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Foreword

Peter Denning and Craig Martell have taken on a monumental topic: iden-
tifying and elucidating principles that shape and inform the process of
coercing computers to do what we want them to do and struggling with
the difference between what they actually do (that is, what we told them)
and what we want them to do. Bugs (errors) are examples of the difference.
Bugs are usually a result of inadvertently programming the machine to
do something we did not intend. But errors are not the only source of
bugs. A bug also arises when an unexpected behavior emerges from the
execution of a program in a system. Networks of computers with their
myriad variations in software and interactions are often the source of emer-
gent behaviors. We sometimes speak of a network effect in which a trend
becomes a predominant behavior that reinforces the emergence of some
feature that might not have been envisioned or even intended. This can
happen when an application is put to use in ways that were not anticipated.
Spam and phishing are examples of emergent behaviors with email in large
networks.

Such effects challenge our ability to understand, anticipate, and analyze
complex behaviors arising in large-scale software systems in large-scale net-
works. Even if each component operates within its design parameters, the
system as a whole can give indeterminate results because of unpredictable
interactions among components.

Complex emergent behaviors also arise simply because computing
machines are finite. Digitized information always contains small errors of
representation. Tiny errors can accumulate into catastrophes over billions
of computational steps. A very concrete example of unanticipated results
arises from floating point arithmetic with finite precision. Round-off errors
and other artifacts of handling very large or very small values can lead
to catastrophic results, as William Kahan eloquently demonstrated in his
paper on this topic in a symposium on numerical computation in 2005.!
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These effects teach us that the business of getting computers to do things
on our behalf is both a nontrivial and deeply intellectual exercise. This
book aims to provide insight into some fundamental principles that can
orient our approach to computing in its most general sense.

The authors organize their analysis into eleven chapters, each of which
plays an important role in the panoply of activities we associate with com-
puting. I think of these as foci for marshaling and organizing resources in
aid of computational outcomes. By computational I mean to suggest achiev-
ing particular objectives through the use of computers and their software.
This is intentionally unspecific. Making a computer game work is a com-
putational objective as much as getting a complex, distributed, networked
financial exchange system to work. Despite the disparity of computational
objectives, designers are aided by definite principles for managing and mar-
shaling resources—information representations, communications, com-
puting elements, programs, memory, modeling, analysis, and so forth. I
read that the book’s overall intent is to codify the principles that facilitate
achievement of these objectives. This effort is broad in its scope and depth.

One of the things that makes computing so interesting is the utter gen-
erality of binary representations. We can choose to make the bits mean any-
thing we wish. We can manipulate these bits in myriad ways and choose to
interpret the results in equally diverse fashion. Just as we convert algebraic
word problems into equations that we manipulate according to straightfor-
ward mathematical rules to find answers compatible with the original equa-
tions, so also we write programs to manipulate bits following rules that lead
to a chosen interpretation of the resulting bits. Large-scale simulations, big
data, and complex visual renderings all share the property that they help us
to understand and interpret the bits we manipulate.

One of the reasons I have been a strong proponent of teaching program-
ming in middle school and high school (and perhaps even earlier) is the
discipline it imposes on organizing thoughts to problem solving. One has
to analyze the problem, break it into manageable parts, figure out what
has to happen for the program to solve the problem (that is, produce the
desired result), then work through the task of writing the program, utilizing
preexisting libraries, if applicable, compiling and running the program, and
verifying that it produces the desired result and nothing else. The last dis-
cipline, which we might call a combination of debugging and verification,
is a skill that is applicable to more than programming. Although I am not
an advocate of making everyone into a programmer, I think it is valuable
for people to learn the skills that are applicable to successful programming
because these skills are broadly applicable to many other problems.
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Programming skills can be put to work dealing with complex system
design and analysis. Here I think we reach a very important area that Den-
ning and Martell emphasize in their chapter on design. Good design has
many useful properties. I am reminded of the remark that “neatness is its
own reward” because you can find things you put away when you need
them. Good design is its own reward because it facilitates understanding
of complexity and ability to evolve and revise the design to achieve new
objectives. In design of the Internet we took a lesson from its predecessor,
the ARPANET, which could not scale up in size. We envisioned the func-
tionality of the system in layers and standardized the interfaces between
the layers. The result was that while keeping these interfaces stable, we were
able to allow for enormous flexibility in the implementation and reimple-
mentation of the layers between the interfaces. The Internet Protocol is a
good example. Designers of applications knew nothing about how Internet
protocol packets were carried—the protocol did not specify. Nor did the
protocol itself depend on what information packet payloads carried—the
meanings of bits in the payload were opaque. One consequence of this
design decision has been that the Internet Protocol has been layered on
top of every new communication system designed since the early 1970s.
Another consequence is that new applications have been placed in the
Internet without changing the networks because the Internet Protocol car-
ried their packets to software at the edges of the Internet. Only the trans-
mitting and receiving hosts needed to know what the payload bits carried
in packets meant. The routers that move Internet Protocol packets do not
depend on the content of the packet payloads.

The role of design cannot be overemphasized in dealing with comput-
ing. Whether it is the hardware, the operating system, the application, the
data, file and directory structures, the choice of language(s), it all comes
down to thinking about design and how the ensemble, the system, will
work. Sometimes one hears the term system engineering too infrequently. I
am a systems person and take some pride in thinking along architectural
lines. How do all the pieces go together? What should be a piece? How does
the design facilitate adaptation to new requirements? Is the design main-
tainable? How hard is it to teach someone else how the design works?

An interesting test of a good design is to see whether someone who
is confronted with the system de novo can figure out how to make it do
something new without destroying its previously designed capabilities. In
some ways this is a fairly powerful test of one’s understanding of the pro-
gram or system and its organization. You may not need to know everything
about the system, but you have to know enough to be reasonably sure your
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change has no unintended consequences. This is the meaning of a clean
design—it can be revised with a reasonable sense and likelihood of safety.
I am glad that this book is so strong on design and emphasizes the role of
architecture, and not just algorithms, in design.

There is a great deal more to be said about computing principles, but
that is the point of the book that follows. Keeping these principles in mind
should make the task of designing computing systems a lot more manage-
able. Read on!

Vint Cerf
Woodhurst, VA
April 2014

Note

1. W. M. Kahan, “How futile are mindless assessments of roundoff in floating-point
computations: Why should we care? What should we do? (Extract),” in Proceedings
of the Householder Symposium XVI on Numerical Linear Algebra, p. 17, 2005.



Preface

Just seven decades ago no one but a few specialists had ever heard of com-
puters. Now computers, software, and networks are ubiquitous. They are
generating bountiful benefits for our lives at an ever-accelerating pace in
every part of the planet.

It is amazing that we have learned to design and build systems of such
scale in such a short span of years. Computing technology is now automat-
ing knowledge work and amplifying productivity by supporting massive
collaborations. The Second Machine Age is truly upon us.! How has this
been accomplished? What big ideas have made this possible?

With the bounty come anxieties. Will automation by computers drive
many workers out of jobs? Will computers erase our privacy by becom-
ing the ultimate tool for surveillance? Will computers develop superhuman
intelligence? Is there any limit to what computers can do?

We believe that an understanding of the principles and laws of comput-
ing would help people to appreciate how computing has accomplished so
much and would ease their concerns. We wrote this book to help. Here we
introduce some of the most important principles of computing, presented
in a way that anyone with some familiarity with computing can follow.

Computer science is not just an engineering field that designs comput-
ing devices; it is a science of information processes. Computing is governed
by scientific principles and laws that tell us what computers can and cannot
do. The laws of information reveal new possibilities and constraints that are
not apparent from the laws of physics. Many pundits have ascribed to com-
puters powers that computing science tells us they cannot possibly have.
They have also underestimated the powers computers do have.

Computer science interacts with many other fields. Many science
and engineering fields have identified a “computational” part, such as
computational physics, computational chemistry, bioinformatics, com-
putational product designs, additive manufacturing, computational social
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networking, or computational cardiology.> Educators at all levels struggle
to keep their crowded curricula up to date with computation. Many high
schools, suffering from a teacher shortage in computer science, do not yet
have a computer course. In business, buzz words such as “big data,” “the
cloud,” and “cyber security” signal concerted attempts to use computing
principles in data management, distributed computation, and information
protection.

Computing has traditionally presented itself as a technology field that
advances at the breakneck speed of Moore’s law.? Our view is different. We
believe computing is better described as a science field with fundamental
principles that span all computing technologies and information processes
both artificial and natural. We need a new language to describe computing.
Like the telescope in astronomy or the microscope in biology, the computer
is a tool but not the object of study.

The great principles framework of this book is a new language. It divides
the principles of computing into six categories: communication, computa-
tion, coordination, recollection, evaluation, and design. By a computing
principle, we mean a statement that guides or constrains how we manipu-
late matter and energy to perform computations. Computing principles
are either (1) recurrences, including laws, processes, and methods that
describe repeatable cause-effect relationships, or (2) guidelines for conduct.
An example of a recurrence is the locality principle: every computation
clusters its references to data into small subsets for extended intervals of
time. An example of a conduct guideline is that network programmers
should divide protocol software into layers. The purpose of all such prin-
ciples is to enable good design by increasing understanding and reducing
complexity.

Every computing technology draws on principles from these categories.
The framework is broad and holistic, covering every part of computing
including algorithmics, systems, and design.

Computing people have organized into dozens of computing domains—
communities of practice such as artificial intelligence, cyber security, cloud
computing, big data, graphics, and computational science. These domains
are focal points for advancing the field and for interacting with other com-
munities. They are all empowered and constrained by computing princi-
ples. A principles framework would be incomplete without the computing
domains.

Because the six categories are so large, we decided to split our coverage
into the eleven more manageable chunks you see in the table of contents.
We have more to say about this in chapter 1.



Preface XV

From Machines to Universal Digitization

The computing machine was the center of attention in the early years of the
computing field (the 1940s through the 1960s). Computation was seen as
the action of machines performing complicated calculations, solving equa-
tions, cracking codes, analyzing data, and managing business processes.
The leaders in those days defined computer science as the study of phe-
nomena surrounding computers.

Over the years, however, this definition made less and less sense. The
computational science movement of the 1980s maintained that compu-
tation was a new way of doing science, alongside traditional theory and
experiment. They used the term “computational thinking” for a mental
practice of inquiry and problem solving, not as a way to build computers.
A decade later, scientists in several fields started finding natural informa-
tion processes in their fields. These included biology (DNA translation),
physics (quantum information*), cognitive science (brain processes), vision
(image recognition), and economics (information flows). The emphasis of
computing shifted from machines to information processes, both artificial
and natural.

Today, with the digitization of nearly everything, computation has
entered everyday life with new ways to solve problems, new forms of art,
music, motion pictures, social networking, cloud computing, commerce,
and new approaches to learning. Computational metaphors are part and
parcel of everyday language with expressions like “My software reacts that
way,” and “My brain crashed and had to be rebooted.”

In response to these changes universities have been designing new prin-
ciples-based approaches to the teaching of computing. The University of
Washington, one of the first at this, developed a course and book on flu-
ency with information technology, now widely used in high schools and
colleges to help students learn and apply basic computational principles.’
The Educational Testing Foundation partnered with the National Science
Foundation to develop a new Advanced Placement curriculum based on
computing principles.® Many people now use the term “computational
thinking” to refer to the use of computational principles in many fields and
in everyday life, not just in computational science.’

As it has matured, the computing field has attracted many followers in
other fields. We know of sixteen books that reached out to explain aspects
of computing for interested nonspecialists.® Most of the books focus on
individual parts such as information, programming, algorithms, automa-
tion, privacy, and the “guts” of the Internet. We wrote this book to examine
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the field as a whole and offer an account of how all the parts fit together.
Readers will find a coherent set of principles behind all these parts.

In our own experience teaching graduate students who are transitioning
into computer science, we have found that a principles framework is easier
for beginners than a technology framework. Describing the field in terms
of technology ideas was a good approach in the early days when the core
technologies were few. In 1989 the Association for Computing Machinery
listed nine core technologies. In 2005, however, ACM listed about fourteen,
and in 2013 about eighteen. The six-category principles framework does
not redefine the core knowledge of computing, but it does provide a new
way of looking at the field and reducing its apparent complexity.

Origins and Aims

We are often asked about the origins of the six categories of principles.
Author Peter Denning started this project in the 1990s at George Mason
University. He collected a list of potential principle statements from many
colleagues. He discovered seven natural clusters and named them commu-
nication, computation, recollection, coordination, evaluation, design, and
automation.” When we put this book together, we realized that automation
is not a category for manipulating matter and energy; it is instead the focus
of the computing domain of artificial intelligence. In this book we deleted
automation from the set of categories and included it among the comput-
ing domains.

The six categories do not divide the computing knowledge space into
separate slices. They are like windows of a hexagonal kiosk. Each window
sees the inside space in a distinctive way; but the same thing can be seen
in more than one window. The Internet, for example, is sometimes seen as
means for data communication, sometimes as means of coordination, and
sometimes as a means for recollection.

This set of categories satisfied our goal to have a framework with a man-
ageable number of categories. Although the list of computing technologies
will continue to grow, and the set of computing domains will enlarge, the
number of categories is likely to remain stable for a long time.

This book is a holistic view of computer science, focusing on the deepest,
most pervasive, principles, “cosmic” principles.!® It presents computing as
a deeply scientific field whose principles affect every other field as well as
business and industry.

We designed this book for all who use computing science to accom-
plish their objectives. Scientifically educated readers can learn about the
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principles of computing spanning the whole field from algorithms to sys-
tems. A person inside the computing field can find overviews of less famil-
iar parts of this giant field, such as a programmer who wants to learn about
parallel computing. The members of a “computer science for us” class in a
college or university can find help to understand how computing technolo-
gies affect them, such as how networking and the Internet enable social
networks. Budding scientists, engineers, and business entrepreneurs might
find here a Popular Science-type approach to the whole of computer science.
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1 Computing

Computer science studies phenomena surrounding computers.

—Newell, Simon, and Perlis

Computer science is no more about computers than astronomy is about telescopes.
—Edsger W. Dijkstra

Computing is integral to science, not just as a tool for analyzing data but
also as a method of thought and discovery.

It has not always been this way. Computing is a relatively young disci-
pline. It started as an academic field of study in the 1930s with a cluster
of remarkable papers by Kurt Godel (1934), Alonzo Church (1936), Emil
Post (1936), and Alan Turing (1936), who saw the importance of automatic
computation. They laid the mathematical foundations to answer the ques-
tion, “what is computation?” and discussed schemes for implementing
computations. Their seemingly different schemes were quickly found to
be equivalent, as a computation in any one could be realized in any other.
It is all the more remarkable, then, that their models all led to the same
conclusion that certain functions of practical interest, such as whether a
computational algorithm terminates, cannot be answered computationally.

In the time that these men wrote, the terms “computation” and “com-
puters” were already in common use. Computation was taken to be the
mechanical steps followed to evaluate mathematical functions. Computers
were people who did computations. In recognition of the social changes
they were ushering in, the designers of the first digital computer projects all
named their systems with acronyms ending in “-AC,” meaning automatic
computer or some close variant—names such as ENIAC, UNIVAC, EDVAC,
and EDSAC.

At the start of World War 1II the militaries of the United States and the
United Kingdom became interested in applying automatic computers to
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the calculation of ballistic and navigation tables and to the cracking of
ciphers. They commissioned projects to design and build electronic digital
computers. Only one of these projects was completed before the war was
over. That was the top-secret project at Bletchley Park, UK, which cracked
the German Enigma cipher using methods designed by Alan Turing.

Many people involved in those projects went on to start computer com-
panies in the early 1950s. Universities began offering programs of study
in the new field by the late 1950s. The field and the industry have grown
steadily ever since, into a modern behemoth whose Internet connections
and data centers are said to consume over 3 percent of the world’s electricity.

A

Figure 1.1

(A) Charles Babbage (1791-1871) invented the Difference Engine, a mechanical cal-
culator of tables of logarithms and other arithmetic functions. Later, he designed
an Analytic Engine, which was to be a general-purpose calculator. (B) Ada Lovelace
(1815-1852) helped him with the design. Lovelace saw possibilities beyond numeri-
cal tasks—music composition, graphic drawings, and even logical reasoning. In 1843
she laid out a program whereby the Analytic Engine could calculate Bernoulli num-
bers, for which she has been credited as the “first computer programmer.” (Source:
Wikipedia Creative Commons)
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During its youth, computing was an enigma to the established fields of
science and engineering. At first it looked like technology applications of
math, electrical engineering, or science, depending on the observer. Over
the years computing seemed to provide an unending stream of new insights
and defied many early predictions that it would be reabsorbed back into the
fields of its roots. By 1980 computing had matured in its understanding of
algorithms, data structures, numerical methods, programming languages,
operating systems, networks, databases, graphics, artificial intelligence, and
software engineering. Its great technology achievements—the chip, the
personal computer, and the Internet—brought computing into many lives
and stimulated more new subfields, including network science, web sci-
ence, mobile computing, enterprise computing, cooperative work, cyber-
space protection, user-interface design, and information visualization. The
resulting commercial applications have spawned new research challenges
in social networks, endlessly evolving computation, music, video, digital
photography, vision, massive multiplayer online games, user-generated
content, and much more.

To keep up with the flux, the name of the field changed several times. In
the 1940s it was called automatic computation, and in the 1950s, informa-
tion processing. In the 1960s, as it moved into academia, it acquired the
name computer science in the United States and informatics in Europe.
By the 1980s the computing field comprised a complex of related fields
including computer science, informatics, computational science, computer
engineering, software engineering, information systems, and information
technology. By 1990 the term “computing” had become the standard for
referring to this core group.

Computer science became a recognized academic field in 1962 with the
founding of computer science departments at Purdue and at Stanford. At
the time, the leaders of the new field felt compelled not only to say what
the field was about but to defend it from critics who thought there was
no new content outside of electrical engineering or mathematics. In 1967
Allen Newell, Alan Perlis, and Herbert Simon argued that it was a science
concerned with all aspects of “phenomena surrounding computers.” How-
ever, many traditional scientists objected to the conclusion that the field
was science; they held that true science deals with phenomena that occur
in nature (“natural processes”), whereas computers are man-made artifacts.
Simon, a Nobel Laureate in economics, so strongly disagreed with the “nat-
ural interpretation” of science that, two years later, he published a book The
Sciences of the Artificial. There he argued that economics and computer sci-
ence met all the traditional criteria for science, except for studying natural
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Figure 1.2

Alan Turing (1912-1954) saw computation as the evaluation of mathematical func-
tions. In 1936 he invented an abstract machine, known now as the Turing machine,
to model function evaluation. His machine consisted of a finite state control unit
traversing an infinitely long tape with symbols written in each square; on each move
the machine reads a single symbol, possibly overwrites with another symbol, moves
one square left or right, and enters a new control state. Turing showed how to build
a Universal Machine that could imitate any other given its description. He argued
that any function that might be called computational could be implemented by one
of his machines. He also demonstrated that there are noncomputable functions, such
a deciding whether a machine halts rather than going into an infinite loop. (Source:
Wikipedia Creative Commons)
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Figure 1.3

After Babbage’s failure to build a working Analytical Engine, no one tried to de-
sign a general computing machine for the next 80 years. Then, in the late 1930s,
the militaries of the United States and United Kingdom sought electronic machines
to calculate ballistic firing tables and to crack ciphers. In 1944 the US Army com-
missioned the ENIAC at University of Pennsylvania under the leadership of John
Mauchly and J. Presper Eckert. Its first programmers were Kay McNulty, Betty Jen-
nings, Betty Snyder, Marlyn Wescoff, Fran Bilas, and Ruth Lichterman. The picture
shows Jennings (left) and Bilas operating the ENIAC’s main control panel. At the
time, computers were people and computing was their profession; the electronic
machines were called automatic or electronic computers. Programming consisted of
wiring plugboards. (Source: University of Pennsylvania)

processes, and deserved to be called sciences even if qualified by the term
“artificial.”

Computing’s Paradigm

For three decades after 1962 traditional scientists often questioned the name
computer science. They could easily see an engineering paradigm (design
and implementation of systems) and a mathematics paradigm (proofs of
theorems), but they could not see much of a science paradigm (experimen-
tal verification of hypotheses). Moreover, Simon'’s protests to the contrary,
they understood science as a way of dealing with the natural world, and
computers looked suspiciously artificial.
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Figure 1.4

Pioneers (A) John Backus (1924-2007) and (B) Grace Hopper (1902-1992) designed
higher-level programming languages that could be automatically translated into ma-
chine code by a compiler. In 1957 Backus led a team that developed FORTRAN, a
language well suited for numerical computations. In 1959 Hopper led a team that
developed COBOL, a language well suited for business records and calculations. Both
languages are still used today. With these inventions, the ENIAC picture of program-
mers plugging wires died, and computing became accessible to many people via
easy-to-use languages. Many thousands of programming languages have since been
invented. (Source: Wikipedia Creative Commons)

The founders of the field came from all three paradigms.' Some thought
computing was a branch of applied mathematics, some a branch of elec-
trical engineering, and some a branch of computational-oriented science.
During the first four decades, the field focused primarily on engineering:
the challenges of building reliable computers, networks, and complex soft-
ware were daunting and occupied almost everyone’s attention. By the 1980s
these challenges had largely been met, and computing was spreading rap-
idly into all fields with the help of networks, supercomputers, and personal
computers. During the 1980s computers had become powerful enough that
science visionaries could see how to use them to tackle the hardest “grand
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Figure 1.5
(A) Allen Newell (1927-1992), (B) Alan Perlis (1922-1990), and (C) Herb Simon
(1916-2001) saw computing as a science of phenomena surrounding computers. In

1967 they argued that computer science was a necessary science that studied ev-
erything computational, from computing machines, software, intelligence, informa-
tion, design of systems, graphics, algorithms for solving problems in other fields, and
much more. Simon went further and argued that studies of phenomena surrounding
man-made artifacts—sciences of the artificial—were just as much science as tradi-
tional sciences. (Source: Wikipedia Creative Commons)

challenge” problems in science and engineering. The resulting “compu-
tational science” movement involved scientists from many countries and
culminated in the US Congress adopting the High-Performance Computing
and Communications (HPCC) Act of 1991 to support research on a host of
grand challenge problems.

Today, there seems to be an agreement that computing exemplifies sci-
ence and engineering and that neither science nor engineering characterizes
computing. What then does characterize computing? What is the paradigm
of computing?

The leaders of the field struggled with the paradigm question ever since
the beginning. Along the way, there were three waves of attempts to unify
views. The first, led by Newell, Perlis, and Simon (1967), argued that com-
puting was unique among all the sciences in its study of information pro-
cesses. Simon called computing a science of the artificial (1969), implicitly
agreeing with the common belief that computations are not natural pro-
cesses. A catchphrase of this wave was that “computing is the study of phe-
nomena surrounding computers.”

The second wave focused on programming, the art of designing algo-
rithms that produced useful information processes. In the early 1970s,
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Figure 1.6
(A) Donald Knuth (b. 1938) and (B) Edsger Dijkstra (1930-2002) considered program-
ming to be at the heart of computing. Around 1970 they argued that the processes

of designing and analyzing algorithms are at the center of everything computer sci-
entists do. To them, a master programmer was a master computer scientist. Unfortu-
nately, this noble view was lost by the late 1990s; governments defined programmers
as low-level coders. (Source: Wikipedia Creative Commons)

computing pioneers Edsger Dijkstra and Donald Knuth took strong stands
favoring algorithms analysis as the unifying theme. A catchphrase of this
wave was “computer science equals programming.” In recent times this
view has foundered because the field has expanded well beyond program-
ming, and because public understanding of a programmer became so nar-
row (a coder).

The third wave came as a result of the Computer Science and Engineer-
ing Research Study (COSERS), led by Bruce Arden (1983) and funded by
the National Science Foundation in the 1970s. It defined computation as
the automation of information processes in engineering, science, and busi-
ness. Its catchphrase was “computing is the automation of information
processes.” Although its final report successfully explained many esoteric
aspects to the layperson, its central view did not catch on.

An important aspect of all three definitions was the positioning of the
computer as the focus of attention. The computational science movement
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of the 1980s began to step away from that notion when it said that comput-
ing is not only a tool for science but also a new method of thought and discov-
ery in science. The people in the computational sciences saw computing as
an ally in understanding their information processes and what algorithms
might govern them.

An important consequence of this new direction was that scientists
began to acknowledge that natural information processes exist and can be
studied with the same methods as the artificial information processes gen-
erated by computers. Biology was one of the first examples: Nobel Laure-
ate David Baltimore (2001), echoing cognitive scientist Douglas Hofstadter
(1985), said that biology had become an information science. David Bacon
(2010) argued similarly for physics, saying that that quantum mechan-
ics, which underpins quantum computing, is an information science. Erol

Figure 1.7

(A) Bruce Arden (b. 1927), a pioneer in computer systems, led a group (COSERS)
that advocated a view of computing broader than programming. In the late 1970s
his group defined computing as the study of “what can be automated.” At the time,
this view fit a public mood disposed toward robots, such as the two from Star Wars
(B). This view did not stick because of the shift toward science that began a few years
later. (Source: Wikipedia Creative Commons)



10 Chapter 1

Gelenbe (2011) gave a long list of examples of scientific fields that actively
study natural information processes. The conclusion that computer sci-
ence methods also apply to natural information processes strengthens Herb
Simon’s (1969) argument that computer science is a genuine science.

More recently, Paul Rosenbloom (2012) has noted two other reasons that
the “all computations are artificial” proposition is outdated. First, many sci-
entists now accept humans as part of the world ecosystem and that human
structures are as natural as beaver dams or ant hills. Second, our ability to
modify natural processes at ever-finer levels of detail erases any boundary
between natural and artificial, as in stem cell cloned organs, organically
grown nanomachines, or genetically modified crops.

Great Principles of Computing

The maturing process of our interpretations of computing has given us
a new view of the content of the field. Until the 1990s most computing

Figure 1.8

Tim Berners-Lee (b. 1955) offered a different view of computing than the prevailing
view of a network of machines. In 1989 he invented the World Wide Web, a way
of linking the information stored on machines and automatically following a link

at the click of a mouse. He saw the web of connections established by people to
each other’s information as the host of many new kinds of computations that dealt
with the meanings that people assign to information. (Source: Wikipedia Creative
Commons)
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Figure 1.9
Nobel Laureates (A) Ken Wilson (1936-2013), a physicist, and (B) David Baltimore (b.
1938), a biologist, were at the forefront of computational science, which held that

computing was a new way of thinking and discovery in science. In the mid-1980s
Wilson popularized the notion of “grand challenge” problems in science that could
be solved by computational methods, and he advocated highly parallel supercom-
puters to do the job. In the 1990s Baltimore popularized the notion that biology had
become the study of information processes embedded into cells and all life processes.
Computer scientists were at first reluctant to be involved but have since embraced
computational science and have started a science renaissance in computing. (Source:
Wikipedia Creative Commons)

scientists would have described the field by naming its core technologies:
algorithms, data structures, numerical methods, programming languages,
operating systems, networks, databases, graphics, artificial intelligence, and
software engineering. This is a deeply technological interpretation of the
field. The principles interpretation used here emphasizes the fundamental
laws that empower and constrain the technologies.

The principles of computing fall into six categories: communication,
computation, coordination, recollection, evaluation, and design (Denning
2003, Denning and Martell 2004)? (see figure 1.10.). These categories are all
concerned with manipulating matter and energy to produce intended com-
putations. Table 1.1 defines and illustrates them, and notes which chapters
of this book focus on them.
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Communication

Design Computation

Evaluation Recollection

Coordination

Figure 1.10

Each category of principles is a perspective on computing: a window into the com-
puting knowledge space. (There is no significance to ordering of the category names
around the sides of the hexagon.) The categories are not mutually exclusive. For
example, the Internet can be viewed from the perspectives of a communication sys-
tem, a coordination system, or a storage system. Most computing technologies use
combinations of principles from all six categories; each category has its own weight
in the mixture, but they are all there. These categories also represent mental perspec-
tives people develop about computing. Some people see computing as computation,
others as data, networked coordination, or automated systems. The framework can
broaden people’s perspectives about what computing really is.

There is more to computing than a set of principles and the core tech-
nologies that build on them. Computing professionals do the daily work as
members of communities that specialize in many computing domains (see
figure 1.11). In addition to their knowledge of computing principles, com-
puting professionals are expected to be competent in four core practices:
programming, systems thinking, modeling, and computational thinking.
A practice is a skill set embodied through continuous practice and inter-
actions with customers. A practitioner’s skill can be rated as beginner,
advanced beginner, competent, proficient, or expert. A beginning program-
mer, for example, would be focused on language syntax, getting programs
to compile, and finding bugs; an expert programmer would be able to build
large systems, solve complex systems problems, and mentor junior pro-
grammers. Principles and practices are in constant interaction. People put
computing principles to work through skilled action; new principles are
occasionally discovered from common practices people have developed.
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( )

Computing domains

Security, artificial intelligence, cloud, data
analytics, transportation networks, health
care IT, genomics, robotics, etc.

Core
technologies

Programming, systems, modeling,

computational thinking

PRACTICES

Programming languages, networks,
operating systems, HCI, software, etc.

PRINCIPLES

Mechanics—- communication, computation,
coordination, recollection, evaluation

Design wisdom- guidelines, patterns, hints,

lessons from history

Figure 1.11

Computing as a whole depends on both principles and practices. The core technolo-
gies are pervasive tools used by practitioners to carry out their work in numerous
computing domains. This book concentrates on the principles and their uses in sev-
eral key domains, leaving core technologies and practices to other books. The prin-
ciples are either mechanics—laws and recurrences—or design wisdom—accumulated
knowledge about what works or does not work—to build computing systems that are
dependable, reliable, usable, safe, and secure.

The communities in which computing people and their customers
gather are called computing domains. There are dozens of domains. ACM
(the Association for Computing Machinery) recognizes no less than 42
domains of professional interest to its members (Denning 2001, 2011), and
there are many more under the heading of “computing applications.” The
next chapter examines four domains of high contemporary interest—secu-
rity, artificial intelligence, cloud computing, and big data.

A great many of the computing domains interact with other fields out-
side of computing. In an analysis of how computing interacts with the
three great domains of science—physical, life, and social sciences—Paul
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Rosenbloom found two kinds of interactions: implementation and influence
(Rosenbloom 2004, Denning and Rosenbloom 2009, Rosenbloom 2012).
Implementation means that something from one domain is used to create
or build something in the other. Influence means that something in one
domain affects the behavior of something in the other. Implementation
and influence can be single- or bidirectional. Rosenbloom built the chart
of table 1.2 to demonstrate the rich set of interactions between computing
and all of science in all these dimensions. He included a column for com-
puting in his chart. He did this simply because computing is constantly
implementing and influencing itself through the interactions among the
many computing domains. There can be no question about the pervasive
influence of computing throughout science.

Where Does Computing Fit in Science?

Because computing is so pervasive in its influence in science, and because
no other scientific field is directly concerned with information, Rosen-
bloom came to the conclusion that computing qualifies as the fourth sci-
entific domain.

What is so special about computing’s approach to information? Informa-
tion traditionally means facts that add to knowledge when communicated.
It is an old concept, studied for centuries in philosophy, mathematics, busi-
ness, the humanities, and the sciences. Science is concerned with discov-
ering facts, fitting them together into models, using the models to make
predictions, and turning validated predictive models into technologies.
Scientists record all they have learned in the structure called the “scientific
body of knowledge” for future use. Information has always played a strong
role in the sciences.

Computing differs in two ways from the other sciences in its approach
to information. First, computing emphasizes the transformation of infor-
mation, not simply its discovery, classification, storage, and communica-
tion. Algorithms not only read information structures, they modify them.
Moreover, humans constantly modify information structures—such as in
the web—with transformations for which we yet have no computational
models. Purely analytic methods cannot help us understand the dynamics
of these information structures. The experimental methods of science are
needed to make progress.

The second difference is that the structures of computing are not just
descriptive, they are generative. An algorithm is not just a description of a
method for solving a problem, it causes a machine to solve the problem.
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The computing sciences are the only sciences with such a strong emphasis
on information causing action.

No other field has taken up this view of information. Computing has,
and the answers it has found have profoundly influenced every field of
science. Computing does not fit as a subset of the physical, life, or social
sciences. It seems to be a science domain in its own right.

What This Book Does

The computing sciences have grown so large that a complete survey cannot
fit in a manageable book. Three books designed as “encyclopedias of com-
puter science” present their summaries as a series of articles in 2030 pages
(Ralston 2003), 770 pages (Abrams 2011), and 580 pages (Henderson 2008).
Rather than attempt comprehensive coverage, we have selected a sampling
of the greatest principles of computing.

Our sample is contained in nine chapters: information, machines, pro-
gramming, computation, memory, parallelism, queueing, design, and net-
working (chapters 3-11). Each of the six categories is represented in at least
one chapter (see table 1.1). Taken together, the set of chapters aims to con-
vey a coherent view of the breadth, richness, and depth of the computing
categories.

Chapter 1 is about the history and structure of the computing field
and its interactions with other fields. Chapter 2 is about how computing
domains draw knowledge from computing principles; security, artificial
intelligence, cloud computing, and big data are featured examples.

Chapter 3 is about the nature of information, what machines can do
with it, and how machines can deliver meaningful information to their
users. Chapter 4 is about how computing machines are built, so that the
programs we write can control the electronic circuits to perform the com-
putations we intend. Chapter S is about programming, the art of designing
computational solutions to problems, and how we can automatically trans-
late programs into equivalent machine codes.

Chapter 6 is about computation itself: some problems are solvable by
fast algorithms, others only by slow algorithms, and others not by any
computing machine at all. Chapter 7 is about memory, how we store and
retrieve information efficiently by naming it and positioning it in memory
systems and networks.

Chapter 8 discusses parallelism, the quest for speed by mobilizing many
cooperating parallel computers on the solution of one problem. Chapter
9 is about queueing, the methods we use to predict the throughput and
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response times of complicated networks of servers when many parallel jobs
compete for their services.

Chapter 10 is concerned with design, how to plan and organize comput-
ing systems that are dependable, reliable, usable, safe, and secure. Chapter
11, a case study of the Internet, is about how we mobilize other principles
to build a vast, reliable data communication network of links and hosts.

We have included a bibliography at the end of the book. The bibliog-
raphy contains selected items that have inspired us; they are not meant
to be historically complete summaries of literature. If you find someone’s
name in the text, you will also find at least one bibliographical item by that
person.

Conclusions

Computing as a field has matured and exemplifies good science as well as
engineering and mathematics. The science is essential to the advancement
of the field because many systems are so complex that experimental meth-
ods are the principal means to make discoveries and understand limits.
Computing is now seen as a broad field that studies information processes,
natural and artificial.

The great principles framework reveals a rich set of principles on
which all computation is based. These principles support many comput-
ing domains and a large number of domains within the physical, life, and
social sciences.

Computing is not a subset of the physical, life, or social sciences. None
of those domains is fundamentally concerned with the nature of informa-
tion processes and their transformations. Yet this knowledge is now essen-
tial in all the other domains of science. The computing sciences may well
be the fourth great domain of science.
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Biology is an information science.

—David Baltimore

Computation is a third way of doing science, besides theory and experiment.

—Kenneth Wilson

Science and applications of science are bound together as the fruit of the tree which
bears it.

—Louis Pasteur

The action of computing comes from people, not principles. Computing
people have organized into numerous communities of practice, which we
call computing domains. Each domain is centered on a technology or an
application of technology. For example, the security domain is centered
on security technologies and the privacy domain on applications of secu-
rity technologies to safeguard personal information. The members of these
domains share similar concerns, skill sets, methods, and interactions with
other communities. They are empowered and constrained by computing
principles. The great principles framework would be incomplete without
the computing domains (Rosenbloom 2012) (see figure 2.1).

Numerical aerodynamic simulation is an example of a domain. Computer
scientists have long collaborated with aeronautics engineers on the design
of aircraft. Starting in the 1980s, aircraft companies turned to numerical
simulation to design wings and fuselages for efficient, nonturbulent air
flows. The traditional methods of wind tunnels and test flights were no
longer practical for the size and complexity of aircraft. With new algo-
rithms running on massively parallel supercomputers, engineers were able
to design new aircraft that would fly safely on the first flight. The Boeing
777 was the first aircraft completely designed numerically. The teams of
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Figure 2.1

The six categories of the great principles framework (bottom) are all concerned with
managing matter and energy to produce intended computations. In contrast, com-
puting domains (fop) are communities of practice; their people mobilize computing
principles to support solutions to their problems, breakdowns, and interests (dashed
arrows). The domains also feature strong interactions between computing and other
fields. Their work adds principles to computing and to their own fields.
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aeronautics and computing people developed a new field, computational
fluid dynamics, which computed the complex movements of flowing air.
They designed computational methods based on 3D grids to solve equa-
tions from fluid dynamics in the regions of space around an airframe. They
exploited a category of fast multigrid algorithms, which solved very large air-
frames in minimal time on hypercube-connected parallel processors (Chan
and Saad 1986, Denning 1987). These teams also developed new methods
of refining grids dynamically to add precision in zones of rapid change of
air pressure or speed. Some of these methods were recognized as new prin-
ciples of computing. As a result, computational methods became a perma-
nent part of fluid dynamics.

Computing domains are numerous. The Association for Computing
Machinery (ACM) recognizes 42 domains of direct professional interest to
its members, and there are dozens of additional application areas and col-
laborations with other fields (Denning and Frailey 2011). In this chapter we
examine four computing domains—security, artificial intelligence, cloud
computing, and big data—within a framework that analyzes four factors:

e Who is involved in the domain

e What domain problems, concerns, and interests are taken care of in the
domain

e What computing principles are mobilized for the domain

e How domains have generated new principles for computing as well as the
other participating fields

This kind of analysis can reveal other principles that could improve a design.
It can help other domain participants understand the advantages and limi-
tations of what computing offers them. It could also expose connections
between technologies, which might be exploited for future innovations.
Before turning to the examples, it is worthwhile to take a closer look at
the relationship between the computing domains and the great principles
framework. This understanding will help with the analysis of the domains.

Domains and Principles

There are two basic, useful strategies for representing a field’s body of
knowledge. One enumerates the domains of the field, the other its prin-
ciples. These different interpretations of the same knowledge space create
different possibilities for actions. For this chapter, we use the term domain
to mean a technology domain, namely a domain centered on a particular
technology.
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Educators use the term body of knowledge (BOK) to mean an organized
description of the knowledge of a field. Educators often work with a BOK
to design curricula that cover the essential knowledge of their field. The
ACM offered its first computing BOK in 1968. It provided updates in 1989,
2001, and 2013. ACM listed nine core domains in 1989 (Denning et al.
1989), fourteen in 2001 (ACM Education Board 2001), and eighteen in
2013 (ACM Education Board 2013). They are core domains because all the
other domains depend on their technologies in some way.

A principles framework, as in this book, is orthogonal to a domain-
oriented framework. The same principle may appear in several domains,
and a particular domain relies on several principles. The set of active prin-
ciples (those used in at least one technology) evolves much more slowly
than the technologies.

Although the two styles of framework are different, they are strongly
connected. To visualize the connection, imagine a two-dimensional matrix.
The rows are the topics from a domain-oriented framework, and the col-
umns are the categories of principles. The interior of the matrix is the
knowledge space of the field (see figure 2.2).

With this picture, we can say that the technology-oriented BOK enumer-
ates the knowledge by rows of the matrix, whereas the principles-oriented
BOK enumerates by columns. They see the same knowledge—from differ-
ent perspectives and interpretations.

Imagine someone who wants to enumerate all the principles involved
with a technology. That person can analyze the technology domain for its
principles in each of the six categories—which corresponds to reading the
principles from the row of the matrix (see figure 2.3). That is what we will
do with the four example domains in the following sections.

The principles framework opens new inquiries. For example, someone
could enumerate all the technologies that employ a particular principle or
category of principles (see figure 2.4).

Security

Security as a domain has a long, rich history in computer science. Even
in the earliest days, when batch processing was the norm, users were con-
cerned about data entrusted to the machine. Was the machine in a physi-
cally secure place? Was the memory cleared before a new job was loaded?
Could an operator’s mistake or hardware failure lose data?

With the first multiprogrammed, time-sharing systems around 1960,
operating system designers got heavily involved in information protection.
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Principles categories
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Internet

key distr protocol

Security zero knowl proof
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Programming
language

Figure 2.2

The knowledge space of computing can be represented as the interior of a matrix
whose columns are the categories of principles and rows the names of computing
domains. The figure shows two principles from coordination used in the security
domain: key distribution protocols (for securely distributing encryption keys) and zero
knowledge proofs (for securely exchanging a secret between two parties).

They devised ways to partition main memory so that code and data of dif-
ferent programs could not mix; virtual memory was the most sophisticated
mechanism. They invented the hierarchical file system to give users custo-
dianship over their files and decide what access, if any, would be granted
to other users. They invented password systems to keep unauthorized users
out. They built structures to prevent Trojan horses and other malware from
interrupting systems and corrupting data. They invented ways to control
access so that confidential information could not flow into public files.
They created policies for computer operators to protect data and guard
against intrusions. From 1970 it was widely accepted that operating systems
designers had a strong responsibility for information protection (Denning
1971, Saltzer and Schroeder 1975).

The ARPANET of the 1970s, Internet of the 1980s, and World Wide Web
of the 1990s provided a worldwide network for information sharing and
vast new opportunities for information loss and pilfering. Cryptography
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Communication Computation  Coordination Recollection Evaluation Design

Secrecy Complexity of Key distr protocol Confinement Protocol End-to-end

Security | authentication, encryption partitioning, performance layered functions,
: zero knowl! proof . X ; X
covert channels functions Reference monitor analysis Virtual machines
Figure 2.3

The principles of security can be identified by reading the knowledge matrix across
the security row. Like most other computing domains security draws principles from
all six categories.

assumed a central role in security and authentication (Denning 1982).
Designers responded to many new issues with database records protection,
password protection, biometric authentication of users, antihacking pro-
tection, intrusion detection, protection from viruses and worms as well as
malware, multilevel secure systems, information flow management, anony-
mous transactions, criteria for levels of trust in systems, forensics, auditing,
data recovery, and security-enhancing practices for users. Law enforcement
experts started seeing a rise in crimes and attacks against computing systems,
and they began warning everyone to take serious steps to protect personal
information. Unfortunately, few took these calls seriously. In the interest of
expediency to deliver new systems rapidly, many developers downplayed
security and assumed they could add protections later if security became an
issue. Sadly, they bet wrong. Large numbers of highly vulnerable systems
were deployed that lacked structural safeguards for information protection
and employed lax policies in their operations.

As more and more financial data, personnel data, personal data, and
corporate data became accessible online, the volume of attacks rose sharply.
Defense experts worried about information warfare (Denning 1998). Pri-
vacy experts cried out for protections of personal information lest basic
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Figure 2.4

The technologies of coordination can be identified by reading the knowledge matrix
down the coordination column. Almost all computing domains, including the six
illustrated here, employ coordination principles.

freedoms be lost (Garfinkel 2001). In 1999 there were palpable fears of net-
work collapse from the “Y2K” problem caused by encoding years with two
digits instead of four. After that many people slowly awoke to the vulner-
abilities of information networks and to the challenges of securing them.
Experts in many countries began predicting devastating cyber attacks that
could ruin economies and even endanger civilization (Schneier 2004, 2008,
Clark 2012).

The people, problems, and computing principles of the security domain
are displayed in table 2.1.

Artificial Intelligence

The idea of machines performing human intellectual tasks dates back
five centuries. Blaise Pascal built a mechanical calculator in 1642. Charles
Babbage proposed the Difference Engine in 1823 to calculate navigation
and other arithmetic function tables automatically. In the late 1800s the
“mechanical Turk” was a convincing hoax appearing to be an expert chess-
playing automaton (Standage 2003). Indeed, many of the ideas that have
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Table 2.1
Security Domain

Who Members Operating system designers, network
engineers, cyber operators, military defense,
law enforcement, forensics investigators,
homeland security, public policy officials,
diplomats, privacy advocates

What Breakdowns, Controlled sharing, memory protection, file
problems, protection, access control, information flow,
concerns trusted systems, secret communications,

authentication, signatures, key distribution,
preventing inference through data correlation
Computing Communication Cryptography, secrecy, authentication
principles Computation One-way functions, cryptographic
complexity, hashing, formal verification
Recollection Access control, error confinement,
information flow, multilevel secure storage,
reference monitors

Coordination Key distribution, zero knowledge proofs,
authentication protocols, signature protocols
Evaluation Performance and throughput of protocols,

criteria for secure systems

Design Open design, least privilege, fail-safe defaults,
psychological acceptability, end-to-end
designs, layered functions, virtual machines

Principles Information assurance practices, intrusion
from other detection, biometric ID, forensic rules of
fields evidence, inference from statistical databases

become the basis of artificial intelligence (Al) predated most of computer
science (Russell and Norvig 2010).

In 1956 John McCarthy organized a workshop at Dartmouth with help
from Claude Shannon and Nathaniel Rochester. Their workshop gave birth
to the field of artificial intelligence. Their founding vision was that “every
aspect of learning or any other feature of intelligence can in principle be
so precisely described that a machine can be made to simulate it.” This
appeared plausible because so many intelligent tasks appeared to be fol-
lowing algorithms, and the brain itself appeared to be an electrical network
capable of executing algorithms. Herbert Simon predicted that by 1967 a
computer would be world chess champion, a computer would discover and
prove an important new mathematical theorem, and many theories in psy-
chology would be embodied in computer programs. His first dream was
achieved 30 years late, and the other two have yet to be achieved.
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Alan Turing (1950) crystalized many of the seeds of modern Al: the Tur-
ing test, machine learning, and even the idea that we might “grow” an
intelligent machine through stages of development, like a child. Turing
realized that “intelligence” is so ill defined that he could make no progress
with the question of when a machine might be intelligent. His imitation
game (the Turing test) asks not whether a machine has intelligence but
instead whether it behaves intelligently. He predicted that by the year 2000
machines would be able to fool 70 percent of determined human interroga-
tors for at least five minutes. That dream also has yet to be achieved.

Turing’s behavioral focus was adopted into the founding dream of Al By
the 1970s, however, it became the brunt of sharp criticism. Many Al projects
set out to design “expert systems,” which would perform as well as human
experts in many domains such as medical diagnosis. Hubert Dreyfus (1972,
1992) maintained that expert behavior was beyond the capability of rule-
based machines. He was initially ridiculed, but time seems to have proved
him right. Only a handful of expert systems worked competently, and none
approached genuine experts. John Searle (1984) attacked the notion that
conventional computing machines are capable of intelligence; he described
a rule-based machine that might appear to carry on conversations in Chi-
nese but did not embody any sort of understanding of Chinese. He attacked
“strong Al”—the notion that the mind is a product of machine behavior—
and favored “weak AI”—that simulations might imitate a behavior without
any resemblance to the way a brain generates the behavior. Terry Wino-
grad and Fernando Flores (1987) argued that AI was based on philosophical
assumptions that could not explain or lead to intelligence.

By the mid-1980s it was clear to many that the initial dreams of Al were
not going to be achieved any time soon. The research funding agencies
began to withhold funds and to demand deliverable results. Many research-
ers did a lot of soul searching about the weaknesses of their field. Al pioneer
Raj Reddy called that dark time the period of “Al winter.”

A new field of Al emerged from that introspection. The focus shifted
from trying to model the way the human mind works to simply building
systems that could take over human cognitive work. Automated cognition
systems need not work the same way the human mind works; they do not
even need to mimic a human solving a problem. The field simultaneously
adopted a strong emphasis on experimental methods to validate whether
proposed automations were useful, reliable, and safe (Russell and Norvig
2010, Nilsson 2010). Recent publicity-garnering triumphs include the IBM
Deep Blue chess program beating World Chess Champion Garry Kasp-
arov in 1997, Google's driverless car in 2010, and IBM’s Watson computer
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winning the TV game Jeopardy in 2011. The methods used in these pro-
grams were highly effective but did not resemble human thought or brain
processes. Moreover, the methods were specialized to the single purpose
and did not generalize.

Many researchers in computer science, cognitive science, medical sci-
ence, and psychology continue to study how the brain works and how it
generates a mind. The fascination with the singularity (Kurzweil 2005) and
the Brain Activity Map Project (announced in 2013) are signs that this line
of inquiry maintains its allure.

The reborn Al field has been so successful that it has raised a new set of
concerns. In Race against the Machine, Erik Brynjolfsson and Andrew McAfee
(2012) document how waves of automation are edging out knowledge-work
jobs, just as mechanical automation in the previous century had edged out
many manual labor jobs. Examples of knowledge automation abound: call
centers, voice menu systems, online purchasing, online banking, govern-
ment services, publishing, news distribution, music publishing, advertis-
ing, surveillance, terrorist hunting, and much more. The authors worry that
we are sliding toward a society with too few jobs to sustain the population
of workers and insufficient resources for public agencies to serve the jobless.

The people, problems, and computing principles of the artificial intel-
ligence domain are displayed in table 2.2.

Cloud Computing

Cloud computing is a modern buzzphrase that hides a rich tradition of infor-
mation sharing and distributed computing. It refers to networks of comput-
ing devices that give economies of scale by hiding the locations of servers
and data stores. The term “cloud” came into use in the late 1990s, probably
from a practice of showing “the network” as a cloud in technical and mar-
keting presentations.

The idea of building systems that could share computing power among
many users cheaply was embodied into MIT Project MAC in the mid-1960s.
MAC was an acronym for “multiple-access computer” and sometimes for
“man and computer.” Project MAC built Multics, a powerful multiplexed
system that distributed the expense of memory, disk, and CPU over a large
community so that the cost of computing for any one user would be very
small. J. C. R. Licklider, the visionary who supplied the initial inspiration,
thought that computing power could be supplied like a utility: anyone
could plug a terminal into a wall-socket (Licklider 1960).

The ARPANET, which started operation in late 1969, supported the util-
ity ambition. It was designed for resource sharing—users anywhere in the
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Table 2.2
Artificial Intelligence Domain

Who Members Al experts, Al practitioners, artificial lifers,
planners, singularity followers, chess players,
Jeopardy enthusiasts, Bayesian learners,
machine learners, biologically inspired
designers, cognitive scientists, human factors
designers, psychologists, economists, law
enforcers, roboticists

What Breakdowns, Automation of cognitive tasks, design and
problems, experimental evaluation of heuristics,
concerns evolutionary computing, genetic computing,

neural computing, pattern recognition,
automatic classification, speech recognition,
natural language translation, artificial brains,
superhuman intelligence, autonomous
systems such as drones and cars
Computing Communication Noisy-channel model
principles Computation Heuristic algorithms, classification, Bayesian
inference, machine learning, searching large
state spaces, models of intelligence
Recollection Memory models, sparse distributed memory,
neural network retrieval, locality learning
algorithms
Coordination Training protocols, coordination theory
Evaluation Experimental methods for evaluating
heuristics; precision, recall, accuracy
Design Storage of large data sets for use in
supervised and unsupervised experiments
Principles Brains generate minds, speech act theory,
from other linguistics, neuroscience, statistical inference
fields

network could connect with any host and use its services. No one had to
replicate a shared service. The ARPANET designers soon realized that shared
services would be sought by name rather than location and that location-
independent addressing would be the only way to hide the many address-
ing conventions of local networks containing the services. Vint Cerf and
Bob Kahn invented the TCP/IP protocols (1974) to exchange messages
between any computers in the Internet knowing only their IP addresses
but not their physical locations. The ARPANET standardized on the TCP/IP
protocol in 1983.

In 1984, the ARPANET adopted the Domain Naming System (DNS), an
online database that mapped symbolic host names to their IP addresses; for
example “gmu.edu” maps to “129.174.1.38.” This added another level of
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location independence, leaving only the names of servers visible to Internet
users.

In the 1990s the World Wide Web allowed sharing of any information
objects in the Internet (Berners-Lee 2000). Objects were named with their
URLs (uniform resource locators), strings of the form “hostname/path-
name,” where pathname was the directory path of a file on the given host
system. In the mid-1990s Robert Kahn designed a service called handle.
net that mapped a unique identifier (a handle) to the URL of an object. He
also designed the associated Digital Object Identifier (DOI) system for the
Library of Congress and most publishers (Kahn and Wilensky 2006). The
DOI was an even higher level of transparency for, once assigned, it desig-
nated a unique digital object in the Internet no matter where the object
moved and how long ago it was created (Denning and Kahn 2010).

The architecture for distributing computing services to users has been
continually refined over the years. Multics multiplexed the resources of a
mainframe system among its users. In the 1970s Xerox PARC (Palo Alto
Research Center) created the Alto system, which was a network of stand-
alone graphic workstations linked on an Ethernet (Metcalfe and Boggs
1983). They called their architecture client-server because the user accessed
services elsewhere on the network by a local interface called the client. The
X-Window system, originated at MIT in 1984, was a generalized client-
server system that allowed a new service provider to plug in its hardware
and user interface without having to design client-server communication
protocols. Most web services today use client-server architectures: the ven-
dor makes the service available through an interface displayed on a stan-
dard web browser. Most services accessible in the cloud are client-server
architectures whose server locations are completely hidden by the URL
naming system.

The people, problems, and computing principles of cloud computing are
summarized in table 2.3.

Big Data

Big data is another recent buzzphrase hiding a rich tradition in comput-
ing. It refers to the processing of massive data sets in the Internet, looking
for population statistics, correlations, faint signals, and rare events. These
analyses are used in a diverse range of applications in science, engineering,
business, census-taking, and law enforcement.

Computer scientists have long been involved with problems of storing,
retrieving, and processing data sets that exceeded the current technology.
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Table 2.3
Cloud Computing Domain

Who Members Network designers, distributed computing
designers, client-server architects, enterprise
system designers, businesses, governments,

economists
What Breakdowns, Location-independent services and data
problems, storage, redundancy, restricting cross-border
concerns flows, distributed computing models
Computing Communication Error-correcting codes, compressing sound
principles and image files, location-based identification
Computation Map-Reduce methods, massively parallel
computing
Recollection Replicating data, atomic transactions,

transaction rollback, database structures,
searching Internet, naming, digital object
identifiers, digital object handles

Coordination Locking protocols, rollback protocols,
file-transfer protocols, file-syncing protocols,
hypertext protocols, domain name system,
time stamping, version control

Evaluation Performance of massively parallel and
massively distributive memory systems
Design Interface design, data warehouse architecture
Principles Social networks, e-commerce, critical
from other infrastructure modeling, statistical inference
fields of location

What was once big is now small. The term “big data” is a recent moniker
for an old problem, which now affects many communities. For example, as
part of normal business, corporations amass petabytes of customer-related
data, which they use to identify trends, target advertising, and track loy-
alty. Publicly funded science research projects are now required to make
their data available for free to the public, and other projects are required to
“mine” it for possible insights. Police use massive databases of telephone
calls and credit card transactions to hunt and locate suspects and fugitives.
All these groups actively seek data analysts, data scientists, and data system
architects to help them do these jobs.

Computer scientists have contributed in two main ways. One has been
new computationally efficient analytic methods, and the other has been
systems and architectures that enable processing of massive amounts of
data. For example, Richard Karp (1993) applied his knowledge of efficient
combinatorial methods to algorithms for merging experimentally sampled
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gene data into genome maps. Tony Chan and Yousef Saad (1986) demon-
strated that one of the first parallel architectures, the hypercube, was opti-
mal for a large class of numerical algorithms, called multigrid algorithms,
used in solving mathematical models applied to very large data spaces.
Jeffrey Dean and Sanjay Ghemawat (2008) designed MapReduce, a new
method for mobilizing thousands of parallel processors to solve very large
data-processing problems.

Large data sets have always been a concern for businesses. They store
data on customers, inventory, manufacturing, and accounting—every-
thing companies need to operate while big and international. IBM became
wealthy in the data-processing markets in the 1930s, many years before
electronic computers, selling business machines such as card sorters and
retrievers. In the 1950s IBM joined a growing number of computer com-
panies that offered electronic data processing. IBM generated considerable
publicity in 1956 when it introduced the first hard disk storage system,
RAMAC 305. IBM claimed businesses could move warehouses of file cabi-
nets on to a single disk and process the data with amazing speed. As data
stores grew, the designers focused on methods to organize the data for
fast access and easy maintenance. The two chief competing methods were
the Integrated Data System (Bachman 1973) and the Relational Database
System (Codd 1970, 1990). The IDS was simple, fast, and pragmatic in its
approach to managing large sets of files while hiding the file structure and
location on the disks. The RDS was based on the mathematical theory of
sets; it had a clean conceptual model but took many years to perfect and
achieve the kinds of efficiency seen in IDS. Starting in the 1970s, there has
been an active community of researchers who meet annually to discuss
issues in very large databases (VLDB).

Beginning in the 1950s, computing researchers helped librarians to
organize data for fast retrieval of documents. Libraries were early users of
these information retrieval systems. They developed search systems that
could deal with fuzzy queries such as “find documents about information
retrieval” but without necessarily containing the text string “information
retrieval.” Today’s Internet is a large unstructured store in which keyword
retrieval is very fast but imprecise and information retrieval is difficult
(Dreyfus 2001).

The Gartner Group defined the modern “big data” domain in terms of
four V’s: problems with large volumes of data, which arrive at high velocity,
are in a large variety of formats, and whose veracity is important to decisions
based on it. As of 2014, data science courses, centers, and curricula were
popping up at universities and research labs. The people involved are from
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Table 2.4
Big Data Domain

Who Members Business, government agencies, enterprise
designers, scientific data collectors, statisticians,
large systems modelers

What Breakdowns, Finding correlated items in very large data sets,
problems, computational complexity, privacy issues,
concerns inference, forensics of data recovery,

information retrieval
Computing Communication  Reliable transmissions from thousands of
principles sensors to repositories, detecting if data have
been corrupted, altered, or lost, detecting if
data has been placed in illegal jurisdictions
Computation Computational complexity of algorithms for
data analysis
Recollection Storage, replication, error control, testing
whether data still exist, testing for physical
location of data, forensics data recovery from
very large stores

Coordination Map-Reduce computing
Evaluation Predicting completion times of large searches
and analyses in very large networks
Design Replication of data, indexing data, structuring
for optimal retrieval
Principles Natural language processing, statistic inference,
from other mood inference, crowdsourcing, forensics
fields practices

many disciplines including analysts from operations research and statistics,
architectures from computer science and information systems, and visual-
izers from modeling and simulation. The associated “data science” domain
is concerned with the scientific basis for analysis and processing of very
large data sets.

The people, problems, and computing principles of the big data domain
are summarized in table 2.4.

Conclusion

The great principles framework is a useful way to identify bundles of prin-
ciples making up a technology. It is also useful to identify computing prin-
ciples that underpin computing domains, in which people from computing
and other fields interact to solve persistent problems of concern in their
communities.






3 Information

The semantic aspects of communication are irrelevant to the engineering problem.

—Claude E. Shannon

Software is not just an interaction device, it generates a space in which the user lives.

—Terry Winograd

The study of information has advanced rapidly since mathematician and
communications engineer Claude Shannon developed information the-
ory in the 1940s. A key tenet of his theory is that information and mean-
ing are distinct, making it possible for machines to process information
without regard to its meaning. And yet the whole purpose of communica-
tion and computing is to convey and produce meaningful results. How can
this be?

Software designers, scientists, and consumers look to software to gener-
ate virtual worlds, social networks, music, new discoveries, financial projec-
tions, love letters, inspiring images, and much more. But the meaning of
the information output by these systems seems to depend on the observer.
For example, a tabulation of stock prices may look like numerical gibberish
to a financial amateur but a source of riches to a professional investor. How
can we formulate an information science if its fundamental object is at least
partly subjective?

These questions look paradoxical because information theory says that
meaning is irrelevant to computational machinery, a statement that per-
sonal experience with computational systems seems to contradict. More-
over, the concept of information seems fuzzy and abstract to many people,
making it hard for them to understand how information systems really
work. Our objective in this chapter is to show that information is quite
real, existing as physically observable patterns (see figure 3.1). We examine
what information theory has to say about representing and transmitting
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Figure 3.1

In 1956 IBM introduced the world’s first magnetic disk information-storage system,
the RAMAC 350. A promotional film for the machine showed hallways of file cabi-
nets with frazzled secretaries walking along them. The RAMAC 350, the film showed,
stored the entire content of the cabinets in about 5 cubic meters and allowed near-

instantaneous searches of the data. To contemporary viewers the film also demon-
strates that the struggle to make the seemingly abstract concept of information tan-
gible is not new. (Photograph courtesy of IBM)

information, how it combines with computability theory, and where its
limits are. This examination shows why classical information theory can-
not explain meaning and generation of new information. We describe a
model of meaning-preserving transformations that resolves the apparent
paradoxes.

Representing Information

We humans are incredibly flexible about how we communicate informa-
tion. Here are four examples. The first two illustrate explicit meaning:

1. We point to an object and tell our friends what that object means—and
now that object “carries” information because that meaning is triggered in
our friends’ brains whenever they see the object.

2. We discover and name recurrences, which are patterns of events that
repeat. When we see the pattern, we can predict the outcome. The pattern
carries information about the outcome. Discovering recurrences in nature
is an objective of science, and putting recurrences to work as technolo-
gies is an objective of engineering.

The next two examples illustrate implicit, or tacit, meaning:
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3. Communities develop recurrent practices that communicate informa-
tion. For example, many drivers communicate their intention to merge
into freeway traffic by inching sideways with a blinker on. No written rule
of the road tells them to do this.

4. Everyday habits and conventions of human practice are unnamed recur-
rences that carry information. For example, a “come here” wave in most
cultures communicates a request to move closer to you.

Scientists and engineers routinely build technologies that deal with
explicit information, which is an association between a physical represen-
tation and an intended meaning. For example, an electromagnetic signal
encodes someone’s speech. We create information by declaring an associa-
tion between a representation and its meaning. We process information by
storing the representations in memory and applying transformation rules
to them.

Social scientists and philosophers have been grappling with implicit
information for millennia—often without reaching much consensus. Engi-
neers have the easier task with explicit information.

The field of artificial intelligence tries to push the boundary between
explicit meaning and implicit meaning. Engineers in this area look for ways
to represent information that is only tacitly recognized, yet easily under-
stood, by human users.

Whether explicit or implicit, all information exists by human agree-
ment. We know what a representation or a recurrence means because some-
one either explicitly told us how to interpret it or we implicitly learned it
by experience.

Computer and communication engineers specialize in systems that
transmit information encoded as electromagnetic signals. For example, a
microphone generates an electric signal as someone speaks, a magnetic disk
records a copy of the signal, and a speaker generates a sound wave from
that signal. A radio transmitter superimposes an audio signal on a radio
frequency (RF) signal so that the RF amplitude tracks the audio signal; and
a receiver subtracts out the RF signal to extract the audio. Engineers must
be very precise and unambiguous about how they encode representations
and their intended meanings. Otherwise, the physical systems they build
will not work.

Computer and communication engineers settled on the bit (short for
binary digit) as their basic unit of information. Claude Shannon introduced
the term “bit” in the mid-1940s at the start of the computer age. Although
decimal hardware components were possible and were used in some early
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Children learn binary numbers quickly with cards. (A) Each card has twice as many
dots as the card on its right. Four children line up and the instructor asks them to
display various numbers by holding up their cards. Thus, (B) the first and fourth chil-
dren hold up their cards while the second and third hide theirs, making the number
9. Children grasp binary numbers very quickly this way. Because any signal can be
digitized into binary numbers and any text file encoded with binary numbers, bits
have become a universal way to represent information and quantify the amount of
it. (Courtesy of Tim Bell and Mike Fellows, csunplugged.org/videos)

computers, binary components became the standard because they are far
more reliable. Shannon discovered that the functions of binary computer
circuits could be expressed by logic formulas whose variables could only
have the values true or false; thus, bit patterns could represent computer
circuits. The numbers processed by the circuits were themselves encoded
in a binary system (see figure 3.2). Since the 1950s, computers have been
binary through and through, in their logic circuits and their data.

Shannon also demonstrated that the continuous signals used in practical
communication systems could be digitized, in many cases with negligible
error. We will return to this shortly.

Because all forms of data—numbers, signals, logic formulas, and text—
can be represented as patterns of bits, the bit has become the standard unit
of measure for information quantity. It shows up in modern terms such as
“24-bit color,” “100-megabit connection,” “32-bit computer,” and “256-bit
encryption key.” In the 1960s, computer makers coined the term byte as a
group of eight bits needed to represent a single letter, number, or punctua-
tion mark in the extended ASCII code. Over the years the size of data sets
processed by computers has grown exponentially, and new Greek prefixes
have been unearthed to designate them (see table 3.1). Each prefix corre-
sponds to 1000 times as much data than the previous prefix (or 1024 times
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Table 3.1
Names for Sizes of Data Sets

Name (symbol) Decimal Binary

byte (B) 8 bits 2? bits

kilobyte (KB) 10° bytes 2" bytes
megabyte (MB) 10° bytes 2% bytes
gigabyte (GB) 10° bytes 2% bytes
terabyte (TB) 10" bytes 2% bytes
petabyte 10" bytes 2% bytes
exabyte 10" bytes 2% bytes
zettabyte 10*' bytes 27° bytes
yottabyte 10* bytes 2% bytes

larger expressed as a power of 2, 2'%). In the 1960s, disk and RAM memories
were measured in kilobytes. By the 1980s, they were measured in gigabytes,
and NASA worried about how to store the 1 terabyte of data collected every
day from satellites. In 2014 the term “big data” was used for petabyte data
sets, and the Internet carried over a zettabyte every year. The Cisco Cor-
poration (2012) forecast continued exponential growth in the size of the
network and the amount of data it carries.

Communication Systems

The simplest kind of information system is a communication system. In a
1948 paper titled “A Mathematical Theory of Communication,” Shannon
offered the first theoretical model of such a system (Shannon 1948) (see
figure 3.3). At its essence is the following process. A source sends a message.
An encoder generates a distinct signal for the message, as prescribed in a
codebook. A channel is the medium that carries signals from the source
to the receiver. A decoder on the receiver end converts the signals back to
their original form, using the same codebook—and the message has arrived.
Shannon’s model applies to any system that encodes, decodes, transports,
stores, or retrieves signals or data. It has even served as a model of scientific
discovery by treating nature as a source of facts (messages) and the channel
as the discovery process (Dretske 1981).

Noise is an important element of the communication model. Noise is
any disturbance in the channel that alters a signal, causing the decoder
to output the wrong message. Examples of noise abound in communica-
tion technologies: fog and darkness interrupt ship-to-ship semaphore
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Figure 3.3

Claude Shannon (1916-2001) described a model information system that is now the
basis of information theory. The message source represents the set of all messages
that could be sent. The channel is the physical medium for storing and carrying
signals. Encoding converts messages into signals, and decoding converts signals back
into messages. The codebook contains the rules for converting messages to signals
and back again, and noise is any disruption that alters the signals.

communications; excessive distance between telegraph operators degrades
the signal strength; lightning strikes disrupt AM radio transmissions;
scratches render DVDs unreadable; and environmental sounds drown out
speech.

Note that in communication systems, coding is not the same as encryp-
tion. Encryption is an additional step that converts messages from the
source into cipher text before that text goes to the encoder, so that only
receivers who have the cipher keys can read them. The job of the commu-
nication system in this case is to deliver the cipher text accurately to the
receiver, which can then remove the cipher if it has the key.

As mentioned above, Shannon standardized his mathematical model on
bits. He argued that any signal can be represented as a pattern of bits, a pro-
cess called digitization—literally, the conversion of analog information into
digits. Digitization does not result in an exact replica of the information; it
is an approximation that frequently loses some of the information. Some
examples are obvious, such as pixelated photographs in which objects have
ragged edges; others are subtler. Quantities from physical phenomena, such
as the orbital position of a Mars lander, cannot be represented exactly in
the finite arithmetic of the computer. Rounding errors can accumulate over
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many computational steps, placing the accuracy of the overall computa-
tion in doubt and putting the Mars lander at risk. Even worse, some com-
putational steps can magnify errors; for example, the difference between
two almost equal numbers can round to zero and then cause a major error
when divided into another number. Designers of mathematical software
have devised many clever techniques to prevent digitization errors from
wrecking their results.

Harry Nyquist, a contemporary of Shannon, pointed out an important
exception to this general rule: communication systems need not suffer
from digitization errors (Nyquist 1928). Every continuous, bandwidth-
limited signal can be digitized without any loss of information by sam-
pling at a rate of at least twice the highest frequency. Audio compact discs
(CDs), for example, record 44,100 samples per second (44.1 KHz) without
significant loss of quality, because very few humans can hear sounds whose
frequencies are greater than 22,000 Hz.

Shannon argued that, because we can digitally sample any signal and
because real communication systems are bandwidth limited, we lose noth-
ing if we restrict the communication model to binary sequences. This sim-
plified the mathematics and still allowed the conclusions to work for any
real channel.

A simple code serves as a running example to illustrate various features
of the communication model. Consider a message source that transmits
only one of four messages, which we designate as A, B, C, and D. We assign
two-bit codes to these letters:

A: 11
B: 10
C: 01
D: 00

A code representing just four possible messages is not far removed from
nature. The DNA in our cells is a natural message source that uses just four
letters—G, A, T, and C are the first letters of the four nucleotides in DNA.

If the source wants to transmit the sequence “CAB” it sends the bits
“011110” down the channel. The receiver reverses the process by looking
up each pair of received bits in the codebook and reporting the correspond-
ing letter.

In any discussion of codes we quickly encounter a trade-off between the
size of the code (number of bits in the code words) and the difficulty of
overcoming noise in the channel. Short codes are more efficient, transmit
faster, and require less storage. However, short codes are easily disrupted
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by noise. A single-bit error in the channel will change one code word into
another. For example, if the channel switched the first bit of A to 0O, the
receiver would receive 01, and decode it as C, not A. We add parity bits to
alert the receiver to errors. The parity of a bit pattern is “even” if the num-
ber of 1s is even, and is “odd” if the number of 1s is odd. Here is the original
code modified for even parity by adding a third bit:

A: 110
B: 101
C: 011
D: 000

Now an error that changes the first bit of the code for A to 0 delivers 010 to
the receiver. The receiver recognizes that an error has occurred because 010
is not a valid code. In general, a one-bit error will cause the affected code
word to have an odd number of 1s, flagging it as a noncode pattern.

However, the single parity bit does not indicate which bit was affected.
For example, the receiver knows that 010 is not a valid code, but it cannot
tell which of three codes (A, C, or D) was altered by the single bit error. By
adding more redundancy, we can build decoders that not only detect that
an error has occurred but can identify which message was corrupted. Con-
sider this example, in which the original code modified by adding three
extra bits:

A: 11111
B: 10010
C: 01001
D: 00100

This code was constructed to satisty the principle that, with the extra bits,
each code word differs from every other one by at least three bits. Now a
one-bit error causes the received code word to differ by one bit from the
correct code word and by two or more bits from the other code words. The
decoder can thus detect and correct the corrupted code: it is the one with
only a one-bit difference.

Communication engineer Richard Hamming first articulated (in 1950)
the principle of sufficient distance between code words. Distance is the
number of bits that differ, a measure that became known as “Hamming
distance.” Hamming noted that, to correct k errors, the code must have
sufficient bits that the minimum distance between code words is at least
2k+1. He also invented a family of codes, now known as Hamming codes,
that embedded k parity bits into code words of length 2% — 1 bits, and gave
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a simple method of building circuits that converted corrupted bits back to
their original values. One of the most popular Hamming codes is the (7,4)-
code, which embeds three parity bits and four data bits into each seven-bit
code word. Hamming codes are widely used in computers to correct errors
in moving data between processors and memory.

Hamming codes work well when the noise is randomly distributed over
the bits. In some signals, however, the noise comes in bursts. For instance,
a solar flare can disrupt a deep-space signal for several seconds, or a scratch
can disrupt a series of neighboring pits etched on an optical disk. These
are called bursty errors. Another type of code, the Reed-Solomon code, was
invented to detect and remove bursty errors. It is mathematically more
complex but is, like the Hamming code, easily implemented by fast digital
circuits.

Unlike signals, bits do not have a physical reality. A bit is a notation that
represents which of two observable properties holds. For example, an engi-
neer might assign bit “1” to mean that a laser beam reflects from a spot on
the surface of a DVD and a “0” to mean that there is no reflection. Or the
“1” might mean that the output of a transistor is 5 volts, and a “0” might
mean it is 3 volts. Or a “1” might mean that a particular frequency, say 400
Hz, is present in a musical recording, whereas a “0” means it is not. Bits are
abstractions that we use to specify what we want the systems to do. Engi-
neers arrange the physical “stuff” (materials) so that it behaves as specified.

Because information in a physical system is always represented by physi-
cal states, it takes time and energy to read, write, and transform it. Com-
munication and computation can never be free of the constraints of the
physical world. Computer chip engineers know that effects such as heat
accumulation and feature size (the average size of the various elements
contained on a chip) place real limits on how small they can make their
circuits. And the time cost for every operation places limits on how many
instructions can be computed in the time available. Although new algo-
rithms have yielded dramatic improvements in finding optimal results
for common difficult problems, the larger cases are often still intractable
because time needed for all the physical operations exceeds our capacity to
wait. For example, finding the two prime factors that make up a 600-digit
key for the widely used RSA encryption system would take centuries on the
fastest known computers.

Our ability to store and compute information has increased exponen-
tially over the years. In the same year Shannon published his essay, and
in the same place—Bell Labs—the newly invented transistor began to
replace vacuum tubes in electronic computers. Circuit designers were able
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to compress the size of transistors, putting about twice as many into the
same physical space at no additional cost every 18-24 months. They have
been doing this year after year for nearly 50 years, giving us 100 times more
computational power with every decade. This trend is known as Moore’s
law after Intel cofounder Gordon Moore, who first described it in a 1965
paper (Moore 1965).

Moore’s law has given us two effects. One is amazing computational
abilities that would appear as magic to the 1940s pioneers of computing sci-
ence. The other is a flood of information, as James Gleick (2011) calls it. The
first effect—ever smaller physical mechanisms for transmitting and storing
information—Ileads directly to the second, an overwhelming abundance of
information. People do not function well when feeling overwhelmed and
unable to make sense of information.

Those vast computational abilities have given rise to the popular notion
that computation manipulates ethereal bits, not atoms, and consequently
there is no physical limit on the size and power of computational structures
(Negroponte 1996). From the standpoint of physics, this notion is simply
wrong. An abstract bit can do nothing until it is recorded in a physical
medium, where a machine can get at it. The recording process brings us
back to the world of atoms: we cannot have computation without them.
We can make computation, transmission, and storage breathtakingly small
and fast, but we will never completely eliminate their time and energy costs.

Measuring Information

Because he wanted to know the length of the shortest code for a message
source, Shannon devised a measure of the information inherent in a mes-
sage source. The number of bits in a code cannot serve as such a measure-
ment because, as we saw above, a single source can be represented by any
number of different codes. He concluded that a good measure would be the
size of the shortest possible code for a set of messages. A code with fewer
bits would fail to transmit all the information in the messages.

He rejected measures that depended on the meanings human observers
assign to codes and, instead, sought mechanisms for encoding, transmit-
ting, and decoding that worked the same every time, regardless of the con-
text in which they were used. Postal services follow a similar principle: their
distribution and delivery systems do not depend in any way on the contents
of the envelopes they transport. Shannon’s remarkable insight was this:
He equated the reception of information with the reduction of uncertainty. He
defined information as the minimum number of yes-no questions needed
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to determine which of many possible messages a source was sending. The
more we know about what a source might send, the less information we
gain when we see what it sends.

Imagine that you know someone will respond only Y (yes) or N (no) to
a question, but you have no way of knowing in advance which answer the
speaker will give. The speaker resolves your uncertainty by saying Y or N.
Shannon would say that the speaker just gave you one bit of information
(either 1 or 0), which selects the actual response from the two possible
responses. When there are more than two choices, more bits will be needed
to distinguish the message that was sent.

Suppose that we want to find the page containing a friend’s name in
a phone book. How many bits do we need to encode the page number?
A clever method answers this question. We open the book in the middle
and ask which half holds the name, which is easy to do since the contents
are alphabetized. We then split that half in half using the same question.
We repeat this step until only one page remains. The friend’s name should
appear on that page. The repeated question (“Which half?” or equivalently,
“Is it in the left half?”) takes us rapidly to the location. With a 512-page
phone book, the first question leaves us with 256 pages to search, the sec-
ond question leaves 128 pages, then 64, 32, 16, 8, 4, 2, and, finally, 1. It
takes nine “which-half” questions to find the page containing the word.
Therefore, when we learn the page number that contains our friend’s name,
we have received nine bits of information.

In constructing a code, people take account of the probabilities of occur-
rence of possible messages. Samuel Morse, who devised Morse code to use
with the electric telegraph he co-invented in the 1830s, assigned the short-
est code—a single dot—to the letter e because he knew that e is the most
common letter in English (about 12 percent of all letters used). He assigned
the longest code to the letter j because it is one of the least common let-
ters (about 0.15 percent). These choices minimized the average length of a
transmission. Figure 3.4 shows how the questions one must ask to identify
a message can define a code for the message and how prior knowledge of
the probability of occurrence of various messages can lead to shorter codes.

Suppose that we have a set of code words of lengths L; and probabilities
P;. The average length (L) of the code is

L= L-P

For the code in figure 3.4, this formula gives 2 bits for the average length of
the first code and 1.75 bits for the second.



46 Chapter 3

A
Is it Alice or Bob?

Is it Alice? Is it Bob?

ves ono
Alice Bob Charlie Diana

11 10 01 00
B

Is it Alice?
(0.125) (0.125)

Figure 3.4

Shannon defined the amount of information contained in a message as the number
of yes-no questions needed to select the message from the source. The questions
reduce uncertainty about which message is sent. Imagine, for instance, that we need
to find which of four persons has been selected to do a task. Using a simple decision
tree (left), we ask, “Is it Alice or Bob?” If the answer is yes, the selection will be in the
left half of the tree. One additional question, “Is it Alice?” reveals the answer. The
code for each individual is the path describing the yes-no patterns that lead to him or
her. If we know the probability that an individual will be selected (at right, parentheti-
cal numbers), we can make a graduated decision tree that results in codes of variable
length. For instance, if Alice is most likely to be chosen, we assign a code of 1. Bob,
the next most likely, gets 01, and Charlie and Diana, who have equal probability,
both get three-bit codes.
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What are the lengths of the code words in the optimal code, that is, the
one that minimizes L? Shannon answered that question in an appendix to
his 1948 paper; he showed that the optimal length of a code word is the
negative base-2 logarithm of the code word’s probability, that is, —log, Pi.
Therefore, the average length of the optimal code is

H=-YP-log,P,

This formula has the same form as the entropy formula in thermodynamics
and a similar interpretation. Entropy is a measure of disorder or uncertainty
about the state of a system. The more disordered a set of states is, the higher
the entropy. The greatest disorder occurs when all states are equally likely
to occur. The greatest order occurs when one state is certain and the others
do not occur at all.

Shannon considered entropy to be the measure of the inherent informa-
tion in a source. A source consists of a set of possible messages and their
probabilities of occurrence. The entropy, which depends only on the prob-
abilities of the messages, not on their codes, tells us the average length of
the shortest possible code. Any shorter code would be ambiguous and could
not be uniquely decoded. Take the following example:

Al
B: 0
C:01
D: 10

If these messages have probabilities of 0.5, 0.25, 0.125, and 0.125, respec-
tively, the resulting code will have an average length of 1.25 bits. However,
a receiver would not be able to tell whether 1001 stands for ABBA, ABC,
DBA, or DC. The entropy of the messages (calculated using the formula
above) is H = 1.75, which defines the threshold between decipherable and
indecipherable codes. The average length of this code, 1.25 bits, is below
that threshold. The code is indecipherable.

The Huffman code is a fast way to compute a code within one bit of the
entropy (figure 3.5).

Another way to put this is that the entropy threshold defines the bound-
ary between reliable and unreliable channels. If the source sends a new
message every T seconds, and the shortest code has average length H, the
source is generating a demand of H/T bits per second. If the channel band-
width is H/T or higher, then all the bits offered by the sender can flow to the
receiver. If the channel bandwidth is lower than H/T, some bits will be lost,
and the receiver will be unable to recover the original messages.
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Alice Bob Charlie Diana
1 01 001 000
(0.5) (0.25) (0.125) (0.125)

Figure 3.5

In 1951 David Huffman at MIT devised an algorithm for generating a code of mini-
mum average length given the message probabilities. His method starts by treating
each message as its own singleton tree. It then repeatedly combines the two smallest
probability trees into a larger tree whose probability is the sum of its components.
The whole tree is complete in n steps for n messages. In this example Charlie and
Diana are combined first, then that tree is combined with Bob, and finally that tree is
combined with Alice. The paths in the tree define the binary codes for each message.
Huffman’s method generates a code whose average length is within one bit of the
entropy threshold. It generates the first code in figure 3.3 when all the messages are
equally likely and the second code when they have the given unequal probabilities.

File compression is an important application of information theory. It
reduces storage space and transmission time. Most computer programs rep-
resent text with standard codes. These include the traditional fixed-length
code ASCII and the modern variable-length code Unicode. In both cases
each individual letter is always encoded with the same code. A text file can
often be shortened significantly by finding repeating patterns and replac-
ing them with even shorter codes than the originals in the context of that
file. For example, a file containing many instances of the letter “e” could
be shortened by replacing them all with a new, shorter code. The length of
the new code depends on how often “e” occurs in the file—the new code
might be 3 bits in one file with frequent “e” and 5 bits in another with less
frequent “e.” The file compression algorithm generates a table that shows
how to convert the new codes back to their originals. The file formats
“.zip” and “.rar” employ this strategy. These strategies are designed to never
“compress” below the limit given by entropy. If they did, the original docu-
ment would not be guaranteed to be recoverable. These strategies are called
lossless compression.
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Another strategy is lossy compression. Lossy approaches offer much
greater compression factors but cannot entirely recover the original file.
For example, MP3 audio compression reduces file size by a factor of 10
after discarding frequencies that most people are unlikely to hear, but there
is no way to recover the original discarded frequencies. JPEG image com-
pression discards bits that generate colors barely discernible by the human
eye, but there is no way to recover the original bits. Such compression
schemes enable the economical sale to consumers of DVDs, online movies,
and music recordings. The small loss in perceived quality incurred by these
methods is usually considered a good trade-off for the large reduction in
file size.

Transforming Information

A pure communication system simply transmits information from one
place to another. But computers do more: they transform information.
Transformation opens many new possibilities, most notably the produc-
tion of what seems to be new information. Simple transformations include
squaring a number, calculating a specified number of decimal digits of 7,
and arranging a list of numbers in ascending order. Each takes a pattern of
information as input and creates a pattern of information as output.

Because a binary pattern can be interpreted as a number, a transforma-
tion looks mathematically like a function that maps input numbers to
output numbers. Functions that can be computed by machines are called
computable functions. Turing and his contemporaries used this notion to
define computation. Turing showed that a simple abstract computer, the
Turing machine, has enough power to implement any computable function
(Turing 1937). The Turing machine follows a program of extremely simple
instructions that implement the transformation. Because every instruction
is obviously implementable by a machine, it appears that computers trans-
form binary patterns without regard to their meaning. This is analogous
to Shannon’s insistence that communication channels can be designed to
transmit information reliably without regard to its meaning.

When we dig a little deeper into how a machine transforms inputs, how-
ever, we can see an important aspect of the design of a program that we call
meaning-preserving. Consider the addition of two numbers, a and b. What
does it mean to add two numbers? It means that we follow a series of steps
given by an addition algorithm. The steps concern adding successive pairs
of digits from a and b and propagating a carry to the next higher pair of dig-
its. We have clear rules for adding pairs of numbers from the set {0,1,2,...,9}
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and producing carries of O or 1. As we design a program for the algorithm,
we pay careful attention that each and every instruction produces exactly
the incremental result it is supposed to. If we succeed, we can have confi-
dence that the machine adds two numbers properly. If we fail, we say that
the machine is broken.

In other words, the design process itself transfers the idea of addition
from our heads into instruction patterns that perform addition. The mean-
ing of addition is preserved in the design of the machine and its algorithms.

This is true for any other computable function. We transfer our idea of
what it means for that function to produce its output into a program that
controls the machine to do precisely that. We transfer our idea of the mean-
ing of the function into the design of the machine.

From this perspective the notion that machines and communication
systems process without regard to the meaning of the binary data is shaky.
Algorithms and machines have meanings implanted in them by engineers
and programmers. We design machines so that the meaning of every incre-
mental step, and the output, is what we intend, given that the input has
the meaning we intend. We design carefully and precisely so that we do
not have to worry about the machine corrupting the meaning of what we
intended it to do.

Computers combine computable functions with communication chan-
nels. A channel brings the input pattern to the machinery that computes
the function; another channel brings the output pattern to its destination.
In these scenarios the channels and the computers seem to do nothing
more than move and manipulate bits. Yet human observers say that the
computation has given them new information. This happens no matter if
the machine produces more output bits than input, or fewer. For example,
the m-computing function mentioned earlier would generate 900 digits of
7 as output in response to a three-digit input “900,” an expansion factor
of 300. A sorting function delivers the same bits as the input in a different
order. An averaging function can produce a small number of digits express-
ing the average of a large amount of data.

Representations of numbers and operations of machines both rely on
physical processes. Each operation of the machine takes a small amount
of time and energy to complete. Many of the functions we want to com-
pute require so many steps that there is not enough time to return answers
within any deadline we can live with. The physics of computing imposes
severe limits on what can be computed.

The logic of computing also imposes limits. The most famous is that
there are functions we might want to compute but cannot. Turing’s example
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in 1936 was the halting problem—no program exists that can inspect the
code of any given program and tell whether it contains an infinite loop on
a particular input. A modern example is malware detection—no program
exists that can tell whether any given program has a malicious procedure
embedded in it. We return to this topic in chapter 6 when we examine the
physical and logical limits of computation.

Even when we restrict our attention to computable functions that return
answers soon enough to be useful, we find interesting questions. When a
function computes bits we have not seen before, are those bits new infor-
mation (see figure 3.6)? Or are they just the consequence of existing infor-
mation? Does DNA contain information? Many biologists say it does. If it
is a message, what are the source and destination? If we decode DNA, do
we gain information? The decoded DNA might be used to find a cure for a
genetic disorder, or it might identify the perpetrator at a crime scene. Does

X
Hubble Binary signals

telescope from sensor

arrays

F
Image processing
super computer Carina nebula image
Y

Figure 3.6

The Hubble space telescope’s photon-gathering sensor arrays encode terabytes of
data for transmission to Earth. The data are then processed into images. Computing
theory would characterize the image processing as a function Y = F(X) that yields
output image Y when applied to the input data X. The machine implementing the
function --- and the signals sent to it and generated by it --- do not depend in any
way on the meaning of the information from the telescope. Yet human observers see
Y, the output, as a beautiful image—of the Carina nebula in the instance illustrated.
(Images courtesy of NASA)



52 Chapter 3

matching the DNA to a database merely uncover existing information, or
does it generate new information? Questions like these cannot be answered
with classical information theory.

Interaction Systems

Many computer programs are interaction systems: they can receive new
input and generate new output at many points, and, barring intervention
or breakdown, they may go on doing this without end. Interaction systems
are everywhere. Every operating system is an interaction system, as are a
car’s GPS system, Facebook, an online merchant’s web server, or the Inter-
net’s domain name system (DNS). The Internet itself is a global interaction
system for exchanging data and coordinating actions. The distinguishing
feature of interaction systems is that they operate continually; they have
no programmed end. In contrast, function systems are finished when they
produce their answers.!

For years computer scientists intensely debated whether interactive
computation is more powerful than function computation (Goldin et al.
2010). In recent years experts have come to agree that interactive computa-
tion is more powerful. The contemporary conundrum of how to meaning-
fully label digitized images illustrates why. The solution to this problem
lies in interaction: a game structures the interaction between humans and
machines to perform a function that no human or machine could do alone
(see figure 3.7). Interaction systems can generate outputs that no known
machine-computable function can.

Resolving the Paradoxes

In the discussion above, we have noted a series of seeming paradoxes con-
cerning information:

1. Engineers design communication systems that operate without under-
standing the meaning of the information. How then can the human recipi-
ents receive meaning?

2. Engineers design computer systems that transform information without
understanding the meaning of program or data binary patterns. How can
these systems generate new information?

3. Programmers design programs that operate without understanding the
bits they process. On what basis do human users interpret program outputs
as meaningful?
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Figure 3.7
In a 2004 paper Luis von Ahn and Laura Dabbish of Carnegie Mellon University
described a novel computer game, ESP. Players are paired and shown an image. They

type words that describe the image with the goal of finding a word their (unknown
and unseen) partner has also used. The common word becomes a new search tag for
the image. The game teams humans with machines to compute a function (image
recognition) that no one knows how to compute by machine alone. Like other func-
tions, it transforms information, but now the meaning interactively supplied by the
players shapes portions of the transformation.

4. Does making an association (as in placing a web link [Berners-Lee 2000])
create new information?

5. If a computer program by design generates deceptive information, are its
outputs information at all?

6. Where is the information in an encrypted message?

7. If a computer program makes a discovery in science, did it create new
information or merely pass on existing information that humans did not
perceive before?

Various common notions about information do not answer these ques-
tions. For example, saying that symbols “carry” information only raises
new questions. Where is the carried information? How do insertion and
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extraction work? Another example is the idea that meanings are embedded
in social conventions and are triggered by the outputs of machines. That
idea only helps with the third question but not the others. Still another
example is the “sign-referent” model (Rocchi 2012), which associates signs
with their meanings but works only for explicit information.

The notion of meaning-preserving transformation resolves all these
paradoxes. Humans intentionally design software programs to support
practices, create links, hide information,” or find new information. The
meanings are all the result of designers arranging a machine’s actions so
that human users will interpret them as intended. When a machine does
not produce the intended behaviors, its designers and users say it is broken.

The paradoxes may have arisen in the first place because computer scien-
tists have always tended to anthropomorphize machines; for example, we
say that a machine understands its inputs or is creative in its outputs. When
others look inside our programs and machines, they see only mechanical
steps. They do not see “understanding” or even “creativity” in the steps.
The understanding and meaning come from the designer, who arranges the
patterns of the machine to produce the intended meaning when it is used.

Information and Discovery

What do we mean when we say that a computer discovers a new pattern?
Consider a computer program that finds a trend in data. The program is
presented with a set of input-output pairs (x,y) observed in past perfor-
mances of an experiment. Using statistical regression, the program finds
the best parameters a and b for a straight line fitting the data: y = ax + b.
The program’s output is a formal description of a straight line. The output
is meaningful for human users who know how to use straight lines to make
predictions. It is easy to make another program that uses the straight line
with parameters a and b to predict the output y that will be generated for
a new value x.

What has happened here is that a designer has used mathematical
knowledge to calculate the parameters of a best-fit line from a set of data.
The steps in the calculation are mechanical. The output is meaningful to
those who understand straight-line models of trends in data. The meaning
comes from the designer, not the processing of the data.

Someone who does not know about straight-line trends in data would
not know what the output of the program meant. But this does not mean
that the meaning of the output is subjective. It means only that the designer
did not intend to produce any meaning for those users.
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In the 1980s researchers began to use powerful computers to sift through
large data sets seeking to discover patterns. They used Bayesian inference, a
sophisticated method of analyzing data to infer the most likely set of condi-
tions that would generate the data. Bayesian inference is based on Bayes’s
formula for conditional probabilities from statistics:

P(E|H)-P(H)

P(H|E)= D)

It says that the probability of a hypothesis H given evidence E can be com-
puted from the probability of the evidence given the hypothesis, multi-
plied by the probability of the hypothesis, and divided by the probability
of the evidence. Figure 3.8 gives an example for a simple case of doctor
trying to diagnose whether a patient has the flu given that the patient has
a headache.

Figure 3.8

A Venn diagram illustrates how a difficult-to-judge hypothesis can be assessed by
Bayes’s rule. A population K contains a subset F of people who have flu and a subset
H of people with headaches. A doctor sees a patient who complains of a headache
and worries about flu. According to Bayes’s rule P(F|H) = P(H|F) - P(F)/P(H). The medi-
cal databanks tell the doctor that the probability of someone having a headache is
P(H) = 0.4, the probability that someone has flu is P(F) = 0.2, and the probability of
a headache among flu patients is P(H|F) = 2/3. Then P(F|H) = (2/3) - 0.2/0.4 = 1/3, or
one chance in three. With no information, the probability of flu is 0.2, but given the
information about headache, the probability rises to 0.33.
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A discovery in this context is a new hypothesis. The program can gen-
erate a series of hypotheses and evaluate each one using Bayes’s rule to
calculate its probability given the evidence at hand. The most probable
hypothesis is selected as the “discovery.”

In this case, the designer is combining the knowledge of Bayes’s rule
with knowledge of search methods to find a most probable hypothesis for
the given data. The program’s output is intended for users who can under-
stand the hypothesis and the data it “explains.” The users will decide if the
hypothesis is a discovery.

In classical information theory we would say that Bayesian inference
works by determining the content of a message source based on data
observed from the source. For communication of messages, it was reason-
able for Shannon to assume that the content of the source was known a
priori. For scientific discovery, the set of possibilities within the source is
initially unknown; the inference process makes them and their probabili-
ties known. Bayesian inference is an automated method of transforming
observed data from a source into knowledge of the content of the source.

Conclusions

Human beings have been encoding signals for transmission in different
media channels since time immemorial. In the 1940s Shannon’s theory of
information gave us four great principles:

e Every communication system can be modeled as a noisy channel carry-
ing encoded signals representing messages from a source.

e The entropy of a source gives the length of the shortest decipherable code
for the source, and the Huffman code is within one bit of the entropy.

e Sufficient redundant bits can be added to any code to overcome noise in
the channel and guarantee 100 percent accurate reception.

e Files can be compressed to smaller sizes by substituting shorter codes for
patterns in the file.

These principles enabled communication and computer engineers to design
digital systems so that no information would be lost in transit and errors
introduced by noise could be removed.

Some entrepreneurs who did not understand Shannon’s theory pre-
dicted a new, vastly enlarged economy based on “bits not atoms.” Their
dream cannot come true because real communication and computing sys-
tems are powered from representations recorded as physical signals and
states. Computations and transmissions always take time and consume
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energy. We spend a lot of energy on computations: the connections and
data centers of the Internet consume nearly 6 percent of the world’s elec-
tricity. We cannot wish intractable problems away by postulating that their
solution methods are done by bits not atoms. The atoms behind the bits
are matter that matters.

As our ability to store information multiplied exponentially, as Moore’s
law had predicted it would, we are increasingly pressed to say what all that
information means. By definition Shannon’s information theory cannot
resolve the question. That is a seeming paradox: How can systems process
information without regard to its meaning and simultaneously generate
meaning in the experience of their users?

The meaning-preserving transformation reconciles the meaningless
mechanics of machines with the human experience that machines generate
meaning. The designer of a program arranges the instructions so that the
output will produce an intended meaning in a community of users; each
individual instruction moves the partially computed result incrementally
closer to the intended output. Let us celebrate the role of designers, who
give us software and hardware that makes sense to us.
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4 Machines

A person with paper, pencil, eraser, and subject to strict discipline, is a universal
machine.

—Alan Turing

Machines may be the true humanizing influence. They do the work that makes life
possible; human beings do the things that make life worthwhile.

—Isaac Asimov

Computer scientists are fond of abstractions. An abstraction is a mental
model that captures the essential features of a thing and suppresses all other
features. Computer scientists often describe programming as designing a
hierarchy of abstractions represented as “abstract objects” operated on by
designated functions. This notion has become so popular that computer
science is often touted as the field that has learned best how to manage
abstractions.

Computing abstractions differ in an important way from the mathemat-
ical abstractions common in other fields: computing abstractions perform
actions. The terminology of abstractions often obscures the principle of stuff:
the reality that computational actions are implemented as physical pro-
cesses controlled by programs.

Consider for instance a musical song. On a computer, a song is repre-
sented by an MP3 file, which contains a digitized version of the music from
the publisher. To listen to the song, we activate a program “play” on the
file. The “play” program encodes the millions of bits from the file in disk
storage as signals that travel to the earphones, where sound-generator cir-
cuits vibrate diaphragms. At the abstract (user) level, the play program and
the MP3 file appear as single objects: apply “play” to “song” and you hear
music. The implementation is quite complicated, involving many steps,
each of which depends on a physical process.
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In this chapter, we examine how to organize physical machines that
compute functions. The allowable moves of the machine are expressed as
single instructions, such as adding two numbers. A program is a series of
instructions arranged in a precise way to cause the machine to evaluate
the desired function. Instructions and data are encoded as binary patterns
stored in a memory. When fetched into a processor, instructions cause the
hardware to transform input data into output data.

In the earliest days of electronic computing, programmers wrote pro-
grams directly as binary codes arranged in sequences on paper tapes or
cards. Programming languages quickly superseded binary coding because
they were much less error prone. A special program called a compiler auto-
matically translated statements of the language into binary machine code.
In the next chapter, on programming, we discuss how a compiler does this.

The organization of a computing machine is often called its architec-
ture.! An architectural specification covers the central processing unit
(CPU), which executes instructions; the random-access memory (RAM),
which contains the program code and the data,? and the data structures
used to organize program components in memory.

Machines

A machine is an apparatus for using or applying energy to perform a partic-
ular task. Machines are usually powered by mechanical, chemical, thermal,
or electrical means. Electronic machines are powered by electricity with no
moving parts—for example, radio, television, mobile phones, and tablet
computers.

An automaton is a self-operating machine. The cuckoo on a clock was
once considered an automaton. So was The Turk chess player of the late
1700s (Standage 2003) (see figure 4.1). From the 1940s, computer scientists
have thought of automata as abstract mathematical models of computers,
and from the 1950s they believed automata embodied into software or
robots have the potential for self-conscious thought.

Machines to aid calculation date back thousands of years. From 2700
BCE onward, merchants in Mesopotamia, Egypt, Persia, Greece, Rome, and
China used the abacus to calculate sums. The Greeks showed how to mea-
sure the height of a tree by measuring its shadow and taking ratios with the
shadow of a stick of known height; the stick and its operating procedure
were a simple computing device. Another measuring stick, the slide rule,
was invented around 1620 after John Napier published the concept of a
logarithm; often called a slip-stick, the slide rule was a standard computing
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Figure 4.1

In his 1784 book Inanimate Reason, Karl Gottlieb van Windisch described The Turk,
a chess-playing machine. Beginning in 1770 for the next 84 years, its various own-
ers promoted it as an automaton that would play chess with anyone, winning most
matches. It was an elaborate hoax. An expert chess player hid inside the cabinet,
observed the pieces with mirrors, and used levers to move his pieces on the board.
The illusion appealed to a deep human belief, perhaps a fear, that the human brain
is a machine and most intelligent acts are actually mechanical moves. In 1997 the
chess computer IBM Big Blue beat grandmaster Garry Kasparov. The reaction was not
that the machine had become intelligent but rather that the machine searched faster
than Kasparov.
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machine used by engineers until the 1970s, when the electronic calculator
displaced it. In 1642 Blaise Pascal built a computing machine that added and
subtracted numbers, and he presented algorithms for multiplication and
division as repeated additions or subtractions. Charles Babbage designed
the Difference Engine (1822-1842) to compute numerical tables of arith-
metic functions; existing tables, calculated tediously by hand, were riddled
with errors and posed great risks to navigators and other users. In 1911 the
Marchant Company began selling mechanical calculators built from gears,
pulleys, and levers that could add, subtract, multiply, and divide. In 1922,
the German engineer Arthur Scherbius invented the Engima machine for
generating ciphers; the Poles broke the code in 1932 and passed the infor-
mation to the British, who used it to build the Bletchley code-breaking
machine in the early 1940s. In the late 1920s Vannevar Bush built the dif-
ferential analyzer to solve differential equations by mechanical integration.

In World War II the US Army commissioned teams of women at Aber-
deen Proving Grounds to calculate ballistic tables for artillery. Gunners
used the tables to determine the best gun direction and angle given the
wind and range of the target. Following programs written on paper, the
women operated mechanical calculators (such as the Marchant machines)
to prepare these ballistic tables. Because the teams were error-prone and
could not keep up with the volume of ballistic tables needed for the grow-
ing inventory of ordnance, the Army decided to replace the human calcu-
lators with electronic machines. They commissioned the first computing
machine project, the ENIAC, at the University of Pennsylvania in 1943.
The ENIAC could compute ballistic tables a thousand times faster than the
human teams. Although the machine was not ready until 1946, after the
war ended, the military made heavy use of computers after that.

It is interesting to note that in the 1920s, the term “computer” meant
a person who calculated numbers. Thus, to distinguish them from actual,
human computers, the first electronic computing machines were billed as
“automatic computers.” The acronyms of the first electronic computers in
the 1940s ended in “-AC” to signify this.

In 1937 Alan Turing defined a computer as a machine capable of calcu-
lating a mathematical function, and he discovered functions that cannot be
calculated by any computer. He used the term computable for functions that
could be calculated by computers. A function is computable if there exists
a finite set of instructions that can generate its output value for any given
input value (see figure 4.2). For example, addition is computable because
we can specify a finite set of instructions that produce the sum x + y given
any numbers x and y. An unanswered mathematical question in Turing’s
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Figure 4.2

A computer is a machine that takes an input binary pattern X and calculates an
output binary pattern Y. The computer is controlled by instructions from a program
designed to calculate a specific function F. When a signal arrives on the “go” input,
the computer starts to work and after a while stops with output Y = F(X). The time
required before the computer stops depends on the function and the program. Some
programs may contain infinite loops, in which cases the computer will never stop.
We can define a function H(F,X) that yields value 1 if program F halts for input X
and O if it does not halt. Alan Turing proved that H cannot be implemented by any
computer.

time was how we could describe the set of computable functions. We exam-
ine this question more deeply in chapter 6 on computation.

Turing argued that every computational method to calculate any com-
putable function was based on the very simple operations of reading sym-
bols, setting a control state depending what has been read, and writing
symbols. He created an abstract machine, now called a Turing machine,
which consisted of a control unit moving along an infinite tape, reading
and writing symbols in the squares of the tape. The specification of the con-
trol unit was the machine’s program. Programs used loops to repeat steps
as many times as needed. He also described a universal machine capable
of simulating any other Turing machine given its program. And finally he
showed the existence of functions that are well defined but not comput-
able, such as the problem of determining whether a Turing machine will
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halt (come to a stop without going into an infinite loop). Although several
others in his day also produced designs for computational machines and
demonstrated them equivalent to Turing machines, Turing’s design became
the reference model because it most closely resembled the functions of real
electronic computers, particularly the processor (control unit) and memory
(tape).

The definition of computer as a machine that transforms an input pat-
tern into an output pattern and then stops is not the only mode for using
computers. Interaction is common. An interactive machine receives numer-
ous inputs and generates numerous outputs and never stops. We noted in
chapter 3 that an interactive machine, in cooperation with a human, could
compute functions that a stopping computer could not.

Computing Machines

A computer is a machine controlled by a program that computes an output
value from a given input value. Now we take a closer look at how we can
build a machine that works this way.

A stored-program computer is electronic hardware that implements an
instruction set. An instruction is a single arithmetic or logical operation
carried out by the machine. An operation is a very simple, elementary
function. Typical operations take two inputs and produce one output. For
example ADD sums two numbers and EQ compares whether two numbers
are equal; thus ADD(3,5)=8 and EQ(3,5)=0 (false). Instruction sets also con-
tain branch instructions that control which instruction is next after the
current one.

A program is a set of instructions arranged in a pattern that causes the
desired function to be calculated. Programming is the art of designing a pro-
gram and providing convincing evidence that the program computes its
function correctly.

A computing system is a combination of program and machine. The pro-
gram causes the machine to calculate a function. We can also say that the
computing system calculates a function.

To make all this work, our computing system needs:

1. Precise specification of the set of instructions implemented by the
hardware.

2. A precise method to represent a program as a series of instructions.

3. A memory that stores the program and the data on which it operates.

4. A control unit that reads and executes instructions of a program in the
order prescribed by the program.
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A CPU (central processing unit) is a hardware device that reads instruc-
tions from a program and executes them, one at a time, in the order pre-
scribed by the program.

A RAM (random access memory) is a hardware device that holds data val-
ues in locations that can be read or written by the CPU. RAM is organized
as a linear array of locations. Each location holds an elemental quantity of
data, typically an 8-bit byte or a 32-bit word. The locations are numbered O,
1, ..., 2"=1, where n is the number of bits in an address. RAM is called “ran-
dom access” because it can access any random location in the same amount
of time. Locations hold only binary patterns (of 8 or 32 bits). The RAM does
not attempt to interpret patterns; it simply stores and retrieves them reli-
ably. The time required for the memory to respond to a CPU read or write
request is the memory cycle time, today typically just a few nanoseconds. A
block diagram of the CPU and RAM is shown in figure 4.3, and one of the
interface between CPU and RAM in figure 4.4.

CPU RAM
4 ) \f )
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program
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stack (data)
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Figure 4.3

The hardware of a computing system consists of a central processing unit (CPU) and
a random access memory (RAM). The program and its data are in the RAM. The data
are arranged as a stack, which means that new values are added only to the top of
the stack and values are retrieved only from the top. The CPU contains two special
registers. The instruction pointer (IP) is the RAM address (in the program) of the next
instruction to be executed. The stack pointer is the RAM address of the top of the
stack. The CPU also contains an arithmetic-logic unit (ALU), which takes two input
numbers (@ and b) and produces one output number (c). A series of start lines signals
the ALU which operation to perform, for example, add, multiply, or test equality.



66 Chapter 4

CPU RAM

4 N )

—{w ] ¢
—{7 ]

&
<

MD A R
1
1
1
1

read

write

\_ U\ J

Figure 4.4

The CPU-RAM interface consists of several components. The objective is to read or
write a particular location (a) in the RAM; a read operation transmits the value v in
the selected location to the CPU, and a write operation transmits a new value from
the CPU to the selected location. The memory address register (MA) tells which loca-
tion is selected. The memory data register (MD) holds the value. The read signal line
tells the memory hardware to select an address (in MA) and copy its value to the CPU
(in MD). The write signal line tells the memory hardware to copy the value from the
CPU (in MD) to the location selected (by MA). The time required to do these opera-
tions is called the memory cycle time, under 10 nanoseconds in modern RAMs.

Real computers have memory other than RAM, for example a disk. Disk
access times are random variables, depending on seek and rotation delays of
moving magnetic media. The additional problems of moving data among
multiple types of memory are considered in chapter 7 on memory.

The CPU uses the instruction pointer (IP) register to keep track of which
instruction is next to execute. It executes instructions of a program by
repeating the following cycle until it comes to an exit instruction in the
program:

1. fetch instruction is addressed by IP and set IP=IP+1

2. decode by reading the operation code contained in the instruction

3. execute by carrying out the operation

4. check for interrupts: error conditions that might have arisen during the
previous steps
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The CPU contains a clock that issues a signal once every clock tick. The
clock signal propagates through the CPU and activates selected circuits.
A typical clock tick interval is around 0.5 nanosecond. It takes four ticks
to sequence the CPU through the four steps of an instruction cycle. The
length of the clock tick interval is chosen to allow all the circuits involved
in a step of the instruction cycle to settle into a new state. If the clock tick
is too short, some circuits will not have had time to settle, and the CPU
will malfunction. Figure 4.5 illustrates how the CPU decodes and executes
instructions, and figure 4.6 illustrates how the ADD component of the
CPU'’s Arithmetic-Logic Unit (ALU) works.

The conclusion from this brief introduction is that we can design elec-
tronic circuits that will cause a machine to calculate a function by execut-
ing a sequence of instructions. The design outlined here was created for
the first electronic computing machines in the 1940s—at the University of
Pennsylvania, MIT, Princeton, and Cambridge. John von Neumann, a math-
ematician working with some of the engineers, wrote up descriptions of the
design. Because of his writings, the design is often called “von Neumann
architecture,” although the design was actually invented by the engineers J.
Presper Eckert, John Mauchly, Herman Goldstein, Arthur Burks, and others.

Many other architectures are possible for computers. The common fea-
ture is that they completely automate the process of following programs of
instructions to calculate functions.

Programs and Their Representations

The previous discussion might give the impression that a program is any
sequence of instructions from the machine’s instruction set. That is not so.
Programs have to obey precise rules of structure. There can be absolutely no
ambiguity about what each individual instruction does and what the whole
pattern does. Otherwise, we could not attain reliable computers that give
the same answer for the same input every time.

Let us outline a design for programs. Generally when we calculate num-
bers we do three kinds of things:*

1. Perform instructions in a strict sequential order (sequencing).

2. Make a choice between two alternative calculations based on the out-
come, true or false, of a test (choice).

3. Repeat a calculation many times until a test says to stop (iteration).

Notice that the iteration pattern opens the possibility of an infinite loop
because the test might never be satisfied.
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A
Fetch and set Decode Execute F)heck for
IP = IP+1 interrupts
l \
B v 1 2 3
ADD 11000000 10000000 10000000
SUB 11000000 01000000 10000000
MUL 11000000 00100000 10000000
DIV 11000000 00010000 10000000
EQ 11000000 00001000 10000000
LOAD ADDR 00100000 00000000 00000000
LOAD 00010000 00000100 01000000
STORE 00011000 00000010 00000000
Control store (opcode, control word)
Figure 4.5

CPU instruction cycle consists of four phases (A). At each clock tick, the CPU ad-
vances to the next phase. The first phase gets a copy of the current instruction from
address IP (instruction pointer) in RAM and sets IP to the next instruction. The sec-
ond phase takes the operation code bits from the current instruction and interrogates
a local control memory to get a control word for that instruction. In this example the
control word is broken in three eight-bit blocks, corresponding to three subticks that
occur between two regular clock ticks. We designate bits by their block and position;
thus, bit 1.1 is bit 1 of the first block. At a subtick, each of the eight bits in a control
word block activates a logic circuit; up to eight things can happen in parallel. The
first five example instructions assume that the two operands are in registers R1 and
R2. Bit 1.1 copies R1 to the “a” input of the ALU, and bit 1.2 copies R2 to the “b”
input of the ALU. The first five bits of the second block send an appropriate trigger
signal to the ALU telling it to add (2.1), subtract (2.2), multiply (2.3), divide (2.4),
or test-for-equal (2.5). The first bit of the third block (3.1) copies the ALU output
to register R1. The other three instructions activate different paths. LOAD ADDR
activates 1.3, which says “copy the address bits from the instruction word to R1.”
LOAD activates 1.4, 2.6, and 3.2, which say: “copy R1 to MA (memory address reg-
ister),” “activate memory read,” and “copy the MD (memory data) to R1.” Finally,
the STORE instruction assumes R1 contains an address and R2 a value; it activates
1.4 and 1.5 in parallel and then 2.7, meaning: “copy R1 to MA,” “copy R2 to MD,”
“activate memory write.”
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To add numbers, we follow a simple algorithm that sums the 1s digits, then the 10s
digits, then the 100s digits, and so on, and occasionally transfers a carry of 1 to the
next higher stage if a digit sum is bigger than 9. For example, to add 17 and 26, we
start by adding the 1s digits 7 and 6, giving a sum digit 3 with carry 1. Then we add
the 10s digits 1 and 2 plus the carry, giving a sum digit 4 with carry 0. The answer is
43. The same algorithm simplifies for the binary number system because sums can
be only 0 or 1. The figure depicts a three-bit binary adder (left). The inputs are num-
bers a and b, and output is number c. The carry transfers (co = carry out, ci = carry in)
from one stage to the next higher. The right stage sums the 1s bit, the next stage the
2s bits, and the third stage the 4s bits. Some bit combinations produce a carry; for
example 1 + 1 = 0 with carry 1. The table (right) shows the output combinations of
a stage for all possible input combinations. We use the carry from the leftmost stage
(co) as a fourth bit of the output because some sums are greater than 7 (the largest
number that can be represented in three bits). The largest sum would be 111 (= 7) +
111 (= 7) or 1110 (= 14). Each stage is implemented with a few transistors. The sum
is available as soon as all the stages settle; the worst-case settling time occurs when a
carry propagates the entire length of the chain. The same structure is used for larger
numbers; thus, a 32-bit machine represents numbers with 32 bits and uses 32-stage
adders. In most computers the adder is a component of a larger arithmetic logic unit
(ALU) that performs add, subtract, multiply, divide, and logical test operations such
as equal, not equal, or less than.
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A programming language is a set of syntax rules describing a precise nota-
tion for each of the above structures. There are thousands of programming
languages. Despite the diversity of possible computer languages, they all
have a single purpose: to describe how a computing machine can be made
to evaluate a specific function.

When we design programs, we think of a pointer moving through the
program steps and the machine doing each designated instruction, one at
a time. The pointer is called the instruction pointer (IP). The CPU imple-
ments the IP as a register containing the address of the RAM location of
the next instruction to be executed (see figure 4.3). When we are done
with an instruction, we normally go to the next instruction in sequence
(IP+1) unless a control instruction redirects IP. For example, an instruction
“GO 17” sets the IP to 17, so that the CPU next executes the instruction at
memory location 17.

The next step in our story about machines that execute programs is to
show how to design an instruction set that supports any program conform-
ing to the three-part structure above. That is the subject of the next section.

Stack Machine: A Simple Model of a Computer System

For a thousand years students of algebra have been told that arithmetic
operators have orders of precedence: all multiplications and divisions are
done before additions and subtractions. A series of operators of the same
order are evaluated left to right. These rules ensure that all expressions eval-
uate the same, no matter who does the evaluation. For example, 1 + 2 * 6/4
— 2 would be evaluated by applying operators one at a time starting with
the highest precedence:

1+2*6/4-2
1+12/4-2
1+3-2
4-2

2

More advanced students also learned that there is a third precedence level,
exponents and logarithms, which are performed before multiplications and
divisions.

Students of algebra are also taught that algebraic terms can be grouped
within parentheses to force groupings not implied by the rules of precedence.
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For example, grouping the last two terms in the previous expression results
in a different outcome:

1+2*6/(4-2)
1+12/(4-2)
1+12/2

1+6

7

In 1924 Polish logician Jan Lukasiewicz invented a new notation, now
called Reverse Polish notation (RPN), which followed the rules of prece-
dence and avoided parentheses.* The idea was to follow two numbers by
the operator that combines them in the expression. In his notation the two
expressions above respectively become

126*4/+2-
126*42-/+

Early in the days of computer science someone noticed that Polish nota-
tion expressions could be evaluated on a stack. A stack is a last-in-first-out
memory structure. You read the Polish expression from left to right, push-
ing numbers on the stack as you encounter them; and you perform opera-
tors on the top two numbers, replacing them with the result. For example,
the series of stack configurations for the first expression is as follows (with
top of stack on the right):

1 (Push 1 onto the stack.)

12 (Push 2 onto the stack.)

126 (Push 6 onto the stack.)

112 (Pop 2 and 6, multiply them, then push product 12.)
1124 (Push 4 onto the stack.)

13 (Pop 12 and 4, divide 12 by 4, then push quotient 3.)
4 (Pop 1 and 3, add them, then push sum 4.)

42 (Push 2 onto the stack.)

2 (Pop 4 and 2, subtract, then push difference 2.)

The Burroughs B5000 machine (1961) organized its memory around
a stack and achieved a highly efficient method of evaluating expressions
(Organick 1973). The English Electric KDF9 (1963) used a stack structure.
The Hewlett Packard scientific calculator HP-67 (1972) used the same struc-
ture because it reduced keystrokes and errors when evaluating complicated
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Table 4.1
Instruction Set of Stack Machine

Type Op Code Name Before After  Memory Effects
Arithmetic ADD Add Sab Sc
and logical ~ SUB Subtract
operators MUL Multiply

DIV Divide

EQ Test for equal

NE Test for not

equal

Memory LA a Load addressa S Sa v = Mem|a]
interface L Load Sa Sv leaving Mem|[a]=v

ST Store Sav S
Sequencing GO Go Sa S leaving IP=a

GOF Go on false Sav S leaving IP=a if v=0
Completion  EXIT Exit empty  empty

expressions. Modern HP calculators continue to use the stack structure.
Numerous programming languages, beginning with Algol (1958), were
designed on the assumption that the underlying machine had a stack mem-
ory. Modern multicore computing chips use stack memory for subroutine
calls. Modern compilers use CPU machine registers to simulate pushdown
stacks for evaluating expressions. The stack memory structure is ubiquitous.

Table 4.1 is an instruction set for a CPU-RAM configuration as depicted
earlier in figure 4.3. “Op Code” is an abbreviation for the name of the
instruction. The effect of executing the instruction is shown in the “Before”
and “After” columns, which show the stack configuration just before and
just after the instruction is executed. The letter “S” represents the state
of the stack prior to the current instruction. Mem[a] means the contents
stored in memory location a. Essential side effects of changing the instruc-
tion pointer and changing the contents of a memory location are shown in
the “Memory Effects” column.

Figure 4.7 is an example of a program in this instruction set evaluat-
ing an assignment statement that sets a variable X to the value of an
expression.

Procedures and Exceptions

The machine’s instruction set contains instructions that control the
sequencing of the CPU as it moves through a program. Programs in higher-
level languages require more sophisticated sequencing control because
they allow programmers to write their own functions beyond those in the
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X = A*(B+C)
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A 4 4 4 4 4 4 20
B 3 3 3 5
C 2

Figure 4.7

This series of snapshots shows the stack as it executes a program implementing the
statement X=A*(B+C) when A=4, B=3, and C=2; when the program is done, memory
location X=20 and the stack is empty.

instruction set and to write functions that deal with errors and other events
requiring special attention. The basic structure for both cases is the proce-
dure call and return mechanism. The purpose of the procedure mechanism
is to transfer the CPU to the first instruction of another program and, when
the called program is done, to return the CPU to its calling point.

The designers of the first stored program computers realized that pro-
grammers would want to add functions of their own design, implemented
as new subprograms that can be invoked with the same ease as machine
instructions. A subprogram mechanism allows a programmer to call a sub-
program from wherever it is needed rather than rewrite its code at that
point in the program. It also allows experts to create libraries of standard
functions, such as trigonometry or algebra, which can be used reliably by
anyone else.

Originally, in the 1950s, reusable subprograms were called subroutines.
That name eventually gave way to “procedure” in the 1960s under the
influence of the Algol language. A procedure is a subprogram that imple-
ments a single, usually simple, function.

The key idea of procedures is that a procedure is “active” only between
the moment it is called and the moment it returns, and the data it needs
while active are in a private segment of memory called an activation record
(AR). A call allocates memory for the procedure’s activation record, and
a return reclaims it. When procedure calls are nested—meaning that an
active procedure can call another procedure, including itself—there will be
multiple activation records, one for each call. They will be linked together
in the order of call so that when one returns, its caller can resume from
where it made the call (see figure 4.8). Because returns occur in reverse
order of calls, activation records are pushed on the normal stack on calls
and deleted on returns (see figure 4.9).



74 Chapter 4

Code
372: segments
a D . a
A A . A
1 1 | 1
X f N ( N
Data
Main Y F F G segments
o WV \. J
1 \
1 \
1 \
1 \
372 Saved ip
Value of x Parameters
Locals
Stack
Activation

record

Figure 4.8

Programming languages accommodate procedures (separate subprograms) imple-
menting functions. The MAIN program is treated as a procedure called by the operat-
ing system. In this example the MAIN program has called procedure F, then F called
itself, and then the second F called G. While procedure G is active and executing,
procedures MAIN and both calls to F are active but suspended. The right arrows rep-
resent the call actions and passing of parameters; for example, MAIN called F with
parameter X. The left arrows represent the returns of values; for example the value
Y=F(X). Each procedure is implemented with a code segment and a data segment.
The dashed arrows represent links to the procedure’s code. When a procedure F calls
itself, each instance gets its own data segment, and all instances link to the same
code segment for F. The data segment is implemented as an activation record that
contains the saved instruction pointer (IP), the parameters of the call, local variables
used only by the procedure, and a stack area used only by the procedure. The saved
IP belongs to the caller; for example, the instruction at address 372 in the MAIN code
segment called F, and when F is done the CPU instruction pointer is restored to 372.
Because procedure activations are not known until a program is executed, the storage
for activation records must be handled dynamically. A stack can be used for this pur-
pose because deactivations (returns) occur in reverse order from activations (calls).
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With a few modifications of the CPU, the activation records of an executing program
(as in figure 4.8) can be stored on the program’s stack. Procedure call pushes an

activation record for the called procedure on top of the stack, and return pops it
from the stack. The register AR points to the beginning of the current activation
record. Just prior to the call, the caller code builds the new AR on the stack by load-
ing values of parameters and local variables on the stack. At the call, the IP and AR

registers are diverted to the called procedure, and their former values are restored at

the return. Inside the called procedure, parameters and local values are found rela-

tive to the base of the activation record; for example, the first parameter is at address
AR+3. The caller resumes with the value computed by the called procedure on top

of the stack.
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Consider an example of a call on the function LOG(Y). The purpose of
the procedure call is to execute the code that computes log,Y and leave the
result on top of the stack. To do this the CALL instruction diverts the CPU
to the code for LOG. The LOG code computes the result and places it in the
reserved slot at the start of the AR. When the LOG code finishes, it executes
a RET (return) instruction, which resumes the CPU at the next instruction
after its CALL. These five steps give more details of how this happens:

1. The caller builds a new activation record for LOG in accordance with the
LOG AR template. The template reserves one slot for the parameter (Y) and
two slots for internal local variables. This is accomplished by a series of k =
6 load operations to fill in those slots.

2. The caller places the target address for LOG on top of the stack. At this
point the base of the new activation record is precisely k slots below the
stack pointer; in other words, the new AR base is to be SP — k.

3. The caller executes the instruction CALL k, which does all of the follow-
ing: save IP and AR registers in their reserved slots (at addresses SP — k + 1
and SP -k + 2, respectively), set register AR = SP -k, and pop the top of stack
into register IP.

4. Now the CPU executes the code of the LOG function. That code will
find the value of the parameter Y at location AR+3, and the two internal
variables at AR+4 and AR+5. The code saves the computed value of LOG(Y)
into the slot served for the return value, which is at address AR.

5. The called procedure executes the RET instruction, which sets SP to AR
and restores the values of IP and AR from their saved locations. Now the
caller resumes executing instructions after its call and the value of LOG(Y)
is on top of the stack.

The procedure architecture described above allows recursive procedures,
which are programs that can call themselves.’ Lisp and Algol, first specified
in 1958, were the first programming languages to incorporate recursion.
Their designers did this because they wanted a language capable of express-
ing and executing any algorithm. Lisp expressed algorithms using Church’s
lambda calculus, and Algol expressed them with procedure notation consis-
tent with recursive functions. Around 1960, Edsger Dijkstra proposed orga-
nizing the memory as a stack and built the first working Algol compiler.
By comparison, Lisp compilers were much more difficult; it was not until
the 1970s that efficient ones were available. Many programming languages
since that time have provided for recursive procedures.

The procedure architecture turned out to be immensely useful not
just for programming functions but also for dealing with errors during
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computations. For instance, what happens if a program attempts to divide
by zero? Mathematically the result is undefined, and the program cannot
give an answer. Rather than allow an undefined value to propagate through
the program, CPU designers built the arithmetic-logic unit (ALU) to sig-
nal when this error condition occurs. They modified the CPU instruction
cycle to check for this signal; it is the fourth step of the instruction cycle
described a few pages back. If the “divide by zero” error condition was set,
the CPU used a procedure call to divert to a special subprogram that would
either remove the error or abort the program. The action of diverting the
CPU to the error handler was called an “interrupt.” Organick (1973) charac-
terized an interrupt as an “unexpected procedure call.”

A divide-by-zero error is not the only reason for interrupting the CPU.
Designers used the words exceptional condition for any event that requires
immediate attention from the CPU. Exceptional conditions can be of two
kinds: errors and external signals. An error is a condition in a program that
would cause incorrect or undefined behavior. Examples of errors that can
be detected by sensors in the CPU are divide-by-zero, arithmetic overflow
and underflow, page fault, protection violation, or array reference out of
bounds. An external signal indicates that a high-priority event has occurred.
Examples of external signals are timer alarm, disk completion, mouse click,
or network packet arrival. For any exception, the CPU is interrupted from
whatever it was doing and put to work on dealing with the error or respond-
ing to the external signal. With the addition of an “interrupt vector,” the
CPU can automatically and rapidly invoke interrupt handler procedure k
when the sensors report that exception k has occurred (see figure 4.10).

Choice Uncertainty

The interrupt mechanism opens the door to metastability, a subtle and
potentially devastating error. What happens when an exception signal
occurs at the same time the CPU is trying to read the flipflop that records
the signal? The clock controls when the CPU looks for interrupts, but not
when the external signal arrives.

Here is what happens. Suppose the circuits use 3 volts to represent O and
5 volts to represent 1. The arrival of the external signal triggers the interrupt
flipflop to transition from the O to the 1 state, meaning that the flipflop’s
output voltage changes from 3 to 5 volts. Because that transition takes time,
there is a small interval where the voltage is in between 3 and 5 volts but
not close enough to either be reliably counted as O or 1. Electronics engi-
neers call such an output a “half signal.” A half-signal input can cause a
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An interrupt mechanism enables the CPU to interrupt the current task and execute
a procedure (handler) that resolves an error or responds to a high-priority external
signal. Sensor circuits in the CPU and elsewhere in the computer system detect when
any exceptions exist. A selector circuit selects the exception of highest priority and
outputs its number (or O if there is no exception). At the end of each instruction
cycle the CPU checks for exceptions, and, if there is one, the CPU suspends nor-
mal instruction execution. Instead it uses the exception number (here number 3)
to index an interrupt vector, which is a list of entry-point addresses for each of the
handlers, and makes a procedure call (here on h3). The AR (here for h3) is pushed
on the stack and the normal instruction cycle resumes. When the handler is done,
its return instruction restores the interrupted program, which continues from where
it was interrupted.

flipflop to enter a metastable state with the output voltage poised midway
between the two stable states. That midpoint is like a ball poised perfectly
on the peak of a roof: it can sit there for an unknown amount of time until
air molecules or roof vibrations cause it to lose its balance.

Metastability creates a risk of malfunction of any circuit that reads the
flipflop’s output. If the half signal persists beyond the next clock tick, the
next circuit will receive an input that cannot be interpreted as O or 1, and
its behavior may be unpredictable.

The metastability problem was well known to hardware engineers.
Chaney and Molnor (1973) and Kinniment and Woods (1976) describe



Machines 79

Egt;gfl ———3| in  out f——> Output
FF
|—> clk
Clock
signal

External —l- JI l—
Clock n_nJ
Output —I'Fh“/\\/v“‘"!

Figure 4.11
An experimental setup enables observing flipflop (FF) metastability. Each clock pulse

signal triggers the FF state to match the input signal. If the input signal is changing
when the clock pulse arrives (dashed external line), FF may enter an indefinite state
that lasts several clock intervals (dashed output lines). In a digital computer, the
indefinite output becomes the input of other logic circuits at the next clock pulse,
causing half-signal malfunctions.

experiments to measure the likelihood and duration of metastable events.
By synchronizing clock frequency with external signal frequency, they
attempted to induce a metastable event on every external signal change.
They saw frequent metastable events on their oscilloscope, some of which
persisted 5, 10, or even 20 clock intervals (see figure 4.11). Other engineers
had known for a long time that chooser circuits, also known as arbiters
because their job was to arbitrarily choose one of two simultaneous signals,
were hard to build (Seitz 1980, Denning 1985, Ginosar 2003).

Since that time, chip makers have been concerned about the chances of
metastable states in their circuits. Sutherland and Ebergen (2002) reported
that contemporary flipflops switched in about 100 picoseconds (100 x 107
seconds) and that a metastable state lasting 400 picoseconds or more
occurred once every 10 hours of operation. Xilinx.com, a chip maker,
reported that its modern flipflops had essentially no chance of showing a
metastable state when clock frequencies were 200 MHz or less, but faster
clocks incurred metastable events (Alfke 2005). In experiments with inter-
rupt signals arriving 50 million times a second, they observed a metastable
state about once a minute at clock frequency 300 MHz and about once
every 2 milliseconds at clock frequency 400 MHz. In a computer system
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generating 500 interrupts per second, about 1/100,000 of their experimen-
tal rate, these extrapolate to one interrupt-caused metastable state about
every 2 weeks at 300 MHz and about every 3 minutes at 400 MHz.

Now you can see the problem. There is a chance that the interrupt flip-
flop is metastable at the time when the CPU asks for the state, and that
throws the next bank of flipflops controlling the CPU cycle into a meta-
stable state. If those flipflops have not settled down by the next clock tick,
the behavior of the CPU is unpredictable. The experimental results show
that there is a good chance this can happen.

This problem plagued many early computer systems. Before engineers
understood it, all they would see was that at random times the CPU would
stop. They described these mysterious freezes as “cosmic ray crashes”
because they seemed to be random disruptions of transistor function. Only
a full-power-off reboot would restart the CPU. Because they could occur
every few hours or days, these freezes could be quite troublesome.

Around 1970 David Wheeler, a hardware engineer at the Computing
Laboratory of the University of Cambridge, UK, discovered the reason for
these mysterious freezes: half signals appearing at the output of the inter-
rupt flipflop. He designed a new kind of flipflop, which he called a thresh-
old flipflop, and a protocol for using it that eliminated the danger of CPU
freeze on interrogating the interrupt flipflop (see figure 4.12).

Situations like the interrupt flipflop confront hardware engineers in
many other parts of a computer. Circuits that must choose between near-
simultaneous events are everywhere. For example, at the same time, two
CPUs access the same memory location, two transactions lock the same
record of a database, two computers broadcast on Ethernet, two packets
arrive together at the network card, an autonomous agent receives two
requests, or a robot subsystem perceives two alternatives at the same time.
In all these cases if we demand that a decision be made between the choices
by the next clock tick, there is still a chance that the chooser circuits have
not settled. If we want to wait for the circuits to settle, we need to stop the
clock.

We can summarize these findings about chooser circuits with the choice
uncertainty principle: “No choice between near-simultaneous events can
be made unambiguously within a preset deadline”® (Lamport 1984, Den-
ning 2007b). The source of the uncertainty is the metastable state that can
be induced in the chooser by conflicting forces generated when two distinct
signals change at the same time.”

Choice uncertainty is not about how a system reacts to an observer but
how an observer reacts to a system. It also applies to choices we humans
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The threshold flipflop (TFF) guarantees that the CPU’s interrupt input (“int”) will be
stable when interrogated at the end of an instruction cycle. When the CPU asks for
the value of the external interrupt signal (“int?”), it triggers the TFF to record the cur-
rent external signal in its state, and it turns the clock off. As soon as its state returns
to “0” or “1,” the TFF sends a pulse on the T output, which turns the clock back on.
The clock suspension is only as long as necessary to assure that TFF is again stable.
David Wheeler proposed the idea of temporarily shutting off the clock when check-
ing interrupts in the Cambridge CAP computer in the 1970s.

make. What happens when the options are presented together and we are
given a short time to choose? Sometimes we are still in indecision when the
deadline comes, and we lose the opportunity presented to us. We do not
have the option, as did Wheeler, to turn off the clock until we can decide.
Individuals and groups can persist in an indecisive state for seconds, hours,
days, months, or even years.

The possibility of indefinite indecision is often attributed to the four-
teenth-century philosopher Jean Buridan, who described the paradox of
the hungry dog that, being placed midway between two equal portions
of food, starved (Lamport 1984, Denning 19835). If he were discussing this
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today with cognitive scientists, Buridan might say that the brain can be
immobilized in a metastable state when presented with equally attractive
alternatives.

Conclusions

Our purpose has been to show, in convincing detail, that it is possible to
build an electronic machine that will calculate any function for which
someone can find a computational method. The machine consists of a
processor (CPU) and memory (RAM). In a repeating instruction cycle, the
processor executes a sequence of machine instructions stored in RAM, oper-
ating on data also stored in RAM. The machine instructions implement
simple operations including arithmetic, memory read and write, and con-
trol sequencing. Each instruction is implemented by a circuit in the CPU.
We showed how to design a simple instruction set for the case where the
data part of RAM is organized as a stack. Instructions for basic operations,
choices, and iterations give the machine universal computing power.

The procedure-calling mechanism permits separately written programs
to be invoked as procedure calls at any point within any program. On
detecting exceptional conditions, operating systems use the procedure
mechanism to interrupt programs.

We concluded with the choice uncertainty problem, which is that
chooser circuits may be thrown into a metastable state by simultaneous
inputs and be unable to make a choice by a deadline such as the next clock
tick. The problem arises from the physics of circuits and can be avoided if
the clock is turned off until the circuits settle.

The study of machines reemphasizes the central importance of physi-
cal “stuff” in computation. All the instructions and data of a machine are
recorded as patterns of O and 1 in physical circuits and media. The O and 1
are the names of states of the media. Instructions manipulate these stored
states in precise, prescribed ways. Programs record the steps of computa-
tional methods as series of instructions arranged in precise patterns. The
machine reads the program instructions and carries them out on the data.
All this is done automatically. The circuits simply obey laws of electricity
and physics; they have no understanding of the meanings of the signals
passing through them.

The stack structure cited here is only one of several models for execut-
ing programs. Each model has its own rules and machine structures. But
they all do the same thing: control electronic circuits that calculate output
values from input values.



5 Programming

People who are more than casually interested in computers should have at least
some idea of what the underlying hardware is like. Otherwise the programs they
write will be pretty weird.

—Donald Knuth

Programming is one of the most difficult branches of applied mathematics; the
poorer mathematicians had better remain pure mathematicians.

—Edsger Dijkstra

Ada Lovelace, it is said, was the first computer programmer. In 1843 she
wrote in her “Notes on Babbage’s Analytic Engine” an algorithm that would
cause the machine to calculate a sequence of Bernoulli numbers. Babbage
never completed his machine; Lovelace never ran her program.

For input of programs and data, Babbage planned to use punched cards
such as those used at the time for Jacquard looms. Historians might wonder
if those who specified card sequences for the looms were programmers; they
encoded methods for execution by a machine and, unlike Lovelace, got to
see them run. Modern programmers would say no, loom programs are not
computer programs: looms could not compute mathematical functions.

Historians might also wonder if mathematicians who devised algorithms
were programmers—for example, Newton’s elimination method for solv-
ing simultaneous equations (1670) or Napier’s method for calculating log-
arithms (1614). Modern programmers would again say no because these
algorithms were not encoded for a particular machine.

Almost 100 years passed between Lovelace’s program and the first pro-
grams that ran on electronic digital computers. The first programmers of
this generation were the women who specified algorithms for the ENIAC as
patterns of cables on patch panels (1949) (see figure 1.3 of chapter 1). Two
years later the programmers of EDSAC and EDVAC—the first stored-program
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computers—wrote algorithms as binary numbers passed to the computer
on paper tapes. The women who calculated ballistic tables for the Army
during World War II were also programmers, although their programs were
not instructions for a machine but for themselves to operate mechanical
calculators. In effect, they were human processing units.

From the beginning, programmers found that they spent a considerable
amount of time looking for errors in their own programs (Wilkes 1985).
Errors are a universal occurrence; even the best programmers make them.
Computer designers soon began to design programming languages and
methods of dynamic error checking that would help in the fight against
errors. That fight continues today. Designing error-free software is not only
a reliability problem, it is a safety and security problem.

Our purpose in this chapter is to demonstrate that, in spite of the large
numbers of languages, the basic idea of a translator—automatically con-
verting source programs into instructions for the machine—is the same for
all languages. Moreover, there are programs called compiler generators that
take a language description and output a compiler for the language. Auto-
matic generators have removed the barrier to implementing new languages
when and as they are needed.

Programs, Programmers, and Programming Languages

A program is an expression of an algorithm, encoded for execution on a
machine. A programming language is an artificial language with its own rules
of syntax, used for expressing programs. A programmer is a person who uses
programming languages to design programs and works to get them to run
without error on machines.!

Programming languages have proliferated since the first commercial lan-
guages were introduced in the late 1950s. How many are there? In 2014 Wiki-
pedia had a list of over 500 programming languages that are or have been
used for commercial software production. If you count languages invented
and their minor variants, upgrades, and updates, the number is likely to be
many thousands.? Each was designed for a specific purpose, usually to facili-
tate design of computations in a particular domain. Thousands of domains
use computing; hence, a claim of thousands of languages is no surprise.

Table 5.1 is a sampling of prominent languages. Three of the original
four are still used today. Only Algol does not survive as a language; how-
ever, many other languages inherited their syntax from Algol.

One of the major innovations of the Algol language project was the use
of a formal grammar to specify the syntax of the language. The grammar
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Table 5.1
A Few Widely Used Programming Languages

Language Date Purpose

Fortran 1957 Efficient processing of equations of mathematical
models

Algol 1958 General algorithmic language supporting recursive
procedures

Lisp 1958 Manipulate lists representing lambda-expressions from
the Church calculus (the first language used in Al)

Cobol 1959 Support operations in business, finance, and
administration

APL 1962 Special purpose language for manipulating arrays of
numbers representing functions

JCL, Shell 1966 Language to control processing of jobs in an operating

system; successors are the shell languages of Multics
(1968) and Unix (1972)

PL/T 1966 General algorithmic language based on Algol and
including features for business data processing and
system programming; most of Multics and OS/360
was in PL/I

Simula 1967 Discrete event simulation using classes of objects; the
first object-oriented programming language

Pascal 1970 Algol-like language supporting structured
programming; popular language for teaching
programming to beginners

Smalltalk 1971 General object-oriented programming with message
passing from Simula; standardized in 1980

Prolog 1972 Find whether a given query is a logical consequence
of the terms declared in the program’s database (used
in Al, natural language processing, and theorem

proving)
C 1973 System programming, first used in the Unix kernel,
later Linux
CLU 1974 Object oriented language built on abstract data types
Ada 1983 US Department of Defense language to replace the

hundreds of languages then used by DOD and to
provide reliable programs

Sisal 1983 Express algorithms as functional compositions
amenable to high-speed execution on parallel
processors

Perl 1987 Scripting language commonly used in web sites

Java 1995 Obiject-oriented language whose programs could run
on any machine with a web browser

Python 2000 General-purpose programming supporting imperative,

functional, and object-oriented styles and
emphasizing readability
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was called Backus-Naur form, or BNF for short, after its developers John
Backus and Peter Naur (Backus 1959, Knuth 1964). The grammar facilitated
agreement on what the language structures meant and on how to generate
machine code that would execute those structures faithfully. The grammar
was also the basis of a method for building a compiler program. Subsequent
research led to very efficient compilers and also to compiler-generators,
which would create a compiler automatically given the grammar. We dis-
cuss the principles of compilers shortly.

Here is an example of a BNF specification for the portion of a program-
ming language that uses assignment statements to associate the values of
arithmetic expressions with numbers and variables:

<assign> = <var> = <A>

<A> = <A><aop><A> | <M>
<M> = <M><mop><M> | <F>
<F> = (<A>) | x

<aop> =+ |-

<mop> u= |/

The syntactic elements are named in < > brackets. The elements <A>, <M>,
and <F> stand for additive, multiplicative, and factor expressions, respec-
tively; and the elements <aop> and <mop> stand for additive and multiplica-
tive operators, respectively. The double-colon-equal symbol (::=) means “is
defined as.” The vertical bar (]) separates alternatives. The letter x stands for
any alphanumeric variable name or numeric constant (see figure 5.1). This
grammar honors arithmetic precedence by pushing multiplicative opera-
tions lower than additive ones, which forces the multiplicatives to be evalu-
ated before the additives. In a later section we show how a compiler uses
these syntax trees to generate machine code that implements the expression.

Programming as a Practice

Programming is the practice of encoding algorithms for execution on a
machine. A programmer’s work consists of two main parts:

1. Design an expression of a solution method for a problem and encode it
for a machine

2. Verify that a machine controlled by the program properly solves the
problem

Programmers use many tools to support them in this work. Design tools
include programming languages and graphical editors that force compliance
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Figure 5.1

The assignment statement X=A+(B-C)*D can be represented by two kinds of syntax
tree. The one at the left applies the grammar of the text to build a tree explaining
the syntax of the expression. The one at the right is a simplified form obtained by
retaining only the operators and operands. The parentheses are not needed once the
structure is known because the grammar honors arithmetic precedence.

with the language syntax. Compilers, linkers, and interpreters convert a
program into a computation on a machine. Testing and debugging tools
help locate and remove errors. Library and version control tools help keep
programs up to date and enable their reuse. Programmers are artisans in
using these tools.

Programmers develop varying levels of skill at programming. Novice pro-
grammers find themselves spending a lot of time trying to understand the
syntax of their programming languages and generally accepted basic algo-
rithms. Competent programmers can perform a range of standard program-
ming tasks and satisfy customers without requiring a supervisor to watch
over them. Virtuoso programmers can program large systems well and can
mentally move from high-level system views to low-level machine code
views with great facility. Productivity—measured, for example, as lines of
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code written and verified—varies hugely among programmers. Many profi-
cient programmers are ten times more productive than entry-level compe-
tent programmers, and a few virtuosi are as much as fifty times as productive.

Some programmers have become legendary because they made pro-
grams that changed the world. John MacCormick (2012) celebrates nine
algorithms that were the work of such programmers—names such as Len
Adleman, Sergey Brin, Jim Gray, Tom Mitchell, Larry Page, Ron Rivest, and
Adi Shamir. Many of their key conceptual tricks have become new prin-
ciples for computation.

In addition to programs many systems have become legendary in their
influence—for example, operating systems such as VM/370, Multics, Unix,
Windows, and MacOS; database systems such as Oracle; networking sys-
tems such as Akamai web caching system; TCP/IP protocol suite; Domain
Naming System (DNS); and Digital Object Identifier (DOI) system used by
publishers. Some of their developers are legendary—names such as Vint
Cerf, Fernando Corbato, Bill Gates, Bill Joy, Bob Kahn, Alan Kay, Butler
Lampson, Paul Mockapetris, Roger Needham, Jon Postel, Rick Rashid, Den-
nis Ritchie, Jerry Saltzer, and Ken Thompson.

Many programs are embodied into large systems that required hundreds
or thousands of programmers. Operating systems and large applications
such as Microsoft Office are examples. How to organize that many pro-
grammers to maximize productivity, minimize errors, and meet deadlines is
not simply a talent selection process; it presents major challenges in project
coordination and testing that have dogged the software industry for fifty
years. Fred Brooks, who was the manager of the IBM 360 operating system
project in the 1960s, recorded many insights into large-project organiza-
tion in his famous book The Mythical Man Month (Brooks 1995). We discuss
principles for the design of large systems later in chapter 10 on Design.

The Error Problem

Since its beginnings in the 1940s, software has had a reputation of being
extremely error prone. Programmers have always been frustrated by the
intricacy of programs for even the simplest tasks, the amount of time they
need to locate mistakes in their own programs, and the challenges of pro-
tecting their software and data from external errors (see figure 5.2).

Most physical systems obey continuum laws that guarantee that a small
change in one variable produces a small corresponding change in other
(dependent) variables. Thus, the system can naturally tolerate a small error.
Many biological systems, including human and animal immune systems,
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Errors in the output of a software module can arise in two ways: as a consequence
of a fault (defect) in the module or as a consequence of an erroneous input. Finding
defects and detecting erroneous inputs can be dauntingly complex.

contain self-detection and repair mechanisms that respond to such errors
through feedback and correct them.

In contrast, the virtual worlds created by software tend to be highly sen-
sitive to errors. A single bit changed in a program can drastically change the
algorithm represented by the program. Moreover, it is easy to create soft-
ware whose actions conflict with physical laws, leading to errors when the
software interacts with the world. The quest to reduce or eliminate errors
has not been easy given the vulnerabilities inherent in the chain of trans-
formations that designers must master (see figure 5.3).

The desire to reduce errors has motivated programming language design-
ers to adopt error-reducing structures. Over the years these have included
types, subroutines, separate modules, exceptions, objects, packages, syntax
editors, debuggers, and languages that reduce the “semantic gap” between
the expressive power of a language and the problems of the domain. Even
with these improvements, errors are still a major problem in programming.

The desire to reduce errors motivated software engineers (professional
systems programmers) to adopt the traditional four-stage engineering
design process: (1) requirements, (2) specifications, (3) prototypes, and (4)
testing. In the requirements stage, engineers consult with users and others
familiar with the domain of use to learn all the behaviors that the system
should have and should not have. In the specifications stage, engineers cre-
ate formal descriptions in a precise language for the system’s functions that
meet the requirements. In the prototype stage, engineers implement a par-
tially working system. In the testing stage, engineers subject the prototype
to various tests to see whether it behaves according to the specifications
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The process of transforming a designer’s intention into a machine is fraught with
opportunities for error. There are four. (1) The specification does not accurately rep-
resent the designer’s intention or is based on misunderstandings of user expecta-
tions. (2) The programmer makes mistakes, for example, by introducing bugs or poor
approximations, and the compiler might contain bugs or Trojan horses that cause
the machine code not to be equivalent to the source program. (3) The machine itself
contains bugs, defects, malfunctions, intrusions by other buggy machines or attack-
ers, and other factors that cause it to misbehave while executing its basic operations.
(4) The users’ expectations of what the machine’s job is differs from what they see
the machine doing. Automatic verifiers try to eliminate type 2 errors. Fault-tolerant
system designs help reduce type 3 errors. Prototyping and getting user feedback help
reduce types 1 and 4 errors.

and meets user expectations. Engineers view this process as imprecise
and are constantly iterating and backing up as they learn new things. For
example, while writing a specification, they may learn that a requirement
is ambiguous, and they must consult with users to resolve the ambiguity.
While implementing a prototype, they may learn that a specification leads
to a major inefficiency, requiring a change of specification or requirement.
While testing, they may discover a performance problem or uncover a bug,
requiring that they double check their implementation, review the speci-
fications, or consult again with users. These steps can become unwieldy
with large systems consisting of many modules and built by large teams.
Sophisticated decision tracking, coordination, and version control systems
are used to keep track of all the changes, steps forward, and steps backward.

Even when this process is run by experienced engineers, it is distress-
ingly common for projects to overrun their budgets or deadlines. Typical
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estimates are that 60 percent of software projects fail by being over budget,
late, or missing an important function; and about 30 percent are canceled
because of poor execution.? Although the reasons for failure are often put to
management misestimating cost and time, the sheer complexity of many
systems also challenges even the most experienced engineers. There are
strong economic reasons for finding sound design principles.

Automatic Translation

A critical component of programming is the conversion of the program
as an expression into a form executable on a machine. There have been
two approaches to this, the compiler and the interpreter. A compiler is a
program that takes an input file containing string of symbols representing
a program, parses it into a syntax tree according to the grammar of the lan-
guage, and generates machine code that implements the operations called
for by the syntax tree. An interpreter is a program that also parses the input
but, instead of generating machine code, it calls system operations as soon
as the parser identifies them; the system operations are subroutines already
compiled into machine code. Over the years the distinction between the
two forms of execution has blurred. Perhaps the most important one is that
a compiler runs once and produces executable machine code that can be
run many times, whereas an interpreter is run on every execution.

Let us begin with an examination of a compiler’s function. The objective
is to translate a program into a set of machine instructions that implement
exactly what the program specifies (and nothing else). To accomplish this
we need two things. First, the programming language grammar (BNF) must
be unambiguous, meaning that there is exactly one syntax tree for any
given valid input string. Second, the translation process should map a syn-
tax tree to a unique machine code sequence.*

For simplicity, we assume that parsing BNF grammars leads to a syn-
tax tree with operators at the internal nodes and variable names or con-
stants at the leaf nodes (the simplified tree in figure 5.1 illustrates this). We
also assume that the programming language allows for the basic structures
mentioned in chapter 4 on Machines: assignment of a value to a variable,
sequencing statements, choosing between statements, and iterating state-
ments. These structures are sufficient to program any algorithm; if we can
translate them, we can translate any program.

Figures 5.4-5.7 illustrate the translations for assignment statements and
expressions, sequencing, choice, and iteration. The left part of each figure
is a syntax tree for the structure, and the right part is a template of machine
instructions that implement the tree.
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Figure 5.4

This diagram summarizes the work of a compiler to generate code for the assignment
statement X=A+(B-C)*D of figure 5.1. The compiler first parses the statement into
a tree with the operators at the internal nodes and operands at the leaves. It then
makes a counterclockwise traversal (dotted line), and outputs a stack instruction for
every leaf or operator the last time it passes that leaf or operator. The result (right) is
an instruction sequence that properly evaluates the statement on a stack machine
(see chapter 4).
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1 1

1 1

1 Code 1

1 1
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1 1

1 1
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- :
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Figure 5.5

This diagram summarizes the work of a compiler to generate code for a sequence of
statements. The compiler first parses the two statements into their trees and joins the
two with a semicolon operator (denoting sequencing). It then makes a counterclock-
wise traversal and generates the code pattern at the right, which simply puts the code
for S1 before the code for S2.
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-
>
1

If C then S1 else S1

exit:

Figure 5.6

This diagram summarizes the work of a compiler to generate code for a selection
statement. The compiler first parses the three components (condition expression C,
and statements S1 and S2) into their trees and then joins the three with an “if” opera-
tor. It then makes a counterclockwise traversal and generates the code pattern at the
right. After each code segment it inserts jump instructions to make sure that S1 code
executes when C is true and S2 code executes when C is false. The instruction GOF
(go on false) assumes that a true-false value followed by target address are on stack,
which is accomplished by the “LA F” and code segment for C.

The method of converting a tree to instructions is called “tree traversal.”
We imagine following a path (see figure 5.4) counterclockwise around
the tree, visiting every node; the path visits a leaf node once and a k-way
operator node k + 1 times; it outputs instructions the last time it passes
a node.

The compiler method outlined above has one drawback. There can be
a large “semantic gap” between the expressive level of the source language
and the machine code. A large gap leaves more to the compiler writer’s
interpretation, which may not agree with the language designer’s intended
meaning. That increases the possibility of errors in the code.®

Language designers have sought to narrow the semantic gap by extend-
ing the instruction set of the base machine. The extended instructions are
implemented as separately compiled and validated procedures. Now the
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While C do S1 we LA exit

1
Code :
forC

exit:

Figure 5.7

This diagram summarizes the work of a compiler to generate code for an iteration
statement. The compiler first parses the two components (condition expression C
and statement S1) into their trees and joins them with a “while” operator. It then
makes the counterclockwise traversal and generates the code pattern at the right. Af-
ter each code segment it inserts jump instructions to make sure that S1 code executes
while C is true and exits as soon as C is false.

compiler can translate some language operators to the extended instruc-
tions, reducing a possible source of translation error (see figure 5.8).

The Java Virtual Machine (JVM) is a prominent example of this approach.
The instructions of the JVM, called “bytecodes,” implement actions on Java
objects. The Java compiler translates a Java program only into bytecodes and
not base machine instructions. The JVM instruction set is implemented as
a set of procedures, one for each bytecode, compiled for the base machine.
This two-level design enables the portability of Java programs. The JVM can
be implemented within any operating system by coding the bytecode pro-
cedures with the instructions of the base machine. Thus, bytecode output
by a Java compiler can be executed on any JVM in any operating system. A
user on any machine can create and compile a Java program and distribute
it to any other machine via a web site.

Operating systems are great examples of virtual machines. Operating
systems manage multiple kinds of objects including processes, virtual mem-
ories, message channels, files, input-output, and directories. A subsystem
manages each kind of object; for example, the file system manages files by
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A virtual machine is a common mode of execution. Here we show a base machine

with a set of instructions (nodes labeled i). A virtual machine is an extension of the

base machine created by adding new operations as procedures executable on the base

machine (nodes labeled p). The translator of the source code can use operator nodes in

the syntax tree corresponding to the virtual machine’s virtual operations. The Java

language is based on this kind of execution environment. The Java compiler trans-

lates the source into “bytecode,” a series of instructions for the Java virtual machine

(JVM). The JVM is implemented separately for each operating system (base machine)

by programming its operations in the base system’s machine code. This enables great

portability of Java programs because it is relatively easy to implement JVMs for any

operating system.
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providing standard operations to create, delete, open, close, read, and write
files. The file system virtual machine provides these six extended instruc-
tions, which are much more reliable and secure than user-defined file oper-
ations. In operating system parlance, the file system manages “file objects”
by making “system calls” on the six operations. Input and output of pro-
grams are usually passed as files. The compiler can translate input or output
operations in the source to the proper file system operations. System calls
are much easier and more reliable than subroutines linked from a library.

Operating systems have a component called the “shell” that implements
a job control language. Users interact with the shell to issue commands say-
ing what programs they want run and where their input and output are.
The shell parses a command into a syntax tree and uses the tree to deter-
mine which system calls are needed (see figure 5.9). Unlike a compiler, the
shell uses its parser just once to process a command. This is a good example
of the interpretive mode of language translation.

sort < infile > outfile

V1 = CREATEVM(sort)
SETVM(v1, in=infile)

sort SETVM(v1, out=outfile)
STARTVM(V1)

infile outfile

Figure 5.9

The Unix shell language lets a user type the name of a program, such as sort, which
gets its input from an “infile” specified by the user and places its output into an
“outfile” specified by the user. The user types this as a line shown at the top left. The
“<” symbol means to use the next name as an input file and the “>” means to use
the next name as output file. The parser creates a syntax tree as at the bottom left
with “VM” for virtual machine as the operator node. In traversing the tree, the shell
interpreter generates the four operating system calls shown at the right. The first
creates a virtual machine running the “sort” program. The second sets the input of
the virtual machine to the “infile.” The third sets the output of the virtual machine
to the “outfile.” The fourth initiates the execution of the virtual machine. When the
virtual machine is done (sort terminates), the script is done, and the user may now
type a next command.
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Conclusions

Programming is the action of designers preparing computational solutions
to problems. Good programming is an artisan skill developed with good
training and years of practice.

Programming languages are designed for particular domains. They allow
programmers in the domain to express computational solutions in terms
familiar in the domain. Because programming languages are defined with
Backus-Naur Form (BNF) syntax, and we know how to build parsers for any
BNF grammar, it is easy to generate compilers for new languages. These tai-
lored languages reduce the semantic gap between the programmer’s inten-
tions and the expressive power of the language.

Programmers have a concern for errors that sometimes borders on the
paranoid. The process of building a computational solution to a problem
is fraught with errors, which can occur at any of four key points: express-
ing intentions and desires accurately, programming accurately, compiling
accurately, and executing accurately. Here, “accurate” means preserving
the original intention of the designer. System designers have provided an
impressive array of technologies to help programmers avoid errors and
write dependable, reliable, usable, safe, and secure programs.

The part of the process that translates source program statements into
machine code can be fully automated. Once the mappings are set and veri-
fied, programmers can have great confidence that their machine codes do
exactly what the language statements say and nothing more or less. To
illustrate, we showed how a compiler translates the standard structures of
assignment, sequencing, choice, and iteration into machine codes.

When there is a large semantic gap between the language and the
machine, the language designer and compiler writer have to deal with pos-
sible errors of interpretation that creep into the translations. The compiler
writer could use a pattern of machine code that the programmer would say
does not implement the intention properly. One way to reduce this kind
of error is to close the semantic gap by extending the base machine with
virtual machine instructions. The virtual machine instructions perform
operations that closely mirror the actions intended by users of objects. For
example, the operations create, delete, open, close, read, and write of a file
system are virtual instructions that execute those operations on files. The
compiler is greatly simplified if it can translate file input and output into
file system calls rather than compile them into machine code.

The compiler is one mode of translation. Another is the interpreter,
which parses a statement in a language and then dynamically calls the
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operators in the syntax tree as they are processed. Many languages such
as logic languages, list-processing languages, and command languages are
more efficient when translated in interpretive mode. The main reason
for this is that the operations require very dynamic use of storage, and a
dynamic run time system can adapt quickly through such means as garbage
collection.

With these designs we can be certain that the machine code implements
exactly what the program calls for and nothing else. If we could not be cer-
tain of this, we could not use programming languages effectively.



6 Computation

The information highway is about the global movement of weightless bits at the
speed of light.

—Nicolas Negroponte (1996)

This sentence is false.
—Alfred Tarski

Computations are sequences of constantly changing constellations of bits.
Each change affects only a few bits, takes a little time, and uses a little
energy.

Computational work is measured by the time (or energy or space)
required to get a computation to its completion. How much time (or energy
or space) does a computing machine need to complete a task? Can we pre-
dict the computational work of a task or a family of related tasks?

Such performance questions have challenged designers of computa-
tional tasks since the 1930s. Designers ask four questions:

1. Is there an algorithm for the task?
2. How long does the algorithm take?
3. Is there a faster algorithm?

4. What is it?

These questions have led to an amazing search to understand the “com-
plexity” of computation, that is, the number of time steps needed to calcu-
late the values of computable functions. Table 6.1 is a summary of the four
main categories of functions discovered in this search. These categories will
be our guide in the rest of this chapter.

The table refers to decision problems, which are functions that decide
whether something is true (1) or false (0) about the values presented to
them. Computer scientists use decision problems to calibrate the difficulty
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Table 6.1
Categories of Functions by Difficulty of Computing Them

Order of
Category Description Technical Name  Difficulty
Easy Decision problems for which Polynomial (P) O(log n) and
fast algorithms are known or tractable 0o(n") for
constant k
Hard, with Decision problems for which Nondeterministic ~ O(2"), O(n)),
easy no fast algorithm is known, polynomial (NP) or worse
verification ~ but a proposed solution can and NP-complete
be quickly verified; typically
involve searches over large sets
Very hard Decision problems for which Intractable 02"
no fast algorithm or verifier is where f(n) is
known exponential
or worse
Impossible Decision problems for which Noncomputable
no algorithm at all can exist or undecidable

of various problems. Nothing is lost by this apparent restriction. For any
function F(x), there is an associated decision function DF(x,y) that returns
1 when F(x) =y and O otherwise. This decision function is no more difficult
to solve than the general function, and sometimes the decision function is
much easier than the general function. However, if the decision function is
hard, the original function will be at least as hard.

The terms “easy” and “hard” are relative. Easy means that we can decide
the problem in a reasonable time for instances that fit on available comput-
ers. Hard means that we can decide only limited, rather small instances in
a reasonable time. Very hard, or intractable, means that the fastest super-
computers would take centuries to decide instances of interest to us. In the
middle, between very hard and easy, is a large set of over 3000 practical
problems from many fields (technically called NP-complete problems) that
are hard to decide but whose solutions can be verified easily. If anyone finds
a fast algorithm for any one of them, that algorithm can be adapted to solve
all the others fast. Whether or not such a fast algorithm exists is considered
to be one of the foremost open questions in mathematics and computing.

The order of difficulty in the table is the growth rate in the number of
steps in the solution as a function of the size of the input (n). Thus O(n)
means that the computation time grows linearly with the size of the input.
O(2") means that the computation time grows exponentially. The meanings
of these difficulty measures are explained as we go along.
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Sidebar 6.1
Sidebar—Turing Machines

The Turing machine (1937) has long been the reference model for computa-
tion, winning out over competing models such as Post’s rewriting systems,
Church’s lambda calculus, and Godel’s recursive functions. It achieved this
status because it most closely resembled automatic computers and could com-
pute any function any of the other models could.

# | # |0 1 0 1 1 1 0 0 1 0 0| # | #

A

A Turing machine consists of a finite-state control unit that moves along a
two-dimensional infinite tape. The tape squares contain any of the symbols O,
1, or #, where # is a blank. The control unit is specified as a set of tuples of the
form (g, a/b, LR, q’), where q and q’ are control states, a and b are tape symbols,
and LR is a direction indicator. Thus, (17, 1/0, R, 22) means “if in state 17 and
the current square contains 1, write O, move right one square, and enter state
22.” One state is designated as the halting state. If and when the machine
enters that state, it halts and its output is the contents of the tape.

Turing also described a universal machine, which could simulate any other
machine described by its set of tuples. The universality of the machine led to
the Church-Turing thesis, the hypothesis that any other computational model
can be represented as a Turing machine. No new computational model has
yet been found that violates this thesis. Many functions, such as the halting
decider, are not Turing computable. Other functions such as image labeling
(figure 3.7 in chapter 3) are computable by human-machine partnerships, but
no Turing computable method is currently known.

The Turing machine is a convenient reference model for computational
complexity. An algorithm’s complexity is measured as the number of Turing
machine moves needed to execute that algorithm on an input. The inherently
sequential Turing machine is ideal for counting moves and determining an
upper bound on how long the machine would take to reach a halting state.

(Continued)
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The notion of a verifier corresponds to a “nondeterministic” Turing
machine. In such a machine multiple tuples may apply for a given state and
current tape symbol. For example, the machine might contain (17, 1/1, L, 24)
in addition to the tuple (17, 1/0, R, 22) given above. Which tuple should the
machine apply? The machine must make a choice because the next state is
not uniquely determined by the current state and tape symbol. A nondeter-
ministic machine computes an output if there is a series of choices that leads
to a halting state with that output on the tape. A nondeterministic machine
can be converted to a deterministic one by building a tree of copies of the pro-
gram corresponding to each possible choice; such a tree can quickly become
overwhelmingly large.

A verifier simply confirms that a given computational path through the
nondeterministic machine leads to the proposed output. That is often much
easier than enumerating all the choices and checking whether each one pro-
duces the desired output.

Modern complexity theory does not refer directly to Turing machines but
still works with precise definition of programs and the numbers of steps they
take to complete their functions.

Easy Functions

Let us begin with a few examples of easy computations and the measures
we use to estimate their completion times.

Example 1. Simple Linear Search

Find the page number of the first page of this book on which the name
“Turing” occurs. One way to do this is to represent the book as a string of
characters with embedded marks for page boundaries. We then take the
search string “Turing” and slide it along the book string one character at
a time to see whether “Turing” matches the current chunk of book string.
If we find a match, we stop and output the most recent page number we
encountered.

Comparing the search string to a current substring of the book takes a fixed
time proportional to the length of the search string. Let us say that the
length of the search string is s. For every character in the book, we can com-
pare the search string to the book substring beginning at that character. If
the book size is b characters, the total search time will not exceed An + B for
some constants A and B and n = sb. We call this time “order n” because for
large n the time grows proportional to n. We use the shorthand notation
O(n) to mean “order n.” This search method is called linear search.
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Example 2. Binary Search

Simple linear search may not be the fastest. Suppose that the book contains
an alphabetized index of every word along with all the page numbers on
which the word appears. Now we can do a binary search on the index: we
repeatedly ask whether the search string is in the lower or upper half of the
portion of the index we are searching. At each stage our search narrows to
half as many items as the previous stage. This means that we need log.n
splits until we come to a list of size 1, which is either the search string or
not (see figure 6.1).

Thus, the work to find the string “Turing” in the index is proportional
to A logzn + B, for some constants A and B. We call this time “order log
n” because for large n the time grows proportional to log n. We use the
shorthand notation O(log n) to mean “order log n.” Binary search is much
faster than linear search. For example, a book with 2?° (about 1 million)

1
22 2

3

4
21 1 3

2 4

20 1 2 3 4
Figure 6.1

The binary split principle takes a larger set through a series of splits down to a single-
ton set. Here the set {1,2,3,4} is split in half, then each half is split again, and then
again. The levels are numbered O, 1, 2, . . . with O at the bottom of the tree. If n = 2k
the depth of the tree is k = log, n. The logarithm can be thought of as the number of
divisions by the base (here, 2) until the quotient is 1. Many computational problems
are approached by using this “divide and conquer” strategy. For this reason the loga-
rithm appears frequently in the order notation of computational work.



104 Chapter 6

characters will take time of order 2%° on linear search versus 20 for bina-
ry search—an advantage of 50,000. For large files, the advantage is huge.
We next need to ask how much work it takes to build the index in the
first place.

Example 3. Sorting

Building an index is an example of sorting. Sorting means to arrange a
list of items in an order. For example, a list of words can be sorted into
alphabetic order; a list of numbers can be sorted into increasing or decreas-
ing order. Some lists may contain duplicates. A book-indexing algorithm
extends sorting slightly by providing back pointers to the original positions
of each word.

One method of sorting is successive maxima. We scan the list of n items to
find the maximum element in it, and then we exchange the last element
with the maximum. We then repeat this for the first n — 1 items, then the
first n — 2 items, and so on. The number of comparisons needed to accom-
plish this is n(n + 1)/2, which is order #?, or O(1?) (see figure 6.2).

Is there a faster method of sorting? Yes, but it is not immediately obvi-
ous to the novice (see figure 6.3). It applies the principle of binary splitting
to divide the original list into two parts, which are then sorted by dividing
each of them into two parts. This is repeated about log n times (see figure
6.3). At each level, all n items are examined. The total work is O(n log n).

Can we do any better? No. We can imagine a perfect algorithm that
includes a procedure F that tells you the position in the sorted list of each
item in the original list; that is, F(i) is the sorted position of item i. F has to
generate the bit string representing the sorted position. If there are n items,
each bit string is of at least length log n; therefore, function F requires time
O(log n). This is repeated for each of the n items, giving a total of O(n log n)
for the whole list.

What can we see from these examples?

e First, some problems can be solved faster than others. A binary search is
faster than a linear search or sorting.

e Second, it may not be obvious how to find a faster algorithm or whether
there is any faster algorithm. It was easy to find the successive maximum
sort but not so obvious to find the Quicksort. And it is even less obvious
that O(n log n) is actually the fastest possible way to sort.

e Third, designers are always dealing with trade-offs. For example, when
searching is frequent, a designer will pay the cost of the index to enable
binary search.
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Scan 0...7
B A G Cc F H D E Max at 5
Swap 5and 7

Scan 0...6
B A G C F E D H Max at 2
Swap 2 and 6

Scan 0...5
B A D C F E G H Max at 4
Swap 4 and 5

Scan 0...4
B A D C E F G H Max at 4
Swap 4 and 4

Figure 6.2

A sorted list can be constructed from an unsorted one by the method of successive
maxima. Here an array of eight items in positions 0-7 are to be sorted. In the first
pass (first row), the maximum element is found by examining all the positions; it is
“H” at position 5. The elements at position 5 and 7 are exchanged, leaving the maxi-
mum at position 7. This is repeated on the shorter list (second row) of items 0-6, and
again for 0-5 and so on. It finishes with the 0-1 row. The total number of compari-
sons is 8+7+...+1. The sum of the first n integers is n(n + 1)/2; for this problem, that
comes to 36 comparisons. This method is order o).

The examples above illustrate O(log n), O(n), and O(n?). Here is an exam-
ple of an algorithm that is O(1*).

Example 4. Matrix Multiply

A matrix is a square array of numbers, with n rows and n columns for a
total of n* elements. In linear algebra we represent a set of equations as
the product of a vector of unknowns and a matrix of coefficients. We
express the solution to the equations as the multiplication of matrices.
The matrix multiplication operation is very fundamental and is used in
software of many applications; one of the most common is in graphics,
such as on tablet computers and smartphones, where rotations and pro-
jections of objects are computed with matrix multiply operations. The
software does this so fast that we do not perceive the representation; we
only “see” the object on the screen or observe it rotating. Users do not
ordinarily see matrix multiplications because they are buried in software
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Figure 6.3

Quicksort attempts to divide a sorted list in half so that all elements in the left part
are smaller than all elements in the right part. To do this, we select an element at
random in the first list (D) and then move elements less than or equal to D to the left
and larger to the right (second row). Now there is a list of size 3 to D’s left and of size
4 to D’s right. The left list is sorted by the same principle, where B was the random
choice. The right list is sorted by the same principle, where E was the random choice.
This is repeated all the way down to singleton lists. In a real implementation the
sublists are indicated by pairs of pointers into the original list, and swapping is used
to move items to the left or right. Thus, when the singleton lists are encountered,
they are already in their proper places. If each selection of a random element divides
the list in two, Quicksort would require about log, n passes, and each pass would
examine all the elements, for a total time of order O(n log, n).

libraries, but they are ubiquitous. The nominal time to multiply two n x
n matrices by the standard method shown in linear algebra books is O(1’)
(see figure 6.4).

The four examples we have just seen are all common problems for which
we know fast solutions. Their computational work is of order O(n") for a
constant k. O(log n) is covered because it is even faster than O(n).

Computer scientists have lumped all the problems that can be solved
with algorithms of O(1") for all k as “polynomial” because the computational
work is measured by a polynomial in n with lead term #*. They have estab-
lished the convention that polynomial order problems are “easy” because
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Figure 6.4

The square-matrix multiply algorithm combines two square (n x 1) matrices into
a single matrix of the same size. The standard rule for computing the element at
position (i,j) in the result matrix is “multiply row i of the first matrix by column
j of the second.” The multiplication of the two lists is defined as the sum of the
products of the individual pairs. In the example shown, n = 3, and we multiply the
list (1,2,3) - (4,5,6)=(1-4)+(2-5)+ (3-6) =4+ 10 + 18 = 32. This is called the “dot
product.” Each dot product takes n multiplies and n — 1 additions for a total of 2n -1
operations. This must be repeated n” times, one for each element of the result. The
total work is #*(2n - 1) = 2n* — n*, which is O(n3).

they work well in most practical cases. There are many other problems
whose solution methods are much slower. We consider these next.

Exponentially Hard Functions

Any problem relying on an enumeration is potentially harder. Suppose you
have to examine each state of a state space to find out if it satisfies a prop-
erty. You can make a list of all states with the property, but the time will be
proportional to the size of the state space. For large state spaces, that will
be a long time.

Example 5. All Ten-Digit Numbers
It seems easy to print out all the ten-digit numbers. Because there are 10"
of them, the algorithm would be

For i=0...10'"°-1, print i

That algorithm takes time O(10"). How much time is that? On a fast mod-
ern chip running at 1 GHz (10° operations per second), it is about 10 sec-
onds. How much paper would we need? Assume we print in very small
font, getting 500 numbers to a page in five columns of 100. With two-sided
printing we get 1000 (10°) numbers to a sheet; hence, we need 10'°/10° =
107 sheets. A box of twenty reams of paper contains 10,000 sheets; we need
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107/10* = 10° boxes. At 3 cubic feet per box, we need a storeroom 10 x 30
and 10 feet high. That printout will not fit on a desktop.

Even if we had the storeroom, the situation is much worse. A fast printer
can produce one sheet per second. The whole job would take 10’ seconds,
which is about 4 months.

The difficulty is not the algorithm but the time required to enumerate
all the states. In the powers-of-10 table in chapter 3 on Information, we saw
that a relatively small exponent can generate extremely large numbers. Any
algorithm that requires exponential time is guaranteed to be hard.

Example 6. Pack the Knapsack

The knapsack problem is an old problem in operations research.> We are
given a knapsack of a given size. We are also given a set of n objects of
sizes {si,...,s,} and their associated values {vy,...,v,}. We want to find the
maximum-value subset of the objects that fits in the knapsack.

The knapsack problem models many practical situations. One is the obvi-
ous camper with a limited pack having to decide which items to take on
the hike. Another is a shipping department that has to fill its trucks with
maximum-value loads. Still another is an assembly line manager trying to
schedule jobs against a deadline and maximize profit.

This problem is difficult because with large n, there are many possible sub-
sets; in fact there are 2" of them (see figure 6.5). It could take a very long
time to enumerate them all, compute their sizes and values, and then select
the subset of maximum value from among those that fit. Such a search
method will require time O(2"). For example, with ten items, the search ex-
amines 1000 subsets, with twenty items 1 million subsets, and with thirty
items 1 billion subsets. No one has found an algorithm better than this.
Neither has anyone proved that no faster algorithm exists.

Exponential searches can be sidestepped with heuristics. A common heu-
ristic for the knapsack problem computes the value/space ratio for each
item, then packs items into the knapsack in order of decreasing ratio
until no more will fit. The sorting component dominates the linear
search component and determines the heuristic’s running time, O(n log n).
Unfortunately, the heuristic is not guaranteed to find the best subset (see
figure 6.5).

Example 7. Visit All the Cities

Every package delivery service is interested in this problem: What is the
shortest tour of n cities for the delivery truck? This is commonly known
as the traveling salesman problem. We can find the shortest tour with a



Computation 109

Selections Tgtal Total
size value
ofojo 0 0
7 0fo|1 7 6
of1]o0 3 5
of1]1 10
3 11010 2 4
2 1101 9 10
11110 5 9
v/s ratios 2.00 1.67 0.85 et 12

Items Knapsack

Figure 6.5

The knapsack problem aims to find a maximum-value subset of n items that fits
into a given-size knapsack. In this example, we have three items of sizes {2,3,7} and
respective values {4,5,6}. The knapsack is of size 9. The table shows an enumeration
of the eight subsets of three objects in the left columns, where 1 means the item is
included in the subset and 0 means it is excluded. The next column is the total size
of the subset. The final column shows the values of the subsets that fit (their total
sizes are 9 or less). The subset of items {1,3} is the solution. A heuristic approach is to
label each item with its value/space ratio, then to put them into the knapsack in the
decreasing order of the ratios until no more items fit. This strategy yields the subset
{1,2} (second last row), which is close, but not the maximum value.

search: first, enumerate all the possible tours as permutations of the cities;
second, calculate the length of each tour. The solution is the shortest tour.

How long would it take to accomplish this? Each tour can be constructed
by choosing a first city (n choices), then a second (n — 1 choices), and so on
until all n cities are chosen. The total number of choices is n! = (n)(n — 1)
(n-2)...(2)(1). This method is of order O(n/). Sterling’s approximation for
large factorial is n"e”V(27m), which can be astronomically large for relatively
small values of n. For example 100! is on the order of 10'*. If we had a fast
processor at clock rate 10 GHz, and if we could evaluate one tour per clock
tick, we could evaluate 10" tours a second, or about 10" tours a year (there
are 3.14 x 10’ seconds/year), or about 10" tours a century. The entire com-
putation would take 10" centuries. By comparison, the life of the universe
is about 107 centuries. That is intractable!

As with the knapsack problem, heuristic methods have done very well. In
2004 a group in Sweden deployed a battery of heuristics to find the optimal
tour of the 24,978 cities in Sweden. It took them about a century of CPU
time spread over ninety-six processors.?
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Example 8. Factoring a Composite Number

A composite number is the product of two or more prime numbers. In cryp-
tography many important algorithms depend on composite numbers that
are the product of exactly two primes. The RSA cryptosystem, for example,
uses two large primes as its secret key and their product as the basis of the
public key (Rivest et al. 1978). The public key is safe because no one knows
a fast algorithm for factoring such a number into its two primes. All the
known algorithms for integer factoring require a search over about 2" pos-
sible divisors, making them exponentially hard. RSA is the only public key
cryptosystem known to be secure. However, with a fast factoring algorithm,
the two primes could be quickly extracted from a public key and the RSA
cryptosystem would be useless.

At the current state of the art in hardware and factoring algorithms, 2056-
bit public keys are secure, but may be crackable by 2020; 4096-bit public
keys would be uncrackable forever. In 1994 Peter Shor found a quantum al-
gorithm that factors in polynomial time. If and when a quantum computer
is built, the RSA system could become obsolete.

These examples show that unless we can find a way to the answer with-
out enumerating and searching the whole space, we can easily find our-
selves facing a computation that cannot be done in the remaining lifetime
of the universe.

The root cause is exponential (or worse) growth in the size of the search
space. In chapter 2 we gave a table of the powers of 1000 and their prefix
names including giga, tera, peta, exa, and zetta. Even our names cannot
keep up with the growth. We now carry a zettabyte of data each year on
the Internet, and there is only one remaining prefix (yatto), which will be
surpassed in a few more years.

The conclusion is that problems of order O(2") or O(n!) are incomprehen-
sibly harder in computational work than any of the polynomial problems.
We call these exponentially hard problems.

From a practical standpoint, these problems are not solvable even for
relatively small inputs. The only way around this is to use heuristics,
approximations that search only a very small subset of the state space.
We know of heuristics that give fast solutions, but we usually do not
know how close to optimal they are. The Swedish group was fortunate
that their heuristics found a traveling salesman tour they could prove is
optimal.

Unfortunately, the only known algorithms guaranteed to solve expo-
nentially hard problems are enumeration methods. These problems are
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common and pervasive. Researchers have searched for years to find faster
algorithms for them, so far to no avail.

Hard but Verifiable Problems

Exponentially hard decision problems have an interesting feature: a solu-
tion can be verified quickly. Consider the knapsack problem stated as a
decision problem: Is there a solution of value at least k? This decision form
is no easier than the original problem. However, it takes linear time to dem-
onstrate whether or not a proposed solution has value at least k—just add
up the sizes and value of the selected items. Similarly with the cities prob-
lem, it takes linear time to demonstrate whether or not a proposed tour
exceeds k.

We have already seen that computer scientists have introduced the nota-
tion “P” for the set of problems that can be decided in polynomial time.
The P stands for polynomial. Any problem in P can be decided in time O(1")
for constant k.

Computer scientists have introduced the notation “NP” for the set of
problems that can be verified in polynomial time. The NP stands for non-
deterministic polynomial. Nondeterministic is a technical name for being
able to magically guess the correct solution and verify it in polynomial
time. All the algorithms we know for NP problems have computation time
exponential or worse, and yet for each one a single guess can be verified in
O(r") time.

We need a little notation to discuss NP problems. For any problem A
in NP, there is a polynomial algorithm V, in P, its verifier. Vi(x,y) verifies
that A(x) = y. Va(x,y) is a decision problem because its output is O or 1 (see
figure 6.6).

Note that a verifier can be used to find a solution to A. Suppose we want
to compute A(x) for a given x and we know that solution contains at most n
bits. We can enumerate all the binary numbers y=0, 1, ..., 2" - 1 and com-
pute Va(x,y). If any one verifies, we have found A(x). This search procedure
is O(2") and is therefore exponentially hard. A direct algorithm for A(x)
might be faster than this search procedure. The verifier search procedure is
not necessarily the best solution method.

NP Completeness

That problems in NP have polynomial-time verifiers once kindled hope
that there might be undiscovered ways to solve NP problems in polynomial
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Figure 6.6
This Venn diagram shows the relation between the decision-problem classes P

(polynomial) and NP (nondeterministic polynomial). Every decision problem A(x)
in NP has a verifier Va(x,y) in P that answers the question “Is A(x) = y?” Most
problems whose best-known algorithms are exponentially hard are in NP because
we can verify a proposed solution quickly. It is not known whether there are un-
discovered methods for solving NP problems quickly. That is the P = NP question,
which is one of the most important open problems in mathematics and computer
science.

time. We will soon see that if this were so for even one member of a special
class of NP problems, then every problem in NP could be solved in polyno-
mial time. That would make P = NP. It has never been proved whether or
not P = NP. That question is one of the most important open questions in
mathematics and computer science (Cormen et al 2009).

Scientists and engineers often solve new problems by “reducing” them
to previous problems for which they already have the answer. For example,
electronic engineers use general circuit simulators to tell if the circuits they
are designing work properly. It is easier to describe the new circuit with a
description language for the simulator than it is to build a special simulator
for that circuit alone.

Algorithm researchers use the same notion to discover relationships
between problem-solving methods. Suppose that we can transform an
instance of a problem that method A might solve into a form that method
B can solve. We can then use B to get the answer to A. This is called a reduc-
tion of A to B. A reduction shows that the target method B is at least as
powerful as A.

We insist, of course, that the reducing transformation be fast—that is,
polynomial. If the conversion takes exponential time, then there is no
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point in trying to use B because the transformation would eliminate all
hope of a fast (polynomial time) solution to A.

What if we could find a single problem B in NP to which every A in NP
reduces in polynomial time? The solver for such a problem would work for
every problem in NP. This could make our search for a fast algorithm for NP
problems easier: if we find a fast algorithm for a master problem B, we can
use it to solve every NP problem A fast.

In 1971 Steve Cook introduced the term “NP complete” for the master
problems in NP. He noted that if there are multiple master problems, each
would reduce to the others, and a fast algorithm for any one of them would
yield a fast algorithm for every problem in NP.

Steve Cook’s first NP complete problem was called circuit satisfiabil-
ity (CSAT). A simple Boolean circuit is a set of interconnected logic
gates (AND, OR, NOT) without a loop. It takes an input x—a set of 0 and
1 signals on its input wires—and produces an output O or 1. The circuits
of a CPU are examples of complicated Boolean circuits with multiple
outputs.

Let C be a circuit with n input wires. A configuration of those inputs can
be represented as an n-bit binary number x. Then C(x) is either O or 1. The
CSAT question is: Is there an x that makes C(x) = 1?

CSAT is clearly in NP because we can rapidly verify whether a given x
produces output 1 by tracing signals in the circuit. However, the best algo-
rithm known for answering the satisfiability question enumerates all the
possible x’s and tests each one; it is O(2").

Cook’s method of reducing any problem A in NP to CSAT was based on
its verifier V4. The verifier V4(x,y) is 1 if A(x) = y. Here is an outline of the
reduction transformation.

Generate a circuit for CV,(x,y) corresponding to the verifier V,(x,y). This
circuit mimics the operation of the CPU with a series of stages, each capa-
ble of executing one instruction of the verifier algorithm. A stage maps
an entire machine configuration (program, memory, CPU stateword, x,
y) before an instruction execution to the configuration after an instruc-
tion execution. The mapping is done with a copy of the entire CPU circuit.
Because the verifier algorithm completes in O(1") steps, where n = size(x) +
size(y), its circuit has O(n") stages. This circuit is enormously complicated.
It has to represent each bit of memory and CPU state as a signal on a wire
between stages, and the number of stages can be huge.

Once have the Vi(x,y) simulator circuit, we modify it slightly into a cir-
cuit C,(y) by fixing the x values to those given at input and leaving only the
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NP-hard

Figure 6.7

A problem to which any problem in NP can be reduced is called NP-hard. The circuit
satisfiability problem (CSAT) is an example of an NP-hard problem that is also in NP.
CSAT answers “Is there is an input that causes the given circuit to output a 1?” Any
problem A in NP can be reduced to CSAT by constructing a circuit that simulates the
verifier for fixed input x and variable input y [C,(y)]. If CSAT says “y verifies circuit
Cy(y),” then y= A(x) is also verified. CSAT was the first example of an NP-complete
problem.

y values unspecified. When C,(y) is satisfiable, there is a y such that C,(y) =
1, which can only be if A(x) = y. Thus, CSAT’s answer to this circuit is the
value of y making A(x) =y (see figure 6.7).

Because CSAT is in NP and any other problem in NP reduces to it, CSAT
is NP-complete.

Shortly after Cook showed that CSAT is NP-complete, Richard Karp
(1972) produced a list of twenty-one other problems that are also NP-
complete. A few years later, Garey and Johnson (1979) cataloged 3000
common problems in science, engineering, business, and more; all are NP-
complete. This finding is profound. If someone should find a fast algorithm
for any of these 3000 problems, that algorithm would translate into fast
algorithms for the remaining NP-complete problems and all the problems
in NP. A huge number of real problems that are currently thought to be
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intractable would become tractable. Here is a partial list of NP-complete
problems:

e Circuit SAT (considered above). Is there an input that makes the circuit’s
output 1?
e SAT (Boolean satisfiability). Is there a set of values that makes a given
Boolean formula true?
¢ Knapsack problem. Is there a solution to a knapsack of value at least V?
e Subset sum. Given a set of numbers, is there a nonempty subset that
sums to K?
e Unscrambling words. What dictionary word(s) are obtained by unscram-
bling a random sequence of letters?
e Hamiltonian path. Is there a path visiting all nodes of a graph exactly
once?
e Traveling salesman. What is the shortest tour of a set of cities on a map?
e Cliques. In a social network, find sets of nodes that all know each other.
e Deadlocks. Find a set of nodes in a network each stopped, waiting for a
signal to arrive from another node in the set.
e Graph or network questions:
o Coloring. What is the smallest number of colors such that no two adja-
cent nodes of a graph have the same color?
o Node cover. Find a minimum set of nodes (vertices) in a network that
collectively touch every edge of the graph.
o Subgraph isomorphism. Does a given graph contain a subgraph iso-
morphic to another given graph?
o Independent set. Find a set of nodes (vertices) in a network none of
which is adjacent to any other in the set.
o Dominating set. Find a smallest subset of nodes (vertices) in a network
so that every node outside the set is adjacent to a node in the set.

Many of these are stated as graph problems because graphs are such a con-
venient representation for the many networks we encounter every day.

Despite many great minds trying to find fast algorithms for these
problems, no one has done so. This is taken as strong empirical evidence
that there is no fast solution to any NP-complete problem, and hence
that P = NP.

Fortnow (2009, 2013) speculated about how the world would change if a
fast algorithm were found for any NP-complete problem. Such a find would
prove P = NP. He predicted that would precipitate an economic revolution
as many hard problems became tractable. Others are not so sure because
the tremendous progress with heuristics has come up with many acceptably
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good approximations for real-life instances of these problems, and the opti-
mal solutions would not be such a giant step forward.

Noncomputable Problems

In the 1930s the mathematicians looking at computing all realized that
there had to be functions that were not computable. The reason is that
there are not enough programs to go around for all the functions. The tech-
nical way of saying this is that the set of all possible programs is denu-
merable, whereas the set of all possible functions is nondenumerable: the
function space is a higher order of infinity than the programs space. Figure
6.8 sketches why this is so.

This would be of no interest if the noncomputable functions did not
impact our daily lives. In fact, they do. There are many things we would like
to know that cannot be computed. Turing’s example (1937) was the halting
problem: Can we inspect a program and its input and decide whether the
program halts for that input or not? It is usually not obvious whether a pro-
gram halts because the conditions that terminate loops may not be known
ahead of time. Programs that do not halt loop forever. Whatever method
we might design to decide halting cannot rely on simulation because the
program we are asking about might enter an infinite loop and our simula-
tor would fail to decide anything. We would dearly love to have a test that
tells us, prior to execution, whether a program contains an infinite loop.
However, there is no such test.

Turing’s proof that the halting problem is a noncomputable well-defined
function is an exercise in logic. He supposes to the contrary that a program
H exists that evaluates to H(Px) = 1 if program P(x) halts and to 0 if P(x) does
not halt. We have to assume that suitable binary codes have been devised to
represent programs (such as P) and their inputs (such as x). If the program
H exists, we can use it as a subroutine in the program G shown in figure
6.9. A paradox arises if we present G with a copy of its own program. No
matter what we assume G does in the case that its input is a copy of its own
program, we get a contradiction. Therefore our assumption that H can exist
as a software module is invalid.

This contradiction is monstrous! Many people find this proof mindbog-
gling, and react as though it is a parlor trick.

The famous statement “This sentence is false” presents a similar kind of
paradox. It seems to be a legitimate statement, and yet it contradicts itself
the moment you assume it is true or false. Or, consider Bertrand Russell’s
question: “If the only barber in town shaves only those who do not shave
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Inputs

cee k
0 1 2 3 4

o | P(0,0) P(0,1) P(0,2) P(0,3) P(0,4) ooo P(0,k)
o 1| P(1,0) P(1,1) P(1,2) P(1,3) P(1,4) ooe
5
<)
e
o o | P20 P(2,1) P(2,2) P(2,3) P(2,4) ooo

3| P(3,0) P(3,1) P(3,2) P(3,3) P(3,4) ooo

Kk P(k,k)
Figure 6.8

A diagonalization argument shows why there are too few programs for all the pos-
sible functions. We can enumerate all the possible inputs to programs along the
top simply by noticing that every integer is a possible binary string that could be
input to a program. We can enumerate all the possible programs down the side by
a more elaborate procedure: we generate each possible number and test its binary
string through a compiler to see if it represents a valid program; if so, we add it to
the programs list. Then P(i,j) represents the output of program i when its input is j.
Because every program and every input appears somewhere in the array, all programs
and inputs are accounted for. However, if we change all the diagonal elements—for
example, replacing P(k,k) with P(k,k) + 1—the sequence of diagonal values defines
a new program. But that program cannot be listed in the array, for if it were list-
ed, it would conflict in at least one output with every other program already there.
This form of argument was used by the mathematician Georg Cantor to prove that
there are more real numbers than rational numbers. It is sometimes called a “Cantor
diagonalization.”



118 Chapter 6

Figure 6.9

If the halting problem were solvable, there would be a computable function H that
tells whether P(x) halts (1) or not (0). Because it is computable, we can write a soft-
ware module H containing the method. Then we can build a larger software module
G by including H as a subprocedure. G asks whether H(w,w) halts. If the answer is
“yes” (1), G enters an infinite loop. If the answer is “no” (0), G simply returns the
0 output of H. A contradiction arises if the input w = G; that is, it is a copy of G’s
program. If we assume G(G) halts, then H(G,G) = 1, which forces G into an infinite
loop. If we assume G(G) does not halt, then H(G,G) = 0, in which case G halts. Both
assumptions—G(G) halts and G(G) does not halt—lead to contradictions. Therefore
our assumption that H is computable must be incorrect.

themselves, who shaves the barber?” A contradiction arises as soon as you
assume the barber does shave himself (or not).

The root of the paradox is self-reference. Whenever we can construct a
sentence that asserts a property about itself, a paradox is possible. This is
what the program G is doing. When it is asked to make a statement about
itself, it is paradoxical and makes no sense.

In the case of the halting problem the paradox means we cannot build
a halting-tester program. The moment we try, we hit a contradiction. The
rules of logic will not let us do it.

There is no way out of the contradiction. A common attempt to avoid
the contradiction is to add a test to the beginning of the G program to
notice whether the input is G’s own program; if so, G returns 0 immedi-
ately. The problem with this is that there are many (in fact, infinitely many)
programs that implement any given function. A trivial example is the addi-
tion function A(x) = x + 1; it could be implemented as x + M — N for any
integers M and N such that M = N +1. So even if G can refuse to operate if its
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input is G, there will be some other input G’ that computes the same func-
tion and will trigger the contradiction because G(G’) is a paradox.

There are numerous other noncomputable problems of practical inter-
est. In each case we discover that a proposed solution would also decide
the halting problem, which contradicts the undecidability of the halting
problem. Examples:

* Busy beaver problem. BB(x) is the maximum number of moves any pro-
gram consisting of x instructions can generate and still halt. [If we could
compute BB we could solve the halting problem by simulating a program of
x instructions for BB(x) steps—if it has not halted by then, it will not halt.]
e Totality problem. Does A(x) halt for every possible input x? [If so, we con-
struct B(x) that ignores x and computes F(y) for any chosen function F with
chosen input y. Then B halts on all inputs if and only if F(y) halts.]

e Equivalence problem. Do programs A and B compute the same function?
In other words, is A(x) = B(x) for all inputs x? [Construct B(x) to run A(x)
and output 1 if and when A(x) halts. Construct C(x) that ignores x and sim-
ply outputs 1. An algorithm that decides whether B and C are equivalent
answers the totality problem for A(x).]

e Line of code problem. Does any particular (given) line of code in a pro-
gram ever get executed? [Modify the program so that that line is executed
if and only if A(x) halts.]

e Correspondence problem. Given two codes, A and B, is there a message
sequence Xi, Xz, X3, . . . Xk such that A(x1)A(xz) . . . A(xk) = B(x1)B(x2) . . . B(xx)?
The same message sequence produces the same encoding in the two codes.
For example let A = (a, ab, bba) and B = (baa, aa, bb); the message sequence
3231 gives bbaabbbaa in both codes. [We can devise codes that represent
single-instruction executions of a program so that A(i) is the machine con-
figuration just before instruction i is executed, and B(i) just after. We can get
the A and B sequences to match if and only if the program halts. In other
words this system is powerful enough to enable us to encode the execution
of a program. If a solution to the Correspondence Problem exists, it tells us
the encoded program halts.]

There are many more examples of practical things we would like to know
about programs, all of which are undecidable. We know that these are not
computable because we have shown that, if we could decide any of these
questions, we could use that method to decide halting problems.

Any by-inspection method that purports to answer almost any interest-
ing question about code could also decide the halting question. Alan Turing
used this observation to conclude that the actions that mathematicians
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perform while proving theorems are inherently computational, and thus,
even “by inspection” methods are computational; and a computational
method answering a question about another computational method can
usually be fooled into asking that question of itself. That always generates
a contradiction.

Conclusions

We have covered a lot of ground in this chapter. Let us summarize the key
points.

All computational methods take time and consume energy. We estimate
time (or energy) by counting the number of instructions executed.

We use the order notation O(f(n)) to say that for large n, the instruction
count of a computation grows proportion to f(n). The notation ignores con-
stants and focuses only on long-term growth. For example, a computation
whose time is An + B is O(n) regardless of A and B; for large n, its growth is
proportional to n.

All problems (functions) can be rated by the difficulty of their best
known algorithms. For example, sorting is O(n log n) because the best algo-
rithm takes time proportion to n log n. There are worse sorting algorithms,
O(1®) for example.

Many problems are formulated as decision problems with yes (1) or no
(0) answers. For example, does program A(x) halt? Is there a path through
all the cities of length less than k? Other problems are stated as optimiza-
tions. For example, find the best knapsack or shortest tour. For consistency
we recast optimization problems into associated decision problems. The
optimization version of a problem is always at least as difficult as the deci-
sion version.

We group into the class P all the problems whose decision procedures
require polynomial time. We group into the class NP all problems for which
a solution can be verified in polynomial time. Even if the only known solu-
tion method of an NP problem A is exponential, its verifier is polynomial.
The verifier could be used to find a solution to A, but to do so it would have
to search through all the values of input and might actually be slower than
A. The question of whether P = NP is considered one of the most important
open questions in mathematics and computer science.

Reduction is a process of transforming a problem for one method A into
a problem for another method B, such that the solution from B is also the
solution to A. “A reduces to B” means that B is powerful enough to answer
all A inputs.
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A problem is NP-complete if all problems in NP reduce to it. The circuit
satisfiability problem CSAT is an NP-complete problem. Every NP-complete
problem can be reduced to any other. A polynomial-time algorithm for any
one could be transformed to a polynomial-time algorithm for any other.
There are over 3000 known NP-complete problems from all parts of sci-
ence, engineering, economics, and social sciences. That means that the best
algorithms we know for any of these problem are exponential or worse. It
also gives empirical evidence for believing that P # NP because thousands
of people have been unsuccessful at finding a fast method for any of those
problems.

There is also a large class of undecidable problems such as the halting
problem. These problems are undecidable because they ultimately allow a
program that can answer a question about any program to ask that ques-
tion of itself, producing a paradox. It is logically impossible to answer these
questions.

We are left with a dilemma. Many of the problems we would like a com-
puter to solve for us are so complex that they will never return an answer
within a reasonable time. Other problems are logically impossible to com-
pute. As a result we rely heavily on heuristics (approximation methods)
that are fast but do not decide or optimize accurately for every input. We
rely on experimental methods to characterize when heuristics work or do
not work. The limitations imposed by computational complexity force us
to be experimental in understanding computations.






7 Memory

In the Internet, retrieval is worse than looking for a needle in a haystack; it’s looking
for a specific needle in a needle stack.

—Hubert Dreyfus

Cache randomly accessed disk pages that are reused every five minutes.

—Jim Gray and Franco Putzolu

“Can I find it?” is one of the most common questions in computing. The
information we seek is stored somewhere in “memory,” a simple word that
belies the complexity and vastness of storage systems. It is important not
only to find information quickly in memory but also to move it rapidly to
where it is needed.

The structure of a storage system has a major effect on performance. As
an example of the difficulties, consider a weather forecast scenario. The
algorithm designers divided the forecast region into 10,000 small atmo-
spheric cubes and assigned each one to its own 1-GHz processor on a super-
computer. They ask whether the system can realize the 10 THz combined
processing rate of this bank of processors. If it could, they reckon, tomor-
row’s forecast would be available in 3 hours. But suppose their algorithm,
running on each processor, pauses every million instructions (1 millisec-
ond) to retrieve a chunk of raw weather data from a hard disk, which has
access time of 10 milliseconds. The total time to complete 1 million instruc-
tions is the processor time plus the disk time, or 11 milliseconds. The effec-
tive speed is eleven times slower than the rated speed. Tomorrow’s forecast
would actually take 33 hours to compute. The supercomputer is useless
because its memory system cannot get data to processors fast enough.

Storage has been a major concern for information systems even before
general-purpose processors were invented. For instance, IBM was a busi-
ness machines company long before it became a computer company in the
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1950s. They built sophisticated machines for selecting and tallying data on
punched cards. Companies used IBM machines to maintain payrolls, track
customers, and manage inventories. IBM’s introduction of disk storage in
1956 promised a revolution in business processing because warehouses of
file cabinets could fit into a single disk store, where a CPU running sophis-
ticated algorithms could retrieve and analyze data.

Computer engineers have always recognized that storage limitations are
a strong throttle on a computer’s actual speed. While programmers coped
with small memories and engineers built larger memories, performance
analysts worked out methods to forecast the speeds of computations when
memory is limited.

The history of computing shows a long struggle to build memory systems
that could keep up with processors and to find ways to mitigate the costs
of retrieving data from local and remote disk storage devices. The engineers
discovered three broad classes of principles for organizing storage so that
high-speed processing is a realistic goal. The principles of naming are con-
cerned with creating bit strings or alphanumeric strings that identify digital
objects. The principles of mapping are concerned with translating a name
to a connection between a processing site and the storage locations con-
taining the digital object. The principles of positioning are concerned with
optimizing performance by judiciously moving data from distant storage to
nearby storage. One of the earliest scientific theories within computing—
locality theory—was developed to deal with optimization of information
movement in storage systems.

Memory Systems

In chapter 3 on Information we noted that information can be represented
by any physical quantity capable of retaining a state that can be observed
by a sensor. A large number of technologies can serve as memory systems.
Table 7.1 is a taxonomy of the basic properties of memory systems. We dis-
cuss these properties in this chapter and identify the principles that bring
order to potentially very complex memory systems.

Memory systems are most often seen as repositories. We store data in
them and retrieve (recall) the same data later. The RAM on a desktop com-
puter is a repository of bytes holding programs controlling the central
processing unit (CPU) and data on which these programs operate. A hard
disk or cloud server is a repository of files. But not all memories look like
repositories. A neural net model of the brain stores patterns that are com-
binations of current sensory data and all previously recorded sensory data;
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Table 7.1
Basic Memory Properties
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Aspect Property Definition Examples
Physics States Any physical state that ~ Magnetic field, magnetized
can be altered and patch, electron spin,
observed pockmark on a disk,
direction of current in a
loop, sound wave in
acoustic delay line,
phosphor on cathode-ray
tube, neural loop
Volatile State disappears on Random Access Memory
power loss, very fast (RAM), CPU registers, CPU
access. cache
Persistent State persists until Hard disk, tape, compact
changed or erased, optical disk
much slower access
Storage and  Exact Retrieved data exactly RAM, hard disk, Internet
Recollection the same as previously  cloud server
stored data
Associative  Retrieved data related Sparse distributed memory
to stored data but not (Kanerva), associative
necessarily the same memory, neural networks
Verifiability =~ Test whether data Cloud servers, file system
previously stored is still  checking software
present
Access Time Random Access time for all RAM, Internet packet
locations is equal round-trip time
(approximate)
Positional Access time depends on  Juke box, cathode ray
position of data in tube, hard disk, compact
medium disk, DVD
Sequential ~ Access time depends on Token ring, acoustic delay
position in a sequence line
Mixed Access time depends on  Hard disk: position the
positional-  positioning something  arm; then read or write
sequential and then accessing from spinning disk
sequence
Access Verify at Object manager verifies Access control list in file
Control object requesting subject has or database system, access
permission to perform control field in directory
requested operation entries
Verify at Subject manager grants  Access bits in virtual
subject permissions for specific ~ memory mapping tables

operations on objects

and capability lists,
capability addressing of
objects
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on retrieval, the memory returns a pattern that shares characteristics with
prior patterns but may not be the same as any one (see Kanerva 2003).

Memory hierarchies are permanent features of computing systems. The
fastest devices are at the top because they are the only ones that can keep
up with a CPU. The slower devices are lower and are used for permanent
storage and backup. Data are moved upward as needed by the CPU and
downward when no longer needed. However, speed at the top comes at the
price of volatility—very fast memories lose their data when the power goes
off. Slower devices, such as hard disks, retain their data indefinitely until
they are explicitly erased. As a consequence of the hierarchy, performance
optimization is not simply a matter of finding algorithms with lowest CPU
instruction counts; it depends greatly on the arrangements of data in the
hierarchy.

These tradeoffs are reflected in the prices of memory. In 2014, RAM with
access time about 15 nanoseconds sold for about $5 a gigabyte. Hard disks
with access time around 5 milliseconds sold for about $0.10 a gigabyte.
These two technologies have an access time differential of over 3 x 10°.
What a difference from 1960, when magnetic-core RAMs and disk storage
systems each cost about $0.30 a byte for up to 5 megabytes, and the access
time differential was about 10*.

Very large, fast, and persistent memories may come to be. They will
depend on new technologies such as electron spins or organic states. Even
so, the trade-off between speed and cost will continue to motivate a hierar-
chy of memory devices.

Basic Model for Memory Use

We use the subject-object model to describe the generic mechanisms of
memory access. A subject is any entity that can request access to a stored
digital object. A digital object is a container of a set of bits representing
something. The most common example of a subject is a computational
process (program in execution) acting on behalf of a particular user. For
example, if user “pjd” started process “372,” the memory system would
allow process 372 to read memory location 433 only if subject “(pjd,372)”
has read access to object “memory location 433.”

This model—subjects requesting operations from objects—reveals three
essential aspects of memory systems:

1. Naming every object, by giving the bit or symbol pattern used to desig-
nate the object and distinguish it from all others.
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2. Mapping the name to the memory locations containing the object,
thereby establishing an information flow path between the subject and the
object.

3. Authenticating that the owner of the object has given permission for sub-
ject to complete the requested access.

Once those three steps are completed, the requested operation is performed,
and information flows along the subject-object path.

Naming

Given the large number of memory technologies in use, it should be no sur-
prise that there are numerous ways to access data. A principal reason for the
variety of access methods is that data are structured to facilitate their use
in specific environments. For example, a programmer sorts data to enable
frequent binary searches. A company organizes its employee records with a
standard record structure so that it can find all records matching search cri-
teria specified by a manager. A library organizes its books and documents by
the Dewey Decimal System so that patrons can quickly locate books in the
stacks. Many fields such as medicine, biology, and accounting have devel-
oped taxonomies that facilitate identifying and classifying new objects. A
data organization that works well for one purpose may fail miserably for
another purpose. The unstructured Internet has disappointed many people
because, despite the hype about access to all the world’s information, it is a
poor information retrieval system.

Yet amid all this diversity there are only six main modes of naming data.
Most people use all six every day. Table 7.2 is a taxonomy.

In the first three modes the name is a fixed-length binary string—an
address, address pair, or handle. Addresses name locations in linear address
spaces; a common address size is 32 bits. Address pairs select one of many
address spaces and name a location within it. Handles are all-time unique
identifiers for objects such as files and directories; they are usually much
longer than addresses, for example, 128 bits. Handles are longer because
they must be unique in the whole Internet. A common way for a local
operating system to generate a handle is to combine a local clock time
stamp with a unique machine identifier such as the media access con-
trol (MAC) address used in local networks. Handles generated this way
must be at least as long as the size of the local clock (for example, 64 bits)
plus the size of a MAC address (48 bits). Because a machine cannot create
two objects simultaneously, this method guarantees that no other machine
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can generate the same handle. Because the number of objects in exis-
tence is many magnitudes smaller than the size of handle space—on order
of 2% objects compared with 2'*® handles—most potential handles are
never used.

In the fourth mode the name is a symbolic string that means something
to users. Internet host names, file pathnames, and web URLs are examples.
This mode is layered on top of the others (see figure 7.1).

The last two access modes map a symbolic expression chosen by the
user to a set of data objects. The expression selects items from a large collec-
tion, such as employee records in a business database or documents from a
library. The query mode uses a formal logic language to specify a set of cri-
teria that match some records but not others. The text mode simply looks
for documents containing a given text string. Both modes involve a lot of
searching. Depending on the size of the database, for example, a query can
take a few seconds to a few minutes. Google has shown that generating a
list of matches for a search string can be done in less than half a second
once the contents of all web pages have been processed into an index that
enables a quick decision about whether a given word is in a document. It is
normal to have tens of thousands or millions of “hits” in a web search. It
is quite remarkable that the Google presentation algorithm orders the hit
list in such a way that many users find useful information among the first
ten hits (MacCormick 2012). Even so, many users find that web searching
can be like looking for a specific needle in a needle stack (Dreyfus 2001)
(see figure 7.2).

All six access modes provide location independence: users can perform
operations on digital objects without knowing their locations. Location
independence has been a boon since its first use in virtual memory sys-
tems of the 1960s. In virtual memories every virtual address always retrieves
the proper values, no matter where the addressed data are located in the
memory hierarchy. The Networked File System (NFS), introduced by Sun
Microsystems (1984), lets users access files anywhere in the network simply
by giving their pathnames in a global directory tree. Today’s cloud data
warehouses are crash-tolerant distributed systems that spread copies of data
over thousands of servers without changing the name of the data. A web
URL maps to a file on a host without regard to the location of the host or
the internal structure of its file system. The Internet protocol routes packets
to the designated server without regard to its location. The Domain Name
System (DNS) converts host names to current IP addresses without regard
to the geographical locations of hosts. Whenever physical location is not
meaningful, systems that hide location will be simpler and more reliable to
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Figure 7.1

Names are designators of individual digital objects. Four kinds of names are layered
on top of each other, with names at one level being mapped to names at the next
lower level (dashed arrows). The top level comprises all the symbolic names gener-
ated by users, for example, web URLs. The next lower level comprises all the handles
generated by the operating systems on the machines that create objects. To enable
universal sharing of any object in the Internet, handles must be all-time unique. The
next lower level comprises address spaces in virtual memories used locally by CPUs as
they execute processes. The bottom level comprises locations in physical memories,
such as pages of RAM or records of disks. In this example the symbolic name “gmu.
edu/cs” refers to a file “cs” on the host “gmu.edu”; the name might be presented as
part of a request to read a web page. The Internet Domain Name Service (DNS) con-
verts the host name to its Internet Protocol (IP) address, and the operating system
at that IP address converts “cs” to the handle of a file. The file system on that ma-
chine maps the handle to a file in the virtual memory of a process, which responds
to the web page read request. The virtual memory maps the addresses of the file to
the locations containing the file. The ability to change the mappings dynamically
confers important advantages. For example, virtual memory components, such as
pages, can be relocated without changing addresses. Files can be relocated without
changing handles. New versions of digital objects can receive new handles without
changing URLs.
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Name | Salary | Sex |Seniority|
1 Alice 50,000 F 10
2 Bob 45,000 M 1
3 Charlotte 60,000 F 3
4 David 42,000 M 2
5 Elizabeth 55,000 F 6
6 Fred 51,000 M 15
7 Georgia 59,000 F 12
Figure 7.2

A database can be visualized as a table with many records, each having a standard set
of field names. A query is a logic formula that selects the records matching criteria
in the query. For example, “salary > 50000 & sex=F" matches records 3, 5, and 7.
And “sex=M & seniority > 10” matches only record 6. And “sex=M & salary > 55000”
matches no records. The query access method is a way of finding information by
content or characteristic rather than by name. A typical query returns many items.
Database systems rely on four principles to avoid data loss and inconsistences: (1)
Records are replicated on multiple servers. (2) Transactions are “atomic,” meaning
that their entire effect is committed to the database in a single step. (3) Transaction
states are temporarily recorded so that they can be rolled back in case of error. (4)
Databases are stored as multiple tables that can be composed together quickly to
answer a query.

use. But location independence is not always useful: many mobile device
apps rely on “geolocation” services.

Internet search is the hardest of the six modes. The set of objects match-
ing a given set of search terms is likely to be enormous—there can be thou-
sands or millions of matching documents. URLs give virtually no clues to
the content of documents. Even though Google’s page-ranking algorithm
does a remarkable job at presenting useful documents, users often find that
the highest-ranked documents are still not useful. Moreover, a substantial
amount of information is in a “deep web” of Internet-connected database
systems protected by passwords and query interfaces. Search engines can-
not index them. No one knows how large the “deep web” is, but most
estimates put it at over 90 percent the total information on the Internet.
Hence, the idea that “all the world’s information is on the Internet” is mis-
leading: most of the information is not searchable, and the searchable can
still give a bad case of information overload.
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Mapping

Mapping is the process of translating a name to a location. With all the dif-
ferent possible access modes and memory technologies, mapping technolo-
gies can become pretty complex. Fortunately, they all rest on a few simple
principles.

The basic idea of a map is to implement a dynamic function F such that
F(x) is the current location of the object named x. The map F is stored as
a table. Whenever a program requests to read (or write) object x, the oper-
ating system reads (or writes) location F(x). When the operating system
relocates object x, it updates the table to show the new location. Separating
names from locations enables location independence—the same program
can be executed no matter what configuration its objects occupy in the
memory.

Virtual Memory

The mapping principle has been a cornerstone of virtual memory systems
since their beginnings in the early 1960s (Kilburn et al. 1962). Virtual mem-
ory was invented to automate data movement between secondary memory
(the disk) and primary memory (the RAM). Automating the moves relieved
programmers of a considerable burden, thus doubling or tripling their pro-
ductivity (Sayre 1969). Virtual memory systems had to solve two problems:

1. Making individual program address spaces separate and location
independent.

2. Minimizing the number of very time-consuming data moves between
the disk and the RAM.

Location independence is important because, with the constant move-
ment of data in the memory, the exact locations of individual data items
cannot be predicted in advance and should not matter to the program’s
execution. A simple version of the mapping principle, based on paging the
address space, solves this problem. A program'’s address space is divided into
equal-size blocks called pages and the RAM into similar fixed-size blocks
called frames. Any page can be loaded into any frame. The execution of a
RAM access is as follows: (1) a linear address from the program decomposes
into page and line numbers, (2) the map converts page number to frame
number, and (3) the frame number and line number recompose into a lin-
ear offset into RAM. We have learned how to do this very efficiently.!

Virtual memory provides a powerful means to partition RAM among mul-
tiple programs when multiprogramming (Denning 1970) (see figure 7.3).
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Figure 7.3

In this example two CPUs refer to objects in their separate address spaces, A1 and A2.
The address spaces are divided into eight 512-byte pages, and the RAM into sixteen
512-byte frames (page holders). The CPUs use 12-bit addresses, 3 for the page number
and 9 for the line number (512 = 2°). The RAM uses 13-bit addresses, 4 for the frame
numbers and 9 for the line number. The arrows show which pages are loaded in
RAM; for example, the left CPU’s page 3 is in frame 2 and the right CPU’s page 3 is
in frame 11. The associations indicated by the arrows are stored in page tables associ-
ated with each CPU. The page tables are stored in a private area of RAM outside every
address space. The left CPU is asking for linear address 1540, which is on page 3 line
4. Using the page table, the memory mapping unit (MMU, not shown) changes that
to frame 2, line 4, which is a linear offset of 1028 into RAM. Six pages of RAM are not
assigned to either address space (gray). If a CPU calls for a page not in RAM, a “page
fault interrupt” asks the operating system to bring the page into an empty frame and
update the page table.



Memory 135

A CPU can access only the pages listed in its page table. Pages belonging
to other address spaces are invisible; there is no way the CPU can generate
their RAM frame addresses. This near-perfect isolation of address spaces is
a very potent method of information protection. Many systems use virtual
memory to get this benefit even when they have enough RAM to fully load
every process’s address space.

Minimizing data moves is the trickier problem. A complete copy of the
program’s address space resides in a file on the disk. At any given time
only a subset of the program’s pages are in RAM. The page table identifies
them by marking them as “present” in RAM; in figure 7.3, for example, not-
present pages are shown as blanks. If the memory mapping unit encounters
a not-present page, it obviously cannot complete the translation. Instead
it triggers a page fault interrupt, which invokes an operating system page-
fault-handler routine to do the following: (1) move a copy of the missing
page from disk to an empty frame of RAM, (2) update the page table to
show the page as now present in that frame, and (3) return control to the
interrupted program, which retries the address translation.

The operating system employs a replacement policy to determine which
pages are in RAM. When an empty frame is needed, that policy selects a
page in RAM not expected to be reused soon, synchronizes it with the disk
copy, marks it as not present, and adds its frame to the free-frames list.
The performance of the system is very sensitive to the replacement policy
because every replaced page is a future page fault. Policies that exploit the
principle of locality (discussed later in this chapter) minimize the number
of replacements and allow soonest completion time. Programmers who are
aware of the locality principle can arrange their data references to accen-
tuate locality, thereby exacting even better performance from the virtual
memory system (Sayre 1969).

Sharing

Unfortunately, virtual memory’s ability to shield address spaces from each
other stands in the way of another common objective of memory systems:
allowing users to share data. Some operating systems have attempted to
augment virtual memory to allow sharing, but with limited success.

One method is to provide an operating system interface that provides
shared memory blocks outside address spaces. A group of processes can
share memory as follows. The leader of the group requests the operating
system to allocate a block of shared memory; the leader then distributes
a copy of the block’s pointer to the others in the group. Group members
can then read and write the shared block by further calls on the operating
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system. When the group is done, the leader partner notifies the operating
system to release the shared block. This scheme has numerous problems.
It is clumsy and error prone. Synchronization of the partners to avoid race
conditions in the shared memory is difficult. No one will release the shared
memory if the leader crashes. The shared memory is available only to pro-
cesses on the same machine sharing the same operating system.

A variation on this scheme avoids the operating system interface by
loading the shared data into a frame, choosing an unused page in each
address space, and mapping each chosen page to the one frame. This makes
the shared frame a member of the partner process address spaces. Although
it eliminates the need to call the operating system to read and write the
shared page, it brings another major drawback. The page tables of all the
partners must be updated if any change is made to the location of the
shared page. That update can take a while if there are many partners or
some of their computations are suspended.

A much better way is to define a new kind of name space for all shared
objects. The handle space does this job. Capability systems embody this
principle.

Capabilities

Capability addressing is a general method for sharing objects globally. Capa-
bility addressing was invented in 1966 by Jack Dennis and Earl Van Horn
and has been refined over the years.? A capability is a large bit pattern con-
taining a handle, an access code, and a checksum (see figure 7.4). When
a subject asks the operating system to create a new object, the operating
system generates a new capability with the creator as the owner. The owner
can hand out copies of the capability, downgrade their rights, and even
stipulate that a copy cannot be further copied.

Each process has its own capability list of all the handles it has for
objects. A mapping structure based on hashing efficiently represents the
associations between capabilities and objects (Fabry 1974) (see figure 7.5).
Capability lists enumerate all the objects, not just pages, to which a CPU
has access. Details such as whether a particular object is implemented with
pages are left to the subsystems that manage that type of object.

A crucial assumption in capability addressing is that the holder of a capa-
bility has the rights specified in it. Object managers simply accept capa-
bilities and do not check access control lists to determine if callers have
permission. Theoretically, a hacker who gets inside the kernel could modity
capabilities or make illegal copies. But the probability of such compromises
is low enough to make the systems viable.
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A

Type Rights Handle Check
B

file ro 10111001100101011 001101
Figure 7.4

A capability (A) is a long bit pattern organized as four fields. The type specifies the
kind of object to which the capability points, for example, a file, a database record, or
an Internet connection. The rights field is a series of bits specifying which operations
on the operation of the given type are allowed by this capability; for example, rights
for a file might be four bits corresponding to the file operations open, close, read,
and write. The handle field contains a handle. The check is a cryptographic checksum
that can verify that the contents of the capability have not been changed since they
were created. The example (B) is a file capability allowing reading and opening (“ro”)
of the file pointed to by the handle. The file system (object manager for files) maps
handles to file locations using a hash table as in figure 7.5. The file system will accept
only file capabilities; it will reject all others.

Capability systems are very effective at “confinement,” which means
that every computational process can be granted rights to just the objects it
needs to do its job, and no others. Capability systems are highly fault toler-
ant because errors are confined to small protection domains and cannot
propagate through the system. Capability addressing is a key principle in
implementing object-oriented systems (Wulf et al. 1974, Miller 2003) such
as Java, Smalltalk, and Python. It extends easily into distributed environ-
ments such as Amoeba (Tanenbaum and Mullender 1981) or Tahoe-LAFS,?
because capabilities can be passed as parameters in messages between cli-
ents and servers in the network. The cryptographic checksums included in
capabilities make them unforgeable, which means servers can trust them
and accept them as proofs that their clients’ accesses are authorized.

A form of the capability-addressing principle was independently discov-
ered and implemented for digital objects in the Internet. The motivation
was to overcome a limitation of the standard web URL. It is all too common
that an object’s owner changes the content, moves the object to a differ-
ent host, or deletes the object. Customers can be unpleasantly surprised
at unexpected changes of content or apparent disappearance of a critical
object. In the first case the content may not be what the customers of the
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A two-level mapping structure enables sharing digital objects. The descriptor table
(DT) is the only table listing the location of every object. The capabilities contain-
ing the unique handles of digital objects are stored in a process’s capability list (CL).
A hash function H maps the handle into a short hash code that quickly locates the
object descriptor, which points to the memory locations containing the object. In
this example the top process lists the shared object as capability 12 and the bottom
CPU lists it as 5. Both CPUs are asking for line 3 in the object. The hash function
converts the handles into a 4-bit hash and uses the hash to index the DT. The DT
entry contains a descriptor pointing to location 10, the base address of the object. If
the operating system relocates the shared object for any reason, it simply updates the
descriptor to show the new base address, and all the sharing partner processes will be
directed to the new location.
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shared object expected; in the second and third cases there is no way to
notify customers that the object has a new URL or is gone. These limita-
tions are unacceptable for publishers, who want citations to their works to
work every time and in perpetuity. To fix these problems without requir-
ing any changes in the operating systems of network nodes, Robert Kahn
and Robert Wilensky (1995) overlaid the capability-addressing principle on
to the Internet. They developed a service, called handle.net, that enables
users to register handles and their associated URLs; users share objects by
making the handles available (see figure 7.6). The handle system provides
a means to get to any registered object, even if years go by and the object
has been moved to new servers and new URLs. The Library of Congress

DOI Registry
dx.doi.org

N
S

! 10.1145/1070838.1070856
/ = doi.acm.org/1070838.1070856
2

0 DOI Registration

| doi://10.1145/1070838.1070856 |

| http://doi.acm.org/1070838.1070856 I\
3 v
\ 1070838.1070856

File

Browser \_/

ACM DOI Resolver
doi.acm.org

Figure 7.6

The digital object identifier (DOI) system brings the features of handle systems to the
Internet. This example uses the digital library of ACM, a professional society. The
access protocol consists of four steps. To initialize, ACM generates a DOI for a newly
published object. The DOI consists of ACM’s unique number (10.1145) followed by
a unique string chosen by ACM. Thereafter, a user can take the DOI from a citation
and ask the registry to resolve it (step 1). The registry returns the URL of the object in
the ACM Digital Library (step 2). The ACM Digital Library Resolver directs the access
to the specified object (step 3).



140 Chapter 7

created its digital object identifier (DOI) system to enable all publishers to
generate handles for their publications and register them with the Library.
The Library depends on publishers to maintain their content; if a publisher
goes out of business and does not transfer its content to new servers, then
its content becomes inaccessible because its DOIs will not map to anywhere
(Denning and Kahn 2010).

Authentication

Since the earliest days, the protection of information has been a primary
concern of operating systems designers (Dennis and Van Horn 1966, Wil-
kes 1968a, Denning 1971, Lampson 1974, Saltzer and Schroeder 1975). As
part of mapping a name to an object, the operating system verifies that the
requesting subject has permission to perform the requested operation. The
verification procedure is called access control.

Normally the owner of an object (its creator) declares who can access it
and in what ways. A permission is a statement of the form “subject s may
perform function f on object x” and can be abbreviated (s,f,x). A subject
is usually a combination of a user and a process owned by that user; for
example, s = (Ann,317) means process 317 is acting for Ann. A permission
such as, “Any process belonging to Ann may read file ‘abc’”
ated ((Ann,*),read,abc) where the asterisk matches any process number. The
allowable functions depend on the type of object; for example, read applies
only to files or memory pages, and suspend only to processes. Every object
manager is responsible to block accesses that would violate permissions; for
example, the file system would block Ann’s attempt to write “abc” when
the only permission was ((Ann,*),read,abc).

An access control list (ACL) is a common way to represent permissions.
The owner of an object x creates the ACL[x], whose entries are of the form
(s,f). Thus, the file system allows Ann to read file “abc” only if ACL[abc]
contains the entry ((Ann,*),read). Directory systems and database systems
attach ACLs to directory entries and records.

The Unix system compresses ACLs to nine bits. It assumes only three
types of user: the owner, a member of a group defined by the owner, or
the general public. It defines three permission bits for each type of user:
read (r), write (w), and execute (x). The resulting nine-bit code is stored in
the object’s directory entry rather than in a separate ACL file. For example,
Ann’s declaration that she cannot execute her file “abc,” her group can only
read it, and the general public can read and execute it, would be stored as
the access code (rw-r--r-x) in the directory entry for file “abc.”

is abbrevi-
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Another common way to represent permissions is with access codes in
capability lists, such as page tables and object lists. When it creates a sub-
ject s, the operating system creates its capability list CL[s], pointing to all
objects accessible to s. Thus, Ann’s read permission for file “abc” would
be stored as (read,abc) in CL[Ann]. ACLs and CLs are often used together:
capability lists are initialized with permissions from ACLs when files are
loaded into address space.

Some military and government systems label each user with a clearance
and digital objects with security tags such as unclassified, secret, or top
secret. The relations between clearances and tags define additional con-
straints on access. Users may neither read from objects tagged higher than
their clearances nor write into objects tagged lower than their clearances.
These systems control access according to the allowable information flows
subjects can generate while reading and writing objects (Bell and LaPadula
1976, Denning 1976).

To make permissions management and other operations easier, most sys-
tems include an account “root” (or “superuser” or “administrator”) that
has all permissions for all objects in the system. Only a small number of
trusted administrators may log in to that account. The existence of a root
account is a major security vulnerability for most systems. An attraction
of capability-based addressing is that it eliminates the need for a superuser
(Wilkes 1968a).

Positioning in the Hierarchy

Positioning refers to placing data in the different levels of a memory hier-
archy or nodes of a network in order to guarantee good performance of the
system. Performance is very sensitive to positioning. Recall the example
at the beginning of this chapter, a hypothetical supercomputer that ran at
1/11 its rated CPU speed because the memory system could not provide
new sensor data fast enough.

Cost analysis is a principle underlying every approach to the positioning
problem. If the cost of keeping a block of data in RAM for the times between
block reuse is less than the cost of retrieving the block from secondary disk,
we keep the block in RAM. This can be stated as a formula as follows. Let R
be the mean time interval between reuses of the data block, B the block size,
U be the unit cost per time unit of a byte of RAM, and D the cost of retriev-
ing a block from the disk. When UBR < D or, equivalently, when

R <D/UB
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it is cheaper to retain the block for the entire reuse interval. Using costs and
block sizes from the Tandem computer systems in 1985, Gray and Putzolu
put the threshold for R at 5 minutes. In other words, keep a data block in
RAM if its reuse time is less than 5 minutes; otherwise keep it on the disk.
Twenty years later the same rule applied for larger block sizes between hard
disk and RAM and for smaller block sizes between flash memory and RAM
(Graefe 2007).

This idea can be restated as principle of optimality. Because the param-
eters D, U, and B are fixed for a system, we can lump them into a decision
threshold T = D/UB. Then just after using a block,

1. If the time until next reuse exceeds T, immediately remove the block
from RAM.
2. Otherwise, keep the block until the next reuse.

There is no point is keeping a block in RAM for part of the interval until
reuse, for that would only add a RAM cost for the part of the interval but
would not eliminate the retrieval from the disk.

This rule is applied after each use. Thus, if the next reuse of a block is
within the threshold window, the same rule is applied just after that use
even though the block is already loaded. Because this rule is applied sepa-
rately to each block just after it is used, the total amount of used RAM can
vary. If more blocks are used in time T, the RAM allocation will increase; if
fewer are used, it will decrease. In 1976 Prieve and Fabry defined the policy
VMIN for variable-space minimization using exactly this decision rule and
showed that it is optimal. No other policy can generate fewer block-loads
for a given average RAM allocation.*

This principle is not easy to apply in practice because the number of data
blocks can be very large and their reuse times are random variables. More-
over, the decision in the present moment about whether to hold a block
until next reuse is uncertain because we cannot see the future. To be able to
make useful predictions of reuse times, we plainly need a predictive model
of how computations refer to and reuse their code and data.

The search for predictive models of memory use began in the 1960s after
virtual memory was introduced. Virtual memory relies heavily on its page
replacement policy—the rule to decide which RAM-resident page should
be displaced when the CPU encounters a missing-page fault. Replacement
policies were expressions of different predictive models. The performance
of virtual memory was quite sensitive to choice of predictive model.

In 1966 Les Belady of IBM conducted a highly influential study of
replacement policy performance in fixed-size RAMs. He concluded that
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the least recently used (LRU) policy, which selects the resident page that
has not been used for the longest time, is consistently better than the
others. As a benchmark, he defined the policy MIN, meaning minimal
page faults, which selects the resident page that will not be reused for the
longest time into the future; MIN generates fewer page faults than any
other fixed-partition policy (Aho et al. 1971). Unfortunately, MIN is not
implementable without exact knowledge of future memory references or
at least a very good predictive model of the future. There was quite a gap
between the performance of LRU and MIN. The search was on to find poli-
cies close to MIN.

Researchers used reference maps to help them see exactly how executing
programs used memory. A reference map is a time series of samples from
address space, showing which pages were used in each sampling interval.
These maps consistently revealed striking patterns of clustered references
that lasted for long intervals. They were distinctive, like a voiceprint, for
each program (see figure 7.7). The used area of a reference map represents
the space-time footprint that maximizes system throughput (see figure 7.8).

The tendency for programs to cluster references to subsets of address
space for extended periods is called the principle of locality.® As seen in figure
7.7, we can describe a computation’s memory demand as a sequence

(Lllpl)l (LZ,PZ), ooy (Lk,Pk),

where each Ly is a locality set, that is, a subset of objects of the address
space, and each Py is a phase, that is, the time duration of the locality set. If
we knew the locality sets and phase times, we could solve the positioning
problem simply by keeping each locality set resident in RAM for the dura-
tion of its phase. We will see shortly that this is very close to optimal.

The working set is a measuring instrument to track the changing local-
ity behavior of a program (Denning 1968a). The working set identifies the
pages of address space that have been used in a recent past virtual-time
window of size T.® We want a small window, conducted in the virtual time
of the program, that is just long enough to sample all the pages of the cur-
rent locality set. Many studies, such as the one depicted in figure 7.7, have
shown that a good sampling window is typically a small fraction of the
phase lengths. With such a window, the working set becomes an excellent
predictor of the immediate-future locality set and gives system performance
close to optimal (see figure 7.9).

When the locality principle is applied to multiprogramming, it says
that the ideal RAM allocation for each program is its current working set
and that no program should be started unless its working set can fit in the
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Figure 7.7

This is a page reference map of the Firefox web browser in a Linux system. The hori-
zontal axis represents virtual time, measured in memory references (about 380K ref-
erences per pixel), and the vertical represents virtual addresses of pages. A darkened
pixel indicates that the page was referenced during the associated window of 380K
references. The map reveals the locality sets of the program and shows dramatically
that locality sets are stable over extended periods (phases), punctuated by shifts to
other locality sets. In this picture the locality set seen in a sample interval typically
persists for 30-60 samples. For over 97 percent of the time, the pages seen in a sample
interval are a near perfect predictor for the pages used in the next sample interval.
These striking diagrams show that each program has its own unique locality behav-
ior. There is no randomness in the way programs use their code and data. (Source:
Adrian McMenamin (2011), experiments conducted in 2010)
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0
0 a b K
Figure 7.8
Performance analysts measure memory usage with space-time, which are the num-
bers of page-seconds accumulated over time by a program in memory. Here we see a
memory of size M observed for K seconds. The six areas represent the space-times of
six programs that used the memory. At time a, programs 1, 2, and 3 were resident;
at time b, programs 4 and 5. Memory space-time is related to system throughput by
the remarkable law M = XY, where X is the throughput in programs completed per
second, and Y is the average space-time of a program (Buzen 1976). In this case the
throughput is X = 6/T because six programs were completed, and the mean space-
time per program is one-sixth of the total available space-time MK. Ideally, if each
program were as small as the space-time of its reference map, the maximum number
of programs would consume the available MK, maximizing throughput.

unused part of RAM. Virtual memory systems managed under this principle
cannot thrash.”

When the locality principle is applied to a CPU cache, it says to replace
cache items according to the LRU rule because the least recently used pages
tend to belong to past locality sets that are no longer relevant. The cache
therefore protects the pages most likely to be used in the immediate future,
mimicking MIN.

When the locality principle is applied to the Internet, it says to place
copies of web pages on “edge caches” close to clusters of users, for example,
in a local network. A cluster has its own locality behavior, and the edge
cache positions the locality pages close to where they are processed. In the
Internet long queues of backlogged requests can otherwise clog popular
sites, causing long delays; the caching breaks up the long queues of the
centralized server. Akamai Technologies has been particularly successful at
this: their edge caches serve 30 percent of Internet traffic. Their algorithms
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Figure 7.9

When memory allocation varies to track locality sets, Belady’s MIN is not optimal;
VMIN is (Prieve and Fabry 1976). For a given T, VMIN looks ahead to the next refer-
ence of a page; if that page is used sooner than T, VMIN retains it in RAM for the
entire interval until reuse; otherwise VMIN removes it immediately, to be reclaimed
later by a page fault. The parameter T trades off between the cost of retaining a page
and the cost of recalling it later. When T is less than phase lengths, VMIN and WS
(working set) both see and retain the locality set. The only differences between them
occur at phase transitions. The diagram shows a transition from a smaller locality set
(size b) to a larger one (size ¢) with an overlap (size a). When the transition begins
(circled “x”), WS accumulates the new locality pages in addition to the old ones;
within time T into the new phase, WS settles to see only the new locality pages.
VMIN anticipates the transition by removing pages immediately after their last uses
in the old phase. The discrepancy between WS and VMIN for T time units after the
transition is b — a pages until close to the end of the T window, and then the decay of
WS to meet VMIN mirrors the VMIN decay T time units before. Therefore, if the old
phase is of duration P, the relative discrepancy in space-time is at most (b — a)T/bP,
which is less than T/P. Thus, if T is 3 percent of a phase length, as in much of figure
7.7, WS is within 3 percent of optimal.
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measure where the demand comes from and calculate the best positions for
caches. In the Internet, as in the individual computer, locality is predict-
able, and locality models can significantly improve performance.

Why Locality Is Fundamental

There is plenty of empirical evidence that locality is a fundamental prop-
erty of all computations. A large number of programs have been observed
through reference maps, which always show the locality-phase behavior
and confirm that working sets with windows small compared to most phase
lengths will accurately observe the locality sets. Moreover, the universal
success of CPU caches and edge caches in the Internet is an even stronger
confirmation of locality.

Might locality behavior be an artifact of compiler optimizations? For
example, might the compiler’s strategies for clustering blocks of code and
data that reference each other account for the behavior? Madison and Bat-
son (1976) showed that locality behavior is already present in the source
code of programs. The locality behavior therefore seems to come from the
way humans go about problem solving. For example, the common strategy
of divide and conquer guarantees that algorithms will cluster references
into small subsets of code and data for extended periods. Algorithms that
use linear arrays, strings, or vectors generate locality behavior by localizing
references inside those objects for the durations of loops. Good compiler
optimizations preserve locality, and the memory system will operate effi-
ciently; conversely, poor optimizations obscure locality, and the memory
system will be inefficient.

Locality goes even deeper than this. In 2010 Yuri Gurevich published a
report seeking to answer the question, “What is an algorithm?” He formu-
lated an algorithm as the control of an agent that performed operations
on data. Among the requirements of allowable operations for the agent is
a bounded-domain principle: an operation can only alter a finite, bounded
region of the data structure. In other words, to qualify as an algorithm, a
computational method must necessarily obey a locality principle.

Conclusions

Storage is as fundamental to computing as processing. The memory sys-
tems in which code and data are stored are hierarchical, with high-speed
devices of relatively low capacity coexisting with slow-speed devices of
high capacity. The high-speed devices enable high-speed computation,
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while the low-speed devices enable reliable long-term storage and very large
data sets. Huge networks of these memory systems are interconnected in
the Internet.

The usability of storage systems depends on the resolution of four large
issues: naming, mapping, authenticating, and positioning. Naming means
to assign alphanumeric or bit strings to identify objects. Mapping means to
associate a name with a memory location containing the object. Authentica-
tion means to verify that the requesting subject has permission to perform
the requested operation on the object. Positioning means to place data at
locations within a memory hierarchy, or within the Internet, for optimal
performance.

There are six primary access modes for storage—addresses, address pairs,
handles, pathnames, queries, and text searches. Each serves a particular
purpose, and all are present in most computing systems or the Internet.
The systems that implement each of these modes can be quite complex.

Positioning is based on the principle that a data object should stay at
a position in the memory system if it is cheaper to keep it there between
reuses than to retrieve it later on demand from another position. In many
systems, typified by virtual memory, the positioning decisions are deter-
mined by the ratio of those costs. The principle of locality—computations
cluster references into small subsets of address space for extended periods—
was extended into a well-validated theory for predicting which objects are
most likely to be used in the immediate future. Predicted localities should
be positioned close to their processing sites. Locality theory has supported
the design and performance optimization of memory systems.

Over the years critics predicted that virtual addressing methods would
disappear because RAM technology would eventually be so good that most
programs would never have to page at all. A simpler operating system with
no paging could give everyone all the RAM they need. This outcome is quite
unlikely. Virtual addressing methods are here to stay because they solve
important problems of sharing, naming, authenticating, and preventing
programs from interfering. They are essential even if their data-positioning
policies are never switched on. Moreover, because so many of the computa-
tions we wish to run deal with “big data”—meaning data that exceed our
current storage systems—there will never be enough RAM.
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We have arranged the whole system as a society of sequential processes whose har-
monious cooperation is regulated by explicit mutual synchronization statements.

—Edsger W. Dijkstra

Ubiquitous commercial multicore chips are forcing computational thinking to go
parallel.

—Walter Tichy

E pluribus unum.

—Original motto of the United States

In visualizing computations we are used to thinking of single processes con-
trolling a single CPU carrying out an instruction sequence. Many of our
definitions of algorithms emphasize step-by-step behavior—one thing at
a time.

But in real life we do many things at once, and we interact with many
other people who are doing likewise. We can see this in the conduct of
our daily affairs and in mobile and desktop operating systems. The infor-
mation processes we collectively generate in the Internet may have
some sequential components, but they are mostly many agents operat-
ing concurrently. The modern computational world cannot be adequately
described in terms of sequential processes. It is a cacophony of many
independent, autonomous agents trying to achieve individual and shared
goals.

How do we describe and manage such computations?

We do this under the heading parallel computation, a term that ordinar-
ily refers to computations performed cooperatively by multiple, concurrent
agents. The term implicitly suggests that “serial computation” is a special
case and may be the basic building block of parallel systems. However, there
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are many computations where, even at the fine level of detail, it is hard to
discern sequential components.

Designers of parallel computing deal with two broad classes of
phenomena:

1. Cooperative parallelism Many processes (autonomous computational
agents) synchronize together to accomplish a common goal. For example,
a supercomputer with 10,000 processors starts a computation with 10,000
processes, one running on each processor, in order to complete a weather
prediction 10,000 times faster than a single processor could do it.

2. Competitive parallelism Many processes with little or no mutual synchro-
nization simply use the finite resources of a network to accomplish their
individual goals. Queues form at some resources where demand is high.
Resources with long queues act as bottlenecks that limit the speed at which
individual processes get responses from the system. For example, the cell
phone network can get overwhelmed in emergencies, and subscribers will
experience long waits before they can place calls.

The two classes are not independent. For example, some supercomputer
operating systems allow many processes to compete for fewer processors.
Google avoids bottlenecks at its servers under a load of 1 billion queries
a day by dividing each query into thousands of subqueries dispatched to
thousands of processors, which cooperate to answer each query in under
0.5 second.

We discuss cooperative parallelism in this chapter and competitive paral-
lelism in the next chapter on queueing.

Early Directions of Parallel Computing

In the 1940s the main focus of computer engineers was on machines with
serial processors, executing one instruction at a time in sequence. They saw
this as the best path to reliable machines. Parallel machines and parallel
algorithms were too much to take on for such a young technology.

Even so, parallelism was never far from most computer engineers’
minds. The electronic circuits implementing the CPU contained many
parallel pathways for signals to follow. Engineers knew that race conditions
were a major problem for reliability. A race condition exists when more
than one input signal flows along parallel paths and the value of the
output depends on the speeds of the paths. For example, an output that
the designers intended to stay constant at “1” could fluctuate briefly to
“0” if the faster signal got to the output before the slower signal. That
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Logic circuits in a CPU are connected to one-bit flipflops (xi, x,, ..., x,) that represent
the circuit’s most recent state (left). The arrival of a clock pulse causes the flipflops
to be set to the current values of the circuit’s output. The new flipflop values propa-
gate to the circuit’s input, leading to a new set of outputs. However, while the new
signals move through the circuit, the output can change spuriously. To avoid the
danger of spurious outputs being read into the flipflops, the clock tick interval is set
longer than the circuit-settling time. The example logic circuit (right) has an OR gate
(1) connected two AND gates (2, 3), which are in turn connected to another AND
gate (4). The input to gate 2 from gate 1 is negated, meaning that signal from gate
1 is reversed. If this circuit is in either state abcd = 1001 or 1011, the output is x = 0.
However, when the ¢ input changes from O to 1, a slower propagation via gate 2 rela-
tive to gate 3 will cause a momentary change to x = 1 for the time difference between
the two gates.

fluctuation could cause the malfunction of the downstream circuits
intended to receive that output. Maurice Karnaugh (1953) demonstrated
a technique to design logic circuits so that fluctuations caused by racing
signals could not happen. Unfortunately, Karnaugh'’s method did not scale
well to very large circuits.

Hardware engineers incorporate a clock to maintain stability of large
circuits. They built machines as logic circuits with one-bit flipflops in feed-
back cycles (see figure 8.1). At a clock tick pulse, the logic circuit’s outputs
are written into the flipflops. The duration between clock ticks was longer
than the slowest path through the logic circuits. Fluctuations caused by
internal races in the logic circuits were no longer observable to the users of
the circuits.

Unfortunately, clocked circuits do not scale up well. In the time between
ticks of a 3-GHz clock, light travels about 4 inches. That is ample time for
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a signal to traverse a typical 3-cm chip. However, for a circuit the size of a
1-foot circuit board, we would need to slow the clock to 1 GHz or less.

Many circuit designers sought to mitigate these signaling problems by
building modular circuits, applying the clock only to the modules, and
using asynchronous (unclocked) signaling between modules. For example,
CPU and disk controller cabinets could have their own internal clocks
and use a ready-acknowledge protocol to exchange requests and data. In
a ready-acknowledge protocol the sender places the data to be transmitted
in a buffer and sends a ready signal to the receiver; after the receiver has
acquired the data, it sends an acknowledgment signal back to the sender.
This protocol works for any length cycle between the sender and receiver.
Ivan Sutherland (2012), one of the earliest proponents of asynchronous
circuits, argued in 2012 that the case for removing the clock is stronger
than ever if we wish to continue scaling circuit sizes upward and lowering
energy consumption.

Many designers looked to parallelism rather than clocks for a more
aggressive way to speed up computations. If a problem to be solved could
be broken into many small, independent tasks, each could run on a differ-
ent processor. Then N processors could complete the whole job in 1I/N of
the time a single processor would take. Massively parallel supercomputers
have driven this principle to huge values of N, some upward of a million
processors (see figure 8.2).

Unfortunately, few problems decompose into completely independent
pieces. Consider, for example, a highly simplified algorithm for weather
forecasting on a two-dimensional grid representing the entire country. In
the computation each cell records its own pressure, wind direction, and
wind velocity. Each cell interacts with four neighbors—call them north,
east, south, and west—by allowing the four neighboring values to affect it,
producing new local values of pressure, direction, and velocity. Consider
just the pressure calculation. Let t denote a time step in the computation
and P(t) the pressure in a cell at time step t. The new value of pressure in a
cell might be computed as the average of the neighboring pressures at the
previous time step as’

P(t) = [Pnorth(t_ 1) + Peast(t_ 1) + Psouth(t_ 1) + Pwest(t_ 1)] / 4

The allowable clock time between time steps would be the time for the
network to deliver the four neighbor values plus the time for the cell to
sum them, divide by 4, and store the result. Because all the communication
is local, this can be scaled up to a large number of cells at the same clock
time step.
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Figure 8.2

The Blue Gene/P supercomputer at Argonne National Lab runs over 250,000 proces-
sors, grouped in 72 cabinets connected by a high-speed optical network. It is typical
of modern “cluster” machines, which achieve very high computational rates through
massive parallelism. Another common supercomputer configuration is the “grid,”
in which thousands of computers in the Internet are mobilized when otherwise idle
to work on pieces of a large computation. The world speed record in 2013, 18 x 10"
floating point operations per second (18 petaflops), was held by the Cray Titan super-
computer at Oak Ridge National Laboratory. Michael Flynn (1972) characterized this
architecture as MIMD (multiple instruction multiple data) and predicted it would
achieve the fastest speeds.

With a separate processor for each cell, the entire grid of N processors
would compute the entire pressure profile for all time stepst=1, 2, 3, ...
and could speed up the computation by a factor of N. By letting time evolve
into the future, the grid can predict future pressures.

What about normal programs coded for single-processor machines?
Could they be speeded up by N with N processors? Would it be possible,
without having to reeducate programmers, to build parallelizing compil-
ers that could translate normal programs for multiprocessor machines? In
the 1960s Gene Amdahl, a computer architect for IBM, asked how much
a parallelizing compiler could actually accomplish. He stated a formula,
known now as Amdahl'’s law, for calculating the speed-up. If a fraction P of
a program is parallelizable and can achieve a speed-up of N, the parallelized
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program will take (1 — P) + P/N as long to complete. For example, if 10
percent of the program is parallelizable and 10 processors are available,
the program will complete in 91 percent of the time it would take on a sin-
gle processor. Amdahl calculated that many common programs contained
too many serial dependencies to benefit much from a parallel processor.

Nobody complained because Moore’s law kept doubling the processing
speeds of chips every 18 months or so. However, around 2000, chip makers
began encountering the difficulties cited earlier in scaling up clocked chips.
They turned to parallel processing to enable them to maintain the speed
doublings promised by Moore’s law. Instead of making a chip twice as fast
by cutting feature sizes and doubling the clock speed, they put two paral-
lel CPUs, called “cores,” on the same chip and kept the old clock speed.
Within a decade 16-core chips were routinely available. But there was a
catch: applications programmers had to learn how to write parallel pro-
grams for these new chips. What principles can they use to do this well?

Since the 1960s operating system designers have accumulated knowl-
edge of building effective parallel systems. Operating systems implement
individual programs’ concurrent processes and assign CPUs to them by
cycling through processes waiting in a “ready list.” Operating systems are
very good at running many user processes in parallel on a limited set of
resources.

Many intuitions about serial algorithm design and debugging break
down spectacularly for parallel programming. Parallel programming brings
with it the serious possibility of race conditions and timing-dependent
intermittent bugs plus a host of synchronization problems when processes
exchange signals or get tangled by deadlocks. Computational thinking has
had to move from serial to parallel computations.

Models of Parallel Systems

Although there was not much place for parallel programming in the com-
mercial world of the 1950s through the 1970s, researchers studied the sub-
ject actively and amassed an extensive theory of parallelism. They learned
how to build reliable asynchronous circuits, exchange signals and messages,
eliminate race conditions, avoid deadlocks, and prevent timing-dependent
bugs. They designed programming languages that explicitly represented
the parallelism naturally present in a problem, so that most of the code
output from a compiler would benefit significantly from a machine with
many processors. Unfortunately, most of the theory went fallow in the
1980s and 1990s because the industry had little interest in parallel com-
puting. That started to change around 2000 with multicore chips. The old
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principles came back into vogue for all programmers. These principles have
been embodied into several basic models.

Cooperating Sequential Processes

This model is commonly used to organize operating systems. A parallel
system consists of a set of sequential processes operating concurrently at
unknown speeds. A process, also called a thread, is the sequence of CPU
states generated while executing a program in a single address space. A
process can spawn new processes (“children”). Processes coordinate by
exchanging signals and messages.

A computation consists of one or more processes operating in a shared
address space. Computations can be terminating or nonterminating. A ter-
minating computation is one in which all the processes terminate; its out-
put is the values left in the shared memory. A nonterminating computation
is one in which at least some of the processes execute in repeating cycles;
its outputs are sequences of values emitted from designated processes in
the set.

Communication between processes (whether in the same or different
computations) is accomplished with explicit signals; no data are exchanged
through hidden channels. Implicit communications, such as leaving data
in a shared memory area, are common sources of errors. Programmers must
identify coordination requirements and deal with them explicitly using
synchronization protocols. Coordination requirements typically include
the following:

1. Race conditions The value in a memory cell depends on the order in
which concurrent processes write values to that cell.

2. Mutual exclusion Different processes cannot concurrently execute criti-
cal sections of code.

3. Serialization A code segment is executed as a unit and is never inter-
leaved with concurrent code segments that could race with it.

4. Synchronization A process cannot continue past a designated point until
it receives a signal from another process.

5. Rendezvous A group of processes waits at a designated point until all
members of the group have reached the same point; then they all proceed.
6. Message passing Processes send messages to each other.

7. Deadlock prevention or avoidance Processes never get into a circular wait
in which each is stopped waiting on a signal from another process in
the set.

8. Arbitration When two signals are near simultaneous, select one to be
first and the other second, without losing either one.
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Functional Systems

A parallel system consists of a partially ordered set of tasks sharing a mem-
ory. Each task implements a function that maps values in its input memory
cells to values in its output cells. A task executes in an interval from its
“initiation” to its “completion.” After initiation (also called “firing”) it
can read its inputs and write its outputs according to its internal function.
When done, a task signals completion to the next tasks explicitly marked
as its successors in the partial order. A task cannot initiate until all its
predecessors in the partial order have sent it their completion signals.
There are many variations on this theme including Petri Nets, Parallel
Program Schemata, and Dataflow Graphs. Programming languages such as
APL and VAL were developed to represent parallel computations in this
model.

Event-Driven Systems

Event-driven systems are collections of processes in which signals notify
processes when certain defined events occur. For example, a network man-
ager process waits for two kinds of events: packets arrive from the Internet,
whereupon they must be delivered to their proper recipient user processes;
requests arrive from user processes, whereupon their packets are transmit-
ted into the Internet. Another example is a real-time control process, such
as a patient-monitoring system in a hospital, which must respond within
specified deadlines to sensor notifications. These systems extend the model
of cooperating sequential processes by allowing a waiting process to be
awakened by any one of a set of signals rather than just for a specific signal
and by allowing processes to time share mutually excluded regions. Pro-
gramming languages recognizing this model have been in wide use since
the 1970s; they include monitors (Brinch Hansen 1973, Hoare ) and object-
oriented languages such as Modula, Smalltalk, CLU, and Occam.?

MapReduce Systems

MapReduce systems were originally developed to deal with parallel pro-
cessing of queries and retrievals from very large databases (Dean and Ghe-
mawat 2004). They have been very successful for “big data,” meaning the
analysis of very large data sets for trends and patterns. The key idea is that
programmers must divide their problem into many thousands of small, par-
allel pieces that can be implemented on servers scattered around the Inter-
net and whose solutions can be quickly combined into a solution to the
original, larger problem. The idea was developed at Google to enable mas-
sively parallel searching of their web databases, portions of which reside on
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servers around the world, so that they could respond to every search query
in under 0.5 second. Hadoop is an open-source language for implementing
MapReduce.

Because of space limitations, we do not discuss event systems and MapRe-
duce systems further. The models of cooperating sequential processes and
function systems are sufficient to reveal the essential principles of coordi-
nation in large parallel systems.

Cooperating Sequential Processes

This model begins with the process abstraction. The designers of the first
time-sharing systems invented the abstraction to deal with some difficult
problems in reliably switching the CPU among many programs.® Eds-
ger Dijkstra (1965, 1968a, 1968b) proposed that an operating system be
implemented as a set of cooperating sequential processes. This idea was
widely accepted. Tony Hoare (1978) codified it with a model called CSP
(cooperating sequential processes), which yielded the language Occam for
programming such systems. Occam was used in some supercomputers in
the 1980s.*

Implementing the process abstraction involves a complex lot of low-level
operating system actions. Dijkstra hid all that complexity behind a very
simple user interface. The interface gives operations to create and delete
processes, suspend and resume processes, and exchange signals between
processes (see figure 8.3).

Parallel processes brought the problem of race conditions to software.
Most programmers were not used to dealing with race conditions because
their programs were sequential, ran on hardware that had no circuit-level
race conditions, and did not interact with other programs. Figure 8.4 illus-
trates the problem for Alice and Bob accessing a shared bank account simul-
taneously from different ATMs. Various different outcomes can result if the
codes run by the ATMs can be interleaved in time. The implementation vio-
lates Alice and Bob’s mental picture of their transactions running without
mutual interference. They expect their transactions to be serialized, which
means that the two processes always go one before the other, but never
simultaneously. Serialization is a solution to race conditions.

Machine designers tried to solve this problem with a lock, which is a loca-
tion in memory that holds the value 1 (locked) or the value O (unlocked).
A lock is assigned to protect a particular set of shared data. A process sets
the lock when using the shared data and unlocks when done. Any process
wanting to use the data tests the lock and proceeds only if the lock is not
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The mechanism for multiplexing a CPU among a set of processes is founded on the
automatic saving and loading of process statewords. The stateword (SW) is the set of
values in all the CPU registers that belong to the process—for example, the program
counter, stack pointer, and arithmetic registers. The operating system maintains a
list of process control blocks (PCBs), each containing a snapshot of a stateword. The
register PID (process identifier) holds the number of the process currently running
on the CPU; here process 1 is running. The instruction SAVESW copies the stateword
of process PID into its PCB. When PID contains process number i, the instruction
LOADSW copies the saved stateword from PCBJ[i] back into the CPU so that pro-
cess i can continue from where was last interrupted. A TIMER register, initialized
to the time slice value (here 100 milliseconds) by LOADSW, counts down and trig-
gers a time-out interrupt when it reaches 0. The time-out interrupt handler executes
SAVESW, loads PID with the next process number at the head of the ready list, and
executes SAVESW. The ready list is a queue of processes ready to be run. Here, its head
is process 3, and its tail is process 4. The small boxes in the PCBs tell which process is
next in the list; thus, the full ready list is (3, 1, 4). There is also a wait list of processes
that cannot run because they are waiting for certain events, such as disk transfer
completions; for example, here process 2 is waiting. When the event occurs, process
2 is transferred from the head of the wait list to the tail of the ready list. Process O,
called the idle process, is automatically at the end of the ready and wait lists and will
run whenever no other process is ready. Having a process O ready to run whenever no
user process is ready protects the system from crashing when the ready list is empty.
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Race conditions can arise during parallel execution of software codes. The left picture
shows Alice and Bob at ATMs attempting transactions on the same account from
separate ATMs at the same time. Each ATM contains a simple program that gets the
account balance from the bank database, adds or subtracts the transaction amount,
and puts the result back into the bank database. Alice and Bob both assume their
transactions as indivisible actions that would leave the account balance at 900 no
matter who goes first or second. However, as shown on the right in two parallel
timelines, the two ATMs can malfunction if they start the transactions at about the
same time and interleave their individual instructions. For example Alice does “get
balance,” then Bob does “get balance,” then Alice subtracts 200 from her local copy
of the balance, then Bob adds 100 to his local copy of the balance, then Alice does
“put balance,” and finally Bob does “put balance.” After this sequence, the final
value in the account will be 1100, which is incorrect. A slight shift of timing, so that
Alice does “put balance” after Bob, leaves 800 in the account, which is also incorrect.



160 Chapter 8

set. Figure 8.5 shows how this would work. A hardware assist, in the form
of a test-and-set instruction, is needed to avoid a fatal race condition while
testing the lock.

The locking solution of figure 8.5 comes with a price—a costly problem
called busy waiting. Busy waiting means that the CPU loops, testing the lock
and waiting for it to be unlocked. Busy waiting can devastate a time-sharing
system by wasting large amounts of CPU time. It would be much better to
suspend the process the moment it waits for a lock and resume it when the
lock is released.

Edsger Dijkstra (1968a, 1968b) solved this problem with the invention
of the semaphore, a lock that contains a queue of processes waiting for it to
be unlocked. Any process attempting to pass the locked lock is taken off
the CPU’s ready list immediately and placed in the semaphore queue. The
operations wait and signal lock and unlock, respectively, and manage the
queues (see figure 8.6).

Semaphores yield elegant solutions to many other synchronization
problems among parallel processes. Every synchronization involves three
aspects:

1. One or more sender processes

2. One or more receiver processes

3. Coordination between senders and receivers such that no receiver can
pass a designated point until every sender has reached a corresponding des-
ignated point

A sender process uses a semaphore to signal that it has reached the desig-
nated point. A receiver process uses the same semaphore to stop and wait at
the designated point until the signal comes. The semaphore is the simplest
possible channel and queueing mechanism for such signals.

One common synchronization pattern is to have processes borrowing
units of a resource from a shared pool and returning them later. Pages of
memory are examples. At a page fault, the virtual memory manager with-
draws an unused page from the free-pages pool and assigns it to the faulting
process; later, the page is returned to the pool by the replacement algo-
rithm. A semaphore synchronizes the use of the pool: its counter records
the number of items remaining in the pool, the wait operation grants per-
mission to withdraw an item, and the signal operation notifies when an
item is returned to the pool.

Another common synchronization problem solved with semaphores is
the transmission of a stream of items from a “producer” process to a “con-
sumer” process via a buffer. The buffer is a limited storage area that holds
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The instructions of any process seeking to update data must be executed as a unit
to avoid the race malfunction. Above, four processes access a shared data object D
using “update D,” which could be any series of instructions that read and write D. If
the four processes begin their updates together, the final value of D will depend on
which goes last and may be different from the value that would be in D if they went
in any serial order. A segment of code, such as “update D,” which must be executed
as a unit, is called a critical section. Critical section races can be avoided by locking
the shared data when any process is updating it. A lock is a variable (here x) stored in
RAM and associated with the shared data D. The value x = 0 means that D is unlocked
and any process can access it. The value x = 1 means that D is locked by one process
and no other may access it. This lock protocol is summarized at the upper right.
Unfortunately, the protocol itself contains a bug, called “race on the lock”: if two
processes read lock=0 at the same time but before either sets lock=1, both can enter
the critical section at the same time. To prevent this problem, most CPUs implement
a hardware instruction test-and-set lock, abbreviated “TSL x”; executing TSL returns
the value of x and sets x = 1. TSL is implemented in one memory cycle so that it can-
not be interrupted by any other TSL.
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Edsger Dijkstra invented the semaphore as a way of locking a critical section without
the busy waiting inherent in the TSL solution (figure 8.5). A semaphore passes a sig-
nal from one process to another and delays the recipient until a signal is available. It
consists of a counter and a queue. The counter is the number of signals that can be
picked up without waiting. The wait(x) operation on semaphore x subtracts 1 from
the counter and, if the result is negative, puts the caller to sleep in the queue. Notice
that the magnitude of a negative counter is the length of the queue. The signal(x)
operation adds 1 to the counter and if the result is not positive wakes up the first
process in the queue. At the right are examples of possible configurations of the
semaphore. Configuration a is the initial configuration with a count of 1 and empty
queue; the first process to request the critical section will pass without waiting. Con-
figuration b means that some process is in the critical section and no one is waiting.
Configuration ¢ means that one process (here process 2) is waiting. Configuration d
means that two processes are waiting and the queue is (1, 4); the next signal opera-
tion will release process 1. Configuration d means that three processes are waiting
and the queue is (3, 1, 4); the next signal releases process 3.
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items while they are “in transit.” The problem is to prevent buffer over-
flow and buffer underflow. Overflow means that the producer has filled the
buffer and overwrites previous items before the consumer removes them.
Underflow means that the consumer has read the whole buffer and rereads
old items. Overflow can cause the loss of items, underflow the duplication
of items. The protocol for this synchronization uses two semaphores:

1. The “empty” semaphore has its count initialized to N, the buffer size. Its
count represents the number of unused buffer slots.

2. The “full” semaphore has its count initialized to 0. Its count represents
the number of used buffer slots.

To insert an item into the buffer, the producer waits on the empty sema-
phore, places the item in the next unused slot, and signals via the full
semaphore. To remove an item from the buffer, the consumer waits on the
full semaphore, takes the item from the next used slot, and signals via the
empty semaphore.

Although they are capable of solving a host of synchronization problems
among parallel processes, semaphores introduce new problems. The most
challenging is the deadlock. A deadlock is a circular wait condition among
a set of processes holding and requesting shared resources. Assume that
each resource has a lock indicating that it is in use. In a deadlock a set of
processes are all stopped, each holding a lock and waiting for another pro-
cess in the set to release a lock. The only way out of a deadlock is to kill the
processes in the set, release all their locks, and start over.

An example of deadlock can be seen in the prior ATM problem. Con-
sider the ATM account transfer transaction. It subtracts an amount from
the “from” account and adds the same amount to the “to” account. We can
avoid the race condition by programming the ATMs to lock both accounts
before doing the transfer. Once the accounts are locked there is no danger
that another transaction can access the two records while the first transac-
tion is using them. Consider what happens in two ATMs if Alice and Bob
are attempting transfers at the same time (see table 8.1). Both semaphores
A and B have initial counts 1.

Suppose they both start at the same time and execute their first instruc-
tions, leaving both semaphore counts at 0. Now they are doomed because
ATM1 will be put to sleep on semaphore B and ATM2 on semaphore A.
Neither can proceed.

There are numerous approaches to dealing with deadlocks. We men-
tion the three most important.® The first is to let deadlocks happen, then
extricate the system by killing the processes involved. Detection algorithms
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Table 8.1
Setup for a Deadlock

ATM 1: ATM 2:

“Transfer 100 from A to B” “Transfer 200 from B to A”
wait(A) wait(B)

wait(B) wait(A)

A=A-100 B=B-200

B =B+ 100 A=A+ 200

signal(A) signal(B)

signal(B) signal(A)

simply make a graph showing which processes have locks or are request-
ing locks and look for a cycle in the graph. The cycle is the circular wait.
This approach is often unsatisfactory not only because it can be expensive
to Kkill deadlocked processes but also because the method cannot detect
imminent inevitable deadlocks. For example, the ATMs above are not dead-
locked immediately after their first wait operations, but the inevitable dead-
lock will not be detectable until both have stopped at their second wait
operations.

A second approach seeks to prevent deadlocks by up-front acquisition of
locks. Before performing the critical code, a process enters a loop in which
it acquires all the needed locks before proceeding; if the process finds that
a needed lock is already locked, it releases all the locks it already holds and
starts over. This protocol prevents deadlock at the cost of possible livelock—
two or more processes can loop endlessly in synchrony, preventing each
other from acquiring all the locks needed.

A third approach seeks to prevent deadlocks by enforcing lock acquisi-
tion in a fixed priority order. The locks are numbered or assigned alphanu-
meric names. A process is allowed to request a new lock only if its number
or name is higher than any lock it already holds. With this constraint it is
impossible to get a circular wait among processes.® When this approach is
applied to the earlier ATM example, the transfer program would sort the
incoming account names into ascending alphabetic order and perform the
wait operations in that order.”

Functional Systems
The cooperating sequential process model implicitly assumes each process

runs on a CPU whose instruction rate and circuits are controlled by a clock.
Concurrency occurs between processes, not within processes.
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Clocked systems do not scale well. The clock tick interval must exceed
the time for signals to propagate through longest path on a chip. Larger
chips mean slower clocks. Faster clocks on denser chips create a heat dis-
sipation problem.

Ready-acknowledge signaling can be used to build self-timed circuits,
that is, circuits without a clock. When component A has a request for com-
ponent B, for example to transfer data or to start an operation, A sends B a
ready signal. The ready signal activates B. When B has completed its action
on the request, B sends an acknowledge signal back to A. This cycle allows
the next A-B interaction to begin and can be repeated indefinitely. Self-
timed circuits use far less energy because component state changes occur
only when data are transferred or transformed.

The simplest (and earliest) model of a self-timed system is a network
of tasks with access to a shared memory. Fach task implements a simple
function. Some of the tasks have precedence constraints, meaning that
they cannot begin until their predecessors have finished. Tasks with no
precedence constraint between them are concurrent. A task can fire at any
time after all its predecessors have completed. When a task fires, it reads
values from a designated input set of memory cells, performs its function,
and writes values into a designated output set of memory cells. A firing
sequence of the network is a list of the tasks in the order performed, con-
sistent with the precedence constraints. Networks with a few precedence
constraints and many concurrent tasks have many firing sequences (see
figure 8.7).

In a network without race conditions, we would expect that there is
exactly one output from the network for every input to the network. Each
network output value would depend uniquely on the initial values in mem-
ory—and not on the firing sequence. The task system of figure 8.7 does not
implement a function.

A task network whose overall behavior is a function, independent of its
firing sequence, is called determinate. Figure 8.7 illustrates a nondetermi-
nate system. Even though individual tasks implement functions, there is no
guarantee that a system of tasks as a whole implements a function.

Determinacy is critically important for many large computations such
as weather predictions, oil explorations, or aircraft wing designs. The small
tasks making up the computation are mostly concurrent, enabling them to
run in parallel and give high performance. If the results of the computation
depend on the exact firing order of the tasks, the results cannot be guaran-
teed to be correct. How would we know which executions were correct? We
do not want airplanes to fall from the sky because of unpredictable firing
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Figure 8.7

Task graphs connect functions implemented by task nodes (circles) into networks.
The left figure shows four tasks, A, B, C, and D, with two precedence constraints
indicated by dashed arrows. Tasks can fire, and perform their functions, in any order
consistent with the constraints. Possible firing sequences are BACD, ABCD, ACBD,
and ACDB. The right figure shows that each task takes input from some memory
cells (gray boxes) and writes output into others. For example, A receives input from
cells 1 and 2 and writes its results into cells 4 and 5; C receives input from cells 4 and
5 and writes its result into cell 7. Different firing sequences produce different final
results at cell 8. Assuming the initial values in memory cells are the same as the cell
numbers, and all cells perform additions, firing sequence BACD produces 11, ABCD
produces 13, ACBD produces 11, and ACDB produces 12. These differences result
from two types of race conditions. (1) In an output-output race, two concurrent tasks
write into the same memory cell; for example, the value in cell 4 depends on the fir-
ing order of A and B. (2) In an input-output race, one concurrent task writes into a
memory cell read by the other; for example, cell 6 is in an input-output race between
B and D, affecting the value in cell 8, and cell 4 is in an input-output race between B
and C, affecting the value in cell 7. To prevent races, no task can write into any cell
that any concurrent task reads or writes.
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orders of tasks inside the supercomputers that designed the wings or in the
avionic systems that control the wings in flight.

Nondeterminacy is also a serious problem for debugging. Debugging is
difficult or impossible if the bug cannot be isolated and reproduced. Bugs
that depend on the firing orders of parallel tasks look like random, inter-
mittent failures. They cannot be reproduced. When they are detected, it
is very hard to locate the specific defect in the task system that produces
the failure. Designers of early task systems called these timing-dependent
problems “lurking bugs.”

Fortunately, a very simple constraint will guarantee that a task network
is free of lurking bugs and that every execution with the same input will
produce the same output: no task can write into any memory cell that any con-
current task reads or writes. This is called the determinacy theorem for parallel
systems.?

We close this section with a comment on how task systems might be
implemented on a self-timed computer with no clock. A dataflow architec-
ture doing this was designed by Jack Dennis and David Misunas (1975) of
MIT. Although dataflow architectures have not been commercialized, they
are a proof of concept for large-scale self-timed machines. Because they can
be scaled much larger than current-generation supercomputers and would
use less energy, they may yet one day be commercially attractive.

A basic dataflow machine consists of three parts: an execution unit, a
data memory, and an interconnection network. The execution unit con-
tains components much like those of a traditional CPU, such as adders
and multipliers. The data memory contains a representation of the task
system graph like that in figure 8.7 but much larger. Two special types of
task, selectors and iterators, control the activations of entire subgraphs. The
interconnection network is a highly parallel network that transmits packets
representing fired tasks to the execution unit, where they are carried out;
and it returns packets containing results. Although the time to execute a
task is slower than on a conventional CPU because of the round-trip cycle
of the packets from the data memory, the overall throughput is potentially
very high because of massive parallelism.

A standard representation for any task is a data item with fields for inputs
and outputs and an operation code for the task function. For example:

(inl, p1, in2, p2, OP, outl, out2)
where

e inl and in2 are slots for data values that will be inserted by the comple-
tions of other tasks
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e pl and p2 are bits indicating whether the values are present or not

e OP is the name of the operation

e outl and out2 are the addresses of task inputs that will receive the output
results of OP

The cycle of execution is:

¢ An operation is enabled when both p1 and p2 are 1

e The data memory creates a packet containing a copy of the data values,
operation code, and result addresses of an enabled operation and sends the
packet to the execution unit

e The execution unit routes the packet to the function unit for the type of
operator

e The function unit performs the operation on the values provided in the
packet

e The function unit creates output packets addressed to the recipients using
the addresses provided in the packet

e The output packets flow back to the data memory, which copies their
values into the inputs of the tasks addressed and sets the p-bits to 1

With this arrangement, actions are triggered by the arrivals of packets into
the data memory and the execution unit.

Designing the hardware for dataflow is not the real bottleneck—modern
architectures already contain pipelining, multicore chips, and graphics pro-
cessors, all of which rely on dataflow methods. The real bottlenecks are
algorithm design and language design.

In 1976, John Rice of Purdue University published a study of the per-
formance of numerical computations, such as solving for the vector field
of airflows around a flying wing. Since 1940 the hardware speeds had
improved by a factor of 1 million (10°, and the algorithms themselves had
improved by another factor of 1 million, for a total improvement factor of
10", In other words half the improvement came from algorithm design.

Algorithm design is as important today as it was in 1976. A crucial dif-
ference is that the improvements reported by John Rice were created by
experts in numerical computation and encapsulated into standard math-
ematical libraries of numerical functions. Everyday programmers simply
used the libraries and did not have to think about the internal structure of
the algorithms.

Today, with multicore computers, programmers everywhere must design
ever more parallel algorithms. However, most programmers have not
been trained to “think parallel.” Multithreading has been a clumsy add-
on for many programming languages. Only a few languages offer parallel
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functions as part of their base design. To get most programs more paralleliz-
able, programmers will need to learn to think parallelism from the outset,
train their minds to deal with all the parallelism present in the world, and
use these new languages to express their designs.

Conclusions

It seems almost odd that computers that execute one step at time dominate
a world so rich in concurrent activity. Parallel systems are a much better fit.
Because they can mobilize massive number of processors, they offer signifi-
cant potential speedup over serial computation.

This benefit comes with a cost. Parallelism brings new challenges for
programmers, most notably race conditions, synchronization, and dead-
lock. Debugging is significantly more difficult. How can we restrict a system
to only the “correct” executions, especially when the number of possible
execution sequences grows exponentially or worse with the size of the
system? To do this we have developed an arsenal of protocols for using
semaphores, sharing memory among concurrent tasks, and waiting for con-
tested resources.

The model of parallel processing as a collection of cooperating sequen-
tial processes has been in use for many years because it offers straightfor-
ward extensions of the traditional sequential process model. This model
has proved to be difficult to scale to very large computations. An important
alternative is the function system model, in many simple tasks “fire when
ready” and collectively implement a solution to a problem. These systems
rely on self-timed circuits that operate without clocks. A simple structural
rule—that no task can write into memory read or be written to by any other
concurrent task—is sufficient to guarantee that a task system of any size is
determinate.






9 Queueing

Unpredictable behavior of deterministic systems arises from lack of certainty about
the workloads that drive these systems.

—Jeffrey P. Buzen

The original idea of a network was sharing computers, applications, software, and
data among many people.

—Leonard Kleinrock

A major airline has set up a computerized reservation system and has
authorized 1000 agents around the world to use it from their workstations
to sell seats on their aircraft. A data center in an undisclosed, secure loca-
tion contains all the records of flights, routes, and reservations. On average,
each agent issues a job against this database once every 60 seconds. Every
job makes an average of 10 requests on the directory disk in the data center
to locate other disks containing the actual data. The directory disk takes an
average of 5 milliseconds to service each request, and it is busy 80 percent
of the time.

How many jobs per hour are serviced worldwide on this system? What
is the average response time experienced by an agent in Paris? What
would happen to the response time if a new method of storing the direc-
tory reduced accesses to five per transaction? What would happen to the
response time if the number of agents doubled?

These are typical questions relating to the capacity of a network of com-
puters to respond to the demands of competing, autonomous processes—
what we called “competitive parallelism” in the previous chapter. We are
asked to predict how the network will behave under different loads. Algo-
rithms analysis, discussed in chapter 6 on Computation, is woefully inad-
equate to answer these questions. Algorithm analysis focuses on the CPU
time needed to solve a problem but not on other delays for needed services
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such as Internet connections, input and output, and storage access. More-
over, the delays for these services depend not only on the mechanics of the
servers but also on the queues that build up as other processes compete for
the same servers. Algorithm analysis can answer questions about running
time of a standalone process, but it cannot answer questions about the per-
formance of a system of processes competing for resources.

We turn instead to queueing analysis for answers to such questions (Den-
ning 1991a, 1991b). Most people would expect that the answers to the four
questions above depend on detailed knowledge of the system structure—
the locations and types of the agents’ workstations, the communication
bandwidth between each workstation and the data center, the number and
types of disks in the center, access patterns for the disks, local processors and
random-access memory within the center, the type of operating system, the
types of transactions, and more. It may come as a surprise, therefore, that
the first two questions—concerning throughput and response time—can
be answered precisely using only the information given. For the changes
of configuration proposed in the third and fourth questions, reasonable
estimates of system behavior can be made from the available information
and a few plausible assumptions.

Queueing Theory Meets Computer Science

Queueing theory is a branch of mathematics started in the early 1900s to
predict delays in waiting lines. It began with the research of A. K. Erlang
(1909), a Copenhagen telephone engineer, who set out to predict the loss
probability for an automated telephone exchange. When he investigated
the demands callers would place on a telephone system—specifically, the
times between arrivals (attempts to make calls) and the service times (the
lengths of calls)—he found that the arrival and service times were exponen-
tially distributed. That is, the probability that an interarrival time would
exceed t seconds is e*, where 1/A was the average time between arrivals. He
similarly found that the probability a call length would exceed t seconds is
e, where 1/u was the average duration of a call. The assumptions of expo-
nential arrivals and services greatly simplified Erlang’s mathematics and
enabled a highly accurate model for telephone exchanges. The letters 4 and
1 became fixtures for arrival and service rates in queueing theory.

A few years later Erlang (1917) published a model that predicted the
loss probability for a telephone exchange. The model was motivated by
the practical concern for the cost and complexity of telephone switching.
A center that could accept 100 percent of all possible phone calls would be
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prohibitively expensive even in a small town. Erlang showed that a much
smaller, affordable center could serve if townspeople would accept a small
chance that the system could not accept a call when they wanted to place it.

Erlang’s method used the Markov chain invented by the Russian mathe-
matician Andrey Markov in 1906. A Markov chain is a random process that
follows a sequence of states such that the probably of next state depends
only on the current state but not any previous states. When the distribu-
tions of times between state changes are exponential, Markov chains allow
relatively easy calculation of the equilibrium state distribution, which is the
long-term probability of finding the system in a given state. Erlang used a
Markov chain to describe the state of a telephone exchange as the number
of calls simultaneously in progress, and with that was able to calculate the
probability of loss of a call.

The method of using Markov chains with exponential arrivals and ser-
vices to find equilibrium state distributions of queueing systems was very
powerful. It led to successful analysis of queueing problems in many fields
such as transportation, crowd control, inventory control, telephone call-
ing, manufacturing, hospital management, and toll booth management.

Computer designers began to apply queueing theory in computing
systems in the 1960s for capacity planning of networks and time-sharing
systems. Capacity planning is concerned with calculating how much of
a resource is needed to keep queues from growing too large and to keep
response time within acceptable limits. In his PhD thesis Leonard Klein-
rock (1964) presented models for predicting delays of message traffic in
communication networks. Network packets experience queueing delays as
they move from router to router en route to their destinations. Kleinrock’s
models (1975, 1976) were used to optimize the routing structure of the
ARPANET.

Capacity planning for a computer system is much harder. Instead of
routers, computational servers such as CPUs, file servers, and input-output
servers are at the nodes of the network. J. R. Jackson (1957) presented the
first model for an open computer network in which all servers had expo-
nential service times. An open network accepts every arrival, and the num-
ber in it varies. Ten years later W. J. Gordon and G. F. Newell (1967) solved
the same problem for a closed network. A closed network contains a fixed
number of jobs. Closed networks are common, for example, a system where
all the users stay inside the system perimeter, a network protocol that lim-
its the number of packets on the network, or a system where an external
scheduler adds a new job to a system the moment another job leaves. The
mathematical structure of Jackson-Gordon-Newell networks very nicely fit
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many computer systems. Unfortunately, the only known algorithms for
computing their formulas were exponentially hard, making the solution of
all but toy systems impossibly difficult. For this reason the Jackson-Gordon-
Newell models had little practical value.

That changed in 1973. In that year Jeffrey Buzen (1973) discovered a
hidden structure within the Gordon-Newell solution and demonstrated an
algorithm that would solve the network in quadratic time rather than expo-
nential time. Buzen’s algorithm enabled a new generation of analysts wield-
ing portable calculators to solve throughput and response time problems
for systems in many fields. It also enabled a flood of experimental studies
comparing predictions of closed network models with real systems, often
finding amazing agreement—throughputs within 5 percent of measured
values and response times within 25 percent.

Two years later Forest Baskett, Mani Chandy, Richard Muntz, and Fer-
nando Palacios (1975) published a theorem, known now as the BCMP the-
orem, that generalized the Jackson-Gordon-Newell networks to arbitrary
routing and service distributions and multiple job classes, provided that all
the servers use one of four basic scheduling disciplines in their queues. The
four scheduling disciplines are FIFO, processor sharing, pure delay, and pre-
emptive resume last-come-first served. Buzen'’s algorithm generalized along
with the model, allowing fast computational solutions of almost any net-
work likely to be encountered in practice. Martin Reiser and Steve Laven-
berg (1980) soon discovered a new algorithm that directly computed means
of throughput, response time, and queue lengths. Buzen'’s algorithm did
not compute these means directly. Their “Mean Value Algorithm” became
the standard for computing queueing models.

The success of the models exposed a paradox. Computing systems did
not fit key assumptions of traditional stochastic models, notably equilib-
rium and exponential service distributions. Yet the models predicted their
throughputs and response times well. For example, computing systems do
not exhibit equilibria—their performance varies with the workloads, which
change at different times of day and days of the week. Performance analysts
discovered that the much weaker assumption of flow balance, which means
that the number of arrivals equals the number of completions, led to the
same mathematical equations as for stochastic equilibrium (Buzen 1976,
Denning and Buzen 1977, 1978). Flow balance is closely approximated in
many computer systems during many time intervals.

Another anomalous aspect of computer networks is that service distribu-
tions are often conspicuously not exponential. Performance analysts dis-
covered that a much weaker assumption of server independence, in which
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the output rate of a server in a network depends only on its local queue
lengths but not on the queues of any other servers, gave the same math-
ematical equations as the stochastic models (Buzen 1976, Denning and
Buzen 1977, 1978). Server independence is approximated in many comput-
ing systems during many time intervals.

The conclusion was that the traditional assumptions of queueing theory
can be replaced by the simpler assumptions of flow balance and server inde-
pendence and still yield the same formulas as traditional queueing network
models. The simpler assumptions are close to what is observed in many
computing systems. This is why queueing theory works so well for comput-
ing systems.!

Calculation and Prediction with Models

Queueing models are a way of deriving formulas that express the values of
performance metrics (such as throughput, response time, or congestion) in
terms of workload parameters (such as the mean service times and number
of visits jobs require at each server of a network). By suppressing many
details of the system, the models offer the means to calculate performance
metrics much faster than a direct measurement. Analysts validate the model
by comparing its calculations with the values of metrics measured in the
working system. Validated models can often bypass direct measurement
(see figure 9.1).

By far the most common use of models is capacity planning, where design-
ers use models to evaluate whether a future system can meet throughput
and response time targets. For example, they can calculate the largest load
the system can tolerate within its throughput and response time targets
or how much capacity needs to be added at a bottleneck to achieve its
targets. They can also evaluate whether proposed structural changes will
be effective, for example, whether a proposed control system will prevent
thrashing.

Servers, Jobs, Networks, and Laws

A computer network is a set of interconnected servers. Servers can be work-
stations, disks, processors, databases, printers, displays, and any other
devices that carry out computational tasks. Each server receives and queues
up messages from other servers specifying tasks; a typical message might ask
a server to run a computationally intensive program, to perform an input-
output transaction, or to access a database. A job is a specified sequence of
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Performance prediction of systems is enabled by validated models. A system and its
workload can be measured to obtain actual values of metrics such as throughput
and response time (middle). A model is an algorithm whose inputs are measured pa-
rameters of the workload and system and whose outputs are calculated values of the
metrics (top). In validation the model is repeatedly compared against various systems
to build confidence that the model calculates metrics well. A validated model can be
used for prediction. To predict the values of metrics at a future time, the analyst mod-
ifies the parameters by asking what will change and how it will change. The model is
then used to calculate the predicted metrics (bottom). Because the model is validated,
errors in the prediction most likely result from errors in the modification analysis.
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tasks submitted to the network; when a server completes a particular task,
it deletes the request from its queue and sends a message to another server,
requesting that it perform the next task in the same job. Thus, a job flows
through the network, visiting servers one at a time.

Our goal is to predict performance metrics (such as throughput and
response time) for such a computer network given the parameters of the
workload (the jobs) and the system (the interconnected servers).

Measurements of servers are always made during a definite observation
period that lasts T seconds. Let us examine how we might measure param-
eters and find equations relating them to the metrics during the observa-
tion period.

By counting outgoing messages and measuring the time that a server’s
queue is nonempty, it is easy to measure the output rate X, the mean ser-
vice time S, and the utilization U of a server. These three empirical quanti-
ties satisty the relation U = SX, known as the utilization law (figure 9.2).

Server

Processor

A c -

Queue
Arrivals /\ Completions
—_—> u S
B
t)

T, n(

Figure 9.2

A single server system consists of a processor and a queue (storage area) to hold jobs
waiting for service. In an observation period of T seconds, A jobs arrive and join the
queue, and C jobs complete service and leave the queue. The state of the system n(t)
is the number of jobs in the system, in or waiting for service, at time t. The state
increases at arrivals and decreases at completions. The system is busy at those times
t when n(t) >0, and idle when n(t) = 0. The timer B records the total busy time of the
processor. The utilization of the server is U = B/T, the completion rate is X = C/T, and
the mean service time per completed job is S = B/C. Because B/T = (C/T)(B/C), we have
the utilization law: U = SX. Because U cannot be greater than 1, X cannot be greater
than 1/5, meaning that the completion rate cannot be faster than one job every mean
service time.
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Average queueing and response time of a server can be calculated from the area
W under the graph of n(t) during the observation period. W is the number of job-
seconds accumulated by all jobs in the system. For example, a job that waits 10 sec-
onds in queue and then receives 2 seconds of service accrues 12 job-seconds. W is the
counterpart of “square-foot months” used by real estate agents to compute rent, or
“person-months” used by project managers to compute labor costs. The mean num-
ber of jobs at the server is Q = W/T, the average height of the graph. The mean re-
sponse time is R = W/C, which apportions W among all the jobs completed. Because
W/T = (C/T)(W/C), we have Little’s law: Q = RX. The mean service time S and mean
response time R are not the same; R includes queueing delay as well as service time.

Similarly, by measuring the “job time” accumulated by queued tasks, it is
easy to determine the mean queue length Q and the mean response time
R: these quantities satisfy the relation Q = RX, known as Little’s law (1961)
(figure 9.3).2

Little’s law is a most remarkable formula. It applies in any situation
where there is a black box that holds items, a response time inside the box,
and a flow through the box. Consider a simple example. A restaurant owner
has a fine wine collection and sells an average of twenty bottles of fine wine
per day each year. She wants to age every bottle for ten years before serving
it to her customers. How large a wine cellar does she need? It is obvious
that she must be able to withdraw 7300 = 365 x 20 bottles a year, and thus
10 years’ worth of aging wine will demand a cellar of 73,000 bottles. Her
calculation actually uses Little’s law:

73,000 = Q = RX = (10 years) (7300 bottles/year)

The tasks making up a job can be regarded as a sequence of visits by the
job to the servers of the network. The average number of visits per job to a
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Flows of jobs through a network of servers can be represented with visit ratios. The
entry is a designated point where jobs enter and exit the system. The system is open
if the number jobs within it can change and closed if the number of jobs is fixed
(dotted path across entry). The gray path shows how a job might visit the servers; in
this case it visits server k once and servers i and j twice. For an observation period of
length T, the completion counts C;, C;, and Cy are measured at those servers, and the
completion count C at is measured at the system exit. The average number of tasks
per job for server i is V; = C/C; V;is called the visit ratio because each task is regarded
as a “visit” by the job to that server. The identity C/T = (Ci/C)(C/T) reduces to the
forced-flow law: X; = V:X. This law says that the task flow at one point in the system
determines the task flows everywhere.

particular server i is called the visit ratio, V;, for that server; the server’s out-
put rate X; and the system’s output rate X satisfy the relation X; = V:X, which
is known as the forced-flow law (figure 9.4). This remarkable law shows that
knowledge of the visit ratios and the output rate of any one server is suf-
ficient to determine the output rates of every other server and of the system
itself. This law holds regardless of the interconnections among the servers;
any two networks with the same visit ratios will have the same flows.

It simplifies an analysis to assume that the input and output flows of a
server are identical, a condition of flow balance. Balanced flows are called
throughputs. The basic quantities and laws described above do not depend
on or imply flow balance. Nonetheless, flow balance is a realistic assump-
tion for practical systems. Because there is a limit N to the number of jobs
that can be in the system at once, the largest possible difference between
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Users of a computer system alternate between periods of “thinking” and periods of
“waiting” for a response from the system. The total number of users—thinkers and
waiters—is fixed at N, a closed system. The average response time per transaction is
R, and the average thinking time is Z. Applied to the thinkers box, Little’s law says
that the mean queue there is Q; = ZX. Applied to the waiters box, Little’s law says
that the mean queue there is Q, = RX. Because Q; and Q, sum to the fixed value N,
we have N = (R + Z)X. Solving for R, we obtain the response-time formula: R = N/X - Z.
This formulation assumes flow balance.

initial and final states of the observation period is N; as long as the number
of completions at every server is large compared to N, the error introduced
by assuming flow balance will be negligible.

When a network of servers receives all of its requests from a finite popu-
lation of N users who each delay an average of Z seconds until submitting a
new transaction, the response time for a request in the network satisfies the
response-time law R = N/X — Z (figure 9.5), which is exact for flow balance.

These formulas are sufficient to answer the throughput and response-
time questions posed at the start of this chapter for the airline reservation
network. We can represent the information given earlier as V; = 10, §; =
0.005 second, and U; = 0.8 for the directory disk. Combining the forced-
flow law and the utilization law, we have for total system throughput:

X = Uy/ViSi = 0.8/(10x0.005) = 16 jobs per second,

which comes to 57,600 jobs per hour. The response time experienced by
any one of the 1000 agents is:

R=M/X-7=1000/16 — 60 = 2.5 seconds
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We do not need to measure throughput and response time directly
because we can calculate them exactly from simple measurements. If these
calculations were compared to the actual system during the same observa-
tion period, as in figure 9.1, they would be exact. However, they might not
be exact for a future period because the future parameters might not be the
same as the present parameters.

We have just completed the most difficult part of queueing networks—
learning six basic raw measures of a server, five metrics, and four laws.
Tables 9.1, 9.2, and 9.3 summarize.

Bottlenecks

The last two questions on the list for the airline reservation system ask
for estimates of response time in a future observation period having dif-
ferent conditions—for example, the directory-disk visit ratio is reduced, or
the number of agents is increased. Because operational laws deal only with
relations among quantities observed in the same observation period, they

Table 9.1
Basic Raw Measures of a Server

Notation Description

T Observation period

A Number of arrivals

B Total busy time of server

C Number of completions

n(t) Number in the system at time ¢, receiving or waiting for service.
Also called queue length

w Area under the graph for function n(t) for the observation period

Table 9.2

Basic Performance Metrics of a Server

Notation Definition Description

X c/T Completion rate (jobs/second)

U B/T Utilization of server (fraction of time busy)
S B/C Mean service time (seconds)

Q wW/T Mean queue length (jobs)

R wjC Mean response time per job (seconds)

Vi Ci/C Visit ratio for server i
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Table 9.3
Operational Laws

Law Formula
Utilization law U=58X
Little’s law Q=RX
Forced flow law Xi=VX
Response time law R=N/X-Z

are not sufficient for making predictions. We must introduce additional,
forecasting assumptions that extrapolate measured parameter values from
the past observation period into the future observation period; the laws can
then be used to calculate the response time expected in that future period
(refer again to figure 9.1).

One common type of forecasting assumption is that, unless otherwise
specified, the demands placed on the various servers, V;, will be the same
in the future period as they were in the base observation period. Similarly,
unless otherwise specified, the mean service times, S;, which depend pri-
marily on mechanical and electrical properties of devices, will be the same.
The utilizations, throughputs, and response times will change when any of
these parameters changes.

Consider the question about what happens if the directory disk visit
ratio drops from 10 to 5 with a new disk-indexing algorithm. What hap-
pens next depends on whether or not the directory disk is the bottleneck of
the system. If it is not, some other server would be the system bottleneck,
most of the jobs would be queued there, and its utilization would be near
100 percent. Under these conditions, reducing the demand for the directory
disk will have only a negligible effect on the utilization and throughput of
the bottleneck disk; the forced-flow law tells us that the overall throughput
and response time of the network will therefore be unchanged.

If the directory disk is the bottleneck, we could speculate, based on the
forced flow law, that halving the demand on it will double system through-
put. But this speculation leads to a nonsensical answer: for the numbers
given above, the formula yields a calculated response time of —28.75 sec-
onds. The obvious absurdity of a negative response time—signifying that
answers are received before questions are asked—indicates that the directory
disk cannot be the bottleneck after demand on it is reduced by half, even if
it had been the bottleneck originally. All we can say with the given informa-
tion and the given forecasting assumptions is that halving the demand for
the directory disk will reduce the response time from 2.5 seconds to some
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small nonzero and nonnegative value. If the 2.5-second response time is
already acceptable, this proposed change in directory search strategy would
not be cost effective.

Consider the question about what happens to response time if the num-
ber of agents is doubled. Again, we are limited by the lack of knowledge of
the other servers. If the directory disk is the bottleneck, then doubling the
number of agents is likely to increase its utilization to 100 percent, giving a
saturation value of throughput:

X =1/ViS;, = 1/(10 x 0.005) = 20 transactions per second
With the response-time formula, these values yield:
R =N/X -Z =2000/20 - 60 = 40 seconds

If the directory disk is not the bottleneck, some other server will have a
smaller saturation throughput, forcing response time to be longer than 40
seconds. Thus, doubling the number of agents will produce a response time
that is likely to be considered unacceptably high.

This example illustrates that bottleneck analysis is a recurrent theme in
forecasts of throughput and response time (see figure 9.6). Suppose the visit
ratios and mean service times are known for all the servers and do not vary
with N. Each server generates a potential bottleneck that would limit the
system throughput to 1/V;S; and would give a lower bound to the response
time of NV;S; — Z. Obviously the server with the largest value of V$; gives
the least of the upper bounds on the throughput and is the real bottleneck.
The products V;§; are all we need to identify the bottlenecks of a network.

Bottleneck analysis is a simple but powerful method for calculating the
limiting asymptotes of throughput and response time. The bottleneck is
always the server with the largest total demand (ViS;). The lower bounds
R(1) and NV;8: — Z can be close approximations for both small and large
N. The biggest error between these asymptotes and the actual R(N) occurs
when the asymptote line crosses the horizontal axis, at N = Z/V;S;. To get
more precision in that vicinity of load, we must turn to the computational
algorithms described in the next sections.

Balance Equations

Balance equations are an essential tool for a more precise analysis of a
queueing system. Queueing theorists from Erlang (1917) onwards have
used them. We will illustrate the method for a single server system. Refer to
figure 9.7 during the following discussion.
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Bottleneck analysis shows how the response time changes as a function of N. When
N =1, the single user’s jobs encounter no queueing delays from other transactions,
whence R(1) = ViS5 + ... + Vi8S, where K is the number of servers. Combining the
utilization and forced-flow laws, X = X;/V; = U/V:S; < 1/VS; because U; < 1. Thus, R(N)
>NVS; - Z for all i. Each of the lines defined by these relations (such as 1, 2, and 3) is
a potential asymptote for R(N) with large N. The actual asymptote is determined by
the largest of the potential asymptotes. Assume that the servers are numbered so that
V1S, is the largest, V.S, the second largest, and so on. Then server 1 is the bottleneck,
and R(N) >NV;§,; — Z. The bottleneck analysis assumes that the products V;S; do not
vary with N.

The first step is to define the states of the system. For a single server the
state is n(f), the number of jobs at the server. For most real systems there is
an upper limit N to the number of jobs that can be accommodated by the
server. The states are therefore O, 1, 2,..., N.

The second step is to define the allowable transitions between the states.
For example, an arrival when the system is in state 3 will take it to state 4,
whereas two simultaneous arrivals will take it to state 5. For most real sys-
tems, arrivals and completions are necessarily distinct events. So we model
simultaneous arrivals as a series of arrivals very close in time. Thus, the only
moves we can observe are “go up by 1” on an arrival and “go down by 1”
on a completion, subject to the constraint that we cannot go up from state
N or down from state O.
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A state space analysis for a single server system leads to a balance equation. Here is the
state space for a single server with capacity N jobs. The quantity a(n) is the number
of arrivals that occur when the system is in state n, and c(n) is the number of comple-
tions when the system is in state n. Balance means that the initial and final states
are the same, which implies that the number of up transitions from state n — 1 is the
same as the number of down transitions into state n — 1; in other words a(n — 1)=c(n).

The third step is to invoke flow balance and write a balance equation.
Flow balance means that the final state of the system for an observation
period is the same as the initial state; that is, n(0) = n(T). In this case the
number of transitions up from any state n — 1 is the same as the number of
transitions down into state n — 1:

a(n—-1)=c(n)
This is algebraically the same as

an-1) T(n-1) c(n) T(n)
Tmn-1) T  Tm) T

The first term of the left-hand side is the definition of A(n — 1), the arrival
rate when the system is in state n — 1. The first term of the right-hand side
is the definition of u(n), the completion rate when the system is in state
n. The second terms of both the left-hand and right-hand sides are just
instances of p(n), the proportion of time the system is in state n. Thus, we
have the balance equation

AMn=1)p(n—1) = u(n)p(n)
or

An-1)
pm) = pn-1) ==
p(n)
When combined with the condition that the p(n) sum to 1, this balance
equation can be solved very easily on a spreadsheet.® This equation shows
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that the arrival and completion rates completely determine proportions of
time the system is at any particular state in a flow-balanced system.

Once we have the solution for the p(n), we can see that the utilization of
the server is simply U =1 — p(0). We can calculate the completion rate as the
weighted average of completion rates from each state n

X =3 u(n)p(n)

We can calculate the mean queue length as the expected value of the prob-
ability of being in state n

N
Q= np(n)
n=1
The response time comes from Little’s law as R = Q/X.

These calculations are mathematically identical to those in standard
queueing theory but rest on different assumptions. In standard queueing
theory the p(n) are the long-term equilibrium probabilities of observing
the system in state n. Here the p(n) are the fractions of time the system is
observed in state n; they are exact if the system is flow balanced and good
approximations if the system has many arrivals or completions compared
to N. This is why the equilibrium formulas from standard queueing theory
work so well in real computer systems.

Let us illustrate this method with three examples of computer system
configurations.

An ATM

A bank ATM looks like a single server that can build up a queue of length
no larger than N, the size of the waiting area. The number of potential cus-
tomers is so large that the aggregate arrival rate is steady, no matter how
long the queue. In this case the arrival rate is A(r1) = A, and the service rate
is u because only one customer is served at a time. The balance equation is

pm) = pn-1)%
u

Figure 9.8 illustrates an analysis when this balance equation is programmed
into a spreadsheet.

A Telephone Exchange
This is the problem studied by A. K. Erlang in 1917. The state n of a tele-
phone exchange is the number of calls in progress. Equipment limitations
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A spreadsheet graphed p(n) for the ATM problem with maximum queue N = 16 and
various values of the ratio r = A/u. This graph shows the distribution p(n) when r =
2/3. Because A <y, it is strongly biased toward small queues: the queue is 2 or fewer
70 percent of the time and idle 33 percent of the time. When the values of the arrival
and completion rates are interchanged (r = 1.5), a mirror-image graph (not pictured)
shows the system spending 70 percent of its time with fourteen or more customers
in queue and no idle time. When arrival and completion rates are the same (r= 1), all
the bars are equal height; all sixteen queue lengths are equally likely, and the system
is idle 6 percent of the time.

impose a limit of N calls at once. A customer attempting to place a call
when the state is N will be turned away. Because the customer population
is large, the arrival rate is a steady A for all states. The average duration of a
call is 1/u. In state n the n calls are happening in parallel, so the combined
completion rate is nu. This gives the balance equation

p(m) = pln— 1)%

Erlang’s design problem was to choose N, the exchange capacity, so that the
chance of a customer being turned away is acceptably low. For example, the
acceptable loss rate might be set at 0.001, meaning that we want to find N
such that p(N) < 0.001. Figure 9.9 illustrates an analysis when this balance
equation is programmed into a spreadsheet.
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A spreadsheet graphed the p(n) for the telephone exchange problem with call maxi-
mum N = 16 and ratio r = A/u = 1. This graph shows that the exchange has a strong
preference for states where the exchange is half full. This exchange is seldom empty
and has a small loss probability p(16) = 0.005.

A Time-Sharing System

Allan Scherr (1965) at MIT built a performance model of the compatible
time-sharing system (CTSS) that predicted its throughput and response
time with surprising accuracy. He used a model from queueing theory called
machine repairman, which works as follows. In a shop a repairman services
N machines that break down individually at rate A and require an average
time 1/u to fix. The state of the system is the number of machines broken
down and queued for repair. This model translates to a time-sharing system
in which N is the user population, the repairman becomes the CPU with
mean service time 1/u, and the machines become the users with individual
think times 1/A. In this case the arrival rate to the CPU in state n is A(n) = (N
—n)A because N — n users are thinking when n are waiting at the CPU. The
completion rate from state n is p(n) = u because only one job is served at a
time. The balance equation is

pn) = pn—1) N=1FDA
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Scherr validated the model by inserting probes into the kernel of the
CTSS operating system to capture event records of jobs starting and finish-
ing, samples of the CPU queue lengths, and samples of response times. He
was then able to compare his data with calculations from the model and
validate that the model gave good predictions of throughput and response
time of CTSS.

Scherr’s result was a surprise to many people, who could not believe that
such a simple model could account so well for the throughput and response
time of a complex time-sharing system.

Computing with Models

As a final step in the modeling process, we would like to extend the model
for any queueing network. As before, we need to define the system states
and their balance equations. The states of a network of K servers are more
complicated than for a single server. The state is represented as a vector
whose components tell the number of jobs at each of the K servers. Figure
9.10 shows a model for the airline reservations system and a list of its ten
possible states when N = 2.

N=2
Directory (Ng,n1,N2,N3)
CPY disk 2000)
V‘]) S1 V2, 82 »J,Y,
(1,1,0,0)
AT (1,0,1,0)
Data disk (1,0,0,1)
Var S5 (0,2,0,0)
(0,0,2,0)
(0,0,0,2)
(0,1,1,0)
(0,1,0,1)
(0,0,1,1)

Figure 9.10

This model represents the airline reservation system as four servers: Agents, CPU,
Directory, Data. When N = 2, this system has ten possible states, listed at the right.
The sum of components of each state must equal N = 2. For example, state (2, 0, O,
0) means that both users are thinking and all the servers are idle. State (0, 1, 0, 1)
means that one user’s job is running on the CPU and the other user’s job is running
on the Data Disk.
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Table 9.4
Mean Value Equations

Equations Justifications

(1) R(N)=S8(1+Q;(N-1)),alli When a job arrives at server i, it sees a queue
that is approximately the same as an outside
observer would see when there is one less job in
the system. Its response time is one service time

< for each job in the queue just after its arrival.

(2) R(N) = 2V,R,-(N ) Each visit to server i accumulates one local

i=l response time.

3) X(N)= % Little’s law applied to the total time to loop
(N)+ through a think-wait cycle.
(4) Qi(N)=X(N)V,R(N), all i Little’s law applied at each server.

A balance equation for each state expresses that the number of transi-
tions into the state equals the number out over the observation period.
Unfortunately, the number of states grows exponentially with the number
of users N and the number of servers K. The model of figure 9.10 has 10
states when N = 2, 286 states when N = 10, and 176,851 states when N =
100. For a network with thousands of users and servers, the number of bal-
ance equations is so large that a computational solution is intractable.*

Jeff Buzen (1973) discovered a way to calculate the basic metrics from
this model in O(NK) steps. His discovery was a major breakthrough for
performance analysts. A few years later Martin Reiser and Steve Lavenberg
(1980) found a slightly better algorithm. Their method is called mean value
analysis (MVA) because it directly computes the means of the response
times, throughputs, and queue lengths. It is summarized in table 9.4.

The equations give the server response times R;(N), system response time
R(N), system throughput X(N), and server queue lengths Qi(N). The equa-
tions ingeniously build the quantities for load N from the previously com-
puted queue lengths at load N — 1. The mean value algorithm evaluates the
four equations in a cycle for N =1, 2, 3, ... until the desired value of N is
attained.

On inspection you should be able to see immediately that equation 2
in table 9.4 is simply an operational law for system response time in terms
of server response times. Equation 3 is the response time law. Equation 4
is Little’s law Q; = R:X; combined with the forced-flow law X;= V:X. What
about equation 1?

Equation 1, which is not a law, is an approximation based on the fol-
lowing simple idea. When a job arrives at a server, it joins a queue of
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some size k, increasing it to k + 1. Each job in the queue, including itself,
requires an average service time of § seconds. Therefore, the response time
is R = S(k + 1). What value should be used for k?

Reiser and Lavenberg got their answer from a theorem called the arrival
theorem. It says that the queue length at a server when a job arrives is the
same as an outside observer would see with one less job (itself) in the sys-
tem. In other words jobs arriving at servers act as outside observers. Thus,
the expected value of k is Q(N - 1).

For large N this algorithm can be wasteful. If you want to find the
throughput and response time for N = 1000 in our airline example, you
have to compute and then discard all the values for N = 1, 2,...,999. Yan
Bard (1979), in consultation with Paul Schweitzer, found a shortcut. They
employed an approximation for the mean queue length:

QIN-D =N

This approximation simply scales the queue length at N to the queue length
at N- 1 in proportion to the loads. When this is substituted in the first equa-
tion, the resulting equations express the mean values only for load N. That
leads to the simplified equations of table 9.5. We can solve them by using
the equations to generate a series of guesses for the mean value quantities,
starting with the (incorrect) guess that the queue lengths are N/K. After a
relatively small number of iterations, this procedure converges rapidly to
values very close to those computed by the full-fledged mean value equa-
tions. It is easily implemented on a spreadsheet.

We applied the simplified model to figure 9.10 after choosing the two
missing parameters and used it to answer the two prediction questions
posed at the beginning of this chapter (see figure 9.11).

Table 9.5
Simplified Mean Value Equations

Equations Justifications
N-1 , . . . .

(1) R = S,v(l+ Q; —), all i Equation 1 of table 9.4 with the approximation

P N for Q;(N - 1) substituted
2) R= ZVi& Same as equation 2 of table 9.4

i=1
3) X= N Same as equation 3 of table 9.4

“R+Z d :

(4) Qi=XViR;, all i Same as equation 4 of table 9.4
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Figure 9.11

These graphs show the model results for the two prediction questions about the
airline reservation system modeled in figure 9.10. We chose the two missing param-
eters, S; and S3, as follows. We chose the total CPU time to be 50 milliseconds and
solved S;V; = 50 milliseconds, giving S, = 4.5 milliseconds. We chose S; as 60 mil-
liseconds. The total demands for the three servers are V.5, = V,S, = 50 milliseconds,
and V3S; = 60 milliseconds, making the data disk the bottleneck. With these values,
the equations of table 9.5 yielded the results shown at the left. Consider the two
prediction questions. The first prediction question is: What happens if a new Direc-
tory Disk structure reduces visits there to five, everything else being the same? The
model gave the results shown in the middle: the Directory Disk utilization is cut in
half with little effect on throughput and response time. The reason is that speeding
up the Directory Disk did not change the fact that the Data Disk is the bottleneck.
The second prediction question is: What happens if agents are doubled to 2000? This
change, shown at the right, has little effect on the throughput because the CPU and
Directory Disk are already near saturation, but it has a significant negative effect on
the response time.
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Conclusions

One of the most difficult questions about computations is: How long does
it take? This question is difficult on networks of servers where jobs compete
and queues form. Although jobs and the network are deterministic, the
response times are random. The uncertainty is caused by randomness in
the arrivals of jobs and in the lengths of their service times at servers in
the network. Queueing theory has proved to be a remarkably accurate way
to overcome the uncertainty and predict throughput, response time, and
congestion in networks of computers (Buzen 2011).

Computer scientists began using queueing theory in the 1960s. They
made two major contributions that advanced the theory and its applica-
tion. They discovered very fast algorithms for computing performance
metrics from queueing models whose formulas had appeared to require
exponentially hard computations. With these algorithms, the models could
be evaluated rapidly. That enabled an explosion of experimental studies
that demonstrated simple models were likely to predict throughput to
within S percent of measured values and response times to within 25 per-
cent. And when they could not explain why the agreement was so good
even when the system did not fit key model assumptions, computer scien-
tists found simpler assumptions that applied to many real systems and led
to the same equations.

A key principle of queueing analysis is to develop balance equations for
flows in and out of each state of the system. The solutions of the balance
equations are the proportions of time each state is occupied. The propor-
tions of time are then used in formulas for throughput and response time.

One of the most remarkable theorems contributed by computer scien-
tists was that the queue length seen by a job arriving at a server is the same
that any outside observer would see when the system load is one less. In
other words the arriving jobs act as outside observers for a system without
them in it. This theorem led to the mean value equations, which give a very
fast algorithm for computing mean throughput, response time, and queue
lengths of any network of computers.






10 Design

Simplicity is inherently complex.

—Peter G. Neumann

Descriptions of software entities that abstract away their complexity often abstract
away their essence. Good judgment comes from experience, and experience comes
from bad judgment.

—Frederick Brooks

I vividly remember the day when I realized I would be spending a substantial part of
the rest of my life trying to find the mistakes in my programs.

—Maurice Wilkes

We are searching for some kind of harmony between two intangibles: a form which
we have not yet designed and a context which we cannot properly describe.

—Christopher Alexander

In late summer 1944 a remarkable group of designers came together to dis-
cuss the structure of a general purpose, stored program, digital computing
machine. They were J. Presper Eckert and John Mauchly, the chief engineers
of the ENIAC project, John von Neumann, a well-known mathematician,
and Arthur Burks and Herman Goldstine, also mathematicians. They had
vigorous and lively discussions about what had been learned from prior
projects to design computing machines. They rapidly distilled the best
of older ideas and added new ideas to create a package of principles that
became the basis for the design of most stored-program electronic comput-
ers since then (Goldstine 1993, Wilkes 1995). From detailed analyses they
knew that the stored-program principles would lead to a computer that
was much faster and more efficient than any that had gone before. They
built a machine, EDVAC, and got it working in 1951. Maurice Wilkes at the
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University of Cambridge, UK, adopted the principles and built a machine,
EDSAC, in his laboratory; it went into operation in 1949. The stored-
program machine has been a remarkably durable design (see figure 10.1).

As they gained experience with programming, the designers on these
projects made refinements to make the machines more efficient and less
error-prone. They invented index registers, which allowed the computer
to access tabular data, known now as array data, by adding an index to the
memory address contained in the instruction. They designed instructions
for subroutine call and return. They designed interrupt systems, which
enabled the processor to jump to subroutines in response to external sig-
nals. And they designed virtual memory to automate the error-prone pro-
cess of manually encoding data moves up from secondary memory to main
primary memory.

These machines gave birth to a new profession, programming, and even-
tually to a software industry.! The first scientific programmers designed
numerical methods, and the first business programmers designed methods
of processing large data sets. They all realized early on that programming
is difficult and inherently error-prone. System designers looked for ways to
make programming easier and more reliable. One of their great advances
in this direction was the invention of higher-level programming languages:
Fortran (1957), Lisp (1958), Algol (1958), and Cobol (1959). These lan-
guages allowed programmers to formulate concise, succinct expressions for
complex algorithms. Compilers automatically translated their programs
into machine code. Debugging tools helped programmers find and correct
mistakes in their programs. Libraries of well-tested and verified common
programs came into wide use; examples were mathematical software and
system utilities.

Despite the attention to tools, methods, and libraries, it was widely
acknowledged that most software was unreliable and untrustworthy. In
1968 a group of leading software experts came together at a famous NATO
workshop on software systems. They declared the entire software industry
to be in a state of perpetual crisis because the size and complexity of needed
systems always seemed to exceed our tools and skills for building them.
They called for a new field of “software engineering” to bring rigorous engi-
neering methods to software development. Many universities responded by
creating new curricula in software engineering methods. Throughout the
software industry, many developers produced new tools and methods to
help reduce errors and make software predictably reliable.

Eighteen years later Fred Brooks, a software expert and former manager
of the IBM 360 operating system project, wrote “No Silver Bullet,” a famous
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Figure 10.1

Maurice Wilkes and William Renwick stand by the EDSAC at University of Cam-
bridge circa 1949. EDSAC was the first working stored-program computer imple-
menting a package of six ideas developed by Eckert, Mauchly, von Neumann, Burks,
and Goldstine in 1944. The six ideas were: (1) Everything was electronic; there were
no moving parts except for input and output. (2) Inside the computer numbers were
represented in binary, greatly increasing tolerance against transient or noisy signals
in the circuits. (3) The instruction set was the user interface to the machine; users
controlled these machines by writing programs in it. (4) Instructions are executed se-
quentially. (5) A single main memory made no distinction between instruction codes
and data. (EDSAC used mercury delay lines for its main memory.) (6) Instructions
could be modified during execution. Machines based on these principles have come
to be known as “von Neumann architectures” because the first published version was
von Neumann's notes from the group meetings (von Neumann 1945). (Photo source:
Cambridge Computer Laboratory Relics Project, with permission)



198 Chapter 10

assessment of the progress of software engineering (Brooks 1986). He said
that despite tremendous advances in tools, our ability to create depend-
able, reliable, usable, safe, and secure software systems had not materially
improved. He said that the hard part of software design was getting an
intellectual grasp of the problem to be solved by software. That will never
be easy. Success depends largely on the cultivation of people who have the
requisite skills.

This is a profound conclusion. In large measure the success of a design
depends on the engineer’s skill, not on formal mathematical analysis or
derivations from first principles. It also depends on knowledge of history
in the designer’s field, which informs the designer on what works and what
does not work.

It should be obvious by now that designers play a central role in com-
puting. Through their skill at shaping software and hardware, they create
computations that produce intended meanings and support intended prac-
tices. The hardware and software are just tools in their hands. This chapter
is about how designers get organized so that they can produce the results
they intend despite the complexity.

Among the greatest challenges in computer science are the design
and construction of large computing systems that their users judge to be
dependable, reliable, usable, safe, and secure, or DRUSS for short. The best
methods have been encoded into structures of languages and operating sys-
tems that allow everyone to benefit. This chapter is about not only design
principles and skills for computing but also the structures that designers use
to attain the DRUSS objectives.

What Is Design?

Design is familiar in many fields including fashion, products, architecture,
engineering, science, and software development. Design is a process in
which we create and shape artifacts that solve problems. In software, for
example, design means crafting software that does jobs users want done.
Software designers intentionally support practices, worlds, and identities
of the software’s users. Designers have accumulated much practical wis-
dom that is expressed with design principles such as separation of concerns,
modularity, abstraction, layering, wholeness, utility, resiliency, beauty, and
timelessness. Design principles in computing guide us to ways of building
machines whose behaviors are useful and meaningful in their user commu-
nities (Norman 2013, Winograd 1996).

It would be wrong to conclude that the skill of design can be captured
by design principles and patterns. Design is a subtle and deep skill with
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many aspects that can only be learned from doing under the guidance of
good mentors. Generally speaking the job of a designer is to listen to a com-
munity deeply to understand their concerns, issues, and interests and then
to propose a combination of existing components and technologies that
address those concerns, issues, and interests. Designers watch how people
react to the proposals and then make new and better proposals. There are
many cycles of evaluation and learning in the designer’s work. Moreover,
design is heavily historical because designers must work with existing com-
ponents and concerns, which are constantly changing.

Design had been a concern in many fields long before software design-
ers appeared. Architects seek buildings and bridges that are functional,
safe, esthetic, and enduring.? Clothing designers seek new ways to make
clothing fashionable and functional. Industrial designers seek consumer
products satisfying the Rams principles—innovative, useful, esthetic,
understandable, unobtrusive, honest, long lasting, thorough, environmen-
tal, and simple.® Engineers seek to build complex engineering systems that
are dependable, reliable, and safe. The term “design thinking” has been
used to describe a mindset that approaches problem solving in these ways
(Denning 2013).

Software systems designers have had to meet two sets of standards:
the traditional engineering standards of design, expressed by the DRUSS
objectives, and the standards of industrial design, expressed by the Rams
principles. Different schools of design have emerged within computing cor-
responding to different emphases on these aspects.

Seasoned designers constantly run experiments with prototypes to learn
how well their artifacts work and how users might react to them. Maurice
Wilkes (1913-2010) stressed this point in his 1967 ACM Turing Lecture,
saying that a great strength in the early days was the willingness of research
groups to construct experimental computers without necessarily intend-
ing them to be prototypes for commercial production. Their experiments
produced a body of knowledge about what would work and what would
not work (Wilkes 1968b). In his 1995 memoir he strongly criticized the
more recent trend to ignore the historical development and try to design
from scratch. Without the knowledge of what worked and what did not,
designers have tended to repeat the same mistakes (Wilkes 1995, p. 90).
We can see this today: the designers of personal computer operating sys-
tems and software tried to avoid the mistakes of the previous, mainframe
era by ignoring them (“keep it simple”) and wound up repeating the mis-
takes a generation later and then struggling to believe that solutions had
been found many years before. Like Fred Brooks, Wilkes believed that good
design is a skill set with many dimensions, well worth cultivating.
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VisiCalc, the first spreadsheet program, was introduced in 1979 for the Apple II per-
sonal computer. Its designers, Bob Frankston and Dan Bricklin, adopted standard
accounting practices into their spreadsheets. Numbers could be displayed in rows
and columns. Labels could be placed anywhere. Standard arithmetic operations were
specified by formulas placed in spreadsheet cells; the screen display showed result of
the formula, not the formula. Business users found it completely natural to set up
spreadsheets and found that the automation of formulas greatly accelerated their
work. VisiCalc demonstrated an important design principle: align the design with
practices familiar to users. (Photo source: Wikipedia Creative Commons)

Many designers aim to automate existing practices rather than create
new practices. The automated spreadsheet, invented in 1979, is an example.
It imitated standard business practices for tallying and displaying numbers
and, through automation, greatly speeded up the calculations (see figure
10.2). The ATM (automatic teller machine), introduced in 1971, is another
example; ATMs simply offered automated versions of deposits and with-
drawals, actions familiar to every bank customer.

Criteria for Software Systems

In chapter 5 on Programming we discussed the error problem, which is
the universal tendency of programmers to make mistakes in programming.
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There are many opportunities for mistakes along the path from the design-
er’s conception to the perceptions of users of the final product. This prob-
lem has been a major challenge for programmers since the beginning and
has motivated the heavy use of the engineering design process to reduce
errors. Even so it has been an uphill battle (Neumann 1995).

Despite the difficulties, the engineering design process is the backbone
of most software development. To maximize its chances of success, design-
ers work with five success criteria:

. Requirements Does it have a clear purpose?

. Correctness Does it work properly?

. Fault tolerance Does it keep working?

. Timeliness Does it complete its work in time to be useful?
. Fitness Does it align well with the environment?

N b W N =

The principles for achieving these criteria have been embodied into struc-
tures in languages, tools, operating systems, and networks.

Requirements

The designer knows what job the machine is intended to perform and
can state the requirements precisely as a specification. This is easier said
than done. Articulating requirements is a challenge because interviewing
the intended users about what they want is notoriously unreliable. Many
designers succumb to the temptation to focus on technology rather than to
listen to users (Norman 2010). Letting intended users interact with proto-
types is often a more reliable way to learn what mistakes they are likely to
make and what aspects of the system are most valuable.

Correctness

The behavior of a source or machine code program provably meets precise
specifications. Correctness is challenging because requirements are often
fuzzy and proofs are often computationally infeasible. Experimental meth-
ods are often the only practical way to test whether functions meet specifi-
cations and avoid intractability.

The dream of correct computation goes back to Charles Babbage (1791-
1871), who was deeply concerned about errors in mathematical tables such
as tabulations of sines, tangents, or logarithms. These tables were calculated
using “difference methods”—each line of the table was computed from the
previous by adding a small “difference.” All this was done by hand. A small
error at one line could propagate forward and magnify into large errors in
all the subsequent lines. Babbage demonstrated that errors in navigation
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tables caused shipwrecks. In 1823 he persuaded the British government to
sponsor him in building a Difference Engine that would calculate naviga-
tion tables very quickly without making the kinds of errors that tired or
distracted humans can make. Unfortunately, Babbage made little progress,
and the government abandoned the project in 1842. The Swedish engi-
neers Georg and Edvard Scheutz built two copies of a Difference Engine in
1843, but the machines were temperamental and difficult to set up, and few
people wanted to use them.

This small history lesson reminds us that computing machines have
never been error-free. They provide new sources of errors. The designers
must prove that the machine code implements the desired function. If
the machine only approximates the desired function (as for the Difference
Engine), the designers need additional analyses and proofs that rounding
errors cannot build up and sabotage the results.

Computing designers have always been interested in the possibility that
machines themselves could construct the needed correctness proofs. The
most advanced form of automatic verification is model checking (Clark
and Emerson 1981, Quielle and Sifakis 1982, Clark 2008). The idea is to
model the system with a finite-state machine and verify that the model
satisfies a set of temporal-logic formulas. The machine model represents
the observable states of the real machine and the transitions that can
occur between them. The logic formulas represent the formal specification.
Model-checking technology has been successful in verifying real-time sys-
tems with a large number of states.*

Fault Tolerance
The software and its host systems can continue to function despite small
errors and will refuse to function in case of a large error. Redundancy supports
fault tolerance by duplicating hardware and data so that a failed component
can be bypassed by other still-working components and data sets. Error
confinement supports fault tolerance by structuring the operating environ-
ment so that no process has access to any object other than those it needs
for its computation and by limiting (or eliminating) the super user state.’

The related principle of least privilege means that the designer sets the
default access of each process to the smallest possible set of objects needed
for that process to do its job. It supports error confinement by limiting the
number of objects that an error can influence.

Mechanisms for error confinement are of three kinds:

1. Static checks in the software Primary examples are type checks performed
by the compiler: floating-point operations apply to floating-point data
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only, character strings can only be passed to subroutines expecting string
arguments, file handles are passed only to file system functions, and so on.
2. Dynamic checks in the software A primary example is array bounds check-
ing, which verifies that each value of an array index is within range declared
for the array. Another example is buffer overflow protection, which verifies
that the size of an argument to a procedure may not exceed the storage
allocated for the argument. A compiler can add code to do such checks
automatically.

3. Dynamic checks in the host environment in which the software runs For exam-
ple, an operating system enforces that a handle passed to the file manager
is tagged “file.” Another example is an operating system that enforces stor-
age partitioning: a process cannot execute an instruction that changes the
memory bounds of another process or access a page belonging to another
process.

Static checks are the cheapest, but they do not catch dynamic errors such as
erroneous input, data corruption, or equipment failure. Dynamic internal
checks are often avoided because of their overhead—imagine adding code
to a fast loop to check that an array index remains in bounds. Therefore,
we need help from the operating environment. We give examples of opera-
tional structures below.

Another important approach to fault tolerance is the “end-to-end argu-
ment,” commonly used in distributed systems and networks (Saltzer et al.
1984). The idea is to concentrate error checking at the two ends rather than
the middle of a communication channel; an error is corrected by asking
the transmitter to resend a portion of the communication. This approach is
at the heart of the TCP protocol of the Internet (Tanenbaum 1980, Comer
2013).

Timeliness

The system completes its tasks within the expected deadlines. Supporting
techniques include algorithm analysis, queueing network analysis, and
real-time system deadline analysis.

Fitness
The dynamic behavior of a system aligns with its environment of use. Fit-
ness is challenging because the DRUSS objectives are context sensitive and
much of the context is not obvious even to the experienced designer.

The ATM, mentioned earlier, is an example of an excellent fit between
a machine and the standard practices of its user community. Experienced
software designers understand that they are not designing just a mechanism
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but also a practice for users to engage in. The closer the practice is to other
practices the users are familiar with, the easier it will be for them to use the
software.

Other examples of good fit include games, spreadsheets, Amazon.com,
Bayesian spam filters, semantic web, Google, linkers and loaders, thrashing
controllers in operating systems, and forensics tools. Examples of poor fit
include unidentified error codes from operating systems, automated voice
menus at business phone numbers, and online technical support and help
systems.

Design Principles, Patterns, and Hints

Designers have accumulated much practical wisdom to meet the challenges
described above. The wisdom is expressed as design principles, design pat-
terns, and design hints.®

Design principles are descriptions of skills and strategies that software
designers follow when making design decisions. The strategies almost
always lead them in the direction of designs that meet the five criteria.

Design patterns are descriptions of common situations a programmer is
likely to encounter. They offer guidance on how to structure the program,
or the process of writing it, for best results.

Design hints are useful rules of thumb, morsels of advice, but are not as
compelling as principles or patterns.

We give examples of principles, patterns, and hints in the next three
subsections. Be warned that the number of published principles, patterns,
and hints is large; we counted 115 in the examples below. This is not an
indication of immaturity of the field but rather of the high level of skill that
good designers embody.

Principles

The now-classic paper by Jerome Saltzer and Michael Schroeder (1975)
about information protection is an excellent example of design principles
(see table 10.1). Many years later Saltzer and his colleague Frans Kaashoek
published a monumental work that took them nearly 30 years to perfect
(2009). They presented twenty-five validated system design principles and
many more subsidiary principles. We do not go into any of them here.

Patterns
Within computing various schools of thought have developed around spe-
cific approaches to the five criteria. These schools have advanced “process
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Table 10.1
Information Protection Principles of Saltzer and Schroeder

Principle Directive

Economy of Keep the design simple and small.

mechanism

Fail-safe defaults Deny access by default; grant access only by explicit
permission.

Complete mediation Check every access to every object.

Open design Do not depend on attackers being ignorant of the design.

Separation of Grant access based on more than one piece of

privilege information.

Least privilege Force every process to operate with the minimum
privileges needed for its task.

Least common Make shared state information inaccessible to individual

mechanism processes, lest one corrupt it.

Psychological Protection should be easy to use, at least as easy as not

acceptability using it.

models” such as waterfall or spiral, or “design approaches” such as partici-
patory, user centered, agile, or pattern. They are all after the same thing, but
they weigh the criteria in different ways. Barry Boehm (2002) argued that
the standard engineering design approach of careful, almost rigid process
was at the strict end of a planning spectrum, and agile methods were at the
flexible end. He thought that careful planning is needed when reliability,
safety, and security are important and that agility is needed when usability
and evolvability are important. He exhorted the careful-planning schools
to collaborate with the agile schools to find the common ground for better
systems.

In the early 1990s a group of programmers from the agile school founded
the “software pattern community” movement, inspired by the design-
pattern idea of architect Chrisopher Alexander (1979). A software pattern
characterizes a large number of situations a programmer is likely to encoun-
ter and offers guidance on how to structure the program to best fit the
pattern. One of their first works was a compendium of software patterns
(Coplien and Schmidt 1995). The community has produced many other
patterns since then. A compilation in Wikipedia lists forty-eight patterns
in four categories”

1. Creational: patterns for managing the creation of new objects and inter-
faces An example is “avoid expensive acquisition and release of resources
by recycling objects no longer in use.”
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2. Structural: patterns for organizing code An example is “group related ele-
ments into a single conceptual entity.”

3. Behavioral: patterns of desirable behaviors of modules An example is “avoid
null references by providing a default null object.”

4. Concurrency: patterns for managing concurrent objects An example is “use a
monitor when an object’s methods are subject to mutual exclusion.”

The pattern community appeals to our sense of empiricism because its
members are relentless about testing ideas with potential users and learn-
ing from the feedback.

Hints

Butler Lampson, a superb and accomplished designer, summarized a
number of guidelines that help designers (1983). He called his statements
“design hints” because none works for all cases. They are a sense of direc-
tion that good designers develop over time. Table 10.2 summarizes his
hints as slogans. We do not explain them. The point is that there is con-
siderable art in designing. Lampson has outlined the best practices of
his art.

Table 10.2
Lampson’s Design Hints

Correctness & Fit Speed Fault Tolerance
Use cases Separate normal and Safety first End-to-end
worst cases Shed load
End-to-end
Interface Keep it simple Make it fast End-to-end
Do one thing well Split resources Log updates
Don’t generalize Static analysis Make actions
Get it right Dynamic atomic
Don’t hide power translation
Use procedure
arguments
Leave it to the client
Keep interface stable
Keep a place to
stand
Implementation Plan to throw one Cache answers Make actions
away Use hints atomic
Keep secrets Use brute force Use hints
Reuse a good idea Compute in
Divide and conquer background

Batch processing
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Design Principles for Software Systems

As suggested above, the software engineering literature records a large num-
ber of design principles that have been widely studied and found to be
strongly supportive of good design. The very best of these principles have
been encoded as structures that appear in languages, application programs,
and operating systems. The most popular structures include:

modularity class hierarchies
interfaces layering

abstraction virtual machines
information hiding reuse

encapsulation objects and packages
decomposition version control
separate compilation client server

functional levels

These structures are intended as tools to help with recurrent patterns that
designers encounter. It is easy to lose sight of the patterns that the struc-
tures are supporting. We describe six patterns that encompass everything
on the list above: hierarchical aggregation, encapsulation, levels, virtual
machines, objects, and client servers.

Hierarchical Aggregation

Hierarchical aggregation means that objects (identifiable software and
hardware components) consist of interconnected groups of smaller objects
and are themselves components of larger objects. You can interact with an
object as a unity and not be concerned with its individual parts. When you
do look inside, you focus on the interactions among components and are
not concerned with what is going on in the external environment. Thus,
there is a hierarchy with smaller aggregates making up larger aggregates.
Aggregates at every level of the hierarchy are insulated from lower- and
higher-level details.

Hierarchical aggregation is common in nature. Physical objects can
be aggregated at many levels according to their sizes. Quarks, electrons,
protons, atoms, and molecules are at the lowest dimensions with scales as
small as 10™"® meters; planets, solar systems, galaxies, clusters, and quasars
are at the highest dimensions with scales as high as 10*® meters. Nature
encompasses forty-five levels in a natural hierarchy of aggregate sizes.

In biology, living organisms have hierarchies with levels including DNA,
genes, cells, organs, nervous systems, plants, animals, and social systems. In
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mathematics, fractals are sets whose subsets follow the same structure rules
as the set: the same structure is observed at all levels of aggregation. In com-
puting, the principle of locality is a consequence of hierarchical aggrega-
tion: neighboring components interact more frequently than components
at a distance, and a single interaction with an object can trigger a long
sequence of internal actions among the object’s components.

In the list of design structures, modularity, abstraction, information
hiding, and decomposition are complementary aspects of hierarchical
aggregation.

Modularityis a process of dividing a large system into a hierarchy of smaller
aggregates (modules) that interact across precisely defined interfaces.

Abstraction means to define a simplified version of something and to
state the operations (functions) that apply to it. For example, the bit (0
or 1) is an abstraction of all sorts of media that rely on two states to store
or transmit information; computing involves the physical actions of read-
ing or writing bits. Abstraction is one of the most fundamental powers of
the human brain. By bringing out the essence and suppressing detail, an
abstraction offers a simple set of operations that apply to all the cases. An
abstraction corresponds to an aggregate in a hierarchy; forming a hierar-
chy is a process of abstraction. Abstractions in classical science are mostly
explanatory—they define fundamental laws and describe how things work.
Abstractions in computing do more: not only do they define computational
objects, they also perform actions.

A file (a named sequence of bits) is a common abstraction for named
containers of digital objects—for example, text documents, graphs, spread-
sheets, images, movies, sounds, directories, and more. A file system pro-
vides create, delete, open, close, read, and write operations that work on
any file. Any program’s output (already represented as bits) can be stored in
a file. The file system does not have to understand the differences between
file formats assigned by applications—it just stores and retrieves the bits.

Information hiding means to hide the details of an implementation from
users (Parnas 1972). It protects against errors caused by changes in the
details that do not concern users. It protects the details by preventing users
of the abstraction from accessing them. In a hierarchy it is a decision to
hide the internal component structure of an aggregate, allowing that struc-
ture to be rearranged without changing the behavior of the aggregate. A
software module hides the implementation details of a function behind a
simple interface.

File systems illustrate information hiding. The users see only files but
not the complex nest of internal details including disks, disk drivers, disk
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addresses, records, index tables, buffers, caches, open file control blocks,
and RAM copies of files. The user benefits in two ways. First, all the user
does is open, close, read, or write files and never has to worry about which
disks hold the files, how the file is decomposed into blocks stored randomly
on the disk, how buffers are managed, and so on. Second, the software
engineers who maintain the file system can make internal improvements
without forcing users to change anything.

It is possible to have abstraction without information hiding. An orga-
nizational hierarchy, for example, is a set of abstractions that group people
by functions. But executives can micromanage, a practice of reaching into
a group and overriding its local leaders.

Decomposition means to subdivide a large problem into components that
can be designed separately and then assembled into the full system. In a
hierarchy, identifying the components of an aggregate is an act of decom-
position. A module is an abstraction of the components that compose it.

Designing by decomposing a system into modules and interfaces is often
insufficient in large systems. When the independently designed modules
are plugged together, the system often does not work even though the
module designers insist that the individual modules meet specifications.
The problem is that the interactions among the modules are as important
as the internal computations of the modules; independent module design-
ers do not see or test the interactions. Considerable testing of the system
as a whole is needed, leading to redesign of individual modules until the
entire system works.

Encapsulation

An example of a support in the operating environment is the encapsulation
of software into minimume-privilege domains (Dennis and Van Horn 1966,
Fabry 1974, Saltzer and Schroeder 1975). This mechanism is especially use-
ful when running untrusted software. A process’s protection domain is rep-
resented by a capability list, a table of pointers to all the objects a process is
authorized to access. (Capability lists were discussed in chapter 7 on Mem-
ory.) Because the operating system maps all references to objects through
the capability list, a process can access only the objects explicitly shown in
its capability list. All other objects are inaccessible simply because there is
no way for a process to generate their addresses.

Normally a process uses just one capability list during its life. However,
when a process needs to use an untrusted procedure, it can switch into
a small, separate domain that calls the procedure code and contains just
the objects the procedure needs for its advertised job. The encapsulated
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procedure has no access to any other objects of its caller. When the proce-
dure is done, its return restores the original domain of the caller. No matter
what errors or malicious intents the encapsulated software might have, it
cannot damage any object outside its restricted domain (see figure 10.3).

Levels

Levels are a form of hierarchical aggregation that stratifies components.
All objects in the same level are treated as peers with respect to how they
interact with each other and with the higher levels. The levels structure of
the universe, mentioned earlier, illustrates this. At the level of atoms, we are
concerned with issues such as chemical bonding, electron deficiencies, and
molecular shapes but not with what materials the atoms belong to or with
what holds the protons and neutrons together inside atoms.

The levels principle has been used in computing to structure very com-
plex, provably correct software systems. Its first use was to structure an
operating system. In 1968 Edsger Dijkstra completed an operating system
at Technische Hogeschool Eindhoven, known to posterity as “THE operat-
ing system.” He organized it into seven levels, each containing software
components that realized a particular abstraction. The “processes” level,
for example, abstracted away from the processor by creating an abstrac-
tion of a computation that always moved forward except when it was wait-
ing for a signal. All software components above the process level could be
programmed with processes instead of subroutine calls and “CPU context
switches.” The process level solved once and for all the problem of multi-
plexing the CPU among programs to give the illusion of joint parallel pro-
cesses. A decade later, a group at SR, Inc., built a “provably secure operating
system” of fourteen levels in which they were able to prove that a level is
secure given that all levels below it are secure (Neumann et al. 1980) (see
figure 10.4).

Internet engineers have structured protocol software as layers. Layers are
like levels in that they stratify software so that higher-level functions are
built from lower-level functions. The file transfer protocol TCP, for exam-
ple, is built on several lower-level layers including IP protocol, routing pro-
tocol, data link protocol, and physical signal protocols (Tanenbaum 1980,
Comer 2013). Layers differ from levels in an important way. Layers access
each other by passing data downward or upward through intervening lay-
ers; levels access only lower levels by direct procedure calls.

Whether applied in operating systems or networks, the levels principle
facilitates system construction, correctness proofs, and testing because a
system can be built up one level or layer at a time.
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Capability-based operating systems provide structures that aid error confinement.
The structure shown here encapsulates an untrusted funds transfer program, which
moves an amount A from account record R1 to account record R2. When TRANSFER
is called, its capability list is the one pointed to by the domain capability d at the top.
Its domain contains the code for TRANSFER plus any internal other objects packaged
with that code by the compiler of TRANSFER. The normal call instruction is replaced
by a new instruction “ENTER d” that takes a domain capability d as argument. ENTER
creates an activation record (AR), changes the current capability list (a CPU register)
to d, and sets the instruction pointer to the location O of capability O of that list. The
TRANSFER code comes into execution in the restricted domain d. The activation
record now includes a domain capability for the caller’s capability list, allowing it to
be restored on return. The AR also contains capabilities pointing to the two records
passed as parameters. While it executes, the only external objects TRANSFER can ac-
cess are the two records passed into its AR during the call; it has no capabilities for
anything else.
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Level Name Objects

9 Shell Interface language that runs application
programs and manages windows and user -
generated events

8 Directories Directories, trees of directories, path-names

7 Streams Files, devices, pipes

6 Virtual machines Virtual machines

5 Threads Multiple threads in address space

4 Lrgfnrr'ﬂzﬁgison (IPC) Messages, ports, sockets

3 Virtual memory Address space, page

2 Processes Process, ready list, semaphore

1 Low-level I/O Device, driver

0 Hardware levels Interrupts, procedures, call stacks,
instruction set, logic gates

Figure 10.4

This example of 10 levels comes from a composite model of many operating systems
(Denning et al. 2000). The hardware is at the lowest level. Each level above that adds
a new function as a subsystem that implements a small set of operations on a par-
ticular type of object, for example, read and write on files. The functions of a level
are composed of operations on objects of lower levels but not higher levels. Levels
1-5 make up the microkernel, the smallest set of functions that must be executed in
supervisor mode. Microkernels can be implemented in surprisingly small amount of
memory. Levels 5-9 are usually distributed, which means that all machines on the
mutually trusting network can access any object in the network regardless of its phys-
ical location. The difference of time scales from the user level to the hardware level
is about 10'°, making operating systems among the most complex artificial systems.

Virtual Machines

A virtual machine is a simulation of one computer by another. The idea
comes from the simulation principle behind Alan Turing’s Universal
Machine. The term virtual machine is used in four ways.

First, it means the simulation of any abstract computing machine.
An abstract computer has a set of operations that apply to values in the
machine’s memory. Each operation is like an instruction of a hardware
computer. The set of operations is often called the Application Program
Interface (API). The user of the abstract machine interacts only via its API
and cannot bypass it to look or affect what goes on inside. The subsystems
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of an operating system that manage classes of objects, such as files, are orga-
nized this way. Figure 10.5 illustrates the example of a file system.

Second, virtual machines are simulations of hardware computers. The
virtual machine has subroutines that carry out the effect of the machine
instructions on the hardware computer. This idea came into practice in the
late 1950s when a second generation of computers began to replace the first
generation. The new computer had to run all the software written for previ-
ous versions of the computer. Accordingly, the new computer’s instruction
set contained microcode that simulated the old computer’s instruction set.
The “emulation mode” of these new machines allowed old programs to
run with the old instruction set. As old programs were brought up to date
and were recompiled for the new instruction set, they would run faster.
This mode can be found today in such programs as Parallels, VMware, and
Hyper-V, which simulate entire computers running their own operating
systems. The ubiquitous Java Virtual Machines (JVM) emulate Java on any
commercial machine by executing the Java “byte code” produced by Java
compilers. This allows great portability of Java programs.

Third, virtual machines are simulations of computers within separate
memory partitions of the machine. This was the organizing principle of
the IBM VM 370 and later operating systems. The IBM virtual machine
was a complete simulation of an IBM mainframe identical in every way to
the original except that it had a reduced main memory (see figure 10.6). A
similar idea is used today in the multitasking features of operating systems
such as Mac OS and Windows. This approach allows the virtual machine
to run at nearly the same speed as the real machine; there is no significant
performance loss.

Fourth, a virtual machine is a standard environment for implementing
any program within an operating system. This idea was pioneered in the
Multics system at MIT (Organick 1972) and the UNIX system at Bell Labs
(Ritchie and Thompson 1974). These systems defined a “process” as a pro-
gram in execution on a virtual machine. The virtual machine was simply
a standard template for providing input and output to a running program
and connecting with any submachines it may have spawned. Every user
program would be embedded into the standard virtual machine for execu-
tion (see figure 10.7).

Objects

Objects are a virtual machine structure that originated with a programming
practice called “data abstraction” in the 1960s and evolved into over 120
sophisticated “object-oriented languages” today. An object is an abstract
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A file manager looks like a virtual machine with a simple six-operation instruction
set and a memory that holds files. The internal structures of the file manager are
hidden (encapsulated)—users cannot see file structures, descriptor tables, buffers, or
code of the operations. The six operations work as follows. Create generates a new
file at location b in the memory, assigns a unique identifier x, and embeds x in a new
capability c. It returns the new capability c to the user’s capability list at a convenient
position h. It records the association (x,b) in its internal descriptor table. Thereafter,
the user refers to the file by its local name h. The operation delete(h) removes the file
h. Open(h) makes a copy of the file in a RAM buffer (for fast access), and close(h) writes
the buffer back to disk and deletes it. Read(h) and write(h) transfer bytes between the
buffer and the user’s workspace. The five file system operations with parameter h ex-
tract the unique identifier x from the file capability h, find entry (x,b) in the descrip-
tor table, and apply the operation the file at location b.
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A virtual machine operating system partitions the RAM into disjoint blocks, one for
each virtual machine (VM). A virtual machine is an exact copy of the CPU, and its
memory contains its own copy of an operating system; thus, virtual machines can
run different operating systems. The Virtual Machine Monitor is a global operating
system that allocates virtual machines and maintains their separateness and integ-
rity. To do this the CPU instruction set is divided into two parts. The regular instruc-
tions apply only to the contents of the VM’s assigned memory and can be directly
executed. The sensitive instructions affect the state of the system seen by other VMs
and may not be directly executed. Examples of sensitive instructions are “increase
the memory allocation” or “shut off the interrupts.” If the CPU attempts a sensitive
instruction, it is interrupted, and the VM Monitor takes over. For example, a sensitive
instruction to change memory allocation would be intercepted by the VM Monitor,
which would grant the allocation after verifying that it does not overlap with any
other VM’s assigned memory. Most of the time, this type of virtual machine is run-
ning the regular CPU instructions at full machine speed.

entity that can be viewed and altered only through a defined set of opera-
tions. Its internal structure is hidden. For example, as discussed above, a file
is a container of a sequence of bits and can be acted on only with the open,
close, read, or write operations; its structure as a set of records scattered
across a disk is hidden.

Some object languages present objects as data structures that can be
manipulated only by procedures associated with the class of objects; exam-
ples are Python, Java, and C++. Other object languages present them as
autonomous entities that are activated by sending them request messages
and that return their results in response messages; examples are SmallTalk
and Squeak. The message view is often used when objects are used in dis-
tributed computing systems.
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VM template grep “d*” < infile | sort -a > outfile
IN ouT
Pipe
Address space VM1 P VM2
O
Process
Arguments b sort
File d = File

Current directory

“infile” “outfile”

Parent, children

Figure 10.7

The operating systems Multics and UNIX introduced a virtual machine model to
execute user commands. The template of a virtual machine (left) is a standard form
providing an IN port, an OUT port, a pointer to an address space, a pointer to a pro-
cess in that address space, the set of arguments passed to the process in the virtual
machine, the current directory in use by the virtual machine, and pointers to the
parent virtual machine and any children virtual machines. When a user types a com-
mand to the shell interface (upper right), the shell parses it into a set of components
and creates a virtual machine pipeline to execute the command (lower right). In this
example, “grep,” a search program, takes its input from a file “infile” and outputs
only the lines beginning with the letter “d.” That output flows to the “sort” pro-
gram, which arranges its input lines into alphabetic order and places its results in the
file “outfile.” By standardizing the form of virtual machines, allowing any file to be
input or output, and providing a “pipe” structure to flow one VM’s output into an-
other VM’s input, these systems made it possible to provide rich functionality with
a simple command language.

Objects are grouped into classes (also called types) with similar properties
and the same set of operations. For example, a file is a member of the class
of all files. An abstract machine called a class manager can be the environ-
ment for implementing the class operations; for instance, the file manager
can open, close, read, or write any file and can locate all the components of
a file in the disk storage system (refer again to figure 10.5).

Object classes are usually organized into inheritance hierarchies so that
properties of an object propagate down the tree into its “children.” For
example, a byte file might be a subclass of bit files, and a directory might be
a subclass of byte files formatted to associate strings with handles.

Objects also come with mutual exclusion locks so that only one process
at a time can use a particular object. This prevents race conditions.
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Objects are sometimes presented as a first principle because they mani-
fest the fundamental principle of abstraction. However, they are actually an
advanced concept because they provide a unified way to deal with a host of
structural and synchronization problems. Novice programmers often find
objects confusing because they do not yet understand abstract machines,
information hiding, inheritance, and synchronization.

Clients and Servers

The client server model is a conceptually simple way to organize interac-
tions between processes in a distributed (networked) computing system.® A
server is a process dedicated to performing a particular service on request.
A client is another process that makes requests. Clients and servers are usu-
ally (but not always) on different hosts in a network. Their requests and
responses are passed as messages through the network. For example, a net-
work file server stores all the files of the network’s users; client processes on
user workstations send it requests to read and write files. An authentication
server interacts with the login client on a user’s workstation to process the
user’s credentials during login. A web server interacts with client browsers
to send them web pages.

Although the client server idea is simple, its implementations are often
far from simple. Designers must master many subtle details to get commu-
nications, error control, and synchronization working correctly (Birrell and
Nelson 1984).

In some systems pairs of interacting servers can play either role (client
or server) with each other. In that case they are called peer-to-peer (P2P)
processes. Many network services are organized this way. For example, the
Internet TCP protocol runs in a local process on every machine of the net-
work; a local TCP process can request remote connections to other TCP
processes or receive remote requests for connections from them.

Conclusions

Design has been a central issue of computing since the beginning. The first
designers in computing had to figure out how to arrange electronic circuits
and memory for efficient, reliable computation. They gave us a remarkable
plan, the stored-program computer, also called the von Neumann architec-
ture, which is still in use today.

The machine’s instruction set is the user interface for a stored-program
computer. Programmers designed algorithms and encoded them in the
instruction set. From the earliest days, programmers found themselves
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spending much of their time hunting for mistakes in their programs: they
discovered debugging. They found that programming is inherently com-
plex and error-prone. They set out on a quest, which goes on to this day,
to design programs that are dependable, reliable, usable, safe, and secure
(DRUSS). Over the years they have developed a programming profession
and software industry that relies on a wide range of technologies to prevent
errors in programs and confine them if they occur. Even with all this tech-
nology, errors in programs are a major problem.

Designing is not just about the arrangements of hardware components
and instructions to solve problems. It is about providing value to the users
of the computing machines. Designers have to understand how users will
use programs and anticipate what will delight or infuriate them. Designers
must become competent at the skill of design.’

In their quest for systematic ways to design good software, designers
work with five success criteria: requirements, correctness, fault tolerance,
speed, and fitness. Requirements are concerned with formulating precise
statements of the job the system will perform, correctness with preventing
errors during construction, fault tolerance with minimizing the effects of
errors until they can be corrected and expunged, speed with configuring
systems to get results on time, and fitness with user satisfaction.

Five design patterns are particularly useful in designing computing
systems and software: hierarchical aggregation (bringing in abstraction,
decomposition, modularity, information hiding), encapsulation, levels,
virtual machines, and objects. These patterns appear as structures in lan-
guages, application programs, and operating systems. Although none is a
panacea, there is a broad consensus that these structures help meet the five
design criteria and support the general DRUSS goals.

There are numerous other principles of software design that we cannot
cover here because of space limitations. There are more principles for proj-
ect management, error confinement, fault tolerance, network structure,
operating system structure, and correctness than we have been able to dis-
cuss. Design is a rich field. It makes all the difference between successful
and failed computing systems. Designing well is perhaps the greatest chal-
lenge in computing.
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Human brains and computers will be coupled together very tightly; the resulting
partnership will think as no brain has ever thought and process in a way not
approached by information handling machines today.

—]J. C. R. Licklider

New digital computer techniques using redundancy make cheap unreliable links
potentially usable. The network is best designed for data transmission and surviv-
ability at the outset.

—Paul Baran

As networks grow up, we will probably see the spread of “computer utilities,” which,
like present electric and telephone utilities, will service individual homes and offices
across the country.

—Leonard Kleinrock

It is hard to imagine that a network connecting all computers in the world
was just a dream in 1960. In the mid-1960s the US Defense Department
took the first steps toward this dream. It started planning the ARPANET, an
experiment in resource sharing. It began operating the ARPANET in 1969
with two hosts, the networking term for attached computer systems.!

The ARPANET was the first in a chain of technologies that evolved to
the current Internet. Because the original design did not scale to a large
network, the idea of an expandable “Internet,” or network of networks,
was introduced in 1973. After a decade of testing and improvements, the
Internet design became official; hardly anyone noticed when the ARPANET
was decommissioned in 1989. The World Wide Web was overlaid on the
Internet in the early 1990s. The growth of networking technologies has
been phenomenal. About 200 hosts were connected in 1981, 200 thousand
in 1990, 200 million in 2004, and 1 billion hosts in 2014. Today’s Internet
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includes millions of component networks. It is a convincing demonstration
of the tremendous value a network can generate for its members.?

This remarkable technical achievement is the result of its designers
cleverly combining computing principles from all six categories named in
chapter 1. The design enabled the Internet to scale seven orders of magni-
tude over 30 years of reliable operation. As a case study, we examine here
each major aspect of the Internet and show which computing principles it
relies on.

The concept of a network is much older than the Internet. Around 1750
mathematician Leonhard Euler drew the first network graphs to prove that
there is no tour of the city of Kdnigsberg crossing each of its seven bridges
just once. Since that time graph theory emerged as a major area of math-
ematics for studying relationships between objects. A network consists of
a set of nodes (also called vertices) and a set of links (also called edges)
connecting some of them. The links often represent flow paths by which
some entity moves from one node to another—for example, signals, mes-
sages, commodities, requests, and promises. Electrical engineers developed
flow, energy, current, and voltage conservation laws and applied them to
design electrical networks with desired signal transfer functions. Industrial
engineers and operations researchers developed network models of many
kinds of systems including manufacturing, transportation, inventory, com-
munication, and queueing; the models enabled accurate performance pre-
dictions of those networks. Today social scientists use networks to map
communication relationships among members of a community and draw
inferences about power and influence. The Internet exhibits features of
these different networks: it is a communication system, a transportation
system (of messages), an information retrieval system (of data), a queueing
system (of services), an inventory system (of storage subsystems), and a
social network support system.

Resilient Networks

In the early 1960s defense communications engineers began searching
for alternatives to the telephone network. Defense officials were very con-
cerned about using the telephone network for their communications. The
telephone network was based on the principle of circuit switching, which
meant that dialing a phone number caused a series of mechanical crossbar
switches to provide a direct electrical connection from a calling station to
a receiving station. The telephone network had evolved into a small set of
regional switching offices connected by “trunks”; the regional centers were
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connected to local switching offices, in turn connected to individual homes
and offices. The network could be severely disrupted by a natural disaster
(such as a fire or flood) or a manmade disaster (such as a terror attack)
because disabling one or a few nodes could completely sever the network.
Not only was the network insecure—a telephone line could be tapped fairly
easily—but it was unreliable in the face of hostile operations. The telephone
network was seen as a serious weak spot in national defenses.

Leonard Kleinrock (1961, 1964) and Paul Baran (1964a,b) were the first
to examine alternatives. Kleinrock formulated and analyzed a stochastic
model of a message-switching system. Baran proposed a new design for
telephone communication, in which analog voice would be digitized and
the resulting bitstreams broken into packets that would travel through a
store-and-forward system to their destinations, where they would be reas-
sembled into the original bitstream.? A digital file can be transmitted simi-
larly by clustering its bits into a sequence of packets. The network itself
would contain many redundant paths so that packets could move to their
destinations by alternate routes in case some part of the network was down.
Reconfigurable routers handle the routing; they receive messages and then
forward them to the next router one hop (link) closer to the destination
host. Modern networks are a combination of a mesh structure for the long-
distance backbone and hub-and-spoke structure for local connections (see
figure 11.1). Local networks can take a variety of forms (see figure 11.2).

Packet Switching

A packet is a sequence of bits consisting of a few headers and a chunk of data
(see figure 11.3).* Packet switching is a mode of operating a network so that a
subnet of devices called routers, like the backbone of figure 11.1, transport
packets to their destination hosts. The discussion below examines the prin-
ciples of packet networks.

Packet switching is an instance of the multiplexing principle mentioned
in earlier chapters. Multiplexing means to divide a resource into chunks and
then allocate the chunks to various individuals. For example, main mem-
ory is multiplexed by dividing it into pages; pages can be quickly placed
anywhere convenient and can be removed when they are unused. Disks are
multiplexed among many files by dividing all files into records and allow-
ing records to be scattered around the disk. A channel is multiplexed by
dividing each signal stream into packets and transmitting the packets on
the channel; several streams can share the same channel.

Packet multiplexing was one of several “time division multiplexing”
methods used in telephone systems in the 1950s. For example, voice is
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Figure 11.1

Engineered networks such as the telephone network or Internet have linkages much
like this highly simplified diagram. A backbone network (white boxes) serves a col-
lection of local networks (large black circles) connected to a set of computers such as
desktops, servers, or mobile devices (small black circles). The local networks are mul-
tiply connected to the mesh (dotted links). The backbone is structured as a mesh so
that the loss of any backbone node does not partition the network into isolated, un-
connected pieces. The backbone and local network nodes are implemented as packet
routers. In the Internet, local networks are called LANs (local area networks), and
the backbone is called a WAN (wide area network). The connection points between
LAN and WAN (large black circles) are implemented by gateway routers that translate
packets from the WAN signaling format to the LAN signaling format.

typically low bandwidth. Analog voice digitized and compressed into
packets can be sent in a fraction of the time needed for the analog signal.
Telephone engineers were able to get several digitized conversations over a
single wire with no loss of information or fidelity.

The packet network is attractive for three main reasons. First, it accom-
modates different types of traffic simultaneously. For example, voice traffic
comes in bitstreams of a constant rate, typically 44,000 samples per second,
lasting many minutes. Web traffic comes in short, high-intensity bursts
when web servers transfer pages to requesting clients. The network trans-
mits packets without regard to what to whether they contain continuous
voice or bursty data traffic.
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Figure 11.2

A local network (LAN) connects a set of computers by short-distance links. LANs are
used in homes, offices, and buildings. One of the computers serves as a gateway to
the Internet. The Ethernet configuration (a) attaches all the computers to a shared
switch that sends packets to their target computers. The ring configuration (b) cir-
culates packets from one computer to the next. The wireless configuration (c) uses
radio signals and the 802.11 protocol to exchange packets via a base station. In these
configurations no routers are needed because each computer sees all packets but se-
lects only packets addressed to it. However, the ability to see all packets is a security
vulnerability because a rogue computer can listen to other packets or send spoofed
packets.
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Figure 11.3

In packet switching the source station’s data stream is broken into chunks, which
are inserted into packets. In this simplified view of an Internet packet, the from field
contains the address of the sending station, the to field contains the address of the
receiving station, and the length field specifies the total size of the packet. The data
field contains a block of data from the original stream; that block may include a se-
quence number so that the receiving protocol can reassemble the data chunks into
their original order. A packet is shipped from one router to another, moving closer to
the receiver at each “hop.” If an internal network node or link fails, the routers will
reconfigure and send the packets by other routes.

Second, the packet network is inherently more efficient than a tele-
phone-based data network. The telephone network handles calls in two
phases:

1. call set up (dialing) to establish a circuit
2. transmission (speaking back and forth) on the circuit

Early networking mechanisms such as the original ARPANET protocols
and the X.25 protocols set up a virtual circuit before transmitting the data
on it, mirroring the practice of the telephone network. But the designers
soon realized that with packets they did not need any concept of setting
up a reserved circuit. Senders simply transmit packets, the network routes
them individually, and the receiver reacts to them as they arrive. More-
over, reserved circuits keep a channel open even when no packets flow,
whereas without circuits, packets can be sent whenever bandwidth is avail-
able. Packets thus utilize the available bandwidth better. In his CYCLADES
network in France, Louis Pouzin used the term datagram for a packet that
carried part of a data stream without a prior setup protocol. Vinton Cerf
and Robert Kahn designed a similar idea into the TCP protocol, which is
discussed shortly.

Third, the packet network enables dynamic reconfiguration when links
or routers fail. A router receives packets and forwards them to a next router
one hop closer to the destination. If a router detects that the forwarding
link (or the next router) is down, it can send the packet by a different link.
Occasionally, a packet will be lost if the link (or router) goes down while the
packet is in transit; but this is not a problem because transmission protocols
can detect lost packets and resend them.
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A router stores incoming packets in a queue and then, using a routing
table, forwards them to a next router closer to the destination. The rout-
ing algorithm, which generates the routing tables, finds the shortest paths
(measured by hops between routers) to the targeted hosts. Routing algo-
rithms are generally run in the background so that routing tables are con-
tinuously updated to represent the current network connectivity (see figure
11.4). Edsger Dijkstra (1959) is credited with creating the efficient algo-
rithm now used to find the shortest paths in hops between nodes. Other
algorithms are used when path lengths are measured with delays or costs
instead of hops.

Because of the store-and-forward design of the network, routers are
potential congestion points. What happens if the traffic coming to a router
overflows its queue? One possibility is to drop the packets and let the trans-
mission protocol detect and resend the lost packets and back off on trans-
missions if the loss rate is too high. A less common possibility is to use link
protocols that prevent a router from sending a packet unless there is room
in the queue to receive it. That prevents packets from being lost but backs
up the congestion to the points at which hosts attach to the network, slow-
ing them down. The latter strategy is used under the name “flow control”
in link management protocols.

It should come as no surprise that queueing network models (chapter 9)
have been very effective for predicting mean throughput and transmission
times in store-and-forward networks.

The Internet Protocol

The principles of packet switching and reconfigurability are not enough
to make a network workable. The Internet consists of a billion hosts and
millions of local networks. Users are interested in services offered by these
hosts. How does a user’s process address the desired server, so that it can
send packets requesting the service and receive response packets? The
method of addressing a service should not depend on the vagaries of the
local networks or on the routes available in the network. Without some
uniform method of addressing services, the local differences and constant
churn of available services would make the network so chaotic that it would
not be usable.

Vint Cerf and Bob Kahn offered a solution to this problem in 1974. They
proposed a very large address space with enough bits in the addresses that
every computer in the Internet could have its own unique address. They
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Figure 11.4

This example shows a backbone network connecting to three local network access
hosts with ID numbers 0, 1, and 2. Each backbone router (square boxes) has three
ports (numbered 0, 1, 2) that can send or receive packets. The normal routing table
(lower right, left column) tells the router which link to use for a packet addressed a
particular destination. For example, a packet from host O to host 1 would follow the
route A, C; a packet from host O to host 2 would follow A, B, E. If router B fails, the
reconfiguration algorithm modifies the table to route all traffic around B (lower right);
now packets from host O to host 2 follow the route A, C, D, E. Note that if A, C, or E
fails one of the hosts is cut off from the backbone. If D fails, packets from host 2 to
host 1 follow the route E, B, A, C.
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designed a protocol called Internet Protocol (IP) that would locate a server
given its unique address. The unique addresses are called IP addresses.

An IP address is a 32-bit quantity. It is represented as four 8-bit bytes.
Each byte can encode an integer from 0 to 255 (2® - 1). The standard nota-
tion for an IP address is four integers (from O to 255) separated by dots,
for example, 192.168.3.55. The total number of Internet addresses is 2%,
or approximately 4 billion. With the rapid growth of the Internet to allow
mobile devices, home appliances, and indeed anything with an embedded
computer, 128-bit IP addresses are now allowed.’

Many local networks include a service called dynamic host configuration
protocol (DHCP) to reduce the demand for fixed IP addresses within the net-
work. When a computer is powered up it requests an IP address from a local
computer called the DHCP server. The DHCP server assigns a temporary IP
address from a pool of local subnet addresses. Because the number of hosts
that are actually logged in is often much smaller than the total connected
to the local network, this strategy permits a much larger set of hosts to
share a given set of IP addresses.

The IP protocol gives no assurance that a packet will get to its destina-
tion. Many things could go wrong anywhere along the route. For example,
a router might not be informed that the link selected to forward a packet is
not operating. Packets incoming to a router might be dropped because the
router’s buffer is already full with other packets. Noise on a link may garble
some bits in the packet, and the receiving router cannot decode the header
fields. These and other errors can cause a packet to be lost or corrupted
before it reaches its destination. The IP is called a “best effort datagram
protocol” because it delivers packets as datagrams when they encounter no
errors and makes no attempt to retransmit lost or corrupted packets.

Vint Cerf draws an analogy between the IP and a version of the Postal
Service that deals only with postcards. A postcard is like a packet: to-field,
from-field, and a limited area for the message. When you mail a postcard,
you know it may not be delivered, or it may be damaged in transit. You
do not know exactly how long it will take for delivery. There is no guaran-
tee that a series of postcards will be received in the same order they were
sent: each postcard can follow a different route on different mail trucks or
planes.

The principle of best-effort datagram delivery is simple and efficient. It
was used in the CYCLADES network (Pouzin 1973, 1974) and in the origi-
nal design of the transmission control protocol (TCP), which encapsulated
each chunk of data into an IP packet that functioned as a datagram (Cerf
and Kahn 1974, Cerf et al. 1974). In 1977 the datagram function was split
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out of TCP into a separate user datagram protocol (UDP). TCP and UDP are
parallel services operating on top of the basic IP protocol. The 1981 specifi-
cations for IP, TCP, and UDP form the basis of today’s standards.

The Transmission Control Protocol

For many applications we need a more complex protocol than IP so that
we can move data with a very high probability of accurate delivery in a
network that can lose packets. The transmission control protocol (TCP),
designed by Vinton Cerf and Robert Kahn (1974), does this. It enables reli-
able delivery of files, even if the datagrams carrying their components are
unreliable.

TCP uses the end-to-end error-correction principle to achieve reliability
across a lossy network (Saltzer et al. 1984). The idea is that the receiver sends
acknowledgment packets to the sender, which can then tell how much of
the data stream has been successfully received. Because acknowledgments
can be lost, the sender automatically resends a packet if it has not received
an acknowledgment within a set deadline. The receiver ignores duplicate
packets that may result from resends. This scheme detects and replaces
lost packets at the ends of the connection without having to assume that
any error detection or correction is happening in the network. Of course,
any error correction inside the network, such as Hamming codes on links,
reduces packet lost and speeds up the TCP transmission.

TCP’s principle of operation can be further understood by continuing
Vint Cerf’s analogy with the Postal Service. How would a shipper send a
book using only postcards? This can be done if the shipper and receiver
have agreements about disassembling the book before transmission and
reassembling it after. The sender cuts up the pages of the book into small
pieces and pastes them on postcards. The sender labels the postcards
with sequence numbers and keeps backup copies of all postcards. The
receiver puts the received postcards into proper order (as determined by
their numbers), then removes the page snippets and pastes them back into
a book.

So that the sender knows which postcards have been received, the
receiver returns an acknowledgment (ACK) postcard from time to time
summarizing the postcards that have been so far received; on receipt of
ACKs, the sender discards the backup copies of acknowledged postcards.
Here is the important step: if the sender receives no ACK within a time-out
limit since the previous send, the sender automatically resends the post-
card. The sender repeats this until finally an ACK comes for the card—or
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until the sender “times out” and reports that a transmission failure has
occurred. This method overcomes possible loss of ACKs in the network. The
receiver ignores duplicate postcards from the sender.

This scheme would be clumsy and messy with a real (paper) book, but
with digital documents it is simple, clean, and fast. TCP takes longer to send
a file over a noisy network because resends and acknowledgments slow it
down. But as long as the probability that a packet will get through is non-
zero, TCP will eventually deliver the entire file.

Clients and Servers

TCP enables a large variety of network services organized as “clients” and
“servers.” Clients and servers are autonomous, continuously running pro-
cesses supported by the operating systems of their hosts. A client process on
one system connects via TCP with a server process on another system. Using
the connection the client makes requests and the server returns responses.

TCP can also be used for “peer-to-peer” interactions in which the pro-
cesses on both ends can send requests and make responses.

The processes attached to the network interfaces rely on the multiplex-
ing facilities of their local operating systems to handle many incoming
packets and direct them to their proper service processes. These interfaces
can also deal with multiple connections from the same host, such as a user
accessing two different web pages at the same time.

TCP supports connections to specific processes with “ports.” A port is a
local designation of a client or server process (Pullen 2000). For instance,
a host’s web server is assigned to port 80. A client seeking a web page from
host H packages the request as a packet, which it asks TCP to deliver to “H
port 80.” The receiver on host H passes the packet to the local process con-
nected to port 80. The combination of host address and port number (“H
port 80”) is called a socket. TCP is designed to transmit packets to sockets,
not just hosts. Over time, thousands of other services have been defined
and assigned port numbers.®

The file transfer protocol (FTP) illustrates the client-server relationship in
a more complex case. FTP is assigned to port 21. It is designed for users with
accounts on two hosts. The user on host A calls the local FTP program and
asks FTP to open a TCP connection to socket “B port 21.” The FTP server on
host B requests the host A FTP to get and return the user’s login credentials
for host B. Once logged in, the user changes to the desired directory and
issues a “put” command giving the local and remote names. Once the file
is completely received into the remote directory, host B’s acknowledgment
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is seen as a completion message by the user on A. The user can now exit
the local host A FTP program, closing the session with the remote host B
FTP process.

TCP and its companion UDP (user datagram protocol) are not client-
server systems. They are simply channels for connecting processes, such as
clients and servers, or peers, on two hosts.

Domain Name System

The TCP and IP described above use IP addresses to identify the senders and
receivers of packets. A 32-bit IP (version 4) address is rendered in a more
human readable way by expressing each of its four bytes as an integer in the
range O to 255. For example, the IP address

10000001101011100000000100011100
is displayed as
129.174.1.28

These numerical representations are notoriously more difficult to remem-
ber than 10-digit telephone numbers. (It gets even worse for the hexadec-
imal representation of the 128-bit IP version 6 addresses.) The Internet,
therefore, has adopted a system of easily remembered symbolic names for
all the hosts. For example, “gmu.edu” has IP address 129.174.1.28. It is
much easier to remember “gmu.edu” than its IP address.

We can translate symbolic host names to IP addresses with the help of
a name server. Name servers act much like telephone white pages. In the
Internet, host symbolic names are called domain names, and the name
servers are part of the Domain Name Service (DNS). Ask the DNS to look
up a domain name, and it responds with the corresponding IP address(es).

The TCP software is set up to automatically request translations of
domain names to IP addresses. For example, the user request “Send file F
to gmu.edu” would be translated to “Send file F to 129.174.1.28” by the
domain name resolver associated with the network of the sending host.”
The DNS is not implemented as a single server. It is a network of servers and
caches that reduce the chance of bottlenecks and congestion in looking up
domain names.

The Internet designers thought carefully about how to generate unique
symbolic names. The original ARPANET had a master file at SRI Interna-
tional containing all the host names and their ARPANET addresses. Distrib-
uting this file to all hosts became a bottleneck for a growing Internet. In
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1983 Paul Mockapetris designed the DNS, a distributed service for the reg-
istry of domain names. DNS automated the translation process from names
to IP addresses and allowed for arbitrarily large expansion of the domain
name space.

In the DNS, symbolic names are partitioned into fields separated by dots,
as in “www.gmu.edu”. The last field is the top-level domain, which repre-
sents a sector of industry or government, a generic grouping of organiza-
tions, or a country code. A single authority, the Internet Corporation for
Assigned Names and Numbers (ICANN), administers top-level names.® In
1985 there were just a few top-level domains including .com, .mil, .gov,
.edu, .org, and .net. In 2014 the number had grown to around 350 (includ-
ing country codes), and another 2000 names were under consideration.

Each top-level domain has a registry that assigns names to individual
organizations within the domain. Fach organization has a registry that
assigns names within the organization. The names assigned by this hier-
archy of registries are strung together from the lowest to highest registrar.
With the name www.cs.gmu.edu, for example:

e “www” is assigned by the registry in CS at GMU.
e “cs” is assigned by GMU'’s registry.

e “gmu” is assigned by the .edu domain registry.

e “edu” is assigned by ICANN.

This method pushes the authority to assign names down to local organiza-
tions, which can choose more meaningful names, and it reduces bottle-
necks and congestion at individual registrars. Notice that domain names
may not be independent of geographical location; for example, cnri.reston.
va.us belongs to the Corporation for National Infrastructure Initiatives in
Reston, VA, USA, and inria.fr belongs to Institut National de Recherche en
Informatique et en Automatique in France.

Domain name mapping is an instance of the dynamic name translation
principle (chapter 7), in which a system automatically translates a name at
a higher level to a name a lower level. The two primary benefits of this prin-
ciple in domain name mapping are, first, the ability to assign any IP address
to any domain name and, second, the ability to change the IP address of
a server without changing its domain name. In some address translation
systems the lower-level name is hidden from the higher level—but not in
the Internet, which does not hide IP addresses from those who want to
use them. Domain name translation systems improve their performance by
caching portions of the DNS database on local name servers, bypassing the
delays of sending messages to a more distant, congestion-prone, centralized
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name server. The same is true for many services accessible on the Internet.
Popular services would be bottlenecks were not it for networks of caches
called content delivery networks (CDN).

Organization of Network Software

The descriptions above reveal the Internet as a vast system of great
complexity. Its true extent can only be estimated. It has a billion hosts
and millions of local networks. Its routers, links, servers, appliances, data
centers, service providers, and more are so numerous that The Economist
reported in 2012 that they collectively consume around 3 percent of the
world’s electricity; the International Energy Agency (iea.org) put consump-
tion at nearly 6 percent in 2014. Much of the international economy has
come to depend on the Internet as a way of communicating and doing
business.

The ability of the Internet to accomplish so much and be so ubiquitous
and reliable is a testimony to the foresight and vision of the engineers who
designed it. They exploited the design “principle of layers” to structure the
components in a way that expands to large networks and can be under-
stood by most people.’ Let us briefly review the organization of the Internet
software.

In discussing TCP/IP we used an extended analogy of shipping a book
via the Postal Service. Let us reexamine the process to see how all the com-
ponents come together into a working system.

e The customer, wishing to send a book to a friend, gives it to the shipper
along with the friend’s address.

e The shipper cuts the pages of the book into pieces and pastes the pieces
on numbered postcards, makes backup copies, and gives the originals to
the Post Office. The shipper waits for acknowledgment postcards to know
when to discard the backup copies. The shipper resends postcards that have
not been acknowledged after a time-out limit.

e The Post Office packs postcards into pouches and marks the pouches
with routes and carriers.

e The carriers place the pouches on trucks (or planes) to get them to their
destinations.

e At the destination the pouch is taken off the truck and delivered to the
Post Office.

e The Post Office removes the postcards, sorts them by address, and deliv-
ers to the shipper.
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The Internet protocol software is arranged in a series of layers (left). These layers are
analogous to the infrastructure levels used by shippers to deliver books to custom-
ers (right). The services of a layer are composed from simpler services at lower levels.
The TCP layer manages reliable data-stream transfers. The IP layer manages best-
effort delivery of packets. The links layer selects routes between routers and performs
simple error corrections on links. The signals layer encodes packets into signals along
selected links.

e The shipper removes book pieces from the postcards, pastes them back
together, sends acknowledgment postcards, and waits occasionally for
replacements of lost cards.

e The shipper gives the completely reassembled book to the friend.

Figure 11.5 shows the correspondence between the layers of the postal
analogy and the layers of the Internet software. Exactly the same sequence
of actions occurs in the Internet software, as a file moves down through
the layers until it is encoded as signals in a physical medium and then
up through the layers at the receiver until it is decoded and reassembled
into a file.

In this arrangement each level on the sending side can see itself as com-
municating with the same level on the receiving side. For example, the
shipper sees its job as getting the book to the receiving shipping agent. The
Post Office sees its job as getting postcards to the receiving Post Office. The
carriers see their job as getting pouches to delivery locations. In the same
way the sending-side TCP sees itself as communicating directly with the
receiving-side TCP. Although the actual flow is down to the physical level
and back up to the receiving TCP, the apparent tflow is direct from sending
to receiving TCP (see figure 11.6). This apparent direct connection of a layer
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The same Internet protocol software is placed on every host of the network. The
layers of the software give the appearance that a level is communicating directly
with its counterpart on the other host. The apparent connection is implemented by
lower-level functions. For example, TCP sends a file as a series of packets passed to
IP, which uses dynamically reconfigurable routers that send packets as signals over
physical links. On the receiver the physical signals are decoded into packets, which
flow through the local IP to TCP, which reassembles the packets into a file. Network
engineers call the set of software layers the protocol stack because they are imple-
mented as software modules stacked up on one another.

to its counterpart on another host is characteristic of Internet software.
It enables the designers of a layer to ignore the details of lower levels of
software.

World Wide Web

The World Wide Web (WWW) was first proposed by Tim Berners-Lee in
1989 as a document-sharing system at the CERN Laboratory in Switzer-
land, supporting the exchange of research papers and other digital objects
(Berners-Lee 2000). Its first implementation went live in late 1991. In 1993
the National Center for Supercomputing Applications of the University of
Illinois at Champaign-Urbana released Mosaic, the first graphical user inter-
face for the WWW; suddenly many people were able to quickly grasp the
import of automated information sharing in the Internet. The WWW took
off like wildfire, and the age of the Internet “dot com” companies was born.
Today the WWW is seen as an information-sharing overlay for the Internet.
Any sort of digital object including text, pictures, voice, music, and video
can be accessed, transferred, and displayed or played within the one WWW
system.
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The WWW technology came from the convergence of several existing
technologies to solve the problem of information sharing:

e The Internet—especially the TCP/IP protocol in supporting client-server
applications

¢ Domain naming—the unique, hierarchical names for hosts in the Internet
e Hypertext—the construction of documents from text blocks linked in
nonlinear structures

e Markup languages—the annotations of digital documents with tags that
tell other programs how to display or render the documents

These technologies came together because Tim Berners-Lee was a practi-
tioner in all of them. His inventions include these:

e URL—the uniform resource locator, which is the concatenation of the
host’s domain name with the pathname of a file in the directories of
the host. Because pathnames are hierarchical, the URL is also hierarchi-
cal. URLs are globally unique symbolic names for digital objects in the
Internet.

e HTML—the hypertext markup language, which is used to annotate digi-
tal object files with tags that indicate how to render the components of
the digital object. For example, text blocks in a file can be marked as head-
ers, paragraphs, or list elements, and the display program will show them
appropriately. Hyperlinks, which encode the URLs of digital objects, are
among the elements marked by tags. Although hyperlinks can be citations
to other documents, they can also point to any objects whatsoever in the
Internet, for example image or sound files.

e HTTP—the hypertext transfer protocol, which is automatically invoked
by the browser when the cursor selects a hyperlink. HTTP opens a TCP
connection to port 80 of the host designated in the link’s URL and passes
the file pathname to the HTTP server; the server finds the file, sends a copy
back to the sender, and closes the TCP connection.

The public WWW was hardly two years old when the first web search
engines began to appear. Users wanted to find information made avail-
able through the web. A search engine is a service that takes keywords and
searches the Internet for web pages containing them; it returns the pages’
URLs and some of the matching text to the person requesting the search.
To make the search fast the search engine runs a subprogram, variously
called an “indexer” or “web crawler,” that systematically enumerates host-
names, opens connections to port 80 on those hosts, finds all the URLs on
the pages accessed, and follows them. It captures a copy of each page into



236 Chapter 11

a master database, and creates a master index that finds URLs for given key-
words. Dozens of web search engines have appeared since 1993.

In the mid-2000s Google became the biggest search engine service. Using
web-crawlers, Google maintains a continuously updated snapshot of the
entire World Wide Web and constructs an index that enables high-speed
lookup of pages given strings that might appear on them. Other popular
search services include Yahoo, Bing, and Wolfram Alpha.

Search engines are limited in what they can see. They query databases
filled by web crawlers. Any content that is not the target of a URL will not
be found. URLs pointing to web pages requiring a user login or offering a
query interface to a database cannot be cataloged. Some servers are acces-
sible only by protocols such as FTP and TELNET but are not part of the
WWW. Sometimes web crawlers get stuck in Internet “islands”—portions
of the web whose connection graphs are not connected to the rest of the
web graph. Web experts believe that at most 10 percent of the web content
is seen by search engines.

Even though search engines are mostly blind, the amount of web con-
tent they can see is still staggering. In 2013 the World Wide Web Founda-
tion estimated there were over a trillion web pages. Even if a search engine
indexed only 10 percent of them, a query would have to search 100 bil-
lion records. This is why it is all too easy to get an overwhelming num-
ber of “hits” to a set of keywords. For example, after the 9/11 attacks, the
keywords “Osama bin Laden” typically yielded nearly 3 million hits. No
human being has the capacity to go through more than a few dozen of
them. Thus, the amount of the web a human can actually locate is tiny
indeed. Hubert Dreyfus (2001) commented that finding something in the
web is like searching for a needle in a stack of needles. John MacCormick
(2012) likened web searches to searching the world’s largest haystack.

To add to the challenge it is almost impossible to tell if the information
retrieved is the best answer to a query. It can be very difficult to indepen-
dently verify new information. Yet people do find web searches valuable
because even meager information can be useful. It is truly remarkable
that web searches consistently find valuable information. It is even more
remarkable that millions of people spend untold hours putting up web
pages for others to find.

The web has become the medium for e-commerce: business transac-
tions conducted electronically in the Internet. Businesses and their clients
increase security and protect privacy with protocols that encipher data
before sending them on the Internet. The first such protocol, secure socket
layer (SSL) in 1996, was superseded by transport layer security (TLS) in
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1999. TLS allows two hosts to negotiate encryption parameters and then
encipher traffic between them. TLS protects passwords, payments, bank
account numbers, credit-card numbers, and other data that are passed over
the web interfaces as part of business transactions. Users can tell when the
protocol is being used because a lock icon and the string “https” will appear
in their browser’s address fields.!°

In addition to new protocols e-commerce has given us new business
models for shopping (the online store and shopping cart), for coordinating
across enterprises (workflow), and for setting prices (eBay auctions). The
euphoria that accompanied the development of these new concepts stoked
hype about a “new economy” and led to the “dot com bust” at the turn of
the century.

In addition to these innovations in business practice, the Internet has
also stimulated dark innovations—spam, viruses, worms, hijackings, denial
of service attacks, intrusions, and other nasties that make the Internet
harder and hazardous to use. Technical solutions to these problems have
been hard to find, and the few that have been proposed (such as “Internet
caller ID”) have met with fierce opposition.

The Internet has indeed given us a new world and a new conception of
reality. One day it may be listed among the great inventions along with the
others cited by James Burke in The Day the Universe Changed (1985).

Network Science

As the Internet and web grew, scientists became interested in studying the
connections between persons and objects recorded in the Internet. Research-
ers studied the statistics of citations. Organizational analysts examined the
patterns of email connections to discover who were the “hubs” and “bro-
kers” of organizations. Law enforcement officials correlated conversation
and payments histories of suspected criminals. Counterterrorists mapped
terrorist networks in hopes of disrupting them. The modelers came to the
Internet and started mining the data about connections. When they started
to find interesting patterns and make startling predictions, they launched a
new field called network science.

Alberto Barabasi applied methods from statistical physics to network
graphs derived from the data (Barabasi 2002). In the web, for example, a
node might represent a page and a link a URL connecting two pages. The
degree of a node is the number of incoming links. Barabasi found that the
data fit a “power law,” meaning that P(x), the fraction of nodes of degree x,
is proportional to x* for an exponent a in the range 1 to 3. He also noted
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Node degree data from web connections tend to follow straight lines on log-log plots.
That means P(x), the number of nodes of degree x, is proportional to x* for a constant
a. Exponent a = 1 is the well-known Zipf law in which P(x) is proportion to 1/x. The
exponent a = 2 is common in many web connection graphs.

that data following power laws are “scale free” because scaling x scales P(x)
by the same factor for any x. For example, the number of nodes of degree 2x
is (2x)“=2"- P(x) (see figure 11.7). In addition, Barabasi found that networks
that grow by preferential attachment are scale-free. Preferential attachment
means that the probability that a new link will attach to a node is propor-
tional to the degree of the node. This is often true in the web: a popular site
is more likely to accumulate new links than an obscure one.

When applied to router connectivity in the Internet, the scale-free claim
led to two conclusions. One was that the Internet should be highly resis-
tant to random node failures because the vast majority of nodes have low
degree; disrupting one would hardly affect anything. The other was more
serious: the Internet should be vulnerable to severe disruption because the
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model said it has a small number of high-degree hubs. This vulnerability
was called the “Achilles heel of the Internet” because it implied that an
attacker could bring down much of the Internet by finding and disabling
a few hubs.

The Achilles heel claim did not square with Internet engineers’ own
vulnerability assessments or with the actual experience of no major Inter-
net disruptions. In 2009 several researchers openly questioned this claim
(Willinger et al. 2009). They noted that the claim of power-law-degree con-
nectivity came from “traceroute” data. Traceroute is an Internet tool that
returns a list of the IP addresses traversed as a probe packet moves to its
destination. Traceroute data do not represent actual physical connections.
The reason is the protocol stack: the IP layer cannot see into the routing
and link layers, where the physical connectivity would be visible.

Even more telling, the engineering design of subnets and of backbone
links is driven by two main factors: the need for link and node redun-
dancy to avoid connectivity losses and the need for capacity to handle the
expected traffic. These engineering objectives steer engineers well clear of
preferential attachment. They lead to structures like those suggested in
figure 11.1, where local networks attach to a large backbone mesh. The
higher-degree nodes tend to be in the local networks and not in the mesh.
Willinger and colleagues (2009) were highly critical of those who accepted
the claim “Internet router connectivity is scale-free” without verifying it.
The Internet does not have the scale-free Achilles heel after all.

To put this another way, scale-free claims may apply to the network
graphs but not to the engineered physical networks that host the connec-
tions represented in the graphs.

What about the connectivity data for social networks, web pages, or
email networks? Does the scale-free idea apply to them? Yes, because those
data directly measure the nodes and their degrees. However, we must be
careful when translating conclusions to the physical Internet. For example,
it would appear that very popular sites such as google.com are hubs and are
highly vulnerable to disruption. However, Google engineers have imple-
mented their data warehousing and query engines as highly distributed
mesh networks, precisely to avoid that kind of vulnerability.

David Clark (1988) believed that the biggest vulnerability of the Internet
was the original design decision to trust other nodes. Malware, botnets,
denial-of-service, and intruders have been the biggest source of Internet
connectivity and capacity problems. For example, arguably the most dis-
ruptive incident was the 1988 Morris Worm, which took down about 10
percent of the then relatively small Internet for a few days; most of the
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downed nodes were taken off line voluntarily by their administrators to
halt the spread of the worm until they could eradicate it.

Despite the challenges of modeling the physical Internet, network sci-
ence may still hold a promise to help make better models of the Internet and
to design critical network infrastructures that cannot easily be disrupted.
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12 Afterword

Our aim in this book has been to demonstrate that computing science is
founded on a rich set of principles. The principles tell us how to manipu-
late matter and energy to perform computations. The principles help us
to understand what computers can and cannot do and where the limits to
computing technology are. The principles can help us locate connections
between technologies and opportunities for innovation. The principles can
help us evaluate risks and avoid making life worse for people using comput-
ing. The principles are timeless and will continue to be relevant long after
current technologies have become museum exhibits.

We would like to close this book with some reflections on some key les-
sons from this project.

Mindless Machines

In writing this book we have had to immerse ourselves in the principles of
computing for a long time. We constantly found ourselves confronting the
pervasiveness of matter and energy in computation. In one way or another,
all the principles concern how to control matter and energy to perform
computations. There is no such thing as a bit without a physical manifes-
tation behind it. Every program ultimately controls the flows of signals
though electronic circuits or other media. Every designer seeks programs
that channel matter and energy into the intended outcomes.

We believe that the popular notion that “bits not atoms” power comput-
ing discounts the importance of matter and energy in performing computa-
tions. Remember that the International Energy Agency estimated in 2014
that nearly 6 percent of the world’s electricity powers the connections and
data centers of the Internet. Even so, a substantive change has occurred in
the past decade with the explosion of digital technologies and digitization
of almost everything. It is now possible to produce new digital artifacts (for
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example “apps”) with low development costs, no-cost error-free copying,
worldwide distribution, and dirt-cheap consumer prices. The resulting digi-
tal economy is one of abundance, not scarcity. This change is not the result
of bits but of our having learned how to control large numbers of signals
and atoms cheaply.

Although we have become adept at using abstractions to explain and
design computations, there is nothing abstract about computation itself.
It is always the movement of signals and the changing of states of matter.
Every one of these movements or changes is purely physical, following some
law of physics. There is no intelligence anywhere in computing machines.
It is astounding how mindless and mechanical computing machines are.

Intelligent Machines

How then do computers seem intelligent? For us, the answer is profoundly
simple: they were designed that way. Human designers shape the software
or the machine itself to produce the responses they want. Designers often
experiment with prototypes to learn how users will respond to various
aspects of the machine’s behavior. If they do not like a response, they alter
the design. On their side, most users do not think of an errant result as a
lapse of intelligence; they simply think the machine is broken. When you
encounter a computer whose behavior seems intelligent, you are respond-
ing to a designer’s intent. The machine itself is not intelligent.

Some people believe that large networks of unintelligent machines can
develop emergent behavior that, in fact, becomes intelligent.! Much “emer-
gent behavior” is the result of intentional design. For example, a designer
iteratively shapes local behaviors of a computation after observing previous
responses to the computation. In these cases the “emergent intelligence”
is really a reflection of the designer’s intent. More generally, technologies
are always embedded into social systems; they follow the actions of the
humans in the system. For instance, it might seem that robot telemarket-
ers are invading homes when in fact companies are choosing to use those
machines because they produce results. It is possible to explain many
apparently emergent intelligent behaviors without having to assume that
the machines or networks are intelligent.

Computers can also seem intelligent because of their speed. Even though
you may realize that billions of computational steps have produced an
answer to your question, it is still amazing when the machine does it in
the blink of an eye. Computing machines today are about 10" times faster
than those built in the 1940s, and they can do things that would amaze the
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pioneers. Who would have thought that a machine could, in under half a
second, find a million documents from around the world that match your
query? Science fiction writer Arthur C. Clarke put it well when he said,
“Any sufficiently advanced technology looks like magic.”

However, these observations are not comforting to some observers. In
2000 Bill Joy of Sun Microsystems worried that some sort of dangerous intel-
ligence might emerge, go out of control, and thwart or overwhelm human
attempts to stop it.? In 2014 physicist Stephen Hawking similarly warned,
“artificial intelligence could be the worst thing to happen to humanity.”?
Google set up an Al Ethics Board to oversee its work in artificial intelligence
to help it avoid contributing to the extinction of humanity in the twenty-
first century. We see no computing principles that would rule this future
out, and we agree that designers should pay a lot of attention to the risks of
large networked computing systems.

However, it is not a foregone conclusion that machines will eventu-
ally outpace humans. In 1997 it appeared that an IBM supercomputer had
achieved greater chess mastery than Garry Kasparov. Just a few years later
Freestyle Chess tournaments sprang up in which teams of chess players
consulting with chess programs on laptops easily beat the chess supercom-
puter. When collaborating humans race “with” the machines rather than
“against” them, the combination can be surprisingly more intelligent than
a machine.

Architecture and Algorithms

We have encountered a common view that all the great advances of com-
puting are due to algorithms. For example, it looks as though Google’s
success relies on its clever page-ranking algorithm. Or database resiliency
relies on the clever algorithms for atomic transactions. Or that online busi-
ness transactions are secured by numerical algorithms in the RSA code.
Behind every significant advance in computing it seems there is a clever
algorithm.

As a consequence, it appears to many that algorithm analysis and pro-
gramming are the heart of computer science.

This conclusion does not seem right to us. There is more to the story.
Consider Moore’s law. Moore’s law says that the number of transistors on a
computer chip doubles every two years. It has been an industry trend since
the beginning. It gives us nearly a hundredfold increase of computing power
every decade. There is an industry rule of thumb that any technology that
can make an important process go ten times faster is potentially disruptive.
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Moore’s law goes well beyond that and keeps the computing industry in a
constant process of disruption. It is a very important phenomenon.

But the improvements of Moore’s law are not due simply to algorithms.
They are due to design of materials, new understandings of physics, archi-
tecture of circuits on the chip, and improvements in lithography, circuit
simulators, testers, clean manufacturing, and more.

Google’s page-rank algorithm would not work without the underlying
infrastructure of Google’s worldwide data warehouses, which mobilizes
tens of thousands of processors to find matches to queries in under half a
second.

What of quantum computing? Physics labs are looking for ways to
implement computations over “qubits” representing superimposed quan-
tum states of atoms. These advances will flow from a new physics, not from
algorithms. If they succeed, much of modern cryptography could become
obsolete.

And what of multicore chips? In effort to wrest more computation from
chips, designers have built chips containing dozens of CPUs, requiring pro-
grammers to write multithreaded algorithms to get the most speed. If they
succeed they will not only push Moore’s law forward a few more genera-
tions, they will start a revolution in programming.

These are just a few of the many examples in which the computer archi-
tecture itself has changed. New architectures enable faster algorithms and
make some infeasible algorithms feasible. They enable new algorithms that
best exploit the architecture.

So it appears to us that the architecture of computers is as important as
the algorithms they run. This is abundantly evident in the principles of
computing. Many principles are about the systems on which computations
run. We cannot give a complete picture of computing if we limit our prin-
ciples to algorithms and ignore the principles of architecture.

That is why there are so many systems principles in this book.

Empirical Mindset

Critics of computer science have traditionally maintained that computer
science is mostly mathematics (for example, algorithm analysis) and engi-
neering (for example, design of architectures and development of software).
They objected to computer science calling itself science partly because
they did not see a deep commitment to experimental methods and partly
because the objects of study, information processes, appear to be artificial
rather than natural.
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Much has changed in the past two decades. Computer scientists have
embraced empirical methods in many areas including software proto-
typing, security, debugging, quantitative design of architecture, predict-
ing network response times, artificial intelligence, validation of heuristic
algorithms, and much more. Computer scientists have not given up on
modeling and analysis, but they have come a long way in experimentally
validating models and analyses.

Moreover, scientists in many fields have discovered information pro-
cesses occurring in nature and have invited computer scientists to help
them understand those processes. Although much of computer science is
concerned with artificial (machine produced) information processes, many
of the same principles apply to natural information processes. A growing
segment of the computing field is concerned with natural information
processes.

Computer science is growing up and earning a reputation for being a
science as well as engineering and mathematics.

Because of the pervasive influence of computing and computation
throughout science and the large and growing number of interactions
between computer scientists and other fields, Paul Rosenbloom has argued
that computing is not just a field of science, it is a new domain of science
on par with the physical, life, and social sciences.*

A New Machine Age Dawns

Just as the steam engine was an inflection point for automating and ampli-
fying manual work in the 1780s, the networked computer has become an
inflection point for automating and amplifying cognitive work.’ This has
happened from a convergence of all the things covered in this book: algo-
rithmics, systems, and design. Algorithmics has produced ingenious new
methods of solving cognitive problems. Systems and networks have devel-
oped the reach and capacity to provide seemingly universal computing
power to run those methods. And designers have become extremely adept
at finding new combinations of algorithmic principles and systems to pro-
vide great value to human communities.

The economics of information differs in a profound way from the eco-
nomics of things. Physical artifacts such as smartphones require a lot of
up-front development costs and large sales to amortize those costs. Digital
artifacts can now be designed cheaply and distributed even more cheaply—
witness the explosion of apps, app development tools, and app markets. The
world of digital objects is characterized by abundance rather than scarcity.
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The app is the software workhorse in this new economy. Apps perform
jobs that make life a whole lot easier for their users. Are you a hiker? Get a
GPS record to track your treks. Want to read your morning paper? Get your
local paper’s app. Want to check in quickly to your flight? Get your airline’s
app. Need a taxi? Get the taxi finder app for your area of the city. The smart-
phones and tablets are not producing the revolution; the apps transform
those devices into immensely useful cognitive job doers.

One of the most troubling disruptions of the new age of computing
machines is the rapidly changing job market. People whose jobs are subject
to automation by a machine are at risk of losing their jobs. Jobs for design-
ers and software engineers are expanding even while their artifacts displace
workers whose jobs become automated. Our education system has not yet
caught up with the need to help the displaced find new skill sets and jobs.
Educators and policy makers have their work cut out for them.

Our Way of Thinking Is Transforming

Imagine two images that are easily found in Internet searches. One is a
photograph of a modern supercomputer. For example, the IBM Blue Gene
supercomputer at Argonne Labs has 250,000 processors in 72 cabinets and
can perform 10" operations per second—a million times faster than the
chip in a smartphone. This machine is very good at processing large data
sets with deterministic algorithms. It has no intelligence.

The other image is an Internet graph, a strikingly beautiful snapshot of
connection data among Internet sites. Sites with more incoming connec-
tions are shown larger and brighter in the graph. The Internet is an organ-
ism with humans and machines in a never-ending dance of interactions
amplifying each other’s capabilities. It is constantly changing its structure,
and some of the changes are disruptive. The graph represents a supercom-
puter grown from a billion machines and several billion people. The organ-
ism has intelligence—the collected, amplified, collaborative intelligence of
everyone who participates in it.

The Internet organism is not replacing the machine. It is a new system
built on machines, mobile devices, their connections, and their interaction
with humans. The network of machines is the infrastructure of the organic
system.

The two images also represent different approaches to understanding the
world. The machine view represents the advancement of science, which
seems poised to know all data, predict what will happen, and exert con-
trols. The organism view exposes an unruly, ever-evolving world rife in
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uncertainties, unpredictable events, and disruptions. Our attitudes toward
design and architecture were formed in the machine age. New design and
architecture principles will doubtless emerge for the Internet organism age.
Our education systems will also have to adapt to prepare people for living
in this emerging world and taking care that technologies leave the world a
better place for generations that follow.

Centrality of Design

Taken together, these considerations place designers and their work at the
center of the progress and innovation in computing. The apparent intel-
ligence of machines comes not from architectures or algorithms but from
the work of designers. Designers pay a lot of attention to the meaning that
software and machines will generate for their users. They craft their designs
so that the meaning they intend is actually present for users. Programmers
have the largest impact when they are designers; otherwise, they are just
coders for someone else’s design.

To emphasize this, we included chapter 10 on Design. Experienced
designers work with design principles that guide them toward dependable,
reliable, usable, safe, and secure computing systems. Although these prin-
ciples are not laws of nature, they are every bit as important in realizing
computation.

Let us celebrate the designers, for they enable us to do our work.






Summary of This Book

Chapter 1: Computing

Computing is a relatively young discipline. It started as an academic field
of study in the 1930s with a cluster of remarkable papers by Kurt Godel,
Alonzo Church, Emil Post, and Alan Turing. These men saw the importance
of automatic computation and sought to give it solid mathematical founda-
tions. They answered the question, “What is computation?” and discussed
schemes for implementing computations. The first forty years of the new
field were focused on developing and perfecting computing technology
and networks. In the 1980s the field started seriously to turn its attentions
outward. It developed strong interactions with computational sciences and
many other fields. Recognizing that the computer itself is just a tool for
studying information processes, the field shifted its focus from the machine
itself to information transformations.

Chapter 2: Domains

The real work of computing comes from people designing and using com-
puting. Computing people have organized into numerous communities of
practice, which we call computing domains. There are dozens of domains.
The members of these domains share similar concerns, skill sets, methods,
and interactions with other communities. They are empowered and con-
strained by computing principles. We examine four computing domains of
contemporary importance—security, artificial intelligence, cloud comput-
ing, and big data. For each one, we give a brief history of its evolution and
then show who is involved, what they are concerned with, what principles
they mobilize from the six categories, and what principles they mobilize
from other fields. The same method of analysis can be used with any of the
other computing domains.
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Chapter 3: Information

Computing machines are said to store, transform, and transmit informa-
tion. This claim puzzles many people because information seems abstract
and at least partially subjective, whereas machines process definite signals
and states of matter. So what is information? Signals and states? Mean-
ings chosen by humans? A mixture: information is meaningful patterns
(codes) of signals and states of matter. The word “meaningful” calls atten-
tion to the fact that patterns are encoded interpretations set by designers;
the machine processes the codes according to rules set by the designers,
and the designers make sure that the results will be interpreted as intended.
Information theory, which deals with the codes forming the patterns, tells
us that entropy defines the minimum number of bits in a decipherable
code, that we can add enough redundant bits to a code to guarantee 100%
reliable transmission in the presence of noise, and that we can compress
files by shortening the codes representing the information in them. One of
the seeming paradoxes of computing is that machines process information
without regard to its meaning, and yet human users find meaning in their
interactions with the machines. The paradox disappears when we remem-
ber that the meaning comes from the intentions of designers.

Chapter 4: Machines

Computing machines are information transformers. They execute a series of
computational steps, each carried out by a simple instruction implemented
with electronic circuits. The stored-program computer, which was invented
in 1944, has instructions for arithmetic and logical operations, conditional
choices, and looping iterations. Such a simple instruction set is powerful
enough to enable a computer to be programmed for any computable func-
tion. The simplicity has a price: even relatively straightforward functions
can require programs whose execution takes billions of instructions. We
are able to afford the price because computers are so fast. Tasks that would
have taken weeks in 1950 can now be done in the blink of an eye. Pro-
gramming languages were developed so that programmers could describe,
with short expressions, what they wanted done; compilers translate pro-
grams into machine instructions while preserving the exact meaning of the
original expressions. Programming languages revealed additional concepts
that needed support from machine instructions, notably the calling of sub-
routines and the fielding of interrupt signals. Designers of computational
electronic circuits discovered that machine design may not always have
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a happy ending because of an uncertainty principle—circuits that must
distinguish between two near-simultaneous signals within a deadline can
hang up and crash the computer. This risk worsens at fast clock speeds
(shorter deadlines). The risk can be mitigated by slowing the clock rate and
eliminated with self-timed circuits that wait until near-simultaneous sig-
nals can be distinguished.

Chapter 5: Programming

From the earliest days programmers realized they would be spending a con-
siderable portion of their lives searching for errors in their own programs
or in the machines that run them. They invented programming languages
to help overcome the error problem. A programming language allows a
programmer to say, with simple expressions following a precise grammar,
what is to be done; then a compiler translates the program into machine
instructions that preserve the exact meanings of the original expressions.
There are thousands of programming languages, each customized for a par-
ticular domain of problem solving. Each one has a precise grammar and a
compiler. The power of the machine can be extended by a virtual machine,
which adds new instructions in as subroutines. Virtual machines have
enabled the execution of Java programs on any computing system, the
execution of multiple versions of the operating system on the same CPU-
RAM hardware, and the implementation of functional levels of operating
systems and network protocols.

Chapter 6: Computation

How long do computing machines take to solve the problems they are
designed for? To answer this, we count the number of steps executed by
an algorithm. Every step requires a definite, nonzero amount of time; the
totality of steps adds up to a noticeable delay regardless of how fast comput-
ers run individual steps. Algorithms can be classified into groups according
to how long they take. Some algorithms require time linearly proportional
to the size of the data set they work with, some quadratic, some exponen-
tial, and some much worse. Algorithms that require exponential processing
time get the bulk of our attention because they solve important problems
and are essentially undoable for large data sets. Even if every particle in
the universe were a memory location, there would not be enough mem-
ory for the algorithm to solve large problems in this class. Moreover, even
if we had the memory, the time needed to achieve a solution would be



252 Summary of This Book

longer than the expected remaining life of the solar system. We examine
why computer scientists believe that the set of problems solvable by fast
algorithms (“P” for polynomial time) is not the same as the problems for
which the only known algorithms are exponential or worse but that can be
verified by fast algorithms (“NP” for nondeterministic polynomial time).
Many common, everyday problems suffer from this limitation. Examples
are distributing goods in a transportation network or finding the optimal
subset within large data sets. In many cases we have discovered amazing
heuristic algorithms (ones that give approximate answers) that can come
within a fraction of a percent of the optimal solution within a reasonable
time. The worst cases of all are the problems that cannot be solved by any
computational machine—for example, whether a program contains an infi-
nite loop, or a malicious virus. This limitation is imposed by the logic of
information itself.

Chapter 7: Memory

We cannot compute unless we can store and retrieve information efficiently.
The four main principles of storage and retrieval are naming, mapping,
authenticating, and positioning. Naming refers to methods of designating
items to which a computation applies; these methods include addresses,
queries of databases, and keyword searches of unstructured data. Mapping
refers to associating an access path from a name to an object and using that
map to transfer information. Authentication refers to validating that the
user requesting an access has rights allowing the access; unauthorized users
are denied access. Positioning refers to arranging information in a storage
hierarchy or network so that the apparent distance from a processor is min-
imum. Positioning is critical in the common cases where the access-time
gap between a CPU cache and a hard disk is on the order of a million, or
when a popular server in the network develops a long queue. The principle
of locality, which says computations cluster their references to small sub-
sets of objects over extended periods of time, underlies all methods of effi-
cient positioning. The locality principle is deeply connected to the notion
of computation itself: every algorithm is constrained on every operation
to reading or modifying a bounded amount of its data structure. Without
locality, computation cannot be.

Chapter 8: Parallelism

Although we traditionally emphasize sequential algorithms in comput-
ing, most actions in the world are done in parallel by autonomous agents
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acting with occasional synchronization. Parallel processing is by far the
most common mode of computation. There are two broad classes of paral-
lelism: cooperative and competitive. Cooperative parallelism occurs when
many processes synchronize together to accomplish a common goal, such
as speeding up a weather forecast by using 10,000 processors. Competi-
tive parallelism occurs when many processes with little or no synchroniza-
tion queue up for access to finite network resources. This chapter examines
the issues of cooperative parallelism, which include avoiding race condi-
tions, locking shared items during use, and avoiding deadlocks. In large
systems there is no way to guarantee the execution order of independent
constituent tasks. Their order can vary from one run to the next, mak-
ing results unpredictable and behavior potentially unsafe. Debugging is
nearly impossible in these environments because there is no way to repro-
duce the buggy behavior. The only solution is to obey design protocols
that prevent unsafe race conditions and deadlocks from ever happening.
Many of these methods have been hidden within operating systems, and
the average programmer did not have to deal with them. However, mul-
ticore chip technology is forcing all programmers to become conversant
in the methods of cooperative parallelism—a major paradigm shift for
programmers.

Chapter 9: Queueing

This chapter examines the issues of competitive parallelism. A com-
puting system is modeled as a set of servers connected by a network.
When users submit jobs (work requests) to the system, their jobs move
from one server to another, collecting portions of service until they
are done. However, queues of jobs form at individual servers, especially
when a server cannot keep up with the demand. The queueing delays are
likely to add significantly to the system’s response time to a job. How can
we predict the response time and throughput of a networked system?
Simply counting the steps of an algorithm barely begins to answer this
question. We need to invoke principles from queueing theory to answer
performance prediction questions and to find and eliminate bottlenecks.
Computer scientists discovered how to use queueing networks to model
large computing systems accurately, and they developed very fast algo-
rithms to calculate predictions with these models. The same models work
for many industrial problems and business workflow problems. When they
apply thousands of processors to answer a query quickly, search engines
illustrate the queueing network principle that parallelism eliminates
bottlenecks.
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Chapter 10: Design

Design has been a central issue of computing since the beginning. The first
designers gave us a remarkable plan, the stored-program computer, also
called the von Neumann architecture, which is still in use today. The stored-
program computer made the instruction set the user interface and gave
birth to the profession of programming. It also gave birth to debugging,
the systematic search for mistakes in programs. Software designers work
with five success criteria: requirements, correctness, fault tolerance, time-
liness, and fitness. Requirements are concerned with making precise state-
ments about the job a system does for its users, correctness with preventing
errors during construction, fault tolerance with minimizing the effects of
errors until they can be corrected and expunged, timeliness with configur-
ing systems to get results on time, and fitness with user satisfaction. Five
design patterns are particularly useful in satisfying these criteria: hierar-
chical aggregation (which blends abstraction, decomposition, modularity,
and information hiding), encapsulation, levels (layers), virtual machines,
and objects. These patterns show up as structures in languages, application
programs, and operating systems. Design is a rich field. It makes all the dif-
ference between successful and failed computing systems. Designing well is
perhaps the greatest challenge in computing.

Chapter 11: Networking

This chapter is a case study of the Internet, one of the most important
computing technologies. Each major component of the Internet draws on
principles from the six categories named in chapter 1. The components are
all knit together with such coherence that the Internet is able to be an enor-
mous system, yet reliable, dependable, and continuously expandable. The
Internet is based on packet-switched messaging rather than circuit switch-
ing as in the telephone networks that preceded it. Packet switching enables
the Internet to survive the inevitable loss of nodes and links by automati-
cally rerouting packets around the damaged region of the network. The
Internet protocol (IP) transcends the millions of local networks by assigning
each host a single address recognizable throughout the network. The trans-
mission control protocol (TCP) divides a stream of bits from a sender into
sequentially numbered packets, which are reassembled into the original
stream at the receiver; acknowledgments assure the sender that packets are
received, and time-outs tell the parties to resend unacknowledged packets.
The Domain Name Service (DNS) gives every host a unique symbolic name
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and translates host names to their IP addresses. A client-server model uses
TCP for connections to access basic networking services; an internationally
administered system assigns standard port numbers to the services. The
World Wide Web adds functions to link any document on any host to any
digital object in the network and bring a copy of an object to a user who
clicks on a link. This vast system uses principles of communication (cod-
ing and error correction), computation (secure encryption, routing tables),
coordination (protocols, multiplexing), recollection (naming, addressing,
and caching), evaluation (flow controls, traffic analysis), and design (lay-
ers, client servers, end-to-end protocols). Studies of the connections in the
web have led to new models of network connectivity and a new field called
“network science.”

Afterword

We conclude the book with a summary of our personal observations on sev-
eral key issues that have permeated this project: mindless machines, intel-
ligent machines, architecture and algorithms, empirical mindset, a new
machine age, transforming our thinking, and centrality of design.
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Chapter 1

1. Matti Tedre (2014) has given an excellent, detailed historical account of what the
traditions of mathematics, engineering, and science brought to computing. Through
the 1980s these traditions occasionally clashed. For example, mathematicians
thought the theory of computation was the true computer science and that com-
puter engineering was a branch of technology. Engineers thought that the mathe-
matics prepared no one for the rigors of building computers and networks that
worked. For a while they even fought over whether software engineering should be
part of computer science or a separate engineering discipline. These clashes have
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largely been resolved as computing has developed its own unique blend of these
traditions, achieving its own identity in its service to so many other fields.

2. We reduced the seven categories of the original formulation to six in this book.
One of the prior categories, automation, is a higher-level domain of computing,
focusing on how and when to automate human cognitive tasks. That domain is
called “artificial intelligence” in chapter 2.

Chapter 3

1. James Carse (1986) makes a similar distinction for games. He said, “There are at
least two kinds of games. One could be called finite; the other infinite. A finite game
is played for the purpose of winning, an infinite game for the purpose of continuing
the play.” These two kinds of games are profoundly different. Although he was not
discussing computing, the distinction further highlights the profound difference
between a finite algorithm and a never-ending interaction system.

2. A sender can encipher a message with a one-time pad, which uses the logical
operation XOR (exclusive-or) to combine each bit of a long random sequence (the
pad) with a corresponding message bit. (XOR has the value 1 if the two inputs bits
are different, and O if they are the same.) A receiver recovers by XORing the same
sequence of random bits with the ciphertext. Shannon showed that the entropy of
the ciphertext is maximum, meaning that it contains no information for the eaves-
dropper. Where did the message and its information go? It is not in the key or the
cipher stream. It is in the transformations chosen by the designer. The encoding and
decoding transformations, taken as a pair, preserve the original meaning. Other
cipher systems use shorter keys, in which case there may be some residual informa-
tion in the ciphertext that a cryptanalyst can exploit.

Chapter 4

1. The book by Hennessey and Patterson (2011) has excellent coverage of all aspects
of computer architecture. The original architecture of the stored program computer
is frequently attributed to John von Neumann (1945), who published notes of his
meetings with Eckert, Mauchly, Burks, and Goldstine. Most of that architecture
came from Eckert and Mauchly, not from von Neumann.

2. IBM may have been the first to describe memory access as “random” with its new
disk storage system RAMAC (Random Access Memory Accounting Machine) in
1956. Random meant that the time to complete an access was a random variable
composed of seek time (arm positioning) and latency (rotational positioning). Today
RAM refers to the main memory of a computer chip, but random means that the
access time for any randomly chosen address is fixed, a different use of the word
“random.”
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3. Corrado Bohm and Giuseppe Jacopini (1966) proved that any computable func-
tion can be computed by a program limited to these three structures. This theorem
was used as the basis of “structured programming,” a movement to make programs
easier to understand and prove correct. Some years later David Harel (1980) traced
this claim all the way back to the design of the von Neumann architecture itself and
to a normal-form theorem proved by Stephen Kleene in the 1930s.

4. Jan Lukasiewicz (1957) notes that he first came upon the notation in 1924.
Arthur Burks, Don Warren, and Jesse Wright (1954) are credited with being the first
to notice that reverse Polish notation simplified mechanical evaluation of expres-
sions. Fritz Bauer and Edsger Dijkstra are credited with independently discovering
this in the early 1960s (Wikipedia).

5. Recursion can lead to simpler programs. For example, it is possible to write a sort
routine in the form SORT(list) = {SORT(left half of list); SORT(right half of list);
MERGE(left half, right half)}, with the boundary condition SORT(empty list)=empty
list. Each inner call to SORT must have a smaller input than the outer call.

6. There is a superficial similarity with the Heisenberg uncertainty principle of
quantum physics. That principle says that product of the standard deviations of
position and momentum is at least 10** joule-seconds. Trying to reduce the uncer-
tainty of one forces greater uncertainty of the other. Part of the reason for the
Heisenberg principle is that the very act of observing either adds or removes energy
from the particle being observed. But this holds only at atomic scales of electrons
and not at the macro scales of currents in wires. The choice uncertainty principle is
not an instance of Heisenberg’s principle.

7. Asynchronous circuits (see chapter 8, Parallelism) are made of modules that inter-
act with ready-acknowledge signals. They can be designed so that they will not gen-
erate ready or acknowledge signals while in a metastable state. They need no clocks.
They are often faster than clocked circuits because modules “fire when ready” and
do not have to wait for a next clock tick.

Chapter 5

1. Good general texts about programming languages are Pierce (2002) and Louden
(2011).

2. Google searches turned up a claim that a group at Murdock University in Perth,
Australia, had compiled a database of 8500 languages, but we have not been able to
verify that claim.

3. These estimates can be found in Wikipedia and in many other sources by simple
Internet searches. A Harvard Business Review article (Flyvbjerg and Budzier 2011) says
that the average IT budget overrun is 27 percent and that one-sixth of projects have
major overruns of over 200 percent on cost and over 70 percent on schedule.
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4. Automatic translation of high-level programs to machine code goes back to
the 1950s. It took many years of research to learn how to parse programming lan-
guages and generate efficient machine code. Today it is a specialized subfield. The
book by Aho, Lam, Sethi, and Ullman (2006) is an excellent study of all the theory
and how it translated into practice. We have distilled the essence of a rich, complex
theory. The book by Brown et al. (2012) discusses two famous Unix programs,
Lex and Yacc, that generate compilers from BNF descriptions of programming lan-
guages.

5. This happens a lot with standardized languages that work on many platforms.
For example, HTML, Java, and Javascript have precise international standards, and
yet web designers need to test their pages and sites on each platform because lan-
guage constructs do not work exactly the same on every operating system.

Chapter 6

1. O(%) is not the best for matrix multiplication. Volker Strassen (1969) found a
trick to make it O(n**),
trick to make it O(n

and later Coppersmith and Winograd (1990) found another

7). These faster algorithms are complex and nonobvious.

2. Variations of the knapsack problem have been studied as far back as 1897. How-
ever, the mathematician Tobias Dantzig gave it a name in 1930 in an essay “Num-
bers: The Language of Science.”

3. See http://www.math.uwaterloo.ca/tsp/sweden/ and http://chern.ie.nthu.edu.tw/
gen/12.pdf.

Chapter 7

1. The mapping function is performed by a hardware component in the CPU called
the memory mapping unit (MMU). The MMU contains a small cache called a Trans-
lation Lookaside Buffer (TLB) that holds copies of the most recently mapped page-
to-frame pairs. The MMU can bypass the page table lookup, which costs another
memory reference, if its target page is listed in the TLB. The TLB typically speeds up
the mapping process to within 1-3 percent of what it would be if page table accesses
cost no delay.

2. The following are examples from a rich literature on capability systems. Jack
Dennis and Earl Van Horn (1966) proposed the idea. Robert Fabry (1974) showed
capability addressing to be the best solution for the shared data problem. Bill Wulf
and colleagues (1974) implemented a capability kernel linked to objects. Maurice
Wilkes and Roger Needham (1979) built a capability machine and operating system
at University of Cambridge. Henry Levy (1984) wrote a summary and overview of
capability systems and their operating principles. Mark Miller (2003) wrote a rebut-
tal of several false myths about capability systems.
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3. Tahoe Least Authority File System (https://tahoe-lafs.org) is an open source file
system that uses capability addressing. No server can exceed its authority because it
gets a set of capabilities exactly equal to what it needs to do its advertised job. Errors
are confined to those objects and cannot spread to other objects.

4. MIN is the optimal policy first defined by Belady (1966) for virtual memory. At a
page fault, the incoming page replaces the loaded page whose reuse time is farthest
in the future. No fixed-partition memory policy can generate fewer page faults for
any given memory size. However, MIN can never change its RAM allocation. It is
constrained to wait until the next page load before it can remove a page. In contrast,
VMIN can remove a page immediately after its current use if it foresees no use for
that page before the threshold time expires. When VMIN’s threshold is adjusted to
make its average allocation equal to MIN’s fixed allocation, VMIN always generates
fewer faults for that amount of memory use.

5. Les Belady of IBM Research and Peter Denning of MIT independently proposed
the locality principle in 1966 and then collaborated on some of the research to vali-
date it. Belady (1966) proposed it to explain the nonrandom performance of paging
algorithms, and Denning (1968a) to characterize intrinsic memory demands of pro-
grams. Many researchers have since studied the principle in many systems. The
locality principle is one of the most extensively validated models in computer sci-
ence (Denning 1980). It continues to be the subject of research on cache perfor-
mance optimization (Xiang et al. 2013).

6. The measurement must be conducted in the virtual time of the program. Virtual
time counts memory references at one per time unit. Virtual time omits delays
caused by interruptions such as disk requests; those delays can be added in if they
are relevant to a performance analysis (Denning 1980).

7. Thrashing is a sudden collapse of system throughput when the multiprogramming
load exceeds a volatile and changing critical value. It occurs when RAM is too small
to hold the working sets of all the active programs. Programs starved for space gener-
ate significantly more page faults and steal pages from other working sets. Soon none
of them has its working set present, and all of them are queued up at the disk waiting
for their page faults to be satisfied (Denning 1968b).Queueing network models
showed that the onset of thrashing occurs when increasing demand for paging forces
the paging disk to become the bottleneck of the system (Denning et al. 1976).

Chapter 8

1. Real weather prediction is much more complex. It would use three-dimensional
cubes touching at six sides and would allow contributions from neighboring cubes
touching only at corners. The pressure equation would be more complicated,
accounting for the influence of wind speed and direction as well.

2. Modula, a revision of Pascal, was designed and developed by Niklaus Wirth
between 1977 and 1985. Smalltalk was created in 1980 by Adele Goldberg (1983),
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Alan Kay, Dan Ingalls, and others at Xerox PARC and became an ANSI standard
in 1988. CLU was developed at MIT by Barbara Liskov (1977) and her students.
Occam, which implemented Hoare’s CSP model (1985), was developed in 1984
by David May at INMOS Corp., a maker of chips called transputers for parallel
supercomputers.

3. Jerry Saltzer (1965) of MIT defined a process as “a program in execution on a
processor.” Jack Dennis and Earl Van Horn (1966) of MIT defined a process as “locus
of control in an instruction sequence” and Vic Vyssotsky of Bell Labs as a “thread.”
Edsger Dijkstra (1968a, 1968b) of Technische Hogeschool Eindhoven defined pro-
cess as “a sequence of CPU states following executions of instructions of a program.”

4. In CSP, Hoare replaced Dijkstra’s semaphores with a simpler coordination mecha-
nism, rendezvous, in which two processes wanting to exchange data visit their
respective rendezvous points, at which moment the data flows between them over a
channel.

5. Nico Habermann (1969) is often credited with the first formal model of deadlock.
He showed that an operating system can enter unsafe states in which there is no
deadlock, but a future deadlock is certain. He showed a “Banker’s Algorithm” that
would decide whether a proposed resource allocation would be safe. Other algo-
rithms for safety are discussed by Coffman and Denning (1973). These algorithms
are not much used because of their overhead.

6. To visualize this, assume that the constraint is followed and yet there is a set of
deadlocked processes. The highest-numbered lock held by the deadlocked processes
cannot be released because a deadlocked process is holding it. The holder of that
lock must itself be waiting for a lock, which by the constraint must be numbered
higher. This contradicts the assumption that deadlock exists.

7. Dijkstra’s famous Dining Philosophers problem can be solved with this method.
Imagine a round table with 5 plates in front of 5 seats and one fork between each
pair of plates. Every so often a philosopher comes and sits down to eat from a bowl
of spaghetti in the middle. To eat, the philosopher needs to pick up the two forks
adjacent to his plate. A deadlock is possible when they all try to pick up one fork
(say the right) at the same time; now each will be waiting for a neighbor to release a
fork. If each one philosopher picks up the lower numbered fork first, this circular
wait cannot happen.

8. Richard Karp and Raymond Miller (1966, 1969) were the first to prove such a
theorem. Coffman and Denning (1973) proved it in the context of operating sys-
tems. Brinch Hansen (1973) declared it an important principle of operating systems.

Chapter 9

1. For readers interested in full coverage of the queueing theory and methods
applied to computer systems and networks, we recommend the books by Kleinrock
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(1975, 1976), Kobayahsi and Mark (2008), Lazowska et al (1984), Menascé and
Almeida (2002), Menascé et al (1994), and Stewart (2009).

2. The utilization law and Little’s law are counterparts of well-known limit theo-
rems for stochastic queueing systems in a steady state. The limit theorems will usu-
ally be verified in actual measurements, not because a steady state has been attained
but because the measured quantities obey operational laws (Buzen 1976).

3. Designate a series of cells called H[n] for n =0, 1,..., N. These cells will hold trial
values of p(n) on the (incorrect) assumption that p(0) = 1. Insert the balance equa-
tion as the formula for computing H[n] from H[n - 1]. The trial values obey the bal-
ance equation but do not sum to 1. We can make them sum to 1 as follows. First,
create a new cell “sum” for H[0] +...+H[N]. Next, create a new set of cells p[n] for n =
0, 1,..., N. Finally, put the formula p[n] = H[n]/sum into those p-cells. Now the values
in the p-cells will sum to 1 and obey the balance equation.

4. A state is a vector (n,,..., ng) where n; is the state of server i and the sum of all the
n; is the system load N. We could represent a vector with a string of N 1's with K- 1
0’s. The 0’s are placed so that the length of each group of 1’s equals one of the com-
ponents. The number of possible such strings is (N + K- 1)!/N!(K - 1)!

Chapter 10

1. It is sometimes said that Ada Lovelace, who collaborated with Charles Babbage
on the Analytic Engine in the early 1840s, was the first programmer of a digital
computer. Babbage never completed his Engine, and Lovelace never ran her pro-
grams. Programming did not become a profession until there were many people
doing it beginning in the 1940s, a hundred years later. The practice of programming
generated new designers—of languages, editors, translators, debuggers, version con-
trol systems, graphical interfaces, applications, and more.

2. Christopher Alexander, who started the school of architecture known as “the
timeless way of building” (1979), said that experienced designers follow a relatively
small set of timeless patterns when making their design choices.

3. These ten aspects of good design were formulated by German industrial designer
Dieter Rams and are often known as the “Rams’s principles” (source: Wikipedia).

4. In 2007 the originators of modeling checking—Edmund Clark, E. Allen Emerson,
and Joseph Sifakis—received an ACM Turing Award for their work.

5. Error confinement is familiar in other domains. Ships are compartmented into
sections separated by water-tight doors to lower risk of sinking in case of a hull
breach. Hot-air balloons are compartmented into sections to lower risks of failure
from a puncture. Bridges are trussed into thousands of triangular sections to protect
against collapse if any one section breaks.
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6. Carl Mitcham (1994), a philosopher of technology, described “technical knowl-
edge” as (1) skills of making (“know-how”), (2) descriptive laws (rules stating actions
to take when the right conditions apply), (3) technical maxims (rules of thumb and
other heuristics), and (4) technological theories (applications of scientific theories to
practice). In our terminology a principle is a description of a skill of making, a pat-
tern is a description law, and a hint is a technical maxim. The scientific knowledge
that constrains practice must be part of the background awareness of the designer.

7. http://en.wikipedia.org/wiki/Software_design_pattern. In 2014 the page listed
nine creational, nine structural, fifteen behavioral, and fifteen concurrency patterns.

8. Jay Israel, James Mitchell, and Howard Sturgis (1978) at Xerox Palo Alto Research
Center developed the client-server model. Alfred Spector (1982) and Andrew Birrell
and Bruce Nelson (1984) implemented the idea as remote procedure call (RPC). In
1984 Robert Sheifler and James Gettys developed the X-Window system at MIT
(Scheifler et al 1988). X-Windows is a generic client server hosting system; users
provide the code for clients and servers and X-Windows provides the communica-
tion through the network.

9. The talent and skill of designers are not trivial points. Simple web searches will
reveal numerous studies showing that the best programmers are at least ten times
more productive than entry-level programmers. Elite programmers can “see” large
systems at all levels of detail in their heads and transform their vision into working
code very quickly. It is well worthwhile for a software company to find a 10x pro-
grammer and pay twice the normal salary. This is far superior to hiring ten entry-
level programmers and then trying to manage them well.

Chapter 11

1. Internet engineers distinguish between the network and the hosts. The network
is the set of routers and links that move packets. The hosts are systems attached to
the network through standard interfaces. The original ARPANET (1970s) was a net-
work of packet switches called Interface Message Processors (IMPs); they formed the
so-called subnet to which the hosts were attached. The IMPs did the real network-
ing; the hosts appeared as sources and sinks of messages. The first-version Internet
software (1980s) used computers called “gateways” to connect packet networks to
each other. Eventually, gateways were renamed “routers.” Hosts connected to the
network via a router.

2. What follows is a brief history of the early Internet. Much more detailed treat-
ments can be found in the document by Barry Leiner et al. (1996) and the book by
Katie Hafner and Matthew Lyon (1999).

J. C. R. Licklider of MIT in 1960 described a visionary future with a worldwide
network connecting all computers (Licklider 1960). The network would support
resource sharing, ubiquitous computing, computing utilities, intelligent interfaces,
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new approaches to research, and new kinds of businesses (Licklider 1962, 1963). In
1961 Leonard Kleinrock of UCLA analyzed a stochastic communication network
model in which discrete messages flowed to their destinations and queued at inter-
mediate nodes (Kleinrock 1961, 1964). In 1964 Paul Baran of the RAND Corporation
published a series of papers on the architecture of a new kind of network, a distrib-
uted voice communication system, which could survive link and node disruptions
(Baran 1964a, 1964b). Digitized voice bitstreams were broken into small message
blocks that could be routed (and rerouted) over alternative paths en route to their
destinations. In 1966 Donald Davies of the National Physical Laboratory in the UK
started using the term “packet” for those message-blocks (Davies et al 1967), and
that term stuck as the standard.

In 1967 Bob Taylor of DARPA asked Larry Roberts to lead a research project to
build a distributed network to realize these visions (Roberts 1967, Roberts and Mer-
rill 1966). Roberts collaborated with Len Kleinrock and Wesley Clark. Clark sug-
gested that the network be configured as a subnet of identical small computers,
called interface message processors (IMPs), which transmitted packets and served as
interfaces to the heterogeneous host computers. Nobody built Baran’s design. The
first two nodes of the ARPANET were operating in late 1969.

Steve Crocker led the development of the Network Control Protocol (NCP),
ARPANET’s host-to-host protocol from 1970 to 1983. Protocols for file transfer (FTP),
remote login (TELNET), and mail (SMTP) were developed as companions to NCP. In
1973 Vinton Cerf and Robert Kahn proposed the transmission control protocol
(TCP), which later became the TCP/IP protocol suite. They also designed the address-
ing structure and the gateway architecture for connecting distinct networks. In their
positions at ARPA they oversaw the evolution and development the Internet until
its formal initiation in January 1983. The TCP gave a uniform method for connect-
ing many subnets into a network of networks (the Internet). TCP gave reliable, effi-
cient file and message transfer in the Internet. NCP was retired in 1983 when TCP/IP
became the standard protocol. The period 1973-1983 was a time of experimental
development of the new protocols. By 1981 the ARPANET had standardized the
basic suite of protocols for an Internet (RFCs 791, 792, 783): IP for addressing and
basic packet transfer, TCP for sequenced data transport, UDP for datagram transfer,
FTP for manual file transfer between hosts, TELNET for remote login, and SMTP for
mail exchange.

The British and French governments also sponsored early research projects in
networking. In 1967 Donald Davies in the UK built a one-node packet switch and
simulated packet networks. In 1972 Louis Pouzin in France created a network called
CYCLADES, for which he coined the term “datagram” for packets used to transfer
data (Pouzin 1973, 1974). The datagram idea was incorporated into the TCP/IP pro-
tocol suite. However, the French government was more interested in preserving the
familiar structures of telephony in its data communications; it backed the X.25 pro-
tocol and let the CYCLADES project lapse. The X.25 work is less known in the
United States because only one company, GTE Telenet, offered the service. The
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prime movers of X.25 were Rémi Després and Paul Gulnaudeau at CCETT in France,
David Horton and Anton Rybczynsky at TCTS in Canada, Larry Roberts and Barry
Wessler at Telenet in the United States, Philip Kelly and John Wedlake at the Post
Office in the United Kingdom, and Masao Kato at NTT in Japan. They got the X.25
standard adopted by CCITT in 1976. Chris Bloomfield at the UK Post Office and
Bernard Jamet at the CCETT in France contributed shortly after that the character-
mode-interface recommendations for X.3, X.28, and X.29. For more detail, see
Després (2010).

In 1981 the US National Science Foundation (NSF) entered the network business
by sponsoring CSNET, a community network connecting research-oriented CS
departments and labs around the world. The CSNET project involved a large number
of people under the leadership of a university consortium led by Principal Investiga-
tors Larry Landweber, David Farber, Tony Hearn, and Peter Denning. CSNET devel-
oped versions of the ARPANET TCP/IP protocols that ran over telephone dial-up
connections and X.25 connections, departing from the ARPANET’s standard of
leased telephone lines. In 1986 the NSF expanded its presence in networking by
sponsoring a backbone, NSFNET, connecting the NSF supercomputing centers. They
connected regional networks to the backbone and opened the network to commer-
cial traffic. By 1990 the emerging Internet had grown to over 150,000 hosts and was
doubling every year.

In parallel with the US networking efforts, the Organization for International
Standardization (ISO) designed the Open Systems Interconnection (OSI) protocol
suite built initially atop the European X.25 protocol. The first OSI reference model
paper appeared in 1978 (see Zimmerman 1980), and the standard itself was pub-
lished by the ISO in 1984. For the next fifteen years there was an international
debate between advocates of the TCP/IP suite and the OSI suite. TCP/IP became the
Internet standard around 1993, when the US government, via NIST (National Insti-
tute for Standards and Technology), accepted that TCP/IP was a reasonable alterna-
tive to OSI.

The Internet was initially slow to evolve into a medium for commercial transac-
tions. In the mid-1970s ARPA encouraged IBM, DEC, and HP to participate in the
research project. In 1985 ARPA and NSF agreed to allow industry members of CSNET
to send traffic on the ARPANET; however, those members did not try sales or mar-
keting with their CSNET connections. In 1989 the NSF permitted the first commer-
cial vendors to serve the NSFNET infrastructure—Internet Service Providers (ISPs)
UUNET, PSINET, CERFNET, and the first email providers including MCI Mail, Com-
puserve, OnTyme, Telemail, and GENIE. In 1989 a team at CERN Laboratory in
Switzerland, led by computer scientist Tim Berners-Lee, developed the World Wide
Web technology to enable easy sharing of documents in the Internet. The WWW
took off in 1993 with the release of Marc Andreessen’s Mosaic browser by the Uni-
versity of Illinois; Mosaic was the first graphical interface to the WWW. After that,
various commercial firms started developing web pages and offering to do business
transactions via the web.
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The first ideas of a worldwide web can be found in Ted Nelson'’s proposals in the
1960s for digital publication in a shared network (Nelson 1980). Authors would
make digital documents available by a system he called Xanadu, which would auto-
matically handle publication, distribution, royalties, and copyrights. Authors would
use hypertext instead of linear writing. Nelson’s vision remained in the status of a
dream well into the 1980s, when AutoDesk bought his company, Xanadu, and made
the software public.

Also in the 1960s Douglas Engelbart of SRI began a project to augment human
intelligence by supporting cooperative work. His NLS (oNLine System) supported
hypertext document organization, textual interaction with the screen, group collab-
oration on a document, embedded video, a chord keyset, and the first mouse. His
demo made it obvious that NLS could be extended to networks, which would
amplify its power to augment intelligence.

In 1980 the American National Standards Institute (ANSI) formed a committee
on computer languages for processing of text. Publishers traditionally marked up
author’s manuscripts with special symbols to tell the printers how to set up the type-
setting machines properly. In 1985 the ANSI group proposed a standard generalized
markup language (SGML), a meta-language to describe the grammars of individual
markup languages. With SGML, it became possible for authors, editors, and publish-
ers to process and exchange documents automatically. Tim Berners-Lee, a member
of the SGML users group, used the SGML principles to define HTML, the markup
language for web pages. He included tags for URLs (uniform resource locators) of
digital objects anywhere in the Internet, and he defined the protocol HTTP to auto-
matically fetch a document designated by a URL link. The combination of a browser,
HTML, HTTP, the URL, and a web server was the initial World Wide Web. Berners-
Lee founded the World Wide Web Consortium (W3C) in 1985 to oversee the orderly
development of the web.

3. Kleinrock and Baran spoke of messages and message blocks. The term “packet”
was introduced by Donald Davies in 1967 and was soon accepted as the standard.

4. Whether all packets are of the same size or can be of different sizes has been a
constant source of debate. Fixed-size packets are subject to fragmentation, which
means that the final packet of a sequence has an unused portion of its data field; on
average half the last packet’s data field will be lost to fragmentation. Variable pack-
ets can be sized to exactly fit the data, without fragmentation. Protocol engineers
weigh the cost of the headers against the cost of the fragmentation. There are no
easy answers because the costs depend on the network and the distribution of file or
communication sizes.

5. In Internet terminology the most recent version of 32-bit addressing is called “IP
version 4” or IPv4. The revised protocol for 128-bit addressing is called “IP version
6” or IPv6. As of 2014 many network administrators had not upgraded to support
IPv6 in parallel with IPv4.
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6. An article “List of TCP and UDP port numbers” in Wikipedia lists hundreds of
“well-known ports” in the range 0-1023. Thousands of other services and their port
numbers in the range 1024 to 49151 have been registered with IANA.

7. The network control panel on your computer has a field containing the IP address
of the DNS server your computer uses for translating domain names to IP addresses.
TCP uses that DNS server.

8. Administration of domain names and IP addresses is complicated and is struc-
tured to reflect the hierarchical methods of constructing domain names and IP
addresses. The Internet Corporation for Assigned Names and Numbers (ICANN,
icann.org) has overall responsibility for determining the top-level domains and set-
ting the policies for administering domains at the lower levels of the hierarchy. The
primary root servers, which contain the top-level domain database, are updated by a
complex but secure process. ICANN sends proposed updates to National Technical
Information Agency (NTIA), which confirms the changes to Verisign; Verisign gen-
erates the new root zone and sends copies of it to 13 root zone operators, including
ICANN (one root server) and Verisign (two root servers). Each root server is imple-
mented at multiple redundant locations to protect against failure or attack and to
provide faster response in all parts of the world; in 2014 there were 385 root server
locations (see www.iana.org/domains/root/servers). ICANN is global in scope but is
actually a nonprofit organization incorporated in California, with a very interna-
tional board and operations in Singapore, Istanbul, and Los Angeles. One of the
functions of ICANN is the allocation of blocks of addresses to regional Internet regis-
tries (RIRs), a function performed by the Internet Assigned Numbers Authority
(IANA, iana.org). The RIRs formulate global rules that are adopted by ICANN and
administered by IANA. The Internet Engineering Task Force (IETF, ietf.org) sets tech-
nical standards that can affect IP address formats, allocations, and assignments. IETF
is hosted by the Internet Society, a nonprofit incorporated in Washington, DC, with
offices and chapters around the world.

9. The same principle is known in software engineering as the principle of levels
and is discussed in chapter 10 on design. Levels and layers are strata of software
that add functions to the levels below. In networking, data flow up and down
through the levels in the form of packets, with each level performing its unique
operation on a packet. In software engineering, data flow as parameters to proce-
dure calls, which are allowed only to lower levels; data flow upward via procedure
returns.

10. In 2014, a flaw was discovered in the OpenSSL implementation of TLS. This so-
called Heartbleed bug affected about 17 percent of hosts using https connections
and would allow an intruder to steal passwords and encryption keys. A patch was
quickly distributed, but many users had to change passwords on the affected web
sites. Even with careful design, flaws still get into software!
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Afterword

1. An example is Kelly, Kevin. 2010. What Technology Wants. Viking.

2. Joy, Bill. 2000. Why the future doesn’t need us. Wired magazine, issue 8.04
(April). Available at http://archive.wired.com/wired/archive/8.04/joy.html.

3. In May 2014 Stephen Hawking discussed a new film “Transcendence” about
operating systems developing intelligence and threatening humanity. He was not
convinced that computing experts are working to control the risks that accompany
the bounty. He believed that autonomous military technology could easily get out
of hand.

4. Rosenbloom, Paul. 2012. On Computing: The Fourth Great Scientific Domain. MIT
Press.

5. Brynjolfsson, Erik, and Andrew McAfee. 2014. The Second Machine Age: Work,
Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton.
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