 139–141
multi-line charts, 132–138
square pie charts, 171–173
treemaps, 174–175

using scaled symbols, 152–157
information gathering, 296
initChart() function, 204, 209, 215–216
Inkscape, 48
insight, design and, 18–19
install.packages() function, 238, 253, 319
Integrated Public Use Microdata Series, 63
interquartile range, 298–299

J

JavaScript
about, 37–39
for construction, 199–205
creating

barbell charts, 214–218
bubble plots, 208–212
scatterplots, 196–206

JavaScript Object Notation (JSON), as a data
format, 77

jitter() function, 116
join() function, 204

K

Kaggle, 61
Kamvar, Sep (author)

We Feel Fine, 7

L

Layer Cake library, 39
layout() function, 255

Index  |  359

Leaflet, 43
legend() function, 274
libraries

JavaScript, 39
Python, 35–36

library(), 110, 238, 291
library() function, 110, 238, 291
line charts

about, 99–100
creating, 100–104

lines
about, 261–262
adding, 262–266

lines() function, 111, 136, 263, 265
<link> tag, 198–199
lists, 63
Live Paint Bucket tool, 172
loading data, 73–74
local regression, 109
locations

about, 250–251
adding

lines, 262–266
scaled symbols, 257–261

lines, 261–262
mapping points, 252–257
points, 252
scaled symbols, 257

Looker Studio, 26, 27
lower quartile, 298
Lupi, Giorgia (author)

Dear Data, 7

M

make _ empty _ graph() function, 238
manual collection, of data, 66–67
map projections, 248–249
Mapbox, 42–43, 247
mapping

points, 252–257
tools for, 40–44

Maps (Bing), 43–44
Maps (Google), 43–44
match() function, 259, 272, 281
MATLAB, 40
Matplotlib library, 35
maximum, 297, 298

mean, 297
mean() function, 313
median, 297, 298
Mercator projection, 249
Microsoft

Excel, 23–24, 55
Power BI, 26–27
PowerPoint, 55

min() function, 136
minimum, 297, 298
MIT Election Lab, 65
mode, 297
moving average, 109
Mr. Data Converter, 80–81
multidimensional scaling, 225
multi-line charts

about, 132
creating, 132–138
editing, 137

multimodal, 307
multiple variables

about, 225
creating

heat maps for, 226–230
parallel coordinates, 231–234

heatmaps for, 226
parallel coordinates, 230–231
separating views, 234–235

N

Natural Earth, 64
network graphs

about, 237–238
creating, 238–242

Nominatum, 247
NumPy, 87

O

Observable Plot library, 39
OECD Statistics, 64
OpenLayers, 43
OpenRefine, 79
OpenSecrets, 65
OpenStreetMap, 64, 247

360  |  Index

order, rank and, 176–180
order() function, 228
Our World In Data, 64
outliers, 298, 333–336
overviews

about, 296–297
adjusting questions, 324
creating

beeswarm charts, 317–322
box plots, 299–306
density plots, 315–317
histograms, 310–315

data quality, 322–324
distributions, 306–322
summary statistics, 297–299

P

p5.js library, 39
packcircles package, 34
pandas library, 36
paper and pencil, 54–55
par() function, 100, 104, 122, 123, 148, 255, 260,

261, 263, 286, 291, 304
parallel coordinates

about, 230–231
creating, 231–234

parcord() function, 232
parts of a whole

about, 159–163
creating

donut charts, 169–170
pie charts, 165–168
square pie charts, 171–173
treemaps, 174–175

donut charts, 168–169
editing charts, 175–176
pie charts, 163–164
square pie charts, 170–171
treemaps, 173

paste, copy and, 65–66
paste() function, 117
patterns, 327–329
pdf() function, 124, 137
Pen tool, 141, 171
pencil, paper and, 54–55
percentiles, 298
Pew Research Center, 65
pickCol() function, 273–274
pie charts

about, 163–164
creating, 165–168

Playfair, Willliam, 163
plot() function, 100, 101, 102, 104, 106–108, 111,

115, 134, 233, 254, 256, 260, 265, 274, 277, 278, 316
Plotly library, 36
plotrix package, 34
point-and-click visualization, tools for, 23–31
points

about, 252
mapping, 252–257

points() function, 116, 121–122, 255,
256, 263, 316

politics references, 65
polygon() function, 316
Posavec, Stefanie (author)

Dear Data, 7
Power BI, 26–27
PowerPoint (Microsoft), 55
principal component analysis, 225
Processing, 36–37
processing data, 86–87
programming, tools for, 31–40
ProPublic Data Store, 65
purpose, design and, 15–16
Python

about, 34–36, 55
aggregating sampled data, 87–89
creating

bar charts for categories, 146–149
heatmaps, 139–141

data scraping websites, 68–73
filtering sampled data, 87–89
switching between data formats, 81–86
using scaled symbols, 152–157

Q

QGIS, 42
quality, of data, 322–324
question mark operator (?), 97
questions, adjusting, 324

R

R language
about, 32–34, 55
adding lines, 262–266

Index  |  361

creating
animated maps, 291–293
bar charts, 95–98
box plots, 299–306
cartograms, 276–279
choropleth maps, 271–275
density plots, 315–317
dot density maps, 280–283
dot plots, 119–129
heatmaps, 139–141
heatmaps for multiple variables,

226–230
histograms, 310–315
line charts, 100–104
multi-line charts, 132–138
network graphs, 238–242
parallel coordinates, 231–234
sequence of maps, 285–287
stacked bar charts, 181–182
step charts, 105–108
timelines, 114–118
treemaps, 174–175

mapping points, 252–257
using splines, 109–112

range() function, 286
rank and order, 176–180
Rankin, Bill, 278
RateBeer, 5
raw data, 75
RAWGraphs

about, 30
creating

alluvial diagrams, 188–191
stacked area charts, 186–187
stacked bar charts, 181–182

rawgraphs.io, creating stacked bar charts,
181–182

read.csv() function, 100, 105, 114, 119, 174, 182,
271, 285, 299, 302, 310–311, 315–316

relationship visualizations
about, 194
connections, 235–242
correlation, 194–212
differences, 212–224
multiple variables, 225–235

rep() function, 116
researchers, 62
reverse geocoding, 247
Rosling, Hans (professor), 7
RStudio, 34
runif() function, 321

S

sapply() function, 274
saveGIF() function, 291
Scalable Vector Graphics (SVG), 199
scaled symbols

about, 150–152, 257
adding, 257–261
using, 152–157

scatter() function, 154
scatterplots

about, 196
creating, 196–206

scraping
about, 67–68
websites, 68–73

Seaborn library, 36
search engines, 61
select() function, 302
selectAll() function, 204
Selection tool, 159, 175
separating views, 234–235
sequence of maps

about, 283–285
annotating, 287–289
creating, 285–287

set() function, 148, 154
setInteraction() function, 209
shapefile

about, 255
as a data format, 78

Sheets (Google), 24–25
Shneiderman, Ben, 173
Sim Daltonism, 52
Sip, 50–52
skewness, 307
smoothing, 108–109
space and time

about, 283
animated maps, 289–290
annotating, 287–289
creating

about, 291–293
sequence of maps, 285–287

sequence of maps, 283–285
space visualizations

about, 246
locations, 250–266
space and time, 283–293
spatial data, 246–249
spatial distributions, 266–283

362  |  Index

spatial data
about, 246
geocoding

addresses, 246–247
tools, 247

map projections, 248–249
spatial distributions

about, 266–267
cartograms, 275–276
choropleth maps, 267–270
colorblind-safe palettes, 270
creating

cartograms, 276–279
choropleth maps, 271–275
spatial distributions, 280–283

dot density maps, 279–280
spline() function, 110
splines, 109–112
sports references, 64
spreadsheets

applications for, 79
as a data format, 75–76

Spurious Correlations (Vigen), 195
square pie charts

about, 170–171
creating, 171–173

stacked area charts
about, 185–186
creating, 186–187

stacked bar charts
about, 181
creating, 181–182, 183–185

Stamen Design, 7
st _ as _ sf() function, 256, 260, 265
Statistical Atlas of the United States, 3, 345
statistically informative, for data visualization, 2–3
st _ centroid() function, 259
step charts

about, 104–105
creating, 105–108

st _ geometry() function, 254, 263
st _ read() function, 285
streamgraph, 186
structure, HTML for, 198–199
strwrap() function, 103
st _ sample() function, 281
st _ transform() function, 255–256,

260, 265
styling, CSS for, 206
subplots() function, 148

summary() function, 105–106, 302
summary statistics, 297–299
SVG (Scalable Vector Graphics), 199
switching, between data formats, 81–86
symbols() function, 140, 260, 261

T

table() function, 259
Tableau Desktop, 26, 27, 55
Tableau Public, 26, 55
Tabula, 79–80
tail() function, 117
text() function, 102–104, 117, 154, 264, 322
tibble, 302
TIGER/Line Shapefiles, 64
tilde (~), 304
time

categories and, 180–191
visualizations

about, 92
cycles, 131–141
events, 112–131
trends, 92–112

time and space
about, 283
animated maps, 289–290
annotating, 287–289
creating

about, 291–293
sequence of maps, 285–287

sequence of maps, 283–285
timelines

about, 112–114
creating, 114–118

<title> tag, 198–199
tools

about, 22
for formatting data, 78–81
geocoding, 247
for illustration, 45–49
for mapping, 40–44
pencil and paper, 54–55
for point-and-click visualization, 23–31
for programming, 31–40
small visualization, 49–54
surveying options, 55–57

topical references, 63–65

Index  |  363

trade-offs
design and, 19–20
illustration tools and, 49
mapping tools and, 44
point-and-click tools and, 30–31
programming tools and, 40
small visualization tools and, 54

treemap() function, 33, 175
treemap package, 34
treemaps

about, 173
creating, 174–175
editing, 175–176

Trendalyzer, 7
trends

about, 92–94
bar chart for time, 94–95
creating

bar charts, 95–98
line charts, 100–104
step charts, 105–108

line charts, 99–100
smoothing, 108–109
step charts, 104–105
using splines, 109–112

Tukey, John (statistician)
Exploratory Data Analysis, 7, 296

TwoTone, 52, 53
Type tool, 127, 159

U

uncertainty, 329–333
UNdata, 64
unimodal, 307
unique() function, 133, 136, 304, 313
United States Census Bureau, 3
upper quartile, 298
U.S. Census Bureau Data, 63
U.S. Geological Survey, 64

V

Vega library, 39
verification, of data, 10
viewport() function, 255

views, separating, 234–235
Vigen, Tyler (author)

Spurious Correlations, 195
visual encodings, 94
visual hierarchy, 128–129, 344
visual metaphors, 346–349
visualization, components of, 341–343
Voting and Registration via Census, 65

W

waffle chart, 170
We Feel Fine (Harris and Kamvar), 7
Weather Underground, 67–68
websites

Adobe Illustrator, 47
Affinity Designer, 48
Altair library, 36
Amazon Data Exchange, 61
ArcGIS Hub, 64
ATUS dataset, 181
Awesome Public Datasets, 63
bubble plots, 207
Census Bureau Data, 63
Census Geocoder, 247
Chart.js library, 39
Chroma.js Color Palette Helper, 50
ColorBrewer, 50
Corpora, 63
CSS, 39
D3 library, 39
Data Is Plural, 63
Data Sources on FlowingData, 63
Data Visualization Society, 55
Data Viz Project, 53
Data.gov, 63
Data.gov.uk, 63
DataHub, 62
The Data and Story Library, 62
Data.world, 61
encodings, 95
Esri ArcGIS Platform, 247
FastCharts, 53
General Social Survey, 63
geopy, 247
GitHub Curated Core Datasets, 61
Google Dataset Search, 61
Google Maps Platform, 247

364  |  Index

Google Scholar, 62
How Couples Meet and Stay Together

(HCMST), 165
HTML, 39
Inkscape, 48
Integrated Public Use Microdata Series, 63
JavaScript, 39
Kaggle, 61
Layer Cake library, 39
Mapbox, 247
Matplotlib library, 35
Mercator projection, 249
MIT Election Lab, 65
Mr. Data Converter, 81
Natural Earth, 64
Nominatum, 247
NumPy, 87
Observable Plot library, 39
OECD Statistics, 64
OpenRefine, 79
OpenSecrets, 65
OpenStreetMap, 64
Our World In Data, 64
p5.js library, 39
pandas library, 36
Pew Research Center, 65
Plotly library, 36
Processing, 37
ProPublic Data Store, 65
R language, 34
RStudio, 34
scraping, 68–73
Seaborn library, 36
Sim Daltonism, 52
Sip, 52

stacked area charts, 186
Tabula, 79
TIGER/Line Shapefiles, 64
treemaps, 173
TwoTone, 52
UNdata, 64
U.S. Geological Survey, 64
Vega library, 39
Voting and Registration via Census, 65
Wikipedia, 61
WolframAlpha, 61
World Bank, 64
World Health Organization, 64

whiskers, 299
Wikipedia, 61
Wilkinson, Leland (author)

The Grammar of Graphics, 34, 342
WolframAlpha, 61
World Bank, 64
World Health Organization, 64
world references, 64
write.table() function, 183

X

x-axis, 94
xlcd, 196
XML (Extensible Markup Language), as a data

format, 77

Y

y-axis, 94

websites (Continued)

WILEY END USER LICENSE AGREE-
MENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	About the Author
	About the Technical Editor
	Acknowledgments
	Contents
	Introduction
	Learning Data Visualization
	How to Use This Book

	Chapter 1 Telling Stories with Data
	More Than Numbers
	Statistically Informative
	Entertaining
	Emotional
	Compelling

	Ask Questions About the Data
	Verification
	Exploration
	Communication

	Design
	Purpose
	Audience
	Devices
	Clarity and Insight
	Trade-Offs

	Wrapping Up

	Chapter 2 Choosing Tools to Visualize Data
	Mixed Toolbox
	Point-and-Click Visualization
	Options
	Trade-Offs

	Programming
	Options
	Trade-Offs

	Mapping
	Options
	Trade-Offs

	Illustration
	Options
	Trade-Offs

	Small Visualization Tools
	Options
	Trade-Offs

	Pencil and Paper
	Trade-Offs

	Survey Your Options
	Wrapping Up

	Chapter 3 Handling Data
	Data Preparations
	Finding Data
	Search Engines
	General Data Applications
	Researchers
	Governments
	Catalogs and Lists
	Topical References

	Collecting Data
	Copy and Paste
	Manual Collection
	Scraping
	Scraping a Website

	Loading Data
	Formatting Data
	Data Formats
	Formatting Tools
	Formatting with Code
	Switching Between Data Formats

	Processing Data
	Filtering and Aggregating Sampled Data
	Wrapping Up

	Chapter 4 Visualizing Time
	Trends
	Bar Chart for Time
	Making a Bar Chart
	Line Chart
	Making a Line Chart
	Step Chart
	Making a Step Chart
	Smoothing
	Using a Spline

	Events
	Timeline
	Making a Timeline
	Dot Plot
	Making a Dot Plot

	Cycles
	Multi-Line Chart
	Making a Multi-Line Chart
	Heatmap
	Making a Heatmap

	Wrapping Up

	Chapter 5 Visualizing Categories
	Amounts
	Bar Chart for Categories
	Making a Bar Chart for Categories
	Editing the Chart
	Scaled Symbols
	Using Scaled Symbols
	Editing the Chart

	Parts of a Whole
	Pie Chart
	Making a Pie Chart
	Donut Chart
	Making a Donut Chart
	Square Pie
	Making a Square Pie Chart
	Treemap
	Making a Treemap
	Editing the Chart

	Rank and Order
	Categories and Time
	Stacked Bar Chart
	Making a Stacked Bar Chart
	Formatting the Data
	Making the Chart
	Stacked Area Chart
	Making a Stacked Area Chart
	Alluvial Diagram
	Making an Alluvial Diagram
	Bump Chart

	Wrapping Up

	Chapter 6 Visualizing Relationships
	Correlation
	Scatterplot
	Making a Scatterplot
	Bubble Plot
	Making a Bubble Plot

	Differences
	Barbell Chart
	Making a Barbell Chart
	Difference Chart
	Making a Difference Chart
	Highlighting Differences

	Multiple Variables
	Heatmap for Multiple Variables
	Making a Heatmap for Multiple Variables
	Parallel Coordinates
	Making Parallel Coordinates
	Separating Views

	Connections
	Network Graph
	Making a Network Graph

	Wrapping Up

	Chapter 7 Visualizing Space
	Working with Spatial Data
	Geocoding Addresses
	Map Projections

	Locations
	Points
	Mapping Points
	Scaled Symbols
	Adding Scaled Symbols
	Lines
	Adding Lines

	Spatial Distributions
	Choropleth Map
	Making a Choropleth Map
	Cartogram
	Making a Cartogram
	Dot Density Map
	Making a Dot Density Map

	Space and Time
	Sequence of Maps
	Animated Map
	Making an Animated Map

	Wrapping Up

	Chapter 8 Analyzing Data Visually
	Gathering Information
	Overviews
	Summaries
	Making a Box Plot
	Distributions
	Quality of the Data
	Adjusting Questions

	Exploring Details
	Comparisons
	Patterns
	Uncertainty
	Outliers

	Drawing Conclusions
	Wrapping Up

	Chapter 9 Designing with Purpose
	Good Visualization
	Infinite Options
	Visualization Components

	Insight for Others
	Visual Hierarchy
	Aesthetics
	Visual Metaphors
	Annotation
	Accessibility

	Wrapping Up

	Index
	EULA

